Science.gov

Sample records for activate signal transduction

  1. Activity Dependent Signal Transduction in Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    Hamilton, Susan L.

    1999-01-01

    The overall goals of this project are: 1) to define the initial signal transduction events whereby the removal of gravitational load from antigravity muscles, such as the soleus, triggers muscle atrophy, and 2) to develop countermeasures to prevent this from happening. Our rationale for this approach is that, if countermeasures can be developed to regulate these early events, we could avoid having to deal with the multiple cascades of events that occur downstream from the initial event. One of our major findings is that hind limb suspension causes an early and sustained increase in intracellular Ca(2+) concentration ([Ca (2+)](sub i)). In most cells the consequences of changes in ([Ca (2+)](sub i))depend on the amplitude, frequency and duration of the Ca(2+) signal and on other factors in the intracellular environment. We propose that muscle remodeling in microgravity represents a change in the balance among several CA(2+) regulated signal transduction pathways, in particular those involving the transcription factors NFAT and NFkB and the pro-apoptotic protein BAD. Other Ca(2+) sensitive pathways involving PKC, ras, rac, and CaM kinase II may also contribute to muscle remodeling.

  2. Spatial Regulation and the Rate of Signal Transduction Activation

    PubMed Central

    Batada, Nizar N; Shepp, Larry A; Siegmund, David O; Levitt, Michael

    2006-01-01

    Of the many important signaling events that take place on the surface of a mammalian cell, activation of signal transduction pathways via interactions of cell surface receptors is one of the most important. Evidence suggests that cell surface proteins are not as freely diffusible as implied by the classic fluid mosaic model and that their confinement to membrane domains is regulated. It is unknown whether these dynamic localization mechanisms function to enhance signal transduction activation rate or to minimize cross talk among pathways that share common intermediates. To determine which of these two possibilities is more likely, we derive an explicit equation for the rate at which cell surface membrane proteins interact based on a Brownian motion model in the presence of endocytosis and exocytosis. We find that in the absence of any diffusion constraints, cell surface protein interaction rate is extremely high relative to cytoplasmic protein interaction rate even in a large mammalian cell with a receptor abundance of a mere two hundred molecules. Since a larger number of downstream signaling events needs to take place, each occurring at a much slower rate than the initial activation via association of cell surface proteins, we conclude that the role of co-localization is most likely that of cross-talk reduction rather than coupling efficiency enhancement. PMID:16699596

  3. Mitogen Activated Protein kinase signal transduction pathways in the prostate

    PubMed Central

    Maroni, Paul D; Koul, Sweaty; Meacham, Randall B; Koul, Hari K

    2004-01-01

    The biochemistry of the mitogen activated protein kinases ERK, JNK, and p38 have been studied in prostate physiology in an attempt to elucidate novel mechanisms and pathways for the treatment of prostatic disease. We reviewed articles examining mitogen-activated protein kinases using prostate tissue or cell lines. As with other tissue types, these signaling modules are links/transmitters for important pathways in prostate cells that can result in cellular survival or apoptosis. While the activation of the ERK pathway appears to primarily result in survival, the roles of JNK and p38 are less clear. Manipulation of these pathways could have important implications for the treatment of prostate cancer and benign prostatic hypertrophy. PMID:15219238

  4. Prion-like Polymerization Underlies Signal Transduction in Antiviral Immune Defense and Inflammasome Activation

    PubMed Central

    Cai, Xin; Chen, Jueqi; Xu, Hui; Liu, Siqi; Jiang, Qiu-Xing; Halfmann, Randal; Chen, Zhijian J.

    2014-01-01

    SUMMARY Pathogens and cellular danger signals activate sensors such as RIG-I and NLRP3 to produce robust immune and inflammatory responses through respective adaptor proteins MAVS and ASC, which harbor essential N-terminal CARD and PYRIN domains, respectively. Here, we show that CARD and PYRIN function as bona fide prions in yeast and their prion forms are inducible by their respective upstream activators. Likewise, a yeast prion domain can functionally replace CARD and PYRIN in mammalian cell signaling. Mutations in MAVS and ASC that disrupt their prion activities in yeast also abrogate their ability to signal in mammalian cells. Furthermore, fibers of recombinant PYRIN can convert ASC into functional polymers capable of activating caspase-1. Remarkably, a conserved fungal NOD-like receptor and prion pair can functionally reconstitute signaling of NLRP3 and ASC PYRINs in mammalian cells. These results indicate that prion-like polymerization is a conserved signal transduction mechanism in innate immunity and inflammation. PMID:24630723

  5. Phosphorylation in halobacterial signal transduction.

    PubMed Central

    Rudolph, J; Tolliday, N; Schmitt, C; Schuster, S C; Oesterhelt, D

    1995-01-01

    Regulated phosphorylation of proteins has been shown to be a hallmark of signal transduction mechanisms in both Eubacteria and Eukarya. Here we demonstrate that phosphorylation and dephosphorylation are also the underlying mechanism of chemo- and phototactic signal transduction in Archaea, the third branch of the living world. Cloning and sequencing of the region upstream of the cheA gene, known to be required for chemo- and phototaxis in Halobacterium salinarium, has identified cheY and cheB analogs which appear to form part of an operon which also includes cheA and the following open reading frame of 585 nucleotides. The CheY and CheB proteins have 31.3 and 37.5% sequence identity compared with the known signal transduction proteins CheY and CheB from Escherichia coli, respectively. The biochemical activities of both CheA and CheY were investigated following their expression in E.coli, isolation and renaturation. Wild-type CheA could be phosphorylated in a time-dependent manner in the presence of [gamma-32P]ATP and Mg2+, whereas the mutant CheA(H44Q) remained unlabeled. Phosphorylated CheA was dephosphorylated rapidly by the addition of wild-type CheY. The mutant CheY(D53A) had no effect on phosphorylated CheA. The mechanism of chemo- and phototactic signal transduction in the Archaeon H.salinarium, therefore, is similar to the two-component signaling system known from chemotaxis in the eubacterium E.coli. Images PMID:7556066

  6. Protein Regulation in Signal Transduction.

    PubMed

    Lee, Michael J; Yaffe, Michael B

    2016-01-01

    SUMMARYCells must respond to a diverse, complex, and ever-changing mix of signals, using a fairly limited set of parts. Changes in protein level, protein localization, protein activity, and protein-protein interactions are critical aspects of signal transduction, allowing cells to respond highly specifically to a nearly limitless set of cues and also to vary the sensitivity, duration, and dynamics of the response. Signal-dependent changes in levels of gene expression and protein synthesis play an important role in regulation of protein levels, whereas posttranslational modifications of proteins regulate their degradation, localization, and functional interactions. Protein ubiquitylation, for example, can direct proteins to the proteasome for degradation or provide a signal that regulates their interactions and/or location within the cell. Similarly, protein phosphorylation by specific kinases is a key mechanism for augmenting protein activity and relaying signals to other proteins that possess domains that recognize the phosphorylated residues. PMID:27252361

  7. Linear models of activation cascades: analytical solutions and coarse-graining of delayed signal transduction.

    PubMed

    Beguerisse-Díaz, Mariano; Desikan, Radhika; Barahona, Mauricio

    2016-08-01

    Cellular signal transduction usually involves activation cascades, the sequential activation of a series of proteins following the reception of an input signal. Here, we study the classic model of weakly activated cascades and obtain analytical solutions for a variety of inputs. We show that in the special but important case of optimal gain cascades (i.e. when the deactivation rates are identical) the downstream output of the cascade can be represented exactly as a lumped nonlinear module containing an incomplete gamma function with real parameters that depend on the rates and length of the cascade, as well as parameters of the input signal. The expressions obtained can be applied to the non-identical case when the deactivation rates are random to capture the variability in the cascade outputs. We also show that cascades can be rearranged so that blocks with similar rates can be lumped and represented through our nonlinear modules. Our results can be used both to represent cascades in computational models of differential equations and to fit data efficiently, by reducing the number of equations and parameters involved. In particular, the length of the cascade appears as a real-valued parameter and can thus be fitted in the same manner as Hill coefficients. Finally, we show how the obtained nonlinear modules can be used instead of delay differential equations to model delays in signal transduction. PMID:27581482

  8. Linear models of activation cascades: analytical solutions and coarse-graining of delayed signal transduction

    PubMed Central

    Desikan, Radhika

    2016-01-01

    Cellular signal transduction usually involves activation cascades, the sequential activation of a series of proteins following the reception of an input signal. Here, we study the classic model of weakly activated cascades and obtain analytical solutions for a variety of inputs. We show that in the special but important case of optimal gain cascades (i.e. when the deactivation rates are identical) the downstream output of the cascade can be represented exactly as a lumped nonlinear module containing an incomplete gamma function with real parameters that depend on the rates and length of the cascade, as well as parameters of the input signal. The expressions obtained can be applied to the non-identical case when the deactivation rates are random to capture the variability in the cascade outputs. We also show that cascades can be rearranged so that blocks with similar rates can be lumped and represented through our nonlinear modules. Our results can be used both to represent cascades in computational models of differential equations and to fit data efficiently, by reducing the number of equations and parameters involved. In particular, the length of the cascade appears as a real-valued parameter and can thus be fitted in the same manner as Hill coefficients. Finally, we show how the obtained nonlinear modules can be used instead of delay differential equations to model delays in signal transduction. PMID:27581482

  9. Conformational transition in signal transduction: metastable states and transition pathways in the activation of a signaling protein.

    PubMed

    Banerjee, Rahul; Yan, Honggao; Cukier, Robert I

    2015-06-01

    Signal transduction is of vital importance to the growth and adaptation of living organisms. The key to understand mechanisms of biological signal transduction is elucidation of the conformational dynamics of its signaling proteins, as the activation of a signaling protein is fundamentally a process of conformational transition from an inactive to an active state. A predominant form of signal transduction for bacterial sensing of environmental changes in the wild or inside their hosts is a variety of two-component systems, in which the conformational transition of a response regulator (RR) from an inactive to an active state initiates responses to the environmental changes. Here, RR activation has been investigated using RR468 as a model system by extensive unbiased all-atom molecular dynamics (MD) simulations in explicit solvent, starting from snapshots along a targeted MD trajectory that covers the conformational transition. Markov state modeling, transition path theory, and geometric analyses of the wealth of the MD data have provided a comprehensive description of the RR activation. It involves a network of metastable states, with one metastable state essentially the same as the inactive state and another very similar to the active state that are connected via a small set of intermediates. Five major pathways account for >75% of the fluxes of the conformational transition from the inactive to the active-like state. The thermodynamic stability of the states and the activation barriers between states are found, to identify rate-limiting steps. The conformal transition is initiated predominantly by movements of the β3α3 loop, followed by movements of the β4α4-loop and neighboring α4 helix region, and capped by additional movements of the β3α3 loop. A number of transient hydrophobic and hydrogen bond interactions are revealed, and they may be important for the conformational transition. PMID:25945797

  10. Cadmium Induces Apoptosis in Freshwater Crab Sinopotamon henanense through Activating Calcium Signal Transduction Pathway

    PubMed Central

    Wang, Jinxiang; Zhang, Pingping; Liu, Na; Wang, Qian; Luo, Jixian; Wang, Lan

    2015-01-01

    Calcium ion (Ca2+) is one of the key intracellular signals, which is implicated in the regulation of cell functions such as impregnation, cell proliferation, differentiation and death. Cadmium (Cd) is a toxic environmental pollutant that can disturb cell functions and even lead to cell death. Recently, we have found that Cd induced apoptosis in gill cells of the freshwater crab Sinopotamon henanense via caspase activation. In the present study, we further investigated the role of calcium signaling in the Cd-induced apoptosis in the animals. Our data showed that Cd triggered gill cell apoptosis which is evidenced by apoptotic DNA fragmentation, activations of caspases-3, -8 and -9 and the presence of apoptotic morphological features. Moreover, Cd elevated the intracellular concentration of Ca2+, the protein concentration of calmodulin (CaM) and the activity of Ca2+-ATPase in the gill cells of the crabs. Pretreatment of the animals with ethylene glycol-bis-(b-aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA), Ca2+ chelator, inhibited Cd-induced activation of caspases-3, -8 and -9 as well as blocked the Cd-triggered apoptotic DNA fragmentation. The apoptotic morphological features were no longer observed in gill cells pretreated with the Ca2+ signaling inhibitors before Cd treatment. Our results indicate that Cd evokes gill cell apoptosis through activating Ca2+-CaM signaling transduction pathway. PMID:26714174

  11. Signal transduction pathways in mast cell granule-mediated endothelial cell activation.

    PubMed Central

    Chi, Luqi; Stehno-Bittel, Lisa; Smirnova, Irina; Stechschulte, Daniel J; Dileepan, Kottarappat N

    2003-01-01

    BACKGROUND: We have previously shown that incubation of human endothelial cells with mast cell granules results in potentiation of lipopolysaccharide-induced production of interleukin-6 and interleukin-8. AIMS: The objective of the present study was to identify candidate molecules and signal transduction pathways involved in the synergy between mast cell granules and lipopolysaccharide on endothelial cell activation. METHODS: Human umbilical vein endothelial cells were incubated with rat mast cell granules in the presence and absence of lipopolysaccharide, and IL-6 production was quantified. The status of c-Jun amino-terminal kinase and extracellular signal-regulated kinase 1/2 activation, nuclear factor-kappaB translocation and intracellular calcium levels were determined to identify the mechanism of synergy between mast cell granules and lipopolysaccaride. RESULTS: Mast cell granules induced low levels of interleukin-6 production by endothelial cells, and this effect was markedly enhanced by lipopolysaccharide. The results revealed that both serine proteases and histamine present in mast cell granules were involved in this activation process. Mast cell granules increased intracellular calcium, and activated c-Jun amino-terminal kinase and extracellular signal-regulated kinase 1/2. The combination of lipopolysaccharide and mast cell granules prolonged c-Jun amino-terminal kinase activity beyond the duration of induction by either stimulant alone and was entirely due to active proteases. However, both proteases and histamine contributed to calcium mobilization and extracellular signal-regulated kinase 1/2 activation. The nuclear translocation of nuclear factor-kappaB proteins was of greater magnitude in endothelial cells treated with the combination of mast cell granules and lipopolysaccharide. CONCLUSIONS:Mast cell granule serine proteases and histamine can amplify lipopolysaccharide-induced endothelial cell activation, which involves calcium mobilization, mitogen-activated

  12. PII signal transduction proteins are ATPases whose activity is regulated by 2-oxoglutarate

    PubMed Central

    Radchenko, Martha V.; Thornton, Jeremy; Merrick, Mike

    2013-01-01

    PII proteins are one of the most widespread families of signal transduction proteins in nature, being ubiquitous throughout bacteria, archaea, and plants. In all these organisms, PII proteins coordinate many facets of nitrogen metabolism by interacting with and regulating the activities of enzymes, transcription factors, and membrane transport proteins. The primary mode of signal perception by PII proteins derives from their ability to bind the effector molecules 2-oxoglutarate (2-OG) and ATP or ADP. The role of 2-OG as an indicator of cellular nitrogen status is well understood, but the function of ATP/ADP binding has remained unresolved. We have now shown that the Escherichia coli PII protein, GlnK, has an ATPase activity that is inhibited by 2-OG. Hence, when a drop in the cellular 2-OG pool signals nitrogen sufficiency, 2-OG depletion of GlnK causes bound ATP to be hydrolyzed to ADP, leading to a conformational change in the protein. We propose that the role of ATP/ADP binding in E. coli GlnK is to effect a 2-OG-dependent molecular switch that drives a conformational change in the T loops of the PII protein. We have further shown that two other PII proteins, Azospirillum brasilense GlnZ and Arabidopsis thaliana PII, have a similar ATPase activity, and we therefore suggest that this switch mechanism is likely to be a general property of most members of the PII protein family. PMID:23818625

  13. Reliable Signal Transduction

    NASA Astrophysics Data System (ADS)

    Wollman, Roy

    Stochasticity inherent to biochemical reactions (intrinsic noise) and variability in cellular states (extrinsic noise) degrade information transmitted through signaling networks. We analyzed the ability of temporal signal modulation - that is dynamics - to reduce noise-induced information loss. In the extracellular signal-regulated kinase (ERK), calcium (Ca(2 +)) , and nuclear factor kappa-B (NF- κB) pathways, response dynamics resulted in significantly greater information transmission capacities compared to nondynamic responses. Theoretical analysis demonstrated that signaling dynamics has a key role in overcoming extrinsic noise. Experimental measurements of information transmission in the ERK network under varying signal-to-noise levels confirmed our predictions and showed that signaling dynamics mitigate, and can potentially eliminate, extrinsic noise-induced information loss. By curbing the information-degrading effects of cell-to-cell variability, dynamic responses substantially increase the accuracy of biochemical signaling networks.

  14. Activation of gene expression by metal-responsive signal transduction pathways.

    PubMed Central

    Adams, Timothy K; Saydam, Nurten; Steiner, Florian; Schaffner, Walter; Freedman, Jonathan H

    2002-01-01

    Metallothioneins are small, cysteine-rich, metal-binding proteins that play important roles in maintaining intracellular metal homeostasis and in transition metal detoxification. MTF-1 (metal transcription factor-1) plays a central role in regulating the metal-inducible, transcriptional activation of metallothionein. Here we report that the phosphorylation of MTF-1 plays a critical role in the activation of MTF-1/metal-responsive element-mediated transcription. Inhibitor studies indicate that signal transduction cascades, including those mediated by protein kinase C, tyrosine kinase, and casein kinase II, are essential for zinc- and cadmium-inducible transcription. In addition, calcium signaling is also involved in regulating transcription. In contrast, cAMP-dependent protein kinase may not be directly involved in the metal response. Contrary to what has been reported for other transcription factors, the inhibition of transcriptional activation does not impair the binding of MTF-1 to DNA, suggesting that phosphorylation is not regulating DNA binding. Elevated phosphorylation of MTF-1 is observed under conditions of protein kinase C inhibition, suggesting that dephosphorylation of this transcription factor mediates its activation. PMID:12426137

  15. Meeting Report: Teaching Signal Transduction

    PubMed Central

    Kramer, IJsbrand; Thomas, Geraint

    2006-01-01

    In July, 2005, the European Institute of Chemistry and Biology at the campus of the University of Bordeaux, France, hosted a focused week of seminars, workshops, and discussions around the theme of “teaching signal transduction.” The purpose of the summer school was to offer both junior and senior university instructors a chance to reflect on the development and delivery of their teaching activities in this area. This was achieved by combining open seminars with restricted access workshops and discussion events. The results suggest ways in which systems biology, information and communication technology, Web-based investigations, and high standard illustrations might be more effectively and efficiently incorporated into modern cell biology courses. PMID:17012185

  16. Interferon-gamma regulates nucleoside transport systems in macrophages through signal transduction and activator of transduction factor 1 (STAT1)-dependent and -independent signalling pathways.

    PubMed

    Soler, Concepció; Felipe, Antonio; García-Manteiga, José; Serra, Maria; Guillén-Gómez, Elena; Casado, F Javier; MacLeod, Carol; Modolell, Manuel; Pastor-Anglada, Marçal; Celada, Antonio

    2003-11-01

    The expressions of CNT and ENT (concentrative and equilibrative nucleoside transporters) in macrophages are differentially regulated by IFN-gamma (interferon-gamma). This cytokine controls gene expression through STAT1-dependent and/or -independent pathways (where STAT1 stands for signal transduction and activator of transcription 1). In the present study, the role of STAT1 in the response of nucleoside transporters to IFN-gamma was studied using macrophages from STAT1 knockout mice. IFN-gamma triggered an inhibition of ENT1-related nucleoside transport activity through STAT1-dependent mechanisms. Such inhibition of macrophage growth and ENT1 activity by IFN-gamma is required for DNA synthesis. Interestingly, IFN-gamma led to an induction of the CNT1- and CNT2-related nucleoside transport activities independent of STAT1, thus ensuring the supply of extracellular nucleosides for the STAT1-independent RNA synthesis. IFN-gamma up-regulated CNT2 mRNA and CNT1 protein levels and down-regulated ENT1 mRNA in both wild-type and STAT1 knockout macrophages. This is consistent with a STAT1-independent, long-term-mediated, probably transcription-dependent, regulation of nucleoside transporter genes. Moreover, STAT1-dependent post-transcriptional mechanisms are implicated in the regulation of ENT1 activity. Although nitric oxide is involved in the regulation of ENT1 activity in B-cells at a post-transcriptional level, our results show that STAT1-dependent induction of nitric oxide by IFN-gamma is not implicated in the regulation of ENT1 activity in macrophages. Our results indicate that both STAT1-dependent and -independent pathways are involved in the regulation of nucleoside transporters by IFN-gamma in macrophages. PMID:12868960

  17. Meeting Report: Teaching Signal Transduction

    ERIC Educational Resources Information Center

    Kramer, IJsbrand; Thomas, Geraint

    2006-01-01

    In July, 2005, the European Institute of Chemistry and Biology at the campus of the University of Bordeaux, France, hosted a focused week of seminars, workshops, and discussions around the theme of "teaching signal transduction." The purpose of the summer school was to offer both junior and senior university instructors a chance to reflect on the…

  18. Meeting report: Signal transduction meets systems biology

    PubMed Central

    2012-01-01

    In the 21st century, systems-wide analyses of biological processes are getting more and more realistic. Especially for the in depth analysis of signal transduction pathways and networks, various approaches of systems biology are now successfully used. The EU FP7 large integrated project SYBILLA (Systems Biology of T-cell Activation in Health and Disease) coordinates such an endeavor. By using a combination of experimental data sets and computational modelling, the consortium strives for gaining a detailed and mechanistic understanding of signal transduction processes that govern T-cell activation. In order to foster the interaction between systems biologists and experimentally working groups, SYBILLA co-organized the 15th meeting “Signal Transduction: Receptors, Mediators and Genes” together with the Signal Transduction Society (STS). Thus, the annual STS conference, held from November 7 to 9, 2011 in Weimar, Germany, provided an interdisciplinary forum for research on signal transduction with a major focus on systems biology addressing signalling events in T-cells. Here we report on a selection of ongoing projects of SYBILLA and how they were discussed at this interdisciplinary conference. PMID:22546078

  19. Activation of signal transduction in platelets by the tyrosine phosphatase inhibitor pervanadate (vanadyl hydroperoxide).

    PubMed Central

    Pumiglia, K M; Lau, L F; Huang, C K; Burroughs, S; Feinstein, M B

    1992-01-01

    The protein tyrosine phosphatase (PTPase) inhibitor pervanadate (vanadyl hydroperoxide) stimulated protein tyrosine phosphorylation 29-fold more than did thrombin in intact and saponin-permeabilized platelets. Increased tyrosine phosphorylation preceded, or was coincident with, a fall in PtdIns(4,5)P2 levels, production of PtdIns(3,4)P2 and phosphatidic acid, mobilization of intracellular Ca2+, stimulation of protein kinase C-dependent protein phosphorylation, secretion of dense and alpha-granules, increased actin polymerization, shape change and aggregation which required fibrinogen and was mediated by increased surface expression of GPIIb-IIIa. The tyrosine kinase inhibitor RG 50864 totally prevented induction of tyrosine phosphorylation by pervanadate, as well as all other responses measured; in contrast, the inactive structural analogue, tyrphostin #1, had no effect. Dense-granule secretion induced by pervanadate required protein kinase C activity; however, aggregation and alpha-granule secretion were independent of protein kinase C. In saponin-permeabilized platelets pervanadate and thrombin stimulated phospholipase C activity by GTP-independent and GTP-dependent mechanisms respectively. We conclude that PTPases are important regulators of signal transduction in platelets. Images Fig. 1. Fig. 2. PMID:1530576

  20. Structure of the signal transduction protein TRAP (target of RNAIII-activating protein)

    PubMed Central

    Henrick, Kim; Hirshberg, Miriam

    2012-01-01

    The crystal structure of the signal transduction protein TRAP is reported at 1.85 Å resolution. The structure of TRAP consists of a central eight-stranded β-­barrel flanked asymmetrically by helices and is monomeric both in solution and in the crystal structure. A formate ion was found bound to TRAP identically in all four molecules in the asymmetric unit. PMID:22750855

  1. Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase.

    PubMed Central

    Seo, S; Sano, H; Ohashi, Y

    1999-01-01

    A gene encoding a tobacco mitogen-activated protein kinase (WIPK) is transcriptionally activated in response to wounding. Transgenic tobacco plants, in which expression of endogenous wipk was suppressed, did not accumulate jasmonic acid or its methyl ester when wounded, suggesting that WIPK is involved in jasmonate-mediated wound signal transduction. Here, we demonstrate that activation of WIPK is required for triggering the jasmonate-mediated signal transduction cascade that occurs when wild-type tobacco plants are wounded. We also show that when plants are wounded, WIPK is rapidly and transiently activated, whereas the quantity of WIPK protein is maintained at a constant level. A transgenic tobacco plant in which the wipk gene was constitutively expressed at a high level showed constitutive enzymatic activation of WIPK and exhibited three- to fourfold higher levels of jasmonate than did its wild-type counterpart. This plant also showed constitutive accumulation of jasmonate-inducible proteinase inhibitor II transcripts. These results show that WIPK is activated in response to wounding, which subsequently causes an increase in jasmonate synthesis. PMID:9927645

  2. Spatial and Temporal Regulation of Receptor Tyrosine Kinase Activation and Intracellular Signal Transduction.

    PubMed

    Bergeron, John J M; Di Guglielmo, Gianni M; Dahan, Sophie; Dominguez, Michel; Posner, Barry I

    2016-06-01

    Epidermal growth factor (EGF) and insulin receptor tyrosine kinases (RTKs) exemplify how receptor location is coupled to signal transduction. Extracellular binding of ligands to these RTKs triggers their concentration into vesicles that bud off from the cell surface to generate intracellular signaling endosomes. On the exposed cytosolic surface of these endosomes, RTK autophosphorylation selects the downstream signaling proteins and lipids to effect growth factor and polypeptide hormone action. This selection is followed by the recruitment of protein tyrosine phosphatases that inactivate the RTKs and deliver them by membrane fusion and fission to late endosomes. Coincidentally, proteinases inside the endosome cleave the EGF and insulin ligands. Subsequent inward budding of the endosomal membrane generates multivesicular endosomes. Fusion with lysosomes then results in RTK degradation and downregulation. Through the spatial positioning of RTKs in target cells for EGF and insulin action, the temporal extent of signaling, attenuation, and downregulation is regulated. PMID:27023845

  3. Transmembrane signal transduction in bacterial chemotaxis involves ligand-dependent activation of phosphate group transfer.

    PubMed Central

    Borkovich, K A; Kaplan, N; Hess, J F; Simon, M I

    1989-01-01

    Signal transduction in Escherichia coli involves the interaction of transmembrane receptor proteins such as the aspartate receptor, Tar, and the products of four chemotaxis genes, cheA, cheY, cheW, and cheZ. It was previously shown that the cheA gene product is an autophosphorylating protein kinase that transfers phosphate to CheY, whereas the cheZ gene product acts as a specific CheY phosphatase. Here we report that the system can be reconstituted in vitro and receptor function can be coupled to CheY phosphorylation. Coupling requires the presence of the CheW protein, the appropriate form of the receptor, and the CheA and CheY proteins. Under these conditions the accumulation of CheY-phosphate is enhanced approximately 300-fold. This rate enhancement is seen in reactions using wild-type and "tumble" mutant receptors but not "smooth" mutant receptors. The increased accumulation of phosphoprotein was inhibited by micromolar concentrations of aspartate, using wild-type, but not tumble, receptors. These results provide evidence that the signal transduction pathway in bacterial chemotaxis involves receptor-mediated alteration of the levels of phosphorylated proteins. They suggest that CheW acts as the coupling factor between receptor and phosphorylation. The results also support the suggestion that CheY-phosphate is the tumble signal. Images PMID:2645576

  4. Signal transduction in T lymphocytes in microgravity

    NASA Technical Reports Server (NTRS)

    Cogoli, A.

    1997-01-01

    More than 120 experiments conducted in space in the last 15 years have shown that dramatic changes are occurring in several types of single cells during their exposure to microgravity. One focus of today's research on cells in space is on signal transduction, especially those steps involving the cytoskeleton and cell-cell interactions. Signal transduction is often altered in microgravity as well as in hypergravity. This leads to changes in cell proliferation, genetic expression and differentiation. Interesting examples are leukocytes, HeLa cells, epidermoid cells and osteoblastic cells. Signalling pathways were studied in T lymphocytes in microgravity by several investigators after the discovery that mitogenic activation in vitro is virtually nil at 0g. T cells are a good model to study signal transduction because three extracellular signals (mitogen, IL-1 and IL-2) are required for full activation, and two classical pathways (via proteins G and PKC) are activated within the cell. In addition, low molecular weight GTP-binding proteins (Ras and Rap) are interacting with the cytoskeleton. The data at 0g support the notion that the expression of IL-2 receptor is inhibited at 0g, while mitogen binding and the transmission of IL-1 by accessory cells occur normally. In addition, alterations of the cytoskeleton suggest that the interaction with Rap proteins is disturbed. Data obtained with phorbol esters indicate that the function of PKC is changed in microgravity. Similar conclusions are drawn from the results with epidermoid cells A431.

  5. Studying Cellular Signal Transduction with OMIC Technologies.

    PubMed

    Landry, Benjamin D; Clarke, David C; Lee, Michael J

    2015-10-23

    In the gulf between genotype and phenotype exists proteins and, in particular, protein signal transduction systems. These systems use a relatively limited parts list to respond to a much longer list of extracellular, environmental, and/or mechanical cues with rapidity and specificity. Most signaling networks function in a highly non-linear and often contextual manner. Furthermore, these processes occur dynamically across space and time. Because of these complexities, systems and "OMIC" approaches are essential for the study of signal transduction. One challenge in using OMIC-scale approaches to study signaling is that the "signal" can take different forms in different situations. Signals are encoded in diverse ways such as protein-protein interactions, enzyme activities, localizations, or post-translational modifications to proteins. Furthermore, in some cases, signals may be encoded only in the dynamics, duration, or rates of change of these features. Accordingly, systems-level analyses of signaling may need to integrate multiple experimental and/or computational approaches. As the field has progressed, the non-triviality of integrating experimental and computational analyses has become apparent. Successful use of OMIC methods to study signaling will require the "right" experiments and the "right" modeling approaches, and it is critical to consider both in the design phase of the project. In this review, we discuss common OMIC and modeling approaches for studying signaling, emphasizing the philosophical and practical considerations for effectively merging these two types of approaches to maximize the probability of obtaining reliable and novel insights into signaling biology. PMID:26244521

  6. The Membrane and Lipids as Integral Participants in Signal Transduction: Lipid Signal Transduction for the Non-Lipid Biochemist

    ERIC Educational Resources Information Center

    Eyster, Kathleen M.

    2007-01-01

    Reviews of signal transduction have often focused on the cascades of protein kinases and protein phosphatases and their cytoplasmic substrates that become activated in response to extracellular signals. Lipids, lipid kinases, and lipid phosphatases have not received the same amount of attention as proteins in studies of signal transduction.…

  7. Microglial Janus kinase/signal transduction and activator of transcription 3 pathway activity directly impacts astrocyte and spinal neuron characteristics.

    PubMed

    Molet, Jenny; Mauborgne, Annie; Diallo, Mickael; Armand, Vincent; Geny, David; Villanueva, Luis; Boucher, Yves; Pohl, Michel

    2016-01-01

    After peripheral nerve injury microglial reactivity change in the spinal cord is associated with an early activation of Janus kinase (JAK)/STAT3 transduction pathway whose blockade attenuates local inflammation and pain hypersensitivity. However, the consequences of microglial JAK/STAT3-mediated signaling on neighboring cells are unknown. Using an in vitro paradigm we assessed the impact of microglial JAK/STAT3 activity on functional characteristics of astrocytes and spinal cord neurons. Purified rat primary microglia was stimulated with JAK/STAT3 classical activator interleukin-6 in the presence or absence of a selective STAT3 inhibitor and rat primary astrocytes or spinal cord neurons were exposed to microglia conditioned media (CM). JAK/STAT3 activity-generated microglial CM modulated both astrocyte and neuron characteristics. Beyond inducing mRNA expression changes in various targets of interest in astrocytes and neurons, microglia CM activated c-Jun N-terminal kinase, STAT3 and NF-κB intracellular pathways in astrocytes and promoted their proliferation. Without modifying neuronal excitability or survival, CM affected the nerve processes morphology and distribution of the post-synaptic density protein 95, a marker of glutamatergic synaptic contacts. These findings show that JAK/STAT3 activity in microglia impacts the functional characteristics of astrocytes and neurons. This suggests its participation in spinal cord tissue plasticity and remodeling occurring after peripheral nerve injury. We show that the activity of JAK/STAT3 pathway in microglial cells confers them a specific signaling modality toward neighboring cells, promoting astrocyte proliferation and changes in neuronal morphology. These in vitro data suggest that the early JAK/STAT3 activation in spinal cord microglia, associated with peripheral nerve injury, participates in functional alteration of various cell populations and in spinal tissue remodeling. PMID:26440453

  8. Gravitational Effects on Signal Transduction

    NASA Technical Reports Server (NTRS)

    Sytkowski, Arthur J.

    1999-01-01

    An understanding of the mechanisms by which individual cells perceive gravity and how these cells transduce and respond to gravitational stimuli is critical for the development of long-term manned space flight experiments. We now propose to use a well-characterized model erythroid cell system and to investigate gravitational perturbations of its erythropoietin (Epo) signaling pathway and gene regulation. Cells will be grown at 1-G and in simulated microgravity in the NASA Rotating Wall Vessel bioreactor (RWV). Cell growth and differentiation, the Epo-receptor, the protein kinase C pathway to the c-myc gene, and the protein phosphatase pathway to the c-myb gene will be studied and evaluated as reporters of gravitational stimuli. The results of these experiments will have impact on the problems of 1) gravitational sensing by individual cells, and 2) the anemia of space flight. This ground-based study also will serve as a Space Station Development Study in gravitational effects on intracellular signal transduction.

  9. A novel c-Jun-dependent signal transduction pathway necessary for the transcriptional activation of interferon gamma response genes.

    PubMed

    Gough, Daniel J; Sabapathy, Kanaga; Ko, Enoch Yi-No; Arthur, Helen A; Schreiber, Robert D; Trapani, Joseph A; Clarke, Christopher J P; Johnstone, Ricky W

    2007-01-12

    The biological effects of interferon gamma (IFNgamma) are mediated by interferon-stimulated genes (ISGs), many of which are activated downstream of Janus kinase (JAK)/signal transducer and activator of transcription 1 (STAT1) signaling. Herein we have shown that IFNgamma rapidly activated AP-1 DNA binding that required c-Jun but was independent of JAK1 and STAT1. IFNgamma-induced c-Jun phosphorylation and AP-1 DNA binding required the MEK1/2 and ERK1/2 signaling pathways, whereas the JNK1/2 and p38 mitogen-activated protein kinase pathways were dispensable. The induction of several ISGs, including ifi-205 and iNOS, was impaired in IFNgamma-treated c-Jun-/- cells, but others, such as IP-10 and SOCS3, were unaffected, and chromatin immunoprecipitation demonstrated that c-Jun binds to the iNOS promoter following treatment with IFNgamma. Thus, IFNgamma induced JAK1- and STAT1-independent activation of the ERK mitogen-activated protein kinase pathway, phosphorylation of c-Jun, and activation of AP-1 DNA binding, which are important for the induction of a subset of ISGs. This represents a novel signal transduction pathway induced by IFNgamma that proceeds in parallel with conventional JAK/STAT signaling to activate ISGs. PMID:17105733

  10. SENTRA, a database of signal transduction proteins.

    SciTech Connect

    D'Souza, M.; Romine, M. F.; Maltsev, N.; Mathematics and Computer Science; PNNL

    2000-01-01

    SENTRA, available via URL http://wit.mcs.anl.gov/WIT2/Sentra/, is a database of proteins associated with microbial signal transduction. The database currently includes the classical two-component signal transduction pathway proteins and methyl-accepting chemotaxis proteins, but will be expanded to also include other classes of signal transduction systems that are modulated by phosphorylation or methylation reactions. Although the majority of database entries are from prokaryotic systems, eukaroytic proteins with bacterial-like signal transduction domains are also included. Currently SENTRA contains signal transduction proteins in 34 complete and almost completely sequenced prokaryotic genomes, as well as sequences from 243 organisms available in public databases (SWISS-PROT and EMBL). The analysis was carried out within the framework of the WIT2 system, which is designed and implemented to support genetic sequence analysis and comparative analysis of sequenced genomes.

  11. Sentra, a database of signal transduction proteins.

    SciTech Connect

    Maltsev, N.; Marland, E.; Yu, G. X.; Bhatnagar, S.; Lusk, R.; Mathematics and Computer Science

    2002-01-01

    Sentra (http://www-wit.mcs.anl.gov/sentra) is a database of signal transduction proteins with the emphasis on microbial signal transduction. The database was updated to include classes of signal transduction systems modulated by either phosphorylation or methylation reactions such as PAS proteins and serine/threonine kinases, as well as the classical two-component histidine kinases and methyl-accepting chemotaxis proteins. Currently, Sentra contains signal transduction proteins from 43 completely sequenced prokaryotic genomes as well as sequences from SWISS-PROT and TrEMBL. Signal transduction proteins are annotated with information describing conserved domains, paralogous and orthologous sequences, and conserved chromosomal gene clusters. The newly developed user interface supports flexible search capabilities and extensive visualization of the data.

  12. Calmodulin activity regulates group I metabotropic glutamate receptor-mediated signal transduction and synaptic depression.

    PubMed

    Sethna, Ferzin; Zhang, Ming; Kaphzan, Hanoch; Klann, Eric; Autio, Dawn; Cox, Charles L; Wang, Hongbing

    2016-05-01

    Group I metabotropic glutamate receptors (mGluR), including mGluR1 and mGluR 5 (mGluR1/5), are coupled to Gq and modulate activity-dependent synaptic plasticity. Direct activation of mGluR1/5 causes protein translation-dependent long-term depression (LTD). Although it has been established that intracellular Ca(2+) and the Gq-regulated signaling molecules are required for mGluR1/5 LTD, whether and how Ca(2+) regulates Gq signaling and upregulation of protein expression remain unknown. Through pharmacological inhibition, we tested the function of the Ca(2+) sensor calmodulin (CaM) in intracellular signaling triggered by the activation of mGluR1/5. CaM inhibitor N-[4-aminobutyl]-5-chloro-2-naphthalenesulfonamide hydrochloride (W13) suppressed the mGluR1/5-stimulated activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p70-S6 kinase 1 (S6K1) in hippocampal neurons. W13 also blocked the mGluR1/5 agonist-induced synaptic depression in hippocampal slices and in anesthetized mice. Consistent with the function of CaM, inhibiting the downstream targets Ca(2+) /CaM-dependent protein kinases (CaMK) blocked ERK1/2 and S6K1 activation. Furthermore, disruption of the CaM-CaMK-ERK1/2 signaling cascade suppressed the mGluR1/5-stimulated upregulation of Arc expression. Altogether, our data suggest CaM as a new Gq signaling component for coupling Ca(2+) and protein upregulation and regulating mGluR1/5-mediated synaptic modification. PMID:26864654

  13. Calcium and signal transduction in plants

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Reddy, A. S.

    1993-01-01

    Environmental and hormonal signals control diverse physiological processes in plants. The mechanisms by which plant cells perceive and transduce these signals are poorly understood. Understanding biochemical and molecular events involved in signal transduction pathways has become one of the most active areas of plant research. Research during the last 15 years has established that Ca2+ acts as a messenger in transducing external signals. The evidence in support of Ca2+ as a messenger is unequivocal and fulfills all the requirements of a messenger. The role of Ca2+ becomes even more important because it is the only messenger known so far in plants. Since our last review on the Ca2+ messenger system in 1987, there has been tremendous progress in elucidating various aspects of Ca(2+) -signaling pathways in plants. These include demonstration of signal-induced changes in cytosolic Ca2+, calmodulin and calmodulin-like proteins, identification of different Ca2+ channels, characterization of Ca(2+) -dependent protein kinases (CDPKs) both at the biochemical and molecular levels, evidence for the presence of calmodulin-dependent protein kinases, and increased evidence in support of the role of inositol phospholipids in the Ca(2+) -signaling system. Despite the progress in Ca2+ research in plants, it is still in its infancy and much more needs to be done to understand the precise mechanisms by which Ca2+ regulates a wide variety of physiological processes. The purpose of this review is to summarize some of these recent developments in Ca2+ research as it relates to signal transduction in plants.

  14. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction

    PubMed Central

    Weidinger, Adelheid; Kozlov, Andrey V.

    2015-01-01

    In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity. PMID:25884116

  15. Inquiry into chemotherapy-induced p53 activation in cancer cells as a model for teaching signal transduction.

    PubMed

    Srougi, Melissa C; Carson, Susan

    2013-01-01

    Intracellular and extracellular communication is conducted through an intricate and interwoven network of signal transduction pathways. The mechanisms for how cells speak with one another are of significant biological importance to both basic and industrial scientists from a number of different disciplines. We have therefore developed and implemented a new laboratory-intensive course that teaches students the theory and techniques used to study cell signaling pathways. Students learn these methodologies as they conduct a hypothesis-driven research project where they elucidate the mechanism of breast cancer cell death caused by a cancer chemotherapeutic agent. While each lab experiment can be conducted independently, the findings build upon one another to form the beginnings of a signaling pathway. In the lecture component of the course, students investigate different signaling pathways and the methods employed to study them. In addition, students actively participate in journal article discussions where they assess the primary scientific literature. We evaluated the course over two semesters and found that in both semesters learning outcomes were met by both undergraduate and graduate students. The evaluation of the course was based on a number of instructor assessments of student work, including lab reports, experimental results, journal article discussions, and a final cumulative exam. Furthermore, students' self-assessments revealed gains in perceived confidence in both conceptual knowledge and technical skills PMID:24259336

  16. Exploring the relationship between lipoprotein mislocalization and activation of the Rcs signal transduction system in Escherichia coli.

    PubMed

    Shiba, Yasuhiro; Miyagawa, Hiroyoshi; Nagahama, Hideki; Matsumoto, Kenji; Kondo, Daitetsu; Matsuoka, Satoshi; Matsumoto, Kouji; Hara, Hiroshi

    2012-05-01

    The Rcs phosphorelay signal transduction system controls genes for capsule production and many other envelope-related functions and is implicated in biofilm formation. We investigated the activation of the Rcs system in a pgsA null mutant of Escherichia coli, which completely lacks the major acidic phospholipids phosphatidylglycerol and cardiolipin. We found that the Rcs activation, and consequent thermosensitivity, were suppressed by overexpression of the lgt gene, encoding diacylglyceryltransferase, which catalyses the modification of prolipoproteins that is the first step in the maturation and localization process of lipoproteins, and is a prerequisite for the later steps. The outer-membrane lipoprotein RcsF is an essential component of Rcs signalling. This lipoprotein was poorly localized to the outer membrane in the pgsA null mutant, probably because of the absence of phosphatidylglycerol, the major donor of diacylglycerol in the Lgt reaction. Even in a pgsA(+) background, the Rcs system was activated when RcsF was mislocalized to the inner membrane by alteration of the residues at positions 2 and 3 of its mature form to inner-membrane retention signals, or when it was mislocalized to the periplasm by fusing the mature form to maltose-binding protein. These results suggest that RcsF functions as a ligand for RcsC in activating Rcs signalling. Mislocalized versions of RcsF still responded to mutations pgsA, mdoH and tolB, further activating the Rcs system, although the rfaP mutation barely caused activation. It seems that RcsF must be localized in the outer membrane to respond effectively to stimuli from outside the cell. PMID:22322964

  17. Activation of CNTF/CNTFRα signaling pathway by hRheb(S16H) transduction of dopaminergic neurons in vivo.

    PubMed

    Jeong, Kyoung Hoon; Nam, Jin Han; Jin, Byung Kwan; Kim, Sang Ryong

    2015-01-01

    Ciliary neurotrophic factor (CNTF) is one of representative neurotrophic factors for the survival of dopaminergic neurons. Its effects are primarily mediated via CNTF receptor α (CNTFRα). It is still unclear whether the levels of CNTFRα change in the substantia nigra of Parkinson's disease (PD) patients, but CNTF expression shows the remarkable decrease in dopaminergic neurons in the substantia nigra pars compacta (SNpc), suggesting that the support of CNTF/CNTFRα signaling pathway may be a useful neuroprotective strategy for the nigrostriatal dopaminergic projection in the adult brain. Here, we report that transduction of rat SNpc dopaminergic neurons by adeno-associated virus with a gene encoding human ras homolog enriched in brain (hRheb), with an S16H mutation [hRheb(S16H)], significantly upregulated the levels of both CNTF and CNTFRα in dopaminergic neurons. Moreover, the hRheb(S16H)-activated CNTF/CNTFRα signaling pathway was protective against 1-methyl-4-phenylpyridinium-induced neurotoxicity in the nigrostriatal dopaminergic projections. These results suggest that activation of CNTF/CNTFRα signaling pathway by specific gene delivery such as hRheb(S16H) may have therapeutic potential in the treatment of PD. PMID:25799580

  18. Activation of α2A-adrenergic signal transduction in chondrocytes promotes degenerative remodelling of temporomandibular joint.

    PubMed

    Jiao, Kai; Zeng, Guang; Niu, Li-Na; Yang, Hong-Xu; Ren, Gao-Tong; Xu, Xin-Yue; Li, Fei-Fei; Tay, Franklin R; Wang, Mei-Qing

    2016-01-01

    This study tested whether activation of adrenoreceptors in chondrocytes has roles in degenerative remodelling of temporomandibular joint (TMJ) and to determine associated mechanisms. Unilateral anterior crossbite (UAC) was established to induce TMJ degeneration in rats. Saline vehicle, α2- and β-adrenoreceptor antagonists or agonists were injected locally into the TMJ area of UAC rats. Cartilage degeneration, subchondral bone microarchitecture and the expression of adrenoreceptors, aggrecans, matrix metalloproteinases (MMPs) and RANKL by chondrocytes were evaluated. Chondrocytes were stimulated by norepinephrine to investigate signal transduction of adrenoreceptors. Increased α2A-adrenoreceptor expression was observed in condylar cartilage of UAC rats, together with cartilage degeneration and subchondral bone loss. Norepinephrine depresses aggrecans expression but stimulates MMP-3, MMP-13 and RANKL production by chondrocytes through ERK1/2 and PKA pathway; these effects were abolished by an α2A-adrenoreceptor antagonist. Furthermore, inhibition of α2A-adrenoreceptor attenuated degenerative remodelling in the condylar cartilage and subchondral bone, as revealed by increased cartilage thickness, proteoglycans and aggrecan expression, and decreased MMP-3, MMP-13 and RANKL expressions in cartilage, increased BMD, BV/TV, and decreased Tb.Sp in subchondral bone. Conversely, activation of α2A-adrenoreceptor intensified aforementioned degenerative changes in UAC rats. It is concluded that activation of α2A-adrenergic signal in chondrocytes promotes TMJ degenerative remodelling by chondrocyte-mediated pro-catabolic activities. PMID:27452863

  19. Activation of α2A-adrenergic signal transduction in chondrocytes promotes degenerative remodelling of temporomandibular joint

    PubMed Central

    Jiao, Kai; Zeng, Guang; Niu, Li-Na; Yang, Hong-xu; Ren, Gao-tong; Xu, Xin-yue; Li, Fei-fei; Tay, Franklin R.; Wang, Mei-qing

    2016-01-01

    This study tested whether activation of adrenoreceptors in chondrocytes has roles in degenerative remodelling of temporomandibular joint (TMJ) and to determine associated mechanisms. Unilateral anterior crossbite (UAC) was established to induce TMJ degeneration in rats. Saline vehicle, α2- and β-adrenoreceptor antagonists or agonists were injected locally into the TMJ area of UAC rats. Cartilage degeneration, subchondral bone microarchitecture and the expression of adrenoreceptors, aggrecans, matrix metalloproteinases (MMPs) and RANKL by chondrocytes were evaluated. Chondrocytes were stimulated by norepinephrine to investigate signal transduction of adrenoreceptors. Increased α2A-adrenoreceptor expression was observed in condylar cartilage of UAC rats, together with cartilage degeneration and subchondral bone loss. Norepinephrine depresses aggrecans expression but stimulates MMP-3, MMP-13 and RANKL production by chondrocytes through ERK1/2 and PKA pathway; these effects were abolished by an α2A-adrenoreceptor antagonist. Furthermore, inhibition of α2A-adrenoreceptor attenuated degenerative remodelling in the condylar cartilage and subchondral bone, as revealed by increased cartilage thickness, proteoglycans and aggrecan expression, and decreased MMP-3, MMP-13 and RANKL expressions in cartilage, increased BMD, BV/TV, and decreased Tb.Sp in subchondral bone. Conversely, activation of α2A-adrenoreceptor intensified aforementioned degenerative changes in UAC rats. It is concluded that activation of α2A-adrenergic signal in chondrocytes promotes TMJ degenerative remodelling by chondrocyte-mediated pro-catabolic activities. PMID:27452863

  20. Engineering key components in a synthetic eukaryotic signal transduction pathway

    PubMed Central

    Antunes, Mauricio S; Morey, Kevin J; Tewari-Singh, Neera; Bowen, Tessa A; Smith, J Jeff; Webb, Colleen T; Hellinga, Homme W; Medford, June I

    2009-01-01

    Signal transduction underlies how living organisms detect and respond to stimuli. A goal of synthetic biology is to rewire natural signal transduction systems. Bacteria, yeast, and plants sense environmental aspects through conserved histidine kinase (HK) signal transduction systems. HK protein components are typically comprised of multiple, relatively modular, and conserved domains. Phosphate transfer between these components may exhibit considerable cross talk between the otherwise apparently linear pathways, thereby establishing networks that integrate multiple signals. We show that sequence conservation and cross talk can extend across kingdoms and can be exploited to produce a synthetic plant signal transduction system. In response to HK cross talk, heterologously expressed bacterial response regulators, PhoB and OmpR, translocate to the nucleus on HK activation. Using this discovery, combined with modification of PhoB (PhoB-VP64), we produced a key component of a eukaryotic synthetic signal transduction pathway. In response to exogenous cytokinin, PhoB-VP64 translocates to the nucleus, binds a synthetic PlantPho promoter, and activates gene expression. These results show that conserved-signaling components can be used across kingdoms and adapted to produce synthetic eukaryotic signal transduction pathways. PMID:19455134

  1. Inquiry into Chemotherapy-Induced P53 Activation in Cancer Cells as a Model for Teaching Signal Transduction

    ERIC Educational Resources Information Center

    Srougi, Melissa C.; Carson, Susan

    2013-01-01

    Intracellular and extracellular communication is conducted through an intricate and interwoven network of signal transduction pathways. The mechanisms for how cells speak with one another are of significant biological importance to both basic and industrial scientists from a number of different disciplines. We have therefore developed and…

  2. Phosphoproteomic analysis of induced resistance reveals activation of signal transduction processes by beneficial and pathogenic interaction in grapevine.

    PubMed

    Perazzolli, Michele; Palmieri, Maria Cristina; Matafora, Vittoria; Bachi, Angela; Pertot, Ilaria

    2016-05-20

    Protein phosphorylation regulates several key processes of the plant immune system. Protein kinases and phosphatases are pivotal regulators of defense mechanisms elicited by resistance inducers. However, the phosphorylation cascades that trigger the induced resistance mechanisms in plants have not yet been deeply investigated. The beneficial fungus Trichoderma harzianum T39 (T39) induces resistance against grapevine downy mildew (Plasmopara viticola), but its efficacy could be further improved by a better understanding of the cellular regulations involved. We investigated quantitative changes in the grapevine phosphoproteome during T39-induced resistance to get an overview of regulatory mechanisms of downy mildew resistance. Immunodetection experiments revealed activation of the 45 and 49kDa kinases by T39 treatment both before and after pathogen inoculation, and the phosphoproteomic analysis identified 103 phosphopeptides that were significantly affected by the phosphorylation cascades during T39-induced resistance. Peptides affected by T39 treatment showed comparable phosphorylation levels after P. viticola inoculation, indicating activation of the microbial recognition machinery before pathogen infection. Phosphorylation profiles of proteins related to photosynthetic processes and protein ubiquitination indicated a partial overlap of cellular responses in T39-treated and control plants. However, phosphorylation changes of proteins involved in response to stimuli, signal transduction, hormone signaling, gene expression regulation, and RNA metabolism were exclusively elicited by P. viticola inoculation in T39-treated plants. These results highlighted the relevance of phosphorylation changes during T39-induced resistance and identified key regulator candidates of the grapevine defense against downy mildew. PMID:27010348

  3. Fluorescence polarization assays in signal transduction discovery.

    PubMed

    Sportsman, J Richard; Daijo, Janet; Gaudet, Elizabeth A

    2003-05-01

    Fluorescence polarization (FP) has become widely employed for high throughput screening used in pharmaceutical drug discovery. Assays of important signal transduction targets are now adapted to FP. In this review we examine assays for cyclic adenosine monophosphate, phosphodiesterases, and protein kinases and phosphatases using FP competitive immunoassays and a direct enzymatic method called IMAP. PMID:12678698

  4. Signal transduction mechanisms in plants: an overview

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Thompson, G. Jr; Roux, S. J.

    2001-01-01

    This article provides an overview on recent advances in some of the basic signalling mechanisms that participate in a wide variety of stimulus-response pathways. The mechanisms include calcium-based signalling, G-protein-mediated-signalling and signalling involving inositol phospholipids, with discussion on the role of protein kinases and phosphatases interspersed. As a further defining feature, the article highlights recent exciting findings on three extracellular components that have not been given coverage in previous reviews of signal transduction in plants, extracellular calmodulin, extracellular ATP, and integrin-like receptors, all of which affect plant growth and development.

  5. The ethylene signal transduction pathway in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The gaseous hormone ethylene is an important regulator of plant growth and development. Using a simple response of etiolated seedlings to ethylene as a genetic screen, genes involved in ethylene signal transduction have been identified in Arabidopsis. Analysis of two of these genes that have been cloned reveals that ethylene signalling involves a combination of a protein (ETR1) with similarity to bacterial histidine kinases and a protein (CTR1) with similarity to Raf-1, a protein kinase involved in multiple signalling cascades in eukaryotic cells. Several lines of investigation provide compelling evidence that ETR1 encodes an ethylene receptor. For the first time there is a glimpse of the molecular circuitry underlying the signal transduction pathway for a plant hormone.

  6. MOLECULAR MECHANISMS OF RECEPTOR KINASE ACTION IN BRASSINOSTEROID SIGNAL TRANSDUCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassinosteroids (BRs) regulate multiple aspects of plant growth and development and require an active BRASSINOSTEROID INSENSITIVE 1 (BRI1) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) for hormone perception and signal transduction. To examine early events in BR signaling, we used co-immunoprecipita...

  7. Gravitational Effects on Signal Transduction

    NASA Technical Reports Server (NTRS)

    Sytkowski, Arthur J.

    1999-01-01

    The purpose of this study was to investigate in ground-based experiments, the effect of microgravity on in vitro erythroid differentiation triggered by the hematopoietic growth factor erythropoietin (Epo) and to begin to determine whether this is associated with the anemia of space flight. We chose to use a model cell culture system with which we have had a long and successful experience. These cells, designated Rauscher murine erythroleukemia, grow independently in suspension culture. We first compared the growth rate of Rauscher cells under conditions of simulated microgravity with that of cells grown at 1XG in standard tissue culture flasks. Therefore, since there were fewer cells in the RWV at each specified time, glucose consumption per cell was increased in simulated microgravity. We next began to study the effect of simulated microgravity on erythropoietin induced differentiation of these cells. In another experiment, we allow the cells to grown in flasks or in the RWV for 24 hours prior to the addition of Epo. We initiated studies of c-myb, a proto-oncogene the down-regulation of which is necessary for erythroid differentiation. These preliminary results suggest that simulated microgravity interferes with the signal to c-myb. This may be part of the mechanism that blocks differentiation. A flight experiment is planned within the next 18- 24 months.

  8. Advances in Targeting Signal Transduction Pathways

    PubMed Central

    McCubrey, James A.; Steelman, Linda S.; Chappell, William H.; Sun, Lin; Davis, Nicole M.; Abrams, Stephen L.; Franklin, Richard A.; Cocco, Lucio; Evangelisti, Camilla; Chiarini, Francesca; Martelli, Alberto M.; Libra, Massimo; Candido, Saverio; Ligresti, Giovanni; Malaponte, Grazia; Mazzarino, Maria C.; Fagone, Paolo; Donia, Marco; Nicoletti, Ferdinando; Polesel, Jerry; Talamini, Renato; Bäsecke, Jörg; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Milella, Michele; Tafuri, Agostino; Dulińska-Litewka, Joanna; Laidler, Piotr; D'Assoro, Antonio B.; Drobot, Lyudmyla; Umezawa, Kazuo; Montalto, Giuseppe; Cervello, Melchiorre; Demidenko, Zoya N.

    2012-01-01

    Over the past few years, significant advances have occurred in both our understanding of the complexity of signal transduction pathways as well as the isolation of specific inhibitors which target key components in those pathways. Furthermore critical information is being accrued regarding how genetic mutations can affect the sensitivity of various types of patients to targeted therapy. Finally, genetic mechanisms responsible for the development of resistance after targeted therapy are being discovered which may allow the creation of alternative therapies to overcome resistance. This review will discuss some of the highlights over the past few years on the roles of key signaling pathways in various diseases, the targeting of signal transduction pathways and the genetic mechanisms governing sensitivity and resistance to targeted therapies. PMID:23455493

  9. Targeting Signaling Transduction Pathways in Bladder Cancer.

    PubMed

    Abbosh, Phillip H; McConkey, David J; Plimack, Elizabeth R

    2015-12-01

    Systemic therapy for urothelial carcinoma (UC) of the bladder has largely revolved around cytotoxic chemotherapy regimens. However, several recent clinical trials have explored the roles of targeted therapies which specifically inhibit signal transduction pathways. Simultaneously, a rationale for such therapies has come to the forefront of management of this disease because an overabundance of signaling pathways are genetically deranged as a result of point mutation or copy number alteration (CNA) as identified by several recent next generation sequencing (NGS) studies. Importantly, these derangements are found in all stages of disease, and therefore targeted therapies hold promise as a next step in the evolution of the medical management of both localized and metastatic UCC. We review the rationale for and progress in studying inhibition of signal transduction as a means of treatment of UCC. PMID:26472299

  10. Early trypsin activity is part of the signal transduction system that activates transcription of the late trypsin gene in the midgut of the mosquito, Aedes aegypti.

    PubMed

    Barillas-Mury, C V; Noriega, F G; Wells, M A

    1995-02-01

    Trypsin activity during the first hours after feeding is essential to induce late trypsin gene expression. These results are consistent with the idea that free amino acids or other products released during digestion might be the initial signal for transcriptional activation of late trypsin. Besides early trypsin, some other factor(s) have to be translated for induction of late trypsin. This is the first case in which the proteolytic activity of a digestive enzyme is part of the signal transduction system which regulates expression of a second gene. The presence of two trypsins allows the mosquito to assess the quality of the meal and adjust the levels of late trypsin for a particular meal with remarkable flexibility. PMID:7711754

  11. Neuropilins are positive regulators of Hedgehog signal transduction.

    PubMed

    Hillman, R Tyler; Feng, Brian Y; Ni, Jun; Woo, Wei-Meng; Milenkovic, Ljiljana; Hayden Gephart, Melanie G; Teruel, Mary N; Oro, Anthony E; Chen, James K; Scott, Matthew P

    2011-11-15

    The Hedgehog (Hh) pathway is essential for vertebrate embryogenesis, and excessive Hh target gene activation can cause cancer in humans. Here we show that Neuropilin 1 (Nrp1) and Nrp2, transmembrane proteins with roles in axon guidance and vascular endothelial growth factor (VEGF) signaling, are important positive regulators of Hh signal transduction. Nrps are expressed at times and locations of active Hh signal transduction during mouse development. Using cell lines lacking key Hh pathway components, we show that Nrps mediate Hh transduction between activated Smoothened (Smo) protein and the negative regulator Suppressor of Fused (SuFu). Nrp1 transcription is induced by Hh signaling, and Nrp1 overexpression increases maximal Hh target gene activation, indicating the existence of a positive feedback circuit. The regulation of Hh signal transduction by Nrps is conserved between mammals and bony fish, as we show that morpholinos targeting the Nrp zebrafish ortholog nrp1a produce a specific and highly penetrant Hh pathway loss-of-function phenotype. These findings enhance our knowledge of Hh pathway regulation and provide evidence for a conserved nexus between Nrps and this important developmental signaling system. PMID:22051878

  12. Signal transduction pathways involved in mechanotransduction in bone cells

    SciTech Connect

    Liedert, Astrid . E-mail: astrid.liedert@uni-ulm.de; Kaspar, Daniela; Blakytny, Robert; Claes, Lutz; Ignatius, Anita

    2006-10-13

    Several in vivo and in vitro studies with different loading regimens showed that mechanical stimuli have an influence on proliferation and differentiation of bone cells. Prerequisite for this influence is the transduction of mechanical signals into the cell, a phenomenon that is termed mechanotransduction, which is essential for the maintenance of skeletal homeostasis in adults. Mechanoreceptors, such as the integrins, cadherins, and stretch-activated Ca{sup 2+} channels, together with various signal transduction pathways, are involved in the mechanotransduction process that ultimately regulates gene expression in the nucleus. Mechanotransduction itself is considered to be regulated by hormones, the extracellular matrix of the osteoblastic cells and the mode of the mechanical stimulus.

  13. Developing a synthetic signal transduction system in plants.

    PubMed

    Morey, Kevin J; Antunes, Mauricio S; Albrecht, Kirk D; Bowen, Tessa A; Troupe, Jared F; Havens, Keira L; Medford, June I

    2011-01-01

    One area of focus in the emerging field of plant synthetic biology is the manipulation of systems involved in sensing and response to environmental signals. Sensing and responding to signals, including ligands, typically involves biological signal transduction. Plants use a wide variety of signaling systems to sense and respond to their environment. One of these systems, a histidine kinase (HK) based signaling system, lends itself to manipulation using the tools of synthetic biology. Both plants and bacteria use HKs to relay signals, which in bacteria can involve as few as two proteins (two-component systems or TCS). HK proteins are evolutionarily conserved between plants and bacteria and plant HK components have been shown to be functional in bacteria. We found that this conservation also applies to bacterial HK components which can function in plants. This conservation of function led us to hypothesize that synthetic HK signaling components can be designed and rapidly tested in bacteria. These novel HK signaling components form the foundation for a synthetic signaling system in plants, but typically require modifications such as codon optimization and proper targeting to allow optimal function. We describe the process and methodology of producing a synthetic signal transduction system in plants. We discovered that the bacterial response regulator (RR) PhoB shows HK-dependent nuclear translocation in planta. Using this discovery, we engineered a partial synthetic pathway in which a synthetic promoter (PlantPho) is activated using a plant-adapted PhoB (PhoB-VP64) and the endogenous HK-based cytokinin signaling pathway. Building on this work, we adapted an input or sensing system based on bacterial chemotactic binding proteins and HKs, resulting in a complete eukaryotic signal transduction system. Input to our eukaryotic signal transduction system is provided by a periplasmic binding protein (PBP), ribose-binding protein (RBP). RBP interacts with the membrane

  14. Methylmercury, an environmental electrophile capable of activation and disruption of the Akt/CREB/Bcl-2 signal transduction pathway in SH-SY5Y cells

    PubMed Central

    Unoki, Takamitsu; Abiko, Yumi; Toyama, Takashi; Uehara, Takashi; Tsuboi, Koji; Nishida, Motohiro; Kaji, Toshiyuki; Kumagai, Yoshito

    2016-01-01

    Methylmercury (MeHg) modifies cellular proteins via their thiol groups in a process referred to as “S-mercuration”, potentially resulting in modulation of the cellular signal transduction pathway. We examined whether low-dose MeHg could affect Akt signaling involved in cell survival. Exposure of human neuroblastoma SH-SY5Y cells of up to 2 μM MeHg phosphorylated Akt and its downstream signal molecule CREB, presumably due to inactivation of PTEN through S-mercuration. As a result, the anti-apoptotic protein Bcl-2 was up-regulated by MeHg. The activation of Akt/CREB/Bcl-2 signaling mediated by MeHg was, at least in part, linked to cellular defence because either pretreatment with wortmannin to block PI3K/Akt signaling or knockdown of Bcl-2 enhanced MeHg-mediated cytotoxicity. In contrast, increasing concentrations of MeHg disrupted Akt/CREB/Bcl-2 signaling. This phenomenon was attributed to S-mercuration of CREB through Cys286 rather than Akt. These results suggest that although MeHg is an apoptosis-inducing toxicant, this environmental electrophile is able to activate the cell survival signal transduction pathway at lower concentrations prior to apoptotic cell death. PMID:27357941

  15. Methylmercury, an environmental electrophile capable of activation and disruption of the Akt/CREB/Bcl-2 signal transduction pathway in SH-SY5Y cells.

    PubMed

    Unoki, Takamitsu; Abiko, Yumi; Toyama, Takashi; Uehara, Takashi; Tsuboi, Koji; Nishida, Motohiro; Kaji, Toshiyuki; Kumagai, Yoshito

    2016-01-01

    Methylmercury (MeHg) modifies cellular proteins via their thiol groups in a process referred to as "S-mercuration", potentially resulting in modulation of the cellular signal transduction pathway. We examined whether low-dose MeHg could affect Akt signaling involved in cell survival. Exposure of human neuroblastoma SH-SY5Y cells of up to 2 μM MeHg phosphorylated Akt and its downstream signal molecule CREB, presumably due to inactivation of PTEN through S-mercuration. As a result, the anti-apoptotic protein Bcl-2 was up-regulated by MeHg. The activation of Akt/CREB/Bcl-2 signaling mediated by MeHg was, at least in part, linked to cellular defence because either pretreatment with wortmannin to block PI3K/Akt signaling or knockdown of Bcl-2 enhanced MeHg-mediated cytotoxicity. In contrast, increasing concentrations of MeHg disrupted Akt/CREB/Bcl-2 signaling. This phenomenon was attributed to S-mercuration of CREB through Cys286 rather than Akt. These results suggest that although MeHg is an apoptosis-inducing toxicant, this environmental electrophile is able to activate the cell survival signal transduction pathway at lower concentrations prior to apoptotic cell death. PMID:27357941

  16. Automated modelling of signal transduction networks

    PubMed Central

    2002-01-01

    Background Intracellular signal transduction is achieved by networks of proteins and small molecules that transmit information from the cell surface to the nucleus, where they ultimately effect transcriptional changes. Understanding the mechanisms cells use to accomplish this important process requires a detailed molecular description of the networks involved. Results We have developed a computational approach for generating static models of signal transduction networks which utilizes protein-interaction maps generated from large-scale two-hybrid screens and expression profiles from DNA microarrays. Networks are determined entirely by integrating protein-protein interaction data with microarray expression data, without prior knowledge of any pathway intermediates. In effect, this is equivalent to extracting subnetworks of the protein interaction dataset whose members have the most correlated expression profiles. Conclusion We show that our technique accurately reconstructs MAP Kinase signaling networks in Saccharomyces cerevisiae. This approach should enhance our ability to model signaling networks and to discover new components of known networks. More generally, it provides a method for synthesizing molecular data, either individual transcript abundance measurements or pairwise protein interactions, into higher level structures, such as pathways and networks. PMID:12413400

  17. LRRK2 overexpression alters glutamatergic presynaptic plasticity, striatal dopamine tone, postsynaptic signal transduction, motor activity and memory.

    PubMed

    Beccano-Kelly, Dayne A; Volta, Mattia; Munsie, Lise N; Paschall, Sarah A; Tatarnikov, Igor; Co, Kimberley; Chou, Patrick; Cao, Li-Ping; Bergeron, Sabrina; Mitchell, Emma; Han, Heather; Melrose, Heather L; Tapia, Lucia; Raymond, Lynn A; Farrer, Matthew J; Milnerwood, Austen J

    2015-03-01

    Mutations in leucine-rich repeat kinase 2 (Lrrk2) are the most common genetic cause of Parkinson's disease (PD), a neurodegenerative disorder affecting 1-2% of those >65 years old. The neurophysiology of LRRK2 remains largely elusive, although protein loss suggests a role in glutamatergic synapse transmission and overexpression studies show altered dopamine release in aged mice. We show that glutamate transmission is unaltered onto striatal projection neurons (SPNs) of adult LRRK2 knockout mice and that adult animals exhibit no detectable cognitive or motor deficits. Basal synaptic transmission is also unaltered in SPNs of LRRK2 overexpressing mice, but they do exhibit clear alterations to D2-receptor-mediated short-term synaptic plasticity, behavioral hypoactivity and impaired recognition memory. These phenomena are associated with decreased striatal dopamine tone and abnormal dopamine- and cAMP-regulated phosphoprotein 32 kDa signal integration. The data suggest that LRRK2 acts at the nexus of dopamine and glutamate signaling in the adult striatum, where it regulates dopamine levels, presynaptic glutamate release via D2-dependent synaptic plasticity and dopamine-receptor signal transduction. PMID:25343991

  18. Beyond microarrays: Finding key transcription factors controlling signal transduction pathways

    PubMed Central

    Kel, Alexdander; Voss, Nico; Jauregui, Ruy; Kel-Margoulis, Olga; Wingender, Edgar

    2006-01-01

    Background Massive gene expression changes in different cellular states measured by microarrays, in fact, reflect just an "echo" of real molecular processes in the cells. Transcription factors constitute a class of the regulatory molecules that typically require posttranscriptional modifications or ligand binding in order to exert their function. Therefore, such important functional changes of transcription factors are not directly visible in the microarray experiments. Results We developed a novel approach to find key transcription factors that may explain concerted expression changes of specific components of the signal transduction network. The approach aims at revealing evidence of positive feedback loops in the signal transduction circuits through activation of pathway-specific transcription factors. We demonstrate that promoters of genes encoding components of many known signal transduction pathways are enriched by binding sites of those transcription factors that are endpoints of the considered pathways. Application of the approach to the microarray gene expression data on TNF-alpha stimulated primary human endothelial cells helped to reveal novel key transcription factors potentially involved in the regulation of the signal transduction pathways of the cells. Conclusion We developed a novel computational approach for revealing key transcription factors by knowledge-based analysis of gene expression data with the help of databases on gene regulatory networks (TRANSFAC® and TRANSPATH®). The corresponding software and databases are available at . PMID:17118134

  19. Signal Transduction to the Permeability Transition Pore

    PubMed Central

    Rasola, Andrea; Sciacovelli, Marco; Pantic, Boris; Bernardi, Paolo

    2010-01-01

    The permeability transition pore (PTP) is an inner mitochondrial membrane channel that has been thoroughly characterized functionally, yet remains an elusive molecular entity. The best characterized PTP-regulatory component, cyclophilin (CyP) D, is a matrix protein that favors pore opening. CyP inhibitors, CyPD null animals, and in situ PTP readouts have established the role of PTP as an effector mechanism of cell death, and the growing definition of PTP signaling mechanisms. This review briefly covers the functional features of the PTP and the role played by its dysregulation in disease pathogenesis. Recent progress on PTP modulation by kinase/phosphatase signal transduction is discussed, with specific emphasis on hexokinase and on the Akt-ERK-GSK3 axis, which might modulate the PTP through CyPD phosphorylation. PMID:20153328

  20. Striatal Signal Transduction and Drug Addiction

    PubMed Central

    Philibin, Scott D.; Hernandez, Adan; Self, David W.; Bibb, James A.

    2011-01-01

    Drug addiction is a severe neuropsychiatric disorder characterized by loss of control over motivated behavior. The need for effective treatments mandates a greater understanding of the causes and identification of new therapeutic targets for drug development. Drugs of abuse subjugate normal reward-related behavior to uncontrollable drug-seeking and -taking. Contributions of brain reward circuitry are being mapped with increasing precision. The role of synaptic plasticity in addiction and underlying molecular mechanisms contributing to the formation of the addicted state are being delineated. Thus we may now consider the role of striatal signal transduction in addiction from a more integrative neurobiological perspective. Drugs of abuse alter dopaminergic and glutamatergic neurotransmission in medium spiny neurons of the striatum. Dopamine receptors important for reward serve as principle targets of drugs abuse, which interact with glutamate receptor signaling critical for reward learning. Complex networks of intracellular signal transduction mechanisms underlying these receptors are strongly stimulated by addictive drugs. Through these mechanisms, repeated drug exposure alters functional and structural neuroplasticity, resulting in transition to the addicted biological state and behavioral outcomes that typify addiction. Ca2+ and cAMP represent key second messengers that initiate signaling cascades, which regulate synaptic strength and neuronal excitability. Protein phosphorylation and dephosphorylation are fundamental mechanisms underlying synaptic plasticity that are dysregulated by drugs of abuse. Increased understanding of the regulatory mechanisms by which protein kinases and phosphatases exert their effects during normal reward learning and the addiction process may lead to novel targets and pharmacotherapeutics with increased efficacy in promoting abstinence and decreased side effects, such as interference with natural reward, for drug addiction. PMID

  1. Signal transduction by the Wnt family of ligands.

    PubMed Central

    Dale, T C

    1998-01-01

    The Wnt genes encode a large family of secreted polypeptides that mediate cell-cell communication in diverse developmental processes. The loss or inappropriate activation of Wnt expression has been shown to alter cell fate, morphogenesis and mitogenesis. Recent progress has identified Wnt receptors and components of an intracellular signalling pathway that mediate Wnt-dependent transcription. This review will highlight this 'core' Wnt signal-transduction pathway, but also aims to reveal the potential diversity of Wnt signalling targets. Particular attention will be paid to the overlap between developmental biology and oncogenesis, since recent progress shows Wnt signalling forms a paradigm for an interdisciplinary approach. PMID:9425102

  2. Signal transduction by the growth hormone receptor

    SciTech Connect

    Waters, M.J.; Rowlinson, S.W.; Clarkson, R.W.

    1994-12-31

    It has been proposed that dimerization of identical receptor subunits by growth hormone (GH) is the mechanism of signal transduction across the cell membrane. We present here data with analogs of porcine GH (pGH), with GH receptors (GHR) mutated in the dimerization domain and with monoclonal antibodies to the GHR which indicate that dimerization is necessary but not sufficient for transduction. We also report nuclear uptake of GH both in vivo and in vitro, along with nuclear localization of the receptor and GH-binding protein (GHBP). This suggests that GH acts directly at the nucleus, and one possible target for this action is a rapid increase in transcription of C/EBP delta seen in 3T3-F442A cells in response to GH. This tyrosine kinase-dependent event may be an archetype for induction of other immediate early gene transcription factors which then interact to determine the programming of the subsequent transcriptional response to GH. 29 refs., 1 fig., 1 tab.

