Science.gov

Sample records for activate signaling cascades

  1. Linear models of activation cascades: analytical solutions and coarse-graining of delayed signal transduction

    PubMed Central

    Desikan, Radhika

    2016-01-01

    Cellular signal transduction usually involves activation cascades, the sequential activation of a series of proteins following the reception of an input signal. Here, we study the classic model of weakly activated cascades and obtain analytical solutions for a variety of inputs. We show that in the special but important case of optimal gain cascades (i.e. when the deactivation rates are identical) the downstream output of the cascade can be represented exactly as a lumped nonlinear module containing an incomplete gamma function with real parameters that depend on the rates and length of the cascade, as well as parameters of the input signal. The expressions obtained can be applied to the non-identical case when the deactivation rates are random to capture the variability in the cascade outputs. We also show that cascades can be rearranged so that blocks with similar rates can be lumped and represented through our nonlinear modules. Our results can be used both to represent cascades in computational models of differential equations and to fit data efficiently, by reducing the number of equations and parameters involved. In particular, the length of the cascade appears as a real-valued parameter and can thus be fitted in the same manner as Hill coefficients. Finally, we show how the obtained nonlinear modules can be used instead of delay differential equations to model delays in signal transduction. PMID:27581482

  2. Linear models of activation cascades: analytical solutions and coarse-graining of delayed signal transduction.

    PubMed

    Beguerisse-Díaz, Mariano; Desikan, Radhika; Barahona, Mauricio

    2016-08-01

    Cellular signal transduction usually involves activation cascades, the sequential activation of a series of proteins following the reception of an input signal. Here, we study the classic model of weakly activated cascades and obtain analytical solutions for a variety of inputs. We show that in the special but important case of optimal gain cascades (i.e. when the deactivation rates are identical) the downstream output of the cascade can be represented exactly as a lumped nonlinear module containing an incomplete gamma function with real parameters that depend on the rates and length of the cascade, as well as parameters of the input signal. The expressions obtained can be applied to the non-identical case when the deactivation rates are random to capture the variability in the cascade outputs. We also show that cascades can be rearranged so that blocks with similar rates can be lumped and represented through our nonlinear modules. Our results can be used both to represent cascades in computational models of differential equations and to fit data efficiently, by reducing the number of equations and parameters involved. In particular, the length of the cascade appears as a real-valued parameter and can thus be fitted in the same manner as Hill coefficients. Finally, we show how the obtained nonlinear modules can be used instead of delay differential equations to model delays in signal transduction.

  3. Calcium signaling and the MAPK cascade are required for sperm activation in Caenorhabditis elegans.

    PubMed

    Liu, Zhiyu; Wang, Bin; He, Ruijun; Zhao, Yanmei; Miao, Long

    2014-02-01

    In nematode, sperm activation (or spermiogenesis), a process in which the symmetric and non-motile spermatids transform into polarized and crawling spermatozoa, is critical for sperm cells to acquire fertilizing competence. SPE-8 dependent and SPE-8 independent pathways function redundantly during sperm activation in both males and hermaphrodites of Caenorhabditis elegans. However, the downstream signaling for both pathways remains unclear. Here we show that calcium signaling and the MAPK cascade are required for both SPE-8 dependent and SPE-8 independent sperm activation, implying that both pathways share common downstream signaling components during sperm activation. We demonstrate that activation of the MAPK cascade is sufficient to activate spermatids derived from either wild-type or spe-8 group mutant males and that activation of the MAPK cascade bypasses the requirement of calcium signal to induce sperm activation, indicating that the MAPK cascade functions downstream of or parallel with the calcium signaling during sperm activation. Interestingly, the persistent activation of MAPK in activated spermatozoa inhibits Major Sperm Protein (MSP)-based cytoskeleton dynamics. We demonstrate that MAPK plays dual roles in promoting pseudopod extension during sperm activation but also blocking the MSP-based, amoeboid motility of the spermatozoa. Thus, though nematode sperm are crawling cells, morphologically distinct from flagellated sperm, and the molecular machinery for motility of amoeboid and flagellated sperm is different, both types of sperm might utilize conserved signaling pathways to modulate sperm maturation.

  4. Mitogen-activated protein kinase cascades in signaling plant growth and development.

    PubMed

    Xu, Juan; Zhang, Shuqun

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are ubiquitous signaling modules in eukaryotes. Early research of plant MAPKs has been focused on their functions in immunity and stress responses. Recent studies reveal that they also play essential roles in plant growth and development downstream of receptor-like protein kinases (RLKs). With only a limited number of MAPK components, multiple functional pathways initiated from different receptors often share the same MAPK components or even a complete MAPK cascade. In this review, we discuss how MAPK cascades function as molecular switches in response to spatiotemporal-specific ligand-receptor interactions and the availability of downstream substrates. In addition, we discuss other possible mechanisms governing the functional specificity of plant MAPK cascades, a question central to our understanding of MAPK functions.

  5. Crosstalk and Signaling Switches in Mitogen-Activated Protein Kinase Cascades

    PubMed Central

    Fey, Dirk; Croucher, David R.; Kolch, Walter; Kholodenko, Boris N.

    2012-01-01

    Mitogen-activated protein kinase (MAPK) cascades control cell fate decisions, such as proliferation, differentiation, and apoptosis by integrating and processing intra- and extracellular cues. However, similar MAPK kinetic profiles can be associated with opposing cellular decisions depending on cell type, signal strength, and dynamics. This implies that signaling by each individual MAPK cascade has to be considered in the context of the entire MAPK network. Here, we develop a dynamic model of feedback and crosstalk for the three major MAPK cascades; extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38), c-Jun N-terminal kinase (JNK), and also include input from protein kinase B (AKT) signaling. Focusing on the bistable activation characteristics of the JNK pathway, this model explains how pathway crosstalk harmonizes different MAPK responses resulting in pivotal cell fate decisions. We show that JNK can switch from a transient to sustained activity due to multiple positive feedback loops. Once activated, positive feedback locks JNK in a highly active state and promotes cell death. The switch is modulated by the ERK, p38, and AKT pathways. ERK activation enhances the dual specificity phosphatase (DUSP) mediated dephosphorylation of JNK and shifts the threshold of the apoptotic switch to higher inputs. Activation of p38 restores the threshold by inhibiting ERK activity via the PP1 or PP2A phosphatases. Finally, AKT activation inhibits the JNK positive feedback, thus abrogating the apoptotic switch and allowing only proliferative signaling. Our model facilitates understanding of how cancerous deregulations disturb MAPK signal processing and provides explanations for certain drug resistances. We highlight a critical role of DUSP1 and DUSP2 expression patterns in facilitating the switching of JNK activity and show how oncogene induced ERK hyperactivity prevents the normal apoptotic switch explaining the failure of certain drugs to

  6. The c-Jun kinase signaling cascade promotes glial engulfment activity through activation of draper and phagocytic function.

    PubMed

    Macdonald, J M; Doherty, J; Hackett, R; Freeman, M R

    2013-09-01

    After neuronal injury or death glial cells become reactive, exhibiting dramatic changes in morphology and patterns of gene expression and ultimately engulfing neuronal debris. Rapid clearance of degenerating neuronal material is thought to be crucial for suppression of inflammation and promotion of functional recovery. Here we demonstrate that Drosophila c-Jun N-terminal kinase (dJNK) signaling is a critical in vivo mediator of glial engulfment activity. In response to axotomy, we find glial dJNK signals through a cascade involving the upstream mitogen-activated protein kinase kinase kinases Slipper and Tak1, the mitogen-activated protein kinase kinase MKK4, and ultimately the Drosophila activator protein 1 (AP-1) transcriptional complex composed of Jra and Kayak to initiate glial phagocytosis of degenerating axons. Interestingly, loss of dJNK also blocked injury-induced upregulation of Draper levels in glia, and glial-specific overexpression of Draper was sufficient to rescue engulfment defects associated with loss of dJNK signaling. This work identifies that the dJNK pathway is a novel mediator of glial engulfment activity and a primary role for the glial Slipper/Tak1 →MKK4 →dJNK →dAP-1 signaling cascade appears to be activation of draper expression after axon injury.

  7. Colocalization recognition-activated cascade signal amplification strategy for ultrasensitive detection of transcription factors.

    PubMed

    Zhu, Desong; Wang, Lei; Xu, Xiaowen; Jiang, Wei

    2017-03-15

    Transcription factors (TFs) bind to specific double-stranded DNA (dsDNA) sequences in the regulatory regions of genes to regulate the process of gene transcription. Their expression levels sensitively reflect cell developmental situation and disease state. TFs have become potential diagnostic markers and therapeutic targets of cancers and some other diseases. Hence, high sensitive detection of TFs is of vital importance for early diagnosis of diseases and drugs development. The traditional exonucleases-assisted signal amplification methods suffered from the false positives caused by incomplete digestion of excess recognition probes. Herein, based on a new recognition way-colocalization recognition (CR)-activated dual signal amplification, an ultrasensitive fluorescent detection strategy for TFs was developed. TFs-induced the colocalization of three split recognition components resulted in noticeable increases of local effective concentrations and hybridization of three split components, which activated the subsequent cascade signal amplification including strand displacement amplification (SDA) and exponential rolling circle amplification (ERCA). This strategy eliminated the false positive influence and achieved ultra-high sensitivity towards the purified NF-κB p50 with detection limit of 2.0×10(-13)M. Moreover, NF-κB p50 can be detected in as low as 0.21ngμL(-1) HeLa cell nuclear extracts. In addition, this proposed strategy could be used for the screening of NF-κB p50 activity inhibitors and potential anti-NF-κB p50 drugs. Finally, our proposed strategy offered a potential method for reliable detection of TFs in medical diagnosis and treatment research of cancers and other related diseases.

  8. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    SciTech Connect

    Ohashi, Kazuya; Nagata, Yosuke; Wada, Eiji; Zammit, Peter S.; Shiozuka, Masataka; Matsuda, Ryoichi

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.

  9. Synaptic generation of an intracellular retrograde signal requires activation of the tyrosine kinase and mitogen-activated protein kinase signaling cascades in Aplysia.

    PubMed

    Stough, Shara; Kopec, Ashley M; Carew, Thomas J

    2015-11-01

    Cellular changes underlying memory formation can be generated in an activity-dependent manner at specific synapses. Thus an important question concerns the mechanisms by which synaptic signals communicate with the cell body to mediate these cellular changes. A monosynaptic circuit that is enhanced by sensitization in Aplysia is well-suited to study this question because three different subcellular compartments: (i) the sensorimotor SN-MN synapses, (ii) the SN projections to MNs via axonal connections, (iii) the SN cell bodies, can all be manipulated and studied independently. Here, we report that activity-dependent (AD) training in either the entire SN-MN circuit or in only the synaptic compartment, activates MAPK in a temporally and spatially specific pattern. Specifically, we find (i) MAPK activation is first transiently generated at SN-MN synapses during training, (ii) immediately after training MAPK is transiently activated in SN-MN axonal connections and persistently activated in SN cell bodies, and finally, (iii) MAPK is activated in SN cell bodies and SN-MN synapses 1h after training. These data suggest that there is an intracellularly transported retrograde signal generated at the synapse which is later responsible for delayed MAPK activation at SN somata. Finally, we find that this retrograde signal requires activation of tyrosine kinase (TK) and MEK signaling cascades at the synapses.

  10. [A role of some intracellular signaling cascades in planarian regeneration activated under irradiation with low-temperature argon plasma].

    PubMed

    Ermakov, A M; Ermakova, O N; Maevskiĭ, E I

    2014-01-01

    Using inhibitory analysis the role of some intracellular signaling pathways in activation of planarian regeneration under the influence of low-temperature argon plasma (LTAP) has been investigated. Inactivation of specific inhibitors of intracellular signaling enzymes such as the receptor tyrosine kinase (EGFR), TGF β receptor, calmodulin, adenylate cyclase, phospholipase A2, phospholipase C, cyclin-dependent protein kinase, JAK2-protein kinase, JNK-protein kinase MEK-protein kinase led to inhibition of the head growth during its regeneration in planarians. Pretreatment with LTAP irradiation provided no inhibitory action of some cascades regulating proliferation. However, the inhibitors of the key regulators of regeneration: TGF β receptor, calmodulin and MEK-protein kinase completely suppressed the activating effect of plasma. Thus, by the example of regenerating planarians it is shown, that biological activity of low-temperature argon plasma LTAP is caused by modulation of a plurality of cellular signaling systems.

  11. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade.

    PubMed Central

    Benn, J; Schneider, R J

    1994-01-01

    Hepatitis B virus produces a small (154-amino acid) transcriptional transactivating protein, HBx, which is required for viral infection and has been implicated in virus-mediated liver oncogenesis. However, the molecular mechanism for HBx activity and its possible influence on cell proliferation have remained obscure. A number of studies suggest that HBx may stimulate transcription by indirectly activating transcription factors, possibly by influencing cell signaling pathways. We now present biochemical evidence that HBx activates Ras and rapidly induces a cytoplasmic signaling cascade linking Ras, Raf, and mitogen-activated protein kinase (MAP kinase), leading to transcriptional transactivation. HBx strongly elevates levels of GTP-bound Ras, activated and phosphorylated Raf, and tyrosine-phosphorylated and activated MAP kinase. Transactivation of transcription factor AP-1 by HBx is blocked by inhibition of Ras or Raf activities but not by inhibition of Ca(2+)- and diacylglycerol-dependent protein kinase C. HBx was also found to stimulate DNA synthesis in serum-starved cells. The hepatitis B virus HBx protein therefore stimulates Ras-GTP complex formation and promotes downstream signaling through Raf and MAP kinases, and may influence cell proliferation. Images PMID:7937954

  12. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages

    PubMed Central

    Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S.; Alencar, Severino M.; Rosalen, Pedro L.; Mayer, Marcia P. A.

    2015-01-01

    Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases. PMID:26660901

  13. Fluvoxamine moderates reduced voluntary activity following chronic dexamethasone infusion in mice via recovery of BDNF signal cascades.

    PubMed

    Terada, Kazuki; Izumo, Nobuo; Suzuki, Biora; Karube, Yoshiharu; Morikawa, Tomomi; Ishibashi, Yukiko; Kameyama, Toshiki; Chiba, Koji; Sasaki, Noriko; Iwata, Keiko; Matsuzaki, Hideo; Manabe, Takayuki

    2014-04-01

    Major depression is a complex disorder characterized by genetic and environmental interactions. Selective serotonin reuptake inhibitors (SSRIs) effectively treat depression. Neurogenesis following chronic antidepressant treatment activates brain derived neurotrophic factor (BDNF) signaling. In this study, we analyzed the effects of the SSRI fluvoxamine (Flu) on locomotor activity and forced-swim behavior using chronic dexamethasone (cDEX) infusions in mice, which engenders depression-like behavior. Infusion of cDEX decreased body weight and produced a trend towards lower locomotor activity during darkness. In the forced-swim test, cDEX-mice exhibited increased immobility times compared with mice administered saline. Flu treatment reversed decreased locomotor activity and mitigated forced-swim test immobility. Real-time polymerase chain reactions using brain RNA samples yielded significantly lower BDNF mRNA levels in cDEX-mice compared with the saline group. Endoplasmic reticulum stress-associated X-box binding protein-1 (XBP1) gene expression was lower in cDEX-mice compared with the saline group. However, marked expression of the XBP1 gene was observed in cDEX-mice treated with Flu compared with mice given saline and untreated cDEX-mice. Expression of 5-HT2A and Sigma-1 receptors decreased after cDEX infusion compared with the saline group, and these decreases normalized to control levels upon Flu treatment. Our results indicate that the Flu moderates reductions in voluntary activity following chronic dexamethasone infusions in mice via recovery of BDNF signal cascades.

  14. Orexin/hypocretin receptor signalling cascades.

    PubMed

    Kukkonen, J P; Leonard, C S

    2014-01-01

    Orexin (hypocretin) peptides and their two known G-protein-coupled receptors play essential roles in sleep-wake control and powerfully influence other systems regulating appetite/metabolism, stress and reward. Consequently, drugs that influence signalling by these receptors may provide novel therapeutic opportunities for treating sleep disorders, obesity and addiction. It is therefore critical to understand how these receptors operate, the nature of the signalling cascades they engage and their physiological targets. In this review, we evaluate what is currently known about orexin receptor signalling cascades, while a sister review (Leonard & Kukkonen, this issue) focuses on tissue-specific responses. The evidence suggests that orexin receptor signalling is multifaceted and is substantially more diverse than originally thought. Indeed, orexin receptors are able to couple to members of at least three G-protein families and possibly other proteins, through which they regulate non-selective cation channels, phospholipases, adenylyl cyclase, and protein and lipid kinases. In the central nervous system, orexin receptors produce neuroexcitation by postsynaptic depolarization via activation of non-selective cation channels, inhibition of K⁺ channels and activation of Na⁺/Ca²⁺ exchange, but they also can stimulate the release of neurotransmitters by presynaptic actions and modulate synaptic plasticity. Ca²⁺ signalling is also prominently influenced by these receptors, both via the classical phospholipase C-Ca²⁺ release pathway and via Ca²⁺ influx, mediated by several pathways. Upon longer-lasting stimulation, plastic effects are observed in some cell types, while others, especially cancer cells, are stimulated to die. Thus, orexin receptor signals appear highly tunable, depending on the milieu in which they are operating.

  15. Activation Cascading in Sign Production

    ERIC Educational Resources Information Center

    Navarrete, Eduardo; Peressotti, Francesca; Lerose, Luigi; Miozzo, Michele

    2017-01-01

    In this study, we investigated how activation unfolds in sign production by examining whether signs that are not produced have their representations activated by semantics (cascading of activation). Deaf signers were tested with a picture-picture interference task. Participants were presented with pairs of overlapping pictures and named the green…

  16. Protease inhibitors and proteolytic signalling cascades in insects.

    PubMed

    Gubb, David; Sanz-Parra, Arantza; Barcena, Laura; Troxler, Laurent; Fullaondo, Ane

    2010-12-01

    Proteolytic signalling cascades control a wide range of physiological responses. In order to respond rapidly, protease activity must be maintained at a basal level: the component zymogens must be sequentially activated and actively degraded. At the same time, signalling cascades must respond precisely: high target specificity is required. The insects have a wide range of trapping- and tight-binding protease inhibitors, which can regulate the activity of individual proteases. In addition, the interactions between component proteases of a signalling cascade can be modified by serine protease homologues. The suicide-inhibition mechanism of serpin family inhibitors gives rapid turnover of both protease and inhibitor, but target specificity is inherently broad. Similarly, the TEP/macroglobulins have extremely broad target specificity, which suits them for roles as hormone transport proteins and sensors of pathogenic virulence factors. The tight-binding inhibitors, on the other hand, have a lock-and-key mechanism capable of high target specificity. In addition, proteins containing multiple tight-binding inhibitory domains may act as scaffolds for the assembly of signalling complexes. Proteolytic cascades regulated by combinations of different types of inhibitor could combine the rapidity of suicide-inhibitors with the specificity lock-and-key inhibitors. This would allow precise control of physiological responses and may turn out to be a general rule.

  17. Activation of AMPA receptor promotes TNF-α release via the ROS-cSrc-NFκB signaling cascade in RAW264.7 macrophages

    SciTech Connect

    Cheng, Xiu-Li; Ding, Fan; Li, Hui; Tan, Xiao-Qiu; Liu, Xiao; Cao, Ji-Min; Gao, Xue

    2015-05-29

    The relationship between glutamate signaling and inflammation has not been well defined. This study aimed to investigate the role of AMPA receptor (AMPAR) in the expression and release of tumor necrosis factor-alpha (TNF-α) from macrophages and the underlying mechanisms. A series of approaches, including confocal microscopy, immunofluorescency, flow cytometry, ELISA and Western blotting, were used to estimate the expression of AMPAR and downstream signaling molecules, TNF-α release and reactive oxygen species (ROS) generation in the macrophage-like RAW264.7 cells. The results demonstrated that AMPAR was expressed in RAW264.7 cells. AMPA significantly enhanced TNF-α release from RAW264.7 cells, and this effect was abolished by CNQX (AMPAR antagonist). AMPA also induced elevation of ROS production, phosphorylation of c-Src and activation of nuclear factor (NF)-κB in RAW264.7 cells. Blocking c-Src by PP2, scavenging ROS by glutathione (GSH) or inhibiting NF-κB activation by pyrrolidine dithiocarbamate (PDTC) decreased TNF-α production from RAW264.7 cells. We concluded that AMPA promotes TNF-α release in RAW264.7 macrophages likely through the following signaling cascade: AMPAR activation → ROS generation → c-Src phosphorylation → NF-κB activation → TNF-α elevation. The study suggests that AMPAR may participate in macrophage activation and inflammation. - Highlights: • AMPAR is expressed in RAW264.7 macrophages and is upregulated by AMPA stimulation. • Activation of AMPAR stimulates TNF-α release in macrophages through the ROS-cSrc-NFκB signaling cascade. • Macrophage AMPAR signaling may play an important role in inflammation.

  18. Immunoreceptor tyrosine-based activation motif (ITAM), a unique module linking antigen and Fc receptors to their signaling cascades.

    PubMed

    Isakov, N

    1997-01-01

    Signal transduction by the T cell and B cell antigen receptors and by receptors for a variety of immunoglobulins' Fc region is strictly dependent on a receptor subunit cytoplasmic module termed immunoreceptor tyrosine-based activation motif (ITAM). This module exists in one or more copies in each of the receptor-associated signal-transducing molecules and it possesses two repeats of the consensus sequence Tyr-X-X-Leu/Ile spaced by six to eight amino acids. Receptor engagement is followed by a rapid and transient phosphorylation of tyrosine residues within their ITAMs, thereby creating temporary binding sites for Src homology 2 (SH2)-containing signaling molecules operating downstream of the activated receptor. The purpose of this review is to discuss recent findings on the functional role of ITAMs in antigen and Fc receptor-mediated signal transduction, with a particular emphasis on kinases operating upstream and downstream of the ITAMs.

  19. Mitogen-activated protein kinase kinase 5 (MKK5)-mediated signalling cascade regulates expression of iron superoxide dismutase gene in Arabidopsis under salinity stress.

    PubMed

    Xing, Yu; Chen, Wei-hua; Jia, Wensuo; Zhang, Jianhua

    2015-09-01

    Superoxide dismutases (SODs) are involved in plant adaptive responses to biotic and abiotic stresses but the upstream signalling process that modulates their expression is not clear. Expression of two iron SODs, FSD2 and FSD3, was significantly increased in Arabidopsis in response to NaCl treatment but blocked in transgenic MKK5-RNAi plant, mkk5. Using an assay system for transient expression in protoplasts, it was found that mitogen-activated protein kinase kinase 5 (MKK5) was also activated in response to salt stress. Overexpression of MKK5 in wild-type plants enhanced their tolerance to salt treatments, while mkk5 mutant exhibited hypersensitivity to salt stress in germination on salt-containing media. Moreover, another kinase, MPK6, was also involved in the MKK5-mediated iron superoxide dismutase (FSD) signalling pathway in salt stress. The kinase activity of MPK6 was totally turned off in mkk5, whereas the activity of MPK3 was only partially blocked. MKK5 interacted with the MEKK1 protein that was also involved in the salt-induced FSD signalling pathway. These data suggest that salt-induced FSD2 and FSD3 expressions are influenced by MEKK1 via MKK5-MPK6-coupled signalling. This MAP kinase cascade (MEKK1, MKK5, and MPK6) mediates the salt-induced expression of iron superoxide dismutases.

  20. Spinal 5-HT(3) receptor activation induces behavioral hypersensitivity via a neuronal-glial-neuronal signaling cascade.

    PubMed

    Gu, Ming; Miyoshi, Kan; Dubner, Ronald; Guo, Wei; Zou, Shiping; Ren, Ke; Noguchi, Koichi; Wei, Feng

    2011-09-07

    Recent studies indicate that the descending serotonin (5-HT) system from the rostral ventromedial medulla (RVM) in the brainstem and the 5-HT(3) receptor subtype in the spinal dorsal horn are involved in enhanced descending pain facilitation after tissue and nerve injury. However, the mechanisms underlying the activation of the 5-HT(3) receptor and its contribution to facilitation of pain remain unclear. In the present study, activation of spinal 5-HT(3) receptor by intrathecal injection of a selective 5-HT(3) receptor agonist, SR57227, induced spinal glial hyperactivity, neuronal hyperexcitability, and pain hypersensitivity in rats. We found that there was neuron-to-microglia signaling via chemokine fractalkine, microglia to astrocyte signaling via the cytokine IL-18, astrocyte to neuronal signaling by IL-1β, and enhanced activation of GluN (NMDA) receptors in the spinal dorsal horn. In addition, exogenous brain-derived neurotrophic factor-induced descending pain facilitation was accompanied by upregulation of CD11b and GFAP expression in the spinal dorsal horn after microinjection in the RVM, and these events were significantly prevented by functional blockade of spinal 5-HT(3) receptors. Enhanced expression of spinal CD11b and GFAP after hindpaw inflammation was also attenuated by molecular depletion of the descending 5-HT system by intra-RVM Tph-2 shRNA interference. Thus, these findings offer new insights into the cellular and molecular mechanisms at the spinal level responsible for descending 5-HT-mediated pain facilitation during the development of persistent pain after tissue and nerve injury. New pain therapies should focus on prime targets of descending facilitation-induced glial involvement, and in particular the blocking of intercellular signaling transduction between neuron and glia.

  1. Spinal 5-HT3 receptor activation induces behavioral hypersensitivity via a neuronal-glial-neuronal signaling cascade

    PubMed Central

    Gu, Ming; Miyoshi, Kan; Dubner, Ronald; Guo, Wei; Zou, Shiping; Ren, Ke; Noguchi, Koichi; Wei, Feng

    2011-01-01

    Recent studies indicate that the descending serotonin (5-HT) system from the rostral ventromedial medulla (RVM) in brainstem and the 5-HT3 receptor subtype in the spinal dorsal horn are involved in enhanced descending pain facilitation after tissue and nerve injury. However, the mechanisms underlying the activation of the 5-HT3 receptor and its contribution to facilitation of pain remain unclear. In the present study, activation of spinal 5-HT3 receptor by intrathecal injection of a selective 5-HT3 receptor agonist SR 57227 induced spinal glial hyperactivity, neuronal hyperexcitability and pain hypersensitivity in rats. We found that there was neuron-to-microglia signaling via chemokine fractalkine, microglia to astrocyte signaling via cytokine IL-18, astrocyte to neuronal signaling by IL-1β, and enhanced activation of GluN (NMDA) receptors in the spinal dorsal horn. In addition, exogenous BDNF-induced descending pain facilitation was accompanied with up-regulation of CD11b and GFAP expression in the spinal dorsal horn after microinjection in the RVM, which were significantly prevented by functional blockade of spinal 5-HT3 receptors. Enhanced expression of spinal CD11b and GFAP after hindpaw inflammation was also attenuated by molecular depletion of the descending 5-HT system by intra-RVM Tph-2 shRNA interference. Thus, these findings offer new insights into the cellular and molecular mechanisms at the spinal level responsible for descending 5-HT-mediated pain facilitation during the development of persistent pain after tissue and nerve injury. New pain therapies should focus on prime targets of descending facilitation-induced glial involvement, and in particular the blocking of intercellular signaling transduction between neuron and glia. PMID:21900561

  2. Desnitro-imidacloprid activates the extracellular signal-regulated kinase cascade via the nicotinic receptor and intracellular calcium mobilization in N1E-115 cells.

    PubMed

    Tomizawa, Motohiro; Casida, John E

    2002-11-01

    Imidacloprid (IMI) is the principal neonicotinoid (the only major new class of synthetic insecticides of the past three decades). The excellent safety profile of IMI is not shared with a metabolite, desnitro-IMI (DNIMI), which displays high toxicity to mammals associated with agonist action at the alpha4beta2 nicotinic acetylcholine receptor (nAChR) in brain. This study examines the hypothesis that IMI, DNIMI, and (-)-nicotine activate the extracellular signal-regulated kinase (ERK) cascade via primary interaction with the alpha4beta2 nAChR in mouse neuroblastoma N1E-115 cells. These three nicotinic agonists induce phosphorylation of ERK (p44/p42) in a concentration-dependent manner with an optimal incubation period of 30 min. DNIMI (1 microM)-induced ERK activation is blocked by nicotinic antagonist mecamylamine but not by alpha-bungarotoxin and muscarinic antagonist atropine. This activation is prevented by intracellular Ca(2+) chelator BAPTA-AM but not by removal of external Ca(2+) using EGTA and Ca(2+)-free medium. 2-Aminoethoxy-diphenylborate, a blocker for inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release from intracellular stores, inhibits DNIMI-induced ERK activation but a high level of ryanodine (to block ryanodine receptor-mediated Ca(2+) release) does not. The inhibitor U-73122 for phospholipase C (to suppress IP(3) production) prevents ERK activation evoked by DNIMI. Inhibitors for protein kinase C (PKC) (GF109203X) and ERK kinase (PD98059) block this activation whereas an inhibitor (H-89) for cyclic AMP-dependent protein kinase does not. Thus, neonicotinoids activate the ERK cascade triggered by primary action at the alpha4beta2 nAChR with an involvement of intracellular Ca(2+) mobilization possibly mediated by IP(3). It is further suggested that intracellular Ca(2+) activates a sequential pathway from PKC to ERK.

  3. Leptin serves as an upstream activator of an obligatory signaling cascade in the embryo-implantation process.

    PubMed

    Ramos, M P; Rueda, B R; Leavis, P C; Gonzalez, R R

    2005-02-01

    Leptin is essential for mouse reproduction, but the exact roles it serves are yet to be determined. Treatment of cultured endometrial cells with leptin increases the level of beta3-integrin, IL-1, leukemia inhibitory factor, and their corresponding receptors. These leptin-induced effects are eliminated by inhibitors of leptin receptor (OB-R) signaling. Herein the impact of blocking leptin/OB-R signaling in the mouse endometrium was assessed. Intrauterine injection of either leptin peptide antagonists (LPA-1 or -2) or OB-R antibody on d 3 of pregnancy impaired mouse implantation in comparison to intrauterine injection of scrambled peptides (LPA-Sc) or species-matched IgGs. Significant reduction in the number of implantation sites and uterine horns with implanted embryos was found after intrauterine injection of LPA-1 (1 of 22) vs. LPA-1Sc (11 of 15) and LPA-2 (3 of 17) vs. LPA-2Sc (14 of 16). The impact of disruption of leptin signaling on the endometrial expression of several molecules in pregnant mice was assessed by Western blot, immunohistochemistry, and confocal microscopy. Disruption of leptin signaling resulted in a significant reduction of IL-1 receptor type I, leukemia inhibitory factor, vascular endothelial growth factor receptor 2, and beta3-integrin levels. The levels of colony stimulating factor-1 receptor and OB-R were unaltered after treatment with LPAs compared with controls. Expression of OB-R protein was pregnancy dependent and found only in glandular epithelium after implantation occurred. Our findings support previous observations that leptin signaling is critical to the implantation process and suggest that molecules downstream of leptin-activated receptor may serve obligatory roles in endometrial receptivity and successful implantation.

  4. Genetic Dissection of the Signaling Cascade that Controls Activation of the Shigella Type III Secretion System from the Needle Tip

    PubMed Central

    Murillo, I.; Martinez-Argudo, I.; Blocker, A. J.

    2016-01-01

    Many Gram-negative bacterial pathogens use type III secretion systems (T3SSs) for virulence. The Shigella T3SS consists of a hollow needle, made of MxiH and protruding from the bacterial surface, anchored in both bacterial membranes by multimeric protein rings. Atop the needle lies the tip complex (TC), formed by IpaD and IpaB. Upon physical contact with eukaryotic host cells, T3S is initiated leading to formation of a pore in the eukaryotic cell membrane, which is made of IpaB and IpaC. Through the needle and pore channels, further bacterial proteins are translocated inside the host cell to meditate its invasion. IpaD and the needle are implicated in transduction of the host cell-sensing signal to the T3S apparatus. Furthermore, the sensing-competent TC seems formed of 4 IpaDs topped by 1 IpaB. However, nothing further is known about the activation process. To investigate IpaB’s role during T3SS activation, we isolated secretion-deregulated IpaB mutants using random mutagenesis and a genetic screen. We found ipaB point mutations in leading to defects in secretion activation, which sometimes diminished pore insertion and host cell invasion. We also demonstrated IpaB communicates intramolecularly and intermolecularly with IpaD and MxiH within the TC because mutations affecting these interactions impair signal transduction. PMID:27277624

  5. Fluctuation sensitivity of a transcriptional signaling cascade

    NASA Astrophysics Data System (ADS)

    Pilkiewicz, Kevin R.; Mayo, Michael L.

    2016-09-01

    The internal biochemical state of a cell is regulated by a vast transcriptional network that kinetically correlates the concentrations of numerous proteins. Fluctuations in protein concentration that encode crucial information about this changing state must compete with fluctuations caused by the noisy cellular environment in order to successfully transmit information across the network. Oftentimes, one protein must regulate another through a sequence of intermediaries, and conventional wisdom, derived from the data processing inequality of information theory, leads us to expect that longer sequences should lose more information to noise. Using the metric of mutual information to characterize the fluctuation sensitivity of transcriptional signaling cascades, we find, counter to this expectation, that longer chains of regulatory interactions can instead lead to enhanced informational efficiency. We derive an analytic expression for the mutual information from a generalized chemical kinetics model that we reduce to simple, mass-action kinetics by linearizing for small fluctuations about the basal biological steady state, and we find that at long times this expression depends only on a simple ratio of protein production to destruction rates and the length of the cascade. We place bounds on the values of these parameters by requiring that the mutual information be at least one bit—otherwise, any received signal would be indistinguishable from noise—and we find not only that nature has devised a way to circumvent the data processing inequality, but that it must be circumvented to attain this one-bit threshold. We demonstrate how this result places informational and biochemical efficiency at odds with one another by correlating high transcription factor binding affinities with low informational output, and we conclude with an analysis of the validity of our assumptions and propose how they might be tested experimentally.

  6. Activation of Nrf2 Reduces UVA-Mediated MMP-1 Upregulation via MAPK/AP-1 Signaling Cascades: The Photoprotective Effects of Sulforaphane and Hispidulin

    PubMed Central

    Chaiprasongsuk, Anyamanee; Lohakul, Jinaphat; Soontrapa, Kitipong; Sampattavanich, Somponnat; Akarasereenont, Pravit

    2017-01-01

    UVA irradiation plays a role in premature aging of the skin through triggering oxidative stress-associated stimulation of matrix metalloproteinase-1 (MMP-1) responsible for collagen degradation, a hallmark of photoaged skin. Compounds that can activate nuclear factor E2-related factor 2 (Nrf2), a transcription factor regulating antioxidant gene expression, should therefore serve as effective antiphotoaging agents. We investigated whether genetic silencing of Nrf2 could relieve UVA-mediated MMP-1 upregulation via activation of mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) signaling using human keratinocyte cell line (HaCaT). Antiphotoaging effects of hispidulin (HPD) and sulforaphane (SFN) were assessed on their abilities to activate Nrf2 in controlling MMP-1 and collagen expressions in association with phosphorylation of MAPKs (extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38), c-Jun, and c-Fos, using the skin of BALB/c mice subjected to repetitive UVA irradiation. Our findings suggested that depletion of Nrf2 promoted both mRNA expression and activity of MMP-1 in the UVA-irradiated HaCaT cells. Treatment of Nrf2 knocked-down HaCaT cells with MAPK inhibitors significantly suppressed UVA-induced MMP-1 and AP-1 activities. Moreover, pretreatment of the mouse skin with HPD and SFN, which could activate Nrf2, provided protective effects against UVA-mediated MMP-1 induction and collagen depletion in correlation with the decreased levels of phosphorylated MAPKs, c-Jun, and c-Fos in the mouse skin. In conclusion, Nrf2 could influence UVA-mediated MMP-1 upregulation through the MAPK/AP-1 signaling cascades. HPD and SFN may therefore represent promising antiphotoaging candidates. PMID:28011874

  7. An inside job: hacking into Janus kinase/signal transducer and activator of transcription signaling cascades by the intracellular protozoan Toxoplasma gondii.

    PubMed

    Denkers, Eric Y; Bzik, David J; Fox, Barbara A; Butcher, Barbara A

    2012-02-01

    The intracellular protozoan Toxoplasma gondii is well known for its skill at invading and living within host cells. New discoveries are now also revealing the astounding ability of the parasite to inject effector proteins into the cytoplasm to seize control of the host cell. This review summarizes recent advances in our understanding of one such secretory protein called ROP16. This molecule is released from rhoptries into the host cell during invasion. The ROP16 molecule acts as a kinase, directly activating both signal transducer and activator of transcription 3 (STAT3) and STAT6 signaling pathways. In macrophages, an important and preferential target cell of parasite infection, the injection of ROP16 has multiple consequences, including downregulation of proinflammatory cytokine signaling and macrophage deviation to an alternatively activated phenotype.

  8. Mount Rainier active cascade volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  9. Andrographolide Inhibits Nuclear Factor-κB Activation through JNK-Akt-p65 Signaling Cascade in Tumor Necrosis Factor-α-Stimulated Vascular Smooth Muscle Cells

    PubMed Central

    Chen, Yu-Ying; Hsieh, Cheng-Ying; Lee, Lin-Wen; Sheu, Joen-Rong

    2014-01-01

    Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs) exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α). Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK), Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism. PMID:25114952

  10. Centrally administered CDP-choline induced cardiovascular responses are mediated by activation of the central phospholipase-prostaglandin signaling cascade.

    PubMed

    Topuz, Bora B; Altinbas, Burcin; Ilhan, Tuncay; Yilmaz, Mustafa S; Erdost, Hatice; Saha, Sikha; Savci, Vahide; Yalcin, Murat

    2014-05-14

    The present study was designed to determine the involvement of central prostaglandin synthesis on the pressor and bradycardic effect of cytidine 5'-diphosphocholine (CDP-choline). Intracerebroventricular (i.c.v.) administration of CDP-choline was made and blood pressure and heart rate were recorded in male Sprague Dawley rats throughout this study. Microdialysis and immunohistochemical studies were performed to measure extracellular total prostaglandin concentration and to show cyclooxygenase-1 and -2 (COX-1 and -2) immunoreactivities, respectively, in the posterior hypothalamic area. Moreover, rats were pretreated (i.c.v) with mepacrine [a phospholipase A2 (PLA2) inhibitor], ibuprofen [a nonselective COX inhibitor], neomycine [a phospholipase C (PLC) inhibitor] or furegrelate [a thromboxane A2 (TXA2) synthesis inhibitor] 5 min prior to the injection of CDP-choline to determine the effects of these inhibitors on cardiovascular responses to CDP-choline. Control rats were pretreated (i.c.v) with saline. CDP-choline caused a dose- and time-dependent increase in blood pressure and decrease in heart rate. Immunohistochemical studies showed that CDP-choline increased COX-1 and -2 immunoreactivities in the posterior hypothalamic area. CDP-choline also elevated hypothalamic extracellular total prostaglandin concentration by 62%, as shown in microdialysis studies. Mepacrine or ibuprofen pretreatments almost completely blocked the pressor and bradycardic responses to CDP-choline while neomycine or furegrelate partially attenuated the drug-induced cardiovascular effects. The results suggest that CDP-choline may stimulate prostaglandin synthesis through the activation of PLA2, cyclooxygenases (COX-1 and -2) and prostaglandins and at least TXA2, may mediate the drug׳s cardiovascular effects.

  11. Prion protein induced signaling cascades in monocytes

    SciTech Connect

    Krebs, Bjarne; Dorner-Ciossek, Cornelia; Vassallo, Neville; Herms, Jochen; Kretzschmar, Hans A. . E-mail: Hans.Kretzschmar@med.uni-muenchen.de

    2006-02-03

    Prion proteins play a central role in transmission and pathogenesis of transmissible spongiform encephalopathies. The cellular prion protein (PrP{sup C}), whose physiological function remains elusive, is anchored to the surface of a variety of cell types including neurons and cells of the lymphoreticular system. In this study, we investigated the response of a mouse monocyte/macrophage cell line to exposure with PrP{sup C} fusion proteins synthesized with a human Fc-tag. PrP{sup C} fusion proteins showed an attachment to the surface of monocyte/macrophages in nanomolar concentrations. This was accompanied by an increase of cellular tyrosine phosphorylation as a result of activated signaling pathways. Detailed investigations exhibited activation of downstream pathways through a stimulation with PrP fusion proteins, which include phosphorylation of ERK{sub 1,2} and Akt kinase. Macrophages opsonize and present antigenic structures, contact lymphocytes, and deliver cytokines. The findings reported here may become the basis of understanding the molecular function of PrP{sup C} in monocytes and macrophages.

  12. Lipopolysaccharide Activation of the TPL-2/MEK/Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Cascade Is Regulated by IκB Kinase-Induced Proteolysis of NF-κB1 p105†

    PubMed Central

    Beinke, S.; Robinson, M. J.; Hugunin, M.; Ley, S. C.

    2004-01-01

    The MEK kinase TPL-2 (also known as Cot) is required for lipopolysaccharide (LPS) activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase cascade in macrophages and consequent upregulation of genes involved in innate immune responses. In resting cells, TPL-2 forms a stoichiometric complex with NF-κB1 p105, which negatively regulates its MEK kinase activity. Here, it is shown that lipopolysaccharide (LPS) stimulation of primary macrophages causes the release of both long and short forms of TPL-2 from p105 and that TPL-2 MEK kinase activity is restricted to this p105-free pool. Activation of TPL-2, MEK, and ERK by LPS is also demonstrated to require proteasome-mediated proteolysis. p105 is known to be proteolysed by the proteasome following stimulus-induced phosphorylation of two serines in its PEST region by the IκB kinase (IKK) complex. Expression of a p105 point mutant, which is not susceptible to signal-induced proteolysis, in RAW264.7 macrophages impairs LPS-induced release of TPL-2 from p105 and its subsequent activation of MEK. Furthermore, expression of wild-type but not mutant p105 reconstitutes LPS stimulation of MEK and ERK phosphorylation in primary NF-κB1-deficient macrophages. Consistently, pharmacological blockade of IKK inhibits LPS-induced release of TPL-2 from p105 and TPL-2 activation. These data show that IKK-induced p105 proteolysis is essential for LPS activation of TPL-2, thus revealing a novel function of IKK in the regulation of the ERK MAP kinase cascade. PMID:15485931

  13. Mitogen-activated protein kinase cascades in Vitis vinifera

    PubMed Central

    Çakır, Birsen; Kılıçkaya, Ozan

    2015-01-01

    Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKK kinases (MAPKKKKs), MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase kinase members of Arabidopsis thaliana, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in Vitis vinifera. We identified orthologs of V. vinifera putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in V. vinifera and could help elucidate the biological and physiological functions of these proteins in V. vinifera. PMID:26257761

  14. A respiratory chain controlled signal transduction cascade in the mitochondrial intermembrane space mediates hydrogen peroxide signaling

    PubMed Central

    Patterson, Heide Christine; Gerbeth, Carolin; Thiru, Prathapan; Vögtle, Nora F.; Knoll, Marko; Shahsafaei, Aliakbar; Samocha, Kaitlin E.; Huang, Cher X.; Harden, Mark Michael; Song, Rui; Chen, Cynthia; Kao, Jennifer; Shi, Jiahai; Salmon, Wendy; Shaul, Yoav D.; Stokes, Matthew P.; Silva, Jeffrey C.; Bell, George W.; MacArthur, Daniel G.; Ruland, Jürgen; Meisinger, Chris; Lodish, Harvey F.

    2015-01-01

    Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) govern cellular homeostasis by inducing signaling. H2O2 modulates the activity of phosphatases and many other signaling molecules through oxidation of critical cysteine residues, which led to the notion that initiation of ROS signaling is broad and nonspecific, and thus fundamentally distinct from other signaling pathways. Here, we report that H2O2 signaling bears hallmarks of a regular signal transduction cascade. It is controlled by hierarchical signaling events resulting in a focused response as the results place the mitochondrial respiratory chain upstream of tyrosine-protein kinase Lyn, Lyn upstream of tyrosine-protein kinase SYK (Syk), and Syk upstream of numerous targets involved in signaling, transcription, translation, metabolism, and cell cycle regulation. The active mediators of H2O2 signaling colocalize as H2O2 induces mitochondria-associated Lyn and Syk phosphorylation, and a pool of Lyn and Syk reside in the mitochondrial intermembrane space. Finally, the same intermediaries control the signaling response in tissues and species responsive to H2O2 as the respiratory chain, Lyn, and Syk were similarly required for H2O2 signaling in mouse B cells, fibroblasts, and chicken DT40 B cells. Consistent with a broad role, the Syk pathway is coexpressed across tissues, is of early metazoan origin, and displays evidence of evolutionary constraint in the human. These results suggest that H2O2 signaling is under control of a signal transduction pathway that links the respiratory chain to the mitochondrial intermembrane space-localized, ubiquitous, and ancient Syk pathway in hematopoietic and nonhematopoietic cells. PMID:26438848

  15. A respiratory chain controlled signal transduction cascade in the mitochondrial intermembrane space mediates hydrogen peroxide signaling.

    PubMed

    Patterson, Heide Christine; Gerbeth, Carolin; Thiru, Prathapan; Vögtle, Nora F; Knoll, Marko; Shahsafaei, Aliakbar; Samocha, Kaitlin E; Huang, Cher X; Harden, Mark Michael; Song, Rui; Chen, Cynthia; Kao, Jennifer; Shi, Jiahai; Salmon, Wendy; Shaul, Yoav D; Stokes, Matthew P; Silva, Jeffrey C; Bell, George W; MacArthur, Daniel G; Ruland, Jürgen; Meisinger, Chris; Lodish, Harvey F

    2015-10-20

    Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) govern cellular homeostasis by inducing signaling. H2O2 modulates the activity of phosphatases and many other signaling molecules through oxidation of critical cysteine residues, which led to the notion that initiation of ROS signaling is broad and nonspecific, and thus fundamentally distinct from other signaling pathways. Here, we report that H2O2 signaling bears hallmarks of a regular signal transduction cascade. It is controlled by hierarchical signaling events resulting in a focused response as the results place the mitochondrial respiratory chain upstream of tyrosine-protein kinase Lyn, Lyn upstream of tyrosine-protein kinase SYK (Syk), and Syk upstream of numerous targets involved in signaling, transcription, translation, metabolism, and cell cycle regulation. The active mediators of H2O2 signaling colocalize as H2O2 induces mitochondria-associated Lyn and Syk phosphorylation, and a pool of Lyn and Syk reside in the mitochondrial intermembrane space. Finally, the same intermediaries control the signaling response in tissues and species responsive to H2O2 as the respiratory chain, Lyn, and Syk were similarly required for H2O2 signaling in mouse B cells, fibroblasts, and chicken DT40 B cells. Consistent with a broad role, the Syk pathway is coexpressed across tissues, is of early metazoan origin, and displays evidence of evolutionary constraint in the human. These results suggest that H2O2 signaling is under control of a signal transduction pathway that links the respiratory chain to the mitochondrial intermembrane space-localized, ubiquitous, and ancient Syk pathway in hematopoietic and nonhematopoietic cells.

  16. Forecasting Social Unrest Using Activity Cascades

    PubMed Central

    Cadena, Jose; Korkmaz, Gizem; Kuhlman, Chris J.; Marathe, Achla; Ramakrishnan, Naren; Vullikanti, Anil

    2015-01-01

    Social unrest is endemic in many societies, and recent news has drawn attention to happenings in Latin America, the Middle East, and Eastern Europe. Civilian populations mobilize, sometimes spontaneously and sometimes in an organized manner, to raise awareness of key issues or to demand changes in governing or other organizational structures. It is of key interest to social scientists and policy makers to forecast civil unrest using indicators observed on media such as Twitter, news, and blogs. We present an event forecasting model using a notion of activity cascades in Twitter (proposed by Gonzalez-Bailon et al., 2011) to predict the occurrence of protests in three countries of Latin America: Brazil, Mexico, and Venezuela. The basic assumption is that the emergence of a suitably detected activity cascade is a precursor or a surrogate to a real protest event that will happen “on the ground.” Our model supports the theoretical characterization of large cascades using spectral properties and uses properties of detected cascades to forecast events. Experimental results on many datasets, including the recent June 2013 protests in Brazil, demonstrate the effectiveness of our approach. PMID:26091012

  17. The Potential for Signal Integration and Processing in Interacting Map Kinase Cascades

    PubMed Central

    Schwacke, John H.; Voit, Eberhard O.

    2009-01-01

    The cellular response to environmental stimuli requires biochemical information processing through which sensory inputs and cellular status are integrated and translated into appropriate responses by way of interacting networks of enzymes. One such network, the Mitogen Activated Protein (MAP) kinase cascade is a highly conserved signal transduction module that propagates signals from cell surface receptors to various cytosolic and nuclear targets by way of a phosphorylation cascade. We have investigated the potential for signal processing within a network of interacting feed-forward kinase cascades typified by the MAP kinase cascade. A genetic algorithm was used to search for sets of kinetic parameters demonstrating representative key input-output patterns of interest. We discuss two of the networks identified in our study, one implementing the exclusive-or function (XOR) and another implementing what we refer to as an in-band detector (IBD) or two-sided threshold. These examples confirm the potential for logic and amplitude-dependent signal processing in interacting MAP kinase cascades demonstrating limited cross-talk. Specifically, the XOR function allows the network to respond to either one, but not both signals simultaneously, while the IBD permits the network to respond exclusively to signals within a given range of strength, and to suppress signals below as well as above this range. The solution to the XOR problem is interesting in that it requires only two interacting pathways, crosstalk at only one layer, and no feedback or explicit inhibition. These types of responses are not only biologically relevant but constitute signal processing modules that can be combined to create other logical functions and that, in contrast to amplification, cannot be achieved with a single cascade or with two non-interacting cascades. Our computational results revealed surprising similarities between experimental data describing the JNK/MKK4/MKK7 pathway and the solution for

  18. Evolution of Vertebrate Phototransduction: Cascade Activation

    PubMed Central

    Lamb, Trevor D.; Patel, Hardip; Chuah, Aaron; Natoli, Riccardo C.; Davies, Wayne I. L.; Hart, Nathan S.; Collin, Shaun P.; Hunt, David M.

    2016-01-01

    We applied high-throughput sequencing to eye tissue from several species of basal vertebrates (a hagfish, two species of lamprey, and five species of gnathostome fish), and we analyzed the mRNA sequences for the proteins underlying activation of the phototransduction cascade. The molecular phylogenies that we constructed from these sequences are consistent with the 2R WGD model of two rounds of whole genome duplication. Our analysis suggests that agnathans retain an additional representative (that has been lost in gnathostomes) in each of the gene families we studied; the evidence is strong for the G-protein α subunit (GNAT) and the cGMP phosphodiesterase (PDE6), and indicative for the cyclic nucleotide-gated channels (CNGA and CNGB). Two of the species (the hagfish Eptatretus cirrhatus and the lamprey Mordacia mordax) possess only a single class of photoreceptor, simplifying deductions about the composition of cascade protein isoforms utilized in their photoreceptors. For the other lamprey, Geotria australis, analysis of the ratios of transcript levels in downstream and upstream migrant animals permits tentative conclusions to be drawn about the isoforms used in four of the five spectral classes of photoreceptor. Overall, our results suggest that agnathan rod-like photoreceptors utilize the same GNAT1 as gnathostomes, together with a homodimeric PDE6 that may be agnathan-specific, whereas agnathan cone-like photoreceptors utilize a GNAT that may be agnathan-specific, together with the same PDE6C as gnathostomes. These findings help elucidate the evolution of the vertebrate phototransduction cascade from an ancestral chordate phototransduction cascade that existed prior to the vertebrate radiation. PMID:27189541

  19. A mutation in TRPC6 channels abolishes their activation by hypoosmotic stretch but does not affect activation by diacylglycerol or G protein signaling cascades.

    PubMed

    Wilson, Cory; Dryer, Stuart E

    2014-05-01

    Canonical transient receptor potential-6 (TRPC6) channels have been implicated in the pathogenesis of kidney disease and in the regulation of vascular smooth muscle tone, podocyte function, and a variety of processes in other cell types. The question of whether their gating is intrinsically mechanosensitive has been controversial. In this study we have examined activation of two alleles of TRPC6 transiently expressed in CHO-K1 cells: the wild-type human TRPC6 channel, and TRPC6-N143S, an allele originally identified in a family with autosomal dominant familial focal and segmental glomerulosclerosis (FSGS). We observed that both channel variants carried robust cationic currents that could be evoked by application of membrane-permeable analogs of diacylglycerol (DAG) or by the P2Y receptor agonist ATP. The amplitudes and characteristics of currents evoked by the DAG analog or ATP were indistinguishable in cells expressing the two TRPC6 alleles. By contrast, hypoosmotic stretch evoked robust currents in wild-type TRPC6 channels but had no discernible effect on currents in cells expressing TRPC6-N143S, indicating that the mutant form lacks mechanosensitivity. Coexpression of TRPC6-N143S with wild-type TRPC6 or TRPC3 channels did not alter stretch-evoked responses compared with when TRPC3 channels were expressed by themselves, indicating that TRPC6-N143S does not function as a dominant-negative. These data indicate that mechanical activation and activation evoked by DAG or ATP occur through fundamentally distinct biophysical mechanisms, and they provide support for the hypothesis that protein complexes containing wild-type TRPC6 subunits can be intrinsically mechanosensitive.

  20. Altered glycolipid and glycerophospholipid signaling drive inflammatory cascades in adrenomyeloneuropathy.

    PubMed

    Ruiz, Montserrat; Jové, Mariona; Schlüter, Agatha; Casasnovas, Carlos; Villarroya, Francesc; Guilera, Cristina; Ortega, Francisco J; Naudí, Alba; Pamplona, Reinald; Gimeno, Ramón; Fourcade, Stéphane; Portero-Otín, Manuel; Pujol, Aurora

    2015-12-15

    X-linked adrenomyeloneuropathy (AMN) is an inherited neurometabolic disorder caused by malfunction of the ABCD1 gene, characterized by slowly progressing spastic paraplegia affecting corticospinal tracts, and adrenal insufficiency. AMN is the most common phenotypic manifestation of adrenoleukodystrophy (X-ALD). In some cases, an inflammatory cerebral demyelination occurs associated to poor prognosis in cerebral AMN (cAMN). Though ABCD1 codes for a peroxisomal transporter of very long-chain fatty acids, the molecular mechanisms that govern disease onset and progression, or its transformation to a cerebral, inflammatory demyelinating form, remain largely unknown. Here we used an integrated -omics approach to identify novel biomarkers and altered network dynamic characteristic of, and possibly driving, the disease. We combined an untargeted metabolome assay of plasma and peripheral blood mononuclear cells (PBMC) of AMN patients, which used liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (LC-Q-TOF), with a functional genomics analysis of spinal cords of Abcd1(-) mouse. The results uncovered altered nodes in lipid-driven proinflammatory cascades, such as glycosphingolipid and glycerophospholipid synthesis, governed by the β-1,4-galactosyltransferase (B4GALT6), the phospholipase 2γ (PLA2G4C) and the choline/ethanolamine phosphotransferase (CEPT1) enzymes. Confirmatory investigations revealed a non-classic, inflammatory profile, consisting on the one hand of raised plasma levels of several eicosanoids derived from arachidonic acid through PLA2G4C activity, together with also the proinflammatory cytokines IL6, IL8, MCP-1 and tumor necrosis factor-α. In contrast, we detected a more protective, Th2-shifted response in PBMC. Thus, our findings illustrate a previously unreported connection between ABCD1 dysfunction, glyco- and glycerolipid-driven inflammatory signaling and a fine-tuned inflammatory response underlying a disease considered non-inflammatory.

  1. PKCθ activation in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors is needed for stimulation of numerous important cellular signaling cascades.

    PubMed

    Sancho, Veronica; Berna, Marc J; Thill, Michelle; Jensen, R T

    2011-12-01

    The novel PKCθ isoform is highly expressed in T-cells, brain and skeletal muscle and originally thought to have a restricted distribution. It has been extensively studied in T-cells and shown to be important for apoptosis, T-cell activation and proliferation. Recent studies showed its presence in other tissues and importance in insulin signaling, lung surfactant secretion, intestinal barrier permeability, platelet and mast-cell functions. However, little information is available for PKCθ activation by gastrointestinal (GI) hormones/neurotransmitters and growth factors. In the present study we used rat pancreatic acinar cells to explore their ability to activate PKCθ and the possible interactions with important cellular mediators of their actions. Particular attention was paid to cholecystokinin (CCK), a physiological regulator of pancreatic function and important in pathological processes affecting acinar function, like pancreatitis. PKCθ-protein/mRNA was present in the pancreatic acini, and T538-PKCθ phosphorylation/activation was stimulated only by hormones/neurotransmitters activating phospholipase C. PKCθ was activated in time- and dose-related manner by CCK, mediated 30% by high-affinity CCK(A)-receptor activation. CCK stimulated PKCθ translocation from cytosol to membrane. PKCθ inhibition (by pseudostrate-inhibitor or dominant negative) inhibited CCK- and TPA-stimulation of PKD, Src, RafC, PYK2, p125(FAK) and IKKα/β, but not basal/stimulated enzyme secretion. Also CCK- and TPA-induced PKCθ activation produced an increment in PKCθ's direct association with AKT, RafA, RafC and Lyn. These results show for the first time the PKCθ presence in pancreatic acinar cells, its activation by some GI hormones/neurotransmitters and involvement in important cell signaling pathways mediating physiological responses (enzyme secretion, proliferation, apoptosis, cytokine expression, and pathological responses like pancreatitis and cancer growth).

  2. PKCθ activation in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors is needed for stimulation of numerous important cellular signaling cascades

    PubMed Central

    Sancho, Veronica; Berna, Marc J.; Thill, Michelle; Jensen, R. T.

    2011-01-01

    The novel PKCθ isoform is highly expressed in T-cells, brain and skeletal muscle and originally thought to have a restricted distribution. It has been extensively studied in T-cells and shown to be important for apoptosis, T-cell activation and proliferation. Recent studies showed its presence in other tissues and importance in insulin signaling, lung surfactant secretion, intestinal barrier permeability, platelet and mast-cell functions. However, little information is available for PKCθ activation by gastrointestinal(GI) hormones/neurotransmitters and growth factors. In the present study we used rat pancreatic acinar cells to explore their ability to activate PKCθ and the possible interactions with important cellular mediators of their actions. Particular attention was paid to cholecystokinin(CCK), a physiological regulator of pancreatic function and important in pathological processes affecting acinar function, like pancreatitis. PKCθ-protein/mRNA were present in the pancreatic acini, and T538-PKCθ phosphorylation/activation was stimulated only by hormones/neurotransmitters activating phospholipase C. PKCθ was activated in time- and dose-related manner by CCK, mediated 30% by high-affinity CCKA-receptor activation. CCK stimulated PKCθ translocation from cytosol to membrane. PKCθ inhibition (by pseudostrate-inhibitor or dominant negative) inhibited CCK- and TPA-stimulation of PKD, Src, RafC, PYK2, p125FAK and IKKα/β, but not basal/stimulated enzyme secretion. Also CCK- and TPA-induced PKCθ activation produced an increment in PKCθ’s direct association with AKT, RafA, RafC and Lyn. These results show for the first time PKCθ presence in pancreatic acinar cells, its activation by some GI hormones/neurotransmitters and involvement in important cell signaling pathways mediating physiological responses (enzyme secretion, proliferation, apoptosis, cytokine expression, and pathological responses like pancreatitis and cancer growth). PMID:21810446

  3. Alternate transcription of the Toll-like receptor signaling cascade

    PubMed Central

    Wells, Christine A; Chalk, Alistair M; Forrest, Alistair; Taylor, Darrin; Waddell, Nic; Schroder, Kate; Himes, S Roy; Faulkner, Geoffrey; Lo, Sandra; Kasukawa, Takeya; Kawaji, Hideya; Kai, Chikatoshi; Kawai, Jun; Katayama, Shintaro; Carninci, Piero; Hayashizaki, Yoshihide; Hume, David A; Grimmond, Sean M

    2006-01-01

    Background Alternate splicing of key signaling molecules in the Toll-like receptor (Tlr) cascade has been shown to dramatically alter the signaling capacity of inflammatory cells, but it is not known how common this mechanism is. We provide transcriptional evidence of widespread alternate splicing in the Toll-like receptor signaling pathway, derived from a systematic analysis of the FANTOM3 mouse data set. Functional annotation of variant proteins was assessed in light of inflammatory signaling in mouse primary macrophages, and the expression of each variant transcript was assessed by splicing arrays. Results A total of 256 variant transcripts were identified, including novel variants of Tlr4, Ticam1, Tollip, Rac1, Irak1, 2 and 4, Mapk14/p38, Atf2 and Stat1. The expression of variant transcripts was assessed using custom-designed splicing arrays. We functionally tested the expression of Tlr4 transcripts under a range of cytokine conditions via northern and quantitative real-time polymerase chain reaction. The effects of variant Mapk14/p38 protein expression on macrophage survival were demonstrated. Conclusion Members of the Toll-like receptor signaling pathway are highly alternatively spliced, producing a large number of novel proteins with the potential to functionally alter inflammatory outcomes. These variants are expressed in primary mouse macrophages in response to inflammatory mediators such as interferon-γ and lipopolysaccharide. Our data suggest a surprisingly common role for variant proteins in diversification/repression of inflammatory signaling. PMID:16507160

  4. Oxidized LDL activates blood platelets through CD36/NOX2-mediated inhibition of the cGMP/protein kinase G signaling cascade.

    PubMed

    Magwenzi, Simbarashe; Woodward, Casey; Wraith, Katie S; Aburima, Ahmed; Raslan, Zaher; Jones, Huw; McNeil, Catriona; Wheatcroft, Stephen; Yuldasheva, Nadira; Febbriao, Maria; Kearney, Mark; Naseem, Khalid M

    2015-04-23

    Oxidized low-density lipoprotein (oxLDL) promotes unregulated platelet activation in dyslipidemic disorders. Although oxLDL stimulates activatory signaling, it is unclear how these events drive accelerated thrombosis. Here, we describe a mechanism for oxLDL-mediated platelet hyperactivity that requires generation of reactive oxygen species (ROS). Under arterial flow, oxLDL triggered sustained generation of platelet intracellular ROS, which was blocked by CD36 inhibitors, mimicked by CD36-specific oxidized phospholipids, and ablated in CD36(-/-) murine platelets. oxLDL-induced ROS generation was blocked by the reduced NAD phosphate oxidase 2 (NOX2) inhibitor, gp91ds-tat, and absent in NOX2(-/-) mice. The synthesis of ROS by oxLDL/CD36 required Src-family kinases and protein kinase C (PKC)-dependent phosphorylation and activation of NOX2. In functional assays, oxLDL abolished guanosine 3',5'-cyclic monophosphate (cGMP)-mediated signaling and inhibited platelet aggregation and arrest under flow. This was prevented by either pharmacologic inhibition of NOX2 in human platelets or genetic ablation of NOX2 in murine platelets. Platelets from hyperlipidemic mice were also found to have a diminished sensitivity to cGMP when tested ex vivo, a phenotype that was corrected by infusion of gp91ds-tat into the mice. This study demonstrates that oxLDL and hyperlipidemia stimulate the generation of NOX2-derived ROS through a CD36-PKC pathway and may promote platelet hyperactivity through modulation of cGMP signaling.

  5. Downscaling the Analysis of Complex Transmembrane Signaling Cascades to Closed Attoliter Volumes

    PubMed Central

    Grasso, Luigino; Wyss, Romain; Piguet, Joachim; Werner, Michael; Hassaïne, Ghérici; Hovius, Ruud; Vogel, Horst

    2013-01-01

    Cellular signaling is classically investigated by measuring optical or electrical properties of single or populations of living cells. Here we show that ligand binding to cell surface receptors and subsequent activation of signaling cascades can be monitored in single, (sub-)micrometer sized native vesicles with single-molecule sensitivity. The vesicles are derived from live mammalian cells using chemicals or optical tweezers. They comprise parts of a cell’s plasma membrane and cytosol and represent the smallest autonomous containers performing cellular signaling reactions thus functioning like minimized cells. Using fluorescence microscopies, we measured in individual vesicles the different steps of G-protein-coupled receptor mediated signaling like ligand binding to receptors, subsequent G-protein activation and finally arrestin translocation indicating receptor deactivation. Observing cellular signaling reactions in individual vesicles opens the door for downscaling bioanalysis of cellular functions to the attoliter range, multiplexing single cell analysis, and investigating receptor mediated signaling in multiarray format. PMID:23940670

  6. Flow-Dependent Mass Transfer May Trigger Endothelial Signaling Cascades

    PubMed Central

    Vandrangi, Prashanthi; Sosa, Martha; Shyy, John Y.-J.; Rodgers, Victor G. J.

    2012-01-01

    It is well known that fluid mechanical forces directly impact endothelial signaling pathways. But while this general observation is clear, less apparent are the underlying mechanisms that initiate these critical signaling processes. This is because fluid mechanical forces can offer a direct mechanical input to possible mechanotransducers as well as alter critical mass transport characteristics (i.e., concentration gradients) of a host of chemical stimuli present in the blood stream. However, it has recently been accepted that mechanotransduction (direct mechanical force input), and not mass transfer, is the fundamental mechanism for many hemodynamic force-modulated endothelial signaling pathways and their downstream gene products. This conclusion has been largely based, indirectly, on accepted criteria that correlate signaling behavior and shear rate and shear stress, relative to changes in viscosity. However, in this work, we investigate the negative control for these criteria. Here we computationally and experimentally subject mass-transfer limited systems, independent of mechanotransduction, to the purported criteria. The results showed that the negative control (mass-transfer limited system) produced the same trends that have been used to identify mechanotransduction-dominant systems. Thus, the widely used viscosity-related shear stress and shear rate criteria are insufficient in determining mechanotransduction-dominant systems. Thus, research should continue to consider the importance of mass transfer in triggering signaling cascades. PMID:22558132

  7. Involvement of phospholipase D and NADPH-oxidase in salicylic acid signaling cascade.

    PubMed

    Kalachova, Tetiana; Iakovenko, Oksana; Kretinin, Sergii; Kravets, Volodymyr

    2013-05-01

    Salicylic acid is associated with the primary defense responses to biotic stress and formation of systemic acquired resistance. However, molecular mechanisms of early cell reactions to phytohormone application are currently undisclosed. The present study investigates the participation of phospholipase D and NADPH-oxidase in salicylic acid signal transduction cascade. The activation of lipid signaling enzymes within 15 min of salicylic acid application was shown in Arabidopsis thaliana plants by measuring the phosphatidic acid accumulation. Adding of primary alcohol (1-butanol) to the incubation medium led to phosphatidylbutanol accumulation as a result of phospholipase D (PLD) action in wild-type and NADPH-oxidase RbohD deficient plants. Salicylic acid induced rapid increase in NADPH-oxidase activity in histochemical assay with nitroblue tetrazolium but the reaction was not observed in presence of 1-butanol and NADPH-oxidase inhibitor diphenylene iodide (DPI). The further physiological effect of salicylic acid and inhibitory analysis of the signaling cascade were made in the guard cell model. Stomatal closure induced by salicylic acid was inhibited by 1-butanol and DPI treatment. rbohD transgenic plants showed impaired stomatal reaction upon phytohormone effect, while the reaction to H2O2 did not differ from that of wild-type plants. Thus a key role of NADPH-oxidase D-isoform in the process of stomatal closure in response to salicylic acid has been postulated. It has enabled to predict a cascade implication of PLD and NADPH oxidase to salicylic acid signaling pathway.

  8. Cadmium and cellular signaling cascades: To be or not to be?

    SciTech Connect

    Thevenod, Frank

    2009-08-01

    The cellular effects of the toxic metal cadmium (Cd) are manifold. A large proportion of the cellular reactions affected by ionic Cd{sup 2+} are mediated by cellular signaling cascades. The aim of this review is to provide a principal understanding of the known physiological signaling cascades, which are recruited by Cd{sup 2+}, and to highlight the fact that Cd{sup 2+}, similarly to other toxic metals, disrupts physiological signal transduction. In principle, second messengers are generated at the time of receptor activation, are short-lived, and act specifically in space and time through non-covalent binding on effectors to transiently alter their activity. Signaling dysregulation induced by Cd{sup 2+} is reflected by a permanent disruption of transducing modules, resulting in low and/or elevated and constant levels of second messengers, which overwhelm the control mechanisms of signaling. This disturbs physiological cellular functions, gene transcription and regulation and may result in cell death and/or stress-induced adaptation and survival as well as carcinogenesis. The impact of Cd{sup 2+} on Ca{sup 2+}-, cAMP-, NO-, ROS-, MAP-kinase-, PKB/Akt-, nuclear factor-kappa B-, and developmental signaling is critically discussed. The hierarchical as well as cooperative and integrative character of signaling cascades activated by Cd{sup 2+} is illustrated in the kidney proximal tubule, a major target of Cd{sup 2+} toxicity. This review also aspires to pinpoint new avenues of research that may contribute to a more differentiated view of the complex mechanisms underlying Cd{sup 2+} toxicity in target tissues and eventually lead to rationales and strategies for prevention and therapy of Cd{sup 2+} toxicity.

  9. Activation of cGMP-Dependent Protein Kinase Stimulates Cardiac ATP-Sensitive Potassium Channels via a ROS/Calmodulin/CaMKII Signaling Cascade

    PubMed Central

    Chai, Yongping; Zhang, Dai-Min; Lin, Yu-Fung

    2011-01-01

    Background Cyclic GMP (cGMP)-dependent protein kinase (PKG) is recognized as an important signaling component in diverse cell types. PKG may influence the function of cardiac ATP-sensitive potassium (KATP) channels, an ion channel critical for stress adaptation in the heart; however, the underlying mechanism remains largely unknown. The present study was designed to address this issue. Methods and Findings Single-channel recordings of cardiac KATP channels were performed in both cell-attached and inside-out patch configurations using transfected human embryonic kidney (HEK)293 cells and rabbit ventricular cardiomyocytes. We found that Kir6.2/SUR2A (the cardiac-type KATP) channels were activated by cGMP-selective phosphodiesterase inhibitor zaprinast in a concentration-dependent manner in cell-attached patches obtained from HEK293 cells, an effect mimicked by the membrane-permeable cGMP analog 8-bromo-cGMP whereas abolished by selective PKG inhibitors. Intriguingly, direct application of PKG moderately reduced rather than augmented Kir6.2/SUR2A single-channel currents in excised, inside-out patches. Moreover, PKG stimulation of Kir6.2/SUR2A channels in intact cells was abrogated by ROS/H2O2 scavenging, antagonism of calmodulin, and blockade of calcium/calmodulin-dependent protein kinase II (CaMKII), respectively. Exogenous H2O2 also concentration-dependently stimulated Kir6.2/SUR2A channels in intact cells, and its effect was prevented by inhibition of calmodulin or CaMKII. PKG stimulation of KATP channels was confirmed in intact ventricular cardiomyocytes, which was ROS- and CaMKII-dependent. Kinetically, PKG appeared to stimulate these channels by destabilizing the longest closed state while stabilizing the long open state and facilitating opening transitions. Conclusion The present study provides novel evidence that PKG exerts dual regulation of cardiac KATP channels, including marked stimulation resulting from intracellular signaling mediated by ROS (H2O2 in

  10. Signal-to-noise performance analysis of streak tube imaging lidar systems. I. Cascaded model.

    PubMed

    Yang, Hongru; Wu, Lei; Wang, Xiaopeng; Chen, Chao; Yu, Bing; Yang, Bin; Yuan, Liang; Wu, Lipeng; Xue, Zhanli; Li, Gaoping; Wu, Baoning

    2012-12-20

    Streak tube imaging lidar (STIL) is an active imaging system using a pulsed laser transmitter and a streak tube receiver to produce 3D range and intensity imagery. The STIL has recently attracted a great deal of interest and attention due to its advantages of wide azimuth field-of-view, high range and angle resolution, and high frame rate. This work investigates the signal-to-noise performance of STIL systems. A theoretical model for characterizing the signal-to-noise performance of the STIL system with an internal or external intensified streak tube receiver is presented, based on the linear cascaded systems theory of signal and noise propagation. The STIL system is decomposed into a series of cascaded imaging chains whose signal and noise transfer properties are described by the general (or the spatial-frequency dependent) noise factors (NFs). Expressions for the general NFs of the cascaded chains (or the main components) in the STIL system are derived. The work presented here is useful for the design and evaluation of STIL systems.

  11. Safrole induces cell death in human tongue squamous cancer SCC-4 cells through mitochondria-dependent caspase activation cascade apoptotic signaling pathways.

    PubMed

    Yu, Fu-Shun; Huang, An-Cheng; Yang, Jai-Sing; Yu, Chun-Shu; Lu, Chi-Cheng; Chiang, Jo-Hua; Chiu, Chang-Fang; Chung, Jing-Gung

    2012-07-01

    Safrole is one of important food-borne phytotoxin that exhibits in many natural products such as oil of sassafras and spices such as anise, basil, nutmeg, and pepper. This study was performed to elucidate safrole-induced apoptosis in human tongue squamous carcinoma SCC-4 cells. The effect of safrole on apoptosis was measured by flow cytometry and DAPI staining and its regulatory molecules were studied by Western blotting analysis. Safrole-induced apoptosis was accompanied with up-regulation of the protein expression of Bax and Bid and down-regulation of the protein levels of Bcl-2 (up-regulation of the ratio of Bax/Bcl-2), resulting in cytochrome c release, promoted Apaf-1 level and sequential activation of caspase-9 and caspase-3 in a time-dependent manner. We also used real-time PCR to show safrole promoted the mRNA expressions of caspase-3, -8, and -9 in SCC-4 cells. These findings indicate that safrole has a cytotoxic effect in human tongue squamous carcinoma SCC-4 cells by inducing apoptosis. The induction of apoptosis of SCC-4 cells by safrole is involved in mitochondria- and caspase-dependent signal pathways.

