Science.gov

Sample records for activate small gtpases

  1. Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors.

    PubMed

    Aoki, Kazuhiro; Matsuda, Michiyuki

    2009-01-01

    Small GTPases act as molecular switches that regulate a variety of cellular functions, such as proliferation, cell movement and vesicle trafficking. Genetically encoded biosensors based on the principle of fluorescence resonance energy transfer (FRET) can visualize a spatio-temporal activity of small GTPases in living cells, thereby helping us to understand the role of small GTPases intuitively and vividly. Here we describe protocols of live cell imaging with the FRET biosensors. There are several types of FRET biosensors; this protocol focuses on intramolecular or unimolecular FRET biosensors of small GTPases that are made up of donor and acceptor fluorescence proteins, a small GTPase, its binding partner, and, if necessary, a subcellular localization signal. These FRET biosensors uncover the spatio-temporal activity of the small GTPases in living cells, which could not be obtained by conventional biochemical methods. Preparation of FRET biosensors and cell culture takes 6 d. Imaging and processing take 3-4 d to complete.

  2. Beyond Rab GTPases Legionella activates the small GTPase Ran to promote microtubule polymerization, pathogen vacuole motility, and infection.

    PubMed

    Hilbi, Hubert; Rothmeier, Eva; Hoffmann, Christine; Harrison, Christopher F

    2014-01-01

    Legionella spp. are amoebae-resistant environmental bacteria that replicate in free-living protozoa in a distinct compartment, the Legionella-containing vacuole (LCV). Upon transmission of Legionella pneumophila to the lung, the pathogens employ an evolutionarily conserved mechanism to grow in LCVs within alveolar macrophages, thus triggering a severe pneumonia termed Legionnaires' disease. LCV formation is a complex and robust process, which requires the bacterial Icm/Dot type IV secretion system and involves the amazing number of 300 different translocated effector proteins. LCVs interact with the host cell's endosomal and secretory vesicle trafficking pathway. Accordingly, in a proteomics approach as many as 12 small Rab GTPases implicated in endosomal and secretory vesicle trafficking were identified and validated as LCV components. Moreover, the small GTPase Ran and its effector protein RanBP1 have been found to decorate the pathogen vacuole. Ran regulates nucleo-cytoplasmic transport, spindle assembly, and cytokinesis, as well as the organization of non-centrosomal microtubules. In L. pneumophila-infected amoebae or macrophages, Ran and RanBP1 localize to LCVs, and the small GTPase is activated by the Icm/Dot substrate LegG1. Ran activation by LegG1 leads to microtubule stabilization and promotes intracellular pathogen vacuole motility and bacterial growth, as well as chemotaxis and migration of Legionella-infected cells.

  3. Small GTPases in vesicle trafficking.

    PubMed

    Molendijk, Arthur J; Ruperti, Benedetto; Palme, Klaus

    2004-12-01

    Plant small GTPases belonging to the Rop, Arf, and Rab families are regulators of vesicle trafficking. Rop GTPases regulate actin dynamics and modulate H(2)O(2) production in polar cell growth and pathogen defence. A candidate Rop GDP to Rop GTP exchange factor (RopGEF) SPIKE1 is involved in the morphogenesis of leaf epidermal cells. The ArfGEF GNOM regulates the endosomal recycling of the PIN proteins, which are involved in polar auxin transport. Intracellular localisation of small GTPases and functional studies using dominant mutant versions of Arf and Rab GTPases are defining novel plant-specific membrane compartments, especially those that participate in endosomal vesicle trafficking.

  4. Small GTPases in peroxisome dynamics.

    PubMed

    Just, Wilhelm W; Peränen, Johan

    2016-05-01

    In this review article, we summarize current knowledge on peroxisome biogenesis/functions and the role that small GTPases may play in these processes. Precise intracellular distribution of cell organelles requires their regulated association to microtubules and the actin cytoskeleton. In this respect, RhoGDP/RhoGTP favor binding of peroxisomes to microtubules and actin filaments. In its GTP-bound form, RhoA activates a regulatory cascade involving Rho kinaseII and non-muscle myosinIIA. Such interactions frequently depend on phosphoinositides (PIs) of which PI4P, PI(4,5)P2, and PI(3,5)P2 were found to be present in the peroxisomal membrane. PIs are pivotal determinants of intracellular signaling and known to regulate a wide range of cellular functions. In many of these functions, small GTPases are implicated. The small GTPase ADP-ribosylation factor 1 (Arf1), for example, is known to stimulate synthesis of PI4P and PI(4,5)P2 on the Golgi to regulate protein and lipid sorting. In vitro binding assays localized Arf1 and the COPI complex to peroxisomes. In light of the recent discussion of pre-peroxisomal vesicle generation at the ER, peroxisomal Arf1-COPI vesicles may serve retrograde transport of ER-resident components. A mass spectrometric screen localized various Rab proteins to peroxisomes. Overexpression of these proteins in combination with laser-scanning fluorescence microscopy co-localized Rab6, Rab8, Rab10, Rab14, and Rab18 with peroxisomal structures. By analogy to the role these proteins play in other organelle dynamics, we may envisage what the function of these proteins may be in relation to the peroxisomal compartment.

  5. Rho family and Rap GTPase activation assays.

    PubMed

    Jennings, Richard T; Knaus, Ulla G

    2014-01-01

    The detection of Ras superfamily GTPase activity in innate immune cells is important when studying signaling events elicited by various ligands and cellular processes. The development of high-affinity probes detecting the activated, GTP-bound form of small GTPases has significantly enhanced our understanding of initiation and termination of GTPase-regulated signaling pathways. These probes are created by fusing a high-affinity GTPase-binding domain derived from a specific downstream effector protein to glutathione S-transferase (GST). Such domains bind preferentially to the GTP-bound form of the upstream Rho or Ras GTPase. Coupling these probes to beads enables extraction of the complex and subsequent quantification of the active GTP-binding protein by immunoblotting. Although effector domains that discriminate efficiently between GDP- and GTP-bound states and highly specific antibodies are not yet available for every small GTPase, analysis of certain members of the Rho and Ras GTPase family is now routinely performed. Here, we describe affinity-based pulldown assays for detection of Rho GTPase (Rac1/2, Cdc42, RhoA/B) and Rap1/2 activity in stimulated neutrophils or macrophages.

  6. Neuronal chemorepellent Slit2 inhibits vascular smooth muscle cell migration by suppressing small GTPase Rac1 activation.

    PubMed

    Liu, Dong; Hou, Jie; Hu, Xing; Wang, Xuerong; Xiao, Yan; Mou, Yongshan; De Leon, Hector

    2006-03-01

    The Slits are secreted proteins with roles in axonal guidance and leukocyte migration. On binding to Robo receptors, Slit2 repels developing axons and inhibits leukocyte chemotaxis. Slit2 is cleaved into Slit2-N, a protein tightly binding to cell membranes, and Slit2-C, a diffusible fragment. In the present study, we characterized the functional role of Slit2-N in vascular smooth muscle cells (VSMCs) and the cell association properties of 2 truncated versions of Slit2-N. Here, we document for the first time that Slit2-N is a chemorepellent of VSMCs. Intact blood vessels expressed Slit2 and Robo receptors as demonstrated by immunohistochemistry and quantitative real time PCR. Recombinant Slit2-N prevented the platelet-derived growth factor (PDGF)-stimulated migration of VSMCs. Slit2-N also abrogated PDGF-mediated activation of small guanosine triphosphatase (GTPase) Rac1, a member of the Rho GTPase superfamily of proteins involved in regulating the actin cytoskeleton. Furthermore, Slit2-N inhibited the PDGF-induced formation of lamellipodia, a crucial cytoskeletal reorganization event for cell motility. Slit2-N had no effect on the PDGF-mediated increase in DNA synthesis determined by [3H]thymidine uptake, suggesting that VSMC growth is unaffected by Slit2. Analysis of 2 engineered Slit2-N fragments (Slit2-N/1118 and Slit2-N/1121) indicated that 3 amino acids upstream of the putative cleavage site (Arg1121, Thr1122) are involved in the association of Slit2-N to the cell membrane. Our data assign a novel functional role to Slit2 in vascular function and show that cell guidance mechanisms that operate in the developing central nervous system are conserved in VSMCs.

  7. Enzymatically active Rho and Rac small-GTPases are involved in the establishment of the vacuolar membrane after Toxoplasma gondii invasion of host cells

    PubMed Central

    2013-01-01

    Background GTPases are the family of hydrolases that bind and hydrolyze guanosine triphosphate. The large Immunity-related GTPases and the small GTPase ADP-ribosylation factor-6 in host cells are known to accumulate on the parasitophorous vacuole membrane (PVM) of Toxoplasma gondii and play critical roles in this parasite infection, but these GTPases cannot explain the full extent of infection. Results In this research, RhoA and Rac1 GTPases from the host cell were found to accumulate on the PVM regardless of the virulence of the T. gondii strains after T. gondii invasion, and this accumulation was dependent on their GTPase activity. The real-time micrography of T. gondii tachyzoites invading COS-7 cells overexpressing CFP-RhoA showed that this GTPase was recruited to the PVM at the very beginning of the invasion through the host cell membrane or from the cytosol. Host cell RhoA and Rac1 were also activated after T. gondii tachyzoites invasion, which was needed for host cell cytoskeleton reorganization to facilitate intracellular pathogens invasion. The decisive domains for the RhoA accumulation on the PVM included the GTP/Mg2+ binding site, the mDia effector interaction site, the G1 box, the G2 box and the G5 box, respectively, which were related to the binding of GTP for enzymatic activity and mDia for the regulation of microtubules. The recruited CFP-RhoA on the PVM could not be activated by epithelial growth factor (EGF) and no translocation was observed, unlike the unassociated RhoA in the host cell cytosol that migrated to the cell membrane towards the EGF activation spot. This result supported the hypothesis that the recruited RhoA or Rac1 on the PVM were in the GTP-bound active form. Wild-type RhoA or Rac1 overexpressed cells had almost the same infection rates by T. gondii as the mock-treated cells, while RhoA-N19 or Rac1-N17 transfected cells and RhoA, Rac1 or RhoA + Rac1 siRNA-treated cells showed significantly diminished infection rates compared to mock

  8. Small GTPases as regulators of cell division

    PubMed Central

    Militello, Rodrigo; Colombo, María I.

    2013-01-01

    The superfamily of small GTPases serves as a signal transducer to regulate a diverse array of cellular functions. The members of this superfamily are structurally and functionally classified into at least 5 groups (Ras, Rho/Rac, Rab, Arf, and Ran) and they are involved in the control of cell proliferation and differentiation, regulation of the actin cytoskeleton, membrane trafficking, and nuclear transport. It is widely reported that members of the Rab family participate in the control of intracellular membrane trafficking through the interaction with specific effector molecules. However, many Rabs and other small GTPases have also been shown to function in cell division. In this review, we discuss current knowledge about Rab proteins regulating different stages of the cell cycle, such as the congregation and segregation of chromosomes (during metaphase) and the final stage of cell division known as cytokinesis, in which a cell is cleaved originating 2 daughter cells. PMID:24265858

  9. Evolution and diversity of the Ras superfamily of small GTPases in prokaryotes.

    PubMed

    Wuichet, Kristin; Søgaard-Andersen, Lotte

    2014-12-04

    The Ras superfamily of small GTPases are single domain nucleotide-dependent molecular switches that act as highly tuned regulators of complex signal transduction pathways. Originally identified in eukaryotes for their roles in fundamental cellular processes including proliferation, motility, polarity, nuclear transport, and vesicle transport, recent studies have revealed that single domain GTPases also control complex functions such as cell polarity, motility, predation, development and antibiotic resistance in bacteria. Here, we used a computational genomics approach to understand the abundance, diversity, and evolution of small GTPases in prokaryotes. We collected 520 small GTPase sequences present in 17% of 1,611 prokaryotic genomes analyzed that cover diverse lineages. We identified two discrete families of small GTPases in prokaryotes that show evidence of three distinct catalytic mechanisms. The MglA family includes MglA homologs, which are typically associated with the MglB GTPase activating protein, whereas members of the Rup (Ras superfamily GTPase of unknown function in prokaryotes) family are not predicted to interact with MglB homologs. System classification and genome context analyses support the involvement of small GTPases in diverse prokaryotic signal transduction pathways including two component systems, laying the foundation for future experimental characterization of these proteins. Phylogenetic analysis of prokaryotic and eukaryotic GTPases supports that the last universal common ancestor contained ancestral MglA and Rup family members. We propose that the MglA family was lost from the ancestral eukaryote and that the Ras superfamily members in extant eukaryotes are the result of vertical and horizontal gene transfer events of ancestral Rup GTPases.

  10. Isoprenoids, Small GTPases and Alzheimer’s Disease

    PubMed Central

    Hooff, Gero P.; Wood, W. Gibson; Müller, Walter E.; Eckert, Gunter P.

    2010-01-01

    The mevalonate-pathway is a crucial metabolic pathway for most eukaryotic cells. Cholesterol is a highly recognized product of this pathway but growing interest is being given to the synthesis and functions of isoprenoids. Isoprenoids are a complex class of biologically active lipids including for example, dolichol, ubiquinone, farnesylpyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). Early work had shown that the long-chain isoprenoid dolichol is decreased, but that dolichyl-phosphate and ubiquinone are elevated in brains of Alzheimer´s diseased (AD) patients. Until recently, levels of their biological active precursors FPP and GGPP were unknown. These short-chain isoprenoids are critical in the post translational modification of certain proteins which function as molecular switches in numerous, signaling pathways. The major protein families belong to the superfamily of small GTPases, consisting of roughly 150 members. Recent experimental evidence indicated that members of the small GTPases are involved in AD pathogenesis and stimulated interest in the role of FPP and GGPP in protein prenylation and cell function. A straightforward prediction derived from those studies was that FPP and GGPP levels would be elevated in AD brains as compared with normal neurological controls. For the first time, recent evidence shows significantly elevated levels of FPP and GGPP in human AD brain tissue. Cholesterol levels did not differ between AD and control samples. One obvious conclusion is that homeostasis of FPP and GGPP but not of cholesterol is specifically targeted in AD. Since prenylation of small GTPases by FPP or GGPP is indispensable for their proper function we are proposing that these two isoprenoids are up-regulated in AD resulting in an over abundance of certain prenylated proteins which contributes to neuronal dysfunction. PMID:20382260

  11. RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase

    PubMed Central

    Tang, Songqing; Chen, Taoyong; Yu, Zhou; Zhu, Xuhui; Yang, Mingjin; Xie, Bin; Li, Nan; Cao, Xuetao; Wang, Jianli

    2014-01-01

    Host immune cells can detect and destruct invading pathogens via pattern-recognition receptors. Small Rap GTPases act as conserved molecular switches coupling extracellular signals to various cellular responses, but their roles as regulators in Toll-like receptor (TLR) signalling have not been fully elucidated. Here we report that Ras guanine nucleotide-releasing protein 3 (RasGRP3), a guanine nucleotide-exchange factor activating Ras and Rap1, limits production of proinflammatory cytokines (especially IL-6) in macrophages by activating Rap1 on activation by low levels of TLR agonists. We demonstrate that RasGRP3, a dominant member of RasGRPs in macrophages, impairs TLR3/4/9-induced IL-6 production and relieves dextrane sulphate sodium-induced colitis and collagen-induced arthritis. In RasGRP3-deficient RAW264.7 cells obtained by CRISPR-Cas9 genome editing, TLR3/4/9-induced activation of Rap1 was inhibited while ERK1/2 activation was enhanced. Our study suggests that RasGRP3 limits inflammatory response by activating Rap1 on low-intensity pathogen infection, setting a threshold for preventing excessive inflammatory response. PMID:25118589

  12. Rapid parallel flow cytometry assays of active GTPases using effector beads

    PubMed Central

    Buranda, Tione; BasuRay, Soumik; Swanson, Scarlett; Agola, Jacob; Bondu, Virginie; Wandinger-Ness, Angela

    2013-01-01

    We describe a rapid assay for measuring the cellular activity of small GTPases in response to a specific stimulus. Effector functionalized beads are used to quantify in parallel multiple, GTP-bound GTPases in the same cell lysate by flow cytometry. In a biologically relevant example, five different Ras family GTPases are shown for the first time to be involved in a concerted signaling cascade downstream of receptor ligation by Sin Nombre hantavirus. PMID:23928044

  13. Coevolution of RAC Small GTPases and their Regulators GEF Proteins

    PubMed Central

    Jiménez-Sánchez, Alejandro

    2016-01-01

    RAC proteins are small GTPases involved in important cellular processes in eukaryotes, and their deregulation may contribute to cancer. Activation of RAC proteins is regulated by DOCK and DBL protein families of guanine nucleotide exchange factors (GEFs). Although DOCK and DBL proteins act as GEFs on RAC proteins, DOCK and DBL family members are evolutionarily unrelated. To understand how DBL and DOCK families perform the same function on RAC proteins despite their unrelated primary structure, phylogenetic analyses of the RAC, DBL, and DOCK families were implemented, and interaction patterns that may suggest a coevolutionary process were searched. Interestingly, while RAC and DOCK proteins are very well conserved in humans and among eukaryotes, DBL proteins are highly divergent. Moreover, correlation analyses of the phylogenetic distances of RAC and GEF proteins and covariation analyses between residues in the interacting domains showed significant coevolution rates for both RAC–DOCK and RAC–DBL interactions. PMID:27226705

  14. Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin.

    PubMed

    Saito, Kota; Araki, Yasuhiro; Kontani, Kenji; Nishina, Hiroshi; Katada, Toshiaki

    2005-03-01

    The Ras-homologous GTPase Rheb that is conserved from yeast to human appears to be involved not only in cell growth but also in nutrient uptake. Recent biochemical analysis revealed that tuberous sclerosis complex (TSC), a GTPase-activating protein (GAP), deactivates Rheb and that phosphatidylinositol 3'-kinase (PI3k)-Akt/PKB kinase pathway activates Rheb through inhibition of the GAP-mediated deactivation. Although mammalian target of rapamycin (mTOR) kinase is implicated in the downstream target of Rheb, the direct effector(s) and exact functions of Rheb have not been fully elucidated. Here we identified that Rheb expression in cultured cells induces the formation of large cytoplasmic vacuoles, which are characterized as late endocytic (late endosome- and lysosome-like) components. The vacuole formation required the GTP form of Rheb, but not the activation of the downstream mTOR kinase. These results suggest that Rheb regulates endocytic trafficking pathway independent of the previously identified mTOR pathway. The physiological roles of the two Rheb-dependent signaling pathways are discussed in terms of nutrient uptake and cell growth or cell cycle progression. PMID:15809346

  15. Small interfering RNAs as a tool to assign Rho GTPase exchange-factor function in vivo.

    PubMed Central

    Gampel, Alexandra; Mellor, Harry

    2002-01-01

    Rho GTPases control a complex network of intracellular signalling pathways. Whereas progress has been made in identifying downstream signalling partners for these proteins, the characterization of Rho upstream regulatory guanine-nucleotide exchange factors (GEFs) has been hampered by a lack of suitable research tools. Here we use small interfering RNAs (siRNAs) to examine the cellular regulation of the RhoB GTPase, and show that RhoB is activated downstream of the epidermal-growth-factor receptor through the Vav2 exchange factor. These studies demonstrate that siRNAs are an ideal research tool for the assignment of Rho GEF function in vivo. PMID:12113653

  16. Small RAB GTPases Regulate Multiple Steps of Mitosis.

    PubMed

    Miserey-Lenkei, Stéphanie; Colombo, María I

    2016-01-01

    GTPases of the RAB family are key regulators of multiple steps of membrane trafficking. Several members of the RAB GTPase family have been implicated in mitotic progression. In this review, we will first focus on the function of endosome-associated RAB GTPases reported in early steps of mitosis, spindle pole maturation, and during cytokinesis. Second, we will discuss the role of Golgi-associated RAB GTPases at the metaphase/anaphase transition and during cytokinesis.

  17. Small RAB GTPases Regulate Multiple Steps of Mitosis

    PubMed Central

    Miserey-Lenkei, Stéphanie; Colombo, María I.