  3. Molecular mechanisms in signal transduction at the membrane

    PubMed Central

    Groves, Jay T; Kuriyan, John

    2013-01-01

    Signal transduction originates at the membrane, where the clustering of signaling proteins is a key step in transmitting a message. Membranes are difficult to study, and their influence on signaling is still only understood at the most rudimentary level. Recent advances in the biophysics of membranes, surveyed in this review, have highlighted a variety of phenomena that are likely to influence signaling activity, such as local composition heterogeneities and long-range mechanical effects. We discuss recent mechanistic insights into three signaling systems—Ras activation, Ephrin signaling and the control of actin nucleation—where the active role of membrane components is now appreciated and for which experimentation on the membrane is required for further understanding. PMID:20495561

  4. Perturbation in T cell signal transduction pathway in microgravity

    NASA Astrophysics Data System (ADS)

    Kulkarni, A.; Yamauchi, K.; Taga, M.; Odle, J.; Sundaresan, A.; Pellis, N.

    T lymphocytes are regulatory and effector components of the immune system. It has been documented that T cell function is down regulated in microgravity of space flight and also in microgravity analogs. Lymphocyte signal transduction and the function of its effector elements are essential for proper functioning of T cells in any environment. We have shown that T cell mediated responses are down regulated in the microgravity analogs; in vivo antiorthostatic suspension mouse model as well as the in vitro culture system of Bioreactor (BIO). One of the postulated mechanisms for this effect is perturbation in signal transduction mechanisms via disruption of cytoskeleton due to the tensile force acting on cell membranes. Using BIO cultured mouse splenocytes we analyzed T cell signaling molecules associated with T cell receptor (TcR) and essential in signal transduction and cellular function. ZAP-70, a protein tyrosine kinase, is unaltered in 1g, however, is decreased 50% in the BIO at 96 hrs. SLP-76 levels drop more than 50% early in Bio samples at 24 and 48 hrs. LAT was unchanged. Once activated, ZAP-70 interacts with and phosphorylates Vav, SLP-76 and LAT proteins resulting in one of the complexs, namely SLP- 76/Vav, which putatively plays a regulatory role in TcR signal transduction pathway, perhaps via the actin cytoskeleton. Thus the decrease in SLP -76 at earlier time point could lead to ineffective recruitment and activation of cytoskeleton. Further studies are underway to delineate the mechanisms of T cell down regulation in microgravity. (Supported by NASA NCC8-168 grant, ADK)

  5. Signal Transduction Cascades Regulating Fungal Development and Virulence

    PubMed Central

    Lengeler, Klaus B.; Davidson, Robert C.; D'souza, Cletus; Harashima, Toshiaki; Shen, Wei-Chiang; Wang, Ping; Pan, Xuewen; Waugh, Michael; Heitman, Joseph

    2000-01-01

    Cellular differentiation, mating, and filamentous growth are regulated in many fungi by environmental and nutritional signals. For example, in response to nitrogen limitation, diploid cells of the yeast Saccharomyces cerevisiae undergo a dimorphic transition to filamentous growth referred to as pseudohyphal differentiation. Yeast filamentous growth is regulated, in part, by two conserved signal transduction cascades: a mitogen-activated protein kinase cascade and a G-protein regulated cyclic AMP signaling pathway. Related signaling cascades play an analogous role in regulating mating and virulence in the plant fungal pathogen Ustilago maydis and the human fungal pathogens Cryptococcus neoformans and Candida albicans. We review here studies on the signaling cascades that regulate development of these and other fungi. This analysis illustrates both how the model yeast S. cerevisiae can serve as a paradigm for signaling in other organisms and also how studies in other fungi provide insights into conserved signaling pathways that operate in many divergent organisms. PMID:11104818

  6. HC fragment (C-terminal portion of the heavy chain) of tetanus toxin activates protein kinase C isoforms and phosphoproteins involved in signal transduction.

    PubMed Central

    Gil, C; Chaib-Oukadour, I; Blasi, J; Aguilera, J

    2001-01-01

    A recent report [Gil, Chaib-Oukadour, Pelliccioni and Aguilera (2000) FEBS Lett. 481, 177-182] describes activation of signal transduction pathways by tetanus toxin (TeTx), a Zn(2+)-dependent endopeptidase synthesized by the Clostridium tetani bacillus, which is responsible for tetanus disease. In the present work, specific activation of protein kinase C (PKC) isoforms and of intracellular signal-transduction pathways, which include nerve-growth-factor (NGF) receptor trkA, phospholipase C(PLC)gamma-1 and extracellular regulated kinases (ERKs) 1 and 2, by the recombinant C-terminal portion of the TeTx heavy chain (H(C)-TeTx) is reported. The activation of PKC isoforms was assessed through their translocation from the soluble (cytosolic) compartment to the membranous compartment, showing that clear translocation of PKC-alpha, -beta, -gamma and -delta isoforms exists, whereas PKC-epsilon showed a slight decrease in its soluble fraction immunoreactivity. The PKC-zeta isoform showed no consistent response. Using immunoprecipitation assays against phosphotyrosine residues, time- and dose-dependent increases in tyrosine phosphorylation were observed in the trkA receptor, PLCgamma-1 and ERK-1/2. The effects shown by the H(C)-TeTx fragment on tyrosine phosphorylation were compared with the effects produced by NGF. The trkA and ERK-1/2 activation were corroborated using phospho-specific antibodies against trkA phosphorylated on Tyr(490), and antibodies against Thr/Tyr phosphorylated ERK-1/2. Moreover, PLCgamma-1 phosphorylation was supported by its H(C)-TeTx-induced translocation to the membranous compartment, an event related to PLCgamma-1 activation. Since H(C)-TeTx is the domain responsible for membrane binding and lacks catalytic activity, the activations described here must be exclusively triggered by the interaction of TeTx with a membrane component. PMID:11336640

  7. Posttranslational regulation of nitrogenase activity in Azospirillum brasilense ntrBC mutants: ammonium and anaerobic switch-off occurs through independent signal transduction pathways.

    PubMed Central

    Zhang, Y; Burris, R H; Ludden, P W; Roberts, G P

    1994-01-01

    Nitrogenase activity is regulated by reversible ADP-ribosylation in response to NH4+ and anaerobic conditions in Azospirillum brasilense. The effect of mutations in ntrBC on this regulation was examined. While NH4+ addition to ntrBC mutants caused a partial loss of nitrogenase activity, the effect was substantially smaller than that seen in ntr+ strains. In contrast, nitrogenase activity in these mutants was normally regulated in response to anaerobic conditions. The analysis of mutants lacking both the ntrBC gene products and dinitrogenase reductase activating glycohydrolase (DRAG) suggested that the primary effect of the ntrBC mutations was to alter the regulation of DRAG activity. Although nif expression in the ntr mutants appeared normal, as judged by activity, glutamine synthetase activity was significantly lower in ntrBC mutants than in the wild type. We hypothesize that this lower glutamine synthetase activity may delay the transduction of the NH4+ signal necessary for the inactivation of DRAG, resulting in a reduced response of nitrogenase activity to NH4+. Finally, data presented here suggest that different environmental stimuli use independent signal pathways to affect this reversible ADP-ribosylation system. Images PMID:7916012

  8. Bis(hinokitiolato)zinc complex ([Zn(hkt)2]) activates Akt/protein kinase B independent of insulin signal transduction.

    PubMed

    Naito, Yuki; Yoshikawa, Yutaka; Masuda, Kazufumi; Yasui, Hiroyuki

    2016-07-01

    Since many Zn complexes have been developed to enhance the insulin-like activity and increase the exposure and residence of Zn in the animal body, these complexes are recognized as one of the new candidates with action mechanism different from existing anti-diabetic drugs. However, the molecular mechanism by which Zn complexes exert an anti-DM effect is unknown. Therefore, we evaluated the activity of Zn complexes, especially related to the phosphorylation of insulin signaling pathway components. We focused on the insulin-like effects of the bis(hinokitiolato)zinc complex, [Zn(hkt)2], using 3T3-L1 adipocytes. [Zn(hkt)2] was taken up by cells and induced Akt phosphorylation in a time-dependent manner. Additionally, it showed inhibitory activity against PTP1B and PTEN, which are major negative regulators of insulin signaling. It did not promote the phosphorylation of IR (insulin receptor)-β or IRS (insulin receptor substrate)-1 by itself, but in combination with insulin, it enhanced the phosphorylation of IRβ. We conclude that [Zn(hkt)2] has effects on the proteins of insulin signaling pathway without insulin receptor mediation, and [Zn(hkt)2] promotes insulin function and shows the anti-DM effects. Thus, [Zn(hkt)2] may be the basis for improved DM treatments. PMID:27251140

  9. Gqalpha-linked phospholipase Cbeta1 and phospholipase Cgamma are essential components of the pheromone biosynthesis activating neuropeptide (PBAN) signal transduction cascade.

    PubMed

    Hull, J J; Lee, J M; Matsumoto, S

    2010-08-01

    Sex pheromone production for most moths is regulated by pheromone biosynthesis activating neuropeptide (PBAN). In Bombyx mori, PBAN binding triggers the opening of store-operated Ca(2+) channels, suggesting the involvement of a receptor-activated phospholipase C (PLC). In this study, we found that PLC inhibitors U73122 and compound 48/80 reduced sex pheromone production and that intracellular levels of (3)H-inositol phosphate species increased following PBAN stimulation. In addition, we amplified cDNAs from pheromone glands corresponding to PLCbeta1, PLCbeta4, PLCgamma and two G protein alpha subunits, Go and Gq. In vivo RNA interference-mediated knockdown analyses revealed that BmPLCbeta1, BmGq1, and unexpectedly, BmPLCgamma, are part of the PBAN signal transduction cascade. PMID:20546038

  10. Signal transduction by guanine nucleotide binding proteins.

    PubMed

    Spiegel, A M

    1987-01-01

    High affinity binding of guanine nucleotides and the ability to hydrolyze bound GTP to GDP are characteristics of an extended family of intracellular proteins. Subsets of this family include cytosolic initiation and elongation factors involved in protein synthesis, and cytoskeletal proteins such as tubulin (Hughes, S.M. (1983) FEBS Lett. 164, 1-8). A distinct subset of guanine nucleotide binding proteins is membrane-associated; members of this subset include the ras gene products (Ellis, R.W. et al. (1981) Nature 292, 506-511) and the heterotrimeric G-proteins (also termed N-proteins) (Gilman, A.G. (1984) Cell 36, 577-579). Substantial evidence indicates that G-proteins act as signal transducers by coupling receptors (R) to effectors (E). A similar function has been suggested but not proven for the ras gene products. Known G-proteins include Gs and Gi, the G-proteins associated with stimulation and inhibition, respectively, of adenylate cyclase; transducin (TD), the G-protein coupling rhodopsin to cGMP phosphodiesterase in rod photoreceptors (Bitensky, M.W. et al. (1981) Curr. Top. Membr. Transp. 15, 237-271; Stryer, L. (1986) Annu. Rev. Neurosci. 9, 87-119), and Go, a G-protein of unknown function that is highly abundant in brain (Sternweis, P.C. and Robishaw, J.D. (1984) J. Biol. Chem. 259, 13806-13813; Neer, E.J. et al. (1984) J. Biol. Chem. 259, 14222-14229). G-proteins also participate in other signal transduction pathways, notably that involving phosphoinositide breakdown. In this review, I highlight recent progress in our understanding of the structure, function, and diversity of G-proteins. PMID:2435586

  11. Development of Th17-associated interstitial kidney inflammation in lupus-prone mice lacking the gene encoding Signal Transduction and Activator of Transcription-1 (STAT-1)

    PubMed Central

    Yiu, Gloria; Rasmussen, Tue Kruse; Ajami, Bahareh; Haddon, David J.; Chu, Alvina D.; Tangsombatvisit, Stephanie; Haynes, Winston A.; Diep, Vivian; Steinman, Larry; Faix, James; Utz, Paul J.

    2016-01-01

    Type I interferon (IFN-I) signaling is a central pathogenic pathway in Systemic Lupus Erythematosus (SLE), and therapeutics targeting IFN-I signaling are in development. Multiple proteins with overlapping function participate in IFN signaling, but the signaling events downstream of receptor engagement are unclear. We employed highly-multiplexed assays to characterize autoantibody production, cytokine/chemokine profiles, and Signal Transduction and Activators of Transcription (STAT) phosphorylation to investigate the individual roles of IFNAR2, IRF9 and STAT1 in MRL/lpr (lpr) mice. Surprisingly, we found that Stat1−/−, but not Irf9−/− or Ifnar2−/− mice, developed interstitial nephritis characterized by infiltration with RORγT+ lymphocytes, macrophages and eosinophils. Despite pronounced interstitial kidney disease and abnormal kidney function, Stat1−/− mice had decreased proteinuria, glomerulonephritis and autoantibody production. Phospho-specific flow cytometry (phosphoflow) revealed shunting of STAT phosphorylation from STAT1 to STAT3/4. In summary, we describe unique contributions of STAT1 to pathology in different kidney compartments, and provide novel insight into tubulointerstitial nephritis (TIN) a poorly understood complication that predicts end-stage kidney disease in SLE patients. PMID:26636548

  12. EDITORIAL: Special section on signal transduction Special section on signal transduction

    NASA Astrophysics Data System (ADS)

    Shvartsman, Stanislav

    2012-08-01

    This special section of Physical Biology focuses on multiple aspects of signal transduction, broadly defined as the study of the mechanisms by which cells communicate with their environment. Mechanisms of cell communication involve detection of incoming signals, which can be chemical, mechanical or electromagnetic, relaying these signals to intracellular processes, such as cytoskeletal networks or gene expression systems, and, ultimately, converting these signals to responses such as cell differentiation or death. Given the multiscale nature of signal transduction systems, they must be studied at multiple levels, from the identities and structures of molecules comprising signal detection and interpretation networks, to the systems-level properties of these networks. The 11 papers in this special section illustrate some of the most exciting aspects of signal transduction research. The first two papers, by Marie-Anne Félix [1] and by Efrat Oron and Natalia Ivanova [2], focus on cell-cell interactions in developing tissues, using vulval patterning in worm and cell fate specification in mammalian embryos as prime examples of emergent cell behaviors. Next come two papers from the groups of Julio Saez-Rodriguez [3] and Kevin Janes [4]. These papers discuss how the causal relationships between multiple components of signaling systems can be inferred using multivariable statistical analysis of empirical data. An authoritative review by Zarnitsyna and Zhu [5] presents a detailed discussion of the sequence of signaling events involved in T-cell triggering. Once the structure and components of the signaling systems are determined, they can be modeled using approaches that have been successful in other physical sciences. As two examples of such approaches, reviews by Rubinstein [6] and Kholodenko [7], present reaction-diffusion models of cell polarization and thermodynamics-based models of gene regulation. An important class of models takes the form of enzymatic networks

  13. Signal transduction of stress via ceramide.

    PubMed Central

    Mathias, S; Peña, L A; Kolesnick, R N

    1998-01-01

    The sphingomyelin (SM) pathway is a ubiquitous, evolutionarily conserved signalling system analogous to conventional systems such as the cAMP and phosphoinositide pathways. Ceramide, which serves as second messenger in this pathway, is generated from SM by the action of a neutral or acidic SMase, or by de novo synthesis co-ordinated through the enzyme ceramide synthase. A number of direct targets for ceramide action have now been identified, including ceramide-activated protein kinase, ceramide-activated protein phosphatase and protein kinase Czeta, which couple the SM pathway to well defined intracellular signalling cascades. The SM pathway induces differentiation, proliferation or growth arrest, depending on the cell type. Very often, however, the outcome of signalling through this pathway is apoptosis. Mammalian systems respond to diverse stresses with ceramide generation, and recent studies show that yeast manifest a form of this response. Thus ceramide signalling is an older stress response system than the caspase/apoptotic death pathway, and hence these two pathways must have become linked later in evolution. Signalling of the stress response through ceramide appears to play a role in the development of human diseases, including ischaemia/reperfusion injury, insulin resistance and diabetes, atherogenesis, septic shock and ovarian failure. Further, ceramide signalling mediates the therapeutic effects of chemotherapy and radiation in some cells. An understanding of the mechanisms by which ceramide regulates physiological and pathological events in specific cells may provide new targets for pharmacological intervention. PMID:9794783

  14. Modelling protein functional domains in signal transduction using Maude

    NASA Technical Reports Server (NTRS)

    Sriram, M. G.

    2003-01-01

    Modelling of protein-protein interactions in signal transduction is receiving increased attention in computational biology. This paper describes recent research in the application of Maude, a symbolic language founded on rewriting logic, to the modelling of functional domains within signalling proteins. Protein functional domains (PFDs) are a critical focus of modern signal transduction research. In general, Maude models can simulate biological signalling networks and produce specific testable hypotheses at various levels of abstraction. Developing symbolic models of signalling proteins containing functional domains is important because of the potential to generate analyses of complex signalling networks based on structure-function relationships.

  15. Association of toxicity of sorafenib and sunitinib for human keratinocytes with inhibition of signal transduction and activator of transcription 3 (STAT3).

    PubMed

    Yamamoto, Kazuhiro; Mizumoto, Atsushi; Nishimura, Kohji; Uda, Atsushi; Mukai, Akira; Yamashita, Kazuhiko; Kume, Manabu; Makimoto, Hiroo; Bito, Toshinori; Nishigori, Chikako; Nakagawa, Tsutomu; Hirano, Takeshi; Hirai, Midori

    2014-01-01

    Hand-foot skin reaction is a most common multi-kinase inhibitor-related adverse event. This study aimed to examine whether the toxicity of sorafenib and sunitinib for human keratinocytes was associated with inhibiting signal transduction and activator of transcription 3 (STAT3). We studied whether STAT3 activity affects sorafenib- and sunitinib-induced cell growth inhibition in HaCaT cells by WST-8 assay. Stattic enhanced the cell-growth inhibitory and apoptotic effects of sorafenib and sunitinib. HaCaT cells transfected with constitutively-active STAT3 (STAT3C) were resistant to the sorafenib- and sunitinib-induced cell growth inhibition. STAT3 activity decreased after short-term treatment with sorafenib and sunitinib in a dose-dependent manner and recovered after long-term treatment with sorafenib and sunitinib at low doses. Moreover, the expression of survivin and bcl-2 decreased after treatment with sorafenib and sunitinib was concomitant with variations in STAT3 activity. Sorafenib-induced STAT3 inhibition was mediated by regulation via MAPK pathways in HaCaT cells, while sunitinib-induced STAT3 inhibition was not. Thus, STAT3 activation mediating apoptosis suppressors may be a key factor in sorafenib and sunitinib-induced keratinocyte cytotoxicity. PMID:25013907

  16. MAPK Cascades in Guard Cell Signal Transduction

    PubMed Central

    Lee, Yuree; Kim, Yun Ju; Kim, Myung-Hee; Kwak, June M.

    2016-01-01

    Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK) cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions. PMID:26904052

  17. MAPK Cascades in Guard Cell Signal Transduction.

    PubMed

    Lee, Yuree; Kim, Yun Ju; Kim, Myung-Hee; Kwak, June M

    2016-01-01

    Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK) cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions. PMID:26904052

  18. Signal transduction and chemotaxis in mast cells.

    PubMed

    Draber, Petr; Halova, Ivana; Polakovicova, Iva; Kawakami, Toshiaki

    2016-05-01

    Mast cells play crucial roles in both innate and adaptive arms of the immune system. Along with basophils, mast cells are essential effector cells for allergic inflammation that causes asthma, allergic rhinitis, food allergy and atopic dermatitis. Mast cells are usually increased in inflammatory sites of allergy and, upon activation, release various chemical, lipid, peptide and protein mediators of allergic reactions. Since antigen/immunoglobulin E (IgE)-mediated activation of these cells is a central event to trigger allergic reactions, innumerable studies have been conducted on how these cells are activated through cross-linking of the high-affinity IgE receptor (FcεRI). Development of mature mast cells from their progenitor cells is under the influence of several growth factors, of which the stem cell factor (SCF) seems to be the most important. Therefore, how SCF induces mast cell development and activation via its receptor, KIT, has been studied extensively, including a cross-talk between KIT and FcεRI signaling pathways. Although our understanding of the signaling mechanisms of the FcεRI and KIT pathways is far from complete, pharmaceutical applications of the knowledge about these pathways are underway. This review will focus on recent progresses in FcεRI and KIT signaling and chemotaxis. PMID:25941081

  19. Olfactory Signal Transduction in the Mouse Septal Organ

    PubMed Central

    Ma, Minghong; Grosmaitre, Xavier; Iwema, Carrie L.; Baker, Harriet; Greer, Charles A.; Shepherd, Gordon M.

    2008-01-01

    The septal organ, a distinct chemosensory organ observed in the mammalian nose, is essentially a small island of olfactory neuroepithelium located bilaterally at the ventral base of the nasal septum. Virtually nothing is known about its physiological properties and function. To understand the nature of the sensory neurons in this area, we studied the mechanisms underlying olfactory signal transduction in these neurons. The majority of the sensory neurons in the septal organ express olfactory-specific G-protein and adenylyl cyclase type III, suggesting that the cAMP signaling pathway plays a critical role in the septal organ as in the main olfactory epithelium (MOE). This is further supported by patch-clamp recordings from individual dendritic knobs of the sensory neurons in the septal organ. Odorant responses can be mimicked by an adenylyl cyclase activator and a phosphodiesterase inhibitor, and these responses can be blocked by an adenylyl cyclase inhibitor. There is a small subset of cells in the septal organ expressing a cGMP-stimulated phosphodiesterase (phosphodiesterase 2), a marker for the guanylyl cyclase-D subtype sensory neurons identified in the MOE. The results indicate that the septal organ resembles the MOE in major olfactory signal transduction pathways, odorant response properties, and projection to the main olfactory bulb. Molecular and functional analysis of the septal organ, which constitutes ~1% of the olfactory epithelium, will provide new insights into the organization of the mammalian olfactory system and the unique function this enigmatic organ may serve. PMID:12514230

  20. [Contractile proteins in chemical signal transduction in plant microspores].

    PubMed

    Roshchina, V V

    2005-01-01

    Involvement of contractile components in chemical signal transduction from the cell surface to the organelles was studied using unicellular systems. Neurotransmitters dopamine and serotonin as well as active forms of oxygen hydrogen peroxide and tert-butyl peroxide were used as chemical signals. Experiments were carried out on vegetative microspores of field horsetail Equisetum arvense and generative microspores (pollen) of amaryllis Hippeastrum hybridum treated with cytochalasin B (an inhibitor of actin polymerization in microfilaments), colchicine, and vinblastine (inhibitors of tubulin polymerization in microtubules). Both types of thus treated microspores demonstrated suppressed development, particularly, for cytochalasin B treatment. At the same time, an increased typical blue fluorescence of certain cell regions (along the cell wall and around nuclei and chloroplasts) where the corresponding contractile proteins could reside was observed. In contrast to anticontractile agents, dopamine, serotonin B, and the peroxides stimulated microspore germination. Microspore pretreatment with cytochalasin B and colchicine followed by the treatment with serotonin, dopamine, or the peroxides decreased the germination rate. Involvement of actin and tubulin in chemical signal transduction from the cell surface to the nucleus is proposed. PMID:16004258

  1. Gravity perception and signal transduction in single cells

    NASA Astrophysics Data System (ADS)

    Block, I.; Wolke, A.; Briegleb, W.; Ivanova, K.

    Cellular signal processing in multi-, as well as in unicellular organisms, has to rely on fundamentally similar mechanisms. Free-living single cells often use the gravity vector for their spatial orientation (gravitaxis) and show distinct gravisensitivities. In this investigation the gravisensitive giant ameboid cell Physarum polycephalum (Myxomycetes, acellular slime molds) is used. Its gravitaxis and the modulation of its intrinsic rhythmic contraction activity by gravity was demonstrated in 180 °turn experiments and in simulated, as well as in actual, near-weightlessness studies (fast-rotating clinostat; Spacelab D1, IML-1). The stimulus perception was addressed in an IML-2 experiment, which provided information on the gravireceptor itself by the determination of the cell's acceleration-sensitivity threshold. Ground-based experiments designed to elucidate the subsequent steps in signal transduction leading to a motor response, suggest that an acceleration stimulus induces changes in the level of second messenger, adenosine 3',5'-cyclic monophosphate (cAMP), indicating also that the acceleration-stimulus signal transduction chain of Physarum uses an ubiquitous second messenger pathway.

  2. Protein kinases as mediators of fluid shear stress stimulated signal transduction in endothelial cells: a hypothesis for calcium-dependent and calcium-independent events activated by flow.

    PubMed

    Berk, B C; Corson, M A; Peterson, T E; Tseng, H

    1995-12-01

    Fluid shear stress regulates endothelial cell function, but the signal transduction mechanisms involved in mechanotransduction remain unclear. Recent findings demonstrate that several intracellular kinases are activated by mechanical forces. In particular, members of the mitogen-activated protein (MAP) kinase family are stimulated by hyperosmolarity, stretch, and stress such as heat shock. We propose a model for mechanotransduction in endothelial cells involving calcium-dependent and calcium-independent protein kinase pathways. The calcium-dependent pathway involves activation of phospholipase C, hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), increases in intracellular calcium and stimulation of kinases such as calcium-calmodulin and C kinases (PKC). The calcium-independent pathway involves activation of a small GTP-binding protein and stimulation of calcium-independent PKC and MAP kinases. The calcium-dependent pathway mediates the rapid, transient response to fluid shear stress including activation of nitric oxide synthase (NOS) and ion transport. In contrast, the calcium-independent pathway mediates a slower response including the sustained activation of NOS and changes in cell morphology and gene expression. We propose that focal adhesion complexes link the calcium-dependent and calcium-independent pathways by regulating activity of phosphatidylinositol 4-phosphate (PIP) 5-kinase (which regulates PIP2 levels) and p125 focal adhesion kinase (FAK, which phosphorylates paxillin and interacts with cytoskeletal proteins). This model predicts that dynamic interactions between integrin molecules present in focal adhesion complexes and membrane events involved in mechanotransduction will be integrated by calcium-dependent and calcium-independent kinases to generate intracellular signals involved in the endothelial cell response to flow. PMID:8666584

  3. Intramolecular signal transduction within the FixJ transcriptional activator: in vitro evidence for the inhibitory effect of the phosphorylatable regulatory domain.

    PubMed Central

    Da Re, S; Bertagnoli, S; Fourment, J; Reyrat, J M; Kahn, D

    1994-01-01

    FixJ is a phosphorylatable 'response regulator' controlling the transcription of the key nitrogen fixation genes nifA and fixK in Rhizobium meliloti. Sequence and genetic analyses indicated that FixJ comprises an N-terminal phosphorylatable regulatory domain, FixJN, and a C-terminal transcriptional activator domain, FixJC. We have now overexpressed and purified the FixJC protein and show that it is fully active in an in vitro transcription system with purified RNA polymerase. FixJC appeared to act synergistically with RNA polymerase at the nifA promoter. Furthermore FixJC was more active in vitro than the full-length dephosphorylated FixJ protein. Therefore activity of FixJC is inhibited by FixJN within the FixJ protein. This inhibition is relieved by phosphorylation of FixJN. Such a negative mode of intramolecular signal transduction may be generalizable to other response regulators. Images PMID:8202354

  4. Signal Transduction in Histidine Kinases: Insights from New Structures

    PubMed Central

    Bhate, Manasi P.; Molnar, Kathleen S.; Goulian, Mark; DeGrado, William F.

    2015-01-01

    Histidine kinases (HKs) are major players in bacterial signaling. There has been an explosion of new HK crystal structures in the last five years. We globally analyze the structures of HKs to yield insights into the mechanisms by which signals are transmitted to and across protein structures in this family. We interpret known enzymological data in the context of new structural data to show how asymmetry across the dimer interface is a key feature of signal transduction in HKs, and discuss how different HK domains undergo asymmetric-to-symmetric transitions during signal transduction and catalysis. A thermodynamic framework for signaling that encompasses these various properties is presented and the consequences of weak thermodynamic coupling are discussed. The synthesis of observations from enzymology, structural biology, protein engineering and thermodynamics paves the way for a deeper molecular understanding of histidine kinase signal transduction. PMID:25982528

  5. Development and validation of a high-throughput cell-based screen to identify activators of a bacterial two-component signal transduction system.

    PubMed

    van Rensburg, Julia J; Fortney, Kate R; Chen, Lan; Krieger, Andrew J; Lima, Bruno P; Wolfe, Alan J; Katz, Barry P; Zhang, Zhong-Yin; Spinola, Stanley M

    2015-07-01

    CpxRA is a two-component signal transduction system (2CSTS) found in many drug-resistant Gram-negative bacteria. In response to periplasmic stress, CpxA autophosphorylates and donates a phosphoryl group to its cognate response regulator, CpxR. Phosphorylated CpxR (CpxR-P) upregulates genes involved in membrane repair and downregulates multiple genes that encode virulence factors, which are trafficked across the cell membrane. Mutants that constitutively activate CpxRA in Salmonella enterica serovar Typhimurium and Haemophilus ducreyi are avirulent in mice and humans, respectively. Thus, the activation of CpxRA has high potential as a novel antimicrobial/antivirulence strategy. Using a series of Escherichia coli strains containing a CpxR-P-responsive lacZ reporter and deletions in genes encoding CpxRA system components, we developed and validated a novel cell-based high-throughput screen (HTS) for CpxRA activators. A screen of 36,000 compounds yielded one hit compound that increased reporter activity in wild-type cells. This is the first report of a compound that activates, rather than inhibits, a 2CSTS. The activity profile of the compound against CpxRA pathway mutants in the presence of glucose suggested that the compound inhibits CpxA phosphatase activity. We confirmed that the compound induced the accumulation of CpxR-P in treated cells. Although the hit compound contained a nitro group, a derivative lacking this group retained activity in serum and had lower cytotoxicity than that of the initial hit. This HTS is amenable for the screening of larger libraries to find compounds that activate CpxRA by other mechanisms, and it could be adapted to find activators of other two-component systems. PMID:25870061

  6. Influence of Unweighting on Insulin Signal Transduction in Muscle

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.

    2002-01-01

    Unweighting of the juvenile soleus muscle is characterized by an increased binding capacity for insulin relative to muscle mass due to sparing of the receptors during atrophy. Although carbohydrate metabolism and protein degradation in the unweighted muscle develop increased sensitivity to insulin in vivo, protein synthesis in vivo and system A amino acid transport in vitro do not appear to develop such an enhanced response. The long-term goal is to identify the precise nature of this apparent resistance in the insulin signal transduction pathway and to consider how reduced weight-bearing may elicit this effect, by evaluating specific components of the insulin signalling pathway. Because the insulin-signalling pathway has components in common with the signal transduction pathway for insulin-like growth factor (IGF-1) and potentially other growth factors, the study could have important implications in the role of weight-bearing function on muscle growth and development. Since the insulin signalling pathway diverges following activation of insulin receptor tyrosine kinase, the immediate specific aims will be to study the receptor tyrosine kinase (IRTK) and those branches, which lead to phosphorylation of insulin receptor substrate-1 (IRS-1) and of Shc protein. To achieve these broader objectives, we will test in situ, by intramuscular injection, the responses of glucose transport, system A amino acid transport and protein synthesis to insulin analogues for which the receptor has either a weaker or much stronger binding affinity compared to insulin. Studies will include: (1) estimation of the ED(sub 50) for each analogue for these three processes; (2) the effect of duration (one to four days) of unweighting on the response of each process to all analogues tested; (3) the effect of unweighting and the analogues on IRTK activity; and (4) the comparative effects of unweighting and analogue binding on the tyrosine phosphorylation of IRTK, IRS-1, and Shc protein.

  7. Mechanism and evolution of cytosolic Hedgehog signal transduction

    PubMed Central

    Wilson, Christopher W.; Chuang, Pao-Tien

    2010-01-01

    Hedgehog (Hh) signaling is required for embryonic patterning and postnatal physiology in invertebrates and vertebrates. With the revelation that the primary cilium is crucial for mammalian Hh signaling, the prevailing view that Hh signal transduction mechanisms are conserved across species has been challenged. However, more recent progress on elucidating the function of core Hh pathway cytosolic regulators in Drosophila, zebrafish and mice has confirmed that the essential logic of Hh transduction is similar between species. Here, we review Hh signaling events at the membrane and in the cytosol, and focus on parallel and divergent functions of cytosolic Hh regulators in Drosophila and mammals. PMID:20530542

  8. PRDM Proteins: Molecular Mechanisms in Signal Transduction and Transcriptional Regulation.

    PubMed

    Di Zazzo, Erika; De Rosa, Caterina; Abbondanza, Ciro; Moncharmont, Bruno

    2013-01-01

    PRDM (PRDI-BF1 and RIZ homology domain containing) protein family members are characterized by the presence of a PR domain and a variable number of Zn-finger repeats. Experimental evidence has shown that the PRDM proteins play an important role in gene expression regulation, modifying the chromatin structure either directly, through the intrinsic methyltransferase activity, or indirectly through the recruitment of chromatin remodeling complexes. PRDM proteins have a dual action: they mediate the effect induced by different cell signals like steroid hormones and control the expression of growth factors. PRDM proteins therefore have a pivotal role in the transduction of signals that control cell proliferation and differentiation and consequently neoplastic transformation. In this review, we describe pathways in which PRDM proteins are involved and the molecular mechanism of their transcriptional regulation. PMID:24832654

  9. PRDM Proteins: Molecular Mechanisms in Signal Transduction and Transcriptional Regulation

    PubMed Central

    Di Zazzo, Erika; De Rosa, Caterina; Abbondanza, Ciro; Moncharmont, Bruno

    2013-01-01

    PRDM (PRDI-BF1 and RIZ homology domain containing) protein family members are characterized by the presence of a PR domain and a variable number of Zn-finger repeats. Experimental evidence has shown that the PRDM proteins play an important role in gene expression regulation, modifying the chromatin structure either directly, through the intrinsic methyltransferase activity, or indirectly through the recruitment of chromatin remodeling complexes. PRDM proteins have a dual action: they mediate the effect induced by different cell signals like steroid hormones and control the expression of growth factors. PRDM proteins therefore have a pivotal role in the transduction of signals that control cell proliferation and differentiation and consequently neoplastic transformation. In this review, we describe pathways in which PRDM proteins are involved and the molecular mechanism of their transcriptional regulation. PMID:24832654

  10. Gqalpha-linked PLCbeta and PLCgamma are essential components of the pheromone biosynthesis activating neuropeptide (PBAN) signal transduction cascade

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sex pheromone production for most moths is regulated by pheromone biosynthesis activating neuropeptide (PBAN). In Bombyx mori, PBAN binding triggers the opening of store-operated Ca2+ channels, suggesting the involvement of a receptor-activated phospholipase C (PLC). In this study, we found that P...

  11. Activation of salicylic acid metabolism and signal transduction can enhance resistance to Fusarium wilt in banana (Musa acuminata L. AAA group, cv. Cavendish).

    PubMed

    Wang, Zhuo; Jia, Caihong; Li, Jingyang; Huang, Suzhen; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cubens (Foc) is the most serious disease that attacks banana plants. Salicylic acid (SA) can play a key role in plant-microbe interactions. Our study is the first to examine the role of SA in conferring resistance to Foc TR4 in banana (Musa acuminata L. AAA group, cv. Cavendish), which is the greatest commercial importance cultivar in Musa. We used quantitative real-time reverse polymerase chain reaction (qRT-PCR) to analyze the expression profiles of 45 genes related to SA biosynthesis and downstream signaling pathways in a susceptible banana cultivar (cv. Cavendish) and a resistant banana cultivar (cv. Nongke No. 1) inoculated with Foc TR4. The expression of genes involved in SA biosynthesis and downstream signaling pathways was suppressed in a susceptible cultivar and activated in a resistant cultivar. The SA levels in each treatment arm were measured using high-performance liquid chromatography. SA levels were decreased in the susceptible cultivar and increased in the resistant cultivar. Finally, we examined the contribution of exogenous SA to Foc TR4 resistance in susceptible banana plants. The expression of genes involved in SA biosynthesis and signal transduction pathways as well as SA levels were significantly increased. The results suggest that one reason for banana susceptibility to Foc TR4 is that expression of genes involved in SA biosynthesis and SA levels are suppressed and that the induced resistance observed in banana against Foc TR4 might be a case of salicylic acid-dependent systemic acquired resistance. PMID:25277445

  12. A Model for Direction Sensing in Dictyostelium discoideum: Ras Activity and Symmetry Breaking Driven by a Gβγ-Mediated, Gα2-Ric8 -- Dependent Signal Transduction Network

    PubMed Central

    Cheng, Yougan; Othmer, Hans

    2016-01-01

    Chemotaxis is a dynamic cellular process, comprised of direction sensing, polarization and locomotion, that leads to the directed movement of eukaryotic cells along extracellular gradients. As a primary step in the response of an individual cell to a spatial stimulus, direction sensing has attracted numerous theoretical treatments aimed at explaining experimental observations in a variety of cell types. Here we propose a new model of direction sensing based on experiments using Dictyostelium discoideum (Dicty). The model is built around a reaction-diffusion-translocation system that involves three main component processes: a signal detection step based on G-protein-coupled receptors (GPCR) for cyclic AMP (cAMP), a transduction step based on a heterotrimetic G protein Gα2βγ, and an activation step of a monomeric G-protein Ras. The model can predict the experimentally-observed response of cells treated with latrunculin A, which removes feedback from downstream processes, under a variety of stimulus protocols. We show that Gα2βγ cycling modulated by Ric8, a nonreceptor guanine exchange factor for Gα2 in Dicty, drives multiple phases of Ras activation and leads to direction sensing and signal amplification in cAMP gradients. The model predicts that both Gα2 and Gβγ are essential for direction sensing, in that membrane-localized Gα2*, the activated GTP-bearing form of Gα2, leads to asymmetrical recruitment of RasGEF and Ric8, while globally-diffusing Gβγ mediates their activation. We show that the predicted response at the level of Ras activation encodes sufficient ‘memory’ to eliminate the ‘back-of-the wave’ problem, and the effects of diffusion and cell shape on direction sensing are also investigated. In contrast with existing LEGI models of chemotaxis, the results do not require a disparity between the diffusion coefficients of the Ras activator GEF and the Ras inhibitor GAP. Since the signal pathways we study are highly conserved between Dicty

  13. A Model for Direction Sensing in Dictyostelium discoideum: Ras Activity and Symmetry Breaking Driven by a Gβγ-Mediated, Gα2-Ric8 -- Dependent Signal Transduction Network.

    PubMed

    Cheng, Yougan; Othmer, Hans

    2016-05-01

    Chemotaxis is a dynamic cellular process, comprised of direction sensing, polarization and locomotion, that leads to the directed movement of eukaryotic cells along extracellular gradients. As a primary step in the response of an individual cell to a spatial stimulus, direction sensing has attracted numerous theoretical treatments aimed at explaining experimental observations in a variety of cell types. Here we propose a new model of direction sensing based on experiments using Dictyostelium discoideum (Dicty). The model is built around a reaction-diffusion-translocation system that involves three main component processes: a signal detection step based on G-protein-coupled receptors (GPCR) for cyclic AMP (cAMP), a transduction step based on a heterotrimetic G protein Gα2βγ, and an activation step of a monomeric G-protein Ras. The model can predict the experimentally-observed response of cells treated with latrunculin A, which removes feedback from downstream processes, under a variety of stimulus protocols. We show that [Formula: see text] cycling modulated by Ric8, a nonreceptor guanine exchange factor for [Formula: see text] in Dicty, drives multiple phases of Ras activation and leads to direction sensing and signal amplification in cAMP gradients. The model predicts that both [Formula: see text] and Gβγ are essential for direction sensing, in that membrane-localized [Formula: see text], the activated GTP-bearing form of [Formula: see text], leads to asymmetrical recruitment of RasGEF and Ric8, while globally-diffusing Gβγ mediates their activation. We show that the predicted response at the level of Ras activation encodes sufficient 'memory' to eliminate the 'back-of-the wave' problem, and the effects of diffusion and cell shape on direction sensing are also investigated. In contrast with existing LEGI models of chemotaxis, the results do not require a disparity between the diffusion coefficients of the Ras activator GEF and the Ras inhibitor GAP. Since

  14. How ‘arm-twisting’ by the inducer triggers activation of the MalT transcription factor, a typical signal transduction ATPase with numerous domains (STAND)

    PubMed Central

    Danot, Olivier

    2015-01-01

    Signal transduction ATPases with numerous domains (STAND) get activated through inducer-dependent assembly into multimeric platforms. This switch relies on the conversion of their nucleotide-binding oligomerization domain (NOD) from a closed, ADP-bound form to an open, ATP-bound form. The NOD closed form is stabilized by contacts with the arm, a domain that connects the NOD to the inducer-binding domain called the sensor. How the inducer triggers NOD opening remains unclear. Here, I pinpointed the NOD-arm interface of the MalT STAND transcription factor, and I generated a MalT variant in which this interface can be covalently locked on demand, thereby trapping the NOD in the closed state. By characterizing this locked variant, I found that the inducer is recognized in two steps: it first binds to the sole sensor with low affinity, which then triggers the recruitment of the arm to form a high-affinity arm-sensor inducer-binding site. Strikingly, this high-affinity binding step was incompatible with arm-NOD contacts maintaining the NOD closed. Through this toggling between two mutually exclusive states reminiscent of a single-pole double-throw switch, the arm couples inducer binding to NOD opening, shown here to precede nucleotide exchange. This scenario likely holds for other STANDs like mammalian NLR innate immunity receptors. PMID:25740650

  15. Signal transduction in mammalian oocytes during fertilization.

    PubMed

    Machaty, Zoltan

    2016-01-01

    Mammalian embryo development begins when the fertilizing sperm triggers a series of elevations in the oocyte's intracellular free Ca(2+) concentration. The elevations are the result of repeated release and re-uptake of Ca(2+) stored in the smooth endoplasmic reticulum. Ca(2+) release is primarily mediated by the phosphoinositide signaling system of the oocyte. The system is stimulated when the sperm causes the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG); IP3 then binds its receptor on the surface of the endoplasmic reticulum that induces Ca(2+) release. The manner in which the sperm generates IP3, the Ca(2+) mobilizing second messenger, has been the subject of extensive research for a long time. The sperm factor hypothesis has eventually gained general acceptance, according to which it is a molecule from the sperm that diffuses into the ooplasm and stimulates the phosphoinositide cascade. Much evidence now indicates that the sperm-derived factor is phospholipase C-zeta (PLCζ) that cleaves PIP2 and generates IP3, eventually leading to oocyte activation. A recent addition to the candidate sperm factor list is the post-acrosomal sheath WW domain-binding protein (PAWP), whose role at fertilization is currently under debate. Ca(2+) influx across the plasma membrane is also important as, in the absence of extracellular Ca(2+), the oscillations run down prematurely. In pig oocytes, the influx that sustains the oscillations seems to be regulated by the filling status of the stores, whereas in the mouse other mechanisms might be involved. This work summarizes the current understanding of Ca(2+) signaling in mammalian oocytes. PMID:26453398

  16. Inhibition of Grb2-mediated activation of MAPK signal transduction suppresses NOR1/CB1954-induced cytotoxicity in the HepG2 cell line.

    PubMed

    Gui, Rong; Li, Dengqing; Qi, Guannan; Suhad, Ali; Nie, Xinmin

    2012-09-01

    The nitroreductase oxidored-nitro domain containing protein 1 (NOR1) gene may be involved in the chemical carcinogenesis of hepatic cancer and nasopharyngeal carcinoma (NPC). We have previously demonstrated that NOR1 overexpression is capable of converting the monofunctional alkylating agent 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) into a toxic form by reducing the 4-nitro group of CB1954. Toxic CB1954 is able to enhance cell killing in the NPC cell line CNE1; however, the underlying mechanisms remain unknown. Using cDNA microarrays and quantitative real-time PCR, we previously discovered that NOR1 increases the expression of growth factor receptor-bound protein 2 (Grb2) mRNA by 4.8-fold in the human hepatocellular carcinoma cell line HepG2. In the present study, we revealed that NOR1 increased Grb2 protein expression by 3-fold in HepG2 cells. Additionally, we demonstrated that NOR1 enhanced CB1954-induced cell killing in HepG2 cells, and cell cytotoxicity was inhibited with the tyrosine kinase inhibitor genistein, or by stable transfection of Grb2 small hairpin RNA (shRNA) pU6(+27)-shGrb2 to silence the expression of Grb2. Western blot analysis revealed that Grb2 downregulation may reduce the activity of the mitogen-activated protein kinase (MAPK). Inhibiting the activation of MAPK using the methyl ethyl ketone (MEK) inhibtor PD98059 suppressed CB1954-induced cell killing. These results suggested that the NOR1 gene enhances CB1954-mediated cell cytotoxicity through the upregulation of Grb2 expression and the activation of MAPK signal transduction in the HepG2 cell line. PMID:23741254

  17. Engineering aspects of enzymatic signal transduction: photoreceptors in the retina.

    PubMed Central

    Detwiler, P B; Ramanathan, S; Sengupta, A; Shraiman, B I

    2000-01-01

    Identifying the basic module of enzymatic amplification as an irreversible cycle of messenger activation/deactivation by a "push-pull" pair of opposing enzymes, we analyze it in terms of gain, bandwidth, noise, and power consumption. The enzymatic signal transduction cascade is viewed as an information channel, the design of which is governed by the statistical properties of the input and the noise and dynamic range constraints of the output. With the example of vertebrate phototransduction cascade we demonstrate that all of the relevant engineering parameters are controlled by enzyme concentrations and, from functional considerations, derive bounds on the required protein numbers. Conversely, the ability of enzymatic networks to change their response characteristics by varying only the abundance of different enzymes illustrates how functional diversity may be built from nearly conserved molecular components. PMID:11106590

  18. Signal transduction in esophageal and LES circular muscle contraction.

    PubMed Central

    Harnett, K. M.; Cao, W.; Kim, N.; Sohn, U. D.; Rich, H.; Behar, J.; Biancani, P.

    1999-01-01

    Contraction of normal esophageal circular muscle (ESO) in response to acetylcholine (ACh) is linked to M2 muscarinic receptors activating at least three intracellular phospholipases, i.e., phosphatidylcholine-specific phospholipase C (PC-PLC), phospholipase D (PLD), and the high molecular weight (85 kDa) cytosolic phospholipase A2 (cPLA2) to induce phosphatidylcholine (PC) metabolism, production of diacylglycerol (DAG) and arachidonic acid (AA), resulting in activation of a protein kinase C (PKC)-dependent pathway. In contrast, lower esophageal sphincter (LES) contraction induced by maximally effective doses of ACh is mediated by muscarinic M3 receptors, linked to pertussis toxin-insensitive GTP-binding proteins of the G(q/11) type. They activate phospholipase C, which hydrolyzes phosphatidylinositol bisphosphate (PIP2), producing inositol 1,4,5-trisphosphate (IP3) and DAG. IP3 causes release of intracellular Ca++ and formation of a Ca++-calmodulin complex, resulting in activation of myosin light chain kinase and contraction through a calmodulin-dependent pathway. Signal transduction pathways responsible for maintenance of LES tone are quite distinct from those activated during contraction in response to maximally effective doses of agonists (e.g., ACh). Resting LES tone is associated with activity of a low molecular weight (approximately 14 kDa) pancreatic-like (group 1) secreted phospholipase A2 (sPLA2) and production of arachidonic acid (AA), which is metabolized to prostaglandins and thromboxanes. These AA metabolites act on receptors linked to G-proteins to induce activation of PI- and PC-specific phospholipases, and production of second messengers. Resting LES tone is associated with submaximal PI hydrolysis resulting in submaximal levels of inositol trisphosphate (IP3-induced Ca++ release, and interaction with DAG to activate PKC. In an animal model of acute esophagitis, acid-induced inflammation alters the contractile pathway of ESO and LES. In LES circular

  19. Activation of the PI3K/Akt signal transduction pathway and increased levels of insulin receptor in protein repair-deficient mice.

    PubMed

    Farrar, Christine; Houser, Carolyn R; Clarke, Steven

    2005-02-01

    Protein L-isoaspartate (D-aspartate) O-methyltransferase is an enzyme that catalyses the repair of isoaspartyl damage in proteins. Mice lacking this enzyme (Pcmt1-/- mice) have a progressive increase in brain size compared with wild-type mice (Pcmt1+/+ mice), a phenotype that can be associated with alterations in the PI3K/Akt signal transduction pathway. Here we show that components of this pathway, including Akt, GSK3beta and PDK-1, are more highly phosphorylated in the brains of Pcmt1-/- mice, particularly in cells of the hippocampus, in comparison with Pcmt1+/+ mice. Examination of upstream elements of this pathway in the hippocampus revealed that Pcmt1-/- mice have increased activation of insulin-like growth factor-I (IGF-I) receptor and/or insulin receptor. Western blot analysis revealed an approximate 200% increase in insulin receptor protein levels and an approximate 50% increase in IGF-I receptor protein levels in the hippocampus of Pcmt1-/- mice. Higher levels of the insulin receptor protein were also found in other regions of the adult brain and in whole tissue extracts of brain, liver, heart and testes of both juvenile and adult Pcmt1-/- mice. There were no significant differences in plasma insulin levels for adult Pcmt1-/- mice during glucose tolerance tests. However, they did show higher peak levels of blood glucose, suggesting a mild impairment in glucose tolerance. We propose that Pcmt1-/- mice have altered regulation of the insulin pathway, possibly as a compensatory response to altered glucose uptake or metabolism or as an adaptive response to a general accumulation of isoaspartyl protein damage in the brain and other tissues. PMID:15659208

  20. Protein phosphorylation and its role in archaeal signal transduction.

    PubMed

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C; Albers, Sonja-Verena; Siebers, Bettina

    2016-09-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  1. Protein phosphorylation and its role in archaeal signal transduction

    PubMed Central

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C.; Albers, Sonja-Verena; Siebers, Bettina

    2016-01-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  2. Parameter estimate of signal transduction pathways

    PubMed Central

    Arisi, Ivan; Cattaneo, Antonino; Rosato, Vittorio

    2006-01-01

    Background The "inverse" problem is related to the determination of unknown causes on the bases of the observation of their effects. This is the opposite of the corresponding "direct" problem, which relates to the prediction of the effects generated by a complete description of some agencies. The solution of an inverse problem entails the construction of a mathematical model and takes the moves from a number of experimental data. In this respect, inverse problems are often ill-conditioned as the amount of experimental conditions available are often insufficient to unambiguously solve the mathematical model. Several approaches to solving inverse problems are possible, both computational and experimental, some of which are mentioned in this article. In this work, we will describe in details the attempt to solve an inverse problem which arose in the study of an intracellular signaling pathway. Results Using the Genetic Algorithm to find the sub-optimal solution to the optimization problem, we have estimated a set of unknown parameters describing a kinetic model of a signaling pathway in the neuronal cell. The model is composed of mass action ordinary differential equations, where the kinetic parameters describe protein-protein interactions, protein synthesis and degradation. The algorithm has been implemented on a parallel platform. Several potential solutions of the problem have been computed, each solution being a set of model parameters. A sub-set of parameters has been selected on the basis on their small coefficient of variation across the ensemble of solutions. Conclusion Despite the lack of sufficiently reliable and homogeneous experimental data, the genetic algorithm approach has allowed to estimate the approximate value of a number of model parameters in a kinetic model of a signaling pathway: these parameters have been assessed to be relevant for the reproduction of the available experimental data. PMID:17118160

  3. A respiratory chain controlled signal transduction cascade in the mitochondrial intermembrane space mediates hydrogen peroxide signaling

    PubMed Central

    Patterson, Heide Christine; Gerbeth, Carolin; Thiru, Prathapan; Vögtle, Nora F.; Knoll, Marko; Shahsafaei, Aliakbar; Samocha, Kaitlin E.; Huang, Cher X.; Harden, Mark Michael; Song, Rui; Chen, Cynthia; Kao, Jennifer; Shi, Jiahai; Salmon, Wendy; Shaul, Yoav D.; Stokes, Matthew P.; Silva, Jeffrey C.; Bell, George W.; MacArthur, Daniel G.; Ruland, Jürgen; Meisinger, Chris; Lodish, Harvey F.

    2015-01-01

    Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) govern cellular homeostasis by inducing signaling. H2O2 modulates the activity of phosphatases and many other signaling molecules through oxidation of critical cysteine residues, which led to the notion that initiation of ROS signaling is broad and nonspecific, and thus fundamentally distinct from other signaling pathways. Here, we report that H2O2 signaling bears hallmarks of a regular signal transduction cascade. It is controlled by hierarchical signaling events resulting in a focused response as the results place the mitochondrial respiratory chain upstream of tyrosine-protein kinase Lyn, Lyn upstream of tyrosine-protein kinase SYK (Syk), and Syk upstream of numerous targets involved in signaling, transcription, translation, metabolism, and cell cycle regulation. The active mediators of H2O2 signaling colocalize as H2O2 induces mitochondria-associated Lyn and Syk phosphorylation, and a pool of Lyn and Syk reside in the mitochondrial intermembrane space. Finally, the same intermediaries control the signaling response in tissues and species responsive to H2O2 as the respiratory chain, Lyn, and Syk were similarly required for H2O2 signaling in mouse B cells, fibroblasts, and chicken DT40 B cells. Consistent with a broad role, the Syk pathway is coexpressed across tissues, is of early metazoan origin, and displays evidence of evolutionary constraint in the human. These results suggest that H2O2 signaling is under control of a signal transduction pathway that links the respiratory chain to the mitochondrial intermembrane space-localized, ubiquitous, and ancient Syk pathway in hematopoietic and nonhematopoietic cells. PMID:26438848

  4. A respiratory chain controlled signal transduction cascade in the mitochondrial intermembrane space mediates hydrogen peroxide signaling.

    PubMed

    Patterson, Heide Christine; Gerbeth, Carolin; Thiru, Prathapan; Vögtle, Nora F; Knoll, Marko; Shahsafaei, Aliakbar; Samocha, Kaitlin E; Huang, Cher X; Harden, Mark Michael; Song, Rui; Chen, Cynthia; Kao, Jennifer; Shi, Jiahai; Salmon, Wendy; Shaul, Yoav D; Stokes, Matthew P; Silva, Jeffrey C; Bell, George W; MacArthur, Daniel G; Ruland, Jürgen; Meisinger, Chris; Lodish, Harvey F

    2015-10-20

    Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) govern cellular homeostasis by inducing signaling. H2O2 modulates the activity of phosphatases and many other signaling molecules through oxidation of critical cysteine residues, which led to the notion that initiation of ROS signaling is broad and nonspecific, and thus fundamentally distinct from other signaling pathways. Here, we report that H2O2 signaling bears hallmarks of a regular signal transduction cascade. It is controlled by hierarchical signaling events resulting in a focused response as the results place the mitochondrial respiratory chain upstream of tyrosine-protein kinase Lyn, Lyn upstream of tyrosine-protein kinase SYK (Syk), and Syk upstream of numerous targets involved in signaling, transcription, translation, metabolism, and cell cycle regulation. The active mediators of H2O2 signaling colocalize as H2O2 induces mitochondria-associated Lyn and Syk phosphorylation, and a pool of Lyn and Syk reside in the mitochondrial intermembrane space. Finally, the same intermediaries control the signaling response in tissues and species responsive to H2O2 as the respiratory chain, Lyn, and Syk were similarly required for H2O2 signaling in mouse B cells, fibroblasts, and chicken DT40 B cells. Consistent with a broad role, the Syk pathway is coexpressed across tissues, is of early metazoan origin, and displays evidence of evolutionary constraint in the human. These results suggest that H2O2 signaling is under control of a signal transduction pathway that links the respiratory chain to the mitochondrial intermembrane space-localized, ubiquitous, and ancient Syk pathway in hematopoietic and nonhematopoietic cells. PMID:26438848

  5. SAM68: Signal Transduction and RNA Metabolism in Human Cancer

    PubMed Central

    Frisone, Paola; Pradella, Davide; Di Matteo, Anna; Belloni, Elisa; Ghigna, Claudia; Paronetto, Maria Paola

    2015-01-01

    Alterations in expression and/or activity of splicing factors as well as mutations in cis-acting splicing regulatory sequences contribute to cancer phenotypes. Genome-wide studies have revealed more than 15,000 tumor-associated splice variants derived from genes involved in almost every aspect of cancer cell biology, including proliferation, differentiation, cell cycle control, metabolism, apoptosis, motility, invasion, and angiogenesis. In the past decades, several RNA binding proteins (RBPs) have been implicated in tumorigenesis. SAM68 (SRC associated in mitosis of 68 kDa) belongs to the STAR (signal transduction and activation of RNA metabolism) family of RBPs. SAM68 is involved in several steps of mRNA metabolism, from transcription to alternative splicing and then to nuclear export. Moreover, SAM68 participates in signaling pathways associated with cell response to stimuli, cell cycle transitions, and viral infections. Recent evidence has linked this RBP to the onset and progression of different tumors, highlighting misregulation of SAM68-regulated splicing events as a key step in neoplastic transformation and tumor progression. Here we review recent studies on the role of SAM68 in splicing regulation and we discuss its contribution to aberrant pre-mRNA processing in cancer. PMID:26273626

  6. A microfluidic platform for regulating signal transduction in single cells

    NASA Astrophysics Data System (ADS)

    Wong, Pak Kin; Yu, Fuqu; Sun, Ren; Ho, Chih-Ming

    2004-11-01

    Recent progress in micro cell culture systems has lead to new approaches in cell biology studies. Using micro devices for cell culturing possesses distinctive advantages over traditional methods. Length scale matching facilitates manipulation and detection at the single cell level. Previously, we have demonstrated generation of various stimulations such as spatial chemical gradient, electric field, and shear stress to study the dynamic responses of individual cells. Dynamic stimulations and continuous monitoring in a microfluidic system can be useful in studying different aspects of cellular process. In this work, we present a microfluidic platform for regulating nuclear factor kappa B (NF-kB) signal transduction in human embryonic kidney 293T cells. Time-varying bio-chemical stimulants, such as interleukin 1 and tumor necrosis factor, are introduced into the microchannel to activate the NF-kB signaling pathway. The dynamic responses of individual cells are monitored with the expression of reporter gene, green fluorescent protein. Regulation of the NF-kB activity is successfully demonstrated. This work is supported by CMISE through NASA URETI program.

  7. NO, nitrotyrosine, and cyclic GMP in signal transduction

    NASA Technical Reports Server (NTRS)

    Hanafy, K. A.; Krumenacker, J. S.; Murad, F.

    2001-01-01

    Over the past 25 years, the role of nitric oxide (NO) in biology has evolved from being recognized as an environmental pollutant to an endogenously produced substance involved in cell communication and signal transduction. NO is produced by a family of enzymes called nitric oxide synthases (NOSs), which can be stimulated by a variety of factors that mediate responses to various stimuli. NO can initiate its biological effects through activation of the heterodimeric enzyme, soluble guanylyl cyclase (sGC), or through several other chemical reactions. Activation of sGC results in the production of 3',5'-cyclic guanosine monophosphate (cGMP), an intracellular second messenger signaling molecule, which can subsequently mediate such diverse physiological events such as vasodilatation and immunomodulation. Chemically reactive NO can affect physiological changes through modifications to cellular proteins, one of which is tyrosine nitration. The demonstration that NO is involved in so many biological pathways indicates the importance of this endogenously produced substance, and suggests that there is much more to be discovered about its role in biology in years to come.

  8. Signal transduction and Th17 cell differentiation

    PubMed Central

    O’Shea, John J.; Steward-Tharp, Scott M.; Laurence, Arian; Watford, Wendy T.; Wei, Lai; Adamson, Adewole S.; Fan, Samuel

    2009-01-01

    The paradigm of effector T helper cell differentiation into either Th1 or Th2 lineages has been notably shaken by the discovery of a third lineage of cells that selectively produce interleukin (IL)-17. Characterization of this new subset, referred to as Th17, has provided exciting new insights into immunoregulation, host defense and the pathogenesis of autoimmune diseases. Additionally, the discovery of this T cell subset has offered a fresh look at such concepts as lineage commitment and terminal differentiation. The transcriptional regulatory events and epigenetic modifications that control these processes are diverse and complex, and despite the rapid pace at which data continues to accumulate, many questions remain to be answered. Here we review our current understanding of the signaling pathways, molecular interactions and transcriptional events that lead to Th17 differentiation and effector function, as well as the epigenetic modifications that accompany them. PMID:19379825

  9. Resveratrol inhibits phosphorylation within the signal transduction and activator of transcription 3 signaling pathway by activating sirtuin 1 in SW1353 chondrosarcoma cells.

    PubMed

    Jin, Haidong; Chen, Hui; Yu, Kehe; Zhang, Jingdong; Li, Bin; Cai, Ningyu; Pan, Jun

    2016-09-01

    The present study assessed the mechanism by which resveratrol (Res) inhibits the growth of SW1353 chondrosarcoma cells and examined whether sirtuin 1 (Sirt1) activation affects phosphorylation within the signal transduction and activator of transcription 3 (STAT3) signaling pathway. The present study used SW1353 chondrosarcoma cells in the logarithmic phase of growth (control and treatment groups). The latter group was treated with Res at 25 and 50 µmol/l for 24 h, and cell viability, proliferation and apoptosis were analyzed using the cell counting kit‑8 assay, colony counting and Hoechst staining, respectively. The expression levels of caspase‑3, cleaved caspase‑3, B‑cell lymphoma‑2 (BCL‑2), BCL-2 associated X protein (Bax), STAT3 and phosphorylated (p‑)STAT3) were measured by Western blotting. SW1353 cells were transfected with small interfering (si)RNA targeting Sirt1 and the expression levels of Sirt1, STAT3 and p-STAT3 were assessed. Exposure of SW1353 cells to Res reduced cell viability in a dose‑dependent manner (P<0.01). Additionally, cell proliferation was significantly inhibited and the cell nuclei exhibited apoptotic characteristics. Cleaved caspase‑3, Sirt1 and Bax levels were upregulated. The expression levels of BCL‑2 and p‑STAT3 were downregulated. Additionally, the BCL‑2/Bax ratio was reduced compared with the control group. The total STAT3 level was unaffected. Res treatment activated Sirt1, however, in cells transfected with Sirt1‑siRNA, the ability of resveratrol to suppress p‑STAT3 expression was compromised. Overall, it was revealed that Res treatment induced apoptosis, inhibited proliferation and affected phosphorylation within the STAT3 signaling pathway by activating Sirt1 in SW1353 chondrosarcoma cells. PMID:27484919

  10. Spatial organization and signal transduction at intercellular junctions

    PubMed Central

    Manz, Boryana N.; Groves, Jay T.

    2013-01-01

    The coordinated organization of cell membrane receptors into diverse micrometre-scale spatial patterns is emerging as an important theme of intercellular signalling, as exemplified by immunological synapses. Key characteristics of these patterns are that they transcend direct protein–protein interactions, emerge transiently and modulate signal transduction. Such cooperativity over multiple length scales presents new and intriguing challenges for the study and ultimate understanding of cellular signalling. As a result, new experimental strategies have emerged to manipulate the spatial organization of molecules inside living cells. The resulting spatial mutations yield insights into the interweaving of the spatial, mechanical and chemical aspects of intercellular signalling. PMID:20354536

  11. Soliton growth-signal transduction in topologically quantized T cells

    NASA Astrophysics Data System (ADS)

    Matsson, Leif

    1993-09-01

    A model for growth-signal transduction of the T cell and its growth factor, interleukin-2, is presented. It is obtained as a generalization of the usual rate equation and is founded on the observation that a definite number of receptor occupations must take place in order to promote transition to the S phase and subsequent DNA replication. The generalized rate equation is identified as the equation of motion of a Lagrangian field theory of Ginzburg-Landau (Goldstone) type. However it is not an ad hoc model but is a microscopic theory of the interaction of interleukin-2 and its receptor. The topological quantum number of the model is related to the observed definite number of receptor occupations required to elicit growth-signal transduction. Individual receptor quanta, up to this limit, are subjected to a type of Bose condensation. This collective excitation constitutes the growth signal in the form of a topological kink soliton which is then launched by the next potential receptor occupation that makes the interaction repulsive. The model provides a possible long-absent explanation of the triggering mechanism for growth-signal transduction by means of the ambivalent interaction, which switches sign after a definite number of receptor occupations. Moreover, it offers an explanation of how Nature screens out fractional signals in the growth-signal-transduction process of T cells. Although the model is derived for assumed point-like cells and certain other restrictions, the obtained dose-response curves are in striking agreement with proliferation data from studies of both the leukemic T cell line MLA-144 from gibbon ape and normal human T cells in, and without, the presence of monoclonal anti-Tac antibodies.

  12. Post-translational modification of PII signal transduction proteins

    PubMed Central

    Merrick, Mike

    2015-01-01

    The PII proteins constitute one of the most widely distributed families of signal transduction proteins in nature. They are pivotal players in the control of nitrogen metabolism in bacteria and archaea, and are also found in the plastids of plants. Quite remarkably PII proteins control the activities of a diverse range of enzymes, transcription factors and membrane transport proteins, and in all known cases they achieve their regulatory effect by direct interaction with their target. PII proteins in the Proteobacteria and the Actinobacteria are subject to post-translational modification by uridylylation or adenylylation respectively, whilst in some Cyanobacteria they can be modified by phosphorylation. In all these cases the protein’s modification state is influenced by the cellular nitrogen status and is thought to regulate its activity. However, in many organisms there is no evidence for modification of PII proteins and indeed the ability of these proteins to respond to the cellular nitrogen status is fundamentally independent of post-translational modification. In this review we explore the role of post-translational modification in PII proteins in the light of recent studies. PMID:25610437

  13. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    PubMed Central

    Fearnley, Gareth W.; Smith, Gina A.; Abdul-Zani, Izma; Yuldasheva, Nadira; Mughal, Nadeem A.; Homer-Vanniasinkam, Shervanthi; Kearney, Mark T.; Zachary, Ian C.; Tomlinson, Darren C.; Harrison, Michael A.; Wheatcroft, Stephen B.; Ponnambalam, Sreenivasan

    2016-01-01

    ABSTRACT Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes. PMID:27044325

  14. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis.

    PubMed

    Fearnley, Gareth W; Smith, Gina A; Abdul-Zani, Izma; Yuldasheva, Nadira; Mughal, Nadeem A; Homer-Vanniasinkam, Shervanthi; Kearney, Mark T; Zachary, Ian C; Tomlinson, Darren C; Harrison, Michael A; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2016-01-01

    Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A-VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor-ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes. PMID:27044325

  15. Maxwell's demon in biochemical signal transduction with feedback loop.

    PubMed

    Ito, Sosuke; Sagawa, Takahiro

    2015-01-01

    Signal transduction in living cells is vital to maintain life itself, where information transfer in noisy environment plays a significant role. In a rather different context, the recent intensive research on 'Maxwell's demon'-a feedback controller that utilizes information of individual molecules-have led to a unified theory of information and thermodynamics. Here we combine these two streams of research, and show that the second law of thermodynamics with information reveals the fundamental limit of the robustness of signal transduction against environmental fluctuations. Especially, we find that the degree of robustness is quantitatively characterized by an informational quantity called transfer entropy. Our information-thermodynamic approach is applicable to biological communication inside cells, in which there is no explicit channel coding in contrast to artificial communication. Our result could open up a novel biophysical approach to understand information processing in living systems on the basis of the fundamental information-thermodynamics link. PMID:26099556

  16. Maxwell's demon in biochemical signal transduction with feedback loop

    NASA Astrophysics Data System (ADS)

    Ito, Sosuke; Sagawa, Takahiro

    2015-06-01

    Signal transduction in living cells is vital to maintain life itself, where information transfer in noisy environment plays a significant role. In a rather different context, the recent intensive research on `Maxwell's demon'--a feedback controller that utilizes information of individual molecules--have led to a unified theory of information and thermodynamics. Here we combine these two streams of research, and show that the second law of thermodynamics with information reveals the fundamental limit of the robustness of signal transduction against environmental fluctuations. Especially, we find that the degree of robustness is quantitatively characterized by an informational quantity called transfer entropy. Our information-thermodynamic approach is applicable to biological communication inside cells, in which there is no explicit channel coding in contrast to artificial communication. Our result could open up a novel biophysical approach to understand information processing in living systems on the basis of the fundamental information-thermodynamics link.

  17. Hypergravity signal transduction and gene expression in cultured mammalian cells

    NASA Technical Reports Server (NTRS)

    Kumei, Y.; Whitson, P. A.

    1994-01-01

    A number of studies have been conducted during space flight and with clinostats and centrifuges, suggesting that gravity effects the proliferation and differentiation of mammalian cells in vitro. However, little is known about the mechanisms by which mammalian cells respond to changes in gravitational stress. This paper summarizes studies designed to clarify the effects of hypergravity on the cultured human HeLa cells and to investigate the mechanism of hypergravity signal transduction in these cells.

  18. Signal transduction and information processing in mammalian taste buds

    PubMed Central

    2013-01-01

    The molecular machinery for chemosensory transduction in taste buds has received considerable attention within the last decade. Consequently, we now know a great deal about sweet, bitter, and umami taste mechanisms and are gaining ground rapidly on salty and sour transduction. Sweet, bitter, and umami tastes are transduced by G-protein-coupled receptors. Salty taste may be transduced by epithelial Na channels similar to those found in renal tissues. Sour transduction appears to be initiated by intracellular acidification acting on acid-sensitive membrane proteins. Once a taste signal is generated in a taste cell, the subsequent steps involve secretion of neurotransmitters, including ATP and serotonin. It is now recognized that the cells responding to sweet, bitter, and umami taste stimuli do not possess synapses and instead secrete the neurotransmitter ATP via a novel mechanism not involving conventional vesicular exocytosis. ATP is believed to excite primary sensory afferent fibers that convey gustatory signals to the brain. In contrast, taste cells that do have synapses release serotonin in response to gustatory stimulation. The postsynaptic targets of serotonin have not yet been identified. Finally, ATP secreted from receptor cells also acts on neighboring taste cells to stimulate their release of serotonin. This suggests that there is important information processing and signal coding taking place in the mammalian taste bud after gustatory stimulation. PMID:17468883

  19. Exercise-Induced Signal Transduction and Gene Regulation In Skeletal Muscle

    PubMed Central

    Wackerhage, Henning; Woods, Niall M.

    2002-01-01

    Skeletal muscle adapts to various forms of exercise depending on the force, speed and duration characteristics of the contraction pattern. The stresses and signals associated with each contraction pattern are likely to specifically activate a network of signal transduction pathways that integrate this information. These pathways include the calcineurin, Calcium/calmodulin-dependent protein kinase (CaMK), mitogen-activated protein kinase (MAPK), protein kinase C (PKC), nuclear factor kappa B (NF-κB), AMP-dependent protein kinase (AMPK), insulin signalling and developmental pathways. Activated signal transduction pathways activate or increase the expression of transcription factors via various mechanisms. Skeletal muscle genes are usually regulated by combinatorial control exerted by several transcription factors and possibly other mechanisms. In addition, adaptations such as an increase in mitochondrial biogenesis or the activation of satellite cell proliferation involve distinct regulatory mechanisms. PMID:24748841

  20. Biomechanical Origins of Muscle Stem Cell Signal Transduction.

    PubMed

    Morrissey, James B; Cheng, Richard Y; Davoudi, Sadegh; Gilbert, Penney M

    2016-04-10

    Skeletal muscle, the most abundant and widespread tissue in the human body, contracts upon receiving electrochemical signals from the nervous system to support essential functions such as thermoregulation, limb movement, blinking, swallowing and breathing. Reconstruction of adult muscle tissue relies on a pool of mononucleate, resident muscle stem cells, known as "satellite cells", expressing the paired-box transcription factor Pax7 necessary for their specification during embryonic development and long-term maintenance during adult life. Satellite cells are located around the myofibres in a niche at the interface of the basal lamina and the host fibre plasma membrane (i.e., sarcolemma), at a very low frequency. Upon damage to the myofibres, quiescent satellite cells are activated and give rise to a population of transient amplifying myogenic progenitor cells, which eventually exit the cell cycle permanently and fuse to form new myofibres and regenerate the tissue. A subpopulation of satellite cells self-renew and repopulate the niche, poised to respond to future demands. Harnessing the potential of satellite cells relies on a complete understanding of the molecular mechanisms guiding their regulation in vivo. Over the past several decades, studies revealed many signal transduction pathways responsible for satellite cell fate decisions, but the niche cues driving the activation and silencing of these pathways are less clear. Here we explore the scintillating possibility that considering the dynamic changes in the biophysical properties of the skeletal muscle, namely stiffness, and the stretch and shear forces to which a myofibre can be subjected to may provide missing information necessary to gain a full understanding of satellite cell niche regulation. PMID:26004541

  1. Signal transduction inhibitors in treatment of myelodysplastic syndromes.

    PubMed

    Bachegowda, Lohith; Gligich, Oleg; Mantzaris, Ionnis; Schinke, Carolina; Wyville, Dale; Carrillo, Tatiana; Braunschweig, Ira; Steidl, Ulrich; Verma, Amit

    2013-01-01

    Myelodysplastic syndromes (MDS) are a group of hematologic disorders characterized by ineffective hematopoiesis that results in reduced blood counts. Although MDS can transform into leukemia, most of the morbidity experienced by these patients is due to chronically low blood counts. Conventional cytotoxic agents used to treat MDS have yielded some encouraging results but are characterized by many adverse effects in the predominantly elderly patient population. Targeted interventions aimed at reversing the bone marrow failure and increasing the peripheral blood counts would be advantageous in this cohort of patients. Studies have demonstrated over-activated signaling of myelo-suppressive cytokines such as TGF-β, TNF-α and Interferons in MDS hematopoietic stem cells. Targeting these signaling cascades could be potentially therapeutic in MDS. The p38 MAP kinase pathway, which is constitutively activated in MDS, is an example of cytokine stimulated kinase that promotes aberrant apoptosis of stem and progenitor cells in MDS. ARRY-614 and SCIO-469 are p38 MAPK inhibitors that have been used in clinical trials and have shown activity in a subset of MDS patients. TGF-β signaling has been therapeutically targeted by small molecule inhibitor of the TGF-β receptor kinase, LY-2157299, with encouraging preclinical results. Apart from TGF-β receptor kinase inhibition, members of TGF-β super family and BMP ligands have also been targeted by ligand trap compounds like Sotatercept (ACE-011) and ACE-536. The multikinase inhibitor, ON-01910.Na (Rigosertib) has demonstrated early signs of efficacy in reducing the percentage of leukemic blasts and is in advanced stages of clinical testing. Temsirolimus, Deforolimus and other mTOR inhibitors are being tested in clinical trials and have shown preclinical efficacy in CMML. EGF receptor inhibitors, Erlotinib and Gefitinib have shown efficacy in small trials that may be related to off target effects. Cell cycle regulator inhibitors

  2. Signal transduction inhibitors in treatment of myelodysplastic syndromes

    PubMed Central

    2013-01-01

    Myelodysplastic syndromes (MDS) are a group of hematologic disorders characterized by ineffective hematopoiesis that results in reduced blood counts. Although MDS can transform into leukemia, most of the morbidity experienced by these patients is due to chronically low blood counts. Conventional cytotoxic agents used to treat MDS have yielded some encouraging results but are characterized by many adverse effects in the predominantly elderly patient population. Targeted interventions aimed at reversing the bone marrow failure and increasing the peripheral blood counts would be advantageous in this cohort of patients. Studies have demonstrated over-activated signaling of myelo-suppressive cytokines such as TGF-β, TNF-α and Interferons in MDS hematopoietic stem cells. Targeting these signaling cascades could be potentially therapeutic in MDS. The p38 MAP kinase pathway, which is constitutively activated in MDS, is an example of cytokine stimulated kinase that promotes aberrant apoptosis of stem and progenitor cells in MDS. ARRY-614 and SCIO-469 are p38 MAPK inhibitors that have been used in clinical trials and have shown activity in a subset of MDS patients. TGF-β signaling has been therapeutically targeted by small molecule inhibitor of the TGF-β receptor kinase, LY-2157299, with encouraging preclinical results. Apart from TGF-β receptor kinase inhibition, members of TGF-β super family and BMP ligands have also been targeted by ligand trap compounds like Sotatercept (ACE-011) and ACE-536. The multikinase inhibitor, ON-01910.Na (Rigosertib) has demonstrated early signs of efficacy in reducing the percentage of leukemic blasts and is in advanced stages of clinical testing. Temsirolimus, Deforolimus and other mTOR inhibitors are being tested in clinical trials and have shown preclinical efficacy in CMML. EGF receptor inhibitors, Erlotinib and Gefitinib have shown efficacy in small trials that may be related to off target effects. Cell cycle regulator inhibitors

  3. Changes in gene expression and signal transduction in microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.

    2001-01-01

    Studies from space flights over the past three decades have demonstrated that basic physiological changes occur in humans during space flight. These changes include cephalic fluid shifts, loss of fluid and electrolytes, loss of muscle mass, space motion sickness, anemia, reduced immune response, and loss of calcium and mineralized bone. The cause of most of these manifestations is not known and until recently, the general approach was to investigate general systemic changes, not basic cellular responses to microgravity. This laboratory has recently studied gene growth and activation of normal osteoblasts (MC3T3-El) during spaceflight. Osteoblast cells were grown on glass coverslips and loaded in the Biorack plunger boxes. The osteoblasts were launched in a serum deprived state, activated in microgravity and collected in microgravity. The osteoblasts were examined for changes in gene expression and signal transduction. Approximately one day after growth activation significant changes were observed in gene expression in 0-G flight samples. Immediate early growth genes/growth factors cox-2, c-myc, bcl2, TGF beta1, bFGF and PCNA showed a significant diminished mRNA induction in microgravity FCS activated cells when compared to ground and 1-G flight controls. Cox-1 was not detected in any of the samples. There were no significant differences in the expression of reference gene mRNA between the ground, 0-G and 1-G samples. The data suggest that quiescent osteoblasts are slower to enter the cell cycle in microgravity and that the lack of gravity itself may be a significant factor in bone loss in spaceflight. Preliminary data from our STS 76 flight experiment support our hypothesis that a basic biological response occurs at the tissue, cellular, and molecular level in 0-G. Here we examine ground-based and space flown data to help us understand the mechanism of bone loss in microgravity.