  12. Oncogenic Kit controls neoplastic mast cell growth through a Stat5/PI3-kinase signaling cascade

    PubMed Central

    Harir, Noria; Boudot, Cédric; Friedbichler, Katrin; Sonneck, Karoline; Kondo, Rudin; Martin-Lannerée, Séverine; Kenner, Lukas; Kerenyi, Marc; Yahiaoui, Saliha; Gouilleux-Gruart, Valérie; Gondry, Jean; Bénit, Laurence; Dusanter-Fourt, Isabelle; Lassoued, Kaïss; Valent, Peter

    2008-01-01

    The D816V-mutated variant of Kit triggers multiple signaling pathways and is considered essential for malignant transformation in mast cell (MC) neoplasms. We here describe that constitutive activation of the Stat5-PI3K-Akt-cascade controls neoplastic MC development. Retrovirally transduced active Stat5 (cS5F) was found to trigger PI3K and Akt activation, and to transform murine bone marrow progenitors into tissue-infiltrating MCs. Primary neoplastic Kit D816V+ MCs in patients with mastocytosis also displayed activated Stat5, which was found to localize to the cytoplasm and to form a signaling complex with PI3K, with consecutive Akt activation. Finally, the knock-down of either Stat5 or Akt activity resulted in growth inhibition of neoplastic Kit D816V+ MCs. These data suggest that a downstream Stat5-PI3K-Akt signaling cascade is essential for Kit D816V-mediated growth and survival of neoplastic MCs. PMID:18579792

  13. Human metapneumovirus inhibits the IL-6-induced JAK/STAT3 signalling cascade in airway epithelium.

    PubMed

    Mitzel, Dana N; Jaramillo, Richard J; Stout-Delgado, Heather; Senft, Albert P; Harrod, Kevin S

    2014-01-01

    The host cytokine IL-6 plays an important role in host defence and prevention of lung injury from various pathogens, making IL-6 an important mediator in the host's susceptibility to respiratory infections. The cellular response to IL-6 is mediated through a Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signal transduction pathway. Human metapneumovirus (hMPV) is an important causative agent of viral respiratory infections known to inhibit the IFN-mediated activation of STAT1. However, little is known about the interactions between this virus and other STAT signalling cascades. Herein, we showed that hMPV can attenuate the IL-6-mediated JAK/STAT3 signalling cascade in lung epithelial cells. HMPV inhibited a key event in this pathway by impeding the phosphorylation and nuclear translocation of STAT3 in A549 cells and in primary normal human bronchial epithelial cells. Further studies established that hMPV interrupted the IL-6-induced JAK/STAT pathway early in the signal transduction pathway by blocking the phosphorylation of JAK2. By antagonizing the IL-6-mediated JAK/STAT3 pathway, hMPV perturbed the expression of IL-6-inducible genes important for apoptosis, cell differentiation and growth. Infection with hMPV also differentially regulated the effects of IL-6 on apoptosis. Thus, hMPV regulation of these genes could usurp the protective roles of IL-6, and these data provide insight into an important element of viral pathogenesis.

  14. Activation of p53/p21/PUMA alliance and disruption of PI-3/Akt in multimodal targeting of apoptotic signaling cascades in cervical cancer cells by a pentacyclic triterpenediol from Boswellia serrata.

    PubMed

    Bhushan, Shashi; Malik, Fayaz; Kumar, Ajay; Isher, Harpreet Kaur; Kaur, Indu Pal; Taneja, Subhash Chandra; Singh, Jaswant

    2009-12-01

    Cervical carcinoma is a growing menace to women health worldwide. This study reports the apoptotic cell death in human cervical cancer HeLa and SiHa cells by a pentacyclic triterpenediol (TPD) from Boswellia serrata by a mechanism different from reported in HL-60 cells. It caused oxidative stress by early generation of nitric oxide and reactive oxygen species that robustly up regulated time-dependent expression of p53/p21/PUMA while conversely abrogating phosphatidylinositol-3-kinase (PI3K)/Akt pathways in parallel. TPD also decreased the expression of PI3K/pAkt, ERK1/2, NF-kappaB/Akt signaling cascades which coordinately contribute to cancer cell survival through these distinct pathways. The tumor suppressor p53 pathway predominantly activated by TPD further up-regulated PUMA, which concomitantly decreased the Bcl-2 level, caused mitochondrial membrane potential loss with attendant translocation of Bax and drp1 to mitochondria and release of pro-apoptotic factors such as cytochrome c and Smac/Diablo to cytosol leading to caspases-3 and -9 activation. In addition both the phospho-p53 and p21 were found to accumulate heavily in the nuclear fraction with attendant decrease in topoisomarase II and survivin levels. On the contrary, TPD did not affect the extrinsic signaling transduction pathway effectively through apical death receptors. Interestingly, N-acetyl cysteine, ascorbate and s-methylisothiourea (sMIT) rescued cells significantly from TPD induced DNA damage and caspases activation. TPD may thus find usefulness in managing and treating cervical cancer.

  15. An Nfic-hedgehog signaling cascade regulates tooth root development

    PubMed Central

    Liu, Yang; Feng, Jifan; Li, Jingyuan; Zhao, Hu; Ho, Thach-Vu; Chai, Yang

    2015-01-01

    Coordination between the Hertwig's epithelial root sheath (HERS) and apical papilla (AP) is crucial for proper tooth root development. The hedgehog (Hh) signaling pathway and Nfic are both involved in tooth root development; however, their relationship has yet to be elucidated. Here, we establish a timecourse of mouse molar root development by histological staining of sections, and we demonstrate that Hh signaling is active before and during root development in the AP and HERS using Gli1 reporter mice. The proper pattern of Hh signaling activity in the AP is crucial for the proliferation of dental mesenchymal cells, because either inhibition with Hh inhibitors or constitutive activation of Hh signaling activity in transgenic mice leads to decreased proliferation in the AP and shorter roots. Moreover, Hh activity is elevated in Nfic−/− mice, a root defect model, whereas RNA sequencing and in situ hybridization show that the Hh attenuator Hhip is downregulated. ChIP and RNAscope analyses suggest that Nfic binds to the promoter region of Hhip. Treatment of Nfic−/− mice with Hh inhibitor partially restores cell proliferation, AP growth and root development. Taken together, our results demonstrate that an Nfic-Hhip-Hh signaling pathway is crucial for apical papilla growth and proper root formation. This discovery provides insight into the molecular mechanisms regulating tooth root development. PMID:26293299

  16. Hypoxia Signaling Cascade for Erythropoietin Production in Hepatocytes.

    PubMed

    Tojo, Yutaka; Sekine, Hiroki; Hirano, Ikuo; Pan, Xiaoqing; Souma, Tomokazu; Tsujita, Tadayuki; Kawaguchi, Shin-ichi; Takeda, Norihiko; Takeda, Kotaro; Fong, Guo-Hua; Dan, Takashi; Ichinose, Masakazu; Miyata, Toshio; Yamamoto, Masayuki; Suzuki, Norio

    2015-08-01

    Erythropoietin (Epo) is produced in the kidney and liver in a hypoxia-inducible manner via the activation of hypoxia-inducible transcription factors (HIFs) to maintain oxygen homeostasis. Accelerating Epo production in hepatocytes is one plausible therapeutic strategy for treating anemia caused by kidney diseases. To elucidate the regulatory mechanisms of hepatic Epo production, we analyzed mouse lines harboring liver-specific deletions of genes encoding HIF-prolyl-hydroxylase isoforms (PHD1, PHD2, and PHD3) that mediate the inactivation of HIF1α and HIF2α under normal oxygen conditions. The loss of all PHD isoforms results in both polycythemia, which is caused by Epo overproduction, and fatty livers. We found that deleting any combination of two PHD isoforms induces polycythemia without steatosis complications, whereas the deletion of a single isoform induces no apparent phenotype. Polycythemia is prevented by the loss of either HIF2α or the hepatocyte-specific Epo gene enhancer (EpoHE). Chromatin analyses show that the histones around EpoHE dissociate from the nucleosome structure after HIF2α activation. HIF2α also induces the expression of HIF3α, which is involved in the attenuation of Epo production. These results demonstrate that the total amount of PHD activity is more important than the specific function of each isoform for hepatic Epo expression regulated by a PHD-HIF2α-EpoHE cascade in vivo.

  17. Antidepressant-Like Effects of GM1 Ganglioside Involving the BDNF Signaling Cascade in Mice

    PubMed Central

    Song, Lu; Wang, Cheng-Niu; Zhang, Wei; Huang, Chao; Tong, Li-Juan

    2016-01-01

    Background: Depression is a serious psychiatric disorder that easily causes physical impairments and a high suicide rate. Monosialotetrahexosylganglioside is a crucial ganglioside for the central nervous system and has been reported to affect the function of the brain derived neurotrophic factor system. This study is aimed to evaluate whether monosialotetrahexosylganglioside has antidepressant-like effects. Methods: Antidepressant-like effects of monosialotetrahexosylganglioside were assessed in the chronic social defeat stress model of depression, and various behavioral tests were performed. Changes in the brain derived neurotrophic factor signaling pathway after chronic social defeat stress and monosialotetrahexosylganglioside treatment were also investigated. A tryptophan hydroxylase inhibitor and brain derived neurotrophic factor signaling inhibitors were used to determine the antidepressant mechanisms of monosialotetrahexosylganglioside. Results: Monosialotetrahexosylganglioside administration significantly reversed the chronic social defeat stress-induced reduction of sucrose preference and social interaction in mice and also prevented the increased immobility time in the forced swim test and tail suspension test. In addition, monosialotetrahexosylganglioside completely ameliorated the stress-induced dysfunction of brain derived neurotrophic factor signaling cascade in the hippocampus and medial prefrontal cortex, 2 regions closely involved in the pathophysiology of depression. Furthermore, the usage of brain derived neurotrophic factor signaling cascade inhibitors, K252a and anti-brain derived neurotrophic factor antibody, each abolished the antidepressant-like effects of monosialotetrahexosylganglioside, while the usage of a serotonin system inhibitor did not. Conclusions: Taken together, our findings suggest that monosialotetrahexosylganglioside indeed has antidepressant-like effects, and these effects were mediated through the activation of brain derived

  18. AMP-activated protein kinase--an archetypal protein kinase cascade?

    PubMed

    Hardie, D G; MacKintosh, R W

    1992-10-01

    Mammalian AMP-activated protein kinase is the central component of a protein kinase cascade which inactivates three key enzymes involved in the synthesis or release of free fatty acids and cholesterol inside the cell. The kinase cascade is activated by elevation of AMP, and perhaps also by fatty acid and cholesterol metabolites. The system may fulfil a protective function, preventing damage caused by depletion of ATP or excessive intracellular release of free lipids, a type of stress response. Recent evidence suggests that it may have been in existence for at least a billion years, since a very similar protein kinase cascade is present in higher plants. This system therefore represents an early eukaryotic protein kinase cascade, which is unique in that it is regulated by intracellular metabolites rather than extracellular signals or cell cycle events.

  19. FGF19 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells by modulating the GSK3β/β- catenin signaling cascade via FGFR4 activation

    PubMed Central

    Zhao, Huakan; Lv, Fenglin; Liang, Guizhao; Huang, Xiaobin; Wu, Gang; Zhang, Wenfa; Yu, Le; Shi, Lei; Teng, Yong

    2016-01-01

    Compelling evidence suggests that the epithelial-mesenchymal transition (EMT) correlates with aggressiveness of tumors and poor survival. FGF19 has been shown to be involved in EMT in cholangiocarcinoma and colorectal cancer, however, molecular mechanisms underlying FGF19-induced EMT process in hepatocellular carcinoma (HCC) remain largely unknown. Here, we show the expression of FGF19 is significantly elevated and negatively associated with the expression of E-cadherin in HCC tissues and cell lines. Ectopic FGF19 expression promotes EMT and invasion in epithelial-like HCC cells through repression of E-cadherin expression, whereas FGF19 knockdown enhances E-cadherin expression and hence diminishes EMT traits in mesenchymal-like HCC cells, suggesting FGF19 exerts its tumor progressing functions as an EMT inducer. Interestingly, depletion of FGF19 cannot abrogate EMT traits in the presence of GSK3β inhibitors. Furthermore, FGF19-induced EMT can be markedly attenuated when FGFR4 is knocked out. These observations clearly indicate that FGFR4/GSK3β/β-catenin axis may play a pivotal role in FGF19-induced EMT in HCC cells. As FGF19 and its specific receptor FGFR4 are frequently amplified in HCC cells, selective targeting this signaling node may lend insights into a potential effective therapeutic approach for blocking metastasis of HCC. PMID:26498355

  20. FGF19 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells by modulating the GSK3β/β- catenin signaling cascade via FGFR4 activation.

    PubMed

    Zhao, Huakan; Lv, Fenglin; Liang, Guizhao; Huang, Xiaobin; Wu, Gang; Zhang, Wenfa; Yu, Le; Shi, Lei; Teng, Yong

    2016-03-22

    Compelling evidence suggests that the epithelial-mesenchymal transition (EMT) correlates with aggressiveness of tumors and poor survival. FGF19 has been shown to be involved in EMT in cholangiocarcinoma and colorectal cancer, however, molecular mechanisms underlying FGF19-induced EMT process in hepatocellular carcinoma (HCC) remain largely unknown. Here, we show the expression of FGF19 is significantly elevated and negatively associated with the expression of E-cadherin in HCC tissues and cell lines. Ectopic FGF19 expression promotes EMT and invasion in epithelial-like HCC cells through repression of E-cadherin expression, whereas FGF19 knockdown enhances E-cadherin expression and hence diminishes EMT traits in mesenchymal-like HCC cells, suggesting FGF19 exerts its tumor progressing functions as an EMT inducer. Interestingly, depletion of FGF19 cannot abrogate EMT traits in the presence of GSK3β inhibitors. Furthermore, FGF19-induced EMT can be markedly attenuated when FGFR4 is knocked out. These observations clearly indicate that FGFR4/GSK3β/β-catenin axis may play a pivotal role in FGF19-induced EMT in HCC cells. As FGF19 and its specific receptor FGFR4 are frequently amplified in HCC cells, selective targeting this signaling node may lend insights into a potential effective therapeutic approach for blocking metastasis of HCC.

  1. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades

    SciTech Connect

    Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang; Li, Haowei; Ouyang, Zhengxiao; Wu, Chuanlong; Liu, Guangwang; Fan, Qiming; Tang, Tingting; Qin, An; Dai, Kerong

    2014-01-10

    Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiation and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases.

  2. KDM4B is a master regulator of the estrogen receptor signalling cascade.

    PubMed

    Gaughan, Luke; Stockley, Jacqueline; Coffey, Kelly; O'Neill, Daniel; Jones, Dominic L; Wade, Mark; Wright, Jamie; Moore, Madeleine; Tse, Sandy; Rogerson, Lynsey; Robson, Craig N

    2013-08-01

    The importance of the estrogen receptor (ER) in breast cancer (BCa) development makes it a prominent target for therapy. Current treatments, however, have limited effectiveness, and hence the definition of new therapeutic targets is vital. The ER is a member of the nuclear hormone receptor superfamily of transcription factors that requires co-regulator proteins for complete regulation. Emerging evidence has implicated a small number of histone methyltransferase (HMT) and histone demethylase (HDM) enzymes as regulators of ER signalling, including the histone H3 lysine 9 tri-/di-methyl HDM enzyme KDM4B. Two recent independent reports have demonstrated that KDM4B is required for ER-mediated transcription and depletion of the enzyme attenuates BCa growth in vitro and in vivo. Here we show that KDM4B has an overarching regulatory role in the ER signalling cascade by controlling expression of the ER and FOXA1 genes, two critical components for maintenance of the estrogen-dependent phenotype. KDM4B interacts with the transcription factor GATA-3 in BCa cell lines and directly co-activates GATA-3 activity in reporter-based experiments. Moreover, we reveal that KDM4B recruitment and demethylation of repressive H3K9me3 marks within upstream regulatory regions of the ER gene permits binding of GATA-3 to drive receptor expression. Ultimately, our findings confirm the importance of KDM4B within the ER signalling cascade and as a potential therapeutic target for BCa treatment.

  3. Maternal liver damage delays meiotic resumption in bovine oocytes through impairment of signalling cascades originated from low p38MAPK activity in cumulus cells.

    PubMed

    Tanaka, H; Takeo, S; Monji, Y; Kuwayama, T; Iwata, H

    2014-02-01

    The main objective of the present study is to investigate the molecular mechanism underlying the delay in progression of nuclear maturation in oocytes derived from cows with damaged livers (DL cows), which was previously reported. In present study, delayed progression of nuclear maturation of oocytes derived from DL cows relative to oocytes derived from cows with healthy livers (HL cows) was accompanied by low maturation promoting factor (MPF) activity (0.43 fold, p < 0.05). When cumulus cells were removed from cumulus-oocyte complexes and the denuded oocytes were cultured, there was no difference in the progression of nuclear maturation between the two liver conditions. In addition, gap junctional communication (GJC) between the oocyte and cumulus cells was higher in DL cows than in HL cows at 3 and 7 h of in vitro maturation (IVM) (p < 0.05). Supplementation of IVM medium with epidermal growth factor (EGF) increased the ratio of germinal vesicle breakdown (GVBD) of oocytes derived from DL cows to the level seen in oocytes derived from HL cows. Additionally, the level of p38MAPK phosphorylation at 0 h of IVM was significantly lower in cumulus cells derived from DL cows than in cumulus cells derived from HL cows (HL cows, 53.5%; DL cows, 28.9%; p < 0.05). Thus, a low level of p38MAPK phosphorylation in cumulus cells induced slow GJC closure between oocyte and cumulus cells, which resulted in slow meiotic maturation of oocytes derived from DL cows.

  4. Ethylene signaling pathway and MAPK cascades are required for AAL toxin-induced programmed cell death.

    PubMed

    Mase, Keisuke; Mizuno, Takahito; Ishihama, Nobuaki; Fujii, Takayuki; Mori, Hitoshi; Kodama, Motoichiro; Yoshioka, Hirofumi

    2012-08-01

    Programmed cell death (PCD), known as hypersensitive response cell death, has an important role in plant defense response. The signaling pathway of PCD remains unknown. We employed AAL toxin and Nicotiana umbratica to analysis plant PCD. AAL toxin is a pathogenicity factor of the necrotrophic pathogen Alternaria alternata f. sp. lycopersici. N. umbratica is sensitive to AAL toxin, susceptible to pathogens, and effective in Tobacco rattle virus-based virus-induced gene silencing (VIGS). VIGS analyses indicated that AAL toxin-triggered cell death (ACD) is dependent upon the mitogen-activated protein (MAP) kinase kinase MEK2, which is upstream of both salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK) responsible for ethylene (ET) synthesis. ET treatment of MEK2-silenced N. umbratica re-established ACD. In SIPK- and WIPK-silenced N. umbratica, ACD was compromised and ET accumulation was not observed. However, in contrast to the case of MEK2-silenced plants, ET treatment did not induce cell death in SIPK- and WIPK-silenced plants. This work showed that ET-dependent pathway and MAP kinase cascades are required in ACD. Our results suggested that MEK2-SIPK/WIPK cascades have roles in ET biosynthesis; however, SIPK and WIPK have other roles in ET signaling or another pathway leading to cell death by AAL toxin.

  5. Dopamine Promotes Striatal Neuronal Apoptotic Death via ERK Signaling Cascades

    PubMed Central

    Chen, Jun; Rusnak, Milan; Lombroso, Paul J.; Sidhu, Anita

    2009-01-01

    Although the mechanisms underlying striatal neurodegeneration are poorly understood, we have shown that striatal pathogenesis may be initiated by high synaptic levels of extracellular dopamine (DA). Here we investigated in rat striatal primary neurons the mobilization of the mitogen activated protein kinase (MAPK) signaling pathways after treatment with DA. Instead of observing an elevation of the archetypical pro-cytotoxic MAPKs, p-JNK and p-p38 MAPK, we found that DA, acting through D1 DA receptors, induced a sustained stimulation of the phosphorylated form of extracellular signal-regulated kinase (p-ERK) via a cAMP/PKA/Rap1/B-Raf/MEK pathway. Blockade of D2 DA receptors, β-adrenergic receptors or NMDA receptors with receptor-specific antagonists had no significant effect on this process. Activation of D1 DA receptors and PKA by DA caused phosphorylation and inactivation of the striatal–enriched tyrosine phosphatase (STEP), an important phosphatase for the dephosphorylation and subsequent inactivation of p-ERK in striatum. Interestingly p-ERK was primarily retained in the cytoplasm, with only low amounts translocated to the nucleus. The scaffold protein β-arrestin2 interacted with both p-ERK and D1 DA receptor, triggering the cytosolic retention of p-ERK and inducing striatal neuronal apoptotic death. These data provide unique insight into a novel role of p-ERK in striatal neurodegeneration. PMID:19200235

  6. Kinase Cascades and Ligand-Directed Signaling at the Kappa Opioid Receptor

    PubMed Central

    Bruchas, Michael R.; Chavkin, Charles

    2013-01-01

    Background and Rationale The dynorphin / kappa-opioid receptor (KOR) system has been implicated as a critical component of the stress response. Stress-induced activation of dynorphin-KOR is well-known to produce analgesia, and more recently it has been implicated as a mediator of stress-induced responses including anxiety, depression, and reinstatement of drug seeking. Objective Drugs selectively targeting specific KOR signaling pathways may prove potentially useful as therapeutic treatments for mood and addiction disorders. Results KOR is a member of the seven transmembrane spanning (7TM) G-protein coupled receptor (GPCR) superfamily. KOR activation of pertussis toxin-sensitive G proteins leads to Gαi/o inhibition of adenylyl cyclase production of cAMP and releases Gβγ, which modulates the conductances of Ca+2 and K+ channels. In addition, KOR agonists activate kinase cascades including G-protein coupled Receptor Kinases (GRK) and members of the mitogen-activated protein kinase (MAPK) family: ERK1/2, p38 and JNK. Recent pharmacological data suggests that GPCRs exist as dynamic, multi-conformational protein complexes that can be directed by specific ligands towards distinct signaling pathways. Ligand-induced conformations of KOR that evoke β–arrestin-dependent p38 MAPK activation result in aversion; whereas ligand-induced conformations that activate JNK without activating arrestin produce long-lasting inactivation of KOR signaling. Conclusions In this review, we discuss the current status of KOR signal transduction research and the data that support two novel hypotheses: 1) KOR selective partial agonists that do not efficiently activate p38 MAPK may be useful analgesics without producing the dysphoric or hallucinogenic effects of selective, highly efficacious KOR agonists and 2) KOR antagonists that do not activate JNK may be effective short-acting drugs that may promote stress-resilience. PMID:20401607

  7. Prostate Cancer Stem Cells: Viewing Signaling Cascades at a Finer Resolution.

    PubMed

    Lin, Xiukun; Farooqi, Ammad Ahmad; Qureshi, Muhammad Zahid; Romero, Mirna Azalea; Tabassum, Sobia; Ismail, Muhammad

    2016-06-01

    It is becoming characteristically more understandable that within tumor cells, there lies a sub-population of tumor cells with "stem cell" like properties and remarkable ability of self-renewal. Many features of these self-renewing cells are comparable with normal stem cells and are termed as "cancer stem cells". Accumulating experimentally verified data has started to scratch the surface of spatio-temporally dysregulated intracellular signaling cascades in the biology of prostate cancer stem cells. We partition this multicomponent review into how different signaling cascades operate in cancer stem cells and how bioactive ingredients isolated from natural sources may modulate signaling network.

  8. Hydrogen sulphide in cardiovascular system: A cascade from interaction between sulphur atoms and signalling molecules.

    PubMed

    Wang, Ming-Jie; Cai, Wen-Jie; Zhu, Yi-Chun

    2016-05-15

    As a gasotransmitter, hydrogen sulphide exerts its extensive physiological and pathophysiological effects in mammals. The interaction between sulphur atoms and signalling molecules forms a cascade that modulates cellular functions and homeostasis. In this review, we focus on the signalling mechanism underlying the effect of hydrogen sulphide in the cardiovascular system and metabolism as well as the biological relevance to human diseases.

  9. Cadmium and cellular signaling cascades: interactions between cell death and survival pathways.

    PubMed

    Thévenod, Frank; Lee, Wing-Kee

    2013-10-01

    Cellular stress elicited by the toxic metal Cd(2+) does not coerce the cell into committing to die from the onset. Rather, detoxification and adaptive processes are triggered concurrently, allowing survival until normal function is restored. With high Cd(2+), death pathways predominate. However, if sublethal stress levels affect cells for prolonged periods, as in chronic low Cd(2+) exposure, adaptive and survival mechanisms may deregulate, such that tumorigenesis ensues. Hence, death and malignancy are the two ends of a continuum of cellular responses to Cd(2+), determined by magnitude and duration of Cd(2+) stress. Signaling cascades are the key factors affecting cellular reactions to Cd(2+). This review critically surveys recent literature to outline major features of death and survival signaling pathways as well as their activation, interactions and cross talk in cells exposed to Cd(2+). Under physiological conditions, receptor activation generates 2nd messengers, which are short-lived and act specifically on effectors through their spatial and temporal dynamics to transiently alter effector activity. Cd(2+) recruits physiological 2nd messenger systems, in particular Ca(2+) and reactive oxygen species (ROS), which control key Ca(2+)- and redox-sensitive molecular switches dictating cell function and fate. Severe ROS/Ca(2+) signals activate cell death effectors (ceramides, ASK1-JNK/p38, calpains, caspases) and/or cause irreversible damage to vital organelles, such as mitochondria and endoplasmic reticulum (ER), whereas low localized ROS/Ca(2+) levels act as 2nd messengers promoting cellular adaptation and survival through signal transduction (ERK1/2, PI3K/Akt-PKB) and transcriptional regulators (Ref1-Nrf2, NF-κB, Wnt, AP-1, bestrophin-3). Other cellular proteins and processes targeted by ROS/Ca(2+) (metallothioneins, Bcl-2 proteins, ubiquitin-proteasome system, ER stress-associated unfolded protein response, autophagy, cell cycle) can evoke death or survival

  10. The interplay between discrete noise and nonlinear chemical kinetics in a signal amplification cascade

    NASA Astrophysics Data System (ADS)

    Lan, Yueheng; Papoian, Garegin A.

    2006-10-01

    We used various analytical and numerical techniques to elucidate signal propagation in a small enzymatic cascade which is subjected to external and internal noises. The nonlinear character of catalytic reactions, which underlie protein signal transduction cascades, renders stochastic signaling dynamics in cytosol biochemical networks distinct from the usual description of stochastic dynamics in gene regulatory networks. For a simple two-step enzymatic cascade which underlies many important protein signaling pathways, we demonstrated that the commonly used techniques such as the linear noise approximation and the Langevin equation become inadequate when the number of proteins becomes too low. Consequently, we developed a new analytical approximation, based on mixing the generating function and distribution function approaches, to the solution of the master equation that describes nonlinear chemical signaling kinetics for this important class of biochemical reactions. Our techniques work in a much wider range of protein number fluctuations than the methods used previously. We found that under certain conditions the burst phase noise may be injected into the downstream signaling network dynamics, resulting possibly in unusually large macroscopic fluctuations. In addition to computing first and second moments, which is the goal of commonly used analytical techniques, our new approach provides the full time-dependent probability distributions of the colored non-Gaussian processes in a nonlinear signal transduction cascade.

  11. Engineering modular and tunable genetic amplifiers for scaling transcriptional signals in cascaded gene networks.

    PubMed

    Wang, Baojun; Barahona, Mauricio; Buck, Martin

    2014-08-01

    Synthetic biology aims to control and reprogram signal processing pathways within living cells so as to realize repurposed, beneficial applications. Here we report the design and construction of a set of modular and gain-tunable genetic amplifiers in Escherichia coli capable of amplifying a transcriptional signal with wide tunable-gain control in cascaded gene networks. The devices are engineered using orthogonal genetic components (hrpRS, hrpV and PhrpL) from the hrp (hypersensitive response and pathogenicity) gene regulatory network in Pseudomonas syringae. The amplifiers can linearly scale up to 21-fold the transcriptional input with a large output dynamic range, yet not introducing significant time delay or significant noise during signal amplification. The set of genetic amplifiers achieves different gains and input dynamic ranges by varying the expression levels of the underlying ligand-free activator proteins in the device. As their electronic counterparts, these engineered transcriptional amplifiers can act as fundamental building blocks in the design of biological systems by predictably and dynamically modulating transcriptional signal flows to implement advanced intra- and extra-cellular control functions.

  12. Role of the extracellular signal-regulated kinase (Erk) signal transduction cascade in alpha(2) adrenoceptor-mediated vasoconstriction in porcine palmar lateral vein.

    PubMed

    Roberts, R E

    2001-07-01

    The mechanism of alpha(2) adrenoceptor-mediated vasoconstriction is unknown, but may involve activation of voltage-sensitive calcium channels, and/or a protein tyrosine kinase. Recently the extracellular signal-regulated kinase (Erk) cascade, often an event downstream of tyrosine kinase activation, has been shown to mediate vasoconstriction to a variety of agents. The aim of this present study was to determine the involvement of the Erk signal transduction cascade in alpha(2) adrenoceptor-mediated vasoconstriction, and to confirm the involvement of activation of voltage-sensitive calcium channels, and protein tyrosine kinase. Contractions to the alpha(2) adrenoceptor agonist UK14304 in the porcine palmar lateral vein in vitro were reduced 70 - 80% by the MEK inhibitors PD98059 (10 - 50 microM) and U0126 (10 - 50 microM), indicating the involvement of the Erk signal transduction cascade. Immunoblots also demonstrated an increase in the phosphorylated (activated) form of Erk in palmar lateral vein segments after contraction with UK14304, which was inhibited by PD98059 and U0126. The calcium channel blockers nifedipine and verapamil, or removal of extracellular calcium inhibited UK14304-induced contractions and phosphorylation of Erk, demonstrating the importance of an influx of extracellular calcium. UK14304-induced contractions were inhibited by PP2 (1 - 10 microM), a selective inhibitor of Src tyrosine kinases, but not by PP3, an inactive analogue. PP2 also prevented the phosphorylation of Erk by UK14304. These data demonstrate that alpha(2) adrenoceptor-mediated vasoconstriction in the porcine palmar lateral vein is dependent upon activation of the Erk signal transduction cascade, which is downstream of an influx of extracellular calcium, and activation of Src tyrosine kinases.

  13. Signal amplification in biological and electrical engineering systems: universal role of cascades.

    PubMed

    Grubelnik, Vladimir; Dugonik, Bogdan; Osebik, Davorin; Marhl, Marko

    2009-08-01

    In this paper we compare the cascade mechanisms of signal amplification in biological and electrical engineering systems, and show that they share the capacity to considerably amplify signals, and respond to signal changes both quickly and completely, which effectively preserves the form of the input signal. For biological systems, these characteristics are crucial for efficient and reliable cellular signaling. We show that this highly-efficient biological mechanism of signal amplification that has naturally evolved is mathematically fully equivalent with some man-developed amplifiers, which indicates parallels between biological evolution and successful technology development.

  14. Theoretical analysis of anharmonic coupling and cascading Raman signals observed with femtosecond stimulated Raman spectroscopy.

    PubMed

    Mehlenbacher, Randy D; Lyons, Brendon; Wilson, Kristina C; Du, Yong; McCamant, David W

    2009-12-28

    We present a classical theoretical treatment of a two-dimensional Raman spectroscopy based on the initiation of vibrational coherence with an impulsive Raman pump and subsequent probing by two-pulse femtosecond stimulated Raman spectroscopy (FSRS). The classical model offers an intuitive picture of the molecular dynamics initiated by each laser pulse and the generation of the signal field traveling along the probe wave vector. Previous reports have assigned the observed FSRS signals to anharmonic coupling between the impulsively driven vibration and the higher-frequency vibration observed with FSRS. However, we show that the observed signals are not due to anharmonic coupling, which is shown to be a fifth-order coherent Raman process, but instead due to cascades of coherent Raman signals. Specifically, the observed vibrational sidebands are generated by parallel cascades in which a coherent anti-Stokes or Stokes Raman spectroscopy (i.e., CARS or CSRS) field generated by the coherent coupling of the impulsive pump and the Raman pump pulses participates in a third-order FSRS transition. Additional sequential cascades are discussed that will give rise to cascade artifacts at the fundamental FSRS frequencies. It is shown that the intended fifth-order FSRS signals, generated by an anharmonic coupling mechanism, will produce signals of approximately 10(-4) DeltaOD (change in the optical density). The cascading signals, however, will produce stimulated Raman signal of approximately 10(-2) DeltaOD, as has been observed experimentally. Experiments probing deuterochloroform find significant sidebands of the CCl(3) bend, which has an E type symmetry, shifted from the A(1) type C-D and C-Cl stretching modes, despite the fact that third-order anharmonic coupling between these modes is forbidden by symmetry. Experiments probing a 50:50 mixture of chloroform and d-chloroform find equivalent intensity signals of low-frequency CDCl(3) modes as sidebands shifted from both the C

  15. Compartmentalization of NO signaling cascade in skeletal muscles

    SciTech Connect

    Buchwalow, Igor B. . E-mail: buchwalo@uni-muenster.de; Minin, Evgeny A.; Samoilova, Vera E.; Boecker, Werner; Wellner, Maren; Schmitz, Wilhelm; Neumann, Joachim

    2005-05-06

    Skeletal muscle functions regulated by NO are now firmly established. However, the literature on the compartmentalization of NO signaling in myocytes is highly controversial. To address this issue, we examined localization of enzymes engaged in L-arginine-NO-cGMP signaling in the rat quadriceps muscle. Employing immunocytochemical labeling complemented with tyramide signal amplification and electron microscopy, we found NO synthase expressed not only in the sarcolemma, but also along contractile fibers, in the sarcoplasmic reticulum and mitochondria. The expression pattern of NO synthase in myocytes showed striking parallels with the enzymes engaged in L-arginine-NO-cGMP signaling (arginase, phosphodiesterase, and soluble guanylyl cyclase). Our findings are indicative of an autocrine fashion of NO signaling in skeletal muscles at both cellular and subcellular levels, and challenge the notion that the NO generation is restricted to the sarcolemma.

  16. Positioning atypical protein kinase C isoforms in the UV-induced apoptotic signaling cascade.

    PubMed Central

    Berra, E; Municio, M M; Sanz, L; Frutos, S; Diaz-Meco, M T; Moscat, J

    1997-01-01

    Recent studies have documented the involvement of the atypical protein kinase C (aPKC) isoforms in important cellular functions such as cell proliferation and survival. Exposure of cells to a genotoxic stimulus that induces apoptosis, such as UV irradiation, leads to a profound inhibition of the atypical PKC activity in vivo. In this study, we addressed the relationship between this phenomenon and different proteins involved in the apoptotic response. We show that (i) the inhibition of the aPKC activity precedes UV-induced apoptosis; (ii) UV-induced aPKC inhibition and apoptosis are independent of p53; (iii) Bcl-2 proteins are potent modulators of aPKC activity; and (iv) the aPKCs are located upstream of the interleukin-converting enzyme-like protease system, which is required for the induction of apoptosis by both Par-4 (a selective aPKC inhibitor) and UV irradiation. We also demonstrate here that inhibition of aPKC activity leads to a decrease in mitogen-activated protein (MAP) kinase activity and simultaneously an increase in p38 activity. Both effects are critical for the induction of apoptosis in response to Par-4 expression and UV irradiation. Collectively, these results clarify the position of the aPKCs in the UV-induced apoptotic pathway and strongly suggest that MAP kinases play a role in this signaling cascade. PMID:9234692

  17. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice[OPEN

    PubMed Central

    Huang, Debao; Wang, Shaogan; Zhang, Baocai; Shang-Guan, Keke; Shi, Yanyun; Zhang, Dongmei; Liu, Xiangling; Wu, Kun; Xu, Zuopeng; Fu, Xiangdong; Zhou, Yihua

    2015-01-01

    Cellulose, which can be converted into numerous industrial products, has important impacts on the global economy. It has long been known that cellulose synthesis in plants is tightly regulated by various phytohormones. However, the underlying mechanism of cellulose synthesis regulation remains elusive. Here, we show that in rice (Oryza sativa), gibberellin (GA) signals promote cellulose synthesis by relieving the interaction between SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and NACs, the top-layer transcription factors for secondary wall formation. Mutations in GA-related genes and physiological treatments altered the transcription of CELLULOSE SYNTHASE genes (CESAs) and the cellulose level. Multiple experiments demonstrated that transcription factors NAC29/31 and MYB61 are CESA regulators in rice; NAC29/31 directly regulates MYB61, which in turn activates CESA expression. This hierarchical regulation pathway is blocked by SLR1-NAC29/31 interactions. Based on the results of anatomical analysis and GA content examination in developing rice internodes, this signaling cascade was found to be modulated by varied endogenous GA levels and to be required for internode development. Genetic and gene expression analyses were further performed in Arabidopsis thaliana GA-related mutants. Altogether, our findings reveal a conserved mechanism by which GA regulates secondary wall cellulose synthesis in land plants and provide a strategy for manipulating cellulose production and plant growth. PMID:26002868

  18. Signaling Cascades Governing Cdc42-Mediated Chondrogenic Differentiation and Mensenchymal Condensation.

    PubMed

    Wang, Jirong R; Wang, Chaojun J; Xu, Chengyun Y; Wu, Xiaokai K; Hong, Dun; Shi, Wei; Gong, Ying; Chen, Haixiao X; Long, Fanxin; Wu, Ximei M

    2016-03-01

    Endochondral ossification consists of successive steps of chondrocyte differentiation, including mesenchymal condensation, differentiation of chondrocytes, and hypertrophy followed by mineralization and ossification. Loss-of-function studies have revealed that abnormal growth plate cartilage of the Cdc42 mutant contributes to the defects in endochondral bone formation. Here, we have investigated the roles of Cdc42 in osteogenesis and signaling cascades governing Cdc42-mediated chondrogenic differentiation. Though deletion of Cdc42 in limb mesenchymal progenitors led to severe defects in endochondral ossification, either ablation of Cdc42 in limb preosteoblasts or knockdown of Cdc42 in vitro had no obvious effects on bone formation and osteoblast differentiation. However, in Cdc42 mutant limb buds, loss of Cdc42 in mesenchymal progenitors led to marked inactivation of p38 and Smad1/5, and in micromass cultures, Cdc42 lay on the upstream of p38 to activate Smad1/5 in bone morphogenetic protein-2-induced mesenchymal condensation. Finally, Cdc42 also lay on the upstream of protein kinase B to transactivate Sox9 and subsequently induced the expression of chondrocyte differential marker in transforming growth factor-β1-induced chondrogenesis. Taken together, by using biochemical and genetic approaches, we have demonstrated that Cdc42 is involved not in osteogenesis but in chondrogenesis in which the BMP2/Cdc42/Pak/p38/Smad signaling module promotes mesenchymal condensation and the TGF-β/Cdc42/Pak/Akt/Sox9 signaling module facilitates chondrogenic differentiation.

  19. Bacterial factors exploit eukaryotic Rho GTPase signaling cascades to promote invasion and proliferation within their host

    PubMed Central

    Popoff, Michel R

    2014-01-01

    Actin cytoskeleton is a main target of many bacterial pathogens. Among the multiple regulation steps of the actin cytoskeleton, bacterial factors interact preferentially with RhoGTPases. Pathogens secrete either toxins which diffuse in the surrounding environment, or directly inject virulence factors into target cells. Bacterial toxins, which interfere with RhoGTPases, and to some extent with RasGTPases, catalyze a covalent modification (ADPribosylation, glucosylation, deamidation, adenylation, proteolysis) blocking these molecules in their active or inactive state, resulting in alteration of epithelial and/or endothelial barriers, which contributes to dissemination of bacteria in the host. Injected bacterial virulence factors preferentially manipulate the RhoGTPase signaling cascade by mimicry of eukaryotic regulatory proteins leading to local actin cytoskeleton rearrangement, which mediates bacterial entry into host cells or in contrast escape to phagocytosis and immune defense. Invasive bacteria can also manipulate RhoGTPase signaling through recognition and stimulation of cell surface receptor(s). Changes in RhoGTPase activation state is sensed by the innate immunity pathways and allows the host cell to adapt an appropriate defense response. PMID:25203748

  20. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling

    PubMed Central

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-01

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1–Bub3 and BubR1–Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1–Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/CCdc20) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1–Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment. DOI: http://dx.doi.org/10.7554/eLife.22513.001 PMID:28072388

  1. Pigment Translocation in Caridean Shrimp Chromatophores: Receptor Type, Signal Transduction, Second Messengers, and Cross Talk Among Multiple Signaling Cascades.

    PubMed

    Milograna, Sarah Ribeiro; Ribeiro, Márcia Regina; Bell, Fernanda Tinti; McNamara, John Campbell

    2016-11-01

    Pigment aggregation in shrimp chromatophores is triggered by red pigment concentrating hormone (RPCH), a neurosecretory peptide whose plasma membrane receptor may be a G-protein coupled receptor (GPCR). While RPCH binding activates the Ca(2+) /cGMP signaling cascades, a role for cyclic AMP (cAMP) in pigment aggregation is obscure, as are the steps governing Ca(2+) release from the smooth endoplasmic reticulum (SER). A role for the antagonistic neuropeptide, pigment dispersing homone (α-PDH) is also unclear. In red, ovarian chromatophores from the freshwater shrimp Macrobrachium olfersi, we show that a G-protein antagonist (AntPG) strongly inhibits RPCH-triggered pigment aggregation, suggesting that RPCH binds to a GPCR, activating an inhibitory G-protein. Decreasing cAMP levels may cue pigment aggregation, since cytosolic cAMP titers, when augmented by cholera toxin, forskolin or vinpocentine, completely or partially impair pigment aggregation. Triggering opposing Ca(2+) /cGMP and cAMP cascades by simultaneous perfusion with lipid-soluble cyclic nucleotide analogs induces a "tug-of-war" response, pigments aggregating in some chromatosomes with unpredictable, oscillatory movements in others. Inhibition of cAMP-dependent protein kinase accelerates aggregation and reduces dispersion velocities, suggesting a role in phosphorylation events, possibly regulating SER Ca(2+) release and pigment aggregation. The second messengers IP3 and cADPR do not stimulate SER Ca(2+) release. α-PDH does not sustain pigment dispersion, suggesting that pigment translocation in caridean chromatophores may be regulated solely by RPCH, since PDH is not required. We propose a working hypothesis to further unravel key steps in the mechanisms of pigment translocation within crustacean chromatophores that have remained obscure for nearly a century.

  2. Synapse-specific compartmentalization of signaling cascades for LTP induction in CA3 interneurons.

    PubMed

    Galván, E J; Pérez-Rosello, T; Gómez-Lira, G; Lara, E; Gutiérrez, R; Barrionuevo, G

    2015-04-02

    Inhibitory interneurons with somata in strata radiatum and lacunosum-molecular (SR/L-M) of hippocampal area CA3 receive excitatory input from pyramidal cells via the recurrent collaterals (RCs), and the dentate gyrus granule cells via the mossy fibers (MFs). Here we demonstrate that Hebbian long-term potentiation (LTP) at RC synapses on SR/L-M interneurons requires the concomitant activation of calcium-impermeable AMPARs (CI-AMPARs) and N-methyl-d-aspartate receptors (NMDARs). RC LTP was prevented by voltage clamping the postsynaptic cell during high-frequency stimulation (HFS; 3 trains of 100 pulses delivered at 100 Hz every 10s), with intracellular injections of the Ca(2+) chelator BAPTA (20mM), and with the NMDAR antagonist D-AP5. In separate experiments, RC and MF inputs converging onto the same interneuron were sequentially activated. We found that RC LTP induction was blocked by inhibitors of the calcium/calmodulin-dependent protein kinase II (CaMKII; KN-62, 10 μM or KN-93, 10 μM) but MF LTP was CaMKII independent. Conversely, the application of the protein kinase A (PKA) activators forskolin/IBMX (50 μM/25 μM) potentiated MF EPSPs but not RC EPSPs. Together these data indicate that the aspiny dendrites of SR/L-M interneurons compartmentalize synapse-specific Ca(2+) signaling required for LTP induction at RC and MF synapses. We also show that the two signal transduction cascades converge to activate a common effector, protein kinase C (PKC). Specifically, LTP at RC and MF synapses on the same SR/LM interneuron was blocked by postsynaptic injections of chelerythrine (10 μM). These data indicate that both forms of LTP share a common mechanism involving PKC-dependent signaling modulation.

  3. Synapse-specific compartmentalization of signaling cascades for LTP induction in CA3 interneurons

    PubMed Central

    Galván, Emilio J; Pérez-Rosello, Tamara; Gómez-Lira, Gisela; Lara, Erika; Gutiérrez, Rafael; Barrionuevo, Germán

    2015-01-01

    Inhibitory interneurons with somata in strata radiatum and lacunosun-moleculare (SR/L-M) of hippocampal area CA3 receive excitatory input from pyramidal cells via the recurrent collaterals (RC), and the dentate gyrus granule cells via the mossy fibers (MFs). Here we demonstrate that Hebbian long-term potentiation (LTP) at RC synapses on SR/L-M interneurons requires the concomitant activation of calcium-impermeable AMPARs (CI- AMPARs) and NMDARs. RC LTP was prevented by voltage clamping the postsynaptic cell during high-frequency stimulation (HFS; 3 trains of 100 pulses delivered at 100 Hz every 10 s), with intracellular injections of the Ca2+ chelator BAPTA (20 mM), and with the N-methyl-D-aspartate receptor (NMDAR) antagonist D-AP5. In separate experiments, RC and MF inputs converging onto the same interneuron were sequentially activated. We found that RC LTP induction was blocked by inhibitors of the calcium/calmodulin-dependent protein kinase II (CaMKII; KN-62, 10 μM or KN-93, 10 μM) but MF LTP was CaMKII independent. Conversely, the application of the protein kinase A (PKA) activators forskolin/IBMX(50 μM/25 μM) potentiated MF EPSPs but not RC EPSPs. Together these data indicate that the aspiny dendrites of SR/L-M interneurons compartmentalize synaptic-specific Ca2+ signaling required for LTP induction at RC and MF synapses. We also show that the two signal transduction cascades converge to activate a common effector, protein kinase C (PKC). Specifically, LTP at RC and MF synapses on the same SR/LM interneuron was blocked by postsynaptic injections of chelerythrine (10 μM). These data indicate that both forms of LTP share a common mechanism involving PKC-dependent signaling modulation. PMID:25637803

  4. Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading.

    PubMed

    Mückschel, Moritz; Stock, Ann-Kathrin; Beste, Christian

    2014-08-01

    Our daily life is characterized by multiple response options that need to be cascaded in order to avoid overstrain of restricted response selection resources. While response selection and goal activation in action cascading are likely driven by a process varying from serial to parallel processing, little is known about the underlying neural mechanisms that may underlie interindividual differences in these modes of response selection. To investigate these mechanisms, we used a stop-change paradigm for the recording of event-related potentials and standardized low resolution brain electromagnetic tomography source localizations in healthy subjects. Systematically varying the stimulus onset asynchrony (the temporal spacing of "stop" and "change" signals), we applied mathematical constraints to classify subjects in more parallel or more serial goal activators during action cascading. On that basis, the electrophysiological data show that processes linking stimulus processing and response execution, but not attentional processes, underlie interindividual differences in either serial or parallel response selection modes during action cascading. On a systems level, these processes were mediated via a distributed fronto-parietal network, including the anterior cingulate cortex (Brodman area 32, BA32) and the temporo-parietal junction (BA40). There was a linear relation between the individual degree of overlap in activated task goals and electrophysiological processes.

  5. Function of RSKS-1-AAK-2-DAF-16 signaling cascade in enhancing toxicity of multi-walled carbon nanotubes can be suppressed by mir-259 activation in Caenorhabditis elegans

    PubMed Central

    Zhuang, Ziheng; Li, Min; Liu, Hui; Luo, Libo; Gu, Weidong; Wu, Qiuli; Wang, Dayong

    2016-01-01

    Caenorhabditis elegans is an important non-mammalian alternative assay model for toxicological study. Previous study has indicated that exposure to multi-walled carbon nanotubes (MWCNTs) dysregulated the transcriptional expression of mir-259. In this study, we examined the molecular basis for mir-259 in regulating MWCNTs toxicity in nematodes. Mutation of mir-259 induced a susceptible property to MWCNTs toxicity, and MWCNTs exposure induced a significant increase in mir-259::GFP in pharyngeal/intestinal valve and reproductive tract, implying that mir-259 might mediate a protection mechanisms for nematodes against MWCNTs toxicity. RSKS-1, a putative ribosomal protein S6 kinase, acted as the target for mir-259 in regulating MWCNTs toxicity, and mutation of rsks-1 suppressed the susceptible property of mir-259 mutant to MWCNTs toxicity. Moreover, mir-259 functioned in pharynx-intestinal valve and RSKS-1 functioned in pharynx to regulate MWCNTs toxicity. Furthermore, RSKS-1 regulated MWCNTs toxicity by suppressing the function of AAK-2-DAF-16 signaling cascade. Our results will strengthen our understanding the microRNAs mediated protection mechanisms for animals against the toxicity from certain nanomaterials. PMID:27573184

  6. Function of RSKS-1-AAK-2-DAF-16 signaling cascade in enhancing toxicity of multi-walled carbon nanotubes can be suppressed by mir-259 activation in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Zhuang, Ziheng; Li, Min; Liu, Hui; Luo, Libo; Gu, Weidong; Wu, Qiuli; Wang, Dayong

    2016-08-01

    Caenorhabditis elegans is an important non-mammalian alternative assay model for toxicological study. Previous study has indicated that exposure to multi-walled carbon nanotubes (MWCNTs) dysregulated the transcriptional expression of mir-259. In this study, we examined the molecular basis for mir-259 in regulating MWCNTs toxicity in nematodes. Mutation of mir-259 induced a susceptible property to MWCNTs toxicity, and MWCNTs exposure induced a significant increase in mir-259::GFP in pharyngeal/intestinal valve and reproductive tract, implying that mir-259 might mediate a protection mechanisms for nematodes against MWCNTs toxicity. RSKS-1, a putative ribosomal protein S6 kinase, acted as the target for mir-259 in regulating MWCNTs toxicity, and mutation of rsks-1 suppressed the susceptible property of mir-259 mutant to MWCNTs toxicity. Moreover, mir-259 functioned in pharynx-intestinal valve and RSKS-1 functioned in pharynx to regulate MWCNTs toxicity. Furthermore, RSKS-1 regulated MWCNTs toxicity by suppressing the function of AAK-2-DAF-16 signaling cascade. Our results will strengthen our understanding the microRNAs mediated protection mechanisms for animals against the toxicity from certain nanomaterials.

  7. Text mining for metabolic pathways, signaling cascades, and protein networks.

    PubMed

    Hoffmann, Robert; Krallinger, Martin; Andres, Eduardo; Tamames, Javier; Blaschke, Christian; Valencia, Alfonso

    2005-05-10

    The complexity of the information stored in databases and publications on metabolic and signaling pathways, the high throughput of experimental data, and the growing number of publications make it imperative to provide systems to help the researcher navigate through these interrelated information resources. Text-mining methods have started to play a key role in the creation and maintenance of links between the information stored in biological databases and its original sources in the literature. These links will be extremely useful for database updating and curation, especially if a number of technical problems can be solved satisfactorily, including the identification of protein and gene names (entities in general) and the characterization of their types of interactions. The first generation of openly accessible text-mining systems, such as iHOP (Information Hyperlinked over Proteins), provides additional functions to facilitate the reconstruction of protein interaction networks, combine database and text information, and support the scientist in the formulation of novel hypotheses. The next challenge is the generation of comprehensive information regarding the general function of signaling pathways and protein interaction networks.

  8. Pharmacological discrimination between muscarinic receptor signal transduction cascades with bethanechol chloride

    PubMed Central

    Liu, Liwang; Rittenhouse, Ann R

    2003-01-01

    Muscarinic agonist specificity is limited, making it difficult to match receptor subtypes with signal transduction cascades that mediate ion channel modulation. We have characterized the inhibitory effects of two muscarinic agonists, oxotremorine-M (Oxo-M) and bethanechol chloride (BeCh), on Ca2+ currents in neonatal rat superior cervical ganglion neurons. Oxo-M-mediated (10 μM) inhibition occurred via two signaling pathways. The first pathway inhibited whole cell peak currents, consisting primarily of N-type current, but not FPL 64176-induced, long-lasting tail currents, comprised entirely of L-type current. Inhibited currents displayed slowed activation kinetics and voltage dependence, characteristics of membrane-delimited inhibition. Current inhibition was blocked by the selective M2 receptor antagonist, methoctramine (METH; 100 nM), or following pertussis toxin (PTX) pretreatment. Activation of the second pathway inhibited both peak and long-lasting tail currents. This pathway was voltage-independent, PTX-insensitive, but sensitive to internal Ca2+ chelator concentration. Muscarinic toxin 7 (MT-7, 100 nM), an irreversible M1 receptor antagonist, eliminated this inhibition. Oxo-M (100 μM) decreased L- and N-type channel activities in cell-attached patches, indicating that a diffusible second messenger is involved. BeCh (100 μM) also inhibited whole cell currents via the membrane-delimited pathway. Blocking M4 receptors with 100 nM pirenzepine (in the presence of MT-7) had no effect, while antagonizing M2 receptors with METH abolished inhibition. Concentrations of BeCh as high as 3 mM failed to inhibit either peak or long-lasting tail currents following PTX pretreatment. These results indicate that BeCh may be an effective tool for selectively activating M2 receptor stimulation of the membrane-delimited pathway. PMID:12711626

  9. Teaching an old hormone new tricks: cytosolic Ca2+ elevation involvement in plant brassinosteroid signal transduction cascades.

    PubMed

    Zhao, Yichen; Qi, Zhi; Berkowitz, Gerald A

    2013-10-01

    Brassinosteroids (BRs) are hormones that control many aspects of plant growth and development, acting at the cell level to promote division and expansion. BR regulation of plant and plant cell function occurs through altered expression of many genes. Transcriptional reprogramming downstream from cell perception of this hormone is currently known to be mediated by a phosphorylation/dephosphorylation ("phosphorelay") cascade that alters the stability of two master transcription regulators. Here, we provide evidence that BR perception by their receptor also causes an elevation in cytosolic Ca(2+), initiating a Ca(2+) signaling cascade in Arabidopsis (Arabidopsis thaliana) cell cytosol. BR-dependent increases in the expression of some genes (INDOLE-3-ACETIC ACID-INDUCIBLE1 and PHYTOCHROME B ACTIVATION-TAGGED SUPPRESSOR1) were impaired in wild-type plants by a Ca(2+) channel blocker and also in the defense-no-death (dnd1) mutant, which lacks a functional cyclic GMP-activated cell membrane Ca(2+)-conducting channel. Alternatively, mutations that impair the BR phosphorelay cascade did not much affect the BR-dependent expression of these genes. Similar effects of the Ca(2+) channel blocker and dnd1 mutation were observed on a BR plant growth phenotype, deetiolation of the seedling hypocotyl. Further evidence presented in this report suggests that a BR-dependent elevation in cyclic GMP may be involved in the Ca(2+) signaling cascade initiated by this hormone. The work presented here leads to a new model of the molecular steps that mediate some of the cell responses to this plant hormone.

  10. L-Lactate protects neurons against excitotoxicity: implication of an ATP-mediated signaling cascade

    PubMed Central

    Jourdain, P.; Allaman, I.; Rothenfusser, K.; Fiumelli, H.; Marquet, P.; Magistretti, P. J.

    2016-01-01

    Converging experimental data indicate a neuroprotective action of L-Lactate. Using Digital Holographic Microscopy, we observe that transient application of glutamate (100 μM; 2 min) elicits a NMDA-dependent death in 65% of mouse cortical neurons in culture. In the presence of L-Lactate (or Pyruvate), the percentage of neuronal death decreases to 32%. UK5099, a blocker of the Mitochondrial Pyruvate Carrier, fully prevents L-Lactate-mediated neuroprotection. In addition, L-Lactate-induced neuroprotection is not only inhibited by probenicid and carbenoxolone, two blockers of ATP channel pannexins, but also abolished by apyrase, an enzyme degrading ATP, suggesting that ATP produced by the Lactate/Pyruvate pathway is released to act on purinergic receptors in an autocrine/paracrine manner. Finally, pharmacological approaches support the involvement of the P2Y receptors associated to the PI3-kinase pathway, leading to activation of KATP channels. This set of results indicates that L-Lactate acts as a signalling molecule for neuroprotection against excitotoxicity through coordinated cellular pathways involving ATP production, release and activation of a P2Y/KATP cascade. PMID:26893204

  11. p38 MAPK and PI3K/AKT Signalling Cascades inParkinson’s Disease

    PubMed Central

    Jha, Saurabh Kumar; Jha, Niraj Kumar; Kar, Rohan; Ambasta, Rashmi K; Kumar, Pravir

    2015-01-01

    Parkinson's disease (PD) is a chronic neurodegenerative condition which has the second largest incidence rate among all other neurodegenerative disorders barring Alzheimer's disease (AD). Currently there is no cure and researchers continue to probe the therapeutic prospect in cell cultures and animal models of PD. Out of the several factors contributing to PD prognosis, the role of p38 MAPK (Mitogen activated protein-kinase) and PI3K/AKT signalling module in PD brains is crucial because the impaired balance between the pro- apoptotic and anti-apoptotic pathways trigger unwanted phenotypes such as microglia activation, neuroinflammation, oxidative stress and apoptosis. These factors continue challenging the brain homeostasis in initial stages thereby essentially assisting the dopaminergic (DA) neurons towards progressive degeneration in PD. Neurotherapeutics against PD shall then be targeted against the misregulated accomplices of the p38 and PI3K/AKT cascades. In this review, we have outlined many such established mechanisms involving the p38 MAPK and PI3K/AKT pathways which can offer therapeutic windows for the rectification of aberrant DA neuronal dynamics in PD brains. PMID:26261796

  12. Sensitive detection of Escherichia coli O157:H7 based on cascade signal amplification in ELISA.

    PubMed

    Shan, Shan; Liu, Daofeng; Guo, Qi; Wu, Songsong; Chen, Rui; Luo, Kai; Hu, Liming; Xiong, Yonghua; Lai, Weihua

    2016-09-01

    In this study, cascade signal amplification in ELISA involving double-antibody sandwich ELISA and indirectly competitive ELISA was established to sensitively detect Escherichia coli O157:H7. In the double-antibody sandwich ELISA, a complex was formed comprising anti-E. coli O157:H7 polyclonal antibody, E. coli O157:H7, biotinylated anti-E. coli O157:H7 monoclonal antibody, streptavidin, and biotinylated β-lactamase. Penicillin solution was then added into the ELISA well and hydrolyzed by β-lactamase. Afterward, the penicillin solution was transferred to indirectly competitive ELISA. The concentration of penicillin can be sensitively detected in indirectly competitive ELISA. In the cascade signal amplification system, increasing the amount of added E. coli O157:H7 resulted in more β-lactamase and less penicillin. The detection sensitivity of E. coli O157:H7, which was 20cfu/mL with the cascade signal amplification in ELISA, was 1,000-fold higher than that of traditional ELISA. Furthermore, the novel method can be used to detect E. coli O157:H7 in milk (2cfu/g). Therefore, this new signaling strategy will facilitate analyses of highly sensitive foodborne pathogens.

  13. Effects of intravitreal insulin and insulin signaling cascade inhibitors on emmetropization in the chick

    PubMed Central

    Penha, Alexandra Marcha; Burkhardt, Eva; Schaeffel, Frank

    2012-01-01

    Purpose Intravitreal insulin has been shown to be a powerful stimulator of myopia in chickens, in particular if the retinal image is degraded or defocused. In most tissues, the insulin receptor activates two main signaling pathways: a) the mitogen-activated protein kinase (MAPK) cascade (e.g., mitogen-activated protein kinasem kinase [MEK] and extracellular regulated kinase [ERK]) and b) the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. In the current study, insulin was injected, and these pathways were separately inhibited to determine which is activated when the retinal image is defocused by spectacle lenses. Methods Chicks were treated with either +7 D, −7 D, or no lenses. They were intravitreally injected with insulin, the MEK inhibitor U0126, the PI3K inhibitor Ly294002, or a combination of insulin and one of the inhibitors. Refractions and ocular dimension were measured at the beginning and after four days of treatment. The retinal proteins of the chicks were measured with western blots after 2 h and four days of treatment. Incubation occurred with anti-Akt1, anti-Erk1/2, anti-phospho-AktThr308, and anti-phospho-Erk1/2(Thr202/Tyr204) antibodies, and the ratio between the relative intensity of the phospho-form and the total-form was calculated. Results Chicks wearing positive lenses and injected with saline and with PI3K inhibitor compensated for the imposed defocus and became hyperopic. Insulin injections and insulin plus PI3K inhibitor injections prevented lens-induced hyperopia, whereas the MEK inhibitor alone and insulin plus MEK inhibitor had no effect. Obviously, the MEK inhibitor suppressed the effect of insulin on eye growth in the plus lens–treated animals. Chicks treated with negative lenses and injected with insulin, or with insulin plus MEK inhibitor, overcompensated for the imposed defocus. This effect of insulin was not detected in eyes injected with PI3K inhibitor plus insulin, suggesting that the PI3K inhibitor

  14. Scaffolds are 'active' regulators of signaling modules.

    PubMed

    Alexa, Anita; Varga, János; Reményi, Attila

    2010-11-01

    Signaling cascades, in addition to proteins with obvious signaling-relevant activities (e.g. protein kinases or receptors), also employ dedicated 'inactive' proteins whose functions appear to be the organization of the former components into higher order complexes through protein-protein interactions. The core function of signaling adaptors, anchors and scaffolds is the recruitment of proteins into one macromolecular complex. Several recent studies have demonstrated that the recruiter and the recruited molecules mutually influence each other in a scaffolded complex. This yields fundamentally novel properties for the signaling complex as a whole. Because these are not merely additive to the properties of the individual components, scaffolded signaling complexes may behave as functionally distinct modules.

  15. Galphaq-dependent signaling cascades stimulate water-seeking behavior.

    PubMed

    Wang, Liming; Flannery, Patrick J; Athirakul, Krairerk; Dunn, Stephen R; Kourany, Wissam M; Spurney, Robert F

    2006-10-01

    We used the mouse nephrin promoter to express a constitutively active Galphaq [Galphaq(Q>L)] transgene in mice. As previously reported, the transgene was expressed in kidney, pancreas, and brain, and the kidney phenotype was characterized by albuminuria and reduced nephron mass. Additional studies revealed a second phenotype characterized by polyuria and polydipsia. The polyuric phenotype was not caused by abnormal glucose metabolism or hypercalcemia but was accompanied by reduced urinary concentrating ability. Additional studies found that 1) water restriction was associated with an appropriate increase in serum vasopressin levels in transgenic (TG) mice; 2) the urinary concentrating defect was not corrected by administration of desamino-d-arginine vasopressin (DDAVP); and 3) papillary length was similar in TG and non-TG mice. To examine the renal response to DDAVP at the molecular level, we monitored aquaporin 2 (AQP2) and vasopressin V2 receptor (V2R) mRNA levels in mouse kidney. Consistent with the known effects of vasopressin, administration of DDAVP caused a decrease in V2R mRNA levels and an increase in AQP2 mRNA levels in both TG and non-TG animals, suggesting an appropriate renal response to DDAVP in the TG mice. To determine whether the urine concentrating abnormality was the result of primary polydipsia, water intake by TG mice was restricted to the amount ingested by non-TG animals. After 5 days, urinary concentrating ability was similar in TG mice and non-TG littermate controls. These data are consistent with the notion that expression of the Galphaq(Q>L) transgene in the brain induced primary polydipsia in the TG mice.

  16. Non-redundant and complementary functions of adaptor proteins TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling

    PubMed Central

    Vallabhapurapu, Sivakumar; Matsuzawa, Atsushi; Zhang, WeiZhou; Tseng, Ping-Hui; Keats, Jonathan J.; Wang, Haopeng; Vignali, Dario A. A.; Bergsagel, P. Leif; Karin, Michael

    2009-01-01

    The adaptor and signaling proteins TRAF2, TRAF3 and cIAP1 and cIAP2 were suggested to inhibit alternative nuclear factor kappa B (NF-κB) signaling in resting cells by targeting NF-κB inducing kinase (NIK) to ubiquitin-dependent degradation, thus preventing processing of the NF-κB2 precursor protein p100 to release p52. However, the respective functions of TRAF2 and TRAF3 in NIK degradation and activation of alternative NF-κB signaling has remained elusive. We now show that CD40 or BAFF receptor activation resulted in TRAF3 degradation in a cIAP1-cIAP2- and TRAF2- dependent way due to enhanced cIAP1, cIAP2 TRAF3-directed ubiquitin ligase activity. Receptor-induced activation of cIAP1 and cIAP2 correlated with their K63-linked ubiquitination by TRAF2. Degradation of TRAF3 prevented association of NIK with the cIAP1-cIAP2-TRAF2 ubiquitin ligase complex, which resulted in NIK stabilization and NF-κB2-p100 processing. Constitutive activation of this pathway causes perinatal lethality and lymphoid defects. PMID:18997792

  17. Electrochemical immunoassay for thyroxine detection using cascade catalysis as signal amplified enhancer and multi-functionalized magnetic graphene sphere as signal tag.

    PubMed

    Han, Jing; Zhuo, Ying; Chai, Yaqin; Yu, Yanqing; Liao, Ni; Yuan, Ruo

    2013-08-06

    This paper constructed a reusable electrochemical immunosensor for the detection of thyroxine at an ultralow concentration using cascade catalysis of cytochrome c (Cyt c) and glucose oxidase (GOx) as signal amplified enhancer. It is worth pointing out that numerous Cyt c and GOx were firstly carried onto the double-stranded DNA polymers based on hybridization chain reaction (HCR), and then the amplified responses could be achieved by cascade catalysis of Cyt c and GOx recycling with the help of glucose. Moreover, multi-functionalized magnetic graphene sphere was synthesized and used as signal tag, which not only exhibited good mechanical properties, large surface area and an excellent electron transfer rate of graphene, but also possessed excellent redox activity and desirable magnetic property. With a sandwich-type immunoreaction, the proposed cascade catalysis amplification strategy could greatly enhance the sensitivity for the detection of thyroxine. Under the optimal conditions, the immunosensor showed a wide linear ranged from 0.05pg mL(-1) to 5ng mL(-1) and a low detection limit down to 15fg mL(-1). Importantly, the proposed method offers promise for reproducible and cost-effective analysis of biological samples.

  18. Ghrelin Attenuates cAMP-PKA Signaling to Evoke Insulinostatic Cascade in Islet β-Cells

    PubMed Central

    Dezaki, Katsuya; Damdindorj, Boldbaatar; Sone, Hideyuki; Dyachok, Oleg; Tengholm, Anders; Gylfe, Erik; Kurashina, Tomoyuki; Yoshida, Masashi; Kakei, Masafumi; Yada, Toshihiko

    2011-01-01

    OBJECTIVE Ghrelin reportedly restricts insulin release in islet β-cells via the Gαi2 subtype of G-proteins and thereby regulates glucose homeostasis. This study explored whether ghrelin regulates cAMP signaling and whether this regulation induces insulinostatic cascade in islet β-cells. RESEARCH DESIGN AND METHODS Insulin release was measured in rat perfused pancreas and isolated islets and cAMP production in isolated islets. Cytosolic cAMP concentrations ([cAMP]i) were monitored in mouse MIN6 cells using evanescent-wave fluorescence imaging. In rat single β-cells, cytosolic protein kinase-A activity ([PKA]i) and Ca2+ concentration ([Ca2+]i) were measured by DR-II and fura-2 microfluorometry, respectively, and whole cell currents by patch-clamp technique. RESULTS Ghrelin suppressed glucose (8.3 mmol/L)-induced insulin release in rat perfused pancreas and isolated islets, and these effects of ghrelin were blunted in the presence of cAMP analogs or adenylate cyclase inhibitor. Glucose-induced cAMP production in isolated islets was attenuated by ghrelin and enhanced by ghrelin receptor antagonist and anti-ghrelin antiserum, which counteract endogenous islet-derived ghrelin. Ghrelin inhibited the glucose-induced [cAMP]i elevation and [PKA]i activation in MIN6 and rat β-cells, respectively. Furthermore, ghrelin potentiated voltage-dependent K+ (Kv) channel currents without altering Ca2+ channel currents and attenuated glucose-induced [Ca2+]i increases in rat β-cells in a PKA-dependent manner. CONCLUSIONS Ghrelin directly interacts with islet β-cells to attenuate glucose-induced cAMP production and PKA activation, which lead to activation of Kv channels and suppression of glucose-induced [Ca2+]i increase and insulin release. PMID:21788571

  19. Orexin-stimulated MAP kinase cascades are activated through multiple G-protein signalling pathways in human H295R adrenocortical cells: diverse roles for orexins A and B.

    PubMed

    Ramanjaneya, Manjunath; Conner, Alex C; Chen, Jing; Kumar, Prashanth; Brown, James E P; Jöhren, Olaf; Lehnert, Hendrik; Stanfield, Peter R; Randeva, Harpal S

    2009-08-01

    Orexins A and B (ORA and ORB) are neuropeptide hormones found throughout the central nervous system and periphery. They are required for a host of physiological processes including mitogen-activated protein kinase (MAPK) regulation, steroidogenesis, appetite control and energy regulation. While some signalling mechanisms have been proposed for individual recombinant orexin receptors in generic mammalian cell types, it is clear that the peripheral effects of orexin are spatially and temporally complex. This study dissects the different G-protein signalling and MAPK pathways activated in a pluripotent human adrenal H295R cell line capable of all the physiological steps involved in steroidogenesis. Both extracellular receptor kinase 1/2 (ERK1/2) and p38 were phosphorylated rapidly with a subsequent decline, in a time- and dose-dependent manner, in response to both ORA and ORB. Conversely, there was little or no direct activation of the ERK5 or JNK pathway. Analysis using signalling and MAPK inhibitors as well as receptor-specific antagonists determined the precise mediators of the orexin response in these cells. Both ERK1/2 and p38 activation were predominantly G(q)- and to a lesser extent G(s)-mediated; p38 activation even had a small G(i)-component. Effects were broadly comparable for both orexin sub-types ORA and ORB and although most of the effects were transmitted through the orexin receptor-1 subtype, we did observe a role for orexin receptor-2-mediated activation of both ERK1/2 and p38. Cortisol secretion also differed in response to ORA and ORB. These data suggest multiple roles for orexin-mediated MAPK activation in an adrenal cell-line, this complexity may help to explain the diverse biological actions of orexins with wide-ranging consequences for our understanding of the mechanisms initiated by these steroidogenic molecules.

  20. Two-dimensional femtosecond stimulated Raman spectroscopy: Observation of cascading Raman signals in acetonitrile.

    PubMed

    Wilson, Kristina C; Lyons, Brendon; Mehlenbacher, Randy; Sabatini, Randy; McCamant, David W

    2009-12-07

    A new methodology for two-dimensional Raman spectroscopy-termed two-dimensional femtosecond stimulated Raman spectroscopy (2D-FSRS)-is presented and experimental results for acetonitrile are discussed. 2D-FSRS can potentially observe molecular anharmonicity by measuring the modulation of the frequency of a probed Raman mode, at frequency omega(hi), by the coherent motion of an impulsively driven mode, at frequency omega(low). In acetonitrile, the signal is generated by driving the CCN bend (379 cm(-1)) and CC stretch (920 cm(-1)) into coherence via impulsive stimulated Raman scattering and subsequently probing the stimulated Raman spectrum of the CC stretch, the CN stretch (2250 cm(-1)) and the CH stretch (2942 cm(-1)). The resultant signal can be generated by two alternative mechanisms: a fifth-order Raman process that would directly probe anharmonic coupling between the two modes, or a third-order cascade in which a third-order coherent Raman process produces a field that goes on to participate in a third-order stimulated Raman transition. The third-order cascade is shown to dominate the 2D-FSRS spectrum as determined by comparison with the predicted magnitude of the two signals, the 2D spectrum of a mixed isotope experiment, and the concentration dependence of the signal. In acetonitrile, theoretical calculations of the vibrational anharmonicity indicate that the third-order cascade signal should be 10(4) times larger than the fifth-order Raman signal. 2D-FSRS signals are observed between acetonitrile's CCN bend, of E symmetry, and several different A(1) modes but are forbidden by symmetry in the fifth-order pathway. A 2D-FSRS spectrum of a 50:50 mixture of acetonitrile and d(3)-acetonitrile shows equivalent intensity for intramolecular coupling peaks and intermolecular coupling peaks, indicating that the observed signal cannot be probing molecular anharmonicity. Finally, the magnitudes of the 2D-FSRS peaks are observed to be proportional to the square of the

  1. RETRACTED: S-allyl cysteine protects against 6-hydroxydopamine-induced neurotoxicity in the rat striatum: involvement of Nrf2 transcription factor activation and modulation of signaling kinase cascades.

    PubMed

    Tobón-Velasco, Julio César; Vázquez-Victorio, Genaro; Macías-Silva, Marina; Cuevas, Elvis; Ali, Syed F; Maldonado, Perla D; González-Trujano, María Eva; Cuadrado, Antonio; Pedraza-Chaverrí, José; Santamaría, Abel

    2012-09-01

    Pharmacological activation at the basal ganglia of the transcription factor Nrf2, guardian of redox homeostasis, holds a strong promise for the slow progression of Parkinson's disease (PD). However, a potent Nrf2 activator in the brain still must be found. In this study, we have investigated the potential use of the antioxidant compound S-allyl cysteine (SAC) in the activation of Nrf2 in 6-hydoxydopamine (6-OHDA)-intoxicated rats. In the rat striatum, SAC by itself promoted the Nrf2 dissociation of Keap-1, its nuclear translocation, the subsequent association with small MafK protein, and further binding of the Nrf2/MafK complex to ARE sequence, as well as the up-regulation of Nrf2-dependent genes encoding the antioxidant enzymes HO-1, NQO-1, GR, and SOD-1. In vivo and in vitro experiments to identify signaling pathways activated by SAC pointed to Akt as the most likely kinase participating in Nrf2 activation by SAC. In PC12 cells, SAC stimulated the activation of Akt and ERK1/2 and inhibited JNK1/2/3 activation. In the rat striatum, the SAC-induced activation of Nrf2 is likely to contribute to inhibit the toxic effects of 6-OHDA evidenced by phase 2 antioxidant enzymes up-regulation, glutathione recovery, and attenuation of reactive oxygen species (ROS), nitric oxide (NO), and lipid peroxides formation. These early protective effects correlated with the long-term preservation of the cellular redox status, the striatal dopamine (DA) and tyrosine hydroxylase (TH) levels, and the improvement of motor skills. Therefore, this study indicates that, in addition to direct scavenging actions, the activation of Nrf2 by SAC might confer neuroprotective responses through the modulation of kinase signaling pathways in rodent models of PD, and suggests that this antioxidant molecule may have a therapeutic value in this human pathology.

  2. A century old renin-angiotensin system still grows with endless possibilities: AT1 receptor signaling cascades in cardiovascular physiopathology.

    PubMed

    Balakumar, Pitchai; Jagadeesh, Gowraganahalli

    2014-10-01

    Ang II, the primary effector pleiotropic hormone of the renin-angiotensin system (RAS) cascade, mediates physiological control of blood pressure and electrolyte balance through its action on vascular tone, aldosterone secretion, renal sodium absorption, water intake, sympathetic activity and vasopressin release. It affects the function of most of the organs far beyond blood pressure control including heart, blood vessels, kidney and brain, thus, causing both beneficial and deleterious effects. However, the protective axis of the RAS composed of ACE2, Ang (1-7), alamandine, and Mas and MargD receptors might oppose some harmful effects of Ang II and might promote beneficial cardiovascular effects. Newly identified RAS family peptides, Ang A and angioprotectin, further extend the complexities in understanding the cardiovascular physiopathology of RAS. Most of the diverse actions of Ang II are mediated by AT1 receptors, which couple to classical Gq/11 protein and activate multiple downstream signals, including PKC, ERK1/2, Raf, tyrosine kinases, receptor tyrosine kinases (EGFR, PDGF, insulin receptor), nuclear factor κB and reactive oxygen species (ROS). Receptor activation via G12/13 stimulates Rho-kinase, which causes vascular contraction and hypertrophy. The AT1 receptor activation also stimulates G protein-independent signaling pathways such as β-arrestin-mediated MAPK activation and Src-JAK/STAT. AT1 receptor-mediated activation of NADPH oxidase releases ROS, resulting in the activation of pro-inflammatory transcription factors and stimulation of small G proteins such as Ras, Rac and RhoA. The components of the RAS and the major Ang II-induced signaling cascades of AT1 receptors are reviewed.