    2016-01-01

    GTPases of the RAB family are key regulators of multiple steps of membrane trafficking. Several members of the RAB GTPase family have been implicated in mitotic progression. In this review, we will first focus on the function of endosome-associated RAB GTPases reported in early steps of mitosis, spindle pole maturation, and during cytokinesis. Second, we will discuss the role of Golgi-associated RAB GTPases at the metaphase/anaphase transition and during cytokinesis. PMID:26925400

  18. Unfolded protein response regulates yeast small GTPase Arl1p activation at late Golgi via phosphorylation of Arf GEF Syt1p

    PubMed Central

    Hsu, Jia-Wei; Tang, Pei-Hua; Wang, I-Hao; Liu, Chia-Lun; Chen, Wen-Hui; Tsai, Pei-Chin; Chen, Kuan-Yu; Chen, Kuan-Jung; Yu, Chia-Jung

    2016-01-01

    ADP ribosylation factor (Arf) GTPases are key regulators of membrane traffic at the Golgi complex. In yeast, Arf guanine nucleotide-exchange factor (GEF) Syt1p activates Arf-like protein Arl1p, which was accompanied by accumulation of golgin Imh1p at late Golgi, but whether and how this function of Syt1p is regulated remains unclear. Here, we report that the inositol-requiring kinase 1 (Ire1p)-mediated unfolded protein response (UPR) modulated Arl1p activation at late Golgi. Arl1p activation was dependent on both kinase and endo-RNase activities of Ire1p. Moreover, constitutively active transcription factor Hac1p restored the Golgi localization of Arl1p and Imh1p in IRE1-deleted cells. Elucidating the mechanism of Ire1p–Hac1p axis actions, we found that it regulated phosphorylation of Syt1p, which enhances Arl1p activation, recruitment of Imh1p to the Golgi, and Syt1p interaction with Arl1p. Consistent with these findings, the induction of UPR by tunicamycin treatment increases phosphorylation of Syt1p, resulting in Arl1p activation. Thus, these findings clarify how the UPR influences the roles of Syt1p, Arl1p, and Imh1p in Golgi transport. PMID:26966233

  19. The regulation of vesicle trafficking by small GTPases and phospholipids during pollen tube growth.

    PubMed

    Zhang, Yan; McCormick, Sheila

    2010-06-01

    Polarized and directional growth of pollen tubes is the only means by which immotile sperm of flowering plants reach the deeply embedded female gametes for fertilization. Vesicle trafficking is among the most critical cellular activities for pollen tube growth. Vesicle trafficking maintains membrane homeostasis during rapid tube growth and provides polarity information by regulating protein/lipid compositions of different membrane compartments. In this review, we will focus on two classes of factors that orchestrate vesicle trafficking, small GTPases and phospholipids. We discuss the features of small GTPases and phospholipids that make them ideal components to regulate vesicle trafficking, review recent advances in understanding their involvement in vesicle trafficking, and propose directions for future research. PMID:20490965

  20. Multiple Roles of the Small GTPase Rab7.

    PubMed

    Guerra, Flora; Bucci, Cecilia

    2016-01-01

    Rab7 is a small GTPase that belongs to the Rab family and controls transport to late endocytic compartments such as late endosomes and lysosomes. The mechanism of action of Rab7 in the late endocytic pathway has been extensively studied. Rab7 is fundamental for lysosomal biogenesis, positioning and functions, and for trafficking and degradation of several signaling receptors, thus also having implications on signal transduction. Several Rab7 interacting proteins have being identified leading to the discovery of a number of different important functions, beside its established role in endocytosis. Furthermore, Rab7 has specific functions in neurons. This review highlights and discusses the role and the importance of Rab7 on different cellular pathways and processes. PMID:27548222

  1. The small GTPase Rac1 regulates auditory hair cell morphogenesis

    PubMed Central

    Grimsley-Myers, Cynthia M.; Sipe, Conor W.; Géléoc, Gwenaëllle S.G.; Lu, Xiaowei

    2010-01-01

    Morphogenesis of sensory hair cells, in particular their mechanotransduction organelle, the stereociliary bundle, requires highly organized remodeling of the actin cytoskeleton. The roles of Rho family small GTPases during this process remain unknown. Here we show that deletion of Rac1 in the otic epithelium resulted in severe defects in cochlear epithelial morphogenesis. The mutant cochlea was severely shortened with a reduced number of auditory hair cells and cellular organization of the auditory sensory epithelium was abnormal. Rac1 mutant hair cells also displayed defects in planar cell polarity and morphogenesis of the stereociliary bundle, including bundle fragmentation or deformation, and mispositioning or absence of the kinocilium. We further demonstrate that a Rac-PAK signaling pathway mediates kinocilium-stereocilia interactions and is required for cohesion of the stereociliary bundle. Together, these results reveal a critical function of Rac1 in morphogenesis of the auditory sensory epithelium and stereociliary bundle. PMID:20016102

  2. Multiple Roles of the Small GTPase Rab7

    PubMed Central

    Guerra, Flora; Bucci, Cecilia

    2016-01-01

    Rab7 is a small GTPase that belongs to the Rab family and controls transport to late endocytic compartments such as late endosomes and lysosomes. The mechanism of action of Rab7 in the late endocytic pathway has been extensively studied. Rab7 is fundamental for lysosomal biogenesis, positioning and functions, and for trafficking and degradation of several signaling receptors, thus also having implications on signal transduction. Several Rab7 interacting proteins have being identified leading to the discovery of a number of different important functions, beside its established role in endocytosis. Furthermore, Rab7 has specific functions in neurons. This review highlights and discusses the role and the importance of Rab7 on different cellular pathways and processes. PMID:27548222

  3. The PAK system links Rho GTPase signaling to thrombin-mediated platelet activation

    PubMed Central

    Baker, Sandra M.; Loren, Cassandra P.; Haley, Kristina M.; Itakura, Asako; Pang, Jiaqing; Greenberg, Daniel L.; David, Larry L.; Manser, Ed; Chernoff, Jonathan; McCarty, Owen J. T.

    2013-01-01

    Regulation of the platelet actin cytoskeleton by the Rho family of small GTPases is essential for the proper maintenance of hemostasis. However, little is known about how intracellular platelet activation from Rho GTPase family members, including Rac, Cdc42, and Rho, translate into changes in platelet actin structures. To better understand how Rho family GTPases coordinate platelet activation, we identified platelet proteins associated with Rac1, a Rho GTPase family member, and actin regulatory protein essential for platelet hemostatic function. Mass spectrometry analysis revealed that upon platelet activation with thrombin, Rac1 associates with a set of effectors of the p21-activated kinases (PAKs), including GIT1, βPIX, and guanine nucleotide exchange factor GEFH1. Platelet activation by thrombin triggered the PAK-dependent phosphorylation of GIT1, GEFH1, and other PAK effectors, including LIMK1 and Merlin. PAK was also required for the thrombin-mediated activation of the MEK/ERK pathway, Akt, calcium signaling, and phosphatidylserine (PS) exposure. Inhibition of PAK signaling prevented thrombin-induced platelet aggregation and blocked platelet focal adhesion and lamellipodia formation in response to thrombin. Together, these results demonstrate that the PAK signaling system is a key orchestrator of platelet actin dynamics, linking Rho GTPase activation downstream of thrombin stimulation to PAK effector function, MAP kinase activation, calcium signaling, and PS exposure in platelets. PMID:23784547

  4. Guanylate-Binding Protein 1, an Interferon-Induced GTPase, Exerts an Antiviral Activity against Classical Swine Fever Virus Depending on Its GTPase Activity

    PubMed Central

    Li, Lian-Feng; Yu, Jiahui; Li, Yongfeng; Wang, Jinghan; Li, Su; Zhang, Lingkai; Xia, Shui-Li; Yang, Qian; Wang, Xiao; Yu, Shaoxiong; Luo, Yuzi; Sun, Yuan; Zhu, Yan; Munir, Muhammad

    2016-01-01

    ABSTRACT Many viruses trigger the type I interferon (IFN) pathway upon infection, resulting in the transcription of hundreds of interferon-stimulated genes (ISGs), which define the antiviral state of the host. Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), a highly contagious viral disease endangering the pig industry in many countries. However, anti-CSFV ISGs are poorly documented. Here we screened 20 ISGs that are commonly induced by type I IFNs against CSFV in lentivirus-delivered cell lines, resulting in the identification of guanylate-binding protein 1 (GBP1) as a potent anti-CSFV ISG. We observed that overexpression of GBP1, an IFN-induced GTPase, remarkably suppressed CSFV replication, whereas knockdown of endogenous GBP1 expression by small interfering RNAs significantly promoted CSFV growth. Furthermore, we demonstrated that GBP1 acted mainly on the early phase of CSFV replication and inhibited the translation efficiency of the internal ribosome entry site of CSFV. In addition, we found that GBP1 was upregulated at the transcriptional level in CSFV-infected PK-15 cells and in various organs of CSFV-infected pigs. Coimmunoprecipitation and glutathione S-transferase (GST) pulldown assays revealed that GBP1 interacted with the NS5A protein of CSFV, and this interaction was mapped in the N-terminal globular GTPase domain of GBP1. Interestingly, the K51 of GBP1, which is crucial for its GTPase activity, was essential for the inhibition of CSFV replication. We showed further that the NS5A-GBP1 interaction inhibited GTPase activity, which was critical for its antiviral effect. Taking our findings together, GBP1 is an anti-CSFV ISG whose action depends on its GTPase activity. IMPORTANCE Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), an economically important viral disease affecting the pig industry in many countries. To date, only a few host restriction factors against CSFV

  5. Probing the GTPase cycle with real-time NMR: GAP and GEF activities in cell extracts.

    PubMed

    Marshall, Christopher B; Meiri, David; Smith, Matthew J; Mazhab-Jafari, Mohammad T; Gasmi-Seabrook, Geneviève M C; Rottapel, Robert; Stambolic, Vuk; Ikura, Mitsuhiko

    2012-08-01

    The Ras superfamily of small GTPases is a large family of switch-like proteins that control diverse cellular functions, and their deregulation is associated with multiple disease processes. When bound to GTP they adopt a conformation that interacts with effector proteins, whereas the GDP-bound state is generally biologically inactive. GTPase activating proteins (GAPs) promote hydrolysis of GTP, thus impeding the biological activity of GTPases, whereas guanine nucleotide exchange factors (GEFs) promote exchange of GDP for GTP and activate GTPase proteins. A number of methods have been developed to assay GTPase nucleotide hydrolysis and exchange, as well as the activity of GAPs and GEFs. The kinetics of these reactions are often studied with purified proteins and fluorescent nucleotide analogs, which have been shown to non-specifically impact hydrolysis and exchange. Most GAPs and GEFs are large multidomain proteins subject to complex regulation that is challenging to reconstitute in vitro. In cells, the activities of full-length GAPs or GEFs are typically assayed indirectly on the basis of nucleotide loading of the cognate GTPase, or by exploiting their interaction with effector proteins. Here, we describe a recently developed real-time NMR method to assay kinetics of nucleotide exchange and hydrolysis reactions by direct monitoring of nucleotide-dependent structural changes in an isotopically labeled GTPase. The unambiguous readout of this method makes it possible to precisely measure GAP and GEF activities from extracts of mammalian cells, enabling studies of their catalytic and regulatory mechanisms. We present examples of NMR-based assays of full-length GAPs and GEFs overexpressed in mammalian cells.

  6. Conserved charged residues in the leucine-rich repeat domain of the Ran GTPase activating protein are required for Ran binding and GTPase activation.

    PubMed Central

    Haberland, J; Gerke, V

    1999-01-01

    GTPase activating proteins (GAPs) for Ran, a Ras-related GTPase participating in nucleocytoplasmic transport, have been identified in different species ranging from yeast to man. All RanGAPs are characterized by a conserved domain consisting of eight leucine-rich repeats (LRRs) interrupted at two positions by so-called separating regions, the latter being unique for RanGAPs within the family of LRR proteins. The cytosolic RanGAP activity is essential for the Ran GTPase cycle which in turn provides directionality in nucleocytoplasmic transport, but the structural basis for the interaction between Ran and its GAP has not been elucidated. In order to gain a better understanding of this interaction we generated a number of mutant RanGAPs carrying amino acid substitutions in the LRR domain and analysed their complex formation with Ran as well as their ability to stimulate the intrinsic GTPase activity of the G protein. We show that conserved charged residues present in the separating regions of the LRR domain are indispensable for efficient Ran binding and GAP activity. These separating regions contain three conserved arginines which could possibly serve as catalytic residues similar to the arginine fingers identified in GAPs for other small GTPases. However, mutations in two of these arginines do not affect the GAP activity and replacement of the third conserved arginine (Arg91 in human RanGAP) severely interferes not only with GAP activity but also with Ran binding. This indicates that RanGAP-stimulated GTP hydrolysis on Ran does not involve a catalytic arginine residue but requires certain charged residues of the LRR domain of the GAP for mediating the protein-protein interaction. PMID:10527945

  7. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity

    SciTech Connect

    Ho, Hsieh-Hsun; Chang, Chi-Sen; Ho, Wei-Chi; Liao, Sheng-You; Lin, Wea-Lung; Wang, Chau-Jong

    2013-01-01

    Our previous study demonstrated the therapeutic potential of gallic acid (GA) for controlling tumor metastasis through its inhibitory effect on the motility of AGS cells. A noteworthy finding in our previous experiment was increased RhoB expression in GA-treated cells. The aim of this study was to evaluate the role of RhoB expression on the inhibitory effects of GA on AGS cells. By applying the transfection of RhoB siRNA into AGS cells and an animal model, we tested the effect of GA on inhibition of tumor growth and RhoB expression. The results confirmed that RhoB-siRNA transfection induced GA to inhibit AGS cells’ invasive growth involving blocking the AKT/small GTPase signals pathway and inhibition of NF-κB activity. Finally, we evaluated the effect of GA on AGS cell metastasis by colonization of tumor cells in nude mice. It showed GA inhibited tumor cells growth via the expression of RhoB. These data support the inhibitory effect of GA which was shown to inhibit gastric cancer cell metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Thus, GA might be a potential agent in treating gastric cancer. Highlights: ► GA could downregulate AKT signal via increased expression of RhoB. ► GA inhibits metastasis in vitro in gastric carcinoma. ► GA inhibits tumor growth in nude mice model.

  8. Manipulation of small Rho GTPases is a pathogen-induced process detected by Nod1

    PubMed Central

    Keestra, A. Marijke; Winter, Maria G.; Auburger, Josef J.; Fräßle, Simon P.; Xavier, Mariana N.; Winter, Sebastian E.; Kim, Anita; Poon, Victor; Ravesloot, Mariëtta M.; Waldenmaier, Julian; Tsolis, Renée M.; Eigenheer, Richard A.; Bäumler, Andreas J.

    2013-01-01

    Our innate immune system distinguishes microbes from self by detecting conserved pathogen-associated molecular patterns (PAMPs) 1. However, all microbes produce PAMPs, regardless of their pathogenic potential. To distinguish virulent microbes from ones with lower disease-causing potential the innate immune system detects conserved pathogen-induced processes 2, such as the presence of microbial products in the host cytosol, by mechanisms that are not fully resolved. Here we show that Nod1 senses cytosolic microbial products by monitoring the activation state of small Rho GTPases. Activation of Rac1 and Cdc42 by bacterial delivery or ectopic expression of a Salmonella virulence factor, SopE, triggered the Nod1 signaling pathway with consequent Rip2-mediated induction of NF-κB-dependent inflammatory responses. Similarly, activation of the Nod1 signaling pathway by peptidoglycan required Rac1 activity. Furthermore, constitutively active forms of Rac1, Cdc42 and RhoA activated the Nod1 signaling pathway. Our data identify activation of small Rho GTPases as a pathogen-induced process sensed through the Nod1 signaling pathway (Fig. S1). PMID:23542589

  9. Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1.

    PubMed

    Keestra, A Marijke; Winter, Maria G; Auburger, Josef J; Frässle, Simon P; Xavier, Mariana N; Winter, Sebastian E; Kim, Anita; Poon, Victor; Ravesloot, Mariëtta M; Waldenmaier, Julian F T; Tsolis, Renée M; Eigenheer, Richard A; Bäumler, Andreas J

    2013-04-11

    Our innate immune system distinguishes microbes from self by detecting conserved pathogen-associated molecular patterns. However, these are produced by all microbes, regardless of their pathogenic potential. To distinguish virulent microbes from those with lower disease-causing potential the innate immune system detects conserved pathogen-induced processes, such as the presence of microbial products in the host cytosol, by mechanisms that are not fully resolved. Here we show that NOD1 senses cytosolic microbial products by monitoring the activation state of small Rho GTPases. Activation of RAC1 and CDC42 by bacterial delivery or ectopic expression of SopE, a virulence factor of the enteric pathogen Salmonella, triggered the NOD1 signalling pathway, with consequent RIP2 (also known as RIPK2)-mediated induction of NF-κB-dependent inflammatory responses. Similarly, activation of the NOD1 signalling pathway by peptidoglycan required RAC1 activity. Furthermore, constitutively active forms of RAC1, CDC42 and RHOA activated the NOD1 signalling pathway. Our data identify the activation of small Rho GTPases as a pathogen-induced process sensed through the NOD1 signalling pathway. PMID:23542589

  10. Extracellular Superoxide Dismutase Regulates the Expression of Small GTPase Regulatory Proteins GEFs, GAPs, and GDI

    PubMed Central

    Laukkanen, Mikko O.; Cammarota, Francesca; Esposito, Tiziana; Salvatore, Marco; Castellone, Maria D.

    2015-01-01

    Extracellular superoxide dismutase (SOD3), which catalyzes the dismutation of superoxide anions to hydrogen peroxide at the cell membranes, regulates the cellular growth in a dose-dependent manner. This enzyme induces primary cell proliferation and immortalization at low expression levels whereas it activates cancer barrier signaling through the p53-p21 pathway at high expression levels, causing growth arrest, senescence, and apoptosis. Because previous reports suggested that the SOD3–induced reduction in the rates of cellular growth and migration also occurred in the absence of functional p53 signaling, in the current study we investigated the SOD3-induced growth-suppressive mechanisms in anaplastic thyroid cancer cells. Based on our data, the robust over-expression of SOD3 increased the level of phosphorylation of the EGFR, ERBB2, RYK, ALK, FLT3, and EPHA10 receptor tyrosine kinases with the consequent downstream activation of the SRC, FYN, YES, HCK, and LYN kinases. However, pull-down experiments focusing on the small GTPase RAS, RAC, CDC42, and RHO revealed a reduced level of growth and migration signal transduction, such as the lack of stimulation of the mitogen pathway, in the SOD3 over-expressing cells, which was confirmed by MEK1/2 and ERK1/2 Western blotting analysis. Interestingly, the mRNA expression analyses indicated that SOD3 regulated the expression of guanine nucleotide-exchange factors (RHO GEF16, RAL GEF RGL1), GTPase-activating proteins (ARFGAP ADAP2, RAS GAP RASAL1, RGS4), and a Rho guanine nucleotide-disassociation inhibitor (RHO GDI 2) in a dose dependent manner, thus controlling signaling through the small G protein GTPases. Therefore, our current data may suggest the occurrence of dose-dependent SOD3–driven control of the GTP loading of small G proteins indicating a novel growth regulatory mechanism of this enzyme. PMID:25751262

  11. New insights into the dimerization of small GTPase Rac/ROP guanine nucleotide exchange factors in rice

    PubMed Central

    Akamatsu, Akira; Uno, Kazumi; Kato, Midori; Wong, Hann Ling; Shimamoto, Ko; Kawano, Yoji

    2015-01-01

    Molecular links between receptor-kinases and Rac/ROP family small GTPases mediated by activator guanine nucleotide exchange factors (GEFs) govern diverse biological processes. However, it is unclear how the Rac/ROP GTPases orchestrate such a wide variety of activities. Here, we show that rice OsRacGEF1 forms homodimers, and heterodimers with OsRacGEF2, at the plasma membrane (PM) and the endoplasmic reticulum (ER). OsRacGEF2 does not bind directly to the receptor-like kinase (RLK) OsCERK1, but forms a complex with OsCERK1 through OsRacGEF1 at the ER. This complex is transported from ER to the PM and there associates with OsRac1, resulting in the formation of a stable immune complex. Such RLK-GEF heterodimer complexes may explain the diversity of Rac/ROP family GTPase signalings. PMID:26251883

  12. Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease

    PubMed Central

    Cook, Danielle R.; Rossman, Kent L.; Der, Channing J.

    2016-01-01

    The aberrant activity of Ras homologous (Rho) family small GTPases (20 human members) has been implicated in cancer and other human diseases. However, in contrast to the direct mutational activation of Ras found in cancer and developmental disorders, Rho GTPases are activated most commonly by indirect mechanisms in disease. One prevalent mechanism involves aberrant Rho activation via the deregulated expression and/or activity of Rho family guanine nucleotide exchange factors (RhoGEFs). RhoGEFs promote formation of the active GTP-bound state of Rho GTPases. The largest family of RhoGEFs is comprised of the Dbl family RhoGEFs with 70 human members. The multitude of RhoGEFs that activate a single Rho GTPase reflect the very specific role of each RhoGEF in controlling distinct signaling mechanisms involved in Rho activation. In this review, we summarize the role of Dbl RhoGEFs in development and disease, with a focus on Ect2, Tiam1, Vav and P-Rex1/2. PMID:24037532

  13. G domain dimerization controls dynamin's assembly-stimulated GTPase activity

    SciTech Connect

    Chappie, Joshua S.; Acharya, Sharmistha; Leonard, Marilyn; Schmid, Sandra L.; Dyda, Fred

    2010-06-14

    Dynamin is an atypical GTPase that catalyses membrane fission during clathrin-mediated endocytosis. The mechanisms of dynamin's basal and assembly-stimulated GTP hydrolysis are unknown, though both are indirectly influenced by the GTPase effector domain (GED). Here we present the 2.0 {angstrom} resolution crystal structure of a human dynamin 1-derived minimal GTPase-GED fusion protein, which was dimeric in the presence of the transition state mimic GDP.AlF{sub 4}{sup -}. The structure reveals dynamin's catalytic machinery and explains how assembly-stimulated GTP hydrolysis is achieved through G domain dimerization. A sodium ion present in the active site suggests that dynamin uses a cation to compensate for the developing negative charge in the transition state in the absence of an arginine finger. Structural comparison to the rat dynamin G domain reveals key conformational changes that promote G domain dimerization and stimulated hydrolysis. The structure of the GTPase-GED fusion protein dimer provides insight into the mechanisms underlying dynamin-catalysed membrane fission.