  4. Deciphering Parameter Sensitivity in the BvgAS Signal Transduction

    PubMed Central

    Mapder, Tarunendu; Talukder, Srijeeta; Chattopadhyay, Sudip; Banik, Suman K.

    2016-01-01

    To understand the switching of different phenotypic phases of Bordetella pertussis, we propose an optimized mathematical framework for signal transduction through BvgAS two-component system. The response of the network output to the sensory input has been demonstrated in steady state. An analysis in terms of local sensitivity amplification characterizes the nature of the molecular switch. The sensitivity analysis of the model parameters within the framework of various correlation coefficients helps to decipher the contribution of the modular structure in signal propagation. Once classified, the model parameters are tuned to generate the behavior of some novel strains using simulated annealing, a stochastic optimization technique. PMID:26812153

  5. Determinants of specificity in two-component signal transduction.

    PubMed

    Podgornaia, Anna I; Laub, Michael T

    2013-04-01

    Maintaining the faithful flow of information through signal transduction pathways is critical to the survival and proliferation of organisms. This problem is particularly challenging as many signaling proteins are part of large, paralogous families that are highly similar at the sequence and structural levels, increasing the risk of unwanted cross-talk. To detect environmental signals and process information, bacteria rely heavily on two-component signaling systems comprised of sensor histidine kinases and their cognate response regulators. Although most species encode dozens of these signaling pathways, there is relatively little cross-talk, indicating that individual pathways are well insulated and highly specific. Here, we review the molecular mechanisms that enforce this specificity. Further, we highlight recent studies that have revealed how these mechanisms evolve to accommodate the introduction of new pathways by gene duplication. PMID:23352354

  6. Reduced modeling of signal transduction – a modular approach

    PubMed Central

    Koschorreck, Markus; Conzelmann, Holger; Ebert, Sybille; Ederer, Michael; Gilles, Ernst Dieter

    2007-01-01

    Background Combinatorial complexity is a challenging problem in detailed and mechanistic mathematical modeling of signal transduction. This subject has been discussed intensively and a lot of progress has been made within the last few years. A software tool (BioNetGen) was developed which allows an automatic rule-based set-up of mechanistic model equations. In many cases these models can be reduced by an exact domain-oriented lumping technique. However, the resulting models can still consist of a very large number of differential equations. Results We introduce a new reduction technique, which allows building modularized and highly reduced models. Compared to existing approaches further reduction of signal transduction networks is possible. The method also provides a new modularization criterion, which allows to dissect the model into smaller modules that are called layers and can be modeled independently. Hallmarks of the approach are conservation relations within each layer and connection of layers by signal flows instead of mass flows. The reduced model can be formulated directly without previous generation of detailed model equations. It can be understood and interpreted intuitively, as model variables are macroscopic quantities that are converted by rates following simple kinetics. The proposed technique is applicable without using complex mathematical tools and even without detailed knowledge of the mathematical background. However, we provide a detailed mathematical analysis to show performance and limitations of the method. For physiologically relevant parameter domains the transient as well as the stationary errors caused by the reduction are negligible. Conclusion The new layer based reduced modeling method allows building modularized and strongly reduced models of signal transduction networks. Reduced model equations can be directly formulated and are intuitively interpretable. Additionally, the method provides very good approximations especially for

  7. Abscisic acid perception and signaling transduction in strawberry

    PubMed Central

    Li, Chunli; Jia, Haifeng; Chai, Yemao; Shen, Yuanyue

    2011-01-01

    On basis of fruit differential respiration and ethylene effects, climacteric and non-climacteric fruits have been classically defined. Over the past decades, the molecular mechanisms of climacteric fruit ripening were abundantly described and found to focus on ethylene perception and signaling transduction. In contrast, until our most recent breakthroughs, much progress has been made toward understanding the signaling perception and transduction mechanisms for abscisic acid (ABA) in strawberry, a model for non-climacteric fruit ripening. Our reports not only have provided several lines of strong evidences for ABA-regulated ripening of strawberry fruit, but also have demonstrated that homology proteins of Arabidopsis ABA receptors, including PYR/PYL/RCAR and ABAR/CHLH, act as positive regulators of ripening in response to ABA. These receptors also trigger a set of ABA downstream signaling components, and determine significant changes in the expression levels of both sugar and pigment metabolism-related genes that are closely associated with ripening. Soluble sugars, especially sucrose, may act as a signal molecular to trigger ABA accumulation through an enzymatic action of 9-cis-epoxycarotenoid dioxygenase 1 (FaNCED1). This mini-review offers an overview of these processes and also outlines the possible, molecular mechanisms for ABA in the regulation of strawberry fruit ripening through the ABA receptors. PMID:22095148

  8. Analysis and logical modeling of biological signaling transduction networks

    NASA Astrophysics Data System (ADS)

    Sun, Zhongyao

    The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.

  9. The MiST2 database: a comprehensive genomics resource on microbial signal transduction

    PubMed Central

    Ulrich, Luke E.; Zhulin, Igor B.

    2010-01-01

    The MiST2 database (http://mistdb.com) identifies and catalogs the repertoire of signal transduction proteins in microbial genomes. Signal transduction systems regulate the majority of cellular activities including the metabolism, development, host-recognition, biofilm production, virulence, and antibiotic resistance of human pathogens. Thus, knowledge of the proteins and interactions that comprise these communication networks is an essential component to furthering biomedical discovery. These are identified by searching protein sequences for specific domain profiles that implicate a protein in signal transduction. Compared to the previous version of the database, MiST2 contains a host of new features and improvements including the following: draft genomes; extracytoplasmic function (ECF) sigma factor protein identification; enhanced classification of signaling proteins; novel, high-quality domain models for identifying histidine kinases and response regulators; neighboring two-component genes; gene cart; better search capabilities; enhanced taxonomy browser; advanced genome browser; and a modern, biologist-friendly web interface. MiST2 currently contains 966 complete and 157 draft bacterial and archaeal genomes, which collectively contain more than 245 000 signal transduction proteins. The majority (66%) of these are one-component systems, followed by two-component proteins (26%), chemotaxis (6%), and finally ECF factors (2%). PMID:19900966

  10. Fanconi Anemia: A Signal Transduction and DNA Repair Pathway

    PubMed Central

    Kupfer, Gary M.

    2013-01-01

    Fanconi anemia (FA) is a fascinating, rare genetic disorder marked by congenital defects, bone marrow failure, and cancer susceptibility. Research in recent years has led to the elucidation of FA as a DNA repair disorder and involved multiple pathways as well as having wide applicability to common cancers, including breast, ovarian, and head and neck. This review will describe the clinical aspects of FA as well as the current state of its molecular pathophysiology. In particular, work from the Kupfer laboratory will be described that demonstrates how the FA pathway interacts with multiple DNA repair pathways, including the mismatch repair system and signal transduction pathway of the DNA damage response. PMID:24348213

  11. Transduction of nanovolt signals: Limits of electric-field detection

    NASA Astrophysics Data System (ADS)

    Kalmijn, J.

    1989-11-01

    Life scientists discussed the extreme electrical sensitivity of marine sharks, skates, and rays. After reviewing the results of earlier studies on the electric sense at the animal and system levels, the participants discussed the basic process of signal transduction in terms of voltage-sensitive ionic channels. Struck by the small charge displacements needed for excitation, they strongly recommended that sensory biologists, physiologists, and biophysicists join in a concerted effort to initiate new research on the ionic mechanisms of electric field detection. To obtain detailed information on the electroreceptive membrane and its ionic channels, high resolution recording techniques will be mandatory.

  12. Ion channels and the transduction of light signals

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Studies of biological light-sensing mechanisms are revealing important roles for ion channels. Photosensory transduction in plants is no exception. In this article, the evidence that ion channels perform such signal-transducing functions in the complex array of mechanisms that bring about plant photomorphogenesis will be reviewed and discussed. The examples selected for discussion range from light-gradient detection in unicellular algae to the photocontrol of stem growth in Arabidopsis. Also included is some discussion of the technical aspects of studies that combine electrophysiology and photobiology.

  13. Genetic analysis of gravity signal transduction in roots

    NASA Astrophysics Data System (ADS)

    Masson, Patrick; Strohm, Allison; Baldwin, Katherine

    To grow downward into the soil, roots use gravity as a guide. Specialized cells, named stato-cytes, enable this directional growth response by perceiving gravity. Located in the columella region of the cap, these cells sense a reorientation of the root within the gravity field through the sedimentation of, and/or tension/pressure exerted by, dense amyloplasts. This process trig-gers a gravity signal transduction pathway that leads to a fast alkalinization of the cytoplasm and a change in the distribution of the plasma membrane-associated auxin-efflux carrier PIN3. The latter protein is uniformly distributed within the plasma membrane on all sides of the cell in vertically oriented roots. However, it quickly accumulates at the bottom side upon gravis-timulation. This process correlates with a preferential transport of auxin to the bottom side of the root cap, resulting in a lateral gradient across the tip. This gradient is then transported to the elongation zone where it promotes differential cellular elongation, resulting in downward curvature. We isolated mutations that affect gravity signal transduction at a step that pre-cedes cytoplasmic alkalinization and/or PIN3 relocalization and lateral auxin transport across the cap. arg1 and arl2 mutations identify a common genetic pathway that is needed for all three gravity-induced processes in the cap statocytes, indicating these genes function early in the pathway. On the other hand, adk1 affects gravity-induced PIN3 relocalization and lateral auxin transport, but it does not interfere with cytoplasmic alkalinization. ARG1 and ARL2 encode J-domain proteins that are associated with membranes of the vesicular trafficking path-way whereas ADK1 encodes adenosine kinase, an enzyme that converts adenosine derived from nucleic acid metabolism and the AdoMet cycle into AMP, thereby alleviating feedback inhibi-tion of this important methyl-donor cycle. Because mutations in ARG1 (and ARL2) do not completely eliminate

  14. Perspective: Adhesion Mediated Signal Transduction in Bacterial Pathogens

    PubMed Central

    Moorthy, Sudha; Keklak, Julia; Klein, Eric A.

    2016-01-01

    During the infection process, pathogenic bacteria undergo large-scale transcriptional changes to promote virulence and increase intrahost survival. While much of this reprogramming occurs in response to changes in chemical environment, such as nutrient availability and pH, there is increasing evidence that adhesion to host-tissue can also trigger signal transduction pathways resulting in differential gene expression. Determining the molecular mechanisms of adhesion-mediated signaling requires disentangling the contributions of chemical and mechanical stimuli. Here we highlight recent work demonstrating that surface attachment drives a transcriptional response in bacterial pathogens, including uropathogenic Escherichia coli (E. coli), and discuss the complexity of experimental design when dissecting the specific role of adhesion-mediated signaling during infection. PMID:26901228

  15. Perspective: Adhesion Mediated Signal Transduction in Bacterial Pathogens.

    PubMed

    Moorthy, Sudha; Keklak, Julia; Klein, Eric A

    2016-01-01

    During the infection process, pathogenic bacteria undergo large-scale transcriptional changes to promote virulence and increase intrahost survival. While much of this reprogramming occurs in response to changes in chemical environment, such as nutrient availability and pH, there is increasing evidence that adhesion to host-tissue can also trigger signal transduction pathways resulting in differential gene expression. Determining the molecular mechanisms of adhesion-mediated signaling requires disentangling the contributions of chemical and mechanical stimuli. Here we highlight recent work demonstrating that surface attachment drives a transcriptional response in bacterial pathogens, including uropathogenic Escherichia coli (E. coli), and discuss the complexity of experimental design when dissecting the specific role of adhesion-mediated signaling during infection. PMID:26901228

  16. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell.

    PubMed

    Xue, Shaowu; Hu, Honghong; Ries, Amber; Merilo, Ebe; Kollist, Hannes; Schroeder, Julian I

    2011-04-20

    Plants respond to elevated CO(2) via carbonic anhydrases that mediate stomatal closing, but little is known about the early signalling mechanisms following the initial CO(2) response. It remains unclear whether CO(2), HCO(3)(-) or a combination activates downstream signalling. Here, we demonstrate that bicarbonate functions as a small-molecule activator of SLAC1 anion channels in guard cells. Elevated intracellular [HCO(3)(-)](i) with low [CO(2)] and [H(+)] activated S-type anion currents, whereas low [HCO(3)(-)](i) at high [CO(2)] and [H(+)] did not. Bicarbonate enhanced the intracellular Ca(2+) sensitivity of S-type anion channel activation in wild-type and ht1-2 kinase mutant guard cells. ht1-2 mutant guard cells exhibited enhanced bicarbonate sensitivity of S-type anion channel activation. The OST1 protein kinase has been reported not to affect CO(2) signalling. Unexpectedly, OST1 loss-of-function alleles showed strongly impaired CO(2)-induced stomatal closing and HCO(3)(-) activation of anion channels. Moreover, PYR/RCAR abscisic acid (ABA) receptor mutants slowed but did not abolish CO(2)/HCO(3)(-) signalling, redefining the convergence point of CO(2) and ABA signalling. A new working model of the sequence of CO(2) signalling events in gas exchange regulation is presented. PMID:21423149

  17. Bleached pigment activates transduction in salamander cones

    PubMed Central

    1995-01-01

    We have used suction electrode recording together with rapid steps into 0.5 mM IBMX solution to investigate changes in guanylyl cyclase velocity produced by pigment bleaching in isolated cones of the salamander Ambystoma tigrinum. Both backgrounds and bleaches accelerate the time course of current increase during steps into IBMX. We interpret this as evidence that the velocity of the guanylyl cyclase is increased in background light or after bleaching. Our results indicate that cyclase velocity increases nearly linearly with increasing percent pigment bleached but nonlinearly (and may saturate) with increasing back-ground intensity. In cones (as previously demonstrated for rods), light-activated pigment and bleached pigment appear to have somewhat different effects on the transduction cascade. The effect of bleaching on cyclase rate is maintained for at least 15-20 min after the light is removed, much longer than is required after a bleach for circulating current and sensitivity to stabilize in an isolated cone. The effect on the cyclase rate can be completely reversed by treatment with liposomes containing 11-cis retinal. The effects of bleaching can also be partially reversed by beta-ionone, an analogue of the chromophore 11- cis-retinal which does not form a covalent attachment to opsin. Perfusion of a bleached cone with beta-ionone produces a rapid increase in circulating current and sensitivity, which rapidly reverses when the beta-ionone is removed. Perfusion with beta-ionone also causes a partial reversal of the bleach-induced acceleration of cyclase velocity. We conclude that bleaching produces an "equivalent background" excitation of the transduction cascade in cones, perhaps by a mechanism similar to that in rods. PMID:8786347

  18. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells.

    PubMed

    Brandt, Benjamin; Munemasa, Shintaro; Wang, Cun; Nguyen, Desiree; Yong, Taiming; Yang, Paul G; Poretsky, Elly; Belknap, Thomas F; Waadt, Rainer; Alemán, Fernando; Schroeder, Julian I

    2015-01-01

    A central question is how specificity in cellular responses to the eukaryotic second messenger Ca(2+) is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca(2+)-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca(2+)-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca(2+)-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruple mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca(2+)-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca(2+)-dependent and Ca(2+)-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca(2+)-signaling on a cellular, genetic, and biochemical level. PMID:26192964

  19. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells

    PubMed Central

    Brandt, Benjamin; Munemasa, Shintaro; Wang, Cun; Nguyen, Desiree; Yong, Taiming; Yang, Paul G; Poretsky, Elly; Belknap, Thomas F; Waadt, Rainer; Alemán, Fernando; Schroeder, Julian I

    2015-01-01

    A central question is how specificity in cellular responses to the eukaryotic second messenger Ca2+ is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca2+-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca2+-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca2+-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruple mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca2+-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca2+-dependent and Ca2+-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca2+-signaling on a cellular, genetic, and biochemical level. DOI: http://dx.doi.org/10.7554/eLife.03599.001 PMID:26192964

  20. Notch1 endocytosis is induced by ligand and is required for signal transduction.

    PubMed

    Chapman, G; Major, J A; Iyer, K; James, A C; Pursglove, S E; Moreau, J L M; Dunwoodie, S L

    2016-01-01

    The Notch signalling pathway is widely utilised during embryogenesis in situations where cell-cell interactions are important for cell fate specification and differentiation. DSL ligand endocytosis into the ligand-expressing cell is an important aspect of Notch signalling because it is thought to supply the force needed to separate the Notch heterodimer to initiate signal transduction. A functional role for receptor endocytosis during Notch signal transduction is more controversial. Here we have used live-cell imaging to examine trafficking of the Notch1 receptor in response to ligand binding. Contact with cells expressing ligands induced internalisation and intracellular trafficking of Notch1. Notch1 endocytosis was accompanied by transendocytosis of ligand into the Notch1-expressing signal-receiving cell. Ligand caused Notch1 endocytosis into SARA-positive endosomes in a manner dependent on clathrin and dynamin function. Moreover, inhibition of endocytosis in the receptor-expressing cell impaired ligand-induced Notch1 signalling. Our findings resolve conflicting observations from mammalian and Drosophila studies by demonstrating that ligand-dependent activation of Notch1 signalling requires receptor endocytosis. Endocytosis of Notch1 may provide a force on the ligand:receptor complex that is important for potent signal transduction. PMID:26522918

  1. Genetic Analysis of Gravity Signal Transduction in Arabidopsis Roots

    NASA Astrophysics Data System (ADS)

    Masson, Patrick; Strohm, Allison; Barker, Richard; Su, Shih-Heng

    Like most other plant organs, roots use gravity as a directional guide for growth. Specialized cells within the columella region of the root cap (the statocytes) sense the direction of gravity through the sedimentation of starch-filled plastids (amyloplasts). Amyloplast movement and/or pressure on sensitive membranes triggers a gravity signal transduction pathway within these cells, which leads to a fast transcytotic relocalization of plasma-membrane associated auxin-efflux carrier proteins of the PIN family (PIN3 and PIN7) toward the bottom membrane. This leads to a polar transport of auxin toward the bottom flank of the cap. The resulting lateral auxin gradient is then transmitted toward the elongation zones where it triggers a curvature that ultimately leads to a restoration of vertical downward growth. Our laboratory is using strategies derived from genetics and systems biology to elucidate the molecular mechanisms that modulate gravity sensing and signal transduction in the columella cells of the root cap. Our previous research uncovered two J-domain-containing proteins, ARG1 and ARL2, as contributing to this process. Mutations in the corresponding paralogous genes led to alterations of root and hypocotyl gravitropism accompanied by an inability for the statocytes to develop a cytoplasmic alkalinization, relocalize PIN3, and transport auxin laterally, in response to gravistimulation. Both proteins are associated peripherally to membranes belonging to various compartments of the vesicular trafficking pathway, potentially modulating the trafficking of defined proteins between plasma membrane and endosomes. MAR1 and MAR2, on the other end, are distinct proteins of the plastidic outer envelope protein import TOC complex (the transmembrane channel TOC75 and the receptor TOC132, respectively). Mutations in the corresponding genes enhance the gravitropic defects of arg1. Using transformation-rescue experiments with truncated versions of TOC132 (MAR2), we have shown

  2. Editorial of the Special Issue: Signaling Molecules and Signal Transduction in Cells

    PubMed Central

    Schlossmann, Jens

    2013-01-01

    In the special issue “Signaling Molecules and Signal Transduction in Cells” authors were invited to submit papers regarding important and novel aspects of extra- and intracellular signaling which have implications on physiological and pathophysiological processes. These aspects included compounds which are involved in these processes, elucidation of signaling pathways, as well as novel techniques for the analysis of signaling pathways. In response, various novel and important topics are elucidated in this special issue. PMID:23759992

  3. Fetus Sound Stimulation: Cilia Memristor Effect of Signal Transduction

    PubMed Central

    Jankovic-Raznatovic, Svetlana; Dragojevic-Dikic, Svetlana; Rakic, Snezana; Nikolic, Branka; Plesinac, Snezana; Tasic, Lidija; Perisic, Zivko; Sovilj, Mirjana; Adamovic, Tatjana; Koruga, Djuro

    2014-01-01

    Background. This experimental study evaluates fetal middle cerebral artery (MCA) circulation after the defined prenatal acoustical stimulation (PAS) and the role of cilia in hearing and memory and could explain signal transduction and memory according to cilia optical-acoustical properties. Methods. PAS was performed twice on 119 no-risk term pregnancies. We analyzed fetal MCA circulation before, after first and second PAS. Results. Analysis of the Pulsatility index basic (PIB) and before PAS and Pulsatility index reactive after the first PAS (PIR 1) shows high statistical difference, representing high influence on the brain circulation. Analysis of PIB and Pulsatility index reactive after the second PAS (PIR 2) shows no statistical difference. Cilia as nanoscale structure possess magnetic flux linkage that depends on the amount of charge that has passed between two-terminal variable resistors of cilia. Microtubule resistance, as a function of the current through and voltage across the structure, leads to appearance of cilia memory with the “memristor” property. Conclusion. Acoustical and optical cilia properties play crucial role in hearing and memory processes. We suggest that fetuses are getting used to sound, developing a kind of memory patterns, considering acoustical and electromagnetically waves and involving cilia and microtubules and try to explain signal transduction. PMID:24719851

  4. Signal Transduction Model of Magnetic Sensing in Cryptochrome Mediated Photoreception

    NASA Astrophysics Data System (ADS)

    Todd, Phillise Tiffeny

    While migratory birds have long been known to use the Earth's magnetic field for navigation, the precise biophysical mechanism behind this magnetic sense remains unconfirmed. A leading theory of magnetoreception suggests a chemical compass model with a yet undetermined molecular reaction site and unknown magnetically sensitive reactants. The cryptochrome photoreceptor has emerged as a promising candidate site. This investigation numerically models the first order kinetics of cryptochrome mediated photoreception, in order to evaluate its ability to function as a magnetic sensor and transduce orientation information along a neural pathway. A signal-to-noise ratio is defined to quantify the threshold for the functioning of a cryptochrome-based chemical compass. The model suggests that a flavin-superoxide radical pair in cryptochrome functions as the chemical reactants for magnetoreception. Such a cryptochrome-based signal transduction model reasonably predicts the general light intensity and wavelength effects that have been experimentally observed in migratory birds.

  5. Verbascoside down-regulates some pro-inflammatory signal transduction pathways by increasing the activity of tyrosine phosphatase SHP-1 in the U937 cell line

    PubMed Central

    Pesce, Mirko; Franceschelli, Sara; Ferrone, Alessio; De Lutiis, Maria Anna; Patruno, Antonia; Grilli, Alfredo; Felaco, Mario; Speranza, Lorenza

    2015-01-01

    Polyphenols are the major components of many traditional herbal remedies, which exhibit several beneficial effects including anti-inflammation and antioxidant properties. Src homology region 2 domain-containing phosphatase-1 (SHP-1) is a redox sensitive protein tyrosine phosphatase that negatively influences downstream signalling molecules, such as mitogen-activated protein kinases, thereby inhibiting inflammatory signalling induced by lipopolysaccharide (LPS). Because a role of transforming growth factor β-activated kinase-1 (TAK1) in the upstream regulation of JNK molecule has been well demonstrated, we conjectured that SHP-1 could mediate the anti-inflammatory effect of verbascoside through the regulation of TAK-1/JNK/AP-1 signalling in the U937 cell line. Our results demonstrate that verbascoside increased the phosphorylation of SHP-1, by attenuating the activation of TAK-1/JNK/AP-1 signalling. This leads to a reduction in the expression and activity of both COX and NOS. Moreover, SHP-1 depletion deletes verbascoside inhibitory effects on pro-inflammatory molecules induced by LPS. Our data confirm that SHP-1 plays a critical role in restoring the physiological mechanisms of inducible proteins such as COX2 and iNOS, and that the down-regulation of TAK-1/JNK/AP-1 signalling by targeting SHP-1 should be considered as a new therapeutic strategy for the treatment of inflammatory diseases. PMID:25807993

  6. Differential effects of ethanol on glial signal transduction initiated by lipopolysaccharide and interferon-gamma.

    PubMed

    Choi, Dong-Kug; Lee, Heasuk; Jeong, Jaeyoon; Lim, Beongou; Suk, Kyoungho

    2005-10-15

    Although the pathogenic effects of alcohol abuse on brain are well established, its specific effects on the intracellular signal transduction pathways of glial cells in the central nervous system (CNS) are poorly understood. In this study, we evaluated how ethanol affects the glial signal transduction associated with inflammatory activation. Lipopolysaccharide (LPS), gangliosides, and interferon (IFN)-gamma induced the inflammatory activation of glia, which was differentially influenced by ethanol: 1) ethanol inhibited LPS- or gangliosides-induced, but not IFNgamma-induced, glial activation as demonstrated by the production of nitric oxide and the expression of inflammatory genes such as interleukin-1beta, tumor necrosis factor-alpha, IP-10, and CD86; 2) nuclear factor (NF)-kappaB or JAK/STAT1 pathway was necessary for LPS- or IFNgamma-induced glial activation, respectively; 3) ethanol inhibited LPS-induced NF-kappaB activation; and 4) ethanol did not significantly affect IFNgamma-induced STAT1/IRF-1 activation. Based on these results, ethanol seems to inhibit selectively some parts of the glial signal transduction pathways that are associated with inflammatory activation, which may lead to the deregulation of CNS inflammatory responses. PMID:16175582

  7. Physician Education: The Erythropoietin Receptor and Signal Transduction.

    PubMed

    Yoshimura; Arai

    1996-01-01

    differentiation such as the induction of globin synthesis [3, 4]. The remaining half is not required for this signaling, and, conversely, it acts to dampen the signals. It is known that a tyrosine kinase called JAK2 associates with the region near the plasma membrane, undergoes autophosphorylation, and phosphorylates the EPO receptor, and a transcription factor called a STAT [5]. It is thought that JAK2 plays an important role in promoting cellular proliferation. The STAT is activated by the phosphorylation, and it then translocates to the nucleus, recognizes a specific base sequence in the promoter region of its target gene, and initiates transcription. At present, we know that the STAT whose activation is mediated by the EPO receptor is STAT5, and the target genes are CIS [6], which has an SH2 domain (a molecular structure that recognizes a phosphorylated tyrosine) and OSM [7], which is a pleiotropic cytokine. However, activation of STAT5 and activation of the target genes are not unique to the EPO receptor, and they also occur with the IL-2 and IL-3 receptors. Moreover, the JAK2 substrate that is directly linked to cellular proliferation is still unknown. At present, studies are under way to determine the transcription factors specific to EPO and their target genes, as well as the substrates of JAK2. RECEPTOR PHOSPHORYLATION AND CESSATION OF THE SIGNAL: On the other hand, tyrosine phosphorylation of the receptor is necessary at the cytoplasmic tail region far from the plasma membrane, and the signal transduction pathway that originates with this phosphorylated tyrosine and is mediated by proteins with SH2 domains becomes activated. First, a GTP/GDP exchange factor called SOS, which is mediated by Shc and Grb2, migrates to the plasma membrane and converts a ras protein to its GTP form. The activated ras protein then activates the Raf-MAP kinase kinase-MAP kinase cascade, and ultimately initiates the transcription of oncogenes such as c-fos and c-jun. An enzyme called PI3 kinase

  8. Analysis of the gravitaxis signal transduction chain in Euglena gracilis

    NASA Astrophysics Data System (ADS)

    Nasir, Adeel

    Abstract Euglena gracilis is a photosynthetic, eukaryotic flagellate. It can adapt autotrophic and heterotrophic mode of growth and respond to different stimuli, this makes it an organism of choice for different research disciplines. It swims to reach a suitable niche by employing different stimuli such as oxygen, light, gravity and different chemicals. Among these stimuli light and gravity are the most important. Phototaxis (locomotion under light stimulus) and gravitaxis (locomotion under gravity stimulus) synergistically help cells to attain an optimal niche in the environment. However, in the complete absence of light or under scarcity of detectable light, cells can totally depend on gravity to find its swimming path. Therefore gravity has certain advantages over other stimuli.Unlike phototatic signal transduction chain of Euglena gracilis no clear primary gravity receptor has been identified in Euglena cells so far. However, there are some convincing evidence that TRP like channels act as a primary gravity receptor in Euglena gracilis.Use of different inhibitors gave rise to the involvement of protein kinase and calmodulin proteins in signal transduction chain of Euglena gracilis. Recently, specific calmodulin (Calmodulin 2) and protein kinase (PKA) have been identified as potential candidates of gravitactic signal transduction chain. Further characterization and investigation of these candidates was required. Therefore a combination of biochemical and genetic techniques was employed to localize proteins in cells and also to find interacting partners. For localization studies, specific antibodies were raised and characterized. Specificity of antibodies was validated by knockdown mutants, Invitro-translated proteins and heterologously expressed proteins. Cell fractionation studies, involving separation of the cell body and flagella for western blot analysis and confocal immunofluorescence studies were performed for subcellular localization. In order to find

  9. [Current understanding of signaling transduction pathway and biological functions of Karrikins].

    PubMed

    Luo, Xiaofeng; Qi, Ying; Meng, Yongjie; Shuai, Haiwei; Chen, Feng; Yang, Wenyu; Shu, Kai

    2016-01-01

    Karrikins are a class of signaling molecules discovered in wildfire smoke, which can significantly promote seed germination in some species (such as Arabidopsis and Avena fatua). The structures of Karrikins were first elucidated in 2004. At present, six different types of Karrikins have been documented, and their biological activities vary significantly. So far, studies for Karrikins have become a hot spot in the plant molecular biology field. Recent advances demonstrate that Karrikins regulate plant photomorphogenesis and leaf differentiation effectively, in addition to the effect on seed germination. Furthermore, Karrikins share highly similar molecular structures and signaling transduction pathways with strigolactone. In this review, we summarize the history of discovery, signaling transduction pathways, physiological functions and ecological significance of Karrikins, and further discuss the future research directions. PMID:26787523

  10. Signal transduction pathways and transcription factors triggered by arsenic trioxide in leukemia cells

    SciTech Connect

    Sumi, Daigo; Shinkai, Yasuhiro; Kumagai, Yoshito

    2010-05-01

    Arsenic trioxide (As{sub 2}O{sub 3}) is widely used to treat acute promyelocytic leukemia (APL). Several lines of evidence have indicated that As{sub 2}O{sub 3} affects signal transduction and transactivation of transcription factors, resulting in the stimulation of apoptosis in leukemia cells, because some transcription factors are reported to associate with the redox condition of the cells, and arsenicals cause oxidative stress. Thus, the disturbance and activation of the cellular signaling pathway and transcription factors due to reactive oxygen species (ROS) generation during arsenic exposure may explain the ability of As{sub 2}O{sub 3} to induce a complete remission in relapsed APL patients. In this report, we review recent findings on ROS generation and alterations in signal transduction and in transactivation of transcription factors during As{sub 2}O{sub 3} exposure in leukemia cells.

  11. Protein Tyrosine Phosphatases: From Housekeeping Enzymes to Master-Regulators of Signal Transduction

    PubMed Central

    Tonks, Nicholas K.

    2013-01-01

    There are many misconceptions surrounding the roles of protein phosphatases in the regulation of signal transduction, perhaps the most damaging of which is the erroneous view that these enzymes exert their effects merely as constitutively active housekeeping enzymes. On the contrary, the phosphatases are critical, specific regulators of signaling in their own right and serve an essential function, in a coordinated manner with the kinases, to determine the response to a physiological stimulus. This review is a personal perspective on the development of our understanding of the protein tyrosine phosphatase (PTP) family of enzymes. I have discussed various aspects of the structure, regulation and function of the PTP family, which I hope will illustrate the fundamental importance of these enzymes to the control of signal transduction. PMID:23176256

  12. In search of cellular control: signal transduction in context

    NASA Technical Reports Server (NTRS)

    Ingber, D.

    1998-01-01

    The field of molecular cell biology has experienced enormous advances over the last century by reducing the complexity of living cells into simpler molecular components and binding interactions that are amenable to rigorous biochemical analysis. However, as our tools become more powerful, there is a tendency to define mechanisms by what we can measure. The field is currently dominated by efforts to identify the key molecules and sequences that mediate the function of critical receptors, signal transducers, and molecular switches. Unfortunately, these conventional experimental approaches ignore the importance of supramolecular control mechanisms that play a critical role in cellular regulation. Thus, the significance of individual molecular constituents cannot be fully understood when studied in isolation because their function may vary depending on their context within the structural complexity of the living cell. These higher-order regulatory mechanisms are based on the cell's use of a form of solid-state biochemistry in which molecular components that mediate biochemical processing and signal transduction are immobilized on insoluble cytoskeletal scaffolds in the cytoplasm and nucleus. Key to the understanding of this form of cellular regulation is the realization that chemistry is structure and hence, recognition of the the importance of architecture and mechanics for signal integration and biochemical control. Recent work that has unified chemical and mechanical signaling pathways provides a glimpse of how this form of higher-order cellular control may function and where paths may lie in the future.

  13. Interferons, Signal Transduction Pathways, and the Central Nervous System

    PubMed Central

    Nallar, Shreeram C.

    2014-01-01

    The interferon (IFN) family of cytokines participates in the development of innate and acquired immune defenses against various pathogens and pathogenic stimuli. Discovered originally as a proteinaceous substance secreted from virus-infected cells that afforded immunity to neighboring cells from virus infection, these cytokines are now implicated in various human pathologies, including control of tumor development, cell differentiation, and autoimmunity. It is now believed that the IFN system (IFN genes and the genes induced by them, and the factors that regulate these processes) is a generalized alarm of cellular stress, including DNA damage. IFNs exert both beneficial and deleterious effects on the central nervous system (CNS). Our knowledge of the IFN-regulated processes in the CNS is far from being clear. In this article, we reviewed the current understanding of IFN signal transduction pathways and gene products that might have potential relevance to diseases of the CNS. PMID:25084173

  14. Calcitonin gene-related peptide promotes the expression of osteoblastic genes and activates the WNT signal transduction pathway in bone marrow stromal stem cells

    PubMed Central

    ZHOU, RI; YUAN, ZHI; LIU, JIERONG; LIU, JIAN

    2016-01-01

    Calcitonin gene-related peptide (CGRP) is known to induce osteoblastic differentiation and alkaline phosphatase activity in bone marrow stromal stem cells (BMSCs). However, it has remained elusive whether this effect is mediated by CGRP receptors directly or whether other signaling pathways are involved. The present study assessed the possible involvement of the Wnt/β-catenin signaling pathway in the activation of CGRP signaling during the differentiation of BMSCs. First, the differentiation of BMSCs was induced in vitro and the expression of CGRP receptors was examined by western blot analysis. The effects of exogenous CGRP and LiCl, a stimulator of the Wnt/β-catenin signaling pathway, on the osteoblastic differentiation of BMSCs were assessed; furthermore, the expression of mRNA and proteins involved in the Wnt/β-catenin signaling pathway was assessed using quantitative PCR and western blot analyses. The results revealed that CGRP receptors were expressed throughout the differentiation of BMSCs, at days 7 and 14. Incubation with CGRP and LiCl led to the upregulation of the expression of osteoblastic genes associated with the Wnt/β-catenin pathway, including the mRNA of c-myc, cyclin D1, Lef1, Tcf7 and β-catenin as well as β-catenin protein. However, the upregulation of these genes and β-catenin protein was inhibited by CGRP receptor antagonist or secreted frizzled-related protein, an antagonist of the Wnt/β-catenin pathway. The results of the present study therefore suggested that the Wnt/β-catenin signaling pathway may be involved in CGRP- and LiCl-promoted osteoblastic differentiation of BMSCs. PMID:27082317

  15. Calcitonin gene-related peptide promotes the expression of osteoblastic genes and activates the WNT signal transduction pathway in bone marrow stromal stem cells.

    PubMed

    Zhou, Ri; Yuan, Zhi; Liu, Jierong; Liu, Jian

    2016-06-01

    Calcitonin gene-related peptide (CGRP) is known to induce osteoblastic differentiation and alkaline phosphatase activity in bone marrow stromal stem cells (BMSCs). However, it has remained elusive whether this effect is mediated by CGRP receptors directly or whether other signaling pathways are involved. The present study assessed the possible involvement of the Wnt/β‑catenin signaling pathway in the activation of CGRP signaling during the differentiation of BMSCs. First, the differentiation of BMSCs was induced in vitro and the expression of CGRP receptors was examined by western blot analysis. The effects of exogenous CGRP and LiCl, a stimulator of the Wnt/β‑catenin signaling pathway, on the osteoblastic differentiation of BMSCs were assessed; furthermore, the expression of mRNA and proteins involved in the Wnt/β‑catenin signaling pathway was assessed using quantitative PCR and western blot analyses. The results revealed that CGRP receptors were expressed throughout the differentiation of BMSCs, at days 7 and 14. Incubation with CGRP and LiCl led to the upregulation of the expression of osteoblastic genes associated with the Wnt/β‑catenin pathway, including the mRNA of c‑myc, cyclin D1, Lef1, Tcf7 and β‑catenin as well as β‑catenin protein. However, the upregulation of these genes and β‑catenin protein was inhibited by CGRP receptor antagonist or secreted frizzled‑related protein, an antagonist of the Wnt/β‑catenin pathway. The results of the present study therefore suggested that the Wnt/β-catenin signaling pathway may be involved in CGRP‑ and LiCl-promoted osteoblastic differentiation of BMSCs. PMID:27082317

  16. Prolactin receptor and signal transduction to milk protein genes

    SciTech Connect

    Djiane, J.; Daniel, N.; Bignon, C.

    1994-06-01

    After cloning of the mammary gland prolactin (PRL) receptor cDNA, a functional assay was established using co-transfection of PRL receptor cDNA together with a milk protein promoter/chloramphenicol acetyl transferase (CAT) construct in Chinese hamster ovary (CHO) cells. Different mutants of the PRL receptor were tested in this CAT assay to delimit the domains in the receptor necessary for signal transduction to milk protein genes. In CHO cells stably transfected with PRL receptor cDNA, high numbers of PRL receptor are expressed. By metabolic labeling and immunoprecipitation, expressed PRL receptor was identified as a single species of 100 kDa. Using these cells, we analyzed the effects of PRL on intracellular free Ca{sup ++} concentration. PRL stimulates Ca{sup ++} entry and induces secondary Ca{sup ++} mobilization. The entry of Ca{sup ++} is a result of an increase in K{sup +} conductance that hyperpolarizes the membranes. We have also analyzed tyrosine phosphorylation induced by PRL. In CHO cells stably transfected with PRL receptor cDNA, PRL induced a very rapid and transient tyrosine phosphorylation of a 100-kDa protein which is most probably the PRL receptor. The same finding was obtained in mammary membranes after PRL injection to lactating rabbits. Whereas tyrosine kinase inhibitors genistein and lavendustin were without effect, PRL stimulation of milk protein gene promoters was partially inhibited by 2 {mu}M herbimycin in CHO cells co-transfected with PRL receptor cDNA and the {Beta} lactoglobulin CAT construct. Taken together these observations indicate that the cytoplasmic domain of the PRL receptor interacts with one or several tyrosine kinases, which may represent early postreceptor events necessary for PRL signal transduction to milk protein genes. 14 refs., 4 figs.

  17. Role of Glycolytic Intermediates in Global Regulation and Signal Transduction. Final Report

    SciTech Connect

    Liao, J.C.

    2000-05-08

    The goal of this project is to determine the role of glycolytic intermediates in regulation of cell physiology. It is known that many glycolytic intermediates are involved in regulation of enzyme activities at the kinetic level. However, little is known regarding the role of these metabolites in global regulation and signal transduction. This project aims to investigate the role of glycolytic intermediates in the regulation of gene expression.

  18. A hypothesis-effect of T cell epitope fusion peptide specific immunotherapy on signal transduction

    PubMed Central

    Li, Chao-Pin; Yang, Bang-He

    2015-01-01

    Asthma is a chronic nonspecific inflammatory disease of the airway primarily mediated by different inflammatory cells, including mast cells, eosinophils and T cells. We hereby specially focused on a signal pathway for Janus kinase-signal transducer and activators of transduction (JAK-STATs), which has been the interest of study in asthma since it more likely regulates cellular proliferation and differentiation, and consequently modulates immune system. In our consideration, knowledge on this signal pathway may provide an avenue for rational options in treatment of asthma on control of immune response basis. PMID:26770626

  19. Receptor clustering affects signal transduction at the membrane level in the reaction-limited regime

    NASA Astrophysics Data System (ADS)

    Caré, Bertrand R.; Soula, Hédi A.

    2013-01-01

    Many types of membrane receptors are found to be organized as clusters on the cell surface. We investigate the potential effect of such receptor clustering on the intracellular signal transduction stage. We consider a canonical pathway with a membrane receptor (R) activating a membrane-bound intracellular relay protein (G). We use Monte Carlo simulations to recreate biochemical reactions using different receptor spatial distributions and explore the dynamics of the signal transduction. Results show that activation of G by R is severely impaired by R clustering, leading to an apparent blunted biological effect compared to control. Paradoxically, this clustering decreases the half maximal effective dose (ED50) of the transduction stage, increasing the apparent affinity. We study an example of inter-receptor interaction in order to account for possible compensatory effects of clustering and observe the parameter range in which such interactions slightly counterbalance the loss of activation of G. The membrane receptors’ spatial distribution affects the internal stages of signal amplification, suggesting a functional role for membrane domains and receptor clustering independently of proximity-induced receptor-receptor interactions.

  20. Glucose oxidase facilitates osteogenic differentiation and mineralization of embryonic stem cells through the activation of Nrf2 and ERK signal transduction pathways.

    PubMed

    Sim, Hyun-Jaung; Kim, Jae-Hwan; Kook, Sung-Ho; Lee, Seung-Youp; Lee, Jeong-Chae

    2016-08-01

    Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase-1 (HO-1) signal is known to play important roles in controlling bone homeostasis. This study examined how oxidative stress affects the mineralization of embryonic stem (ES) cells by exposing them to glucose oxidase (GO), which continuously generates H2O2 at low concentrations. The roles of Nrf2/HO-1 and mitogen-activated protein kinases on osteogenesis in GO-exposed ES cells were also investigated. GO treatment at relatively low concentrations did not change the viability of ES cells, whereas it enhanced osteogenic differentiation and mineralization in the cells. GO treatment (1 mU/ml) augmented the induction of runt-related transcription factor 2 (Runx2), Nrf2, and HO-1 in ES cells. GO-mediated acceleration of Runx2 expression and mineralization was inhibited either by Nrf2 knockdown or by treating with 5 μM PD98059, an inhibitor of phospho-extracellular signal-regulated kinase (p-ERK). The GO-stimulated mineralization was also suppressed by treating the cells with reduced glutathione or catalase, but not by superoxide dismutase or N-acetyl-cysteine. Collectively, our results demonstrate that a mild oxidative stress activates Nrf2/HO-1 signaling and an ERK-mediated pathway, and facilitates the mineralization of ES cells with a corresponding increase in Runx2. PMID:27431005

  1. Leucine leucine-37 uses formyl peptide receptor-like 1 to activate signal transduction pathways, stimulate oncogenic gene expression, and enhance the invasiveness of ovarian cancer cells.

    PubMed

    Coffelt, Seth B; Tomchuck, Suzanne L; Zwezdaryk, Kevin J; Danka, Elizabeth S; Scandurro, Aline B

    2009-06-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. However, the receptor or receptors through which these processes are mediated have not been thoroughly examined. In the present study, expression of formyl peptide receptor-like 1 (FPRL1) was confirmed on ovarian cancer cells. Proliferation assays indicated that LL-37 does not signal through a G protein-coupled receptor, such as FPRL1, to promote cancer cell growth. By contrast, FPRL1 was required for LL-37-induced invasion through Matrigel. The peptide stimulated mitogen-activated protein kinase and Janus-activated kinase/signal transducers and activators of transcription signaling cascades and led to the significant activation of several transcription factors, through both FPRL1-dependent and FPRL1-independent pathways. Likewise, expression of some LL-37-stimulated genes was attenuated by the inhibition of FPRL1. Increased expression of CXCL10, EGF, and PDGF-BB as well as other soluble factors was confirmed from conditioned medium of LL-37-treated cells. Taken together, these data suggest that LL-37 potentiates a more aggressive behavior from ovarian cancer cells through its interaction with FPRL1. PMID:19491199

  2. Leucine Leucine-37 Uses Formyl Peptide Receptor–Like 1 to Activate Signal Transduction Pathways, Stimulate Oncogenic Gene Expression, and Enhance the Invasiveness of Ovarian Cancer Cells

    PubMed Central

    Coffelt, Seth B.; Tomchuck, Suzanne L.; Zwezdaryk, Kevin J.; Danka, Elizabeth S.; Scandurro, Aline B.

    2009-01-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. However, the receptor or receptors through which these processes are mediated have not been thoroughly examined. In the present study, expression of formyl peptide receptor–like 1 (FPRL1) was confirmed on ovarian cancer cells. Proliferation assays indicated that LL-37 does not signal through a G protein–coupled receptor, such as FPRL1, to promote cancer cell growth. By contrast, FPRL1 was required for LL-37–induced invasion through Matrigel. The peptide stimulated mitogen-activated protein kinase and Janus-activated kinase/signal transducers and activators of transcription signaling cascades and led to the significant activation of several transcription factors, through both FPRL1-dependent and FPRL1-independent pathways. Likewise, expression of some LL-37–stimulated genes was attenuated by the inhibition of FPRL1. Increased expression of CXCL10, EGF, and PDGF-BB as well as other soluble factors was confirmed from conditioned medium of LL-37–treated cells. Taken together, these data suggest that LL-37 potentiates a more aggressive behavior from ovarian cancer cells through its interaction with FPRL1. PMID:19491199

  3. The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part II: signal transduction.

    PubMed

    Brady, Mariea A; Waldman, Stephen D; Ethier, C Ross

    2015-02-01

    The unique mechanoelectrochemical environment of cartilage has motivated researchers to investigate the effect of multiple biophysical cues, including mechanical, magnetic, and electrical stimulation, on chondrocyte biology. It is well established that biophysical stimuli promote chondrocyte proliferation, differentiation, and maturation within "biological windows" of defined dose parameters, including mode, frequency, magnitude, and duration of stimuli (see companion review Part I: Cellular Response). However, the underlying molecular mechanisms and signal transduction pathways activated in response to multiple biophysical stimuli remain to be elucidated. Understanding the mechanisms of biophysical signal transduction will deepen knowledge of tissue organogenesis, remodeling, and regeneration and aiding in the treatment of pathologies such as osteoarthritis. Further, this knowledge will provide the tissue engineer with a potent toolset to manipulate and control cell fate and subsequently develop functional replacement cartilage. The aim of this article is to review chondrocyte signal transduction pathways in response to mechanical, magnetic, and electrical cues. Signal transduction does not occur along a single pathway; rather a number of parallel pathways appear to be activated, with calcium signaling apparently common to all three types of stimuli, though there are different modes of activation. Current tissue engineering strategies, such as the development of "smart" functionalized biomaterials that enable the delivery of growth factors or integration of conjugated nanoparticles, may further benefit from targeting known signal transduction pathways in combination with external biophysical cues. PMID:25065615

  4. Substance P Activates the Wnt Signal Transduction Pathway and Enhances the Differentiation of Mouse Preosteoblastic MC3T3-E1 Cells

    PubMed Central

    Mei, Gang; Zou, Zhenlv; Fu, Su; Xia, Liheng; Zhou, Jian; Zhang, Yongtao; Tuo, Yonghua; Wang, Zhao; Jin, Dan

    2014-01-01

    Recent experiments have explored the impact of Wnt/β-catenin signaling and Substance P (SP) on the regulation of osteogenesis. However, the molecular regulatory mechanisms of SP on the formation of osteoblasts is still unknown. In this study, we investigated the impact of SP on the differentiation of MC3T3-E1 cells. The osteogenic effect of SP was observed at different SP concentrations (ranging from 10−10 to 10−8 M). To unravel the underlying mechanism, the MC3T3-E1 cells were treated with SP after the pretreatment by neurokinin-1 (NK1) antagonists and Dickkopf-1 (DKK1) and gene expression levels of Wnt/β-catenin signaling pathway components, as well as osteoblast differentiation markers (collagen type I, alkaline phosphatase, osteocalcin, and Runx2), were measured using quantitative polymerase chain reaction (PCR). Furthermore, protein levels of Wnt/β-catenin signaling pathway were detected using Western blotting and the effects of SP, NK1 antagonist, and DKK1 on β-catenin activation were investigated by immunofluorescence staining. Our data indicated that SP (10−9 to 10−8 M) significantly up-regulated the expressions of osteoblastic genes. SP (10−8 M) also elevated the mRNA level of c-myc, cyclin D1, and lymphocyte enhancer factor-1 (Lef1), as well as c-myc and β-catenin protein levels, but decreased the expression of Tcf7 mRNA. Moreover, SP (10−8 M) promoted the transfer of β-catenin into nucleus. The effects of SP treatment were inhibited by the NK1 antagonist and DKK1. These findings suggest that SP may enhance differentiation of MC3T3-E1 cells via regulation of the Wnt/β-catenin signaling pathway. PMID:24733069

  5. Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria.

    PubMed

    Han, Derick; Dara, Lily; Win, Sanda; Than, Tin Aung; Yuan, Liyun; Abbasi, Sadeea Q; Liu, Zhang-Xu; Kaplowitz, Neil

    2013-04-01

    Drugs that cause liver injury often 'stress' mitochondria and activate signal transduction pathways important in determining cell survival or death. In most cases, hepatocytes adapt to the drug-induced stress by activating adaptive signaling pathways, such as mitochondrial adaptive responses and nuclear factor erythroid 2-related factor 2 (Nrf-2), a transcription factor that upregulates antioxidant defenses. Owing to adaptation, drugs alone rarely cause liver injury, with acetaminophen (APAP) being the notable exception. Drug-induced liver injury (DILI) usually involves other extrinsic factors, such as the adaptive immune system, that cause 'stressed' hepatocytes to become injured, leading to idiosyncratic DILI, the rare and unpredictable adverse drug reaction in the liver. Hepatocyte injury, due to drug and extrinsic insult, causes a second wave of signaling changes associated with adaptation, cell death, and repair. If the stress and injury reach a critical threshold, then death signaling pathways such as c-Jun N-terminal kinase (JNK) become dominant and hepatocytes enter a failsafe mode to undergo self-destruction. DILI can be seen as an active process involving recruitment of death signaling pathways that mediate cell death rather than a passive process due to overwhelming biochemical injury. In this review, we highlight the role of signal transduction pathways, which frequently involve mitochondria, in the development of DILI. PMID:23453390

  6. Sevoflurane Stimulates MAP Kinase Signal transduction through the Activation of PKC α and βII in Fetal Rat Cerebral Cortex Cultured Neuron

    PubMed Central

    Hasegawa, Jun; Takekoshi, Susumu; Nagata, Hidetaka; Osamura, R. Yoshiyuki; Suzuki, Toshiyasu

    2006-01-01

    Protein kinase C (PKC) is a key enzyme that participates in various neuronal functions. PKC has also been identified as a target molecule for general anesthetic actions. Raf, mitogen-activated protein kinase (MEK) and extracellular signal-regulated kinase (ERK1/2) have been thought to be target effectors of PKC. In the present study, we attempted to evaluate the effect of sevoflurane on PKC/MAPK cascade signaling in cultured fetal rat cerebral ­cortex neurons, prepared from embryonic day 18 fetuses. The effects of sevoflurane on the translocation of 7 PKC isoforms (α, βI, βII, γ, δ, ɛ and ζ) were observed by immunoblotting using isoform-selective antibodies to PKCs. The treatment of neurons with sevoflurane induced the translocation of PKC α and PKC βII species from the cytosol to the membrane fraction, which indicated the activation of these PKC isoforms. In contrast, there was no clear change in the distribution of other PKC isoforms. We next examined whether the specific activation of PKC α and βII by sevoflurane could stimulate the MAP kinase signaling pathway in cultured neurons. Raf phosphorylation was increased by the administration of 0.25 mM sevoflurane. The phosphorylation of Raf proteins reached a maximum at 5–10 min. Subsequently, the phosphorylation of MEK proteins was increased at 10–15 min after sevoflurane treatments. That of ERK proteins was induced at 15–60 min. Moreover, the phosphorylation of ERK induced by sevoflurane was significantly decreased by the treatment of PKC inhibitor (staurosporine) and MEK inhibitor (PD98059). On the other hand, the contents of total Raf, MEK and ERK proteins were relatively constant at all times examined. To examine the ­localization of phosphorylated-ERK protein, immunohistochemical staining of sevoflurane-treated cultured neurons was performed. The phosphorylated-ERK proteins were markedly accumulated in both the cytosol of the cell body and the neurites in the neuronal cells with time after 0

  7. Genetic Analysis of Gravity Signal Transduction in Arabidopsis thaliana Seedlings

    NASA Astrophysics Data System (ADS)

    Boonsirichai, K.; Harrison, B.; Stanga, J.; Young, L.-S.; Neal, C.; Sabat, G.; Murthy, N.; Harms, A.; Sedbrook, J.; Masson, P.

    The primary roots of Arabidopsis thaliana seedlings respond to gravity stimulation by developing a tip curvature that results from differential cellular elongation on opposite flanks of the elongation zone. This curvature appears modulated by a lateral gradient of auxin that originates in the gravity-perceiving cells (statocytes) of the root cap through an apparent lateral repositioning of a component the auxin efflux carrier complex within these cells (Friml et al, 2002, Nature 415: 806-809). Unfortunately, little is known about the molecular mechanisms that govern early phases of gravity perception and signal transduction within the root-cap statocytes. We have used a molecular genetic approach to uncover some of these mechanisms. Mutations in the Arabidopsis ARG1 and ARL2 genes, which encode J-domain proteins, resulted in specific alterations in root and hypocotyl gravitropism, without pleiotropic phenotypes. Interestingly, ARG1 and ARL2 appear to function in the same genetic pathway. A combination of molecular genetic, biochemical and cell-biological approaches were used to demonstrate that ARG1 functions in early phases of gravity signal transduction within the root and hypocotyl statocytes, and is needed for efficient lateral auxin transport within the cap. The ARG1 protein is associated with components of the secretory and/or endosomal pathways, suggesting its role in the recycling of components of the auxin efflux carrier complex between plasma membrane and endosome (Boonsirichai et al, 2003, Plant Cell 15:2612-2625). Genetic modifiers of arg1-2 were isolated and shown to enhance the gravitropic defect of arg1-2, while resulting in little or no gravitropic defects in a wild type ARG1 background. A slight tendency for arg1-2;mar1-1 and arg1-2;mar2-1 double-mutant organs to display an opposite gravitropic response compared to wild type suggests that all three genes contribute to the interpretation of the gravity-vector information by seedling organs. The

  8. Induction of proinflammatory mediators requires activation of the TRAF, NIK, IKK and NF-κB signal transduction pathway in astrocytes infected with Escherichia coli

    PubMed Central

    Kim, J M; Oh, Y-K; Lee, J H; Im, D Y; Kim, Y-J; Youn, J; Lee, C-H; Son, H; Lee, Y-S; Park, J Y; Choi, I-H

    2005-01-01

    Escherichia coli is associated with inflammation in the brain. To investigate whether astrocytes are involved in E. coil-induced inflammation, we assessed the levels of expression of proinflammatory mediators produced by E. coli-infected astrocytes. E. coli infection in primary human astrocytes and cell lines increased expression of the CXC chemokine IL-8/GRO-α, the CC chemokine MCP-1, TNF-α, and iNOS. E. coli infection activated p65/p50 heterodimeric NF-κB and concurrently decreased the signals of IκBα. Blocking the NF-κB signals by IκBα-superrepressor-containing retrovirus or antisense p50 oligonucleotide transfection resulted in down-regulation of expression of the proinflammatory mediators. Furthermore, superrepressors of IκBα, IκB kinase (IKK) or NF-κB inducing kinase (NIK) inhibited the up-regulated expression of the downstream target genes of NF-κB such as IL-8 and MCP-1, and superrepressors of TNF receptor-associated factor (TRAF)2 and TRAF5 also inhibited expression of the E. coli-induced target genes of NF-κB. These results indicate that proinflammatory mediators such as the CXC chemokine IL-8/GRO-α, the CC chemokine MCP-1, TNF-α, and iNOS can be expressed in E. coli-infected astrocytes via an NF-κB pathway, suggesting that these mediators may contribute to inflammation in the brain, including infiltration of inflammatory cells. PMID:15932506

  9. Influence of arsenate and arsenite on signal transduction pathways: an update

    PubMed Central

    Druwe, Ingrid L.

    2010-01-01

    Arsenic has been a recognized contaminant and toxicant, as well as a medicinal compound throughout human history. Populations throughout the world are exposed to arsenic and these exposures have been associated with a number of human cancers. Not much is known about the role of arsenic as a human carcinogen and more recently its role in non-cancerous diseases, such as cardiovascular disease, hypertension and diabetes mellitus have been uncovered. The health effects associated with arsenic are numerous and the association between arsenic exposure and human disease has intensified the search for molecular mechanisms that describe the biological activity of arsenic in humans and leads to the aforementioned disease states. Arsenic poses a human health risk due in part to the regulation of cellular signal transduction pathways and over the last few decades, some cellular mechanisms that account for arsenic toxicity, as well as, signal transduction pathways have been discovered. However, given the ubiquitous nature of arsenic in the environment, making sense of all the data remains a challenge. This review will focus on our knowledge of signal transduction pathways that are regulated by arsenic. PMID:20502880

  10. The emerging role of phosphoinositide clustering in intracellular trafficking and signal transduction

    PubMed Central

    Picas, Laura; Gaits-Iacovoni, Frederique; Goud, Bruno

    2016-01-01

    Phosphoinositides are master regulators of multiple cellular processes: from vesicular trafficking to signaling, cytoskeleton dynamics, and cell growth. They are synthesized by the spatiotemporal regulated activity of phosphoinositide-metabolizing enzymes. The recent observation that some protein modules are able to cluster phosphoinositides suggests that alternative or complementary mechanisms might operate to stabilize the different phosphoinositide pools within cellular compartments. Herein, we discuss the different known and potential molecular players that are prone to engage phosphoinositide clustering and elaborate on how such a mechanism might take part in the regulation of intracellular trafficking and signal transduction. PMID:27092250

  11. Mannotriose regulates learning and memory signal transduction in the hippocampus

    PubMed Central

    Zhang, Lina; Dai, Weiwei; Zhang, Xueli; Gong, Zhangbin; Jin, Guoqin

    2013-01-01

    Rehmannia is a commonly used Chinese herb, which improves learning and memory. However, the crucial components of the signal transduction pathway associated with this effect remain elusive. Pri-mary hippocampal neurons were cultured in vitro, insulted with high-concentration (1 × 10−4 mol/L) cor-ticosterone, and treated with 1 × 10−4 mol/L mannotriose. Thiazolyl blue tetrazolium bromide assay and western blot analysis showed that hippocampal neuron survival rates and protein levels of glucocorti-coid receptor, serum and glucocorticoid-regulated protein kinase, and brain-derived neurotrophic factor were all dramatically decreased after high-concentration corticosterone-induced injury. This effect was reversed by mannotriose, to a similar level as RU38486 and donepezil. Our findings indicate that mannotriose could protect hippocampal neurons from high-concentration corticosterone-induced injury. The mechanism by which this occurred was associated with levels of glucocorticoid receptor protein, serum and glucocorticoid-regulated protein kinase, and brain-derived neurotrophic factor. PMID:25206622

  12. Bacterial signal transduction network in a genomic perspective†

    PubMed Central

    Galperin, Michael Y.

    2005-01-01

    Summary Bacterial signalling network includes an array of numerous interacting components that monitor environmental and intracellular parameters and effect cellular response to changes in these parameters. The complexity of bacterial signalling systems makes comparative genome analysis a particularly valuable tool for their studies. Comparative studies revealed certain general trends in the organization of diverse signalling systems. These include (i) modular structure of signalling proteins; (ii) common organization of signalling components with the flow of information from N-terminal sensory domains to the C-terminal transmitter or signal output domains (N-to-C flow); (iii) use of common conserved sensory domains by different membrane receptors; (iv) ability of some organisms to respond to one environmental signal by activating several regulatory circuits; (v) abundance of intracellular signalling proteins, typically consisting of a PAS or GAF sensor domains and various output domains; (vi) importance of secondary messengers, cAMP and cyclic diguanylate; and (vii) crosstalk between components of different signalling pathways. Experimental characterization of the novel domains and domain combinations would be needed for achieving a better understanding of the mechanisms of signalling response and the intracellular hierarchy of different signalling pathways. PMID:15142243

  13. FIST: a sensory domain for diverse signal transduction pathways in prokaryotes and ubiquitin signaling in eukaryotes

    SciTech Connect

    Borziak, Kirill; Jouline, Igor B

    2007-01-01

    Motivation: Sensory domains that are conserved among Bacteria, Archaea and Eucarya are important detectors of common signals detected by living cells. Due to their high sequence divergence, sensory domains are difficult to identify. We systematically look for novel sensory domains using sensitive profile-based searches initi-ated with regions of signal transduction proteins where no known domains can be identified by current domain models. Results: Using profile searches followed by multiple sequence alignment, structure prediction, and domain architecture analysis, we have identified a novel sensory domain termed FIST, which is present in signal transduction proteins from Bacteria, Archaea and Eucarya. Remote similarity to a known ligand-binding fold and chromosomal proximity of FIST-encoding genes to those coding for proteins involved in amino acid metabolism and transport suggest that FIST domains bind small ligands, such as amino acids.

  14. Limits on information transduction through amplitude and frequency regulation of transcription factor activity

    PubMed Central

    Hansen, Anders S; O'Shea, Erin K

    2015-01-01

    Signaling pathways often transmit multiple signals through a single shared transcription factor (TF) and encode signal information by differentially regulating TF dynamics. However, signal information will be lost unless it can be reliably decoded by downstream genes. To understand the limits on dynamic information transduction, we apply information theory to quantify how much gene expression information the yeast TF Msn2 can transduce to target genes in the amplitude or frequency of its activation dynamics. We find that although the amount of information transmitted by Msn2 to single target genes is limited, information transduction can be increased by modulating promoter cis-elements or by integrating information from multiple genes. By correcting for extrinsic noise, we estimate an upper bound on information transduction. Overall, we find that information transduction through amplitude and frequency regulation of Msn2 is limited to error-free transduction of signal identity, but not signal intensity information. DOI: http://dx.doi.org/10.7554/eLife.06559.001 PMID:25985085

  15. Rhizobium nod factor signaling. Evidence for a g protein-mediated transduction mechanism

    PubMed Central

    Pingret, JL; Journet, EP; Barker, DG

    1998-01-01

    Rhizobium nodulation (Nod) factors are lipochitooligosaccharide signals that elicit key symbiotic developmental responses in the host legume root. In this study, we have investigated Nod factor signal transduction in the Medicago root epidermis by using a pharmacological approach in conjunction with transgenic plants expressing the Nod factor-responsive reporter construct pMtENOD12-GUS. Evidence for the participation of heterotrimeric G proteins in Nod factor signaling has come from three complementary observations: (1) the amphiphilic peptides mastoparan and Mas7, known G protein agonists, are able to mimic Nod factor-induced epidermal MtENOD12 expression; (2) growth of plants in nodulation-inhibiting conditions (10 mM NH4NO3) leads to a dramatic reduction in both Nod factor- and mastoparan-elicited gene expression; and (3) bacterial pertussis toxin, a well-characterized G protein antagonist, blocks the activities of both the Nod factor and mastoparan. In addition, we have found that antagonists that interfere with phospholipase C activity (neomycin and U73122) and Ca2+ influx/release (EGTA, La3+, and ruthenium red) block Nod factor/mastoparan activity. Taken together, these results are consistent with a Nod factor signal transduction mechanism involving G protein mediation coupled to the activation of both phosphoinositide and Ca2+ second messenger pathways. PMID:9596628

  16. Matricellular signal transduction involving calmodulin in the social amoebozoan dictyostelium.

    PubMed

    O'Day, Danton H; Huber, Robert J

    2013-01-01

    The social amoebozoan Dictyostelium discoideum undergoes a developmental sequence wherein an extracellular matrix (ECM) sheath surrounds a group of differentiating cells. This sheath is comprised of proteins and carbohydrates, like the ECM of mammalian tissues. One of the characterized ECM proteins is the cysteine-rich, EGF-like (EGFL) repeat-containing, calmodulin (CaM)-binding protein (CaMBP) CyrA. The first EGFL repeat of CyrA increases the rate of random cell motility and cyclic AMP-mediated chemotaxis. Processing of full-length CyrA (~63 kDa) releases two major EGFL repeat-containing fragments (~45 kDa and ~40 kDa) in an event that is developmentally regulated. Evidence for an EGFL repeat receptor also exists and downstream intracellular signaling pathways involving CaM, Ras, protein kinase A and vinculin B phosphorylation have been characterized. In total, these results identify CyrA as a true matricellular protein comparable in function to tenascin C and other matricellular proteins from mammalian cells. Insight into the regulation and processing of CyrA has also been revealed. CyrA is the first identified extracellular CaMBP in this eukaryotic microbe. In keeping with this, extracellular CaM (extCaM) has been shown to be present in the ECM sheath where it binds to CyrA and inhibits its cleavage to release the 45 kDa and 40 kDa EGFL repeat-containing fragments. The presence of extCaM and its role in regulating a matricellular protein during morphogenesis extends our understanding of CaM-mediated signal transduction in eukaryotes. PMID:24705101

  17. IGF-IR Signal Transduction Protein Content and Its Activation by IGF-I in Human Placentas: Relationship with Gestational Age and Birth Weight

    PubMed Central

    Iñiguez, Germán; Castro, Juan José; Garcia, Mirna; Kakarieka, Elena; Johnson, M. Cecilia; Cassorla, Fernando; Mericq, Verónica

    2014-01-01

    Introduction The human placenta expresses the IGF-I and IGF-IR proteins and their intracellular signal components (IRS-1, AKT and mTOR). The aim of this study was to assess the IGF-IR content and activation of downstream signaling molecules in placentas from newborns who were classified by gestational age and birth weight. We studied placentas from 25 term appropriate (T-AGA), 26 term small (T-SGA), 22 preterm AGA (PT-AGA), and 20 preterm SGA (PT-SGA) newborns. The total and phosphorylated IGF-IR, IRS-1, AKT, and mTOR contents were determined by Western Blot and normalized by actin or with their respective total content. The effect of IGF-I was determined by stimulating placental explants with recombinant IGF-I 10-8 mol/L for 15, 30, and 60 minutes. Results The IGF-IR content was higher in T-SGA compared to T-AGA placentas, and the IRS-1 content was higher in PT-placentas compared with their respective T-placentas. The effect of IGF-I on the phosphorylated forms of IGF-IR was increased in T-SGA (150%) and PT-SGA (300%) compared with their respective AGA placentas. In addition, AKT serine phosphorylation was higher in PT-SGA compared to PT-AGA and T-SGA placentas (90% and 390% respectively). Conclusion The higher protein content and response to IGF-I of IGF-IR, IRS-1, and AKT observed in SGA placentas may represent a compensatory mechanism in response to fetal growth restriction. PMID:25050889

  18. The Stimulatory Gαs Protein Is Involved in Olfactory Signal Transduction in Drosophila

    PubMed Central

    Deng, Ying; Zhang, Weiyi; Farhat, Katja; Oberland, Sonja; Gisselmann, Günter; Neuhaus, Eva M.

    2011-01-01

    Seven-transmembrane receptors typically mediate olfactory signal transduction by coupling to G-proteins. Although insect odorant receptors have seven transmembrane domains like G-protein coupled receptors, they have an inverted membrane topology, constituting a key difference between the olfactory systems of insects and other animals. While heteromeric insect ORs form ligand-activated non-selective cation channels in recombinant expression systems, the evidence for an involvement of cyclic nucleotides and G-proteins in odor reception is inconsistent. We addressed this question in vivo by analyzing the role of G-proteins in olfactory signaling using electrophysiological recordings. We found that Gαs plays a crucial role for odorant induced signal transduction in OR83b expressing olfactory sensory neurons, but not in neurons expressing CO2 responsive proteins GR21a/GR63a. Moreover, signaling of Drosophila ORs involved Gαs also in a heterologous expression system. In agreement with these observations was the finding that elevated levels of cAMP result in increased firing rates, demonstrating the existence of a cAMP dependent excitatory signaling pathway in the sensory neurons. Together, we provide evidence that Gαs plays a role in the OR mediated signaling cascade in Drosophila. PMID:21490930

  19. Grouper (Epinephelus coioides) MyD88 and Tollip: intracellular localization and signal transduction function.

    PubMed

    Li, Yan-Wei; Wang, Zheng; Mo, Ze-Quan; Li, Xia; Luo, Xiao-Chun; Dan, Xue-Ming; Li, An-Xing

    2015-01-01

    Myeloid differentiation factor 88 (MyD88) and Toll-interacting protein (Tollip) are two important regulatory proteins of the Toll-like receptor (TLR) signaling pathways. In this paper, a Tollip sequence of grouper (Epinephelus coioides) was identified and the signal transduction functions of Tollip and MyD88 were studied. The full length of E. coioides Tollip (EcTollip) cDNA with an open reading frame (ORF) of 1734 nucleotides encoded a putative protein of 274 amino acid residues. The EcTollip protein had conservative domains with mammalian homologous proteins, and high identity (78%-95%) with other vertebrates. MyD88 and Tollip were distributed in the HeLa cytoplasm in a highly condensed form. Over-expression of MyD88 could activate nuclear factor-κB (NF-κB) and its function was dependent on the death domain and ID domain on the N-terminal. Some important functional sites of mammalian MyD88 also affected fish MyD88 signal transduction. Tollip impaired NF-κB signals activated by MyD88, and its activity was dependent on the coupling of ubiquitin to the endoplasmic reticulum degradation (CUE) domain on the C-terminal. These results suggest that MyD88 and Tollip of fish and mammals are conservative on function during evolution. PMID:25449381

  20. An integrated signal transduction network of macrophage migration inhibitory factor.

    PubMed

    Subbannayya, Tejaswini; Variar, Prathyaksha; Advani, Jayshree; Nair, Bipin; Shankar, Subramanian; Gowda, Harsha; Saussez, Sven; Chatterjee, Aditi; Prasad, T S Keshava

    2016-06-01

    Macrophage migration inhibitory factor (MIF) is a glycosylated multi-functional protein that acts as an enzyme as well as a cytokine. MIF mediates its actions through a cell surface class II major histocompatibility chaperone, CD74 and co-receptors such as CD44, CXCR2, CXCR4 or CXCR7. MIF has been implicated in the pathogenesis of several acute and chronic inflammatory diseases. Although MIF is a molecule of biomedical importance, a public resource of MIF signaling pathway is currently lacking. In view of this, we carried out detailed data mining and documentation of the signaling events pertaining to MIF from published literature and developed an integrated reaction map of MIF signaling. This resulted in the cataloguing of 68 molecules belonging to MIF signaling pathway, which includes 24 protein-protein interactions, 44 post-translational modifications, 11 protein translocation events and 8 activation/inhibition events. In addition, 65 gene regulation events at the mRNA levels induced by MIF signaling have also been catalogued. This signaling pathway has been integrated into NetPath ( http://www.netpath.org ), a freely available human signaling pathway resource developed previously by our group. The MIF pathway data is freely available online in various community standard data exchange formats. We expect that data on signaling events and a detailed signaling map of MIF will provide the scientific community with an improved platform to facilitate further molecular as well as biomedical investigations on MIF. PMID:27139435

  1. New Signal Transduction Principles for Amperometric Enzyme and Antibody based Sensors

    NASA Astrophysics Data System (ADS)

    Warsinke, Axel

    2008-10-01

    The way of how the signal transfer from the analyte recognizing biocomponent to the sensor surface is performed influences strongly the characteristics of a biosensor e.g. response time, sensitivity and specificity. Most of the described amperometric enzyme sensors are using oxidases. The signal transduction is carried out simply by electrochemical indication of the produced hydrogen peroxide or via a sensor-immobilized redox polymer. However, due to the limited number of appropriate oxidases the range of detectable analytes is restricted. Hence, we have developed a new general principle for the sensitive transduction of the more than 400 different NAD(P) dependent dehydrogenase reactions. The transduction is based on a hydroxylase reaction which produces an electrochemically active substance under the consumption of NAD(P)H. The principle should be applicable to miniaturized sensor configuration and could be the basis for a new generation of point-of-care devices. For other analytes where no oxidases and dehydrogenases are available antibodies can be used as specific recognition element. We have developed a new principle of redox-labeled immunoassays called size exclusion redox-labeled immunoassay (SERI), where after the antigen antibody binding reaction the indication is carried out amperometrically without a washing step in between. The principle was proved for measurement of creatinine. At the moment the assay needs a relatively high amount of antibodies. However, in future it should be possible to reduce the amount of antibodies by using miniaturized microfluidic chips.