  3. Differential Proteomic Analysis of Platelets Suggested Possible Signal Cascades Network in Platelets Treated with Salvianolic Acid B

    PubMed Central

    Ma, Chao; Yao, Yan; Yue, Qing-Xi; Zhou, Xin-Wen; Yang, Peng-Yuan; Wu, Wan-Ying; Guan, Shu-Hong; Jiang, Bao-Hong; Yang, Min; Liu, Xuan; Guo, De-An

    2011-01-01

    Background Salvianolic acid B (SB) is an active component isolated from Danshen, a traditional Chinese medicine widely used for the treatment of cardiovascular disorders. Previous study suggested that SB might inhibit adhesion as well as aggregation of platelets by a mechanism involving the integrin α2β1. But, the signal cascades in platelets after SB binding are still not clear. Methodology/Principal Findings In the present study, a differential proteomic analysis (two-dimensional electrophoresis) was conducted to check the protein expression profiles of rat platelets with or without treatment of SB. Proteins altered in level after SB exposure were identified by MALDI-TOF MS/MS. Treatment of SB caused regulation of 20 proteins such as heat shock-related 70 kDa protein 2 (hsp70), LIM domain protein CLP-36, copine I, peroxiredoxin-2, coronin-1 B and cytoplasmic dynein intermediate chain 2C. The regulation of SB on protein levels was confirmed by Western blotting. The signal cascades network induced by SB after its binding with integrin α2β1 was predicted. To certify the predicted network, binding affinity of SB to integrin α2β1 was checked in vitro and ex vivo in platelets. Furthermore, the effects of SB on protein levels of hsp70, coronin-1B and intracellular levels of Ca(2+) and reactive oxygen species (ROS) were checked with or without pre-treatment of platelets using antibody against integrin α2β1. Electron microscopy study confirmed that SB affected cytoskeleton structure of platelets. Conclusions/Significance Integrin α2β1 might be one of the direct target proteins of SB in platelets. The signal cascades network of SB after binding with integrin α2β1 might include regulation of intracellular Ca(2+) level, cytoskeleton-related proteins such as coronin-1B and cytoskeleton structure of platelets. PMID:21379382

  4. Molecular Profiling Reveals Diversity of Stress Signal Transduction Cascades in Highly Penetrant Alzheimer's Disease Human Skin Fibroblasts

    PubMed Central

    Mendonsa, Graziella; Dobrowolska, Justyna; Lin, Angela; Vijairania, Pooja; Jong, Y.-J. I.; Baenziger, Nancy L.

    2009-01-01

    The serious and growing impact of the neurodegenerative disorder Alzheimer's disease (AD) as an individual and societal burden raises a number of key questions: Can a blanket test for Alzheimer's disease be devised forecasting long-term risk for acquiring this disorder? Can a unified therapy be devised to forestall the development of AD as well as improve the lot of present sufferers? Inflammatory and oxidative stresses are associated with enhanced risk for AD. Can an AD molecular signature be identified in signaling pathways for communication within and among cells during inflammatory and oxidative stress, suggesting possible biomarkers and therapeutic avenues? We postulated a unique molecular signature of dysfunctional activity profiles in AD-relevant signaling pathways in peripheral tissues, based on a gain of function in G-protein-coupled bradykinin B2 receptor (BKB2R) inflammatory stress signaling in skin fibroblasts from AD patients that results in tau protein Ser hyperphosphorylation. Such a signaling profile, routed through both phosphorylation and proteolytic cascades activated by inflammatory and oxidative stresses in highly penetrant familial monogenic forms of AD, could be informative for pathogenesis of the complex multigenic sporadic form of AD. Comparing stimulus-specific cascades of signal transduction revealed a striking diversity of molecular signaling profiles in AD human skin fibroblasts that express endogenous levels of mutant presenilins PS-1 or PS-2 or the Trisomy 21 proteome. AD fibroblasts bearing the PS-1 M146L mutation associated with highly aggressive AD displayed persistent BKB2R signaling plus decreased ERK activation by BK, correctible by gamma-secretase inhibitor Compound E. Lack of these effects in the homologous PS-2 mutant cells indicates specificity of presenilin gamma-secretase catalytic components in BK signaling biology directed toward MAPK activation. Oxidative stress revealed a JNK-dependent survival pathway in normal

  5. Molecular profiling reveals diversity of stress signal transduction cascades in highly penetrant Alzheimer's disease human skin fibroblasts.

    PubMed

    Mendonsa, Graziella; Dobrowolska, Justyna; Lin, Angela; Vijairania, Pooja; Jong, Y-J I; Baenziger, Nancy L

    2009-01-01

    The serious and growing impact of the neurodegenerative disorder Alzheimer's disease (AD) as an individual and societal burden raises a number of key questions: Can a blanket test for Alzheimer's disease be devised forecasting long-term risk for acquiring this disorder? Can a unified therapy be devised to forestall the development of AD as well as improve the lot of present sufferers? Inflammatory and oxidative stresses are associated with enhanced risk for AD. Can an AD molecular signature be identified in signaling pathways for communication within and among cells during inflammatory and oxidative stress, suggesting possible biomarkers and therapeutic avenues? We postulated a unique molecular signature of dysfunctional activity profiles in AD-relevant signaling pathways in peripheral tissues, based on a gain of function in G-protein-coupled bradykinin B2 receptor (BKB2R) inflammatory stress signaling in skin fibroblasts from AD patients that results in tau protein Ser hyperphosphorylation. Such a signaling profile, routed through both phosphorylation and proteolytic cascades activated by inflammatory and oxidative stresses in highly penetrant familial monogenic forms of AD, could be informative for pathogenesis of the complex multigenic sporadic form of AD. Comparing stimulus-specific cascades of signal transduction revealed a striking diversity of molecular signaling profiles in AD human skin fibroblasts that express endogenous levels of mutant presenilins PS-1 or PS-2 or the Trisomy 21 proteome. AD fibroblasts bearing the PS-1 M146L mutation associated with highly aggressive AD displayed persistent BKB2R signaling plus decreased ERK activation by BK, correctible by gamma-secretase inhibitor Compound E. Lack of these effects in the homologous PS-2 mutant cells indicates specificity of presenilin gamma-secretase catalytic components in BK signaling biology directed toward MAPK activation. Oxidative stress revealed a JNK-dependent survival pathway in normal

  6. On the modified active region design of interband cascade lasers

    SciTech Connect

    Motyka, M.; Ryczko, K.; Dyksik, M.; Sęk, G.; Misiewicz, J.; Weih, R.; Dallner, M.; Kamp, M.; Höfling, S.

    2015-02-28

    Type II InAs/GaInSb quantum wells (QWs) grown on GaSb or InAs substrates and designed to be integrated in the active region of interband cascade lasers (ICLs) emitting in the mid infrared have been investigated. Optical spectroscopy, combined with band structure calculations, has been used to probe their electronic properties. A design with multiple InAs QWs has been compared with the more common double W-shaped QW and it has been demonstrated that it allows red shifting the emission wavelength and enhancing the transition oscillator strength. This can be beneficial for the improvements of the ICLs performances, especially when considering their long-wavelength operation.

  7. Quantum dots as active material for quantum cascade lasers: comparison to quantum wells

    NASA Astrophysics Data System (ADS)

    Michael, Stephan; Chow, Weng W.; Schneider, Hans Christian

    2016-03-01

    We review a microscopic laser theory for quantum dots as active material for quantum cascade lasers, in which carrier collisions are treated at the level of quantum kinetic equations. The computed characteristics of such a quantum-dot active material are compared to a state-of-the-art quantum-well quantum cascade laser. We find that the current requirement to achieve a comparable gain-length product is reduced compared to that of the quantum-well quantum cascade laser.

  8. Specific Activation of the G Protein-coupled Receptor BNGR-A21 by the Neuropeptide Corazonin from the Silkworm, Bombyx mori, Dually Couples to the Gq and Gs Signaling Cascades*

    PubMed Central

    Yang, Jingwen; Huang, Haishan; Yang, Huipeng; He, Xiaobai; Jiang, Xue; Shi, Ying; Alatangaole, Damirin; Shi, Liangen; Zhou, Naiming

    2013-01-01

    Corazonin, an undecapeptide neurohormone sharing a highly conserved amino acid sequence across Insecta, plays different physiological roles in the regulation of heart contraction rates, silk spinning rates, the induction of dark color and morphometric phase changes, and ecdysis. Corazonin receptors have been identified in Drosophila melanogaster, Manduca sexta, and Musca domestica. However, detailed information on the signaling and major physiological functions of corazonin and its receptor is largely unknown. In the current study, using both the mammalian cell line HEK293 and insect cell lines BmN and Sf21, we paired the Bombyx corazonin neuropeptide as a specific endogenous ligand for the Bombyx neuropeptide G protein-coupled receptor A21 (BNGR-A21), and we therefore designated this receptor as BmCrzR. Further characterization indicated that synthetic BmCrz demonstrated a high affinity for and activated BmCrzR, resulting in intracellular cAMP accumulation, Ca2+ mobilization, and ERK1/2 phosphorylation via the Gq- and Gs-coupled signaling pathways. The direct interaction of BmCrzR with BmCrz was confirmed by a rhodamine-labeled BmCrz peptide. Moreover, experiments with double-stranded RNA and synthetic peptide injection suggested a possible role of BmCrz/BmCrzR in the regulation of larval growth and spinning rate. Our present results provide the first in-depth information on BmCrzR-mediated signaling for further elucidation of the BmCrz/BmCrzR system in the regulation of fundamental physiological processes. PMID:23457297

  9. Regulator of G protein signaling 2 (Rgs2) regulates neural crest development through Pparδ-Sox10 cascade.

    PubMed

    Lin, Sheng-Jia; Chiang, Ming-Chang; Shih, Hung-Yu; Hsu, Li-Sung; Yeh, Tu-Hsueh; Huang, Yin-Cheng; Lin, Ching-Yu; Cheng, Yi-Chuan

    2017-03-01

    Neural crest cells are multipotent progenitors that migrate extensively and differentiate into numerous derivatives. The developmental plasticity and migratory ability of neural crest cells render them an attractive model for studying numerous aspects of cell progression. We observed that zebrafish rgs2 was expressed in neural crest cells. Disrupting Rgs2 expression by using a dominant negative rgs2 construct or rgs2 morpholinos reduced GTPase-activating protein activity, induced the formation of neural crest progenitors, increased the proliferation of nonectomesenchymal neural crest cells, and inhibited the formation of ectomesenchymal neural crest derivatives. The transcription of pparda (which encodes Pparδ, a Wnt-activated transcription factor) was upregulated in Rgs2-deficient embryos, and Pparδ inhibition using a selective antagonist in the Rgs2-deficient embryos repaired neural crest defects. Our results clarify the mechanism through which the Rgs2-Pparδ cascade regulates neural crest development; specifically, Pparδ directly binds to the promoter and upregulates the transcription of the neural crest specifier sox10. This study reveals a unique regulatory mechanism, the Rgs2-Pparδ-Sox10 signaling cascade, and defines a key molecular regulator, Rgs2, in neural crest development.

  10. [Cascade of gene activation in Landouzy Dejerine muscular dystrophy].

    PubMed

    Belayew, A

    2010-01-01

    Our laboratory studies the Landouzy Dejerine muscular dystrophy or FSHD, a genetic disease which affects 7 in 100,000 individuals. The genetic defect is a deletion on chromosome 4 that decreases the copy number of a repeated DNA element, disturbs chromatin structure and activates the expression of neighbouring genes. The originality of our team has been to identify a gene within the repeated element itself and to show its activation in FSHD muscle cells. This gene expresses DUX4, a transcription factor that targets tens of genes, some of which express other transcription factors which target other genes, leading to a general deregulation. This DUX4-mediated cascade recapitulates by itself the major pathological features of FSHD: muscle atrophy, differentiation defect, oxidative stress... The homologous DUX4c gene located 42 kb from the repeat array expresses a protein that triggers myoblast proliferation. Its high expression level in severe cases of FSHD most probably contributes to the pathology by interfering with myoblast fusion with the muscle fibers at the last steps of muscle regeneration. We are performing global analyses of proteins and metabolites in healthy and FSHD myotubes (collaboration R Wattiez and JM Colet, UMONS) to identify abnormalities and their links with DUX4 or DUX4C.

  11. Active control of light based on polarization-coupling cascading

    NASA Astrophysics Data System (ADS)

    Huo, Juan; Zheng, Yuanlin; Chen, Xianfeng

    2014-10-01

    In this letter, we proposed a novel method for optical manipulation based on polarization-coupling cascading in MgO-doped periodically poled lithium niobate crystal. Polarization-coupling cascading, a series of energy exchanges between two orthogonally polarized beams close to phase matching condition, can also lead to phase shifts, in analogy with that in cascaded second-order nonlinearities. In addition, the parameters of light such as phase, amplitude, and group velocity can be modulated by changing the relative power ratio of the incident continuous wave beams. The phase control was demonstrated by Newton's rings experiment, which was in good agreement with the theoretical prediction.

  12. Product dependence and bifunctionality compromise the ultrasensitivity of signal transduction cascades

    PubMed Central

    Ortega, Fernando; Acerenza, Luis; Westerhoff, Hans V.; Mas, Francesc; Cascante, Marta

    2002-01-01

    Covalent modification cycles are ubiquitous. Theoretical studies have suggested that they serve to increase sensitivity. However, this suggestion has not been corroborated experimentally in vivo. Here, we demonstrate that the assumptions of the theoretical studies, i.e., irreversibility and absence of product inhibition, were not trivial: when the conversion reactions are close to equilibrium or saturated by their product, “zero-order” ultrasensitivity disappears. For high sensitivities to arise, not only substrate saturation (zero-order) but also high equilibrium constants and low product saturation are required. Many covalent modification cycles are catalyzed by one bifunctional ‘ambiguous’ enzyme rather than by two independent proteins. This makes high substrate concentration and low product concentration for both reactions of the cycle inconsistent; such modification cycles cannot have high responses. Defining signal strength as ratios of modified (e.g., phosphorylated) over unmodified protein, signal-to-signal response sensitivity equals 1: signal strength should remain constant along a cascade of ambiguous modification cycles. We also show that the total concentration of a signalling effector protein cannot affect the signal emanating from a modification cycle catalyzed by an ambiguous enzyme if the ratio of the two forms of the effector protein is not altered. This finding may explain the experimental result that the pivotal signal transduction protein PII plus its paralogue GlnK do not control steady-state N-signal transduction in Escherichia coli. It also rationalizes the absence of strong phenotypes for many signal-transduction proteins. Emphasis on extent of modification of these proteins is perhaps more urgent than transcriptome analysis. PMID:11830657

  13. Optical Properties of Active Regions in Terahertz Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Dyksik, M.; Motyka, M.; Rudno-Rudziński, W.; Sęk, G.; Misiewicz, J.; Pucicki, D.; Kosiel, K.; Sankowska, I.; Kubacka-Traczyk, J.; Bugajski, M.

    2016-07-01

    In this work, AlGaAs/GaAs superlattice, with layers' sequence and compositions imitating the active and injector regions of a quantum cascade laser designed for emission in the terahertz spectral range, was investigated. Three independent absorption-like optical spectroscopy techniques were employed in order to study the band structure of the minibands formed within the conduction band. Photoreflectance measurements provided information about interband transitions in the investigated system. Common transmission spectra revealed, in the target range of intraband transitions, mainly a number of lines associated with the phonon-related processes, including two-phonon absorption. In contrast, differential transmittance realized by means of Fourier-transform spectroscopy was utilized to probe the confined states of the conduction band. The obtained energy separation between the second and third confined electron levels, expected to be predominantly contributing to the lasing, was found to be ~9 meV. The optical spectroscopy measurements were supported by numerical calculations performed in the effective mass approximation and XRD measurements for layers' width verification. The calculated energy spacings are in a good agreement with the experimental values.

  14. Mitogen-Activated Protein Kinase Cascade MKK7-MPK6 Plays Important Roles in Plant Development and Regulates Shoot Branching by Phosphorylating PIN1 in Arabidopsis

    PubMed Central

    Liang, Yan; Wu, Xiaowei; Cai, Yueyue; Zhang, Yuanya; Wang, Yingchun; Li, Jiayang; Wang, Yonghong

    2016-01-01

    Emerging evidences exhibit that mitogen-activated protein kinase (MAPK/MPK) signaling pathways are connected with many aspects of plant development. The complexity of MAPK cascades raises challenges not only to identify the MAPK module in planta but also to define the specific role of an individual module. So far, our knowledge of MAPK signaling has been largely restricted to a small subset of MAPK cascades. Our previous study has characterized an Arabidopsis bushy and dwarf1 (bud1) mutant, in which the MAP Kinase Kinase 7 (MKK7) was constitutively activated, resulting in multiple phenotypic alterations. In this study, we found that MPK3 and MPK6 are the substrates for phosphorylation by MKK7 in planta. Genetic analysis showed that MKK7-MPK6 cascade is specifically responsible for the regulation of shoot branching, hypocotyl gravitropism, filament elongation, and lateral root formation, while MKK7-MPK3 cascade is mainly involved in leaf morphology. We further demonstrated that the MKK7-MPK6 cascade controls shoot branching by phosphorylating Ser 337 on PIN1, which affects the basal localization of PIN1 in xylem parenchyma cells and polar auxin transport in the primary stem. Our results not only specify the functions of the MKK7-MPK6 cascade but also reveal a novel mechanism for PIN1 phosphorylation, establishing a molecular link between the MAPK cascade and auxin-regulated plant development. PMID:27618482

  15. The Croonian Lecture 1998. Identification of a protein kinase cascade of major importance in insulin signal transduction.

    PubMed Central

    Cohen, P

    1999-01-01

    Diabetes affects 3% of the European population and 140 million people worldwide, and is largely a disease of insulin resistance in which the tissues fail to respond to this hormone. This emphasizes the importance of understanding how insulin signals to the cell's interior. We have recently dissected a protein kinase cascade that is triggered by the formation of the insulin 'second messenger' phosphatidylinositide (3,4,5) trisphosphate (PtdIns (3,4,5)P3) and which appears to mediate many of the metabolic actions of this hormone. The first enzyme in the cascade is termed 3-phosphoinositide-dependent protein kinase-1 (PDK1), because it only activates protein kinase B (PKB), the next enzyme in the pathway, in the presence of PtdIns (3,4,5)P3. PKB then inactivates glycogen synthase kinase-3 (GSK3). PDK1, PKB and GSK3 regulate many physiological events by phosphorylating a variety of intracellular proteins. In addition, PKB plays an important role in mediating protection against apoptosis by survival factors, such as insulin-like growth factor-1. PMID:10212493

  16. Ultrasensitive electrochemical aptasensor for ochratoxin A based on two-level cascaded signal amplification strategy.

    PubMed

    Yang, Xingwang; Qian, Jing; Jiang, Ling; Yan, Yuting; Wang, Kan; Liu, Qian; Wang, Kun

    2014-04-01

    Ochratoxin A (OTA) has a number of toxic effects to both humans and animals, so developing sensitive detection method is of great importance. Herein, we describe an ultrasensitive electrochemical aptasensor for OTA based on the two-level cascaded signal amplification strategy with methylene blue (MB) as a redox indicator. In this method, capture DNA, aptamers, and reporter DNA functionalized-gold nanoparticles (GNPs) were immobilized on the electrode accordingly, where GNPs were used as the first-level signal enhancer. To receive the more sensitive response, a larger number of guanine (G)-rich DNA was bound to the GNPs' surface to provide abundant anchoring sites for MB to achieve the second-level signal amplification. By employing this novel strategy, an ~8.5 (±0.3) fold amplification in signal intensity was obtained. Afterward, OTA was added to force partial GNPs/G-rich DNA to release from the sensing interface and thus decreased the electrochemical response. An effective sensing range from 2.5pM to 2.5nM was received with an extremely low detection limit of 0.75 (±0.12) pM. This amplification strategy has the potential to be the main technology for aptamer-based electrochemical biosensor in a variety of fields.

  17. Mating and Pathogenic Development of the Smut Fungus Ustilago maydis Are Regulated by One Mitogen-Activated Protein Kinase Cascade

    PubMed Central

    Müller, Philip; Weinzierl, Gerhard; Brachmann, Andreas; Feldbrügge, Michael; Kahmann, Regine

    2003-01-01

    In the phytopathogenic fungus Ustilago maydis, pheromone-mediated cell fusion is a prerequisite for the generation of the infectious dikaryon. The pheromone signal elevates transcription of the pheromone genes and elicits formation of conjugation hyphae. Cyclic AMP and mitogen-activated protein kinase (MAPK) signaling are involved in this process. The MAPK cascade is presumed to be composed of Ubc4 (MAPK kinase kinase), Fuz7 (MAPK kinase), and Ubc3/Kpp2 (MAPK). We isolated the kpp4 gene and found it to be allelic to ubc4. Epistasis analyses with constitutively active alleles of kpp4 and fuz7 substantiate that Kpp4, Fuz7, and Kpp2/Ubc3 are components of the same module. Moreover, we demonstrate that Fuz7 activates Kpp2 and shows interactions in vitro. Signaling via this cascade regulates expression of pheromone-responsive genes, presumably through acting on the transcription factor Prf1. Interestingly, the same cascade is needed for conjugation tube formation, and this process does not involve Prf1. In addition, fuz7 as well as kpp4 deletion strains are nonpathogenic, while kpp2 deletion mutants are only attenuated in pathogenesis. Here we show that strains expressing the unphosphorylatable allele kpp2T182A/Y184F are severely affected in tumor induction and display defects in early infection-related differentiation. PMID:14665454

  18. Signaling cascades and the importance of moonlight in coral broadcast mass spawning.

    PubMed

    Kaniewska, Paulina; Alon, Shahar; Karako-Lampert, Sarit; Hoegh-Guldberg, Ove; Levy, Oren

    2015-12-15

    Many reef-building corals participate in a mass-spawning event that occurs yearly on the Great Barrier Reef. This coral reproductive event is one of earth's most prominent examples of synchronised behavior, and coral reproductive success is vital to the persistence of coral reef ecosystems. Although several environmental cues have been implicated in the timing of mass spawning, the specific sensory cues that function together with endogenous clock mechanisms to ensure accurate timing of gamete release are largely unknown. Here, we show that moonlight is an important external stimulus for mass spawning synchrony and describe the potential mechanisms underlying the ability of corals to detect environmental triggers for the signaling cascades that ultimately result in gamete release. Our study increases the understanding of reproductive chronobiology in corals and strongly supports the hypothesis that coral gamete release is achieved by a complex array of potential neurohormones and light-sensing molecules.

  19. Caveolin-1-deficient Mice Show Accelerated Mammary Gland Development During Pregnancy, Premature Lactation, and Hyperactivation of the Jak-2/STAT5a Signaling Cascade

    PubMed Central

    Park, David S.; Lee, Hyangkyu; Frank, Philippe G.; Razani, Babak; Nguyen, Andrew V.; Parlow, Albert F.; Russell, Robert G.; Hulit, James; Pestell, Richard G.; Lisanti, Michael P.

    2002-01-01

    It is well established that mammary gland development and lactation are tightly controlled by prolactin signaling. Binding of prolactin to its cognate receptor (Prl-R) leads to activation of the Jak-2 tyrosine kinase and the recruitment/tyrosine phosphorylation of STAT5a. However, the mechanisms for attenuating the Prl-R/Jak-2/STAT5a signaling cascade are just now being elucidated. Here, we present evidence that caveolin-1 functions as a novel suppressor of cytokine signaling in the mammary gland, akin to the SOCS family of proteins. Specifically, we show that caveolin-1 expression blocks prolactin-induced activation of a STAT5a-responsive luciferase reporter in mammary epithelial cells. Furthermore, caveolin-1 expression inhibited prolactin-induced STAT5a tyrosine phosphorylation and DNA binding activity, suggesting that caveolin-1 may negatively regulate the Jak-2 tyrosine kinase. Because the caveolin-scaffolding domain bears a striking resemblance to the SOCS pseudosubstrate domain, we examined whether Jak-2 associates with caveolin-1. In accordance with this homology, we demonstrate that Jak-2 cofractionates and coimmunoprecipitates with caveolin-1. We next tested the in vivo relevance of these findings using female Cav-1 (−/−) null mice. If caveolin-1 normally functions as a suppressor of cytokine signaling in the mammary gland, then Cav-1 null mice should show premature development of the lobuloalveolar compartment because of hyperactivation of the prolactin signaling cascade via disinhibition of Jak-2. In accordance with this prediction, Cav-1 null mice show accelerated development of the lobuloalveolar compartment, premature milk production, and hyperphosphorylation of STAT5a (pY694) at its Jak-2 phosphorylation site. In addition, the Ras-p42/44 MAPK cascade is hyper-activated. Because a similar premature lactation phenotype is observed in SOCS1 (−/−) null mice, we conclude that caveolin-1 is a novel suppressor of cytokine signaling. PMID:12388746

  20. Protopanaxatirol type ginsenoside Re promotes cyclic growth of hair follicles via inhibiting transforming growth factor β signaling cascades.

    PubMed

    Li, Zheng; Ryu, Seung-Wook; Lee, Jungsul; Choi, Kyungsun; Kim, Sunchang; Choi, Chulhee

    2016-02-19

    Ginsenosides, the major bio-active ingredients included in Panax ginseng, have been known for the hair growth activity and used to treat patients who suffer from hair loss; however, the detailed mechanisms of this action are still largely unknown. This study was conducted to investigate the molecular and cellular mechanisms responsible for hair growth promoting effect of ginsenoside Re (GRe) in vitro and in vivo. Different doses of minoxidil and GRe were administered topically to the back regions of nude mice for up to 45 days, and hair shaft length and hair cycles were determined for hair promoting activities. Topical treatment of GRe significantly increased the hair shaft length and hair existent time, which was comparable to the action of minoxidil. We also demonstrated that GRe stimulated hair shaft elongation in the ex vivo cultures of vibrissa hair follicles isolated from C57BL/6 mouse. Systemic transcriptome analysis by next generation sequencing demonstrated that TGF-β-pathway related genes were selectively down-regulated by treatment of GRe in vivo, and the same treatment suppressed TGF-β-induced phosphorylation of ERK in HeLa cells. The results clearly indicated that GRe is the effective constituent in the ginseng on hair promotion via selective inhibition of the hair growth phase transition related signaling pathways, TGF-β signaling cascades.

  1. Modeling self-sustained activity cascades in socio-technical networks

    NASA Astrophysics Data System (ADS)

    Piedrahita, P.; Borge-Holthoefer, J.; Moreno, Y.; Arenas, A.

    2013-11-01

    The ability to understand and eventually predict the emergence of information and activation cascades in social networks is core to complex socio-technical systems research. However, the complexity of social interactions makes this a challenging enterprise. Previous works on cascade models assume that the emergence of this collective phenomenon is related to the activity observed in the local neighborhood of individuals, but do not consider what determines the willingness to spread information in a time-varying process. Here we present a mechanistic model that accounts for the temporal evolution of the individual state in a simplified setup. We model the activity of the individuals as a complex network of interacting integrate-and-fire oscillators. The model reproduces the statistical characteristics of the cascades in real systems, and provides a framework to study the time evolution of cascades in a state-dependent activity scenario.

  2. A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara.

    PubMed

    Dawood, Thikra; Yang, Xinping; Visser, Eric J W; Te Beek, Tim A H; Kensche, Philip R; Cristescu, Simona M; Lee, Sangseok; Floková, Kristýna; Nguyen, Duy; Mariani, Celestina; Rieu, Ivo

    2016-04-01

    Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding.

  3. FIA functions as an early signal component of abscisic acid signal cascade in Vicia faba guard cells.

    PubMed

    Sugiyama, Yusuke; Uraji, Misugi; Watanabe-Sugimoto, Megumi; Okuma, Eiji; Munemasa, Shintaro; Shimoishi, Yasuaki; Nakamura, Yoshimasa; Mori, Izumi C; Iwai, Sumio; Murata, Yoshiyuki

    2012-02-01

    An abscisic acid (ABA)-insensitive Vicia faba mutant, fia (fava bean impaired in ABA-induced stomatal closure) had previously been isolated. In this study, it was investigated how FIA functions in ABA signalling in guard cells of Vicia faba. Unlike ABA, methyl jasmonate (MeJA), H(2)O(2), and nitric oxide (NO) induced stomatal closure in the fia mutant. ABA did not induce production of either reactive oxygen species or NO in the mutant. Moreover, ABA did not suppress inward-rectifying K(+) (K(in)) currents or activate ABA-activated protein kinase (AAPK) in mutant guard cells. These results suggest that FIA functions as an early signal component upstream of AAPK activation in ABA signalling but does not function in MeJA signalling in guard cells of Vicia faba.

  4. Signaling cascades and the importance of moonlight in coral broadcast mass spawning

    PubMed Central

    Kaniewska, Paulina; Alon, Shahar; Karako-Lampert, Sarit; Hoegh-Guldberg, Ove; Levy, Oren

    2015-01-01

    Many reef-building corals participate in a mass-spawning event that occurs yearly on the Great Barrier Reef. This coral reproductive event is one of earth's most prominent examples of synchronised behavior, and coral reproductive success is vital to the persistence of coral reef ecosystems. Although several environmental cues have been implicated in the timing of mass spawning, the specific sensory cues that function together with endogenous clock mechanisms to ensure accurate timing of gamete release are largely unknown. Here, we show that moonlight is an important external stimulus for mass spawning synchrony and describe the potential mechanisms underlying the ability of corals to detect environmental triggers for the signaling cascades that ultimately result in gamete release. Our study increases the understanding of reproductive chronobiology in corals and strongly supports the hypothesis that coral gamete release is achieved by a complex array of potential neurohormones and light-sensing molecules. DOI: http://dx.doi.org/10.7554/eLife.09991.001 PMID:26668113

  5. Imaging hydrogen peroxide in Alzheimer’s disease via cascade signal amplification

    PubMed Central

    Yang, Jian; Yang, Jing; Liang, Steven H.; Xu, Yungen; Moore, Anna; Ran, Chongzhao

    2016-01-01

    In brains of Alzheimer’s disease (AD), reactive oxygen species (ROS) levels are significantly higher than that of healthy brains. Evidence suggests that, during AD onset and progression, a vicious cycle revolves around amyloid beta (Aβ) production, aggregation, plaque formation, microglia/immunological responses, inflammation, and ROS production. In this cycle, ROS species play a central role, and H2O2 is one of the most important ROS species. In this report, we have designed a fluorescent imaging probe CRANAD-88, which is capable of cascade amplifying near infrared fluorescence (NIRF) signals at three levels upon interacting with H2O2 in AD brains. We demonstrated that the amplification was feasible in vitro and in vivo. Remarkably, we showed that, for the first time, it was feasible to monitor the changes of H2O2 concentrations in AD brains before and after treatment with an H2O2 scavenger. Our method opens new revenues to investigate H2O2 in AD brains and can be very instructive for drug development. PMID:27762326

  6. Steroids initiate a signaling cascade that triggers rapid sporulation in Dictyostelium

    PubMed Central

    Anjard, Christophe; Su, Yongxuan; Loomis, William F.

    2009-01-01

    Summary Encapsulation of prespore cells of Dictyostelium discoideum is controlled by several intercellular signals to ensure appropriate timing during fruiting body formation. Acyl-CoA-binding protein, AcbA, is secreted by prespore cells and processed by the prestalk protease TagC to form the 34 amino acid peptide SDF-2 that triggers rapid encapsulation. AcbA is secreted when γ-aminobutyric acid (GABA) is released from prespore cells and binds to GrlE, a G protein-coupled receptor (GPCR). Analysis of SDF-2 production in mutant strains lacking Gα subunits and GPCRs, either as pure populations or when mixed with other mutant strains, uncovered the non-cell-autonomous roles of GrlA, Gα4 and Gα7. We found that Gα7 is essential for the response to GABA and is likely to be coupled to GrlE. GrlA-null and Gα4-null cells respond normally to GABA but fail to secrete it. We found that they are necessary for the response to a small hydrophobic molecule, SDF-3, which is released late in culmination. Pharmacological inhibition of steroidogenesis during development blocked the production of SDF-3. Moreover, the response to SDF-3 could be blocked by the steroid antagonist mifepristone, whereas hydrocortisone and other steroids mimicked the effects of SDF-3 when added in the nanomolar range. It appears that SDF-3 is a steroid that elicits rapid release of GABA by acting through the GPCR GrlA, coupled to G protein containing the Gα4 subunit. SDF-3 is at the head of the cascade that amplifies the signal for encapsulation to ensure the rapid, synchronous formation of spores. PMID:19176583

  7. Hypothesis for thermal activation of the caspase cascade in apoptotic cell death at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Pearce, John A.

    2013-02-01

    Apoptosis is an especially important process affecting disease states from HIV-AIDS to auto-immune disease to cancer. A cascade of initiator and executioner capsase functional proteins is the hallmark of apoptosis. When activated the various caspases activate other caspases or cleave structural proteins of the cytoskeleton, resulting in "blebbing" of the plasma membrane forming apoptotic bodies that completely enclose the disassembled cellular components. Containment of the cytosolic components within the apoptotic bodies differentiates apoptosis from necroptosis and necrosis, both of which release fragmented cytosol and other cellular constituents into the intracellular space. Biochemical models of caspase activation reveal the extensive feedback loops characteristic of apoptosis. They clearly explain the failure of Arrhenius models to give accurate predictions of cell survival curves in hyperthermic heating protocols. Nevertheless, each of the individual reaction velocities can reasonably be assumed to follow Arrhenius kinetics. If so, the thermal sensitivity of the reaction velocity to temperature elevation is: ∂k/∂T = Ea [k/RT2]. Particular reaction steps described by higher activation energies, Ea, are likely more thermally-sensitive than lower energy reactions and may initiate apoptosis in the absence of other stress signals. Additionally, while the classical irreversible Arrhenius formulation fails to accurately represent many cell survival and/or dye uptake curves - those that display an early stage shoulder region - an expanded reversible model of the law of mass action equation seems to prove effective and is directly based on a firm theoretical thermodynamic foundation.

  8. Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids

    PubMed Central

    Słomka, Jonasz; Dunkel, Jörn

    2017-01-01

    Classical turbulence theory assumes that energy transport in a 3D turbulent flow proceeds through a Richardson cascade whereby larger vortices successively decay into smaller ones. By contrast, an additional inverse cascade characterized by vortex growth exists in 2D fluids and gases, with profound implications for meteorological flows and fluid mixing. The possibility of a helicity-driven inverse cascade in 3D fluids had been rejected in the 1970s based on equilibrium-thermodynamic arguments. Recently, however, it was proposed that certain symmetry-breaking processes could potentially trigger a 3D inverse cascade, but no physical system exhibiting this phenomenon has been identified to date. Here, we present analytical and numerical evidence for the existence of an inverse energy cascade in an experimentally validated 3D active fluid model, describing microbial suspension flows that spontaneously break mirror symmetry. We show analytically that self-organized scale selection, a generic feature of many biological and engineered nonequilibrium fluids, can generate parity-violating Beltrami flows. Our simulations further demonstrate how active scale selection controls mirror-symmetry breaking and the emergence of a 3D inverse cascade. PMID:28193853

  9. Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes.

    PubMed

    Rock, Jeremy M; Lim, Daniel; Stach, Lasse; Ogrodowicz, Roksana W; Keck, Jamie M; Jones, Michele H; Wong, Catherine C L; Yates, John R; Winey, Mark; Smerdon, Stephen J; Yaffe, Michael B; Amon, Angelika

    2013-05-17

    Scaffold-assisted signaling cascades guide cellular decision-making. In budding yeast, one such signal transduction pathway called the mitotic exit network (MEN) governs the transition from mitosis to the G1 phase of the cell cycle. The MEN is conserved and in metazoans is known as the Hippo tumor-suppressor pathway. We found that signaling through the MEN kinase cascade was mediated by an unusual two-step process. The MEN kinase Cdc15 first phosphorylated the scaffold Nud1. This created a phospho-docking site on Nud1, to which the effector kinase complex Dbf2-Mob1 bound through a phosphoserine-threonine binding domain, in order to be activated by Cdc15. This mechanism of pathway activation has implications for signal transmission through other kinase cascades and might represent a general principle in scaffold-assisted signaling.

  10. DNA-only cascade: a universal tool for signal amplification, enhancing the detection of target analytes.

    PubMed

    Bone, Simon M; Hasick, Nicole J; Lima, Nicole E; Erskine, Simon M; Mokany, Elisa; Todd, Alison V

    2014-09-16

    Diagnostic tests performed in the field or at the site of patient care would benefit from using a combination of inexpensive, stable chemical reagents and simple instrumentation. Here, we have developed a universal "DNA-only Cascade" (DoC) to quantitatively detect target analytes with increased speed. The DoC utilizes quasi-circular structures consisting of temporarily inactivated deoxyribozymes (DNAzymes). The catalytic activity of the DNAzymes is restored in a universal manner in response to a broad range of environmental and biological targets. The present study demonstrates DNAzyme activation in the presence of metal ions (Pb(2+)), small molecules (deoxyadenosine triphosphate) and nucleic acids homologous to genes from Meningitis-causing bacteria. Furthermore, DoC efficiently discriminates nucleic acid targets differing by a single nucleotide. When detection of analytes is orchestrated by functional nucleic acids, the inclusion of DoC reagents substantially decreases time for detection and allows analyte quantification. The detection of nucleic acids using DoC was further characterized for its capability to be multiplexed and retain its functionality following long-term exposure to ambient temperatures and in a background of complex medium (human serum).

  11. Identification of signalling cascades involved in red blood cell shrinkage and vesiculation

    PubMed Central

    Kostova, Elena B.; Beuger, Boukje M.; Klei, Thomas R.L.; Halonen, Pasi; Lieftink, Cor; Beijersbergen, Roderick; van den Berg, Timo K.; van Bruggen, Robin

    2015-01-01

    Even though red blood cell (RBC) vesiculation is a well-documented phenomenon, notably in the context of RBC aging and blood transfusion, the exact signalling pathways and kinases involved in this process remain largely unknown. We have established a screening method for RBC vesicle shedding using the Ca2+ ionophore ionomycin which is a rapid and efficient method to promote vesiculation. In order to identify novel pathways stimulating vesiculation in RBC, we screened two libraries: the Library of Pharmacologically Active Compounds (LOPAC) and the Selleckchem Kinase Inhibitor Library for their effects on RBC from healthy donors. We investigated compounds triggering vesiculation and compounds inhibiting vesiculation induced by ionomycin. We identified 12 LOPAC compounds, nine kinase inhibitors and one kinase activator which induced RBC shrinkage and vesiculation. Thus, we discovered several novel pathways involved in vesiculation including G protein-coupled receptor (GPCR) signalling, the phosphoinositide 3-kinase (PI3K)–Akt (protein kinase B) pathway, the Jak–STAT (Janus kinase–signal transducer and activator of transcription) pathway and the Raf–MEK (mitogen-activated protein kinase kinase)–ERK (extracellular signal-regulated kinase) pathway. Moreover, we demonstrated a link between casein kinase 2 (CK2) and RBC shrinkage via regulation of the Gardos channel activity. In addition, our data showed that inhibition of several kinases with unknown functions in mature RBC, including Alk (anaplastic lymphoma kinase) kinase and vascular endothelial growth factor receptor 2 (VEGFR-2), induced RBC shrinkage and vesiculation. PMID:25757360

  12. Radiation induced nuclear factor kappa-B signaling cascade study in mammalian cells by improved detection systems

    NASA Astrophysics Data System (ADS)

    Chishti, Arif Ali; Baumstark-Khan, Christa; Hellweg, Christine; Reitz, Guenther

    To enable long-term human space flight cellular radiation response to densely ionizing radiation needs to be better understood for developing appropriate countermeasures to mitigate acute effects and late radiation risks for the astronaut. The biological effectiveness of accelerated heavy ions with high linear energy transfer (LET) for effecting DNA damage response pathways as a gateway to cell death or survival is of major concern, not only for tumor radiotherapy but also for new regimes of space missions. Ionizing radiation modulates several signaling pathways resulting in transcription factor activation. NF-kappaB is one of the important transcription factors that respond to changes in the environment of a mammalian cell and plays a key role in many biological processes relevant to radiation response, such as apoptosis, inflammation and carcinogenesis. From medical and biological point of view it is important to understand radiation induced NF-kappaB signaling cascade. For studying NF-kappaB signaling, green fluorescent proteins EGFP and d2EGFP were used previously (Advances in Space Research, 36: 1673-1679, 2005). The current study aims to improve reporter assays by the use of a destabilized variant of red fluorescent protein tdTomato (DD-tdTomato) which gives high fluorescence signals and a better signal/noise ratio for NF-kappaB activation. The reporter system HEK-pNFkappaB-DD-tdTomato-C8 is a dual reporter system which can provide both discrete and cumulative signals after exposure to ionizing radiation (X-rays, heavy ions). In the presence of Shield-1, the fluorescent protein DD-tdTomato is not degraded but accumulated inside the cell which helps to quantify the fold induction of NF-kappaB-dependent gene expression. The minimum dose required to activate NF-kappaB is 6 Gy but accumulated signals data shows that NF-kappaB is activated after 3 Gy in the presence of Shield-1. Average dose and number of heavy ions’ hits per nucleus necessary to double the NF

  13. High tissue glucose alters intersomitic blood vessels in zebrafish via methylglyoxal targeting the VEGF receptor signaling cascade.

    PubMed

    Jörgens, Kristina; Stoll, Sandra J; Pohl, Jennifer; Fleming, Thomas H; Sticht, Carsten; Nawroth, Peter P; Hammes, Hans-Peter; Kroll, Jens

    2015-01-01

    Hyperglycemia causes micro- and macrovascular complications in diabetic patients. Elevated glucose concentrations lead to increased formation of the highly reactive dicarbonyl methylglyoxal (MG), yet the early consequences of MG for development of vascular complications in vivo are poorly understood. In this study, zebrafish were used as a model organism to analyze early vascular effects and mechanisms of MG in vivo. High tissue glucose increased MG concentrations in tg(fli:EGFP) zebrafish embryos and rapidly induced several additional malformed and uncoordinated blood vessel structures that originated out of existing intersomitic blood vessels (ISVs). However, larger blood vessels, including the dorsal aorta and common cardinal vein, were not affected. Expression silencing of MG-degrading enzyme glyoxalase (glo) 1 elevated MG concentrations and induced a similar vascular hyperbranching phenotype in zebrafish. MG enhanced phosphorylation of vascular endothelial growth factor (VEGF) receptor 2 and its downstream target Akt/protein kinase B (PKB). Pharmacological inhibitors for VEGF receptor 2 and Akt/PKB as well as MG scavenger aminoguanidine and glo1 activation prevented MG-induced hyperbranching of ISVs. Taken together, MG acts on smaller blood vessels in zebrafish via the VEGF receptor signaling cascade, thereby describing a new mechanism that can explain vascular complications under hyperglycemia and elevated MG concentrations.

  14. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade.

    PubMed

    Yang, Dong-Lei; Yao, Jian; Mei, Chuan-Sheng; Tong, Xiao-Hong; Zeng, Long-Jun; Li, Qun; Xiao, Lang-Tao; Sun, Tai-ping; Li, Jigang; Deng, Xing-Wang; Lee, Chin Mei; Thomashow, Michael F; Yang, Yinong; He, Zuhua; He, Sheng Yang

    2012-05-08

    Plants must effectively defend against biotic and abiotic stresses to survive in nature. However, this defense is costly and is often accompanied by significant growth inhibition. How plants coordinate the fluctuating growth-defense dynamics is not well understood and remains a fundamental question. Jasmonate (JA) and gibberellic acid (GA) are important plant hormones that mediate defense and growth, respectively. Binding of bioactive JA or GA ligands to cognate receptors leads to proteasome-dependent degradation of specific transcriptional repressors (the JAZ or DELLA family of proteins), which, at the resting state, represses cognate transcription factors involved in defense (e.g., MYCs) or growth [e.g. phytochrome interacting factors (PIFs)]. In this study, we found that the coi1 JA receptor mutants of rice (a domesticated monocot crop) and Arabidopsis (a model dicot plant) both exhibit hallmark phenotypes of GA-hypersensitive mutants. JA delays GA-mediated DELLA protein degradation, and the della mutant is less sensitive to JA for growth inhibition. Overexpression of a selected group of JAZ repressors in Arabidopsis plants partially phenocopies GA-associated phenotypes of the coi1 mutant, and JAZ9 inhibits RGA (a DELLA protein) interaction with transcription factor PIF3. Importantly, the pif quadruple (pifq) mutant no longer responds to JA-induced growth inhibition, and overexpression of PIF3 could partially overcome JA-induced growth inhibition. Thus, a molecular cascade involving the COI1-JAZ-DELLA-PIF signaling module, by which angiosperm plants prioritize JA-mediated defense over growth, has been elucidated.

  15. Radiation-induced glioblastoma signaling cascade regulates viability, apoptosis and differentiation of neural stem cells (NSC).

    PubMed

    Ivanov, Vladimir N; Hei, Tom K

    2014-12-01

    Ionizing radiation alone or in combination with chemotherapy is the main treatment modality for brain tumors including glioblastoma. Adult neurons and astrocytes demonstrate substantial radioresistance; in contrast, human neural stem cells (NSC) are highly sensitive to radiation via induction of apoptosis. Irradiation of tumor cells has the potential risk of affecting the viability and function of NSC. In this study, we have evaluated the effects of irradiated glioblastoma cells on viability, proliferation and differentiation potential of non-irradiated (bystander) NSC through radiation-induced signaling cascades. Using media transfer experiments, we demonstrated significant effects of the U87MG glioblastoma secretome after gamma-irradiation on apoptosis in non-irradiated NSC. Addition of anti-TRAIL antibody to the transferred media partially suppressed apoptosis in NSC. Furthermore, we observed a dramatic increase in the production and secretion of IL8, TGFβ1 and IL6 by irradiated glioblastoma cells, which could promote glioblastoma cell survival and modify the effects of death factors in bystander NSC. While differentiation of NSC into neurons and astrocytes occurred efficiently with the corresponding differentiation media, pretreatment of NSC for 8 h with medium from irradiated glioblastoma cells selectively suppressed the differentiation of NSC into neurons, but not into astrocytes. Exogenous IL8 and TGFβ1 increased NSC/NPC survival, but also suppressed neuronal differentiation. On the other hand, IL6 was known to positively affect survival and differentiation of astrocyte progenitors. We established a U87MG neurosphere culture that was substantially enriched by SOX2(+) and CD133(+) glioma stem-like cells (GSC). Gamma-irradiation up-regulated apoptotic death in GSC via the FasL/Fas pathway. Media transfer experiments from irradiated GSC to non-targeted NSC again demonstrated induction of apoptosis and suppression of neuronal differentiation of NSC. In

  16. Opioid-receptor (OR) signaling cascades in rat cerebral cortex and model cell lines: the role of plasma membrane structure.

    PubMed

    Ujčíková, H; Brejchová, J; Vošahlíková, M; Kagan, D; Dlouhá, K; Sýkora, J; Merta, L; Drastichová, Z; Novotný, J; Ostašov, P; Roubalová, L; Parenti, M; Hof, M; Svoboda, P

    2014-01-01

    . Validity of this conclusion was supported by the analysis of an immediate PM environment of cholesterol molecules in living delta-OR-G(i)1alpha-HEK293 cells by fluorescent probes 22- and 25-NBD-cholesterol. The alteration of plasma membrane structure by cholesterol depletion made the membrane more hydrated. Understanding of the positive and negative feedback regulatory loops among different OR-initiated signaling cascades (micro-, delta-, and kappa-OR) is crucial for understanding of the long-term mechanisms of drug addiction as the decrease in functional activity of micro-OR may be compensated by increase of delta-OR and/or kappa-OR signaling.

  17. Sleep Loss Activates Cellular Inflammatory Signaling

    PubMed Central

    Irwin, Michael R.; Wang, Minge; Ribeiro, Denise; Cho, Hyong Jin; Olmstead, Richard; Breen, Elizabeth Crabb; Martinez-Maza, Otoniel; Cole, Steve

    2008-01-01

    Background Accumulating evidence suggests that sleep disturbance is associated with inflammation and related disorders including cardiovascular disease, arthritis, and diabetes mellitus. This study was undertaken to test the effects of sleep loss on activation of nuclear factor (NF) -κB, a transcription factor that serves a critical role in the inflammatory signaling cascade. Methods In 14 healthy adults (7 females; 7 males), peripheral blood mononuclear cell NF-κB was repeatedly assessed, along with enumeration of lymphocyte subpopulations, in the morning after baseline sleep, partial sleep deprivation (awake from 23:00 h to 03:00 h), and recovery sleep. Results In the morning after a night of sleep loss, mononuclear cell NF-κB activation was significantly greater compared with morning levels following uninterrupted baseline or recovery sleep, in which the response was found in females but not in males. Conclusions These results identify NF-κB activation as a molecular pathway by which sleep disturbance may influence leukocyte inflammatory gene expression and the risk of inflammation-related disease. PMID:18561896

  18. Proximity does not contribute to activity enhancement in the glucose oxidase-horseradish peroxidase cascade

    NASA Astrophysics Data System (ADS)

    Zhang, Yifei; Tsitkov, Stanislav; Hess, Henry

    2016-12-01

    A proximity effect has been invoked to explain the enhanced activity of enzyme cascades on DNA scaffolds. Using the cascade reaction carried out by glucose oxidase and horseradish peroxidase as a model system, here we study the kinetics of the cascade reaction when the enzymes are free in solution, when they are conjugated to each other and when a competing enzyme is present. No proximity effect is found, which is in agreement with models predicting that the rapidly diffusing hydrogen peroxide intermediate is well mixed. We suggest that the reason for the activity enhancement of enzymes localized by DNA scaffolds is that the pH near the surface of the negatively charged DNA nanostructures is lower than that in the bulk solution, creating a more optimal pH environment for the anchored enzymes. Our findings challenge the notion of a proximity effect and provide new insights into the role of DNA scaffolds.

  19. Proximity does not contribute to activity enhancement in the glucose oxidase–horseradish peroxidase cascade

    PubMed Central

    Zhang, Yifei; Tsitkov, Stanislav; Hess, Henry

    2016-01-01

    A proximity effect has been invoked to explain the enhanced activity of enzyme cascades on DNA scaffolds. Using the cascade reaction carried out by glucose oxidase and horseradish peroxidase as a model system, here we study the kinetics of the cascade reaction when the enzymes are free in solution, when they are conjugated to each other and when a competing enzyme is present. No proximity effect is found, which is in agreement with models predicting that the rapidly diffusing hydrogen peroxide intermediate is well mixed. We suggest that the reason for the activity enhancement of enzymes localized by DNA scaffolds is that the pH near the surface of the negatively charged DNA nanostructures is lower than that in the bulk solution, creating a more optimal pH environment for the anchored enzymes. Our findings challenge the notion of a proximity effect and provide new insights into the role of DNA scaffolds. PMID:28004753

  20. Redox metabolites signal polymicrobial biofilm development via the NapA oxidative stress cascade in Aspergillus

    PubMed Central

    Zheng, He; Kim, Jaekuk; Liew, Mathew; Yan, John K.; Herrera, Oscar; Bok, JinWoo; Kelleher, Neil L.; Keller, Nancy P.; Wang, Yun

    2014-01-01

    Summary Background Filamentous fungi and bacteria form mixed-species biofilms in nature and diverse clinical contexts. They secrete a wealth of redox-active small molecule secondary metabolites, which are traditionally viewed as toxins that inhibit growth of competing microbes. Results Here we report that these “toxins” can act as interspecies signals, affecting filamentous fungal development via oxidative stress regulation. Specifically, in co-culture biofilms, Pseudomonas aeruginosa phenazine-derived metabolites differentially modulated Aspergillus fumigatus development, shifting from weak vegetative growth to induced asexual sporulation (conidiation) along a decreasing phenazine gradient. The A. fumigatus morphological shift correlated with the production of phenazine radicals and concomitant reactive oxygen species (ROS) production generated by phenazine redox cycling. Phenazine conidiation signaling was conserved in the genetic model A. nidulans, and mediated by NapA, a homolog of AP-1-like bZIP transcription factor, which is essential for the response to oxidative stress in humans, yeast, and filamentous fungi. Expression profiling showed phenazine treatment induced a NapA-dependent response of the global oxidative stress metabolome including the thioredoxin, glutathione and NADPH-oxidase systems. Conidiation induction in A. nidulans by another microbial redox-active secondary metabolite, gliotoxin, also required NapA. Conclusions This work highlights that microbial redox metabolites are key signals for sporulation in filamentous fungi, which are communicated through an evolutionarily conserved eukaryotic stress response pathway. It provides a foundation for interspecies signaling in environmental and clinical biofilms involving bacteria and filamentous fungi. PMID:25532893

  1. The mTOR signalling cascade: paving new roads to cure neurological disease.

    PubMed

    Crino, Peter B

    2016-07-01

    Defining the multiple roles of the mechanistic (formerly 'mammalian') target of rapamycin (mTOR) signalling pathway in neurological diseases has been an exciting and rapidly evolving story of bench-to-bedside translational research that has spanned gene mutation discovery, functional experimental validation of mutations, pharmacological pathway manipulation, and clinical trials. Alterations in the dual contributions of mTOR - regulation of cell growth and proliferation, as well as autophagy and cell death - have been found in developmental brain malformations, epilepsy, autism and intellectual disability, hypoxic-ischaemic and traumatic brain injuries, brain tumours, and neurodegenerative disorders. mTOR integrates a variety of cues, such as growth factor levels, oxygen levels, and nutrient and energy availability, to regulate protein synthesis and cell growth. In line with the positioning of mTOR as a pivotal cell signalling node, altered mTOR activation has been associated with a group of phenotypically diverse neurological disorders. To understand how altered mTOR signalling leads to such divergent phenotypes, we need insight into the differential effects of enhanced or diminished mTOR activation, the developmental context of these changes, and the cell type affected by altered signalling. A particularly exciting feature of the tale of mTOR discovery is that pharmacological mTOR inhibitors have shown clinical benefits in some neurological disorders, such as tuberous sclerosis complex, and are being considered for clinical trials in epilepsy, autism, dementia, traumatic brain injury, and stroke.

  2. The FRK/RAK-SHB signaling cascade: a versatile signal-transduction pathway that regulates cell survival, differentiation and proliferation.

    PubMed

    Annerén, Cecilia; Lindholm, Cecilia K; Kriz, Vitezslav; Welsh, Michael

    2003-06-01

    Recent experiments have unravelled novel signal transduction pathways that involve the SRC homology 2 (SH2) domain adapter protein SHB. SHB is ubiquitously expressed and contains proline rich motifs, a phosphotyrosine binding (PTB) domain, tyrosine phosphorylation sites and an SH2 domain and serves a role in generating signaling complexes in response to tyrosine kinase activation. SHB mediates certain responses in platelet-derived growth factor (PDGF) receptor-, fibroblast growth factor (FGF) receptor-, neural growth factor (NGF) receptor TRKA-, T cell receptor-, interleukin-2 (IL-2) receptor- and focal adhesion kinase- (FAK) signaling. Upstream of SHB in some cells lies the SRC-like FYN-Related Kinase FRK/RAK (also named BSK/IYK or GTK). FRK/RAK and SHB exert similar effects when overexpressed in rat phaeochromocytoma (PC12) and beta-cells, where they both induce PC12 cell differentiation and beta-cell proliferation. Furthermore, beta-cell apoptosis is augmented by these proteins under conditions that cause beta-cell degeneration. The FRK/RAK-SHB responses involve FAK and insulin receptor substrates (IRS) -1 and -2. Besides regulating apoptosis, proliferation and differentiation, SHB is also a component of the T cell receptor (TCR) signaling response. In Jurkat T cells, SHB links several signaling components with the TCR and is thus required for IL-2 production. In endothelial cells, SHB both promotes apoptosis under conditions that are anti-angiogenic, but is also required for proper mitogenicity, spreading and tubular morphogenesis. In embryonic stem cells, dominant-negative SHB (R522K) prevents early cavitation of embryoid bodies and reduces differentiation to cells expressing albumin, amylase, insulin and glucagon, suggesting a role of SHB in development. In summary, SHB is a versatile signal transduction molecule that produces diverse biological responses in different cell types under various conditions. SHB operates downstream of GTK in cells that express

  3. Confluence switch signaling regulates ECM composition and the plasmin proteolytic cascade in keratinocytes.

    PubMed

    Botta, Adrien; Delteil, Frédéric; Mettouchi, Amel; Vieira, Andhira; Estrach, Soline; Négroni, Luc; Stefani, Caroline; Lemichez, E; Meneguzzi, Guerrino; Gagnoux-Palacios, Laurent

    2012-09-15

    In culture, cell confluence generates signals that commit actively growing keratinocytes to exit the cell cycle and differentiate to form a stratified epithelium. Using a comparative proteomic approach, we studied this 'confluence switch' and identified a new pathway triggered by cell confluence that regulates basement membrane (BM) protein composition by suppressing the uPA-uPAR-plasmin pathway. Indeed, confluence triggers adherens junction maturation and enhances TGF-β and activin A activity, resulting in increased deposition of PAI-1 and perlecan in the BM. Extracellular matrix (ECM)-accumulated PAI-1 suppresses the uPA-uPAR-plasmin pathway and further enhances perlecan deposition by inhibiting its plasmin-dependent proteolysis. We show that perlecan deposition in the ECM strengthens cell adhesion, inhibits keratinocyte motility and promotes additional accumulation of PAI-1 in the ECM at confluence. In agreement, during wound-healing, perlecan concentrates at the wound-margin, where BM matures to stabilize keratinocyte adhesion. Our results demonstrate that confluence-dependent signaling orchestrates not only growth inhibition and differentiation, but also controls ECM proteolysis and BM formation. These data suggest that uncontrolled integration of confluence-dependent signaling, might favor skin disorders, including tumorigenesis, not only by promoting cell hyperproliferation, but also by altering protease activity and deposition of ECM components.

  4. Angiotensin-converting enzyme (ACE) dimerization is the initial step in the ACE inhibitor-induced ACE signaling cascade in endothelial cells.

    PubMed

    Kohlstedt, Karin; Gershome, Cynthia; Friedrich, Matthias; Müller-Esterl, Werner; Alhenc-Gelas, François; Busse, Rudi; Fleming, Ingrid

    2006-05-01

    The binding of angiotensin-converting enzyme (ACE) inhibitors to ACE initiates a signaling cascade that involves the phosphorylation of the enzyme on Ser1270 as well as activation of the c-Jun NH2-terminal kinase (JNK) and leads to alterations in gene expression. To clarify how ACE inhibitors activate this pathway, we determined their effect on the ability of the enzyme to dimerize and the role of ACE dimerization in the initiation of the ACE signaling cascade. In endothelial cells, ACE was detected as a monomer as well as a dimer in native gel electrophoresis and dimerization/oligomerization was confirmed using the split-ubiquitin assay in yeast. ACE inhibitors elicited a rapid, concentration-dependent increase in the dimer/monomer ratio that correlated with that of the ACE inhibitorinduced phosphorylation of ACE. Cell treatment with galactose and glucose to prevent the putative lectin-mediated self-association of ACE or with specific antibodies shielding the N terminus of ACE failed to affect either the basal or the ACE inhibitor-induced dimerization of the enzyme. In ACE-expressing Chinese hamster ovary cells, ACE inhibitors elicited ACE dimerization and phosphorylation as well as the activation of JNK with similar kinetics to those observed in endothelial cells. However, these effects were prevented by the mutation of the essential Zn2+-complexing histidines in the C-terminal active site of the enzyme. Mutation of the N-terminal active site of ACE was without effect. Together, our data suggest that ACE inhibitors can initiate the ACE signaling pathway by inducing ACE dimerization, most probably via the C-terminal active site of the enzyme.

  5. Information-theoretic secure key distribution based on common random-signal induced synchronization in unidirectionally-coupled cascades of semiconductor lasers.

    PubMed

    Koizumi, Hayato; Morikatsu, Shinichiro; Aida, Hiroki; Nozawa, Takahiro; Kakesu, Izumi; Uchida, Atsushi; Yoshimura, Kazuyuki; Muramatsu, Jun; Davis, Peter

    2013-07-29

    It has been proposed that a secure key distribution scheme using correlated random bit sequences can be implemented using common random-signal induced synchronization of semiconductor laser systems. In this scheme it is necessary to use laser systems consisting of multiple cascaded lasers to be secure against a powerful eavesdropper. In this paper, we report the results of an experimental study that demonstrate that the common random-signal induced synchronization is possible in cascaded semiconductor laser systems. We also show that the correlated random bit sequences generated in the synchronized cascaded laser systems can be used to create an information-theoretically secure key between two legitimate users.

  6. A ligation-triggered DNAzyme cascade for amplified fluorescence detection of biological small molecules with zero-background signal.

    PubMed

    Lu, Li-Min; Zhang, Xiao-Bing; Kong, Rong-Mei; Yang, Bin; Tan, Weihong

    2011-08-03

    Many types of fluorescent sensing systems have been reported for biological small molecules. Particularly, several methods have been developed for the recognition of ATP or NAD(+), but they only show moderate sensitivity, and they cannot discriminate either ATP or NAD(+) from their respective analogues. We have addressed these limitations and report here a dual strategy which combines split DNAzyme-based background reduction with catalytic and molecular beacon (CAMB)-based amplified detection to develop a ligation-triggered DNAzyme cascade, resulting in ultrahigh sensitivity. First, the 8-17 DNAzyme is split into two separate oligonucleotide fragments as the building blocks for the DNA ligation reaction, thereby providing a zero-background signal to improve overall sensitivity. Next, a CAMB strategy is further employed for amplified signal detection achieved through cycling and regenerating the DNAzyme to realize the true enzymatic multiple turnover (one enzyme catalyzes the cleavage of several substrates) of catalytic beacons. This combination of zero-background signal and signal amplification significantly improves the sensitivity of the sensing systems, resulting in detection limits of 100 and 50 pM for ATP and NAD(+), respectively, much lower than those of previously reported biosensors. Moreover, by taking advantage of the highly specific biomolecule-dependence of the DNA ligation reaction, the developed DNAzyme cascades show significantly high selectivity toward the target cofactor (ATP or NAD(+)), and the target biological small molecule can be distinguished from its analogues. Therefore, as a new and universal platform for the design of DNA ligation reaction-based sensing systems, this novel ligation-triggered DNAzyme cascade method may find a broad spectrum of applications in both environmental and biomedical fields.

  7. The p38 mitogen-activated protein kinase cascade modulates T helper type 17 differentiation and functionality in multiple sclerosis

    PubMed Central

    Di Mitri, Diletta; Sambucci, Manolo; Loiarro, Maria; De Bardi, Marco; Volpe, Elisabetta; Cencioni, Maria Teresa; Gasperini, Claudio; Centonze, Diego; Sette, Claudio; Akbar, Arne N; Borsellino, Giovanna; Battistini, Luca

    2015-01-01

    The p38 mitogen-activated protein kinase cascade is required for the induction of a T helper type 17 (Th17) -mediated autoimmune response, which underlies the development and progression of several autoimmune diseases, such as experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis (MS). However, the contribution of p38 phosphorylation to human Th cell differentiation has not been clarified. Here we demonstrate that the p38 signalling pathway is implicated in the generation of Th17 lymphocytes from human CD4+ CD27+ CD45RA+ naive T cells, both in healthy donors and in patients affected by the relapsing–remitting form of MS. Our data also indicate that p38 activation is essential for interleukin-17 release from central memory lymphocytes and committed Th17 cell clones. Furthermore, CD4+ T cells isolated from individuals with relapsing–remitting MS display an altered responsiveness of the p38 cascade, resulting in increased p38 phosphorylation upon stimulation. These findings suggest that the p38 signalling pathway, by modulating the Th17 differentiation and response, is involved in the pathogenesis of MS, and open new perspectives for the use of p38 inhibitors in the treatment of Th17-mediated autoimmune diseases. PMID:26095162

  8. Ultraviolet light and osmotic stress: Activation of the JNK cascade through multiple growth factor and cytokine receptors

    SciTech Connect

    Rosette, C.; Karin, M.

    1996-11-15

    Exposure of mammalian cells to ultraviolet (UV) light or high osmolarity strongly activated the c-Jun amino-terminal protein kinase (JNK) cascade, causing induction of many target genes. Exposure to UV light or osmotic shock induced clustering and internalization of cell surface receptors for epidermal growth factor (EGF), tumor necrosis factor (TNF), and interleukin-1 (IL-1). Activation of the EGF and TNF receptors was also detected biochemically. Whereas activation of each receptor alone resulted in modest activation of JNK, coadministration of EGF, IL-1, and TNF resulted in a strong synergistic response equal to that caused by exposure to osmotic shock or UV light. Inhibition of clustering or receptor down-regulation attenuated both the osmotic shock and UV responses. Physical stresses may perturb the cell surface or alter receptor conformation, thereby subverting signaling pathways normally used by growth factors and cytokines. 24 refs., 5 figs.

  9. Transient Receptor Potential Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades Underlying Visceral Hypersensitivity.

    PubMed

    Balemans, Dafne; Boeckxstaens, Guy E; Talavera, Karel; Wouters, Mira M

    2017-04-06

    Visceral hypersensitivity is an important mechanism underlying increased abdominal pain perception in functional gastrointestinal disorders (FGID) including functional dyspepsia, irritable bowel syndrome (IBS) and inflammatory bowel disease in remission. Although the exact pathophysiological mechanisms are poorly understood, recent studies described upregulation and altered functions of nociceptors and their signaling pathways in aberrant visceral nociception, in particular the transient receptor potential (TRP) channel family. A variety of TRP channels are present in the gastrointestinal tract (TRPV1, TRPV3, TRPV4, TRPA1, TRPM2, TRPM5 and TRPM8) and modulation of their function by increased activation or sensitization (decreased activation threshold) or altered expression in visceral afferents, have been reported in visceral hypersensitivity. TRP channels directly detect or transduce osmotic, mechanical, thermal and chemosensory stimuli. In addition, pro-inflammatory mediators released in tissue damage or inflammation can activate receptors of the G-protein coupled receptor (GPCR) superfamily leading to TRP channel sensitization and activation, which amplify pain and neurogenic inflammation. In this review, we highlight the current knowledge on the functional roles of neuronal TRP channels in visceral hypersensitivity and discuss the signaling pathways that underlie TRP channel modulation. We propose that a better understanding of TRP channels and their modulators may facilitate the development of more selective and effective therapies to treat visceral hypersensitivity.

  10. Microdomain [Ca(2+)] Fluctuations Alter Temporal Dynamics in Models of Ca(2+)-Dependent Signaling Cascades and Synaptic Vesicle Release.

    PubMed

    Weinberg, Seth H

    2016-03-01

    Ca(2+)-dependent signaling is often localized in spatially restricted microdomains and may involve only 1 to 100 Ca(2+) ions. Fluctuations in the microdomain Ca(2+) concentration (Ca(2+)) can arise from a wide range of elementary processes, including diffusion, Ca(2+) influx, and association/dissociation with Ca(2+) binding proteins or buffers. However, it is unclear to what extent these fluctuations alter Ca(2+)-dependent signaling. We construct Markov models of a general Ca(2+)-dependent signaling cascade and Ca(2+)-triggered synaptic vesicle release. We compare the hitting (release) time distribution and statistics for models that account for [Ca(2+)] fluctuations with the corresponding models that neglect these fluctuations. In general, when Ca(2+) fluctuations are much faster than the characteristic time for the signaling event, the hitting time distributions and statistics for the models with and without Ca(2+) fluctuation are similar. However, when the timescale of Ca(2+) fluctuations is on the same order as the signaling cascade or slower, the hitting time mean and variability are typically increased, in particular when the average number of microdomain Ca(2+) ions is small, a consequence of a long-tailed hitting time distribution. In a model of Ca(2+)-triggered synaptic vesicle release, we demonstrate the conditions for which [Ca(2+)] fluctuations do and do not alter the distribution, mean, and variability of release timing. We find that both the release time mean and variability can be increased, demonstrating that Ca(2+) fluctuations are an important aspect of microdomain Ca(2+) signaling and further suggesting that Ca(2+) fluctuations in the presynaptic terminal may contribute to variability in synaptic vesicle release and thus variability in neuronal spiking.

  11. Cascadability properties of MZI-SOA-based all-optical 3R regenerators for RZ-DPSK signals.

    PubMed

    Kise, Tomofumi; Nguyen, Kimchau N; Garcia, John M; Poulsen, Henrik N; Blumenthal, Daniel J

    2011-05-09

    We experimentally demonstrate 50 cascaded all-optical 3R regenerators over a 1,000 km transmission distance for 10-Gb/s return-to-zero differential phase-shift keying (RZ-DPSK) signals. The regenerator consists of integrated Mach-Zehnder interferometer (MZI) semiconductor optical amplifier (SOA) based wavelength converters. Regenerative properties and tolerance to pattern dependent effects have been studied in terms of Q-factor measurement, and error free operation with input OSNR of 20 dB/0.1 nm has also been demonstrated.

  12. Dominance and interloci interactions in transcriptional activation cascades: models explaining compensatory mutations and inheritance patterns.

    PubMed

    Bost, Bruno; Veitia, Reiner A

    2014-01-01

    Mutations in human genes encoding transcription factors are often dominant because one active allele cannot ensure a normal phenotype (haploinsufficiency). In other instances, heterozygous mutations of two genes are required for a phenotype to appear (combined haploinsufficiency). Here, we explore with models (i) the basis of haploinsufficiency and combined haploinsufficiency owing to mutations in transcription activators, and (ii) how the effects of such mutations can be amplified or buffered by subsequent steps in a transcription cascade. We propose that the non-linear (sigmoidal) response of transcription to the concentration of activators can explain haploinsufficiency. We further show that the sigmoidal character of the output of a cascade increases with the number of steps involved, the settings of which will determine the buffering or enhancement of the effects of a decreased concentration of an upstream activator. This exploration provides insights into the bases of compensatory mutations and on interloci interactions underlying oligogenic inheritance patterns.

  13. Erlotinib inhibits T-cell-mediated immune response via down-regulation of the c-Raf/ERK cascade and Akt signaling pathway

    SciTech Connect

    Luo Qiong; Gu Yanhong; Zheng Wei; Wu Xingxin; Gong Fangyuan; Gu Liyun; Sun Yang; Xu Qiang

    2011-03-01

    Erlotinib is a potent inhibitor of epidermal growth factor receptor tyrosine kinase and has been demonstrated to treat advanced or metastatic non-small cell lung cancer to prolong survival after failure of first-line or second-line chemotherapy. However, little is known about its effects on immune system. In the present study, we aimed to investigate the immunosuppressive activity of erlotinib on T lymphocytes both in vitro and in vivo, and further explore its potential molecular mechanism. Erlotinib exerted a significant inhibition on the T cell proliferation and activation induced by concanavalin A, anti-CD3 plus anti-CD28, staphylococcal enterotoxin B or phorbol myristate acetate respectively in a concentration-dependent manner and it also inhibited the secretion of the proinflammatory cytokines such as IL-2 and IFN-{gamma} of activated T cells. Further study showed that erlotinib caused G0/G1 arrest and suppressed the phosphorylations of c-Raf, ERK and Akt in activated T cells. Moreover, erlotinib significantly ameliorated picryl chloride-induced ear contact dermatitis in a dose-dependent manner in vivo. In summary, these findings suggest that erlotinib may cause the impairment of T-cell-mediated immune response both in vitro and in vivo through inhibiting T cell proliferation and activation, which is closely associated with its potent down-regulation of the c-Raf/ERK cascade and Akt signaling pathway. - Graphical abstract: Erlotinib may cause the impairment of T-cell-mediated immune response both in vitro and in vivo through inhibiting T cell proliferation and activation, which is closely associated with its potent down-regulation of the c-Raf/ERK cascade and Akt signaling pathway. Display Omitted

  14. Carnosine protects neurons against oxidative stress and modulates the time profile of MAPK cascade signaling.

    PubMed

    Kulebyakin, Konstantin; Karpova, Larisa; Lakonsteva, Ekaterina; Krasavin, Mikhail; Boldyrev, Alexander

    2012-07-01

    Carnosine is a known protector of neuronal cells against oxidative injury which prevents both apoptotic and necrotic cellular death. It was shown earlier that carnosine serves as an intracellular buffer of free radicals. Using the model of ligand-dependent oxidative stress in neurons, we have shown that homocysteine (HC) initiates long-term activation of extracellular signal regulated kinase, isoforms 1 and 2 (ERK 1/2) and Jun N-terminal kinase (JNK) which corresponds to exitotoxic effect resulting in cellular death. L-carnosine (β-alanyl-L-histidine) protects neurons from both excitotoxic effect of homocysteine and cellular death. Its analogs, β-alanyl-D-histidine (D-carnosine) and L-histidyl-β-alanine, restricted accumulation of free radicals and delayed activation of ERK1/2 and JNK in neuronal cells, but did not promote neuronal viability.

  15. Cascading Activation across Levels of Representation in Children's Lexical Processing

    ERIC Educational Resources Information Center

    Huang, Yi Ting; Snedeker, Jesse

    2011-01-01

    Recent work in adult psycholinguistics has demonstrated that activation of semantic representations begins long before phonological processing is complete. This incremental propagation of information across multiple levels of analysis is a hallmark of adult language processing but how does this ability develop? In two experiments, we elicit…

  16. A Signaling Cascade from miR444 to RDR1 in Rice Antiviral RNA Silencing Pathway1

    PubMed Central

    Wang, Huacai; Kong, Xiaoyu; Hamera, Sadia; Wu, Yao; Chen, Xiaoying; Fang, Rongxiang; Yan, Yongsheng

    2016-01-01

    Plant RNA-DEPENDENT RNA POLYMERASE1 (RDR1) is a key component of the antiviral RNA-silencing pathway, contributing to the biogenesis of virus-derived small interfering RNAs. This enzyme also is responsible for producing virus-activated endogenous small interfering RNAs to stimulate the broad-spectrum antiviral activity through silencing host genes. The expression of RDR1 orthologs in various plants is usually induced by virus infection. However, the molecular mechanisms of activation of RDR1 expression in response to virus infection remain unknown. Here, we show that a monocot-specific microRNA, miR444, is a key factor in relaying the antiviral signaling from virus infection to OsRDR1 expression. The expression of miR444 is enhanced by infection with Rice stripe virus (RSV), and overexpression of miR444 improves rice (Oryza sativa) resistance against RSV infection accompanied by the up-regulation of OsRDR1 expression. We further show that three miR444 targets, the MIKCC-type MADS box proteins OsMADS23, OsMADS27a, and OsMADS57, form homodimers and heterodimers between them to repress the expression of OsRDR1 by directly binding to the CArG motifs of its promoter. Consequently, an increased level of miR444 diminishes the repressive roles of OsMADS23, OsMADS27a, and OsMADS57 on OsRDR1 transcription, thus activating the OsRDR1-dependent antiviral RNA-silencing pathway. We also show that overexpression of miR444-resistant OsMADS57 reduced OsRDR1 expression and rice resistance against RSV infection, and knockout of OsRDR1 reduced rice resistance against RSV infection. In conclusion, our results reveal a molecular cascade in the rice antiviral pathway in which miR444 and its MADS box targets directly control OsRDR1 transcription. PMID:26858364

  17. Acylcarnitines activate proinflammatory signaling pathways.

    PubMed

    Rutkowsky, Jennifer M; Knotts, Trina A; Ono-Moore, Kikumi D; McCoin, Colin S; Huang, Shurong; Schneider, Dina; Singh, Shamsher; Adams, Sean H; Hwang, Daniel H

    2014-06-15

    Incomplete β-oxidation of fatty acids in mitochondria is a feature of insulin resistance and type 2 diabetes mellitus (T2DM). Previous studies revealed that plasma concentrations of medium- and long-chain acylcarnitines (by-products of incomplete β-oxidation) are elevated in T2DM and insulin resistance. In a previous study, we reported that mixed D,L isomers of C12- or C14-carnitine induced an NF-κB-luciferase reporter gene in RAW 264.7 cells, suggesting potential activation of proinflammatory pathways. Here, we determined whether the physiologically relevant L-acylcarnitines activate classical proinflammatory signaling pathways and if these outcomes involve pattern recognition receptor (PRR)-associated pathways. Acylcarnitines induced the expression of cyclooxygenase-2 in a chain length-dependent manner in RAW 264.7 cells. L-C14 carnitine (5-25 μM), used as a representative acylcarnitine, stimulated the expression and secretion of proinflammatory cytokines in a dose-dependent manner. Furthermore, L-C14 carnitine induced phosphorylation of JNK and ERK, common downstream components of many proinflammatory signaling pathways including PRRs. Knockdown of MyD88, a key cofactor in PRR signaling and inflammation, blunted the proinflammatory effects of acylcarnitine. While these results point to potential involvement of PRRs, L-C14 carnitine promoted IL-8 secretion from human epithelial cells (HCT-116) lacking Toll-like receptors (TLR)2 and -4, and did not activate reporter constructs in TLR overexpression cell models. Thus, acylcarnitines have the potential to activate inflammation, but the specific molecular and tissue target(s) involved remain to be identified.