  14. Backbone assignment and secondary structure of Rnd1, an unusual Rho family small GTPase.

    PubMed

    Cao, Shufen; Mao, Xi'an; Liu, Deli; Buck, Matthias

    2013-10-01

    Rho GTPases have attracted considerable interest as signaling molecules due to their variety of functional roles in cells. Rnd1 is a relatively recently discovered Rho GTPase with no enzymatic activity against its bound GTP nucleotide, setting it apart from other family members. Research has revealed a critical role for Rnd1 not only in neurite outgrowth, dendrite development, axon guidance, but also in gastric cancer and in endothelial cells during inflammation. Structural information is crucial for understanding the mechanism that forms the basis for protein-protein interactions and functions, but until recently there were no reports of NMR studies directly on the Rnd1 protein. In this paper we report assignments for the majority of Rnd1 NMR resonances based on 2D and 3D NMR spectra. Rnd1 assignment was a challenging task, however, despite optimization strategies that have facilitated NMR studies of the protein (Cao and Buck in Small GTPase 2:295-304, 2012). Besides common triple-resonance experiments, 3D HNCA, 3D HN(CO)CA, 3D HNCO which are usually employed for sequence assignment, 3D NOESY experiments and specific labeling of 13 kinds of amino acids were also utilized to gain as many (1)H(N), (13)C, and (15)N resonances assignments as possible. For 170 cross peaks observed out of 183 possible mainchain N-H correlations in the (1)H-(15)N TROSY spectrum, backbone assignment was finally completed for 127 resonances. The secondary structure was then defined by chemical shifts and TALOS+ based on the assignments. The overall structure in solution compares well with that of Rnd1 in a crystal, except for two short segments, residues 77-83 and residues 127-131. Given that some features are shared among Rho GTPases, Rnd1 assignments are also compared with two other family members, Cdc42 and Rac1. The overall level of Rnd1 assignment is lower than for Cdc42 and Rac1, consistent with its lower stability and possibly increased internal dynamics. However, while the Rnd1

  15. Backbone assignment and secondary structure of Rnd1, an unusual Rho family small GTPase.

    PubMed

    Cao, Shufen; Mao, Xi'an; Liu, Deli; Buck, Matthias

    2013-10-01

    Rho GTPases have attracted considerable interest as signaling molecules due to their variety of functional roles in cells. Rnd1 is a relatively recently discovered Rho GTPase with no enzymatic activity against its bound GTP nucleotide, setting it apart from other family members. Research has revealed a critical role for Rnd1 not only in neurite outgrowth, dendrite development, axon guidance, but also in gastric cancer and in endothelial cells during inflammation. Structural information is crucial for understanding the mechanism that forms the basis for protein-protein interactions and functions, but until recently there were no reports of NMR studies directly on the Rnd1 protein. In this paper we report assignments for the majority of Rnd1 NMR resonances based on 2D and 3D NMR spectra. Rnd1 assignment was a challenging task, however, despite optimization strategies that have facilitated NMR studies of the protein (Cao and Buck in Small GTPase 2:295-304, 2012). Besides common triple-resonance experiments, 3D HNCA, 3D HN(CO)CA, 3D HNCO which are usually employed for sequence assignment, 3D NOESY experiments and specific labeling of 13 kinds of amino acids were also utilized to gain as many (1)H(N), (13)C, and (15)N resonances assignments as possible. For 170 cross peaks observed out of 183 possible mainchain N-H correlations in the (1)H-(15)N TROSY spectrum, backbone assignment was finally completed for 127 resonances. The secondary structure was then defined by chemical shifts and TALOS+ based on the assignments. The overall structure in solution compares well with that of Rnd1 in a crystal, except for two short segments, residues 77-83 and residues 127-131. Given that some features are shared among Rho GTPases, Rnd1 assignments are also compared with two other family members, Cdc42 and Rac1. The overall level of Rnd1 assignment is lower than for Cdc42 and Rac1, consistent with its lower stability and possibly increased internal dynamics. However, while the Rnd1

  16. Control of Dendritic Spine Morphological and Functional Plasticity by Small GTPases

    PubMed Central

    Woolfrey, Kevin M.; Srivastava, Deepak P.

    2016-01-01

    Structural plasticity of excitatory synapses is a vital component of neuronal development, synaptic plasticity, and behaviour. Abnormal development or regulation of excitatory synapses has also been strongly implicated in many neurodevelopmental, psychiatric, and neurodegenerative disorders. In the mammalian forebrain, the majority of excitatory synapses are located on dendritic spines, specialized dendritic protrusions that are enriched in actin. Research over recent years has begun to unravel the complexities involved in the regulation of dendritic spine structure. The small GTPase family of proteins have emerged as key regulators of structural plasticity, linking extracellular signals with the modulation of dendritic spines, which potentially underlies their ability to influence cognition. Here we review a number of studies that examine how small GTPases are activated and regulated in neurons and furthermore how they can impact actin dynamics, and thus dendritic spine morphology. Elucidating this signalling process is critical for furthering our understanding of the basic mechanisms by which information is encoded in neural circuits but may also provide insight into novel targets for the development of effective therapies to treat cognitive dysfunction seen in a range of neurological disorders. PMID:26989514

  17. Small GTPase Rho signaling is involved in {beta}1 integrin-mediated up-regulation of intercellular adhesion molecule 1 and receptor activator of nuclear factor {kappa}B ligand on osteoblasts and osteoclast maturation

    SciTech Connect

    Hirai, Fumihiko; Nakayamada, Shingo; Okada, Yosuke; Saito, Kazuyoshi; Kurose, Hitoshi; Mogami, Akira; Tanaka, Yoshiya . E-mail: tanaka@med.uoeh-u.ac.jp

    2007-04-27

    We assessed the characteristics of human osteoblasts, focusing on small GTPase Rho signaling. {beta}1 Integrin were highly expressed on osteoblasts. Engagement of {beta}1 integrins by type I collagen augmented expression of intercellular adhesion molecule 1 (ICAM-1) and receptor activator of nuclear factor {kappa}B ligand (RANKL) on osteoblasts. Rho was activated by {beta}1 stimulation in osteoblasts. {beta}1 Integrin-induced up-regulation of ICAM-1 and RANKL was inhibited by transfection with adenoviruses encoding C3 transferase or pretreated with Y-27632, specific Rho and Rho-kinase inhibitors. Engagement of {beta}1 integrin on osteoblasts induced formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNC) in a coculture system of osteoblasts and peripheral monocytes, but this action was completely abrogated by transfection of C3 transferase. Our results indicate the direct involvement of Rho-mediated signaling in {beta}1 integrin-induced up-regulation of ICAM-1 and RANKL and RANKL-dependent osteoclast maturation. Thus, Rho-mediated signaling in osteoblasts seems to introduce major biases to bone resorption.

  18. Evidence for lateral gene transfer (LGT) in the evolution of eubacteria-derived small GTPases in plant organelles

    PubMed Central

    Suwastika, I. Nengah; Denawa, Masatsugu; Yomogihara, Saki; Im, Chak Han; Bang, Woo Young; Ohniwa, Ryosuke L.; Bahk, Jeong Dong; Takeyasu, Kunio; Shiina, Takashi

    2014-01-01

    The genomes of free-living bacteria frequently exchange genes via lateral gene transfer (LGT), which has played a major role in bacterial evolution. LGT also played a significant role in the acquisition of genes from non-cyanobacterial bacteria to the lineage of “primary” algae and land plants. Small GTPases are widely distributed among prokaryotes and eukaryotes. In this study, we inferred the evolutionary history of organelle-targeted small GTPases in plants. Arabidopsis thaliana contains at least one ortholog in seven subfamilies of OBG-HflX-like and TrmE-Era-EngA-YihA-Septin-like GTPase superfamilies (together referred to as Era-like GTPases). Subcellular localization analysis of all Era-like GTPases in Arabidopsis revealed that all 30 eubacteria-related GTPases are localized to chloroplasts and/or mitochondria, whereas archaea-related DRG and NOG1 are localized to the cytoplasm and nucleus, respectively, suggesting that chloroplast- and mitochondrion-localized GTPases are derived from the ancestral cyanobacterium and α-proteobacterium, respectively, through endosymbiotic gene transfer (EGT). However, phylogenetic analyses revealed that plant organelle GTPase evolution is rather complex. Among the eubacterium-related GTPases, only four localized to chloroplasts (including one dual targeting GTPase) and two localized to mitochondria were derived from cyanobacteria and α-proteobacteria, respectively. Three other chloroplast-targeted GTPases were related to α-proteobacterial proteins, rather than to cyanobacterial GTPases. Furthermore, we found that four other GTPases showed neither cyanobacterial nor α-proteobacterial affiliation. Instead, these GTPases were closely related to clades from other eubacteria, such as Bacteroides (Era1, EngB-1, and EngB-2) and green non-sulfur bacteria (HflX). This study thus provides novel evidence that LGT significantly contributed to the evolution of organelle-targeted Era-like GTPases in plants. PMID:25566271

  19. p47 GTPases Regulate Toxoplasma gondii Survival in Activated Macrophages

    PubMed Central

    Butcher, Barbara A.; Greene, Robert I.; Henry, Stanley C.; Annecharico, Kimberly L.; Weinberg, J. Brice; Denkers, Eric Y.; Sher, Alan; Taylor, Gregory A.

    2005-01-01

    The cytokine gamma interferon (IFN-γ) is critical for resistance to Toxoplasma gondii. IFN-γ strongly activates macrophages and nonphagocytic host cells to limit intracellular growth of T. gondii; however, the cellular factors that are required for this effect are largely unknown. We have shown previously that IGTP and LRG-47, members of the IFN-γ-regulated family of p47 GTPases, are required for resistance to acute T. gondii infections in vivo. In contrast, IRG-47, another member of this family, is not required. In the present work, we addressed whether these GTPases are required for IFN-γ-induced suppression of T. gondii growth in macrophages in vitro. Bone marrow macrophages that lacked IGTP or LRG-47 displayed greatly attenuated IFN-γ-induced inhibition of T. gondii growth, while macrophages that lacked IRG-47 displayed normal inhibition. Thus, the ability of the p47 GTPases to limit acute infection in vivo correlated with their ability to suppress intracellular growth in macrophages in vitro. Using confocal microscopy and sucrose density fractionation, we demonstrated that IGTP largely colocalizes with endoplasmic reticulum markers, while LRG-47 was mainly restricted to the Golgi. Although both IGTP and LRG-47 localized to vacuoles containing latex beads, neither protein localized to vacuoles containing live T. gondii. These results suggest that IGTP and LRG-47 are able to regulate host resistance to acute T. gondii infections through their ability to inhibit parasite growth within the macrophage. PMID:15908352

  20. Prenylated Rab acceptor protein is a receptor for prenylated small GTPases.

    PubMed

    Figueroa, C; Taylor, J; Vojtek, A B

    2001-07-27

    Localization of Ras and Ras-like proteins to the correct subcellular compartment is essential for these proteins to mediate their biological effects. Many members of the Ras superfamily (Ha-Ras, N-Ras, TC21, and RhoA) are prenylated in the cytoplasm and then transit through the endomembrane system on their way to the plasma membrane. The proteins that aid in the trafficking of the small GTPases have not been well characterized. We report here that prenylated Rab acceptor protein (PRA1), which others previously identified as a prenylation-dependent receptor for Rab proteins, also interacts with Ha-Ras, RhoA, TC21, and Rap1a. The interaction of these small GTPases with PRA1 requires their post-translational modification by prenylation. The prenylation-dependent association of PRA1 with multiple GTPases is conserved in evolution; the yeast PRA1 protein associates with both Ha-Ras and RhoA. Earlier studies reported the presence of PRA1 in the Golgi, and we show here that PRA1 co-localizes with Ha-Ras and RhoA in the Golgi compartment. We suggest that PRA1 acts as an escort protein for small GTPases by binding to the hydrophobic isoprenoid moieties of the small GTPases and facilitates their trafficking through the endomembrane system.

  1. Activity-Dependent Subcellular Cotrafficking of the Small GTPase Rem2 and Ca2+/CaM-Dependent Protein Kinase IIα

    PubMed Central

    Flynn, Robyn; Labrie-Dion, Etienne; Bernier, Nikolas; Colicos, Michael A.; De Koninck, Paul; Zamponi, Gerald W.

    2012-01-01

    Background Rem2 is a small monomeric GTP-binding protein of the RGK family, whose known functions are modulation of calcium channel currents and alterations of cytoskeletal architecture. Rem2 is the only RGK protein found predominantly in the brain, where it has been linked to synaptic development. We wished to determine the effect of neuronal activity on the subcellular distribution of Rem2 and its interacting partners. Results We show that Rem2 undergoes activity-and N-Methyl-D-Aspartate Receptor (NMDAR)-dependent translocation in rat hippocampal neurons. This redistribution of Rem2, from a diffuse pattern to one that is highly punctate, is dependent on Ca2+ influx, on binding to calmodulin (CaM), and also involves an auto-inhibitory domain within the Rem2 distal C-terminus region. We found that Rem2 can bind to Ca2+/CaM-dependent protein kinase IIα (CaMKII) a in Ca2+/CaM-dependent manner. Furthermore, our data reveal a spatial and temporal correlation between NMDAR-dependent clustering of Rem2 and CaMKII in neurons, indicating co-assembly and co-trafficking in neurons. Finally, we show that inhibiting CaMKII aggregation in neurons and HEK cells reduces Rem2 clustering, and that Rem2 affects the baseline distribution of CaMKII in HEK cells. Conclusions Our data suggest a novel function for Rem2 in co-trafficking with CaMKII, and thus potentially expose a role in neuronal plasticity. PMID:22815963

  2. Phospholipases as GTPase activity accelerating proteins (GAPs) in plants.

    PubMed

    Pandey, Sona

    2016-05-01

    GTPase activity accelerating proteins (GAPs) are key regulators of the G-protein signaling cycle. By facilitating effective hydrolysis of the GTP bound on Gα proteins, GAPs control the timing and amplitude of the signaling cycle and ascertain the availability of the inactive heterotrimer for the next round of activation. Until very recently, the studies of GAPs in plants were focused exclusively on the regulator of G-protein signaling (RGS) protein. We now show that phospholipase Dα1 (PLDα1) is also a bona fide GAP in plants and together with the RGS protein controls the level of active Gα protein. PMID:27124090

  3. High expression of small GTPase Rab3D promotes cancer progression and metastasis

    PubMed Central

    Yang, Jian; Liu, Wei; Lu, Xin'an; Fu, Yan; Li, Lin; Luo, Yongzhang

    2015-01-01

    Rab GTPases control exocytic and endocytic membrane trafficking such as exosomes release. As a secretory small GTPase, Rab3D is a vital regulator for protein secretion. However, the role of Rab3D in cancer was never systematically studied. The aim of this study is to examine its function and mechanism in cancer, especially metastasis. We detected protein levels of Rab3D in nine cancer cell lines and twelve types of clinical cancer specimens. Subsequently, we established in vitro migration and in vivo orthotopic metastatic mouse models to study the role of Rab3D in tumor metastasis. Here, we reported that the expression levels of Rab3D were dysregulated in cancer cells and highly correlated with tumor malignancies in the clinical samples. Increased expressions of Rab3D led to tumor invasion in vitro and lung metastasis in vivo, whereas Rab3D knockdown suppressed the tumor cell motility. Mechanistic studies revealed that Rab3D activated intracellular the AKT/GSK3β signaling to induce the EMT process. In addition, it also regulated the extracellular secretion of Hsp90α to promote tumor cell migration and invasion. These results prove that Rab3D is a key molecule to regulate tumor metastasis, suggesting that blocking the Rab3D function can be a potential therapeutic approach for cancer metastasis. PMID:25823663

  4. Orthogonal ring-closing alkyne and olefin metathesis for the synthesis of small GTPase-targeting bicyclic peptides.

    PubMed

    Cromm, Philipp M; Schaubach, Sebastian; Spiegel, Jochen; Fürstner, Alois; Grossmann, Tom N; Waldmann, Herbert

    2016-04-14

    Bicyclic peptides are promising scaffolds for the development of inhibitors of biological targets that proved intractable by typical small molecules. So far, access to bioactive bicyclic peptide architectures is limited due to a lack of appropriate orthogonal ring-closing reactions. Here, we report chemically orthogonal ring-closing olefin (RCM) and alkyne metathesis (RCAM), which enable an efficient chemo- and regioselective synthesis of complex bicyclic peptide scaffolds with variable macrocycle geometries. We also demonstrate that the formed alkyne macrocycle can be functionalized subsequently. The orthogonal RCM/RCAM system was successfully used to evolve a monocyclic peptide inhibitor of the small GTPase Rab8 into a bicyclic ligand. This modified peptide shows the highest affinity for an activated Rab GTPase that has been reported so far. The RCM/RCAM-based formation of bicyclic peptides provides novel opportunities for the design of bioactive scaffolds suitable for the modulation of challenging protein targets.

  5. Orthogonal ring-closing alkyne and olefin metathesis for the synthesis of small GTPase-targeting bicyclic peptides

    PubMed Central

    Cromm, Philipp M.; Schaubach, Sebastian; Spiegel, Jochen; Fürstner, Alois; Grossmann, Tom N.; Waldmann, Herbert

    2016-01-01

    Bicyclic peptides are promising scaffolds for the development of inhibitors of biological targets that proved intractable by typical small molecules. So far, access to bioactive bicyclic peptide architectures is limited due to a lack of appropriate orthogonal ring-closing reactions. Here, we report chemically orthogonal ring-closing olefin (RCM) and alkyne metathesis (RCAM), which enable an efficient chemo- and regioselective synthesis of complex bicyclic peptide scaffolds with variable macrocycle geometries. We also demonstrate that the formed alkyne macrocycle can be functionalized subsequently. The orthogonal RCM/RCAM system was successfully used to evolve a monocyclic peptide inhibitor of the small GTPase Rab8 into a bicyclic ligand. This modified peptide shows the highest affinity for an activated Rab GTPase that has been reported so far. The RCM/RCAM-based formation of bicyclic peptides provides novel opportunities for the design of bioactive scaffolds suitable for the modulation of challenging protein targets. PMID:27075966

  6. Orthogonal ring-closing alkyne and olefin metathesis for the synthesis of small GTPase-targeting bicyclic peptides.

    PubMed

    Cromm, Philipp M; Schaubach, Sebastian; Spiegel, Jochen; Fürstner, Alois; Grossmann, Tom N; Waldmann, Herbert

    2016-01-01

    Bicyclic peptides are promising scaffolds for the development of inhibitors of biological targets that proved intractable by typical small molecules. So far, access to bioactive bicyclic peptide architectures is limited due to a lack of appropriate orthogonal ring-closing reactions. Here, we report chemically orthogonal ring-closing olefin (RCM) and alkyne metathesis (RCAM), which enable an efficient chemo- and regioselective synthesis of complex bicyclic peptide scaffolds with variable macrocycle geometries. We also demonstrate that the formed alkyne macrocycle can be functionalized subsequently. The orthogonal RCM/RCAM system was successfully used to evolve a monocyclic peptide inhibitor of the small GTPase Rab8 into a bicyclic ligand. This modified peptide shows the highest affinity for an activated Rab GTPase that has been reported so far. The RCM/RCAM-based formation of bicyclic peptides provides novel opportunities for the design of bioactive scaffolds suitable for the modulation of challenging protein targets. PMID:27075966

  7. Real-time NMR Study of Three Small GTPases Reveals That Fluorescent 2′(3′)-O-(N-Methylanthraniloyl)-tagged Nucleotides Alter Hydrolysis and Exchange Kinetics*

    PubMed Central

    Mazhab-Jafari, Mohammad T.; Marshall, Christopher B.; Smith, Matthew; Gasmi-Seabrook, Geneviève M. C.; Stambolic, Vuk; Rottapel, Robert; Neel, Benjamin G.; Ikura, Mitsuhiko

    2010-01-01

    The Ras family of small GTPases control diverse signaling pathways through a conserved “switch” mechanism, which is turned on by binding of GTP and turned off by GTP hydrolysis to GDP. Full understanding of GTPase switch functions requires reliable, quantitative assays for nucleotide binding and hydrolysis. Fluorescently labeled guanine nucleotides, such as 2′(3′)-O-(N-methylanthraniloyl) (mant)-substituted GTP and GDP analogs, have been widely used to investigate the molecular properties of small GTPases, including Ras and Rho. Using a recently developed NMR method, we show that the kinetics of nucleotide hydrolysis and exchange by three small GTPases, alone and in the presence of their cognate GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors, are affected by the presence of the fluorescent mant moiety. Intrinsic hydrolysis of mantGTP by Ras homolog enriched in brain (Rheb) is ∼10 times faster than that of GTP, whereas it is 3.4 times slower with RhoA. On the other hand, the mant tag inhibits TSC2GAP-catalyzed GTP hydrolysis by Rheb but promotes p120 RasGAP-catalyzed GTP hydrolysis by H-Ras. Guanine nucleotide exchange factor-catalyzed nucleotide exchange for both H-Ras and RhoA was inhibited by mant-substituted nucleotides, and the degree of inhibition depends highly on the GTPase and whether the assay measures association of mantGTP with, or dissociation of mantGDP from the GTPase. These results indicate that the mant moiety has significant and unpredictable effects on GTPase reaction kinetics and underscore the importance of validating its use in each assay. PMID:20018863

  8. Weight Loss Upregulates the Small GTPase DIRAS3 in Human White Adipose Progenitor Cells, Which Negatively Regulates Adipogenesis and Activates Autophagy via Akt–mTOR Inhibition

    PubMed Central

    Ejaz, Asim; Mitterberger, Maria C.; Lu, Zhen; Mattesich, Monika; Zwierzina, Marit E.; Hörl, Susanne; Kaiser, Andreas; Viertler, Hans-Peter; Rostek, Ursula; Meryk, Andreas; Khalid, Sana; Pierer, Gerhard; Bast, Robert C.; Zwerschke, Werner

    2016-01-01

    Long-term weight-loss (WL) interventions reduce insulin serum levels, protect from obesity, and postpone age-associated diseases. The impact of long-term WL on adipose-derived stromal/progenitor cells (ASCs) is unknown. We identified DIRAS3 and IGF-1 as long-term WL target genes up-regulated in ASCs in subcutaneous white adipose tissue of formerly obese donors (WLDs). We show that DIRAS3 negatively regulates Akt, mTOR and ERK1/2 signaling in ASCs undergoing adipogenesis and acts as a negative regulator of this pathway and an activator of autophagy. Studying the IGF-1–DIRAS3 interaction in ASCs of WLDs, we demonstrate that IGF-1, although strongly up-regulated in these cells, hardly activates Akt, while ERK1/2 and S6K1 phosphorylation is activated by IGF-1. Overexpression of DIRAS3 in WLD ASCs completely inhibits Akt phosphorylation also in the presence of IGF-1. Phosphorylation of ERK1/2 and S6K1 is lesser reduced under these conditions. In conclusion, our key findings are that DIRAS3 down-regulates Akt–mTOR signaling in ASCs of WLDs. Moreover, DIRAS3 inhibits adipogenesis and activates autophagy in these cells. PMID:27211557

  9. Small GTPases and Stress Responses of vvran1 in the Straw Mushroom Volvariella volvacea.

    PubMed

    Yan, Jun-Jie; Xie, Bin; Zhang, Lei; Li, Shao-Jie; van Peer, Arend F; Wu, Ta-Ju; Chen, Bing-Zhi; Xie, Bao-Gui