  2. Structural mechanism for signal transduction in RXR nuclear receptor heterodimers

    PubMed Central

    Kojetin, Douglas J.; Matta-Camacho, Edna; Hughes, Travis S.; Srinivasan, Sathish; Nwachukwu, Jerome C.; Cavett, Valerie; Nowak, Jason; Chalmers, Michael J.; Marciano, David P.; Kamenecka, Theodore M.; Shulman, Andrew I.; Rance, Mark; Griffin, Patrick R.; Bruning, John B.; Nettles, Kendall W.

    2015-01-01

    A subset of nuclear receptors (NRs) function as obligate heterodimers with retinoid X receptor (RXR), allowing integration of ligand-dependent signals across the dimer interface via an unknown structural mechanism. Using nuclear magnetic resonance (NMR) spectroscopy, x-ray crystallography and hydrogen/deuterium exchange (HDX) mass spectrometry, here we show an allosteric mechanism through which RXR co-operates with a permissive dimer partner, peroxisome proliferator-activated receptor (PPAR)-γ, while rendered generally unresponsive by a non-permissive dimer partner, thyroid hormone (TR) receptor. Amino acid residues that mediate this allosteric mechanism comprise an evolutionarily conserved network discovered by statistical coupling analysis (SCA). This SCA network acts as a signalling rheostat to integrate signals between dimer partners, ligands and coregulator-binding sites, thereby affecting signal transmission in RXR heterodimers. These findings define rules guiding how NRs integrate two ligand-dependent signalling pathways into RXR heterodimer-specific responses. PMID:26289479

  3. Second-Chance Signal Transduction Explains Cooperative Flagellar Switching

    PubMed Central

    Zot, Henry G.; Hasbun, Javier E.; Van Minh, Nguyen

    2012-01-01

    The reversal of flagellar motion (switching) results from the interaction between a switch complex of the flagellar rotor and a torque-generating stationary unit, or stator (motor unit). To explain the steeply cooperative ligand-induced switching, present models propose allosteric interactions between subunits of the rotor, but do not address the possibility of a reaction that stimulates a bidirectional motor unit to reverse direction of torque. During flagellar motion, the binding of a ligand-bound switch complex at the dwell site could excite a motor unit. The probability that another switch complex of the rotor, moving according to steady-state rotation, will reach the same dwell site before that motor unit returns to ground state will be determined by the independent decay rate of the excited-state motor unit. Here, we derive an analytical expression for the energy coupling between a switch complex and a motor unit of the stator complex of a flagellum, and demonstrate that this model accounts for the cooperative switching response without the need for allosteric interactions. The analytical result can be reproduced by simulation when (1) the motion of the rotor delivers a subsequent ligand-bound switch to the excited motor unit, thereby providing the excited motor unit with a second chance to remain excited, and (2) the outputs from multiple independent motor units are constrained to a single all-or-none event. In this proposed model, a motor unit and switch complex represent the components of a mathematically defined signal transduction mechanism in which energy coupling is driven by steady-state and is regulated by stochastic ligand binding. Mathematical derivation of the model shows the analytical function to be a general form of the Hill equation (Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40: iv–vii). PMID:22844429

  4. Identification of specific gravity sensitive signal transduction pathways in human A431 carcinoma cells

    NASA Astrophysics Data System (ADS)

    Rijken, P. J.; de Groot, R. P.; Kruijer, W.; de Laat, S. W.; Verkleij, A. J.; Boonstra, J.

    Epidermal growth factor (EGF) activates a well characterized signal transduction cascade in human A431 epidermoid carcinoma cells. The influence of gravity on EGF-induced EGF-receptor clustering and early gene expression as well as on actin polymerization and actin organization have been investigated. Different signalling pathways induced by the agents TPA, forskolin and A23187 that activate gene expression were tested for sensitivity to gravity. EGF-induced c-fos and c-jun expression were decreased in microgravity. However, constitutive β-2 microglobulin expression remained unaltered. Under simulated weightlessness conditions EGF- and TPA-induced c-fos expression was decreased, while forskolin- and A23187-induced c-fos expression was independent of the gravity conditions. These results suggest that gravity affects specific signalling pathways. Preliminary results indicate that EGF-induced EGF-receptor clustering remained unaltered irrespective of the gravity conditions. Furthermore, the relative filamentous actin content of steady state A431 cells was enhanced under microgravity conditions and actin filament organization was altered. Under simulated weightlessness actin filament organization in steady state cells as well as in EGF-treated cells was altered as compared to the 1 G reference experiment. Interestingly the microtubule and keratin organization in untreated cells showed no difference with the normal gravity samples. This indicates that gravity may affect specific components of the signal transduction circuitry.

  5. HAMP domain-mediated signal transduction probed with a mycobacterial adenylyl cyclase as a reporter.

    PubMed

    Mondéjar, Laura García; Lupas, Andrei; Schultz, Anita; Schultz, Joachim E

    2012-01-01

    HAMP domains, ∼55 amino acid motifs first identified in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases, operate as signal mediators in two-component signal transduction proteins. A bioinformatics study identified a coevolving signal-accepting network of 10 amino acids in membrane-delimited HAMP proteins. To probe the functionality of this network we used a HAMP containing mycobacterial adenylyl cyclase, Rv3645, as a reporter enzyme in which the membrane anchor was substituted by the Escherichia coli chemotaxis receptor for serine (Tsr receptor) and the HAMP domain alternately with that from the protein Af1503 of the archaeon Archaeoglobus fulgidus or the Tsr receptor. In a construct with the Tsr-HAMP, cyclase activity was inhibited by serine, whereas in a construct with the HAMP domain from A. fulgidus, enzyme activity was not responsive to serine. Amino acids of the signal-accepting network were mutually swapped between both HAMP domains, and serine signaling was examined. The data biochemically tentatively established the functionality of the signal-accepting network. Based on a two-state gearbox model of rotation in HAMP domain-mediated signal propagation, we characterized the interaction between permanent and transient core residues in a coiled coil HAMP structure. The data are compatible with HAMP rotation in signal propagation but do not exclude alternative models for HAMP signaling. Finally, we present data indicating that the connector, which links the α-helices of HAMP domains, plays an important structural role in HAMP function. PMID:22094466

  6. Cellerator: extending a computer algebra system to include biochemical arrows for signal transduction simulations

    NASA Technical Reports Server (NTRS)

    Shapiro, Bruce E.; Levchenko, Andre; Meyerowitz, Elliot M.; Wold, Barbara J.; Mjolsness, Eric D.

    2003-01-01

    Cellerator describes single and multi-cellular signal transduction networks (STN) with a compact, optionally palette-driven, arrow-based notation to represent biochemical reactions and transcriptional activation. Multi-compartment systems are represented as graphs with STNs embedded in each node. Interactions include mass-action, enzymatic, allosteric and connectionist models. Reactions are translated into differential equations and can be solved numerically to generate predictive time courses or output as systems of equations that can be read by other programs. Cellerator simulations are fully extensible and portable to any operating system that supports Mathematica, and can be indefinitely nested within larger data structures to produce highly scaleable models.

  7. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors

    PubMed Central

    Culhane, Kelly J.; Liu, Yuting; Cai, Yingying; Yan, Elsa C. Y.

    2015-01-01

    Although family B G protein-coupled receptors (GPCRs) contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs. PMID:26594176

  8. Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons.

    PubMed Central

    Kelly, J F; Furukawa, K; Barger, S W; Rengen, M R; Mark, R J; Blanc, E M; Roth, G S; Mattson, M P

    1996-01-01

    Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We now report that amyloid beta-peptide (Abeta), which forms plaques in the brain in AD, impairs muscarinic receptor activation of G proteins in cultured rat cortical neurons. Exposure of rodent fetal cortical neurons to Abeta25-35 and Abeta1-40 resulted in a concentration and time-dependent attenuation of carbachol-induced GTPase activity without affecting muscarinic receptor ligand binding parameters. Downstream events in the signal transduction cascade were similarly attenuated by Abeta. Carbachol-induced accumulation of inositol phosphates (IP, IP2, IP3, and IP4) was decreased and calcium imaging studies revealed that carbachol-induced release of calcium was severely impaired in neurons pretreated with Abeta. Muscarinic cholinergic signal transduction was disrupted with subtoxic levels of exposure to AP. The effects of Abeta on carbachol-induced GTPase activity and calcium release were attenuated by antioxidants, implicating free radicals in the mechanism whereby Abeta induced uncoupling of muscarinic receptors. These data demonstrate that Abeta disrupts muscarinic receptor coupling to G proteins that mediate induction of phosphoinositide accumulation and calcium release, findings that implicate Abeta in the impairment of cholinergic transmission that occurs in AD. PMID:8692890

  9. Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons.

    PubMed

    Kelly, J F; Furukawa, K; Barger, S W; Rengen, M R; Mark, R J; Blanc, E M; Roth, G S; Mattson, M P

    1996-06-25

    Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We now report that amyloid beta-peptide (Abeta), which forms plaques in the brain in AD, impairs muscarinic receptor activation of G proteins in cultured rat cortical neurons. Exposure of rodent fetal cortical neurons to Abeta25-35 and Abeta1-40 resulted in a concentration and time-dependent attenuation of carbachol-induced GTPase activity without affecting muscarinic receptor ligand binding parameters. Downstream events in the signal transduction cascade were similarly attenuated by Abeta. Carbachol-induced accumulation of inositol phosphates (IP, IP2, IP3, and IP4) was decreased and calcium imaging studies revealed that carbachol-induced release of calcium was severely impaired in neurons pretreated with Abeta. Muscarinic cholinergic signal transduction was disrupted with subtoxic levels of exposure to AP. The effects of Abeta on carbachol-induced GTPase activity and calcium release were attenuated by antioxidants, implicating free radicals in the mechanism whereby Abeta induced uncoupling of muscarinic receptors. These data demonstrate that Abeta disrupts muscarinic receptor coupling to G proteins that mediate induction of phosphoinositide accumulation and calcium release, findings that implicate Abeta in the impairment of cholinergic transmission that occurs in AD. PMID:8692890

  10. Diversity training for signal transduction: leveraging cell-to-cell variability to dissect cellular signaling, differentiation and death

    PubMed Central

    Cotari, Jesse W.; Voisinne, Guillaume; Altan-Bonnet, Grégoire

    2013-01-01

    Populations of “identical” cells are rarely truly identical. Even when in the same state of differentiation, isogenic cells may vary in expression of key signaling regulators, activate signal transduction at different thresholds, and consequently respond heterogeneously to a given stimulus. Here, we review how new experimental and analytical techniques are suited to connect these different levels of variability, quantitatively mapping the effects of cell-to-cell variability on cellular decision-making. In particular, we summarize how this helps classify signaling regulators according to the impact of their variability on biological functions. We further discuss how variability can also be leveraged to shed light on the molecular mechanisms regulating cellular signaling, from the individual cell to the population of cells as a whole. PMID:23747193

  11. Quantitative measurement of epidermal growth factor receptor-mitogen-activated protein kinase signal transduction using a nine-plex, peptide-based immunoassay.

    PubMed

    Rauh-Adelmann, Christine; Moskow, John M; Graham, James R; Yen, Lucy G; Boucher, Jeffrey I; Murphy, Cheryl E; Nadler, Timothy K; Gordon, Neal F; Radding, Jeffrey A

    2008-04-15

    Aberrant epidermal growth factor receptor (EGFR, ErbB1) signaling is implicated in cell transformation, motility, and invasion in a variety of cell types, and EGFR is the target of several anticancer drugs. However, the kinetics of EGFR signaling and the individual contributions of site-specific phosphorylation events remain largely unknown. A peptide-based, multiplex immunoassay approach was developed to simultaneously measure both total and phosphorylated protein in a single sample. The approach involves the proteolytic digestion of proteins prior to the isolation and quantitation of site-specific phosphorylation events within an individual protein. Quantitation of phosphorylated and total proteins, in picomolar to nanomolar concentrations, were interpolated from standard curves generated with synthetic peptides that correspond to the peptide targets used in the immunoassays. In this study, a bead-based, nine-plex immunoassay measuring total and phosphorylated protein was constructed to measure temporal, site-specific phosphorylation of key members of the EGFR pathway (ErbB1 receptor, MEK1, MEK2, ERK1, and ERK2) in A431 cells stimulated with epidermal growth factor. The effect of MEK inhibition on this pathway was determined using a known MEK kinase inhibitor, SL327. The results reported herein are the first quantitative measurements of site-specific phosphorylation events and total proteins in a single sample, at the same time representing a new paradigm for standardized protein and phosphorylation analysis using multiplexed, peptide-based, sandwich immunoassays. PMID:18275835

  12. The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis

    PubMed Central

    Smith, Gina A.; Fearnley, Gareth W.; Tomlinson, Darren C.; Harrison, Michael A.; Ponnambalam, Sreenivasan

    2015-01-01

    VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR–VEGF complexes with membrane trafficking along the endosome–lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR–VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments. PMID:26285805

  13. Signal Transduction: From the Atomic Age to the Post-Genomic Era

    PubMed Central

    Thorner, Jeremy; Hunter, Tony; Cantley, Lewis C.; Sever, Richard

    2016-01-01

    SUMMARY We have come a long way in the 55 years since Edmond Fischer and the late Edwin Krebs discovered that the activity of glycogen phosphorylase is regulated by reversible protein phosphorylation. Many of the fundamental molecular mechanisms that operate in biological signaling have since been characterized and the vast web of interconnected pathways that make up the cellular signaling network has been mapped in considerable detail. Nonetheless, it is important to consider how fast this field is still moving and the issues at the current boundaries of our understanding. One must also appreciate what experimental strategies have allowed us to attain our present level of knowledge. We summarize here some key issues (both conceptual and methodological), raise unresolved questions, discuss potential pitfalls, and highlight areas in which our understanding is still rudimentary. We hope these wide-ranging ruminations will be useful to investigators who carry studies of signal transduction forward during the rest of the 21st century. PMID:25359498

  14. Endocytosis of pro-inflammatory cytokine receptors and its relevance for signal transduction.

    PubMed

    Hermanns, Heike M; Wohlfahrt, Julia; Mais, Christine; Hergovits, Sabine; Jahn, Daniel; Geier, Andreas

    2016-08-01

    The pro-inflammatory cytokines tumor necrosis factor (TNF), interleukin-1 (IL-1) and interleukin-6 (IL-6) are key players of the innate and adaptive immunity. Their activity needs to be tightly controlled to allow the initiation of an appropriate immune response as defense mechanism against pathogens or tissue injury. Excessive or sustained signaling of either of these cytokines leads to severe diseases, including rheumatoid arthritis, inflammatory bowel diseases (Crohn's disease, ulcerative colitis), steatohepatitis, periodic fevers and even cancer. Studies carried out in the last 30 years have emphasized that an elaborate control system for each of these cytokines exists. Here, we summarize what is currently known about the involvement of receptor endocytosis in the regulation of these pro-inflammatory cytokines' signaling cascades. Particularly in the last few years it was shown that this cellular process is far more than a mere feedback mechanism to clear cytokines from the circulation and to shut off their signal transduction. PMID:27071147

  15. The gravity persistent signal (gps) Mutants of Arabidopsis: Insights into Gravitropic Signal Transduction

    NASA Astrophysics Data System (ADS)

    Wyatt, S.

    The gravitropic response of Arabidopsis stems is rapid with a visible within 30 min and vertical reorientation within 2 h. However, horizontal gravistimulation for 3 h at 4°C does not cause curvature. When the stems are subsequently placed in the vertical position at RT, they bend in response to the previous, horizontal gravistimulation. These results indicate that the gravity perception step can occur at 4°C, but that part of the response is sensitive to cold. At 4°C, starch-containing amyloplasts in the endodermis of the inflorescence stems sedimented normally but auxin transport was abolished indicating that the cold treatment affected early events of the signal transduction pathway that occur after amyloplast sedimentation but prior to auxin transport. The gps mutants of Arabidopsis are a unique group of mutants that respond abnormally after gravistimulation at 4°C. gps1 shows no response to the cold gravistimulation, gps2 bends the wrong way as compared to wild type and gps3 over responds, bending past the anticipated curvature. The mutants were selected from a T-DNA tagged population. Cloning strategies based on the tag have been employed to identify the genes disrupted. GPS1 was cloned using TAIL PCR and is At3g20130, a cytochrome P450, CYP705A22, of unknown function. GPS1p::GFP fusions are being used to determine temporal and spatial expression of GPS1. The mutation in gps3 appears to disrupt a non-coding region downstream of At1g43950 No function has yet been determined for this region, but it appears that the mutation disrupts transcription of a transcription factor homologous to the DNA binding domain of an auxin response factor (ARF) 9-like protein. The identity of GPS2 is as yet unknown. The gps mutants represent potentially three independent aspects of signal transduction in the gravitropic response: perception or retention of the gravity signal (gps1), determination of the polarity of the response (gps2), and the tissue specificity of the

  16. FASEB summer research conference on signal transduction in plants. Final report, June 16, 1996--June 21, 1996

    SciTech Connect

    Lomax, T.L.; Quatrano, R.S.

    1996-12-31

    This is the program from the second FASEB conference on Signal Transduction in Plants. Topic areas included the following: environmental signaling; perception and transduction of light signals; signaling in plant microbe interactions; signaling in plant pathogen interactions; cell, cell communication; cytoskeleton, plasma membrane, and cellwall continuum; signaling molecules in plant growth and development I and II. A list of participants is included.

  17. Chemical approaches for investigating phosphorylation in signal transduction networks.

    PubMed

    Rothman, Deborah M; Shults, Melissa D; Imperiali, Barbara

    2005-09-01

    The power and scope of chemical synthesis offer considerable opportunities to broaden the lexicon of chemical tools that can be implemented for the study of complex biological systems. To investigate individual signaling proteins and pathways, chemical tools provide a powerful complement to existing genetic, chemical genetic and immunologic methods. In particular, understanding phosphorylation-mediated signaling in real time yields important information about the regulation of cellular function and insights into the origin of disease. Recent advances in the development of photolabile caged analogs of bioactive species and fluorescence-based sensors of protein kinase activities are useful for investigating protein phosphorylation and the roles of phosphoproteins. Photolabile caged analogs allow spatial and temporal control over the release of a compound, while fluorescence-based sensors allow the real-time visualization of kinase activity. Here, we discuss recent advances that have increased the specificity and availability of these tools. PMID:16084095

  18. Mitogen-activated protein kinase signal transduction and DNA repair network are involved in aluminum-induced DNA damage and adaptive response in root cells of Allium cepa L.

    PubMed Central

    Panda, Brahma B.; Achary, V. Mohan M.

    2014-01-01

    In the current study, we studied the role of signal transduction in aluminum (Al3+)-induced DNA damage and adaptive response in root cells of Allium cepa L. The root cells in planta were treated with Al3+ (800 μM) for 3 h without or with 2 h pre-treatment of inhibitors of mitogen-activated protein kinase (MAPK), and protein phosphatase. Also, root cells in planta were conditioned with Al3+ (10 μM) for 2 h and then subjected to genotoxic challenge of ethyl methane sulfonate (EMS; 5 mM) for 3 h without or with the pre-treatment of the aforementioned inhibitors as well as the inhibitors of translation, transcription, DNA replication and repair. At the end of treatments, roots cells were assayed for cell death and/or DNA damage. The results revealed that Al3+ (800 μM)-induced significant DNA damage and cell death. On the other hand, conditioning with low dose of Al3+ induced adaptive response conferring protection of root cells from genotoxic stress caused by EMS-challenge. Pre-treatment of roots cells with the chosen inhibitors prior to Al3+-conditioning prevented or reduced the adaptive response to EMS genotoxicity. The results of this study suggested the involvement of MAPK and DNA repair network underlying Al-induced DNA damage and adaptive response to genotoxic stress in root cells of A. cepa. PMID:24926302

  19. Arsenic interferes with the signaling transduction pathway of T cell receptor activation by increasing basal and induced phosphorylation of Lck and Fyn in spleen cells

    SciTech Connect

    Soto-Pena, Gerson A.; Vega, Libia

    2008-07-15

    Arsenic is known to produce inhibition as well as induction of immune cells proliferative responses depending on the doses as one of its mechanisms of immunotoxicity. Here we evaluate the effect of arsenic exposure on the activation of splenic mononuclear cells (SMC) in male CD57BL6N mice. Intra-gastric exposure to arsenic (as sodium arsenite) for 30 days (1, 0.1, or 0.01 mg/kg/day), reduced the proportion of CD4+ cells and the CD4+/CD8+ ratio in the spleen, increasing the proportion of CD11b+ cells. Arsenic exposure did not modify the proportion of B cells. SMC showed an increased level of phosphorylation of lck and fyn kinases (first kinases associated to TCR complex when activated). Although normal levels of apoptosis were observed on freshly isolated SMC, an increase in apoptotic cells related with the increase in phosphorylation of lck and fyn was observed when SMC were activated with Concanavalin-A (Con-A). Arsenic exposure reduced the proliferative response of SMC to Con-A, and also reduced secretion of IL-2, IL-6, IL-12 and IFN{gamma}. No effect was observed on IL-4, and IL-10 secretion. The same effects were observed when SMC of exposed animals were activated with anti-CD3/CD28 antibodies for 24 h, but these effects were transitory since a recovery, up to control levels or even higher, were observed after 72 h of stimulation. This study demonstrates that repeated and prolonged exposure to arsenic alters cell populations and produces functional changes depending on the specific activation pathway, and could be related with the phosphorylation status of lck and fyn kinases.

  20. Organophosphorous pesticide metabolite (DEDTP) induces changes in the activation status of human lymphocytes by modulating the interleukin 2 receptor signal transduction pathway

    SciTech Connect

    Esquivel-Senties, M.S.; Barrera, I.; Ortega, A.; Vega, L.

    2010-10-15

    Diethyldithiophosphate (DEDTP) is a metabolite formed by biotransformation of organophosphorous (OP) compounds that has a longer half-life than its parental compound. Here we evaluate the effects of DEDTP on human CD4+ T lymphocytes. In vitro exposure to DEDTP (1-50 {mu}M) decreased [{sup 3}H]thymidine incorporation in resting cells and increased CD25 surface expression without altering cell viability. DEDTP treatment inhibited anti-CD3/anti-CD28 stimulation-induced CD4+ and CD8+ T cell proliferation determined by CFSE dilution. Decreased CD25 expression and intracellular IL-2 levels were correlated with this defect in cell proliferation. IL-2, IFN-{gamma} and IL-10 secretion were also reduced while IL-4 secretion was not altered. Increased phosphorylation of SOCS3 and dephosphorylation of STAT5 were induced by DEDTP after as little as 5 min of exposure. In addition, DEDTP induced phosphorylation of ERK, JNK and p38 and NFAT nuclear translocation. These results suggest that DEDTP can modulate phosphorylation of intracellular proteins such as SOCS3, which functions as a negative regulator of cytokine signalling, and that DEDTP exposure may thus cause T cells to fail to respond to further antigen challenges.

  1. Hipk proteins dually regulate Wnt/Wingless signal transduction.

    PubMed

    Verheyen, Esther M; Swarup, Sharan; Lee, Wendy

    2012-01-01

    The Wnt/Wingless (Wg) pathway is an evolutionarily conserved signaling system that is used reiteratively, both spatially and temporally, to control the development of multicellular animals. The stability of cytoplasmic β-catenin/Armadillo, the transcriptional effector of the pathway, is controlled by sequential N-terminal phosphorylation and ubiquitination that targets it for proteasome-mediated degradation. Orthologous members of the Homeodomain-interacting protein kinase family from Drosophila to vertebrates have been implicated in the regulation of Wnt/Wingless signaling. In Drosophila, as a consequence of Hipk activity, cells accumulate stabilized Armadillo that directs the expression of Wg-specific target genes. Hipk promotes the stabilization of Armadillo by inhibiting its ubiquitination (and hence subsequent degradation) by the SCF(Slimb) E3 ubiquitin ligase complex. Vertebrate Hipk2 impedes β-catenin ubiquitination to promote its stability and the Wnt signal in a mechanism that is functionally conserved. Moreover, we describe here that Hipk proteins have a role independent of their effect on β-catenin/Armadillo stability to enhance Wnt/Wingless signaling. PMID:22634475

  2. A disulfide-bridged mutant of natriuretic peptide receptor-A displays constitutive activity. Role of receptor dimerization in signal transduction.

    PubMed

    Labrecque, J; Mc Nicoll, N; Marquis, M; De Léan, A

    1999-04-01

    Natriuretic peptide receptor-A (NPR-A), a particulate guanylyl cyclase receptor, is composed of an extracellular domain (ECD) with a ligand binding site, a transmembrane spanning, a kinase homology domain (KHD), and a guanylyl cyclase domain. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), the natural agonists, bind and activate the receptor leading to cyclic GMP production. This receptor has been reported to be spontaneously dimeric or oligomeric. In response to agonists, the KHD-mediated guanylate cyclase repression is removed, and it is assumed that ATP binds to the KHD. Since NPR-A displays a pair of juxtamembrane cysteines separated by 8 residues, we hypothesized that the removal of one of those cysteines would leave the other unpaired and reactive, thus susceptible to form an interchain disulfide bridge and to favor the dimeric interactions. Here we show that NPR-AC423S mutant, expressed mainly as a covalent dimer, increases the affinity of pBNP for this receptor by enhancing a high affinity binding component. Dimerization primarily depends on ECD since a secreted NPR-A C423S soluble ectodomain (ECDC423S) also documents a covalent dimer. ANP binding to the unmutated ECD yields up to 80-fold affinity loss as compared with the membrane receptor. However, the ECD C423S mutation restores a high binding affinity. Furthermore, C423S mutation leads to cellular constitutive activation (20-40-fold) of basal catalytic production of cyclic GMP by the full-length mutant. In vitro particulate guanylyl cyclase assays demonstrate that NPR-AC423S displays an increased sensitivity to ATP treatment alone and that the effect of ANP + ATP joint treatment is cumulative instead of synergistic. Finally, the cellular and particulate guanylyl cyclase assays indicate that the receptor is desensitized to agonist stimulation. We conclude the following: 1) dimers are functional units of NPR-A guanylyl cyclase activation; and 2) agonists are inducing dimeric contact

  3. Roles of Intracellular Cyclic AMP Signal Transduction in the Capacitation and Subsequent Hyperactivation of Mouse and Boar Spermatozoa

    PubMed Central

    HARAYAMA, Hiroshi

    2013-01-01

    It is not until accomplishment of a variety of molecular changes during the transit through the female reproductive tract that mammalian spermatozoa are capable of exhibiting highly activated motility with asymmetric whiplash beating of the flagella (hyperactivation) and undergoing acrosomal exocytosis in the head (acrosome reaction). These molecular changes of the spermatozoa are collectively termed capacitation and promoted by bicarbonate, calcium and cholesterol acceptors. Such capacitation-promoting factors can stimulate intracellular cyclic AMP (cAMP) signal transduction in the spermatozoa. Meanwhile, hyperactivation and the acrosome reaction are essential to sperm fertilization with oocytes and are apparently triggered by a sufficient increase of intracellular Ca2+ in the sperm flagellum and head, respectively. Thus, it is necessary to investigate the relationship between cAMP signal transduction and calcium signaling cascades in the spermatozoa for the purpose of understanding the molecular basis of capacitation. In this review, I cover updated insights regarding intracellular cAMP signal transduction, the acrosome reaction and flagellar motility in mammalian spermatozoa and then account for possible roles of intracellular cAMP signal transduction in the capacitation and subsequent hyperactivation of mouse and boar spermatozoa. PMID:24162806

  4. [Progress of studies on acu-moxibustion stimulation-induced cellular transmembrane signal transduction of the target-organs].

    PubMed

    Yi, Shou-Xiang; Peng, Yan

    2009-10-01

    Abundant research results have shown that multiple levels and links of cellular transmembrane signal transduction pathways in the target organs were involved in the efficacy of acupuncture. For instance, 1) various extra-cellular growth factors for initiating signal transduction by activating tyrosine protein kinase and non-receptor tyrosine kinase, 2) G protein-coupled protein kinase-second signal messengers, 3) ligands acting on intra-nuclear receptors to activate transduction pathway of nuclear transcription factors of the target genes, have been demonstrated in the favorable regulating process of acupuncture and moxibustion in different pathological animal models. In the present paper, the authors review the progress of studies on the abovementioned mechanism of acu-moxibustion underlying improving some disorders as 1) pain, cerebral ischemia, and senile dementia, 2) inflammation and tumor, and 3) myocardial ischemia. Moreover, the authors also analyze the extant problems and make a prospect on the future studies about the cellular transmembrane signal transduction pathways involving the effects of acupuncture and moxibustion. PMID:20128298

  5. Network Features and Pathway Analyses of a Signal Transduction Cascade

    PubMed Central

    Yanashima, Ryoji; Kitagawa, Noriyuki; Matsubara, Yoshiya; Weatheritt, Robert; Oka, Kotaro; Kikuchi, Shinichi; Tomita, Masaru; Ishizaki, Shun

    2008-01-01

    The scale-free and small-world network models reflect the functional units of networks. However, when we investigated the network properties of a signaling pathway using these models, no significant differences were found between the original undirected graphs and the graphs in which inactive proteins were eliminated from the gene expression data. We analyzed signaling networks by focusing on those pathways that best reflected cellular function. Therefore, our analysis of pathways started from the ligands and progressed to transcription factors and cytoskeletal proteins. We employed the Python module to assess the target network. This involved comparing the original and restricted signaling cascades as a directed graph using microarray gene expression profiles of late onset Alzheimer's disease. The most commonly used method of shortest-path analysis neglects to consider the influences of alternative pathways that can affect the activation of transcription factors or cytoskeletal proteins. We therefore introduced included k-shortest paths and k-cycles in our network analysis using the Python modules, which allowed us to attain a reasonable computational time and identify k-shortest paths. This technique reflected results found in vivo and identified pathways not found when shortest path or degree analysis was applied. Our module enabled us to comprehensively analyse the characteristics of biomolecular networks and also enabled analysis of the effects of diseases considering the feedback loop and feedforward loop control structures as an alternative path. PMID:19543432

  6. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model.

    PubMed

    Kleist, Andrew B; Getschman, Anthony E; Ziarek, Joshua J; Nevins, Amanda M; Gauthier, Pierre-Arnaud; Chevigné, Andy; Szpakowska, Martyna; Volkman, Brian F

    2016-08-15

    Chemokine receptor (CKR) signaling forms the basis of essential immune cellular functions, and dysregulated CKR signaling underpins numerous disease processes of the immune system and beyond. CKRs, which belong to the seven transmembrane domain receptor (7TMR) superfamily, initiate signaling upon binding of endogenous, secreted chemokine ligands. Chemokine-CKR interactions are traditionally described by a two-step/two-site mechanism, in which the CKR N-terminus recognizes the chemokine globular core (i.e. site 1 interaction), followed by activation when the unstructured chemokine N-terminus is inserted into the receptor TM bundle (i.e. site 2 interaction). Several recent studies challenge the structural independence of sites 1 and 2 by demonstrating physical and allosteric links between these supposedly separate sites. Others contest the functional independence of these sites, identifying nuanced roles for site 1 and other interactions in CKR activation. These developments emerge within a rapidly changing landscape in which CKR signaling is influenced by receptor PTMs, chemokine and CKR dimerization, and endogenous non-chemokine ligands. Simultaneous advances in the structural and functional characterization of 7TMR biased signaling have altered how we understand promiscuous chemokine-CKR interactions. In this review, we explore new paradigms in CKR signal transduction by considering studies that depict a more intricate architecture governing the consequences of chemokine-CKR interactions. PMID:27106080

  7. Structure-Function of CD36 and Importance of Fatty Acid Signal Transduction in Fat Metabolism

    PubMed Central

    Pepino, Marta Yanina; Kuda, Ondrej; Samovski, Dmitri; Abumrad, Nada A

    2015-01-01

    CD36 is a scavenger receptor that functions in high affinity tissue uptake of long chain fatty acids (FA) and contributes under excessive fat supply to lipid accumulation and metabolic dysfunction. This review describes recent evidence regarding the CD36 FA binding site and a potential mechanism for FA transfer. It also presents the view that CD36 and FA signaling coordinate fat utilization based on newly identified CD36 actions that involve oral fat perception, intestinal fat absorption, secretion of the peptides cholecystokinin and secretin, regulation of hepatic lipoprotein output, activation of beta oxidation by muscle and regulation of the production of the FA derived bioactive eicosanoids. Thus abnormalities of fat metabolism and the associated pathology might involve dysfunction of CD36-mediated signal transduction in addition to the changes of FA uptake. PMID:24850384

  8. An intimate link: two-component signal transduction systems and metal transport systems in bacteria

    PubMed Central

    Singh, Kamna; Senadheera, Dilani B; Cvitkovitch, Dennis G

    2014-01-01

    Bacteria have evolved various strategies to contend with high concentrations of environmental heavy metal ions for rapid, adaptive responses to maintain cell viability. Evidence gathered in the past two decades suggests that bacterial two-component signal transduction systems (TCSTSs) are intimately involved in monitoring cation accumulation, and can regulate the expression of related metabolic and virulence genes to elicit adaptive responses to changes in the concentration of these ions. Using examples garnered from recent studies, we summarize the cross-regulatory relationships between metal ions and TCSTSs. We present evidence of how bacterial TCSTSs modulate metal ion homeostasis and also how metal ions, in turn, function to control the activities of these signaling systems linked with bacterial survival and virulence. PMID:25437189

  9. A CRISPR-Based Toolbox for Studying T Cell Signal Transduction

    PubMed Central

    Chi, Shen; Weiss, Arthur; Wang, Haopeng

    2016-01-01

    CRISPR/Cas9 system is a powerful technology to perform genome editing in a variety of cell types. To facilitate the application of Cas9 in mapping T cell signaling pathways, we generated a toolbox for large-scale genetic screens in human Jurkat T cells. The toolbox has three different Jurkat cell lines expressing distinct Cas9 variants, including wild-type Cas9, dCas9-KRAB, and sunCas9. We demonstrated that the toolbox allows us to rapidly disrupt endogenous gene expression at the DNA level and to efficiently repress or activate gene expression at the transcriptional level. The toolbox, in combination with multiple currently existing genome-wide sgRNA libraries, will be useful to systematically investigate T cell signal transduction using both loss-of-function and gain-of-function genetic screens. PMID:27057542

  10. An integrated image analysis platform to quantify signal transduction in single cells.

    PubMed

    Pelet, Serge; Dechant, Reinhard; Lee, Sung Sik; van Drogen, Frank; Peter, Matthias

    2012-10-01

    Microscopy can provide invaluable information about biological processes at the single cell level. It remains a challenge, however, to extract quantitative information from these types of datasets. We have developed an image analysis platform named YeastQuant to simplify data extraction by offering an integrated method to turn time-lapse movies into single cell measurements. This platform is based on a database with a graphical user interface where the users can describe their experiments. The database is connected to the engineering software Matlab, which allows extracting the desired information by automatically segmenting and quantifying the microscopy images. We implemented three different segmentation methods that recognize individual cells under different conditions, and integrated image analysis protocols that allow measuring and analyzing distinct cellular readouts. To illustrate the power and versatility of YeastQuant, we investigated dynamic signal transduction processes in yeast. First, we quantified the expression of fluorescent reporters induced by osmotic stress to study noise in gene expression. Second, we analyzed the dynamic relocation of endogenous proteins from the cytoplasm to the cell nucleus, which provides a fast measure of pathway activity. These examples demonstrate that YeastQuant provides a versatile and expandable database and an experimental framework that improves image analysis and quantification of diverse microscopy-based readouts. Such dynamic single cell measurements are highly needed to establish mathematical models of signal transduction pathways. PMID:22976484

  11. Signal transduction in endothelial cells by the angiogenesis inhibitor histidine-rich glycoprotein targets focal adhesions

    SciTech Connect

    Lee, Chunsik; Dixelius, Johan; Thulin, Asa; Kawamura, Harukiyo; Claesson-Welsh, Lena; Olsson, Anna-Karin . E-mail: Anna-Karin.Olsson@genpat.uu.se

    2006-08-01

    Histidine-rich glycoprotein (HRGP) is an abundant heparin-binding plasma protein. We have shown that a fragment released from the central histidine/proline-rich (His/Pro-rich) domain of HRGP blocks endothelial cell migration in vitro and vascularization and growth of murine fibrosarcoma in vivo. The minimal active HRGP domain exerting the anti-angiogenic effect was recently narrowed down to a 35 amino acid peptide, HRGP330, derived from the His/Pro-rich domain of HRGP. By use of a signal transduction antibody array representing 400 different signal transduction molecules, we now show that HRGP and the synthetic peptide HRGP330 specifically induce tyrosine phosphorylation of focal adhesion kinase and its downstream substrate paxillin in endothelial cells. HRGP/HRGP330 treatment of endothelial cells induced disruption of actin stress fibers, a process reversed by treatment of cells with the FAK inhibitor geldanamycin. In addition, VEGF-mediated endothelial cell tubular morphogenesis in a three-dimensional collagen matrix was inhibited by HRGP and HRGP330. In contrast, VEGF-induced proliferation was not affected by HRGP or HRGP330, demonstrating the central role of cell migration during tube formation. In conclusion, our data show that HRGP targets focal adhesions in endothelial cells, thereby disrupting the cytoskeletal organization and the ability of endothelial cells to assemble into vessel structures.

  12. Tackling the bottleneck in bacterial signal transduction research: high-throughput identification of signal molecules.

    PubMed

    Krell, Tino

    2015-05-01

    Signal transduction processes are typically initiated by the interaction of signal molecules with sensor domains. The current lack of information on the signal molecules that feed into regulatory circuits forms a major bottleneck that hampers the understanding of regulatory processes. McKellar et al. report a high-throughput approach for the identification of signal molecules, which is based on thermal shift assays of recombinant sensor domains in the absence and presence of compounds from commercially available ligand collections. Initial binding studies with the sensor domain of the PctA chemoreceptor of Pseudomonas aeruginosa showed a close match between thermal shift assay results and microcalorimetric studies reported previously. Using thermal shift assays the authors then identify signals that bind to three chemoreceptors of the kiwifruit pathogen P. syringae pv. Actinidiae NZ-V13. Microcalorimetric binding studies and chemotaxis assays have validated the relevance of these ligands. The power of this technique lies in the combination of a high-throughput analytical tool with commercially available compound collections. The approach reported is universal since it can be employed to identify signal molecules to any type of sensor domain. There is no doubt that this technique will facilitate the identification of many signal molecules in future years. PMID:25708679

  13. Molecular Analysis of the Graviperception Signal Transduction in the Flagellate Euglena

    NASA Astrophysics Data System (ADS)

    Häder, Donat; Daiker, Viktor; Richter, Peter; Lebert, Michael

    The unicellular flagellate Euglena gracilis perceives and reacts to the gravitational vector of the Earth. Recent results of experiments on parabolic rocket flights have revealed that the orientation can be explained by passive orientation only to a small extend while the remainder relies on an active physiological sensor and an internal sensory transduction chain. Our current working hypothesis is based on the fact that the cellular contents is heavier than the surrounding medium and consequently exerts pressure onto the lower membrane where it activates mechano-sensitive ion channels located at the front end under the trailing flagellum. We recently succeeded in identifying these channels as gene products of the TRP family. RNAi of the corresponding gene abolished graviperception. These channels allow a gated influx of calcium which depolarizes the internal electrical potential and eventually causes a course correction by the flagellar beating. The inwardly gated calcium binds to a specific calmodulin which is likewise an intrinsic element of the signal transduction chain. RNAi of the related mRNA also stopped graviperception. This calmodulin is thought to activate an adenylyl cyclase which generates cyclic AMP which in turn modulates the beating pattern of the flagellum.

  14. Twist plays an essential role in FGF and SHH signal transduction during mouse limb development.

    PubMed

    O'Rourke, Meredith P; Soo, Kenneth; Behringer, Richard R; Hui, Chi-Chung; Tam, Patrick P L

    2002-08-01

    Loss of Twist gene function arrests the growth of the limb bud shortly after its formation. In the Twist(-/-) forelimb bud, Fgf10 expression is reduced, Fgf4 is not expressed, and the domain of Fgf8 and Fgfr2 expression is altered. This is accompanied by disruption of the expression of genes (Shh, Gli1, Gli2, Gli3, and Ptch) associated with SHH signalling in the limb bud mesenchyme, the down-regulation of Bmp4 in the apical ectoderm, the absence of Alx3, Alx4, Pax1, and Pax3 activity in the mesenchyme, and a reduced potency of the limb bud tissues to differentiate into osteogenic and myogenic tissues. Development of the hindlimb buds in Twist(-/-) embryos is also retarded. The overall activity of genes involved in SHH signalling is reduced.Fgf4 and Fgf8 expression is lost or reduced in the apical ectoderm, but other genes (Fgf10, Fgfr2) involved with FGF signalling are expressed in normal patterns. Twist(+/-);Gli3(+/XtJ) mice display more severe polydactyly than that seen in either Twist(+/-) or Gli3(+/XtJ) mice, suggesting that there is genetic interaction between Twist and Gli3 activity. Twist activity is therefore essential for the growth and differentiation of the limb bud tissues as well as regulation of tissue patterning via the modulation of SHH and FGF signal transduction. PMID:12142027

  15. Modulation of signal transduction pathways by natural compounds in cancer.

    PubMed

    Ranjan, Alok; Fofaria, Neel M; Kim, Sung-Hoon; Srivastava, Sanjay K

    2015-10-01

    Cancer is generally regarded as the result of abnormal growth of cells. According to World Health Organization, cancer is the leading cause of mortality worldwide. Mother nature provides a large source of bioactive compounds with excellent therapeutic efficacy. Numerous phytochemicals from nature have been investigated for anticancer properties. In this review article, we discuss several natural compounds, which have shown anti-cancer activity. Natural compounds induce cell cycle arrest, activate intrinsic and extrinsic apoptosis pathways, generate Reactive Oxygen Species (ROS), and down-regulate activated signaling pathways, resulting in inhibition of cell proliferation, progression and metastasis of cancer. Several preclinical studies have suggested that natural compounds can also increase the sensitivity of resistant cancers to available chemotherapy agents. Furthermore, combining FDA approved anti-cancer drugs with natural compounds results in improved efficacy. On the basis of these exciting outcomes of natural compounds against several cancer types, several agents have already advanced to clinical trials. In conclusion, preclinical results and clinical outcomes against cancer suggest promising anticancer efficacy of agents from natural sources. PMID:26481373

  16. Molecular Insights into Toluene Sensing in the TodS/TodT Signal Transduction System*

    PubMed Central

    Koh, Serry; Hwang, Jungwon; Guchhait, Koushik; Lee, Eun-Gyeong; Kim, Sang-Yoon; Kim, Sujin; Lee, Sangmin; Chung, Jeong Min; Jung, Hyun Suk; Lee, Sang Jun; Ryu, Choong-Min; Lee, Seung-Goo; Oh, Tae-Kwang; Kwon, Ohsuk; Kim, Myung Hee

    2016-01-01

    TodS is a sensor kinase that responds to various monoaromatic compounds, which either cause an agonistic or antagonistic effect on phosphorylation of its cognate response regulator TodT, and controls tod operon expression in Pseudomonas putida strains. We describe a molecular sensing mechanism of TodS that is activated in response to toluene. The crystal structures of the TodS Per-Arnt-Sim (PAS) 1 sensor domain (residues 43–164) and its complex with toluene (agonist) or 1,2,4-trimethylbenzene (antagonist) show a typical β2α3β3 PAS fold structure (residues 45–149), forming a hydrophobic ligand-binding site. A signal transfer region (residues 150–163) located immediately after the canonical PAS fold may be intrinsically flexible and disordered in both apo-PAS1 and antagonist-bound forms and dramatically adapt an α-helix upon toluene binding. This structural change in the signal transfer region is proposed to result in signal transmission to activate the TodS/TodT two-component signal transduction system. Site-directed mutagenesis and β-galactosidase assays using a P. putida reporter strain system verified the essential residues involved in ligand sensing and signal transfer and suggest that the Phe46 residue acts as a ligand-specific switch. PMID:26903514

  17. Molecular Insights into Toluene Sensing in the TodS/TodT Signal Transduction System.

    PubMed

    Koh, Serry; Hwang, Jungwon; Guchhait, Koushik; Lee, Eun-Gyeong; Kim, Sang-Yoon; Kim, Sujin; Lee, Sangmin; Chung, Jeong Min; Jung, Hyun Suk; Lee, Sang Jun; Ryu, Choong-Min; Lee, Seung-Goo; Oh, Tae-Kwang; Kwon, Ohsuk; Kim, Myung Hee

    2016-04-15

    TodS is a sensor kinase that responds to various monoaromatic compounds, which either cause an agonistic or antagonistic effect on phosphorylation of its cognate response regulator TodT, and controls tod operon expression in Pseudomonas putida strains. We describe a molecular sensing mechanism of TodS that is activated in response to toluene. The crystal structures of the TodS Per-Arnt-Sim (PAS) 1 sensor domain (residues 43-164) and its complex with toluene (agonist) or 1,2,4-trimethylbenzene (antagonist) show a typical β2α3β3 PAS fold structure (residues 45-149), forming a hydrophobic ligand-binding site. A signal transfer region (residues 150-163) located immediately after the canonical PAS fold may be intrinsically flexible and disordered in both apo-PAS1 and antagonist-bound forms and dramatically adapt an α-helix upon toluene binding. This structural change in the signal transfer region is proposed to result in signal transmission to activate the TodS/TodT two-component signal transduction system. Site-directed mutagenesis and β-galactosidase assays using a P. putida reporter strain system verified the essential residues involved in ligand sensing and signal transfer and suggest that the Phe(46) residue acts as a ligand-specific switch. PMID:26903514

  18. Nonselective block by La3+ of Arabidopsis ion channels involved in signal transduction

    NASA Technical Reports Server (NTRS)

    Lewis, B. D.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Lanthanide ions such as La3+ are frequently used as blockers to test the involvement of calcium channels in plant and animal signal transduction pathways. For example, the large rise in cytoplasmic Ca2+ concentration triggered by cold shock in Arabidopsis seedlings is effectively blocked by 10 mM La3+ and we show here that the simultaneous large membrane depolarization is similarly blocked. However, a pharmacological tool is only as useful as it is selective and the specificity of La3+ for calcium channels was brought into question by our finding that it also blocked a blue light (BL)-induced depolarization that results from anion channel activation and believed not to involve calcium channels. This unexpected inhibitory effect of La3+ on the BL-induced depolarization is explained by our finding that 10 mM La3+ directly and completely blocked the BL-activated anion channel when applied to excised patches. We have investigated the ability of La3+ to block noncalcium channels in Arabidopsis. In addition to the BL-activated anion channel, 10 mM La3+ blocked a cation channel and a stretch-activated channel in patches of plasma membrane excised from hypocotyl cells. In root cells, 10 mM La3+ inhibited the activity of an outward-rectifying potassium channel at the whole cell and single-channel level by 47% and 58%, respectively. We conclude that La3+ is a nonspecific blocker of multiple ionic conductances in Arabidopsis and may disrupt signal transduction processes independently of any effect on Ca2+ channels.

  19. 14-3-3ζ up-regulates hypoxia-inducible factor-1α in hepatocellular carcinoma via activation of PI3K/Akt/NF-кB signal transduction pathway

    PubMed Central

    Tang, Yufu; Lv, Pengfei; Sun, Zhongyi; Han, Lei; Luo, Bichao; Zhou, Wenping

    2015-01-01

    14-3-3ζ protein, a member of 14-3-3 family, plays important roles in multiple cellular processes. Our previous study showed that 14-3-3ζ could bind to regulate the expression of hypoxia-inducible factor-1α (HIF-1α), which is induced by hypoxia and a crucial factor for induction of tumor metastasis. Moreover, we also have confirmed the response of 14-3-3ζ to hypoxia in our unpublished data as well. Thus, in the present study, we attempted to reveal that whether the regulation effect of 14-3-3ζ on HIF-1α functioned in a similar pattern as hypoxia. Stable regulation of 14-3-3ζ in human HCC cell line SMMC-772 and HCC-LM3 was achieved. The regulation of 14-3-3ζ on HIF-1α mRNA transcription was evaluated by luciferase activity assay and quantitative real-time PCR (qPCR). The effect of 14-3-3ζ on the production of HIF-1α and pathways determining HIF-1α’s response to hypoxia was assessed using western blotting assay. Our results showed that regulation of 14-3-3ζ expression influenced the activity of HIF-1α, phosphatidyl inositol 3-kinase (PI3K), Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), and nuclear factor kappa B (NF-кB). Blocking of these pathways using indicated inhibitors revealed that 14-3-3ζ enhanced the production of HIF-1α via the activation of PI3K/Akt/NF-кB pathway, which was identical to hypoxia induced HIF-1α expression. For the first time, our study described the key role of 14-3-3ζ in the HIF-1α production in HCC cells. And the molecule exerted its function on HIF-1α both by directly binding to it and via PI3K/Akt/NF-кB signal transduction pathway. PMID:26884855

  20. Novel optical methodologies in studying mechanical signal transduction in mammalian cells

    NASA Technical Reports Server (NTRS)

    Stamatas, G. N.; McIntire, L. V.

    1999-01-01

    For the last 3 decades evidence has been accumulating that some types of mammalian cells respond to their mechanically active environment by altering their morphology, growth rate, and metabolism. The study of such responses is very important in understanding, physiological and pathological conditions ranging from bone formation to atherosclerosis. Obtaining this knowledge has been the goal for an active research area in bioengineering termed cell mechanotransduction. The advancement of optical methodologies used in cell biology research has given the tools to elucidate cellular mechanisms that would otherwise be impossible to visualize. Combined with molecular biology techniques, they give engineers invaluable tools in understanding the chemical pathways involved in mechanotransduction. Herein we briefly review the current knowledge on mechanical signal transduction in mammalian cells, focusing on the application of novel optical techniques in the ongoing research.

  1. Role of Cdc42p in Pheromone-Stimulated Signal Transduction in Saccharomyces cerevisiae

    PubMed Central

    Moskow, John J.; Gladfelter, Amy S.; Lamson, Rachel E.; Pryciak, Peter M.; Lew, Daniel J.

    2000-01-01

    CDC42 encodes a highly conserved GTPase of the Rho family that is best known for its role in regulating cell polarity and actin organization. In addition, various studies of both yeast and mammalian cells have suggested that Cdc42p, through its interaction with p21-activated kinases (PAKs), plays a role in signaling pathways that regulate target gene transcription. However, recent studies of the yeast pheromone response pathway suggested that prior results with temperature-sensitive cdc42 mutants were misleading and that Cdc42p and the Cdc42p-PAK interaction are not involved in signaling. To clarify this issue, we have identified and characterized novel viable pheromone-resistant cdc42 alleles that retain the ability to perform polarity-related functions. Mutation of the Cdc42p residue Val36 or Tyr40 caused defects in pheromone signaling and in the localization of the Ste20p PAK in vivo and affected binding to the Ste20p Cdc42p-Rac interactive binding (CRIB) domain in vitro. Epistasis analysis suggested that they affect the signaling step at which Ste20p acts, and overproduction of Ste20p rescued the defect. These results suggest that Cdc42p is in fact required for pheromone response and that interaction with the PAK Ste20p is critical for that role. Furthermore, the ste20ΔCRIB allele, previously used to disrupt the Cdc42p-Ste20p interaction, behaved as an activated allele, largely bypassing the signaling defect of the cdc42 mutants. Additional observations lead us to suggest that Cdc42p collaborates with the SH3-domain protein Bem1p to facilitate signal transduction, possibly by providing a cell surface scaffold that aids in the local concentration of signaling kinases, thus promoting activation of a mitogen-activated protein kinase cascade by Ste20p. PMID:11003652

  2. Role of Cdc42p in pheromone-stimulated signal transduction in Saccharomyces cerevisiae.

    PubMed

    Moskow, J J; Gladfelter, A S; Lamson, R E; Pryciak, P M; Lew, D J

    2000-10-01

    CDC42 encodes a highly conserved GTPase of the Rho family that is best known for its role in regulating cell polarity and actin organization. In addition, various studies of both yeast and mammalian cells have suggested that Cdc42p, through its interaction with p21-activated kinases (PAKs), plays a role in signaling pathways that regulate target gene transcription. However, recent studies of the yeast pheromone response pathway suggested that prior results with temperature-sensitive cdc42 mutants were misleading and that Cdc42p and the Cdc42p-PAK interaction are not involved in signaling. To clarify this issue, we have identified and characterized novel viable pheromone-resistant cdc42 alleles that retain the ability to perform polarity-related functions. Mutation of the Cdc42p residue Val36 or Tyr40 caused defects in pheromone signaling and in the localization of the Ste20p PAK in vivo and affected binding to the Ste20p Cdc42p-Rac interactive binding (CRIB) domain in vitro. Epistasis analysis suggested that they affect the signaling step at which Ste20p acts, and overproduction of Ste20p rescued the defect. These results suggest that Cdc42p is in fact required for pheromone response and that interaction with the PAK Ste20p is critical for that role. Furthermore, the ste20DeltaCRIB allele, previously used to disrupt the Cdc42p-Ste20p interaction, behaved as an activated allele, largely bypassing the signaling defect of the cdc42 mutants. Additional observations lead us to suggest that Cdc42p collaborates with the SH3-domain protein Bem1p to facilitate signal transduction, possibly by providing a cell surface scaffold that aids in the local concentration of signaling kinases, thus promoting activation of a mitogen-activated protein kinase cascade by Ste20p. PMID:11003652

  3. Phosphodiesterase 4D acts downstream of Neuropilin to control Hedgehog signal transduction and the growth of medulloblastoma.

    PubMed

    Ge, Xuecai; Milenkovic, Ljiljana; Suyama, Kaye; Hartl, Tom; Purzner, Teresa; Winans, Amy; Meyer, Tobias; Scott, Matthew P

    2015-01-01

    Alterations in Hedgehog (Hh) signaling lead to birth defects and cancers including medulloblastoma, the most common pediatric brain tumor. Although inhibitors targeting the membrane protein Smoothened suppress Hh signaling, acquired drug resistance and tumor relapse call for additional therapeutic targets. Here we show that phosphodiesterase 4D (PDE4D) acts downstream of Neuropilins to control Hh transduction and medulloblastoma growth. PDE4D interacts directly with Neuropilins, positive regulators of Hh pathway. The Neuropilin ligand Semaphorin3 enhances this interaction, promoting PDE4D translocation to the plasma membrane and cAMP degradation. The consequent inhibition of protein kinase A (PKA) enhances Hh transduction. In the developing cerebellum, genetic removal of Neuropilins reduces Hh signaling activity and suppresses proliferation of granule neuron precursors. In mouse medulloblastoma allografts, PDE4D inhibitors suppress Hh transduction and inhibit tumor growth. Our findings reveal a new regulatory mechanism of Hh transduction, and highlight PDE4D as a promising target to treat Hh-related tumors. PMID:26371509

  4. Phosphodiesterase 4D acts downstream of Neuropilin to control Hedgehog signal transduction and the growth of medulloblastoma

    PubMed Central

    Ge, Xuecai; Milenkovic, Ljiljana; Suyama, Kaye; Hartl, Tom; Purzner, Teresa; Winans, Amy; Meyer, Tobias; Scott, Matthew P

    2015-01-01

    Alterations in Hedgehog (Hh) signaling lead to birth defects and cancers including medulloblastoma, the most common pediatric brain tumor. Although inhibitors targeting the membrane protein Smoothened suppress Hh signaling, acquired drug resistance and tumor relapse call for additional therapeutic targets. Here we show that phosphodiesterase 4D (PDE4D) acts downstream of Neuropilins to control Hh transduction and medulloblastoma growth. PDE4D interacts directly with Neuropilins, positive regulators of Hh pathway. The Neuropilin ligand Semaphorin3 enhances this interaction, promoting PDE4D translocation to the plasma membrane and cAMP degradation. The consequent inhibition of protein kinase A (PKA) enhances Hh transduction. In the developing cerebellum, genetic removal of Neuropilins reduces Hh signaling activity and suppresses proliferation of granule neuron precursors. In mouse medulloblastoma allografts, PDE4D inhibitors suppress Hh transduction and inhibit tumor growth. Our findings reveal a new regulatory mechanism of Hh transduction, and highlight PDE4D as a promising target to treat Hh-related tumors. DOI: http://dx.doi.org/10.7554/eLife.07068.001 PMID:26371509

  5. A novel computer simulation method for simulating the multiscale transduction dynamics of signal proteins

    NASA Astrophysics Data System (ADS)

    Peter, Emanuel; Dick, Bernhard; Baeurle, Stephan A.

    2012-03-01

    Signal proteins are able to adapt their response to a change in the environment, governing in this way a broad variety of important cellular processes in living systems. While conventional molecular-dynamics (MD) techniques can be used to explore the early signaling pathway of these protein systems at atomistic resolution, the high computational costs limit their usefulness for the elucidation of the multiscale transduction dynamics of most signaling processes, occurring on experimental timescales. To cope with the problem, we present in this paper a novel multiscale-modeling method, based on a combination of the kinetic Monte-Carlo- and MD-technique, and demonstrate its suitability for investigating the signaling behavior of the photoswitch light-oxygen-voltage-2-Jα domain from Avena Sativa (AsLOV2-Jα) and an AsLOV2-Jα-regulated photoactivable Rac1-GTPase (PA-Rac1), recently employed to control the motility of cancer cells through light stimulus. More specifically, we show that their signaling pathways begin with a residual re-arrangement and subsequent H-bond formation of amino acids near to the flavin-mononucleotide chromophore, causing a coupling between β-strands and subsequent detachment of a peripheral α-helix from the AsLOV2-domain. In the case of the PA-Rac1 system we find that this latter process induces the release of the AsLOV2-inhibitor from the switchII-activation site of the GTPase, enabling signal activation through effector-protein binding. These applications demonstrate that our approach reliably reproduces the signaling pathways of complex signal proteins, ranging from nanoseconds up to seconds at affordable computational costs.

  6. A novel computer simulation method for simulating the multiscale transduction dynamics of signal proteins.

    PubMed

    Peter, Emanuel; Dick, Bernhard; Baeurle, Stephan A

    2012-03-28

    Signal proteins are able to adapt their response to a change in the environment, governing in this way a broad variety of important cellular processes in living systems. While conventional molecular-dynamics (MD) techniques can be used to explore the early signaling pathway of these protein systems at atomistic resolution, the high computational costs limit their usefulness for the elucidation of the multiscale transduction dynamics of most signaling processes, occurring on experimental timescales. To cope with the problem, we present in this paper a novel multiscale-modeling method, based on a combination of the kinetic Monte-Carlo- and MD-technique, and demonstrate its suitability for investigating the signaling behavior of the photoswitch light-oxygen-voltage-2-Jα domain from Avena Sativa (AsLOV2-Jα) and an AsLOV2-Jα-regulated photoactivable Rac1-GTPase (PA-Rac1), recently employed to control the motility of cancer cells through light stimulus. More specifically, we show that their signaling pathways begin with a residual re-arrangement and subsequent H-bond formation of amino acids near to the flavin-mononucleotide chromophore, causing a coupling between β-strands and subsequent detachment of a peripheral α-helix from the AsLOV2-domain. In the case of the PA-Rac1 system we find that this latter process induces the release of the AsLOV2-inhibitor from the switchII-activation site of the GTPase, enabling signal activation through effector-protein binding. These applications demonstrate that our approach reliably reproduces the signaling pathways of complex signal proteins, ranging from nanoseconds up to seconds at affordable computational costs. PMID:22462840

  7. Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: Photoconversion and signal transduction

    SciTech Connect

    Yang, Xiaojing; Kuk, Jane; Moffat, Keith

    2008-11-12

    Phytochromes are red-light photoreceptors that regulate light responses in plants, fungi, and bacteria via reversible photoconversion between red (Pr) and far-red (Pfr) light-absorbing states. Here we report the crystal structure at 2.9 {angstrom} resolution of a bacteriophytochrome from Pseudomonas aeruginosa with an intact, fully photoactive photosensory core domain in its dark-adapted Pfr state. This structure reveals how unusual interdomain interactions, including a knot and an 'arm' structure near the chromophore site, bring together the PAS (Per-ARNT-Sim), GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA), and PHY (phytochrome) domains to achieve Pr/Pfr photoconversion. The PAS, GAF, and PHY domains have topologic elements in common and may have a single evolutionary origin. We identify key interactions that stabilize the chromophore in the Pfr state and provide structural and mutational evidence to support the essential role of the PHY domain in efficient Pr/Pfr photoconversion. We also identify a pair of conserved residues that may undergo concerted conformational changes during photoconversion. Modeling of the full-length bacteriophytochrome structure, including its output histidine kinase domain, suggests how local structural changes originating in the photosensory domain modulate interactions between long, cross-domain signaling helices at the dimer interface and are transmitted to the spatially distant effector domain, thereby regulating its histidine kinase activity.

  8. Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photoconversion and signal transduction.

    PubMed

    Yang, Xiaojing; Kuk, Jane; Moffat, Keith

    2008-09-23

    Phytochromes are red-light photoreceptors that regulate light responses in plants, fungi, and bacteria via reversible photoconversion between red (Pr) and far-red (Pfr) light-absorbing states. Here we report the crystal structure at 2.9 A resolution of a bacteriophytochrome from Pseudomonas aeruginosa with an intact, fully photoactive photosensory core domain in its dark-adapted Pfr state. This structure reveals how unusual interdomain interactions, including a knot and an "arm" structure near the chromophore site, bring together the PAS (Per-ARNT-Sim), GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA), and PHY (phytochrome) domains to achieve Pr/Pfr photoconversion. The PAS, GAF, and PHY domains have topologic elements in common and may have a single evolutionary origin. We identify key interactions that stabilize the chromophore in the Pfr state and provide structural and mutational evidence to support the essential role of the PHY domain in efficient Pr/Pfr photoconversion. We also identify a pair of conserved residues that may undergo concerted conformational changes during photoconversion. Modeling of the full-length bacteriophytochrome structure, including its output histidine kinase domain, suggests how local structural changes originating in the photosensory domain modulate interactions between long, cross-domain signaling helices at the dimer interface and are transmitted to the spatially distant effector domain, thereby regulating its histidine kinase activity. PMID:18799746

  9. Discovery of GPCR ligands for probing signal transduction pathways

    PubMed Central

    Brogi, Simone; Tafi, Andrea; Désaubry, Laurent; Nebigil, Canan G.

    2014-01-01

    G protein-coupled receptors (GPCRs) are seven integral transmembrane proteins that are the primary targets of almost 30% of approved drugs and continue to represent a major focus of pharmaceutical research. All of GPCR targeted medicines were discovered by classical medicinal chemistry approaches. After the first GPCR crystal structures were determined, the docking screens using these structures lead to discovery of more novel and potent ligands. There are over 360 pharmaceutically relevant GPCRs in the human genome and to date about only 30 of structures have been determined. For these reasons, computational techniques such as homology modeling and molecular dynamics simulations have proven their usefulness to explore the structure and function of GPCRs. Furthermore, structure-based drug design and in silico screening (High Throughput Docking) are still the most common computational procedures in GPCRs drug discovery. Moreover, ligand-based methods such as three-dimensional quantitative structure–selectivity relationships, are the ideal molecular modeling approaches to rationalize the activity of tested GPCR ligands and identify novel GPCR ligands. In this review, we discuss the most recent advances for the computational approaches to effectively guide selectivity and affinity of ligands. We also describe novel approaches in medicinal chemistry, such as the development of biased agonists, allosteric modulators, and bivalent ligands for class A GPCRs. Furthermore, we highlight some knockout mice models in discovering biased signaling selectivity. PMID:25506327

  10. Analysis of a signal transduction pathway involved in leaf epidermis differentiation.

    SciTech Connect

    Philip W. Becraft

    2005-05-23

    The major objective of this study was to identify and analyze signal transduction factors that function with the CR4 receptor kinase. We pursued this analysis in Arabidopsis. Analysis of other members of the ACR4 related receptor (CRR) family produced biochemical evidence consistent with some of them functioning in ACR4 signal transduction. Yeast 2-hybrid identified six proteins that interact with the cytoplasmic domain of ACR4, representing putative downstream signal transduction components. The interactions for all 6 proteins were verified by in vitro pull down assays. Five of the interacting proteins were phosphorylated by ACR4. We also identified candidate interactors with the extracellular TNFR domain. We hypothesize this may be the ligand binding domain for ACR4. In one approach, yeast 2-hybrid was again used and five candidate proteins identified. Nine additional candidates were identified in a genome wide scan of Arabidopsis amino acid sequences that threaded onto the TNF structure.

  11. An adaptive coarse graining method for signal transduction in three dimensions

    PubMed Central

    Archuleta, Michelle N.; McDermott, Jason E.; Edwards, Jeremy S.; Resat, Haluk

    2013-01-01

    The spatio-temporal landscape of the plasma membrane regulates activation and signal transduction of membrane bound receptors by restricting their two-dimensional mobility and by inducing receptor clustering. This regulation also extends to complex formation between receptors and adaptor proteins, which are the intermediate signaling molecules involved in cellular signaling that relay the received cues from cell surface to cytoplasm and eventually to the nucleus. Although their investigation poses challenging technical difficulties, there is a crucial need to understand the impact of the receptor diffusivity, clustering, and spatial heterogeneity, and of receptor-adaptor protein complex formation on the cellular signal transduction patterns. Building upon our earlier studies, we have developed an adaptive coarse-grained Monte Carlo method that can be used to investigate the role of diffusion, clustering and membrane corralling on receptor association and receptor-adaptor protein complex formation dynamics in three dimensions. The new Monte Carlo lattice based approach allowed us to introduce spatial resolution on the 2-D plasma membrane and to model the cytoplasm in three-dimensions. Being a multi-resolution approach, our new method makes it possible to represent various parts of the cellular system at different levels of detail and enabled us to utilize the locally homogeneous assumption when justified (e.g., cytoplasmic region away from the cell membrane) and avoid its use when high spatial resolution is needed (e.g., cell membrane and cytoplasmic region near the membrane) while keeping the required computational complexity manageable. Our results have shown that diffusion has a significant impact on receptor-receptor dimerization and receptor-adaptor protein complex formation kinetics. We have observed an “adaptor protein hopping” mechanism where the receptor binding proteins may hop between receptors to form short-lived transient complexes. This increased

  12. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  13. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  14. Molecular mechanisms of gravity perception and signal transduction in plants.

    PubMed

    Kolesnikov, Yaroslav S; Kretynin, Serhiy V; Volotovsky, Igor D; Kordyum, Elizabeth L; Ruelland, Eric; Kravets, Volodymyr S

    2016-07-01

    Gravity is one of the environmental cues that direct plant growth and development. Recent investigations of different gravity signalling pathways have added complexity to how we think gravity is perceived. Particular cells within specific organs or tissues perceive gravity stimulus. Many downstream signalling events transmit the perceived information into subcellular, biochemical, and genomic responses. They are rapid, non-genomic, regulatory, and cell-specific. The chain of events may pass by signalling lipids, the cytoskeleton, intracellular calcium levels, protein phosphorylation-dependent pathways, proteome changes, membrane transport, vacuolar biogenesis mechanisms, or nuclear events. These events culminate in changes in gene expression and auxin lateral redistribution in gravity response sites. The possible integration of these signalling events with amyloplast movements or with other perception mechanisms is discussed. Further investigation is needed to understand how plants coordinate mechanisms and signals to sense this important physical factor. PMID:26215561

  15. Signal Transduction in the Chronic Leukemias: Implications for Targeted Therapies

    PubMed Central

    Ahmed, Wesam; Van Etten, Richard A.

    2013-01-01

    The chronic leukemias, including chronic myeloid leukemia (CML), the Philadelphia-negative myeloproliferative neoplasms (MPNs), and chronic lymphocytic leukemia (CLL), have been characterized extensively for abnormalities of cellular signaling pathways. This effort has led to the elucidation of the central role of dysregulated tyrosine kinase signaling in the chronic myeloid neoplasms and of constitutive B-cell receptor signaling in CLL. This, in turn, has stimulated the development of small molecule inhibitors of these signaling pathways for therapy of chronic leukemia. Although the field is still in its infancy, the clinical results with these agents have ranged from encouraging (CLL) to spectacular (CML). In this review, we summarize recent studies that have helped to define the signaling pathways critical to the pathogenesis of the chronic leukemias. We also discuss correlative studies emerging from clinical trials of drugs targeting these pathways. PMID:23307472

  16. Costal2 Functions as a Microtubule-Dependent Motor in the Hedgehog Signal Transduction Pathway

    PubMed Central

    Farzan, Shohreh F.; Ascano, Manuel; Ogden, Stacey K.; Sanial, Matthieu; Brigui, Amira; Plessis, Anne; Robbins, David J.

    2009-01-01

    SUMMARY The Hedgehog (Hh) signaling pathway initiates an evolutionarily conserved developmental program required for the proper patterning of many tissues. Costal2 (Cos2) is a requisite component of the Hh pathway, whose mechanistic role is not well understood. Cos2 was initially predicted, based on its primary sequence, to function as a microtubule-associated (MT) molecular motor. However, despite being identified over a decade ago, evidence showing that Cos2 function might require kinesin-like properties has for the most part been lacking. Thus the prevailing dogma in the field is that Cos2 functions solely as a scaffolding protein during Hh signal transduction. Here, we provide the first evidence that Cos2 motility is required for its biological function, and that this motility may be Hh regulated. We show that Cos2 motility requires an active motor domain, ATP and microtubules. Additionally, Cos2 recruits and transports other components of the Hh signaling pathway, including the transcription factor Cubitus interruptus (Ci), throughout the cell. Drosophila expressing cos2 mutations that encode proteins that lack motility are attenuated in their ability to regulate Ci activity and exhibit phenotypes consistent with attenuated Cos2 function. Combined, these results demonstrate that Cos2 motility plays an important role in its function, regulating the amounts and activity of Ci that ultimately interpret the level of Hh to which cells are exposed. PMID:18691888

  17. Targeting prostate cancer based on signal transduction and cell cycle pathways

    PubMed Central

    Lee, John T.; Lehmann, Brian D.; Terrian, David M.; Chappell, William H.; Stivala, Franca; Libra, Massimo; Martelli, Alberto M.; Steelman, Linda S.

    2008-01-01

    Prostate cancer remains a leading cause of death in men despite increased capacity to diagnose at earlier stages. After prostate cancer has become hormone independent, which often occurs after hormonal ablation therapies, it is difficult to effectively treat. Prostate cancer may arise from mutations and dysregulation of various genes involved in regulation signal transduction (e.g., PTEN, Akt, etc.,) and the cell cycle (e.g., p53, p21Cip1, p27Kip1, Rb, etc.,). This review focuses on the aberrant interactions of signal transduction and cell cycle genes products and how they can contribute to prostate cancer and alter therapeutic effectiveness. PMID:18594202

  18. Exploring signal transduction in heteromultimeric protein based on energy dissipation model.

    PubMed

    Ma, Cheng-Wei; Xiu, Zhi-Long; Zeng, An-Ping

    2015-01-01

    Dynamic intersubunit interactions are key elements in the regulation of many biological systems. A better understanding of how subunits interact with each other and how their interactions are related to dynamic protein structure is a fundamental task in biology. In this paper, a heteromultimeric allosteric protein, Corynebacterium glutamicum aspartokinase, is used as a model system to explore the signal transduction involved in intersubunit interactions and allosteric communication with an emphasis on the intersubunit signaling process. For this purpose, energy dissipation simulation and network construction are conducted for each subunit and the whole protein. Comparison with experimental results shows that the new approach is able to predict all the mutation sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. Additionally, analysis revealed that the function of the effector threonine is to facilitate the binding of the two subunits without contributing to the allosteric communication. During the allosteric regulation upon the binding of the effector lysine, signals can be transferred from the β-subunit to the catalytic site of the α-subunit through both a direct way of intersubunit signal transduction, and an indirect way: first, to the regulatory region of the α-subunit by intersubunit signal transduction and then to the catalytic region by intramolecular signal transduction. Therefore, the new approach is able to illustrate the diversity of the underlying mechanisms when the strength of feedback inhibition by the effector(s) is modulated, providing useful information that has potential applications in engineering heteromultimeric allosteric regulation. PMID:24279729

  19. Effects of low-energy electromagnetic fields (pulsed and DC) on membrane signal transduction processes in biological systems

    SciTech Connect

    Luben, R.A. )

    1991-07-01

    The vertebrate organism possesses a number of internal processes for signaling and communication between cell types. Hormones and neurotransmitters move from one cell type to another and carry chemical messages that modulate the metabolic responses of tissues to the environment. Interaction with these signaling systems is a potential mechanism by which very low-energy electromagnetic fields might produce metabolic responses in the body. Hormone and neurotransmitter receptors are specialized protein molecules that use a variety of biochemical activities to pass chemical signals from the outside of a cell across the plasma membrane to the interior of the cell. Since many low-energy electromagnetic fields have too little energy to directly traverse the membrane, it is possible that they may modify the existing signal transduction processes in cell membranes, thus producing both transduction and biochemical amplification of the effects of the field itself. As an example of the kinds of processes that may be involved in these interactions, one metabolic process in which the physiological effects of low-energy electromagnetic fields is well established is the healing of bone fractures. The process of regulation of bone turnover and healing is reviewed in the context of clinical applications of electromagnetic energy to the healing process, especially for persistent nonunion fractures. A hypothetical molecular mechanism is presented that might account for the observed effects of electromagnetic fields on bone cell metabolism in terms of the fields' interference with signal transduction events involved in the hormonal regulation of osteoblast function and differentiation. 88 refs.