  18. Acylcarnitines activate proinflammatory signaling pathways

    PubMed Central

    Rutkowsky, Jennifer M.; Knotts, Trina A.; Ono-Moore, Kikumi D.; McCoin, Colin S.; Huang, Shurong; Schneider, Dina; Singh, Shamsher; Hwang, Daniel H.

    2014-01-01

    Incomplete β-oxidation of fatty acids in mitochondria is a feature of insulin resistance and type 2 diabetes mellitus (T2DM). Previous studies revealed that plasma concentrations of medium- and long-chain acylcarnitines (by-products of incomplete β-oxidation) are elevated in T2DM and insulin resistance. In a previous study, we reported that mixed d,l isomers of C12- or C14-carnitine induced an NF-κB-luciferase reporter gene in RAW 264.7 cells, suggesting potential activation of proinflammatory pathways. Here, we determined whether the physiologically relevant l-acylcarnitines activate classical proinflammatory signaling pathways and if these outcomes involve pattern recognition receptor (PRR)-associated pathways. Acylcarnitines induced the expression of cyclooxygenase-2 in a chain length-dependent manner in RAW 264.7 cells. l-C14 carnitine (5–25 μM), used as a representative acylcarnitine, stimulated the expression and secretion of proinflammatory cytokines in a dose-dependent manner. Furthermore, l-C14 carnitine induced phosphorylation of JNK and ERK, common downstream components of many proinflammatory signaling pathways including PRRs. Knockdown of MyD88, a key cofactor in PRR signaling and inflammation, blunted the proinflammatory effects of acylcarnitine. While these results point to potential involvement of PRRs, l-C14 carnitine promoted IL-8 secretion from human epithelial cells (HCT-116) lacking Toll-like receptors (TLR)2 and -4, and did not activate reporter constructs in TLR overexpression cell models. Thus, acylcarnitines have the potential to activate inflammation, but the specific molecular and tissue target(s) involved remain to be identified. PMID:24760988

  19. Hepatocyte tissue factor activates the coagulation cascade in mice

    PubMed Central

    Sullivan, Bradley P.; Kopec, Anna K.; Joshi, Nikita; Cline, Holly; Brown, Juliette A.; Bishop, Stephanie C.; Kassel, Karen M.; Rockwell, Cheryl; Mackman, Nigel

    2013-01-01

    In this study, we characterized tissue factor (TF) expression in mouse hepatocytes (HPCs) and evaluated its role in mouse models of HPC transplantation and acetaminophen (APAP) overdose. TF expression was significantly reduced in isolated HPCs and liver homogenates from TFflox/flox/albumin-Cre mice (HPCΔTF mice) compared with TFflox/flox mice (control mice). Isolated mouse HPCs expressed low levels of TF that clotted factor VII-deficient human plasma. In addition, HPC TF initiated factor Xa generation without exogenous factor VIIa, and TF activity was increased dramatically after cell lysis. Treatment of HPCs with an inhibitory TF antibody or a cell-impermeable lysine-conjugating reagent prior to lysis substantially reduced TF activity, suggesting that TF was mainly present on the cell surface. Thrombin generation was dramatically reduced in APAP-treated HPCΔTF mice compared with APAP-treated control mice. In addition, thrombin generation was dependent on donor HPC TF expression in a model of HPC transplantation. These results suggest that mouse HPCs constitutively express cell surface TF that mediates activation of coagulation during hepatocellular injury. PMID:23305736

  20. Time-dependent regulation of muscle caveolin activation and insulin signalling in response to high-fat diet.

    PubMed

    Gómez-Ruiz, Ana; de Miguel, Carlos; Campión, Javier; Martínez, J Alfredo; Milagro, Fermín I

    2009-10-06

    We studied the effect of high-fat diet on the expression and activation of the three caveolins in rat skeletal muscle and their association with the insulin signalling cascade. Initial response was characterized by increased signalling through Cav-1 and Cav-3 phosphorylation, suggesting that both participate in an initial acute response to the calorie surplus. Afterwards, Cav-1 signalling was slightly reduced, whereas Cav-3 remained active. Late chronic phase signalling through both proteins was impaired inducing a prediabetic state. Summarizing, caveolins seem to mediate a time-dependent regulation of insulin cascade in response to high-fat diet in muscle.

  1. Early induction of CREB activation and CREB-regulating signalling by antidepressants.

    PubMed

    Tardito, Daniela; Musazzi, Laura; Tiraboschi, Ettore; Mallei, Alessandra; Racagni, Giorgio; Popoli, Maurizio

    2009-11-01

    Converging evidence points to adaptive changes in neuroplasticity and gene expression as mediators of therapeutic action of antidepressants. Activation of cAMP response-element binding protein (CREB) and CREB-regulating signalling are considered main effectors in these mechanisms. We analysed the temporal profile of intracellular changes induced by antidepressants, by measuring activation of major CREB-regulating signalling cascades and activation (Ser133 phosphorylation) of CREB. The main aims of the study were to investigate how these different variables are modulated with time, whether stronger activation of signalling cascades corresponds to stronger activation of CREB, and whether these changes are different in distinct brain areas. Rat groups were treated for 1, 2 or 3 wk with the antidepressants fluoxetine or reboxetine; in additional groups drug treatment was followed by a washout week (3+1). Activation of CREB and major effectors in signalling cascades were analysed by Western blot analysis with phospho-antibodies, in nuclear and cytosolic fractions from hippocampus and prefrontal/frontal cortex (P/FC). Surprisingly, CREB activation was already maximal after 1-wk treatment. In hippocampus early and stronger CREB activation was consistent with early and stronger activation of signalling. For both drugs, the profile of activation in P/FC was different from that observed in hippocampus. The results also showed that, contrary to the activatory role of MAP-ERKs and CaM kinase IV, nuclear alphaCaM kinase II was inactivated in parallel with activation of CREB.

  2. Resveratrol mitigates lipopolysaccharide-mediated acute inflammation in rats by inhibiting the TLR4/NF-κBp65/MAPKs signaling cascade

    PubMed Central

    Wang, Guangxi; Hu, Zhiqiang; Fu, Qiuting; Song, Xu; Cui, Qiankun; Jia, Renyong; Zou, Yuanfeng; He, Changliang; Li, Lixia; Yin, Zhongqiong

    2017-01-01

    Resveratrol (RSV) is a natural compound exhibiting anti-inflammatory effect, but the anti-inflammatory mechanism has not been fully understood. This study is aimed to evaluate the anti-inflammatory activity and mechanism of RSV in lipopolysaccharides-induced rats’ model. The visceral wet/dry weight ratios and the changes of hematologic and biochemical indices indicated that LPS- stimulation mainly caused damages to liver and lung, while pretreatment with RSV could alleviate the lesions. The cytokine assays showed that RSV could markedly decrease the production of proinflammatory mediators and cytokines (IL-1, IL-1β, IL-6, NO, iNOS and COX-2), and increase the expression of anti-inflammatory mediator (IL-10). RSV could inhibit TLR4 signaling pathway by down-regulating the mRNA levels of MyD88 and TRAF6, and suppressing the TLR4 protein. RSV could inhibit the signaling cascades of NF-κBp65 and MAPKs through down-regulating the mRNA levels of IκBα, p38MAPK, JNK, ERK1, ERK2 and ERK5 in liver and lung, and suppressing the dynamic changes of proteins and phosphorylated proteins including IκBα, NF-κBp65, p38MAPK, JNK, ERK1/2 and ERK5 from tissue’s cytoplasm to nucleus. In conclusion, RSV possessed a therapeutic effect on LPS-induced inflammation in rats and the mechanism mainly attributed to suppressing the signaling cascades of NF-κBp65 and MAPKs by inhibiting the TLR4 signaling pathway. PMID:28322346

  3. Proton feedback mediates the cascade of color-opponent signals onto H3 horizontal cells in goldfish retina.

    PubMed

    Kamiji, Nilton L; Yamamoto, Kazunori; Hirasawa, Hajime; Yamada, Masahiro; Usui, Shiro; Kurokawa, Makoto

    2012-04-01

    It has been postulated that horizontal cells (HCs) send feedback signals onto cones via a proton feedback mechanism, which generates the center-surround receptive field of bipolar cells, and color-opponent signals in many non-mammalian vertebrates. Here we used a strong pH buffer, HEPES, to reduce extracellular proton concentration changes and so determine whether protons mediate color-opponent signals in goldfish H3 (triphasic) HCs. Superfusion with 10mM HEPES-fortified saline elicited depolarization of H3 HCs' dark membrane potential and enhanced hyperpolarizing responses to blue stimuli, but suppressed both depolarization by yellow and orange and hyperpolarization by red stimuli. The response components suppressed by HEPES resembled the inverse of spectral responses of H2 (biphasic) HCs. These results are consistent with the Stell-Lightfoot cascade model, in which the HEPES-suppressed component of H3 HCs was calculated using light responses recorded experimentally in H1 (monophasic) and H2 HCs. Selective suppression of long- or long-+middle-wavelength cone signals by long-wavelength background enhanced the responses to short-wavelength stimuli. These results suggest that HEPES inhibited color opponent signals in H3 HCs, in which the source of opponent-color signals is primarily a feedback from H2 HCs and partly from H1 HCs onto short-wavelength cones, probably mediated by protons.

  4. Corticotropin-Releasing Factor Mediates Pain-Induced Anxiety through the ERK1/2 Signaling Cascade in Locus Coeruleus Neurons

    PubMed Central

    Borges, Gisela Patrícia; Micó, Juan Antonio; Neto, Fani Lourença

    2015-01-01

    Background: The corticotropin-releasing factor is a stress-related neuropeptide that modulates locus coeruleus activity. As locus coeruleus has been involved in pain and stress-related patologies, we tested whether the pain-induced anxiety is a result of the corticotropin-releasing factor released in the locus coeruleus. Methods: Complete Freund’s adjuvant-induced monoarthritis was used as inflammatory chronic pain model. α-Helical corticotropin-releasing factor receptor antagonist was microinjected into the contralateral locus coeruleus of 4-week-old monoarthritic animals. The nociceptive and anxiety-like behaviors, as well as phosphorylated extracellular signal-regulated kinases 1/2 and corticotropin-releasing factor receptors expression, were quantified in the paraventricular nucleus and locus coeruleus. Results: Monoarthritic rats manifested anxiety and increased phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus and paraventricular nucleus, although the expression of corticotropin-releasing factor receptors was unaltered. α-Helical corticotropin-releasing factor antagonist administration reversed both the anxiogenic-like behavior and the phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus. Conclusions: Pain-induced anxiety is mediated by corticotropin-releasing factor neurotransmission in the locus coeruleus through extracellular signal-regulated kinases 1/2 signaling cascade. PMID:25716783

  5. Molecular signaling cascade of miRNAs in causing Diabetes Nephropathy.

    PubMed

    Padmashree, Dyave Gowda; Swamy, Narayanaswamy Ramachandra

    2013-01-01

    Diabetic nephropathy (DN) is one of the major microvascular diseases and most common in diabetic patient, finally results in kidney failure. The main features of DN are basement membrane thickening, microalbuminuria, proteinuria, glomerular, mesangial hypertrophy and ECM protein accumulation. Recent discoveries have been shown that numerous pathways are activated during the development of DN in Diabetes mellitus. The small non-coding miRNA plays an important role in regulating the pathway which is involved in DN. In our study we consolidate different pathways which regulated by miRNAs in molecular signaling which results in causing DN. We embedded entire pathway in the form of regulatory network and we could able to understand that some of the miRNAs like miR-29 family, miR-377 and miR-25 would be able to control DN.

  6. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy.

    PubMed

    Shin, Hi-Jai R; Kim, Hyunkyung; Oh, Sungryong; Lee, Jun-Gi; Kee, Minjung; Ko, Hyun-Jeong; Kweon, Mi-Na; Won, Kyoung-Jae; Baek, Sung Hee

    2016-06-23

    Autophagy is a highly conserved self-digestion process, which is essential for maintaining homeostasis and viability in response to nutrient starvation. Although the components of autophagy in the cytoplasm have been well studied, the molecular basis for the transcriptional and epigenetic regulation of autophagy is poorly understood. Here we identify co-activator-associated arginine methyltransferase 1 (CARM1) as a crucial component of autophagy in mammals. Notably, CARM1 stability is regulated by the SKP2-containing SCF (SKP1-cullin1-F-box protein) E3 ubiquitin ligase in the nucleus, but not in the cytoplasm, under nutrient-rich conditions. Furthermore, we show that nutrient starvation results in AMP-activated protein kinase (AMPK)-dependent phosphorylation of FOXO3a in the nucleus, which in turn transcriptionally represses SKP2. This repression leads to increased levels of CARM1 protein and subsequent increases in histone H3 Arg17 dimethylation. Genome-wide analyses reveal that CARM1 exerts transcriptional co-activator function on autophagy-related and lysosomal genes through transcription factor EB (TFEB). Our findings demonstrate that CARM1-dependent histone arginine methylation is a crucial nuclear event in autophagy, and identify a new signalling axis of AMPK-SKP2-CARM1 in the regulation of autophagy induction after nutrient starvation.

  7. Gadd45 Proteins as Critical Signal Transducers Linking NF-κB to MAPK Cascades

    PubMed Central

    Yang, Z.; Song, L.; Huang, C.

    2013-01-01

    The growth arrest and DNA damage-inducible 45 (Gadd45) proteins are a group of critical signal transducers that are involved in regulations of many cellular functions. Accumulated data indicate that all three Gadd45 proteins (i.e., Gadd45α, Gadd45β, and Gadd45γ) play essential roles in connecting an upstream sensor module, the transcription Nuclear Factor-κB (NF-κB), to a transcriptional regulating module, mitogen-activated protein kinase (MAPK). This NF-κB-Gadd45(s)-MAPK pathway responds to various kinds of extracellular stimuli and regulates such cell activities as growth arrest, differentiation, cell survival, and apoptosis. Defects in this pathway can also be related to oncogenesis. In the first part of this review, the functions of Gadd45 proteins, and briefly NF-κB and MAPK, are summarized. In the second part, the mechanisms by which Gadd45 proteins are regulated by NF-κB, and how they affect MAPK activation, are reviewed. PMID:20025601

  8. Cerberus-Nodal-Lefty-Pitx signaling cascade controls left-right asymmetry in amphioxus.

    PubMed

    Li, Guang; Liu, Xian; Xing, Chaofan; Zhang, Huayang; Shimeld, Sebastian M; Wang, Yiquan

    2017-04-04

    Many bilaterally symmetrical animals develop genetically programmed left-right asymmetries. In vertebrates, this process is under the control of Nodal signaling, which is restricted to the left side by Nodal antagonists Cerberus and Lefty. Amphioxus, the earliest diverging chordate lineage, has profound left-right asymmetry as a larva. We show that Cerberus, Nodal, Lefty, and their target transcription factor Pitx are sequentially activated in amphioxus embryos. We then address their function by transcription activator-like effector nucleases (TALEN)-based knockout and heat-shock promoter (HSP)-driven overexpression. Knockout of Cerberus leads to ectopic right-sided expression of Nodal, Lefty, and Pitx, whereas overexpression of Cerberus represses their left-sided expression. Overexpression of Nodal in turn represses Cerberus and activates Lefty and Pitx ectopically on the right side. We also show Lefty represses Nodal, whereas Pitx activates Nodal These data combine in a model in which Cerberus determines whether the left-sided gene expression cassette is activated or repressed. These regulatory steps are essential for normal left-right asymmetry to develop, as when they are disrupted embryos may instead form two phenotypic left sides or two phenotypic right sides. Our study shows the regulatory cassette controlling left-right asymmetry was in place in the ancestor of amphioxus and vertebrates. This includes the Nodal inhibitors Cerberus and Lefty, both of which operate in feedback loops with Nodal and combine to establish asymmetric Pitx expression. Cerberus and Lefty are missing from most invertebrate lineages, marking this mechanism as an innovation in the lineage leading to modern chordates.

  9. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27.

    PubMed

    Freshney, N W; Rawlinson, L; Guesdon, F; Jones, E; Cowley, S; Hsuan, J; Saklatvala, J

    1994-09-23

    An IL-1-stimulated protein kinase cascade resulting in phosphorylation of the small heat shock protein hsp27 has been identified in KB cells. It is distinct from the p42 MAP kinase cascade. An upstream activator kinase phosphorylated a 40 kDa kinase (p40) upon threonine and tyrosine residues, which in turn phosphorylated a 50 kDa kinase (p50) upon threonine (and some serine) residues. p50 phosphorylated hsp27 upon serine. p40 and p50 were purified to near homogeneity. All three components were inactivated by protein phosphatase 2A, and p40 was inactivated by protein tyrosine phosphatase 1B. The substrate specificity of p40 differed from that of p42 and p54 MAP kinases. The upstream activator was not a MAP kinase kinase. p50 resembled MAPKAPK-2 and may be identical.

  10. Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis.

    PubMed

    Lin, Youhui; Li, Zhenhua; Chen, Zhaowei; Ren, Jinsong; Qu, Xiaogang

    2013-04-01

    A significant challenge in chemistry is to create synthetic structures that mimic the complexity and function of natural systems. Here, a self-activated, enzyme-mimetic catalytic cascade has been realized by utilizing expanded mesoporous silica-encapsulated gold nanoparticles (EMSN-AuNPs) as both glucose oxidase- and peroxidase-like artificial enzymes. Specifically, EMSN helps the formation of a high degree of very small and well-dispersed AuNPs, which exhibit an extraordinarily stability and dual enzyme-like activities. Inspired by these unique and attractive properties, we further piece them together into a self-organized artificial cascade reaction, which is usually completed by the oxidase-peroxidase coupled enzyme system. Our finding may pave the way to use matrix as the structural component for the design and development of biomimetic catalysts and to apply enzyme mimics for realizing higher functions.

  11. Spectroscopic approaches to resolving ambiguities of hyper-polarized NMR signals from different reaction cascades.

    PubMed

    Jensen, Pernille Rose; Meier, Sebastian

    2016-02-07

    The influx of exogenous substrates into cellular reaction cascades on the seconds time scale is directly observable by NMR spectroscopy when using nuclear spin polarization enhancement. Conventional NMR assignment spectra for the identification of reaction intermediates are not applicable in these experiments due to the non-equilibrium nature of the nuclear spin polarization enhancement. We show that ambiguities in the intracellular identification of transient reaction intermediates can be resolved by experimental schemes using site-specific isotope labelling, optimised referencing and response to external perturbations.

  12. Digital data set of volcano hazards for active Cascade Volcanos, Washington

    USGS Publications Warehouse

    Schilling, Steve P.

    1996-01-01

    Scientists at the Cascade Volcano Observatory have completed hazard assessments for the five active volcanos in Washington. The five studies included Mount Adams (Scott and others, 1995), Mount Baker (Gardner and others, 1995), Glacier Peak (Waitt and others, 1995), Mount Rainier (Hoblitt and others, 1995) and Mount St. Helens (Wolfe and Pierson, 1995). Twenty Geographic Information System (GIS) data sets have been created that represent the hazard information from the assessments. The twenty data sets have individual Open File part numbers and titles

  13. A Cascade of Wnt, Eda, and Shh Signaling Is Essential for Touch Dome Merkel Cell Development

    PubMed Central

    Thoresen, Daniel T.; Miao, Lingling; Williams, Jonathan S.; Wang, Chaochen; Atit, Radhika P.; Wong, Sunny Y.

    2016-01-01

    The Sonic hedgehog (Shh) signaling pathway regulates developmental, homeostatic, and repair processes throughout the body. In the skin, touch domes develop in tandem with primary hair follicles and contain sensory Merkel cells. The developmental signaling requirements for touch dome specification are largely unknown. We found dermal Wnt signaling and subsequent epidermal Eda/Edar signaling promoted Merkel cell morphogenesis by inducing Shh expression in early follicles. Lineage-specific gene deletions revealed intraepithelial Shh signaling was necessary for Merkel cell specification. Additionally, a Shh signaling agonist was sufficient to rescue Merkel cell differentiation in Edar-deficient skin. Moreover, Merkel cells formed in Fgf20 mutant skin where primary hair formation was defective but Shh production was preserved. Although developmentally associated with hair follicles, fate mapping demonstrated Merkel cells primarily originated outside the hair follicle lineage. These findings suggest that touch dome development requires Wnt-dependent mesenchymal signals to establish reciprocal signaling within the developing ectoderm, including Eda signaling to primary hair placodes and ultimately Shh signaling from primary follicles to extrafollicular Merkel cell progenitors. Shh signaling often demonstrates pleiotropic effects within a structure over time. In postnatal skin, Shh is known to regulate the self-renewal, but not the differentiation, of touch dome stem cells. Our findings relate the varied effects of Shh in the touch dome to the ligand source, with locally produced Shh acting as a morphogen essential for lineage specification during development and neural Shh regulating postnatal touch dome stem cell maintenance. PMID:27414798

  14. Identification of a signaling cascade that maintains constitutive delta opioid receptor incompetence in peripheral sensory neurons.

    PubMed

    Brackley, Allison Doyle; Sarrami, Shayda; Gomez, Ruben; Guerrero, Kristi A; Jeske, Nathaniel A

    2017-04-05

    Mu opioid receptor (MOR) agonists are often used to treat severe pain, but can result in adverse side effects. To circumvent systemic side effects, targeting peripheral opioid receptors is an attractive alternative treatment for severe pain. Activation of the delta opioid receptor (DOR) produces similar analgesia with reduced side effects. However, until primed by inflammation, peripheral DOR is analgesically incompetent, raising interest in the mechanism. We recently identified a novel role for G protein-coupled receptor kinase 2 (GRK2) that renders DOR analgesically incompetent at the plasma membrane. However, the mechanism that maintains constitutive GRK2 association with DOR is unknown. Protein kinase A (PKA) phosphorylation of GRK2 at Ser685 targets it to the plasma membrane. A-kinase anchoring protein 79/150 (AKAP), residing at the plasma membrane in neurons, scaffolds PKA to target proteins to mediate downstream signal. Therefore, we sought to determine whether GRK2-mediated DOR desensitization is directed by PKA via AKAP scaffolding. Membrane fractions from cultured rat sensory neurons following AKAP siRNA-transfection and from AKAP-knockout mice, had less PKA activity, GRK2 Ser685 phosphorylation, and GRK2 plasma membrane targeting than controls. Site-directed mutagenesis revealed that GRK2 Ser685 phosphorylation drives GRK2s association with plasma membrane-associated DOR. Moreover, overexpression studies with AKAP mutants indicated that impaired AKAP-mediated PKA scaffolding significantly reduces DOR-GRK2 association at the plasma membrane and consequently increases DOR activity in sensory neurons without a priming event. These findings suggest that AKAP scaffolds PKA to increase plasma membrane targeting and phosphorylation of GRK2 to maintain DOR analgesic incompetence in peripheral sensory neurons.

  15. Angiotensin-converting enzyme (ACE) inhibitors modulate cellular retinol-binding protein 1 and adiponectin expression in adipocytes via the ACE-dependent signaling cascade.

    PubMed

    Kohlstedt, Karin; Gershome, Cynthia; Trouvain, Caroline; Hofmann, Wolf-Karsten; Fichtlscherer, Stephan; Fleming, Ingrid

    2009-03-01

    Inhibitors of the angiotensin-converting enzyme (ACE) decrease angiotensin II production and activate an intracellular signaling cascade that affects gene expression in endothelial cells. Because ACE inhibitors have been reported to delay the onset of type 2 diabetes, we determined ACE signaling-modulated gene expression in endothelial cells and adipocytes. Using differential gene expression analysis, several genes were identified that were 3-fold up- or down-regulated by ramiprilat in cells expressing wild-type ACE versus cells expressing a signaling-dead ACE mutant. One up-regulated gene was the cellular retinol-binding protein 1 (CRBP1). In adipocytes, the overexpression of CRBP1 enhanced (4- to 5-fold) the activity of promoters containing response elements for retinol-dependent nuclear receptors [retinoic acid receptor (RAR) and retinoid X receptor (RXR)] or peroxisome proliferator-activated receptors (PPAR). CRBP1 overexpression also enhanced the promoter activity (by 470 +/- 40%) and expression/release of the anti-inflammatory and antiatherogenic adipokine adiponectin (cellular adiponectin by 196 +/- 24%, soluble adiponectin by 228 +/- 74%). Significantly increased adiponectin secretion was also observed after ACE inhibitor treatment of human preadipocytes, an effect prevented by small interfering RNA against CRBP1. Furthermore, in ob/ob mice, ramipril markedly potentiated both the basal (approximately 2-fold) and rosiglitazonestimulated circulating levels of adiponectin. In patients with coronary artery disease or type 2 diabetes, ACE inhibition also significantly increased plasma adiponectin levels (1.6- or 2.1-fold, respectively). In summary, ACE inhibitors affect adipocyte homeostasis via CRBP1 through the activation of RAR/RXR-PPAR signaling and up-regulation of adiponectin. The latter may contribute to the beneficial effects of ACE inhibitors on the development of type 2 diabetes in patients with an activated renin-angiotensin system.

  16. Porous platinum nanotubes labeled with hemin/G-quadruplex based electrochemical aptasensor for sensitive thrombin analysis via the cascade signal amplification.

    PubMed

    Sun, Aili; Qi, Qingan; Wang, Xuannian; Bie, Ping

    2014-07-15

    For the first time, a sensitive electrochemical aptasensor for thrombin (TB) was developed by using porous platinum nanotubes (PtNTs) labeled with hemin/G-quadruplex and glucose dehydrogenase (GDH) as labels. Porous PtNTs with large surface area exhibited the peroxidase-like activity. Coupling with GDH and hemin/G-quadruplex as NADH oxidase and HRP-mimicking DNAzyme, the cascade signal amplification was achieved by the following ways: in the presence of glucose and NAD(+) in the working buffer, GDH electrocatalyzed the oxidation of glucose with the production of NADH. Then, hemin/G-quadruplex as NADH oxidase catalyzed the oxidation of NADH to in situ generate H2O2. Based on the corporate electrocatalysis of PtNTs and hemin/G-quadruplex toward H2O2, the electrochemical signal was significantly amplified, allowing the detection limit of TB down to 0.15 pM level. Moreover, the proposed strategy was simple because the intercalated hemin offered the readout signal, avoiding the adding of additional redox mediator as signal donator. Such an electrochemical aptasensor is highly promising for sensitive detection of other proteins in clinical diagnostics.

  17. Active mode locking of quantum cascade lasers in an external ring cavity

    PubMed Central

    Revin, D. G.; Hemingway, M.; Wang, Y.; Cockburn, J. W.; Belyanin, A.

    2016-01-01

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents. PMID:27147409

  18. Label-free electrochemical aptasensor for adenosine detection based on cascade signal amplification strategy.

    PubMed

    Shen, Jing; Wang, Hongyang; Li, Chunxiang; Zhao, Yanyan; Yu, Xijuan; Luo, Xiliang

    2017-04-15

    In this work, a simple and highly sensitive label-free electrochemical aptasensor for adenosine detection was developed based on target-aptamer binding triggered nicking endonuclease-assisted strand-replacement DNA polymerization and rolling circle amplification (RCA) strategy. The magnetic beads (MB) probe, which was attached the aptamer of adenosine and mDNA, was firstly fabricated. In the presence of adenosine, mDNA was released from MB upon recognition of the aptamer to target adenosine. The released mDNA as the primer activated autonomous DNA polymerization/nicking process and accompanied by the continuous release of replicated DNA fragments. Subsequently, numerous released DNA fragments were captured on the working electrode, and then as initiators to trigger the downstream RCA process leading to the formation of a long ssDNA concatemer for loading large amounts of Ru(NH3)6(3+). Therefore, a conspicuously amplified electrochemical signal through the developed dual-amplification strategy could be achieved. This method exhibited a high sensitivity toward adenosine with a detection limit of 0.032nM. Also, it exhibited high selectivity to different nucleoside families and good reproducibility. This design opens new horizons for integrating different disciplines, presenting a versatile tool for ultrasensitive detecting organic small molecules in medical research and clinical diagnosis.

  19. Regulatory Cross-Talks and Cascades in Rice Hormone Biosynthesis Pathways Contribute to Stress Signaling

    PubMed Central

    Deb, Arindam; Grewal, Rumdeep K.; Kundu, Sudip

    2016-01-01

    Crosstalk among different hormone signaling pathways play an important role in modulating plant response to both biotic and abiotic stress. Hormone activity is controlled by its bio-availability, which is again influenced by its biosynthesis. Thus, independent hormone biosynthesis pathways must be regulated and co-ordinated to mount an integrated response. One of the possibilities is to use cis-regulatory elements to orchestrate expression of hormone biosynthesis genes. Analysis of CREs, associated with differentially expressed hormone biosynthesis related genes in rice leaf under Magnaporthe oryzae attack and drought stress enabled us to obtain insights about cross-talk among hormone biosynthesis pathways at the transcriptional level. We identified some master transcription regulators that co-ordinate different hormone biosynthesis pathways under stress. We found that Abscisic acid and Brassinosteroid regulate Cytokinin conjugation; conversely Brassinosteroid biosynthesis is affected by both Abscisic acid and Cytokinin. Jasmonic acid and Ethylene biosynthesis may be modulated by Abscisic acid through DREB transcription factors. Jasmonic acid or Salicylic acid biosynthesis pathways are co-regulated but they are unlikely to influence each others production directly. Thus, multiple hormones may modulate hormone biosynthesis pathways through a complex regulatory network, where biosynthesis of one hormone is affected by several other contributing hormones. PMID:27617021

  20. The EAL domain protein YciR acts as a trigger enzyme in a c-di-GMP signalling cascade in E. coli biofilm control

    PubMed Central

    Lindenberg, Sandra; Klauck, Gisela; Pesavento, Christina; Klauck, Eberhard; Hengge, Regine

    2013-01-01

    C-di-GMP—which is produced by diguanylate cyclases (DGC) and degraded by specific phosphodiesterases (PDEs)—is a ubiquitous second messenger in bacterial biofilm formation. In Escherichia coli, several DGCs (YegE, YdaM) and PDEs (YhjH, YciR) and the MerR-like transcription factor MlrA regulate the transcription of csgD, which encodes a biofilm regulator essential for producing amyloid curli fibres of the biofilm matrix. Here, we demonstrate that this system operates as a signalling cascade, in which c-di-GMP controlled by the DGC/PDE pair YegE/YhjH (module I) regulates the activity of the YdaM/YciR pair (module II). Via multiple direct interactions, the two module II proteins form a signalling complex with MlrA. YciR acts as a connector between modules I and II and functions as a trigger enzyme: its direct inhibition of the DGC YdaM is relieved when it binds and degrades c-di-GMP generated by module I. As a consequence, YdaM then generates c-di-GMP and—by direct and specific interaction—activates MlrA to stimulate csgD transcription. Trigger enzymes may represent a general principle in local c-di-GMP signalling. PMID:23708798

  1. MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia

    PubMed Central

    Jones, Courtney L.; Gearheart, Christy M.; Fosmire, Susan; Delgado-Martin, Cristina; Evensen, Nikki A.; Bride, Karen; Waanders, Angela J.; Pais, Faye; Wang, Jinhua; Bhatla, Teena; Bitterman, Danielle S.; de Rijk, Simone R.; Bourgeois, Wallace; Dandekar, Smita; Park, Eugene; Burleson, Tamara M.; Madhusoodhan, Pillai Pallavi; Teachey, David T.; Raetz, Elizabeth A.; Hermiston, Michelle L.; Müschen, Markus; Loh, Mignon L.; Hunger, Stephen P.; Zhang, Jinghui; Garabedian, Michael J.; Porter, Christopher C.

    2015-01-01

    The outcome for pediatric acute lymphoblastic leukemia (ALL) patients who relapse is dismal. A hallmark of relapsed disease is acquired resistance to multiple chemotherapeutic agents, particularly glucocorticoids. In this study, we performed a genome-scale short hairpin RNA screen to identify mediators of prednisolone sensitivity in ALL cell lines. The incorporation of these data with an integrated analysis of relapse-specific genetic and epigenetic changes allowed us to identify the mitogen-activated protein kinase (MAPK) pathway as a mediator of prednisolone resistance in pediatric ALL. We show that knockdown of the specific MAPK pathway members MEK2 and MEK4 increased sensitivity to prednisolone through distinct mechanisms. MEK4 knockdown increased sensitivity specifically to prednisolone by increasing the levels of the glucocorticoid receptor. MEK2 knockdown increased sensitivity to all chemotherapy agents tested by increasing the levels of p53. Furthermore, we demonstrate that inhibition of MEK1/2 with trametinib increased sensitivity of ALL cells and primary samples to chemotherapy in vitro and in vivo. To confirm a role for MAPK signaling in patients with relapsed ALL, we measured the activation of the MEK1/2 target ERK in matched diagnosis-relapse primary samples and observed increased phosphorylated ERK levels at relapse. Furthermore, relapse samples have an enhanced response to MEK inhibition compared to matched diagnosis samples in xenograft models. Together, our data indicate that inhibition of the MAPK pathway increases chemosensitivity to glucocorticoids and possibly other agents and that the MAPK pathway is an attractive target for prevention and/or treatment of relapsed disease. PMID:26324703

  2. Altered intracellular signaling cascades in peripheral blood mononuclear cells from BD patients.

    PubMed

    Barbosa, Izabela Guimarães; Nogueira, Camila R C; Rocha, Natália Pessoa; Queiroz, Ana Luiza Lemos; Vago, Juliana Priscila; Tavares, Luciana Pádua; Assis, Frankcinéia; Fagundes, Caio Tavares; Huguet, Rodrigo Barreto; Bauer, Moisés Evandro; Teixeira, Antônio Lúcio; de Sousa, Lirlândia Pires

    2013-12-01

    Bipolar disorder (BD) is a severe psychiatric disorder of complex physiopathology that has been associated with a pro-inflammatory state. The aim of the present study was to investigate intracellular pathways associated with inflammatory signaling, assessing the phosphorylation levels of transcription factor nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPKs) in peripheral blood mononuclear cells of euthymic BD patients and healthy controls. Fifteen BD euthymic type I patients, and 12 healthy controls matched by age and gender were enrolled in this study. All subjects were assessed by the Mini-International Neuropsychiatry Interview and the patients also by the Young Mania Rating Scale and the Hamilton Depression Rating Scale. Phosphorylation levels of p65 NF-κB subunit, and MAPK ERK1/2, and p38 were assessed by Western blot and flow cytometry. Plasma cytokines (IL-2, IL-4, IL6, IL-10, IFN-γ, TNF-α, and IL-17A) were measured using cytometric bead arrays. Western blot and flow cytometry analyses showed increased phosphorylation levels of p65 NF-κB subunit, and MAPKs ERK1/2, and p38 in BD patients in euthymia in comparison with controls. BD patients presented increased pro-inflammatory cytokines levels in comparison with controls, and TNF-α correlated with the levels of phosphorylated p65 NF-κB. The present study found increased activation of MAPK and NF-κB pathways in BD patients, which is in line with a pro-inflammatory status.

  3. A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara1[OPEN

    PubMed Central

    Dawood, Thikra; Kensche, Philip R.; Cristescu, Simona M.; Mariani, Celestina

    2016-01-01

    Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara. Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding. PMID:26850278

  4. Nicotinamide prevents the down-regulation of MEK/ERK/p90RSK signaling cascade in brain ischemic injury.

    PubMed

    Sung, Jin-Hee; Kim, Myeong-Ok; Koh, Phil-Ok

    2012-01-01

    Nicotinamide attenuates neuronal cell death related to focal cerebral ischemic injury. This study investigated whether nicotinamide exerts a neuroprotective effect through the activation of Raf- mitogen-activated protein kinase kinase (MEK)-ERK and its downstream targets, including p90 ribosomal S6 kinase (p90RSK) and Bad. Adult male Sprague-Dawley rats were treated with nicotinamide (500 mg/kg) or vehicle 2 hr after the onset of middle cerebral artery occlusion (MCAO). Brains were collected 24 hr after MCAO. In the present study, nicotinamide significantly reduces the volume of infarct regions and decreases the number of positive cells by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining in the cerebral cortex. Nicotinamide prevents injury-induced decrease in Raf-1, MEK1/2, and ERK1/2 phosphorylation. As part of the downstream cascade, nicotinamide inhibits the injury-induced decrease in p90RSK and Bad phosphorylation. Moreover, nicotinamide prevents the injury-induced increase in cleaved caspase-3 levels. These findings suggest that nicotinamide protects neuronal cells against cerebral ischemic injury and that MEK-ERK-p90RSK cascade activation by nicotinamide contributes to these neuroprotective effects.

  5. Thermal conductivity tensors of the cladding and active layers of interband cascade lasers

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanle; Cui, Boya; Vurgaftman, I.; Canedy, C. L.; Kim, C. S.; Kim, M.; Bewley, W. W.; Merritt, C. D.; Abell, J.; Meyer, J. R.; Grayson, M.

    2014-12-01

    The cross-plane and in-plane thermal conductivities of the W-active stages and InAs/AlSb superlattice optical cladding layer of an interband cascade laser (ICL) were characterized for temperatures ranging from 15 K to 324 K. The in-plane thermal conductivity of the active layer is somewhat larger than the cross-plane value at temperatures above about 30 K, while the thermal conductivity tensor becomes nearly isotropic at the lowest temperatures studied. These results will improve ICL performance simulations and guide the optimization of thermal management.

  6. Experimental evidence for 60 Hz magnetic fields operating through the signal transduction cascade. Effects on calcium influx and c-MYC mRNA induction.

    PubMed

    Liburdy, R P; Callahan, D E; Harland, J; Dunham, E; Sloma, T R; Yaswen, P

    1993-11-22

    We tested the hypothesis that early alterations in calcium influx induced by an imposed 60 Hz magnetic field are propagated down the signal transduction (ST) cascade to alter c-MYC mRNa induction. To test this we measured both ST parameters in the same cells following 60 Hz magnetic field exposures in a specialized annular ring device (220 G (22 mT), 1.7 mV/cm maximal E(induced), 37 degrees C, 60 min). Ca2+ influx is a very early ST marker that precedes the specific induction of mRNA transcripts for the proto-oncogene c-MYC, an immediate early response gene. In three experiments influx of 45Ca2+ in the absence of mitogen was similar to that in cells treated with suboptimal levels of Con-A (1 micrograms/ml). However, calcium influx was elevated 1.5-fold when lymphocytes were exposed to Con-A plus magnetic fields; this co-stimulatory effect is consistent with previous reports from our laboratory [FEBS Lett. 301 (1992) 53-59; FEBS Lett. 271 (1990) 157-160; Ann. N.Y. Acad. Sci. 649 (1992) 74-95]. The level of c-MYC mRNA transcript copies in non-activated cells and in suboptimally-activated cells was also similar, which is consistent with the above calcium influx findings. Significantly, lymphocytes exposed to the combination of magnetic fields plus suboptimal Con-A responded with an approximate 3.0-fold increase in band intensity of c-MYC mRNA transcripts. Importantly, transcripts for the housekeeping gene GAPDH were not influenced by mitogen or magnetic fields. We also observed that lymphocytes that failed to exhibit increased calcium influx in response to magnetic fields plus Con-A, also failed to exhibit an increase in total copies of c-MYC mRNA. Thus, calcium influx and c-MYC mRNA expression, which are sequentially linked via the signal transduction cascade in contrast to GAPDH, were both increased by magnetic fields. These findings support the above ST hypothesis and provide experimental evidence for a general biological framework for understanding magnetic field

  7. AIK1, A Mitogen-Activated Protein Kinase, Modulates Abscisic Acid Responses through the MKK5-MPK6 Kinase Cascade1[OPEN

    PubMed Central

    Li, Kun; Yang, Fengbo; Zhang, Guozeng; Song, Shufei; Li, Yuan; Ren, Dongtao; Miao, Yuchen

    2017-01-01

    The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily conserved signal transduction module involved in transducing extracellular signals to the nucleus for appropriate cellular adjustment. This cascade essentially consists of three components: a MAPK kinase kinase (MAPKKK), a MAPK kinase, and a MAPK, connected to each other by the event of phosphorylation. Here, we report the characterization of a MAPKKK, ABA-INSENSITIVE PROTEIN KINASE1 (AIK1), which regulates abscisic acid (ABA) responses in Arabidopsis (Arabidopsis thaliana). T-DNA insertion mutants of AIK1 showed insensitivity to ABA in terms of both root growth and stomatal response. AIK1 functions in ABA responses via regulation of root cell division and elongation, as well as stomatal responses. The activity of AIK1 is induced by ABA in Arabidopsis and tobacco (Nicotiana benthamiana), and the Arabidopsis protein phosphatase type 2C, ABI1, a negative regulator of ABA signaling, restricts AIK1 activity by dephosphorylation. Bimolecular fluorescence complementation analysis showed that MPK3, MPK6, and AIK1 interact with MKK5. The single mutant seedlings of mpk6 and mkk5 have similar phenotypes to aik1, but mkk4 does not. AIK1 was localized in the cytoplasm and shown to activate MKK5 by protein phosphorylation, which was an ABA-activated process. Constitutively active MKK5 in aik1 mutant seedlings complements the ABA-insensitive root growth phenotype of aik1. The activity of MPK6 was increased by ABA in wild-type seedlings, but its activation by ABA was impaired in aik1 and aik1 mkk5 mutants. These findings clearly suggest that the AIK1-MKK5-MPK6 cascade functions in the ABA regulation of primary root growth and stomatal response. PMID:27913741

  8. Involvement of protein kinases and calcium in the NO-signalling cascade for defence-gene induction in ozonated tobacco plants.

    PubMed

    Pasqualini, S; Reale, L; Calderini, O; Pagiotti, R; Ederli, L

    2012-07-01

    This study analyses the signalling pathways triggered by nitric oxide (NO) in response to ozone (O(3)) fumigation of tobacco plants, with particular attention to protein kinase cascades and free cytosolic Ca(2+) in defence-gene activation. NO was visualized with the NO probe DAF-FM. Using a pharmacological approach, the effects of different inhibitors on the expression profiles of NO-dependent defence genes were monitored using RT-PCR. The assay of the kinase activity of the immunoprecipitates complexes shows that O(3) stimulates a 48 kDa salicylic acid (SA)-induced protein kinase (SIPK) in an NO-dependent manner. The O(3)-induced alternative oxidase 1a (AOX1a) and phenylalanine ammonia lyase a (PALa) genes are modulated by phosphorylation by protein kinases, and SIPK might have a role in this up-regulation. By contrast, protein dephosphorylation mediates pathogenesis-related protein 1a (PR1a) expression in O(3)-treated tobacco plants. Ca(2+) is essential, but not sufficient, to promote NO accumulation in ozonated tobacco plants. Intracellular Ca(2+) transients are also essential for PALa up-regulation and cGMP-induced PR1a expression. Partial dependence on intracellular Ca(2+) suggests two different pathways of SA accumulation and PR1a induction. A model summarizing the signalling networks involving NO, SA, and the cellular messengers in this O(3)-induced defence gene activation is proposed.

  9. Selective phosphorylation of nuclear CREB by fluoxetine is linked to activation of CaM kinase IV and MAP kinase cascades.

    PubMed

    Tiraboschi, Ettore; Tardito, Daniela; Kasahara, Jiro; Moraschi, Stefania; Pruneri, Paolo; Gennarelli, Massimo; Racagni, Giorgio; Popoli, Maurizio

    2004-10-01

    Regulation of gene expression is purported as a major component in the long-term action of antidepressants. The transcription factor cAMP-response element-binding protein (CREB) is activated by chronic antidepressant treatments, although a number of studies reported different effects on CREB, depending on drug types used and brain areas investigated. Furthermore, little is known as to what signaling cascades are responsible for CREB activation, although cAMP-protein kinase A (PKA) cascade was suggested to be a central player. We investigated how different drugs (fluoxetine (FLX), desipramine (DMI), reboxetine (RBX)) affect CREB expression and phosphorylation of Ser(133) in the hippocampus and prefrontal/frontal cortex (PFCX). Acute treatments did not induce changes in these mechanisms. Chronic FLX increased nuclear phospho-CREB (pCREB) far more markedly than pronoradrenergic drugs, particularly in PFCX. We investigated the function of the main signaling cascades that were shown to phosphorylate and regulate CREB. PKA did not seem to account for the selective increase of pCREB induced by FLX. All drug treatments markedly increased the enzymatic activity of nuclear Ca2+/calmodulin (CaM) kinase IV (CaMKIV), a major neuronal CREB kinase, in PFCX. Activation of this kinase was due to increased phosphorylation of the activatory residue Thr196, with no major changes in the expression levels of alpha- and beta-CaM kinase kinase, enzymes that phosphorylate CaMKIV. Again in PFCX, FLX selectively increased the expression level of MAP kinases Erk1/2, without affecting their phosphorylation. Our results show that FLX exerts a more marked effect on CREB phosphorylation and suggest that CaMKIV and MAP kinase cascades are involved in this effect.

  10. Reciprocal regulation of microRNA-1 and IGF-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions

    PubMed Central

    Elia, Leonardo; Contu, Riccardo; Quintavalle, Manuela; Varrone, Francesca; Chimenti, Cristina; Russo, Matteo Antonio; Cimino, Vincenzo; De Marinis, Laura; Frustaci, Andrea; Catalucci, Daniele; Condorelli, Gianluigi

    2010-01-01

    Background MicroRNAs (miRNAs/miRs) are small conserved RNA molecules of 22 nucleotides, which negatively modulate gene expression primarily through base paring to the 3′ untranslated region (UTR) of target mRNAs. The muscle-specific miR-1 has been implicated in cardiac hypertrophy, heart development, cardiac stem cell differentiation, and arrhythmias through targeting of regulatory proteins. In this study, we investigated the molecular mechanisms through which miR-1 intervenes in regulation of muscle cell growth and differentiation. Methods and Results Based on bioinformatics tools, biochemical assays and in vivo models, we demonstrate that 1) IGF-I and insulin growth factor 1 receptor (IGF-1R) are targets of miR-1; 2) miR-1 and IGF-1 protein levels are inversely correlated in models of cardiac hypertrophy and failure as well as in the C2C12 skeletal muscle cell model of differentiation; 3) the activation state of the IGF-1 signal transduction cascade reciprocally regulates miR-1 expression through the Foxo3a transcription factor; and 4) miR-1 expression inversely correlates with cardiac mass and thickness in myocardial biopsies of acromegalic patients, in which IGF-1 is overproduced following aberrant synthesis of growth hormone. Conclusions Our results reveal a critical role of miR-1 in mediating the effects of the IGF-1 pathway and demonstrate a feedback loop between miR-1 expression and the IGF-1 signal transduction cascade. PMID:19933931

  11. Methylglyoxal activates the target of rapamycin complex 2-protein kinase C signaling pathway in Saccharomyces cerevisiae.

    PubMed

    Nomura, Wataru; Inoue, Yoshiharu

    2015-04-01

    Methylglyoxal is a typical 2-oxoaldehyde derived from glycolysis. We show here that methylglyoxal activates the Pkc1-Mpk1 mitogen-activated protein (MAP) kinase cascade in a target of rapamycin complex 2 (TORC2)-dependent manner in the budding yeast Saccharomyces cerevisiae. We demonstrate that TORC2 phosphorylates Pkc1 at Thr(1125) and Ser(1143). Methylglyoxal enhanced the phosphorylation of Pkc1 at Ser(1143), which transmitted the signal to the downstream Mpk1 MAP kinase cascade. We found that the phosphorylation status of Pkc1(T1125) affected the phosphorylation of Pkc1 at Ser(1143), in addition to its protein levels. Methylglyoxal activated mammalian TORC2 signaling, which, in turn, phosphorylated Akt at Ser(473). Our results suggest that methylglyoxal is a conserved initiator of TORC2 signaling among eukaryotes.

  12. Methylglyoxal Activates the Target of Rapamycin Complex 2-Protein Kinase C Signaling Pathway in Saccharomyces cerevisiae

    PubMed Central

    Nomura, Wataru

    2015-01-01

    Methylglyoxal is a typical 2-oxoaldehyde derived from glycolysis. We show here that methylglyoxal activates the Pkc1-Mpk1 mitogen-activated protein (MAP) kinase cascade in a target of rapamycin complex 2 (TORC2)-dependent manner in the budding yeast Saccharomyces cerevisiae. We demonstrate that TORC2 phosphorylates Pkc1 at Thr1125 and Ser1143. Methylglyoxal enhanced the phosphorylation of Pkc1 at Ser1143, which transmitted the signal to the downstream Mpk1 MAP kinase cascade. We found that the phosphorylation status of Pkc1T1125 affected the phosphorylation of Pkc1 at Ser1143, in addition to its protein levels. Methylglyoxal activated mammalian TORC2 signaling, which, in turn, phosphorylated Akt at Ser473. Our results suggest that methylglyoxal is a conserved initiator of TORC2 signaling among eukaryotes. PMID:25624345

  13. Overexpression of miR-223 Tips the Balance of Pro- and Anti-hypertrophic Signaling Cascades toward Physiologic Cardiac Hypertrophy.

    PubMed

    Yang, Liwang; Li, Yutian; Wang, Xiaohong; Mu, Xingjiang; Qin, Dongze; Huang, Wei; Alshahrani, Saeed; Nieman, Michelle; Peng, Jiangtong; Essandoh, Kobina; Peng, Tianqing; Wang, Yigang; Lorenz, John; Soleimani, Manoocher; Zhao, Zhi-Qing; Fan, Guo-Chang

    2016-07-22

    MicroRNAs (miRNAs) have been extensively examined in pathological cardiac hypertrophy. However, few studies focused on profiling the miRNA alterations in physiological hypertrophic hearts. In this study we generated a transgenic mouse model with cardiac-specific overexpression of miR-223. Our results showed that elevation of miR-223 caused physiological cardiac hypertrophy with enhanced cardiac function but no fibrosis. Using the next generation RNA sequencing, we observed that most of dys-regulated genes (e.g. Atf3/5, Egr1/3, Sfrp2, Itgb1, Ndrg4, Akip1, Postn, Rxfp1, and Egln3) in miR-223-transgenic hearts were associated with cell growth, but they were not directly targeted by miR-223. Interestingly, these dys-regulated genes are known to regulate the Akt signaling pathway. We further identified that miR-223 directly interacted with 3'-UTRs of FBXW7 and Acvr2a, two negative regulators of the Akt signaling. However, we also validated that miR-223 directly inhibited the expression of IGF-1R and β1-integrin, two positive regulators of the Akt signaling. Lastly, Western blotting did reveal that Akt was activated in miR-223-overexpressing hearts. Adenovirus-mediated overexpression of miR-223 in neonatal rat cardiomyocytes induced cell hypertrophy, which was blocked by the addition of MK2206, a specific inhibitor of Akt Taken together, these data represent the first piece of work showing that miR-223 tips the balance of promotion and inactivation of Akt signaling cascades toward activation of Akt, a key regulator of physiological cardiac hypertrophy. Thus, our study suggests that the ultimate phenotype outcome of a miRNA may be decided by the secondary net effects of the whole target network rather than by several primary direct targets in an organ/tissue.

  14. Metabolic signals and innate immune activation in obesity and exercise.

    PubMed

    Ringseis, Robert; Eder, Klaus; Mooren, Frank C; Krüger, Karsten

    2015-01-01

    The combination of a sedentary lifestyle and excess energy intake has led to an increased prevalence of obesity which constitutes a major risk factor for several co-morbidities including type 2 diabetes and cardiovascular diseases. Intensive research during the last two decades has revealed that a characteristic feature of obesity linking it to insulin resistance is the presence of chronic low-grade inflammation being indicative of activation of the innate immune system. Recent evidence suggests that activation of the innate immune system in the course of obesity is mediated by metabolic signals, such as free fatty acids (FFAs), being elevated in many obese subjects, through activation of pattern recognition receptors thereby leading to stimulation of critical inflammatory signaling cascades, like IκBα kinase/nuclear factor-κB (IKK/NF- κB), endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and NOD-like receptor P3 (NLRP3) inflammasome pathway, that interfere with insulin signaling. Exercise is one of the main prescribed interventions in obesity management improving insulin sensitivity and reducing obesity- induced chronic inflammation. This review summarizes current knowledge of the cellular recognition mechanisms for FFAs, the inflammatory signaling pathways triggered by excess FFAs in obesity and the counteractive effects of both acute and chronic exercise on obesity-induced activation of inflammatory signaling pathways. A deeper understanding of the effects of exercise on inflammatory signaling pathways in obesity is useful to optimize preventive and therapeutic strategies to combat the increasing incidence of obesity and its comorbidities.

  15. [Leukocyte mobility in modulation of activity of the cell signalling system].

    PubMed

    Luĭk, A I; Mogilevich, S E; Radchenko, I V; Kondrashova, L N

    1993-01-01

    The mobility of the rat polymorphonuclear leukocytes (PMNL) has been studied. It was shown, that it is greatly determined by the balance of adenylate cyclase (AdC) and Ca-polyphosphoinositide (Ca-PPI) cell signalling systems. Various compounds whose action on the activity of the signalling systems was previously connected with the membrane receptors, proved to be capable to affect the activity of submembrane elements of these systems. It is concluded that multiple areas of bioregulators fixation within the limits of the signal cascades are available.

  16. Dynamics robustness of cascading systems.

    PubMed

    Young, Jonathan T; Hatakeyama, Tetsuhiro S; Kaneko, Kunihiko

    2017-03-01

    A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it will provide a

  17. A cascading activity-based probe sequentially targets E1–E2–E3 ubiquitin enzymes

    PubMed Central

    Mulder, Monique P.C.; Witting, Katharina; Berlin, Ilana; Pruneda, Jonathan N.; Wu, Kuen-Phon; Chang, Jer-Gung; Merkx, Remco; Bialas, Johanna; Groettrup, Marcus; Vertegaal, Alfred C.O.; Schulman, Brenda A.; Komander, David; Neefjes, Jacques; Oualid, Farid El; Ovaa, Huib

    2016-01-01

    Post-translational modifications of proteins with ubiquitin (Ub) and ubiquitin-like (Ubl) modifiers, orchestrated by a cascade of specialized E1, E2 and E3 enzymes, control a staggering breadth of cellular processes. To monitor catalysis along these complex reaction pathways, we developed a cascading activity-based probe, UbDha. Akin to the native Ub, upon ATP-dependent activation by the E1, UbDha can travel downstream to the E2 (and subsequently E3) enzymes through sequential trans-thioesterifications. Unlike the native Ub, at each step along the cascade UbDha has the option to react irreversibly with active site cysteine residues of target enzymes, thus enabling their detection. We show that our cascading probe ‘hops’ and ‘traps’ catalytically active ubiquitin-modifying enzymes (but not their substrates) by a mechanism diversifiable to Ubls. Our founder methodology, amenable to structural studies, proteome-wide profiling and monitoring of enzymatic activities in living cells, presents novel and versatile tools to interrogate the Ub/Ubl cascades. PMID:27182664

  18. Extracellular Vesicles Present in Human Ovarian Tumor Microenvironments Induce a Phosphatidylserine-Dependent Arrest in the T-cell Signaling Cascade.

    PubMed

    Kelleher, Raymond J; Balu-Iyer, Sathy; Loyall, Jenni; Sacca, Anthony J; Shenoy, Gautam N; Peng, Peng; Iyer, Vandana; Fathallah, Anas M; Berenson, Charles S; Wallace, Paul K; Tario, Joseph; Odunsi, Kunle; Bankert, Richard B

    2015-11-01

    The identification of immunosuppressive factors within human tumor microenvironments, and the ability to block these factors, would be expected to enhance patients' antitumor immune responses. We previously established that an unidentified factor, or factors, present in ovarian tumor ascites fluids reversibly inhibited the activation of T cells by arresting the T-cell signaling cascade. Ultracentrifugation of the tumor ascites fluid has now revealed a pellet that contains small extracellular vesicles (EV) with an average diameter of 80 nm. The T-cell arrest was determined to be causally linked to phosphatidylserine (PS) that is present on the outer leaflet of the vesicle bilayer, as a depletion of PS-expressing EV or a blockade of PS with anti-PS antibody significantly inhibits the vesicle-induced signaling arrest. The inhibitory EV were also isolated from solid tumor tissues. The presence of immunosuppressive vesicles in the microenvironments of ovarian tumors and our ability to block their inhibition of T-cell function represent a potential therapeutic target for patients with ovarian cancer.

  19. Calcium/Ask1/MKK7/JNK2/c-Src signalling cascade mediates disruption of intestinal epithelial tight junctions by dextran sulfate sodium.

    PubMed

    Samak, Geetha; Chaudhry, Kamaljit K; Gangwar, Ruchika; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna

    2015-02-01

    Disruption of intestinal epithelial tight junctions is an important event in the pathogenesis of ulcerative colitis. Dextran sodium sulfate (DSS) induces colitis in mice with symptoms similar to ulcerative colitis. However, the mechanism of DSS-induced colitis is unknown. We investigated the mechanism of DSS-induced disruption of intestinal epithelial tight junctions and barrier dysfunction in Caco-2 cell monolayers in vitro and mouse colon in vivo. DSS treatment resulted in disruption of tight junctions, adherens junctions and actin cytoskeleton leading to barrier dysfunction in Caco-2 cell monolayers. DSS induced a rapid activation of c-Jun N-terminal kinase (JNK), and the inhibition or knockdown of JNK2 attenuated DSS-induced tight junction disruption and barrier dysfunction. In mice, DSS administration for 4 days caused redistribution of tight junction and adherens junction proteins from the epithelial junctions, which was blocked by JNK inhibitor. In Caco-2 cell monolayers, DSS increased intracellular Ca(2+) concentration, and depletion of intracellular Ca(2+) by 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester) (BAPTA/AM) or thapsigargin attenuated DSS-induced JNK activation, tight junction disruption and barrier dysfunction. Knockdown of apoptosis signal-regulated kinase 1 (Ask1) or MKK7 blocked DSS-induced tight junction disruption and barrier dysfunction. DSS activated c-Src by a Ca2+ and JNK-dependent mechanism. Inhibition of Src kinase activity or knockdown of c-Src blocked DSS-induced tight junction disruption and barrier dysfunction. DSS increased tyrosine phosphorylation of occludin, zonula occludens-1 (ZO-1), E-cadherin and β-catenin. SP600125 abrogated DSS-induced tyrosine phosphorylation of junctional proteins. Recombinant JNK2 induced threonine phosphorylation and auto-phosphorylation of c-Src. The present study demonstrates that Ca(2+)/Ask1/MKK7/JNK2/cSrc signalling cascade mediates DSS-induced tight

  20. Activity Dependent Signal Transduction in Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    Hamilton, Susan L.

    1999-01-01

    The overall goals of this project are: 1) to define the initial signal transduction events whereby the removal of gravitational load from antigravity muscles, such as the soleus, triggers muscle atrophy, and 2) to develop countermeasures to prevent this from happening. Our rationale for this approach is that, if countermeasures can be developed to regulate these early events, we could avoid having to deal with the multiple cascades of events that occur downstream from the initial event. One of our major findings is that hind limb suspension causes an early and sustained increase in intracellular Ca(2+) concentration ([Ca (2+)](sub i)). In most cells the consequences of changes in ([Ca (2+)](sub i))depend on the amplitude, frequency and duration of the Ca(2+) signal and on other factors in the intracellular environment. We propose that muscle remodeling in microgravity represents a change in the balance among several CA(2+) regulated signal transduction pathways, in particular those involving the transcription factors NFAT and NFkB and the pro-apoptotic protein BAD. Other Ca(2+) sensitive pathways involving PKC, ras, rac, and CaM kinase II may also contribute to muscle remodeling.

  1. A defect in the inflammation-primed macrophage-activation cascade in osteopetrotic rats.

    PubMed

    Yamamoto, N; Lindsay, D D; Naraparaju, V R; Ireland, R A; Popoff, S N

    1994-05-15

    Macrophages were activated by administration of lysophosphatidylcholine (lyso-Pc) or dodecylglycerol (DDG) to wild-type rats but not in osteopetrotic (op) mutant rats. In vitro treatment of wild-type rat peritoneal cells with lyso-Pc or DDG efficiently activated macrophages whereas treatment of op mutant rat peritoneal cells with lyso-Pc or DDG did not activate macrophages. The inflammation-primed macrophage activation cascade in rats requires participation of B lymphocytes and vitamin D binding protein (DBP). Lyso-Pc-inducible beta-galactosidase of wild-type rat B lymphocytes can convert DBP to the macrophage-activating factor (MAF), whereas B lymphocytes of the op mutant rats were shown to be deficient in lyso-Pc-inducible beta-galactosidase. DBP is conserved among mammalian species. Treatment of human DBP (Gc1 protein) with commercial glycosidases yields an extremely high titrated MAF as assayed on mouse and rat macrophages. Because the enzymatically generated MAF (GcMAF) bypasses the role of lymphocytes in macrophage activation, the op mutant rat macrophages were efficiently activated by administration of a small quantity (100 pg/rat) of GcMAF. Likewise, in vitro treatment of op rat peritoneal cells with as little as 40 pg GcMAF/ml activated macrophages.

  2. Dysregulation of FMRP/mTOR Signaling Cascade in Hypoxic-Ischemic Injury of Premature Human Brain.

    PubMed

    Lechpammer, Mirna; Wintermark, Pia; Merry, Katherine M; Jackson, Michele C; Jantzie, Lauren L; Jensen, Frances E

    2016-03-01

    In this study the authors investigated whether dysregulation of the fragile X mental retardation protein and mammalian target of rapamycin signaling cascade can have a role in the pathogenesis of encephalopathy of prematurity following perinatal hypoxia-ischemia. The authors examined the brain tissue of newborns with encephalopathy and compared it to age-matched controls with normal brain development and adults. In normal controls, the fragile X mental retardation protein expression in cortical gray matter spiked 4-fold during 36-39 gestational weeks compared to the adult, with a concomitant suppression of p70S6K and S6. In encephalopathy cases, the developmental spike of fragile X mental retardation protein was not observed, and fragile X mental retardation protein levels remained significantly lower than in normal controls. Importantly, this fragile X mental retardation protein downregulation was followed by a significant overexpression of p70S6K and S6. These novel findings thus suggest that premature hypoxic-ischemic brain injury can affect the fragile X mental retardation protein/mammalian target of rapamycin pathway, as otherwise observed in inherited syndromes of cognitive disability and autism spectrum disorders.

  3. alpha-Melanocyte-stimulating hormone and oxytocin: a peptide signalling cascade in the hypothalamus.

    PubMed

    Sabatier, N

    2006-09-01

    alpha-Melanocyte-stimulating hormone (alpha-MSH) and oxytocin share remarkable similarities of effects on behaviour in rats; in particular, they both inhibit feeding behaviour and stimulate sexual behaviour. Recently, we showed that alpha-MSH interacts with the magnocellular oxytocin system in the supraoptic nucleus; alpha-MSH induces the release of oxytocin from the dendrites of magnocellular neurones but it inhibits the secretion of oxytocin from their nerve terminals in the posterior pituitary. This effect of alpha-MSH on supraoptic nucleus oxytocin neurones is remarkable for two reasons. First, it illustrates the capacity of magnocellular neurones to differentially regulate peptide release from dendrites and axons and, second, it emphasises the putative role of magnocellular neurones as a major source of central oxytocin release, and as a likely substrate of some oxytocin-mediated behaviours. The ability of peptides to differentially control secretion from different compartments of their targets indicates one way by which peptide signals might have a particularly significant effect on neuronal circuitry. This suggests a possible explanation for the striking way in which some peptides can influence specific, complex behaviours.

  4. Signaling during platelet adhesion and activation

    PubMed Central

    Li, Zhenyu; Delaney, M. Keegan; O’Brien, Kelly A.; Du, Xiaoping

    2011-01-01

    Upon vascular injury, platelets are activated by adhesion to adhesive proteins like von Willebrand factor and collagen, or by soluble platelet agonists like ADP, thrombin, and thromboxane A2. These adhesive proteins and soluble agonists induce signal transduction via their respective receptors. The various receptor-specific platelet activation signaling pathways converge into common signaling events, which stimulate platelet shape change, granule secretion, and ultimately induce the “inside-out” signaling process leading to activation of the ligand binding function of integrin αIIbβ3. Ligand binding to integrin αIIbβ3 mediates platelet adhesion and aggregation and triggers “outside-in” signaling, resulting in platelet spreading, additional granule secretion, stabilization of platelet adhesion and aggregation, and clot retraction. It has become increasingly evident that agonist-induced platelet activation signals also crosstalk with integrin “outside-in” signals to regulate platelet responses. Platelet activation involves a series of rapid positive feedback loops that greatly amplify initial activation signals, and enable robust platelet recruitment and thrombus stabilization. Recent studies have provided novel insight into the molecular mechanisms of these processes. PMID:21071698

  5. CDPK Activation in PRR Signaling.

    PubMed

    Seybold, Heike; Boudsocq, Marie; Romeis, Tina

    2017-01-01

    Calcium-dependent protein kinases undergo a rapid biochemical activation in response to an intracellular Ca increase induced by the PRR-dependent perception of a pathogen-related stimulus. Based on SDS gel resolution, the in-gel kinase assay allows the analysis of multiple in vivo protein samples in parallel, combining the advantage of protein separation according to molecular mass with the activity read-out of a protein kinase assay. It thus enables to follow the transient CDPK activation and inactivation in response to in vivo elicitation with a time-wise resolution. In addition, changes of CDPK phosphorylation activity often correlate with slight shifts in the enzyme's apparent molecular mass, indicating posttranslational modifications and a conformational change of the active enzyme compared to its inactive resting form. These band shifts can be detected by a simple immunoblotting to monitor CDPK activation.

  6. Glucocorticoid receptor signalling activates YAP in breast cancer

    PubMed Central

    Sorrentino, Giovanni; Ruggeri, Naomi; Zannini, Alessandro; Ingallina, Eleonora; Bertolio, Rebecca; Marotta, Carolina; Neri, Carmelo; Cappuzzello, Elisa; Forcato, Mattia; Rosato, Antonio; Mano, Miguel; Bicciato, Silvio; Del Sal, Giannino

    2017-01-01

    The Hippo pathway is an oncosuppressor signalling cascade that plays a major role in the control of cell growth, tissue homoeostasis and organ size. Dysregulation of the Hippo pathway leads to aberrant activation of the transcription co-activator YAP (Yes-associated protein) that contributes to tumorigenesis in several tissues. Here we identify glucocorticoids (GCs) as hormonal activators of YAP. Stimulation of glucocorticoid receptor (GR) leads to increase of YAP protein levels, nuclear accumulation and transcriptional activity in vitro and in vivo. Mechanistically, we find that GCs increase expression and deposition of fibronectin leading to the focal adhesion-Src pathway stimulation, cytoskeleton-dependent YAP activation and expansion of chemoresistant cancer stem cells. GR activation correlates with YAP activity in human breast cancer and predicts bad prognosis in the basal-like subtype. Our results unveil a novel mechanism of YAP activation in cancer and open the possibility to target GR to prevent cancer stem cells self-renewal and chemoresistance. PMID:28102225

  7. Cocaine elicits autophagic cytotoxicity via a nitric oxide-GAPDH signaling cascade

    PubMed Central

    Guha, Prasun; Harraz, Maged M.; Snyder, Solomon H.

    2016-01-01

    Cocaine exerts its behavioral stimulant effects by facilitating synaptic actions of neurotransmitters such as dopamine and serotonin. It is also neurotoxic and broadly cytotoxic, leading to overdose deaths. We demonstrate that the cytotoxic actions of cocaine reflect selective enhancement of autophagy, a process that physiologically degrades metabolites and cellular organelles, and that uncontrolled autophagy can also lead to cell death. In brain cultures, cocaine markedly increases levels of LC3-II and depletes p62, both actions characteristic of autophagy. By contrast, cocaine fails to stimulate cell death processes reflecting parthanatos, monitored by cleavage of poly(ADP ribose)polymerase-1 (PARP-1), or necroptosis, assessed by levels of phosphorylated mixed lineage kinase domain-like protein. Pharmacologic inhibition of autophagy protects neurons against cocaine-induced cell death. On the other hand, inhibition of parthanatos, necroptosis, or apoptosis did not change cocaine cytotoxicity. Depletion of ATG5 or beclin-1, major mediators of autophagy, prevents cocaine-induced cell death. By contrast, depleting caspase-3, whose cleavage reflects apoptosis, fails to alter cocaine cytotoxicity, and cocaine does not alter caspase-3 cleavage. Moreover, depleting PARP-1 or RIPK1, key mediators of parthanatos and necroptosis, respectively, did not prevent cocaine-induced cell death. Autophagic actions of cocaine are mediated by the nitric oxide-glyceraldehyde-3-phosphate dehydrogenase signaling pathway. Thus, cocaine-associated autophagy is abolished by depleting GAPDH via shRNA; by the drug CGP3466B, which prevents GAPDH nitrosylation; and by mutating cysteine-150 of GAPDH, its site of nitrosylation. Treatments that selectively influence cocaine-associated autophagy may afford therapeutic benefit. PMID:26787898

  8. Cocaine elicits autophagic cytotoxicity via a nitric oxide-GAPDH signaling cascade.

    PubMed

    Guha, Prasun; Harraz, Maged M; Snyder, Solomon H

    2016-02-02

    Cocaine exerts its behavioral stimulant effects by facilitating synaptic actions of neurotransmitters such as dopamine and serotonin. It is also neurotoxic and broadly cytotoxic, leading to overdose deaths. We demonstrate that the cytotoxic actions of cocaine reflect selective enhancement of autophagy, a process that physiologically degrades metabolites and cellular organelles, and that uncontrolled autophagy can also lead to cell death. In brain cultures, cocaine markedly increases levels of LC3-II and depletes p62, both actions characteristic of autophagy. By contrast, cocaine fails to stimulate cell death processes reflecting parthanatos, monitored by cleavage of poly(ADP ribose)polymerase-1 (PARP-1), or necroptosis, assessed by levels of phosphorylated mixed lineage kinase domain-like protein. Pharmacologic inhibition of autophagy protects neurons against cocaine-induced cell death. On the other hand, inhibition of parthanatos, necroptosis, or apoptosis did not change cocaine cytotoxicity. Depletion of ATG5 or beclin-1, major mediators of autophagy, prevents cocaine-induced cell death. By contrast, depleting caspase-3, whose cleavage reflects apoptosis, fails to alter cocaine cytotoxicity, and cocaine does not alter caspase-3 cleavage. Moreover, depleting PARP-1 or RIPK1, key mediators of parthanatos and necroptosis, respectively, did not prevent cocaine-induced cell death. Autophagic actions of cocaine are mediated by the nitric oxide-glyceraldehyde-3-phosphate dehydrogenase signaling pathway. Thus, cocaine-associated autophagy is abolished by depleting GAPDH via shRNA; by the drug CGP3466B, which prevents GAPDH nitrosylation; and by mutating cysteine-150 of GAPDH, its site of nitrosylation. Treatments that selectively influence cocaine-associated autophagy may afford therapeutic benefit.

  9. Effects of high-orbit spaceflight on signaling cascades and apoptosis in immune cells from mice flied on board the BION-M1 satellite

    NASA Astrophysics Data System (ADS)

    Novoselova, Elena; Shenkman, Boris; Lunin, Sergey; Parfenyuk, Svetlana; Novoselova, Tatyana; Fesenko, Eugeny

    The study was designed to evaluate immune cell activity in male C57bl mice after a 30-day high-orbit spaceflight (550 km, higher than conventional manned spaceflights) on board the BION-M1 satellite (Roskosmos Program, Russia). For the present study, thymus, spleens and plasma samples were collected from mice 12 h after landing and, additionally, 7 days subsequently. Assessing the activity of NF-kappaB signaling cascade by measuring Rel A (p65) protein phosphorylation in splenic lymphocytes, we showed that the NF-kappaB activity was significantly increased at 12 h after landing. Contrariwise, one week after landing, the NF-kappaB activity was markedly decreased, even below to the control values. Interestingly, after landing there were no significant changes in SAPK/JNK cascade activity in splenic lymphocytes as well as in the expression of transcription factor IRF3 in thymus cells. To assess the apoptosis status in thymus lymphocytes, levels of p53 protein and its phosphorylated form were measured in thymic lymphocytes. It is known that p53 plays an important role in the cellular response to DNA damage, genomic aberrations, and other characteristic of apoptosis. The results showed that the high-orbit spaceflight environment caused some increase in level of p53 protein, but most notably, activated phosphorylated form of p53 protein. Calculated ratio of active and inactive forms of the protein (ph-p53/p53) 12 h after landing increased by more than 2-fold, indicating the apparent induction of apoptosis in thymus cells. Interestingly, 7 days after the landing, this ratio was not restored, but rather increased: the specified ratio was 4 times higher as compared to the ground-based control. We can conclude that response to the prolonged high-orbit spaceflight is not like the classic "stress response", which is usually observed under various stressful factors. It is known that the stress response is surely accompanied by increased SAPK/JNK cascade activity as well as the

  10. Combination of spices and herbal extract restores macrophage foam cell migration and abrogates the athero-inflammatory signalling cascade of atherogenesis.