    2016-01-01

    Small GTPases play important roles in the growth, development and environmental responses of eukaryotes. Based on the genomic sequence of the straw mushroom Volvariella volvacea, 44 small GTPases were identified. A clustering analysis using human small GTPases as the references revealed that V. volvacea small GTPases can be grouped into five families: nine are in the Ras family, 10 are in the Rho family, 15 are in the Rab family, one is in the Ran family and nine are in the Arf family. The transcription of vvran1 was up-regulated upon hydrogen peroxide (H₂O₂) stress, and could be repressed by diphenyleneiodonium chloride (DPI), a NADPH oxidase-specific inhibitor. The number of vvran1 transcripts also increased upon cold stress. Diphenyleneiodonium chloride, but not the superoxide dismutase (SOD) inhibitor diethy dithiocarbamate (DDC), could suppress the up-regulation of vvran1 gene expression to cold stress. These results combined with the high correlations between gene expression and superoxide anion (O₂(-)) generation indicated that vvran1 could be one of the candidate genes in the downstream of O₂(-) mediated pathways that are generated by NADPH oxidase under low temperature and oxidative stresses. PMID:27626406

  10. Small GTPases and Stress Responses of vvran1 in the Straw Mushroom Volvariella volvacea

    PubMed Central

    Yan, Jun-Jie; Xie, Bin; Zhang, Lei; Li, Shao-Jie; van Peer, Arend F.; Wu, Ta-Ju; Chen, Bing-Zhi; Xie, Bao-Gui

    2016-01-01

    Small GTPases play important roles in the growth, development and environmental responses of eukaryotes. Based on the genomic sequence of the straw mushroom Volvariella volvacea, 44 small GTPases were identified. A clustering analysis using human small GTPases as the references revealed that V. volvacea small GTPases can be grouped into five families: nine are in the Ras family, 10 are in the Rho family, 15 are in the Rab family, one is in the Ran family and nine are in the Arf family. The transcription of vvran1 was up-regulated upon hydrogen peroxide (H2O2) stress, and could be repressed by diphenyleneiodonium chloride (DPI), a NADPH oxidase-specific inhibitor. The number of vvran1 transcripts also increased upon cold stress. Diphenyleneiodonium chloride, but not the superoxide dismutase (SOD) inhibitor diethy dithiocarbamate (DDC), could suppress the up-regulation of vvran1 gene expression to cold stress. These results combined with the high correlations between gene expression and superoxide anion (O2−) generation indicated that vvran1 could be one of the candidate genes in the downstream of O2− mediated pathways that are generated by NADPH oxidase under low temperature and oxidative stresses. PMID:27626406

  11. GTP-specific fab fragment-based GTPase activity assay.

    PubMed

    Kopra, Kari; Rozwandowicz-Jansen, Anita; Syrjänpää, Markku; Blaževitš, Olga; Ligabue, Alessio; Veltel, Stefan; Lamminmäki, Urpo; Abankwa, Daniel; Härmä, Harri

    2015-03-17

    GTPases are central cellular signaling proteins, which cycle between a GDP-bound inactive and a GTP-bound active conformation in a controlled manner. Ras GTPases are frequently mutated in cancer and so far only few experimental inhibitors exist. The most common methods for monitoring GTP hydrolysis rely on luminescent GDP- or GTP-analogs. In this study, the first GTP-specific Fab fragment and its application are described. We selected Fab fragments using the phage display technology. Six Fab fragments were found against 2'/3'-GTP-biotin and 8-GTP-biotin. Selected antibody fragments allowed specific detection of endogenous, free GTP. The most potent Fab fragment (2A4(GTP)) showed over 100-fold GTP-specificity over GDP, ATP, or CTP and was used to develop a heterogeneous time-resolved luminescence based assay for the monitoring of GTP concentration. The method allows studying the GEF dependent H-Ras activation (GTP binding) and GAP-catalyzed H-Ras deactivation (GTP hydrolysis) at nanomolar protein concentrations.

  12. APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle

    PubMed Central

    Szodorai, A; Kuan, Y-H; Hunzelmann, S; Engel, U; Sakane, A; Sasaki, T; Takai, Y; Kirsch, J; Müller, U; Beyreuther, K; Brady, S; Morfini, G; Kins, S

    2010-01-01

    The amyloid precursor protein (APP) may be sequentially cleaved by β- and γ-secretases leading to accumulation of Aβ peptides in brains of Alzheimer’s Disease patients. Cleavage by α-secretase prevents Aβ generation. APP is anterogradely transported by conventional kinesin in a distinct transport vesicle, but both the biochemical composition of such a vesicle as well as the specific kinesin-1 motor responsible for transport are poorly defined. Here, we demonstrate by time-lapse analysis and immunoisolations that APP is a cargo of a vesicle containing the kinesin heavy chain isoform kinesin-1C, the small GTPase Rab3A and a specific subset of presynaptic protein components. Moreover, we report that assembly of kinesin-1C and APP in this vesicle type requires Rab3A GTPase activity. Finally, we show cleavage of APP in the analyzed transport vesicles by α-secretase activity, likely mediated by ADAM10. Together, these data indicate for the first time that maturation of transport vesicles, including coupling of conventional kinesin, requires Rab GTPase activity. PMID:19923287

  13. Role of Rho small GTPases in meniscus cells.

    PubMed

    Kanazawa, Tomoko; Furumatsu, Takayuki; Matsumoto-Ogawa, Emi; Maehara, Ami; Ozaki, Toshifumi

    2014-11-01

    We previously reported that mechanical stretch regulates Sry-type HMG box (SOX) 9-dependent α1(II) collagen (COL2A1) expression in inner meniscus cells. This study examined the role of the small Rho guanosine 5' triphosphatase Rac1 and Rho-associated kinase (ROCK) in the regulation of stretch-induced SOX9 gene expression in cultured human inner meniscus cells. COL2A1 and SOX9 gene expression was assessed by real-time PCR after application of uni-axial cyclic tensile strain (CTS) in the presence or absence of ROCK and Rac1 inhibitors. The subcellular localization of SOX9 and the Rac1 effector cyclic AMP response element-binding protein (CREB), the phosphorylation state of SOX9, Rac1 activation, and the binding of CREB to the SOX9 promoter were assessed. CTS increased the expression of COL2A1 and SOX9, which was suppressed by inhibition of Rac1. ROCK inhibition enhanced COL2A1 and SOX9 gene expression in the absence of CTS. CTS stimulated the nuclear translocation and phosphorylation of SOX9, and increased Rac1 activation. CTS also increased the binding of CREB to the SOX9 promoter. The results suggest that mechanical stretch-dependent upregulation of SOX9 by CREB in inner meniscus cells depends on the antagonistic activities of ROCK and Rac1. PMID:25130858

  14. Valvular dystrophy associated filamin A mutations reveal a new role of its first repeats in small-GTPase regulation

    PubMed Central

    Duval, D.; Lardeux, A.; Le Tourneau, T.; Norris, R.A.; Markwald, R.R.; Sauzeau, V.; Probst, V.; Le Marec, H.; Levine, R.; Schott, J.J.; Merot, J.

    2014-01-01

    Filamin A (FlnA) is a ubiquitous actin binding protein which anchors various transmembrane proteins to the cell cytoskeleton and provides a scaffold to many cytoplasmic signaling proteins involved in actin cytoskeleton remodeling in response to mechanical stress and cytokines stimulation. Although the vast majority of FlnA binding partners interact with the carboxy-terminal immunoglobulin like (Igl) repeats of FlnA, little is known on the role of the amino-N-terminal repeats. Here, using cardiac mitral valvular dystrophy associated FlnA–G288R and P637Q mutations located in the N-terminal Igl repeat 1 and 4 respectively as a model, we identified a new role of FlnA N-terminal repeats in small Rho-GTPases regulation. Using FlnA-deficient melanoma and HT1080 cell lines as expression systems we showed that FlnA mutations reduce cell spreading and migration capacities. Furthermore, we defined a signaling network in which FlnA mutations alter the balance between RhoA and Rac1 GTPases activities in favor of RhoA and provided evidences for a role of the Rac1 specific GTPase activating protein FilGAP in this process. Together our work ascribed a new role to the N-terminal repeats of FlnA in Small GTPases regulation and supports a conceptual framework for the role of FlnA mutations in cardiac valve diseases centered around signaling molecules regulating cellular actin cytoskeleton in response to mechanical stress. PMID:24200678

  15. The small GTPase MoYpt7 is required for membrane fusion in autophagy and pathogenicity of Magnaporthe oryzae.

    PubMed

    Liu, Xiao-Hong; Chen, Si-Miao; Gao, Hui-Min; Ning, Guo-Ao; Shi, Huan-Bin; Wang, Yao; Dong, Bo; Qi, Yao-Yao; Zhang, Dong-Mei; Lu, Guo-Dong; Wang, Zong-Hua; Zhou, Jie; Lin, Fu-Cheng

    2015-11-01

    Rab GTPases are required for vesicle-vacuolar fusion during vacuolar biogenesis in fungi. To date, little is known about the biological functions of the Rab small GTPase components in Magnaporthe oryzae. In this study, we investigated MoYpt7 of M. oryzae, a homologue of the small Ras-like GTPase Ypt7 in Saccharomyces cerevisiae. Cellular localization assays showed that MoYpt7 was predominantly localized to vacuolar membranes. Using a targeted gene disruption strategy, a ΔMoYPT7 mutant was generated that exhibited defects in mycelial growth and production of conidia. The conidia of the ΔMoYPT7 mutant were malformed and defective in the formation of appressoria. Consequently, the ΔMoYPT7 mutant failed to cause disease in rice and barley. Furthermore, the ΔMoYPT7 mutant showed impairment in autophagy, breached cell wall integrity, and higher sensitivity to both calcium and heavy metal stress. Transformants constitutively expressing an active MoYPT7 allele (MoYPT7-CA, Gln67Leu) exhibited distinct phenotypes from the ΔMoYPT7 mutant. Expression of MoYPT7-CA in MoYpt7 reduced pathogenicity and produced more appressoria-forming single-septum conidia. These results indicate that MoYPT7 is required for fungal morphogenesis, vacuole fusion, autophagy, stress resistance and pathogenicity in M. oryzae.

  16. Rational design and applications of a Rac GTPase-specific small molecule inhibitor.

    PubMed

    Akbar, Huzoor; Cancelas, Jose; Williams, David A; Zheng, Jie; Zheng, Yi

    2006-01-01

    Rac GTPases are involved in the regulation of multiple cell functions and have been implicated in the pathology of certain human diseases. Dominant negative mutants of Rac have been the tool of choice in studying Rac function in cells. Given the difficulty of introducing high concentrations of the Rac mutants into primary cells and nonspecific effects of the mutants on Rho guanine nucleotide exchange factor (GEF) activities, it is desirable to develop small molecule inhibitors that could specifically inhibit Rac activities. Here we describe the rational design, characterization, and applications of a first-generation Rac-specific small molecule inhibitor. On the basis of the structure-function information of Rac interaction with GEFs, in a computer-based virtual screening we have identified NSC23766, a highly soluble and membrane permeable compound, as a specific inhibitor of a subset of GEF binding to Rac and, therefore, Rac activation by these GEFs. In fibroblast cells, NSC23766 inhibited Rac1 GTP-loading without affecting Cdc42 or RhoA activity and suppressed cell proliferation induced by a Rac GEF Tiam1. It has little effect on cell growth induced by a constitutively active Rac1 mutant. In addition, NSC23766 inhibited: (1) the anchorage-independent growth and invasion phenotypes of human prostate cancer PC-3 cells; (2) Rac activation and Rac-dependent aggregation of platelets stimulated by thrombin; and (3) Rac1 and Rac2 activities of hematopoietic stem/progenitor cells and induced their mobilization from mouse bone marrow to peripheral blood. Thus, NSC23766 is a lead small molecule inhibitor of Rac activity and could be useful for studying Rac-mediated cellular functions and for modulating pathological conditions in which Rac-deregulation may play a role.

  17. WAVE regulatory complex activation by cooperating GTPases Arf and Rac1.

    PubMed

    Koronakis, Vassilis; Hume, Peter J; Humphreys, Daniel; Liu, Tao; Hørning, Ole; Jensen, Ole N; McGhie, Emma J

    2011-08-30

    The WAVE regulatory complex (WRC) is a critical element in the control of actin polymerization at the eukaryotic cell membrane, but how WRC is activated remains uncertain. While Rho GTPase Rac1 can bind and activate WRC in vitro, this interaction is of low affinity, suggesting other factors may be important. By reconstituting WAVE-dependent actin assembly on membrane-coated beads in mammalian cell extracts, we found that Rac1 was not sufficient to engender bead motility, and we uncovered a key requirement for Arf GTPases. In vitro, Rac1 and Arf1 were individually able to bind weakly to recombinant WRC and activate it, but when both GTPases were bound at the membrane, recruitment and concomitant activation of WRC were dramatically enhanced. This cooperativity between the two GTPases was sufficient to induce WAVE-dependent bead motility in cell extracts. Our findings suggest that Arf GTPases may be central components in WAVE signalling, acting directly, alongside Rac1.

  18. Mycobacteriophage putative GTPase-activating protein can potentiate antibiotics.

    PubMed

    Yan, Shuangquan; Xu, Mengmeng; Duan, Xiangke; Yu, Zhaoxiao; Li, Qiming; Xie, Longxiang; Fan, Xiangyu; Xie, Jianping

    2016-09-01

    The soaring incidences of infection by antimicrobial resistant (AR) pathogens and shortage of effective antibiotics with new mechanisms of action have renewed interest in phage therapy. This scenario is exemplified by resistant tuberculosis (TB), caused by resistant Mycobacterium tuberculosis. Mycobacteriophage SWU1 A321_gp67 encodes a putative GTPase-activating protein. Mycobacterium smegmatis with gp67 overexpression showed changed colony formation and biofilm morphology and supports the efficacy of streptomycin and capreomycin against Mycobacterium. gp67 down-regulated the transcription of genes involved in cell wall and biofilm development. To our knowledge, this is the first report to show that phage protein in addition to lysin or recombination components can synergize with existing antibiotics. Phage components might represent a promising new clue for better antibiotic potentiators. PMID:27345061

  19. High yield production of myristoylated Arf6 small GTPase by recombinant N-myristoyl transferase

    PubMed Central

    Padovani, Dominique; Zeghouf, Mahel; Traverso, José A.; Giglione, Carmela; Cherfils, Jacqueline

    2013-01-01

    Small GTP-binding proteins of the Arf family (Arf GTPases) interact with multiple cellular partners and with membranes to regulate intracellular traffic and organelle structure. Understanding the underlying molecular mechanisms requires in vitro biochemical assays to test for regulations and functions. Such assays should use proteins in their cellular form, which carry a myristoyl lipid attached in N-terminus. N-myristoylation of recombinant Arf GTPases can be achieved by co-expression in E. coli with a eukaryotic N-myristoyl transferase. However, purifying myristoylated Arf GTPases is difficult and has a poor overall yield. Here we show that human Arf6 can be N-myristoylated in vitro by recombinant N-myristoyl transferases from different eukaryotic species. The catalytic efficiency depended strongly on the guanine nucleotide state and was highest for Arf6-GTP. Large-scale production of highly pure N-myristoylated Arf6 could be achieved, which was fully functional for liposome-binding and EFA6-stimulated nucleotide exchange assays. This establishes in vitro myristoylation as a novel and simple method that could be used to produce other myristoylated Arf and Arf-like GTPases for biochemical assays. PMID:23319116

  20. Specific antiviral activity demonstrated by TGTP, a member of a new family of interferon-induced GTPases.

    PubMed

    Carlow, D A; Teh, S J; Teh, H S

    1998-09-01

    The GTPase superfamily includes a diversity of molecules whose functions are regulated through the binding and hydrolysis of GTP. This superfamily can be segregated into families of functionally related molecules that typically share amino acid sequence similarity within and around the nucleotide-binding domains. A new family of putative GTPases, including IRG-47, LRG-47, IGTP, and TGTP/Mg21, has recently emerged that share significant sequence identity (25-40%). Expression of these molecules has been shown to be selectively induced by IFN-gamma and in some cases by IFN-alpha beta or bacterial LPS. This induction pattern implicates these putative GTPases as part of the innate defense of cells to infection, but their role in such defense has not yet been defined. We have previously described the cloning of TGTP and now confirm its intrinsic activity as a GTPase. We found that TGTP is strongly induced by endogenous IFN-alpha beta produced in response to standard lipofection of plasmid DNA or polyinosinic polycytidylic acid. The ability of endogenously produced IFN-alpha beta to efficiently induce expression of TGTP under these conditions suggested that TGTP might participate in defense against viral infection. This proposal was borne out when TGTP-transfected L cells displayed relative resistance to plaque formation by vesicular stomatitis virus but not herpes simplex virus. This observation places TGTP among a small family of innate antiviral agents and has implications for the functions of other members of this family of GTPases.

  1. Functional analysis of small Rab GTPases in cytokinesis in Arabidopsis thaliana.

    PubMed

    Qi, Xingyun; Zheng, Huanquan

    2013-01-01

    Rab proteins are key regulators of membrane transport in eukaryotes. Recent evidence from different species supports the notion that some Rab proteins are crucial for cytokinesis, a pivotal procedure for successful cell division. As a family of monomeric small GTPases of the Ras superfamily, the function of Rab proteins is modulated by guanine nucleotide binding and hydrolysis. To investigate the function of Rab proteins, creating dominant negative or constitutively active mutant forms of a Rab protein is a widely used approach. To study cytokinesis in plant cells, using fluorescent dye to highlight the cell shape and the nuclei, and to monitor the formation of the newly formed cell plate in mitotic cells, is easy and useful. In this chapter, we describe detailed methods for (1) generating transgenic plants expressing dominant negative or constitutively active form of RAB-A1c; (2) fluorescent staining of cell shape, cell wall, and nuclei of mitotic root tip cells; (3) fluorescent staining of newly formed cell plate; and (4) detecting fluorescent signals using Confocal Laser Scanning Microscopy in the genetic model plant species Arabidopsis thaliana.

  2. Small GTPase RhoA regulates cytoskeleton dynamics during porcine oocyte maturation and early embryo development.

    PubMed

    Zhang, Yu; Duan, Xing; Cao, Rui; Liu, Hong-Lin; Cui, Xiang-Shun; Kim, Nam-Hyung; Rui, Rong; Sun, Shao-Chen

    2014-01-01

    Mammalian oocyte maturation is distinguished by asymmetric division that is regulated primarily by cytoskeleton, including microtubules and microfilaments. Small Rho GTPase RhoA is a key regulator of cytoskeletal organization which regulates cell polarity, migration, and division. In this study, we investigated the roles of RhoA in mammalian oocyte meiosis and early embryo cleavage. (1) Disrupting RhoA activity or knock down the expression of RhoA caused the failure of polar body emission. This may have been due to decreased actin assembly and subsequent spindle migration defects. The involvement of RhoA in this process may have been though its regulation of actin nucleators ROCK, p-Cofilin, and ARP2 expression. (2) In addition, spindle morphology was also disrupted and p-MAPK expression decreased in RhoA inhibited or RhoA KD oocytes, which indicated that RhoA also regulated MAPK phosphorylation for spindle formation. (3) Porcine embryo development was also suppressed by inhibiting RhoA activity. Two nuclei were observed in one blastomere, and actin expression was reduced, which indicated that RhoA regulated actin-based cytokinesis of porcine embryo. Thus, our results demonstrated indispensable roles for RhoA in regulating porcine oocyte meiosis and cleavage during early embryo development.

  3. A large Rab GTPase encoded by CRACR2A is a component of subsynaptic vesicles that transmit T cell activation signals.

    PubMed

    Srikanth, Sonal; Kim, Kyun-Do; Gao, Yuanyuan; Woo, Jin Seok; Ghosh, Shubhamoy; Calmettes, Guillaume; Paz, Aviv; Abramson, Jeff; Jiang, Meisheng; Gwack, Yousang

    2016-03-22

    More than 60 members of the Rab family of guanosine triphosphatases (GTPases) exist in the human genome. Rab GTPases are small proteins that are primarily involved in the formation, trafficking, and fusion of vesicles. We showed thatCRACR2A(Ca(2+) release-activated Ca(2+) channel regulator 2A) encodes a lymphocyte-specific large Rab GTPase that contains multiple functional domains, including EF-hand motifs, a proline-rich domain (PRD), and a Rab GTPase domain with an unconventional prenylation site. Through experiments involving gene silencing in cells and knockout mice, we demonstrated a role for CRACR2A in the activation of the Ca(2+) and c-Jun N-terminal kinase signaling pathways in response to T cell receptor (TCR) stimulation. Vesicles containing this Rab GTPase translocated from near the Golgi to the immunological synapse formed between a T cell and a cognate antigen-presenting cell to activate these signaling pathways. The interaction between the PRD of CRACR2A and the guanidine nucleotide exchange factor Vav1 was required for the accumulation of these vesicles at the immunological synapse. Furthermore, we demonstrated that GTP binding and prenylation of CRACR2A were associated with its localization near the Golgi and its stability. Our findings reveal a previously uncharacterized function of a large Rab GTPase and vesicles near the Golgi in TCR signaling. Other GTPases with similar domain architectures may have similar functions in T cells. PMID:27016526

  4. Expression of a Medicago falcata small GTPase gene, MfARL1 enhanced tolerance to salt stress in Arabidopsis thaliana.

    PubMed

    Wang, Tian-Zuo; Xia, Xiu-Zhi; Zhao, Min-Gui; Tian, Qiu-Ying; Zhang, Wen-Hao

    2013-02-01

    To understand the role of small GTPases in response to abiotic stress, we isolated a gene encoding a small GTPase, designated MfARL1, from a subtracted cDNA library in Medicago falcata, a native legume species in semi-arid grassland in northern China. The function of MfARL1 in response to salt stress was studied by expressing MfARL1 in Arabidopsis. Wild-type (WT) and transgenic plants constitutively expressing MfARL1 showed comparable phenotype when grown under control conditions. Germination of seeds expressing MfARL1 was less suppressed by salt stress than that of WT seeds. Transgenic seedlings had higher survival rate than WT seedlings under salt stress, suggesting that expression of MfARL1 confers tolerance to salt stress. The physiological and molecular mechanisms underlying these phenomena were elucidated. Salt stress led to a significant decrease in chlorophyll contents in WT plants, but not in transgenic plants. Transgenic plants accumulated less amounts of H(2)O(2) and malondialdehyde than their WT counterparts under salt stress, which can be accounted for by the higher catalase activities, lower activities of superoxide dismutase, and peroxidase in transgenic plants than in WT plants. Transgenic plants displayed lower Na(+)/K(+) ratio due to less accumulation of Na(+) than wild-type under salt stress conditions. The lower Na(+)/K(+) ratio may result from less accumulation of Na(+) due to reduced expression of AtHKT1 that encodes Na(+) transporter in transgenic plants under salt stress. These findings demonstrate that MfARL1 encodes a novel stress-responsive small GTPase that is involved in tolerance to salt stress.