  20. Signal transduction for taurocholic acid in the olfactory system of Atlantic salmon.

    PubMed

    Lo, Y H; Bellis, S L; Cheng, L J; Pang, J; Bradley, T M; Rhoads, D E

    1994-10-01

    Conjugated bile acids such as taurocholic acid (TChA) are potent olfactory stimuli for Atlantic salmon (Salmo salar). A plasma membrane rich fraction was derived from salmon olfactory rosettes and used to investigate TChA signal transduction and receptor binding. In the presence of GTP gamma S, TChA caused dose-dependent stimulation of phosphatidylinositol 4,5-bisphosphate (PIP2) breakdown, half maximal at less than 10(-7) M TChA. Stimulation of PIP2 breakdown by TChA required GTP gamma S, was blocked by GDP beta S, and was mimicked by A1F4-, consistent with a G protein requirement. A1F4- and Ca2+ stimulated breakdown of PIP2, but not phosphatidylcholine, arguing against a non-specific lipase activation. Stimulation of PIP2 breakdown by TChA was maximal at low Ca2+ concentration, < or = 10 nM. Conventional binding analysis with 3H-TChA was inconclusive due to a high degree of non-specific binding and to lack of tissue specificity expected for an olfactory receptor. Analysis of odorant amino acid binding indicated possible interaction of TChA with a putative acidic amino acid receptor but no interaction of TChA with a putative neutral amino acid receptor. We conclude that olfactory discrimination between amino acids and bile acids occurs in part at the receptor level while both classes of odors appear to use the same signal transduction mechanism, G protein mediated activation of phosphoinositide specific phospholipase C (PLC). PMID:7881971

  1. Manumycin inhibits ras signal transduction pathway and induces apoptosis in COLO320-DM human colon tumourcells

    PubMed Central

    Paolo, A Di; Danesi, R; Nardini, D; Bocci, G; Innocenti, F; Fogli, S; Barachini, S; Marchetti, A; Bevilacqua, G; Tacca, M Del

    2000-01-01

    The aim of the present study was to assess the cytotoxicity of manumycin, a specific inhibitor of farnesyl:protein transferase, as well as its effects on protein isoprenylation and kinase-dependent signal transduction in COLO320-DM human colon adenocarcinoma which harbours a wild-type K- ras gene. Immunoblot analysis of isolated cell membranes and total cellular lysates of COLO320-DM cells demonstrated that manumycin dose-dependently reduced p21 ras farnesylation with a 50% inhibitory concentration (IC50) of 2.51 ± 0.11 μM and 2.68 ± 0.20 μM, respectively, while the geranylgeranylation of p21 rhoA and p21 rap1 was not affected. Manumycin dose-dependently inhibited (IC50= 2.40 ± 0.67 μM) the phosphorylation of the mitogen-activated protein kinase/extracellular-regulated kinase 2 (p42MAPK/ERK2), the main cytoplasmic effector of p21 ras, as well as COLO320-DM cell growth (IC50= 3.58 ± 0.27 μM) without affecting the biosynthesis of cholesterol. Mevalonic acid (MVA, 100 μM), a substrate of the isoprenoid synthesis, was unable to protect COLO320-DM cells from manumycin cytotoxicity. Finally, manumycin 1–25 μM for 24–72 h induced oligonucleosomal fragmentation in a dose- and time-dependent manner and MVA did not protect COLO320-DM cells from undergoing DNA cleavage. The present findings indicate that the inhibition of p21 ras processing and signal transduction by manumycin is associated with marked inhibition of cell proliferation and apoptosis in colon cancer cells and the effect on cell growth does not require the presence of a mutated ras gene for maximal expression of chemotherapeutic activity. © 2000 Cancer Research Campaign PMID:10732765

  2. Signal Transduction: Turning a Switch into a Rheostat

    PubMed Central

    Bardwell, Lee

    2010-01-01

    MAP kinase cascades are inherently switch-like, but, during yeast mating, MAPK signaling is graded. A new study suggests that the Ste5 scaffold protein is responsible for making this switch less switch-like. PMID:18957235

  3. TCR Microclusters pre-exist and contain molecules necessary for TCR signal transduction.

    PubMed

    Crites, Travis J; Padhan, Kartika; Muller, James; Krogsgaard, Michelle; Gudla, Prabhakar R; Lockett, Stephen J; Varma, Rajat

    2014-07-01

    TCR-dependent signaling events have been observed to occur in TCR microclusters. We found that some TCR microclusters are present in unstimulated murine T cells, indicating that the mechanisms leading to microcluster formation do not require ligand binding. These pre-existing microclusters increase in absolute number following engagement by low-potency ligands. This increase is accompanied by an increase in cell spreading, with the result that the density of TCR microclusters on the surface of the T cell is not a strong function of ligand potency. In characterizing their composition, we observed a constant number of TCRs in a microcluster, constitutive exclusion of the phosphatase CD45, and preassociation with the signaling adapters linker for activation of T cells and growth factor receptor-bound protein 2. The existence of TCR microclusters prior to ligand binding in a state that is conducive for the initiation of downstream signaling could explain, in part, the rapid kinetics with which TCR signal transduction occurs. PMID:24860189

  4. Role of peroxynitrite in the redox regulation of cell signal transduction pathways

    PubMed Central

    Liaudet, Lucas; Vassalli, Giuseppe; Pacher, Pal

    2009-01-01

    Peroxynitrite is a potent oxidant and nitrating species formed from the reaction between the free radicals nitric oxide and superoxide. An excessive formation of peroxynitrite represents an important mechanism contributing to cell death and dysfunction in multiple cardiovascular pathologies, such as myocardial infarction, heart failure and atherosclerosis. Whereas initial works focused on direct oxidative biomolecular damage as the main route of peroxynitrite toxicity, more recent evidence, mainly obtained in vitro, indicates that peroxynitrite also behaves as a potent modulator of various cell signal transduction pathways. Due to its ability to nitrate tyrosine residues, peroxynitrite affects cellular processes dependent on tyrosine phosphorylation. Peroxynitrite also exerts complex effects on the activity of various kinases and phosphatases, resulting in the up- or downregulation of signalling cascades, in a concentration- and cell-dependent manner. Such roles of peroxynitrite in the redox regulation of key signalling pathways for cardiovascular homeostasis, including protein kinase B and C, the MAP kinases, Nuclear Factor Kappa B, as well as signalling dependent on insulin and the sympatho-adrenergic system are presented in detail in this review. PMID:19273391

  5. The relation of signal transduction to the sensitivity and dynamic range of bacterial chemotaxis.

    PubMed

    Namba, Toshinori; Nishikawa, Masatoshi; Shibata, Tatsuo

    2012-09-19

    Complex networks of interacting molecular components of living cells are responsible for many important processes, such as signal processing and transduction. An important challenge is to understand how the individual properties of these molecular interactions and biochemical transformations determine the system-level properties of biological functions. Here, we address the issue of the accuracy of signal transduction performed by a bacterial chemotaxis system. The chemotaxis sensitivity of bacteria to a chemoattractant gradient has been measured experimentally from bacterial aggregation in a chemoattractant-containing capillary. The observed precision of the chemotaxis depended on environmental conditions such as the concentration and molecular makeup of the chemoattractant. In a quantitative model, we derived the chemotactic response function, which is essential to describing the signal transduction process involved in bacterial chemotaxis. In the presence of a gradient, an analytical solution is derived that reveals connections between the chemotaxis sensitivity and the characteristics of the signaling system, such as reaction rates. These biochemical parameters are integrated into two system-level parameters: one characterizes the efficiency of gradient sensing, and the other is related to the dynamic range of chemotaxis. Thus, our approach explains how a particular signal transduction property affects the system-level performance of bacterial chemotaxis. We further show that the two parameters can be derived from published experimental data from a capillary assay, which successfully characterizes the performance of bacterial chemotaxis. PMID:22995512

  6. The effect of rotation on function and signal transduction in immune cell

    NASA Astrophysics Data System (ADS)

    Song, J. P.; Zhong, P.; Li, Y. H.; Yang, F.

    Objective Both spaceflight and modeled weightlessness on ground could compromise immune function especially cellular immunity In turn astrouants would not resist to external pathogen effectually the health status and work ability of astrounants were perhaps affected but the cellular and molecular mechanisms by which spaceflight alters human immune functions are poorly understood The aim this trial was to using high aspect rotation vessal HARV investigate the functional changes of immune cell rotated for virous time period in vitro and explore mechanisms in which space weightlessness affect immune function through cell signal transduction Methods Using high aspect rotation vessal HARV as simulated weightlessness model mouse splenic lymphocyte and Jurkat E6 1 as cell model the effects of rotation on cell proliferation cytokine secretion expression and activation of signal molecule ZAP-70 were studied Results After rotation T lymphocytic proliferation in mouse splenocyte were inhibited and the concentration of IL-2 and IFN- A secreted were reduced markly and all this happen within 6 hours after T cell were activated The activity of ZAP-70 in Jurkat cell were repressed significantly Conclusion Incapable activation of ZAP-70 might be one cause of depressed lymphocyte function under weightlessness

  7. Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus

    PubMed Central

    Ji, Quanjiang; Chen, Peter J.; Qin, Guangrong; Deng, Xin; Hao, Ziyang; Wawrzak, Zdzislaw; Yeo, Won-Sik; Quang, Jenny Winjing; Cho, Hoonsik; Luo, Guan-Zheng; Weng, Xiaocheng; You, Qiancheng; Luan, Chi-Hao; Yang, Xiaojing; Bae, Taeok; Yu, Kunqian; Jiang, Hualiang; He, Chuan

    2016-01-01

    Most low GC Gram-positive bacteria possess an essential walKR two-component system (TCS) for signal transduction involved in regulating cell wall homoeostasis. Despite the well-established intracellular regulatory mechanism, the role of this TCS in extracellular signal recognition and factors that modulate the activity of this TCS remain largely unknown. Here we identify the extracellular receptor of the kinase ‘WalK' (erWalK) as a key hub for bridging extracellular signal input and intracellular kinase activity modulation in Staphylococcus aureus. Characterization of the crystal structure of erWalK revealed a canonical Per-Arnt-Sim (PAS) domain for signal sensing. Single amino-acid mutation of potential signal-transduction residues resulted in severely impaired function of WalKR. A small molecule derived from structure-based virtual screening against erWalK is capable of selectively activating the walKR TCS. The molecular level characterization of erWalK will not only facilitate exploration of natural signal(s) but also provide a template for rational design of erWalK inhibitors. PMID:26987594

  8. Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus

    DOE PAGESBeta

    Ji, Quanjiang; Chen, Peter J.; Qin, Guangrong; Deng, Xin; Hao, Ziyang; Wawrzak, Zdzislaw; Yeo, Won -Sik; Quang, Jenny Winjing; Cho, Hoonsik; Luo, Guan -Zheng; et al

    2016-03-18

    Most low GC Gram-positive bacteria possess an essential walKR two-component system (TCS) for signal transduction involved in regulating cell wall homoeostasis. Despite the well-established intracellular regulatory mechanism, the role of this TCS in extracellular signal recognition and factors that modulate the activity of this TCS remain largely unknown. Here we identify the extracellular receptor of the kinase ‘WalK’ (erWalK) as a key hub for bridging extracellular signal input and intracellular kinase activity modulation in Staphylococcus aureus. Characterization of the crystal structure of erWalK revealed a canonical Per-Arnt-Sim (PAS) domain for signal sensing. Single amino-acid mutation of potential signal-transduction residues resultedmore » in severely impaired function of WalKR. A small molecule derived from structure-based virtual screening against erWalK is capable of selectively activating the walKR TCS. Lastly, the molecular level characterization of erWalK will not only facilitate exploration of natural signal(s) but also provide a template for rational design of erWalK inhibitors.« less

  9. The Hippo signal transduction network for exercise physiologists.

    PubMed

    Gabriel, Brendan M; Hamilton, D Lee; Tremblay, Annie M; Wackerhage, Henning

    2016-05-15

    The ubiquitous transcriptional coactivators Yap (gene symbol Yap1) and Taz (gene symbol Wwtr1) regulate gene expression mainly by coactivating the Tead transcription factors. Being at the center of the Hippo signaling network, Yap and Taz are regulated by the Hippo kinase cassette and additionally by a plethora of exercise-associated signals and signaling modules. These include mechanotransduction, the AKT-mTORC1 network, the SMAD transcription factors, hypoxia, glucose homeostasis, AMPK, adrenaline/epinephrine and angiotensin II through G protein-coupled receptors, and IL-6. Consequently, exercise should alter Hippo signaling in several organs to mediate at least some aspects of the organ-specific adaptations to exercise. Indeed, Tead1 overexpression in muscle fibers has been shown to promote a fast-to-slow fiber type switch, whereas Yap in muscle fibers and cardiomyocytes promotes skeletal muscle hypertrophy and cardiomyocyte adaptations, respectively. Finally, genome-wide association studies in humans have linked the Hippo pathway members LATS2, TEAD1, YAP1, VGLL2, VGLL3, and VGLL4 to body height, which is a key factor in sports. PMID:26940657

  10. Signal Transduction Pathways of EMT Induced by TGF-β, SHH, and WNT and Their Crosstalks

    PubMed Central

    Zhang, Jingyu; Tian, Xiao-Jun; Xing, Jianhua

    2016-01-01

    Epithelial-to-mesenchymal transition (EMT) is a key step in development, wound healing, and cancer development. It involves cooperation of signaling pathways, such as transformation growth factor-β (TGF-β), Sonic Hedgehog (SHH), and WNT pathways. These signaling pathways crosstalk to each other and converge to key transcription factors (e.g., SNAIL1) to initialize and maintain the process of EMT. The functional roles of multi-signaling pathway crosstalks in EMT are sophisticated and, thus, remain to be explored. In this review, we focused on three major signal transduction pathways that promote or regulate EMT in carcinoma. We discussed the network structures, and provided a brief overview of the current therapy strategies and drug development targeted to these three signal transduction pathways. Finally, we highlighted systems biology approaches that can accelerate the process of deconstructing complex networks and drug discovery. PMID:27043642

  11. Fyn is a redox sensor involved in solar ultraviolet light-induced signal transduction in skin carcinogenesis.

    PubMed

    Kim, J-E; Roh, E; Lee, M H; Yu, D H; Kim, D J; Lim, T-G; Jung, S K; Peng, C; Cho, Y-Y; Dickinson, S; Alberts, D; Bowden, G T; Einspahr, J; Stratton, S P; Curiel-Lewandrowski, C; Bode, A M; Lee, K W; Dong, Z

    2016-08-01

    Solar ultraviolet (UV) light is a major etiological factor in skin carcinogenesis, with solar UV-stimulated signal transduction inducing pathological changes and skin damage. The primary sensor of solar UV-induced cellular signaling has not been identified. We use an experimental system of solar simulated light (SSL) to mimic solar UV and we demonstrate that Fyn is a primary redox sensor involved in SSL-induced signal transduction. Reactive oxygen species (ROS) generated by SSL exposure directly oxidize Cys488 of Fyn, resulting in increased Fyn kinase activity. Fyn oxidation was increased in mouse skin after SSL exposure and Fyn-knockout mice formed larger and more tumors compared with Fyn wild-type mice when exposed to SSL for an extended period of time. Murine embryonic fibroblasts (MEFs) lacking Fyn and cells in which Fyn expression was knocked down were resistant to SSL-induced apoptosis. Furthermore, cells expressing mutant Fyn (C448A) were resistant to SSL-induced apoptosis. These findings suggest that Fyn acts as a regulatory nexus between solar UV, ROS and signal transduction during skin carcinogenesis. PMID:26686094

  12. Fyn is a redox sensor involved in solar ultraviolet light-induced signal transduction in skin carcinogenesis

    PubMed Central

    Kim, Jong-Eun; Roh, Eunmiri; Lee, Mee Hyun; Yu, Dong Hoon; Kim, Dong Joon; Lim, Tae-Gyu; Jung, Sung Keun; Peng, Cong; Cho, Yong-Yeon; Dickinson, Sally; Alberts, Dave; Bowden, G. Tim; Einspahr, Janine; Stratton, Steven P; Curiel, Clara; Bode, Ann M.; Lee, Ki Won; Dong, Zigang

    2015-01-01

    Solar ultraviolet (UV) light is a major etiological factor in skin carcinogenesis, with solar UV-stimulated signal transduction inducing pathological changes and skin damage. The primary sensor of solar UV-induced cellular signaling has not been identified. We use an experimental system of solar simulated light (SSL) to mimic solar UV and we demonstrate that Fyn is a primary redox sensor involved in SSL-induced signal transduction. Reactive oxygen species (ROS) generated by SSL exposure directly oxidize Cys488 of Fyn, resulting in increased Fyn kinase activity. Fyn oxidation was increased in mouse skin after SSL exposure, and Fyn knockout (Fyn−/−) mice formed larger and more tumors compared to Fyn wildtype mice when exposed to SSL for an extended period of time. Murine embryonic fibroblasts (MEFs) lacking Fyn as well as cells in which Fyn expression was knocked down were resistant to SSL-induced apoptosis. Furthermore, cells expressing mutant Fyn (C448A) were resistant to SSL-induced apoptosis. These findings suggest that Fyn acts as a regulatory nexus between solar UV, ROS and signal transduction during skin carcinogenesis. PMID:26686094

  13. Signal Transduction Molecules as Targets for Cancer Prevention

    PubMed Central

    Bode, Ann M.; Dong, Zigang

    2010-01-01

    Environmental and life-style aspects are major contributors to human carcinogenesis and, therefore, many human cancers may be preventable. Cancer is the end result of defects in cellular signaling processes that play a key role in the control of cell growth, survival, division, and differentiation. Therefore, identifying molecular and cellular targets critical in cancer development and prevention is an area of intensive research, driving the development of highly specific small-molecule inhibitors. A major idea today is that cancer may be prevented or treated by targeting the products of specific cancer-related genes, frequently encoding signaling proteins or transcription factors. Participants in these joint conferences discussed their latest findings in the identification of promising molecular targets and the development of agents directed against these targets with the goal of effectively transitioning these into the clinical setting. PMID:19244209

  14. Signal transduction regulating meristem development in Arabidopsis. Final report

    SciTech Connect

    Cark, Steven E.

    2003-09-10

    Research support by DE-FG02-96ER20227 focused on the CLV loci and their regulation of organ formation at the Arabidopsis shoot meristem. Shoot meristem function is central to plant development as all of the above-ground organs and tissues of the plant are derived post-embryonically from the shoot meristem. At the shoot meristem, stem cells are maintained, and progeny cells undergo a switch toward differentiation and organ formation. The CLV loci, represented by three genes CLV1, CLV2 and CLV3 are key regulators of meristem development. Each of the CLV loci encode a putative receptor-mediated signaling component. When this work began, virtually nothing was known about receptor-mediated signaling in plants. Thus, our goal was to both characterize these genes and the proteins they encode as regulators of meristem development, and to investigate how receptor-mediated signaling might function in plants. Our work lead to several major publications that were significant contributions to understanding this system.

  15. Regulation of Early Steps of GPVI Signal Transduction by Phosphatases: A Systems Biology Approach

    PubMed Central

    Dunster, Joanne L.; Mazet, Francoise; Fry, Michael J.; Gibbins, Jonathan M.; Tindall, Marcus J.

    2015-01-01

    We present a data-driven mathematical model of a key initiating step in platelet activation, a central process in the prevention of bleeding following Injury. In vascular disease, this process is activated inappropriately and causes thrombosis, heart attacks and stroke. The collagen receptor GPVI is the primary trigger for platelet activation at sites of injury. Understanding the complex molecular mechanisms initiated by this receptor is important for development of more effective antithrombotic medicines. In this work we developed a series of nonlinear ordinary differential equation models that are direct representations of biological hypotheses surrounding the initial steps in GPVI-stimulated signal transduction. At each stage model simulations were compared to our own quantitative, high-temporal experimental data that guides further experimental design, data collection and model refinement. Much is known about the linear forward reactions within platelet signalling pathways but knowledge of the roles of putative reverse reactions are poorly understood. An initial model, that includes a simple constitutively active phosphatase, was unable to explain experimental data. Model revisions, incorporating a complex pathway of interactions (and specifically the phosphatase TULA-2), provided a good description of the experimental data both based on observations of phosphorylation in samples from one donor and in those of a wider population. Our model was used to investigate the levels of proteins involved in regulating the pathway and the effect of low GPVI levels that have been associated with disease. Results indicate a clear separation in healthy and GPVI deficient states in respect of the signalling cascade dynamics associated with Syk tyrosine phosphorylation and activation. Our approach reveals the central importance of this negative feedback pathway that results in the temporal regulation of a specific class of protein tyrosine phosphatases in controlling the rate

  16. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways

    PubMed Central

    Clemens, James C.; Worby, Carolyn A.; Simonson-Leff, Nancy; Muda, Marco; Maehama, Tomohiko; Hemmings, Brian A.; Dixon, Jack E.

    2000-01-01

    We demonstrate the efficacy of double-stranded RNA-mediated interference (RNAi) of gene expression in generating “knock-out” phenotypes for specific proteins in several Drosophila cell lines. We prove the applicability of this technique for studying signaling cascades by dissecting the well-characterized insulin signal transduction pathway. Specifically, we demonstrate that inhibiting the expression of the DSOR1 (mitogen-activated protein kinase kinase, MAPKK) prevents the activation of the downstream ERK-A (MAPK). In contrast, blocking ERK-A expression results in increased activation of DSOR1. We also show that Drosophila AKT (DAKT) activation depends on the insulin receptor substrate, CHICO (IRS1–4). Finally, we demonstrate that blocking the expression of Drosophila PTEN results in the activation of DAKT. In all cases, the interference of the biochemical cascade by RNAi is consistent with the known steps in the pathway. We extend this powerful technique to study two proteins, DSH3PX1 and Drosophila ACK (DACK). DSH3PX1 is an SH3, phox homology domain-containing protein, and DACK is homologous to the mammalian activated Cdc42 tyrosine kinase, ACK. Using RNAi, we demonstrate that DACK is upstream of DSH3PX1 phosphorylation, making DSH3PX1 an identified downstream target/substrate of ACK-like tyrosine kinases. These experiments highlight the usefulness of RNAi in dissecting complex biochemical signaling cascades and provide a highly effective method for determining the function of the identified genes arising from the Drosophila genome sequencing project. PMID:10823906

  17. Regulation of Early Steps of GPVI Signal Transduction by Phosphatases: A Systems Biology Approach.

    PubMed

    Dunster, Joanne L; Mazet, Francoise; Fry, Michael J; Gibbins, Jonathan M; Tindall, Marcus J

    2015-11-01

    We present a data-driven mathematical model of a key initiating step in platelet activation, a central process in the prevention of bleeding following Injury. In vascular disease, this process is activated inappropriately and causes thrombosis, heart attacks and stroke. The collagen receptor GPVI is the primary trigger for platelet activation at sites of injury. Understanding the complex molecular mechanisms initiated by this receptor is important for development of more effective antithrombotic medicines. In this work we developed a series of nonlinear ordinary differential equation models that are direct representations of biological hypotheses surrounding the initial steps in GPVI-stimulated signal transduction. At each stage model simulations were compared to our own quantitative, high-temporal experimental data that guides further experimental design, data collection and model refinement. Much is known about the linear forward reactions within platelet signalling pathways but knowledge of the roles of putative reverse reactions are poorly understood. An initial model, that includes a simple constitutively active phosphatase, was unable to explain experimental data. Model revisions, incorporating a complex pathway of interactions (and specifically the phosphatase TULA-2), provided a good description of the experimental data both based on observations of phosphorylation in samples from one donor and in those of a wider population. Our model was used to investigate the levels of proteins involved in regulating the pathway and the effect of low GPVI levels that have been associated with disease. Results indicate a clear separation in healthy and GPVI deficient states in respect of the signalling cascade dynamics associated with Syk tyrosine phosphorylation and activation. Our approach reveals the central importance of this negative feedback pathway that results in the temporal regulation of a specific class of protein tyrosine phosphatases in controlling the rate

  18. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis

    SciTech Connect

    Shibuya, Masabumi . E-mail: shibuya@ims.u-tokyo.ac.jp; Claesson-Welsh, Lena . E-mail: lena.welsh@genpat.uu.se

    2006-03-10

    The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathological angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases.

  19. Enhanced fluorescence cyanide detection at physiologically lethal levels: reduced ICT-based signal transduction.

    PubMed

    Badugu, Ramachandram; Lakowicz, Joseph R; Geddes, Chris D

    2005-03-16

    Three water-soluble fluorescent probes have been specifically designed to determine free cyanide concentrations up to physiologically lethal levels, >20 microM. The probes have been designed in such a way as to afford many notable sensing features, which render them unique with regard to signal transduction, photophysical characteristics, and their application to physiological cyanide determination and safeguard. The probes are readily able to reversibly bind free aqueous cyanide with dissociation constants around 4 microM3. Subsequent cyanide binding modulates the intramolecular charge transfer within the probes, a change in the electronic properties within the probes, resulting in enhanced fluorescence optical signals as a function of increased solution cyanide concentration. The ground-state chelation with cyanide produces wavelength shifts, which also enable the probes to sense cyanide in both an excitation and emission ratiometric manner, in addition to enhanced fluorescence signaling. This has enabled a generic cyanide sensing platform to be realized that is not dependent on fluorescent probe concentration, probe photodegradation, or fluctuations in the intensity of any employed excitation sources, ideal for remote cyanide sensing applications. Further, the >600 nm fluorescence emission of the probes potentially allows for enhanced fluorescence ratiometric cyanide sensing in the optical window of tissues and blood, facilitating their use for the transdermal monitoring of cyanide for mammalian safeguard or postmortem in fire victims, both areas of active research. PMID:15755185

  20. Transduction of Redox Signaling by Electrophile-Protein Reactions

    PubMed Central

    Rudolph, Tanja K.; Freeman, Bruce A.

    2014-01-01

    Over the last 50 years, the posttranslational modification (PTM) of proteins has emerged as a central mechanism for cells to regulate metabolism, growth, differentiation, cell-cell interactions, and immune responses. By influencing protein structure and function, PTM leads to a multiplication of proteome diversity. Redox-dependent PTMs, mediated by environmental and endogenously generated reactive species, induce cell signaling responses and can have toxic effects in organisms. PTMs induced by the electrophilic by-products of redox reactions most frequently occur at protein thiols; other nucleophilic amino acids serve as less favorable targets. Advances in mass spectrometry and affinity-chemistry strategies have improved the detection of electrophile-induced protein modifications both in vitro and in vivo and have revealed a high degree of amino acid and protein selectivity of electrophilic PTM. The identification of biological targets of electrophiles has motivated further study of the functional impact of various PTM reactions on specific signaling pathways and how this might affect organisms. PMID:19797270

  1. Mitogenic signal transduction in T lymphocytes in microgravity

    NASA Technical Reports Server (NTRS)

    Cogoli, A.; Bechler, B.; Cogoli-Greuter, M.; Criswell, S. B.; Joller, H.; Joller, P.; Hunzinger, E.; Muller, O.

    1993-01-01

    The activation by concanavalin A Con A of human peripheral blood lymphocytes (PBLs) in the presence of monocytes as accessory cells was investigated in cultures exposed to microgravity conditions in Spacelab. Activation of T cells was measured as incorporation of [3H]thymidine into DNA, secretion of interleukin-2 (IL-2), and interferon-gamma, and expression of IL-2 receptors. Whereas, as discovered in earlier experiments, the activation of resuspended T cells is strongly inhibited, activation of cells attached to microcarrier beads is more than doubled in microgravity. The results suggest that the depression of the activation in resuspended cells may be attributed to a malfunction of monocytes acting as accessory cells. In fact, although the ultrastructure of resuspended monocytes is not altered in microgravity, the secretion of IL-1 is strongly inhibited. Our data suggest that (1) IL-2 is produced independently of IL-1, (2) IL-1 production is triggered only when monocytes (and lymphocytes?) adhere to microcarriers, (3) the expression of IL-2 receptors depends on IL-1, and (4) provided sufficient IL-1 is available, activation is enhanced in microgravity. Finally, cultures of resuspended PBLs and monocytes in microgravity constitute a complete and natural system in which monocytes are not operational. This may be useful for studies of the role of accessory cells and cell-cell interactions in T lymphocyte activation.

  2. Epstein-Barr virus LMP1 modulates lipid raft microdomains and the vimentin cytoskeleton for signal transduction and transformation.

    PubMed

    Meckes, David G; Menaker, Nathan F; Raab-Traub, Nancy

    2013-02-01

    The Epstein-Barr virus (EBV) is an important human pathogen that is associated with multiple cancers. The major oncoprotein of the virus, latent membrane protein 1 (LMP1), is essential for EBV B-cell immortalization and is sufficient to transform rodent fibroblasts. This viral transmembrane protein activates multiple cellular signaling pathways by engaging critical effector molecules and thus acts as a ligand-independent growth factor receptor. LMP1 is thought to signal from internal lipid raft containing membranes; however, the mechanisms through which these events occur remain largely unknown. Lipid rafts are microdomains within membranes that are rich in cholesterol and sphingolipids. Lipid rafts act as organization centers for biological processes, including signal transduction, protein trafficking, and pathogen entry and egress. In this study, the recruitment of key signaling components to lipid raft microdomains by LMP1 was analyzed. LMP1 increased the localization of phosphatidylinositol 3-kinase (PI3K) and its activated downstream target, Akt, to lipid rafts. In addition, mass spectrometry analyses identified elevated vimentin in rafts isolated from LMP1 expressing NPC cells. Disruption of lipid rafts through cholesterol depletion inhibited PI3K localization to membranes and decreased both Akt and ERK activation. Reduction of vimentin levels or disruption of its organization also decreased LMP1-mediated Akt and ERK activation and inhibited transformation of rodent fibroblasts. These findings indicate that LMP1 reorganizes membrane and cytoskeleton microdomains to modulate signal transduction. PMID:23152522

  3. Signal transduction in light–oxygen–voltage receptors lacking the adduct-forming cysteine residue

    PubMed Central

    Yee, Estella F.; Diensthuber, Ralph P.; Vaidya, Anand T.; Borbat, Peter P.; Engelhard, Christopher; Freed, Jack H.; Bittl, Robert; Möglich, Andreas; Crane, Brian R.

    2015-01-01

    Light–oxygen–voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression. Signal transduction in both proteins hence hinges on flavin protonation, which is common to both the cysteinyl adduct and the NSQ. This general mechanism is also conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photoreduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may have important implications for LOV mechanism and optogenetic applications. PMID:26648256

  4. [Application of bio-mass spectrometry in cellular signal transduction].

    PubMed

    Zhang, Xue-Min; Wei, Kai-Hua; Yang, Song-Cheng

    2002-09-01

    The quickly developing techniques of biological mass spectrometry (bio-MS) in recent years realized the high throughput identification of proteins by determining the accurate mass values of trypsin digested peptides and the randomly selected peptide sequence tags, and have been successfully used in the studies of protein interactions and post-translational modification such as the phosphorylation. Compared to the conventional approaches, the above techniques can identify all the phosphorylated proteins (including their phosphorylated amino acid sites) involved in a multi-signal pathway in a single experiment, and they have been developed into a hot-spot of proteomics. The three strategies for the application of bio-MS in the above fields are briefly reviewed. PMID:12198553

  5. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis.

    PubMed

    Tretter, Laszlo; Patocs, Attila; Chinopoulos, Christos

    2016-08-01

    Succinate is an important metabolite at the cross-road of several metabolic pathways, also involved in the formation and elimination of reactive oxygen species. However, it is becoming increasingly apparent that its realm extends to epigenetics, tumorigenesis, signal transduction, endo- and paracrine modulation and inflammation. Here we review the pathways encompassing succinate as a metabolite or a signal and how these may interact in normal and pathological conditions.(1). PMID:26971832

  6. Control of cancer-related signal transduction networks

    NASA Astrophysics Data System (ADS)

    Albert, Reka

    2013-03-01

    Intra-cellular signaling networks are crucial to the maintenance of cellular homeostasis and for cell behavior (growth, survival, apoptosis, movement). Mutations or alterations in the expression of elements of cellular signaling networks can lead to incorrect behavioral decisions that could result in tumor development and/or the promotion of cell migration and metastasis. Thus, mitigation of the cascading effects of such dysregulations is an important control objective. My group at Penn State is collaborating with wet-bench biologists to develop and validate predictive models of various biological systems. Over the years we found that discrete dynamic modeling is very useful in molding qualitative interaction information into a predictive model. We recently demonstrated the effectiveness of network-based targeted manipulations on mitigating the disease T cell large granular lymphocyte (T-LGL) leukemia. The root of this disease is the abnormal survival of T cells which, after successfully fighting an infection, should undergo programmed cell death. We synthesized the relevant network of within-T-cell interactions from the literature, integrated it with qualitative knowledge of the dysregulated (abnormal) states of several network components, and formulated a Boolean dynamic model. The model indicated that the system possesses a steady state corresponding to the normal cell death state and a T-LGL steady state corresponding to the abnormal survival state. For each node, we evaluated the restorative manipulation consisting of maintaining the node in the state that is the opposite of its T-LGL state, e.g. knocking it out if it is overexpressed in the T-LGL state. We found that such control of any of 15 nodes led to the disappearance of the T-LGL steady state, leaving cell death as the only potential outcome from any initial condition. In four additional cases the probability of reaching the T-LGL state decreased dramatically, thus these nodes are also possible control

  7. Gastrointestinal Congestion Dilates the Hepatic Artery Through the P38 MAPK Signal Transduction Pathway During Liver Transplantation.

    PubMed

    Cao, Zhongping; Tang, Xiaowen; Hou, Shike

    2016-01-01

    During the neohepatic stage of liver transplantation, hemodynamics change markedly. The current study aimed to investigate whether gastrointestinal congestion caused by inferior vena cava and hepatic portal vein clamping can dilate the hepatic artery and to determine the associated mechanisms. Ring segments of the hepatic artery were treated with the plasma from gastrointestinal congestion or the superior vena cava. The fractions in gastrointestinal congestion and the superior vena cava plasma were tested, and the effect of these fractions on the tone of the hepatic artery ring was examined. Different signal transduction blockers and different inhibitors were then used to determine the exact signal transduction pathway involved. In addition, endothelial cell structure was observed by transmission electron microscopy after treatment with the gastrointestinal congestion plasma or the superior vena cava plasma. Gastrointestinal congestion plasma contained more inflammatory cytokines than superior vena cava plasma, and these cytokines could cause hepatic artery ring dilatation. A P38 mitogen-activated protein kinase (P38 MAPK) signal transduction pathway blocker and nitric oxide (NO), prostaglandin (PGI2), nuclear factor-κB (NF-κB), and adenosine triphosphate (ATP)-sensitive K (KATP) channel inhibitors were able to significantly reverse the ring tension caused by gastrointestinal congestion plasma. The normal endothelium was also injured by treatment with gastrointestinal congestion plasma. The inflammatory cytokines in gastrointestinal congestion can cause hepatic artery ring dilatation through the P38 MAPK signal transduction pathway, and this phenomenon is also associated with NO, PGI2, NF-κB, and the KATP channel. These inflammatory cytokines can injure endothelial cells in the hepatic artery. PMID:26955003

  8. Aluminium-induced phospholipid signal transduction pathway in Coffea arabica suspension cells and its amelioration by silicic acid.

    PubMed

    Quintal-Tun, Fausto; Muñoz-Sánchez, J Armando; Ramos-Díaz, Ana; Escamilla-Bencomo, Armando; Martínez-Estévez, Manuel; Exley, Christopher; Hernández-Sotomayor, S M Teresa

    2007-02-01

    Coffee (Coffea arabica L.) is of economic importance worldwide. Its growth in organic-rich acidic soils is influenced by aluminium such that coffee yield may be impaired. Herein we have used the Al-sensitive C. arabica suspension cell line L2 to analyse the effect of two different Al species on the phosphoinositide signal transduction pathway. Our results have shown that the association of Al with coffee cells was affected by the pH and the form of Al in media. More Al was associated with cells at pH 4.3 than 5.8, whereas when Al was present as hydroxyaluminosilicates (HAS) the association was halved at pH 4.3 and unchanged at pH 5.8. Two signal transduction elements were also evaluated; phospholipase C (PLC) activity and phosphatidic acid (PA) formation. PLC was inhibited ( approximately 50%) when cells were incubated for 2 h in the presence of either AlCl(3) or Al in the form of HAS. PA formation was tested as a short-term response to Al. By way of contrast to what was found for PLC, incubation of cells for 15 min in the presence of AlCl(3) decreased the formation of PA whereas the same concentration of Al as HAS produced no effect upon its formation. These results suggest that Al is capable to exert its effects upon signal transduction as Al((aq))(3+) acting upon a mechanism linked to the phosphoinositide signal transduction pathway. PMID:17161461

  9. RHOA SIGNAL TRANSDUCTION: EFFECTS OF MATERNAL COPPER DEFICIENCY ON PROGENY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Maternal copper deficiency during pregnancy and lactation impairs development of the cardiovascular system.Maternal copper deficiency induces reduction in CCO activity in neonatal cardiac mitochondria, pointing to developmental alterations. Effects of maternal copper deficiency on RhoA s...

  10. A sweet cycle for Arabidopsis G-proteins: Recent discoveries and controversies in plant G-protein signal transduction.

    PubMed

    Johnston, Christopher A; Willard, Melinda D; Kimple, Adam J; Siderovski, David P; Willard, Francis S

    2008-12-01

    Heterotrimeric G-proteins are a class of signal transduction proteins highly conserved throughout evolution that serve as dynamic molecular switches regulating the intracellular communication initiated by extracellular signals including sensory information. This property is achieved by a guanine nucleotide cycle wherein the inactive, signaling-incompetent Galpha subunit is normally bound to GDP; activation to signaling-competent Galpha occurs through the exchange of GDP for GTP (typically catalyzed via seven-transmembrane domain G-protein coupled receptors [GPCRs]), which dissociates the Gbetagamma dimer from Galpha-GTP and initiates signal transduction. The hydrolysis of GTP, greatly accelerated by "Regulator of G-protein Signaling" (RGS) proteins, returns Galpha to its inactive GDP-bound form and terminates signaling. Through extensive characterization of mammalian Galpha isoforms, the rate-limiting step in this cycle is currently considered to be the GDP/GTP exchange rate, which can be orders of magnitude slower than the GTP hydrolysis rate. However, we have recently demonstrated that, in Arabidopsis, the guanine nucleotide cycle appears to be limited by the rate of GTP hydrolysis rather than nucleotide exchange. This finding has important implications for the mechanism of sugar sensing in Arabidopsis. We also discuss these data on Arabidopsis G-protein nucleotide cycling in relation to recent reports of putative plant GPCRs and heterotrimeric G-protein effectors in Arabidopsis. PMID:19513240

  11. Programmable Ligand Detection System in Plants through a Synthetic Signal Transduction Pathway

    PubMed Central

    Smith, J. Jeff; Albrecht, Kirk D.; Bowen, Tessa A.; Zdunek, Jeffrey K.; Troupe, Jared F.; Cuneo, Matthew J.; Webb, Colleen T.; Hellinga, Homme W.; Medford, June I.

    2011-01-01

    Background There is an unmet need to monitor human and natural environments for substances that are intentionally or unintentionally introduced. A long-sought goal is to adapt plants to sense and respond to specific substances for use as environmental monitors. Computationally re-designed periplasmic binding proteins (PBPs) provide a means to design highly sensitive and specific ligand sensing capabilities in receptors. Input from these proteins can be linked to gene expression through histidine kinase (HK) mediated signaling. Components of HK signaling systems are evolutionarily conserved between bacteria and plants. We previously reported that in response to cytokinin-mediated HK activation in plants, the bacterial response regulator PhoB translocates to the nucleus and activates transcription. Also, we previously described a plant visual response system, the de-greening circuit, a threshold sensitive reporter system that produces a visual response which is remotely detectable and quantifiable. Methodology/Principal Findings We describe assembly and function of a complete synthetic signal transduction pathway in plants that links input from computationally re-designed PBPs to a visual response. To sense extracellular ligands, we targeted the computational re-designed PBPs to the apoplast. PBPs bind the ligand and develop affinity for the extracellular domain of a chemotactic protein, Trg. We experimentally developed Trg fusions proteins, which bind the ligand-PBP complex, and activate intracellular PhoR, the HK cognate of PhoB. We then adapted Trg-PhoR fusions for function in plants showing that in the presence of an external ligand PhoB translocates to the nucleus and activates transcription. We linked this input to the de-greening circuit creating a detector plant. Conclusions/Significance Our system is modular and PBPs can theoretically be designed to bind most small molecules. Hence our system, with improvements, may allow plants to serve as a simple and

  12. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor.

    PubMed

    Isogai, Shin; Deupi, Xavier; Opitz, Christian; Heydenreich, Franziska M; Tsai, Ching-Ju; Brueckner, Florian; Schertler, Gebhard F X; Veprintsev, Dmitry B; Grzesiek, Stephan

    2016-02-11

    G protein-coupled receptors (GPCRs) are physiologically important transmembrane signalling proteins that trigger intracellular responses upon binding of extracellular ligands. Despite recent breakthroughs in GPCR crystallography, the details of ligand-induced signal transduction are not well understood owing to missing dynamical information. In principle, such information can be provided by NMR, but so far only limited data of functional relevance on few side-chain sites of eukaryotic GPCRs have been obtained. Here we show that receptor motions can be followed at virtually any backbone site in a thermostabilized mutant of the turkey β1-adrenergic receptor (β1AR). Labelling with [(15)N]valine in a eukaryotic expression system provides over twenty resolved resonances that report on structure and dynamics in six ligand complexes and the apo form. The response to the various ligands is heterogeneous in the vicinity of the binding pocket, but gets transformed into a homogeneous readout at the intracellular side of helix 5 (TM5), which correlates linearly with ligand efficacy for the G protein pathway. The effect of several pertinent, thermostabilizing point mutations was assessed by reverting them to the native sequence. Whereas the response to ligands remains largely unchanged, binding of the G protein mimetic nanobody NB80 and G protein activation are only observed when two conserved tyrosines (Y227 and Y343) are restored. Binding of NB80 leads to very strong spectral changes throughout the receptor, including the extracellular ligand entrance pocket. This indicates that even the fully thermostabilized receptor undergoes activating motions in TM5, but that the fully active state is only reached in presence of Y227 and Y343 by stabilization with a G protein-like partner. The combined analysis of chemical shift changes from the point mutations and ligand responses identifies crucial connections in the allosteric activation pathway, and presents a general experimental

  13. Role of relaxation time scale in noisy signal transduction.

    PubMed

    Maity, Alok Kumar; Chaudhury, Pinaki; Banik, Suman K

    2015-01-01

    Intra-cellular fluctuations, mainly triggered by gene expression, are an inevitable phenomenon observed in living cells. It influences generation of phenotypic diversity in genetically identical cells. Such variation of cellular components is beneficial in some contexts but detrimental in others. To quantify the fluctuations in a gene product, we undertake an analytical scheme for studying few naturally abundant linear as well as branched chain network motifs. We solve the Langevin equations associated with each motif under the purview of linear noise approximation and derive the expressions for Fano factor and mutual information in close analytical form. Both quantifiable expressions exclusively depend on the relaxation time (decay rate constant) and steady state population of the network components. We investigate the effect of relaxation time constraints on Fano factor and mutual information to indentify a time scale domain where a network can recognize the fluctuations associated with the input signal more reliably. We also show how input population affects both quantities. We extend our calculation to long chain linear motif and show that with increasing chain length, the Fano factor value increases but the mutual information processing capability decreases. In this type of motif, the intermediate components act as a noise filter that tune up input fluctuations and maintain optimum fluctuations in the output. For branched chain motifs, both quantities vary within a large scale due to their network architecture and facilitate survival of living system in diverse environmental conditions. PMID:25955500

  14. Role of Relaxation Time Scale in Noisy Signal Transduction

    PubMed Central

    Maity, Alok Kumar; Chaudhury, Pinaki; Banik, Suman K

    2015-01-01

    Intra-cellular fluctuations, mainly triggered by gene expression, are an inevitable phenomenon observed in living cells. It influences generation of phenotypic diversity in genetically identical cells. Such variation of cellular components is beneficial in some contexts but detrimental in others. To quantify the fluctuations in a gene product, we undertake an analytical scheme for studying few naturally abundant linear as well as branched chain network motifs. We solve the Langevin equations associated with each motif under the purview of linear noise approximation and derive the expressions for Fano factor and mutual information in close analytical form. Both quantifiable expressions exclusively depend on the relaxation time (decay rate constant) and steady state population of the network components. We investigate the effect of relaxation time constraints on Fano factor and mutual information to indentify a time scale domain where a network can recognize the fluctuations associated with the input signal more reliably. We also show how input population affects both quantities. We extend our calculation to long chain linear motif and show that with increasing chain length, the Fano factor value increases but the mutual information processing capability decreases. In this type of motif, the intermediate components act as a noise filter that tune up input fluctuations and maintain optimum fluctuations in the output. For branched chain motifs, both quantities vary within a large scale due to their network architecture and facilitate survival of living system in diverse environmental conditions. PMID:25955500

  15. New signal transduction paradigms in anthracycline-induced cardiotoxicity.

    PubMed

    Ghigo, Alessandra; Li, Mingchuan; Hirsch, Emilio

    2016-07-01

    Anthracyclines, such as doxorubicin, are the most potent and widely used chemotherapeutic agents for the treatment of a variety of human cancers, including solid tumors and hematological malignancies. However, their clinical use is hampered by severe cardiotoxic side effects and cancer therapy-related heart disease has become a leading cause of morbidity and mortality among cancer survivors. The identification of therapeutic strategies limiting anthracycline cardiotoxicity with preserved antitumor efficacy thus represents the current challenge of cardio-oncologists. Anthracycline cardiotoxicity has been originally ascribed to the ability of this class of drugs to disrupt iron metabolism and generate excess of reactive oxygen species (ROS). However, small clinical trials with iron chelators and anti-oxidants failed to provide any benefit and suggested that doxorubicin cardiotoxicity is not solely due to redox cycling. New emerging explanations include anthracycline-dependent regulation of major signaling pathways controlling DNA damage response, cardiomyocyte survival, cardiac inflammation, energetic stress and gene expression modulation. This review will summarize recent studies unraveling the complex web of mechanisms of doxorubicin-mediated cardiotoxicity, and identifying new druggable players for the prevention of heart disease in cancer patients. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26828775

  16. Mating in Saccharomyces Cerevisiae: The Role of the Pheromone Signal Transduction Pathway in the Chemotropic Response to Pheromone

    PubMed Central

    Schrick, K.; Garvik, B.; Hartwell, L. H.

    1997-01-01

    The mating process in yeast has two distinct aspects. One is the induction and activation of proteins required for cell fusion in response to a pheromone signal; the other is chemotropism, i.e., detection of a pheromone gradient and construction of a fusion site available to the signaling cell. To determine whether components of the signal transduction pathway necessary for transcriptional activation also play a role in chemotropism, we examined strains with null mutations in components of the signal transduction pathway for diploid formation, prezygote formation and the chemotropic process of mating partner discrimination when transcription was induced downstream of the mutation. Cells mutant for components of the mitogen-activated protein (MAP) kinase cascade (ste5, ste20, ste11, ste7 or fus3 kss1) formed diploids at a frequency 1% that of the wild-type control, but formed prezygotes as efficiently as the wild-type control and showed good mating partner discrimination, suggesting that the MAP kinase cascade is not essential for chemotropism. In contrast, cells mutant for the receptor (ste2) or the β or γ subunit (ste4 and ste18) of the G protein were extremely defective in both diploid and prezygote formation and discriminated poorly between signaling and nonsignaling mating partners, implying that these components are important for chemotropism. PMID:9286665

  17. Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication.

    PubMed

    Corrochano, Luis M; Kuo, Alan; Marcet-Houben, Marina; Polaino, Silvia; Salamov, Asaf; Villalobos-Escobedo, José M; Grimwood, Jane; Álvarez, M Isabel; Avalos, Javier; Bauer, Diane; Benito, Ernesto P; Benoit, Isabelle; Burger, Gertraud; Camino, Lola P; Cánovas, David; Cerdá-Olmedo, Enrique; Cheng, Jan-Fang; Domínguez, Angel; Eliáš, Marek; Eslava, Arturo P; Glaser, Fabian; Gutiérrez, Gabriel; Heitman, Joseph; Henrissat, Bernard; Iturriaga, Enrique A; Lang, B Franz; Lavín, José L; Lee, Soo Chan; Li, Wenjun; Lindquist, Erika; López-García, Sergio; Luque, Eva M; Marcos, Ana T; Martin, Joel; McCluskey, Kevin; Medina, Humberto R; Miralles-Durán, Alejandro; Miyazaki, Atsushi; Muñoz-Torres, Elisa; Oguiza, José A; Ohm, Robin A; Olmedo, María; Orejas, Margarita; Ortiz-Castellanos, Lucila; Pisabarro, Antonio G; Rodríguez-Romero, Julio; Ruiz-Herrera, José; Ruiz-Vázquez, Rosa; Sanz, Catalina; Schackwitz, Wendy; Shahriari, Mahdi; Shelest, Ekaterina; Silva-Franco, Fátima; Soanes, Darren; Syed, Khajamohiddin; Tagua, Víctor G; Talbot, Nicholas J; Thon, Michael R; Tice, Hope; de Vries, Ronald P; Wiebenga, Ad; Yadav, Jagjit S; Braun, Edward L; Baker, Scott E; Garre, Victoriano; Schmutz, Jeremy; Horwitz, Benjamin A; Torres-Martínez, Santiago; Idnurm, Alexander; Herrera-Estrella, Alfredo; Gabaldón, Toni; Grigoriev, Igor V

    2016-06-20

    Plants and fungi use light and other signals to regulate development, growth, and metabolism. The fruiting bodies of the fungus Phycomyces blakesleeanus are single cells that react to environmental cues, including light, but the mechanisms are largely unknown [1]. The related fungus Mucor circinelloides is an opportunistic human pathogen that changes its mode of growth upon receipt of signals from the environment to facilitate pathogenesis [2]. Understanding how these organisms respond to environmental cues should provide insights into the mechanisms of sensory perception and signal transduction by a single eukaryotic cell, and their role in pathogenesis. We sequenced the genomes of P. blakesleeanus and M. circinelloides and show that they have been shaped by an extensive genome duplication or, most likely, a whole-genome duplication (WGD), which is rarely observed in fungi [3-6]. We show that the genome duplication has expanded gene families, including those involved in signal transduction, and that duplicated genes have specialized, as evidenced by differences in their regulation by light. The transcriptional response to light varies with the developmental stage and is still observed in a photoreceptor mutant of P. blakesleeanus. A phototropic mutant of P. blakesleeanus with a heterozygous mutation in the photoreceptor gene madA demonstrates that photosensor dosage is important for the magnitude of signal transduction. We conclude that the genome duplication provided the means to improve signal transduction for enhanced perception of environmental signals. Our results will help to understand the role of genome dynamics in the evolution of sensory perception in eukaryotes. PMID:27238284

  18. [Cellular signal transduction pathways in cardiac hypertrophy and heart failure].

    PubMed

    Lewartowski, Bohdan; Mackiewicz, Urszula

    2006-10-01

    Cardiac hypertrophy and heart failure are characterized by significant changes of expression and function of many proteins. These changes are responsible for arrhythmias and haemodynamic disturbances. They are initiated by increased cardiac load, detected by cellular mechanoreceptors, and by activation of sarcolemmal chemoreceptors in myocytes and fibroblasts. In the present paper the authors describe the structure and function of molecular cellular pathways for transmission of the information generated by receptors to the nucleus, where it modifies the expression of genes coding for cellular proteins. The authors describe in detail: structure and function of Z-discs and integrins working as mechanoreceptors, calcineurin/NFAT pathways, MAP kinases pathways, pathway activated by AT1 receptors: protein kinase C pathways, AKT/mTHOR kinase pathway and EGRF/ERK1,2 pathway. Functional relationships between pathways mentioned and the results of studies analysing their role in cardiac hypertrophy and heart failure are also presented. PMID:20527382

  19. Signal transduction molecules in gliomas of all grades

    PubMed Central

    Ermoian, Ralph P.; Kaprealian, Tania; Lamborn, Kathleen R.; Yang, Xiaodong; Jelluma, Nannette; Arvold, Nils D.; Zeidman, Ruth; Berger, Mitchel S.; Stokoe, David

    2010-01-01

    Purpose To interrogate grade II, III, and IV gliomas and characterize the critical effectors within the PI3-kinase pathway upstream and downstream of mTOR. Experimental design Tissues from 87 patients who were treated at UCSF between 1990 and 2004 were analyzed. Twenty-eight grade II, 17 grade III glioma, 26 grade IV gliomas, and 16 non-tumor brain specimens were analyzed. Protein levels were assessed by immunoblots; RNA levels were determined by polymerase chain reaction amplification. To address the multiple comparisons, first an overall analysis was done comparing the four groups using Spearman’s Correlation Coefficient. Only if this analysis was statistically significant were individual pairwise comparisons done. Results Multiple comparison analyses revealed a significant correlation with grade for all variables examined, except phosphorylated-S6. Expression of phosphorylated-4E-BP1, phosphorylated-PKB/Akt, PTEN, TSC1, and TSC2 correlated with grade (P < 0.01 for all). We extended our analyses to ask whether decreases in TSC proteins levels were due to changes in mRNA levels, or due to changes in post-transcriptional alterations. We found significantly lower levels of TSC1 and TSC2 mRNA in GBMs than in grade II gliomas or non-tumor brain (P < 0.01). Conclusions Expression levels of critical signaling molecules upstream and downstream of mTOR differ between non-tumor brain and gliomas of any grade. The single variable whose expression did not differ between non-tumor brain and gliomas was phosphorylated-S6, suggesting that other protein kinases, in addition to mTOR, contribute significantly to S6 phosphorylation. mTOR provides a rational therapeutic target in gliomas of all grades, and clinical benefit may emerge as mTOR inhibitors are combined with additional agents. PMID:18759130

  20. Signal Transduction and Molecular Targets of Selected Flavonoids

    PubMed Central

    Bode, Ann M.

    2013-01-01

    Abstract Significance: Diet exerts a major influence on the risk for developing cancer and heart disease. Food factors such as flavonoids are alleged to protect cells from premature aging and disease by shielding DNA, proteins, and lipids from oxidative damage. Recent Advances: Our work has focused on clarifying the effects of dietary components on cancer cell proliferation and tumor growth, discovering mechanisms to explain the effects, and identifying the specific molecular targets of these compounds. Our strategy for identifying specific molecular targets of phytochemicals involves the use of supercomputer technology combined with protein crystallography, molecular biology, and experimental laboratory verification. Critical Issues: One of the greatest challenges for scientists is to reduce the accumulation of distortion and half truths reported in the popular media regarding the health benefits of certain foods or food supplements. The use of these is not new, but interest has increased dramatically because of perceived health benefits that are presumably acquired without unpleasant side effects. Flavonoids are touted to exert many beneficial effects in vitro. However, whether they can produce these effects in vivo is disputed. Future Directions: The World Health Organization indicates that one third of all cancer deaths are preventable and that diet is closely linked to prevention. Based on this idea and epidemiological findings, attention has centered on dietary phytochemicals as an effective intervention in cancer development. However, an unequivocal link between diet and cancer has not been established. Thus, identifying cancer preventive dietary agents with specific molecular targets is essential to move forward toward successful cancer prevention. Antioxid. Redox Signal. 19, 163–180. PMID:23458437

  1. Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Schuster, Stephan C.; Swanson, Ronald V.; Alex, Lisa A.; Bourret, Robert B.; Simon, Melvin I.

    1993-09-01

    WE have used surface plasmon resonance biosensor technology to monitor the assembly and dynamics of a signal transduction complex which controls chemotaxis in Escherichia coli A quaternary complex formed which consisted of the response regulator CheY, the histidine protein kinase CheA, a coupling protein CheW and a membrane-bound chemoreceptor Tar. Using various experimental conditions and mutant proteins, we have shown that the complex dissociates under conditions that favour phosphorylation of CheY. Direct physical analysis of interactions among proteins in this signal transduction pathway provides evidence for a previously unrecognized binding interaction between the kinase and its substrate. This interaction may be important for enhancing substrate specificity and preventing 'crosstalk' with other systems. The approach is generally applicable to furthering our understanding of how signalling complexes transduce intracellular messages.

  2. Mechanical Signal Transduction in Countermeasures to Muscle Atrophy

    NASA Technical Reports Server (NTRS)

    Tidball, James G.; Chu, Amy (Technical Monitor)

    2002-01-01

    We have shown that modifications in muscle use result in changes in the expression and activity of calpains and nitric oxide synthase (NOS). Although muscle unloading for 10 days produced no change in the concentrations of calpain 1 or 2 and no change in calpain activation, muscle reloading produced a 90% increase in calpain 2 concentration. We developed an in vitro model to test our hypothesis that nitric oxide can inhibit cytoskeletal breakdown in skeletal muscle cells by inhibiting calpain cleavage of talin. Talin was selected because it is a well-characterized calpain substrate and it is codistributed with calpain in muscle cells. We found that intermittant loading during hindlimb suspension that is sufficient to prevent muscle mass loss that occurs during muscle unloading is also sufficient to prevent the decrease in NOS expression that normally occurs during hindlimb unloading. These findings indicate that therapeutics directed toward regulating the calpain/calpastatin system may be beneficial in preventing muscle mass loss in muscle injury, unloading and disease.

  3. Chemosensory and photosensory perception in purple photosynthetic bacteria utilize common signal transduction components.

    PubMed Central

    Jiang, Z Y; Gest, H; Bauer, C E

    1997-01-01

    The chemotaxis gene cluster from the photosynthetic bacterium Rhodospirillum centenum contains five open reading frames (ORFs) that have significant sequence homology to chemotaxis genes from other bacteria. To elucidate the functions of each ORF, we have made various mutations in the gene cluster and analyzed their phenotypic defects. Deletion of the entire che operon (delta che), as well as nonpolar disruptions of cheAY, cheW, and cheR, resulted in a smooth-swimming phenotype, whereas disruption of cheB resulted in a locked tumbly phenotype. Each of these mutants was defective in chemotactic response. Interestingly, disruption of cheY resulted in a slight increase in the frequency of tumbling/reversal with no obvious defects in chemotactic response. In contrast to observations with Escherichia coli and several other bacteria, we found that all of the che mutant cells were capable of differentiating into hyperflagellated swarmer cells when plated on a solid agar surface. When viewed microscopically, the smooth-swimming che mutants exhibited active surface motility but were unable to respond to a step-down in light intensity. Both positive and negative phototactic responses were abolished in all che mutants, including the cheY mutant. These results indicate that eubacterial photosensory perception is mediated by light-generated signals that are transmitted through the chemotaxis signal transduction cascade. PMID:9294427

  4. Signal Transduction through CsrRS Confers an Invasive Phenotype in Group A Streptococcus

    PubMed Central

    Tran-Winkler, Hien J.; Love, John F.; Gryllos, Ioannis; Wessels, Michael R.

    2011-01-01

    The CsrRS (or CovRS) two component system controls expression of up to 15% of the genome of group A Streptococcus (GAS). While some studies have suggested that the sensor histidine kinase CsrS responds to membrane perturbations as a result of various environmental stresses, other data have implicated the human antimicrobial peptide LL-37 and extracellular Mg2+ as specific signals. We now report that Mg2+ and LL-37 have opposite effects on expression of multiple genes that are activated or repressed by the transcriptional regulator CsrR. Using a GAS isolate representative of the recently emerged and widely disseminated M1T1 clone implicated in severe invasive disease, we found marked up-regulation by CsrRS of multiple virulence factors including pyrogenic exotoxin A, DNase Sda1, streptolysin O, and the hyaluronic acid capsular polysaccharide, among others. Topology and surface protein labeling studies indicated that CsrS is associated with the bacterial cell membrane and has a surface-exposed extracellular domain accessible to environmental ligands. Replacement of a cluster of three acidic amino acids with uncharged residues in the extracellular domain of CsrS abrogated LL-37 signaling and conferred a hyporesponsive phenotype consistent with tonic activation of CsrS autokinase activity, an effect that could be overridden by mutation of the CsrS active site histidine. Both loss- and gain-of-function mutations of a conserved site in the receiver domain of CsrR established an essential role for lysine 102 in CsrS-to-CsrR signal transduction. These results provide strong evidence that Mg2+ and LL-37 are specific signals that function by altering CsrS autokinase activity and downstream phosphotransfer to CsrR to modulate its activity as a transcriptional regulator. The representation of multiple antiphagocytic and cytotoxic factors in the CsrRS regulon together with results of in vitro phagocytic killing assays support the hypothesis that CsrRS mediates conversion of GAS

  5. Signal transduction through CsrRS confers an invasive phenotype in group A Streptococcus.

    PubMed

    Tran-Winkler, Hien J; Love, John F; Gryllos, Ioannis; Wessels, Michael R

    2011-10-01

    The CsrRS (or CovRS) two component system controls expression of up to 15% of the genome of group A Streptococcus (GAS). While some studies have suggested that the sensor histidine kinase CsrS responds to membrane perturbations as a result of various environmental stresses, other data have implicated the human antimicrobial peptide LL-37 and extracellular Mg(2+) as specific signals. We now report that Mg(2+) and LL-37 have opposite effects on expression of multiple genes that are activated or repressed by the transcriptional regulator CsrR. Using a GAS isolate representative of the recently emerged and widely disseminated M1T1 clone implicated in severe invasive disease, we found marked up-regulation by CsrRS of multiple virulence factors including pyrogenic exotoxin A, DNase Sda1, streptolysin O, and the hyaluronic acid capsular polysaccharide, among others. Topology and surface protein labeling studies indicated that CsrS is associated with the bacterial cell membrane and has a surface-exposed extracellular domain accessible to environmental ligands. Replacement of a cluster of three acidic amino acids with uncharged residues in the extracellular domain of CsrS abrogated LL-37 signaling and conferred a hyporesponsive phenotype consistent with tonic activation of CsrS autokinase activity, an effect that could be overridden by mutation of the CsrS active site histidine. Both loss- and gain-of-function mutations of a conserved site in the receiver domain of CsrR established an essential role for lysine 102 in CsrS-to-CsrR signal transduction. These results provide strong evidence that Mg(2+) and LL-37 are specific signals that function by altering CsrS autokinase activity and downstream phosphotransfer to CsrR to modulate its activity as a transcriptional regulator. The representation of multiple antiphagocytic and cytotoxic factors in the CsrRS regulon together with results of in vitro phagocytic killing assays support the hypothesis that CsrRS mediates conversion

  6. Signal transduction pathways mediating parathyroid hormone regulation of osteoblastic gene expression

    NASA Technical Reports Server (NTRS)

    Partridge, N. C.; Bloch, S. R.; Pearman, A. T.

    1994-01-01

    Parathyroid hormone (PTH) plays a central role in regulation of calcium metabolism. For example, excessive or inappropriate production of PTH or the related hormone, parathyroid hormone related protein (PTHrP), accounts for the majority of the causes of hypercalcemia. Both hormones act through the same receptor on the osteoblast to elicit enhanced bone resorption by the osteoclast. Thus, the osteoblast mediates the effect of PTH in the resorption process. In this process, PTH causes a change in the function and phenotype of the osteoblast from a cell involved in bone formation to one directing the process of bone resorption. In response to PTH, the osteoblast decreases collagen, alkaline phosphatase, and osteopontin expression and increases production of osteocalcin, cytokines, and neutral proteases. Many of these changes have been shown to be due to effects on mRNA abundance through either transcriptional or post-transcriptional mechanisms. However, the signal transduction pathway for the hormone to cause these changes is not completely elucidated in any case. Binding of PTH and PTHrP to their common receptor has been shown to result in activation of protein kinases A and C and increases in intracellular calcium. The latter has not been implicated in any changes in mRNA of osteoblastic genes. On the other hand activation of PKA can mimic all the effects of PTH; protein kinase C may be involved in some responses. We will discuss possible mechanisms linking PKA and PKC activation to changes in gene expression, particularly at the nuclear level.

  7. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing

    NASA Astrophysics Data System (ADS)

    Lesne, Annick; Bécavin, Christophe; Victor, Jean–Marc

    2012-02-01

    Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.

  8. Driving Cellular Plasticity and Survival Through the Signal Transduction Pathways of Metabotropic Glutamate Receptors

    PubMed Central

    Maiese, Kenneth; Chong, Zhao Zhong; Li, Faqi

    2008-01-01

    Metabotropic glutamate receptors (mGluRs) share a common molecular morphology with other G protein–linked receptors, but there expression throughout the mammalian nervous system places these receptors as essential mediators not only for the initial development of an organism, but also for the vital determination of a cell’s fate during many disorders in the nervous system that include amyotrophic lateral sclerosis, Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, Multiple Sclerosis, epilepsy, trauma, and stroke. Given the ubiquitous distribution of these receptors, the mGluR system impacts upon neuronal, vascular, and glial cell function and is activated by a wide variety of stimuli that includes neurotransmitters, peptides, hormones, growth factors, ions, lipids, and light. Employing signal transduction pathways that can modulate both excitatory and inhibitory responses, the mGluR system drives a spectrum of cellular pathways that involve protein kinases, endonucleases, cellular acidity, energy metabolism, mitochondrial membrane potential, caspases, and specific mitogen-activated protein kinases. Ultimately these pathways can converge to regulate genomic DNA degradation, membrane phosphatidylserine (PS) residue exposure, and inflammatory microglial activation. As we continue to push the envelope for our understanding of this complex and critical family of metabotropic receptors, we should be able to reap enormous benefits for both clinical disease as well as our understanding of basic biology in the nervous system. PMID:16375723

  9. Phase separation of signaling molecules promotes T cell receptor signal transduction.

    PubMed

    Su, Xiaolei; Ditlev, Jonathon A; Hui, Enfu; Xing, Wenmin; Banjade, Sudeep; Okrut, Julia; King, David S; Taunton, Jack; Rosen, Michael K; Vale, Ronald D

    2016-04-29

    Activation of various cell surface receptors triggers the reorganization of downstream signaling molecules into micrometer- or submicrometer-sized clusters. However, the functional consequences of such clustering have been unclear. We biochemically reconstituted a 12-component signaling pathway on model membranes, beginning with T cell receptor (TCR) activation and ending with actin assembly. When TCR phosphorylation was triggered, downstream signaling proteins spontaneously separated into liquid-like clusters that promoted signaling outputs both in vitro and in human Jurkat T cells. Reconstituted clusters were enriched in kinases but excluded phosphatases and enhanced actin filament assembly by recruiting and organizing actin regulators. These results demonstrate that protein phase separation can create a distinct physical and biochemical compartment that facilitates signaling. PMID:27056844

  10. Modulators of Stomatal Lineage Signal Transduction Alter Membrane Contact Sites and Reveal Specialization among ERECTA Kinases.

    PubMed

    Ho, Chin-Min Kimmy; Paciorek, Tomasz; Abrash, Emily; Bergmann, Dominique C

    2016-08-22

    Signal transduction from a cell's surface to its interior requires dedicated signaling elements and a cellular environment conducive to signal propagation. Plant development, defense, and homeostasis rely on plasma membrane receptor-like kinases to perceive endogenous and environmental signals, but little is known about their immediate downstream targets and signaling modifiers. Using genetics, biochemistry, and live-cell imaging, we show that the VAP-RELATED SUPPRESSOR OF TMM (VST) family is required for ERECTA-mediated signaling in growth and cell-fate determination and reveal a role for ERECTA-LIKE2 in modulating signaling by its sister kinases. We show that VSTs are peripheral plasma membrane proteins that can form complexes with integral ER-membrane proteins, thereby potentially influencing the organization of the membrane milieu to promote efficient and differential signaling from the ERECTA-family members to their downstream intracellular targets. PMID:27554856

  11. Light-sensitive coupling of rhodopsin and melanopsin to Gi/o and Gq signal transduction in Caenorhabditis elegans

    PubMed Central

    Cao, Pengxiu; Sun, Wenyu; Kramp, Kristopher; Zheng, Maohua; Salom, David; Jastrzebska, Beata; Jin, Hui; Palczewski, Krzysztof; Feng, Zhaoyang

    2012-01-01

    Activation of G-protein-coupled receptors (GPCRs) initiates signal transduction cascades that affect many physiological responses. The worm Caenorhabditis elegans expresses >1000 of these receptors along with their cognate heterotrimeric G proteins. Here, we report properties of 9-cis-retinal regenerated bovine opsin [(b)isoRho] and human melanopsin [(h)Mo], two light-activated, heterologously expressed GPCRs in the nervous system of C. elegans with various genetically engineered alterations. Profound transient photoactivation of Gi/o signaling by (b)isoRho led to a sudden and transient loss of worm motility dependent on cyclic adenosine monophosphate, whereas transient photoactivation of Gq signaling by (h)Mo enhanced worm locomotion dependent on phospholipase Cβ. These transgenic C. elegans models provide a unique way to study the consequences of Gi/o and Gq signaling in vivo with temporal and spatial precision and, by analogy, their relationship to human neuromotor function.—Cao, P., Sun, W., Kramp, K., Zheng, M., Salom, D., Jastrzebska, B., Jin, H., Palczewski, K., Feng, Z. Light-sensitive coupling of rhodopsin and melanopsin to Gi/o and Gq signal transduction in Caenorhabditis elegans. PMID:22090313

  12. Control of Streptococcus pyogenes virulence: modeling of the CovR/S signal transduction system.

    PubMed

    Mitrophanov, Alexander Y; Churchward, Gordon; Borodovsky, Mark

    2007-05-01

    The CovR/S system in Streptococcus pyogenes (Group A Streptococcus, or GAS), a two-component signal transduction/transcription regulation system, controls the expression of major virulence factors. The presence of a negative feedback loop distinguishes the CovR/S system from the majority of bacterial two-component systems. We developed a deterministic model of the CovR/S system consisting of eight delay differential equations. Computational experiments showed that the system possessed a unique stable steady state. The dynamical behavior of the system showed a tendency for oscillations becoming more pronounced for longer but still biochemically realistic delays resulting from reductions in the rates of translation elongation. We have devised an efficient procedure for computing the system's steady state. Further, we have shown that the signal-response curves are hyperbolic for the default parameter values. However, in experiments with randomized parameters we demonstrated that sigmoidality of signal-response curves, implying a response threshold, is not only possible, but seems to be rather typical for CovR/S-like systems even when binding of the CovR response regulator protein to a promoter is non-cooperative. We used sensitivity analysis to simplify the model in order to make it analytically tractable. The existence and uniqueness of the steady state and hyperbolicity of signal-response curves for the majority of the variables was proved for the simplified model. Also, we found that provided CovS was active, the system was insensitive to changes in the concentration of any other phosphoryl donor such as acetyl phosphate. PMID:17240398

  13. Sustained nitric oxide (NO)-releasing compound reverses dysregulated NO signal transduction in priapism

    PubMed Central

    Lagoda, Gwen; Sezen, Sena F.; Hurt, K. Joseph; Cabrini, Marcelo R.; Mohanty, Dillip K.; Burnett, Arthur L.