    PubMed

    Nimgulkar, Chetan; Ghosh, Sudip; Sankar, Anand B; Uday, Kumar P; Surekha, M V; Madhusudhanachary, P; Annapurna, B R; Raghu, P; Bharatraj, Dinesh Kumar

    2015-09-01

    The trapping of lipid-laden macrophages in the arterial intima is a critical but reversible step in atherogenesis. However, information about possible treatments for this condition is lacking. Here, we hypothesized that combining the polyphenol-rich fractions (PHC) of commonly consumed spices (Allium sativum L (Liliaceae), Zingiber officinale R (Zingiberaceae), Curcuma longa L (Zingiberaceae)) and herbs (Terminalia arjuna (R) W & A (Combretaceae) and Cyperus rotundus L (Cyperaceae)) prevents foam cell formation and atherogenesis. Using an in vitro foam cell formation assay, we found that PHC significantly inhibited lipid-laden macrophage foam cell formation compared to the depleted polyphenol fraction of PHC (F-PHC). We further observed that PHC attenuated the LDL and LPS induced CD36, p-FAK and PPAR-γ protein expression in macrophages and increased their migration. NK-κB-DNA interaction, TNF-α, ROS generation, and MMP9 and MMP2 protein expression were suppressed in PHC-treated macrophages. The anti-atherosclerotic activity of PHC was investigated in a high fat- and cholesterol-fed rabbit model. The inhibition of foam cell deposition within the aortic intima and atheroma formation confirmed the atheroprotective activity of PHC. Therefore, we conclude that the armoury of polyphenols in PHC attenuates the CD36 signalling cascade-mediated foam cell formation, enhances the migration of these cells and prevents atherogenesis.

  11. The collagen triple helix repeat containing 1 facilitates hepatitis B virus-associated hepatocellular carcinoma progression by regulating multiple cellular factors and signal cascades.

    PubMed

    Zhang, Rui; Cao, Yanhua; Bai, Lan; Zhu, Chengliang; Li, Rui; He, Hui; Liu, Yingle; Wu, Kailang; Liu, Fang; Wu, Jianguo

    2015-12-01

    Hepatitis B virus (HBV) infection is one of the major causes of acute and chronic liver diseases, fulminant hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HCC accounts for more than 85% of primary liver cancers and is the seventh most common cancer and the third leading cause of cancer-related deaths. However, the mechanism by which HBV induces HCC is largely unknown. Collagen triple helixes repeat containing 1 (CTHRC1) is a secreted protein and has characteristics of a circulating hormone with potentially broad implications for cell metabolism and physiology. CTHRC1 is associated with human cancers, but its effect on HCC is unknown. Here, we revealed that CTHRC1 expression is highly correlated with HCC progression in HBV-infected patients, and demonstrated that HBV stimulates CTHRC1 expression by activating nuclear factor-kappa B (NF-κB) and cAMP response element binding protein (CREB), through extracellular signal-regulated kinase/c-Jun N-terminal kinase (ERK/c-JNK) pathway. In addition, CTHRC1 activates hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) through regulating phosphoinosmde-3-kinase/protein kinase B/mammalian target of rapamycin (PI-3K/AKT/mTOR) pathway. More interestingly, CTHRC1 enhances colony formation, migration, and invasion of hepatoma cells by regulating p53 and stimulating matrix metalloproteinase-9 (MMP-9) expression. In addition, knock-down of CTHRC1 results in the repression of HBV-associated carcinogenesis in nude mice. Thus, we revealed a novel mechanism by which HBV facilitates HCC development through activating the oncoprotein CTHRC1, which in turn enhances HBV-related HCC progression by stimulates colony formation, migration, and invasion of hepatoma cells through regulating multiple cellular factors and signal cascades.

  12. Quantum cascade laser based active hyperspectral imaging for standoff detection of chemicals on surfaces

    NASA Astrophysics Data System (ADS)

    Hugger, S.; Fuchs, F.; Jarvis, J.; Yang, Q. K.; Rattunde, M.; Ostendorf, R.; Schilling, C.; Driad, R.; Bronner, W.; Aidam, R.; Wagner, J.; Tybussek, T.; Rieblinger, K.

    2016-02-01

    We employ active hyperspectral imaging using tunable mid-infrared (MIR) quantum cascade lasers for contactless identification of solid and liquid contaminations on surfaces. By collecting the backscattered laser radiation with a camera, a hyperspectral data cube, containing the spatially resolved spectral information of the scene is obtained. Data is analyzed using appropriate algorithms to find the target substances even on substrates with a priori unknown spectra. Eye-save standoff detection of residues of explosives and precursors over extended distances is demonstrated and the main purpose of our system. However, it can be applied to any substance with characteristic reflectance / absorbance spectrum. As an example, we present first results of monitoring food quality by distinguishing fresh and mold contaminated peanuts by their MIR backscattering spectrum.

  13. Terahertz dual-wavelength quantum cascade laser based on GaN active region

    NASA Astrophysics Data System (ADS)

    Mirzaei, B.; Rostami, A.; Baghban, H.

    2012-03-01

    In this paper a novel terahertz (THz) quantum cascade laser (QCL) based on GaN/AlGaN quantum wells has been proposed, which emits at two widely separated wavelengths 33 and 52 μm simultaneously in a single active region. The large LO-phonon energy (˜90 meV), the ultrafast resonant phonon depopulation of the lower radiative levels, suppression of the electrons that escape to the continuum states and selective carrier injection and extraction all together lead to a considerable enhancement in the operating temperature of the structure. All calculations have been done at a temperature of 265 K. Moreover, similar behavior of the output optical powers is another remarkable feature, which makes both wavelengths useful for special applications.

  14. Candesartan and glycyrrhizin ameliorate ischemic brain damage through downregulation of the TLR signaling cascade.

    PubMed

    Barakat, Waleed; Safwet, Nancy; El-Maraghy, Nabila N; Zakaria, Mohamed N M

    2014-02-05

    Stroke is the second leading cause of death in industrialized countries and the most frequent cause of permanent disability in adults worldwide. The final outcome of stroke is determined not only by the volume of the ischemic core, but also by the extent of secondary brain damage inflicted to penumbral tissues by brain swelling, impaired microcirculation, and inflammation. The only drug approved for the treatment ischemic stroke is recombinant tissue plasminogen activator (rt-PA). The current study was designed to investigate the protective effects of candesartan (0.15 mg/kg, orally) and glycyrrhizin (30 mg/kg, orally) experimentally-induced ischemic brain damage in C57BL/6 mice (middle cerebral artery occlusion, MCAO) in comparison to the effects of a standard neuroprotective drug (cerebrolysin, 7.5 mg/kg, IP). All drugs were administered 30 min before and 24h after MCAO. Both candesartan and glycyrrhizin ameliorated the deleterious effects of MCAO as indicated by the improvement in the performance of the animals in behaviour tests, reduction in brain infarction, neuronal degeneration, and leukocyte infiltration. In addition, MCAO induced a significant upregulation in the different elements of the TLR pathway including TLR-2 and TLR-4, Myd88, TRIF and IRF-3 and the downstream effectors TNF-α, IL-1β, IL-6 and NF-kB. All these changes were significantly ameliorated by treatment with candesartan and glycyrrhizin. The results of the current study represent a new indication for both candesartan and glycyrrhizin in the management of ischemic stroke with effects comparable to those of the standard neuroprotective drug cerebrolysin.

  15. In Vivo Characterization of Intracellular Signaling Pathways Activated by the Nerve Agent Sarin

    DTIC Science & Technology

    2004-03-01

    Ca+2/calmodulin-dependent protein phosphatase signaling cascade, which dephosphorylates T34- DARPP-32 (Nishi et al., 1999). Activation of the D 1...phosphorylation state of DARPP-32 at Ser-102 (S102) and Ser-137 (S137) (see Figure 1). For example, S 102 on DARPP-32 is phosphorylated by casein kinase...cGMP-dependent protein kinase (PKG) (Girault et al., 1989). DARPP-32 is also phosphorylated on amino acid S137 by casein kinase I (CK1). Increases in

  16. Identification of a Novel lincRNA-p21-miR-181b-PTEN Signaling Cascade in Liver Fibrosis

    PubMed Central

    Yu, Fujun; Lu, Zhongqiu; Chen, Bicheng

    2016-01-01

    Previously, we found that long intergenic noncoding RNA-p21 (lincRNA-p21) inhibits hepatic stellate cell (HSC) activation and liver fibrosis via p21. However, the underlying mechanism of the antifibrotic role of lincRNA-p21 in liver fibrosis remains largely unknown. Here, we found that lincRNA-p21 expression was significantly downregulated during liver fibrosis. In LX-2 cells, the reduction of lincRNA-p21 induced by TGF-β1 was in a dose- and time-dependent manner. lincRNA-p21 expression was reduced in liver tissues from patients with liver cirrhosis when compared with that of healthy controls. Notably, lincRNA-p21 overexpression contributed to the suppression of HSC activation. lincRNA-p21 suppressed HSC proliferation and induced a significant reduction in α-SMA and type I collagen. All these effects induced by lincRNA-p21 were blocked down by the loss of PTEN, suggesting that lincRNA-p21 suppressed HSC activation via PTEN. Further study demonstrated that microRNA-181b (miR-181b) was involved in the effects of lincRNA-p21 on HSC activation. The effects of lincRNA-p21 on PTEN expression and HSC activation were inhibited by miR-181b mimics. We demonstrated that lincRNA-p21 enhanced PTEN expression by competitively binding miR-181b. In conclusion, our results disclose a novel lincRNA-p21-miR-181b-PTEN signaling cascade in liver fibrosis and suggest lincRNA-p21 as a promising molecular target for antifibrosis therapy. PMID:27610008

  17. Identification of a Novel lincRNA-p21-miR-181b-PTEN Signaling Cascade in Liver Fibrosis.

    PubMed

    Yu, Fujun; Lu, Zhongqiu; Chen, Bicheng; Dong, Peihong; Zheng, Jianjian

    2016-01-01

    Previously, we found that long intergenic noncoding RNA-p21 (lincRNA-p21) inhibits hepatic stellate cell (HSC) activation and liver fibrosis via p21. However, the underlying mechanism of the antifibrotic role of lincRNA-p21 in liver fibrosis remains largely unknown. Here, we found that lincRNA-p21 expression was significantly downregulated during liver fibrosis. In LX-2 cells, the reduction of lincRNA-p21 induced by TGF-β1 was in a dose- and time-dependent manner. lincRNA-p21 expression was reduced in liver tissues from patients with liver cirrhosis when compared with that of healthy controls. Notably, lincRNA-p21 overexpression contributed to the suppression of HSC activation. lincRNA-p21 suppressed HSC proliferation and induced a significant reduction in α-SMA and type I collagen. All these effects induced by lincRNA-p21 were blocked down by the loss of PTEN, suggesting that lincRNA-p21 suppressed HSC activation via PTEN. Further study demonstrated that microRNA-181b (miR-181b) was involved in the effects of lincRNA-p21 on HSC activation. The effects of lincRNA-p21 on PTEN expression and HSC activation were inhibited by miR-181b mimics. We demonstrated that lincRNA-p21 enhanced PTEN expression by competitively binding miR-181b. In conclusion, our results disclose a novel lincRNA-p21-miR-181b-PTEN signaling cascade in liver fibrosis and suggest lincRNA-p21 as a promising molecular target for antifibrosis therapy.

  18. Intranasal exposure to amorphous nanosilica particles could activate intrinsic coagulation cascade and platelets in mice

    PubMed Central

    2013-01-01

    Background Nanomaterials with particle sizes <100 nm have been already applied in various applications such as cosmetics, medicines, and foods. Therefore, ensuring the safety of nanomaterials is becoming increasingly important. Here we examined the localization and biological responses of intranasally administered amorphous nanosilica particles in mice, focusing on the coagulation system. Methods We used nanosilica particles with diameters of 30, 70, or 100 nm (nSP30, nSP70, or nSP100 respectively), and conventional microscale silica particles with diameters of 300 or 1000 nm (mSP300 or mSP1000, respectively). BALB/c mice were intranasally exposed to nSP30, nSP70, nSP100, mSP300, or mSP1000 at concentrations of 500 μg/mouse for 7 days. After 24 hours of last administration, we performed the in vivo transmission electron microscopy analysis, hematological examination and coagulation tests. Results In vivo transmission electron microscopy analysis showed that nanosilica particles with a diameter <100 nm were absorbed through the nasal cavity and were distributed into liver and brain. Hematological examination and coagulation tests showed that platelet counts decreased and that the activated partial thromboplastin time was prolonged in nSP30 or nSP70-treated groups of mice, indicating that nanosilica particles might have activated a coagulation cascade. In addition, in in vitro activation tests of human plasma, nanosilica particles had greater potential than did conventional microscale silica particles to activate coagulation factor XII. In nanosilica-particle-treated groups, the levels of soluble CD40 ligand, and von Willebrand factor which are involved in stimulating platelets tended to slightly increase with decreasing particle size. Conclusions These results suggest that intranasally administered nanosilica particles with diameters of 30 and 70 nm could induce abnormal activation of the coagulation system through the activation of an intrinsic coagulation cascade

  19. Multipoint observations of nightside auroral activity: the Cascades2 sounding rocket mission

    NASA Astrophysics Data System (ADS)

    Lynch, K. A.; Mella, M. R.; Kintner, P. M.; Lundberg, E. T.; Lessard, M.; Jones, S.; Stenbaek-Nielsen, H. C.; Hampton, D. L.; Ivchenko, N. V.; Dahlgren, H.

    2009-12-01

    Cascades2 was launched from Poker Flat Alaska on 20 Mar 2009 at 11:04 UT (roughly 30 minutes premidnight magnetic local time.) The 12 minute 43 second flight reached an apogee of 564 km over the northern coast of Alaska at 11:11:11 UT, and entered the polar cap at 11:14:40 UT before atmospheric reentry at 11:16:42 UT. The experiment array included a 5-payload suite of in situ instrumentation, ground cameras of various fields of view at three different points under the trajectory, various ground magnetometers, the PFISR radar at the launch site, and the THEMIS spacecraft in the magnetotail. The array design was chosen to address questions about (1) shears in ionospheric electric fields and their ability to drive waves; (2) proper motion of auroral structures with respect to the ambient ionosphere; and (3) quantifying parameters of dispersive Alfven wave phenomena and their effects on auroral fluxtubes. The successful flight was due to the sustained and dedicated effort of the many and varied members of our team. The Cascades2 trajectory passed through several parts of a poleward boundary intensification event, with both inverted-V type aurora and sustained Alfvenic activity seen. Other presentations will detail the ground camera, onboard DC electric fields, and onboard multipoint electron data. In this presentation we show onboard magnetometer results of current signatures both compressional and transverse. Also we present ion data showing the complex motion of low and medium energy ions in these poleward boundary events; ions are seen to be both moving upward along the field line, and then precipitating back down at higher energies with dispersion signatures.

  20. Analysis of the multiple roles of gld-1 in germline development: Interactions with the sex determination cascade and the glp-1 signaling pathway

    SciTech Connect

    Francis, R.; Schedl, T.; Maine, E.

    1995-02-01

    The Caenorhabditis elegans gene gld-1 is essential for oocyte development; in gld-1 (null) hermaphrodites, a tumor forms where oogenesis would normally occur. We use genetic epistasis analysis to demonstrate that tumor formation is dependent on the sexual fate of the germline. When the germline sex determination pathway is set in the female mode (terminal fem/fog genes inactive), gld-1 (null) germ cells exit meiotic prophase and proliferate to form a tumor, but when the pathway is et in the male mode, they develop into sperm. We conclude that the gld-1 (null) phenotype is cell-type specific and that gld-1(+) acts at the end of the cascade to direct oogenesis. We also use cell ablation and epistasis analysis to examine the dependence of tumor formation on the glp-1 signaling pathway. Although glp-1 activity promotes tumor growth, it is not essential for tumor formation by gld-1 (null) germ cells. These data also reveal that gld-1(+) plays a nonessential (and sex nonspecific) role in regulating germ cell proliferation before their entry into meiosis. Thus gld-1(+) may negatively regulate proliferation at two distinct points in germ cell development: before entry into meiotic prophase in both sexes (nonessential premeiotic gld-1 function) and during meiotic prophase when the sex determination pathway is set in the female mode (essential meiotic gld-1 function). 46 refs., 9 figs., 4 tabs.

  1. The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade.

    PubMed Central

    Davis-Smyth, T; Chen, H; Park, J; Presta, L G; Ferrara, N

    1996-01-01

    Vascular endothelial growth factor (VEGF) is an angiogenic inducer that mediates its effects through two high affinity receptor tyrosine kinases, Flt-1 and KDR. Flt-1 is required for endothelial cell morphogenesis whereas KDR is involved primarily in mitogenesis. Flt-1 has an alternative ligand, placenta growth factor (PlGF). Both Flt-1 and KDR have seven immunoglobulin (Ig)-like domains in the extracellular domain. The significance and function of these domains for ligand binding and receptor activation are unknown. Here we show that deletion of the second domain of Flt-1 completely abolishes the binding of VEGF. Introduction of the second domain of KDR into an Flt-1 mutant lacking the homologous domain restored VEGF binding. However, the ligand specificity was characteristic of the KDR receptor. We then created chimeric receptors where the first three or just the second Ig-like domains of Flt-1 replaced the corresponding domains in Flt-4, a receptor that does not bind VEGF, and analyzed their ability to bind VEGF. Both swaps conferred upon Flt-4 the ability to bind VEGF with an affinity nearly identical to that of wild-type Flt-1. Furthermore, transfected cells expressing these chimeric Flt-4 receptors exhibited increased DNA synthesis in response to VEGF or PlGF. These results demonstrate that a single Ig-like domain is the major determinant for VEGF-PlGF interaction and that binding to this domain may initiate a signal transduction cascade. Images PMID:8890165

  2. Dynamics robustness of cascading systems

    PubMed Central

    Kaneko, Kunihiko

    2017-01-01

    A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade’s kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1) Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2) Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it will provide a

  3. Hyperpolarization-Activated Current Induces Period-Doubling Cascades and Chaos in a Cold Thermoreceptor Model.

    PubMed

    Xu, Kesheng; Maidana, Jean P; Caviedes, Mauricio; Quero, Daniel; Aguirre, Pablo; Orio, Patricio

    2017-01-01

    In this article, we describe and analyze the chaotic behavior of a conductance-based neuronal bursting model. This is a model with a reduced number of variables, yet it retains biophysical plausibility. Inspired by the activity of cold thermoreceptors, the model contains a persistent Sodium current, a Calcium-activated Potassium current and a hyperpolarization-activated current (Ih) that drive a slow subthreshold oscillation. Driven by this oscillation, a fast subsystem (fast Sodium and Potassium currents) fires action potentials in a periodic fashion. Depending on the parameters, this model can generate a variety of firing patterns that includes bursting, regular tonic and polymodal firing. Here we show that the transitions between different firing patterns are often accompanied by a range of chaotic firing, as suggested by an irregular, non-periodic firing pattern. To confirm this, we measure the maximum Lyapunov exponent of the voltage trajectories, and the Lyapunov exponent and Lempel-Ziv's complexity of the ISI time series. The four-variable slow system (without spiking) also generates chaotic behavior, and bifurcation analysis shows that this is often originated by period doubling cascades. Either with or without spikes, chaos is no longer generated when the Ih is removed from the system. As the model is biologically plausible with biophysically meaningful parameters, we propose it as a useful tool to understand chaotic dynamics in neurons.

  4. RamA is an alternate activator of the multidrug resistance cascade in Enterobacter aerogenes.

    PubMed

    Chollet, Renaud; Chevalier, Jacqueline; Bollet, Claude; Pages, Jean-Marie; Davin-Regli, Anne

    2004-07-01

    Multidrug resistance (MDR) in Enterobacter aerogenes can be mediated by induction of MarA, which is triggered by certain antibiotics and phenolic compounds. In this study, we identified the gene encoding RamA, a 113-amino-acid regulatory protein belonging to the AraC-XylS transcriptional activator family, in the Enterobacter aerogenes ATCC 13048 type strain and in a clinical multiresistant isolate. Overexpression of RamA induced an MDR phenotype in drug-susceptible Escherichia coli JM109 and E. aerogenes ATCC 13048, as demonstrated by 2- to 16-fold-increased resistance to beta-lactams, tetracycline, chloramphenicol, and quinolones, a decrease in porin production, and increased production of AcrA, a component of the AcrAB-TolC drug efflux pump. We show that RamA enhances the transcription of the marRAB operon but is also able to induce an MDR phenotype in a mar-deleted strain. We demonstrate here that RamA is a transcriptional activator of the Mar regulon and is also a self-governing activator of the MDR cascade.

  5. Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance.

    PubMed

    Yamamizo, Chihiro; Kuchimura, Kazuo; Kobayashi, Akira; Katou, Shinpei; Kawakita, Kazuhito; Jones, Jonathan D G; Doke, Noriyuki; Yoshioka, Hirofumi

    2006-02-01

    Late blight, caused by the notorious pathogen Phytophthora infestans, is a devastating disease of potato (Solanum tuberosum) and tomato (Solanum lycopersicum), and during the 1840s caused the Irish potato famine and over one million fatalities. Currently, grown potato cultivars lack adequate blight tolerance. Earlier cultivars bred for resistance used disease resistance genes that confer immunity only to some strains of the pathogen harboring corresponding avirulence gene. Specific resistance gene-mediated immunity and chemical controls are rapidly overcome in the field when new pathogen races arise through mutation, recombination, or migration from elsewhere. A mitogen-activated protein kinase (MAPK) cascade plays a pivotal role in plant innate immunity. Here we show that the transgenic potato plants that carry a constitutively active form of MAPK kinase driven by a pathogen-inducible promoter of potato showed high resistance to early blight pathogen Alternaria solani as well as P. infestans. The pathogen attack provoked defense-related MAPK activation followed by induction of NADPH oxidase gene expression, which is implicated in reactive oxygen species production, and resulted in hypersensitive response-like phenotype. We propose that enhancing disease resistance through altered regulation of plant defense mechanisms should be more durable and publicly acceptable than engineering overexpression of antimicrobial proteins.

  6. Hyperpolarization-Activated Current Induces Period-Doubling Cascades and Chaos in a Cold Thermoreceptor Model

    PubMed Central

    Xu, Kesheng; Maidana, Jean P.; Caviedes, Mauricio; Quero, Daniel; Aguirre, Pablo; Orio, Patricio

    2017-01-01

    In this article, we describe and analyze the chaotic behavior of a conductance-based neuronal bursting model. This is a model with a reduced number of variables, yet it retains biophysical plausibility. Inspired by the activity of cold thermoreceptors, the model contains a persistent Sodium current, a Calcium-activated Potassium current and a hyperpolarization-activated current (Ih) that drive a slow subthreshold oscillation. Driven by this oscillation, a fast subsystem (fast Sodium and Potassium currents) fires action potentials in a periodic fashion. Depending on the parameters, this model can generate a variety of firing patterns that includes bursting, regular tonic and polymodal firing. Here we show that the transitions between different firing patterns are often accompanied by a range of chaotic firing, as suggested by an irregular, non-periodic firing pattern. To confirm this, we measure the maximum Lyapunov exponent of the voltage trajectories, and the Lyapunov exponent and Lempel-Ziv's complexity of the ISI time series. The four-variable slow system (without spiking) also generates chaotic behavior, and bifurcation analysis shows that this is often originated by period doubling cascades. Either with or without spikes, chaos is no longer generated when the Ih is removed from the system. As the model is biologically plausible with biophysically meaningful parameters, we propose it as a useful tool to understand chaotic dynamics in neurons. PMID:28344550

  7. Rit-mediated Stress Resistance Involves a p38-Mitogen- and Stress-activated Protein Kinase 1 (MSK1)-dependent cAMP Response Element-binding Protein (CREB) Activation Cascade*

    PubMed Central

    Shi, Geng-Xian; Cai, Weikang; Andres, Douglas A.

    2012-01-01

    The cAMP response element (CRE)-binding protein (CREB) is a key regulatory factor of gene transcription, and plays an essential role in development of the central nervous system and for neuroprotection. Multiple signaling pathways have been shown to contribute to the regulation of CREB-dependent transcription, including both ERK and p38 mitogen-activated protein (MAP) kinases cascades. Recent studies have identified the Ras-related small G-protein, Rit, as a central regulator of a p38-MK2-HSP27 signaling cascade that functions as a critical survival mechanism for cells adapting to stress. Here, we examine the contribution of Rit-p38 signaling to the control of stress-dependent gene transcription. Using a pheochromocytoma cell model, we find that a novel Rit-p38-MSK1/2 pathway plays a critical role in stress-mediated CREB activation. RNAi-mediated Rit silencing, or inhibition of p38 or MSK1/2 kinases, was found to disrupt stress-mediated CREB-dependent transcription, resulting in increased cell death. Furthermore, ectopic expression of active Rit stimulates CREB-Ser133 phosphorylation, induces expression of the anti-apoptotic Bcl-2 and BclXL proteins, and promotes cell survival. These data indicate that the Rit-p38-MSK1/2 signaling pathway may have an important role in the stress-dependent regulation of CREB-dependent gene expression. PMID:23038261

  8. Integration of Apoptosis Signal-Regulating Kinase 1-Mediated Stress Signaling with the Akt/Protein Kinase B-IκB Kinase Cascade

    PubMed Central

    Puckett, Mary C.; Goldman, Erinn H.; Cockrell, Lisa M.; Huang, Bei; Kasinski, Andrea L.; Du, Yuhong; Wang, Cun-Yu; Lin, Anning; Ichijo, Hidenori; Khuri, Fadlo

    2013-01-01

    Cellular processes are tightly controlled through well-coordinated signaling networks that respond to conflicting cues, such as reactive oxygen species (ROS), endoplasmic reticulum (ER) stress signals, and survival factors to ensure proper cell function. We report here a direct interaction between inhibitor of κB kinase (IKK) and apoptosis signal-regulating kinase 1 (ASK1), unveiling a critical node at the junction of survival, inflammation, and stress signaling networks. IKK can be activated by growth factor stimulation or tumor necrosis factor alpha engagement. IKK forms a complex with and phosphorylates ASK1 at a sensor site, Ser967, leading to the recruitment of 14-3-3, counteracts stress signal-triggered ASK1 activation, and suppresses ASK1-mediated functions. An inhibitory role of IKK in JNK signaling has been previously reported to depend on NF-κB-mediated gene expression. Our data suggest that IKK has a dual role: a transcription-dependent and a transcription-independent action in controlling the ASK1-JNK axis, coupling IKK to ROS and ER stress response. Direct phosphorylation of ASK1 by IKK also defines a novel IKK phosphorylation motif. Because of the intimate involvement of ASK1 in diverse diseases, the IKK/ASK1 interface offers a promising target for therapeutic development. PMID:23530055

  9. Renal (pro)renin receptor contributes to development of diabetic kidney disease through transforming growth factor-β1-connective tissue growth factor signalling cascade.

    PubMed

    Huang, Jiqian; Matavelli, Luis C; Siragy, Helmy M

    2011-04-01

    1. Transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF) are expressed in renal glomeruli, and contribute to the development of diabetic nephropathy. Recently, we showed that (pro)renin receptor (PRR) is upregulated in the kidneys of the streptozocin (STZ)-induced diabetes rat model. We hypothesized that in the presence of hyperglycaemia, increased renal PRR expression contributes to enhanced TGF-β1-CTGF signalling activity, leading to the development of diabetic kidney disease. 2. In vivo and in vitro studies were carried out in Sprague-Dawley rats and rat mesangial cells (RMC). PRR blockade was achieved in vivo by treating STZ induced diabetes rats with the handle region peptide (HRP) of prorenin and in vitro by HRP or PRR siRNA in RMC. Angiotensin AT1 receptor blockade was achieved by valsartan treatment. 3. Results showed that expression of PRR, TGF-β1 and CTGF were upregulated in diabetic kidneys and RMC exposed to high glucose. Glucose exposure also induced PRR phosphorylation, a process that was inhibited by HRP, valsartan or PRR siRNA. HRP and valsartan significantly attenuated renal TGF-β1 and CTGF expression in diabetic animals and high glucose treated RMC. Similar results were observed in high glucose exposed RMC in response to PRR siRNA. TGF-β receptor blockade decreased CTGF expression in RMC. Combined administration of valsartan and PRR siRNA showed further reduction of TGF-β1 and CTGF expression in RMC. 4. In conclusion, PRR contributes to kidney disease in diabetes through an enhanced TGF-β1-CTGF signalling cascade.

  10. A RelA-dependent two-tiered regulated proteolysis cascade controls synthesis of a contact-dependent intercellular signal in Myxococcus xanthus.

    PubMed

    Konovalova, Anna; Löbach, Stephanie; Søgaard-Andersen, Lotte

    2012-04-01

    Proteolytic cleavage of precursor proteins to generate intercellular signals is a common mechanism in all cells. In Myxococcus xanthus the contact-dependent intercellular C-signal is a 17 kDa protein (p17) generated by proteolytic cleavage of the 25 kDa csgA protein (p25), and is essential for starvation-induced fruiting body formation. p25 accumulates in the outer membrane and PopC, the protease that cleaves p25, in the cytoplasm of vegetative cells. PopC is secreted in response to starvation, therefore, restricting p25 cleavage to starving cells. We focused on identifying proteins critical for PopC secretion in response to starvation. PopC secretion depends on the (p)ppGpp synthase RelA and the stringent response, and is regulated post-translationally. PopD, which is encoded in an operon with PopC, forms a soluble complex with PopC and inhibits PopC secretion whereas the integral membrane AAA+ protease FtsH(D) is required for PopC secretion. Biochemical and genetic evidence suggest that in response to starvation, RelA is activated and induces the degradation of PopD thereby releasing pre-formed PopC for secretion and that FtsH(D) is important for PopD degradation. Hence, regulated PopC secretion depends on regulated proteolysis. Accordingly, p17 synthesis depends on a proteolytic cascade including FtsH(D) -dependent degradation of PopD and PopC-dependent cleavage of p25.

  11. Signalling pathways induced by protease-activated receptors and integrins in T cells.

    PubMed

    Bar-Shavit, Rachel; Maoz, Miriam; Yongjun, Yin; Groysman, Maya; Dekel, Idit; Katzav, Shulamit

    2002-01-01

    Recent characterization of the thrombin receptor indicates that it plays a role in T-cell signalling pathways. However, little is known regarding the signalling events following stimulation of additional members of the protease-activated receptor (PAR) family, i.e. PAR2 and PAR3. Most of the postligand cascades are largely unknown. Here, we illustrate that in Jurkat T-leukaemic cells, activation of PAR1, PAR2 and PAR3 induce tyrosine phosphorylation of Vav1. This response was impaired in Jurkat T cells deficient in p56lck (JCaM1.6). Activation of PARs also led to an increase in tyrosine phosphorylation of ZAP-70 and SLP-76, two key proteins in T-cell receptor (TCR) signalling. We also demonstrated that p56lck is meaningful for integrin signalling. Thus, JCaM1.6 cells exhibited a marked reduction in their adherence to fibronectin-coated plates, as compared to the level of adherence of Jurkat T cells. While the phosphorylation of Vav1 in T cells is augmented following adhesion, no additional increase was noted following treatment of the adhered cells with PARs. Altogether, we have identified key components in the postligand-signalling cascade of PARs and integrins. Furthermore, we have identified Lck as a critical and possibly upstream component of PAR-induced Vav1 phosphorylation, as well as integrin activation, in Jurkat T cells.

  12. Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance

    PubMed Central

    Houthuijzen, Julia M.; Oosterom, Ilse; Hudson, Brian D.; Hirasawa, Akira; Daenen, Laura G. M.; McLean, Chelsea M.; Hansen, Steffen V. F.; van Jaarsveld, Marijn T. M.; Peeper, Daniel S.; Jafari Sadatmand, Sahar; Roodhart, Jeanine M. L.; van de Lest, Chris H. A.; Ulven, Trond; Ishihara, Kenji; Milligan, Graeme; Voest, Emile E.

    2017-01-01

    Although chemotherapy is designed to eradicate tumor cells, it also has significant effects on normal tissues. The platinum-induced fatty acid 16:4(n-3) (hexadeca-4,7,10,13-tetraenoic acid) induces systemic resistance to a broad range of DNA-damaging chemotherapeutics. We show that 16:4(n-3) exerts its effect by activating splenic F4/80+/CD11blow macrophages, which results in production of chemoprotective lysophosphatidylcholines (LPCs). Pharmacologic studies, together with analysis of expression patterns, identified GPR120 on F4/80+/CD11blow macrophages as the relevant receptor for 16:4(n-3). Studies that used splenocytes from GPR120-deficient mice have confirmed this conclusion. Activation of the 16:4(n-3)-GPR120 axis led to enhanced cPLA2 activity in these splenic macrophages and secretion of the resistance-inducing lipid mediator, lysophosphatidylcholine(24:1). These studies identify a novel and unexpected function for GPR120 and suggest that antagonists of this receptor might be effective agents to limit development of chemotherapy resistance.—Houthuijzen, J. M., Oosterom, I., Hudson, B. D., Hirasawa, A., Daenen, L. G. M., McLean, C. M., Hansen, S. V. F., van Jaarsveld, M. T. M., Peeper, D. S., Jafari Sadatmand, S., Roodhart, J. M. L., van de Lest, C. H. A., Ulven, T., Ishihara, K., Milligan, G., Voest, E. E. Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance.

  13. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1

    PubMed Central

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-01-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK–HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated. PMID:27451975

  14. Nuclear Receptor SHP Activates miR-206 Expression via a Cascade Dual Inhibitory Mechanism

    PubMed Central

    Song, Guisheng; Wang, Li

    2009-01-01

    MicroRNAs play a critical role in many essential cellular functions in the mammalian species. However, limited information is available regarding the regulation of miRNAs gene transcription. Microarray profiling and real-time PCR analysis revealed a marked down-regulation of miR-206 in nuclear receptor SHP−/− mice. To understand the regulatory function of SHP with regard to miR-206 gene expression, we determined the putative transcriptional initiation site of miR-206 and also its full length primary transcript using a database mining approach and RACE. We identified the transcription factor AP1 binding sites on the miR-206 promoter and further showed that AP1 (c-Jun and c-Fos) induced miR-206 promoter transactivity and expression which was repressed by YY1. ChIP analysis confirmed the physical association of AP1 (c-Jun) and YY1 with the endogenous miR-206 promoter. In addition, we also identified nuclear receptor ERRγ (NR3B3) binding site on the YY1 promoter and showed that YY1 promoter was transactivated by ERRγ, which was inhibited by SHP (NROB2). ChIP analysis confirmed the ERRγ binding to the YY1 promoter. Forced expression of SHP and AP1 induced miR-206 expression while overexpression of ERRγ and YY1 reduced its expression. The effects of AP1, ERRγ, and YY1 on miR-206 expression were reversed by siRNA knockdown of each gene, respectively. Thus, we propose a novel cascade “dual inhibitory” mechanism governing miR-206 gene transcription by SHP: SHP inhibition of ERRγ led to decreased YY1 expression and the de-repression of YY1 on AP1 activity, ultimately leading to the activation of miR-206. This is the first report to elucidate a cascade regulatory mechanism governing miRNAs gene transcription. PMID:19721712

  15. Neutrophil proteolytic activation cascades: a possible mechanistic link between chronic periodontitis and coronary heart disease.

    PubMed

    Alfakry, Hatem; Malle, Ernst; Koyani, Chintan N; Pussinen, Pirkko J; Sorsa, Timo

    2016-01-01

    Cardiovascular diseases are chronic inflammatory diseases that affect a large segment of society. Coronary heart disease (CHD), the most common cardiovascular disease, progresses over several years and affects millions of people worldwide. Chronic infections may contribute to the systemic inflammation and enhance the risk for CHD. Periodontitis is one of the most common chronic infections that affects up to 50% of the adult population. Under inflammatory conditions the activation of endogenous degradation pathways mediated by immune responses leads to the release of destructive cellular molecules from both resident and immigrant cells. Matrix metalloproteinases (MMPs) and their regulators can activate each other and play an important role in immune response via degrading extracellular matrix components and modulating cytokines and chemokines. The action of MMPs is required for immigrant cell recruitment at the site of inflammation. Stimulated neutrophils represent the major pathogen-fighting immune cells that upregulate expression of several proteinases and oxidative enzymes, which can degrade extracellular matrix components (e.g. MMP-8, MMP-9 and neutrophil elastase). The activity of MMPs is regulated by endogenous inhibitors and/or candidate MMPs (e.g. MMP-7). The balance between MMPs and their inhibitors is thought to mirror the proteolytic burden. Thus, neutrophil-derived biomarkers, including myeloperoxidase, may activate proteolytic destructive cascades that are involved in subsequent immune-pathological events associated with both periodontitis and CHD. Here, we review the existing studies on the contribution of MMPs and their regulators to the infection-related pathology. Also, we discuss the possible proteolytic involvement and role of neutrophil-derived enzymes as an etiological link between chronic periodontitis and CHD.

  16. Mangiferin Attenuates Diabetic Nephropathy by Inhibiting Oxidative Stress Mediated Signaling Cascade, TNFα Related and Mitochondrial Dependent Apoptotic Pathways in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Pal, Pabitra Bikash; Sinha, Krishnendu; Sil, Parames C.

    2014-01-01

    Oxidative stress plays a crucial role in the progression of diabetic nephropathy in hyperglycemic conditions. It has already been reported that mangiferin, a natural C-glucosyl xanthone and polyhydroxy polyphenol compound protects kidneys from diabetic nephropathy. However, little is known about the mechanism of its beneficial action in this pathophysiology. The present study, therefore, examines the detailed mechanism of the beneficial action of mangiferin on STZ-induced diabetic nephropathy in Wister rats as the working model. A significant increase in plasma glucose level, kidney to body weight ratio, glomerular hypertrophy and hydropic changes as well as enhanced nephrotoxicity related markers (BUN, plasma creatinine, uric acid and urinary albumin) were observed in the experimental animals. Furthermore, increased oxidative stress related parameters, increased ROS production and decreased the intracellular antioxidant defenses were detected in the kidney. Studies on the oxidative stress mediated signaling cascades in diabetic nephropathy demonstrated that PKC isoforms (PKCα, PKCβ and PKCε), MAPKs (p38, JNK and ERK1/2), transcription factor (NF-κB) and TGF-β1 pathways were involved in this pathophysiology. Besides, TNFα was released in this hyperglycemic condition, which in turn activated caspase 8, cleaved Bid to tBid and finally the mitochorndia-dependent apoptotic pathway. In addition, oxidative stress also disturbed the proapoptotic-antiapoptotic (Bax and Bcl-2) balance and activated mitochorndia-dependent apoptosis via caspase 9, caspase 3 and PARP cleavage. Mangiferin treatment, post to hyperglycemia, successfully inhibited all of these changes and protected the cells from apoptotic death. PMID:25233093

  17. Effects of fluorotelomer alcohol 8:2 FTOH on steroidogenesis in H295R cells: Targeting the cAMP signalling cascade

    SciTech Connect

    Liu Chunsheng; Zhang Xiaowei; Chang Hong; Jones, Paul; Wiseman, Steve; Naile, Jonathan; Hecker, Markus; Giesy, John P.; Zhou Bingsheng

    2010-09-15

    Previous studies have demonstrated that perfluorinated chemicals (PFCs) can affect reproduction by disruption of steroidogenesis in experimental animals. However, the underlying mechanism(s) of this disruption remain unknown. Here we investigated the effects and mechanisms of action of 1H, 1H, 2H, 2H-perfluoro-decan-1-ol (8:2 FTOH) on steroidogenesis using a human adrenocortical carcinoma cell line (H295R) as a model. H295R cells were exposed to 0, 7.4, 22.2 or 66.6 {mu}M 8:2 FTOH for 24 h and productions of progesterone, 17{alpha}-OH-progesterone, androstenedione, testosterone, deoxycorticosterone, corticosterone and cortisol were quantified by HPLC-MS/MS. With the exception of progesterone, 8:2 FTOH treatment significantly decreased production of all hormones in the high dose group. Exposure to 8:2 FTOH significantly down-regulated cAMP-dependent mRNA expression and protein abundance of several key steroidogenic enzymes, including StAR, CYP11A, CYP11B1, CYP11B2, CYP17 and CYP21. Furthermore, a dose-dependent decrease of cellular cAMP levels was observed in H295R cells exposed to 8:2 FTOH. The observed responses are consistent with reduced cellular cAMP levels. Exposure to 8:2 FTOH resulted in significantly less basal (+ GTP) and isoproterenol-stimulated adenylate cyclase activities, but affected neither total cellular ATP level nor basal (-GTP) or NaF-stimulated adenylate cyclase activities, suggesting that inhibition of steroidogenesis may be due to an alteration in membrane properties. Metabolites of 8:2 FTOH were not detected by HPLC-MS/MS, suggesting that 8:2 FTOH was not metabolized by H295R cells. Overall, the results show that 8:2 FTOH may inhibit steroidogenesis by disrupting the cAMP signalling cascade.

  18. EGFL7 is expressed in bone microenvironment and promotes angiogenesis via ERK, STAT3, and integrin signaling cascades.

    PubMed

    Chim, Shek Man; Kuek, Vincent; Chow, Siu To; Lim, Bay Sie; Tickner, Jennifer; Zhao, Jinmin; Chung, Rosa; Su, Yu-Wen; Zhang, Ge; Erber, Wendy; Xian, Cory J; Rosen, Vicki; Xu, Jiake

    2015-01-01

    Angiogenesis plays a pivotal role in bone formation, remodeling, and fracture healing. The regulation of angiogenesis in the bone microenvironment is highly complex and orchestrated by intercellular communication between bone cells and endothelial cells. Here, we report that EGF-like domain 7 (EGFL7), a member of the epidermal growth factor (EGF) repeat protein superfamily is expressed in both the osteoclast and osteoblast lineages, and promotes endothelial cell activities. Addition of exogenous recombinant EGFL7 potentiates SVEC (simian virus 40-transformed mouse microvascular endothelial cell line) cell migration and tube-like structure formation in vitro. Moreover, recombinant EGFL7 promotes angiogenesis featuring web-like structures in ex vivo fetal mouse metatarsal angiogenesis assay. We show that recombinant EGFL7 induces phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), signal transducer and activator of transcription 3 (STAT3), and focal adhesion kinase (FAK) in SVEC cells. Inhibition of ERK1/2 and STAT3 signaling impairs EGFL7-induced endothelial cell migration, and angiogenesis in fetal mouse metatarsal explants. Bioinformatic analyses indicate that EGFL7 contains a conserved RGD/QGD motif and EGFL7-induced endothelial cell migration is significantly reduced in the presence of RGD peptides. Moreover, EGFL7 gene expression is significantly upregulated during growth plate injury repair. Together, these results demonstrate that EGFL7 expressed by bone cells regulates endothelial cell activities through integrin-mediated signaling. This study highlights the important role that EGFL7, like EGFL6, expressed in bone microenvironment plays in the regulation of angiogenesis in bone.

  19. Ascorbic acid suppresses endotoxemia and NF-κB signaling cascade in alcoholic liver fibrosis in guinea pigs: A mechanistic approach

    SciTech Connect

    Abhilash, P.A.; Harikrishnan, R.; Indira, M.

    2014-01-15

    Alcohol consumption increases the small intestinal bacterial overgrowth (SIBO) and intestinal permeability of endotoxin. The endotoxin mediated inflammatory signaling plays a major role in alcoholic liver fibrosis. We evaluated the effect of ascorbic acid (AA), silymarin and alcohol abstention on the alcohol induced endotoxemia and NF-κB activation cascade pathway in guinea pigs (Cavia porcellus). Guinea pigs were administered ethanol at a daily dose of 4 g/kg b.wt for 90 days. After 90 days, ethanol administration was stopped. The ethanol treated animals were divided into abstention, silymarin (250 mg/kg b.wt) and AA (250 mg/kg b.wt) supplemented groups and maintained for 30 days. The SIBO, intestinal permeability and endotoxin were significantly increased in the ethanol group. The mRNA expressions of intestinal proteins claudin, occludin and zona occludens-1 were significantly decreased in ethanol group. The mRNA levels of inflammatory receptors, activity of IKKβ and the protein expressions of phospho-IκBα, NF-κB, TNF-α, TGF-β{sub 1} and IL-6 were also altered in ethanol group. The expressions of fibrosis markers α-SMA, α{sub 1} (I) collagen and sirius red staining in the liver revealed the induction of fibrosis. But the supplementation of AA could induce greater reduction of ethanol induced SIBO, intestinal barrier defects, NF-κB activation and liver fibrosis than silymarin. The possible mechanism may be the inhibitory effect of AA on SIBO, intestinal barrier defect and IKKβ, which decreased the activation of NF-κB and synthesis of cytokines. This might have led to suppression of HSCs activation and liver fibrosis. - Highlights: • Alcohol increases intestinal bacterial overgrowth and permeability of endotoxin. • Endotoxin mediated inflammation plays a major role in alcoholic liver fibrosis. • Ascorbic acid reduces endotoxemia, NF-κB activation and proinflammatory cytokines. • AA's action is by inhibition of SIBO, IKKβ and alteration of

  20. Manduca sexta hemolymph proteinase 21 activates prophenoloxidase-activating proteinase 3 in an insect innate immune response proteinase cascade.

    PubMed

    Gorman, Maureen J; Wang, Yang; Jiang, Haobo; Kanost, Michael R

    2007-04-20

    Melanization, an insect immune response, requires a set of hemolymph proteins including pathogen recognition proteins that initiate the response, a cascade of mostly unknown serine proteinases, and phenoloxidase. Until now, only initial and final proteinases in the pathways have been conclusively identified. Four such proteinases have been purified from the larval hemolymph of Manduca sexta: hemolymph proteinase 14 (HP14), which autoactivates in the presence of microbial surface components, and three prophenoloxidase-activating proteinases (PAP1-3). In this study, we have used two complementary approaches to identify a serine proteinase that activates proPAP3. Partial purification from hemolymph of an activator of proPAP3 resulted in an active fraction with two abundant polypeptides of approximately 32 and approximately 37 kDa. Labeling of these polypeptides with a serine proteinase inhibitor, diisopropyl fluorophosphate, indicated that they were active serine proteinases. N-terminal sequencing revealed that both were cleaved forms of the previously identified hemolymph serine proteinase, HP21. Surprisingly, cleavage of proHP21 had occurred not at the predicted activation site but more N-terminal to it. In vitro reactions carried out with purified HP14 (which activates proHP21), proHP21, proPAP3, and site-directed mutant forms of the latter two proteinases confirmed that HP21 activates proPAP3 by limited proteolysis. Like the HP21 products purified from hemolymph, HP21 that was activated by HP14 in the in vitro reactions was not cleaved at its predicted activation site.

  1. Phospholipase C{gamma}1 stimulates transcriptional activation of the matrix metalloproteinase-3 gene via the protein kinase C/Raf/ERK cascade

    SciTech Connect

    Shin, Soon Young; Choi, Ha Young; Ahn, Bong-Hyun; Son, Sang Wook; Lee, Young Han . E-mail: younghan@hanyang.ac.kr

    2007-02-16

    The phospholipid hydrolase phospholipase C{gamma}1 (PLC{gamma}1) plays a major role in regulation of cell proliferation, development, and cell motility. Overexpression of PLC{gamma}1 is associated with tumor development, and it is overexpressed in some tumors. Matrix metalloproteinase-3 (MMP-3) is a protein involved in tumor invasion and metastasis. Here, we demonstrate that overexpression of PLC{gamma}1 stimulates MMP-3 expression at the transcriptional level via the PKC-mediated Raf/MEK1/ERK signaling cascade. We propose that modulation of PLC{gamma}1 activity might be of value in controlling the activity of MMPs, which are important regulators of invasion and metastasis in malignant tumors.

  2. Role of pterostilbene in attenuating immune mediated devastation of pancreatic beta cells via Nrf2 signaling cascade.

    PubMed

    Sireesh, Dornadula; Ganesh, Munuswamy-Ramanujam; Dhamodharan, Umapathy; Sakthivadivel, Murugesan; Sivasubramanian, Srinivasan; Gunasekaran, Palani; Ramkumar, Kunka Mohanram

    2017-03-06

    Nrf2 (nuclear factor erythroid 2-related factor-2) is a transcription factor that regulates oxidative/xenobiotic stress response and also suppress inflammation. Nrf2 signaling is associated with an increased susceptibility to various kinds of stress. Nrf2 has been shown as a promising therapeutic target in various human diseases including diabetes. Our earlier studies showed Pterostilbene (PTS) as a potent Nrf2 activator, and it protects the pancreatic β-cells against oxidative stress. In this study, we investigated PTS confer protection against cytokine-induced β-cell apoptosis and its role on insulin secretion in streptozotocin (STZ)-induced diabetic mice. The Nrf2 activation potential of PTS was assessed by dissociation of the Nrf2-Keap1 complex and by expression of ARE-driven downstream target genes in MIN6 cells. Further, the nuclear Nrf2 translocation and blockage of apoptotic signaling as demonstrated by the reduction of BAX/Bcl-2 ratio, Annexin-V positive cells and caspase-3 activity conferred the cyto-protection of PTS against cytokine-induced cellular damage. In addition, PTS treatment markedly improved glucose homeostasis and abated inflammatory response evidenced by the reduction of proinflammatory cytokines in diabetic mice. The inhibition of β-cell apoptosis by PTS as assessed by BAX/Bcl-2 ratio and caspase-3 activity in the pancreas was associated with the activation of Nrf2 and the expression of its downstream target genes. PTS also inhibited the activation of iNOS and decreased nitric oxide (NO) formation in the pancreas of diabetic animals. The results obtained from both in vitro and in vivo experiments showed that PTS improves β-cell function and survival against cytokine stress and also prevents STZ-induced diabetes.

  3. Integrin-Dependent Activation of the JNK Signaling Pathway by Mechanical Stress

    PubMed Central

    Kanger, Johannes S.; Subramaniam, Vinod; Martin-Blanco, Enrique

    2011-01-01

    Mechanical force is known to modulate the activity of the Jun N-terminal kinase (JNK) signaling cascade. However, the effect of mechanical stresses on JNK signaling activation has previously only been analyzed by in vitro detection methods. It still remains unknown how living cells activate the JNK signaling cascade in response to mechanical stress and what its functions are in stretched cells. We assessed in real-time the activity of the JNK pathway in Drosophila cells by Fluorescence Lifetime Imaging Microscopy (FLIM), using an intramolecular phosphorylation-dependent dJun-FRET (Fluorescence Resonance Energy Transfer) biosensor. We found that quantitative FRET-FLIM analysis and confocal microscopy revealed sustained dJun-FRET biosensor activation and stable morphology changes in response to mechanical stretch for Drosophila S2R+ cells. Further, these cells plated on different substrates showed distinct levels of JNK activity that associate with differences in cell morphology, integrin expression and focal adhesion organization. These data imply that alterations in the cytoskeleton and matrix attachments may act as regulators of JNK signaling, and that JNK activity might feed back to modulate the cytoskeleton and cell adhesion. We found that this dynamic system is highly plastic; at rest, integrins at focal adhesions and talin are key factors suppressing JNK activity, while multidirectional static stretch leads to integrin-dependent, and probably talin-independent, Jun sensor activation. Further, our data suggest that JNK activity has to coordinate with other signaling elements for the regulation of the cytoskeleton and cell shape remodeling associated with stretch. PMID:22180774

  4. Histone modification and signalling cascade of the dormancy-associated MADS-box gene, PpMADS13-1, in Japanese pear (Pyrus pyrifolia) during endodormancy.

    PubMed

    Saito, Takanori; Bai, Songling; Imai, Tsuyoshi; Ito, Akiko; Nakajima, Ikuko; Moriguchi, Takaya

    2015-06-01

    Dormancy-associated MADS-box (DAM) genes play an important role in endodormancy phase transition. We investigated histone modification in the DAM homolog (PpMADS13-1) from Japanese pear, via chromatin immunoprecipitation-quantitative PCR, to understand the mechanism behind the reduced expression of the PpMADS13-1 gene towards endodormancy release. Our results indicated that the reduction in the active histone mark by trimethylation of the histone H3 tail at lysine 4 contributed to the reduction of PpMADS13-1 expression towards endodormancy release. In contrast, the inactive histone mark by trimethylation of the histone H3 tail at lysine 27 in PpMADS13-1 locus was quite low, and these levels were more similar to a negative control [normal mouse immunoglobulin G (IgG)] than to a positive control (AGAMOUS) in endodormancy phase transition. The loss of histone variant H2A.Z also coincided with the down-regulation of PpMADS13-1. Subsequently, we investigated the PpMADS13-1 signalling cascade and found that PpCBF2, a pear C-repeated binding factor, regulated PpMADS13-1 expression via interaction of PpCBF2 with the 5'-upstream region of PpMADS13-1 by transient reporter assay. Furthermore, transient reporter assay confirmed no interaction between the PpMADS13-1 protein and the pear FLOWERING LOCUS T genes. Taken together, our results enhance understanding of the molecular mechanisms underlying endodormancy phase transition in Japanese pear.

  5. Signal transduction-associated and cell activation-linked antigens expressed in human mast cells.

    PubMed

    Valent, Peter; Ghannadan, Minoo; Hauswirth, Alexander W; Schernthaner, Gerit-Holger; Sperr, Wolfgang R; Arock, Michel

    2002-05-01

    Mast cells (MCs) are multifunctional hematopoietic effector cells that produce and release an array of biologically active mediator substances. Growth and functions of MCs are regulated by cytokines, other extracellular factors, surface and cytoplasmic receptors, oncogene products, and a complex network of signal transduction cascades. Key regulators of differentiation of MCs appear to be stem cell factor (SCF) and its tyrosine kinase receptor KIT (c-kit proto-oncogene product=CD117), downstream-acting elements, and the mi transcription factor (MITF). Signaling through KIT is negatively regulated by the signal regulatory protein (SIRP)-alpha (CD172a)-SHP-1-pathway that is disrupted in neoplastic MCs in MC proliferative disorders. Both KIT and FcepsilonRI are involved in MC activation and mediator release. Activation of MCs through FcepsilonRI is associated with increased expression of activation-linked membrane antigens as well as with signaling events involving Lyn and Syk kinases, the phosphatidylinositol-3-kinase-pathway, Ras pathway, and the phospholipase C-protein kinase C pathway. A similar network of signaling is found in SCF-activated MCs. The current article gives an overview on signal transduction-associated and activation-linked antigens expressed in human MCs. Wherever possible the functional implication of signaling pathways and antigen expression are discussed.

  6. Arginine vasotocin activates phosphoinositide signal transduction system and potentiates N-acetyltransferase activity in the rat pineal gland.

    PubMed

    Novotná, R; Jác, M; Hájek, I; Novotný, I

    1999-03-05

    The pineal gland is innervated by pinealopetal peptidergic fibers originating in the hypothalamic nuclei which release arginine vasopressin (AVP) and arginine vasotocin (AVT) from their endings. Since the mechanism of AVT action on the pineal signal transduction and melatonin synthesis has not been determined so far, we examined the effect of AVT on the phosphoinositide signalling system and the N-acetyltransferase (NAT) activity in the rat pineal gland. The effect of AVP 4-9 fragment and AVP analogue desmopressin was also tested. The phosphoinositide signalling system was studied by measuring 32P labelling of phosphatidylinositol (PI), phosphatidylinositol phosphate (PIP) and phosphatidylinositol bisphosphate (PIP2) which reflects PI cycle activation. AVT (10(-5) and 10(-4) M) induced a significant increase in 32P labelling of PI, PIP and PIP2. The AVT mediated activation of the PI signal cascade was supressed by the vasopressin V1 receptor antagonist. The desmopressin and AVP 4-9 fragment were without the effect on PI signalling. To assess the AVT role in the melatonin synthesis we studied the daily pattern of the pineal NAT activity in rats treated by AVT (10 microg/100 g b.w). AVT application in the dark period of the day significantly increased nocturnal NAT activity. It can be summarized that AVT activates PI signalling system and potentiates NAT activity in the rat pineal gland.

  7. Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling

    PubMed Central

    Peng, Yaqin; Liu, Jiane; Miao, Fengqin; Zhang, Jianqiong

    2015-01-01

    MHC class I (MHC-I) molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s) underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA) treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC) is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade. PMID:26263390

  8. Integrated Broadband Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  9. Glycitein activates extracellular signal-regulated kinase via vascular endothelial growth factor receptor signaling in nontumorigenic (RWPE-1) prostate epithelial cells.

    PubMed

    Clubbs, Elizabeth A; Bomser, Joshua A

    2007-08-01

    Increased consumption of soy is associated with a decreased risk for prostate cancer; however, the specific cellular mechanisms responsible for this anticancer activity are unknown. Dietary modulation of signaling cascades controlling cellular growth, proliferation and differentiation has emerged as a potential chemopreventive mechanism. The present study examined the effects of four soy isoflavones (genistein, daidzein, glycitein and equol) on extracellularsignal-regulated kinase (ERK1/2) activity in a nontumorigenic prostate epithelial cell line (RWPE-1). All four isoflavones (10 micromol/L) significantly increased ERK1/2 activity in RWPE-1 cells, as determined by immunoblotting. Isoflavone-induced ERK1/2 activation was rapid and sustained for approximately 2 h posttreatment. Glycitein, the most potent activator of ERK1/2, decreased RWPE-1 cell proliferation by 40% (P<.01). Glycitein-induced ERK1/2 activation was dependent, in part, on tyrosine kinase activity associated with vascular endothelial growth factor receptor (VEGFR). The presence of both VEGFR1 and VEGFR2 in the RWPE-1 cell line was confirmed by immunocytochemistry. Treatment of RWPE-1 cells with VEGF(165) resulted in transient ERK1/2 activation and increased cellular proliferation. The ability of isoflavones to modulate ERK1/2 signaling cascade via VEGFR signaling in the prostate may be responsible, in part, for the anticancer activity of soy.

  10. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans*

    PubMed Central

    Andrusiak, Matthew G.; Jin, Yishi

    2016-01-01

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundworm Caenorhabditis elegans was developed as a system to study genes required for development and nervous system function. The powerful genetics of C. elegans in combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components in C. elegans. PMID:26907690

  11. Antitumor Activity of Tenacissoside H on Esophageal Cancer through Arresting Cell Cycle and Regulating PI3K/Akt-NF-κB Transduction Cascade.

    PubMed

    Jia, Yong-Sen; Hu, Xue-Qin; Gabriella, Hegyi; Qin, Li-Juan; Meggyeshazi, Nora

    2015-01-01

    Objective. The purpose of the study was to elucidate the molecular mechanism of tenacissoside H (TDH) inhibiting esophageal carcinoma infiltration and proliferation. Methods. In vitro, EC9706 cells were treated with TDH. Cells proliferation and cell cycle were assayed. PI3K and NF-κB mRNAs expression were determined by real time PCR. In vivo, model of nude mice with tumor was established. Mice were treated with TDH. Inhibition ratio of tumor volume was calculated. PCNA expression was examined. Protein expression in PI3K/Akt-NF-κB signaling pathway was determined. Results. In vitro, TDH significantly inhibited cells proliferation in a time-and-dose-dependent manner. TDH arrested the cell cycle in S phase and significantly inhibited PI3K and NF-κB mRNA expression, compared with blank controlled group (P < 0.05). In vivo, TDH strongly inhibits tumor growth and volume. PCNA expression was significantly decreased after treatment of TDH. TDH downregulated proteins expression in PI3K/Akt-NF-κB transduction cascade (P < 0.05). Conclusion. TDH inhibited esophageal carcinoma infiltration and proliferation both in vitro and in vivo. The anticancer activity has relation to arresting the cell cycle at the S phase, inhibited the PCNA expression of transplanted tumors in nude mice, and regulated the protein expression in the PI3K/Akt-NF-κB transduction cascade.

  12. The Nicotiana benthamiana mitogen-activated protein kinase cascade and WRKY transcription factor participate in Nep1(Mo)-triggered plant responses.

    PubMed

    Zhang, Huajian; Li, Deqing; Wang, Meifang; Liu, Jiewen; Teng, Wenjun; Cheng, Baoping; Huang, Qian; Wang, Min; Song, Wenwen; Dong, Suomeng; Zheng, Xiaobo; Zhang, Zhengguang

    2012-12-01

    Many bacterial, fungal, and oomycete species secrete necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLP) that trigger programmed cell death (PCD) and innate immune responses in dicotyledonous plants. However, how NLP induce such immune responses is not understood. Here, we show that silencing of the MAPKKKα-MEK2-WIPK mitogen-activated protein kinase (MAPK) cascade through virus-induced gene silencing compromises hydrogen peroxide accumulation and PCD induced by Nep1(Mo) from Magnaporthe oryzae. WIPK interacts with NbWRKY2, a transcription factor in Nicotiana benthamiana, in vitro and in vivo, suggesting an effector pathway that mediates Nep1(Mo)-induced cell death. Unexpectedly, salicylic acid-induced protein kinase (SIPK)- and NbWRKY2-silenced plants showed impaired Nep1(Mo)-induced stomatal closure, decreased Nep1(Mo)-promoted nitric oxide (NO) production in guard cells, and a reduction in Nep1(Mo)-induced resistance against Phytophthora nicotianae. Expression studies by real-time polymerase chain reaction suggested that the MEK2-WIPK-NbWRKY2 pathway regulated Nep1(Mo)triggered NO accumulation could be partly dependent on nitrate reductase, which was implicated in NO synthesis. Taken together, these studies demonstrate that the MAPK cascade is involved in Nep1(Mo)-triggered plant responses and MAPK signaling associated with PCD exhibits shared and distinct components with that for stomatal closure.

  13. Hormonal activation of a kinase cascade localized at the mitochondria is required for StAR protein activity.

    PubMed

    Poderoso, Cecilia; Maloberti, Paula; Duarte, Alejandra; Neuman, Isabel; Paz, Cristina; Cornejo Maciel, Fabiana; Podesta, Ernesto J

    2009-03-05

    It is known that ERK1/2 and MEK1/2 participate in the regulation of Star gene transcription. However, their role in StAR protein post-transcriptional regulation is not described yet. In this study we analyzed the relationship between the MAPK cascade and StAR protein phosphorylation and function. We have demonstrated that (a) steroidogenesis in MA-10 Leydig cells depends on the specific of ERK1/2 activation at the mitochondria; (b) ERK1/2 phosphorylation is driven by mitochondrial PKA and constitutive MEK1/2 in this organelle; (c) active ERK1/2 interacts with StAR protein, leads to StAR protein phosphorylation at Ser(232) only in the presence of cholesterol; (d) directed mutagenesis of Ser(232) (S232A) inhibited in vitro StAR protein phosphorylation by ERK1; (e) transient transfection of MA-10 cells with StAR S232A cDNA markedly reduced the yield of progesterone production. We show that StAR protein is a substrate of ERK1/2, and that mitochondrial ERK1/2 is part of a multimeric complex that regulates cholesterol transport.

  14. Identification of Chinese Herbal Medicines from Zingiberaceae Family Using Feature Extraction and Cascade Classifier Based on Response Signals from E-Nose

    PubMed Central

    Peng, Lian; Zou, Hui-Qin; Bauer, Rudolf; Liu, Yong; Tao, Ou; Yan, Su-Rong; Han, Yu; Li, Jia-Hui; Ren, Zhi-Yu; Yan, Yong-Hong

    2014-01-01

    Identification of Chinese herbal medicines (CHMs) by human experience is often inaccurate because individual ability and external factors may influence the outcome. However, it might be promising to employ an electronic nose (E-nose) to identify them. This paper presents a rapid and reliable method for identification of ten different species of CHMs from Zingiberaceae family based on their response signals from E-nose. Ten Zingiberaceae CHMs were measured and their maximum response values were analyzed by principal component analysis (PCA). Result shows that E Zhu (Curcuma phaeocaulis Val.) and Yi Zhi (Alpinia oxyphylla Miq.) could not be distinguished completely by PCA. Two solutions were proposed: (i) using BestFirst+CfsSubsetEval (BC) method to extract more discriminative features to select sensors with higher contribution rate and remove the redundant signals; (ii) employing a novel cascade classifier with two stages to enhance the distinguishing-positive rate (DPR). Based on these strategies, six features were extracted and used in different stages of the cascade classifier with higher DPRs. PMID:25114708

  15. The WASP-Arp2/3 complex signal cascade is involved in actin-dependent sperm nuclei migration during double fertilization in tobacco and maize

    PubMed Central

    Peng, Xiongbo; Yan, Tingting; Sun, Mengxiang

    2017-01-01

    Sperm nuclear migration during fertilization in Arabidopsis and rice has recently been found to be actin-dependent, but the driving force behind this actin cytoskeleton-dependent motion is unclear. Here, we confirmed that the actin-dependent sperm nuclei migration during fertilization is a conserved mechanism in plants. Using in vitro fertilization systems, we showed that a functional actin is also essential in maize and tobacco for sperm nuclei migration after gamete membrane fusion. Cytoskeleton depolymerization inhibitor treatments supported the view that sperm nuclei migration is actin-dependent but microtubule-independent in both egg cell and central cell during double fertilization. We further revealed that the actin-based motor myosin is not the driving force for sperm nuclear migration in maize and tobacco. The WASP-Arp2/3 complex signal cascade is shown here to be involved in the regulation of sperm nuclear migration in maize and tobacco. It is interesting that sperm nuclei migration within somatic cell also need WASP-Arp2/3 complex signal cascade and actin, suggesting that the mechanism of sperm nuclear migration is not gamete specific. PMID:28225074

  16. Volatile budget for an unusual Central Oregon Cascades cinder cone and implications for future activity

    NASA Astrophysics Data System (ADS)

    Walsh, L. K.; Wallace, P. J.; Cashman, K. V.

    2011-12-01

    Sand Mountain is one of many hundred mafic vents in the Central Oregon Cascades, and is the largest in a chain consisting of twenty-three mafic cones 30km NNW of the Three Sisters Volcanoes. Sand Mountain represents the maximum probable tephra hazard for mafic activity in Central Oregon because of its unusually large tephra deposit (≥0.9km3), most likely due to interaction with groundwater. To date, no focused analyses have been performed on the volatiles of Sand Mountain. Here we analyze melt inclusions, tephra and lava flows to constrain the volatile budget associated with Sand Mountain with specific focus on the potential impact of future activity on human and livestock populations in Central Oregon. Preliminary analyses of sulfur, chlorine and fluorine in glass show original dissolved volatile contents of 2014 ppm S, 954 ppm Cl and 646 ppm F; these measured abundances translate to a total species budget of 5.54 Mt SO2, 1.35 Mt HCl, and 0.94 Mt HF for the erupted magma (estimated at 0.5 km3 DRE). Comparison of volatile abundances in melt inclusions and matrix glass shows that during eruption, the Sand Mountain magma released 99% of its sulfur, 44% of its chlorine and 35% of its fluorine, equivalent to 5.48 Mt SO2, 0.59 Mt HCl and 0.33 Mt HF. The 1783-1784 AD Laki eruption in Iceland, which had a devastating impact on both proximal and distal populations, showed similar percentages of volatile release, although the total volatile budget was much higher because of the large volume of erupted magma. However, an interesting difference between the Sand Mountain eruption and the Laki eruption is the mechanism of degassing: at Laki, about half of the gas loss occurred during lava flow emplacement; in contrast, at Sand Mountain, the volatile release appears to have been focused in the explosive phase of the eruption, suggesting efficient transfer of gas species with the eruptive plume, which traveled east toward central Oregon. We will test this interpretation by

  17. Microglial immunoreceptor tyrosine-based activation and inhibition motif signaling in neuroinflammation.

    PubMed

    Linnartz, Bettina; Wang, Yiner; Neumann, Harald

    2010-06-22

    Elimination of extracellular aggregates and apoptotic neural membranes without inflammation is crucial for brain tissue homeostasis. In the mammalian central nervous system, essential molecules in this process are the Fc receptors and the DAP12-associated receptors which both trigger the microglial immunoreceptor tyrosine-based activation motif- (ITAM-) Syk-signaling cascade. Microglial triggering receptor expressed on myeloid cells-2 (TREM2), signal regulatory protein-beta1, and complement receptor-3 (CD11b/CD18) signal via the adaptor protein DAP12 and activate phagocytic activity of microglia. Microglial ITAM-signaling receptors are counter-regulated by immunoreceptor tyrosine-based inhibition motif- (ITIM-) signaling molecules such as sialic acid-binding immunoglobulin superfamily lectins (Siglecs). Siglecs can suppress the proinflammatory and phagocytic activity of microglia via ITIM signaling. Moreover, microglial neurotoxicity is alleviated via interaction of Siglec-11 with sialic acids on the neuronal glycocalyx. Thus, ITAM- and ITIM-signaling receptors modulate microglial phagocytosis and cytokine expression during neuroinflammatory processes. Their dysfunction could lead to impaired phagocytic clearance and neurodegeneration triggered by chronic inflammation.

  18. Heparin activates Wnt signaling for neuronal morphogenesis.

    PubMed

    Colombres, Marcela; Henríquez, Juan Pablo; Reig, Germán F; Scheu, Jessica; Calderón, Rosario; Alvarez, Alejandra; Brandan, Enrique; Inestrosa, Nibaldo C

    2008-09-01

    Wnt factors are secreted ligands that affect different aspects of the nervous system behavior like neurodevelopment, synaptogenesis and neurodegeneration. In different model systems, Wnt signaling has been demonstrated to be regulated by heparan sulfate proteoglycans (HSPGs). Whether HSPGs modulate Wnt signaling in the context of neuronal behavior is currently unknown. Here we demonstrate that activation of Wnt signaling with the endogenous ligand Wnt-7a results in an increased of neurite outgrowth in the neuroblastoma N2a cell line. Interestingly, heparin induces glycogen synthase kinase-3beta (GSK-3beta) inhibition, beta-catenin stabilization and morphological differentiation in both N2a cells and in rat primary hippocampal neuronal cultures. We also show that heparin modulates Wnt-3a-induced stabilization of beta-catenin. Several extracellular matrix and membrane-attached HSPGs were found to be expressed in both in vitro neuronal models. Changes in the expression of specific HSPGs were observed upon differentiation of N2a cells. Taken together, our findings suggest that HSPGs may modulate canonical Wnt signaling for neuronal morphogenesis.

  19. Observation of Infrared Free-Induction Decay and Optical Nutation Signals from Nitrous Oxide Using a Current Modulated Quantum Cascade Laser

    SciTech Connect

    Duxbury, Geoffrey; Kelly, James F.; Blake, Thomas A.; Langford, Nigel

    2012-05-07

    Free induction decay (FID), optical nutation and rapid passage induced (RP) signals in nitrous oxide, under both optically thin and optically thick conditions, have been observed using a rapid current pulse modulation, or chirp, applied to the slow current ramp of a quantum cascade (QC) laser. The variation in optical depth was achieved by increasing the pressure of nitrous oxide in a long pathlength multipass absorption cell. This allows the variation of optical depth to be achieved over a range of low gas pressures. Since, even at the highest gas pressure used in the cell, the chirp rate of the QC laser is faster than the collisional reorientation time of the molecules, there is minimal collisional damping, allowing a large macroscopic polarization of the molecular dipoles to develop. This is referred to as rapid passage induced gain. The resultant FID signals are enhanced due to the constructive interference between the field within the gas generated by the slow ramp of the laser (pump), and the fast chirp of the laser (probe) signal generated by pulse modulation of the continuously operating QC laser. The FID signals obtained at large 2 optical depth have not been observed previously in the mid-infrared regions, and unusual oscillatory signals have been observed at the highest gas pressures used.

  20. Kaposi's sarcoma-associated herpesvirus microRNAs target IRAK1 and MYD88, two components of the toll-like receptor/interleukin-1R signaling cascade, to reduce inflammatory-cytokine expression.

    PubMed

    Abend, Johanna R; Ramalingam, Dhivya; Kieffer-Kwon, Philippe; Uldrick, Thomas S; Yarchoan, Robert; Ziegelbauer, Joseph M

    2012-11-01

    Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is the causative agent of KS, an important AIDS-associated malignancy. KSHV expresses at least 18 different mature microRNAs (miRNAs). We identified interleukin-1 receptor (IL-1R)-associated kinase 1 (IRAK1) as a potential target of miR-K12-9 (miR-K9) in an array data set examining changes in cellular gene expression levels in the presence of KSHV miRNAs. Using 3'-untranslated region (3'UTR) luciferase reporter assays, we confirmed that miR-K9 and other miRNAs inhibit IRAK1 expression. In addition, IRAK1 expression is downregulated in cells transfected with miR-K9 and during de novo KSHV infection. IRAK1 is an important component of the Toll-like receptor (TLR)/IL-1R signaling cascade. The downregulation of IRAK1 by miR-K9 resulted in the decreased stimulation of NF-κB activity in endothelial cells treated with IL-1α and in B cells treated with a TLR7/8 agonist. Interestingly, miR-K9 had a greater effect on NF-κB activity than did a small interfering RNA (siRNA) targeting IRAK1 despite the more efficient downregulation of IRAK1 expression with the siRNA. We hypothesized that KSHV miRNAs may also be regulating a second component of the TLR/IL-1R signaling cascade, resulting in a stronger phenotype. Reanalysis of the array data set identified myeloid differentiation primary response protein 88 (MYD88) as an additional potential target. 3'UTR luciferase reporter assays and Western blot analysis confirmed the targeting of MYD88 by miR-K5. The presence of miR-K9 and miR-K5 inhibited the production of IL-6 and IL-8 upon the IL-1α stimulation of endothelial cells. These results demonstrate KSHV-encoded miRNAs regulating the TLR/IL-1R signaling cascade at two distinct points and suggest the importance of these pathways during viral infection.

  1. Neuroinflammatory pathways in binge alcohol-induced neuronal degeneration: oxidative stress cascade involving aquaporin, brain edema, and phospholipase A2 activation.

    PubMed

    Collins, Michael A; Neafsey, Edward J

    2012-01-01

    Chronic binge alcohol exposure in adult rat models causes neuronal degeneration in the cortex and hippocampus that is not reduced by excitotoxic receptor antagonists, but is prevented by antioxidants. Neuroinflammatory (glial-neuronal) signaling pathways are believed to underlie the oxidative stress and brain damage. Based on our experimental results as well as increased knowledge about the pro-neuroinflammatory potential of glial water channels, we propose that induction of aquaporin-4 can be a critical initiating factor in alcohol's neurotoxic effects, through the instigation of cellular edema-based neuroinflammatory cascades involving increased phospholipase A2 activities, polyunsaturated fatty acid release/membrane depletion, decreased prosurvival signaling, and oxidative stress. A testable scheme for this pathway is presented that incorporates recent findings in the alcohol-brain literature indicating a role for neuroimmune activation (upregulation of NF-kappaB, proinflammatory cytokines, and toll-like receptors). We present the argument that such neuroimmune activation could be associated with or even dependent on increased aquaporin-4 and glial swelling as well.

  2. Key signalling nodes in mammary gland development and cancer. Mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development.

    PubMed

    Whyte, Jacqueline; Bergin, Orla; Bianchi, Alessandro; McNally, Sara; Martin, Finian

    2009-01-01

    Seven classes of mitogen-activated protein kinase (MAPK) intracellular signalling cascades exist, four of which are implicated in breast disease and function in mammary epithelial cells. These are the extracellular regulated kinase (ERK)1/2 pathway, the ERK5 pathway, the p38 pathway and the c-Jun N-terminal kinase (JNK) pathway. In some forms of human breast cancer and in many experimental models of breast cancer progression, signalling through the ERK1/2 pathway, in particular, has been implicated as being important. We review the influence of ERK1/2 activity on the organised three-dimensional association of mammary epithelial cells, and in models of breast cancer cell invasion. We assess the importance of epidermal growth factor receptor family signalling through ERK1/2 in models of breast cancer progression and the influence of ERK1/2 on its substrate, the oestrogen receptor, in this context. In parallel, we consider the importance of these MAPK-centred signalling cascades during the cycle of mammary gland development. Although less extensively studied, we highlight the instances of signalling through the p38, JNK and ERK5 pathways involved in breast cancer progression and mammary gland development.