  5. In Vitro Prenylation of the Small GTPase Rac13 of Cotton.

    PubMed Central

    Trainin, T.; Shmuel, M.; Delmer, D. P.

    1996-01-01

    Previous work (D.P. Delmer, J. Pear, A. Andrawis, D. Stalker [1995] Mol Gen Genet 248: 43-51) has identified a gene in cotton (Gossypium hirsutum), Rac13, that encodes a small, signal-transducing GTPase and shows high expression in the fiber at the time of transition from primary to secondary wall synthesis. Since Rac13 may be important in signal transduction pathway(s), regulating the onset of fiber secondary wall synthesis, we continue to characterize Rac13 by determining its ability to undergo posttranslational modification. In animals Rac proteins contain the C-terminal consensus sequence CaaL (where "a" can be any aliphatic residue), which is a site for geranylgeranylation (B.T. Kinsella, R.A. Erdman, W.A. Maltese [1994] J Biol Chem 266: 9786-9794). We have identified activities in developing cotton fibers that resemble in specificity the geranylgeranyl- and farnesyltransferases of animals and yeast. In addition, using prenyltransferases from rabbit reticulocytes, we show that Rac13, having a C-terminal sequence of CAFL, can serve as an in vitro substrate for geranylgeranylation but not farnesylation. However, the presence of the uncommon penultimate F residue appears to slow the rate of prenylation considerably compared with other acceptors. PMID:12226460

  6. The small GTPase RhoH is an atypical regulator of haematopoietic cells

    PubMed Central

    Fueller, Florian; Kubatzky, Katharina F

    2008-01-01

    Rho GTPases are a distinct subfamily of the superfamily of Ras GTPases. The best-characterised members are RhoA, Rac and Cdc42 that regulate many diverse actions such as actin cytoskeleton reorganisation, adhesion, motility as well as cell proliferation, differentiation and gene transcription. Among the 20 members of that family, only Rac2 and RhoH show an expression restricted to the haematopoietic lineage. RhoH was first discovered in 1995 as a fusion transcript with the transcriptional repressor LAZ3/BCL6. It was therefore initially named translation three four (TTF) but later on renamed RhoH due to its close relationship to the Ras/Rho family of GTPases. Since then, RhoH has been implicated in human cancer as the gene is subject to somatic hypermutation and by the detection of RHOH as a translocation partner for LAZ3/BCL6 or other genes in human lymphomas. Underexpression of RhoH is found in hairy cell leukaemia and acute myeloid leukaemia. Some of the amino acids that are crucial for GTPase activity are mutated in RhoH so that the protein is a GTPase-deficient, so-called atypical Rho GTPase. Therefore other mechanisms of regulating RhoH activity have been described. These include regulation at the mRNA level and tyrosine phosphorylation of the protein's unique ITAM-like motif. The C-terminal CaaX box of RhoH is mainly a target for farnesyl-transferase but can also be modified by geranylgeranyl-transferase. Isoprenylation of RhoH and changes in subcellular localisation may be an additional factor to fine-tune signalling. Little is currently known about its signalling, regulation or interaction partners. Recent studies have shown that RhoH negatively influences the proliferation and homing of murine haematopoietic progenitor cells, presumably by acting as an antagonist for Rac1. In leukocytes, RhoH is needed to keep the cells in a resting, non-adhesive state, but the exact mechanism has yet to be elucidated. RhoH has also been implicated as a regulatory molecule

  7. Activation of G Proteins by Guanine Nucleotide Exchange Factors Relies on GTPase Activity.

    PubMed

    Stanley, Rob J; Thomas, Geraint M H

    2016-01-01

    G proteins are an important family of signalling molecules controlled by guanine nucleotide exchange and GTPase activity in what is commonly called an 'activation/inactivation cycle'. The molecular mechanism by which guanine nucleotide exchange factors (GEFs) catalyse the activation of monomeric G proteins is well-established, however the complete reversibility of this mechanism is often overlooked. Here, we use a theoretical approach to prove that GEFs are unable to positively control G protein systems at steady-state in the absence of GTPase activity. Instead, positive regulation of G proteins must be seen as a product of the competition between guanine nucleotide exchange and GTPase activity--emphasising a central role for GTPase activity beyond merely signal termination. We conclude that a more accurate description of the regulation of G proteins via these processes is as a 'balance/imbalance' mechanism. This result has implications for the understanding of intracellular signalling processes, and for experimental strategies that rely on modulating G protein systems. PMID:26986850

  8. Cloning, sequencing and phylogenetic analysis of the small GTPase gene cdc-42 from Ancylostoma caninum.

    PubMed

    Yang, Yurong; Zheng, Jing; Chen, Jiaxin

    2012-12-01

    CDC-42 is a member of the Rho GTPase subfamily that is involved in many signaling pathways, including mitosis, cell polarity, cell migration and cytoskeleton remodeling. Here, we present the first characterization of a full-length cDNA encoding the small GTPase cdc-42, designated as Accdc-42, isolated from the parasitic nematode Ancylostoma caninum. The encoded protein contains 191 amino acid residues with a predicted molecular weight of 21 kDa and displays a high level of identity with the Rho-family GTPase protein CDC-42. Phylogenetic analysis revealed that Accdc-42 was most closely related to Caenorhabditis briggsae cdc-42. Comparison with selected sequences from the free-living nematode Caenorhabditis elegans, Drosophila melanogaster, Xenopus laevis, Danio rerio, Mus musculus and human genomes showed that Accdc-42 is highly conserved. AcCDC-42 demonstrates the highest identity to CDC-42 from C. briggsae (94.2%), and it also exhibits 91.6% identity to CDC-42 from C. elegans and 91.1% from Brugia malayi. Additionally, the transcript of Accdc-42 was analyzed during the different developmental stages of the worm. Accdc-42 was expressed in the L1/L2 larvae, L3 larvae and female and male adults of A. caninum.

  9. Regulation of Rap GTPases in mammalian neurons.

    PubMed

    Shah, Bhavin; Püschel, Andreas W

    2016-10-01

    Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.

  10. Regulation of Rap GTPases in mammalian neurons.

    PubMed

    Shah, Bhavin; Püschel, Andreas W

    2016-10-01

    Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function. PMID:27186679

  11. Small rho GTPases and cholesterol biosynthetic pathway intermediates in African swine fever virus infection.

    PubMed

    Quetglas, Jose I; Hernáez, Bruno; Galindo, Inmaculada; Muñoz-Moreno, Raquel; Cuesta-Geijo, Miguel A; Alonso, Covadonga

    2012-02-01

    The integrity of the cholesterol biosynthesis pathway is required for efficient African swine fever virus (ASFV) infection. Incorporation of prenyl groups into Rho GTPases plays a key role in several stages of ASFV infection, since both geranylgeranyl and farnesyl pyrophosphates are required at different infection steps. We found that Rho GTPase inhibition impaired virus morphogenesis and resulted in an abnormal viral factory size with the accumulation of envelope precursors and immature virions. Furthermore, abundant defective virions reached the plasma membrane, and filopodia formation in exocytosis was abrogated. Rac1 was activated at early ASFV infection stages, coincident with microtubule acetylation, a process that stabilizes microtubules for virus transport. Rac1 inhibition did not affect the viral entry step itself but impaired subsequent virus production. We found that specific Rac1 inhibition impaired viral induced microtubule acetylation and viral intracellular transport. These findings highlight that viral infection is the result of a carefully orchestrated modulation of Rho family GTPase activity within the host cell; this modulation results critical for virus morphogenesis and in turn, triggers cytoskeleton remodeling, such as microtubule stabilization for viral transport during early infection.

  12. Small Rho GTPases and Cholesterol Biosynthetic Pathway Intermediates in African Swine Fever Virus Infection

    PubMed Central

    Quetglas, Jose I.; Hernáez, Bruno; Galindo, Inmaculada; Muñoz-Moreno, Raquel; Cuesta-Geijo, Miguel A.

    2012-01-01

    The integrity of the cholesterol biosynthesis pathway is required for efficient African swine fever virus (ASFV) infection. Incorporation of prenyl groups into Rho GTPases plays a key role in several stages of ASFV infection, since both geranylgeranyl and farnesyl pyrophosphates are required at different infection steps. We found that Rho GTPase inhibition impaired virus morphogenesis and resulted in an abnormal viral factory size with the accumulation of envelope precursors and immature virions. Furthermore, abundant defective virions reached the plasma membrane, and filopodia formation in exocytosis was abrogated. Rac1 was activated at early ASFV infection stages, coincident with microtubule acetylation, a process that stabilizes microtubules for virus transport. Rac1 inhibition did not affect the viral entry step itself but impaired subsequent virus production. We found that specific Rac1 inhibition impaired viral induced microtubule acetylation and viral intracellular transport. These findings highlight that viral infection is the result of a carefully orchestrated modulation of Rho family GTPase activity within the host cell; this modulation results critical for virus morphogenesis and in turn, triggers cytoskeleton remodeling, such as microtubule stabilization for viral transport during early infection. PMID:22114329

  13. Inhibition of Rac1 GTPase activity affects porcine oocyte maturation and early embryo development

    PubMed Central

    Song, Si-Jing; Wang, Qiao-Chu; Jia, Ru-Xia; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2016-01-01

    Mammalian oocyte asymmetric division relies on the eccentric positioning of the spindle, resulting in the polar body formation. Small signaling G protein Rac1 is a member of GTPases, which regulates a diverse array of cellular events, including the control of cell growth, cytoskeletal reorganization, and the activation of protein kinases. However, effects of Rac1 on the porcine oocyte maturation and early embryo development are not fully understood. In present study we investigated the role of Rac1 in oocyte maturation and embryo cleavage. We first found that Rac1 localized at the cortex of the porcine oocytes, and disrupting the Rac1 activities by treating with NSC 23766 led to the failure of polar body emission. In addition, a majority of treated oocytes exhibited abnormal spindle morphology, indicating that Rac1 may involve into porcine oocyte spindle formation. This might be due to the regulation of Rac1 on MAPK, since p-MAPK expression decreased after NSC 23766 treatments. Moreover, we found that the position of most meiotic spindles in treated oocytes were away from the cortex, indicating the roles of Rac1 on meiotic spindle positioning. Our results also showed that inhibition of Rac1 activity caused the failure of early embryo development. Therefore, our study showed the critical roles of Rac1 GTPase on porcine oocyte maturation and early embryo cleavage. PMID:27694954

  14. Fission yeast Ryh1 GTPase activates TOR Complex 2 in response to glucose.

    PubMed

    Hatano, Tomoyuki; Morigasaki, Susumu; Tatebe, Hisashi; Ikeda, Kyoko; Shiozaki, Kazuhiro

    2015-01-01

    The Target Of Rapamycin (TOR) is an evolutionarily conserved protein kinase that forms 2 distinct protein complexes referred to as TOR complex 1 (TORC1) and 2 (TORC2). Recent extensive studies have demonstrated that TORC1 is under the control of the small GTPases Rheb and Rag that funnel multiple input signals including those derived from nutritional sources; however, information is scarce as to the regulation of TORC2. A previous study using the model system provided by the fission yeast Schizosaccharomyces pombe identified Ryh1, a Rab-family GTPase, as an activator of TORC2. Here, we show that the nucleotide-binding state of Ryh1 is regulated in response to glucose, mediating this major nutrient signal to TORC2. In glucose-rich growth media, the GTP-bound form of Ryh1 induces TORC2-dependent phosphorylation of Gad8, a downstream target of TORC2 in fission yeast. Upon glucose deprivation, Ryh1 becomes inactive, which turns off the TORC2-Gad8 pathway. During glucose starvation, however, Gad8 phosphorylation by TORC2 gradually recovers independently of Ryh1, implying an additional TORC2 activator that is regulated negatively by glucose. The paired positive and negative regulatory mechanisms may allow fine-tuning of the TORC2-Gad8 pathway, which is essential for growth under glucose-limited environment.

  15. The small GTPase Cdc42 is necessary for primary ciliogenesis in renal tubular epithelial cells.

    PubMed

    Zuo, Xiaofeng; Fogelgren, Ben; Lipschutz, Joshua H

    2011-06-24

    Primary cilia are found on many epithelial cell types, including renal tubular epithelial cells, where they participate in flow sensing. Disruption of cilia function has been linked to the pathogenesis of polycystic kidney disease. We demonstrated previously that the exocyst, a highly conserved eight-protein membrane trafficking complex, localizes to primary cilia of renal tubular epithelial cells, is required for ciliogenesis, biochemically and genetically interacts with polycystin-2 (the protein product of the polycystic kidney disease 2 gene), and, when disrupted, results in MAPK pathway activation both in vitro and in vivo. The small GTPase Cdc42 is a candidate for regulation of the exocyst at the primary cilium. Here, we demonstrate that Cdc42 biochemically interacts with Sec10, a crucial component of the exocyst complex, and that Cdc42 colocalizes with Sec10 at the primary cilium. Expression of dominant negative Cdc42 and shRNA-mediated knockdown of both Cdc42 and Tuba, a Cdc42 guanine nucleotide exchange factor, inhibit ciliogenesis in Madin-Darby canine kidney cells. Furthermore, exocyst Sec8 and polycystin-2 no longer localize to primary cilia or the ciliary region following Cdc42 and Tuba knockdown. We also show that Sec10 directly interacts with Par6, a member of the Par complex that itself directly interacts with Cdc42. Finally, we show that Cdc42 knockdown results in activation of the MAPK pathway, something observed in cells with dysfunctional primary cilia. These data support a model in which Cdc42 localizes the exocyst to the primary cilium, whereupon the exocyst then targets and docks vesicles carrying proteins necessary for ciliogenesis.

  16. The Small GTPase Cdc42 Is Necessary for Primary Ciliogenesis in Renal Tubular Epithelial Cells*

    PubMed Central

    Zuo, Xiaofeng; Fogelgren, Ben; Lipschutz, Joshua H.

    2011-01-01

    Primary cilia are found on many epithelial cell types, including renal tubular epithelial cells, where they participate in flow sensing. Disruption of cilia function has been linked to the pathogenesis of polycystic kidney disease. We demonstrated previously that the exocyst, a highly conserved eight-protein membrane trafficking complex, localizes to primary cilia of renal tubular epithelial cells, is required for ciliogenesis, biochemically and genetically interacts with polycystin-2 (the protein product of the polycystic kidney disease 2 gene), and, when disrupted, results in MAPK pathway activation both in vitro and in vivo. The small GTPase Cdc42 is a candidate for regulation of the exocyst at the primary cilium. Here, we demonstrate that Cdc42 biochemically interacts with Sec10, a crucial component of the exocyst complex, and that Cdc42 colocalizes with Sec10 at the primary cilium. Expression of dominant negative Cdc42 and shRNA-mediated knockdown of both Cdc42 and Tuba, a Cdc42 guanine nucleotide exchange factor, inhibit ciliogenesis in Madin-Darby canine kidney cells. Furthermore, exocyst Sec8 and polycystin-2 no longer localize to primary cilia or the ciliary region following Cdc42 and Tuba knockdown. We also show that Sec10 directly interacts with Par6, a member of the Par complex that itself directly interacts with Cdc42. Finally, we show that Cdc42 knockdown results in activation of the MAPK pathway, something observed in cells with dysfunctional primary cilia. These data support a model in which Cdc42 localizes the exocyst to the primary cilium, whereupon the exocyst then targets and docks vesicles carrying proteins necessary for ciliogenesis. PMID:21543338

  17. Mycobacterium tuberculosis Nucleoside Diphosphate Kinase Inactivates Small GTPases Leading to Evasion of Innate Immunity

    PubMed Central

    Sun, Jim; Singh, Vijender; Lau, Alice; Stokes, Richard W.; Obregón-Henao, Andrés; Orme, Ian M.; Wong, Dennis; Av-Gay, Yossef; Hmama, Zakaria

    2013-01-01

    Defining the mechanisms of Mycobacterium tuberculosis (Mtb) persistence in the host macrophage and identifying mycobacterial factors responsible for it are keys to better understand tuberculosis pathogenesis. The emerging picture from ongoing studies of macrophage deactivation by Mtb suggests that ingested bacilli secrete various virulence determinants that alter phagosome biogenesis, leading to arrest of Mtb vacuole interaction with late endosomes and lysosomes. While most studies focused on Mtb interference with various regulators of the endosomal compartment, little attention was paid to mechanisms by which Mtb neutralizes early macrophage responses such as the NADPH oxidase (NOX2) dependent oxidative burst. Here we applied an antisense strategy to knock down Mtb nucleoside diphosphate kinase (Ndk) and obtained a stable mutant (Mtb Ndk-AS) that displayed attenuated intracellular survival along with reduced persistence in the lungs of infected mice. At the molecular level, pull-down experiments showed that Ndk binds to and inactivates the small GTPase Rac1 in the macrophage. This resulted in the exclusion of the Rac1 binding partner p67phox from phagosomes containing Mtb or Ndk-coated latex beads. Exclusion of p67phox was associated with a defect of both NOX2 assembly and production of reactive oxygen species (ROS) in response to wild type Mtb. In contrast, Mtb Ndk-AS, which lost the capacity to disrupt Rac1-p67phox interaction, induced a strong ROS production. Given the established link between NOX2 activation and apoptosis, the proportion of Annexin V positive cells and levels of intracellular active caspase 3 were significantly higher in cells infected with Mtb Ndk-AS compared to wild type Mtb. Thus, knock down of Ndk converted Mtb into a pro-apoptotic mutant strain that has a phenotype of increased susceptibility to intracellular killing and reduced virulence in vivo. Taken together, our in vitro and in vivo data revealed that Ndk contributes significantly to

  18. G2385R and I2020T Mutations Increase LRRK2 GTPase Activity

    PubMed Central

    Jang, Jihoon; Joe, Eun-hye; Son, Ilhong; Seol, Wongi

    2016-01-01

    The LRRK2 mutation is a major causal mutation in familial Parkinson's disease. Although LRRK2 contains functional GTPase and kinase domains and their activities are altered by pathogenic mutations, most studies focused on LRRK2 kinase activity because the most prevalent mutant, G2019S, enhances kinase activity. However, the G2019S mutation is extremely rare in the Asian population. Instead, the G2385R mutation was reported as a major risk factor in the Asian population. Similar to other LRRK2 studies, G2385R studies have also focused on kinase activity. Here, we investigated GTPase activities of G2385R with other LRRK2 mutants, such as G2019S, R1441C, and I2020T, as well as wild type (WT). Our results suggest that both I2020T and G2385R contain GTPase activities stronger than that of WT. A kinase assay using the commercial recombinant proteins showed that I2020T harbored stronger activity, whereas G2385R had weaker activity than that of WT, as reported previously. This is the first report of LRRK2 I2020T and G2385R GTPase activities and shows that most of the LRRK2 mutations that are pathogenic or a risk factor altered either kinase or GTPase activity, suggesting that their physiological consequences are caused by altered enzyme activities. PMID:27314038

  19. Coupling spindle position with mitotic exit in budding yeast: The multifaceted role of the small GTPase Tem1

    PubMed Central

    Scarfone, Ilaria; Piatti, Simonetta

    2015-01-01

    The budding yeast S. cerevisiae divides asymmetrically and is an excellent model system for asymmetric cell division. As for other asymmetrically dividing cells, proper spindle positioning along the mother-daughter polarity axis is crucial for balanced chromosome segregation. Thus, a surveillance mechanism named Spindle Position Checkpoint (SPOC) inhibits mitotic exit and cytokinesis until the mitotic spindle is properly oriented, thereby preventing the generation of cells with aberrant ploidies. The small GTPase Tem1 is required to trigger a Hippo-like protein kinase cascade, named Mitotic Exit Network (MEN), that is essential for mitotic exit and cytokinesis but also contributes to correct spindle alignment in metaphase. Importantly, Tem1 is the target of the SPOC, which relies on the activity of the GTPase-activating complex (GAP) Bub2-Bfa1 to keep Tem1 in the GDP-bound inactive form. Tem1 forms a hetero-trimeric complex with Bub2-Bfa1 at spindle poles (SPBs) that accumulates asymmetrically on the bud-directed spindle pole during mitosis when the spindle is properly positioned. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. We have recently shown that Tem1 residence at SPBs depends on its nucleotide state and, importantly, asymmetry of the Bub2-Bfa1-Tem1 complex does not promote mitotic exit but rather controls spindle positioning. PMID:26507466

  20. Defective Dendrite Elongation but Normal Fertility in Mice Lacking the Rho-Like GTPase Activator Dbl

    PubMed Central

    Hirsch, Emilio; Pozzato, Michela; Vercelli, Alessandro; Barberis, Laura; Azzolino, Ornella; Russo, Chiara; Vanni, Cristina; Silengo, Lorenzo; Eva, Alessandra; Altruda, Fiorella