    2014-01-01

    We evaluated the therapeutic potential of a sustained nitric oxide (NO)-releasing compound to correct the molecular hallmarks and pathophysiology of priapism, an important but poorly characterized erectile disorder. 1,5-Bis-(dihexyl-N-nitrosoamino)-2,4-dinitrobenzene (C6′) and an inactive form of the compound [1,5-bis-(dihexylamino)-2,4-dinitrobenzene (C6)] were tested in neuronal cell cultures and penile lysates for NO release (Griess assay) and biological activity (cGMP production). The effect of local depot C6′ or C6 was evaluated in mice with a priapic phenotype due to double neuronal and endothelial NO synthase deletion (dNOS−/−) or human sickle hemoglobin transgenic expression (Sickle). Changes in NO signaling molecules and reactive oxygen species (ROS) surrogates were assessed by Western blot. The physiological response after C6′ treatment was assessed using an established model of electrically stimulated penile erection. C6′ generated NO, increased cGMP, and dose dependently increased NO metabolites. C6′ treatment reversed abnormalities in key penile erection signaling molecules, including phosphodiesterase type 5, phosphorylated endothelial nitric oxide synthase, and phosphorylated vasodilator-stimulated phosphoprotein. In Sickle mice, C6′ also attenuated the increased ROS markers gp91phox, 4-hydroxynonenal, and 3-nitrotyrosine. Finally, C6′ corrected the excessive priapic erection response of dNOS−/− mice. Exogenous sustained NO release from C6′ corrects pathological erectile signaling in mouse models of priapism and suggests novel approaches to human therapy.—Lagoda, G., Sezen, S. F., Hurt, K. J., Cabrini, M. R., Mohanty, D. K., Burnett, A. L. Sustained nitric oxide (NO)-releasing compound reverses dysregulated NO signal transduction in priapism. PMID:24076963

  14. Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family

    PubMed Central

    Shakeel, Samina N.; Wang, Xiaomin; Binder, Brad M.; Schaller, G. Eric

    2013-01-01

    The plant hormone ethylene regulates growth and development as well as responses to biotic and abiotic stresses. Over the last few decades, key elements involved in ethylene signal transduction have been identified through genetic approaches, these elements defining a pathway that extends from initial ethylene perception at the endoplasmic reticulum to changes in transcriptional regulation within the nucleus. Here, we present our current understanding of ethylene signal transduction, focusing on recent developments that support a model with overlapping and non-overlapping roles for members of the ethylene receptor family. We consider the evidence supporting this model for sub-functionalization within the receptor family, and then discuss mechanisms by which such a sub-functionalization may occur. To this end, we consider the importance of receptor interactions in modulating their signal output and how such interactions vary in the receptor family. In addition, we consider evidence indicating that ethylene signal output by the receptors involves both phosphorylation-dependent and phosphorylation-independent mechanisms. We conclude with a current model for signalling by the ethylene receptors placed within the overall context of ethylene signal transduction. PMID:23543258

  15. Ubiquitin-Related Roles of β-Arrestins in Endocytic Trafficking and Signal Transduction.

    PubMed

    Jean-Charles, Pierre-Yves; Rajiv, Vishwaesh; Shenoy, Sudha K

    2016-10-01

    The non-visual arrestins, β-arrestin1, and β-arrestin2 were originally identified as proteins that bind to seven-transmembrane receptors (7TMRs, also called G protein-coupled receptors, GPCRs) and block heterotrimeric G protein activation, thus leading to desensitization of transmembrane signaling. However, as subsequent discoveries have continually demonstrated, their functionality is not constrained to desensitization. They are now recognized for their critical roles in mediating intracellular trafficking of 7TMRs, growth factor receptors, ion transporters, ion channels, nuclear receptors, and non-receptor proteins. Additionally, they function as crucial mediators of ubiquitination of 7TMRs as well as other receptors and non-receptor proteins. Recently, emerging studies suggest that a class of proteins with predicted structural features of β-arrestins regulate substrate ubiquitination in yeast and higher mammals, lending support to the idea that the adaptor role of β-arrestins in protein ubiquitination is evolutionarily conserved. β-arrestins also function as scaffolds for kinases and transduce signals from 7TMRs through pathways that do not require G protein activation. Remarkably, the endocytic and scaffolding functions of β-arrestin are intertwined with its ubiquitination status; the dynamic and site specific ubiquitination on β-arrestin plays a critical role in stabilizing β-arrestin-7TMR association and the formation of signalosomes. This review summarizes the current findings on ubiquitin-dependent regulation of 7TMRs as well as β-arrestins and the potential role of reversible ubiquitination as a "biological switch" in signal transduction. J. Cell. Physiol. 231: 2071-2080, 2016. © 2016 Wiley Periodicals, Inc. PMID:26790995

  16. Global Transcription Profiling Reveals Multiple Sugar Signal Transduction Mechanisms in ArabidopsisW⃞

    PubMed Central

    Price, John; Laxmi, Ashverya; St. Martin, Steven K.; Jang, Jyan-Chyun

    2004-01-01

    Complex and interconnected signaling networks allow organisms to control cell division, growth, differentiation, or programmed cell death in response to metabolic and environmental cues. In plants, it is known that sugar and nitrogen are critical nutrient signals; however, our understanding of the molecular mechanisms underlying nutrient signal transduction is very limited. To begin unraveling complex sugar signaling networks in plants, DNA microarray analysis was used to determine the effects of glucose and inorganic nitrogen source on gene expression on a global scale in Arabidopsis thaliana. In whole seedling tissue, glucose is a more potent signal in regulating transcription than inorganic nitrogen. In fact, other than genes associated with nitrate assimilation, glucose had a greater effect in regulating nitrogen metabolic genes than nitrogen itself. Glucose also regulated a broader range of genes, including genes associated with carbohydrate metabolism, signal transduction, and metabolite transport. In addition, a large number of stress responsive genes were also induced by glucose, indicating a role of sugar in environmental responses. Cluster analysis revealed significant interaction between glucose and nitrogen in regulating gene expression because glucose can modulate the effects of nitrogen and vise versa. Intriguingly, cycloheximide treatment appeared to disrupt glucose induction more than glucose repression, suggesting that de novo protein synthesis is an intermediary event required before most glucose induction can occur. Cross talk between sugar and ethylene signaling may take place on the transcriptional level because several ethylene biosynthetic and signal transduction genes are repressed by glucose, and the repression is largely unaffected by cycloheximide. Collectively, our global expression data strongly support the idea that glucose and inorganic nitrogen act as both metabolites and signaling molecules. PMID:15273295

  17. Image informatics for studying signal transduction in cells interacting with 3D matrices

    NASA Astrophysics Data System (ADS)

    Tzeranis, Dimitrios S.; Guo, Jin; Chen, Chengpin; Yannas, Ioannis V.; Wei, Xunbin; So, Peter T. C.

    2014-03-01

    Cells sense and respond to chemical stimuli on their environment via signal transduction pathways, complex networks of proteins whose interactions transmit chemical information. This work describes an implementation of image informatics, imaging-based methodologies for studying signal transduction networks. The methodology developed focuses on studying signal transduction networks in cells that interact with 3D matrices. It utilizes shRNA-based knock down of network components, 3D high-content imaging of cells inside the matrix by spectral multi-photon microscopy, and single-cell quantification using features that describe both cell morphology and cell-matrix adhesion pattern. The methodology is applied in a pilot study of TGFβ signaling via the SMAD pathway in fibroblasts cultured inside porous collagen-GAG scaffolds, biomaterials similar to the ones used clinically to induce skin regeneration. Preliminary results suggest that knocking down all rSMAD components affects fibroblast response to TGFβ1 and TGFβ3 isoforms in different ways, and suggest a potential role for SMAD1 and SMAD5 in regulating TGFβ isoform response. These preliminary results need to be verified with proteomic results that can provide solid evidence about the particular role of individual components of the SMAD pathway.

  18. Reduced signal transduction through glucocorticoid receptor in Burkitt's lymphoma cell lines.

    PubMed

    Sinclair, A J; Jacquemin, M G; Brooks, L; Shanahan, F; Brimmell, M; Rowe, M; Farrell, P J

    1994-03-01

    Signal transduction through the glucocorticoid receptor (GR) was shown to be significantly reduced in Epstein-Barr virus (EBV)-positive group I Burkitt's lymphoma (BL) cell lines compared to human B-lymphocytes immortalized by EBV (LCLs). On the basis of hormone binding assays, nuclear DNA binding activity, and transactivation assays the response was reduced 5- to 10-fold. Direct sequence analysis of the expressed glucocorticoid receptor mRNA in two BL cell lines indicated that the phenotype did not result from mutation of the GR gene. By preparing a high-titer polyclonal antiserum against the t-1 region of the human GR, we further showed that the deficient GR response in BLs is largely reflected in reduced GR steady-state protein levels in BL cells compared to LCLs. However, the level of GR mRNA varies less between the BL cell lines and the LCLs. The Cp promoter of EBV which normally drives expression of the EBNA gene family in EBV-immortalized LCLs contains a functional glucocorticoid response element. Transfection of GR expression constructs to group I BL cells converted the GR response to approximately LCL levels both with respect to hormone binding and glucocorticoid-dependent transcription of a glucocorticoid-dependent promoter. A modest activation of EBNA-2 expression was seen in some such cell lines, suggesting that the lower GR response contributes to the down-regulation of EBNA expression observed in BL. PMID:8122366

  19. Physiological roles of peroxido-vanadium complexes: Leitmotif as their signal transduction pathway.

    PubMed

    Matsugo, Seiichi; Kanamori, Kan; Sugiyama, Hironori; Misu, Hirofumi; Takamura, Toshinari

    2015-06-01

    Evidence exists that supports the various physiological roles of vanadium compounds, although the amount of vanadium in our body is limited. This limited concentration in our body does not attract much attention of the biological chemists, although the fact is present; even in the 19th century, vanadium derivatives were used for the therapeutic reagents. In the middle of the 20th century, the main focus of vanadium chemistry is mainly on the chemical and material fields. After the first discovery of vanadium compounds expressing ATPase activity, oxidovanadium(IV) sulfate was reported to have insulin mimic activity. Additionally, because some vanadium compounds possess cellular toxicity, trials were also carried out to examine the possible use of vanadium compounds as cancer therapeutics. The application of vanadium complexes was extended in recent years especially in the 21st century. In this review, we briefly explain the historical background of vanadium chemistry and also summarize the physiological role of vanadium complexes mainly focusing on the synthesis and physiological role of peroxidovanadium compounds and their interactions with insulin signal transduction pathways. PMID:25912243

  20. Peroxiredoxins in Regulation of MAPK Signalling Pathways; Sensors and Barriers to Signal Transduction

    PubMed Central

    Latimer, Heather R.; Veal, Elizabeth A.

    2016-01-01

    Peroxiredoxins are highly conserved and abundant peroxidases. Although the thioredoxin peroxidase activity of peroxiredoxin (Prx) is important to maintain low levels of endogenous hydrogen peroxide, Prx have also been shown to promote hydrogen peroxide-mediated signalling. Mitogen activated protein kinase (MAPK) signalling pathways mediate cellular responses to a variety of stimuli, including reactive oxygen species (ROS). Here we review the evidence that Prx can act as both sensors and barriers to the activation of MAPK and discuss the underlying mechanisms involved, focusing in particular on the relationship with thioredoxin. PMID:26813660

  1. Peroxiredoxins in Regulation of MAPK Signalling Pathways; Sensors and Barriers to Signal Transduction.

    PubMed

    Latimer, Heather R; Veal, Elizabeth A

    2016-01-01

    Peroxiredoxins are highly conserved and abundant peroxidases. Although the thioredoxin peroxidase activity of peroxiredoxin (Prx) is important to maintain low levels of endogenous hydrogen peroxide, Prx have also been shown to promote hydrogen peroxide-mediated signalling. Mitogen activated protein kinase (MAPK) signalling pathways mediate cellular responses to a variety of stimuli, including reactive oxygen species (ROS). Here we review the evidence that Prx can act as both sensors and barriers to the activation of MAPK and discuss the underlying mechanisms involved, focusing in particular on the relationship with thioredoxin. PMID:26813660

  2. Role of functionality in two-component signal transduction: A stochastic study

    NASA Astrophysics Data System (ADS)

    Maity, Alok Kumar; Bandyopadhyay, Arnab; Chaudhury, Pinaki; Banik, Suman K.

    2014-03-01

    We present a stochastic formalism for signal transduction processes in a bacterial two-component system. Using elementary mass action kinetics, the proposed model takes care of signal transduction in terms of a phosphotransfer mechanism between the cognate partners of a two-component system, viz., the sensor kinase and the response regulator. Based on the difference in functionality of the sensor kinase, the noisy phosphotransfer mechanism has been studied for monofunctional and bifunctional two-component systems using the formalism of the linear noise approximation. Steady-state analysis of both models quantifies different physically realizable quantities, e.g., the variance, the Fano factor (variance/mean), and mutual information. The resultant data reveal that both systems reliably transfer information of extracellular environment under low external stimulus and in a high-kinase-and-phosphatase regime. We extend our analysis further by studying the role of the two-component system in downstream gene regulation.

  3. Role of functionality in two-component signal transduction: a stochastic study.

    PubMed

    Maity, Alok Kumar; Bandyopadhyay, Arnab; Chaudhury, Pinaki; Banik, Suman K

    2014-03-01

    We present a stochastic formalism for signal transduction processes in a bacterial two-component system. Using elementary mass action kinetics, the proposed model takes care of signal transduction in terms of a phosphotransfer mechanism between the cognate partners of a two-component system, viz., the sensor kinase and the response regulator. Based on the difference in functionality of the sensor kinase, the noisy phosphotransfer mechanism has been studied for monofunctional and bifunctional two-component systems using the formalism of the linear noise approximation. Steady-state analysis of both models quantifies different physically realizable quantities, e.g., the variance, the Fano factor (variance/mean), and mutual information. The resultant data reveal that both systems reliably transfer information of extracellular environment under low external stimulus and in a high-kinase-and-phosphatase regime. We extend our analysis further by studying the role of the two-component system in downstream gene regulation. PMID:24730880

  4. Microgravity-induced alterations in signal transduction in cells of the immune system

    NASA Astrophysics Data System (ADS)

    Paulsen, Katrin; Thiel, Cora; Timm, Johanna; Schmidt, Peter M.; Huber, Kathrin; Tauber, Svantje; Hemmersbach, Ruth; Seibt, Dieter; Kroll, Hartmut; Grote, Karl-Heinrich; Zipp, Frauke; Schneider-Stock, Regine; Cogoli, Augusto; Hilliger, Andre; Engelmann, Frank; Ullrich, Oliver

    2010-11-01

    Since decades it is known that the activity of cells of the immune system is severely dysregulated in microgravity, however, the underlying molecular aspects have not been elucidated yet. The identification of gravity-sensitive molecular mechanisms in cells of the immune system is an important and indispensable prerequisite for the development of counteractive measures to prevent or treat disturbed immune cell function of astronauts during long-term space missions. Moreover, their sensitivity to altered gravity renders immune cells an ideal model system to understand if and how gravity on Earth is required for normal mammalian cell function and signal transduction. We investigated the effect of simulated weightlessness (2D clinostat) and of real microgravity (parabolic flights) on key signal pathways in a human monocytic and a T lymphocyte cell line. We found that cellular responses to microgravity strongly depend on the cell-type and the conditions in which the cells are subjected to microgravity. In Jurkat T cells, enhanced phosphorylation of the MAP kinases ERK-1/2, MEK and p38 and inhibition of nuclear translocation of NF-kB were the predominant responses to simulated weightlessness, in either stimulated or non-stimulated cells. In contrast, non-stimulated monocytic U937 cells responded to simulated weightlessness with enhanced overall tyrosine-phosphorylation and activation of c-jun, whereas PMA-stimulated U937 cells responded the opposite way with reduced tyrosine-phosphorylation and reduced activation of c-jun, compared with PMA-stimulated 1 g controls. P53 protein was phosphorylated rapidly in microgravity. The identification of gravi-sensitive mechanisms in cells of the immune system will not only enable us to understand and prevent the negative effects of long time exposure to microgravity on Astronauts, but could also lead to novel therapeutic targets in general.

  5. Signal transduction in human pancreatic cancer: roles of transforming growth factor beta, somatostatin receptors, and other signal intermediates.

    PubMed

    Li, Min; Becnel, Lauren S; Li, Wei; Fisher, William E; Chen, Changyi; Yao, Qizhi

    2005-01-01

    Pancreatic cancer is a devastating disease because of the lack of early detection markers and effective treatments. It is the fourth leading cause of cancer-related death in western countries, including the United States. The mechanisms of pancreatic cancer progression remain unknown. Transforming growth factor beta (TGF-beta), a multifunctional cytokine, regulates cell growth and differentiation in healthy tissues, yet fails to do so in pancreatic cancer. Alterations of the TGF-beta and TGF-beta receptor/Smad signal transduction pathway have been implicated in pancreatic cancer. Furthermore, both the TGF-beta receptor and Smad proteins interact with a variety of cellular signal pathways, such as the somatostatin receptors (SSTRs), ERK1/2, and Wnt signal transduction cascades. This suggests that pancreatic cancer is a multi-gene-controlled malignancy and that effective treatments for pancreatic cancer should be aimed at multiple targets. In this review, we summarized the major signal intermediates involved in pancreatic cancer signal transduction pathways and specifically discussed how alterations in the regulatory functions of TGF-beta and Smad proteins allow for pancreatic carcinogenesis. PMID:16314822

  6. Calcium and protein phosphorylation in the transduction of gravity signal in corn roots

    NASA Technical Reports Server (NTRS)

    Friedmann, M.; Poovaiah, B. W.

    1991-01-01

    The involvement of calcium and protein phosphorylation in the transduction of gravity signal was studied using corn roots of a light-insensitive variety (Zea mays L., cv. Patriot). The gravitropic response was calcium-dependent. Horizontal placement of roots preloaded with 32P for three minutes resulted in changes in protein phosphorylation of polypeptides of 32 and 35 kD. Calcium depletion resulted in decreased phosphorylation of these phosphoproteins and replenishment of calcium restored the phosphorylation.

  7. Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency.

    PubMed

    Luo, Zhi-Bin; He, Jiali; Polle, Andrea; Rennenberg, Heinz

    2016-11-01

    Heavy metal (HM)-accumulating herbaceous and woody plants are employed for phytoremediation. To develop improved strategies for enhancing phytoremediation efficiency, knowledge of the microstructural, physiological and molecular responses underlying HM-accumulation is required. Here we review the progress in understanding the structural, physiological and molecular mechanisms underlying HM uptake, transport, sequestration and detoxification, as well as the regulation of these processes by signal transduction in response to HM exposure. The significance of genetic engineering for enhancing phytoremediation efficiency is also discussed. In herbaceous plants, HMs are taken up by roots and transported into the root cells via transmembrane carriers for nutritional ions. The HMs absorbed by root cells can be further translocated to the xylem vessels and unloaded into the xylem sap, thereby reaching the aerial parts of plants. HMs can be sequestered in the cell walls, vacuoles and the Golgi apparatuses. Plant roots initially perceive HM stress and trigger the signal transduction, thereby mediating changes at the molecular, physiological, and microstructural level. Signaling molecules such as phytohormones, reactive oxygen species (ROS) and nitric oxide (NO), modulate plant responses to HMs via differentially expressed genes, activation of the antioxidative system and coordinated cross talk among different signaling molecules. A number of genes participated in HM uptake, transport, sequestration and detoxification have been functionally characterized and transformed to target plants for enhancing phytoremediation efficiency. Fast growing woody plants hold an advantage over herbaceous plants for phytoremediation in terms of accumulation of high HM-amounts in their large biomass. Presumably, woody plants accumulate HMs using similar mechanisms as herbaceous counterparts, but the processes of HM accumulation and signal transduction can be more complex in woody plants. PMID

  8. Signal transduction and regulation of melatonin synthesis in bovine pinealocytes: impact of adrenergic, peptidergic and cholinergic stimuli.

    PubMed

    Schomerus, Christof; Laedtke, Elke; Olcese, James; Weller, Joan L; Klein, David C; Korf, Horst-Werner

    2002-09-01

    Limited studies of the regulation of pineal melatonin biosynthesis in ungulates indicate that it differs considerably from that in rodents. Here we have investigated several signal transduction cascades and their impact on melatonin synthesis in bovine pinealocytes. Norepinephrine increased the intracellular calcium ion concentration ([Ca2+]i) via alpha(1)-adrenergic receptors. Activation of beta-adrenergic receptors enhanced cAMP accumulation and rapidly elevated arylalkylamine N-acetyltransferase (AANAT) activity and melatonin secretion. The beta-adrenergically evoked increases in AANAT activity were potentiated by alpha(1)-adrenergic stimulation, but this was not seen with cAMP or melatonin production. PACAP treatment caused small increases in cAMP, AANAT activity and melatonin biosynthesis, apparently in a subpopulation of cells. VIP and glutamate did not influence any of these parameters. Activation of nicotinic and muscarinic acetylcholine receptors increased [Ca2+]i, but did not alter cAMP levels, AANAT activity or melatonin production. Our study reveals that discrete differences in pineal signal transduction exist between the cow and rodent, and emphasizes the potential importance that the analysis of ungulate pinealocytes may play in understanding regulation of pineal melatonin biosynthesis in primates and man, whose melatonin-generating system appears to be more similar to that in ungulates than to that in rodents. PMID:12195298

  9. Gravity persistent signal 1 reveals a novel cytochrome P450 involved in gravitropic signal transduction

    NASA Astrophysics Data System (ADS)

    Wyatt, Sarah

    is involved in gravitropic signal transduction. (Partially support by NSF: 0618506 to SEW)

  10. The discovery of signal transduction by G proteins. A personal account and an overview of the initial findings and contributions that led to our present understanding

    PubMed Central

    Birnbaumer, Lutz

    2007-01-01

    The realization that there existed a G-protein coupled signal transduction mechanism developed gradually and was initially the result of an ill fated quest for uncovering the mechanism of action of insulin, followed by a refocused research in many laboratories, including mine, on how GTP acted to increase hormonal stimulation of adenylyl cyclase. Independent research into how light-activated rhodopsin triggers a response in photoreceptor cells of the retina and the attendant biochemical studies joined midway and, without the left hand knowing well what the right hand was doing, preceded classical G protein research in identifying the molecular players responsible for signal transduction by G proteins. PMID:17141178

  11. Inhibition of clathrin-mediated endocytosis selectively attenuates specific insulin receptor signal transduction pathways.

    PubMed

    Ceresa, B P; Kao, A W; Santeler, S R; Pessin, J E

    1998-07-01

    To examine the role of clathrin-dependent insulin receptor internalization in insulin-stimulated signal transduction events, we expressed a dominant-interfering mutant of dynamin (K44A/dynamin) by using a recombinant adenovirus in the H4IIE hepatoma and 3T3L1 adipocyte cell lines. Expression of K44A/dynamin inhibited endocytosis of the insulin receptor as determined by both cell surface radioligand binding and trypsin protection analysis. The inhibition of the insulin receptor endocytosis had no effect on either the extent of insulin receptor autophosphorylation or insulin receptor substrate 1 (IRS1) tyrosine phosphorylation. In contrast, expression of K44A/dynamin partially inhibited insulin-stimulated Shc tyrosine phosphorylation and activation of the mitogen-activated protein kinases ERK1 and -2. Although there was an approximately 50% decrease in the insulin-stimulated activation of the phosphatidylinositol 3-kinase associated with IRS1, insulin-stimulated Akt kinase phosphorylation and activation were unaffected. The expression of K44A/dynamin increased the basal rate of amino acid transport, which was additive with the effect of insulin but had no effect on the basal or insulin-stimulated DNA synthesis. In 3T3L1 adipocytes, expression of K44A/dynamin increased the basal rate of glucose uptake, glycogen synthesis, and lipogenesis without any significant effect on insulin stimulation. Together, these data demonstrate that the acute actions of insulin are largely independent of insulin receptor endocytosis and are initiated by activation of the plasma membrane-localized insulin receptor. PMID:9632770

  12. Inhibition of Clathrin-Mediated Endocytosis Selectively Attenuates Specific Insulin Receptor Signal Transduction Pathways

    PubMed Central

    Ceresa, Brian P.; Kao, Aimee W.; Santeler, Scott R.; Pessin, Jeffrey E.

    1998-01-01

    To examine the role of clathrin-dependent insulin receptor internalization in insulin-stimulated signal transduction events, we expressed a dominant-interfering mutant of dynamin (K44A/dynamin) by using a recombinant adenovirus in the H4IIE hepatoma and 3T3L1 adipocyte cell lines. Expression of K44A/dynamin inhibited endocytosis of the insulin receptor as determined by both cell surface radioligand binding and trypsin protection analysis. The inhibition of the insulin receptor endocytosis had no effect on either the extent of insulin receptor autophosphorylation or insulin receptor substrate 1 (IRS1) tyrosine phosphorylation. In contrast, expression of K44A/dynamin partially inhibited insulin-stimulated Shc tyrosine phosphorylation and activation of the mitogen-activated protein kinases ERK1 and -2. Although there was an approximately 50% decrease in the insulin-stimulated activation of the phosphatidylinositol 3-kinase associated with IRS1, insulin-stimulated Akt kinase phosphorylation and activation were unaffected. The expression of K44A/dynamin increased the basal rate of amino acid transport, which was additive with the effect of insulin but had no effect on the basal or insulin-stimulated DNA synthesis. In 3T3L1 adipocytes, expression of K44A/dynamin increased the basal rate of glucose uptake, glycogen synthesis, and lipogenesis without any significant effect on insulin stimulation. Together, these data demonstrate that the acute actions of insulin are largely independent of insulin receptor endocytosis and are initiated by activation of the plasma membrane-localized insulin receptor. PMID:9632770

  13. Remodeling the clock: coactivators and signal transduction in the circadian clockworks

    NASA Astrophysics Data System (ADS)

    Weber, Frank

    2009-03-01

    Most organisms on earth such as cyanobacteria, fungi, plants, insects, animals, and humans synchronize their physiological and behavioral activities with the environmental cycles of day and night. Significant progress has been made in unraveling the genetic components that constitute a molecular circadian clock, which facilitates the temporal control of physiology and behavior. Clock genes assemble interlocked transcriptional/translational feedback loops that underlie the circadian oscillations. Recent investigations revealed that posttranslational regulation of clock proteins is crucial for functioning of the molecular oscillator and for precise temporal control of circadian transcription. This review provides an overview of the homologous clockworks in Drosophila and mammals, with a special focus on recent insights in the posttranslational regulation of clock proteins as well as the role of coactivators, repressors, and signal transduction for circadian controlled genome-wide transcription. The emerging mechanisms of clock gene regulation provide an understanding of the temporal control of transcription in general and the circadian orchestration of physiology and behavior in particular.

  14. Functional characterization of WalRK: A two-component signal transduction system from Bacillus anthracis.

    PubMed

    Dhiman, Alisha; Bhatnagar, Sonika; Kulshreshtha, Parul; Bhatnagar, Rakesh

    2014-01-01

    Two-component signal transduction systems (TCS), consisting of a sensor histidine protein kinase and its cognate response regulator, are an important mode of environmental sensing in bacteria. Additionally, they have been found to regulate virulence determinants in several pathogens. Bacillus anthracis, the causative agent of anthrax and a bioterrorism agent, harbours 41 pairs of TCS. However, their role in its pathogenicity has remained largely unexplored. Here, we show that WalRK of B. anthracis forms a functional TCS which exhibits some species-specific functions. Biochemical studies showed that domain variants of WalK, the histidine kinase, exhibit classical properties of autophosphorylation and phosphotransfer to its cognate response regulator WalR. Interestingly, these domain variants also show phosphatase activity towards phosphorylated WalR, thereby making WalK a bifunctional histidine kinase/phosphatase. An in silico regulon determination approach, using a consensus binding sequence from Bacillus subtilis, provided a list of 30 genes that could form a putative WalR regulon in B. anthracis. Further, electrophoretic mobility shift assay was used to show direct binding of purified WalR to the upstream regions of three putative regulon candidates, an S-layer protein EA1, a cell division ABC transporter FtsE and a sporulation histidine kinase KinB3. Our work lends insight into the species-specific functions and mode of action of B. anthracis WalRK. PMID:24490131

  15. New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression.

    PubMed

    Galinier, A; Kravanja, M; Engelmann, R; Hengstenberg, W; Kilhoffer, M C; Deutscher, J; Haiech, J

    1998-02-17

    Carbon catabolite repression (CCR) is the prototype of a signal transduction mechanism. In enteric bacteria, cAMP was considered to be the second messenger in CCR by playing a role reminiscent of its actions in eukaryotic cells. However, recent results suggest that CCR in Escherichia coli is mediated mainly by an inducer exclusion mechanism. In many Gram-positive bacteria, CCR is triggered by fructose-1,6-bisphosphate, which activates HPr kinase, presumed to be one of the most ancient serine protein kinases. We here report cloning of the Bacillus subtilis hprK and hprP genes and characterization of the encoded HPr kinase and P-Ser-HPr phosphatase. P-Ser-HPr phosphatase forms a new family of phosphatases together with bacterial phosphoglycolate phosphatase, yeast glycerol-3-phosphatase, and 2-deoxyglucose-6-phosphate phosphatase whereas HPr kinase represents a new family of protein kinases on its own. It does not contain the domain structure typical for eukaryotic protein kinases. Although up to now the HPr modifying/demodifying enzymes were thought to exist only in Gram-positive bacteria, a sequence comparison revealed that they also are present in several Gram-negative pathogenic bacteria. PMID:9465101

  16. Rho/Rock signal transduction pathway is required for MSC tenogenic differentiation

    PubMed Central

    Maharam, Edward; Yaport, Miguel; Villanueva, Nathaniel L; Akinyibi, Takintope; Laudier, Damien; He, Zhiyong; Leong, Daniel J; Sun, Hui B

    2015-01-01

    Mesenchymal stem cell (MSC)-based treatments have shown promise for improving tendon healing and repair. MSCs have the potential to differentiate into multiple lineages in response to select chemical and physical stimuli, including into tenocytes. Cell elongation and cytoskeletal tension have been shown to be instrumental to the process of MSC differentiation. Previous studies have shown that inhibition of stress fiber formation leads MSCs to default toward an adipogenic lineage, which suggests that stress fibers are required for MSCs to sense the environmental factors that can induce differentiation into tenocytes. As the Rho/ROCK signal transduction pathway plays a critical role in both stress fiber formation and in cell sensation, we examined whether the activation of this pathway was required when inducing MSC tendon differentiation using rope-like silk scaffolds. To accomplish this, we employed a loss-of-function approach by knocking out ROCK, actin and myosin (two other components of the pathway) using the specific inhibitors Y-27632, Latrunculin A and blebbistatin, respectively. We demonstrated that independently disrupting the cytoskeleton and the Rho/ROCK pathway abolished the expression of tendon differentiation markers and led to a loss of spindle morphology. Together, these studies suggest that the tension that is generated by MSC elongation is essential for MSC teno-differentiation and that the Rho/ROCK pathway is a critical mediator of tendon differentiation on rope-like silk scaffolds. PMID:26509098

  17. Chronic nonocclusive coronary artery constriction in rats. Beta-adrenoceptor signal transduction and ventricular failure.

    PubMed Central

    Meggs, L G; Huang, H; Li, P; Capasso, J M; Anversa, P

    1991-01-01

    To determine the effects of chronic coronary artery constriction on the relationship between cardiac function and regulation of beta-adrenoceptor signal transduction, the left main coronary artery was narrowed in rats and the animals were killed 5 mo later. An average reduction in coronary luminal diameter of 44% was obtained and this change resulted in an increase in left ventricular end-diastolic pressure and a decrease in positive and negative dP/dt. Significant increases in left and right ventricular weights indicative of global cardiac hypertrophy were observed. Radioligand binding studies of beta-adrenoreceptors, agonist-stimulated adenylate cyclase activity, and ADP ribosylation of 45-kD substrate by cholera toxin were all depressed in the failing left ventricle. In contrast, in the hypertrophic non-failing right ventricle, beta-adrenoreceptor density was preserved and receptor antagonist affinity was increased. In spite of these findings at the receptor level, agonist stimulated cyclic AMP generation was reduced in the right ventricular myocardium. The quantity of the 45-kD substrate was also decreased. In conclusion, longterm nonocclusive coronary artery stenosis of moderate degree has profound detrimental effects on the contractile performance of the heart in association with marked attenuation of adrenergic support mechanisms. Images PMID:1661293

  18. Adaptation to Environmental Stimuli within the Host: Two-Component Signal Transduction Systems of Mycobacterium tuberculosis

    PubMed Central

    Bretl, Daniel J.; Demetriadou, Chrystalla; Zahrt, Thomas C.

    2011-01-01

    Summary: Pathogenic microorganisms encounter a variety of environmental stresses following infection of their respective hosts. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is an unusual bacterial pathogen in that it is able to establish lifelong infections in individuals within granulomatous lesions that are formed following a productive immune response. Adaptation to this highly dynamic environment is thought to be mediated primarily through transcriptional reprogramming initiated in response to recognition of stimuli, including low-oxygen tension, nutrient depletion, reactive oxygen and nitrogen species, altered pH, toxic lipid moieties, cell wall/cell membrane-perturbing agents, and other environmental cues. To survive continued exposure to these potentially adverse factors, M. tuberculosis encodes a variety of regulatory factors, including 11 complete two-component signal transduction systems (TCSSs) and several orphaned response regulators (RRs) and sensor kinases (SKs). This report reviews our current knowledge of the TCSSs present in M. tuberculosis. In particular, we discuss the biochemical and functional characteristics of individual RRs and SKs, the environmental stimuli regulating their activation, the regulons controlled by the various TCSSs, and the known or postulated role(s) of individual TCSSs in the context of M. tuberculosis physiology and/or pathogenesis. PMID:22126994

  19. Identification of intracellular domains in the growth hormone receptor involved in signal transduction

    SciTech Connect

    Billestrup, N.; Allevato, G.; Moldrup, A.

    1994-12-31

    The growth hormone (GH) receptor belongs to the GH/prolactin/cytokine super-family of receptors. The signal transduction mechanism utilized by this class of receptors remains largely unknown. In order to identify functional domains in the intracellular region of the GH receptor we generated a number of GH receptor mutants and analyzed their function after transfection into various cell lines. A truncated GH receptor missing 184 amino acids at the C-terminus was unable to medite GH effects on transcription of the Spi 2.1 and insulin genes. However, this mutant was fully active in mediating GH-stimulated metabolic effects such as protein synthesis and lipolysis. Furthermore, this mutant GH receptor internalized rapidly following GH binding. Another truncated GH receptor lacking all but five amino acids of the cytoplasmic domain could not mediate any effects of GH nor did it internalize. Deletion of the proline-rich region or changing the four prolines to alanines also resulted in a GH receptor deficient in signaling. Mutation of phenylalanine 346 to alanine resulted in a GH receptor which did not internalize rapidly; however, this mutant GH receptor was capable of mediating GH-stimulated transcription as well as metabolic effects. These results indicate that the intracellular part of the GH receptor can be divided into at least three functional domains: (1) for transcriptional activity, two domains are involved, one located in the C-terminal 184 amino acids and the other in the proline-rich domain; (2) for metabolic effects, a domain located in or near the proline-rich region is of importance; and (3) for internalization, phenylalanine 346 is necessary. 28 refs., 1 fig.

  20. Structural insights of homotypic interaction domains in the ligand-receptor signal transduction of tumor necrosis factor (TNF)

    PubMed Central

    Park, Young-Hoon; Jeong, Mi Suk; Jang, Se Bok

    2016-01-01

    Several members of tumor necrosis factor receptor (TNFR) superfamily that these members activate caspase-8 from death-inducing signaling complex (DISC) in TNF ligand-receptor signal transduction have been identified. In the extrinsic pathway, apoptotic signal transduction is induced in death domain (DD) superfamily; it consists of a hexahelical bundle that contains 80 amino acids. The DD superfamily includes about 100 members that belong to four subfamilies: death domain (DD), caspase recruitment domain (CARD), pyrin domain (PYD), and death effector domain (DED). This superfamily contains key building blocks: with these blocks, multimeric complexes are formed through homotypic interactions. Furthermore, each DD-binding event occurs exclusively. The DD superfamily regulates the balance between death and survival of cells. In this study, the structures, functions, and unique features of DD superfamily members are compared with their complexes. By elucidating structural insights of DD superfamily members, we investigate the interaction mechanisms of DD domains; these domains are involved in TNF ligand-receptor signaling. These DD superfamily members play a pivotal role in the development of more specific treatments of cancer. [BMB Reports 2016; 49(3): 159-166] PMID:26615973

  1. A thermal signal generator probe for the study of neural thermal transduction.

    PubMed

    Maluf, N I; McNutt, E L; Monroe, S; Tanelian, D L; Kovacs, G T

    1994-07-01

    The study of thermal transduction in neural tissues has been impeded by the lack of instrumentation able to generate complex, focal temperature variations. Specifically, we are interested in the study of neural thermal transduction within the cornea, with its homogeneous thermal conductivity and avascularity. We present a thermal signal generator probe that is capable of producing arbitrarily shaped bipolar (heating or cooling) thermal swings in a small volume of corneal tissue with which it is in contact. Heating and cooling of the probe tip are achieved by means of a Peltier effect thermoelectric device. The probe temperature, measured directly at the tip, is controlled using closed-loop control circuitry and waveform generation software on a host computer. Response characteristics of thermally sensitive C-fibers were investigated in an in vitro preparation of the rabbit cornea. PMID:7927385

  2. The Clickable Guard Cell, Version II: Interactive Model of Guard Cell Signal Transduction Mechanisms and Pathways.

    PubMed

    Kwak, June M; Mäser, Pascal; Schroeder, Julian I

    2008-01-01

    Guard cells are located in the leaf epidermis and pairs of guard cells surround and form stomatal pores, which regulate CO(2) influx from the atmosphere into leaves for photosynthetic carbon fixation. Stomatal guard cells also regulate water loss of plants via transpiration to the atmosphere. Signal transduction mechanisms in guard cells integrate a multitude of different stimuli to modulate stomatal apertures. Stomata open in response to light. Stomata close in response to drought stress, elevated CO(2), ozone and low humidity. In response to drought, plants synthesize the hormone abscisic acid (ABA) that triggers closing of stomatal pores. Guard cells have become a highly developed model system for dissecting signal transduction mechanisms in plants and for elucidating how individual signaling mechanisms can interact within a network in a single cell. Many new findings have been made in the last few years. This chapter is an update of an electronic interactive chapter in the previous edition of The Arabidopsis Book (Mäser et al. 2003). Here we focus on mechanisms for which genes and mutations have been characterized, including signaling components for which there is substantial signaling, biochemical and genetic evidence. Ion channels have been shown to represent targets of early signal transduction mechanisms and provide functional signaling and quantitative analysis points to determine where and how mutations affect branches within the guard cell signaling network. Although a substantial number of genes and proteins that function in guard cell signaling have been identified in recent years, there are many more left to be identified and the protein-protein interactions within this network will be an important subject of future research. A fully interactive clickable electronic version of this publication can be accessed at the following web site: http://www-biology.ucsd.edu/labs/schroeder/clickablegc2/. The interactive clickable version includes the following

  3. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation.

    PubMed

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  4. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation

    NASA Astrophysics Data System (ADS)

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  5. FUS3 phosphorylates multiple components of the mating signal transduction cascade: evidence for STE12 and FAR1.

    PubMed Central

    Elion, E A; Satterberg, B; Kranz, J E

    1993-01-01

    The mitogen-activated protein (MAP) kinase homologue FUS3 mediates both transcription and G1 arrest in a pheromone-induced signal transduction cascade in Saccharomyces cerevisiae. We report an in vitro kinase assay for FUS3 and its use in identifying candidate substrates. The assay requires catalytically active FUS3 and pheromone induction. STE7, a MAP kinase kinase homologue, is needed for maximal activity. At least seven proteins that specifically associate with FUS3 are phosphorylated in the assay. Many of these substrates are physiologically relevant and are affected by in vivo levels of numerous signal transduction components. One substrate is likely to be the transcription factor STE12. A second is likely to be FAR1, a protein required for G1 arrest. FAR1 was isolated as a multicopy suppressor of a nonarresting fus3 mutant and interacts with FUS3 in a two hybrid system. Consistent with this FAR1 is a good substrate in vitro and generates a FUS3-associated substrate of expected size. These data support a model in which FUS3 mediates transcription and G1 arrest by direct activation of STE12 and FAR1 and phosphorylates many other proteins involved in the response to pheromone. Images PMID:8334305

  6. Functional analysis of cotton orthologs of GA signal transduction factors GID1 and SLR1.

    PubMed

    Aleman, Lorenzo; Kitamura, Jun; Abdel-mageed, Haggag; Lee, Joohyun; Sun, Yan; Nakajima, Masatoshi; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto; Allen, Randy D

    2008-09-01

    Gibberellic acid (GA) is both necessary and sufficient to promote fiber elongation in cultured fertilized ovules of the upland cotton variety Coker 312. This is likely due to the temporal and spatial regulation of GA biosynthesis, perception, and subsequent signal transduction that leads to alterations in gene expression and morphology. Our results indicate that the initiation of fiber elongation by the application of GA to cultured ovules corresponds with increased expression of genes that encode xyloglucan endotransglycosylase/hydrolase (XTH) and expansin (EXP) that are involved in promoting cell elongation. To gain a better understanding of the GA signaling components in cotton, that lead to such changes in gene expression, two GA receptor genes (GhGID1a and GhGID1b) and two DELLA protein genes (GhSLR1a and GhSLR1b) that are orthologous to the rice GA receptor (GID1) and the rice DELLA gene (SLR1), respectively, were characterized. Similar to the GA biosynthetic genes, expression of GhGID1a and GhGID1b is under the negative regulation by GA while GA positively regulates GhSLR1a. Recombinant GST-GhGID1s showed GA-binding activity in vitro that was augmented in the presence of GhSLR1a, GhSLR1b, or rice SLR1, indicating complex formation between the receptors and repressor proteins. This was further supported by the GA-dependent interaction of these proteins in yeast cells. Ectopic expression of the GhGID1a in the rice gid1-3 mutant plants rescued the GA-insensitive dwarf phenotype, which demonstrates that it is a functional GA receptor. Furthermore, ectopic expression of GhSLR1b in wild type Arabidopsis led to reduced growth and upregulated expression of DELLA-responsive genes. PMID:18506581

  7. Postsynaptic Signal Transduction Models for Long-Term Potentiation and Depression

    PubMed Central

    Manninen, Tiina; Hituri, Katri; Kotaleski, Jeanette Hellgren; Blackwell, Kim T.; Linne, Marja-Leena

    2010-01-01

    More than a hundred biochemical species, activated by neurotransmitters binding to transmembrane receptors, are important in long-term potentiation (LTP) and long-term depression (LTD). To investigate which species and interactions are critical for synaptic plasticity, many computational postsynaptic signal transduction models have been developed. The models range from simple models with a single reversible reaction to detailed models with several hundred kinetic reactions. In this study, more than a hundred models are reviewed, and their features are compared and contrasted so that similarities and differences are more readily apparent. The models are classified according to the type of synaptic plasticity that is modeled (LTP or LTD) and whether they include diffusion or electrophysiological phenomena. Other characteristics that discriminate the models include the phase of synaptic plasticity modeled (induction, expression, or maintenance) and the simulation method used (deterministic or stochastic). We find that models are becoming increasingly sophisticated, by including stochastic properties, integrating with electrophysiological properties of entire neurons, or incorporating diffusion of signaling molecules. Simpler models continue to be developed because they are computationally efficient and allow theoretical analysis. The more complex models permit investigation of mechanisms underlying specific properties and experimental verification of model predictions. Nonetheless, it is difficult to fully comprehend the evolution of these models because (1) several models are not described in detail in the publications, (2) only a few models are provided in existing model databases, and (3) comparison to previous models is lacking. We conclude that the value of these models for understanding molecular mechanisms of synaptic plasticity is increasing and will be enhanced further with more complete descriptions and sharing of the published models. PMID:21188161

  8. Genome-Wide RNAi Screening to Dissect the TGF-β Signal Transduction Pathway.

    PubMed

    Chen, Xiaochu; Xu, Lan

    2016-01-01

    The transforming growth factor-β (TGF-β) family of cytokines figures prominently in regulation of embryonic development and adult tissue homeostasis from Drosophila to mammals. Genetic defects affecting TGF-β signaling underlie developmental disorders and diseases such as cancer in human. Therefore, delineating the molecular mechanism by which TGF-β regulates cell biology is critical for understanding normal biology and disease mechanisms. Forward genetic screens in model organisms and biochemical approaches in mammalian tissue culture were instrumental in initial characterization of the TGF-β signal transduction pathway. With complete sequence information of the genomes and the advent of RNA interference (RNAi) technology, genome-wide RNAi screening emerged as a powerful functional genomics approach to systematically delineate molecular components of signal transduction pathways. Here, we describe a protocol for image-based whole-genome RNAi screening aimed at identifying molecules required for TGF-β signaling into the nucleus. Using this protocol we examined >90 % of annotated Drosophila open reading frames (ORF) individually and successfully uncovered several novel factors serving critical roles in the TGF-β pathway. Thus cell-based high-throughput functional genomics can uncover new mechanistic insights on signaling pathways beyond what the classical genetics had revealed. PMID:26520138

  9. A Novel Signal Transduction Pathway that Modulates rhl Quorum Sensing and Bacterial Virulence in Pseudomonas aeruginosa

    PubMed Central

    Chen, Feifei; Xia, Yongjie; Lou, Jingyu; Zhang, Xue; Yang, Nana; Sun, Xiaoxu; Zhang, Qin; Zhuo, Chao; Huang, Xi; Deng, Xin; Yang, Cai-Guang; Ye, Yan; Zhao, Jing; Wu, Min; Lan, Lefu

    2014-01-01

    The rhl quorum-sensing (QS) system plays critical roles in the pathogenesis of P. aeruginosa. However, the regulatory effects that occur directly upstream of the rhl QS system are poorly understood. Here, we show that deletion of gene encoding for the two-component sensor BfmS leads to the activation of its cognate response regulator BfmR, which in turn directly binds to the promoter and decreases the expression of the rhlR gene that encodes the QS regulator RhlR, causing the inhibition of the rhl QS system. In the absence of bfmS, the Acka-Pta pathway can modulate the regulatory activity of BfmR. In addition, BfmS tunes the expression of 202 genes that comprise 3.6% of the P. aeruginosa genome. We further demonstrate that deletion of bfmS causes substantially reduced virulence in lettuce leaf, reduced cytotoxicity, enhanced invasion, and reduced bacterial survival during acute mouse lung infection. Intriguingly, specific missense mutations, which occur naturally in the bfmS gene in P. aeruginosa cystic fibrosis (CF) isolates such as DK2 strains and RP73 strain, can produce BfmS variants (BfmSL181P, BfmSL181P/E376Q, and BfmSR393H) that no longer repress, but instead activate BfmR. As a result, BfmS variants, but not the wild-type BfmS, inhibit the rhl QS system. This study thus uncovers a previously unexplored signal transduction pathway, BfmS/BfmR/RhlR, for the regulation of rhl QS in P. aeruginosa. We propose that BfmRS TCS may have an important role in the regulation and evolution of P. aeruginosa virulence during chronic infection in CF lungs. PMID:25166864

  10. Universality and diversity in the signal transduction pathway that regulates seasonal reproduction in vertebrates

    PubMed Central

    Nakane, Yusuke; Yoshimura, Takashi

    2014-01-01

    Most vertebrates living outside the tropical zone show robust physiological responses in response to seasonal changes in photoperiod, such as seasonal reproduction, molt, and migration. The highly sophisticated photoperiodic mechanism in Japanese quail has been used to uncover the mechanism of seasonal reproduction. Molecular analysis of quail mediobasal hypothalamus (MBH) revealed that local thyroid hormone activation within the MBH plays a critical role in the photoperiodic response of gonads. This activation is accomplished by two gene switches: thyroid hormone-activating (DIO2) and thyroid hormone-inactivating enzymes (DIO3). Functional genomics studies have shown that long-day induced thyroid-stimulating hormone (TSH) in the pars tuberalis (PT) of the pituitary gland regulates DIO2/3 switching. In birds, light information received directly by deep brain photoreceptors regulates PT TSH. Recent studies demonstrated that Opsin 5-positive cerebrospinal fluid (CSF)-contacting neurons are deep brain photoreceptors that regulate avian seasonal reproduction. Although the involvement of TSH and DIO2/3 in seasonal reproduction has been confirmed in various mammals, the light input pathway that regulates PT TSH in mammals differs from that of birds. In mammals, the eye is the only photoreceptor organ and light information received by the eye is transmitted to the pineal gland through the circadian pacemaker, the suprachiasmatic nucleus. Nocturnal melatonin secretion from the pineal gland indicates the length of night and regulates the PT TSH. In fish, the regulatory machinery for seasonal reproduction, from light input to neuroendocrine output, has been recently demonstrated in the coronet cells of the saccus vasculosus (SV). The SV is unique to fish and coronet cells are CSF-contacting neurons. Here, we discuss the universality and diversity of signal transduction pathways that regulate vertebrate seasonal reproduction. PMID:24959116

  11. Excitation and Adaptation in Bacteria–a Model Signal Transduction System that Controls Taxis and Spatial Pattern Formation

    PubMed Central

    Othmer, Hans G.; Xin, Xiangrong; Xue, Chuan

    2013-01-01

    The machinery for transduction of chemotactic stimuli in the bacterium E. coli is one of the most completely characterized signal transduction systems, and because of its relative simplicity, quantitative analysis of this system is possible. Here we discuss models which reproduce many of the important behaviors of the system. The important characteristics of the signal transduction system are excitation and adaptation, and the latter implies that the transduction system can function as a “derivative sensor” with respect to the ligand concentration in that the DC component of a signal is ultimately ignored if it is not too large. This temporal sensing mechanism provides the bacterium with a memory of its passage through spatially- or temporally-varying signal fields, and adaptation is essential for successful chemotaxis. We also discuss some of the spatial patterns observed in populations and indicate how cell-level behavior can be embedded in population-level descriptions. PMID:23624608

  12. Chromium stress response effect on signal transduction and expression of signaling genes in rice.

    PubMed

    Trinh, Ngoc-Nam; Huang, Tsai-Lien; Chi, Wen-Chang; Fu, Shih-Feng; Chen, Chi-Chien; Huang, Hao-Jen

    2014-02-01

    Hexavalent chromium [Cr(VI)] is a non-essential metal for normal plants and is toxic to plants at high concentrations. However, signaling pathways and molecular mechanisms of its action on cell function and gene expression remain elusive. In this study, we found that Cr(VI) induced endogenous reactive oxygen species (ROS) generation and Ca(2+) accumulation and activated NADPH oxidase and calcium-dependent protein kinase. We investigated global transcriptional changes in rice roots by microarray analysis. Gene expression profiling indicated activation of abscisic acid-, ethylene- and jasmonic acid-mediated signaling and inactivation of gibberellic acid-related pathways in Cr(VI) stress-treated rice roots. Genes encoding signaling components such as the protein kinases domain of unknown function 26, receptor-like cytoplasmic kinase, LRK10-like kinase type 2 and protein phosphatase 2C, as well as transcription factors WRKY and apetala2/ethylene response factor were predominant during Cr(VI) stress. Genes involved in vesicle trafficking were subjected to functional characterization. Pretreating rice roots with a vesicle trafficking inhibitor, brefeldin A, effectively reduced Cr(VI)-induced ROS production. Suppression of the vesicle trafficking gene, Exo70, by virus-induced gene silencing strategies revealed that vesicle trafficking is required for mediation of Cr(VI)-induced ROS production. Taken together, these findings shed light on the molecular mechanisms in signaling pathways and transcriptional regulation in response to Cr stress in plants. PMID:24033343

  13. Design principles of nuclear receptor signaling: how complex networking improves signal transduction

    PubMed Central

    Kolodkin, Alexey N; Bruggeman, Frank J; Plant, Nick; Moné, Martijn J; Bakker, Barbara M; Campbell, Moray J; van Leeuwen, Johannes P T M; Carlberg, Carsten; Snoep, Jacky L; Westerhoff, Hans V

    2010-01-01

    The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of ‘design' aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of increasing complexity, calculations show how these features correspond to potentially important design principles, e.g.: (i) cytosolic ‘nuclear' receptor may shuttle signal molecules to the nucleus, (ii) the active export of NRs may ensure that there is sufficient receptor protein to capture ligand at the cytoplasmic membrane, (iii) a three conveyor belts design dissipating GTP-free energy, greatly aids response, (iv) the active export of importins may prevent sequestration of NRs by importins in the nucleus and (v) the unspecific nature of the nuclear pore may ensure signal-flux robustness. In addition, the models developed are suitable for implementation in specific cases of NR-mediated signaling, to predict individual receptor functions and differential sensitivity toward physiological and pharmacological ligands. PMID:21179018

  14. Do signal transduction cascades influence survival in triple-negative breast cancer? A preliminary study

    PubMed Central

    Mumm, Jan-Niclas; Kölbl, Alexandra C; Jeschke, Udo; Andergassen, Ulrich

    2016-01-01

    Background Triple-negative breast cancer (TNBC) is a rather aggressive form of breast cancer, comprised by early metastasis formation and reduced overall survival of the affected patients. Steroid hormone receptors and the human epidermal growth factor receptor 2 are not overexpressed, limiting therapeutic options. Therefore, new treatment options have to be investigated. The aim of our preliminary study was to detect coherences between some molecules of intracellular signal transduction pathways and survival of patients with TNBC, in order to obtain some hints for new therapeutical solutions. Methods Thirty-one paraffin-embedded tumor tissue samples, which were determined to be negative for steroid hormone receptors as well as human epidermal growth factor receptor 2, were immunohistochemically stained for a number of signal transduction molecules from several signaling pathways. β-Catenin, HIF1α, MCL, Notch1, LRP6, XBP1, and FOXP3 were stained with specific antibodies, and their staining was correlated with patient survival by Kaplan–Meier analyses. Results Only two of the investigated molecules have shown correlation with overall survival. Cytoplasmic staining of HIF1α and centro-tumoral lymphocyte FOXP3 staining showed statistically significant correlations with survival. Conclusion The coherence of signal transduction molecules with survival of patients with TNBC is still controversially discussed in the literature. Our study comprises one more mosaic stone in the elucidation of these intracellular processes and their influences on patient outcome. Lots of research still has to be done in this field, but it would be worthwhile as it may offer new therapeutic targets for a group of patients with breast cancer, which is still hard to treat. PMID:27307757

  15. Oxidative Stress in Fungi: Its Function in Signal Transduction, Interaction with Plant Hosts, and Lignocellulose Degradation

    PubMed Central

    Breitenbach, Michael; Weber, Manuela; Rinnerthaler, Mark; Karl, Thomas; Breitenbach-Koller, Lore

    2015-01-01

    In this review article, we want to present an overview of oxidative stress in fungal cells in relation to signal transduction, interaction of fungi with plant hosts, and lignocellulose degradation. We will discuss external oxidative stress which may occur through the interaction with other microorganisms or plant hosts as well as internally generated oxidative stress, which can for instance originate from NADPH oxidases or “leaky” mitochondria and may be modulated by the peroxiredoxin system or by protein disulfide isomerases thus contributing to redox signaling. Analyzing redox signaling in fungi with the tools of molecular genetics is presently only in its beginning. However, it is already clear that redox signaling in fungal cells often is linked to cell differentiation (like the formation of perithecia), virulence (in plant pathogens), hyphal growth and the successful passage through the stationary phase. PMID:25854186

  16. Extracellular vesicles including exosomes are mediators of signal transduction: Are they protective or pathogenic?

    PubMed Central

    Gangoda, Lahiru; Boukouris, Stephanie; Liem, Michael; Kalra, Hina; Mathivanan, Suresh

    2015-01-01

    Extracellular vesicles are signaling organelles that are released by many cell types and is highly conserved in both prokaryotes and eukaryotes. Based on the mechanism of biogenesis, these membranous vesicles can be classified as exosomes, shedding microvesicles and apoptotic blebs. It is becoming clearer that these extracellular vesicles mediate signal transduction in both autocrine and paracrine fashion by the transfer of proteins and RNA. Whilst the role of extracellular vesicles including exosomes in pathogenesis is well established, very little is known about their function in normal physiological conditions. Recent evidences allude that extracellular vesicles can mediate both protective and pathogenic effects depending on the precise state. In this review, we discuss the involvement of extracellular vesicle as mediators of signal transduction in neurodegenerative diseases and cancer. In addition, the role of extracellular vesicles in mediating Wnt and PI3K signaling pathways is also discussed. Additional findings on the involvement of extracellular vesicles in homeostasis and disease progression will promote a better biological understanding, advance future therapeutic and diagnostic applications. PMID:25307053

  17. Glucose and Stress Independently Regulate Source and Sink Metabolism and Defense Mechanisms via Signal Transduction Pathways Involving Protein Phosphorylation.

    PubMed Central

    Ehness, R.; Ecker, M.; Godt, D. E.; Roitsch, T.

    1997-01-01

    In higher plants, sugars are required not only to sustain heterotrophic growth but also to regulate the expression of a variety of genes. Environmental stresses, such as pathogen infection and wounding, activate a cascade of defense responses and may also affect carbohydrate metabolism. In this study, the relationship between sugar- and stress-activated signal transduction pathways and the underlying regulatory mechanism was analyzed. Photoautotrophically growing suspension culture cells of Chenopodium rubrum were used as a model system to study the effects of the metabolic regulator D-glucose and of different stress-related stimuli on photosynthesis, sink metabolism, and defense response by analyzing the regulation of mRNAs for representative enzymes of these pathways. Glucose as well as the fungal elicitor chitosan, the phosphatase inhibitor endothall, and benzoic acid were shown to result in a coordinated regulatory mechanism. The mRNAs for phenylalanine ammonia-lyase, a key enzyme of defense response, and for the sink-specific extracellular invertase were induced. In contrast, the mRNA for the Calvin cycle enzyme ribulose bisphosphate carboxylase was repressed. This inverse regulatory pattern was also observed in experiments with wounded leaves of C. rubrum plants. The differential effect of the protein kinase inhibitor staurosporine on mRNA regulation demonstrates that the carbohydrate signal and the stress-related stimuli independently activate different intracellular signaling pathways that ultimately are integrated to coordinately regulate source and sink metabolism and activate defense responses. The various stimuli triggered the transient and rapid activation of protein kinases that phosphorylate the myelin basic protein. The involvement of phosphorylation in signal transduction is further supported by the effect of the protein kinase inhibitor staurosporine on mRNA levels. PMID:12237349

  18. Expression and functional analyses of the Arabidopsis QUA1 gene in light signal transduction.

    PubMed

    Zhaojin, Chen; Chuanyu, Ding; Yuan, Zheng

    2016-05-01

    Plants not only use light as an energy source for photosynthesis, but also have to monitor the light quality and quantity input to execute appropriate physiological and developmental responses, such as cell differentiation, structural and functional changes, as well as the formation of tissues and organs. The process is referred to as photomorphogenesis. Arabidopsis QUA1 (QUASIMODO1), which functions in pectin synthesis, is identified as a member of glycosyltransferases. Previously, the hypocotyl elongation of the qua1-1 mutant was shown to be inhibited under dark conditions. In this study, we used the qua1-1/cry1 and qua1-1/phyB double mutants as the materials to study the function of the QUA1 gene in light signal transduction. The results showed that QUA1 not only participated in hypocotyl elongation under dark conditions, but also in blue light, red light and far red light conditions. In qua1-1 mutant seedlings, both the cell length of hypocotyl and the light-regulated gene expression were affected. Compared with cry1 and phyB mutants, qua1-1/cry1 and qua1-1/phyB double mutants had the shorter hypocotyl. Light-regulated gene expression was also affected in the double mutants. These data indicated that QUA1 might participate in the light signal transduction regulated by CRY1 and PHYB. Hence, the QUA1 gene may play multiple roles in light signal transduction by regulating the cell elongation and light-regulated gene expression. PMID:27232492

  19. Plant gravitropic signal transduction: A network analysis leads to gene discovery

    NASA Astrophysics Data System (ADS)

    Wyatt, Sarah

    Gravity plays a fundamental role in plant growth and development. Although a significant body of research has helped define the events of gravity perception, the role of the plant growth regulator auxin, and the mechanisms resulting in the gravity response, the events of signal transduction, those that link the biophysical action of perception to a biochemical signal that results in auxin redistribution, those that regulate the gravitropic effects on plant growth, remain, for the most part, a “black box.” Using a cold affect, dubbed the gravity persistent signal (GPS) response, we developed a mutant screen to specifically identify components of the signal transduction pathway. Cloning of the GPS genes have identified new proteins involved in gravitropic signaling. We have further exploited the GPS response using a multi-faceted approach including gene expression microarrays, proteomics analysis, and bioinformatics analysis and continued mutant analysis to identified additional genes, physiological and biochemical processes. Gene expression data provided the foundation of a regulatory network for gravitropic signaling. Based on these gene expression data and related data sets/information from the literature/repositories, we constructed a gravitropic signaling network for Arabidopsis inflorescence stems. To generate the network, both a dynamic Bayesian network approach and a time-lagged correlation coefficient approach were used. The dynamic Bayesian network added existing information of protein-protein interaction while the time-lagged correlation coefficient allowed incorporation of temporal regulation and thus could incorporate the time-course metric from the data set. Thus the methods complemented each other and provided us with a more comprehensive evaluation of connections. Each method generated a list of possible interactions associated with a statistical significance value. The two networks were then overlaid to generate a more rigorous, intersected

  20. A model for signal transduction during quorum sensing in Vibrio harveyi

    NASA Astrophysics Data System (ADS)

    Banik, Suman K.; Fenley, Andrew T.; Kulkarni, Rahul V.

    2009-12-01

    We present a framework for analyzing luminescence regulation during quorum sensing in the bioluminescent bacterium Vibrio harveyi. Using a simplified model for signal transduction in the quorum sensing pathway, we identify key dimensionless parameters that control the system's response. These parameters are estimated using experimental data on luminescence phenotypes for different mutant strains. The corresponding model predictions are consistent with results from other experiments which did not serve as input for determining model parameters. Furthermore, the proposed framework leads to novel testable predictions for luminescence phenotypes and for responses of the network to different perturbations.

  1. Structure-function relationships in the IL-17 receptor: Implications for signal transduction and therapy

    PubMed Central

    Shen, Fang; Gaffen, Sarah L.

    2008-01-01

    IL-17 is the defining cytokine of a newly-described “Th17” population that plays critical roles in mediating inflammation and autoimmunity. The IL-17/IL-17 receptor superfamily is the most recent class of cytokines and receptors to be described, and until recently very little was known about its function or molecular biology. However, in the last year important new insights into the composition and dynamics of the receptor complex and mechanisms of downstream signal transduction have been made, which will be reviewed here. PMID:18178098

  2. Evaluation of signal transduction pathways after transient cutaneous adenoviral gene delivery

    PubMed Central

    2011-01-01

    Background Adenoviral vectors have provided effective methods for in vivo gene delivery in therapeutic applications. However, these vectors can induce immune responses that may severely affect the ability of vector re-application. There is limited information about the mechanisms and signal transduction pathways involved in adenoviral recognition. For optimization of cutaneous gene therapy it is necessary to investigate molecular mechanisms of virus recognition in epidermal cells. The aim of this study was to investigate the signal transduction of the innate immunity after adenoviral DNA internalization in keratinocytes. Methods In vitro, keratinocytes were transfected with DNA, in the presence and absence of inhibitors for signalling molecules. In vivo, immunocompetent and athymic mice (n = 3 per group) were twice transduced with an Ad-vector. Results The results show an acute induction of type-I-interferon after in vitro transfection. Inhibition of PI3K, p38 MAPK, JNK and NFkappaB resulted in a decreased expression of type-I-interferon. In contrast to immunocompetent mice, athymic mice demonstrated a constant transgene expression and reduced inflammatory response in vivo. Conclusion The results suggest an induction of the innate immunity triggered by cytoplasm localised DNA which is mediated by PI3K-, p38 MAPK-, JNK-, NFkappaB-, JAK/STAT- and ERK1/2-dependent pathways. A stable transgene expression and a reduced inflammatory response in immunodeficient mice have been observed. These results provide potential for an effective adenoviral gene delivery into immunosupressed skin. PMID:21255430

  3. From Stress to Inflammation and Major Depressive Disorder: A Social Signal Transduction Theory of Depression

    PubMed Central

    Slavich, George M.; Irwin, Michael R.

    2014-01-01

    Major life stressors, especially those involving interpersonal stress and social rejection, are among the strongest proximal risk factors for depression. In this review, we propose a biologically plausible, multilevel theory that describes neural, physiologic, molecular, and genomic mechanisms that link experiences of social-environmental stress with internal biological processes that drive depression pathogenesis. Central to this social signal transduction theory of depression is the hypothesis that experiences of social threat and adversity up-regulate components of the immune system involved in inflammation. The key mediators of this response, called proinflammatory cytokines, can in turn elicit profound changes in behavior, which include the initiation of depressive symptoms such as sad mood, anhedonia, fatigue, psychomotor retardation, and social-behavioral withdrawal. This highly conserved biological response to adversity is critical for survival during times of actual physical threat or injury. However, this response can also be activated by modern-day social, symbolic, or imagined threats, leading to an increasingly proinflammatory phenotype that may be a key phenomenon driving depression pathogenesis and recurrence, as well as the overlap of depression with several somatic conditions including asthma, rheumatoid arthritis, chronic pain, metabolic syndrome, cardiovascular disease, obesity, and neurodegeneration. Insights from this theory may thus shed light on several important questions including how depression develops, why it frequently recurs, why it is strongly predicted by early life stress, and why it often co-occurs with symptoms of anxiety and with certain physical disease conditions. This work may also suggest new opportunities for preventing and treating depression by targeting inflammation. PMID:24417575

  4. Target of Rapamycin Is a Key Player for Auxin Signaling Transduction in Arabidopsis.

    PubMed

    Deng, Kexuan; Yu, Lihua; Zheng, Xianzhe; Zhang, Kang; Wang, Wanjing; Dong, Pan; Zhang, Jiankui; Ren, Maozhi

    2016-01-01

    Target of rapamycin (TOR), a master sensor for growth factors and nutrition availability in eukaryotic species, is a specific target protein of rapamycin. Rapamycin inhibits TOR kinase activity viaFK506 binding protein 12 kDa (FKBP12) in all examined heterotrophic eukaryotic organisms. In Arabidopsis, several independent studies have shown that AtFKBP12 is non-functional under aerobic condition, but one study suggests that AtFKBP12 is functional during anaerobic growth. However, the functions of AtFKBP12 have never been examined in parallel under aerobic and anaerobic growth conditions so far. To this end, we cloned the FKBP12 gene of humans, yeast, and Arabidopsis, respectively. Transgenic plants were generated, and pharmacological examinations were performed in parallel with Arabidopsis under aerobic and anaerobic conditions. ScFKBP12 conferred plants with the strongest sensitivity to rapamycin, followed by HsFKBP12, whereas AtFKBP12 failed to generate rapamycin sensitivity under aerobic condition. Upon submergence, yeast and human FKBP12 can significantly block cotyledon greening while Arabidopsis FKBP12 only retards plant growth in the presence of rapamycin, suggesting that hypoxia stress could partially restore the functions of AtFKBP12 to bridge the interaction between rapamycin and TOR. To further determine if communication between TOR and auxin signaling exists in plants, yeast FKBP12 was introduced into DR5::GUS homozygous plants. The transgenic plants DR5/BP12 were then treated with rapamycin or KU63794 (a new inhibitor of TOR). GUS staining showed that the auxin content of root tips decreased compared to the control. DR5/BP12 plants lost sensitivity to auxin after treatment with rapamycin. Auxin-defective phenotypes, including short primary roots, fewer lateral roots, and loss of gravitropism, occurred in DR5/BP12 plants when seedlings were treated with rapamycin+KU63794. This indicated that the combination of rapamycin and KU63794 can significantly

  5. Target of Rapamycin Is a Key Player for Auxin Signaling Transduction in Arabidopsis

    PubMed Central

    Deng, Kexuan; Yu, Lihua; Zheng, Xianzhe; Zhang, Kang; Wang, Wanjing; Dong, Pan; Zhang, Jiankui; Ren, Maozhi

    2016-01-01

    Target of rapamycin (TOR), a master sensor for growth factors and nutrition availability in eukaryotic species, is a specific target protein of rapamycin. Rapamycin inhibits TOR kinase activity viaFK506 binding protein 12 kDa (FKBP12) in all examined heterotrophic eukaryotic organisms. In Arabidopsis, several independent studies have shown that AtFKBP12 is non-functional under aerobic condition, but one study suggests that AtFKBP12 is functional during anaerobic growth. However, the functions of AtFKBP12 have never been examined in parallel under aerobic and anaerobic growth conditions so far. To this end, we cloned the FKBP12 gene of humans, yeast, and Arabidopsis, respectively. Transgenic plants were generated, and pharmacological examinations were performed in parallel with Arabidopsis under aerobic and anaerobic conditions. ScFKBP12 conferred plants with the strongest sensitivity to rapamycin, followed by HsFKBP12, whereas AtFKBP12 failed to generate rapamycin sensitivity under aerobic condition. Upon submergence, yeast and human FKBP12 can significantly block cotyledon greening while Arabidopsis FKBP12 only retards plant growth in the presence of rapamycin, suggesting that hypoxia stress could partially restore the functions of AtFKBP12 to bridge the interaction between rapamycin and TOR. To further determine if communication between TOR and auxin signaling exists in plants, yeast FKBP12 was introduced into DR5::GUS homozygous plants. The transgenic plants DR5/BP12 were then treated with rapamycin or KU63794 (a new inhibitor of TOR). GUS staining showed that the auxin content of root tips decreased compared to the control. DR5/BP12 plants lost sensitivity to auxin after treatment with rapamycin. Auxin-defective phenotypes, including short primary roots, fewer lateral roots, and loss of gravitropism, occurred in DR5/BP12 plants when seedlings were treated with rapamycin+KU63794. This indicated that the combination of rapamycin and KU63794 can significantly

  6. ELF3 Encodes a Circadian Clock–Regulated Nuclear Protein That Functions in an Arabidopsis PHYB Signal Transduction Pathway

    PubMed Central

    Liu, Xing Liang; Covington, Michael F.; Fankhauser, Christian; Chory, Joanne; Wagner, D. Ry

    2001-01-01

    Many aspects of plant development are regulated by photoreceptor function and the circadian clock. Loss-of-function mutations in the Arabidopsis EARLY FLOWERING 3 (ELF3) and PHYTOCHROME B (PHYB) genes cause early flowering and influence the activity of circadian clock–regulated processes. We demonstrate here that the relative abundance of the ELF3 protein, which is a novel nucleus-localized protein, displays circadian regulation that follows the pattern of circadian accumulation of ELF3 transcript. Furthermore, the ELF3 protein interacts with PHYB in the yeast two-hybrid assay and in vitro. Genetic analyses show that ELF3 requires PHYB function in early morphogenesis but not for the regulation of flowering time. This suggests that ELF3 is a component of a PHYB signaling complex that controls early events in plant development but that ELF3 and PHYB control flowering via independent signal transduction pathways. PMID:11402161

  7. Intrinsic noise, dissipation cost, and robustness of cellular networks: The underlying energy landscape of MAPK signal transduction

    PubMed Central

    Lapidus, Saul; Han, Bo; Wang, Jin

    2008-01-01

    We develop a probabilistic method for analyzing global features of a cellular network under intrinsic statistical fluctuations, which is important when there are finite numbers of molecules. By making a self-consistent mean field approximation of splitting the variables in order to reduce the large number of degrees of freedom, which is reasonable for a not very strongly interacting network, we discovered that the underlying energy landscape of the mitogen-activated protein kinases (MAPKs) signal transduction network (with experimentally measured or inferred parameters such as chemical reaction rate coefficients in the network) is funneled toward a global minimum characterized by the nonequilibrium steady-state fixed point of the system at the end of the signal transduction process. For this system, we also show that the energy landscape is robust against intrinsic fluctuations and random perturbation to the inherent chemical reaction rates. The ratio of the slope versus the roughness of the energy landscape becomes a quantitative measure of robustness and stability of the network. Furthermore, we quantify the dissipation cost of this nonequilibrium system through entropy production, caused by the nonequilibrium flux in the system. We found that a lower dissipation cost corresponds to a more robust network. This least dissipation property might provide a design principle for robust and functional networks. Finally, we find the possibility of bistable and oscillatory-like solutions, which are important for cell fate decisions, upon perturbations. The method described here can be used in a variety of biological networks. PMID:18420822

  8. New therapeutic strategies targeting transmembrane signal transduction in the immune system

    PubMed Central

    2010-01-01

    Single-chain receptors and multi-chain immune recognition receptors (SRs and MIRRs, respectively) represent families of structurally related but functionally different surface receptors expressed on different cells. In contrast to SRs, a distinctive and common structural characteristic of MIRR family members is that the extracellular recognition domains and intracellular signaling domains are located on separate subunits. How extracellular ligand binding triggers MIRRs and initiates intracellular signal transduction processes is not clear. A novel model of immune signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) model, suggests that the homooligomerization of receptor intracellular signaling domains represents a necessary and sufficient condition for receptor triggering. In this review, I demonstrate striking similarities between a consensus model of SR signaling and the SCHOOL model of MIRR signaling and show how these models, together with the lessons learned from viral pathogenesis, provide a molecular basis for novel pharmacological approaches targeting inter- and intrareceptor transmembrane interactions as universal therapeutic targets for a diverse variety of immune and other disorders. PMID:20519929

  9. Signal transduction mechanism of a peptide mimetic of interferon-gamma.

    PubMed

    Subramaniam, Prem S; Flowers, Lawrence O; Haider, S Mohammed I; Johnson, Howard M

    2004-05-11

    The C-terminus of interferon-gamma (IFNgamma) contains a nuclear localization sequence (NLS) required for the activation and nuclear translocation of the transcription factor STAT1alpha and induction of IFNgamma-activated genes. On the basis of this and other studies, we developed a peptide mimetic of IFNgamma that possesses the IFNgamma functions of antiviral activity and upregulation of MHC class II molecules. The mimetic also shares with IFNgamma the ability to induce the activation and nuclear translocation of STAT1alpha and the IFNgamma receptor (IFNGR)-1 subunit. The mimetic, IFNgamma(95-132), is a peptide that consists of the C-terminal residues 95-132 of murine IFNgamma and contains a required alpha-helical domain and the NLS of IFNgamma. In this study, we determined the mechanism of the intracellular action of the mimetic at the level of signal transduction. We show that the mimetic mediates the nuclear transport of IFNGR-1 through its interaction with IFNGR-1 cytoplasmic region 253-287 via both the helical region and the NLS of IFNgamma(95-132). Alanine substitutions of the NLS of the mimetic showed that the NLS was required for nuclear translocation and that the nuclear transport properties of the mimetic correlated with its ability to bind IFNGR-1. These data also show that the NLS of IFNgamma(95-132) can interact simultaneously with IFNGR-1 and the nuclear import machinery. We found that in in vitro nuclear transport assays tyrosine-phosphorylated STAT1alpha failed to undergo nuclear translocation in the presence of nuclear import factors, but was transported to nucleus in the presence of IFNgamma(95-132) and JAK2-phosphorylated IFNGR-1, to which STAT1alpha binds, as a complex of IFNgamma(95-132)/IFNGR-1/STAT1alpha. Thus, the mimetic, which possesses IFNgamma function, is directly involved as a chaperone in the nuclear transport of STAT1alpha and shares this mechanism of action with that previously described for IFNgamma. The mimetic, like IFNgamma, is

  10. Tyrosine 106 of CheY plays an important role in chemotaxis signal transduction in Escherichia coli.

    PubMed Central

    Zhu, X; Amsler, C D; Volz, K; Matsumura, P

    1996-01-01

    CheY is the response regulator in the signal transduction pathway of bacterial chemotaxis. Position 106 of CheY is occupied by a conserved aromatic residue (tyrosine or phenylalanine) in the response regulator superfamily. A number of substitutions at position 106 have been made and characterized by both behavioral and biochemical studies. On the basis of the behavioral studies, the phenotypes of the mutants at position 106 can be divided into three categories: (i) hyperactivity, with a tyrosine-to-tryptophan mutation (Y106W) causing increased tumble signaling but impairing chemotaxis; (ii) low-level activity, with a tyrosine-to-phenylalanine change (Y106F) resulting in decreased tumble signaling and chemotaxis; and (iii) no activity, with substitutions such as Y106L, Y106I, Y106V, Y106G, and Y106C resulting in no chemotaxis and a smooth-swimming phenotype. All three types of mutants can be phosphorylated by CheA-phosphate in vitro to a level similar to that of wild-type CheY. Autodephosphorylation rates are similar for all categories of mutants. All mutant proteins displayed less than twofold increased rates compared with wild-type CheY. Binding of the mutant proteins to FliM was similar to that of the wild-type CheY in the CheY-FliM binding assays. The combined results from in vivo behavioral and in vitro biochemical studies suggest that the diverse phenotypes of the Y106 mutants are not due to a variation in phosphorylation or dephosphorylation ability nor in affinity for the switch. With reference to the structures of wild-type CheY and the T871 CheY mutant, our results suggest that rearrangements of the orientation of the tyrosine side chain at position 106 are involved in the signal transduction of CheY. These data also suggest that the binding of phosphoryl-CheY to the flagellar motor is a necessary, but not sufficient, event for signal transduction. PMID:8763950

  11. A Functional Role for Anopheles gambiae Arrestin1 in Olfactory Signal Transduction

    PubMed Central

    Walker, William B.; Smith, Elaine M.; Jan, Taha; Zwiebel, L.J.