  3. Carbon nanotube-assisted optical activation of TGF-β signalling by near-infrared light

    NASA Astrophysics Data System (ADS)

    Lin, Liang; Liu, Ling; Zhao, Bing; Xie, Ran; Lin, Wei; Li, He; Li, Yaya; Shi, Minlong; Chen, Ye-Guang; Springer, Timothy A.; Chen, Xing

    2015-05-01

    Receptor-mediated signal transduction modulates complex cellular behaviours such as cell growth, migration and differentiation. Although photoactivatable proteins have emerged as a powerful tool for controlling molecular interactions and signalling cascades at precise times and spaces using light, many of these light-sensitive proteins are activated by ultraviolent or visible light, which has limited tissue penetration. Here, we report a single-walled carbon nanotube (SWCNT)-assisted approach that enables near-infrared light-triggered activation of transforming growth factor β (TGF-β) signal transduction, an important signalling pathway in embryonic development and cancer progression. The protein complex of TGF-β and its latency-associated peptide is conjugated onto SWCNTs, where TGF-β is inactive. Upon near-infrared irradiation, TGF-β is released through the photothermal effect of SWCNTs and becomes active. The released TGF-β activates downstream signal transduction in live cells and modulates cellular behaviours. Furthermore, preliminary studies show that the method can be used to mediate TGF-β signalling in living mice.

  4. A20 zinc finger protein inhibits TNF-induced apoptosis and stress response early in the signaling cascades and independently of binding to TRAF2 or 14-3-3 proteins.

    PubMed

    Lademann, U; Kallunki, T; Jäättelä, M

    2001-03-01

    A20 zinc finger protein is a negative regulator of tumor necrosis factor (TNF)-induced signaling pathways leading to apoptosis, stress response and inflammation. A20 has been shown to bind to TNF-receptor-associated factor 2 (TRAF2) and 14-3-3 chaperone proteins. Our data indicate that the zinc finger domain of A20 is sufficient and that neither TRAF2 nor 14-3-3 binding is necessary for the inhibitory effects of A20. Mutations in the 14-3-3 binding site of A20 did, however, result in a partial cleavage of A20 protein suggesting that 14-3-3 chaperone proteins may stabilize A20. Furthermore, we show that A20 acts early in TNF-induced signaling cascades blocking both TNF-induced rapid activation of c-Jun N-terminal kinase and processing of the receptor-associated caspase-8. Taken together our data indicate that the zinc finger domain of A20 contains all necessary functional domains required for the inhibition of TNF signaling and that A20 may function at the level of the receptor signaling complex.

  5. Inhibition on JAK-STAT3 Signaling Transduction Cascade Is Taken by Bioactive Peptide Alpha-S2 Casein Protein from Goat Ethawah Breed Milk

    PubMed Central

    Rohmah, Rista Nikmatu; Hardiyanti, Ferlany; Fatchiyah, Fatchiyah

    2015-01-01

    Background: RA is a systemic inflammatory disease that causes developing comorbidity conditions. This condition can cause by overproduction of pro-inflammatory cytokine. In a previous study, we have found bioactive peptide CSN1S2 from Ethawah goat milk for anti-inflammatory for repair the ileum destruction. However, the signaling transduction cascade of bioactive peptides inhibits inflammation still not clear yet. Therefore, we analyzed the signaling transduction cascade via JAK-STAT3 pathway by in vivo and in silico. Methods: The ileum was isolated DNA and amplification with specific primer. The sequence was analyzed using the Sanger sequencing method. Modeling 3D-structure was predicted by SWISS-MODEL and virtual interaction was analyzed by docking system using Pymol and Discovery Studio 4.0 software. Results: This study showed that STAT3 has target gene 480bp. The normal group and normal treating- CSN1S2 of goat milk have similarity from gene bank. Whereas, RA group had transversion mutation that the purine change into pyrimidine even cause frameshift mutation. Interestingly, after treating with the CSN1S2 protein of goat milk shows reverse to the normal acid sequence group. Based on in silico study, from eight peptides, only three peptides of CSN1S2 protein, which carried by PePT1 to enter the small intestine. The fragments are PepT1-41-NMAIHPR-47; PepT1-182-KISQYYQK-189 and PepT1-214-TNAIPYVR-221. We have found just one bioactive peptide of f182-KISQYYQK-189 is able bind to STAT3. The energy binding of f182-KISQYYQK-189 and RA-STAT3 amino acid, it was Σ = -402.43 kJ/mol and the energy binding of f182-KISQYYQK-189 and RAS-STAT3 amino acid is decreasing into Σ = -407.09 kJ/mol. Conclusion: This study suggested that the fragment 182-KISQYYQK-189 peptides from Ethawah goat milk may act as an anti-inflammatory agent via JAK-STAT3 signal transduction cascade at the cellular level. PMID:26483598

  6. Neuropeptidergic Signaling and Active Feeding State Inhibit Nociception in Caenorhabditis elegans.

    PubMed

    Ezcurra, Marina; Walker, Denise S; Beets, Isabel; Swoboda, Peter; Schafer, William R

    2016-03-16

    Food availability and nutritional status are important cues affecting behavioral states. Here we report that, in Caenorhabditis elegans, a cascade of dopamine and neuropeptide signaling acts to inhibit nociception in food-poor environments. In the absence of food, animals show decreased sensitivity and increased adaptation to soluble repellents sensed by the polymodal ASH nociceptors. The effects of food on adaptation are affected by dopamine and neuropeptide signaling; dopamine acts via the DOP-1 receptor to decrease adaptation on food, whereas the neuropeptide receptors NPR-1 and NPR-2 act to increase adaptation off food. NPR-1 and NPR-2 function cell autonomously in the ASH neurons to increase adaptation off food, whereas the DOP-1 receptor controls neuropeptide release from interneurons that modulate ASH activity indirectly. These results indicate that feeding state modulates nociception through the interaction of monoamine and neuropeptide signaling pathways.

  7. Palladium(II)-Catalyzed C-H Bond Activation/C-C and C-O Bond Formation Reaction Cascade: Direct Synthesis of Coumestans.

    PubMed

    Neog, Kashmiri; Borah, Ashwini; Gogoi, Pranjal

    2016-12-02

    A palladium catalyzed cascade reaction of 4-hydroxycoumarins and in situ generated arynes has been developed for the direct synthesis of coumestans. This cascade strategy proceeds via C-H bond activation/C-O and C-C bond formations in a single reaction vessel. This methodology affords moderate to good yields of coumestans and is tolerant of a variety of functional groups including halide. The methodology was applied to the synthesis of natural product flemichapparin C.

  8. Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR{sub 1} activation

    SciTech Connect

    Blanc-Brude, Olivier P. . E-mail: olivier.blanc-brude@larib.inserm.fr; Archer, Fabienne; Leoni, Patricia; Derian, Claudia; Bolsover, Steven; Laurent, Geoffrey J.; Chambers, Rachel C.

    2005-03-10

    Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR{sub 1}). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR{sub 1}-deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR{sub 1}-specific agonists and inhibitors were used to demonstrate that PAR{sub 1} mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR{sub 1} and not PAR{sub 2}. These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis.

  9. K+ efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling1

    PubMed Central

    Katsnelson, Michael A.; Rucker, L. Graham; Russo, Hana M.; Dubyak, George R.

    2015-01-01

    Perturbation of intracellular ion homeostasis is a major cellular stress signal for activation of NLRP3 inflammasome signaling that results in caspase-1 mediated production of IL-1β and pyroptosis. However, the relative contributions of decreased cytosolic [K+] versus increased cytosolic [Ca2+] remain disputed and incompletely defined. We investigated roles for elevated cytosolic [Ca2+] in NLRP3 activation and downstream inflammasome signaling responses in primary murine dendritic cells and macrophages in response to two canonical NLRP3 agonists (ATP and nigericin) that facilitate primary K+ efflux by mechanistically distinct pathways or the lysosome-destabilizing agonist Leu-Leu-O-methyl ester (LLME). The study provides three major findings relevant to this unresolved area of NLRP3 regulation. First, increased cytosolic [Ca2+] was neither a necessary nor sufficient signal for the NLRP3 inflammasome cascade during activation by endogenous ATP-gated P2X7 receptor channels, the exogenous bacterial ionophore nigericin, or the lysosomotropic agent LLME. Second, agonists for three Ca2+-mobilizing G protein-coupled receptors (formyl peptide receptor/FPR; P2Y2 purinergic receptor/P2Y2R; calcium-sensing receptor/CaSR) expressed in murine dendritic cells were ineffective as activators of rapidly induced NLRP3 signaling when directly compared to the K+ efflux agonists. Third, the intracellular Ca2+ buffer, BAPTA, and the channel blocker, 2-aminoethoxydiphenyl borate (2-APB), widely used reagents for disruption of Ca2+-dependent signaling pathways, strongly suppressed nigericin-induced NLRP3 inflammasome signaling via mechanisms dissociated from their canonical or expected effects on Ca2+ homeostasis. The results indicate that the ability of K+ efflux agonists to activate NLRP3 inflammasome signaling can be dissociated from changes in cytosolic [Ca2+] as a necessary or sufficient signal. PMID:25762778

  10. The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloid-beta (Abeta) degradation and inhibits Abeta-induced neurodegeneration.

    PubMed

    Melchor, Jerry P; Pawlak, Robert; Strickland, Sidney

    2003-10-01

    Accumulation of the amyloid-beta (Abeta) peptide depends on both its generation and clearance. To better define clearance pathways, we have evaluated the role of the tissue plasminogen activator (tPA)-plasmin system in Abeta degradation in vivo. In two different mouse models of Alzheimer's disease, chronically elevated Abeta peptide in the brain correlates with the upregulation of plasminogen activator inhibitor-1 (PAI-1) and inhibition of the tPA-plasmin system. In addition, Abeta injected into the hippocampus of mice lacking either tPA or plasminogen persists, inducing PAI-1 expression and causing activation of microglial cells and neuronal damage. Conversely, Abeta injected into wild-type mice is rapidly cleared and does not cause neuronal degeneration. Thus, the tPA-plasmin proteolytic cascade aids in the clearance of Abeta, and reduced activity of this system may contribute to the progression of Alzheimer's disease.

  11. Sub-nanometrically resolved chemical mappings of quantum-cascade laser active regions

    NASA Astrophysics Data System (ADS)

    Pantzas, Konstantinos; Beaudoin, Grégoire; Patriarche, Gilles; Largeau, Ludovic; Mauguin, Olivia; Pegolotti, Giulia; Vasanelli, Angela; Calvar, Ariane; Amanti, Maria; Sirtori, Carlo; Sagnes, Isabelle

    2016-05-01

    A procedure that produces sub-nanometrically resolved chemical mappings of MOCVD-grown InGaAs/InAlAs/InP quantum cascade lasers is presented. The chemical mappings reveal that, although the structure is lattice-matched to InP, the InAlAs barriers do not attain the nominal aluminum content—48%—and are, in fact, InGaAlAs quaternaries. This information is used to adjust the aluminum precursor flow and fine-tune the composition of the barriers, resulting in a significant improvement of the fabricated lasers.

  12. X-ray irradiation activates K+ channels via H2O2 signaling.

    PubMed

    Gibhardt, Christine S; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-09-09

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels.

  13. X-ray irradiation activates K+ channels via H2O2 signaling

    PubMed Central

    Gibhardt, Christine S.; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-01-01

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels. PMID:26350345

  14. Diet-induced obesity elevates colonic TNF-alpha in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inflammation associated with obesity may play a role in colorectal carcinogenesis, but the underlying mechanism remains unclear. This study investigated whether the Wnt pathway, an intracellular signaling cascade that plays a critical role in colorectal carcinogenesis, is activated by obesity-induce...

  15. [Growth hormone signaling pathways].

    PubMed

    Zych, Sławomir; Szatkowska, Iwona; Czerniawska-Piatkowska, Ewa

    2006-01-01

    The substantial improvement in the studies on a very complicated mechanism-- growth hormone signaling in a cell, has been noted in last decade. GH-induced signaling is characterized by activation of several pathways, including extracellular signal-regulated kinase (ERK), the signal transducer and activator of transcription and phosphatidylinositol-3 kinase (PI3) pathways. This review shows a current model of the growth hormone receptor dimerization, rotation of subunits and JAK2 kinase activation as the initial steps in the cascade of events. In the next stages of the signaling process, the GH-(GHR)2-(JAK2)2 complex may activate signaling molecules such as Stat, IRS-1 and IRS-2, and particularly all cascade proteins that activate MAP kinase. These pathways regulate basal cellular functions including target gene transcription, enzymatic activity and metabolite transport. Therefore growth hormone is considered as a major regulator of postnatal growth and metabolism, probably for mammary gland growth and development too.

  16. Heat dissipation guides activation in signaling proteins

    PubMed Central

    Weber, Jeffrey K.; Shukla, Diwakar; Pande, Vijay S.

    2015-01-01

    Life is fundamentally a nonequilibrium phenomenon. At the expense of dissipated energy, living things perform irreversible processes that allow them to propagate and reproduce. Within cells, evolution has designed nanoscale machines to do meaningful work with energy harnessed from a continuous flux of heat and particles. As dictated by the Second Law of Thermodynamics and its fluctuation theorem corollaries, irreversibility in nonequilibrium processes can be quantified in terms of how much entropy such dynamics produce. In this work, we seek to address a fundamental question linking biology and nonequilibrium physics: can the evolved dissipative pathways that facilitate biomolecular function be identified by their extent of entropy production in general relaxation processes? We here synthesize massive molecular dynamics simulations, Markov state models (MSMs), and nonequilibrium statistical mechanical theory to probe dissipation in two key classes of signaling proteins: kinases and G-protein–coupled receptors (GPCRs). Applying machinery from large deviation theory, we use MSMs constructed from protein simulations to generate dynamics conforming to positive levels of entropy production. We note the emergence of an array of peaks in the dynamical response (transient analogs of phase transitions) that draw the proteins between distinct levels of dissipation, and we see that the binding of ATP and agonist molecules modifies the observed dissipative landscapes. Overall, we find that dissipation is tightly coupled to activation in these signaling systems: dominant entropy-producing trajectories become localized near important barriers along known biological activation pathways. We go on to classify an array of equilibrium and nonequilibrium molecular switches that harmonize to promote functional dynamics. PMID:26240354

  17. Pharmacology of Signaling Induced by Dopamine D1-Like Receptor Activation

    PubMed Central

    Undieh, Ashiwel S.

    2010-01-01

    Dopamine D1-like receptors consisting of D1 and D5 subtypes are intimately implicated in dopaminergic regulation of fundamental neurophysiologic processes such as mood, motivation, cognitive function, and motor activity. Upon stimulation, D1-like receptors initiate signal transduction cascades that are mediated through adenylyl cyclase or phosphoinositide metabolism, with subsequent enhancement of multiple downstream kinase cascades. The latter actions propagate and further amplify the receptor signals, thus predisposing D1-like receptors to multifaceted interactions with various other mediators and receptor systems. The adenylyl cyclase response to dopamine or selective D1-like receptor agonists is reliably associated with the D1 subtype, while emerging evidence indicates that the phosphoinositide responses in native brain tissues may be preferentially mediated through stimulation of the D5 receptor. Besides classic coupling of each receptor subtype to specific G proteins, additional biophysical models are advanced in attempts to account for differential subcellular distribution, heteromolecular oligomerization, and activity-dependent selectivity of the receptors. It is expected that significant advances in understanding of dopamine neurobiology will emerge from current and anticipated studies directed at uncovering the molecular mechanisms of D5 coupling to phosphoinositide signaling, the structural features that might enhance pharmacological selectivity for D5 versus D1 subtypes, the mechanism by which dopamine may modulate phosphoinositide synthesis, the contributions of the various responsive signal mediators to D1 or D5 interactions with D2-like receptors, and the spectrum of dopaminergic functions that may be attributed to each receptor subtype and signaling pathway. PMID:20547182

  18. Active voltammetric microsensors with neural signal processing.

    SciTech Connect

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can detect, recognize, and

  19. Design of the improved cascade ADRC and its application in photoelectric tracking system

    NASA Astrophysics Data System (ADS)

    Zuo, Dan; Tang, Tao; Huang, Yongmei; Cai, Huaxiang

    2015-10-01

    According to the larger error when reversing in photoelectric tracking control system, the improved cascade Active Disturbance Rejection Controller (ADRC) is put forward to improve the system position tracking performance and tracking precision. First of all, this essay analyses the controlled object model and system control strategy; Then, it gives design method of the improved cascade ADRC; Finally, in order to analyses the improved cascade's better control performance, in the condition of the same input signal ,the improved cascade ADRC, conventional ADRC-ADRC and traditional PI-PI controller are used in photoelectric tracking control system to do comparative experiment. The experiment results show that the improved cascade ADRC's performance is better than other two algorithms, the tracking error and the steady state mean square error are significantly reduced, tracking accuracy is significantly improved. The improved cascade ADRC is an appealing solution in dealing with industrial control system problems where uncertainties and interference abound.

  20. Bz-423 superoxide signals apoptosis via selective activation of JNK, Bak, and Bax.

    PubMed

    Blatt, Neal B; Boitano, Anthony E; Lyssiotis, Costas A; Opipari, Anthony W; Glick, Gary D

    2008-11-01

    Bz-423 is a proapoptotic 1,4-benzodiazepine with potent therapeutic properties in murine models of lupus and psoriasis. Bz-423 modulates the F(1)F(0)-ATPase, inducing the formation of superoxide within the mitochondrial respiratory chain, which then functions as a second messenger initiating apoptosis. Herein, we report the signaling pathway activated by Bz-423 in mouse embryonic fibroblasts containing knockouts of key apoptotic proteins. Bz-423-induced superoxide activates cytosolic ASK1 and its release from thioredoxin. A mitogen-activated protein kinase cascade follows, leading to the specific phosphorylation of JNK. JNK signals activation of Bax and Bak which then induces mitochondrial outer membrane permeabilization to cause the release of cytochrome c and a commitment to apoptosis. The response of these cells to Bz-423 is critically dependent on both superoxide and JNK activation as antioxidants and the JNK inhibitor SP600125 prevents Bax translocation, cytochrome c release, and cell death. These results demonstrate that superoxide generated from the mitochondrial respiratory chain as a consequence of a respiratory transition can signal a sequential and specific apoptotic response. Collectively, these data suggest that the selectivity of Bz-423 observed in vivo results from cell-type specific differences in redox balance and signaling by ASK1 and Bcl-2 proteins.

  1. P-glycoprotein attenuates DNA repair activity in multidrug-resistant cells by acting through the Cbp-Csk-Src cascade.

    PubMed

    Lin, Li-Fang; Wu, Ming-Hsi; Pidugu, Vijaya Kumar; Ho, I-Ching; Su, Tsann-Long; Lee, Te-Chang

    2017-02-03

    Recent studies have demonstrated that P-glycoprotein (P-gp) expression impairs DNA interstrand cross-linking agent-induced DNA repair efficiency in multidrug-resistant (MDR) cells. To date, the detailed molecular mechanisms underlying how P-gp interferes with Src activation and subsequent DNA repair activity remain unclear. In this study, we determined that the C-terminal Src kinase-binding protein (Cbp) signaling pathway involved in the negative control of Src activation is enhanced in MDR cells. We also demonstrated that cells that ectopically express P-gp exhibit reduced activation of DNA damage response regulators, such as ATM, Chk2, Braca1 and Nbs1 and hence attenuated DNA double-strand break repair capacity and become more susceptible than vector control cells to DNA interstrand cross-linking (ICL) agents. Moreover, we demonstrated that P-gp can not only interact with Cbp and Src but also enhance the formation of inhibitory C-terminal Src kinase (Csk)-Cbp complexes that reduce phosphorylation of the Src activation residue Y416 and increase phosphorylation of the Src negative regulatory residue Y527. Notably, suppression of Cbp expression in MDR cells restores cisplatin-induced Src activation, improves DNA repair capacity, and increases resistance to ICL agents. Ectopic expression of Cbp attenuates cisplatin-induced Src activation and increases the susceptibility of cells to ICL agents. Together, the current results indicate that P-gp inhibits DNA repair activity by modulating Src activation via Cbp-Csk-Src cascade. These results suggest that DNA ICL agents are likely to have therapeutic potential against MDR cells with P-gp-overexpression.

  2. Stress Signals, Mediated by Membranous Glucocorticoid Receptor, Activate PLC/PKC/GSK-3β/β-catenin Pathway to Inhibit Wound Closure.

    PubMed

    Jozic, Ivan; Vukelic, Sasa; Stojadinovic, Olivera; Liang, Liang; Ramirez, Horacio A; Pastar, Irena; Tomic Canic, Marjana

    2016-12-23

    Glucocorticoids (GCs), key mediators of stress signals, are also potent wound healing inhibitors. To understand how stress signals inhibit wound healing, we investigated the role of membranous glucocorticoid receptor (mbGR) by using cell-impermeable BSA-conjugated dexamethasone. We found that mbGR inhibits keratinocyte migration and wound closure by activating a Wnt-like phospholipase (PLC)/ protein kinase C (PKC) signaling cascade. Rapid activation of mbGR/PLC/PKC further leads to activation of known biomarkers of nonhealing found in patients, β-catenin and c-myc. Conversely, a selective inhibitor of PKC, calphostin C, blocks mbGR/PKC pathway, and rescues GC-mediated inhibition of keratinocyte migration in vitro and accelerates wound epithelialization of human wounds ex vivo. This novel signaling mechanism may have a major impact on understanding how stress response via GC signaling regulates homeostasis and its role in development and treatments of skin diseases, including wound healing. To test tissue specificity of this nongenomic signaling mechanism, we tested retinal and bronchial human epithelial cells and fibroblasts. We found that mbGR/PLC/PKC signaling cascade exists in all cell types tested, suggesting a more general role. The discovery of this nongenomic signaling pathway, in which glucocorticoids activate Wnt pathway via mbGR, provides new insights into how stress-mediated signals may activate growth signals in various epithelial and mesenchymal tissues.

  3. Stratigraphic development and hydrothermal activity in the central western Cascade Range, Oregon

    SciTech Connect

    Cummings, M.L.; Bull, M.K. ); Pollock, J.M. ); Thompson, G.D. )

    1990-11-10

    Two volcanic sequences bounded by erosional unconformities compose the stratigraphy of the North Santiam mining district, Western Cascade Range, Oregon. Diorite, grandodiorite, and leucocratic quartz porphyry dikes, stocks, and sills intrude the breccias, flows, and tuffs of a volcanic center in the older Sardine Formation. Tourmaline-bearing breccia pipes are associated with the porphyritic granodiorite intrusions. An erosional unconformity separates the Sardine Formation from the overlying Elk Lake formation. The alteration patterns in the two formations are consistent with the development of hydrothermal systems during the eruption of each formation. However, the development of the two hydrothermal systems is separated by a period of erosion of the older volcanic pile. Early formation of mineralization that resembles porphyry copper deposits occurred within the Sardine Formation, and later, after eruption of the Elk Lake formation, epithermal veins and alteration developed along faults, fractures, and the margins of dikes in the Sardine Formation.

  4. High-power continuous-wave interband cascade lasers with 10 active stages.

    PubMed

    Kim, Mijin; Bewley, William W; Canedy, Chadwick L; Kim, Chul Soo; Merritt, Charles D; Abell, Joshua; Vurgaftman, Igor; Meyer, Jerry R

    2015-04-20

    We report the pulsed and continuous wave (cw) performance of 10-stage interband cascade lasers (ICLs) emitting at both λ ≈3.2 μm and λ ≈3.45 μm. The slope efficiency is higher while the external differential quantum efficiency per stage remains about the same when comparison is made to earlier results for 7-stage ICLs with similar carrier-rebalanced designs. At T = 25°C, an 18-μm-wide ridge with 4.5 mm cavity length and high-reflection/anti-reflection coatings emits up to 464 mW of cw output power with beam quality factor M(2) = 1.9, for higher brightness than has ever been reported previously for an ICL. When the cavity length is reduced to 1 mm, both the 10-stage and 7-stage devices reach 18% cw wallplug efficiency at T = 25°C.

  5. Broadly continuously tunable slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design

    SciTech Connect

    Meng, Bo; Zeng, Yong Quan; Liang, Guozhen; Hu, Xiao Nan; Rodriguez, Etienne; Wang, Qi Jie

    2015-09-14

    We report our progress in the development of broadly tunable single-mode slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design. The electroluminescence spectrum of the continuum-to-continuum active region design has a full width at half maximum of 440 cm{sup −1} at center wavelength ∼10 μm at room temperature (300 K). Devices using the optimized slot waveguide structure and the continuum-to-continuum design can be tuned continuously with a lasing emission over 42 cm{sup −1}, from 9.74 to 10.16 μm, at room temperature by using only current tuning scheme, together with a side mode suppression ratio of above 15 dB within the whole tuning range.

  6. FGF19-FGFR4 signaling elaborates lens induction with the FGF8-L-Maf cascade in the chick embryo.

    PubMed

    Kurose, Hitomi; Okamoto, Mayumi; Shimizu, Miyuki; Bito, Takaaki; Marcelle, Cristophe; Noji, Sumihare; Ohuchi, Hideyo

    2005-05-01

    The fibroblast growth factor (FGF) family is known to be involved in vertebrate eye development. However, distinct roles of individual FGF members during eye development remain largely elusive. Here, we show a detailed expression pattern of Fgf19 in chick lens development. Fgf19 expression initiated in the forebrain, and then became restricted to the distal portion of the optic vesicle abutting the future lens placode, where FGF receptor 4 (Fgfr4), a receptor for FGF19, was expressed. Fgf8, a positive regulator for L-Maf, was expressed in a portion of the optic vesicle. To examine the role of FGF19 signaling during early eye development, Fgf19 was misexpressed near the presumptive lens ectoderm; however, no alteration in the expression of lens marker genes was observed. Conversely, a secreted form of FGFR4 was misexpressed to inhibit an FGF19 signal, resulting in the induction of L-Maf expression. To further define the relationship between L-Maf and Fgf19, L-Maf misexpression was performed, resulting in ectopic induction of Fgf19 expression by Hamburger and Hamilton's stage 12/13. Furthermore, misexpression of Fgf8 induced Fgf19 expression in addition to L-Maf. These results suggest that FGF19-FGFR4 signaling plays a role in early lens development in collaboration with FGF8 signaling and L-Maf transcriptional system.

  7. The adhesion GPCR latrophilin – a novel signaling cascade in oriented cell division and anterior-posterior polarity

    PubMed Central

    Winkler, Jana; Prömel, Simone

    2016-01-01

    ABSTRACT Although several signaling pathways in oriented cell division have been well characterized such as delta/notch inductions or wnt/frizzled-based anterior-posterior polarity, there is strong evidence for additional signal pathways controlling early anterior-posterior polarity decisions. The homolog of the adhesion G protein-coupled receptor latrophilin, LAT-1 has been identified as a receptor essential for oriented cell division in an anterior-posterior direction of specific blastomeres in the early C. elegans embryo. We recently conducted a study aiming at clarifying the signals involved in LAT-1 function. We identified a Gs protein/adenylyl cyclase/cAMP pathway in vitro and demonstrated its physiological relevance in oriented cell division. By interaction with a Gs protein LAT-1 elevates cAMP levels. These data indicate that G-protein signaling in oriented cell division is not solely GPCR-independent. This commentary will discuss our findings in the context of the current knowledge of mechanisms controlling oriented cell division and anterior-posterior polarity. Further, we identify open questions which need to be addressed in the future. PMID:27383912

  8. Stronger learning recruits additional cell-signaling cascades: c-Jun-N-terminal kinase 1 (JNK1) is necessary for expression of stronger contextual fear conditioning.

    PubMed

    Leach, Prescott T; Kenney, Justin W; Gould, Thomas J

    2015-02-01

    Increased training often results in stronger memories but the neural changes responsible for these stronger memories are poorly understood. It is proposed here that higher levels of training that result in stronger memories recruit additional cell signaling cascades. This study specifically examined if c-Jun N-terminal kinase 1 (JNK1) is involved in the formation of stronger fear conditioning memories. Wildtype (WT), JNK1 heterozygous (Het), and JNK1 knockout (KO) mice were fear conditioned with 1 trial, 2 trials, or 4 trials. All mice learned both contextual (hippocampus-dependent) and cued (hippocampus-independent) fear conditioning but for contextual fear conditioning only, the JNK1 KO mice did not show higher levels of learning with increased trials. That is, WT mice showed a significant linear increase in contextual fear conditioning as training trials increased from 1 to 2 to 4 trials whereas KO mice showed the same level of contextual fear conditioning as WT mice for 1 trial training but did not have increased levels of contextual fear conditioning with additional trials. These data suggest that JNK1 may not be critical for learning but when higher levels of hippocampus-dependent learning occur, JNK1 signaling is recruited and is necessary for stronger hippocampus-dependent memory formation.

  9. Characteristics of receptor- and transducer-coupled activation of the intracellular signalling in sensory neuron revealed by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Khalisov, M. M.; Penniyaynen, V. A.; Esikova, N. A.; Ankudinov, A. V.; Krylov, B. V.

    2017-01-01

    The mechanical properties of sensory neurons upon activation of intracellular cascade processes by comenic acid binding to a membrane opioid-like receptor (receptor-coupled), as well as a very low (endogenous) concentration of ouabain (transducer-coupled), have been investigated. Using atomic force microscopy, it is established that exposure to ouabain, in contrast to the impact of comenic acid, leads to a hardening of the neuron soma. This suggests that the receptor-coupled signal transmission to the cell genome is carried out through mechanisms that are different from the transducer-coupled signal pathways.

  10. Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling.

    PubMed

    Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric

    2016-06-23

    The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.

  11. Electroluminescent TCC, C3dg and fB/Bb epitope assays for profiling complement cascade activation in vitro using an activated complement serum calibration standard.

    PubMed

    van Vuuren, B Jansen; Bergseth, G; Mollnes, T E; Shaw, A M

    2014-01-15

    Electroluminescent assays for epitopes on the complement components C3dg, terminal complement complex (TCC) and factor B/Bb (fB/Bb) have been developed with capture and detection antibodies to produce detection limits C3dg=91±9ng/mL, TCC=3±0.1ng/mL and fB=55.7±0.1ng/mL. The assay performance was assessed against a series of zymosan and heat aggregated IgG (HAIgG) in vitro activations of complement using a calibrated activated complement serum (ACS) as calibration standard. The ACS standard was stable within 20% accuracy over a 6-month period with freeze-thaw cycles as required. Differential activation of the complement cascade was observed for TCC showing a pseudo-first order formation half-life of 3.5h after activation with zymosan. The C3dg activation fragment indicates a 10% total activation for both activation agents. The kinetic-epitope analysis for fB indicates that the capture epitope is on the fB/Bb protein fragment which can then become covered by the formation of C3bBb or C3bBbP complexes during the time course of the cascade.

  12. Cardiovascular Protective Effect of Metformin and Telmisartan: Reduction of PARP1 Activity via the AMPK-PARP1 Cascade

    PubMed Central

    Shang, Fenqing; Zhang, Jiao; Li, Zhao; Zhang, Jin; Yin, Yanjun; Wang, Yaqiong; Marin, Traci L.; Gongol, Brendan; Xiao, Han; Zhang, You-yi; Chen, Zhen; Shyy, John Y-J; Lei, Ting

    2016-01-01

    Hyperglycemia and hypertension impair endothelial function in part through oxidative stress-activated poly (ADP-ribose) polymerase 1 (PARP1). Biguanides and angiotensin II receptor blockers (ARBs) such as metformin and telmisartan have a vascular protective effect. We used cultured vascular endothelial cells (ECs), diabetic and hypertensive rodent models, and AMPKα2-knockout mice to investigate whether metformin and telmisartan have a beneficial effect on the endothelium via AMP-activated protein kinase (AMPK) phosphorylation of PARP1 and thus inhibition of PARP1 activity. The results showed that metformin and telmisartan, but not glipizide and metoprolol, activated AMPK, which phosphorylated PARP1 Ser-177 in cultured ECs and the vascular wall of rodent models. Experiments using phosphorylated/de-phosphorylated PARP1 mutants show that AMPK phosphorylation of PARP1 leads to decreased PARP1 activity and attenuated protein poly(ADP-ribosyl)ation (PARylation), but increased endothelial nitric oxide synthase (eNOS) activity and silent mating type information regulation 2 homolog 1 (SIRT1) expression. Taken together, the data presented here suggest biguanides and ARBs have a beneficial effect on the vasculature by the cascade of AMPK phosphorylation of PARP1 to inhibit PARP1 activity and protein PARylation in ECs, thereby mitigating endothelial dysfunction. PMID:26986624

  13. Persephone/Spätzle Pathogen Sensors Mediate the Activation of Toll Receptor Signaling in Response to Endogenous Danger Signals in Apoptosis-deficient Drosophila*

    PubMed Central

    Ming, Ming; Obata, Fumiaki; Kuranaga, Erina; Miura, Masayuki

    2014-01-01

    Apoptosis is an evolutionarily conserved mechanism that removes damaged or unwanted cells, effectively maintaining cellular homeostasis. It has long been suggested that a deficiency in this type of naturally occurring cell death could potentially lead to necrosis, resulting in the release of endogenous immunogenic molecules such as damage-associated molecular patterns (DAMPs) and a noninfectious inflammatory response. However, the details about how danger signals from apoptosis-deficient cells are detected and translated to an immune response are largely unknown. In this study, we found that Drosophila mutants deficient for Dronc, the key initiator caspase required for apoptosis, produced the active form of the endogenous Toll ligand Spätzle (Spz). We speculated that, as a system for sensing potential DAMPs in the hemolymph, the dronc mutants constitutively activate a proteolytic cascade that leads to Spz proteolytic processing. We demonstrated that Toll signaling activation required the action of Persephone, a CLIP domain serine protease that usually reacts to microbial proteolytic activities. Our findings show that the Persephone proteolytic cascade plays a crucial role in mediating DAMP-induced systemic responses in apoptosis-deficient Drosophila mutants. PMID:24492611

  14. Persephone/Spätzle pathogen sensors mediate the activation of Toll receptor signaling in response to endogenous danger signals in apoptosis-deficient Drosophila.

    PubMed

    Ming, Ming; Obata, Fumiaki; Kuranaga, Erina; Miura, Masayuki

    2014-03-14

    Apoptosis is an evolutionarily conserved mechanism that removes damaged or unwanted cells, effectively maintaining cellular homeostasis. It has long been suggested that a deficiency in this type of naturally occurring cell death could potentially lead to necrosis, resulting in the release of endogenous immunogenic molecules such as damage-associated molecular patterns (DAMPs) and a noninfectious inflammatory response. However, the details about how danger signals from apoptosis-deficient cells are detected and translated to an immune response are largely unknown. In this study, we found that Drosophila mutants deficient for Dronc, the key initiator caspase required for apoptosis, produced the active form of the endogenous Toll ligand Spätzle (Spz). We speculated that, as a system for sensing potential DAMPs in the hemolymph, the dronc mutants constitutively activate a proteolytic cascade that leads to Spz proteolytic processing. We demonstrated that Toll signaling activation required the action of Persephone, a CLIP domain serine protease that usually reacts to microbial proteolytic activities. Our findings show that the Persephone proteolytic cascade plays a crucial role in mediating DAMP-induced systemic responses in apoptosis-deficient Drosophila mutants.

  15. Danger signals in stroke.

    PubMed

    Gelderblom, Mathias; Sobey, Christopher G; Kleinschnitz, Christoph; Magnus, Tim

    2015-11-01

    Danger molecules are the first signals released from dying tissue after stroke. These danger signals bind to receptors on immune cells that will result in their activation and the release of inflammatory and neurotoxic mediators, resulting in amplification of the immune response and subsequent enlargement of the damaged brain volume. The release of danger signals is a central event that leads to a multitude of signals and cascades in the affected and neighbouring tissue, therefore providing a potential target for therapy.

  16. Loss of Pancreas upon Activated Wnt Signaling Is Concomitant with Emergence of Gastrointestinal Identity

    PubMed Central

    Herrero-Martin, Griselda; Puri, Sapna; Taketo, Makoto Mark; Rojas, Anabel; Hebrok, Matthias; Cano, David A.

    2016-01-01

    Organ formation is achieved through the complex interplay between signaling pathways and transcriptional cascades. The canonical Wnt signaling pathway plays multiple roles during embryonic development including patterning, proliferation and differentiation in distinct tissues. Previous studies have established the importance of this pathway at multiple stages of pancreas formation as well as in postnatal organ function and homeostasis. In mice, gain-of-function experiments have demonstrated that activation of the canonical Wnt pathway results in pancreatic hypoplasia, a phenomenon whose underlying mechanisms remains to be elucidated. Here, we show that ectopic activation of epithelial canonical Wnt signaling causes aberrant induction of gastric and intestinal markers both in the pancreatic epithelium and mesenchyme, leading to the development of gut-like features. Furthermore, we provide evidence that β -catenin-induced impairment of pancreas formation depends on Hedgehog signaling. Together, our data emphasize the developmental plasticity of pancreatic progenitors and further underscore the key role of precise regulation of signaling pathways to maintain appropriate organ boundaries. PMID:27736991

  17. Loss of Pancreas upon Activated Wnt Signaling Is Concomitant with Emergence of Gastrointestinal Identity.

    PubMed

    Muñoz-Bravo, Jose Luis; Flores-Martínez, Alvaro; Herrero-Martin, Griselda; Puri, Sapna; Taketo, Makoto Mark; Rojas, Anabel; Hebrok, Matthias; Cano, David A

    2016-01-01

    Organ formation is achieved through the complex interplay between signaling pathways and transcriptional cascades. The canonical Wnt signaling pathway plays multiple roles during embryonic development including patterning, proliferation and differentiation in distinct tissues. Previous studies have established the importance of this pathway at multiple stages of pancreas formation as well as in postnatal organ function and homeostasis. In mice, gain-of-function experiments have demonstrated that activation of the canonical Wnt pathway results in pancreatic hypoplasia, a phenomenon whose underlying mechanisms remains to be elucidated. Here, we show that ectopic activation of epithelial canonical Wnt signaling causes aberrant induction of gastric and intestinal markers both in the pancreatic epithelium and mesenchyme, leading to the development of gut-like features. Furthermore, we provide evidence that β -catenin-induced impairment of pancreas formation depends on Hedgehog signaling. Together, our data emphasize the developmental plasticity of pancreatic progenitors and further underscore the key role of precise regulation of signaling pathways to maintain appropriate organ boundaries.

  18. Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels

    PubMed Central

    Qi, Zhi; Verma, Rajeev; Gehring, Chris; Yamaguchi, Yube; Zhao, Yichen; Ryan, Clarence A.; Berkowitz, Gerald A.

    2010-01-01

    A family of peptide signaling molecules (AtPeps) and their plasma membrane receptor AtPepR1 are known to act in pathogen-defense signaling cascades in plants. Little is currently known about the molecular mechanisms that link these signaling peptides and their receptor, a leucine-rich repeat receptor-like kinase, to downstream pathogen-defense responses. We identify some cellular activities of these molecules that provide the context for a model for their action in signaling cascades. AtPeps activate plasma membrane inwardly conducting Ca2+ permeable channels in mesophyll cells, resulting in cytosolic Ca2+ elevation. This activity is dependent on their receptor as well as a cyclic nucleotide-gated channel (CNGC2). We also show that the leucine-rich repeat receptor-like kinase receptor AtPepR1 has guanylyl cyclase activity, generating cGMP from GTP, and that cGMP can activate CNGC2-dependent cytosolic Ca2+ elevation. AtPep-dependent expression of pathogen-defense genes (PDF1.2, MPK3, and WRKY33) is mediated by the Ca2+ signaling pathway associated with AtPep peptides and their receptor. The work presented here indicates that extracellular AtPeps, which can act as danger-associated molecular patterns, signal by interaction with their receptor, AtPepR1, a plasma membrane protein that can generate cGMP. Downstream from AtPep and AtPepR1 in a signaling cascade, the cGMP-activated channel CNGC2 is involved in AtPep- and AtPepR1-dependent inward Ca2+ conductance and resulting cytosolic Ca2+ elevation. The signaling cascade initiated by AtPeps leads to expression of pathogen-defense genes in a Ca2+-dependent manner. PMID:21088220

  19. An alternative mode of CD43 signal transduction activates pro-survival pathways of T lymphocytes.

    PubMed

    Bravo-Adame, Maria Elena; Vera-Estrella, Rosario; Barkla, Bronwyn J; Martínez-Campos, Cecilia; Flores-Alcantar, Angel; Ocelotl-Oviedo, Jose Pablo; Pedraza-Alva, Gustavo; Rosenstein, Yvonne

    2017-01-01

    CD43 is one of the most abundant co-stimulatory molecules on a T-cell surface; it transduces activation signals through its cytoplasmic domain, contributing to modulation of the outcome of T-cell responses. The aim of this study was to uncover new signalling pathways regulated by this sialomucin. Analysis of changes in protein abundance allowed us to identify pyruvate kinase isozyme M2 (PKM2), an enzyme of the glycolytic pathway, as an element potentially participating in the signalling cascade resulting from the engagement of CD43 and the T-cell receptor (TCR). We found that the glycolytic activity of this enzyme was not significantly increased in response to TCR+CD43 co-stimulation, but that PKM2 was tyrosine phosphorylated, suggesting that it was performing moonlight functions. We report that phosphorylation of both Y(105) of PKM2 and of Y(705) of signal transducer and activator of transcription 3 was induced in response to TCR+CD43 co-stimulation, resulting in activation of the mitogen-activated protein kinase kinase 5/extracellular signal-regulated kinase 5 (MEK5/ERK5) pathway. ERK5 and the cAMP response element binding protein (CREB) were activated, and c-Myc and nuclear factor-κB (p65) nuclear localization, as well as Bad phosphorylation, were augmented. Consistent with this, expression of human CD43 in a murine T-cell hybridoma favoured cell survival. Altogether, our data highlight novel signalling pathways for the CD43 molecule in T lymphocytes, and underscore a role for CD43 in promoting cell survival through non-glycolytic functions of metabolic enzymes.

  20. An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans.

    PubMed

    Zhao, Yunli; Wu, Qiuli; Wang, Dayong

    2016-02-01

    Although many studies have suggested the adverse effects of engineered nanomaterials (ENMs), the self-protection mechanisms for organisms against ENMs toxicity are still largely unclear. Using Caenorhabditis elegans as an in vivo assay system, our results suggest the toxicity of graphene oxide in reducing reproductive capacity by inducing damage on gonad development. The observed reproductive toxicity of GO on gonad development was due to the combinational effect of germline apoptosis and cell cycle arrest, and DNA damage activation might act as an inducer for this combinational effect. For the underlying molecular mechanism of reproductive toxicity of GO, we raised a signaling cascade of HUS-1/CLK-2-CEP-1-EGL-1-CED-4-CED-3 to explain the roles of core apoptosis signaling pathway and DNA damage checkpoints. Moreover, we identified a miRNA regulation mechanism activated by GO to suppress its induced reproductive toxicity. A mir-360 regulation mechanism was activated by GO to suppress its induced DNA damage-apoptosis signaling cascade through affecting component of CEP-1. Our identified epigenetic signal encoded protection mechanism activated by GO suggests a novel self-protection mechanism for organisms against the ENMs toxicity.

  1. RBM4a-regulated splicing cascade modulates the differentiation and metabolic activities of brown adipocytes

    PubMed Central

    Lin, Jung-Chun; Lu, Yi-Han; Liu, Yun-Ru; Lin, Ying-Ju

    2016-01-01

    RNA-binding motif protein 4a (RBM4a) reportedly reprograms splicing profiles of the insulin receptor (IR) and myocyte enhancer factor 2C (MEF2C) genes, facilitating the differentiation of brown adipocytes. Using an RNA-sequencing analysis, we first compared the gene expressing profiles between wild-type and RBM4a−/− brown adipocytes. The ablation of RBM4a led to increases in the PTBP1, PTBP2 (nPTB), and Nova1 proteins, whereas elevated RBM4a reduced the expression of PTBP1 and PTBP2 proteins in brown adipocytes through an alternative splicing-coupled nonsense-mediated decay mechanism. Subsequently, RBM4a indirectly shortened the half-life of the Nova1 transcript which was comparatively stable in the presence of PTBP2. RBM4a diminished the influence of PTBP2 in adipogenic development by reprogramming the splicing profiles of the FGFR2 and PKM genes. These results constitute a mechanistic understanding of the RBM4a-modulated splicing cascade during the brown adipogenesis. PMID:26857472

  2. Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design

    PubMed Central

    Zhou, Wenjia; Bandyopadhyay, Neelanjan; Wu, Donghai; McClintock, Ryan; Razeghi, Manijeh

    2016-01-01

    Quantum cascade lasers (QCLs) have become important laser sources for accessing the mid-infrared (mid-IR) spectral range, achieving watt-level continuous wave operation in a compact package at room temperature. However, up to now, wavelength tuning, which is desirable for most applications, has relied on external cavity feedback or exhibited a limited monolithic tuning range. Here we demonstrate a widely tunable QCL source over the 6.2 to 9.1 μm wavelength range with a single emitting aperture by integrating an eight-laser sampled grating distributed feedback laser array with an on-chip beam combiner. The laser gain medium is based on a five-core heterogeneous QCL wafer. A compact tunable laser system was built to drive the individual lasers within the array and produce any desired wavelength within the available spectral range. A rapid, broadband spectral measurement (520 cm−1) of methane using the tunable laser source shows excellent agreement to a measurement made using a standard low-speed infrared spectrometer. This monolithic, widely tunable laser technology is compact, with no moving parts, and will open new opportunities for MIR spectroscopy and chemical sensing. PMID:27270634

  3. Potentiation of Mitogenic Activity of Platelet-Derived Growth Factor by Physiological Concentrations of Insulin via the MAP Kinase Cascade in Rat A10 Vascular Smooth Muscle Cells

    PubMed Central

    Yamada, Hitomi; Murakami, Hitomi; Uchigata, Yasuko; Iwamoto, Yasuhiko

    2002-01-01

    Hyperinsulinemia has been shown to be associated with diabetic angiopathy. Migration and proliferation of vascular smooth muscle cells (VSMC) are the processes required for the development of atherosclerosis. In this study, we attempted to determine whether insulin affects mitogenic signaling induced by plateletderived growth factor (PDGF) in a rat VSMC cell line (A10 cells). PDGF stimulated DNA synthesis which was totally dependent on Ras, because transfection of dominant negative Ras resulted in complete loss of PDGF-stimulated DNA synthesis. Initiation of DNA synthesis was preceded by activation of Raf-1, MEK and MAP kinases (Erk 1 and Erk2). Treatment of the cells with PD98059, an inhibitor of MAPK kinase (MEK) attenuated but did not abolish PDGF-stimulated DNA synthesis, suggesting that MAPK is required but not essential for DNA synthesis. PDGF also stimulated phosphorylation of protein kinase B (Akt/PKB) and p70 S6Kinase (p70S6K) in a wortmannin-sensitive manner. Rapamycin, an inhibitor of p70S6K, markedly suppressed DNA synthesis. Low concentrations of insulin (1-10 nmol/l) alone showed little mitogenic activity and no significant effect on MAPK activity. However, the presence of insulin enhanced both DNA synthesis and MAPK activation by PDGF. The enhancing effect of insulin was not seen in cells treated with PD98059. Insulin was without effect on PDGF-stimulated activations of protein kinase B (Akt/PKB) and p70S6K. We conclude that insulin, at pathophysiologically relevant concentrations, potentiates the PDGFstimulated DNA synthesis, at least in part, by potentiating activation of the MAPK cascade. These results are consistent with the notion that hyperinsulinemia is a risk factor for the development of atherosclerosis. PMID:11991199

  4. Stress-activated signaling responses leading to apoptosis following photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; He, Jin; Xue, Liang-yan; Separovic, Duska

    1998-05-01

    Photodynamic treatment with the phthalocyanine Pc 4, a mitochondrially localizing photosensitizer, is an efficient inducer of cell death by apoptosis, a cell suicide pathway that can be triggered by physiological stimuli as well as by various types of cellular damage. Upon exposure of the dye- loaded cells to red light, several stress signalling pathways are rapidly activated. In murine L5178Y-R lymphoblasts, caspase activation and other hallmarks of the final phase of apoptosis are observed within a few minutes post-PDT. In Chinese hamster CHO-K1 cells, the first signs of apoptosis are not observed for 1 - 2 hours. The possible involvement of three parallel mitogen-activated protein kinase (MAPK) signalling pathways has been investigated. The extracellular- regulated kinases (ERK-1 and ERK-2), that are thought to promote cell growth, are not appreciably altered by PDT. However, PDT causes marked activation of the stress-activated protein kinase (SAPK) cascade in both cell types and of the p38/HOG-type kinase in CHO cells. Both of these latter pathways have been demonstrated to be associated with apoptosis. A specific inhibitor of the ERK pathway did not alter PDT-induced apoptosis; however, an inhibitor of the p38 pathway partially blocked PDT-induced apoptosis. Blockage of the SAPK pathway is being pursued by a genetic approach. It appears that the SAPK and p38 pathways may participate in signaling apoptosis in response to PDT with Pc 4.

  5. Reconfigurable optical inter-channel interference mitigation for spectrally overlapped QPSK signals using nonlinear wave mixing in cascaded PPLN waveguides.

    PubMed

    Cao, Yinwen; Ziyadi, Morteza; Mohajerin-Ariaei, Amirhossein; Almaiman, Ahmed; Liao, Peicheng; Bao, Changjing; Alishahi, Fatemeh; Falahpour, Ahmad; Shamee, Bishara; Yang, Jeng-Yuan; Akasaka, Youichi; Sekiya, Motoyoshi; Tur, Moshe; Langrock, Carsten; Fejer, Martin; Touch, Joseph; Willner, Alan E

    2016-07-15

    A reconfigurable all-optical inter-channel interference (ICI) mitigation method is proposed for an overlapped channel system that avoids the need for multi-channel detection and channel spacing estimation. The system exhibits a 0.5-dB implementation penalty compared to a single-channel baseline system. Experiments using a dual-carrier QPSK overlapped system with both 20G-baud and 25G-baud under different channel spacing conditions evaluate the performance of the method. Improved signal constellation and receiver sensitivity demonstrate the effectiveness of this approach. This results in over 4-dB OSNR of benefit when the system Q-factor reaches a forward error correction (FEC) threshold of 8.5 dB under less-than-baudrate channel spacing conditions.

  6. Mechanical Stretch-Induced Activation of ROS/RNS Signaling in Striated Muscle

    PubMed Central

    Ward, Christopher W.; Prosser, Benjamin L.

    2014-01-01

    Significance: Mechanical activation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) occurs in striated muscle and affects Ca2+ signaling and contractile function. ROS/RNS signaling is tightly controlled, spatially compartmentalized, and source specific. Recent Advances: Here, we review the evidence that within the contracting myocyte, the trans-membrane protein NADPH oxidase 2 (Nox2) is the primary source of ROS generated during contraction. We also review a newly characterized signaling cascade in cardiac and skeletal muscle in which the microtubule network acts as a mechanotransduction element that activates Nox2-dependent ROS generation during mechanical stretch, a pathway termed X-ROS signaling. Critical Issues: In the heart, X-ROS acts locally and affects the sarcoplasmic reticulum (SR) Ca2+ release channels (ryanodine receptors) and tunes Ca2+ signaling during physiological behavior, but excessive X-ROS can promote Ca2+-dependent arrhythmias in pathology. In skeletal muscle, X-ROS sensitizes Ca2+-permeable sarcolemmal “transient receptor potential” channels, a pathway that is critical for sustaining SR load during repetitive contractions, but when in excess, it is maladaptive in diseases such as Duchenne Musclar dystrophy. Future Directions: New advances in ROS/RNS detection as well as molecular manipulation of signaling pathways will provide critical new mechanistic insights into the details of X-ROS signaling. These efforts will undoubtedly reveal new avenues for therapeutic intervention in the numerous diseases of striated muscle in which altered mechanoactivation of ROS/RNS production has been identified. Antioxid. Redox Signal. 20, 929–936. PMID:23971496

  7. Discrete Dynamics Model for the Speract-Activated Ca2+ Signaling Network Relevant to Sperm Motility

    PubMed Central

    Espinal, Jesús; Aldana, Maximino; Guerrero, Adán; Wood, Christopher

    2011-01-01

    Understanding how spermatozoa approach the egg is a central biological issue. Recently a considerable amount of experimental evidence has accumulated on the relation between oscillations in intracellular calcium ion concentration ([Ca]) in the sea urchin sperm flagellum, triggered by peptides secreted from the egg, and sperm motility. Determination of the structure and dynamics of the signaling pathway leading to these oscillations is a fundamental problem. However, a biochemically based formulation for the comprehension of the molecular mechanisms operating in the axoneme as a response to external stimulus is still lacking. Based on experiments on the S. purpuratus sea urchin spermatozoa, we propose a signaling network model where nodes are discrete variables corresponding to the pathway elements and the signal transmission takes place at discrete time intervals according to logical rules. The validity of this model is corroborated by reproducing previous empirically determined signaling features. Prompted by the model predictions we performed experiments which identified novel characteristics of the signaling pathway. We uncovered the role of a high voltage-activated channel as a regulator of the delay in the onset of fluctuations after activation of the signaling cascade. This delay time has recently been shown to be an important regulatory factor for sea urchin sperm reorientation. Another finding is the participation of a voltage-dependent calcium-activated channel in the determination of the period of the fluctuations. Furthermore, by analyzing the spread of network perturbations we find that it operates in a dynamically critical regime. Our work demonstrates that a coarse-grained approach to the dynamics of the signaling pathway is capable of revealing regulatory sperm navigation elements and provides insight, in terms of criticality, on the concurrence of the high robustness and adaptability that the reproduction processes are predicted to have developed

  8. Signal Destruction Tunes the Zone of Activation in Spatially Distributed Signaling Networks.

    PubMed

    Silva, Kalinga Pavan; Chellamuthu, Prithiviraj; Boedicker, James Q

    2017-03-14

    Diverse microbial communities coordinate group behaviors through signal exchange, such as the exchange of acyl-homoserine lactones (AHLs) by Gram-negative bacteria. Cellular communication is prone to interference by neighboring microbes. One mechanism of interference is signal destruction through the production of an enzyme that cleaves the signaling molecule. Here we examine the ability of one such interference enzyme, AiiA, to modulate signal propagation in a spatially distributed system of bacteria. We have developed an experimental assay to measure signal transduction and implement a theoretical model of signaling dynamics to predict how the system responds to interference. We show that titration of an interfering strain into a signaling network tunes the spatial range of activation over the centimeter length scale, quantifying the robustness of the signaling network to signal destruction and demonstrating the ability to program systems-level responses of spatially heterogeneous cellular networks.

  9. Prodigiosin inhibits Wnt/β-catenin signaling and exerts anticancer activity in breast cancer cells

    PubMed Central

    Wang, Zhongyuan; Li, Bo; Zhou, Liang; Yu, Shubin; Su, Zijie; Song, Jiaxing; Sun, Qi; Sha, Ou; Wang, Xiaomei; Jiang, Wenqi; Willert, Karl; Wei, Lei; Carson, Dennis A.; Lu, Desheng

    2016-01-01

    Prodigiosin, a natural red pigment produced by numerous bacterial species, has exhibited promising anticancer activity; however, the molecular mechanisms of action of prodigiosin on malignant cells remain unclear. Aberrant activation of the Wnt/β-catenin signaling cascade is associated with numerous human cancers. In this study, we identified prodigiosin as a potent inhibitor of the Wnt/β-catenin pathway. Prodigiosin blocked Wnt/β-catenin signaling by targeting multiple sites of this pathway, including the low-density lipoprotein-receptor-related protein (LRP) 6, Dishevelled (DVL), and glycogen synthase kinase-3β (GSK3β). In breast cancer MDA-MB-231 and MDA-MB-468 cells, nanomolar concentrations of prodigiosin decreased phosphorylation of LRP6, DVL2, and GSK3β and suppressed β-catenin–stimulated Wnt target gene expression, including expression of cyclin D1. In MDA-MB-231 breast cancer xenografts and MMTV-Wnt1 transgenic mice, administration of prodigiosin slowed tumor progression and reduced the expression of phosphorylated LRP6, phosphorylated and unphosphorylated DVL2, Ser9 phosphorylated GSK3β, active β-catenin, and cyclin D1. Through its ability to inhibit Wnt/β-catenin signaling and reduce cyclin D1 levels, prodigiosin could have therapeutic activity in advanced breast cancers. PMID:27799526

  10. Kinase active Misshapen regulates Notch signaling in Drosophila melanogaster.

    PubMed

    Mishra, Abhinava K; Sachan, Nalani; Mutsuddi, Mousumi; Mukherjee, Ashim

    2015-11-15

    Notch signaling pathway represents a principal cellular communication system that plays a pivotal role during development of metazoans. Drosophila misshapen (msn) encodes a protein kinase, which is related to the budding yeast Ste20p (sterile 20 protein) kinase. In a genetic screen, using candidate gene approach to identify novel kinases involved in Notch signaling, we identified msn as a novel regulator of Notch signaling. Data presented here suggest that overexpression of kinase active form of Msn exhibits phenotypes similar to Notch loss-of-function condition and msn genetically interacts with components of Notch signaling pathway. Kinase active form of Msn associates with Notch receptor and regulate its signaling activity. We further show that kinase active Misshapen leads to accumulation of membrane-tethered form of Notch. Moreover, activated Msn also depletes Armadillo and DE-Cadherin from adherens junctions. Thus, this study provides a yet unknown mode of regulation of Notch signaling by Misshapen.

  11. The Luteinizing Hormone Receptor-Activated Extracellularly Regulated Kinase-1/2 Cascade Stimulates Epiregulin Release from Granulosa Cells

    PubMed Central

    Andric, Nebojsa; Ascoli, Mario

    2008-01-01

    We examine the pathways involved in the luteinizing hormone receptor (LHR)-dependent activation of the epidermal growth factor (EGF) network using cocultures of LHR-positive granulosa cells and LHR-negative test cells expressing an EGF receptor (EGFR)-green fluorescent protein fusion protein. Activation of the LHR in granulosa cells results in the release of EGF-like growth factors that are detected by measuring the phosphorylation of the EGFR-green fluorescent protein expressed only in the LHR-negative test cells. Using neutralizing antibodies and real-time PCR, we identified epiregulin as the main EGF-like growth factor produced upon activation of the LHR expressed in immature rat granulosa cells, and we show that exclusive inhibition or activation of the ERK1/2 cascade in granulosa cells prevents or enhances epiregulin release, respectively, with little or no effect on epiregulin expression. These results show that the LHR-stimulated ERK1/2 pathway stimulates epiregulin release. PMID:18653716

  12. A signaling cascade including ARID1A, GADD45B and DUSP1 induces apoptosis and affects the cell cycle of germ cell cancers after romidepsin treatment

    PubMed Central

    Nettersheim, Daniel; Jostes, Sina; Fabry, Martin; Honecker, Friedemann; Schumacher, Valerie; Kirfel, Jutta; Kristiansen, Glen; Schorle, Hubert

    2016-01-01

    In Western countries, the incidence of testicular germ cell cancers (GCC) is steadily rising over the last decades. Mostly, men between 20 and 40 years of age are affected. In general, patients suffering from GCCs are treated by orchiectomy and radio- or chemotherapy. Due to resistance mechanisms, intolerance to the therapy or denial of chemo- / radiotherapy by the patients, GCCs are still a lethal threat, highlighting the need for alternative treatment strategies. In this study, we revealed that germ cell cancer cell lines are highly sensitive to the histone deacetylase inhibitor romidepsin in vitro and in vivo, highlighting romidepsin as a potential therapeutic option for GCC patients. Romidepsin-mediated inhibition of histone deacetylases led to disturbances of the chromatin landscape. This resulted in locus-specific histone-hyper- or hypoacetylation. We found that hypoacetylation at the ARID1A promotor caused repression of the SWI/SNF-complex member ARID1A. In consequence, this resulted in upregulation of the stress-sensors and apoptosis-regulators GADD45B, DUSP1 and CDKN1A. RNAi-driven knock down of ARID1A mimicked in parts the effects of romidepsin, while CRISPR/Cas9-mediated deletion of GADD45B attenuated the romidepsin-provoked induction of apoptosis and cell cycle alterations. We propose a signaling cascade involving ARID1A, GADD45B and DUSP1 as mediators of the romidepsin effects in GCC cells. PMID:27572311

  13. A signaling cascade including ARID1A, GADD45B and DUSP1 induces apoptosis and affects the cell cycle of germ cell cancers after romidepsin treatment.

    PubMed

    Nettersheim, Daniel; Jostes, Sina; Fabry, Martin; Honecker, Friedemann; Schumacher, Valerie; Kirfel, Jutta; Kristiansen, Glen; Schorle, Hubert

    2016-11-15

    In Western countries, the incidence of testicular germ cell cancers (GCC) is steadily rising over the last decades. Mostly, men between 20 and 40 years of age are affected. In general, patients suffering from GCCs are treated by orchiectomy and radio- or chemotherapy. Due to resistance mechanisms, intolerance to the therapy or denial of chemo- / radiotherapy by the patients, GCCs are still a lethal threat, highlighting the need for alternative treatment strategies.In this study, we revealed that germ cell cancer cell lines are highly sensitive to the histone deacetylase inhibitor romidepsin in vitro and in vivo, highlighting romidepsin as a potential therapeutic option for GCC patients.Romidepsin-mediated inhibition of histone deacetylases led to disturbances of the chromatin landscape. This resulted in locus-specific histone-hyper- or hypoacetylation. We found that hypoacetylation at the ARID1A promotor caused repression of the SWI/SNF-complex member ARID1A. In consequence, this resulted in upregulation of the stress-sensors and apoptosis-regulators GADD45B, DUSP1 and CDKN1A. RNAi-driven knock down of ARID1A mimicked in parts the effects of romidepsin, while CRISPR/Cas9-mediated deletion of GADD45B attenuated the romidepsin-provoked induction of apoptosis and cell cycle alterations.We propose a signaling cascade involving ARID1A, GADD45B and DUSP1 as mediators of the romidepsin effects in GCC cells.

  14. MicroRNA analysis suggests an additional level of feedback regulation in the NF-κB signaling cascade.

    PubMed

    Mechtler, Peter; Singhal, Ruchi; Kichina, Julia V; Bard, Jonathan E; Buck, Michael J; Kandel, Eugene S

    2015-07-10

    It is increasingly clear that the biological functions of a transcription factor cannot be fully understood solely on the basis of protein-coding genes that fall under its control. Many transcription factors regulate expression of miRNAs, which affect the cell by modulating translation and stability of mRNAs. The identities and the roles of NF-κB-regulated miRNAs have been attracting research interest for a long time. We revisited this issue in a system with controlled expression of one of the key regulators of NF-κB, RIPK1. Several regulated miRNAs were identified, including miR-146a, miR-215 and miR-497. The miRNAs were also inducible by IL-1β, but not when NF-κB activity was repressed by mutant IκBα. The presence of a miR-497 site was predicted in the 3'-UTR of IKBKB gene, which encodes IKKβ. Using appropriately engineered reporters, we confirmed that this site can be a target of suppressive action of miR-497. Our findings suggest that NF-κB controls expression of a miRNA, which may reduce production of IKKβ. Considering the role of IKKβ in the canonical pathway of NF-κB activation, our observations may indicate a new mechanism that modulates the magnitude of such activation, as well as the propensity of a cell to engage canonical vs. non-canonical pathways.

  15. RcsB-BglJ-mediated activation of Cascade operon does not induce the maturation of CRISPR RNAs in E. coli K12.

    PubMed

    Arslan, Zihni; Stratmann, Thomas; Wurm, Reinhild; Wagner, Rolf; Schnetz, Karin; Pul, Ümit

    2013-05-01

    Prokaryotic immunity against foreign nucleic acids mediated by clustered, regularly interspaced, short palindromic repeats (CRISPR) depends on the expression of the CRISPR-associated (Cas) proteins and the formation of small CRISPR RNAs (crRNAs). The crRNA-loaded Cas ribonucleoprotein complexes convey the specific recognition and inactivation of target nucleic acids. In E. coli K12, the maturation of crRNAs and the interference with target DNA is performed by the Cascade complex. The transcription of the Cascade operon is tightly repressed through H-NS-dependent inhibition of the Pcas promoter. Elevated levels of the LysR-type regulator LeuO induce the Pcas promoter and concomitantly activate the CRISPR-mediated immunity against phages. Here, we show that the Pcas promoter can also be induced by constitutive expression of the regulator BglJ. This activation is LeuO-dependent as heterodimers of BglJ and RcsB activate leuO transcription. Each transcription factor, LeuO or BglJ, induced the transcription of the Cascade genes to comparable amounts. However, the maturation of the crRNAs was activated in LeuO but not in BglJ-expressing cells. Studies on CRISPR promoter activities, transcript stabilities, crRNA processing and Cascade protein levels were performed to answer the question why crRNA maturation is defective in BglJ-expressing cells. Our results demonstrate that the activation of Cascade gene transcription is necessary but not sufficient to turn on the CRISPR-mediated immunity and suggest a more complex regulation of the type I-E CRISPR-Cas system in E. coli.

  16. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    SciTech Connect

    Voss, Kelsey; Amaya, Moushimi; Mueller, Claudius; Roberts, Brian; Kehn-Hall, Kylene; Bailey, Charles; Petricoin, Emanuel; Narayanan, Aarthi

    2014-11-15

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells.

  17. Hypoxia-inducible factor 1/heme oxygenase 1 cascade as upstream signals in the prolife role of heat shock protein 70 at rostral ventrolateral medulla during experimental brain stem death.

    PubMed

    Chang, Alice Y W; Chan, Julie Y H; Cheng, Hsiao-Lei; Tsai, Ching-Yi; Chan, Samuel H H

    2009-12-01

    As the origin of a life-and-death signal that reflects central cardiovascular regulatory failure during brain stem death, the rostral ventrolateral medulla (RVLM) is a suitable neural substrate to delineate the cellular mechanisms of this fateful phenomenon. Based on a clinically relevant animal model that used the organophosphate pesticide mevinphos (Mev) as the experimental insult, we reported previously that heat shock protein 70 (HSP70) in RVLM plays a prolife role by ameliorating circulatory depression during brain stem death. Because Mev also elicits significant hypoxia in RVLM, this study evaluated the hypothesis that the hypoxia-inducible factor 1 (HIF-1)/heme oxygenase 1 (HO-1) cascade acts as upstream signals in the prolife role of HSP70 at RVLM during experimental brain stem death. In Sprague-Dawley rats maintained under propofol anesthesia, transcription activity assay or Western blot analysis revealed an enhancement of nuclear activity of HIF-1alpha or augmentation of HO-1 and HSP70 expression in RVLM preferentially during the prolife phase of Mev intoxication. Loss-of-function manipulations in RVLM using HIF-1alpha, HIF-1beta, or HO-1 antiserum or antisense hif-1alpha or ho-1 oligonucleotide significantly antagonized the preferential upregulation of HSP70, depressed the sustained cardiovascular regulatory machinery during the prolife phase, and exacerbated circulatory depression during the prodeath phase. Immunoneutralization of HIF-1alpha also blunted the preferential increase in HO-1 expression. We conclude that the repertoire of cellular events in RVLM during the prolife phase in our Mev intoxication of brain stem death triggered by hypoxia entails sequential activation of HIF-1, HO-1, and HSP70, leading to neuroprotection by amelioration of cardiovascular depression.

  18. MicroRNA analysis suggests an additional level of feedback regulation in the NF-κB signaling cascade

    PubMed Central

    Kichina, Julia V.; Bard, Jonathan E.; Buck, Michael J.; Kandel, Eugene S.

    2015-01-01

    It is increasingly clear that the biological functions of a transcription factor cannot be fully understood solely on the basis of protein-coding genes that fall under its control. Many transcription factors regulate expression of miRNAs, which affect the cell by modulating translation and stability of mRNAs. The identities and the roles of NF-κB-regulated miRNAs have been attracting research interest for a long time. We revisited this issue in a system with controlled expression of one of the key regulators of NF-κB, RIPK1. Several regulated miRNAs were identified, including miR-146a, miR-215 and miR-497. The miRNAs were also inducible by IL-1β, but not when NF-κB activity was repressed by mutant IκBα. The presence of a miR-497 site was predicted in the 3′-UTR of IKBKB gene, which encodes IKKβ. Using appropriately engineered reporters, we confirmed that this site can be a target of suppressive action of miR-497. Our findings suggest that NF-κB controls expression of a miRNA, which may reduce production of IKKβ. Considering the role of IKKβ in the canonical pathway of NF-κB activation, our observations may indicate a new mechanism that modulates the magnitude of such activation, as well as the propensity of a cell to engage canonical vs. non-canonical pathways. PMID:26020802

  19. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK-PKC-CBP signaling cascade.

    PubMed

    Arya, Aditya; Gangwar, Anamika; Singh, Sushil Kumar; Roy, Manas; Das, Mainak; Sethy, Niroj Kumar; Bhargava, Kalpana

    2016-01-01

    Structural and functional integrity of the brain is adversely affected by reduced oxygen saturation, especially during chronic hypoxia exposure and often encountered by altitude travelers or dwellers. Hypoxia-induced generation of reactive nitrogen and oxygen species reportedly affects the cortex and hippocampus regions of the brain, promoting memory impairment and cognitive dysfunction. Cerium oxide nanoparticles (CNPs), also known as nanoceria, switch between +3 and +4 oxidation states and reportedly scavenge superoxide anions, hydrogen peroxide, and peroxynitrite in vivo. In the present study, we evaluated the neuroprotective as well as the cognition-enhancing activities of nanoceria during hypobaric hypoxia. Using polyethylene glycol-coated 3 nm nanoceria (PEG-CNPs), we have demonstrated efficient localization of PEG-CNPs in rodent brain. This resulted in significant reduction of oxidative stress and associated damage during hypoxia exposure. Morris water maze-based memory function tests revealed that PEG-CNPs ameliorated hypoxia-induced memory impairment. Using microscopic, flow cytometric, and histological studies, we also provide evidences that PEG-CNPs augmented hippocampus neuronal survival and promoted neurogenesis. Molecular studies revealed that PEG-CNPs promoted neurogenesis through the 5'-adenine monophosphate-activated protein kinase-protein kinase C-cyclic adenosine monophosphate response element-binding protein binding (AMPK-PKC-CBP) protein pathway. Our present study results suggest that nanoceria can be translated as promising therapeutic molecules for neurodegenerative diseases.

  20. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK–PKC–CBP signaling cascade

    PubMed Central

    Arya, Aditya; Gangwar, Anamika; Singh, Sushil Kumar; Roy, Manas; Das, Mainak; Sethy, Niroj Kumar; Bhargava, Kalpana

    2016-01-01

    Structural and functional integrity of the brain is adversely affected by reduced oxygen saturation, especially during chronic hypoxia exposure and often encountered by altitude travelers or dwellers. Hypoxia-induced generation of reactive nitrogen and oxygen species reportedly affects the cortex and hippocampus regions of the brain, promoting memory impairment and cognitive dysfunction. Cerium oxide nanoparticles (CNPs), also known as nanoceria, switch between +3 and +4 oxidation states and reportedly scavenge superoxide anions, hydrogen peroxide, and peroxynitrite in vivo. In the present study, we evaluated the neuroprotective as well as the cognition-enhancing activities of nanoceria during hypobaric hypoxia. Using polyethylene glycol-coated 3 nm nanoceria (PEG-CNPs), we have demonstrated efficient localization of PEG-CNPs in rodent brain. This resulted in significant reduction of oxidative stress and associated damage during hypoxia exposure. Morris water maze-based memory function tests revealed that PEG-CNPs ameliorated hypoxia-induced memory impairment. Using microscopic, flow cytometric, and histological studies, we also provide evidences that PEG-CNPs augmented hippocampus neuronal survival and promoted neurogenesis. Molecular studies revealed that PEG-CNPs promoted neurogenesis through the 5′-adenine monophosphate-activated protein kinase–protein kinase C–cyclic adenosine monophosphate response element-binding protein binding (AMPK-PKC-CBP) protein pathway. Our present study results suggest that nanoceria can be translated as promising therapeutic molecules for neurodegenerative diseases. PMID:27069362

  1. A hot-spot-active magnetic graphene oxide substrate for microRNA detection based on cascaded chemiluminescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Bi, Sai; Chen, Min; Jia, Xiaoqiang; Dong, Ying

    2015-02-01

    Herein, a cascaded chemiluminescence resonance energy transfer (C-CRET) process was demonstrated from horseradish peroxidase (HRP)-mimicking DNAzyme-catalyzed luminol-H2O2 to fluorescein and further to graphene oxide (GO) when HRP-mimicking DNAzyme/fluorescein was in close proximity to the GO surface. The proposed C-CRET system was successfully implemented to construct three modes of C-CRET hot-spot-active substrates (modes I, II and III) by covalently immobilizing HRP-mimicking DNAzyme/fluorescein-labeled hairpin DNAs (hot-spot-generation probes) on magnetic GO (MGO), resulting in a signal ``off'' state due to the quenching of the luminol/H2O2/HRP-mimicking DNAzyme/fluorescein CRET system by GO. Upon the introduction of microRNA-122 (miRNA-122), the targets (mode I) or the new triggers that were generated through a strand displacement reaction (SDR) initiated by miRNA-122 (modes II and III) hybridized with the loop domains of hairpin probes on MGO to form double-stranded (modes I and II) or triplex-stem structures (mode III), causing an ``open'' configuration of the hairpin probe and a CRET signal ``on'' state, thus achieving sensitive and selective detection of miRNA-122. More importantly, the substrate exhibited excellent controllability, reversibility and reproducibility through SDR and magnetic separation (modes II and III), especially sequence-independence for hairpin probes in mode III, holding great potential for the development of a versatile platform for optical biosensing.Herein, a cascaded chemiluminescence resonance energy transfer (C-CRET) process was demonstrated from horseradish peroxidase (HRP)-mimicking DNAzyme-catalyzed luminol-H2O2 to fluorescein and further to graphene oxide (GO) when HRP-mimicking DNAzyme/fluorescein was in close proximity to the GO surface. The proposed C-CRET system was successfully implemented to construct three modes of C-CRET hot-spot-active substrates (modes I, II and III) by covalently immobilizing HRP-mimicking DNAzyme

  2. Activation of the cell integrity pathway is channelled through diverse signalling elements in fission yeast.

    PubMed

    Barba, Gregorio; Soto, Teresa; Madrid, Marisa; Núñez, Andrés; Vicente, Jeronima; Gacto, Mariano; Cansado, José

    2008-04-01

    MAPK Pmk1p is the central element of a cascade involved in the maintenance of cell integrity and other functions in Schizosaccharomyces pombe. Pmk1p becomes activated by multiple stressing situations and also during cell separation. GTPase Rho2p acts upstream of the protein kinase C homolog Pck2p to activate the Pmk1 signalling pathway through direct interaction with MAPKKK Mkh1p. In this work we analyzed the functional significance of both Rho2p and Pck2p in the transduction of various stress signals by the cell integrity pathway. The results indicate that basal Pmk1p activity can be positively regulated by alternative mechanisms which are independent on the control by Rho2p and/or Pck2p. Unexpectedly, Pck1p, another protein kinase C homolog, negatively modulates Pmk1p basal activity by an unknown mechanism. Moreover, different elements appear to regulate the stress-induced activation of Pmk1p depending on the nature of the triggering stimuli. Whereas Pmk1p activation induced by hyper- or hypotonic stresses is channeled through Rho2p-Pck2p, other stressors, like glucose deprivation or cell wall disturbance, are transduced via other pathways in addition to that of Rho2p-Pck2p. On the contrary, Pmk1p activation observed during cell separation or after treatment with hydrogen peroxide does not involve Rho2p-Pck2p. Finally, Pck2p function is critical to maintain a Pmk1p basal activity that allows Pmk1p activation induced by heat stress. These data demonstrate the existence of a complex signalling network modulating Pmk1p activation in response to a variety of stresses in fission yeast.