    2002-01-01

    Dbl is the prototype of a large family of GDP-GTP exchange factors for small GTPases of the Rho family. In vitro, Dbl is known to activate Rho and Cdc42 and to induce a transformed phenotype. Dbl is specifically expressed in brain and gonads, but its in vivo functions are largely unknown. To assess its role in neurogenesis and gametogenesis, targeted deletion of the murine Dbl gene was accomplished in embryonic stem cells. Dbl-null mice are viable and did not show either decreased reproductive performances or obvious neurological defects. Histological analysis of mutant testis showed normal morphology and unaltered proliferation and survival of spermatogonia. Dbl-null brains indicated a correct disposition of the major neural structures. Analysis of cortical stratification indicated that Dbl is not crucial for neuronal migration. However, in distinct populations of Dbl-null cortical pyramidal neurons, the length of dendrites was significantly reduced, suggesting a role for Dbl in dendrite elongation. PMID:11940671

  1. Galanin stimulates neurite outgrowth from sensory neurons by inhibition of Cdc42 and Rho GTPases and activation of cofilin

    PubMed Central

    Hobson, Sally-Ann; Vanderplank, Penny A; Pope, Robert J P; Kerr, Niall C H; Wynick, David

    2013-01-01

    We and others have previously shown that the neuropeptide galanin modulates neurite outgrowth from adult sensory neurons via activation of the second galanin receptor; however, the intracellular signalling pathways that mediate this neuritogenic effect have yet to be elucidated. Here, we demonstrate that galanin decreases the activation state in adult sensory neurons and PC12 cells of Rho and Cdc42 GTPases, both known regulators of filopodial and growth cone motility. Consistent with this, activated levels of Rho and Cdc42 levels are increased in the dorsal root ganglion of adult galanin knockout animals compared with wildtype controls. Furthermore, galanin markedly increases the activation state of cofilin, a downstream effector of many of the small GTPases, in the cell bodies and growth cones of sensory neurons and in PC12 cells. We also demonstrate a reduction in the activation of cofilin, and alteration in growth cone motility, in cultured galanin knockout neurons compared with wildtype controls. These data provide the first evidence that galanin regulates the Rho family of GTPases and cofilin to stimulate growth cone dynamics and neurite outgrowth in sensory neurons. These findings have important therapeutic implications for the treatment of peripheral sensory neuropathies. PMID:23895321

  2. Approaches of targeting Rho GTPases in cancer drug discovery

    PubMed Central

    Lin, Yuan; Zheng, Yi

    2016-01-01

    Introduction Rho GTPases are master regulators of actomyosin structure and dynamics and play pivotal roles in a variety of cellular processes including cell morphology, gene transcription, cell cycle progression and cell adhesion. Because aberrant Rho GTPase signaling activities are widely associated with human cancer, key components of Rho GTPase signaling pathways have attracted increasing interest as potential therapeutic targets. Similar to Ras, Rho GTPases themselves were, until recently, deemed “undruggable” because of structure-function considerations. Several approaches to interfere with Rho GTPase signaling have been explored and show promise as new ways for tackling cancer cells. Areas covered This review focuses on the recent progress in targeting the signaling activities of three prototypical Rho GTPases, i.e. RhoA, Rac1, and Cdc42. The authors describe the involvement of these Rho GTPases, their key regulators and effectors in cancer. Furthermore, the authors discuss the current approaches for rationally targeting aberrant Rho GTPases along their signaling cascades, upstream and downstream of Rho GTPases and posttranslational modifications at a molecular level. Expert opinion To date, while no clinically effective drugs targeting Rho GTPase signaling for cancer treatment are available, tool compounds and lead drugs that pharmacologically inhibit Rho GTPase pathways have shown promise. Small molecule inhibitors targeting Rho GTPase signaling may add new treatment options for future precision cancer therapy, particularly in combination with other anti-cancer agents. PMID:26087073

  3. Structural Basis for the Specific Recognition of RhoA by the Dual GTPase-activating Protein ARAP3.

    PubMed

    Bao, Hongyu; Li, Fudong; Wang, Chongyuan; Wang, Na; Jiang, Yiyang; Tang, Yajun; Wu, Jihui; Shi, Yunyu

    2016-08-01

    ARAP3 (Arf-GAP with Rho-GAP domain, ANK repeat, and PH domain-containing protein 3) is unique for its dual specificity GAPs (GTPase-activating protein) activity for Arf6 (ADP-ribosylation factor 6) and RhoA (Ras homolog gene family member A) regulated by phosphatidylinositol 3,4,5-trisphosphate and a small GTPase Rap1-GTP and is involved in regulation of cell shape and adhesion. However, the molecular interface between the ARAP3-RhoGAP domain and RhoA is unknown, as is the substrates specificity of the RhoGAP domain. In this study, we solved the crystal structure of RhoA in complex with the RhoGAP domain of ARAP3. The structure of the complex presented a clear interface between the RhoGAP domain and RhoA. By analyzing the crystal structure and in combination with in vitro GTPase activity assays and isothermal titration calorimetry experiments, we identified the crucial residues affecting RhoGAP activity and substrates specificity among RhoA, Rac1 (Ras-related C3 botulinum toxin substrate 1), and Cdc42 (cell division control protein 42 homolog). PMID:27311713

  4. Effects of ethanol on protein kinase C alpha activity induced by association with Rho GTPases.

    PubMed

    Slater, Simon J; Cook, Anthony C; Seiz, Jodie L; Malinowski, Steve A; Stagliano, Brigid A; Stubbs, Christopher D

    2003-10-21

    Previous studies have shown that n-alkanols have biphasic chain length-dependent effects on protein kinase C (PKC) activity induced by association with membranes or with filamentous actin [Slater, S. J., et al. (1997) J. Biol. Chem. 272, 6167-6173; Slater, S. J., et al. (2001) Biochim. Biophys. Acta 1544, 207-216]. Recently, we showed that PKCalpha is also activated by a direct membrane lipid-independent interaction with Rho GTPases. Here, the effects of ethanol and 1-hexanol on Rho GTPase-induced activity were investigated using an in vitro assay system to provide further insight into the mechanism of the effects of n-alkanols on PKC activity. Both ethanol and 1-hexanol were found to have two competing concentration-dependent effects on the Ca(2+)- and phorbol ester- or diacylglycerol-dependent activities of PKCalpha associated with either RhoA or Cdc42, consisting of a potentiation at low alcohol levels and an attenuation of activity at higher levels. Measurements of the Ca(2+), phorbol ester, and diacylglycerol concentration-response curves for Cdc42-induced activation indicated that the activating effect corresponded to a shift in the midpoints of each of the curves to lower activator concentrations, while the attenuating effect corresponded to a decrease in the level of activity induced by maximal activator levels. The presence of ethanol enhanced the interaction of PKCalpha with Cdc42 within a concentration range corresponding to the potentiating effect, whereas the level of binding was unaffected by higher ethanol levels that were found to attenuate activity. Thus, ethanol may either enhance activation of PKCalpha by Rho GTPases by enhancing the interaction between the two proteins or attenuate the level of activity of Rho GTPase-associated PKCalpha by inhibiting the ensuing activating conformational change. The results also suggest that the effects of ethanol on Rho GTPase-induced activity may switch between an activation and inhibition depending on the

  5. A central role for the small GTPase Rac1 in hippocampal plasticity and spatial learning and memory

    PubMed Central

    Haditsch, Ursula; Leone, Dino P.; Farinelli, Mélissa; Chrostek-Grashoff, Anna; Brakebusch, Cord; Mansuy, Isabelle M.; McConnell, Susan K.; Palmer, Theo D.

    2009-01-01

    Rac1 is a member of the Rho family of small GTPases that are important for structural aspects of the mature neuronal synapse including basal spine density and shape, activity-dependent spine enlargement, and AMPA receptor clustering in vitro. Here we demonstrate that selective elimination of Rac1 in excitatory neurons in the forebrain in vivo not only affects spine structure, but also impairs synaptic plasticity in the hippocampus with consequent defects in hippocampus-dependent spatial learning. Furthermore, Rac1 mutants display deficits in working/episodic-like memory in the delayed matching-to-place (DMP) task suggesting that Rac1 is a central regulator of rapid encoding of novel spatial information in vivo. PMID:19394428

  6. Eukaryotic translation initiation factor 5 (eIF5) acts as a classical GTPase-activator protein.

    PubMed

    Paulin, F E; Campbell, L E; O'Brien, K; Loughlin, J; Proud, C G

    2001-01-01

    GTP hydrolysis occurs at several specific stages during the initiation, elongation, and termination stages of mRNA translation. However, it is unclear how GTP hydrolysis occurs; it has previously been suggested to involve a GTPase active center in the ribosome, although proof for this is lacking. Alternatively, it could involve the translation factors themselves, e.g., be similar to the situation for small G in which the GTPase active site involves arginine residues contributed by a further protein termed a GTPase-activator protein (GAP). During translation initiation in eukaryotes, initiation factor eIF5 is required for hydrolysis of GTP bound to eIF2 (the protein which brings the initiator Met-tRNA(i) to the 40S subunit). Here we show that eIF5 displays the hallmarks of a classical GAP (e.g., RasGAP). Firstly, its interaction with eIF2 is enhanced by AlF(4)(-). Secondly, eIF5 possesses a conserved arginine (Arg15) which, like the "arginine fingers" of classical GAPs, is flanked by hydrophobic residues. Mutation of Arg15 to methionine abolishes the ability of eIF5 either to stimulate GTP hydrolysis or to support mRNA translation in vitro. Mutation studies suggest that a second conserved arginine (Arg48) also contributes to the GTPase active site of the eIF2.eIF5 complex. Our data thus show that eIF5 behaves as a classical GAP and that GTP hydrolysis during translation involves proteins extrinsic to the ribosome. Indeed, inspection of their sequences suggests that other translation factors may also act as GAPs. PMID:11166181

  7. Role of Nucleotide Binding and GTPase Domain Dimerization in Dynamin-like Myxovirus Resistance Protein A for GTPase Activation and Antiviral Activity*

    PubMed Central

    Dick, Alexej; Graf, Laura; Olal, Daniel; von der Malsburg, Alexander; Gao, Song; Kochs, Georg; Daumke, Oliver

    2015-01-01

    Myxovirus resistance (Mx) GTPases are induced by interferon and inhibit multiple viruses, including influenza and human immunodeficiency viruses. They have the characteristic domain architecture of dynamin-related proteins with an N-terminal GTPase (G) domain, a bundle signaling element, and a C-terminal stalk responsible for self-assembly and effector functions. Human MxA (also called MX1) is expressed in the cytoplasm and is partly associated with membranes of the smooth endoplasmic reticulum. It shows a protein concentration-dependent increase in GTPase activity, indicating regulation of GTP hydrolysis via G domain dimerization. Here, we characterized a panel of G domain mutants in MxA to clarify the role of GTP binding and the importance of the G domain interface for the catalytic and antiviral function of MxA. Residues in the catalytic center of MxA and the nucleotide itself were essential for G domain dimerization and catalytic activation. In pulldown experiments, MxA recognized Thogoto virus nucleocapsid proteins independently of nucleotide binding. However, both nucleotide binding and hydrolysis were required for the antiviral activity against Thogoto, influenza, and La Crosse viruses. We further demonstrate that GTP binding facilitates formation of stable MxA assemblies associated with endoplasmic reticulum membranes, whereas nucleotide hydrolysis promotes dynamic redistribution of MxA from cellular membranes to viral targets. Our study highlights the role of nucleotide binding and hydrolysis for the intracellular dynamics of MxA during its antiviral action. PMID:25829498

  8. The small GTPase Cdc42 modulates the number of exocytosis-competent dense-core vesicles in PC12 cells

    SciTech Connect

    Sato, Mai; Kitaguchi, Tetsuya; Ikematsu, Kazuya; Kakeyama, Masaki; Murata, Masayuki; Sato, Ken; Tsuboi, Takashi

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Regulation of exocytosis by Rho GTPase Cdc42. Black-Right-Pointing-Pointer Cdc42 increases the number of fusion events from newly recruited vesicles. Black-Right-Pointing-Pointer Cdc42 increases the number of exocytosis-competent dense-core vesicles. -- Abstract: Although the small GTPase Rho family Cdc42 has been shown to facilitate exocytosis through increasing the amount of hormones released, the precise mechanisms regulating the quantity of hormones released on exocytosis are not well understood. Here we show by live cell imaging analysis under TIRF microscope and immunocytochemical analysis under confocal microscope that Cdc42 modulated the number of fusion events and the number of dense-core vesicles produced in the cells. Overexpression of a wild-type or constitutively-active form of Cdc42 strongly facilitated high-KCl-induced exocytosis from the newly recruited plasma membrane vesicles in PC12 cells. By contrast, a dominant-negative form of Cdc42 inhibited exocytosis from both the newly recruited and previously docked plasma membrane vesicles. The number of intracellular dense-core vesicles was increased by the overexpression of both a wild-type and constitutively-active form of Cdc42. Consistently, activation of Cdc42 by overexpression of Tuba, a Golgi-associated guanine nucleotide exchange factor for Cdc42 increased the number of intracellular dense-core vesicles, whereas inhibition of Cdc42 by overexpression of the Cdc42/Rac interactive binding domain of neuronal Wiskott-Aldrich syndrome protein decreased the number of them. These findings suggest that Cdc42 facilitates exocytosis by modulating both the number of exocytosis-competent dense-core vesicles and the production of dense-core vesicles in PC12 cells.

  9. Sevoflurane Inhalation Accelerates the Long-Term Memory Consolidation via Small GTPase Overexpression in the Hippocampus of Mice in Adolescence.

    PubMed

    Nakamura, Emi; Kinoshita, Hiroyuki; Feng, Guo-Gang; Hayashi, Hisaki; Satomoto, Maiko; Sato, Motohiko; Fujiwara, Yoshihiro

    2016-01-01

    Sevoflurane exposure impairs the long-term memory in neonates. Whether the exposure to animals in adolescence affects the memory, however, has been unclear. A small hydrolase enzyme of guanosine triphosphate (GTPase) rac1 plays a role in the F-actin dynamics related to the synaptic plasticity, as well as superoxide production via reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. The current study was designed to examine whether sevoflurane exposure to mice in early adolescence modifies the long-term learning ability concomitantly with the changes in F-actin constitution as well as superoxide production in the hippocampus according to the levels of rac1 protein expression. Four-week-old mice were subjected to the evaluation of long-term learning ability for three days. On day one, each mouse was allowed to enter a dark chamber for five min to acclimatization. On day two, the procedure was repeated with the addition of an electric shock as soon as a mouse entered the dark chamber. All mice subsequently inhaled 2 L/min air with (Sevoflurane group) and without (Control group) 2.5% sevoflurane for three hours. On day three, each mouse was placed on the platform and retention time, which is the latency to enter the dark chamber, was examined. The brain removed after the behavior test, was used for analyses of immunofluorescence, Western immunoblotting and intracellular levels of superoxide. Sevoflurane exposure significantly prolonged retention time, indicating the enhanced long-term memory. Sevoflurane inhalation augmented F-actin constitution coexisting with the rac1 protein overexpression in the hippocampus whereas it did not alter the levels of superoxide. Sevoflurane exposure to 4-week-old mice accelerates the long-term memory concomitantly with the enhanced F-actin constitution coexisting with the small GTPase rac1 overexpression in the hippocampus. These results suggest that sevoflurane inhalation may amplify long-term memory

  10. Structural and Functional Regulation of Tight Junctions by RhoA and Rac1 Small GTPases

    PubMed Central

    Jou, Tzuu-Shuh; Schneeberger, Eveline E.; James Nelson, W.

    1998-01-01

    Tight junctions (TJ) govern ion and solute diffusion through the paracellular space (gate function), and restrict mixing of membrane proteins and lipids between membrane domains (fence function) of polarized epithelial cells. We examined roles of the RhoA and Rac1 GTPases in regulating TJ structure and function in MDCK cells using the tetracycline repressible transactivator to regulate RhoAV14, RhoAN19, Rac1V12, and Rac1N17 expression. Both constitutively active and dominant negative RhoA or Rac1 perturbed TJ gate function (transepithelial electrical resistance, tracer diffusion) in a dose-dependent and reversible manner. Freeze-fracture EM and immunofluoresence microscopy revealed abnormal TJ strand morphology and protein (occludin, ZO-1) localization in RhoAV14 and Rac1V12 cells. However, TJ strand morphology and protein localization appeared normal in RhoAN19 and Rac1N17 cells. All mutant GTPases disrupted the fence function of the TJ (interdomain diffusion of a fluorescent lipid), but targeting and organization of a membrane protein in the apical membrane were unaffected. Expression levels and protein complexes of occludin and ZO-1 appeared normal in all mutant cells, although ZO-1 was more readily solubilized from RhoAV14-expressing cells with Triton X-100. These results show that RhoA and Rac1 regulate gate and fence functions of the TJ, and play a role in the spatial organization of TJ proteins at the apex of the lateral membrane. PMID:9660866

  11. Small GTPase CDC-42 promotes apoptotic cell corpse clearance in response to PAT-2 and CED-1 in C. elegans.

    PubMed

    Neukomm, L J; Zeng, S; Frei, A P; Huegli, P A; Hengartner, M O

    2014-06-01

    The rapid clearance of dying cells is important for the well-being of multicellular organisms. In C. elegans, cell corpse removal is mainly mediated by three parallel engulfment signaling cascades. These pathways include two small GTPases, MIG-2/RhoG and CED-10/Rac1. Here we present the identification and characterization of CDC-42 as a third GTPase involved in the regulation of cell corpse clearance. Genetic analyses performed by both loss of cdc-42 function and cdc-42 overexpression place cdc-42 in parallel to the ced-2/5/12 signaling module, in parallel to or upstream of the ced-10 module, and downstream of the ced-1/6/7 module. CDC-42 accumulates in engulfing cells at membranes surrounding apoptotic corpses. The formation of such halos depends on the integrins PAT-2/PAT-3, UNC-112 and the GEF protein UIG-1, but not on the canonical ced-1/6/7 or ced-2/5/12 signaling modules. Together, our results suggest that the small GTPase CDC-42 regulates apoptotic cell engulfment possibly upstream of the canonical Rac GTPase CED-10, by polarizing the engulfing cell toward the apoptotic corpse in response to integrin signaling and ced-1/6/7 signaling in C. elegans.

  12. The purification of a Rap1 GTPase-activating protein from bovine brain cytosol.

    PubMed

    Nice, E C; Fabri, L; Hammacher, A; Holden, J; Simpson, R J; Burgess, A W

    1992-01-25

    Two GTPase-activating proteins (GAPs) have been detected in extracts from bovine brain: GAP-1, which is specific for the activation of ras GTPases, and GAP-3, which is specific for the activation of the rap1 GTPases. We present a strategy for the purification to homogeneity of a cytosolic form of GAP-3 from bovine brain. The 100,000 x g supernatant from homogenized brains was chromatographed sequentially on DEAE Fast Flow, green H-E4BD Sepharose, Bio-Gel A1.5, hydroxyapatite, and phenyl-Sepharose prior to high resolution separation on Mono Q HR 5/5, phenyl-Superose HR 5/5, Mono Q PC 1.6/5, and Superose 12 PC 3.2/30. This procedure resulted in an approximately 18,000-fold purification, yielding 50 micrograms of GAP-3 from 1.6 kg of tissue. Purified cytosolic GAP-3 migrated as a single band of apparent Mr 55,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, on gel filtration cytosolic GAP-3 chromatographed as a dimer with an apparent Mr 92,000. Purified GAP-3 does not activate ras or rho GTPases and possesses no intrinsic GTPase activity. Amino acid sequence data indicated a proline-rich N terminus. The amino acid sequences of peptides generated by Staphylococcus aureus V8 digestion of reduced and pyridine-ethylated GAP-3 showed no similarity to the predicted primary structure of GAP-1 or any other proteins in the nucleic acid or protein data bases. By comparison with the data of Rubinfeld et al. (Rubinfeld, B., Munemitsu, S., Clark, R., Conroy, L., Watt, K., Crosier, W.J., McCormick, F., and Polakis, P. (1991) Cell 65, 1033-1042), it appears that the membrane-associated (Mr 85,000-95,000) and cytosolic forms of GAP-3 are derived from equivalent, or closely related, genes. PMID:1309786

  13. A phosphorylation switch controls the spatiotemporal activation of Rho GTPases in directional cell migration

    PubMed Central

    Cao, Xuan; Kaneko, Tomonori; Li, Jenny S.; Liu, An-Dong; Voss, Courtney; Li, Shawn S. C.