    2008-01-01

    Insect sensory arrestins act to desensitize visual and olfactory signal transduction pathways, as evidenced by the phenotypic effects of mutations in the genes encoding both Arr1 and Arr2 in Drosophila melanogaster. To assess whether such arrestins play similar roles in other, more medically relevant dipterans, we examined the ability of Anopheles gambiae sensory arrestin homologues AgArr1 and AgArr2 to rescue phenotypes associated with an olfactory deficit observed in D. melanogaster arrestin mutants. Of these, only AgArr1 facilitated significant phenotypic rescue of the corresponding Drosophila arr mutant olfactory phenotype, consistent with the view that functional orthology is shared by these Arr1 homologues. These results represent the first step in the functional characterization of AgArr1, which is highly expressed in olfactory appendages of An. gambiae in which it is likely to play an essential role in olfactory signal transduction. In addition to providing insight into the common elements of the peripheral olfactory system of dipterans, this work validates the importance of AgArr1 as a potential target for novel anti-malaria strategies that focus on olfactory-based behaviors in An. gambiae. PMID:18328499

  12. P2CS: a two-component system resource for prokaryotic signal transduction research

    PubMed Central

    Barakat, Mohamed; Ortet, Philippe; Jourlin-Castelli, Cécile; Ansaldi, Mireille; Méjean, Vincent; Whitworth, David E

    2009-01-01

    Background With the escalation of high throughput prokaryotic genome sequencing, there is an ever-increasing need for databases that characterise, catalogue and present data relating to particular gene sets and genomes/metagenomes. Two-component system (TCS) signal transduction pathways are the dominant mechanisms by which micro-organisms sense and respond to external as well as internal environmental changes. These systems respond to a wide range of stimuli by triggering diverse physiological adjustments, including alterations in gene expression, enzymatic reactions, or protein-protein interactions. Description We present P2CS (Prokaryotic 2-Component Systems), an integrated and comprehensive database of TCS signal transduction proteins, which contains a compilation of the TCS genes within 755 completely sequenced prokaryotic genomes and 39 metagenomes. P2CS provides detailed annotation of each TCS gene including family classification, sequence features, functional domains, as well as genomic context visualization. To bypass the generic problem of gene underestimation during genome annotation, we also constituted and searched an ORFeome, which improves the recovery of TCS proteins compared to searches on the equivalent proteomes. Conclusion P2CS has been developed for computational analysis of the modular TCSs of prokaryotic genomes and metagenomes. It provides a complete overview of information on TCSs, including predicted candidate proteins and probable proteins, which need further curation/validation. The database can be browsed and queried with a user-friendly web interface at . PMID:19604365

  13. Exploitation of host signal transduction pathways and cytoskeletal functions by invasive bacteria.

    PubMed

    Rosenshine, I; Finlay, B B

    1993-01-01

    Many bacteria that cause disease have the capacity to enter into and live within eukaryotic cells such as epithelial cells and macrophages. The mechanisms used by these organisms to achieve and maintain this intracellular lifestyle vary considerably, but most mechanisms involve subversion and exploitation of host cell functions. Entry into non-phagocytic cells involves triggering host signal transduction mechanisms to induce rearrangement of the host cytoskeleton, thereby facilitating bacterial uptake. Once inside the host cell, intracellular pathogens either remain within membrane bound inclusions or escape to the cytoplasm. Those living in the cytoplasm can further pirate the host actin system, using actin as a mechanism to facilitate movement within and between host cells. Organisms remaining within the vacuole have specialized mechanisms for intracellular survival and growth which involve additional communication with the host cell. Some of the processes involved in the various steps of facultative intracellular parasitism are discussed in the context of subverting the host cell cytoskeleton and signal transduction pathways for bacterial benefit. PMID:8466472

  14. [Cyclic Guanosine Monophosphate as a Mediator in Processes of Stress Signaling Transduction in Higher Plants].

    PubMed

    Dubovskaya, L V; Bakakina, Y S; Volotovski, I D

    2015-01-01

    Currently, biophysical mechanisms of stress signaling transduction became an object of consideration of researchers in connection with the urgent necessity to develop new techniques to enhance the sustainability and productivity of agricultural crops. The development of sensitive methods for the determination of cyclic guanosine monophosphate (cGMP) and comparative analysis of cGMP-dependent events in biological systems has contributed to progress in the understanding of the functioning of cGMP in plant cells. Currently, it is shown that cGMP as a secondary mediator is involved in such vital processes of growth and development of plants as seed germination, cell division, development of chloroplasts, flowering and regulation of stomatal movements. This review summarizes the available data in the literature about the role of cGMP in the responses of plant organisms to the action of stress factors of abiotic and biotic nature and its interaction with other intracellular mediators. With the use of existing ideas about the biophysical mechanisms of stress in plants, the basic elements of cGMP-dependent signal transduction system in a plant cell are considered. PMID:26394467

  15. Genomic Targets and Features of BarA-UvrY (-SirA) Signal Transduction Systems

    PubMed Central

    Zere, Tesfalem R.; Vakulskas, Christopher A.; Leng, Yuanyuan; Pannuri, Archana; Potts, Anastasia H.; Dias, Raquel; Tang, Dongjie; Kolaczkowski, Bryan; Georgellis, Dimitris; Ahmer, Brian M. M.; Romeo, Tony

    2015-01-01

    The two-component signal transduction system BarA-UvrY of Escherichia coli and its orthologs globally regulate metabolism, motility, biofilm formation, stress resistance, virulence of pathogens and quorum sensing by activating the transcription of genes for regulatory sRNAs, e.g. CsrB and CsrC in E. coli. These sRNAs act by sequestering the RNA binding protein CsrA (RsmA) away from lower affinity mRNA targets. In this study, we used ChIP-exo to identify, at single nucleotide resolution, genomic sites for UvrY (SirA) binding in E. coli and Salmonella enterica. The csrB and csrC genes were the strongest targets of crosslinking, which required UvrY phosphorylation by the BarA sensor kinase. Crosslinking occurred at two sites, an inverted repeat sequence far upstream of the promoter and a site near the -35 sequence. DNAse I footprinting revealed specific binding of UvrY in vitro only to the upstream site, indicative of additional binding requirements and/or indirect binding to the downstream site. Additional genes, including cspA, encoding the cold-shock RNA-binding protein CspA, showed weaker crosslinking and modest or negligible regulation by UvrY. We conclude that the global effects of UvrY/SirA on gene expression are primarily mediated by activating csrB and csrC transcription. We also used in vivo crosslinking and other experimental approaches to reveal new features of csrB/csrC regulation by the DeaD and SrmB RNA helicases, IHF, ppGpp and DksA. Finally, the phylogenetic distribution of BarA-UvrY was analyzed and found to be uniquely characteristic of γ-Proteobacteria and strongly anti-correlated with fliW, which encodes a protein that binds to CsrA and antagonizes its activity in Bacillus subtilis. We propose that BarA-UvrY and orthologous TCS transcribe sRNA antagonists of CsrA throughout the γ-Proteobacteria, but rarely or never perform this function in other species. PMID:26673755

  16. Dissecting single-molecule signal transduction in carbon nanotube circuits with protein engineering

    PubMed Central

    Choi, Yongki; Olsen, Tivoli J.; Sims, Patrick C.; Moody, Issa S.; Corso, Brad L.; Dang, Mytrang N.; Weiss, Gregory A.; Collins, Philip G.

    2013-01-01

    Single molecule experimental methods have provided new insights into biomolecular function, dynamic disorder, and transient states that are all invisible to conventional measurements. A novel, non-fluorescent single molecule technique involves attaching single molecules to single-walled carbon nanotube field-effective transistors (SWNT FETs). These ultrasensitive electronic devices provide long-duration, label-free monitoring of biomolecules and their dynamic motions. However, generalization of the SWNT FET technique first requires design rules that can predict the success and applicability of these devices. Here, we report on the transduction mechanism linking enzymatic processivity to electrical signal generation by a SWNT FET. The interaction between SWNT FETs and the enzyme lysozyme was systematically dissected using eight different lysozyme variants synthesized by protein engineering. The data prove that effective signal generation can be accomplished using a single charged amino acid, when appropriately located, providing a foundation to widely apply SWNT FET sensitivity to other biomolecular systems. PMID:23323846

  17. Involvement of the second messenger cAMP in gravity-signal transduction in physarum

    NASA Astrophysics Data System (ADS)

    Block, I.; Rabien, H.; Ivanova, K.

    The aim of the investigation was to clarify, whether cellular signal processing following graviperception involves second messenger pathways. The test object was a most gravisensitive free-living ameboid cell, the myxomycete (acellular slime mold) Physarum polycephalum. It was demonstrated that the motor response is related to acceleration-dependent changes in the levels of the cellular second messenger cyclic adenosine monophosphate (cAMP). Rotating Physarum plasmodia in the gravity field of the Earth about a horizontal axis increased their cAMP concentration. Depriving the cells for a few days of the acceleration stimulus (near weightlessness in a space experiment on STS-69) slightly lowered plasmodial cAMP levels. Thus, the results provide first indications that the acceleration-stimulus signal transduction chain of Physarum uses an ubiquitous second messenger pathway.

  18. Mechanism of 2-oxoglutarate signaling by the Synechococcus elongatus PII signal transduction protein

    PubMed Central

    Fokina, Oleksandra; Chellamuthu, Vasuki-Ranjani; Forchhammer, Karl; Zeth, Kornelius

    2010-01-01

    PII proteins control key processes of nitrogen metabolism in bacteria, archaea, and plants in response to the central metabolites ATP, ADP, and 2-oxoglutarate (2-OG), signaling cellular energy and carbon and nitrogen abundance. This metabolic information is integrated by PII and transmitted to regulatory targets (key enzymes, transporters, and transcription factors), modulating their activity. In oxygenic phototrophs, the controlling enzyme of arginine synthesis, N-acetyl-glutamate kinase (NAGK), is a major PII target, whose activity responds to 2-OG via PII. Here we show structures of the Synechococcus elongatus PII protein in complex with ATP, Mg2+, and 2-OG, which clarify how 2-OG affects PII–NAGK interaction. PII trimers with all three sites fully occupied were obtained as well as structures with one or two 2-OG molecules per PII trimer. These structures identify the site of 2-OG located in the vicinity between the subunit clefts and the base of the T loop. The 2-OG is bound to a Mg2+ ion, which is coordinated by three phosphates of ATP, and by ionic interactions with the highly conserved residues K58 and Q39 together with B- and T-loop backbone interactions. These interactions impose a unique T-loop conformation that affects the interactions with the PII target. Structures of PII trimers with one or two bound 2-OG molecules reveal the basis for anticooperative 2-OG binding and shed light on the intersubunit signaling mechanism by which PII senses effectors in a wide range of concentrations. PMID:21041661

  19. Mechanism of 2-oxoglutarate signaling by the Synechococcus elongatus PII signal transduction protein.

    PubMed

    Fokina, Oleksandra; Chellamuthu, Vasuki-Ranjani; Forchhammer, Karl; Zeth, Kornelius

    2010-11-16

    P(II) proteins control key processes of nitrogen metabolism in bacteria, archaea, and plants in response to the central metabolites ATP, ADP, and 2-oxoglutarate (2-OG), signaling cellular energy and carbon and nitrogen abundance. This metabolic information is integrated by P(II) and transmitted to regulatory targets (key enzymes, transporters, and transcription factors), modulating their activity. In oxygenic phototrophs, the controlling enzyme of arginine synthesis, N-acetyl-glutamate kinase (NAGK), is a major P(II) target, whose activity responds to 2-OG via P(II). Here we show structures of the Synechococcus elongatus P(II) protein in complex with ATP, Mg(2+), and 2-OG, which clarify how 2-OG affects P(II)-NAGK interaction. P(II) trimers with all three sites fully occupied were obtained as well as structures with one or two 2-OG molecules per P(II) trimer. These structures identify the site of 2-OG located in the vicinity between the subunit clefts and the base of the T loop. The 2-OG is bound to a Mg(2+) ion, which is coordinated by three phosphates of ATP, and by ionic interactions with the highly conserved residues K58 and Q39 together with B- and T-loop backbone interactions. These interactions impose a unique T-loop conformation that affects the interactions with the P(II) target. Structures of P(II) trimers with one or two bound 2-OG molecules reveal the basis for anticooperative 2-OG binding and shed light on the intersubunit signaling mechanism by which P(II) senses effectors in a wide range of concentrations. PMID:21041661

  20. Signal-transduction protein P(II) from Synechococcus elongatus PCC 7942 senses low adenylate energy charge in vitro.

    PubMed

    Fokina, Oleksandra; Herrmann, Christina; Forchhammer, Karl

    2011-11-15

    P(II) proteins belong to a family of highly conserved signal-transduction proteins that occurs widely in bacteria, archaea and plants. They respond to the central metabolites ATP, ADP and 2-OG (2-oxoglutarate), and control enzymes, transcription factors and transport proteins involved in nitrogen metabolism. In the present study, we examined the effect of ADP on in vitro P(II)-signalling properties for the cyanobacterium Synechococcus elongatus, a model for oxygenic phototrophic organisms. Different ADP/ATP ratios strongly affected the properties of P(II) signalling. Increasing ADP antagonized the binding of 2-OG and directly affected the interactions of P(II) with its target proteins. The resulting P(II)-signalling properties indicate that, in mixtures of ADP and ATP, P(II) trimers are occupied by mixtures of adenylate nucleotides. Binding and kinetic activation of NAGK (N-acetyl-L-glutamate kinase), the controlling enzyme of arginine biosynthesis, by P(II) was weakened by ADP, but relief from arginine inhibition remained unaffected. On the other hand, ADP enhanced the binding of P(II) to PipX, a co-activator of the transcription factor NtcA and, furthermore, antagonized the inhibitory effect of 2-OG on P(II)-PipX interaction. These results indicate that S. elongatus P(II) directly senses the adenylate energy charge, resulting in target-dependent differential modification of the P(II)-signalling properties. PMID:21774788

  1. The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction

    PubMed Central

    Netto, Luis E. S.; Antunes, Fernando

    2016-01-01

    A challenge in the redox field is the elucidation of the molecular mechanisms, by which H2O2 mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the H2O2 sensor in bacteria, whereas Cys-based peroxidases are involved in the perception of this oxidant in eukaryotic cells. Three possible mechanisms may be involved in H2O2 signaling that are not mutually exclusive. In the simplest pathway, H2O2 signals through direct oxidation of the signaling protein, such as a phosphatase or a transcription factor. Although signaling proteins are frequently observed in the oxidized state in biological systems, in most cases their direct oxidation by H2O2 is too slow (101 M−1s−1 range) to outcompete Cys-based peroxidases and glutathione. In some particular cellular compartments (such as vicinity of NADPH oxidases), it is possible that a signaling protein faces extremely high H2O2 concentrations, making the direct oxidation feasible. Alternatively, high H2O2 levels can hyperoxidize peroxiredoxins leading to local building up of H2O2 that then could oxidize a signaling protein (floodgate hypothesis). In a second model, H2O2 oxidizes Cys-based peroxidases that then through thiol-disulfide reshuffling would transmit the oxidized equivalents to the signaling protein. The third model of signaling is centered on the reducing substrate of Cys-based peroxidases that in most cases is thioredoxin. Is this model, peroxiredoxins would signal by modulating the thioredoxin redox status. More kinetic data is required to allow the identification of the complex network of thiol switches. PMID:26813662

  2. Epidermal Growth Factor Receptor in Glioma: Signal Transduction, Neuropathology, Imaging, and Radioresistance1

    PubMed Central

    Hatanpaa, Kimmo J; Burma, Sandeep; Zhao, Dawen; Habib, Amyn A

    2010-01-01

    Aberrant epidermal growth factor receptor (EGFR) signaling is common in cancer. Increased expression of wild type and mutant EGFR is a widespread feature of diverse types of cancer. EGFR signaling in cancer has been the focus of intense investigation for decades primarily for two reasons. First, aberrant EGFR signaling is likely to play an important role in the pathogenesis of cancer, and therefore, the mechanisms of EGFR-mediated oncogenic signaling are of interest. Second, the EGFR signaling system is an attractive target for therapeutic intervention. EGFR gene amplification and overexpression are a particularly striking feature of glioblastoma (GBM), observed in approximately 40% of tumors. GBM is the most common primary malignant tumor of the central nervous system in adults. In approximately 50% of tumors with EGFR amplification, a specific EGFR mutant (EGFRvIII, also known as EGFR type III, de2-7, ΔEGFR) can be detected. This mutant is highly oncogenic and is generated from a deletion of exons 2 to 7 of the EGFR gene, which results in an in-frame deletion of 267 amino acids from the extracellular domain of the receptor. EGFRvIII is unable to bind ligand, and it signals constitutively. Although EGFRvIII has the same signaling domain as the wild type receptor, it seems to generate a distinct set of downstream signals that may contribute to an increased tumorigenicity. In this review, we discuss recent progress in key aspects of EGFR signaling in GBM, focusing on neuropathology, signal transduction, imaging of the EGFR, and the role of the EGFR in mediating resistance to radiation therapy in GBM. PMID:20824044

  3. Overexpression of PGC-1α Influences Mitochondrial Signal Transduction of Dopaminergic Neurons.

    PubMed

    Ye, Qinyong; Huang, Wanling; Li, Dongzhu; Si, Erwang; Wang, Juhua; Wang, Yingqing; Chen, Chun; Chen, Xiaochun

    2016-08-01

    Parkinson's disease (PD) is a common neurodegenerative disease in the elderly. Mitochondrial dysfunction plays an important role in the pathogenesis of PD. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a powerful transcription factor, interacting with multiple transcription factors and widely involving in the regulation of mitochondrial biogenesis, oxidative stress, and other processes. The present study investigated the neuroprotective effects and signal transduction mechanisms of the overexpression of PGC-1α on N-methyl-4-phenylpyridinium ion (MPP(+))-induced mitochondrial damage in SH-SY5Y cell, establishing the cell model of overexpression of PGC-1α and the cell model of PD by using adenoviral vectors and MPP(+). 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide thiazolyl blue (MTT) assay was used to investigate the effects of MPP(+) and adenovirus on the cell viability of SH-SY5Y cells and the cell viability of experimental groups. Western blot and real-time PCR analysis were used to detect the expression of PGC-1α. Flow cytometry and ELISA were used to detect mitochondrial membrane potential and the level of cytochrome C, respectively. The level of intracellular ATP and H2O2 was measured by multifunctional fluorescence microplate. Western blot analysis and real-time PCR were used to observe the expression of estrogen-related receptor α (ERRα), peroxisome proliferator-activated receptor γ (PPARγ), nuclear respiratory factor (NRF)-1, and NRF-2. Confocal fluorescence analysis was used to observe subcellular localization of PGC-1α in SH-SY5Y cells under the intervention of MPP(+). The expression of PGC-1α messenger RNA and protein significantly increased in Adv-PGC-1α + GFP groups, compared with the control and Adv-GFP groups (P < 0.01). The overexpression of PGC-1α could increase mitochondrial membrane potential, reduce the release of mitochondrial cytochrome C, inhibit H2O2 production, and improve the

  4. Signal transduction during C. elegans vulval development: a NeverEnding story.

    PubMed

    Schmid, Tobias; Hajnal, Alex

    2015-06-01

    The Caenorhabditis elegans hermaphrodite vulva is one of the best studied models for signal transduction and cell fate determination during organogenesis. Systematic forward genetic screens have identified a complex and highly interconnected signaling network formed by the conserved EGFR, NOTCH, and WNT signaling pathways that specifies an invariant pattern of cell fates among the six vulval precursor cells (VPCs). Multiple inhibitory interactions between the EGFR and NOTCH pathways ensure the selection of a single 1° VPC that is always flanked by two 2° VPCs thanks to lateral NOTCH signaling. Building on this 'central dogma' of cell fate specification, scientists have investigated a broad spectrum of novel questions that are summarized in this review. For example, vulval development is a unique model to study the intracellular trafficking of signaling molecules, such as NOTCH or EGFR, to investigate the interactions between the cell cycle and cell fate specification pathways, and to observe epithelial tube morphogenesis and cell invasion at single-cell resolution. Finally, computer scientists have integrated the experimental data into mathematical and state-based 'in silico' models of vulval development, allowing them to test the completeness and limits of our current understanding. PMID:25677930

  5. Non Linear Programming (NLP) formulation for quantitative modeling of protein signal transduction pathways.

    PubMed

    Mitsos, Alexander; Melas, Ioannis N; Morris, Melody K; Saez-Rodriguez, Julio; Lauffenburger, Douglas A; Alexopoulos, Leonidas G

    2012-01-01

    Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms. PMID:23226239

  6. Angiotensin 2 directly increases rabbit renal brush-border membrane sodium transport: Presence of local signal transduction system

    SciTech Connect

    Morduchowicz, G.A.; Sheikh-Hamad, D.; Dwyer, B.E.; Stern, N.; Jo, O.D.; Yanagawa, N. )

    1991-05-01

    In the present study, the authors have examined the direct actions of angiotensin II (AII) in rabbit renal brush border membrane (BBM) where binding sites for AII exist. Addition of AII (10(-11)-10(-7) M) was found to stimulate 22Na+ uptake by the isolated BBM vesicles directly. All did not affect the Na(+)-dependent BBM glucose uptake, and the effect of AII on BBM 22Na+ uptake was inhibited by amiloride, suggesting the involvement of Na+/H+ exchange mechanism. BBM proton permeability as assessed by acridine orange quenching was not affected by AII, indicating the direct effect of AII on Na+/H+ antiport system. In search of the signal transduction mechanism, it was found that AII activated BBM phospholipase A2 (PLA) and that BBM contains a 42-kDa guanine nucleotide-binding regulatory protein (G-protein) that underwent pertussis toxin (PTX)-catalyzed ADP-ribosylation. Addition of GTP potentiated, while GDP-beta S or PTX abolished, the effects of AII on BBM PLA and 22Na+ uptake, suggesting the involvement of G-protein in AII's actions. On the other hand, inhibition of PLA by mepacrine prevented AII's effect on BBM 22Na+ uptake, and activation of PLA by mellitin or addition of arachidonic acid similarly enhanced BBM 22Na+ uptake, suggesting the role of PLA activation in mediating AII's effect on BBM 22Na+ uptake. In summary, results of the present study show a direct stimulatory effect of AII on BBM Na+/H+ antiport system, and suggest the presence of a local signal transduction system involving G-protein mediated PLA activation.

  7. Functional Analysis of the Mycobacterium tuberculosis MprAB Two-Component Signal Transduction System

    PubMed Central

    Zahrt, Thomas C.; Wozniak, Christopher; Jones, Denise; Trevett, Andrea

    2003-01-01

    The mechanisms utilized by Mycobacterium tuberculosis to establish, maintain, or reactivate from latent infection in the host are largely unknown but likely include genes that mediate adaptation to conditions encountered during persistence. Previously, a two-component signal transduction system, mprAB, was found to be required in M. tuberculosis for establishment and maintenance of persistent infection in a tissue- and stage-specific fashion. To begin to characterize the role of this system in M. tuberculosis physiology and virulence, a functional analysis of the mprA and mprB gene products was initiated. Here, evidence is presented demonstrating that sensor kinase MprB and response regulator MprA function as an intact signal-transducing pair in vitro and in vivo. Sensor kinase MprB can be autophosphorylated, can donate phosphate to MprA, and can act as a phospho-MprA phosphatase in vitro. Correspondingly, response regulator MprA can accept phosphate from MprB or from small phosphodonors including acetyl phosphate. Mutagenesis of residues His249 in MprB and Asp48 in MprA abolished the ability of these proteins to be phosphorylated in vitro. Introduction of these alleles into Mycobacterium bovis BCGattenuated virulence in macrophages in vivo. Together, these results support a role for the mprAB two-component system in M. tuberculosis physiology and pathogenesis. Characterization of two-component signal transduction systems will enhance our understanding of processes regulated by M. tuberculosis during acute and/or persistent infection in the host. PMID:14638785

  8. Association between insulin resistance and impairment of FGF21 signal transduction in skeletal muscles.

    PubMed

    Jeon, Ja Young; Choi, Sung-E; Ha, Eun Suk; Kim, Tae Ho; Jung, Jong Gab; Han, Seung Jin; Kim, Hae Jin; Kim, Dae Jung; Kang, Yup; Lee, Kwan-Woo

    2016-07-01

    Fibroblast growth factor (FGF) 21, was identified as a potent metabolic regulator of glucose and lipid metabolism. We investigated whether the levels and signalings of FGF21 changed in the skeletal muscle of type 2 diabetes mellitus (T2DM) patients, participants with impaired glucose tolerance (IGT), human skeletal muscle myotubes (HSMMs) under insulin-resistant conditions, and mice with diet-induced obesity (DIO). A percutaneous biopsy sample of the vastus lateralis muscle of T2DM patients, IGT subjects, and participants with normal glucose tolerance was obtained and the levels and signalings of FGF21 were assessed. We determined whether the expression and signalings of FGF21 in HSMMs altered according to palmitate concentrations and exposure time. Also, we confirmed whether changes of FGF21 signal transduction resulted in the alteration of FGF21 functions. DIO mice were treated intravenously with recombinant FGF21, and the levels and signalings of FGF21 were assessed in their soleus muscles. We checked whether or not FGF21 played a role in the gene transcription related to lipid oxidation. Levels of FGF21 increased, whereas levels of phosphorylated FGF receptor (p-FGFR), phosphorylated FGFR substrates 2α (p-FRS2α), and phosphorylated extracellular signal-regulated kinases (p-ERK) decreased in the skeletal muscle of both T2DM patients and IGT subjects. In vitro, palmitate increased the levels of FGF21 and significantly reduced the levels of β-klotho, p-FGFR, p-FRS2α, and p-ERK1/2 in HSMMs exposed to palmitate. Palmitate also decreased glucose uptake and glycogen contents of FGF21. Consistently, the levels of FGF21 were significantly higher and the levels of β-klotho and p-FGFR were lower in the DIO mice than in normal lean mice. The levels of FGF21 increased but its signal transduction and actions were impaired in skeletal muscles of T2DM patients, IGT subjects, in insulin-resistant HSMMs, and DIO mice. PMID:26758997

  9. Opposing effects of bile acids deoxycholic acid and ursodeoxycholic acid on signal transduction pathways in oesophageal cancer cells.

    PubMed

    Abdel-Latif, Mohamed M; Inoue, Hiroyasu; Reynolds, John V

    2016-09-01

    Ursodeoxycholic acid (UDCA) was reported to reduce bile acid toxicity, but the mechanisms underlying its cytoprotective effects are not fully understood. The aim of the present study was to examine the effects of UDCA on the modulation of deoxycholic acid (DCA)-induced signal transduction in oesophageal cancer cells. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activity was assessed using a gel shift assay. NF-κB activation and translocation was performed using an ELISA-based assay and immunofluorescence analysis. COX-2 expression was analysed by western blotting and COX-2 promoter activity was assessed by luciferase assay. DCA induced NF-κB and AP-1 DNA-binding activities in SKGT-4 and OE33 cells. UDCA pretreatment inhibited DCA-induced NF-κB and AP-1 activation and NF-κB translocation. This inhibitory effect was coupled with a blockade of IκB-α degradation and inhibition of phosphorylation of IKK-α/β and ERK1/2. Moreover, UDCA pretreatment inhibited COX-2 upregulation. Using transient transfection of the COX-2 promoter, UDCA pretreatment abrogated DCA-induced COX-2 promoter activation. In addition, UDCA protected oesophageal cells from the apoptotic effects of deoxycholate. Our findings indicate that UDCA inhibits DCA-induced signalling pathways in oesophageal cancer cells. These data indicate a possible mechanistic role for the chemopreventive actions of UDCA in oesophageal carcinogenesis. PMID:26378497

  10. Naringenin suppresses TPA-induced tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells.

    PubMed

    Yen, Hung-Rong; Liu, Ching-Ju; Yeh, Chia-Chou

    2015-06-25

    Naringenin, a common dietary flavonoid abundantly present in fruits and vegetables, is believed to possess strong anti-proliferative properties and the ability to induce apoptosis in hepatoma cell lines. However, there are no reports describing its effects on the invasion and metastasis of hepatoma cell lines, and the detailed molecular mechanisms of its effects are still unclear. In this study, we investigated the mechanisms underlying naringenin-mediated inhibition of 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced cell invasion and inhibition of secreted and cytosolic MMP-9 production in human hepatoma cells (HepG2, Huh-7, and HA22T) and murine embryonic liver cells (BNL CL2). Naringenin suppressed MMP-9 transcription by inhibiting activator protein (AP)-1 and nuclear factor-κB (NF-κB) activity. It suppressed TPA-induced AP-1 activity through inhibiting the phosphorylation of the extracellular signal-related kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways, and it suppressed TPA-induced inhibition of NF-κB nuclear translocation through IκB. Additionally, it suppressed TPA-induced activation of ERK/phosphatidylinositol 3-kinase/Akt upstream of NF-κB and AP-1. These data suggest that naringenin suppresses the invasiveness and metastatic potential of hepatocellular carcinoma (HCC) by inhibiting multiple signal transduction pathways. PMID:25866363

  11. Signal transduction pathways leading to the production of IL-8 by human monocytes are differentially regulated by dexamethasone.

    PubMed Central

    Anttila, H S; Reitamo, S; Ceska, M; Hurme, M

    1992-01-01

    Previous studies have shown that IL-8 gene expression is enhanced by various stimuli, which induce different signal transduction pathways. A lipopolysaccharide (LPS)-induced pathway has been reported to be inhibited by glucocorticoids in monocytes. We have now examined the effect of dexamethasone on the LPS-induced and other signal transduction pathways leading to the production of IL-8 by human monocytes. Dexamethasone inhibited the production of IL-8 stimulated with a cyclic adenosine monophosphate analog or LPS. In contrast, dexamethasone had no significant effect on a phorbol ester (PMA)-stimulated IL-8 production. These results suggest that the signal transduction pathways leading to the production of IL-8 by human monocytes are differentially regulated by dexamethasone. PMID:1325308

  12. Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria.

    PubMed

    Crosa, J H

    1997-09-01

    Iron is an essential element for nearly all living cells. Thus, the ability of bacteria to utilize iron is a crucial survival mechanism independent of the ecological niche in which the microorganism lives, because iron is scarce both in potential biological hosts, where it is bound by high-affinity iron-binding proteins, and in the environment, where it is present as part of insoluble complex hydroxides. Therefore, pathogens attempting to establish an infection and environmental microorganisms must all be able to utilize the otherwise unavailable iron. One of the strategies to perform this task is the possession of siderophore-mediated iron uptake systems that are capable of scavenging the hoarded iron. This metal is, however, a double-edged sword for the cell because it can catalyze the production of deadly free hydroxyl radicals, which are harmful to the cells. It is therefore imperative for the cell to control the concentration of iron at levels that permit key metabolic steps to occur without becoming a messenger of cell death. Early work identified a repressor, Fur, which as a complex with iron repressed the expression of most iron uptake systems as well as other iron-regulated genes when the iron concentration reached a certain level. However, later work demonstrated that this regulation by Fur was not the only answer under low-iron conditions, there was a need for activation of iron uptake genes as well as siderophore biosynthetic genes. Furthermore, it was also realized that in some instances the actual ferric iron-siderophore complex induced the transcription of the cognate receptor and transport genes. It became evident that control of the expression of iron-regulated genes was more complex than originally envisioned. In this review, I analyze the processes of signal transduction, transcriptional control, and posttranscriptional control of iron-regulated genes as reported for the ferric dicitrate system in Escherichia coli; the pyochelin, pyoverdin, and

  13. Systems Perturbation Analysis of a Large-Scale Signal Transduction Model Reveals Potentially Influential Candidates for Cancer Therapeutics.

    PubMed

    Puniya, Bhanwar Lal; Allen, Laura; Hochfelder, Colleen; Majumder, Mahbubul; Helikar, Tomáš

    2016-01-01

    Dysregulation in signal transduction pathways can lead to a variety of complex disorders, including cancer. Computational approaches such as network analysis are important tools to understand system dynamics as well as to identify critical components that could be further explored as therapeutic targets. Here, we performed perturbation analysis of a large-scale signal transduction model in extracellular environments that stimulate cell death, growth, motility, and quiescence. Each of the model's components was perturbed under both loss-of-function and gain-of-function mutations. Using 1,300 simulations under both types of perturbations across various extracellular conditions, we identified the most and least influential components based on the magnitude of their influence on the rest of the system. Based on the premise that the most influential components might serve as better drug targets, we characterized them for biological functions, housekeeping genes, essential genes, and druggable proteins. The most influential components under all environmental conditions were enriched with several biological processes. The inositol pathway was found as most influential under inactivating perturbations, whereas the kinase and small lung cancer pathways were identified as the most influential under activating perturbations. The most influential components were enriched with essential genes and druggable proteins. Moreover, known cancer drug targets were also classified in influential components based on the affected components in the network. Additionally, the systemic perturbation analysis of the model revealed a network motif of most influential components which affect each other. Furthermore, our analysis predicted novel combinations of cancer drug targets with various effects on other most influential components. We found that the combinatorial perturbation consisting of PI3K inactivation and overactivation of IP3R1 can lead to increased activity levels of apoptosis

  14. Systems Perturbation Analysis of a Large-Scale Signal Transduction Model Reveals Potentially Influential Candidates for Cancer Therapeutics

    PubMed Central

    Puniya, Bhanwar Lal; Allen, Laura; Hochfelder, Colleen; Majumder, Mahbubul; Helikar, Tomáš

    2016-01-01

    Dysregulation in signal transduction pathways can lead to a variety of complex disorders, including cancer. Computational approaches such as network analysis are important tools to understand system dynamics as well as to identify critical components that could be further explored as therapeutic targets. Here, we performed perturbation analysis of a large-scale signal transduction model in extracellular environments that stimulate cell death, growth, motility, and quiescence. Each of the model’s components was perturbed under both loss-of-function and gain-of-function mutations. Using 1,300 simulations under both types of perturbations across various extracellular conditions, we identified the most and least influential components based on the magnitude of their influence on the rest of the system. Based on the premise that the most influential components might serve as better drug targets, we characterized them for biological functions, housekeeping genes, essential genes, and druggable proteins. The most influential components under all environmental conditions were enriched with several biological processes. The inositol pathway was found as most influential under inactivating perturbations, whereas the kinase and small lung cancer pathways were identified as the most influential under activating perturbations. The most influential components were enriched with essential genes and druggable proteins. Moreover, known cancer drug targets were also classified in influential components based on the affected components in the network. Additionally, the systemic perturbation analysis of the model revealed a network motif of most influential components which affect each other. Furthermore, our analysis predicted novel combinations of cancer drug targets with various effects on other most influential components. We found that the combinatorial perturbation consisting of PI3K inactivation and overactivation of IP3R1 can lead to increased activity levels of apoptosis

  15. Mutational analysis of dimeric linkers in peri- and cytoplasmic domains of histidine kinase DctB reveals their functional roles in signal transduction

    PubMed Central

    Liu, Jiwei; Yang, Jianguo; Wen, Jin; Yang, Yun; Wei, Xiaolu; Zhang, Xiaodong; Wang, Yi-Ping

    2014-01-01

    Membrane-associated histidine kinases (HKs) in two-component systems respond to environmental stimuli by autophosphorylation and phospho-transfer. HK typically contains a periplasmic sensor domain that regulates the cytoplasmic kinase domain through a conserved cytoplasmic linker. How signal is transduced from the ligand-binding site across the membrane barrier remains unclear. Here, we analyse two linker regions of a typical HK, DctB. One region connects the first transmembrane helix with the periplasmic Per-ARNT-Sim domains, while the other one connects the second transmembrane helix with the cytoplasmic kinase domains. We identify a leucine residue in the first linker region to be essential for the signal transduction and for maintaining the delicate balance of the dimeric interface, which is key to its activities. We also show that the other linker, belonging to the S-helix coiled-coil family, plays essential roles in signal transduction inside the cell. Furthermore, by combining mutations with opposing activities in the two regions, we show that these two signalling transduction elements are integrated to produce a combined effect on the final activity of DctB. PMID:24898140

  16. Uropathogenic E. coli adhesin-induced host cell receptor conformational changes: implications in transmembrane signaling transduction

    PubMed Central

    Wang, Huaibin; Min, Guangwei; Glockshuber, Rudi; Sun, Tung-Tien; Kong, Xiang-Peng

    2009-01-01

    Urinary tract infection (UTI) is the second most common infectious disease, and is caused predominantly by type 1-fimbriated uropathogenic E. coli (UPEC). UPEC initiates infection by attaching to uroplakin Ia, its urothelial surface receptor, via the FimH adhesins capping the distal end of its fimbriae. Uroplakin Ia, together with uroplakins Ib, II and IIIa, forms a 16 nm receptor complex that is assembled into hexagonally packed two-dimensional crystals (urothelial plaques) covering >90% of the urothelial apical surface. Recent studies indicate that FimH is the invasin of UPEC as its attachment to the urothelial surface can induce cellular signaling events including calcium elevation and the phosphorylation of the uroplakin IIIa cytoplasmic tail, leading to cytoskeletal rearrangements and bacterial invasion. However, it remains unknown how the binding of FimH to the uroplakin receptor triggers a signal that can be transmitted through the highly impermeable urothelial apical membrane. We show here by cryo-electron microscopy that FimH-binding to the extracellular domain of UPIa induces global conformational changes in the entire uroplakin receptor complex, including a coordinated movement of the tightly bundled transmembrane helices. This movement of the transmembrane helix bundles can cause a corresponding lateral translocation of the uroplakin cytoplasmic tails, which can be sufficient to trigger downstream signaling events. Our results suggest a novel pathogen-induced transmembrane signal transduction mechanism that plays a key role in the initial stages of UPEC invasion and receptor-mediated bacterial invasion in general. PMID:19577575

  17. Cysteines in the neuropilin-2 MAM domain modulate receptor homooligomerization and signal transduction.

    PubMed

    Barton, Rachael; Driscoll, Alyssa; Flores, Samuel; Mudbhari, Durlav; Collins, Theresa; Iovine, M Kathryn; Berger, Bryan W

    2015-07-01

    Neuropilins (NRPs) are transmembrane receptors involved in angiogenesis, lymphangiogenesis, and neuronal development as well as in cancer metastasis. Previous studies suggest that NRPs exist in heteromeric complexes with vascular endothelial growth factors (VEGFs) and VEGF receptors as well as plexins and semaphorins. We determined via site-directed mutagenesis and bioluminescent resonance energy transfer assays that a conserved cysteine (C711) in the Danio rerio NRP2a MAM (meprin, A-5 protein, and protein tyrosine phosphatase μ) domain modulates NRP2a homomeric interactions. Mutation of this residue also disrupts semaphorin-3F binding in NRP2a-transfected COS-7 cells and prevents the NRP2a overexpression effects in a zebrafish vascular model. Collectively, our results indicate the MAM domain plays an important role in defining the NRP2 homodimer structure, which is important for semaphorin-dependent signal transduction via NRP2. PMID:25656526

  18. Lessons in Fundamental Mechanisms and Diverse Adaptations from the 2015 Bacterial Locomotion and Signal Transduction Meeting

    PubMed Central

    Prüβ, Birgit M.; Liu, Jun; Higgs, Penelope I.

    2015-01-01

    In response to rapid changes in their environment, bacteria control a number of processes, including motility, cell division, biofilm formation, and virulence. Research presented in January 2015 at the biennial Bacterial Locomotion and Signal Transduction (BLAST) meeting in Tucson, AZ, illustrates the elegant complexity of the nanoarrays, nanomachines, and networks of interacting proteins that mediate such processes. Studies employing an array of biophysical, genetic, cell biology, and mathematical methods are providing an increasingly detailed understanding of the mechanisms of these systems within well-studied bacteria. Furthermore, comparisons of these processes in diverse bacterial species are providing insight into novel regulatory and functional mechanisms. This review summarizes research presented at the BLAST meeting on these fundamental mechanisms and diverse adaptations, including findings of importance for applications involving bacteria of medical or agricultural relevance. PMID:26195592

  19. Smartphone Operated Signal Transduction by Ion Nanogating (STING) Amplifier for Nanopore Sensors: Design and Analytical Application

    PubMed Central

    Özel, Rıfat Emrah; Kahnemouyi, Sina; Fan, Hsinwen; Mak, Wai Han; Lohith, Akshar; Seger, Adam; Teodorescu, Mircea; Pourmand, Nader

    2016-01-01

    In this report, we demonstrated a handheld wireless voltage-clamp amplifier for current measurement of nanopore sensors. This amplifier interfaces a sensing probe and connects wirelessly with a computer or smartphone for the required stimulus input, data processing and storage. To test the proposed Signal Transduction by Ion Nanogating (STING) wireless amplifier, in the current study the system was tested with a nano-pH sensor to measure pH of standard buffer solutions and the performance was compared against the commercial voltage-clamp amplifier. To our best knowledge, STING amplifier is the first miniaturized wireless voltage-clamp platform operated with a customized smart-phone application (app). PMID:27602408

  20. Bead Assembly Magnetorotation as a Signal Transduction Method for Protein Detection

    PubMed Central

    Hecht, Ariel; Commiskey, Patrick; Shah, Nicholas; Kopelman, Raoul

    2013-01-01

    This paper demonstrates a proof-of-principle for a new signal transduction method for protein detection called Bead Assembly Magnetorotation (BAM). In this paper, we chose to focus on the protein thrombin, a popular choice for proof-of-principle work in this field. BAM is based on using the protein target to mediate the formation of aptamer-coated 1 μm magnetic beads into a bead assembly, formed at the bottom of a 1 μL hanging droplet. The size, shape and fractal dimension of this bead assembly all depend on the protein concentration. The protein concentration can be measured in two ways: by magnetorotation, in which the rotational period of the assembly correlates with the protein concentration, or by fractal analysis. Additionally, a microscope-free magnetorotation detection method is introduced, based on a simple laser apparatus built from standard laboratory components. PMID:23639345

  1. Comprehensive analysis of signal transduction in three-dimensional ECM-based tumor cell cultures

    PubMed Central

    Eke, Iris; Hehlgans, Stephanie; Zong, Yaping; Cordes, Nils

    2015-01-01

    Analysis of signal transduction and protein phosphorylation is fundamental to understanding physiological and pathological cell behavior and identifying novel therapeutic targets. Despite the fact that the use of physiological three-dimensional cell culture assays is increasing, 3D proteomics and phosphoproteomics remain challenging due to difficulties with easy, robust and reproducible sample preparation. Here, we present an easy-to-perform, reliable and time-efficient method for the production of 3D cell lysates that does not compromise cell adhesion before cell lysis. The samples can be used for western blotting as well as phosphoproteome array technology. This technique will be of interest for researchers working in all fields of biology and drug development. PMID:26618185

  2. Syntrophin proteins as Santa Claus: role(s) in cell signal transduction.

    PubMed

    Bhat, Hina F; Adams, Marvin E; Khanday, Firdous A

    2013-07-01

    Syntrophins are a family of cytoplasmic membrane-associated adaptor proteins, characterized by the presence of a unique domain organization comprised of a C-terminal syntrophin unique (SU) domain and an N-terminal pleckstrin homology (PH) domain that is split by insertion of a PDZ domain. Syntrophins have been recognized as an important component of many signaling events, and they seem to function more like the cell's own personal 'Santa Claus' that serves to 'gift' various signaling complexes with precise proteins that they 'wish for', and at the same time care enough for the spatial, temporal control of these signaling events, maintaining overall smooth functioning and general happiness of the cell. Syntrophins not only associate various ion channels and signaling proteins to the dystrophin-associated protein complex (DAPC), via a direct interaction with dystrophin protein but also serve as a link between the extracellular matrix and the intracellular downstream targets and cell cytoskeleton by interacting with F-actin. They play an important role in regulating the postsynaptic signal transduction, sarcolemmal localization of nNOS, EphA4 signaling at the neuromuscular junction, and G-protein mediated signaling. In our previous work, we reported a differential expression pattern of alpha-1-syntrophin (SNTA1) protein in esophageal and breast carcinomas. Implicated in several other pathologies, like cardiac dys-functioning, muscular dystrophies, diabetes, etc., these proteins provide a lot of scope for further studies. The present review focuses on the role of syntrophins in membrane targeting and regulation of cellular proteins, while highlighting their relevance in possible development and/or progression of pathologies including cancer which we have recently demonstrated. PMID:23263165

  3. Tyrosine Kinase 2-mediated Signal Transduction in T Lymphocytes Is Blocked by Pharmacological Stabilization of Its Pseudokinase Domain.

    PubMed

    Tokarski, John S; Zupa-Fernandez, Adriana; Tredup, Jeffrey A; Pike, Kristen; Chang, ChiehYing; Xie, Dianlin; Cheng, Lihong; Pedicord, Donna; Muckelbauer, Jodi; Johnson, Stephen R; Wu, Sophie; Edavettal, Suzanne C; Hong, Yang; Witmer, Mark R; Elkin, Lisa L; Blat, Yuval; Pitts, William J; Weinstein, David S; Burke, James R

    2015-04-24

    Inhibition of signal transduction downstream of the IL-23 receptor represents an intriguing approach to the treatment of autoimmunity. Using a chemogenomics approach marrying kinome-wide inhibitory profiles of a compound library with the cellular activity against an IL-23-stimulated transcriptional response in T lymphocytes, a class of inhibitors was identified that bind to and stabilize the pseudokinase domain of the Janus kinase tyrosine kinase 2 (Tyk2), resulting in blockade of receptor-mediated activation of the adjacent catalytic domain. These Tyk2 pseudokinase domain stabilizers were also shown to inhibit Tyk2-dependent signaling through the Type I interferon receptor but not Tyk2-independent signaling and transcriptional cellular assays, including stimulation through the receptors for IL-2 (JAK1- and JAK3-dependent) and thrombopoietin (JAK2-dependent), demonstrating the high functional selectivity of this approach. A crystal structure of the pseudokinase domain liganded with a representative example showed the compound bound to a site analogous to the ATP-binding site in catalytic kinases with features consistent with high ligand selectivity. The results support a model where the pseudokinase domain regulates activation of the catalytic domain by forming receptor-regulated inhibitory interactions. Tyk2 pseudokinase stabilizers, therefore, represent a novel approach to the design of potent and selective agents for the treatment of autoimmunity. PMID:25762719

  4. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice

    PubMed Central

    Ayano, Madoka; Kani, Takahiro; Kojima, Mikiko; Sakakibara, Hitoshi; Kitaoka, Takuya; Kuroha, Takeshi; Angeles-Shim, Rosalyn B; Kitano, Hidemi; Nagai, Keisuke; Ashikari, Motoyuki

    2014-01-01

    Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investigated the relationship between deepwater-dependent internode elongation and the phytohormone gibberellin (GA) by physiological and genetic approach using a QTL pyramiding line (NIL-1 + 3 + 12). Deepwater rice did not show internode elongation before the sixth leaf stage under deepwater condition. Additionally, deepwater-dependent internode elongation occurred on the sixth and seventh internodes during the sixth leaf stage. These results indicate that deepwater rice could not start internode elongation until the sixth leaf stage. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) method for the phytohormone contents showed a deepwater-dependent GA1 and GA4 accumulation in deepwater rice. Additionally, a GA inhibitor abolished deepwater-dependent internode elongation in deepwater rice. On the contrary, GA feeding mimicked internode elongation under ordinary growth conditions. However, mutations in GA biosynthesis and signal transduction genes blocked deepwater-dependent internode elongation. These data suggested that GA biosynthesis and signal transduction are essential for deepwater-dependent internode elongation in deepwater rice. Deepwater rice obtained the ability for rapid internode elongation to avoid drowning and adapt to flooded condition. How does it regulate internode elongation? Using both physiological and genetic approach, this paper shows that the plant hormone, gibberellin (GA) regulates internode elongation. PMID:24891164

  5. Sensor-response regulator interactions in a cross-regulated signal transduction network.

    PubMed

    Huynh, TuAnh Ngoc; Chen, Li-Ling; Stewart, Valley

    2015-07-01

    Two-component signal transduction involves phosphoryl transfer between a histidine kinase sensor and a response regulator effector. The nitrate-responsive two-component signal transduction systems in Escherichia coli represent a paradigm for a cross-regulation network, in which the paralogous sensor-response regulator pairs, NarX-NarL and NarQ-NarP, exhibit both cognate (e.g. NarX-NarL) and non-cognate (e.g. NarQ-NarL) interactions to control output. Here, we describe results from bacterial adenylate cyclase two-hybrid (BACTH) analysis to examine sensor dimerization as well as interaction between sensor-response regulator cognate and non-cognate pairs. Although results from BACTH analysis indicated that the NarX and NarQ sensors interact with each other, results from intragenic complementation tests demonstrate that they do not form functional heterodimers. Additionally, intragenic complementation shows that both NarX and NarQ undergo intermolecular autophosphorylation, deviating from the previously reported correlation between DHp (dimerization and histidyl phosphotransfer) domain loop handedness and autophosphorylation mode. Results from BACTH analysis revealed robust interactions for the NarX-NarL, NarQ-NarL and NarQ-NarP pairs but a much weaker interaction for the NarX-NarP pair. This demonstrates that asymmetrical cross-regulation results from differential binding affinities between different sensor-regulator pairs. Finally, results indicate that the NarL effector (DNA-binding) domain inhibits NarX-NarL interaction. Missense substitutions at receiver domain residue Ser-80 enhanced NarX-NarL interaction, apparently by destabilizing the NarL receiver-effector domain interface. PMID:25873583

  6. Chemotactic signal transduction and phosphate metabolism as adaptive strategies during citrus canker induction by Xanthomonas citri.

    PubMed

    Moreira, Leandro Marcio; Facincani, Agda Paula; Ferreira, Cristiano Barbalho; Ferreira, Rafael Marine; Ferro, Maria Inês Tiraboshi; Gozzo, Fabio Cesar; de Oliveira, Julio Cezar Franco; Ferro, Jesus Aparecido; Soares, Márcia Regina

    2015-03-01

    The genome of Xanthomonas citri subsp. Citri strain 306 pathotype A (Xac) was completely sequenced more than 10 years; to date, few studies involving functional genomics Xac and its host compatible have been developed, specially related to adaptive events that allow the survival of Xac within the plant. Proteomic analysis of Xac showed that the processes of chemotactic signal transduction and phosphate metabolism are key adaptive strategies during the interaction of a pathogenic bacterium with its plant host. The results also indicate the importance of a group of proteins that may not be directly related to the classical virulence factors, but that are likely fundamental to the success of the initial stages of the infection, such as methyl-accepting chemotaxis protein (Mcp) and phosphate specific transport (Pst). Furthermore, the analysis of the mutant of the gene pstB which codifies to an ABC phosphate transporter subunit revealed a complete absence of citrus canker symptoms when inoculated in compatible hosts. We also conducted an in silico analysis which established the possible network of genes regulated by two-component systems PhoPQ and PhoBR (related to phosphate metabolism), and possible transcriptional factor binding site (TFBS) motifs of regulatory proteins PhoB and PhoP, detaching high degree of conservation of PhoB TFBS in 84 genes of Xac genome. This is the first time that chemotaxis signal transduction and phosphate metabolism were therefore indicated to be fundamental to the process of colonization of plant tissue during the induction of disease associated with Xanthomonas genus bacteria. PMID:25403594

  7. Mammalian mediator of transcriptional regulation and its possible role as an end-point of signal transduction pathways.

    PubMed

    Jiang, Y W; Veschambre, P; Erdjument-Bromage, H; Tempst, P; Conaway, J W; Conaway, R C; Kornberg, R D

    1998-07-21

    A multiprotein complex isolated from murine cells is identified as a counterpart of the yeast Mediator of transcriptional regulation on the basis of the following: homologs of two subunits of yeast Mediator, Srb7 and Med7, copurify with the complex; peptide sequencing reveals, in addition, homologs of the yeast Mediator subunits Rgr1 and Med6; as with yeast Mediator, the mouse complex binds to the RNA polymerase II C-terminal domain (CTD) and stimulates phosphorylation of the CTD by TFIIH. Peptide sequencing also identifies a component of mouse Mediator as a relative of Ring-3 protein, a mitogen-activated nuclear protein kinase, raising the possibility of Mediator as an end point of signal transduction pathways. PMID:9671713

  8. RIP4 is a target of multiple signal transduction pathways in keratinocytes: Implications for epidermal differentiation and cutaneous wound repair

    SciTech Connect

    Adams, Stephanie; Munz, Barbara

    2010-01-01

    Receptor interacting protein 4 (RIP4) is an important regulator of epidermal morphogenesis during embryonic development. We could previously show that expression of the rip4 gene is strongly downregulated in cutaneous wound repair, which might be initiated by a broad variety of growth factors and cytokines. Here, we demonstrate that in keratinocytes, rip4 expression is controlled by a multitude of different signal transduction pathways, such as the p38 mitogen-activated protein kinase (MAPK) and the nuclear factor kappa B (NF-{kappa}B) cascade, in a unique and specific manner. Furthermore, we show that the steroid dexamethasone abolishes the physiological rip4 downregulation after injury and might thus contribute to the phenotype of reduced and delayed wound reepithelialization seen in glucocorticoid-treated patients. As a whole, our data indicate that rip4 expression is regulated in a complex manner, which might have therapeutic implications.

  9. Intracellular Signal Transduction and Modification of the Tumor Microenvironment Induced by RET/PTCs in Papillary Thyroid Carcinoma

    PubMed Central

    Menicali, Elisa; Moretti, Sonia; Voce, Pasquale; Romagnoli, Serena; Avenia, Nicola; Puxeddu, Efisio

    2012-01-01

    RET gene rearrangements (RET/PTCs) represent together with BRAF point mutations the two major groups of mutations involved in papillary thyroid carcinoma (PTC) initiation and progression. In this review, we will examine the mechanisms involved in RET/PTC-induced thyroid cell transformation. In detail, we will summarize the data on the molecular mechanisms involved in RET/PTC formation and in its function as a dominant oncogene, on the activated signal transduction pathways and on the induced gene expression modifications. Moreover, we will report on the effects of RET/PTCs on the tumor microenvironment. Finally, a short review of the literature on RET/PTC prognostic significance will be presented. PMID:22661970

  10. TGF-beta signal transduction in oro-facial health and non-malignant disease (part I).

    PubMed

    Prime, S S; Pring, M; Davies, M; Paterson, I C

    2004-01-01

    The transforming growth factor-beta (TGF-beta) family of cytokines consists of multi-functional polypeptides that regulate a variety of cell processes, including proliferation, differentiation, apoptosis, extracellular matrix elaboration, angiogenesis, and immune suppression, among others. In so doing, TGF-beta plays a key role in the control of cell behavior in both health and disease. In this report, we review what is known about the mechanisms of activation of the peptide, together with details of TGF-beta signal transduction pathways. This review summarizes the evidence implicating TGF-beta in normal physiological processes of the craniofacial complex-such as palatogenesis, tooth formation, wound healing, and scarring-and then evaluates its role in non-malignant disease processes such as scleroderma, submucous fibrosis, periodontal disease, and lichen planus. PMID:15574677

  11. Stimulatory Effects of Coumestrol on Embryonic and Fetal Development Through AKT and ERK1/2 MAPK Signal Transduction.

    PubMed

    Lim, Whasun; Song, Gwonhwa

    2016-12-01

    Successful establishment of pregnancy is required for fetal-maternal interactions regulating implantation, embryonic development and placentation. A uterine environment with insufficient growth factors and nutrients increases the incidence of intrauterine growth restriction (IUGR) leading to an impaired uterine environment. In the present study, we demonstrated the effects of the phytoestrogen coumestrol on conceptus development in the pig that is regarded as an excellent biomedical animal model for research on IUGR. Results of this study indicated that coumestrol induced migration of porcine trophectoderm (pTr) cells in a concentration-dependent manner. In response to coumestrol, the phosphorylation of AKT, P70S6K, S6, ERK1/2 MAPK, and P90RSK proteins were activated in pTr cells and ERK1/2 MAPK and P90RSK phosphorylation was prolonged for a longer period than for the other proteins. To identify the signal transduction pathway induced by coumestrol, pharmacological inhibitors U0126 (an ERK1/2 inhibitor) and LY294002 (a PI3K inhibitor) were used to pretreat pTr cells. The results showed that coumestrol-induced phosphorylation of ERK1/2 MAPK and P90RSK was blocked by U0126. In addition, the increased phosphorylation in response to coumestrol was completely inhibited following pre-treatment incubation of pTr cells in the presence of LY294002 and U0126. Furthermore, these two inhibitors suppressed the ability of coumestrol to induce migration of pTr cells. Collectively, these findings suggest that coumestrol affects embryonic development through activation of the PI3K/AKT and ERK1/2 MAPK cell signal transduction pathways and improvement in the uterine environment through coumestrol supplementation may provide beneficial effects of enhancing embryonic and fetal survival and development. J. Cell. Physiol. 231: 2733-2740, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991852

  12. The Effect of Minimally Invasive Hematoma Aspiration on the JNK Signal Transduction Pathway after Experimental Intracerebral Hemorrhage in Rats

    PubMed Central

    Pei, Haitao; Jiang, Tao; Liu, Guofang; Li, Zhaoxing; Luo, Kai; An, Jingjiao; Li, Guangcheng; Guo, Yunliang

    2016-01-01

    Objective: To explore the effect of minimally invasive hematoma aspiration (MIHA) on the c-Jun NH2-terminal kinase (JNK) signal transduction pathway after intracerebral hemorrhage (ICH). Methods: In this experiment, 300 adult male Wistar rats were randomly and averagely divided into sham-operated group, ICH group and MIHA group. In each group, 60 rats were used in the detection of indexes in this experiment, while the other 40 rats were used to replace rats which reached the exclusion criteria (accidental death or operation failure). In ICH group and MIHA group, ICH was induced by injection of 70 µL of autologous arterial blood into rat brain, while only the rats in MIHA group were treated by MIHA 6 h after ICH. Rats in sham-operated group were injected nothing into brains, and they were not treated either, like rats in ICH group. In each group, six rats were randomly selected to observe their Bederson’s scales persistently (6, 24, 48, 72, 96, 120 h after ICH). According to the time they were sacrificed, the remaining rats in each group were divided into 3 subgroups (24, 72, 120 h). The change of brain water content (BWC) was measured by the wet weight to dry weight ratio method. The morphology of neurons in cortex was observed by the hematoxylin–eosin (HE) staining. The expressions of phospho-c-Jun NH2-terminal kinase (pJNK) and JNK in peri-hematomal brain tissue were determined by the immunohistochemistry (IHC) and Western blotting (WB). Results: At all time points, compared with the ICH groups, the expression of pJNK decreased obviously in MIHA groups (p < 0.05), while their Bederson’s scales and BWC declined, and neuron injury in the cortex was relieved. The expression level of JNK was not altered at different groups. The data obtained by IHC and WB indicated a high-level of consistency, which provided a certain dependability of the test results. Conclusion: The JNK signal transduction pathway could be activated after intracerebral hemorrhage, with the

  13. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction[OPEN

    PubMed Central

    Shi, Jinrui; Wang, Hongyu; Habben, Jeffrey E.

    2016-01-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. PMID:27268962

  14. Mutations in the gravity persistence signal loci in Arabidopsis disrupt the perception and/or signal transduction of gravitropic stimuli

    NASA Technical Reports Server (NTRS)

    Wyatt, Sarah E.; Rashotte, Aaron M.; Shipp, Matthew J.; Robertson, Dominique; Muday, Gloria K.; Brown, C. S. (Principal Investigator)

    2002-01-01

    Gravity plays a fundamental role in plant growth and development, yet little is understood about the early events of gravitropism. To identify genes affected in the signal perception and/or transduction phase of the gravity response, a mutant screen was devised using cold treatment to delay the gravity response of inflorescence stems of Arabidopsis. Inflorescence stems of Arabidopsis show no response to gravistimulation at 4 degrees C for up to 3 h. However, when gravistimulated at 4 degrees C and then returned to vertical at room temperature (RT), stems bend in response to the previous, horizontal gravistimulation (H. Fukaki, H. Fujisawa, M. Tasaka [1996] Plant Physiology 110: 933-943). This indicates that gravity perception, but not the gravitropic response, occurs at 4 degrees C. Recessive mutations were identified at three loci using this cold effect on gravitropism to screen for gravity persistence signal (gps) mutants. All three mutants had an altered response after gravistimulation at 4 degrees C, yet had phenotypically normal responses to stimulations at RT. gps1-1 did not bend in response to the 4 degrees C gravity stimulus upon return to RT. gps2-1 responded to the 4 degrees C stimulus but bent in the opposite direction. gps3-1 over-responded after return to RT, continuing to bend to an angle greater than wild-type plants. At 4 degrees C, starch-containing statoliths sedimented normally in both wild-type and the gps mutants, but auxin transport was abolished at 4 degrees C. These results are consistent with GPS loci affecting an aspect of the gravity signal perception/transduction pathway that occurs after statolith sedimentation, but before auxin transport.

  15. The biological networks in studying cell signal transduction complexity: The examples of sperm capacitation and of endocannabinoid system

    PubMed Central

    Bernabò, Nicola; Barboni, Barbara; Maccarrone, Mauro

    2014-01-01

    Cellular signal transduction is a complex phenomenon, which plays a central role in cell surviving and adaptation. The great amount of molecular data to date present in literature, together with the adoption of high throughput technologies, on the one hand, made available to scientists an enormous quantity of information, on the other hand, failed to provide a parallel increase in the understanding of biological events. In this context, a new discipline arose, the systems biology, aimed to manage the information with a computational modeling-based approach. In particular, the use of biological networks has allowed the making of huge progress in this field. Here we discuss two possible application of the use of biological networks to explore cell signaling: the study of the architecture of signaling systems that cooperate in determining the acquisition of a complex cellular function (as it is the case of the process of activation of spermatozoa) and the organization of a single specific signaling systems expressed by different cells in different tissues (i.e. the endocannabinoid system). In both the cases we have found that the networks follow a scale free and small world topology, likely due to the evolutionary advantage of robustness against random damages, fastness and specific of information processing, and easy navigability. PMID:25379139

  16. DDB2 modulates TGF-β signal transduction in human ovarian cancer cells by downregulating NEDD4L

    PubMed Central

    Zhao, Ran; Cui, Tiantian; Han, Chunhua; Zhang, Xiaoli; He, Jinshan; Srivastava, Amit Kumar; Yu, Jianhua; Wani, Altaf A.; Wang, Qi-En

    2015-01-01

    The expression of DNA damage-binding protein 2 (DDB2) has been linked to the prognosis of ovarian cancer and its underlying transcription regulatory function was proposed to contribute to the favorable treatment outcome. By applying gene microarray analysis, we discovered neural precursor cell expressed, developmentally downregulated 4-Like (NEDD4L) as a previously unidentified downstream gene regulated by DDB2. Mechanistic investigation demonstrated that DDB2 can bind to the promoter region of NEDD4L and recruit enhancer of zeste homolog 2 histone methyltransferase to repress NEDD4L transcription by enhancing histone H3 lysine 27 trimethylation (H3K27me3) at the NEDD4L promoter. Given that NEDD4L plays an important role in constraining transforming growth factor β signaling by targeting activated Smad2/Smad3 for degradation, we investigated the role of DDB2 in the regulation of TGF-β signaling in ovarian cancer cells. Our data indicate that DDB2 enhances TGF-β signal transduction and increases the responsiveness of ovarian cancer cells to TGF-β-induced growth inhibition. The study has uncovered an unappreciated regulatory mode that hinges on the interaction between DDB2 and NEDD4L in human ovarian cancer cells. The novel mechanism proposes the DDB2-mediated fine-tuning of TGF-β signaling and its downstream effects that impinge upon tumor growth in ovarian cancers. PMID:26130719

  17. The G protein-coupled receptor kinase-2 is a TGFbeta-inducible antagonist of TGFbeta signal transduction.

    PubMed

    Ho, Joanne; Cocolakis, Eftihia; Dumas, Victor M; Posner, Barry I; Laporte, Stéphane A; Lebrun, Jean-Jacques

    2005-09-21

    Signaling from the activin/transforming growth factor beta (TGFbeta) family of cytokines is a tightly regulated process. Disregulation of TGFbeta signaling is often the underlying basis for various cancers, tumor metastasis, inflammatory and autoimmune diseases. In this study, we identify the protein G-coupled receptor kinase 2 (GRK2), a kinase involved in the desensitization of G protein-coupled receptors (GPCR), as a downstream target and regulator of the TGFbeta-signaling cascade. TGFbeta-induced expression of GRK2 acts in a negative feedback loop to control TGFbeta biological responses. Upon TGFbeta stimulation, GRK2 associates with the receptor-regulated Smads (R-Smads) through their MH1 and MH2 domains and phosphorylates their linker region. GRK2 phosphorylation of the R-Smads inhibits their carboxyl-terminal, activating phosphorylation by the type I receptor kinase, thus preventing nuclear translocation of the Smad complex, leading to the inhibition of TGFbeta-mediated target gene expression, cell growth inhibition and apoptosis. Furthermore, we demonstrate that GRK2 antagonizes TGFbeta-induced target gene expression and apoptosis ex vivo in primary hepatocytes, establishing a new role for GRK2 in modulating single-transmembrane serine/threonine kinase receptor-mediated signal transduction. PMID:16121194

  18. An Agent-Based Model of Signal Transduction in Bacterial Chemotaxis

    PubMed Central

    Miller, Jameson; Parker, Miles; Bourret, Robert B.; Giddings, Morgan C.

    2010-01-01

    We report the application of agent-based modeling to examine the signal transduction network and receptor arrays for chemotaxis in Escherichia coli, which are responsible for regulating swimming behavior in response to environmental stimuli. Agent-based modeling is a stochastic and bottom-up approach, where individual components of the modeled system are explicitly represented, and bulk properties emerge from their movement and interactions. We present the Chemoscape model: a collection of agents representing both fixed membrane-embedded and mobile cytoplasmic proteins, each governed by a set of rules representing knowledge or hypotheses about their function. When the agents were placed in a simulated cellular space and then allowed to move and interact stochastically, the model exhibited many properties similar to the biological system including adaptation, high signal gain, and wide dynamic range. We found the agent based modeling approach to be both powerful and intuitive for testing hypotheses about biological properties such as self-assembly, the non-linear dynamics that occur through cooperative protein interactions, and non-uniform distributions of proteins in the cell. We applied the model to explore the role of receptor type, geometry and cooperativity in the signal gain and dynamic range of the chemotactic response to environmental stimuli. The model provided substantial qualitative evidence that the dynamic range of chemotactic response can be traced to both the heterogeneity of receptor types present, and the modulation of their cooperativity by their methylation state. PMID:20485527

  19. The role of calcium in hypoxia-induced signal transduction and gene expression.

    PubMed

    Seta, Karen A; Yuan, Yong; Spicer, Zachary; Lu, Gang; Bedard, James; Ferguson, Tsuneo K; Pathrose, Peterson; Cole-Strauss, Allyson; Kaufhold, Alexa; Millhorn, David E

    2004-01-01

    Mammalian cells require a constant supply of oxygen in order to maintain adequate energy production, which is essential for maintaining normal function and for ensuring cell survival. Sustained hypoxia can result in cell death. Sophisticated mechanisms have therefore evolved which allow cells to respond and adapt to hypoxia. Specialized oxygen-sensing cells have the ability to detect changes in oxygen tension and transduce this signal into organ system functions that enhance the delivery of oxygen to tissue in a wide variety of different organisms. An increase in intracellular calcium levels is a primary response of many cell types to hypoxia/ischemia. The response to hypoxia is complex and involves the regulation of multiple signaling pathways and coordinated expression of perhaps hundreds of genes. This review discusses the role of calcium in hypoxia-induced regulation of signal transduction pathways and gene expression. An understanding of the molecular events initiated by changes in intracellular calcium will lead to the development of therapeutic approaches toward the treatment of hypoxic/ischemic diseases and tumors. PMID:15261489

  20. Isoforms of the CD79 signal transduction component of the macropod B-cell receptor.

    PubMed

    Suthers, Amy N; Young, Lauren J

    2014-12-01

    B cell responses and their concomitant signal transduction pathways are not well understood in marsupial mammals, despite the availability of gene expression data for key immunoglobulin genes and for elements of the CD79a/CD79b heterodimer signalling complex for two model marsupials. Broader studies of factors that influence B cell responses are still hampered by a lack of species-specific reagents and there are few reports of other factors that influence gene expression such as the potential for splice variants in BCR components, which may influence immune signalling pathways. In this study, we characterise CD79a and CD79b genes in the endangered macropod marsupial, Onychogalea fraenata (the bridled nailtail wallaby) and show that domains and residues important for the structural and functional integrity of both monomers are conserved in this species, consistent with results previously reported for the closely-related macropod, Macropus eugenii (the tammar wallaby). We extend this work to report the detection of splice variants for CD79a and CD79b in wallaby species; three CD79a isoforms and one CD79b isoform. Of these, two CD79a isoforms and the CD79b isoform have not been reported in any other mammalian species. PMID:25064685

  1. Esterase D enhances type I interferon signal transduction to suppress foot-and-mouth disease virus replication.

    PubMed

    Li, Weiwei; Zhu, Zixiang; Cao, Weijun; Yang, Fan; Zhang, Xiangle; Li, Dan; Zhang, Keshan; Li, Pengfei; Mao, Ruoqing; Liu, Xiangtao; Zheng, Haixue

    2016-07-01

    The enzymatic activities of esterase D (ESD) are involved in many human diseases. However, no antiviral property of ESD has been described to date. Foot-and-mouth disease virus (FMDV) is the etiological agent of foot-and-mouth disease. In this study, we showed that FMDV infection triggered ESD expression. Overexpression of ESD significantly suppressed FMDV replication and knockdown of ESD expression enhanced virus replication, showing an essential antiviral role of ESD. Furthermore, we found that Sendai-virus-induced interferon (IFN) signaling was enhanced by upregulation of ESD, and ESD promoted activation of the IFN-β promoter simulated by IFN regulatory factor (IRF)3 or its upstream molecules (retinoic acid-inducible gene-I, melanoma differentiation-associated protein 5, virus-induced signaling adaptor and TANK binding kinase 1). Detailed analysis revealed that ESD protein enhanced IRF3 phosphorylation during FMDV infection. Overexpression of ESD also promoted the expression of various antiviral interferon-stimulated genes (ISGs) and knockdown of ESD impaired the expression of these antiviral genes during FMDV infection. Our findings demonstrate a new mechanism evolved by ESD to enhance type I IFN signal transduction and suppress viral replication during FMDV infection. PMID:27267271

  2. Hemoglobin Receptor Protein from Porphyromonas gingivalis Induces Interleukin-8 Production in Human Gingival Epithelial Cells through Stimulation of the Mitogen-Activated Protein Kinase and NF-κB Signal Transduction Pathways

    PubMed Central

    Fujita, Yuki; Nakayama, Masaaki; Naito, Mariko; Yamachika, Eiki; Inoue, Tetsuyoshi; Nakayama, Koji; Iida, Seiji

    2014-01-01

    Periodontitis is an inflammatory disease of polymicrobial origin affecting the tissues supporting the tooth. The oral anaerobic bacterium Porphyromonas gingivalis, which is implicated as an important pathogen for chronic periodontitis, triggers a series of host inflammatory responses that promote the destruction of periodontal tissues. Among the virulence factors of P. gingivalis, hemoglobin receptor protein (HbR) is a major protein found in culture supernatants. In this study, we investigated the roles of HbR in the production of inflammatory mediators. We found that HbR induced interleukin-8 (IL-8) production in the human gingival epithelial cell line Ca9-22. p38 mitogen-activated protein kinase (MAPK) and extracellular signal-related kinase 1/2 (Erk1/2) were activated in HbR-stimulated Ca9-22 cells. Inhibitors of p38 MAPK (SB203580) and Erk1/2 (PD98059) blocked HbR-induced IL-8 production. Additionally, HbR stimulated the translocation of NF-κB-p65 to the nucleus, consistent with enhancement of IL-8 expression by activation of the NF-κB pathway. In addition, small interfering RNA (siRNA) targeting activating transcription factor 2 (ATF-2) or cyclic AMP-response element-binding protein (CREB) inhibited HbR-induced IL-8 production. Moreover, pretreatment with SB203580 and PD98059 reduced HbR-induced phosphorylation of CREB and ATF-2, respectively. Combined pretreatment with an inhibitor of NF-κB (BAY11-7082) and SB203580 was more efficient in inhibiting the ability of HbR to induce IL-8 production than pretreatment with either BAY11-7082 or SB203580 alone. Thus, in Ca9-22 cells, the direct activation of p38 MAPK and Erk1/2 by HbR caused the activation of the transcription factors ATF-2, CREB, and NF-κB, thus resulting in the induction of IL-8 production. PMID:24126532

  3. Statistics of cellular signal transduction as a race to the nucleus by multiple random walkers in compartment/phosphorylation space

    PubMed Central

    Lu, Ting; Shen, Tongye; Zong, Chenghang; Hasty, Jeff; Wolynes, Peter G.

    2006-01-01

    Cellular signal transduction often involves a reaction network of phosphorylation and transport events arranged with a ladder topology. If we keep track of the location of the phosphate groups describing an abstract state space, a simple model of signal transduction involving enzymes can be mapped on to a problem of how multiple biased random walkers compete to reach their target in the nucleus yielding a signal. Here, the first passage time probability and the survival probability for multiple walkers can be used to characterize the response of the network. The statistics of the first passage through the network has an asymmetric distribution with a long tail arising from the hierarchical structure of the network. This distribution implies a significant difference between the mean and the most probable signal transduction time. The response patterns for various external inputs generated by our model agree with recent experiments. In addition, the model predicts that there is an optimal phosphorylation enzyme concentration for rapid signal transduction. PMID:17071742

  4. Elucidating the Functional Roles of Spatial Organization in Cross-Membrane Signal Transduction by a Hybrid Simulation Method.