  3. Human ECG signal parameters estimation during controlled physical activity

    NASA Astrophysics Data System (ADS)

    Maciejewski, Marcin; Surtel, Wojciech; Dzida, Grzegorz

    2015-09-01

    ECG signal parameters are commonly used indicators of human health condition. In most cases the patient should remain stationary during the examination to decrease the influence of muscle artifacts. During physical activity, the noise level increases significantly. The ECG signals were acquired during controlled physical activity on a stationary bicycle and during rest. Afterwards, the signals were processed using a method based on Pan-Tompkins algorithms to estimate their parameters and to test the method.

  4. Single molecule analysis of B cell receptor motion during signaling activation

    NASA Astrophysics Data System (ADS)

    Rey Suarez, Ivan; Koo, Peter; Mochrie, Simon; Song, Wenxia; Upadhyaya, Arpita

    B cells are an essential part of the adaptive immune system. They patrol the body looking for signs of infection in the form of antigen on the surface of antigen presenting cells. The binding of the B cell receptor (BCR) to antigen induces signaling cascades that lead to B cell activation and eventual production of high affinity antibodies. During activation, BCR organize into signaling microclusters, which are platforms for signal amplification. The physical processes underlying receptor movement and aggregation are not well understood. Here we study the dynamics of single BCRs on activated murine primary B cells using TIRF imaging and single particle tracking. The tracks obtained are analyzed using perturbation expectation-maximization (pEM) a systems-level analysis that allows the identification of different short-time diffusive states from a set of single particle tracks. We identified five different diffusive states on wild type cells, which correspond to different molecular states of the BCR. By using actin polymerization inhibitors and mutant cells lacking important actin regulators we were able to identify the BCR molecule configuration associated with each diffusive state.

  5. Potentiation of acid-sensing ion channel activity by peripheral group I metabotropic glutamate receptor signaling.

    PubMed

    Gan, Xiong; Wu, Jing; Ren, Cuixia; Qiu, Chun-Yu; Li, Yan-Kun; Hu, Wang-Ping

    2016-05-01

    Glutamate activates peripheral group I metabotropic glutamate receptors (mGluRs) and contributes to inflammatory pain. However, it is still not clear the mechanisms are involved in group I mGluR-mediated peripheral sensitization. Herein, we report that group I mGluRs signaling sensitizes acid-sensing ion channels (ASICs) in dorsal root ganglion (DRG) neurons and contributes to acidosis-evoked pain. DHPG, a selective group I mGluR agonist, can potentiate the functional activity of ASICs, which mediated the proton-induced events. DHPG concentration-dependently increased proton-gated currents in DRG neurons. It shifted the proton concentration-response curve upwards, with a 47.3±7.0% increase of the maximal current response to proton. Group I mGluRs, especially mGluR5, mediated the potentiation of DHPG via an intracellular cascade. DHPG potentiation of proton-gated currents disappeared after inhibition of intracellular Gq/11 proteins, PLCβ, PKC or PICK1 signaling. Moreover, DHPG enhanced proton-evoked membrane excitability of rat DRG neurons and increased the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, peripherally administration of DHPG dose-dependently exacerbated nociceptive responses to intraplantar injection of acetic acid in rats. Potentiation of ASIC activity by group I mGluR signaling in rat DRG neurons revealed a novel peripheral mechanism underlying group I mGluRs involvement in hyperalgesia.

  6. Simultaneous EEG-fMRI Reveals a Temporal Cascade of Task-Related and Default-Mode Activations During a Simple Target Detection Task

    PubMed Central

    Walz, Jennifer M.; Goldman, Robin I.; Carapezza, Michael; Muraskin, Jordan; Brown, Truman R.; Sajda, Paul

    2013-01-01

    Focused attention continuously and inevitably fluctuates, and to completely understand the mechanisms responsible for these modulations it is necessary to localize the brain regions involved. During a simple visual oddball task, neural responses measured by electroencephalography (EEG) modulate primarily with attention, but source localization of the correlates is a challenge. In this study we use single-trial analysis of simultaneously-acquired scalp EEG and functional magnetic resonance image (fMRI) data to investigate the blood oxygen level dependent (BOLD) correlates of modulations in task-related attention, and we unravel the temporal cascade of these transient activations. We hypothesize that activity in brain regions associated with various task-related cognitive processes modulates with attention, and that their involvements occur transiently in a specific order. We analyze the fMRI BOLD signal by first regressing out the variance linked to observed stimulus and behavioral events. We then correlate the residual variance with the trial-to-trial variation of EEG discriminating components for identical stimuli, estimated at a sequence of times during a trial. Post-stimulus and early in the trial, we find activations in right-lateralized frontal regions and lateral occipital cortex, areas that are often linked to task-dependent processes, such as attentional orienting, and decision certainty. After the behavioral response we see correlates in areas often associated with the default-mode network and introspective processing, including precuneus, angular gyri, and posterior cingulate cortex. Our results demonstrate that during simple tasks both task-dependent and default-mode networks are transiently engaged, with a distinct temporal ordering and millisecond timescale. PMID:23962956

  7. Simultaneous EEG-fMRI reveals a temporal cascade of task-related and default-mode activations during a simple target detection task.

    PubMed

    Walz, Jennifer M; Goldman, Robin I; Carapezza, Michael; Muraskin, Jordan; Brown, Truman R; Sajda, Paul

    2014-11-15

    Focused attention continuously and inevitably fluctuates, and to completely understand the mechanisms responsible for these modulations it is necessary to localize the brain regions involved. During a simple visual oddball task, neural responses measured by electroencephalography (EEG) modulate primarily with attention, but source localization of the correlates is a challenge. In this study we use single-trial analysis of simultaneously-acquired scalp EEG and functional magnetic resonance image (fMRI) data to investigate the blood oxygen level dependent (BOLD) correlates of modulations in task-related attention, and we unravel the temporal cascade of these transient activations. We hypothesize that activity in brain regions associated with various task-related cognitive processes modulates with attention, and that their involvements occur transiently in a specific order. We analyze the fMRI BOLD signal by first regressing out the variance linked to observed stimulus and behavioral events. We then correlate the residual variance with the trial-to-trial variation of EEG discriminating components for identical stimuli, estimated at a sequence of times during a trial. Post-stimulus and early in the trial, we find activations in right-lateralized frontal regions and lateral occipital cortex, areas that are often linked to task-dependent processes, such as attentional orienting, and decision certainty. After the behavioral response we see correlates in areas often associated with the default-mode network and introspective processing, including precuneus, angular gyri, and posterior cingulate cortex. Our results demonstrate that during simple tasks both task-dependent and default-mode networks are transiently engaged, with a distinct temporal ordering and millisecond timescale.

  8. Regulatory Activity of Polyunsaturated Fatty Acids in T-Cell Signaling

    PubMed Central

    Kim, Wooki; Khan, Naim A.; McMurray, David N.; Prior, Ian A.; Wang, Naisyin; Chapkin, Robert S.

    2010-01-01

    n-3 polyunsaturated fatty acids (PUFA) are considered to be authentic immunosuppressors and appear to exert beneficial effects with respect to certain immune-mediated diseases. In addition to promoting T-helper 1 (Th1) cell to T-helper 2 (Th2) cell effector T-cell differentiation, n-3 PUFA may also exert anti-inflammatory actions by inducing apoptosis in Th1 cells. With respect to mechanisms of action, effects range from the modulation of membrane receptors to gene transcription via perturbation of a number of second messenger cascades. In this review, the putative targets of anti-inflammatory n-3 PUFA, activated during early and late events of T-cell activation will be discussed. Studies have demonstrated that these fatty acids alter plasma membrane micro-organization (lipid rafts) at the immunological synapse, the site where T-cells and antigen presenting cells (APC) form a physical contact for antigen initiated T-cell signaling. In addition, the production of diacylglycerol and the activation of different isoforms of protein kinase C (PKC), mitogen activated protein kinase (MAPK), calcium signaling, and nuclear translocation/activation of transcriptional factors, can be modulated by n-3 PUFA. Advantages and limitations of diverse methodologies to study the membrane lipid raft hypothesis, as well as apparent contradictions regarding the effect of n-3 PUFA on lipid rafts will be critically presented. PMID:20176053

  9. Activation of DNA damage response signaling by condensed chromatin.

    PubMed

    Burgess, Rebecca C; Burman, Bharat; Kruhlak, Michael J; Misteli, Tom

    2014-12-11

    The DNA damage response (DDR) occurs in the context of chromatin, and architectural features of chromatin have been implicated in DNA damage signaling and repair. Whereas a role of chromatin decondensation in the DDR is well established, we show here that chromatin condensation is integral to DDR signaling. We find that, in response to DNA damage chromatin regions transiently expand before undergoing extensive compaction. Using a protein-chromatin-tethering system to create defined chromatin domains, we show that interference with chromatin condensation results in failure to fully activate DDR. Conversely, forced induction of local chromatin condensation promotes ataxia telangiectasia mutated (ATM)- and ATR-dependent activation of upstream DDR signaling in a break-independent manner. Whereas persistent chromatin compaction enhanced upstream DDR signaling from irradiation-induced breaks, it reduced recovery and survival after damage. Our results demonstrate that chromatin condensation is sufficient for activation of DDR signaling and is an integral part of physiological DDR signaling.

  10. Pseudomonas quinolone signalling system: a component of quorum sensing cascade is a crucial player in the acute urinary tract infection caused by Pseudomonas aeruginosa.

    PubMed

    Bala, Anju; Chhibber, Sanjay; Harjai, Kusum

    2014-11-01

    Pseudomonas aeruginosa is an opportunistic pathogen which employs quorum sensing system to regulate several genes required for its survival and pathogenicity within the host. Besides acylhomoserine lactone (AHL) mediated las and rhl systems, this organism possesses Pseudomonas quinolone signalling (PQS) system based on alkyl quinolone signal molecules. The quinolone system represents another layer of sophistication in the complex quorum sensing cascade. Therefore, in the present study, we evaluated the contribution of the PQS system in the establishment of acute urinary tract infection (UTI) in the mouse model. For this, wild-type parent strain of P. aeruginosa MPAO1 and its isogenic single transposon mutant strains pqsH and pqsA were employed to induce UTI in mice. PQS molecules in the tissue homogenates of mice were detected by high performance thin layer chromatography (HP-TLC) method. Virulence of strains was assessed in terms of bacteriological count, histopathological lesions in the renal and bladder tissue and generation of pathological index markers like reactive nitrogen intermediates and malondialdehyde. HP-TLC analysis showed presence of PQS molecules in the renal and bladder tissue of mice infected with MPAO1 while no PQS was detected in case of pqsH and pqsA mutant strains. Results indicated that MPAO1 possessing fully functional PQS biosynthetic genes was highly virulent and caused acute pyelonephritis with severe inflammation and tissue destruction. On the contrary, significant reduction in the log count, mild tissue damage and declined levels of pathological markers were observed in mice infected with mutant strains as compared to MPAO1. Further among mutants, all these parameters were maximally impaired in the pqsA mutant in which synthesis of alkyl quinolones was completely abolished due to the transposon mutation in respective gene. Virulence of the pqsH mutant strain was lesser than that of the MPAO1 but higher than pqsA mutant. In addition, the

  11. Inhibition of mitogen-activated protein kinase-extracellular signal-regulated kinase disrupts latent inhibition of cued fear conditioning in C57BL/6 mice.

    PubMed

    Lewis, Michael C; Davis, Jennifer A; Gould, Thomas J

    2004-12-01

    The mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) cascade has been implicated in a variety of associative conditioning tasks. However, the role of the MAPK-ERK cascades in modulating conditioning is less clear. The authors examined the effect of the potent and selective MAPK-ERK inhibitor SL327 on latent inhibition of cued fear conditioning. The results demonstrate that 50 mg/kg and 100 mg/kg SL327 disrupt latent inhibition of cued fear conditioning. These data provide evidence for an essential role of the MAPK-ERK cascade in tasks that modulate the strength of associative conditioning. The results are discussed in relation to the molecular mechanisms that support latent inhibition of cued fear conditioning.

  12. A Cell-Autonomous Molecular Cascade Initiated by AMP-Activated Protein Kinase Represses Steroidogenesis

    PubMed Central

    Abdou, Houssein S.; Bergeron, Francis

    2014-01-01

    Steroid hormones regulate essential physiological processes, and inadequate levels are associated with various pathological conditions. In testosterone-producing Leydig cells, steroidogenesis is strongly stimulated by luteinizing hormone (LH) via its receptor leading to increased cyclic AMP (cAMP) production and expression of the steroidogenic acute regulatory (STAR) protein, which is essential for the initiation of steroidogenesis. Steroidogenesis then passively decreases with the degradation of cAMP into AMP by phosphodiesterases. In this study, we show that AMP-activated protein kinase (AMPK) is activated following cAMP-to-AMP breakdown in MA-10 and MLTC-1 Leydig cells. Activated AMPK then actively inhibits cAMP-induced steroidogenesis by repressing the expression of key regulators of steroidogenesis, including Star and Nr4a1. Similar results were obtained in Y-1 adrenal cells and in the constitutively steroidogenic R2C cells. We have also determined that maximum AMPK activation following stimulation of steroidogenesis in MA-10 Leydig cells occurs when steroid hormone production has reached a plateau. Our data identify AMPK as a molecular rheostat that actively represses steroid hormone biosynthesis to preserve cellular energy homeostasis and prevent excess steroid production. PMID:25225331

  13. MicroRNA-374a activates Wnt/β-catenin signaling to promote breast cancer metastasis.

    PubMed

    Cai, Junchao; Guan, Hongyu; Fang, Lishan; Yang, Yi; Zhu, Xun; Yuan, Jie; Wu, Jueheng; Li, Mengfeng

    2013-02-01

    Tumor metastasis involves a series of biological steps during which the tumor cells acquire the ability to invade surrounding tissues and survive outside the original tumor site. During the early stages, the cancer cells undergo an epithelial-mesenchymal transition (EMT). Wnt/β-catenin signaling is known to drive EMT and metastasis. Here we report that Wnt/β-catenin signaling is hyperactivated in metastatic breast cancer cells that express microRNA 374a (miR-374a). In breast cancer cell lines, ectopic overexpression of miR-374a promoted EMT and metastasis both in vitro and in vivo. Furthermore, miR-374a directly targeted and suppressed multiple negative regulators of the Wnt/β-catenin signaling cascade, including WIF1, PTEN, and WNT5A. Notably, miR-374a was markedly upregulated in primary tumor samples from patients with distant metastases and was associated with poor metastasis-free survival. These results demonstrate that miR-374a maintains constitutively activated Wnt/β-catenin signaling and may represent a therapeutic target for early metastatic breast cancer.

  14. Activation of the MAP Kinase Cascade by Exogenous Calcium-Sensing Receptor

    SciTech Connect

    Hobson, Susan A.; Wright, Jay W.; Lee, Fred; Mcneil, Scott; Bilderback, Tim R.; Rodland, Karin D.

    2003-02-01

    In Rat-1 fibroblasts and ovarian surface epithelial cells, extracellular calcium induces a proliferative response which appears to be mediated by the G-protein coupled Calcium-sensing Receptor (CaR), as expression of the non-functional CaR-R795W mutant inhibits both thymidine incorporation and activation of the extracellular-regulated kinase (ERK) in response to calcium. In this report we utilized CaR-transfected HEK293 cells to demonstrate that functional CaR is necessary and sufficient for calcium-induced ERK activation. CaR-dependent ERK activation was blocked by co-expression of the Ras dominant-negative mutant, Ras N17, and by exposure to the phosphatidyl inositol 3' kinase inhibitors wortmannin and LY294002. In contrast to Rat-1 fibroblasts, CaR-mediated in vitro kinase activity of ERK2 was unaffected by tyrosine kinase inhibitor herbimycin in CaR-transfected HEK293 cells. These results suggest that usage of distinct pathways downstream of the CaR varies in a cell-type specific manner, suggesting a potential mechanism by which activation of the CaR could couple to distinct calcium-dependent responses.

  15. Phonological Activation of Ignored Pictures: Further Evidence for a Cascade Model of Lexical Access

    ERIC Educational Resources Information Center

    Navarrete, Eduardo; Costa, Albert

    2005-01-01

    Four experiments are reported exploring whether distractor pictures activate their phonological properties in the course of speech production. In Experiment 1, participants were presented with two pictures and were asked to name one while ignoring the other. Distractor pictures were phonologically related, semantically related or unrelated to the…

  16. Ceramide 1-Phosphate Increases P-Glycoprotein Transport Activity at the Blood-Brain Barrier via Prostaglandin E2 Signaling.

    PubMed

    Mesev, Emily V; Miller, David S; Cannon, Ronald E

    2017-04-01

    P-glycoprotein, an ATP-driven efflux pump, regulates permeability of the blood-brain barrier (BBB). Sphingolipids, endogenous to brain tissue, influence inflammatory responses and cell survival in vitro. Our laboratory has previously shown that sphingolipid signaling by sphingosine 1-phosphate decreases basal P-glycoprotein transport activity. Here, we investigated the potential for another sphingolipid, ceramide 1-phosphate (C1P), to modulate efflux pumps at the BBB. Using confocal microscopy and measuring luminal accumulation of fluorescent substrates, we assessed the transport activity of several efflux pumps in isolated rat brain capillaries. C1P treatment induced P-glycoprotein transport activity in brain capillaries rapidly and reversibly. In contrast, C1P did not affect transport activity of two other major efflux transporters, multidrug resistance protein 2 and breast cancer resistance protein. C1P induced P-glycoprotein transport activity without changing transporter protein expression. Inhibition of the key signaling components in the cyclooxygenase-2 (COX-2)/prostaglandin E2 signaling cascade (phospholipase A2, COX-2, multidrug resistance protein 4, and G-protein-coupled prostaglandin E2 receptors 1 and 2), abolished P-glycoprotein induction by C1P. We show that COX-2 and prostaglandin E2 are required for C1P-mediated increases in P-glycoprotein activity independent of transporter protein expression. This work describes how C1P activates a signaling cascade to dynamically regulate P-glycoprotein transport at the BBB and offers potential clinical targets to modulate neuroprotection and drug delivery to the CNS.

  17. Ceramide 1-Phosphate Increases P-Glycoprotein Transport Activity at the Blood-Brain Barrier via Prostaglandin E2 Signaling

    PubMed Central

    Mesev, Emily V.; Miller, David S.

    2017-01-01

    P-glycoprotein, an ATP-driven efflux pump, regulates permeability of the blood-brain barrier (BBB). Sphingolipids, endogenous to brain tissue, influence inflammatory responses and cell survival in vitro. Our laboratory has previously shown that sphingolipid signaling by sphingosine 1-phosphate decreases basal P-glycoprotein transport activity. Here, we investigated the potential for another sphingolipid, ceramide 1-phosphate (C1P), to modulate efflux pumps at the BBB. Using confocal microscopy and measuring luminal accumulation of fluorescent substrates, we assessed the transport activity of several efflux pumps in isolated rat brain capillaries. C1P treatment induced P-glycoprotein transport activity in brain capillaries rapidly and reversibly. In contrast, C1P did not affect transport activity of two other major efflux transporters, multidrug resistance protein 2 and breast cancer resistance protein. C1P induced P-glycoprotein transport activity without changing transporter protein expression. Inhibition of the key signaling components in the cyclooxygenase-2 (COX-2)/prostaglandin E2 signaling cascade (phospholipase A2, COX-2, multidrug resistance protein 4, and G-protein–coupled prostaglandin E2 receptors 1 and 2), abolished P-glycoprotein induction by C1P. We show that COX-2 and prostaglandin E2 are required for C1P-mediated increases in P-glycoprotein activity independent of transporter protein expression. This work describes how C1P activates a signaling cascade to dynamically regulate P-glycoprotein transport at the BBB and offers potential clinical targets to modulate neuroprotection and drug delivery to the CNS. PMID:28119480

  18. Soma influences GSC progeny differentiation via the cell adhesion-mediated steroid-let-7-Wingless signaling cascade that regulates chromatin dynamics

    PubMed Central

    König, Annekatrin; Shcherbata, Halyna R.

    2015-01-01

    ABSTRACT It is known that signaling from the germline stem cell niche is required to maintain germline stem cell identity in Drosophila. However, it is not clear whether the germline stem-cell daughters differentiate by default (because they are physically distant from the niche) or whether additional signaling is necessary to initiate the differentiation program. Previously, we showed that ecdysteroid signaling cell non-autonomously regulates early germline differentiation via its soma-specific co-activator and co-repressor, Taiman and Abrupt. Now, we demonstrate that this regulation is modulated by the miRNA let-7, which acts in a positive feedback loop to confer ecdysone signaling robustness via targeting its repressor, the transcription factor Abrupt. This feedback loop adjusts ecdysteroid signaling in response to some stressful alterations in the external and internal conditions, which include temperature stress and aging, but not nutritional deprivation. Upon let-7 deficit, escort cells fail to properly differentiate: their shape, division, and cell adhesive characteristics are perturbed. These cells have confused cellular identity and form columnar-like rather than squamous epithelium and fail to send protrusions in between differentiating germline cysts, affecting soma-germline communication. Particularly, levels of the homophilic cell adhesion protein Cadherin, which recruits Wg signaling transducer β-catenin, are increased in mutant escort cells and, correspondingly, in the adjacent germline cells. Readjustment of heterotypic (soma-germline) cell adhesion modulates Wg signaling intensity in the germline, which in turn regulates histone modifications that promote expression of the genes necessary to trigger early germline differentiation. Thus, our data first show the intrinsic role for Wg signaling in the germline and support a model where the soma influences the tempo of germline differentiation in response to external conditions. PMID:25661868

  19. Hybrid coordination-network-engineering for bridging cascaded channels to activate long persistent phosphorescence in the second biological window

    NASA Astrophysics Data System (ADS)

    Qin, Xixi; Li, Yang; Zhang, Ruili; Ren, Jinjun; Gecevicius, Mindaugas; Wu, Yiling; Sharafudeen, Kaniyarakkal; Dong, Guoping; Zhou, Shifeng; Ma, Zhijun; Qiu, Jianrong

    2016-02-01

    We present a novel “Top-down” strategy to design the long phosphorescent phosphors in the second biological transparency window via energy transfer. Inherence in this approach to material design involves an ingenious engineering for hybridizing the coordination networks of hosts, tailoring the topochemical configuration of dopants, and bridging a cascaded tunnel for transferring the persistent energy from traps, to sensitizers and then to acceptors. Another significance of this endeavour is to highlight a rational scheme for functionally important hosts and dopants, Cr/Nd co-doped Zn1‑xCaxGa2O4 solid solutions. Such solid-solution is employed as an optimized host to take advantage of its characteristic trap site level to establish an electron reservoir and network parameters for the precipitation of activators Nd3+ and Cr3+. The results reveal that the strategy employed here has the great potential, as well as opens new opportunities for future new-wavelength, NIR phosphorescent phosphors fabrication with many potential multifunctional bio-imaging applications.

  20. Hybrid coordination-network-engineering for bridging cascaded channels to activate long persistent phosphorescence in the second biological window

    PubMed Central

    Qin, Xixi; Li, Yang; Zhang, Ruili; Ren, Jinjun; Gecevicius, Mindaugas; Wu, Yiling; Sharafudeen, Kaniyarakkal; Dong, Guoping; Zhou, Shifeng; Ma, Zhijun; Qiu, Jianrong

    2016-01-01

    We present a novel “Top-down” strategy to design the long phosphorescent phosphors in the second biological transparency window via energy transfer. Inherence in this approach to material design involves an ingenious engineering for hybridizing the coordination networks of hosts, tailoring the topochemical configuration of dopants, and bridging a cascaded tunnel for transferring the persistent energy from traps, to sensitizers and then to acceptors. Another significance of this endeavour is to highlight a rational scheme for functionally important hosts and dopants, Cr/Nd co-doped Zn1−xCaxGa2O4 solid solutions. Such solid-solution is employed as an optimized host to take advantage of its characteristic trap site level to establish an electron reservoir and network parameters for the precipitation of activators Nd3+ and Cr3+. The results reveal that the strategy employed here has the great potential, as well as opens new opportunities for future new-wavelength, NIR phosphorescent phosphors fabrication with many potential multifunctional bio-imaging applications. PMID:26843129

  1. Spinal 5-HT3 receptors mediate descending facilitation and contribute to behavioral hypersensitivity via a reciprocal neuron-glial signaling cascade

    PubMed Central

    2014-01-01

    Background It has been recently recognized that the descending serotonin (5-HT) system from the rostral ventromedial medulla (RVM) in the brainstem and the 5-HT3 receptor subtype in the spinal dorsal horn are involved in enhanced descending pain facilitation after tissue and nerve injury. However, the mechanisms underlying the activation of the 5-HT3 receptor and its contribution to facilitation of pain remain unclear. Results In the present study, activation of spinal 5-HT3 receptors by intrathecal injection of a selective 5-HT3 receptor agonist SR 57227 induced spinal glial hyperactivity, neuronal hyperexcitability and pain hypersensitivity in rats. We found that there was neuron-to-microglia signaling via the chemokine fractalkine, microglia to astrocyte signaling via cytokine IL-18, astrocyte to neuronal signaling by IL-1β, and enhanced activation of NMDA receptors in the spinal dorsal horn. Glial hyperactivation in spinal dorsal horn after hindpaw inflammation was also attenuated by molecular depletion of the descending 5-HT system by intra-RVM Tph-2 shRNA interference. Conclusions These findings offer new insights into the cellular and molecular mechanisms at the spinal level responsible for descending 5-HT-mediated pain facilitation during the development of persistent pain after tissue and nerve injury. New pain therapies should focus on prime targets of descending facilitation-induced glial involvement, and in particular the blocking of intercellular signaling transduction between neurons and glia. PMID:24913307

  2. Effect of prolonged hydroxytamoxifen treatment of MCF-7 cells on mitogen activated kinase cascade.

    PubMed

    Rabenoelina, Fanjaniriana; Semlali, Abdelhabib; Duchesne, Marie-Josèphe; Freiss, Gilles; Pons, Michel; Badia, Eric

    2002-04-10

    Resistance to the antiestrogen tamoxifen is the main stumbling block for the success of breast cancer therapy. We focused our study on cellular alterations induced by a prolonged treatment with the active tamoxifen metabolite hydroxytamoxifen (OHT). We show that a prolonged OHT treatment (for up to 7 days) led to a progressive increase in the level of phosphorylated p44/42 mitogen activated kinase (MAP kinase) induced by 10(-7) M TPA stimulation, without any significant change in the protein level. This effect was also observed in MCF-7 cells grown first in medium containing dextran-coated charcoal-treated FCS (DCC medium) for 20 days prior to OHT treatment, indicating a specific effect of the antiestrogen and not an effect of estrogen deprivation. It was prevented by cotreatment with estradiol and not observed in the estrogen receptor negative HeLa cell line, suggesting that it was mediated by the estrogen receptor. TPA induced phosphorylation of MEK1/2 was also raised by OHT treatment, without any change in their protein level or Raf-1 and H-Ras levels. When the MCF-7R OHT resistant cell line was grown in antiestrogen containing medium, the level of phosphorylated p44/42 MAP kinase was also high but reversed when the antiestrogen was removed. The 2 other MAP kinase, JNK and P38 pathways were not affected in the same way by OHT treatment. In conclusion, our data reveal that a prolonged OHT treatment, by increasing p44/42 MAPK activity, affects a key step in the growth control of MCF-7 cells, although not sufficiently to overcome the growth inhibitory effect of the drug.

  3. DNA cross-linking by intermediates in the mitomycin activation cascade

    SciTech Connect

    Cera, C.; Egbertson, M.; Teng, S.P.; Crothers, D.M.; Danishefsky, S.J. )

    1989-06-27

    The authors have assayed the cross-linking of oligonucleotides containing repeated mitomycin-reactive CpG sites in order to assess the factors that enhance activation of the carbamoyl function at C{sub 10}, yielding efficient mitomycin cross-linking. Drugs studied include mitomycin C (MC), N-methylmitomycin A (NMA), and the aziridinomitosene of NMA (MS). Drugs were reduced both by catalytic hydrogenation and by dithionite. They find that cross-linking by fully reduced NMA can be increased severalfold by addition of either excess dithionite reductant or the oxidant FeCl{sub 3}. Enhancement by FeCl{sub 3} is not seen with MC or MS, but excess dithionite increases cross-linking by all three compounds. They explain the action of Fe{sup 3+} by postulating production of the semiquinone of the monoadduct of mitomycin reacted at the C{sub 1}-position; according to this mechanism, departure of the carbamate from C{sub 10} is more efficient for the semiquinone than for the hydroquinone. However, the results imply that the hydroquinone can also function as a cross-linking agent. Excess dithionite beyond that required for stoichiometric reduction, activates the carbamate 2-3-fold for cross-linking. They find that the fully reduced leucoaziridinomitosene is highly unstable in solution, yet it produces efficient cross-linking. Hence, this compound is highly reactive in DNA alkylation and a good candidate for the role of primary alkylating agent.

  4. Characterization of 10-Hydroxygeraniol Dehydrogenase from Catharanthus roseus Reveals Cascaded Enzymatic Activity in Iridoid Biosynthesis

    PubMed Central

    Krithika, Ramakrishnan; Srivastava, Prabhakar Lal; Rani, Bajaj; Kolet, Swati P.; Chopade, Manojkumar; Soniya, Mantri; Thulasiram, Hirekodathakallu V.

    2015-01-01

    Catharanthus roseus [L.] is a major source of the monoterpene indole alkaloids (MIAs), which are of significant interest due to their therapeutic value. These molecules are formed through an intermediate, cis-trans-nepetalactol, a cyclized product of 10-oxogeranial. One of the key enzymes involved in the biosynthesis of MIAs is an NAD(P)+ dependent oxidoreductase system, 10-hydroxygeraniol dehydrogenase (Cr10HGO), which catalyses the formation of 10-oxogeranial from 10-hydroxygeraniol via 10-oxogeraniol or 10-hydroxygeranial. This work describes the cloning and functional characterization of Cr10HGO from C. roseus and its role in the iridoid biosynthesis. Substrate specificity studies indicated that, Cr10HGO has good activity on substrates such as 10-hydroxygeraniol, 10-oxogeraniol or 10-hydroxygeranial over monohydroxy linear terpene derivatives. Further it was observed that incubation of 10-hydroxygeraniol with Cr10HGO and iridoid synthase (CrIDS) in the presence of NADP+ yielded a major metabolite, which was characterized as (1R, 4aS, 7S, 7aR)-nepetalactol by comparing its retention time, mass fragmentation pattern, and co-injection studies with that of the synthesized compound. These results indicate that there is concerted activity of Cr10HGO with iridoid synthase in the formation of (1R, 4aS, 7S, 7aR)-nepetalactol, an important intermediate in iridoid biosynthesis. PMID:25651761

  5. Kinase cascades regulating entry into apoptosis.

    PubMed Central

    Anderson, P

    1997-01-01

    All cells are constantly exposed to conflicting environment cues that signal cell survival or cell death. Survival signals are delivered by autocrine or paracrine factors that actively suppress a default death pathway. In addition to survival factor withdrawal, cell death can be triggered by environmental stresses such as heat, UV light, and hyperosmolarity or by dedicated death receptors (e.g., FAS/APO-1 and tumor necrosis factor [TNF] receptors) that are counterparts of growth factor or survival receptors at the cell surface. One of the ways that cells integrate conflicting exogenous stimuli is by phosphorylation (or dephosphorylation) of cellular constituents by interacting cascades of serine/threonine and tyrosine protein kinases (and phosphatases). Survival factors (e.g., growth factors and mitogens) activate receptor tyrosine kinases and selected mitogen-activated, cyclin-dependent, lipid-activated, nucleic acid-dependent, and cyclic AMP-dependent kinases to promote cell survival and proliferation, whereas environmental stress (or death factors such as FAS/APO-1 ligand and TNF-alpha) activates different members of these kinase families to inhibit cell growth and, under some circumstances, promote apoptotic cell death. Because individual kinase cascades can interact with one another, they are able to integrate conflicting exogenous stimuli and provide a link between cell surface receptors and the biochemical pathways leading to cell proliferation or cell death. PMID:9106363

  6. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling

    SciTech Connect

    Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako; Jao, Cindy; Kim, Youngchang; Liu, Jing; Salic, Adrian

    2016-08-01

    In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition and activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol.

  7. Activation of endothelial β-catenin signaling induces heart failure

    PubMed Central

    Nakagawa, Akito; Naito, Atsuhiko T.; Sumida, Tomokazu; Nomura, Seitaro; Shibamoto, Masato; Higo, Tomoaki; Okada, Katsuki; Sakai, Taku; Hashimoto, Akihito; Kuramoto, Yuki; Oka, Toru; Lee, Jong-Kook; Harada, Mutsuo; Ueda, Kazutaka; Shiojima, Ichiro; Limbourg, Florian P.; Adams, Ralf H.; Noda, Tetsuo; Sakata, Yasushi; Akazawa, Hiroshi; Komuro, Issei

    2016-01-01

    Activation of β-catenin-dependent canonical Wnt signaling in endothelial cells plays a key role in angiogenesis during development and ischemic diseases, however, other roles of Wnt/β-catenin signaling in endothelial cells remain poorly understood. Here, we report that sustained activation of β-catenin signaling in endothelial cells causes cardiac dysfunction through suppressing neuregulin-ErbB pathway in the heart. Conditional gain-of-function mutation of β-catenin, which activates Wnt/β-catenin signaling in Bmx-positive arterial endothelial cells (Bmx/CA mice) led to progressive cardiac dysfunction and 100% mortality at 40 weeks after tamoxifen treatment. Electron microscopic analysis revealed dilatation of T-tubules and degeneration of mitochondria in cardiomyocytes of Bmx/CA mice, which are similar to the changes observed in mice with decreased neuregulin-ErbB signaling. Endothelial expression of Nrg1 and cardiac ErbB signaling were suppressed in Bmx/CA mice. The cardiac dysfunction of Bmx/CA mice was ameliorated by administration of recombinant neuregulin protein. These results collectively suggest that sustained activation of Wnt/β-catenin signaling in endothelial cells might be a cause of heart failure through suppressing neuregulin-ErbB signaling, and that the Wnt/β-catenin/NRG axis in cardiac endothelial cells might become a therapeutic target for heart failure. PMID:27146149

  8. Satellite cascade attitude control via fuzzy PD controller with active force control under momentum dumping

    NASA Astrophysics Data System (ADS)

    Ismail, Z.; Varatharajoo, R.

    2016-10-01

    In this paper, fuzzy proportional-derivative (PD) controller with active force control (AFC) scheme is studied and employed in the satellite attitude control system equipped with reaction wheels. The momentum dumping is enabled via proportional integral (PI) controller as the system is impractical without momentum dumping control. The attitude controllers are developed together with their governing equations and evaluated through numerical treatment with respect to a reference satellite mission. From the results, it is evident that the three axis attitudes accuracies can be improved up to ±0.001 degree through the fuzzy PD controller with AFC scheme for the attitude control. In addition, the three-axis wheel angular momentums are well maintained during the attitude control tasks.

  9. Prolactin-Stimulated Activation of ERK1/2 Mitogen-Activated Protein Kinases is Controlled by PI3-Kinase/Rac/PAK Signaling Pathway in Breast Cancer Cells

    PubMed Central

    Aksamitiene, Edita; Achanta, Sirisha; Kolch, Walter; Kholodenko, Boris N.; Hoek, Jan B.; Kiyatkin, Anatoly

    2011-01-01

    There is strong evidence that deregulation of prolactin (PRL) signaling contributes to pathogenesis and chemoresistance of breast cancer. Therefore, understanding cross-talk between distinct signal transduction pathways triggered by activation of the prolactin receptor (PRL-R), is essential for elucidating the pathogenesis of metastatic breast cancer. In this study, we applied a sequential inhibitory analysis of various signaling intermediates to examine the hierarchy of protein interactions within the PRL signaling network and to evaluate the relative contributions of multiple signaling branches downstream of PRL-R to the activation of the extracellular signal-regulated kinases ERK1 and ERK2 in T47D and MCF-7 human breast cancer cells. Quantitative measurements of the phosphorylation/activation patterns of proteins showed that PRL simultaneously activated Src family kinases (SFKs) and the JAK/STAT, phosphoinositide-3 (PI3)-kinase/Akt and MAPK signaling pathways. The specific blockade or siRNA-mediated suppression of SFK/FAK, JAK2/STAT5, PI3-kinase/PDK1/Akt, Rac/PAK or Ras regulatory circuits revealed that (1) the PI3-kinase/Akt pathway is required for activation of the MAPK/ERK signaling cascade upon PRL stimulation; (2) PI3-kinase-mediated activation of the c-Raf-MEK1/2-ERK1/2 cascade occurs independent of signaling dowstream of STATs, Akt and PKC, but requires JAK2, SFKs and FAK activities; (3) activated PRL-R mainly utilizes the PI3-kinase-dependent Rac/PAK pathway rather than the canonical Shc/Grb2/SOS/Ras route to initiate and sustain ERK1/2 signaling. By interconnecting diverse signaling pathways PLR may enhance proliferation, survival, migration and invasiveness of breast cancer cells. PMID:21726627

  10. Regulatory cascade and biological activity of Beauveria bassiana oosporein that limits bacterial growth after host death.

    PubMed

    Fan, Yanhua; Liu, Xi; Keyhani, Nemat O; Tang, Guirong; Pei, Yan; Zhang, Wenwen; Tong, Sheng

    2017-02-28

    The regulatory network and biological functions of the fungal secondary metabolite oosporein have remained obscure. Beauveria bassiana has evolved the ability to parasitize insects and outcompete microbial challengers for assimilation of host nutrients. A novel zinc finger transcription factor, BbSmr1 (B. bassiana secondary metabolite regulator 1), was identified in a screen for oosporein overproduction. Deletion of Bbsmr1 resulted in up-regulation of the oosporein biosynthetic gene cluster (OpS genes) and constitutive oosporein production. Oosporein production was abolished in double mutants of Bbsmr1 and a second transcription factor, OpS3, within the oosporein gene cluster (ΔBbsmr1ΔOpS3), indicating that BbSmr1 acts as a negative regulator of OpS3 expression. Real-time quantitative PCR and a GFP promoter fusion construct of OpS1, the oosporein polyketide synthase, indicated that OpS1 is expressed mainly in insect cadavers at 24-48 h after death. Bacterial colony analysis in B. bassiana-infected insect hosts revealed increasing counts until host death, with a dramatic decrease (∼90%) after death that correlated with oosporein production. In vitro studies verified the inhibitory activity of oosporein against bacteria derived from insect cadavers. These results suggest that oosporein acts as an antimicrobial compound to limit microbial competition on B. bassiana-killed hosts, allowing the fungus to maximally use host nutrients to grow and sporulate on infected cadavers.

  11. Effect of peroxisome proliferator activated receptor (PPAR)gamma agonists on prostaglandins cascade in joint cells.

    PubMed

    Moulin, David; Poleni, Paul-Emile; Kirchmeyer, Mélanie; Sebillaud, Sylvie; Koufany, Meriem; Netter, Patrick; Terlain, Bernard; Bianchi, Arnaud; Jouzeau, Jean-Yves

    2006-01-01

    In response to inflammatory cytokines, chondrocytes and synovial fibroblasts produce high amounts of prostaglandins (PG) which self-perpetuate locally the inflammatory reaction. Prostaglandins act primarily through membrane receptors coupled to G proteins but also bind to nuclear Peroxisome Proliferator-Activated Receptors (PPARs). Amongst fatty acids, the cyclopentenone metabolite of PGD2, 15-deoxy-Delta12,14PGJ2 (15d-PGJ2), was shown to be a potent ligand of the PPARgamma isotype prone to inhibit the production of inflammatory mediators. As the stimulated synthesis of PGE2 originates from the preferential coupling of inducible enzymes, cyclooxygenase-2 (COX-2) and membrane PGE synthase-1 (mPGES-1), we investigated the potency of 15d-PGJ2 to regulate prostaglandins synthesis in rat chondrocytes stimulated with interleukin-1beta (IL-1beta). We demonstrated that 15d-PGJ2, but not the high-affinity PPARgamma ligand rosiglitazone, decreased almost completely PGE2 synthesis and mPGES-1 expression. The inhibitory potency of 15d-PGJ2 was unaffected by changes in PPARgamma expression and resulted from inhibition of NF-kappaB nuclear binding and IkappaBalpha sparing, secondary to reduced phosphorylation of IKKbeta. Consistently with 15d-PGJ2 being a putative endogenous regulator of the inflammatory reaction if synthesized in sufficient amounts, the present data confirm the variable PPARgamma-dependency of its effects in joint cells while underlining possible species and cell types specificities.

  12. Activating Cell Death Ligand Signaling Through Proteasome Inhibition

    DTIC Science & Technology

    2009-05-01

    Activating Cell Death Ligand Signaling Through Proteasome Inhibition PRINCIPAL INVESTIGATOR: Steven R Schwarze...SUBTITLE Activating Cell Death Ligand Signaling Through 5a. CONTRACT NUMBER Proteasome Inhibition 5b. GRANT NUMBER W81XWH-08-1-0392 5c...proteasome inhibition can act as an anti-neoplastic agent in vivo by sensitizing cancer cells to cell death ligands in the tumor microenvironment

  13. Viral protein R of HIV type-1 induces retrotransposition and upregulates glutamate synthesis by the signal transducer and activator of transcription 1 signaling pathway.

    PubMed

    Doi, Akihiro; Iijima, Kenta; Kano, Shigeyuki; Ishizaka, Yukihito

    2015-07-01

    Viral protein R (Vpr) of HIV-1 plays an important role in viral replication in macrophages. Various lines of evidence suggest that expression of Vpr in macrophages causes immunopathogenesis; however, the underlying mechanism is not yet fully understood. In this study, it was shown that recombinant Vpr (rVpr) induces retrotransposition of long interspersed element-1 in RAW264.7, a macrophage-like cell line, and activates reverse transcriptase-dependent immunotoxic cascades including production of IFN-β and phosphorylation of signal transducer and activator of transcription 1 (STAT1). Knockout experiments based on the CRISPR/Cas9 nickase system further demonstrated that cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and stimulator of interferon gene (STING) are responsible for IFN-β production and STAT1 phosphorylation, respectively. Moreover, rVpr was found to increase production of glutaminase C, a regulator of glutamate synthesis, which is also dependent on the cGAS-STING pathway. Taken together with reports that glutaminase C is involved in the pathogenesis of HIV-associated neurocognitive disorder (HAND) and that Vpr is detectable in the cerebrospinal fluid of HIV-1-positive patients, a possible role of Vpr-induced L1-RTP and immunotoxic cascades in the development of HAND is discussed.

  14. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction

    PubMed Central

    Weidinger, Adelheid; Kozlov, Andrey V.

    2015-01-01

    In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity. PMID:25884116

  15. Guidance of Signaling Activations by Cadherins and Integrins in Epithelial Ovarian Cancer Cells

    PubMed Central

    Roggiani, Francesca; Mezzanzanica, Delia; Rea, Katia; Tomassetti, Antonella

    2016-01-01

    Epithelial ovarian cancer (EOC) is the deadliest tumor among gynecological cancer in the industrialized countries. The EOC incidence and mortality have remained unchanged over the last 30 years, despite the progress in diagnosis and treatment. In order to develop novel and more effective therapeutic approaches, the molecular mechanisms involved in EOC progression have been thoroughly investigated in the last few decades. At the late stage, peritoneal metastases originate from the attachment of small clusters of cancer cells that shed from the primary site and carried by the ascites adhere to the abdominal peritoneum or omentum. This behavior suggests that cell–cell or cell–matrix adhesion mechanisms regulate EOC growth and dissemination. Complex downstream signalings, which might be influenced by functional cross-talk between adhesion molecules and co-expressed and activated signaling proteins, can affect the proliferation/survival and the migration/invasion of EOC cells. This review aimed to define the impact of the mechanisms of cell–cell, through cadherins, and cell–extracellular matrix adhesion, through integrins, on the signaling cascades induced by membrane receptors and cytoplasmic proteins known to have a role in the proliferation, migration and invasion of EOC cells. Finally, some novel approaches using peptidomimetic ligands to cadherin and integrins are summarized. PMID:27563880

  16. Activation of the Notch1/STAT3/Twist signaling axis promotes gastric cancer progression.

    PubMed

    Hsu, Kai-Wen; Hsieh, Rong-Hong; Huang, Kuo-Hung; Fen-Yau Li, Anna; Chi, Chin-Wen; Wang, Tzu-Yin; Tseng, Min-Jen; Wu, Kou-Juey; Yeh, Tien-Shun

    2012-08-01

    Gastric carcinoma is one of the most common malignancies and a lethal cancer in the world. Notch signaling and transcription factors STAT3 (signal transducer and activator of transcription 3) and Twist regulate tumor development and are critical regulators of gastric cancer progression. Herein, the relationship among Notch, STAT3 and Twist pathways in the control of gastric cancer progression was studied. We found that Twist and phosphorylated STAT3 levels were promoted by the activated Notch1 receptor in human stomach adenocarcinoma SC-M1, embryonic kidney HEK293 and erythroleukemia K562 cells. Notch1 signaling dramatically induced Twist promoter activity through a C promoter binding factor-1-independent manner and STAT3 phosphorylation. Overexpression of Notch1 receptor intracellular domain (N1IC) enhanced the interaction between nuclear STAT3 and Twist promoter in cells. Gastric cancer progression of SC-M1 cells was promoted by N1IC through STAT3 phosphorylation and Twist expression including colony formation, migration and invasion. STAT3 regulated gastric cancer progression of SC-M1 cells via Twist. N1IC also elevated the progression of other gastric cancer cells such as AGS and KATO III cells through STAT3 and Twist. The N1IC-promoted tumor growth and lung metastasis of SC-M1 cells in mice were suppressed by the STAT3 inhibitor JSI-124 and Twist knockdown. Furthermore, Notch1 and Notch ligand Jagged1 expressions were significantly associated with phosphorylated STAT3 and Twist levels in gastric cancer tissues of patients. Taken together, these results suggest that Notch1/STAT3/Twist signaling axis is involved in progression of human gastric cancer and modulation of this cascade has potential for the targeted combination therapy.

  17. Hub-activated signal transmission in complex networks

    NASA Astrophysics Data System (ADS)

    Jahnke, Sven; Memmesheimer, Raoul-Martin; Timme, Marc

    2014-03-01

    A wide range of networked systems exhibit highly connected nodes (hubs) as prominent structural elements. The functional roles of hubs in the collective nonlinear dynamics of many such networks, however, are not well understood. Here, we propose that hubs in neural circuits may activate local signal transmission along sequences of specific subnetworks. Intriguingly, in contrast to previous suggestions of the functional roles of hubs, here, not the hubs themselves, but nonhub subnetworks transfer the signals. The core mechanism relies on hubs and nonhubs providing activating feedback to each other. It may, thus, induce the propagation of specific pulse and rate signals in neuronal and other communication networks.

  18. Delta-1 Activation of Notch-1 Signaling Results in HES-1 Transactivation

    PubMed Central

    Jarriault, Sophie; Le Bail, Odile; Hirsinger, Estelle; Pourquié, Olivier; Logeat, Frédérique; Strong, Clare F.; Brou, Christel; Seidah, Nabil G.; Israël, Alain

    1998-01-01

    The Notch receptor is involved in many cell fate determination events in vertebrates and invertebrates. It has been shown in Drosophila melanogaster that Delta-dependent Notch signaling activates the transcription factor Suppressor of Hairless, leading to an increased expression of the Enhancer of Split genes. Genetic evidence has also implicated the kuzbanian gene, which encodes a disintegrin metalloprotease, in the Notch signaling pathway. By using a two-cell coculture assay, we show here that vertebrate Dl-1 activates the Notch-1 cascade. Consistent with previous data obtained with active forms of Notch-1 a HES-1-derived promoter construct is transactivated in cells expressing Notch-1 in response to Dl-1 stimulation. Impairing the proteolytic maturation of the full-length receptor leads to a decrease in HES-1 transactivation, further supporting the hypothesis that only mature processed Notch is expressed at the cell surface and activated by its ligand. Furthermore, we observed that Dl-1-induced HES-1 transactivation was dependent both on Kuzbanian and RBP-J activities, consistent with the involvement of these two proteins in Notch signaling in Drosophila. We also observed that exposure of Notch-1-expressing cells to Dl-1 results in an increased level of endogenous HES-1 mRNA. Finally, coculture of Dl-1-expressing cells with myogenic C2 cells suppresses differentiation of C2 cells into myotubes, as previously demonstrated for Jagged-1 and Jagged-2, and also leads to an increased level of endogenous HES-1 mRNA. Thus, Dl-1 behaves as a functional ligand for Notch-1 and has the same ability to suppress cell differentiation as the Jagged proteins do. PMID:9819428

  19. Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration

    PubMed Central

    Laorden, María Luisa; Milanés, María Victoria

    2016-01-01

    Background: Most classes of addictive substances alter the function and structural plasticity of the brain reward circuitry. Midkine (MK) and pleiotrophin (PTN) are growth/differentiation cytokines which, similarly to neurotrophins, play an important role in repair, neurite outgrowth, and cell differentiation. PTN or MK signaling through receptor protein tyrosine phosphatase β/ζ (RPTPβ/ζ), leads to the activation of extracellular signal-regulated kinases and thymoma viral proto-oncogene. This activation induces morphological changes and modulates addictive behaviors. Besides, there is increasing evidence that during the development of drug addiction, astrocytes contribute to the synaptic plasticity by synthesizing and releasing substances such as cytokines. Methods: In the present work we studied the effect of acute morphine administration, chronic morphine administration, and morphine withdrawal on PTN, MK, and RPTPβ/ζ expression and on their signaling pathways in the nucleus accumbens. Results: Present results indicated that PTN, MK, and RPTPβ/ζ levels increased after acute morphine injection, returned to basal levels during chronic opioid treatment, and were up-regulated again during morphine withdrawal. We also observed an activation of astrocytes after acute morphine injection and during opiate dependence and withdrawal. In addition, immunofluorescence analysis revealed that PTN, but not MK, was overexpressed in astrocytes and that dopaminoceptive neurons expressed RPTPβ/ζ. Conclusions: All these observations suggest that the neurotrophic and behavioral adaptations that occur during opiate addiction could be, at least partly, mediated by cytokines. PMID:26164717

  20. Signal peptides are allosteric activators of the protein translocase

    PubMed Central

    Gouridis, Giorgos; Karamanou, Spyridoula; Gelis, Ioannis; Kalodimos, Charalampos G.; Economou, Anastassios

    2010-01-01

    Extra-cytoplasmic polypeptides are usually synthesized as “preproteins” carrying aminoterminal, cleavable signal peptides1 and secreted across membranes by translocases. The main bacterial translocase comprises the SecYEG protein-conducting channel and the peripheral ATPase motor SecA2,3. Most proteins destined for the periplasm and beyond are exported post-translationally by SecA2,3. Preprotein targeting to SecA is thought to involve signal peptides4 and chaperones like SecB5,6. Here we reveal that signal peptides have a novel role beyond targeting: they are essential allosteric activators of the translocase. Upon docking on their binding groove on SecA, signal peptides act in trans to drive three successive states: first, “triggering” that drives the translocase to a lower activation energy state; then “trapping” that engages non-native preprotein mature domains docked with high affinity on the secretion apparatus and, finally, “secretion” during which trapped mature domains undergo multiple turnovers of translocation in segments7. A significant contribution by mature domains renders signal peptides less critical in bacterial secretory protein targeting than currently assumed. Rather, it is their function as allosteric activators of the translocase that renders signal peptides essential for protein secretion. A role for signal peptides and targeting sequences as allosteric activators may be universal in protein translocases. PMID:19924216

  1. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    SciTech Connect

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald

    2015-03-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified.

  2. Signaling Components of Redox Active Endosomes: The Redoxosomes

    PubMed Central

    Oakley, Fredrick D.; Abbott, Duane; Li, Qiang

    2009-01-01

    Abstract Subcellular compartmentalization of reactive oxygen species (ROS) plays a critical role in transmitting cell signals in response to environmental stimuli. In this regard, signals at the plasma membrane have been shown to trigger NADPH oxidase-dependent ROS production within the endosomal compartment and this step can be required for redox-dependent signal transduction. Unique features of redox-active signaling endosomes can include NADPH oxidase complex components (Nox1, Noxo1, Noxa1, Nox2, p47phox, p67phox, and/or Rac1), ROS processing enzymes (SOD1 and/or peroxiredoxins), chloride channels capable of mediating superoxide transport and/or membrane gradients required for Nox activity, and novel redox-dependent sensors that control Nox activity. This review will discuss the cytokine and growth factor receptors that likely mediate signaling through redox-active endosomes, and the common mechanisms whereby they act. Additionally, the review will cover ligand-independent environmental injuries, such as hypoxia/reoxygenation injury, that also appear to facilitate cell signaling through NADPH oxidase at the level of the endosome. We suggest that redox-active endosomes encompass a subset of signaling endosomes that we have termed redoxosomes. Redoxosomes are uniquely equipped with redox-processing proteins capable of transmitting ROS signals from the endosome interior to redox-sensitive effectors on the endosomal surface. In this manner, redoxosomes can control redox-dependent effector functions through the spatial and temporal regulation of ROS as second messengers. Antioxid. Redox Signal. 11, 1313–1333. PMID:19072143

  3. Intracellular signal transduction pathways in the regulation of fowl sperm motility: evidence for the involvement of phosphatidylinositol 3-kinase (PI3-K) cascade.

    PubMed

    Ashizawa, Koji; Omura, Yusuke; Katayama, Seiichi; Tatemoto, Hideki; Narumi, Kazunori; Tsuzuki, Yasuhiro

    2009-07-01

    The possible role of PI3-K in the reversible temperature-dependent immobilization of fowl sperm motility was investigated by using PI3-K inhibitor (LY294002) and its inactive analogue (LY303511). The existence of the PI3-K in fowl spermatozoa was also confirmed by Western blotting analysis. Fowl sperm motility in TES/NaCl buffer remained negligible at the avian body temperature of 40 degrees C but was maintained vigorously when the temperature was decreased to 30 degrees C. At 30 degrees C, no stimulation or inhibition of motility was observed after the addition of 2 mM CaCl2 and 10 microM LY294002 or LY303511: around 70-80% of spermatozoa remained motile. In contrast, at 40 degrees C, the motility of spermatozoa was activated immediately after the addition of Ca(2+), but the subsequent addition of LY294002 inhibited the motility again. The addition of LY303511 did not appreciably affect the Ca(2+)-supplemented sperm motility, which was maintained for at least 15 min. The ATP concentrations of spermatozoa after the addition of LY294002 + Ca(2+) or LY303511 + Ca(2+) were almost the same values compared with those of Ca(2+) alone at 40 degrees C, suggesting that the addition of LY294002 was not simply affecting membrane damage or inhibiting energy production in the spermatozoa, but may be acting on some part of the motility-regulating cascade. Immunoblotting of sperm extract using an antibody to PI3-K revealed a major cross-reacting protein of 85 kDa, which corresponds to the molecular weight of the subunit of PI3-K. These results suggest that PI3-K may be positively involved in the calcium-regulated maintenance of flagellar movement of fowl spermatozoa at 40 degrees C.

  4. Protein Corona of Magnetic Hydroxyapatite Scaffold Improves Cell Proliferation via Activation of Mitogen-Activated Protein Kinase Signaling Pathway.

    PubMed

    Zhu, Yue; Yang, Qi; Yang, Minggang; Zhan, Xiaohui; Lan, Fang; He, Jing; Gu, Zhongwei; Wu, Yao

    2017-03-21

    The beneficial effect of magnetic scaffolds on the improvement of cell proliferation has been well documented. Nevertheless, the underlying mechanisms about the magnetic scaffolds stimulating cell proliferation remain largely unknown. Once the scaffold enters into the biological fluids, a protein corona forms and directly influences the biological function of scaffold. This study aimed at investigating the formation of protein coronas on hydroxyapatite (HA) and magnetic hydroxyapatite (MHA) scaffolds in vitro and in vivo, and consequently its effect on regulating cell proliferation. The results demonstrated that magnetic nanoparticles (MNP)-infiltrated HA scaffolds altered the composition of protein coronas and ultimately contributed to increased concentration of proteins related to calcium ions, G-protein coupled receptors (GPCRs), and MAPK/ERK cascades as compared with pristine HA scaffolds. Noticeably, the enriched functional proteins on MHA samples could efficiently activate of the MAPK/ERK signaling pathway, resulting in promoting MC3T3-E1 cell proliferation, as evidenced by the higher expression levels of the key proteins in the MAPK/ERK signaling pathway, including mitogen-activated protein kinase kinases1/2 (MEK1/2) and extracellular signal regulated kinase 1/2 (ERK1/2). Artificial down-regulation of MEK expression can significantly down-regulate the MAPK/ERK signaling and consequently suppress the cell proliferation on MHA samples. These findings not only provide a critical insight into the molecular mechanism underlying cellular proliferation on magnetic scaffolds, but also have important implications in the design of magnetic scaffolds for bone tissue engineering.

  5. Signal transduction of pregnenolone sulfate in insulinoma cells: activation of Egr-1 expression involving TRPM3, voltage-gated calcium channels, ERK, and ternary complex factors.

    PubMed

    Mayer, Sabine I; Müller, Isabelle; Mannebach, Stefanie; Endo, Takeshi; Thiel, Gerald

    2011-03-25

    The neurosteroid pregnenolone sulfate acts on the nervous system by modifying neurotransmission and receptor functions, thus influencing synaptic strength, neuronal survival, and neurogenesis. Here we show that pregnenolone sulfate induces a signaling cascade in insulinoma cells leading to enhanced expression of the zinc finger transcription factor Egr-1 and Egr-1-responsive target genes. Pharmacological and genetic experiments revealed that influx of Ca(2+) ions via transient receptor potential M3 and voltage-gated Ca(2+) channels, elevation of the cytosolic Ca(2+) level, and activation of ERK are essential for connecting pregnenolone sulfate stimulation with enhanced Egr-1 biosynthesis. Expression of a dominant-negative mutant of Elk-1, a key regulator of gene transcription driven by a serum response element, attenuated Egr-1 expression following stimulation, indicating that Elk-1 or related ternary complex factors connect the transcription of the Egr-1 gene with the pregnenolone sulfate-induced intracellular signaling cascade elicited by the initial influx of Ca(2+). The newly synthesized Egr-1 was biologically active and bound under physiological conditions to the regulatory regions of the Pdx-1, Synapsin I, and Chromogranin B genes. Pdx-1 is a major regulator of insulin gene transcription. Accordingly, elevated insulin promoter activity and increased mRNA levels of insulin could be detected in pregnenolone sulfate-stimulated insulinoma cells. Likewise, the biosynthesis of synapsin I, a synaptic vesicle protein that is found at secretory granules in insulinoma cells, was stimulated in pregnenolone sulfate-treated INS-1 cells. Together, these data show that pregnenolone sulfate induces a signaling cascade in insulinoma cells that is very similar to the signaling cascade induced by glucose in β-cells.

  6. Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells.

    PubMed

    Lu, Lu; Xing, Defeng; Liu, Bingfeng; Ren, Nanqi

    2012-03-15

    Fermentative hydrogen production from waste activated sludge (WAS) has low H2 yield because WAS contains limited amounts of carbohydrate suitable for use by hydrogen-producing bacteria. Here, augmentation of hydrogen production from WAS by microbial electrolysis cells (MECs) was implemented. H2 yields of 3.89±0.39 mg-H2/g-DS (5.67±0.61 mg-H2/g-VSS) from raw WAS and 6.78±0.94 mg-H2/g-DS (15.08±1.41 mg-H2/g-VSS) from alkaline-pretreated WAS were obtained in the two-chamber MECs (TMECs). This was several times higher than yields obtained previously by fermentation. Single-chamber MECs (SMECs) with low internal resistance showed a H2 production rate that 13 times that of TMECs with similar H2 yield when alkaline-pretreated WAS was used. However, methanogenesis was detected after several batch cycles. A yield balance calculation revealed that carbohydrates were not the only substrates for electrohydrogenesis. Protein and its acidification products, such as volatile fatty acids are also responsible for a portion of H2 generation in MEC. Characterization of WAS in TMECs by three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy with parallel factor analysis indicated that electrohydrogenesis reacted on the extracellular polymeric substances and intracellular substances of WAS. Cascade utilization of organic matter in MECs increased hydrogen production from WAS. MECs showed high hydrogen yield from WAS, fewer H2 sinks, and insensitivity to temperature. Optimizing MEC configurations and operation conditions and improving the pretreatment processes of WAS are necessary before practical application can take place on a large scale.

  7. ESCRT machinery potentiates HIV-1 utilization of the PI(4,5)P(2)-PLC-IP3R-Ca(2+) signaling cascade.

    PubMed

    Ehrlich, Lorna S; Medina, Gisselle N; Carter, Carol A

    2011-10-21

    Human immunodeficiency virus type 1 (HIV-1) release efficiency is directed by late (L) domain motifs in the viral structural precursor polyprotein Gag, which serve as links to the ESCRT (endosomal sorting complex required for transport) machinery. Linkage is normally through binding of Tsg101, an ESCRT-1 component, to the P(7)TAP motif in the p6 region of Gag. In its absence, budding is directed by binding of Alix, an ESCRT adaptor protein, to the LY(36)PX(n)L motif in Gag. We recently showed that budding requires activation of the inositol 1,4,5-triphosphate receptor (IP3R), a protein that "gates" Ca(2+) release from intracellular stores, triggers Ca(2+) cell influx and thereby functions as a major regulator of Ca(2+) signaling. In the present study, we determined whether the L domain links Gag to Ca(2+) signaling machinery. Depletion of IP3R and inactivation of phospholipase C (PLC) inhibited budding whether or not Tsg101 was bound to Gag. PLC hydrolysis of phosphatidylinositol-(4,5)-bisphosphate generates inositol (1,4,5)-triphosphate, the ligand that activates IP3R. However, with Tsg101 bound, Gag release was independent of Gq-mediated activation of PLC, and budding was readily enhanced by pharmacological stimulation of PLC. Moreover, IP3R was redistributed to the cell periphery and cytosolic Ca(2+) was elevated, events indicative of induction of Ca(2+) signaling. The results suggest that L domain function, ESCRT machinery and Ca(2+) signaling are linked events in Gag release.

  8. Suppressed Neuronal Activity and Concurrent Arteriolar Vasoconstriction May Explain Negative Blood Oxygenation Level-Dependent Signal

    PubMed Central

    Devor, Anna; Tian, Peifang; Nishimura, Nozomi; Teng, Ivan C.; Hillman, Elizabeth M. C.; Narayanan, S. N.; Ulbert, Istvan; Boas, David A.; Kleinfeld, David; Dale, Anders M.

    2009-01-01

    Synaptic transmission initiates a cascade of signal transduction events that couple neuronal activity to local changes in blood flow and oxygenation. Although a number of vasoactive molecules and specific cell types have been implicated, the transformation of stimulus-induced activation of neuronal circuits to hemodynamic changes is still unclear. We use somatosensory stimulation and a suite of in vivo imaging tools to study neurovascular coupling in rat primary somatosensory cortex. Our stimulus evoked a central region of net neuronal depolarization surrounded by net hyperpolarization. Hemodynamic measurements revealed that predominant depolarization corresponded to an increase in oxygenation, whereas predominant hyperpolarization corresponded to a decrease in oxygenation. On the microscopic level of single surface arterioles, the response was composed of a combination of dilatory and constrictive phases. Critically, the relative strength of vasoconstriction covaried with the relative strength of oxygenation decrease and neuronal hyperpolarization. These results suggest that a neuronal inhibition and concurrent arteriolar vasoconstriction correspond to a decrease in blood oxygenation, which would be consistent with a negative blood oxygenation level-dependent functional magnetic resonance imaging signal. PMID:17442830

  9. CD28: a signalling perspective.

    PubMed Central

    Ward, S G

    1996-01-01

    CD28 and the related molecule cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), together with their natural ligands B7.1 and B7.2, have been implicated in the differential regulation of several immune responses. CD28 provides signals during T cell activation which are required for the production of interleukin 2 and other cytokines and chemokines, and it has also been implicated in the regulation of T cell anergy and programmed T cell death. The biochemical signals provided by CD28 are cyclosporin A-resistant and complement those provided by the T cell antigen receptor to allow full activation of T cells. Multiple signalling cascades which may be independent of, or dependent on, protein tyrosine kinase activation have been demonstrated to be activated by CD28, including activation of phospholipase C, p21ran, phosphoinositide 3-kinase, sphingomyelinase/ceramide and 5-lipoxygenase. The relative contributions of these cascades to overall CD28 signalling are still unknown, but probably depend on the state of activation of the T cell and the level of CD28 activation. The importance of these signalling cascades (in particular the phosphoinositide 3-kinase-mediated cascade) to functional indications of CD28 activation, such as interleukin 2 gene regulation, has been investigated using pharmacological and genetic manipulations. These approaches have demonstrated that CD28-activated signalling cascades regulate several transcription factors involved in interleukin 2 transcriptional activation. This review describes in detail the structure and expression of the CD28 and B7 families, the functional outcomes of CD28 ligation and the signalling events that are thought to mediate these functions. PMID:8809021

  10. PB1 Domain-Dependent Signaling Complex Is Required for Extracellular Signal-Regulated Kinase 5 Activation

    PubMed Central

    Nakamura, Kazuhiro; Uhlik, Mark T.; Johnson, Nancy L.; Hahn, Klaus M.; Johnson, Gary L.

    2006-01-01

    MEKK2, MEK5, and extracellular signal-regulated kinase 5 (ERK5) are members of a three-kinase cascade for the activation of ERK5. MEK5 is the only MAP2K to express a PB1 domain, and we have shown that it heterodimerizes with the PB1 domain of MEKK2. Here we demonstrate the MEK5 PB1 domain is a scaffold that also binds ERK5, functionally forming a MEKK2-MEK5-ERK5 complex. Reconstitution assays and CFP/YFP imaging (fluorescence resonance energy transfer [FRET]) measuring YFP-MEKK2/CFP-MEK5 and CFP-MEK5/YFP-ERK5 interactions define distinct MEK5 PB1 domain binding sites for MEKK2 and ERK5, with a C-terminal extension of the PB1 domain contributing to ERK5 binding. Stimulus-dependent CFP/YFP FRET in combination with mutational analysis was used to define MEK5 PB1 domain residues critical for the interaction of MEKK2/MEK5 and MEK5/ERK5 required for activation of the ERK5 pathway in living cells. Fusion of the MEK5 PB1 domain to the N terminus of MEK1 confers ERK5 regulation by a MAP2K normally regulating only ERK1/2. The MEK5 PB1 domain confers stringent MAP3K regulation of ERK5 relative to more promiscuous MAP3K control of ERK1/2, JNK, and p38. PMID:16507987

  11. Dominant Mutations of Drosophila Map Kinase Kinase and Their Activities in Drosophila and Yeast Map Kinase Cascades

    PubMed Central

    Lim, Y. M.; Tsuda, L.; Inoue, Y. H.; Irie, K.; Adachi-Yamada, T.; Hata, M.; Nishi, Y.; Matsumoto, K.; Nishida, Y.

    1997-01-01

    Eight alleles of Dsor1 encoding a Drosophila homologue of mitogen-activated protein (MAP) kinase kinase were obtained as dominant suppressors of the MAP kinase kinase kinase D-raf. These Dsor1 alleles themselves showed no obvious phenotypic consequences nor any effect on the viability of the flies, although they were highly sensitive to upstream signals and strongly interacted with gain-of-function mutations of upstream factors. They suppressed mutations for receptor tyrosine kinases (RTKs); torso (tor), sevenless (sev) and to a lesser extent Drosophila EGF receptor (DER). Furthermore, the Dsor1 alleles showed no significant interaction with gain-of-function mutations of DER. The observed difference in activity of the Dsor1 alleles among the RTK pathways suggests Dsor1 is one of the components of the pathway that regulates signal specificity. Expression of Dsor1 in budding yeast demonstrated that Dsor1 can activate yeast MAP kinase homologues if a proper activator of Dsor1 is coexpressed. Nucleotide sequencing of the Dsor1 mutant genes revealed that most of the mutations are associated with amino acid changes at highly conserved residues in the kinase domain. The results suggest that they function as suppressors due to increased reactivity to upstream factors. PMID:9136016

  12. Antitumor Indolequinones Induced Apoptosis in Human Pancreatic Cancer Cells via Inhibition of Thioredoxin Reductase and Activation of Redox Signaling

    PubMed Central

    Yan, Chao; Siegel, David; Newsome, Jeffery; Chilloux, Aurelie; Moody, Christopher J.

    2012-01-01

    Indolequinones (IQs) were developed as potential antitumor agents against human pancreatic cancer. IQs exhibited potent antitumor activity against the human pancreatic cancer cell line MIA PaCa-2 with growth inhibitory IC50 values in the low nanomolar range. IQs were found to induce time- and concentration-dependent apoptosis and to be potent inhibitors of thioredoxin reductase 1 (TR1) in MIA PaCa-2 cells at concentrations equivalent to those inducing growth-inhibitory effects. The mechanism of inhibition of TR1 by the IQs was studied in detail in cell-free systems using purified enzyme. The C-terminal selenocysteine of TR1 was characterized as the primary adduction site of the IQ-derived reactive iminium using liquid chromatography-tandem mass spectrometry analysis. Inhibition of TR1 by IQs in MIA PaCa-2 cells resulted in a shift of thioredoxin-1 redox state to the oxidized form and activation of the p38/c-Jun NH2-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) signaling pathway. Oxidized thioredoxin is known to activate apoptosis signal-regulating kinase 1, an upstream activator of p38/JNK in the MAPK signaling cascade and this was confirmed in our study providing a potential mechanism for IQ-induced apoptosis. These data describe the redox and signaling events involved in the mechanism of growth inhibition induced by novel inhibitors of TR1 in human pancreatic cancer cells. PMID:22147753

  13. Coco is a dual activity modulator of TGFβ signaling

    PubMed Central

    Deglincerti, Alessia; Haremaki, Tomomi; Warmflash, Aryeh; Sorre, Benoit; Brivanlou, Ali H.

    2015-01-01

    The TGFβ signaling pathway is a crucial regulator of developmental processes and disease. The activity of TGFβ ligands is modulated by various families of soluble inhibitors that interfere with the interactions between ligands and receptors. In an unbiased, genome-wide RNAi screen to identify genes involved in ligand-dependent signaling, we unexpectedly identified the BMP/Activin/Nodal inhibitor Coco as an enhancer of TGFβ1 signaling. Coco synergizes with TGFβ1 in both cell culture and Xenopus explants. Molecularly, Coco binds to TGFβ1 and enhances TGFβ1 binding to its receptor Alk5. Thus, Coco acts as both an inhibitor and an enhancer of signaling depending on the ligand it binds. This finding raises the need for a global reconsideration of the molecular mechanisms regulating TGFβ signaling. PMID:26116664

  14. Coco is a dual activity modulator of TGFβ signaling.

    PubMed

    Deglincerti, Alessia; Haremaki, Tomomi; Warmflash, Aryeh; Sorre, Benoit; Brivanlou, Ali H

    2015-08-01

    The TGFβ signaling pathway is a crucial regulator of developmental processes and disease. The activity of TGFβ ligands is modulated by various families of soluble inhibitors that interfere with the interactions between ligands and receptors. In an unbiased, genome-wide RNAi screen to identify genes involved in ligand-dependent signaling, we unexpectedly identified the BMP/Activin/Nodal inhibitor Coco as an enhancer of TGFβ1 signaling. Coco synergizes with TGFβ1 in both cell culture and Xenopus explants. Molecularly, Coco binds to TGFβ1 and enhances TGFβ1 binding to its receptor Alk5. Thus, Coco acts as both an inhibitor and an enhancer of signaling depending on the ligand it binds. This finding raises the need for a global reconsideration of the molecular mechanisms regulating TGFβ signaling.

  15. Dissecting the signaling pathways associated with the oncogenic activity of MLK3 P252H mutation

    PubMed Central

    2014-01-01

    Background MLK3 gene mutations were described to occur in about 20% of microsatellite unstable gastrointestinal cancers and to harbor oncogenic activity. In particular, mutation P252H, located in the kinase domain, was found to have a strong transforming potential, and to promote the growth of highly invasive tumors when subcutaneously injected in nude mice. Nevertheless, the molecular mechanism underlying the oncogenic activity of P252H mutant remained elusive. Methods In this work, we performed Illumina Whole Genome arrays on three biological replicas of human HEK293 cells stably transfected with the wild-type MLK3, the P252H mutation and with the empty vector (Mock) in order to identify the putative signaling pathways associated with P252H mutation. Results Our microarray results showed that mutant MLK3 deregulates several important colorectal cancer- associated signaling pathways such as WNT, MAPK, NOTCH, TGF-beta and p53, helping to narrow down the number of potential MLK3 targets responsible for its oncogenic effects. A more detailed analysis of the alterations affecting the WNT signaling pathway revealed a down-regulation of molecules involved in the canonical pathway, such as DVL2, LEF1, CCND1 and c-Myc, and an up-regulation of DKK, a well-known negative regulator of canonical WNT signaling, in MLK3 mutant cells. Additionally, FZD6 and FZD10 genes, known to act as negative regulators of the canonical WNT signaling cascade and as positive regulators of the planar cell polarity (PCP) pathway, a non-canonic WNT pathway, were found to be up-regulated in P252H cells. Conclusion The results provide an overall view of the expression profile associated with mutant MLK3, and they support the functional role of mutant MLK3 by showing a deregulation of several signaling pathways known to play important roles in the development and progression of colorectal cancer. The results also suggest that mutant MLK3 may be a novel modulator of WNT signaling, and pinpoint the

  16. Methamphetamine-induced neurotoxicity and microglial activation are not mediated by fractalkine receptor signaling.

    PubMed

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2008-07-01

    Methamphetamine (METH) damages dopamine (DA) nerve endings by a process that has been linked to microglial activation but the signaling pathways that mediate this response have not yet been delineated. Cardona et al. [Nat. Neurosci. 9 (2006), 917] recently identified the microglial-specific fractalkine receptor (CX3CR1) as an important mediator of MPTP-induced neurodegeneration of DA neurons. Because the CNS damage caused by METH and MPTP is highly selective for the DA neuronal system in mouse models of neurotoxicity, we hypothesized that the CX3CR1 plays a role in METH-induced neurotoxicity and microglial activation. Mice in which the CX3CR1 gene has been deleted and replaced with a cDNA encoding enhanced green fluorescent protein (eGFP) were treated with METH and examined for striatal neurotoxicity. METH depleted DA, caused microglial activation, and increased body temperature in CX3CR1 knockout mice to the same extent and over the same time course seen in wild-type controls. The effects of METH in CX3CR1 knockout mice were not gender-dependent and did not extend beyond the striatum. Striatal microglia expressing eGFP constitutively show morphological changes after METH that are characteristic of activation. This response was restricted to the striatum and contrasted sharply with unresponsive eGFP-microglia in surrounding brain areas that are not damaged by METH. We conclude from these studies that CX3CR1 signaling does not modulate METH neurotoxicity or microglial activation. Furthermore, it appears that striatal-resident microglia respond to METH with an activation cascade and then return to a surveying state without undergoing apoptosis or migration.