    2015-01-01

    Although cell migration plays a central role in development and disease, the underlying molecular mechanism is not fully understood. Here we report that a phosphorylation-mediated molecular switch comprising deleted in liver cancer 1 (DLC1), tensin-3 (TNS3), phosphatase and tensin homologue (PTEN) and phosphoinositide-3-kinase (PI3K) controls the spatiotemporal activation of the small GTPases, Rac1 and RhoA, thereby initiating directional cell migration induced by growth factors. On epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) stimulation, TNS3 and PTEN are phosphorylated at specific Thr residues, which trigger the rearrangement of the TNS3–DLC1 and PTEN–PI3K complexes into the TNS3–PI3K and PTEN–DLC1 complexes. Subsequently, the TNS3–PI3K complex translocates to the leading edge of a migrating cell to promote Rac1 activation, whereas PTEN–DLC1 translocates to the posterior for localized RhoA activation. Our work identifies a core signalling mechanism by which an external motility stimulus is coupled to the spatiotemporal activation of Rac1 and RhoA to drive directional cell migration. PMID:26166433

  14. Substance P-stimulated interleukin-8 expression in human colonic epithelial cells involves Rho family small GTPases.

    PubMed Central

    Zhao, Dezheng; Kuhnt-Moore, Sabina; Zeng, Huiyan; Pan, Amy; Wu, Jack S; Simeonidis, Simos; Moyer, Mary P; Pothoulakis, Charalabos

    2002-01-01

    Interaction of the neuropeptide substance P (SP) and its neurokinin-1 receptor (NK-1R) plays an important role in the pathophysiology of intestinal inflammation. SP is known to stimulate production of interleukin (IL)-6 and IL-8 in the U-373-MG human astrocytoma cell line via activation of p38 MAPK (mitogen-activated protein kinase) and nuclear factor (NF)-kappaB, respectively. However, the signalling mechanisms by which SP-NK-1R interaction induces NF-kappaB activation and IL-8 expression are still not clear. In this study we demonstrate that SP stimulates IL-8 secretion and IL-8 promoter activity in the NCM460 non-transformed human colonic epithelial cell line transfected with NK-1R cDNA. Our results indicate that inhibition of endogenous Rho family proteins (RhoA, Rac1 and Cdc42) by their respective dominant negative mutants significantly decreases SP-induced IL-8 secretion and IL-8 promoter activity. We also demonstrate that SP rapidly activates RhoA, Rac1 and Cdc42 and that co-expression of the dominant negative mutants of RhoA, Rac1 and Cdc42 in NK-1R cDNA-transfected NCM460 cells significantly inhibits SP-induced NF-kappaB-dependent gene expression. These results demonstrate that Rho family small GTPases RhoA, Rac1 and Cdc42 are novel signal transducers for SP-stimulated IL-8 expression. PMID:12169092

  15. Rho GTPases at the crossroad of signaling networks in mammals

    PubMed Central

    Wojnacki, José; Quassollo, Gonzalo; Marzolo, María-Paz; Cáceres, Alfredo

    2014-01-01

    Microtubule (MT) organization and dynamics downstream of external cues is crucial for maintaining cellular architecture and the generation of cell asymmetries. In interphase cells RhoA, Rac, and Cdc42, conspicuous members of the family of small Rho GTPases, have major roles in modulating MT stability, and hence polarized cell behaviors. However, MTs are not mere targets of Rho GTPases, but also serve as signaling platforms coupling MT dynamics to Rho GTPase activation in a variety of cellular conditions. In this article, we review some of the key studies describing the reciprocal relationship between small Rho-GTPases and MTs during migration and polarization. PMID:24691223

  16. Characterization of EHop-016, novel small molecule inhibitor of Rac GTPase.

    PubMed

    Montalvo-Ortiz, Brenda L; Castillo-Pichardo, Linette; Hernández, Eliud; Humphries-Bickley, Tessa; De la Mota-Peynado, Alina; Cubano, Luis A; Vlaar, Cornelis P; Dharmawardhane, Suranganie

    2012-04-13

    The Rho GTPase Rac regulates actin cytoskeleton reorganization to form cell surface extensions (lamellipodia) required for cell migration/invasion during cancer metastasis. Rac hyperactivation and overexpression are associated with aggressive cancers; thus, interference of the interaction of Rac with its direct upstream activators, guanine nucleotide exchange factors (GEFs), is a viable strategy for inhibiting Rac activity. We synthesized EHop-016, a novel inhibitor of Rac activity, based on the structure of the established Rac/Rac GEF inhibitor NSC23766. Herein, we demonstrate that EHop-016 inhibits Rac activity in the MDA-MB-435 metastatic cancer cells that overexpress Rac and exhibits high endogenous Rac activity. The IC(50) of 1.1 μM for Rac inhibition by EHop-016 is ∼100-fold lower than for NSC23766. EHop-016 is specific for Rac1 and Rac3 at concentrations of ≤5 μM. At higher concentrations, EHop-016 inhibits the close homolog Cdc42. In MDA-MB-435 cells that demonstrate high active levels of the Rac GEF Vav2, EHop-016 inhibits the association of Vav2 with a nucleotide-free Rac1(G15A), which has a high affinity for activated GEFs. EHop-016 also inhibits the Rac activity of MDA-MB-231 metastatic breast cancer cells and reduces Rac-directed lamellipodia formation in both cell lines. EHop-016 decreases Rac downstream effects of PAK1 (p21-activated kinase 1) activity and directed migration of metastatic cancer cells. Moreover, at effective concentrations (<5 μM), EHop-016 does not affect the viability of transformed mammary epithelial cells (MCF-10A) and reduces viability of MDA-MB-435 cells by only 20%. Therefore, EHop-016 holds promise as a targeted therapeutic agent for the treatment of metastatic cancers with high Rac activity.

  17. The small GTPase Rab33A participates in regulation of amylase release from parotid acinar cells.

    PubMed

    Imai, Akane; Tsujimura, Maiko; Yoshie, Sumio; Fukuda, Mitsunori

    2015-06-01

    Amylase is released from exocrine parotid acinar cells via typical exocytosis. Exocytosis of amylase-containing granules occurs through several steps, including formation, maturation, and transport of granules. These steps are thought to be regulated by members of the small GTPase Rab family. We previously demonstrated that Rab27 and its effectors mediate amylase release from parotid acinar cells, but the functional involvement of other Rab proteins in exocrine granule exocytosis remains largely unknown. Here, we studied isoproterenol (IPR)-induced amylase release from parotid acinar cells to investigate the possible involvement of Rab33A, which was recently suggested to regulate exocytosis in hippocampal neurons and PC12 cells. Rab33A was endogenously expressed in parotid acinar cells and present in secretory granules and the Golgi body. Functional ablation of Rab33A with anti-Rab33A antibody or a dominant-negative Rab33A-T50N mutant significantly reduced IPR-induced amylase release. Our results indicated that Rab33A is a novel component of IPR-stimulated amylase secretion from parotid acinar cells.

  18. Physiological functions of the small GTPase Arf6 in the nervous system

    PubMed Central

    Akiyama, Masahiro; Kanaho, Yasunori

    2015-01-01

    The small GTPase ADP-ribosylation factor 6 (Arf6) plays important roles in membrane dynamics-based neuronal cell events such as neurite outgrowth and spine formation. However, physiological functions of Arf6 in the nervous system at whole animal level have not yet been explored. We have recently generated conditional knockout mice lacking Arf6 in neurons or oligodendrocytes of central nervous system (CNS) or both cell lineages, and analyzed them. We found that ablation of Arf6 gene from neurons, but not from oligodendrocytes, caused the defect in axon myelination at the fimbria of hippocampus (Fim) and corpus callosum (CC). We also found that migration of oligodendrocyte precursor cells (OPCs) from the subventricular zone to the Fim and CC in mice lacking Arf6 in neurons was impaired. Finally, it was found that secretion of fibroblast growth factor-2 (FGF-2), a guidance factor for OPC migration, from hippocampi lacking Arf6 was impaired. Collectively, these findings demonstrate that Arf6 in neurons of the CNS plays an important role in OPC migration by regulating secretion of FGF-2 from neurons, thereby contributing to the axon myelination. Here, we discuss our current understanding of physiological functions of Arf6 in the nervous system. PMID:26291245

  19. Biogenesis of RNA polymerases II and III requires the conserved GPN small GTPases in Saccharomyces cerevisiae.

    PubMed

    Minaker, Sean W; Filiatrault, Megan C; Ben-Aroya, Shay; Hieter, Philip; Stirling, Peter C

    2013-03-01

    The GPN proteins are a poorly characterized and deeply evolutionarily conserved family of three paralogous small GTPases, Gpn1, 2, and 3. The founding member, GPN1/NPA3/XAB1, is proposed to function in nuclear import of RNA polymerase II along with a recently described protein called Iwr1. Here we show that the previously uncharacterized protein Gpn2 binds both Gpn3 and Npa3/Gpn1 and that temperature-sensitive alleles of Saccharomyces cerevisiae GPN2 and GPN3 exhibit genetic interactions with RNA polymerase II mutants, hypersensitivity to transcription inhibition, and defects in RNA polymerase II nuclear localization. Importantly, we identify previously unrecognized RNA polymerase III localization defects in GPN2, GPN3, and IWR1 mutant backgrounds but find no localization defects of unrelated nuclear proteins or of RNA polymerase I. Previously, it was unclear whether the GPN proteins and Iwr1 had overlapping function in RNA polymerase II assembly or import. In this study, we show that the nuclear import defect of iwr1Δ, but not the GPN2 or GPN3 mutant defects, is partially suppressed by fusion of a nuclear localization signal to the RNA polymerase II subunit Rpb3. These data, combined with strong genetic interactions between GPN2 and IWR1, suggest that the GPN proteins function upstream of Iwr1 in RNA polymerase II and III biogenesis. We propose that the three GPN proteins execute a common, and likely essential, function in RNA polymerase assembly and transport.

  20. Mechanisms of Membrane Binding of Small GTPase K-Ras4B Farnesylated Hypervariable Region*

    PubMed Central

    Jang, Hyunbum; Abraham, Sherwin J.; Chavan, Tanmay S.; Hitchinson, Ben; Khavrutskii, Lyuba; Tarasova, Nadya I.; Nussinov, Ruth; Gaponenko, Vadim

    2015-01-01

    K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling. PMID:25713064

  1. Biogenesis of RNA Polymerases II and III Requires the Conserved GPN Small GTPases in Saccharomyces cerevisiae

    PubMed Central

    Minaker, Sean W.; Filiatrault, Megan C.; Ben-Aroya, Shay; Hieter, Philip; Stirling, Peter C.

    2013-01-01

    The GPN proteins are a poorly characterized and deeply evolutionarily conserved family of three paralogous small GTPases, Gpn1, 2, and 3. The founding member, GPN1/NPA3/XAB1, is proposed to function in nuclear import of RNA polymerase II along with a recently described protein called Iwr1. Here we show that the previously uncharacterized protein Gpn2 binds both Gpn3 and Npa3/Gpn1 and that temperature-sensitive alleles of Saccharomyces cerevisiae GPN2 and GPN3 exhibit genetic interactions with RNA polymerase II mutants, hypersensitivity to transcription inhibition, and defects in RNA polymerase II nuclear localization. Importantly, we identify previously unrecognized RNA polymerase III localization defects in GPN2, GPN3, and IWR1 mutant backgrounds but find no localization defects of unrelated nuclear proteins or of RNA polymerase I. Previously, it was unclear whether the GPN proteins and Iwr1 had overlapping function in RNA polymerase II assembly or import. In this study, we show that the nuclear import defect of iwr1Δ, but not the GPN2 or GPN3 mutant defects, is partially suppressed by fusion of a nuclear localization signal to the RNA polymerase II subunit Rpb3. These data, combined with strong genetic interactions between GPN2 and IWR1, suggest that the GPN proteins function upstream of Iwr1 in RNA polymerase II and III biogenesis. We propose that the three GPN proteins execute a common, and likely essential, function in RNA polymerase assembly and transport. PMID:23267056

  2. Bidirectional Synaptic Structural Plasticity after Chronic Cocaine Administration Occurs through Rap1 Small GTPase Signaling.

    PubMed

    Cahill, Michael E; Bagot, Rosemary C; Gancarz, Amy M; Walker, Deena M; Sun, HaoSheng; Wang, Zi-Jun; Heller, Elizabeth A; Feng, Jian; Kennedy, Pamela J; Koo, Ja Wook; Cates, Hannah M; Neve, Rachael L; Shen, Li; Dietz, David M; Nestler, Eric J

    2016-02-01

    Dendritic spines are the sites of most excitatory synapses in the CNS, and opposing alterations in the synaptic structure of medium spiny neurons (MSNs) of the nucleus accumbens (NAc), a primary brain reward region, are seen at early versus late time points after cocaine administration. Here we investigate the time-dependent molecular and biochemical processes that regulate this bidirectional synaptic structural plasticity of NAc MSNs and associated changes in cocaine reward in response to chronic cocaine exposure. Our findings reveal key roles for the bidirectional synaptic expression of the Rap1b small GTPase and an associated local synaptic protein translation network in this process. The transcriptional mechanisms and pathway-specific inputs to NAc that regulate Rap1b expression are also characterized. Collectively, these findings provide a precise mechanism by which nuclear to synaptic interactions induce "metaplasticity" in NAc MSNs, and we reveal the specific effects of this plasticity on reward behavior in a brain circuit-specific manner. PMID:26844834

  3. Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases.

    PubMed

    Oprea, Tudor I; Sklar, Larry A; Agola, Jacob O; Guo, Yuna; Silberberg, Melina; Roxby, Joshua; Vestling, Anna; Romero, Elsa; Surviladze, Zurab; Murray-Krezan, Cristina; Waller, Anna; Ursu, Oleg; Hudson, Laurie G; Wandinger-Ness, Angela

    2015-01-01

    Rho family GTPases (including Rac, Rho and Cdc42) collectively control cell proliferation, adhesion and migration and are of interest as functional therapeutic targets in numerous epithelial cancers. Based on high throughput screening of the Prestwick Chemical Library® and cheminformatics we identified the R-enantiomers of two approved drugs (naproxen and ketorolac) as inhibitors of Rac1 and Cdc42. The corresponding S-enantiomers are considered the active component in racemic drug formulations, acting as non-steroidal anti-inflammatory drugs (NSAIDs) with selective activity against cyclooxygenases. Here, we show that the S-enantiomers of naproxen and ketorolac are inactive against the GTPases. Additionally, more than twenty other NSAIDs lacked inhibitory action against the GTPases, establishing the selectivity of the two identified NSAIDs. R-naproxen was first identified as a lead compound and tested in parallel with its S-enantiomer and the non-chiral 6-methoxy-naphthalene acetic acid (active metabolite of nabumetone, another NSAID) as a structural series. Cheminformatics-based substructure analyses-using the rotationally constrained carboxylate in R-naproxen-led to identification of racemic [R/S] ketorolac as a suitable FDA-approved candidate. Cell based measurement of GTPase activity (in animal and human cell lines) demonstrated that the R-enantiomers specifically inhibit epidermal growth factor stimulated Rac1 and Cdc42 activation. The GTPase inhibitory effects of the R-enantiomers in cells largely mimic those of established Rac1 (NSC23766) and Cdc42 (CID2950007/ML141) specific inhibitors. Docking predicts that rotational constraints position the carboxylate moieties of the R-enantiomers to preferentially coordinate the magnesium ion, thereby destabilizing nucleotide binding to Rac1 and Cdc42. The S-enantiomers can be docked but are less favorably positioned in proximity to the magnesium. R-naproxen and R-ketorolac have potential for rapid translation and

  4. Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases.

    PubMed

    Oprea, Tudor I; Sklar, Larry A; Agola, Jacob O; Guo, Yuna; Silberberg, Melina; Roxby, Joshua; Vestling, Anna; Romero, Elsa; Surviladze, Zurab; Murray-Krezan, Cristina; Waller, Anna; Ursu, Oleg; Hudson, Laurie G; Wandinger-Ness, Angela

    2015-01-01

    Rho family GTPases (including Rac, Rho and Cdc42) collectively control cell proliferation, adhesion and migration and are of interest as functional therapeutic targets in numerous epithelial cancers. Based on high throughput screening of the Prestwick Chemical Library® and cheminformatics we identified the R-enantiomers of two approved drugs (naproxen and ketorolac) as inhibitors of Rac1 and Cdc42. The corresponding S-enantiomers are considered the active component in racemic drug formulations, acting as non-steroidal anti-inflammatory drugs (NSAIDs) with selective activity against cyclooxygenases. Here, we show that the S-enantiomers of naproxen and ketorolac are inactive against the GTPases. Additionally, more than twenty other NSAIDs lacked inhibitory action against the GTPases, establishing the selectivity of the two identified NSAIDs. R-naproxen was first identified as a lead compound and tested in parallel with its S-enantiomer and the non-chiral 6-methoxy-naphthalene acetic acid (active metabolite of nabumetone, another NSAID) as a structural series. Cheminformatics-based substructure analyses-using the rotationally constrained carboxylate in R-naproxen-led to identification of racemic [R/S] ketorolac as a suitable FDA-approved candidate. Cell based measurement of GTPase activity (in animal and human cell lines) demonstrated that the R-enantiomers specifically inhibit epidermal growth factor stimulated Rac1 and Cdc42 activation. The GTPase inhibitory effects of the R-enantiomers in cells largely mimic those of established Rac1 (NSC23766) and Cdc42 (CID2950007/ML141) specific inhibitors. Docking predicts that rotational constraints position the carboxylate moieties of the R-enantiomers to preferentially coordinate the magnesium ion, thereby destabilizing nucleotide binding to Rac1 and Cdc42. The S-enantiomers can be docked but are less favorably positioned in proximity to the magnesium. R-naproxen and R-ketorolac have potential for rapid translation and

  5. Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases

    PubMed Central

    Oprea, Tudor I.; Sklar, Larry A.; Agola, Jacob O.; Guo, Yuna; Silberberg, Melina; Roxby, Joshua; Vestling, Anna; Romero, Elsa; Surviladze, Zurab; Murray-Krezan, Cristina; Waller, Anna; Ursu, Oleg; Hudson, Laurie G.; Wandinger-Ness, Angela

    2015-01-01

    Rho family GTPases (including Rac, Rho and Cdc42) collectively control cell proliferation, adhesion and migration and are of interest as functional therapeutic targets in numerous epithelial cancers. Based on high throughput screening of the Prestwick Chemical Library® and cheminformatics we identified the R-enantiomers of two approved drugs (naproxen and ketorolac) as inhibitors of Rac1 and Cdc42. The corresponding S-enantiomers are considered the active component in racemic drug formulations, acting as non-steroidal anti-inflammatory drugs (NSAIDs) with selective activity against cyclooxygenases. Here, we show that the S-enantiomers of naproxen and ketorolac are inactive against the GTPases. Additionally, more than twenty other NSAIDs lacked inhibitory action against the GTPases, establishing the selectivity of the two identified NSAIDs. R-naproxen was first identified as a lead compound and tested in parallel with its S-enantiomer and the non-chiral 6-methoxy-naphthalene acetic acid (active metabolite of nabumetone, another NSAID) as a structural series. Cheminformatics-based substructure analyses—using the rotationally constrained carboxylate in R-naproxen—led to identification of racemic [R/S] ketorolac as a suitable FDA-approved candidate. Cell based measurement of GTPase activity (in animal and human cell lines) demonstrated that the R-enantiomers specifically inhibit epidermal growth factor stimulated Rac1 and Cdc42 activation. The GTPase inhibitory effects of the R-enantiomers in cells largely mimic those of established Rac1 (NSC23766) and Cdc42 (CID2950007/ML141) specific inhibitors. Docking predicts that rotational constraints position the carboxylate moieties of the R-enantiomers to preferentially coordinate the magnesium ion, thereby destabilizing nucleotide binding to Rac1 and Cdc42. The S-enantiomers can be docked but are less favorably positioned in proximity to the magnesium. R-naproxen and R-ketorolac have potential for rapid translation and

  6. Formins as effector proteins of Rho GTPases

    PubMed Central

    Kühn, Sonja; Geyer, Matthias

    2014-01-01

    Formin proteins were recognized as effectors of Rho GTPases some 15 years ago. They contribute to different cellular actin cytoskeleton structures by their ability to polymerize straight actin filaments at the barbed end. While not all formins necessarily interact with Rho GTPases, a subgroup of mammalian formins, termed Diaphanous-related formins or DRFs, were shown to be activated by small GTPases of the Rho superfamily. DRFs are autoinhibited in the resting state by an N- to C-terminal interaction that renders the central actin polymerization domain inactive. Upon the interaction with a GTP-bound Rho, Rac, or Cdc42 GTPase, the C-terminal autoregulation domain is displaced from its N-terminal recognition site and the formin becomes active to polymerize actin filaments. In this review we discuss the current knowledge on the structure, activation, and function of formin-GTPase interactions for the mammalian formin families Dia, Daam, FMNL, and FHOD. We describe both direct and indirect interactions of formins with GTPases, which lead to formin activation and cytoskeletal rearrangements. The multifaceted function of formins as effector proteins of Rho GTPases thus reflects the diversity of the actin cytoskeleton in cells. PMID:24914801

  7. The small Rho GTPase Rac1 controls normal human dermal fibroblasts proliferation with phosphorylation of the oncoprotein c-myc

    SciTech Connect

    Nikolova, Ekaterina; Mitev, Vanio; Zhelev, Nikolai; Deroanne, Christophe F. . E-mail: yves.poumay@fundp.ac.be

    2007-08-03

    Proliferation of dermal fibroblasts is crucial for the maintenance of skin. The small Rho GTPase, Rac1, has been identified as a key transducer of proliferative signals in various cell types, but in normal human dermal fibroblasts its significance to cell growth control has not been studied. In this study, we applied the method of RNA interference to suppress endogenous Rac1 expression and examined the consequences on human skin fibroblasts. Rac1 knock-down resulted in inhibition of DNA synthesis. This effect was not mediated by inhibition of the central transducer of proliferative stimuli, ERK1/2 or by activation of the pro-apoptotic p38. Rather, as a consequence of the suppressed Rac1 expression we observed a significant decrease in phosphorylation of c-myc, revealing for the first time that in human fibroblasts Rac1 exerts control on proliferation through c-myc phosphorylation. Thus Rac1 activates proliferation of normal fibroblasts through stimulation of c-myc phosphorylation without affecting ERK1/2 activity.

  8. Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways dependent on Rho GTPases

    PubMed Central

    Yamauchi, Junji; Chan, Jonah R.; Shooter, Eric M.