    PubMed

    Chen, Jiawen; Xie, Zhong-Ru; Wu, Yinghao

    2016-07-01

    The ligand-binding of membrane receptors on cell surfaces initiates the dynamic process of cross-membrane signal transduction. It is an indispensable part of the signaling network for cells to communicate with external environments. Recent experiments revealed that molecular components in signal transduction are not randomly mixed, but spatially organized into distinctive patterns. These patterns, such as receptor clustering and ligand oligomerization, lead to very different gene expression profiles. However, little is understood about the molecular mechanisms and functional impacts of this spatial-temporal regulation in cross-membrane signal transduction. In order to tackle this problem, we developed a hybrid computational method that decomposes a model of signaling network into two simulation modules. The physical process of binding between receptors and ligands on cell surfaces are simulated by a diffusion-reaction algorithm, while the downstream biochemical reactions are modeled by stochastic simulation of Gillespie algorithm. These two processes are coupled together by a synchronization framework. Using this method, we tested the dynamics of a simple signaling network in which the ligand binding of cell surface receptors triggers the phosphorylation of protein kinases, and in turn regulates the expression of target genes. We found that spatial aggregation of membrane receptors at cellular interfaces is able to either amplify or inhibit downstream signaling outputs, depending on the details of clustering mechanism. Moreover, by providing higher binding avidity, the co-localization of ligands into multi-valence complex modulates signaling in very different ways that are closely related to the binding affinity between ligand and receptor. We also found that the temporal oscillation of the signaling pathway that is derived from genetic feedback loops can be modified by the spatial clustering of membrane receptors. In summary, our method demonstrates the functional

  5. Thrombin-receptor agonist peptides, in contrast to thrombin itself, are not full agonists for activation and signal transduction in human platelets in the absence of platelet-derived secondary mediators.

    PubMed Central

    Lau, L F; Pumiglia, K; Côté, Y P; Feinstein, M B

    1994-01-01

    are partial agonists for the thrombin receptor and produce incomplete receptor desensitization in keeping with their lower intrinsic activity; (2) thrombin's effects in platelets, even in TRP-desensitized platelets, are entirely mediated through the recently cloned G-protein linked receptor, and (3) thrombin's ability to produce sustained signals, compared with TRPs, may require the continued progressive proteolytic activation of naive thrombin receptors. Images Figure 3 PMID:7526841

  6. Information theory and signal transduction systems: from molecular information processing to network inference.

    PubMed

    Mc Mahon, Siobhan S; Sim, Aaron; Filippi, Sarah; Johnson, Robert; Liepe, Juliane; Smith, Dominic; Stumpf, Michael P H

    2014-11-01

    Sensing and responding to the environment are two essential functions that all biological organisms need to master for survival and successful reproduction. Developmental processes are marshalled by a diverse set of signalling and control systems, ranging from systems with simple chemical inputs and outputs to complex molecular and cellular networks with non-linear dynamics. Information theory provides a powerful and convenient framework in which such systems can be studied; but it also provides the means to reconstruct the structure and dynamics of molecular interaction networks underlying physiological and developmental processes. Here we supply a brief description of its basic concepts and introduce some useful tools for systems and developmental biologists. Along with a brief but thorough theoretical primer, we demonstrate the wide applicability and biological application-specific nuances by way of different illustrative vignettes. In particular, we focus on the characterisation of biological information processing efficiency, examining cell-fate decision making processes, gene regulatory network reconstruction, and efficient signal transduction experimental design. PMID:24953199

  7. Immunological detection of potential signal-transduction proteins expressed during wheat somatic tissue culture.

    PubMed

    Nato, A; Mirshahi, A; Tichtinsky, G; Mirshahi, M; Faure, J P; Lavergne, D; De Buyser, J; Jean, C; Ducreux, G; Henry, Y

    1997-03-01

    An immunochemical approach was used to detect the expression of putative guanine nucleotide-binding proteins (G-proteins), arrestin, and nucleoside diphosphate kinases during wheat (Triticum aestivum) tissue culture initiated from immature embryos. Both the soluble and membrane extracts from the immature embryos revealed bands of 58, 40, and 16 kD with antibodies to G-protein (alpha subunit), arrestin, and nucleoside diphosphate kinase, respectively. These proteins were overexpressed in vitro in both nonembryogenic callus and embryogenic cultures. An additional soluble protein (32 kD) was detected by anti-G alpha antibodies in cultured tissues but not in immature embryos, suggesting a possible function in cell multiplication. Moreover, somatic embryogenesis was associated with the appearance of a 29-kD protein reactive with anti-arrstin antibodies, both in soluble and membrane fractions. Tissue-cultured genetic stocks of Chinese Spring wheat, including the disomic, 36 ditelosomic, and 6 nullisomic-tetrasomic wheat lines, were used to ascertain the chromosomal location of the genes encoding the 29-kD arrestin-like protein. The lack of a signal with the nonembryogenic ditelosomic 3 D short chromosome arm line suggests that the 3 D long chromosome arm possesses at least one gene involved in the expression of the 29-kD protein. The putative role of the 29-kD protein in signal-transduction regulating embryogenesis is discussed. PMID:9085574

  8. Mechanisms of Cardiovascular Homeostasis and Pathophysiology--From Gene Expression, Signal Transduction to Cellular Communication.

    PubMed

    Akazawa, Hiroshi

    2015-01-01

    During embryogenesis, progenitor cells are specified and differentiated into mature cardiomyocytes. Soon after birth, the ability of cardiomyocytes to proliferate is strongly restrained, and thereafter, they grow in size without cell division. Under pathological conditions, cardiomyocytes show adaptive and maladaptive responses through complex intracellular signaling pathways and cross-talking networks of intercellular and inter-tissue communications, but ultimately, they become dysfunctional and undergo cell death or degeneration. Cardiovascular diseases remain the most prevalent, costly, disabling, and deadly medical conditions. To develop novel therapies for them, it is important to elucidate the underlying mechanisms that govern gene expression, signal transduction to cellular communication. In this review article for the 2014 SATO Memorial Award, an approach to uncover molecular and cellular pathophysiology is summarized, focusing on homeobox transcription factor Nkx2-5 in the transcriptional regulation of the cardiac gene program, 3-phosphoinositide-dependent kinase-1, in the regulation of postnatal cardiomyocyte growth, survival, and function, angiotensin II type 1 receptor in the development of pathological hypertrophy and remodeling, and mast cell infiltration in the pathogenesis of atrial remodeling and fibrillation. PMID:26538467

  9. Immunological detection of potential signal-transduction proteins expressed during wheat somatic tissue culture.

    PubMed Central

    Nato, A; Mirshahi, A; Tichtinsky, G; Mirshahi, M; Faure, J P; Lavergne, D; De Buyser, J; Jean, C; Ducreux, G; Henry, Y

    1997-01-01

    An immunochemical approach was used to detect the expression of putative guanine nucleotide-binding proteins (G-proteins), arrestin, and nucleoside diphosphate kinases during wheat (Triticum aestivum) tissue culture initiated from immature embryos. Both the soluble and membrane extracts from the immature embryos revealed bands of 58, 40, and 16 kD with antibodies to G-protein (alpha subunit), arrestin, and nucleoside diphosphate kinase, respectively. These proteins were overexpressed in vitro in both nonembryogenic callus and embryogenic cultures. An additional soluble protein (32 kD) was detected by anti-G alpha antibodies in cultured tissues but not in immature embryos, suggesting a possible function in cell multiplication. Moreover, somatic embryogenesis was associated with the appearance of a 29-kD protein reactive with anti-arrstin antibodies, both in soluble and membrane fractions. Tissue-cultured genetic stocks of Chinese Spring wheat, including the disomic, 36 ditelosomic, and 6 nullisomic-tetrasomic wheat lines, were used to ascertain the chromosomal location of the genes encoding the 29-kD arrestin-like protein. The lack of a signal with the nonembryogenic ditelosomic 3 D short chromosome arm line suggests that the 3 D long chromosome arm possesses at least one gene involved in the expression of the 29-kD protein. The putative role of the 29-kD protein in signal-transduction regulating embryogenesis is discussed. PMID:9085574

  10. Small Molecule Inhibition of Ligand-Stimulated RAGE-DIAPH1 Signal Transduction

    PubMed Central

    Manigrasso, Michaele B.; Pan, Jinhong; Rai, Vivek; Zhang, Jinghua; Reverdatto, Sergey; Quadri, Nosirudeen; DeVita, Robert J.; Ramasamy, Ravichandran; Shekhtman, Alexander; Schmidt, Ann Marie

    2016-01-01

    The receptor for advanced glycation endproducts (RAGE) binds diverse ligands linked to chronic inflammation and disease. NMR spectroscopy and x-ray crystallization studies of the extracellular domains of RAGE indicate that RAGE ligands bind by distinct charge- and hydrophobicity-dependent mechanisms. The cytoplasmic tail (ct) of RAGE is essential for RAGE ligand-mediated signal transduction and consequent modulation of gene expression and cellular properties. RAGE signaling requires interaction of ctRAGE with the intracellular effector, mammalian diaphanous 1 or DIAPH1. We screened a library of 58,000 small molecules and identified 13 small molecule competitive inhibitors of ctRAGE interaction with DIAPH1. These compounds, which exhibit in vitro and in vivo inhibition of RAGE-dependent molecular processes, present attractive molecular scaffolds for the development of therapeutics against RAGE-mediated diseases, such as those linked to diabetic complications, Alzheimer’s disease, and chronic inflammation, and provide support for the feasibility of inhibition of protein-protein interaction (PPI). PMID:26936329

  11. Paired inhibitory and activating receptor signals.

    PubMed

    Taylor, L S; Paul, S P; McVicar, D W

    2000-01-01

    The immunological literature has become inundated with reports regarding paired inhibitory receptors. Paired inhibitory receptor systems are highly conserved families that contain receptors involved in either cellular inhibition or activation. In most cases the paired putative biochemical antagonists are co-expressed on a given cell and thought to bind similar, if not identical, ligands making their biological role difficult to understand. Examples of these systems include immunoglobulin (Ig)-like receptors (Killer Ig Receptors, Immunoglobulin-like Transcripts/Leukocyte Ig-like Receptors/Monocyte Macrophage Ig Receptors, and Paired Ig-like Receptors), and type II lectin-like receptor systems (NKG2 and Ly49). General characteristics of these inhibitory receptors include a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM). The ITIM is phosphorylated upon engagement and recruits protein tyrosine phosphatases that dephosphorylate cellular substrates that would otherwise mediate activation. In contrast, the activating receptors of these pairs use charged residues within their transmembrane domains to associate with various signal transduction chains including the gamma chain of the receptor for the Fc portion of IgE, DAP12 or DAP10. Once phosphorylated, these chains direct the signal transduction cascade resulting in cellular activation. Here we review the signaling of several paired systems and present the current models for their signal transduction cascades. PMID:11258418

  12. Essential role of Her3 in two signaling transduction patterns: Her2/Her3 and MET/Her3 in proliferation of human gastric cancer.

    PubMed

    Yun, Chen; Gang, Li; Rongmin, Gu; Xu, Wen; Xuezhi, Ming; Huanqiu, Chen

    2015-12-01

    Various receptor tyrosine kinase (RTK) pathways were verified in many cancers including gastric cancer (GC), We sought to investigate the expression of RTKs including Her2, Her3, and Met and their transduction patterns in human GC. Over-expression of Her2, Her3, and c-Met in human GC was verified by immunohistochemistry leading to constitutive activation of RTK signaling pathways. Combined RTKs expression was valuable indicators for poor prognosis of GC patients. Using ErbB2 specific inhibitor Lapatinib and c-Met specific inhibitor PHA-665752, we further demonstrated that this constitutive activation of RTK signaling is necessary for the survival of GC cells. However, various RTK pattern: Her3/Her2 and Met/Her3 were verified in the transduction growth stimulus from outside via both AKT and MAPK signaling. Moreover, the essential roles of Her3 in both two heterodimers were obtained which showed significantly attenuated growth effect due to Her3 knockdown both in vitro and in vivo. In conclusion, various molecular transduction patterns: Her2/Her3 and Met/Her3 were verified in human GC, and Her3 could serve as a potential target in GC treatment. PMID:25400108

  13. Release of GTP Exchange Factor Mediated Down-Regulation of Abscisic Acid Signal Transduction through ABA-Induced Rapid Degradation of RopGEFs

    PubMed Central

    Waadt, Rainer; Schroeder, Julian I.

    2016-01-01

    The phytohormone abscisic acid (ABA) is critical to plant development and stress responses. Abiotic stress triggers an ABA signal transduction cascade, which is comprised of the core components PYL/RCAR ABA receptors, PP2C-type protein phosphatases, and protein kinases. Small GTPases of the ROP/RAC family act as negative regulators of ABA signal transduction. However, the mechanisms by which ABA controls the behavior of ROP/RACs have remained unclear. Here, we show that an Arabidopsis guanine nucleotide exchange factor protein RopGEF1 is rapidly sequestered to intracellular particles in response to ABA. GFP-RopGEF1 is sequestered via the endosome-prevacuolar compartment pathway and is degraded. RopGEF1 directly interacts with several clade A PP2C protein phosphatases, including ABI1. Interestingly, RopGEF1 undergoes constitutive degradation in pp2c quadruple abi1/abi2/hab1/pp2ca mutant plants, revealing that active PP2C protein phosphatases protect and stabilize RopGEF1 from ABA-mediated degradation. Interestingly, ABA-mediated degradation of RopGEF1 also plays an important role in ABA-mediated inhibition of lateral root growth. The presented findings point to a PP2C-RopGEF-ROP/RAC control loop model that is proposed to aid in shutting off ABA signal transduction, to counteract leaky ABA signal transduction caused by “monomeric” PYL/RCAR ABA receptors in the absence of stress, and facilitate signaling in response to ABA. PMID:27192441

  14. Converting mid-infrared signals to near-infrared through optomechanical transduction

    NASA Astrophysics Data System (ADS)

    Kapsalis, A.; Mesaritakis, C.; Bogris, A.; Syvridis, D.

    2015-01-01

    Mid-infrared silicon photonics emerge as the dominant technology to bridge photonics and electronics in multifunctional high-speed integrated chips. The transmission and processing of optical signals lying at the mid-infrared wavelength region is ideal for sensing, absorption-spectroscopy and free-space communications and the use of group IV materials becomes principally promising as the vehicle towards their realization. In parallel, optical forces originating from modes and cavities can reach to outstandingly large values when sizes drop into the nanoscale. In this work, we propose the exploitation of large gradient optical forces generated between suspended silicon beams and optomechanical transduction as a means of converting signals from the mid-infrared to the near-infrared region. A midinfrared signal is injected into the waveguide system so as to excite the fundamental symmetric mode. In the 2-5μm wavelength range, separation gaps in the 100nm order and waveguide widths ranging from 300-600nm, the mode is mostly guided in the air slot between the waveguides which maximizes the optomechanical coupling coefficient and optical force. The resulting attractive force deflects the waveguides and the deflection is linearly dependent on the midinfrared optical power. A simple read-out technique using 1.55μm signals with conventional waveguiding in the directional coupler formed by the two beams is analyzed. A positive conversion efficiency (<0dB) is foreseen for waveguides with suspending lengths up to 150μm. The converter could be ideal for use in sensing and spectroscopy rendering the inefficient mid-infrared detectors obsolete. The low-index unconventional guiding in mid-infrared could be a key component towards multifunctional lab-on-a-chip devices.

  15. Signal transduction in the carnivorous plant Sarracenia purpurea. Regulation of secretory hydrolase expression during development and in response to resources.

    PubMed Central

    Gallie, D R; Chang, S C

    1997-01-01

    Carnivory in plants has developed as an evolutionary adaptation to nutrient-poor environments. A significant investment of the resources of a carnivorous plant is committed to producing the traps, attractants, and digestive enzymes needed for the carnivory. The cost:benefit ratio of carnivory can be improved by either maximizing the prey capture rate or by reducing the metabolic commitment toward carnivory. Using the pitcher plant Sarracenia purpurea, we have investigated whether the expression of the hydrolytic enzymes needed for digestion is regulated in response to the presence of prey. Expression of protease, RNase, nuclease, and phosphatase activities could be induced in the fluid of nonactive traps by the addition of nucleic acids, protein, or reduced nitrogen, suggesting that hydrolase expression is induced upon perception of the appropriate chemical signal. Hydrolase expression was also developmentally controlled since expression commenced upon opening of a trap, increased for several days, and in the absence of prey largely ceased within 2 weeks. Nevertheless, the traps remained competent to induce expression in response to the appropriate signals. These data suggest that in young traps hydrolase expression is developmentally regulated, which is later replaced by a signal transduction mechanism, and they demonstrate the ability of a carnivorous species to respond to the availability of resources. PMID:9414556

  16. Boswellic acid disables signal transduction of IL-6-STAT-3 in Ehrlich ascites tumor bearing irradiated mice.

    PubMed

    Moustafa, Enas Mahmoud; Thabet, Noura Magdy; Azab, Khaled Shaaban

    2016-08-01

    Boswellic acid (BA) is known for its ability to trigger apoptosis as well as to inhibit angiogenesis in tumor tissue. In this study, we investigated the effect of BA on the IL-6-STAT-3 signalling pathway in irradiated mice bearing solid tumors of Ehrlich ascites carcinoma (EAC). For this, we administered BA (25 mg·(kg body mass)(-1)·day(-1), by intraperitoneal injection) to mice with EAC, and then exposed them to 4 Gy of gamma radiation. Data analyses of the results revealed a specific impact from BA on IL-6R mRNA and survivin mRNA in EACs and irradiated EAC-bearing mice. Also, significant improvements were observed in the protein expression of JAK-1, P-JAK-1, STAT-3, P-STAT-3, and caspase-3, as well as VEGF and IL-6 levels. We propose that BA interfered with IL-6-STAT-3 signal transduction, thereby preventing the activation of caspase-3 and subsequently triggering the process of apoptosis. However, the alternative angiogenesis pathway, which includes the over-expression of VEGF and which depends on IL-6-STAT-3 signalling, was inhibited by the action of BA. Thus, we recommend that therapeutic strategies for cancer should include treatment with BA. PMID:27458759

  17. Cerebral Artery Signal Transduction Mechanisms: Developmental Changes in Dynamics and Ca2+ Sensitivity

    PubMed Central

    Longo, Lawrence D.; Goyal, Ravi

    2012-01-01

    As compared to the adult, the developing fetus and newborn infant are at much greater risk for dysregulation of cerebral blood flow (CBF), with complications such as intraventricular and germinal matrix hemorrhage with resultant neurologic sequelae. To minimize this dysregulation and its consequences presents a major challenge. Although in many respects the fundamental signal transduction mechanisms that regulate relaxation and contraction pathways, and thus cerebrovascular tone and CBF in the immature organism are similar to those of the adult, the individual elements, pathways, and roles differ greatly. Here, we review aspects of these maturational changes of relaxation/contraction mechanisms in terms of both electro-mechanical and pharmaco-mechanical coupling, their biochemical pathways and signaling networks. In contrast to the adult cerebrovasculature, in addition to attenuated structure with differences in multiple cytoskeletal elements, developing cerebrovasculature of fetus and newborn differs in many respects, such as a strikingly increased sensitivity to [Ca2+]i and requirement for extracellular Ca2+ for contraction. In essence, the immature cerebrovasculature demonstrates both “hyper-relaxation” and “hypo-contraction”. A challenge is to unravel the manner in which these mechanisms are integrated, particularly in terms of both Ca2+-dependent and Ca2+-independent pathways to increase Ca2+ sensitivity. Gaining an appreciation of these significant age-related differences in signal mechanisms also will be critical to understanding more completely the vulnerability of the developing cerebral vasculature to hypoxia and other stresses. Of vital importance, a more complete understanding of these mechanisms promises hope for improved strategies for therapeutic intervention and clinical management of intensive care of the premature newborn. PMID:24063382

  18. Cerebral artery signal transduction mechanisms: developmental changes in dynamics and Ca2+ sensitivity.

    PubMed

    Longo, Lawrence D; Goyal, Ravi

    2013-09-01

    As compared to the adult, the developing fetus and newborn infant are at much greater risk for dysregulation of cerebral blood flow (CBF), with complications such as intraventricular and germinal matrix hemorrhage with resultant neurologic sequelae. To minimize this dysregulation and its consequences presents a major challenge. Although in many respects the fundamental signal transduction mechanisms that regulate relaxation and contraction pathways, and thus cerebrovascular tone and CBF in the immature organism are similar to those of the adult, the individual elements, pathways, and roles differ greatly. Here, we review aspects of these maturational changes of relaxation/contraction mechanisms in terms of both electro-mechanical and pharmaco-mechanical coupling, their biochemical pathways and signaling networks. In contrast to the adult cerebrovasculature, in addition to attenuated structure with differences in multiple cytoskeletal elements, developing cerebrovasculature of fetus and newborn differs in many respects, such as a strikingly increased sensitivity to [Ca(2+)]i and requirement for extracellular Ca(2+) for contraction. In essence, the immature cerebrovasculature demonstrates both "hyper-relaxation" and "hypo-contraction". A challenge is to unravel the manner in which these mechanisms are integrated, particularly in terms of both Ca(2+)-dependent and Ca(2+)-independent pathways to increase Ca(2+) sensitivity. Gaining an appreciation of these significant age-related differences in signal mechanisms also will be critical to understanding more completely the vulnerability of the developing cerebral vasculature to hypoxia and other stresses. Of vital importance, a more complete understanding of these mechanisms promises hope for improved strategies for therapeutic intervention and clinical management of intensive care of the premature newborn. PMID:24063382

  19. The allosteric behavior of Fur mediates oxidative stress signal transduction in Helicobacter pylori.

    PubMed

    Pelliciari, Simone; Vannini, Andrea; Roncarati, Davide; Danielli, Alberto

    2015-01-01

    The microaerophilic gastric pathogen Helicobacter pylori is exposed to oxidative stress originating from the aerobic environment, the oxidative burst of phagocytes and the formation of reactive oxygen species, catalyzed by iron excess. Accordingly, the expression of genes involved in oxidative stress defense have been repeatedly linked to the ferric uptake regulator Fur. Moreover, mutations in the Fur protein affect the resistance to metronidazole, likely due to loss-of-function in the regulation of genes involved in redox control. Although many advances in the molecular understanding of HpFur function were made, little is known about the mechanisms that enable Fur to mediate the responses to oxidative stress. Here we show that iron-inducible, apo-Fur repressed genes, such as pfr and hydA, are induced shortly after oxidative stress, while their oxidative induction is lost in a fur knockout strain. On the contrary, holo-Fur repressed genes, such as frpB1 and fecA1, vary modestly in response to oxidative stress. This indicates that the oxidative stress signal specifically targets apo-Fur repressed genes, rather than impairing indiscriminately the regulatory function of Fur. Footprinting analyses showed that the oxidative signal strongly impairs the binding affinity of Fur toward apo-operators, while the binding toward holo-operators is less affected. Further evidence is presented that a reduced state of Fur is needed to maintain apo-repression, while oxidative conditions shift the preferred binding architecture of Fur toward the holo-operator binding conformation, even in the absence of iron. Together the results demonstrate that the allosteric regulation of Fur enables transduction of oxidative stress signals in H. pylori, supporting the concept that apo-Fur repressed genes can be considered oxidation inducible Fur regulatory targets. These findings may have important implications in the study of H. pylori treatment and resistance to antibiotics. PMID:26347726

  20. ARG1 and ARL2 contribute to gravity signal transduction in the statocytes of Arabidopsis thaliana roots and hypocotyls

    NASA Astrophysics Data System (ADS)

    Masson, Patrick; Harrison, Benjamin; Stanga, John; Otegui, Marisa; Sedbrook, John

    Gravity is an important cue that plant organs use to guide their growth. Each organ is characterized by a defined gravity set point angle that dictates its optimal orientation within the gravity field. Specialized cells, named statocytes, enable this directional growth response by perceiving gravity via the sedimentation of, and/or tension/pressure exerted by, starch-filled plastids within their cytoplasm. Located in the columella region of the cap in roots and in the endodermis of hypocotyls and stems, these cells modulate the lateral transport of auxin across the corresponding organ in a gravistimulus-dependent manner. Upon plant reorientation within the gravity field, a gravity signal transduction pathway is activated within those cells, which in roots leads to a relocalization of the PIN3 auxin efflux carrier toward the lower membrane and an alkalinization of the cytoplasm. In turn, these events appear to promote a lateral transport of auxin toward the bottom side of the stimulated organ, which promotes a curvature. We previously uncovered ARG1 and ARL2 as essential contributors to these cellular processes. Mutations in these genes result in altered root and hypocotyl gravitropism. In roots, this abnormal growth behavior is associated with a lack of PIN3 relocalization within the statocytes and an absence of preferential downward auxin transport upon gravistimulation. These two genes encode paralogous J-domain proteins that are associated with the plasma membrane and other membranes of the vesicular trafficking pathway, and appear to modulate protein trafficking within the statocytes. An analysis of the root gravitropic phenotypes associated with different double mutant configurations affecting ARG1, ARL2 and PIN3 suggest that all three proteins function in a common gravity-signaling pathway. Surprisingly, when a mutation that affects starch biosynthesis (pgm) is introgressed into an arg1-2 mutant, the gravitropic defects are dramatically enhanced relative to

  1. Two-Component Signal Transduction Pathways Regulating Growth and Cell Cycle Progression in a Bacterium: A System-Level Analysis

    PubMed Central

    2005-01-01

    Two-component signal transduction systems, comprised of histidine kinases and their response regulator substrates, are the predominant means by which bacteria sense and respond to extracellular signals. These systems allow cells to adapt to prevailing conditions by modifying cellular physiology, including initiating programs of gene expression, catalyzing reactions, or modifying protein–protein interactions. These signaling pathways have also been demonstrated to play a role in coordinating bacterial cell cycle progression and development. Here we report a system-level investigation of two-component pathways in the model organism Caulobacter crescentus. First, by a comprehensive deletion analysis we show that at least 39 of the 106 two-component genes are required for cell cycle progression, growth, or morphogenesis. These include nine genes essential for growth or viability of the organism. We then use a systematic biochemical approach, called phosphotransfer profiling, to map the connectivity of histidine kinases and response regulators. Combining these genetic and biochemical approaches, we identify a new, highly conserved essential signaling pathway from the histidine kinase CenK to the response regulator CenR, which plays a critical role in controlling cell envelope biogenesis and structure. Depletion of either cenK or cenR leads to an unusual, severe blebbing of cell envelope material, whereas constitutive activation of the pathway compromises cell envelope integrity, resulting in cell lysis and death. We propose that the CenK–CenR pathway may be a suitable target for new antibiotic development, given previous successes in targeting the bacterial cell wall. Finally, the ability of our in vitro phosphotransfer profiling method to identify signaling pathways that operate in vivo takes advantage of an observation that histidine kinases are endowed with a global kinetic preference for their cognate response regulators. We propose that this system

  2. Signal transduction controls heterogeneous NF-κB dynamics and target gene expression through cytokine-specific refractory states

    PubMed Central

    Adamson, Antony; Boddington, Christopher; Downton, Polly; Rowe, William; Bagnall, James; Lam, Connie; Maya-Mendoza, Apolinar; Schmidt, Lorraine; Harper, Claire V.; Spiller, David G.; Rand, David A.; Jackson, Dean A.; White, Michael R. H.; Paszek, Pawel

    2016-01-01

    Cells respond dynamically to pulsatile cytokine stimulation. Here we report that single, or well-spaced pulses of TNFα (>100 min apart) give a high probability of NF-κB activation. However, fewer cells respond to shorter pulse intervals (<100 min) suggesting a heterogeneous refractory state. This refractory state is established in the signal transduction network downstream of TNFR and upstream of IKK, and depends on the level of the NF-κB system negative feedback protein A20. If a second pulse within the refractory phase is IL-1β instead of TNFα, all of the cells respond. This suggests a mechanism by which two cytokines can synergistically activate an inflammatory response. Gene expression analyses show strong correlation between the cellular dynamic response and NF-κB-dependent target gene activation. These data suggest that refractory states in the NF-κB system constitute an inherent design motif of the inflammatory response and we suggest that this may avoid harmful homogenous cellular activation. PMID:27381163

  3. Development of automated high throughput single molecular microfluidic detection platform for signal transduction analysis

    NASA Astrophysics Data System (ADS)

    Huang, Po-Jung; Baghbani Kordmahale, Sina; Chou, Chao-Kai; Yamaguchi, Hirohito; Hung, Mien-Chie; Kameoka, Jun

    2016-03-01

    Signal transductions including multiple protein post-translational modifications (PTM), protein-protein interactions (PPI), and protein-nucleic acid interaction (PNI) play critical roles for cell proliferation and differentiation that are directly related to the cancer biology. Traditional methods, like mass spectrometry, immunoprecipitation, fluorescence resonance energy transfer, and fluorescence correlation spectroscopy require a large amount of sample and long processing time. "microchannel for multiple-parameter analysis of proteins in single-complex (mMAPS)"we proposed can reduce the process time and sample volume because this system is composed by microfluidic channels, fluorescence microscopy, and computerized data analysis. In this paper, we will present an automated mMAPS including integrated microfluidic device, automated stage and electrical relay for high-throughput clinical screening. Based on this result, we estimated that this automated detection system will be able to screen approximately 150 patient samples in a 24-hour period, providing a practical application to analyze tissue samples in a clinical setting.

  4. Endothelin receptors and their cellular signal transduction mechanism in human cultured prostatic smooth muscle cells.

    PubMed

    Saita, Y; Koizumi, T; Yazawa, H; Morita, T; Takenaka, T; Honda, K

    1997-06-01

    1. Endothelin (ET) receptors, and their cellular signal transduction mechanism, were characterized in a primary culture of human prostatic smooth muscle cells (HP cell). 2. [125I]-ET-1 and [125I]-ET-3 binding studies revealed that both ETA and ETB receptors were present in the HP cells, and the ratio of ETA to ETB receptors was 1.4:1. 3. Analysis of ET receptor mRNA by reverse transcription-polymerase chain reaction also demonstrated that HP cells express both ETA and ETB receptors. 4. ET-1 and ET-3 increased intracellular free Ca2+ concentration ([Ca2+]i) in the HP cells in a concentration-dependent manner. Use of subtype selective antagonists BQ-123 and BQ-788, indicated that both ETA and ETB receptors were coupled to an increase in [Ca2+]i. 5. Pretreatment of the cells with pertussis toxin resulted in a significant but partial attenuation of the [Ca2+]i increase mediated through the ETA and ETB receptors. However, sensitivity to pertussis toxin (PTX) was significantly different between them. 6. In conclusion, HP cells possess ETA and ETB receptors. Further, these two endothelin receptor subtypes evoke an increase in [Ca2+]i possibly via the action of different GTP-binding proteins. PMID:9208135

  5. Endothelin receptors and their cellular signal transduction mechanism in human cultured prostatic smooth muscle cells

    PubMed Central

    Saita, Yuji; Koizumi, Tomonobu; Yazawa, Hidenori; Morita, Takashi; Takenaka, Toichi; Honda, Kazuo

    1997-01-01

    Endothelin (ET) receptors, and their cellular signal transduction mechanism, were characterized in a primary culture of human prostatic smooth muscle cells (HP cell). [125I]-ET-1 and [125I]-ET-3 binding studies revealed that both ETA and ETB receptors were present in the HP cells, and the ratio of ETA to ETB receptors was 1.4:1. Analysis of ET receptor mRNA by reverse transcription-polymerase chain reaction also demonstrated that HP cells express both ETA and ETB receptors. ET-1 and ET-3 increased intracellular free Ca2+ concentration ([Ca2+]i) in the HP cells in a concentration-dependent manner. Use of subtype selective antagonists BQ-123 and BQ-788, indicated that both ETA and ETB receptors were coupled to an increase in [Ca2+]i. Pretreatment of the cells with pertussis toxin resulted in a significant but partial attenuation of the [Ca2+]i increase mediated through the ETA and ETB receptors. However, sensitivity to pertussis toxin (PTX) was significantly different between them. In conclusion, HP cells possess ETA and ETB receptors. Further, these two endothelin receptor subtypes evoke an increase in [Ca2+]i possibly via the action of different GTP-binding proteins. PMID:9208135

  6. Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY.

    PubMed Central

    Bourret, R B; Hess, J F; Simon, M I

    1990-01-01

    The CheY protein is phosphorylated by CheA and dephosphorylated by CheZ as part of the chemotactic signal transduction pathway in Escherichia coli. Phosphorylation of CheY has been proposed to occur on an aspartate residue. Each of the eight aspartate residues of CheY was replaced by using site-directed mutagenesis. Substitutions at Asp-12, Asp-13, or Asp-57 resulted in loss of chemotaxis. Most of the mutant CheY proteins were still phosphorylated by CheA but exhibited modified biochemical properties, including reduced ability to accept phosphate from CheA, altered phosphate group stability, and/or resistance to CheZ-mediated dephosphorylation. The properties of CheY proteins bearing a substitution at position 57 were most aberrant, consistent with the hypothesis that Asp-57 is the normal site of acyl phosphate formation. Evidence for an alternate site of phosphorylation in the Asp-57 mutants is presented. Phosphorylated CheY is believed to cause tumbling behavior. However, a dominant mutant CheY protein that was not phosphorylated in vitro caused tumbling in vivo in the absence of CheA. This phenotype suggests that the role of phosphorylation in the wild-type CheY protein is to stabilize a transient conformational change that can generate tumbling behavior. Images PMID:2404281

  7. ABI1 regulates carbon/nitrogen-nutrient signal transduction independent of ABA biosynthesis and canonical ABA signalling pathways in Arabidopsis.

    PubMed

    Lu, Yu; Sasaki, Yuki; Li, Xingwen; Mori, Izumi C; Matsuura, Takakazu; Hirayama, Takashi; Sato, Takeo; Yamaguchi, Junji

    2015-05-01

    Plants are able to sense and mediate the balance between carbon (C) and nitrogen (N) nutrient availability to optimize metabolism and growth, described as the C/N response. To clarify the C/N signalling mechanism, C/N-insensitive plants were obtained from an Arabidopsis FOX hunting population, which over-expresses full-length cDNAs for individuals. The resulting cni2-D (carbon/nitrogen insensitive 2-dominant) plant was found to overcome the post-germination growth checkpoint and to expand green cotyledons in disrupted high C/low N stress conditions. The CNI2 gene encodes ABI1, a phosphatase type 2C protein, which negatively regulates abscisic acid (ABA) signal transduction. Over-expressors of ABI1 were found to be insensitive to disrupted C/N stress, whereas the loss-of function mutant abi1-2 was hypersensitive, suggesting that ABI1 plays an essential role in the plant C/N response. By contrast, the C/N-dependent growth phenotype observed in wild-type plants was not associated with endogenous ABA content. Accordingly, the ABA-insensitive mutant abi1-1, which could not bind to the ABA-ABA receptor complex, was not insensitive and restored normal sensitivity to high C/low N stress. The canonical ABA signalling mutants abi4 and abi5 were also sensitive to disrupted C/N stress. Further gene expression analysis demonstrated that several genes in the SnRK2s and SnRK1s pathways are transcriptionally affected by high C/low N stress in wild-type plants regardless of the lack of increased endogenous ABA contents, whereas the expression of these genes were significantly suppressed in ABI1 over-expressors. Taken together, these results suggest direct cross-talk between C/N and non-canonical ABA signalling pathways, regulated by ABI1, in plants. PMID:25795738

  8. Real-time PCR monitoring of signal transduction related genes involved in water stress tolerance mechanism of sunflower.

    PubMed

    Roche, Jane; Hewezi, Tarek; Bouniols, Andrée; Gentzbittel, Laurent

    2009-02-01

    The study deals with the quantitative expression pattern of genes involved in signaling transduction pathways in response to water stress in leaves and embryos of a water stress tolerant genotype compared to a non-tolerant genotype using real-time quantitative PCR. The experiment was conducted in the field. The results showed a high quantitative up-regulation of genes belonging to protein kinase, phosphatase and transcription factor pathways (from two to 70 fold) only in leaves of the tolerant genotype compared to the non-tolerant genotype. Moreover, genes related to the protein kinase pathway were down-regulated in leaves of the non-tolerant genotype. On the contrary, in seeds, our study showed that the positive regulation of genes related to the signal transduction pathway observed in leaves of the tolerant genotype is turned off, suggesting different transcriptional control of signaling water stress in reproductive organs compared to vegetative organs. PMID:19054682

  9. Interactions between the nitrogen signal transduction protein PII and N-acetyl glutamate kinase in organisms that perform oxygenic photosynthesis.

    PubMed

    Burillo, Sergio; Luque, Ignacio; Fuentes, Inmaculada; Contreras, Asunción

    2004-06-01

    PII, one of the most conserved signal transduction proteins, is believed to be a key player in the coordination of nitrogen assimilation and carbon metabolism in bacteria, archaea, and plants. However, the identity of PII receptors remains elusive, particularly in photosynthetic organisms. Here we used yeast two-hybrid approaches to identify new PII receptors and to explore the extent of conservation of PII signaling mechanisms between eubacteria and photosynthetic eukaryotes. Screening of Synechococcus sp. strain PCC 7942 libraries with PII as bait resulted in identification of N-acetyl glutamate kinase (NAGK), a key enzyme in the biosynthesis of arginine. The integrity of Ser49, a residue conserved in PII proteins from organisms that perform oxygenic photosynthesis, appears to be essential for NAGK binding. The effect of glnB mutations on NAGK activity is consistent with positive regulation of NAGK by PII. Phylogenetic and yeast two-hybrid analyses strongly suggest that there was conservation of the NAGK-PII regulatory interaction in the evolution of cyanobacteria and chloroplasts, providing insight into the function of eukaryotic PII-like proteins. PMID:15150219

  10. B cells from patients with systemic lupus erythematosus display abnormal antigen receptor-mediated early signal transduction events.

    PubMed Central

    Liossis, S N; Kovacs, B; Dennis, G; Kammer, G M; Tsokos, G C

    1996-01-01

    To understand the molecular mechanisms that are responsible for the B cell overactivity that is observed in patients with SLE, we have conducted experiments in which the surface immunoglobulin (sIg)-mediated early cell signaling events were studied. The anti-sIgM-mediated free intracytoplasmic calcium ([Ca2+]i) responses were significantly higher in SLE B cells compared with responses of normal individuals and to those of patients with other systemic autoimmune rheumatic diseases. The anti-IgD mAb induced [Ca2+]i responses were also higher in lupus B cells than in controls. The magnitude of anti-sIgM-mediated Ca2+ release from intracellular stores was also increased in B cells from SLE patients compared with normal controls. The amount of inositol phosphate metabolites produced upon crosslinking of sIgM was slightly higher in patients with lupus than in normal controls, although the difference was not statistically significant. In contrast, the degree of anti-sIgM-induced protein tyrosine phosphorylation was obviously increased in lupus patients. Our study demonstrates clearly for the first time that SLE B cells exhibit aberrant early signal transduction events, including augmented calcium responses after crosslinking of the B cell receptor and increased antigen-receptor-mediated phosphorylation of protein tyrosine residues. Because the above abnormalities did not correlate with disease activity or treatment status, we propose that they may have pathogenic significance. PMID:8958217

  11. The Raf Kinase Inhibitor Sorafenib Inhibits JAK-STAT Signal Transduction in Human Immune Cells.

    PubMed

    Martin del Campo, Sara E; Levine, Kala M; Mundy-Bosse, Bethany L; Grignol, Valerie P; Fairchild, Ene T; Campbell, Amanda R; Trikha, Prashant; Mace, Thomas A; Paul, Bonnie K; Jaime-Ramirez, Alena Cristina; Markowitz, Joseph; Kondadasula, Sri Vidya; Guenterberg, Kristan D; McClory, Susan; Karpa, Volodymyr I; Pan, Xueliang; Olencki, Thomas E; Monk, J Paul; Mortazavi, Amir; Tridandapani, Susheela; Lesinski, Gregory B; Byrd, John C; Caligiuri, Michael A; Shah, Manisha H; Carson, William E

    2015-09-01

    Sorafenib is an oral multikinase inhibitor that was originally developed as a Raf kinase inhibitor. We hypothesized that sorafenib would also have inhibitory effects on cytokine signaling pathways in immune cells. PBMCs from normal donors were treated with varying concentrations of sorafenib and stimulated with IFN-α or IL-2. Phosphorylation of STAT1 and STAT5 was measured by flow cytometry and confirmed by immunoblot analysis. Changes in IFN-α- and IL-2-stimulated gene expression were measured by quantitative PCR, and changes in cytokine production were evaluated by ELISA. Cryopreserved PBMCs were obtained from cancer patients before and after receiving 400 mg sorafenib twice daily. Patient PBMCs were thawed, stimulated with IL-2 or IFN-α, and evaluated for phosphorylation of STAT1 and STAT5. Pretreatment of PBMCs with 10 μM sorafenib decreased STAT1 and STAT5 phosphorylation after treatment with IFN-α or IL-2. This inhibitory effect was observed in PBMCs from healthy donors over a range of concentrations of sorafenib (5-20 μM), IL-2 (2-24 nM), and IFN-α (10(1)-10(6) U/ml). This effect was observed in immune cell subsets, including T cells, B cells, NK cells, regulatory T cells, and myeloid-derived suppressor cells. Pretreatment with sorafenib also inhibited PBMC expression of IFN-α- and IL-2-regulated genes and inhibited NK cell production of IFN-γ, RANTES, MIP1-α, and MIG in response to IFN-α stimulation. PBMCs from patients receiving sorafenib therapy showed decreased responsiveness to IL-2 and IFN-α treatment. Sorafenib is a Raf kinase inhibitor that could have off-target effects on cytokine-induced signal transduction in immune effector cells. PMID:26238487

  12. Construction of Novel Bacillus thuringiensis Strains with Different Insecticidal Activities by Transduction and Transformation.

    PubMed

    Lecadet, M M; Chaufaux, J; Ribier, J; Lereclus, D

    1992-03-01

    The shuttle vector pHT3101 and its derivative pHT408, bearing a copy of a cryIA(a) delta-endotoxin gene, were transferred into several Bacillus thuringiensis subspecies through phage CP-54Ber-mediated transduction, with frequencies ranging from 5 x 10 to 2 x 10 transductant per CFU, depending on the strain and on the plasmid. In Cry and Cry native recipients, the introduction of the cryIA(a) gene resulted in the formation of large bipyramidal crystals that were active against the insect Plutella xylostella (order Lepidoptera). In both cases, high levels of gene expression were observed. Transductants displaying a dual specificity were constructed by using as recipients the new isolates LM63 and LM79, which have larvicidal activity against insects of the order Coleoptera. It was not possible, however, to introduce pHT7911 into B. thuringiensis subsp. entomocidus, aizawai, or israelensis by transduction. However, electrotransformation was successful, and transformants expressing the toxin gene cryIIIA, carried by pHT7911, were obtained. Again, high levels of expression of the cloned gene were observed. The results indicate that CP-54Ber-mediated transduction is a useful procedure for introducing cloned crystal protein genes into various B. thuringiensis recipients and thereby creating strains with new combinations of genes. Finally it was also shown that pHT3101 is a very good expression vector for the cloned delta-endotoxin genes in the different recipients. PMID:16348674

  13. Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the receptor to its signal transduction system (p91).

    PubMed Central

    Greenlund, A C; Farrar, M A; Viviano, B L; Schreiber, R D

    1994-01-01

    Herein we report that interferon-gamma (IFN gamma) induces the rapid and reversible tyrosine phosphorylation of the IFN gamma receptor. Using a panel of receptor intracellular domain mutants, we show that a membrane-proximal LPKS sequence (residues 266-269) is required for ligand-induced tyrosine kinase activation and/or kinase-receptor association and biological responsiveness, and a functionally critical membrane-distal tyrosine residue (Y440) is a target of the activated enzyme. The biological significance of Y440 phosphorylation was demonstrated by showing that a receptor-derived nonapeptide corresponding to receptor residues 436-444 and containing phosphorylated Y440 bound specifically to p91, blocked p91 phosphorylation and inhibited the generation of an active p91-containing transcription factor complex. In contrast, nonphosphorylated wild-type, phosphorylated mutant, or phosphorylated irrelevant peptides did not. Moreover, the phosphorylated Y440-containing peptide did not interact with a related but distinct latent transcription factor (p113) which is activatible by IFN alpha but not IFN gamma. These results thus document the specific and inducible association of p91 with the phosphorylated IFN gamma receptor and thereby elucidate the mechanism by which ligand couples the IFN gamma receptor to its signal transduction system. Images PMID:8156998

  14. Apurinic/apyrimidinic endonuclease1/redox factor-1 (Ape1/Ref-1) is essential for IL-21-induced signal transduction through ERK1/2 pathway

    SciTech Connect

    Juliana, Farha M.; Nara, Hidetoshi; Onoda, Tadashi; Rahman, Mizanur; Araki, Akemi; Jin, Lianjin; Fujii, Hodaka; Tanaka, Nobuyuki; Hoshino, Tomoaki; Asao, Hironobu

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer IL-21 induces nuclear accumulation of Ape1/Ref-1 protein. Black-Right-Pointing-Pointer Ape1/Ref-1 is indispensable in IL-21-induced cell proliferation and survival signal. Black-Right-Pointing-Pointer Ape1/Ref-1 is required for IL-21-induced ERK1/2 activation. -- Abstract: IL-21 is a pleiotropic cytokine that regulates T-cell and B-cell differentiation, NK-cell activation, and dendritic cell functions. IL-21 activates the JAK-STAT, ERK, and PI3K pathways. We report here that Ape1/Ref-1 has an essential role in IL-21-induced cell growth signal transduction. Overexpression of Ape1/Ref-1 enhances IL-21-induced cell proliferation, but it is suppressed by overexpressing an N-terminal deletion mutant of Ape1/Ref-1 that lacks the redox domain. Furthermore, knockdown of the Ape1/Ref-1 mRNA dramatically compromises IL-21-induced ERK1/2 activation and cell proliferation with increasing cell death. These impaired activities are recovered by the re-expression of Ape1/Ref-1 in the knockdown cells. Our findings are the first demonstration that Ape1/Ref-1 is an indispensable molecule for the IL-21-mediated signal transduction through ERK1/2 activation.

  15. Met-HGF/SF Signal Transduction Induces Mimp, a Novel Mitochondrial Carrier Homologue, Which Leads to Mitochondrial Depolarization1

    PubMed Central

    Yerushalmi, Gil M; Leibowitz-Amit, Raya; Shaharabany, Miriam; Tsarfaty, Ilan

    2002-01-01

    Abstract Met-hepatocyte growth factor/scatter factor (HGF/SF) signaling plays an important role in epithelial tissue morphogenesis, lumen formation, and tumorigenicity. We have recently demonstrated that HGF/SF also alters the metabolic activity of cells by enhancing both the glycolytic and oxidative phosphorylation pathways of energy production. Using differential display polymerase chain reaction, we cloned a novel gene, designated mimp (Met-Induced Mitochondrial Protein), which is upregulated in NIH-3T3 cells cotransfected with both HGF/SF and Met (HMH cells). Northern and Western blot analyses showed that mimp is induced in several Metexpressing cell lines following treatment with HGF/SF. Mimp encodes a 33-kDa protein that shows sequence homology to the family of mitochondrial carrier proteins (MCPs). Murine Mimp (mMimp) is expressed in a wide variety of tissues, exhibiting an expression pattern similar to Met. Predominant expression is seen in liver, kidney, heart, skeletal muscle, and testis. Using immunostaining for HA-tagged mMimp and a GFP-mMimp chimeric protein as well as subcellular fractionation, we determined that Mimp is primarily localized to the mitochondria. Ectopic expression of mMimp in the Met-responsive adenocarcinoma cell line, DA3, reduced the mitochondrial membrane potential (uncoupling activity). The extent of the mitochondrial depolarization positively correlated with the level of Mimp expression. Our results demonstrate that Mimp is a novel mitochondrial carrier homologue upregulated by Met-HGF/SF signal transduction, which leads to mitochondrial depolarization, and suggest novel links among tyrosine kinase signaling, mitochondrial function, and cellular bioenergetics. PMID:12407445

  16. PI3 kinase directly phosphorylates Akt1/2 at Ser473/474 in the insulin signal transduction pathway

    PubMed Central

    Tsuchiya, A; Kanno, T; Nishizaki, T

    2014-01-01

    Insulin stimulated translocation of the glucose transporter GLUT4 from the cytosol to the plasma membrane in a concentration (1 nM–1 μM)-dependent manner and increased glucose uptake in 3T3-L1 adipocytes. Insulin-induced GLUT4 translocation to the cell surface was prevented by the phosphoinositide 3 kinase (PI3K) inhibitor wortmannin, the 3-phosphoinositide-dependent protein kinase 1 (PDK1) inhibitor BX912 or the Akt1/2 inhibitor MK2206, and by knocking-down PI3K, PDK1 or Akt1/2. Insulin increased phosphorylation of Akt1/2 at Thr308/309 and Ser473/474, to activate Akt1/2, in the adipocytes. Insulin-induced phosphorylation of Akt1/2 was suppressed by wortmannin and knocking-down PI3K, while no significant inhibition of the phosphorylation was obtained with BX912 or knocking-down PDK1. In the cell-free Akt assay, PI3K phosphorylated Akt1 both at Thr308 and Ser473 and Akt2 at Ser474 alone. In contrast, PDK1 phosphorylates Akt1 at Thr308 and Akt2 at Thr309. The results of this study indicate that PI3K activates Akt1, independently of PDK1, and Akt2 by cooperating with PDK1 in the insulin signal transduction pathway linked to GLUT4 translocation. PMID:24169049

  17. Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction

    PubMed Central

    Clapp, Tod R; Stone, Leslie M; Margolskee, Robert F; Kinnamon, Sue C

    2001-01-01

    Background Taste receptor cells are responsible for transducing chemical stimuli into electrical signals that lead to the sense of taste. An important second messenger in taste transduction is IP3, which is involved in both bitter and sweet transduction pathways. Several components of the bitter transduction pathway have been identified, including the T2R/TRB taste receptors, phospholipase C β2, and the G protein subunits α-gustducin, β3, and γ13. However, the identity of the IP3 receptor subtype in this pathway is not known. In the present study we used immunocytochemistry on rodent taste tissue to identify the IP3 receptors expressed in taste cells and to examine taste bud expression patterns for IP3R3. Results Antibodies against Type I, II, and III IP3 receptors were tested on sections of rat and mouse circumvallate papillae. Robust cytoplasmic labeling for the Type III IP3 receptor (IP3R3) was found in a large subset of taste cells in both species. In contrast, little or no immunoreactivity was seen with antibodies against the Type I or Type II IP3 receptors. To investigate the potential role of IP3R3 in bitter taste transduction, we used double-label immunocytochemistry to determine whether IP3R3 is expressed in the same subset of cells expressing other bitter signaling components. IP3R3 immunoreactive taste cells were also immunoreactive for PLCβ2 and γ13. Alpha-gustducin immunoreactivity was present in a subset of IP3R3, PLCβ2, and γ13 positive cells. Conclusions IP3R3 is the dominant form of the IP3 receptor expressed in taste cells and our data suggest it plays an important role in bitter taste transduction. PMID:11346454

  18. Two-Component Signal Transduction Systems of Desulfovibrio Vulgaris: Structural and Phylogenetic Analysis and Deduction of Putative Cognate Pairs

    SciTech Connect

    Zhang, Weiwen; Culley, David E.; Wu, Gang; Brockman, Fred J.

    2006-01-20

    ABSTRACT-Two-component signal transduction systems (TCSTS) composed of sensory histidine kinases (HK) and response regulators (RR), constitute a key element of the mechanism by which bacteria sense and respond to changes in environments. A large number of TCSTSs including 59 putative HKs and 55 RRs were identified from the Desulfovibrio vulgaris genome, indicating their important roles in regulation of cellular metabolism. In this study, the structural and phylogenetic analysis of all putative TCSTSs in D. vulgaris was performed. The results showed D. vulgaris contained an unexpectedly large number of hybrid-type HKs, implying that multiple-step phosphorelay may be a common signal transduction mechanism in D. vulgaris. Most TCSTS components of D. vulgaris were found clustered into several subfamilies previously recognized in other bacteria and extensive co-evolution between D. vulgaris HKs and RRs was observed, suggesting that the concordance of HKs and RRs in cognate phylogenetic groups could be indicative of cognate TCSTSs...

  19. Twitching motility and cAMP levels: signal transduction through a single methyl-accepting chemotaxis protein.

    PubMed

    Jansari, Vibhuti H; Potharla, Vishwakanth Y; Riddell, Geoff T; Bardy, Sonia L

    2016-06-01

    The Pseudomonas aeruginosa Chp chemosensory system regulates twitching motility, intracellular adenosine 3('') 5(')-cyclic monophosphate (cAMP) levels and is postulated to be involved in directional twitching towards phosphatidylethanolamine (PE). Because PilJ is the only methyl-accepting chemotaxis protein (MCP) identified in the Chp system, we determined the role of PilJ in mediating signal transduction for the distinct outputs of this system. Mutants that lack the periplasmic domain of PilJ (pilJΔ74-273) showed lower levels of cAMP but retained directional twitching towards PE. While initial studies revealed reduced twitching motility by PilJΔ74-273, this was due to decreased cAMP levels. Our data illustrate the importance of the periplasmic domain of PilJ in regulating cAMP. This is the first time a defined domain within PilJ has been identified as having a distinct role in signal transduction. PMID:27190147

  20. The level of intracellular glutathione is a key regulator for the induction of stress-activated signal transduction pathways including Jun N-terminal protein kinases and p38 kinase by alkylating agents.

    PubMed Central

    Wilhelm, D; Bender, K; Knebel, A; Angel, P

    1997-01-01

    Monofunctional alkylating agents like methyl methanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) are potent inducers of cellular stress leading to chromosomal aberrations, point mutations, and cell killing. We show that these agents induce a specific cellular stress response program which includes the activation of Jun N-terminal kinases/stress-activated protein kinases (JNK/SAPKs), p38 mitogen-activated protein kinase, and the upstream kinase SEK1/MKK4 and which depends on the reaction mechanism of the alkylating agent in question. Similar to another inducer of cellular stress, UV irradiation, damage of nuclear DNA by alkylation is not involved in the MMS-induced response. However, in contrast to UV and other inducers of the JNK/SAPKs and p38 pathways, activation of growth factor and G-protein-coupled receptors does not play a role in the MMS response. We identified the intracellular glutathione (GSH) level as critical for JNK/SAPK activation by MMS: enhancing the GSH level by pretreatment of the cells with GSH or N-acetylcysteine inhibits, whereas depletion of the cellular GSH pool causes hyperinduction of JNK/SAPK activity by MMS. In light of the JNK/SAPK-dependent induction of c-jun and c-fos transcription, and the Jun/Fos-induced transcription of xenobiotic-metabolizing enzymes, these data provide a potential critical role of JNK/SAPK and p38 in the induction of a cellular defense program against cytotoxic xenobiotics such as MMS. PMID:9234735

  1. Partial Decay of Thiamine Signal Transduction Pathway Alters Growth Properties of Candida glabrata

    PubMed Central

    Shaik, Noor F.; Neal, Erin M.; Leone, Sarah G.; Cali, Brian J.; Peel, Michael T.; Grannas, Amanda M.; Wykoff, Dennis D.

    2016-01-01

    The phosphorylated form of thiamine (Vitamin B1), thiamine pyrophosphate (TPP) is essential for the metabolism of amino acids and carbohydrates in all organisms. Plants and microorganisms, such as yeast, synthesize thiamine de novo whereas animals do not. The thiamine signal transduction (THI) pathway in Saccharomyces cerevisiae is well characterized. The ~10 genes required for thiamine biosynthesis and uptake are transcriptionally upregulated during thiamine starvation by THI2, THI3, and PDC2. Candida glabrata, a human commensal and opportunistic pathogen, is closely related to S. cerevisiae but is missing half of the biosynthetic pathway, which limits its ability to make thiamine. We investigated the changes to the THI pathway in C. glabrata, confirming orthologous functions. We found that C. glabrata is unable to synthesize the pyrimidine subunit of thiamine as well as the thiamine precursor vitamin B6. In addition, THI2 (the gene encoding a transcription factor) is not present in C. glabrata, indicating a difference in the transcriptional regulation of the pathway. Although the pathway is upregulated by thiamine starvation in both species, C. glabrata appears to upregulate genes involved in thiamine uptake to a greater extent than S. cerevisiae. However, the altered regulation of the THI pathway does not alter the concentration of thiamine and its vitamers in the two species as measured by HPLC. Finally, we demonstrate potential consequences to having a partial decay of the THI biosynthetic and regulatory pathway. When the two species are co-cultured, the presence of thiamine allows C. glabrata to rapidly outcompete S. cerevisiae, while absence of thiamine allows S. cerevisiae to outcompete C. glabrata. This simplification of the THI pathway in C. glabrata suggests its environment provides thiamine and/or its precursors to cells, whereas S. cerevisiae is not as reliant on environmental sources of thiamine. PMID:27015653

  2. Partial Decay of Thiamine Signal Transduction Pathway Alters Growth Properties of Candida glabrata.

    PubMed

    Iosue, Christine L; Attanasio, Nicholas; Shaik, Noor F; Neal, Erin M; Leone, Sarah G; Cali, Brian J; Peel, Michael T; Grannas, Amanda M; Wykoff, Dennis D

    2016-01-01

    The phosphorylated form of thiamine (Vitamin B1), thiamine pyrophosphate (TPP) is essential for the metabolism of amino acids and carbohydrates in all organisms. Plants and microorganisms, such as yeast, synthesize thiamine de novo whereas animals do not. The thiamine signal transduction (THI) pathway in Saccharomyces cerevisiae is well characterized. The ~10 genes required for thiamine biosynthesis and uptake are transcriptionally upregulated during thiamine starvation by THI2, THI3, and PDC2. Candida glabrata, a human commensal and opportunistic pathogen, is closely related to S. cerevisiae but is missing half of the biosynthetic pathway, which limits its ability to make thiamine. We investigated the changes to the THI pathway in C. glabrata, confirming orthologous functions. We found that C. glabrata is unable to synthesize the pyrimidine subunit of thiamine as well as the thiamine precursor vitamin B6. In addition, THI2 (the gene encoding a transcription factor) is not present in C. glabrata, indicating a difference in the transcriptional regulation of the pathway. Although the pathway is upregulated by thiamine starvation in both species, C. glabrata appears to upregulate genes involved in thiamine uptake to a greater extent than S. cerevisiae. However, the altered regulation of the THI pathway does not alter the concentration of thiamine and its vitamers in the two species as measured by HPLC. Finally, we demonstrate potential consequences to having a partial decay of the THI biosynthetic and regulatory pathway. When the two species are co-cultured, the presence of thiamine allows C. glabrata to rapidly outcompete S. cerevisiae, while absence of thiamine allows S. cerevisiae to outcompete C. glabrata. This simplification of the THI pathway in C. glabrata suggests its environment provides thiamine and/or its precursors to cells, whereas S. cerevisiae is not as reliant on environmental sources of thiamine. PMID:27015653

  3. Transcription factor and microRNA-regulated network motifs for cancer and signal transduction networks

    PubMed Central

    2015-01-01

    Abstract Background Molecular networks are the basis of biological processes. Such networks can be decomposed into smaller modules, also known as network motifs. These motifs show interesting dynamical behaviors, in which co-operativity effects between the motif components play a critical role in human diseases. We have developed a motif-searching algorithm, which is able to identify common motif types from the cancer networks and signal transduction networks (STNs). Some of the network motifs are interconnected which can be merged together and form more complex structures, the so-called coupled motif structures (CMS). These structures exhibit mixed dynamical behavior, which may lead biological organisms to perform specific functions. Results In this study, we integrate transcription factors (TFs), microRNAs (miRNAs), miRNA targets and network motifs information to build the cancer-related TF-miRNA-motif networks (TMMN). This allows us to examine the role of network motifs in cancer formation at different levels of regulation, i.e. transcription initiation (TF → miRNA), gene-gene interaction (CMS), and post-transcriptional regulation (miRNA → target genes). Among the cancer networks and STNs we considered, it is found that there is a substantial amount of crosstalking through motif interconnections, in particular, the crosstalk between prostate cancer network and PI3K-Akt STN. Conclusions To validate the role of network motifs in cancer formation, several examples are presented which demonstrated the effectiveness of the present approach. A web-based platform has been set up which can be accessed at: http://ppi.bioinfo.asia.edu.tw/pathway/. It is very likely that our results can supply very specific CMS missing information for certain cancer types, it is an indispensable tool for cancer biology research. PMID:25707690

  4. Defense Against Cannibalism: The SdpI Family of Bacterial Immunity/Signal Transduction Proteins

    PubMed Central

    Povolotsky, Tatyana Leonidovna; Orlova, Ekaterina; Tamang, Dorjee G.

    2010-01-01

    The SdpI family consists of putative bacterial toxin immunity and signal transduction proteins. One member of the family in Bacillus subtilis, SdpI, provides immunity to cells from cannibalism in times of nutrient limitation. SdpI family members are transmembrane proteins with 3, 4, 5, 6, 7, 8, or 12 putative transmembrane α-helical segments (TMSs). These varied topologies appear to be genuine rather than artifacts due to sequencing or annotation errors. The basic and most frequently occurring element of the SdpI family has 6 TMSs. Homologues of all topological types were aligned to determine the homologous TMSs and loop regions, and the positive-inside rule was used to determine sidedness. The two most conserved motifs were identified between TMSs 1 and 2 and TMSs 4 and 5 of the 6 TMS proteins. These showed significant sequence similarity, leading us to suggest that the primordial precursor of these proteins was a 3 TMS–encoding genetic element that underwent intragenic duplication. Various deletional and fusional events, as well as intragenic duplications and inversions, may have yielded SdpI homologues with topologies of varying numbers and positions of TMSs. We propose a specific evolutionary pathway that could have given rise to these distantly related bacterial immunity proteins. We further show that genes encoding SdpI homologues often appear in operons with genes for homologues of SdpR, SdpI’s autorepressor. Our analyses allow us to propose structure–function relationships that may be applicable to most family members. Electronic supplementary material The online version of this article (doi:10.1007/s00232-010-9260-7) contains supplementary material, which is available to authorized users. PMID:20563570

  5. Blockade of beta-adrenoceptors enhances cAMP signal transduction in vivo

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1998-01-01

    The aim of this study was to determine whether the blockade of beta-adrenoceptors would enhance cAMP-mediated signal transduction processes in vivo. The administration of the membrane permeable cAMP analogue, 8-(4-chlorophenylthiol)-cAMP (8-CPT-cAMP, 10 micromol/kg, i.v.) produced an increase in heart rate (+27 +/- 2%, P < 0.05), a fall in mean arterial blood pressure (-21 +/- 3%, P < 0.05) and falls in hindquarter (-12 +/- 3%, P < 0.05) and mesenteric (-32 +/- 3%, P < 0.05) vascular resistances in pentobarbital-anesthetized rats. The beta-adrenoceptor antagonist, propranolol (1 mg/kg, i.v.) lowered heart rate (-12 +/- 3%, P < 0.05) but did not affect mean arterial blood pressure or vascular resistances. The tachycardia, hypotension and vasodilation produced by 8-CPT-cAMP were exaggerated after administration of propranolol (P < 0.05 for all comparisons). The nitric oxide-donor, sodium nitroprusside (2 microg/kg, i.v.), produced falls in mean arterial blood pressure and vascular resistances of similar magnitude to those produced by 8-CPT-cAMP. These sodium nitroprusside-induced responses were unaffected by propranolol (P < 0.05 for all comparisons). Sodium nitroprusside also produced a minor increase in heart rate (+5 +/- 1%, P < 0.05) which was abolished by propranolol. These findings suggest that 8-CPT-cAMP directly increases heart rate and that blockade of beta-adrenoceptors enhances the potency of cAMP within the heart and vasculature.

  6. The CC-Chemokine RANTES Increases the Attachment of Human Immunodeficiency Virus Type 1 to Target Cells via Glycosaminoglycans and Also Activates a Signal Transduction Pathway That Enhances Viral Infectivity

    PubMed Central

    Trkola, Alexandra; Gordon, Cynthia; Matthews, Jamie; Maxwell, Elizabeth; Ketas, Tom; Czaplewski, Lloyd; Proudfoot, Amanda E. I.; Moore, John P.

    1999-01-01

    We have studied the mechanisms by which the CC-chemokine RANTES can enhance the infectivities of human immunodeficiency virus type 1 (HIV-1) and other enveloped viruses, when present at concentrations in excess of 500 ng/ml in vitro. Understanding the underlying mechanisms might throw light on fundamental processes of viral infection, in particular for HIV-1. Our principal findings are twofold: firstly, that oligomers of RANTES can cross-link enveloped viruses, including HIV-1, to cells via glycosaminoglycans (GAGs) present on the membranes of both virions and cells; secondly, that oligomers of RANTES interact with cell-surface GAGs to transduce a herbimycin A-sensitive signal which, over a period of several hours, renders the cells more permissive to infection by several viruses, including HIV-1. The enhancement mechanisms require that RANTES oligomerize either in solution or following binding to GAGs, since no viral infectivity enhancement is observed with a mutant form of the RANTES molecule that contains a single-amino-acid change (glutamic acid to serine at position 66) which abrogates oligomerization. PMID:10400729

  7. Influence of two-component signal transduction systems of Lactobacillus casei BL23 on tolerance to stress conditions.

    PubMed

    Alcántara, Cristina; Revilla-Guarinos, Ainhoa; Zúñiga, Manuel

    2011-02-01

    Lactobacillus casei BL23 carries 17 two-component signal transduction systems. Insertional mutations were introduced into each gene encoding the cognate response regulators, and their effects on growth under different conditions were assayed. Inactivation of systems TC01, TC06, and TC12 (LCABL_02080-LCABL_02090, LCABL_12050-LCABL_12060, and LCABL_19600-LCABL_19610, respectively) led to major growth defects under the conditions assayed. PMID:21183633

  8. COMP-angiopoietin 1 increases proliferation, differentiation, and migration of stem-like cells through Tie-2-mediated activation of p38 MAPK and PI3K/Akt signal transduction pathways

    SciTech Connect

    Kook, Sung-Ho; Lim, Shin-Saeng; Cho, Eui-Sic; Lee, Young-Hoon; Han, Seong-Kyu; Lee, Kyung-Yeol; Kwon, Jungkee; Hwang, Jae-Won; Bae, Cheol-Hyeon; Seo, Young-Kwon; Lee, Jeong-Chae

    2014-12-12

    Highlights: • COMP-Ang1 induces Tie-2 activation in BMMSCs, but not in primary osteoblasts. • Tie-2 knockdown inhibits COMP-Ang1-stimulated proliferation and osteoblastogenesis. • Tie-2 knockdown prevents COMP-Ang1-induced activation of PI3K/Akt and p38 MAPK. • COMP-Ang1 induces migration of cells via activation of PI3K/Akt and CXCR4 pathways. • COMP-Ang1 stimulates in vivo migration of PDLSCs into a calvarial defect site of rats. - Abstract: Recombinant COMP-Ang1, a chimera of angiopoietin-1 (Ang1) and a short coiled-coil domain of cartilage oligomeric matrix protein (COMP), is under consideration as a therapeutic agent capable of inducing the homing of cells with increased angiogenesis. However, the potentials of COMP-Ang1 to stimulate migration of mesenchymal stem cells (MSCs) and the associated mechanisms are not completely understood. We examined the potential of COMP-Ang1 on bone marrow (BM)-MSCs, human periodontal ligament stem cells (PDLSCs), and calvarial osteoblasts. COMP-Ang1 augmented Tie-2 induction at protein and mRNA levels and increased proliferation and expression of runt-related transcription factor 2 (Runx2), osterix, and CXCR4 in BMMSCs, but not in osteoblasts. The COMP-Ang1-mediated increases were inhibited by Tie-2 knockdown and by treating inhibitors of phosphoinositide 3-kinase (PI3K), LY294002, or p38 mitogen-activated protein kinase (MAPK), SB203580. Phosphorylation of p38 MAPK and Akt was prevented by siRNA-mediated silencing of Tie-2. COMP-Ang1 also induced in vitro migration of BMMSCs and PDLSCs. The induced migration was suppressed by Tie-2 knockdown and by CXCR4-specific peptide antagonist or LY294002, but not by SB203580. Furthermore, COMP-Ang1 stimulated the migration of PDLSCs into calvarial defect site of rats. Collectively, our results demonstrate that COMP-Ang1-stimulated proliferation, differentiation, and migration of progenitor cells may involve the Tie-2-mediated activation of p38 MAPK and PI3K/Akt pathways.

  9. Light-induced phosphorylation of a membrane protein plays an early role in signal transduction for phototropism in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Reymond, P.; Short, T. W.; Briggs, W. R.; Poff, K. L.

    1992-01-01

    Blue light is known to cause rapid phosphorylation of a membrane protein in etiolated seedlings of several plant species, a protein that, at least in etiolated pea seedlings and maize coleoptiles, has been shown to be associated with the plasma membrane. The light-driven phosphorylation has been proposed on the basis of correlative evidence to be an early step in the signal transduction chain for phototropism. In the Arabidopsis thaliana mutant JK224, the sensitivity to blue light for induction of first positive phototropism is known to be 20- to 30-fold lower than in wild type, whereas second positive curvature appears to be normal. While light-induced phosphorylation can be demonstrated in crude membrane preparations from shoots of the mutant, the level of phosphorylation is dramatically lower than in wild type, as is the sensitivity to blue light. Another A. thaliana mutant, JK218, that completely lacks any phototropic responses to up to 2 h of irradiation, shows a normal level of light-induced phosphorylation at saturation. Since its gravitropic sensitivity is normal, it is presumably blocked in some step between photoreception and the confluence of the signal transduction pathways for phototropism and gravitropism. We conclude from mutant JK224 that light-induced phosphorylation plays an early role in the signal transduction chain for phototropism in higher plants.

  10. Light-induced phosphorylation of a membrane protein plays an early role in signal transduction for phototropism in Arabidopsis thaliana.

    PubMed Central

    Reymond, P; Short, T W; Briggs, W R; Poff, K L

    1992-01-01

    Blue light is known to cause rapid phosphorylation of a membrane protein in etiolated seedlings of several plant species, a protein that, at least in etiolated pea seedlings and maize coleoptiles, has been shown to be associated with the plasma membrane. The light-driven phosphorylation has been proposed on the basis of correlative evidence to be an early step in the signal transduction chain for phototropism. In the Arabidopsis thaliana mutant JK224, the sensitivity to blue light for induction of first positive phototropism is known to be 20- to 30-fold lower than in wild type, whereas second positive curvature appears to be normal. While light-induced phosphorylation can be demonstrated in crude membrane preparations from shoots of the mutant, the level of phosphorylation is dramatically lower than in wild type, as is the sensitivity to blue light. Another A. thaliana mutant, JK218, that completely lacks any phototropic responses to up to 2 h of irradiation, shows a normal level of light-induced phosphorylation at saturation. Since its gravitropic sensitivity is normal, it is presumably blocked in some step between photoreception and the confluence of the signal transduction pathways for phototropism and gravitropism. We conclude from mutant JK224 that light-induced phosphorylation plays an early role in the signal transduction chain for phototropism in higher plants. Images PMID:11537679

  11. Oxidative-Dependent Integration of Signal Transduction with Intercellular Gap Junctional Communication in the Control of Gene Expression

    PubMed Central

    Trosko, James E.

    2009-01-01

    Abstract Research on oxidative stress focused primarily on determining how reactive oxygen species (ROS) damage cells by indiscriminate reactions with their macromolecular machinery, particularly lipids, proteins, and DNA. However, many chronic diseases are not always a consequence of tissue necrosis, DNA, or protein damage, but rather to altered gene expression. Gene expression is highly regulated by the coordination of cell signaling systems that maintain tissue homeostasis. Therefore, much research has shifted to the understanding of how ROS reversibly control gene expression through cell signaling mechanisms. However, most research has focused on redox regulation of signal transduction within a cell, but we introduce a more comprehensive-systems biology approach to understanding oxidative signaling that includes gap junctional intercellular communication, which plays a role in coordinating gene expression between cells of a tissue needed to maintain tissue homeostasis. We propose a hypothesis that gap junctions are critical in modulating the levels of second messengers, such as low molecular weight reactive oxygen, needed in the transduction of an external signal to the nucleus in the expression of genes. Thus, any comprehensive-systems biology approach to understanding oxidative signaling must also include gap junctions, in which aberrant gap junctions have been clearly implicated in many human diseases. Antioxid. Redox Signal. 11, 297–307. PMID:18834329

  12. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    SciTech Connect

    Krauss, Robert S.

    2010-11-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  13. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    PubMed Central

    Krauss, Robert S.

    2010-01-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre, Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed. PMID:20471976

  14. Analysis of signal transduction pathways during anoxia exposure in a marine snail: a role for p38 MAP kinase and downstream signaling cascades.

    PubMed

    Larade, Kevin; Storey, Kenneth B

    2006-01-01

    The responses of members of the three main MAPK families (ERK, JNK/SAPK, p38 MAPK), as well as selected peripheral pathways, were examined in hepatopancreas of the marine periwinkle, Littorina littorea, to determine if anoxia exposure influenced the total protein content or the phosphorylation status of any key components. The content of active phospho-p38 MAPK was 2-fold higher in hepatopancreas from anoxic snails relative to controls. A 1.7-fold increase in the amount of phospho-Hsp27 and a 1.3-fold increase in phospho-CREB correlated well with the changes in p38 MAPK phosphorylation. Activation of these factors via p38 MAPK may be vital to the reorganization of metabolic responses to anoxia in hepatopancreas. No changes in components of the JNK/SAPK and ERK pathways occurred and transcription factors involved in lipid metabolism did not appear to be affected by anoxia. The present analysis of a variety of signaling pathways has implicated the p38 MAPK pathway as a key anoxia-responsive signal transduction pathway in L. littorea. PMID:16326124

  15. Meeting summary: Signal transduction pathways in immune and inflammatory cells. November 30-December 3, 2000, Amelia Island, Florida, U.S.A.

    PubMed

    Plevy, Scott; Mayer, Lloyd

    2003-01-01

    Throughout this symposium, recurrent themes were highlighted that may provide important clues to the pathogenesis of mucosal inflammation and IBD. First, the mucosal immune system is unique: Studies describing signaling paradigms in peripheral immunocytes should be re-explored in the gut where the rules that govern cell signaling may not be the same. Paradigms are a point of departure to characterize similarities and differences in mucosal immunity. A good example is a differential requirement for costimulation through CD2 in lamina propria T cells compared with peripheral T cells. Furthermore, a new definition of T-cell "costimulation" is beginning to emerge. Costimulatory molecules may function to overcome physical barriers by allowing cognate interactions between other molecules or by targeting signaling complexes to membrane microdomains. This concept also relates to another recurrent theme: Interactions between signaling pathways and the cytoskeleton are functionally important. Finally, we were introduced to the novel concept of metabolic parameters as a readout for signal transduction in the immune system. In the recent past, cell signaling has been viewed as a linear exercise, connecting a cell surface receptor to a series of intermediate molecules to a program of gene expression. However, signal transduction is in fact a three-dimensional exercise in cell biology. The future challenge, as pointed out in the keynote address, is to integrate reductionist models into reality and describe networks of signal transduction pathways in complex biosystems. "Threshold" responses were emphasized, with a small incremental increase or decrease in enzym