  17. TCR-induced, PKC-θ-mediated NF-κB Activation Is Regulated by a Caspase-8-Caspase-9-Caspase-3 Cascade

    PubMed Central

    Zhao, Yixia; Lei, Minxiang; Wang, Zhaoyuan; Qiao, Guilin; Yang, Tianlun; Zhang, Jian

    2014-01-01

    It has been documented that caspase-8, a central player in apoptosis, is also crucial for TCR-mediated NF-κB activation. However, whether other caspases are also involved this process is unknown. In this report, we showed that in addition to caspase-8, caspase-9 is required for TCR-mediated NF-κB activation. Caspase-9 induces activation of PKC-θ, phosphorylation of Bcl10 and NF-κB activation in a caspase-3-dependent manner, but it appears that Bcl10 phosphorylation is uncoupled from NF-κB activation. Furthermore, caspase-8 lies upstream of caspase-9 during T cell activation. Therefore, TCR ligation elicits a caspase cascade involving caspase-8, caspase-9 and caspase-3 which initiates PKC-θ-dependent pathway leading to NF-κB activation and PKC-θ-independent Bcl10 phosphorylation which limits NF-kB activity. PMID:24924627

  18. Hepassocin activates the EGFR/ERK cascade and induces proliferation of L02 cells through the Src-dependent pathway.

    PubMed

    Gao, Ming; Zhan, Yi-Qun; Yu, Miao; Ge, Chang-Hui; Li, Chang-Yan; Zhang, Jian-Hong; Wang, Xiao-Hui; Ge, Zhi-Qiang; Yang, Xiao-Ming

    2014-10-01

    Hepassocin (HPS) is a secreted protein with mitogenic activity on primary hepatocytes and protects hepatocytes from chemically-induced injury. Our previous studies showed that HPS stimulates proliferation of hepatocytes in an ERK pathway-dependent manner. However, the molecular mechanism of HPS-induced activation of the ERK pathway remains unclear. In this study, we found that HPS induced the phosphorylation of the epidermal growth factor receptor (EGFR) in the human L02 hepatocyte cell line, and this event was concomitant with the activation of the non-receptor tyrosine kinase Src. Specific inhibition of EGFR kinase activity by gefitinib or down-regulation of EGFR by specific EGFR siRNAs prevented HPS-induced activation of the ERK pathway and proliferation of L02 cells. Furthermore, inhibition of Src activity significantly blocked HPS-induced activation of the EGFR, which was suggestive of a ligand-independent transactivation mechanism of EGFR itself as well as ERK phosphorylation and proliferation of L02 cells. These results indicate that EGFR plays an important role in the mitogenic signaling induced by HPS in L02 cell lines and may further stimulate research on the role of HPS in hepatocytes within biological processes in human health and disease.

  19. Tac-beta1 inhibits FAK activation and Src signaling.

    PubMed

    Berrier, Allison L; Jones, Christopher W; LaFlamme, Susan E

    2008-03-28

    The binding of integrins to extracellular matrix triggers signals that promote cell spreading. We previously demonstrated that expression of the integrin beta1 cytoplasmic domain in the context of a chimeric transmembrane receptor with the Tac subunit of the interleukin-2 receptor (Tac-beta1) inhibits cell spreading. To study the mechanism whereby Tac-beta1 inhibits cell spreading, we examined the effect of Tac-beta1 on early signaling events following integrin engagement namely FAK and Src signaling. We infected primary fibroblasts with adenoviruses expressing Tac or Tac-beta1 and found that Tac-beta1 prevented FAK activation by inhibiting the phosphorylation of FAK at Tyr-397. In contrast, Src activation was maintained, as phosphorylation of Src at Tyr-419 and Tyr-530 were not responsive to expression of Tac-beta1. Importantly, adhesion-induced tyrosine phosphorylation of the Src substrates p130Cas and paxillin was inhibited, indicating that Src signaling was blocked by Tac-beta1. These Src-dependent signaling events were found to require FAK signaling. Our results suggest that Tac-beta1 inhibits cell spreading, at least in part, by preventing the phosphorylation of FAK at Tyr-397 and the assembly of signaling complexes necessary for phosphorylation of p130Cas and other downstream effectors.

  20. A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis.

    PubMed

    Bai, Ming-Yi; Fan, Min; Oh, Eunkyoo; Wang, Zhi-Yong

    2012-12-01

    Environmental and endogenous signals, including light, temperature, brassinosteroid (BR), and gibberellin (GA), regulate cell elongation largely by influencing the expression of the paclobutrazol-resistant (PRE) family helix-loop-helix (HLH) factors, which promote cell elongation by interacting antagonistically with another HLH factor, IBH1. However, the molecular mechanism by which PREs and IBH1 regulate gene expression has remained unknown. Here, we show that IBH1 interacts with and inhibits a DNA binding basic helix-loop-helix (bHLH) protein, HBI1, in Arabidopsis thaliana. Overexpression of HBI1 increased hypocotyl and petiole elongation, whereas dominant inactivation of HBI1 and its homologs caused a dwarf phenotype, indicating that HBI1 is a positive regulator of cell elongation. In vitro and in vivo experiments showed that HBI1 directly bound to the promoters and activated two EXPANSIN genes encoding cell wall-loosening enzymes; HBI1's DNA binding and transcriptional activities were inhibited by IBH1, but the inhibitory effects of IBH1 were abolished by PRE1. The results indicate that PREs activate the DNA binding bHLH factor HBI1 by sequestering its inhibitor IBH1. Altering each of the three factors affected plant sensitivities to BR, GA, temperature, and light. Our study demonstrates that PREs, IBH1, and HBI1 form a chain of antagonistic switches that regulates cell elongation downstream of multiple external and endogenous signals.

  1. Cascade ICF power reactor

    SciTech Connect

    Hogan, W.J.; Pitts, J.H.

    1986-05-20

    The double-cone-shaped Cascade reaction chamber rotates at 50 rpm to keep a blanket of ceramic granules in place against the wall as they slide from the poles to the exit slots at the equator. The 1 m-thick blanket consists of layers of carbon, beryllium oxide, and lithium aluminate granules about 1 mm in diameter. The x rays and debris are stopped in the carbon granules; the neutrons are multiplied and moderated in the BeO and breed tritium in the LiAlO/sub 2/. The chamber wall is made up of SiO tiles held in compression by a network of composite SiC/Al tendons. Cascade operates at a 5 Hz pulse rate with 300 MJ in each pulse. The temperature in the blanket reaches 1600 K on the inner surface and 1350 K at the outer edge. The granules are automatically thrown into three separate vacuum heat exchangers where they give up their energy to high pressure helium. The helium is used in a Brayton cycle to obtain a thermal-to-electric conversion efficiency of 55%. Studies have been done on neutron activation, debris recovery, vaporization and recondensation of blanket material, tritium control and recovery, fire safety, and cost. These studies indicate that Cascade appears to be a promising ICF reactor candidate from all standpoints. At the 1000 MWe size, electricity could be made for about the same cost as in a future fission reactor.

  2. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen-activated protein kinase kinase signaling pathways

    PubMed Central

    HU, SHAN; HUANG, LIMING; MENG, LIWEI; SUN, HE; ZHANG, WEI; XU, YINGCHUN

    2015-01-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK) signaling cascades, which are two important signaling pathways for endocrine therapy resistance in breast cancer. The results of the present study indicate that isorhamnetin inhibits cell proliferation and induces cell apoptosis. In addition, isorhamnetin was observed to inhibit the Akt/mTOR and the MEK/extracellular signal-regulated kinase phosphorylation cascades. The inhibition of these two signaling pathways was attenuated by the two Akt and MEK1 inhibitors, but not by the nuclear factor-κB inhibitor. Furthermore, epidermal growth factor inhibited the effects of isorhamnetin via activation of the Akt and MEK signaling pathways. These results indicate that isorhamnetin exhibits antitumor effects in breast cancer, which are mediated by the Akt and MEK signaling pathways. PMID:26502751

  3. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen‑activated protein kinase kinase signaling pathways.

    PubMed

    Hu, Shan; Huang, Liming; Meng, Liwei; Sun, He; Zhang, Wei; Xu, Yingchun

    2015-11-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK) signaling cascades, which are two important signaling pathways for endocrine therapy resistance in breast cancer. The results of the present study indicate that isorhamnetin inhibits cell proliferation and induces cell apoptosis. In addition, isorhamnetin was observed to inhibit the Akt/mTOR and the MEK/extracellular signal-regulated kinase phosphorylation cascades. The inhibition of these two signaling pathways was attenuated by the two Akt and MEK1 inhibitors, but not by the nuclear factor-κB inhibitor. Furthermore, epidermal growth factor inhibited the effects of isorhamnetin via activation of the Akt and MEK signaling pathways. These results indicate that isorhamnetin exhibits antitumor effects in breast cancer, which are mediated by the Akt and MEK signaling pathways.

  4. 4'-Demethylnobiletin, a bioactive metabolite of nobiletin enhancing PKA/ERK/CREB signaling, rescues learning impairment associated with NMDA receptor antagonism via stimulation of the ERK cascade.

    PubMed

    Al Rahim, Md; Nakajima, Akira; Saigusa, Daisuke; Tetsu, Naomi; Maruyama, Yuji; Shibuya, Masatoshi; Yamakoshi, Hiroyuki; Tomioka, Yoshihisa; Iwabuchi, Yoshiharu; Ohizumi, Yasushi; Yamakuni, Tohru

    2009-08-18

    The biochemical and pharmacological activities of nobiletin, including neurotrophic and memory-enhancing action, in both in vitro and in vivo systems are well established. However, whether its metabolites do have such beneficial effects like nobiletin remains to be examined. Here we, for the first time, report that 2-(4-hydroxy-3-methoxyphenyl)-5,6,7,8-tetramethoxychromen-4-one (4'-demethylnobiletin), a major metabolite of nobiletin identified in the urine of rats and mice, stimulates the phosphorylation of ERK and CREB and enhances CRE-mediated transcription by activating a PKA/MEK/ERK pathway, like nobiletin, in cultured hippocampal neurons. Since NMDA receptor-mediated ERK signaling is involved in memory processing, including associative memories, we also examined whether 4'-demethylnobiletin, by activating ERK signaling, could restore learning impairment. Chronic intraperitoneal (ip) treatment of the mice with 10 or 50 mg of 4'-demethylnobiletin/kg rescued the NMDA receptor antagonist MK-801-induced learning impairment, accompanied by improvement of the MK-801-induced decrease in the level of ERK phosphorylation in the hippocampus of the animals. Consistently, 4'-demethylnobiletin also restored MK-801-induced inhibition of NMDA-stimulated phosphorylation of not only ERK but also PKA substrates in cultured rat hippocampal neurons. Moreover, we actually detected 4'-demethylnobiletin in the brain of mice following acute ip administration, demonstrating that the metabolite can cross the blood-brain barrier to reach the brain and thereby exert its effects to reverse learning impairment. Therefore, these results suggest that 4'-demethylnobiletin, a bioactive metabolite of nobiletin, may serve as a potential therapeutic agent, at least, for memory disorders associated with a dysregulated NMDA receptor ERK signaling, like nobiletin.

  5. Enhanced Multistatic Active Sonar via Innovative Signal Processing

    DTIC Science & Technology

    2015-09-30

    Grove, CA, November, 2014. [in press, refereed]. C . Gianelli, L. Xu, and J. Li, " Active Sonar Systems in the Presence of Strong Direct Blast", Oceans...3. DATES COVERED (From - To) Oct. 01, 2014-Sept. 30, 2015 4. TITLE AND SUBTITLE Enhanced Multistatic Active Sonar via Innovative Signal... active sonar (CAS) in the presence of strong direct blast is studied for the Doppler-tolerant linear frequency modulation waveform. A receiver design

  6. Enhanced Multistatic Active Sonar via Innovative Signal Processing

    DTIC Science & Technology

    2014-09-30

    DATES COVERED (From - To) Oct. 01. 2013-Sept. 30, 2014 4. TITLE AND SUBTITLE Enhanced Multistatic Active Sonar via Innovative Signal Processing 5a...DISTRIBUTION AVAILABILITY STATEMENT Approved for Public Release; Distribution is Unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Pulsed active sonar ...PAS) and continuous active sonar (CAS) in the presence of strong direct blast are studied for the Doppler-tolerant linear frequency modulation

  7. SMAD Transcription Factor, Sma-9, Attunes TGF-β Signaling Cascade Towards Modulating Amyloid Beta Aggregation and Associated Outcome in Transgenic C. elegans.

    PubMed

    Haque, Rizwanul; Nazir, Aamir

    2016-01-01

    The considerable roles of transcription factors, and the associated signaling molecules that activate them, are well deciphered in the context of various biological processes. One of the important transcription factors, the transforming growth factor-β (TGF-β) pathway, has a profound role in neuronal cell survival-a process that gets awry in multiple conditions which include various neurological ailments. Alzheimer's disease (AD) is one such condition wherein toxic buildup of misfolded proteins occurs, cellular signaling gets disrupted, and neuronal cell death ensues. We endeavored to study whether the transcriptional cofactors, associated with the TGF-β pathway, have a role to play in modulating the disease outcome. Employing transgenic C. elegans model, we studied β-amyloid aggregation, acetylcholine levels, and associated endpoints and figured that SMAD transcriptional cofactor, Sma-9, modulates the outcome associated with AD. Our studies conclude that Sma-9, a subset of the TGF-β-mediated signaling pathway, can be a potential target in neurodegenerative AD as it can influence neuronal, and organismal, survival and play crucial role in limiting adverse effects of AD.

  8. Stra13 regulates satellite cell activation by antagonizing Notch signaling

    PubMed Central

    Sun, Hong; Li, Li; Vercherat, Cécile; Gulbagci, Neriman Tuba; Acharjee, Sujata; Li, Jiali; Chung, Teng-Kai; Thin, Tin Htwe; Taneja, Reshma

    2007-01-01

    Satellite cells play a critical role in skeletal muscle regeneration in response to injury. Notch signaling is vital for satellite cell activation and myogenic precursor cell expansion but inhibits myogenic differentiation. Thus, precise spatial and temporal regulation of Notch activity is necessary for efficient muscle regeneration. We report that the basic helix-loop-helix transcription factor Stra13 modulates Notch signaling in regenerating muscle. Upon injury, Stra13−/− mice exhibit increased cellular proliferation, elevated Notch signaling, a striking regeneration defect characterized by degenerated myotubes, increased mononuclear cells, and fibrosis. Stra13−/− primary myoblasts also exhibit enhanced Notch activity, increased proliferation, and defective differentiation. Inhibition of Notch signaling ex vivo and in vivo ameliorates the phenotype of Stra13−/− mutants. We demonstrate in vitro that Stra13 antagonizes Notch activity and reverses the Notch-imposed inhibition of myogenesis. Thus, Stra13 plays an important role in postnatal myogenesis by attenuating Notch signaling to reduce myoblast proliferation and promote myogenic differentiation. PMID:17502421

  9. Platelet-activating factor: receptors and signal transduction.

    PubMed

    Chao, W; Olson, M S

    1993-06-15

    During the past two decades, studies describing the chemistry and biology of PAF have been extensive. This potent phosphoacylglycerol exhibits a wide variety of physiological and pathophysiological effects in various cells and tissues. PAF acts, through specific receptors and a variety of signal transduction systems, to elicit diverse biochemical responses. Several important future directions can be enumerated for the characterization of PAF receptors and their attendant signalling mechanisms. The recent cloning and sequence analysis of the gene for the PAF receptor will allow a number of important experimental approaches for characterizing the structure and analysing the function of the various domains of the receptor. Using molecular genetic and immunological technologies, questions relating to whether there is receptor heterogeneity, the precise mechanism(s) for the regulation of the PAF receptor, and the molecular details of the signalling mechanisms in which the PAF receptor is involved can be explored. Another area of major significance is the examination of the relationship between the signalling response(s) evoked by PAF binding to its receptor and signalling mechanisms activated by a myriad of other mediators, cytokines and growth factors. A very exciting recent development in which PAF receptors undoubtedly play a role is in the regulation of the function of various cellular adhesion molecules. Finally, there remain many incompletely characterized physiological and pathophysiological situations in which PAF and its receptor play a crucial signalling role. Our laboratory has been active in the elucidation of several tissue responses in which PAF exhibits major autocoid signalling responses, e.g. hepatic injury and inflammation, acute and chronic pancreatitis, and cerebral stimulation and/or trauma. As new experimental strategies are developed for characterizing the fine structure of the molecular mechanisms involved in tissue injury and inflammation, the

  10. Serine kinase activity of a Bacillus subtilis switch protein is required to transduce environmental stress signals but not to activate its target PP2C phosphatase.

    PubMed

    Kang, C M; Vijay, K; Price, C W

    1998-10-01

    The RsbT serine kinase has two known functions in the signal transduction pathway that activates the general stress factor sigmaB of Bacillus subtilis. First, RsbT can phosphorylate and inactivate its specific antagonist protein, RsbS. Second, upon phosphorylation of RsbS, RsbT is released to stimulate RsbU, a PP2C phosphatase, thereby initiating a signalling cascade that ultimately activates sigmaB. Here we describe a mutation that separates these two functions of RsbT. Although the mutant RsbT protein had essentially no kinase activity, it still retained the capacity to stimulate the RsbU phosphatase in vitro and to activate sigmaB when overexpressed in vivo. These results support the hypothesis that phosphatase activation is accomplished via a long-lived interaction between RsbT and RsbU. In contrast, RsbT kinase activity was found to be integral for the transmission of external stimuli to sigmaB. Thus, one route by which environmental stress signals could enter the sigmaB network is by modulation of the RsbT kinase activity, thereby controlling the magnitude of the partner switch between the RsbS-RsbT complex and the RsbT-RsbU complex.

  11. c-Kit-kinase induces a cascade of protein tyrosine phosphorylation in normal human melanocytes in response to mast cell growth factor and stimulates mitogen-activated protein kinase but is down-regulated in melanomas.

    PubMed Central

    Funasaka, Y; Boulton, T; Cobb, M; Yarden, Y; Fan, B; Lyman, S D; Williams, D E; Anderson, D M; Zakut, R; Mishima, Y

    1992-01-01

    The proto-oncogene c-Kit, a transmembrane receptor tyrosine kinase, is an important regulator of cell growth whose constitutively active oncogenic counterpart, v-kit, induces sarcomas in cats. Mutations in murine c-kit that reduce the receptor tyrosine kinase activity cause deficiencies in the migration and proliferation of melanoblasts, hematopoietic stem cells, and primordial germ cells. We therefore investigated whether c-Kit regulates normal human melanocyte proliferation and plays a role in melanomas. We show that normal human melanocytes respond to mast cell growth factor (MGF), the Kit-ligand that stimulates phosphorylation of tyrosyl residues in c-Kit and induces sequential phosphorylation of tyrosyl residues in several other proteins. One of the phosphorylated intermediates in the signal transduction pathway was identified as an early response kinase (mitogen-activated protein [MAP] kinase). Dephosphorylation of a prominent 180-kDa protein suggests that MGF also activates a phosphotyrosine phosphatase. In contrast, MGF did not induce proliferation, the cascade of protein phosphorylations, or MAP kinase activation in the majority of cells cultured from primary nodular and metastatic melanomas that grow independently of exogenous factors. In the five out of eight human melanoma lines expressing c-kit mRNAs, c-Kit was not constitutively activated. Therefore, although c-Kit-kinase is a potent growth regulator of normal human melanocytes, its activity is not positively associated with malignant transformation. Images PMID:1372524

  12. Inhibition of pro-HGF activation by SRI31215, a novel approach to block oncogenic HGF/MET signaling.

    PubMed

    Owusu, Benjamin Y; Bansal, Namita; Venukadasula, Phanindra K M; Ross, Larry J; Messick, Troy E; Goel, Sanjay; Galemmo, Robert A; Klampfer, Lidija

    2016-05-17

    The binding of hepatocyte growth factor (HGF) to its receptor MET activates a signaling cascade that promotes cell survival, proliferation, cell scattering, migration and invasion of malignant cells. HGF is secreted by cancer cells or by tumor-associated fibroblasts as pro-HGF, an inactive precursor. A key step in the regulation of HGF/MET signaling is proteolytic processing of pro-HGF to its active form by one of the three serine proteases, matriptase, hepsin or HGF activator (HGFA).We developed SRI 31215, a small molecule that acts as a triplex inhibitor of matriptase, hepsin and HGFA and mimics the activity of HAI-1/2, endogenous inhibitors of HGF activation. We demonstrated that SRI 31215 inhibits fibroblast-induced MET activation, epithelial-mesenchymal transition and migration of cancer cells. SRI 31215 overcomes primary resistance to cetuximab and gefitinib in HGF-producing colon cancer cells and prevents fibroblast-mediated resistance to EGFR inhibitors. Thus, SRI 31215 blocks signaling between cancer cells and fibroblasts and inhibits the tumor-promoting activity of cancer-associated fibroblasts.Aberrant HGF/MET signaling supports cell survival, proliferation, angiogenesis, invasion and metastatic spread of cancer cells, establishing HGF and MET as valid therapeutic targets. Our data demonstrate that inhibitors of HGF activation, such as SRI 31215, merit investigation as potential therapeutics in tumors that are addicted to HGF/MET signaling. The findings reported here also indicate that inhibitors of HGF activation overcome primary and acquired resistance to anti-EGFR therapy, providing a rationale for concurrent inhibition of EGFR and HGF to prevent therapeutic resistance and to improve the outcome of cancer patients.

  13. (-)-3,5-Dicaffeoyl-muco-quinic acid isolated from Aster scaber contributes to the differentiation of PC12 cells: through tyrosine kinase cascade signaling.

    PubMed

    Hur, Jin Young; Lee, Pyeongjae; Kim, Hocheol; Kang, Insug; Lee, Kang Ro; Kim, Sun Yeou

    2004-01-23

    Aster scaber T. (Asteraceae) has been used in traditional Korean and Chinese medicine to treat bruises, snakebites, headaches, and dizziness. (-)-3,5-Dicaffeoyl-muco-quinic acid (DQ) isolated from A. scaber induced neurite outgrowth in PC12 cells. It has been reported that the activation of the extracellular signal regulated kinase 1/2 (Erk 1/2) and phosphoinositide 3 (PI3) kinase plays a crucial role in the NGF-induced differentiation of PC12 cells. This study showed that the effect of DQ on neurite outgrowth is mediated via the Erk 1/2 and PI3 kinase-dependent pathways like NGF. Furthermore, DQ stimulated the phosphorylation of Trk A. Overall, DQ elicited the differentiation of PC12 cells through Trk A phosphorylation followed by Erk 1/2 and PI3 kinase activation.

  14. Sequential signaling cascade of IL-6 and PGC-1α is involved in high glucose-induced podocyte loss and growth arrest

    SciTech Connect

    Kim, Dong Il; Park, Soo Hyun

    2013-06-14

    Highlights: •The pathophysiological role of IL-6 in high glucose-induced podocyte loss. •The novel role of PGC-1α in the development of diabetic nephropathy. •Signaling of IL-6 and PGC-1α in high glucose-induced dysfunction of podocyte. -- Abstract: Podocyte loss, which is mediated by podocyte apoptosis, is implicated in the onset of diabetic nephropathy. In this study, we investigated the involvement of interleukin (IL)-6 in high glucose-induced apoptosis of rat podocytes. We also examined the pathophysiological role of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) in this system. High glucose treatment induced not only podocyte apoptosis but also podocyte growth arrest. High glucose treatment also increased IL-6 secretion and activated IL-6 signaling. The high glucose-induced podocyte apoptosis was blocked by IL-6 neutralizing antibody. IL-6 treatment or overexpression induced podocyte apoptosis and growth arrest, and IL-6 siRNA transfection blocked high glucose-induced podocyte apoptosis and growth arrest. Furthermore, high glucose or IL-6 treatment increased PGC-1α expression, and PGC-1α overexpression also induced podocyte apoptosis and growth arrest. PGC-1α siRNA transfection blocked high glucose-induced podocyte apoptosis and growth arrest. Collectively, these findings showed that high glucose promoted apoptosis and cell growth arrest in podocytes via IL-6 signaling. In addition, PGC-1α is involved in podocyte apoptosis and cell growth arrest. Therefore, blocking IL-6 and its downstream mediators such as IL6Rα, gp130 and PGC-1α may attenuate the progression of diabetic nephropathy.

  15. Screening of UV-B-induced genes from apple peels by SSH: possible involvement of MdCOP1-mediated signaling cascade genes in anthocyanin accumulation.

    PubMed

    Peng, Ting; Saito, Takanori; Honda, Chikako; Ban, Yusuke; Kondo, Satoru; Liu, Ji-Hong; Hatsuyama, Yoshimichi; Moriguchi, Takaya

    2013-07-01

    Suppression subtractive hybridization (SSH) was employed to identify candidate genes involved in red coloration in apple peel with the ultraviolet (UV)-B-treated 'Mutsu'. After reverse Northern blotting verification, nearly 80 clones were successfully sequenced. Large portions of the expressed sequence tags (ESTs) are well characterized anthocyanin biosynthesis-related genes, such as chalcone synthase (11A5), flavonol synthase (12F3), anthocyanidin synthase (11H5) and UDP-glycosyl transferase (14A12) whose presence proved the success of SSH. Eight ESTs were selected for quantitative real-time polymerase chain reaction analysis and their expressions were all elevated in 'Induction', further confirming the reliability of the SSH library. One EST, 11F4 (CONSTITUTIVE PHOTOMORPHOGENIC 1: COP1) with putative function in light signal relay was further analyzed in 'Mutsu' and 'Tsugaru', along with MdHY5 (ELONGATED HYPOCOTYL 5: the downstream target of COP1), MdMYB22 (a possible flavonol-specific activator under the regulation of HY5, belonging to the SG7/PRODUCTION OF FLAVONOL GLYCOSIDES family) and MdMYBA. Results showed that MdCOP1, MdHY5, MdMYB22 and MdMYBA were all UV-B inducible genes and anthocyanin accumulation occurred after their increased expressions. Moreover, their expressions and anthocyanin content were enhanced under UV-B plus 17°C treatment. The presence of G box, a known consensus binding site of HY5, in the MdMYBA promoter region implicated that it could be regulated by MdHY5, which was verified by the result of the yeast one-hybrid analysis. Our data suggested that UV-B irradiation would induce the utmost upstream light signaling factor, MdCOP1, which activates MdHY5 signaling by binding to the promoter regions of MdMYBs, and finally leads to the red coloration of apple peels.

  16. Histone H4 expression is cooperatively maintained by IKKβ and Akt1 which attenuates cisplatin-induced apoptosis through the DNA-PK/RIP1/IAPs signaling cascade

    PubMed Central

    Wang, Ruixue; Zheng, Xuelian; Zhang, Lei; Zhou, Bin; Hu, Huaizhong; Li, Zhiping; Zhang, Lin; Lin, Yong; Wang, Xia

    2017-01-01

    While chromatin remodeling mediated by post-translational modification of histone is extensively studied in carcinogenesis and cancer cell’s response to chemotherapy and radiotherapy, little is known about the role of histone expression in chemoresistance. Here we report a novel chemoresistance mechanism involving histone H4 expression. Extended from our previous studies showing that concurrent blockage of the NF-κB and Akt signaling pathways sensitizes lung cancer cells to cisplatin-induced apoptosis, we for the first time found that knockdown of Akt1 and the NF-κB-activating kinase IKKβ cooperatively downregulated histone H4 expression, which increased cisplatin-induced apoptosis in lung cancer cells. The enhanced cisplatin cytotoxicity in histone H4 knockdown cells was associated with proteasomal degradation of RIP1, accumulation of cellular ROS and degradation of IAPs (cIAP1 and XIAP). The cisplatin-induced DNA-PK activation was suppressed in histone H4 knockdown cells, and inhibiting DNA-PK reduced expression of RIP1 and IAPs in cisplatin-treated cells. These results establish a novel mechanism by which NF-κB and Akt contribute to chemoresistance involving a signaling pathway consisting of histone H4, DNA-PK, RIP1 and IAPs that attenuates ROS-mediated apoptosis, and targeting this pathway may improve the anticancer efficacy of platinum-based chemotherapy. PMID:28139737

  17. Zinc modulates PPARgamma signaling and activation of porcine endothelial cells.

    PubMed

    Meerarani, Purushothaman; Reiterer, Gudrun; Toborek, Michal; Hennig, Bernhard

    2003-10-01

    Dietary zinc has potent antioxidant and anti-inflammatory properties and is a critical component of peroxisome proliferator-activated receptor (PPAR) gene expression and regulation. To assess the protective mechanisms of PPARgamma in endothelial cell dysfunction and the role of zinc in the modulation of PPARgamma signaling, cultured porcine pulmonary artery endothelial cells were exposed to the membrane-permeable zinc chelator N,N,N'N'-tetrakis (2-pyridylmethyl)-ethylene diamine (TPEN), thiazolidinedione (TZD; PPARgamma agonist) or bisphenol A diglycidyl ether (BADGE; PPARgamma antagonist). Subsequently, endothelial cells were activated by treatment with linoleic acid (90 micro mol/L) for 6 h. Zinc chelation by TPEN increased the DNA binding activity of nuclear factor (NF)-kappaB and activator protein (AP)-1, decreased PPARgamma expression and activation as well as up-regulated interleukin (IL)-6 expression and production. These effects were fully reversed by zinc supplementation. In addition, exposure to TZD down-regulated linoleic acid-induced DNA binding activity of NF-kappaB and AP-1, whereas BADGE further induced activation of these oxidative stress-sensitive transcription factors. Most importantly, the TZD-mediated down-regulation of NF-kappaB and AP-1 and reduced inflammatory response were impaired during zinc chelation. These data suggest that zinc plays a critical role in PPARgamma signaling in linoleic acid-induced endothelial cell activation and indicate that PPARgamma signaling is impaired during zinc deficiency.

  18. Notch signaling promotes osteoclast maturation and resorptive activity

    PubMed Central

    Ashley, Jason W; Ahn, Jaimo; Hankenson, Kurt D

    2015-01-01

    The role of Notch signaling in osteoclast differentiation is controversial with conflicting experimental evidence indicating both stimulatory and inhibitory roles. Differences in experimental protocols and in vivo versus in vitro models may explain the discrepancies between studies. In this study, we investigated cell autonomous roles of Notch signaling in osteoclast differentiation and function by altering Notch signaling during osteoclast differentiation using stimulation with immobilized ligands Jagged1 or Delta-like1 or by suppression with γ-secretase inhibitor DAPT or transcriptional inhibitor SAHM1. Stimulation of Notch signaling in committed osteoclast precursors resulted in larger osteoclasts with a greater number of nuclei and resorptive activity whereas suppression resulted in smaller osteoclasts with fewer nuclei and suppressed resorptive activity. Conversely, stimulation of Notch signaling in osteoclast precursors prior to induction of osteoclastogenesis resulted in fewer osteoclasts. Our data support a mechanism of context-specific Notch signaling effects wherein Notch stimulation inhibits commitment to osteoclast differentiation, but enhances the maturation and function of committed precursors. PMID:25914241

  19. Label-free molecular beacons-based cascade amplification DNA machine for sensitive detection of telomerase activity.

    PubMed

    Li, Kan; Wang, Lei; Xu, Xiaowen; Jiang, Wei

    2017-05-15

    Sensitive detection of telomerase activity is critical to cancer diagnosis, screening of anticancer drugs and evaluation of cancer therapy. Herein, a label-free molecular beacons-based DNA machine was developed for sensitive detection of telomerase activity. The DNA machine consisted of T7 exonuclease (T7 Exo), label-free recognition molecular beacon (RMB) and signal molecular beacon (SMB) with projecting 5'-terminuses, which can protect RMB and SMB from being digested by T7 Exo. Firstly, telomerase elongated telomerase substrate (TS) primer, generating a telomerase elongation production (TEP) with tandem repeats (TTAGGG)n. Next, TEP activated the DNA machine by hybridizing with RMB, unfolding RMB with a recessed 5'-terminus, making RMB deprotection from T7 Exo. Then T7 Exo-assisted cycling cleavage was incurred, releasing intact TEP and numerous DNA fragments (trigger DNA), which got recycling I. Subsequently, trigger DNA specifically opened SMB and was recycled by T7 Exo, liberating multiple G-quadruplex (G4) structures, which got recycling II. Finally, TEP and the liberative G4 structures strongly interacted with N-methyl-mesoporphyrin IX (NMM), yielding a significantly enhanced fluorescence together. In this way, per telomerase-mediated elongation event was efficiently converted into the greatly amplified fluorescence signals. Telomerase activity in crude HeLa cells extracts equivalent to 50 cells/mL was successfully measured with a linear range from 50 cells/mL to 2000 cells/mL. Besides, the strategy was also successfully used to assay the inhibition effect of a telomerase-inhibiting drug, demonstrating the strategy holds the potential to screen telomerase inhibitors.

  20. 5'-AMP-activated protein kinase signaling in Caenorhabditis elegans.

    PubMed

    Beale, Elmus G

    2008-01-01

    5'-AMP-activated protein kinase (AMPK) has been called "the metabolic master switch" because of its central role in regulating fuel homeostasis. AMPK, a heterotrimeric serine/threonine protein kinase composed of alpha, beta, and gamma subunits, is activated by upstream kinases and by 5'-AMP in response to various nutritional and stress signals. Downstream effects include regulation of metabolism, protein synthesis, cell growth, and mediation of the actions of a number of hormones, including leptin. However, AMPK research represents a young and growing field; hence, there are many unanswered questions regarding the control and action of AMPK. This review presents evidence for the existence of AMPK signaling pathways in Caenorhabditis elegans, a genetically tractable model organism that has yet to be fully exploited to elucidate AMPK signaling mechanisms.

  1. Anti-Breast Cancer Potential of Quercetin via the Akt/AMPK/Mammalian Target of Rapamycin (mTOR) Signaling Cascade.

    PubMed

    Rivera Rivera, Amilcar; Castillo-Pichardo, Linette; Gerena, Yamil; Dharmawardhane, Suranganie

    2016-01-01

    The Akt/adenosine monophosphate protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway has emerged as a critical signaling nexus for regulating cellular metabolism, energy homeostasis, and cell growth. Thus, dysregulation of this pathway contributes to the development of metabolic disorders such as obesity, type 2diabetes, and cancer. We previously reported that a combination of grape polyphenols (resveratrol, quercetin and catechin: RQC), at equimolar concentrations, reduces breast cancer (BC) growth and metastasis in nude mice, and inhibits Akt and mTOR activities and activates AMPK, an endogenous inhibitor of mTOR, in metastatic BC cells. The objective of the present study was to determine the contribution of individual polyphenols to the effect of combined RQC on mTOR signaling. Metastatic BC cells were treated with RQC individually or in combination, at various concentrations, and the activities (phosphorylation) of AMPK, Akt, and the mTOR downstream effectors, p70S6 kinase (p70S6K) and 4E binding protein (4EBP1), were determined by Western blot. Results show that quercetin was the most effective compound for Akt/mTOR inhibition. Treatment with quercetin at 15μM had a similar effect as the RQC combination in the inhibition of BC cell proliferation, apoptosis, and migration. However, cell cycle analysis showed that the RQC treatment arrested BC cells in the G1 phase, while quercetin arrested the cell cycle in G2/M. In vivo experiments, using SCID mice with implanted tumors from metastatic BC cells, demonstrated that administration of quercetin at 15mg/kg body weight resulted in a ~70% reduction in tumor growth. In conclusion, quercetin appears to be a viable grape polyphenol for future development as an anti BC therapeutic.

  2. Anti-Breast Cancer Potential of Quercetin via the Akt/AMPK/Mammalian Target of Rapamycin (mTOR) Signaling Cascade

    PubMed Central

    Rivera Rivera, Amilcar; Castillo-Pichardo, Linette; Gerena, Yamil; Dharmawardhane, Suranganie

    2016-01-01

    The Akt/adenosine monophosphate protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway has emerged as a critical signaling nexus for regulating cellular metabolism, energy homeostasis, and cell growth. Thus, dysregulation of this pathway contributes to the development of metabolic disorders such as obesity, type 2diabetes, and cancer. We previously reported that a combination of grape polyphenols (resveratrol, quercetin and catechin: RQC), at equimolar concentrations, reduces breast cancer (BC) growth and metastasis in nude mice, and inhibits Akt and mTOR activities and activates AMPK, an endogenous inhibitor of mTOR, in metastatic BC cells. The objective of the present study was to determine the contribution of individual polyphenols to the effect of combined RQC on mTOR signaling. Metastatic BC cells were treated with RQC individually or in combination, at various concentrations, and the activities (phosphorylation) of AMPK, Akt, and the mTOR downstream effectors, p70S6 kinase (p70S6K) and 4E binding protein (4EBP1), were determined by Western blot. Results show that quercetin was the most effective compound for Akt/mTOR inhibition. Treatment with quercetin at 15μM had a similar effect as the RQC combination in the inhibition of BC cell proliferation, apoptosis, and migration. However, cell cycle analysis showed that the RQC treatment arrested BC cells in the G1 phase, while quercetin arrested the cell cycle in G2/M. In vivo experiments, using SCID mice with implanted tumors from metastatic BC cells, demonstrated that administration of quercetin at 15mg/kg body weight resulted in a ~70% reduction in tumor growth. In conclusion, quercetin appears to be a viable grape polyphenol for future development as an anti BC therapeutic. PMID:27285995

  3. Multistage WDM access architecture employing cascaded AWGs

    NASA Astrophysics Data System (ADS)

    El-Nahal, F. I.; Mears, R. J.

    2009-03-01

    Here we propose passive/active arrayed waveguide gratings (AWGs) with enhanced performance for system applications mainly in novel access architectures employing cascaded AWG technology. Two technologies were considered to achieve space wavelength switching in these networks. Firstly, a passive AWG with semiconductor optical amplifiers array, and secondly, an active AWG. Active AWG is an AWG with an array of phase modulators on its arrayed-waveguides section, where a programmable linear phase-profile or a phase hologram is applied across the arrayed-waveguide section. This results in a wavelength shift at the output section of the AWG. These architectures can address up to 6912 customers employing only 24 wavelengths, coarsely separated by 1.6 nm. Simulation results obtained here demonstrate that cascaded AWGs access architectures have a great potential in future local area networks. Furthermore, they indicate for the first time that active AWGs architectures are more efficient in routing signals to the destination optical network units than passive AWG architectures.

  4. Biased signaling by peptide agonists of protease activated receptor 2.

    PubMed

    Jiang, Yuhong; Yau, Mei-Kwan; Kok, W Mei; Lim, Junxian; Wu, Kai-Chen; Liu, Ligong; Hill, Timothy A; Suen, Jacky Y; Fairlie, David P

    2017-02-07

    Protease activated receptor 2 (PAR2) is associated with metabolism, obesity, inflammatory, respiratory and gastrointestinal disorders, pain, cancer and other diseases. The extracellular N-terminus of PAR2 is a common target for multiple proteases, which cleave it at different sites to generate different N-termini that activate different PAR2-mediated intracellular signaling pathways. There are no synthetic PAR2 ligands that reproduce the same signaling profiles and potencies as proteases. Structure-activity relationships here for 26 compounds spanned a signaling bias over 3 log units, culminating in three small ligands as biased agonist tools for interrogating PAR2 functions. DF253 (2f-LAAAAI-NH2) triggered PAR2-mediated calcium release (EC50 2 μM) but not ERK1/2 phosphorylation (EC50 > 100 μM) in CHO cells transfected with hPAR2. AY77 (Isox-Cha-Chg-NH2) was a more potent calcium-biased agonist (EC50 40 nM, Ca2+; EC50 2 μM, ERK1/2), while its analogue AY254 (Isox-Cha-Chg-A-R-NH2) was an ERK-biased agonist (EC50 2 nM, ERK1/2; EC50 80 nM, Ca2+). Signaling bias led to different functional responses in human colorectal carcinoma cells (HT29). AY254, but not AY77 or DF253, attenuated cytokine-induced caspase 3/8 activation, promoted scratch-wound healing and induced IL-8 secretion, all via PAR2-ERK1/2 signaling. Different ligand components were responsible for different PAR2 signaling and functions, clues that can potentially lead to drugs that modulate different pathway-selective cellular and physiological responses.

  5. Microglial activatory (immunoreceptor tyrosine-based activation motif)- and inhibitory (immunoreceptor tyrosine-based inhibition motif)-signaling receptors for recognition of the neuronal glycocalyx.

    PubMed

    Linnartz, Bettina; Neumann, Harald

    2013-01-01

    Microglia sense intact or lesioned cells of the central nervous system (CNS) and respond accordingly. To fulfill this task, microglia express a whole set of recognition receptors. Fc receptors and DAP12 (TYROBP)-associated receptors such as microglial triggering receptor expressed on myeloid cells-2 (TREM2) and the complement receptor-3 (CR3, CD11b/CD18) trigger the immunoreceptor tyrosine-based activation motif (ITAM)-signaling cascade, resulting in microglial activation, migration, and phagocytosis. Those receptors are counter-regulated by immunoreceptor tyrosine-based inhibition motif (ITIM)-signaling receptors, such as sialic acid-binding immunoglobulin superfamily lectins (Siglecs). Siglecs recognize the sialic acid cap of healthy neurons thus leading to an ITIM signaling that turns down microglial immune responses and phagocytosis. In contrast, desialylated neuronal processes are phagocytosed by microglial CR3 signaling via an adaptor protein containing an ITAM. Thus, the aberrant terminal glycosylation of neuronal surface glycoproteins and glycolipids could serve as a flag for microglia, which display a multitude of diverse carbohydrate-binding receptors that monitor the neuronal physical condition and respond via their ITIM- or ITAM-signaling cascade accordingly.

  6. Sulforaphane exerts its anti-inflammatory effect against amyloid-β peptide via STAT-1 dephosphorylation and activation of Nrf2/HO-1 cascade in human THP-1 macrophages.

    PubMed

    An, Ye Won; Jhang, Kyoung A; Woo, So-Youn; Kang, Jihee Lee; Chong, Young Hae

    2016-02-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide, accounting for most cases of dementia in elderly individuals, and effective therapies are still lacking. This study was designed to investigate the anti-inflammatory properties of sulforaphane against Aβ1-42 monomers in human THP-1 microglia-like cells. The results showed that sulforaphane preferentially inhibited cathepsin B- and caspase-1-dependent NLRP3 inflammasome activation induced by mostly Aβ1-42 monomers, an effect that potently reduced excessive secretion of the proinflammatory cytokine interleukin-1β (IL-1β). Subsequent mechanistic studies revealed that sulforaphane mitigated the activation of signal transducer and activator of transcription-1 induced by Aβ1-42 monomers. Sulforaphane also increased nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, which was followed by upregulation of heme-oxygenase 1 (HO-1). The anti-inflammatory effect of sulforaphane on Aβ1-42-induced IL-1β production was diminished by small interfering RNA-mediated knockdown of Nrf2 or HO-1. Moreover, sulforaphane significantly attenuated the levels of microRNA-146a, which is selectively upregulated in the temporal cortex and hippocampus of AD brains. The aforementioned effects of sulforaphane were replicated by the tyrosine kinase inhibitor, herbimycin A, and Nrf2 activator. These results indicate that signal transducer and activator of transcription-1 dephosphorylation, HO-1 and its upstream effector, Nrf2, play a pivotal role in triggering an anti-inflammatory signaling cascade of sulforaphane that results in decreases of IL-1β release and microRNA-146a production in Aβ1-42-stimulated human microglia-like cells. These findings suggest that the phytochemical sulforaphane has a potential application in AD therapeutics.

  7. [Activators, receptors and signal transduction pathways of blood platelets].

    PubMed

    Shaturnyĭ, V I; Shakhidzhanov, S S; Sveshnikova, A N; Panteleev, M A

    2014-01-01

    Platelet participation in hemostatic plug formation requires transition into an activated state (or, rather, variety of states) upon action of agonists like ADP, thromboxane A , collagen, thrombin, and others. The mechanisms of action for different agonists, their receptors and signaling pathways associated with them, as well as the mechanisms of platelet response inhibition are the subject of the present review. Collagen exposed upon vessel wall damage induced initial platelet attachment and start of thrombus formation, which involves numerous processes such as aggregation, activation of integrins, granule secretion and increase of intracellular Ca2+. Thrombin, ADP, thromboxane A , and ATP activated platelets that were not initially in contact with the wall and induce additional secretion of activating substances. Vascular endothelium and secretory organs also affect platelet activation, producing both positive (adrenaline) an d negative (prostacyclin, nitric oxide) regulators, thereby determining the relation of activation and inhibition signals, which plays a significant role in the formation of platelet aggregate under normal and pathological conditions. The pathways of platelet signaling are still incompletely understood, and their exploration presents an important objective both for basic cell biology and for the development of new drugs, the methods of diagnostics and of treatment of hemostasis disorders.

  8. Hyperactive RAS/PI3-K/MAPK Signaling Cascade in Migration and Adhesion of Nf1 Haploinsufficient Mesenchymal Stem/Progenitor Cells.

    PubMed

    Zhou, Yuan; He, Yongzheng; Sharma, Richa; Xing, Wen; Estwick, Selina A; Wu, Xiaohua; Rhodes, Steven D; Xu, Mingjiang; Yang, Feng-Chun

    2015-06-01

    Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by mutations in the NF1 tumor suppressor gene, which affect approximately 1 out of 3000 individuals. Patients with NF1 suffer from a range of malignant and nonmalignant manifestations such as plexiform neurofibromas and skeletal abnormalities. We previously demonstrated that Nf1 haploinsufficiency in mesenchymal stem/progenitor cells (MSPCs) results in impaired osteoblastic differentiation, which may be associated with the skeletal manifestations in NF1 patients. Here we sought to further ascertain the role of Nf1 in modulating the migration and adhesion of MSPCs of the Nf1 haploinsufficient (Nf1(+/-)) mice. Nf1(+/-) MSPCs demonstrated increased nuclear-cytoplasmic ratio, increased migration, and increased actin polymerization as compared to wild-type (WT) MSPCs. Additionally, Nf1(+/-) MSPCs were noted to have significantly enhanced cell adhesion to fibronectin with selective affinity for CH271 with an overexpression of its complimentary receptor, CD49e. Nf1(+/-) MSPCs also showed hyperactivation of phosphoinositide 3-kinase (PI3-K) and mitogen activated protein kinase (MAPK) signaling pathways when compared to WT MSPCs, which were both significantly reduced in the presence of their pharmacologic inhibitors, LY294002 and PD0325901, respectively. Collectively, our study suggests that both PI3-K and MAPK signaling pathways play a significant role in enhanced migration and adhesion of Nf1 haploinsufficient MSPCs.

  9. Cascade-able spin torque logic gates with input-output isolation

    NASA Astrophysics Data System (ADS)

    Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2015-06-01

    Spin torque majority gate (STMG) is one of the promising options for beyond-complementary metal-oxide-semiconductor non-volatile logic circuits for normally-off computing. Modeling of prior schemes demonstrated logic completeness using majority operation and nonlinear transfer characteristics. However significant problems arose with cascade-ability and input output isolation manifesting as domain walls (DWs) stopping, reflecting off ends of wires or propagating back to the inputs. We introduce a new scheme to enable cascade-ability and isolation based on (a) in-plane DW automotion in interconnects, (b) exchange coupling of magnetization between two FM layers, and (c) ‘round-about’ topology for the majority gate. We performed micro-magnetic simulations that demonstrate switching operation of this STMG scheme. These circuits were verified to enable isolation of inputs from output signals and to be cascade-able without limitations.

  10. Galangin Activates the ERK/AKT-Driven Nrf2 Signaling Pathway to Increase the Level of Reduced Glutathione in Human Keratinocytes.

    PubMed

    Madduma Hewage, Susara Ruwan Kumara; Piao, Mei Jing; Kang, Kyoung Ah; Ryu, Yea Seong; Fernando, Pattage Madushan Dilhara Jayatissa; Oh, Min Chang; Park, Jeong Eon; Shilnikova, Kristina; Moon, Yu Jin; Shin, Dae O; Hyun, Jin Won

    2016-11-08

    Previously, we demonstrated that galangin (3,5,7-trihydroxyflavone) protects human keratinocytes against ultraviolet B (UVB)-induced oxidative damage. In this study, we investigated the effect of galangin on induction of antioxidant enzymes involved in synthesis of reduced glutathione (GSH), and investigated the associated upstream signaling cascades. By activating nuclear factor-erythroid 2-related factor (Nrf2), galangin treatment significantly increased expression of glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS). This activation of Nrf2 depended on extracellular signal-regulated kinases (ERKs) and protein kinase B (AKT) signaling. Inhibition of GSH in galangin-treated cells attenuated the protective effect of galangin against the deleterious effects of UVB. Our results reveal that galangin protects human keratinocytes by activating ERK/AKT-Nrf2, leading to elevated expression of GSH-synthesizing enzymes.

  11. Activation of B cells by non-canonical helper signals.

    PubMed

    Cerutti, Andrea; Cols, Montserrat; Puga, Irene

    2012-09-01

    Cognate interaction between T and B lymphocytes of the adaptive immune system is essential for the production of high-affinity antibodies against microbes, and for the establishment of long-term immunological memory. Growing evidence shows that--in addition to presenting antigens to T and B cells--macrophages, dendritic cells and other cells of the innate immune system provide activating signals to B cells, as well as survival signals to antibody-secreting plasma cells. Here, we discuss how these innate immune cells contribute to the induction of highly diversified and temporally sustained antibody responses, both systemically and at mucosal sites of antigen entry.

  12. Molecular hydrogen suppresses activated Wnt/β-catenin signaling

    PubMed Central

    Lin, Yingni; Ohkawara, Bisei; Ito, Mikako; Misawa, Nobuaki; Miyamoto, Kentaro; Takegami, Yasuhiko; Masuda, Akio; Toyokuni, Shinya; Ohno, Kinji

    2016-01-01

    Molecular hydrogen (H2) is effective for many diseases. However, molecular bases of H2 have not been fully elucidated. Cumulative evidence indicates that H2 acts as a gaseous signal modulator. We found that H2 suppresses activated Wnt/β-catenin signaling by promoting phosphorylation and degradation οf β-catenin. Either complete inhibition of GSK3 or mutations at CK1- and GSK3-phosphorylation sites of β-catenin abolished the suppressive effect of H2. H2 did not increase GSK3-mediated phosphorylation of glycogen synthase, indicating that H2 has no direct effect on GSK3 itself. Knock-down of adenomatous polyposis coli (APC) or Axin1, which form the β-catenin degradation complex, minimized the suppressive effect of H2 on β-catenin accumulation. Accordingly, the effect of H2 requires CK1/GSK3-phosphorylation sites of β-catenin, as well as the β-catenin degradation complex comprised of CK1, GSK3, APC, and Axin1. We additionally found that H2 reduces the activation of Wnt/β-catenin signaling in human osteoarthritis chondrocytes. Oral intake of H2 water tended to ameliorate cartilage degradation in a surgery-induced rat osteoarthritis model through attenuating β-catenin accumulation. We first demonstrate that H2 suppresses abnormally activated Wnt/β-catenin signaling, which accounts for the protective roles of H2 in a fraction of diseases. PMID:27558955

  13. BMP2 Transfer to Neighboring Cells and Activation of Signaling.

    PubMed

    Alborzinia, Hamed; Shaikhkarami, Marjan; Hortschansky, Peter; Wölfl, Stefan

    2016-09-01

    Morphogen gradients and concentration are critical features during early embryonic development and cellular differentiation. Previously we reported the preparation of biologically active, fluorescently labeled BMP2 and quantitatively analyzed their binding to the cell surface and followed BMP2 endocytosis over time on the level of single endosomes. Here we show that this internalized BMP2 can be transferred to neighboring cells and, moreover, also activates downstream BMP signaling in adjacent cells, indicated by Smad1/5/8 phosphorylation and activation of the downstream target gene id1. Using a 3D matrix to modulate cell-cell contacts in culture we could show that direct cell-cell contact significantly increased BMP2 transfer. Using inhibitors of vesicular transport, transfer was strongly inhibited. Interestingly, cotreatment with the physiological BMP inhibitor Noggin increased BMP2 uptake and transfer, albeit activation of Smad signaling in neighboring cells was completely suppressed. Our findings present a novel and interesting mechanism by which morphogens such as BMP2 can be transferred between cells and how this is modulated by BMP antagonists such as Noggin, and how this influences activation of Smad signaling by BMP2 in neighboring cells.

  14. Identification of a Rab GTPase-activating protein cascade that controls recycling of the Rab5 GTPase Vps21 from the vacuole

    PubMed Central

    Rana, Meenakshi; Lachmann, Jens; Ungermann, Christian

    2015-01-01

    Transport within the endocytic pathway depends on a consecutive function of the endosomal Rab5 and the late endosomal/lysosomal Rab7 GTPases to promote membrane recycling and fusion in the context of endosomal maturation. We previously identified the hexameric BLOC-1 complex as an effector of the yeast Rab5 Vps21, which also recruits the GTPase-activating protein (GAP) Msb3. This raises the question of when Vps21 is inactivated on endosomes. We provide evidence for a Rab cascade in which activation of the Rab7 homologue Ypt7 triggers inactivation of Vps21. We find that the guanine nucleotide exchange factor (GEF) of Ypt7 (the Mon1-Ccz1 complex) and BLOC-1 both localize to the same endosomes. Overexpression of Mon1-Ccz1, which generates additional Ypt7-GTP, or overexpression of activated Ypt7 promotes relocalization of Vps21 from endosomes to the endoplasmic reticulum (ER), which is indicative of Vps21 inactivation. This ER relocalization is prevented by loss of either BLOC-1 or Msb3, but it also occurs in mutants lacking endosome–vacuole fusion machinery such as the HOPS tethering complex, an effector of Ypt7. Importantly, BLOC-1 interacts with the HOPS on vacuoles, suggesting a direct Ypt7-dependent cross-talk. These data indicate that efficient Vps21 recycling requires both Ypt7 and endosome–vacuole fusion, thus suggesting extended control of a GAP cascade beyond Rab interactions. PMID:25971802

  15. Regulation of Chemokine Signal Integration by Activator of G-Protein Signaling 4 (AGS4)

    PubMed Central

    Robichaux, William G.; Branham-O’Connor, Melissa; Hwang, Il-Young; Vural, Ali; Kehrl, Johne H.

    2017-01-01

    Activator of G-protein signaling 4 (AGS4)/G-protein signaling modulator 3 (Gpsm3) contains three G-protein regulatory (GPR) motifs, each of which can bind Gαi-GDP free of Gβγ. We previously demonstrated that the AGS4-Gαi interaction is regulated by seven transmembrane-spanning receptors (7-TMR), which may reflect direct coupling of the GPR-Gαi module to the receptor analogous to canonical Gαβγ heterotrimer. We have demonstrated that the AGS4-Gαi complex is regulated by chemokine receptors in an agonist-dependent manner that is receptor-proximal. As an initial approach to investigate the functional role(s) of this regulated interaction in vivo, we analyzed leukocytes, in which AGS4/Gpsm3 is predominantly expressed, from AGS4/Gpsm3-null mice. Loss of AGS4/Gpsm3 resulted in mild but significant neutropenia and leukocytosis. Dendritic cells, T lymphocytes, and neutrophils from AGS4/Gpsm3-null mice also exhibited significant defects in chemoattractant-directed chemotaxis and extracellular signal-regulated kinase activation. An in vivo peritonitis model revealed a dramatic reduction in the ability of AGS4/Gpsm3-null neutrophils to migrate to primary sites of inflammation. Taken together, these data suggest that AGS4/Gpsm3 is required for proper chemokine signal processing in leukocytes and provide further evidence for the importance of the GPR-Gαi module in the regulation of leukocyte function. PMID:28062526

  16. Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network.

    PubMed

    Adachi, Tetsuo; Tanaka, Hiromasa; Nonomura, Saho; Hara, Hirokazu; Kondo, Shin-ichi; Hori, Masaru

    2015-02-01

    Plasma medicine is a rapidly expanding new field of interdisciplinary research that combines physics, chemistry, biology, and medicine. Nonthermal atmospheric pressure plasma can be applied to living cells and tissues and has emerged as a novel technology for cancer therapy. Plasma has recently been shown to affect cells not only directly, but also by indirect treatment with previously prepared plasma-activated medium (PAM). The objective of this study was to demonstrate the inhibitory effects of PAM on A549 cell survival and elucidate the signaling mechanisms responsible for cell death. PAM maintained its ability to suppress cell viability for at least 1 week when stored at -80°C. The severity of PAM-triggered cell injury depended on the kind of culture medium used to prepare the PAM, especially that with or without pyruvate. Hydrogen peroxide (H2O2) and/or its derived or cooperating reactive oxygen species reduced the mitochondrial membrane potential, downregulated the expression of the antiapoptotic protein Bcl2, activated poly(ADP-ribose) polymerase-1, and released apoptosis-inducing factor from mitochondria with endoplasmic reticulum stress. However, the activation of caspase 3/7 and attenuation of cell viability by the addition of caspase inhibitor were not observed. The accumulation of adenine 5'-diphosphoribose as a product of the above reactions activated transient receptor potential melastatin 2, which elevated intracellular Ca(2+) levels and subsequently led to cell death. These results demonstrated that H2O2 and/or other reactive species in PAM disturbed the mitochondrial-nuclear network in cancer cells through a caspase-independent apoptotic pathway. Moreover, damage to the plasma membrane by H2O2-cooperating charged species not only induced apoptosis, but also increased its permeability to extracellular reactive species. These phenomena were also detected in PAM-treated HepG2 and MCF-7 cells.

  17. A-kinase anchoring protein (AKAP)-Lbc anchors a PKN-based signaling complex involved in α1-adrenergic receptor-induced p38 activation.

    PubMed

    Cariolato, Luca; Cavin, Sabrina; Diviani, Dario

    2011-03-11

    The mitogen-activated protein kinases (MAPKs) pathways are highly organized signaling systems that transduce extracellular signals into a variety of intracellular responses. In this context, it is currently poorly understood how kinases constituting these signaling cascades are assembled and activated in response to receptor stimulation to generate specific cellular responses. Here, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor activity, is critically involved in the activation of the p38α MAPK downstream of α(1b)-adrenergic receptors (α(1b)-ARs). Our results indicate that AKAP-Lbc can assemble a novel transduction complex containing the RhoA effector PKNα, MLTK, MKK3, and p38α, which integrates signals from α(1b)-ARs to promote RhoA-dependent activation of p38α. In particular, silencing of AKAP-Lbc expression or disrupting the formation of the AKAP-Lbc·p38α signaling complex specifically reduces α(1)-AR-mediated p38α activation without affecting receptor-mediated activation of other MAPK pathways. These findings provide a novel mechanistic hypothesis explaining how assembly of macromolecular complexes can specify MAPK signaling downstream of α(1)-ARs.

  18. TRPC6 channel-mediated neurite outgrowth in PC12 cells and hippocampal neurons involves activation of RAS/MEK/ERK, PI3K, and CAMKIV signaling.

    PubMed

    Heiser, Jeanine H; Schuwald, Anita M; Sillani, Giacomo; Ye, Lian; Müller, Walter E; Leuner, Kristina

    2013-11-01

    The non-selective cationic transient receptor canonical 6 (TRPC6) channels are involved in synaptic plasticity changes ranging from dendritic growth, spine morphology changes and increase in excitatory synapses. We previously showed that the TRPC6 activator hyperforin, the active antidepressant component of St. John's wort, induces neuritic outgrowth and spine morphology changes in PC12 cells and hippocampal CA1 neurons. However, the signaling cascade that transmits the hyperforin-induced transient rise in intracellular calcium into neuritic outgrowth is not yet fully understood. Several signaling pathways are involved in calcium transient-mediated changes in synaptic plasticity, ranging from calmodulin-mediated Ras-induced signaling cascades comprising the mitogen-activated protein kinase, PI3K signal transduction pathways as well as Ca(2+) /calmodulin-dependent protein kinase II (CAMKII) and CAMKIV. We show that several mechanisms are involved in TRPC6-mediated synaptic plasticity changes in PC12 cells and primary hippocampal neurons. Influx of calcium via TRPC6 channels activates different pathways including Ras/mitogen-activated protein kinase/extracellular signal-regulated kinases, phosphatidylinositide 3-kinase/protein kinase B, and CAMKIV in both cell types, leading to cAMP-response element binding protein phosphorylation. These findings are interesting not only in terms of the downstream targets of TRPC6 channels but also because of their potential to facilitate further understanding of St. John's wort extract-mediated antidepressant activity. Alterations in synaptic plasticity are considered to play an important role in the pathogenesis of depression. Beside several other proteins, TRPC6 channels regulate synaptic plasticity. This study demonstrates that different pathways including Ras/MEK/ERK, PI3K/Akt, and CAMKIV are involved in the improvement of synaptic plasticity by the TRPC6 activator hyperforin, the antidepressant active constituent of St. John

  19. Energetics of neuronal signaling and fMRI activity.

    PubMed

    Maandag, Natasja J G; Coman, Daniel; Sanganahalli, Basavaraju G; Herman, Peter; Smith, Arien J; Blumenfeld, Hal; Shulman, Robert G; Hyder, Fahmeed

    2007-12-18

    Energetics of resting and evoked fMRI signals were related to localized ensemble firing rates (nu) measured by electrophysiology in rats. Two different unstimulated, or baseline, states were established by anesthesia. Halothane and alpha-chloralose established baseline states of high and low energy, respectively, in which forepaw stimulation excited the contralateral primary somatosensory cortex (S1). With alpha-chloralose, forepaw stimulation induced strong and reproducible fMRI activations in the contralateral S1, where the ensemble firing was dominated by slow signaling neurons (SSN; nu range of 1-13 Hz). Under halothane, weaker and less reproducible fMRI activations were observed in the contralateral S1 and elsewhere in the cortex, but ensemble activity in S1 was dominated by rapid signaling neurons (RSN; nu range of 13-40 Hz). For both baseline states, the RSN activity (i.e., higher frequencies, including the gamma band) did not vary upon stimulation, whereas the SSN activity (i.e., alpha band and lower frequencies) did change. In the high energy baseline state, a large majority of total oxidative energy [cerebral metabolic rate of oxygen consumption (CMR(O2))] was devoted to RSN activity, whereas in the low energy baseline state, it was roughly divided between SSN and RSN activities. We hypothesize that in the high energy baseline state, the evoked changes in fMRI activation in areas beyond S1 are supported by rich intracortical interactions represented by RSN. We discuss implications for interpreting fMRI data where stimulus-specific DeltaCMR(O2) is generally small compared with baseline CMR(O2).

  20. Dynamic Hedgehog signalling pathway activity in germline stem cells.

    PubMed

    Sahin, Z; Szczepny, A; McLaughlin, E A; Meistrich, M L; Zhou, W; Ustunel, I; Loveland, K L

    2014-03-01

    Although the contribution of Hedgehog (Hh) signalling to stem cell development and oncogenesis is well recognised, its importance for spermatogonial stem cells (SSCs) has not been established. Here we interrogate adult rat SSCs using an established model in which only undifferentiated spermatogonial cells remain in the testis at 15 weeks following irradiation, and spermatogonial differentiation is induced within 4 weeks by gonadotrophin-releasing hormone antagonist (GnRH-ant) administration. Synthesis of Hh pathway components in untreated adult rat testes was compared with that in irradiated testes prior to and after GnRH-ant exposure using in situ hybridization. In adult testes with complete spermatogenesis, the Desert Hedgehog ligand transcript, Dhh, was detected in Sertoli cells, some spermatogonia and in spermatocytes by in situ hybridization. Spermatogenic cells were identified as sites of Hh signalling through detection of transcripts encoding the Hh receptor, Ptc2 transcripts and proteins for the key downstream target of Hh signalling, Gli1 and the Hh transcriptional activator, Gli2. Remarkably, the undifferentiated spermatogonia present in irradiated adult rat testes contained Dhh in addition to Ptc2, Gli1 and Gli2, revealing the potential for an autocrine Hh signalling loop to sustain undifferentiated spermatogonial cells. These transcripts became undetectable by in situ hybridization following GnRH-ant induction of spermatogonial differentiation, however, detection of Gli1 protein in spermatogonia in all groups indicates that Hh signalling is sustained. This is the first evidence of active Hh signalling in mammalian male germline stem cells, as has been documented for some cancer stem cells.

  1. Different activation signals induce distinct mast cell degranulation strategies

    PubMed Central

    Sibilano, Riccardo; Marichal, Thomas; Reber, Laurent L.; Cenac, Nicolas; McNeil, Benjamin D.; Dong, Xinzhong; Hernandez, Joseph D.; Sagi-Eisenberg, Ronit; Hammel, Ilan; Roers, Axel; Valitutti, Salvatore; Tsai, Mindy

    2016-01-01

    Mast cells (MCs) influence intercellular communication during inflammation by secreting cytoplasmic granules that contain diverse mediators. Here, we have demonstrated that MCs decode different activation stimuli into spatially and temporally distinct patterns of granule secretion. Certain signals, including substance P, the complement anaphylatoxins C3a and C5a, and endothelin 1, induced human MCs rapidly to secrete small and relatively spherical granule structures, a pattern consistent with the secretion of individual granules. Conversely, activating MCs with anti-IgE increased the time partition between signaling and secretion, which was associated with a period of sustained elevation of intracellular calcium and formation of larger and more heterogeneously shaped granule structures that underwent prolonged exteriorization. Pharmacological inhibition of IKK-β during IgE-dependent stimulation strongly reduced the time partition between signaling and secretion, inhibited SNAP23/STX4 complex formation, and switched the degranulation pattern into one that resembled degranulation induced by substance P. IgE-dependent and substance P–dependent activation in vivo also induced different patterns of mouse MC degranulation that were associated with distinct local and systemic pathophysiological responses. These findings show that cytoplasmic granule secretion from MCs that occurs in response to different activating stimuli can exhibit distinct dynamics and features that are associated with distinct patterns of MC-dependent inflammation. PMID:27643442

  2. Small molecule activation of NOTCH signaling inhibits acute myeloid leukemia

    PubMed Central

    Ye, Qi; Jiang, Jue; Zhan, Guanqun; Yan, Wanyao; Huang, Liang; Hu, Yufeng; Su, Hexiu; Tong, Qingyi; Yue, Ming; Li, Hua; Yao, Guangmin; Zhang, Yonghui; Liu, Hudan

    2016-01-01

    Aberrant activation of the NOTCH signaling pathway is crucial for the onset and progression of T cell leukemia. Yet recent studies also suggest a tumor suppressive role of NOTCH signaling in acute myeloid leukemia (AML) and reactivation of this pathway offers an attractive opportunity for anti-AML therapies. N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid that we previously isolated from Zephyranthes candida, exhibiting inhibitory activities in a variety of cancer cells, particularly those from AML. Here, we report NMHC not only selectively inhibits AML cell proliferation in vitro but also hampers tumor development in a human AML xenograft model. Genome-wide gene expression profiling reveals that NMHC activates the NOTCH signaling. Combination of NMHC and recombinant human NOTCH ligand DLL4 achieves a remarkable synergistic effect on NOTCH activation. Moreover, pre-inhibition of NOTCH by overexpression of dominant negative MAML alleviates NMHC-mediated cytotoxicity in AML. Further mechanistic analysis using structure-based molecular modeling as well as biochemical assays demonstrates that NMHC docks in the hydrophobic cavity within the NOTCH1 negative regulatory region (NRR), thus promoting NOTCH1 proteolytic cleavage. Our findings thus establish NMHC as a potential NOTCH agonist that holds great promises for future development as a novel agent beneficial to patients with AML. PMID:27211848

  3. Cherry Valley Ducks Mitochondrial Antiviral-Signaling Protein-Mediated Signaling Pathway and Antiviral Activity Research

    PubMed Central

    Li, Ning; Hong, Tianqi; Li, Rong; Wang, Yao; Guo, Mengjiao; Cao, Zongxi; Cai, Yumei; Liu, Sidang; Chai, Tongjie; Wei, Liangmeng

    2016-01-01

    Mitochondrial antiviral-signaling protein (MAVS), an adaptor protein of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs)-mediated signal pathway, is involved in innate immunity. In this study, Cherry Valley duck MAVS (duMAVS) was cloned from the spleen and analyzed. duMAVS was determined to have a caspase activation and recruitment domain at N-terminal, followed by a proline-rich domain and a transmembrane domain at C-terminal. Quantitative real-time PCR indicated that duMAVS was expressed in all tissues tested across a broad expression spectrum. The expression of duMAVS was significantly upregulated after infection with duck Tembusu virus (DTMUV). Overexpression of duMAVS could drive the activation of interferon (IFN)-β, nuclear factor-κB, interferon regulatory factor 7, and many downstream factors (such as Mx, PKR, OAS, and IL-8) in duck embryo fibroblast cells. What is more, RNA interference further confirmed that duMAVS was an important adaptor for IFN-β activation. The antiviral assay showed that duMAVS could suppress the various viral replications (DTMUV, novel reovirus, and duck plague virus) at early stages of infection. Overall, these results showed that the main signal pathway mediated by duMAVS and it had a broad-spectrum antiviral ability. This research will be helpful to better understanding the innate immune system of ducks. PMID:27708647

  4. Dynorphin Activates Quorum Sensing Quinolone Signaling in Pseudomonas aeruginosa

    PubMed Central

    Zaborina, Olga; Lepine, Francois; Xiao, Gaoping; Valuckaite, Vesta; Chen, Yimei; Li, Terry; Ciancio, Mae; Zaborin, Alex; Petroff, Elaine; Turner, Jerrold R; Rahme, Laurence G; Chang, Eugene; Alverdy, John C

    2007-01-01

    There is now substantial evidence that compounds released during host stress directly activate the virulence of certain opportunistic pathogens. Here, we considered that endogenous opioids might function as such compounds, given that they are among the first signals to be released at multiple tissue sites during host stress. We tested the ability of various opioid compounds to enhance the virulence of Pseudomonas aeruginosa using pyocyanin production as a biological readout, and demonstrated enhanced virulence when P. aeruginosa was exposed to synthetic (U-50,488) and endogenous (dynorphin) κ-agonists. Using various mutants and reporter strains of P. aeruginosa, we identified involvement of key elements of the quorum sensing circuitry such as the global transcriptional regulator MvfR and the quorum sensing-related quinolone signaling molecules PQS, HHQ, and HQNO that respond to κ-opioids. The in vivo significance of κ-opioid signaling of P. aeruginosa was demonstrated in mice by showing that dynorphin is released from the intestinal mucosa following ischemia/reperfusion injury, activates quinolone signaling in P. aeruginosa, and enhances the virulence of P. aeruginosa against Lactobacillus spp. and Caenorhabditis elegans. Taken together, these data demonstrate that P. aeruginosa can intercept opioid compounds released during host stress and integrate them into core elements of quorum sensing circuitry leading to enhanced virulence. PMID:17367209

  5. The Membrane and Lipids as Integral Participants in Signal Transduction: Lipid Signal Transduction for the Non-Lipid Biochemist

    ERIC Educational Resources Information Center

    Eyster, Kathleen M.

    2007-01-01

    Reviews of signal transduction have often focused on the cascades of protein kinases and protein phosphatases and their cytoplasmic substrates that become activated in response to extracellular signals. Lipids, lipid kinases, and lipid phosphatases have not received the same amount of attention as proteins in studies of signal transduction.…

  6. Cascading dynamics in modular networks

    NASA Astrophysics Data System (ADS)

    Galstyan, Aram; Cohen, Paul

    2007-03-01

    In this paper we study a simple cascading process in a structured heterogeneous population, namely, a network composed of two loosely coupled communities. We demonstrate that under certain conditions the cascading dynamics in such a network has a two-tiered structure that characterizes activity spreading at different rates in the communities. We study the dynamics of the model using both simulations and an analytical approach based on annealed approximation and obtain good agreement between the two. Our results suggest that network modularity might have implications in various applications, such as epidemiology and viral marketing.

  7. Plant PRRs and the activation of innate immune signaling.

    PubMed

    Macho, Alberto P; Zipfel, Cyril

    2014-04-24

    Despite being sessile organisms constantly exposed to potential pathogens and pests, plants are surprisingly resilient to infections. Plants can detect invaders via the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). Plant PRRs are surface-localized receptor-like kinases, which comprise a ligand-binding ectodomain and an intracellular kinase domain, or receptor-like proteins, which do not exhibit any known intracellular signaling domain. In this review, we summarize recent discoveries that shed light on the molecular mechanisms underlying ligand perception and subsequent activation of plant PRRs. Notably, plant PRRs appear as central components of multiprotein complexes at the plasma membrane that contain additional transmembrane and cytosolic kinases required for the initiation and specificity of immune signaling. PRR complexes are under tight control by protein phosphatases, E3 ligases, and other regulatory proteins, illustrating the exquisite and complex regulation of these molecular machines whose proper activation underlines a crucial layer of plant immunity.

  8. Glucocorticoid Receptor Signaling Represses the Antioxidant Response by Inhibiting Histone Acetylation Mediated by the Transcriptional Activator NRF2.

    PubMed

    Alam, Md Morshedul; Okazaki, Keito; Nguyen, Linh Thi Thao; Ota, Nao; Kitamura, Hiroshi; Murakami, Shohei; Shima, Hiroki; Igarashi, Kazuhiko; Sekine, Hiroki; Motohashi, Hozumi

    2017-03-17

    NRF2 (nuclear factor erythroid 2-related factor 2) is a key transcriptional activator that mediates the inducible expression of antioxidant genes. NRF2 is normally ubiquitinated by KEAP1 (Kelch-like ECH-associated protein 1) and subsequently degraded by proteasomes. Inactivation of KEAP1 by oxidative stress or electrophilic chemicals allows NRF2 to activate transcription through binding to antioxidant response elements (AREs) and recruiting histone acetyltransferase CBP (CREB-binding protein). While KEAP1-dependent regulation is a major determinant of NRF2 activity, NRF2-mediated transcriptional activation varies from context to context, suggesting other intracellular signaling cascades may impact NRF2 function. To identify a signaling pathway that modifies NRF2 activity, we immunoprecipitated endogenous NRF2 and its interacting proteins from mouse liver and identified glucocorticoid receptor (GR) as a novel NRF2-binding partner. We found that glucocorticoids (GC), dexamethasone (Dex) and betamethasone (Bet), antagonize diethyl maleate (DEM)-induced activation of NRF2 target genes in a GR-dependent manner. Dex treatment enhanced GR recruitment to AREs without affecting chromatin binding of NRF2, resulting in the inhibition of CBP recruitment and histone acetylation at AREs. This repressive effect was canceled by the addition of HDAC inhibitors. Thus, GR signaling decreases NRF2 transcriptional activation through reducing the NRF2-dependent histone acetylation. Consistent with these observations, GR signaling blocked NRF2-mediated cytoprotection from oxidative stress. This study suggests that an impaired antioxidant response by NRF2 and a resulting decrease in cellular antioxidant capacity account for the side effects of GCs, providing a novel viewpoint for the pathogenesis of hypercorticosteroidism.

  9. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Vassiljev, N.; Konstantinidis, A. C.; Speller, R. D.; Kanicki, J.

    2017-