    2004-01-01

    Neurotrophins are recognized widely as essential factors in the developing nervous system. Previously, we demonstrated that neurotrophin 3 activation of TrkC inhibits Schwann cell myelination and enhances the migration of primary Schwann cells through the signaling pathway regulated by the Rho GTPases Rac1 and Cdc42. Here, we show that neurotrophins activate divergent signaling pathways to promote or inhibit Schwann cell migration. Endogenous brain-derived neurotrophic factor acting through p75NTR inhibits Schwann cell migration dramatically by Src kinase-dependent activation of the guanine-nucleotide exchange factor Vav2 and RhoA. Together, these results suggest that neurotrophins and their receptors differentially regulate Schwann cell migration through the signaling pathways that depend on Rho GTPases. PMID:15161978

  9. The jaw of the worm: GTPase-activating protein EAT-17 regulates grinder formation in Caenorhabditis elegans.

    PubMed

    Straud, Sarah; Lee, Inhwan; Song, Bomi; Avery, Leon; You, Young-Jai

    2013-09-01

    Constitutive transport of cellular materials is essential for cell survival. Although multiple small GTPase Rab proteins are required for the process, few regulators of Rabs are known. Here we report that EAT-17, a novel GTPase-activating protein (GAP), regulates RAB-6.2 function in grinder formation in Caenorhabditis elegans. We identified EAT-17 as a novel RabGAP that interacts with RAB-6.2, a protein that presumably regulates vesicle trafficking between Golgi, the endoplasmic reticulum, and plasma membrane to form a functional grinder. EAT-17 has a canonical GAP domain that is critical for its function. RNA interference against 25 confirmed and/or predicted RABs in C. elegans shows that RNAi against rab-6.2 produces a phenotype identical to eat-17. A directed yeast two-hybrid screen using EAT-17 as bait and each of the 25 RAB proteins as prey identifies RAB-6.2 as the interacting partner of EAT-17, confirming that RAB-6.2 is a specific substrate of EAT-17. Additionally, deletion mutants of rab-6.2 show grinder defects identical to those of eat-17 loss-of-function mutants, and both RAB-6.2 and EAT-17 are expressed in the terminal bulb of the pharynx where the grinder is located. Collectively, these results suggest that EAT-17 is a specific GTPase-activating protein for RAB-6.2. Based on the conserved function of Rab6 in vesicular transport, we propose that EAT-17 regulates the turnover rate of RAB-6.2 activity in cargo trafficking for grinder formation.

  10. Sevoflurane Inhalation Accelerates the Long-Term Memory Consolidation via Small GTPase Overexpression in the Hippocampus of Mice in Adolescence.

    PubMed

    Nakamura, Emi; Kinoshita, Hiroyuki; Feng, Guo-Gang; Hayashi, Hisaki; Satomoto, Maiko; Sato, Motohiko; Fujiwara, Yoshihiro

    2016-01-01

    Sevoflurane exposure impairs the long-term memory in neonates. Whether the exposure to animals in adolescence affects the memory, however, has been unclear. A small hydrolase enzyme of guanosine triphosphate (GTPase) rac1 plays a role in the F-actin dynamics related to the synaptic plasticity, as well as superoxide production via reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. The current study was designed to examine whether sevoflurane exposure to mice in early adolescence modifies the long-term learning ability concomitantly with the changes in F-actin constitution as well as superoxide production in the hippocampus according to the levels of rac1 protein expression. Four-week-old mice were subjected to the evaluation of long-term learning ability for three days. On day one, each mouse was allowed to enter a dark chamber for five min to acclimatization. On day two, the procedure was repeated with the addition of an electric shock as soon as a mouse entered the dark chamber. All mice subsequently inhaled 2 L/min air with (Sevoflurane group) and without (Control group) 2.5% sevoflurane for three hours. On day three, each mouse was placed on the platform and retention time, which is the latency to enter the dark chamber, was examined. The brain removed after the behavior test, was used for analyses of immunofluorescence, Western immunoblotting and intracellular levels of superoxide. Sevoflurane exposure significantly prolonged retention time, indicating the enhanced long-term memory. Sevoflurane inhalation augmented F-actin constitution coexisting with the rac1 protein overexpression in the hippocampus whereas it did not alter the levels of superoxide. Sevoflurane exposure to 4-week-old mice accelerates the long-term memory concomitantly with the enhanced F-actin constitution coexisting with the small GTPase rac1 overexpression in the hippocampus. These results suggest that sevoflurane inhalation may amplify long-term memory

  11. Sevoflurane Inhalation Accelerates the Long-Term Memory Consolidation via Small GTPase Overexpression in the Hippocampus of Mice in Adolescence

    PubMed Central

    Nakamura, Emi; Feng, Guo-Gang; Hayashi, Hisaki; Satomoto, Maiko; Sato, Motohiko; Fujiwara, Yoshihiro

    2016-01-01

    Sevoflurane exposure impairs the long-term memory in neonates. Whether the exposure to animals in adolescence affects the memory, however, has been unclear. A small hydrolase enzyme of guanosine triphosphate (GTPase) rac1 plays a role in the F-actin dynamics related to the synaptic plasticity, as well as superoxide production via reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. The current study was designed to examine whether sevoflurane exposure to mice in early adolescence modifies the long-term learning ability concomitantly with the changes in F-actin constitution as well as superoxide production in the hippocampus according to the levels of rac1 protein expression. Four-week-old mice were subjected to the evaluation of long-term learning ability for three days. On day one, each mouse was allowed to enter a dark chamber for five min to acclimatization. On day two, the procedure was repeated with the addition of an electric shock as soon as a mouse entered the dark chamber. All mice subsequently inhaled 2 L/min air with (Sevoflurane group) and without (Control group) 2.5% sevoflurane for three hours. On day three, each mouse was placed on the platform and retention time, which is the latency to enter the dark chamber, was examined. The brain removed after the behavior test, was used for analyses of immunofluorescence, Western immunoblotting and intracellular levels of superoxide. Sevoflurane exposure significantly prolonged retention time, indicating the enhanced long-term memory. Sevoflurane inhalation augmented F-actin constitution coexisting with the rac1 protein overexpression in the hippocampus whereas it did not alter the levels of superoxide. Sevoflurane exposure to 4-week-old mice accelerates the long-term memory concomitantly with the enhanced F-actin constitution coexisting with the small GTPase rac1 overexpression in the hippocampus. These results suggest that sevoflurane inhalation may amplify long-term memory

  12. Biological characterization of Drosophila Rapgap1, a GTPase activating protein for Rap1.

    PubMed

    Chen, F; Barkett, M; Ram, K T; Quintanilla, A; Hariharan, I K

    1997-11-11

    The activity of Ras family proteins is modulated in vivo by the function of GTPase activating proteins, which increase their intrinsic rate of GTP hydrolysis. We have isolated cDNAs encoding a GAP for the Drosophila Rap1 GTPase. Drosophila Rapgap1 encodes an 850-amino acid protein with a central region that displays substantial sequence similarity to human RapGAP. This domain, when expressed in Escherichia coli, potently stimulates Rap1 GTPase activity in vitro. Unlike Rap1, which is ubiquitously expressed, Rapgap1 expression is highly restricted. Rapgap1 is expressed at high levels in the developing photoreceptor cells and in the optic lobe. Rapgap1 mRNA is also localized in the pole plasm in an oskar-dependent manner. Although mutations that completely abolish Rapgap1 function display no obvious phenotypic abnormalities, overexpression of Rapgap1 induces a rough eye phenotype that is exacerbated by reducing Rap1 gene dosage. Thus, Rapgap1 can function as a negative regulator of Rap1-mediated signaling in vivo.

  13. The Ras/Rap GTPase activating protein RASA3: from gene structure to in vivo functions.

    PubMed

    Schurmans, Stéphane; Polizzi, Séléna; Scoumanne, Ariane; Sayyed, Sufyan; Molina-Ortiz, Patricia

    2015-01-01

    RASA3 (or GTPase Activating Protein III, R-Ras GTPase-activating protein, GAP1(IP4BP)) is a GTPase activating protein of the GAP1 subfamily which targets Ras and Rap1. RASA3 was originally purified from pig platelet membranes through its intrinsic ability to bind inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with high affinity, hence its first name GAP1(IP4BP) (for GAP1 subfamily member which binds I(1,3,4,5)P4). RASA3 was thus the first I(1,3,4,5)P4 receptor identified and cloned. The in vitro and in vivo functions of RASA3 remained somewhat elusive for a long time. However, recently, using genetically-modified mice and cells derived from these mice, the function of RASA3 during megakaryopoiesis, megakaryocyte adhesion and migration as well as integrin signaling has been reported. The goal of this review is thus to summarize and comment recent and less recent data in the literature on RASA3, in particular on the in vivo function of this specific GAP1 subfamily member.

  14. Mutations of the Mouse ELMO Domain Containing 1 Gene (Elmod1) Link Small GTPase Signaling to Actin Cytoskeleton Dynamics in Hair Cell Stereocilia

    PubMed Central

    Johnson, Kenneth R.; Longo-Guess, Chantal M.; Gagnon, Leona H.

    2012-01-01

    Stereocilia, the modified microvilli projecting from the apical surfaces of the sensory hair cells of the inner ear, are essential to the mechanoelectrical transduction process underlying hearing and balance. The actin-filled stereocilia on each hair cell are tethered together by fibrous links to form a highly patterned hair bundle. Although many structural components of hair bundles have been identified, little is known about the signaling mechanisms that regulate their development, morphology, and maintenance. Here, we describe two naturally occurring, allelic mutations that result in hearing and balance deficits in mice, named roundabout (rda) and roundabout-2J (rda2J). Positional cloning identified both as mutations of the mouse ELMO domain containing 1 gene (Elmod1), a poorly characterized gene with no previously reported mutant phenotypes. The rda mutation is a 138 kb deletion that includes exons 1–5 of Elmod1, and rda2J is an intragenic duplication of exons 3–8 of Elmod1. The deafness associated with these mutations is caused by cochlear hair cell dysfunction, as indicated by conspicuous elongations and fusions of inner hair cell stereocilia and progressive degeneration of outer hair cell stereocilia. Mammalian ELMO-family proteins are known to be involved in complexes that activate small GTPases to regulate the actin cytoskeleton during phagocytosis and cell migration. ELMOD1 and ELMOD2 recently were shown to function as GTPase-activating proteins (GAPs) for the Arf family of small G proteins. Our finding connecting ELMOD1 deficiencies with stereocilia dysmorphologies thus establishes a link between the Ras superfamily of small regulatory GTPases and the actin cytoskeleton dynamics of hair cell stereocilia. PMID:22558334

  15. Vimentin phosphorylation and assembly are regulated by the small GTPase Rab7a.

    PubMed

    Cogli, Laura; Progida, Cinzia; Bramato, Roberta; Bucci, Cecilia

    2013-06-01

    Intermediate filaments are cytoskeletal elements important for cell architecture. Recently it has been discovered that intermediate filaments are highly dynamic and that they are fundamental for organelle positioning, transport and function thus being an important regulatory component of membrane traffic. We have identified, using the yeast two-hybrid system, vimentin, a class III intermediate filament protein, as a Rab7a interacting protein. Rab7a is a member of the Rab family of small GTPases and it controls vesicular membrane traffic to late endosomes and lysosomes. In addition, Rab7a is important for maturation of phagosomes and autophagic vacuoles. We confirmed the interaction in HeLa cells by co-immunoprecipitation and pull-down experiments, and established that the interaction is direct using bacterially expressed recombinant proteins. Immunofluorescence analysis on HeLa cells indicate that Rab7a-positive vesicles sometimes overlap with vimentin filaments. Overexpression of Rab7a causes an increase in vimentin phosphorylation at different sites and causes redistribution of vimentin in the soluble fraction. Consistently, Rab7a silencing causes an increase of vimentin present in the insoluble fraction (assembled). Also, expression of Charcot-Marie-Tooth 2B-causing Rab7a mutant proteins induces vimentin phosphorylation and increases the amount of vimentin in the soluble fraction. Thus, modulation of expression levels of Rab7a wt or expression of Rab7a mutant proteins changes the assembly of vimentin and its phosphorylation state indicating that Rab7a is important for the regulation of vimentin function.

  16. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine

    PubMed Central

    Wheeler, David S.; Underhill, Suzanne M.; Stolz, Donna B.; Murdoch, Geoffrey H.; Thiels, Edda; Romero, Guillermo; Amara, Susan G.

    2015-01-01

    Acute amphetamine (AMPH) exposure elevates extracellular dopamine through a variety of mechanisms that include inhibition of dopamine reuptake, depletion of vesicular stores, and facilitation of dopamine efflux across the plasma membrane. Recent work has shown that the DAT substrate AMPH, unlike cocaine and other nontransported blockers, can also stimulate endocytosis of the plasma membrane dopamine transporter (DAT). Here, we show that when AMPH enters the cytoplasm it rapidly stimulates DAT internalization through a dynamin-dependent, clathrin-independent process. This effect, which can be observed in transfected cells, cultured dopamine neurons, and midbrain slices, is mediated by activation of the small GTPase RhoA. Inhibition of RhoA activity with C3 exotoxin or a dominant-negative RhoA blocks AMPH-induced DAT internalization. These actions depend on AMPH entry into the cell and are blocked by the DAT inhibitor cocaine. AMPH also stimulates cAMP accumulation and PKA-dependent inactivation of RhoA, thus providing a mechanism whereby PKA- and RhoA-dependent signaling pathways can interact to regulate the timing and robustness of AMPH’s effects on DAT internalization. Consistent with this model, the activation of D1/D5 receptors that couple to PKA in dopamine neurons antagonizes RhoA activation, DAT internalization, and hyperlocomotion observed in mice after AMPH treatment. These observations support the existence of an unanticipated intracellular target that mediates the effects of AMPH on RhoA and cAMP signaling and suggest new pathways to target to disrupt AMPH action. PMID:26553986

  17. Transbilayer phospholipid flipping regulates Cdc42p signaling during polarized cell growth via Rga GTPase-activating proteins.

    PubMed

    Saito, Koji; Fujimura-Kamada, Konomi; Hanamatsu, Hisatoshi; Kato, Utako; Umeda, Masato; Kozminski, Keith G; Tanaka, Kazuma

    2007-11-01

    An important problem in polarized morphogenesis is how polarized transport of membrane vesicles is spatiotemporally regulated. Here, we report that a local change in the transbilayer phospholipid distribution of the plasma membrane regulates the axis of polarized growth. Type 4 P-type ATPases Lem3p-Dnf1p and -Dnf2p are putative heteromeric phospholipid flippases in budding yeast that are localized to polarized sites on the plasma membrane. The lem3Delta mutant exhibits prolonged apical growth due to a defect in the switch to isotropic bud growth. In lem3Delta cells, the small GTPase Cdc42p remains polarized at the bud tip where phosphatidylethanolamine remains exposed on the outer leaflet. Intriguingly, phosphatidylethanolamine and phosphatidylserine stimulate GTPase-activating protein (GAP) activity of Rga1p and Rga2p toward Cdc42p, whereas PI(4,5)P(2) inhibits it. We propose that a redistribution of phospholipids to the inner leaflet of the plasma membrane triggers the dispersal of Cdc42p from the apical growth site, through activation of GAPs.

  18. Apical accumulation of the Sevenless receptor tyrosine kinase during Drosophila eye development is promoted by the small GTPase Rap1.

    PubMed

    Baril, Caroline; Lefrançois, Martin; Sahmi, Malha; Knævelsrud, Helene; Therrien, Marc

    2014-08-01

    The Ras/MAPK-signaling pathway plays pivotal roles during development of metazoans by controlling cell proliferation and cell differentiation elicited, in several instances, by receptor tyrosine kinases (RTKs). While the internal mechanism of RTK-driven Ras/MAPK signaling is well understood, far less is known regarding its interplay with other co-required signaling events involved in developmental decisions. In a genetic screen designed to identify new regulators of RTK/Ras/MAPK signaling during Drosophila eye development, we identified the small GTPase Rap1, PDZ-GEF, and Canoe as components contributing to Ras/MAPK-mediated R7 cell differentiation. Rap1 signaling has recently been found to participate in assembling cadherin-based adherens junctions in various fly epithelial tissues. Here, we show that Rap1 activity is required for the integrity of the apical domains of developing photoreceptor cells and that reduced Rap1 signaling hampers the apical accumulation of the Sevenless RTK in presumptive R7 cells. It thus appears that, in addition to its role in cell-cell adhesion, Rap1 signaling controls the partitioning of the epithelial cell membrane, which in turn influences signaling events that rely on apico-basal cell polarity.

  19. Rem2, a member of the RGK family of small GTPases, is enriched in nuclei of the basal ganglia

    PubMed Central

    Liput, Daniel J.; Lu, Van B.; Davis, Margaret I.; Puhl, Henry L.; Ikeda, Stephen R.

    2016-01-01

    Rem2 is a member of the RGK subfamily of RAS small GTPases. Rem2 inhibits high voltage activated calcium channels, is involved in synaptogenesis, and regulates dendritic morphology. Rem2 is the primary RGK protein expressed in the nervous system, but to date, the precise expression patterns of this protein are unknown. In this study, we characterized Rem2 expression in the mouse nervous system. In the CNS, Rem2 mRNA was detected in all regions examined, but was enriched in the striatum. An antibody specific for Rem2 was validated using a Rem2 knockout mouse model and used to show abundant expression in striatonigral and striatopallidal medium spiny neurons but not in several interneuron populations. In the PNS, Rem2 was abundant in a subpopulation of neurons in the trigeminal and dorsal root ganglia, but was absent in sympathetic neurons of superior cervical ganglia. Under basal conditions, Rem2 was subject to post-translational phosphorylation, likely at multiple residues. Further, Rem2 mRNA and protein expression peaked at postnatal week two, which corresponds to the period of robust neuronal maturation in rodents. This study will be useful for elucidating the functions of Rem2 in basal ganglia physiology. PMID:27118437

  20. Influence of bacterial toxins on the GTPase activity of transducin from bovine retinal rod outer segments

    SciTech Connect

    Rybin, V.O.; Gureeva, A.A.

    1986-05-10

    The action of cholera toxin, capable of ADP-ribosylation of the activator N/sub s/ protein, and pertussis toxin, capable of ADP-ribosylation of the inhibitor N/sub i/ protein of the adenylate cyclase complex, on transducin, the GTP-binding protein of the rod outer segments of the retina, was investigated. It was shown that under the action of pertussis and cholera toxins, the GTPase activity of transducin is inhibited. Pertussin toxin inhibits the GTPase of native retinal rod outer segments by 30-40%, while GTPase of homogeneous transducin produces a 70-80% inhibition. The action of toxins on transducin depends on the presence and nature of the guanylic nucleotide with which incubation is performed. On the basis of the data obtained it is suggested that pertussis toxin interacts with pretransducin and with the transducin-GDP complex, while cholera toxin ADP-ribosylates the transducin-GTP complex and does not act on transducin lacking GTP.

  1. Ras-Related Small GTPases RalA and RalB Regulate Cellular Survival After Ionizing Radiation

    SciTech Connect

    Kidd, Ambrose R.; Snider, Jared L.; Martin, Timothy D.; Graboski, Sarah F.; Der, Channing J.; Cox, Adrienne D.

    2010-09-01

    Purpose: Oncogenic activation of Ras renders cancer cells resistant to ionizing radiation (IR), but the mechanisms have not been fully characterized. The Ras-like small GTPases RalA and RalB are downstream effectors of Ras function and are critical for both tumor growth and survival. The Ral effector RalBP1/RLIP76 mediates survival of mice after whole-body irradiation, but the role of the Ral GTPases themselves in response to IR is unknown. We have investigated the role of RalA and RalB in cellular responses to IR. Methods and Materials: RalA, RalB, and their major effectors RalBP1 and Sec5 were knocked down by stable expression of short hairpin RNAs in the K-Ras-dependent pancreatic cancer-derived cell line MIA PaCa-2. Radiation responses were measured by standard clonogenic survival assays for reproductive survival, {gamma}H2AX expression for double-strand DNA breaks (DSBs), and poly(ADP-ribose)polymerase (PARP) cleavage for apoptosis. Results: Knockdown of K-Ras, RalA, or RalB reduced colony-forming ability post-IR, and knockdown of either Ral isoform decreased the rate of DSB repair post-IR. However, knockdown of RalB, but not RalA, increased cell death. Surprisingly, neither RalBP1 nor Sec5 suppression affected colony formation post-IR. Conclusions: Both RalA and RalB contribute to K-Ras-dependent IR resistance of MIA PaCa-2 cells. Sensitization due to suppressed Ral expression is likely due in part to decreased efficiency of DNA repair (RalA and RalB) and increased susceptibility to apoptosis (RalB). Ral-mediated radioresistance does not depend on either the RalBP1 or the exocyst complex, the two best-characterized Ral effectors, and instead may utilize an atypical or novel effector.

  2. RhoGDI deficiency induces constitutive activation of Rho GTPases and COX-2 pathways in association with breast cancer progression

    PubMed Central

    Bozza, William P.; Zhang, Yaqin; Hallett, Kory; Rosado, Leslie A. Rivera; Zhang, Baolin

    2015-01-01

    Rho GDP Dissociation Inhibitor (RhoGDI) is a key regulator of Rho GTPases. Here we report that loss of RhoGDI significantly accelerated xenograft tumor growth of MDA-MB-231 cells in animal models. At the molecular level, RhoGDI depletion resulted in constitutive activation of Rho GTPases, including RhoA, Cdc42, and Rac1. This was accompanied by Rho GTPase translocation from the cytosol to membrane compartments. Notably, COX-2 protein levels, mRNA expression, and biological activity were markedly increased in RhoGDI-deficient cells. The upregulated expression of COX-2 was directly associated with increased Rho GTPase activity. Further, we assessed the expression level of RhoGDI protein in breast tumor specimens (n = 165) by immunohistochemistry. We found that RhoGDI expression is higher in the early stages of breast cancer followed by a significant decrease in malignant tumors and metastatic lesions (p 0.01). These data suggest that downregulation of RhoGDI could be a critical mechanism of breast tumor development, which may involve the hyperactivation of Rho GTPases and upregulation of COX-2 activity. Additional studies are warranted to evaluate the therapeutic potential of inhibiting Rho GTPases and COX-2 for treating breast cancers. PMID:26416248

  3. Involvement of Ral GTPase in v-Src-induced phospholipase D activation.

    PubMed

    Jiang, H; Luo, J Q; Urano, T; Frankel, P; Lu, Z; Foster, D A; Feig, L A

    1995-11-23

    An early response to the tyrosine kinase activity of v-Src is an increase in phospholipase D (PLD) activity, which leads to the generation of biologically active lipid second messengers, including phosphatidic acid, lysophosphatidic acid and diacylglycerol. We have recently demonstrated that v-Src-induced PLD activity is mediated by Ras, although Ras involvement was indirect, requiring a cytosolic factor for PLD activation. Ras interacts with and activates Ral-GDS, the exchange factor responsible for the activation of Ral GTPases. Here we report that this newly identified Ras/Ral signalling pathway mediates PLD activation by v-Src. PLD activity could be precipitated from v-Src-transformed cell lysates with immobilized RalA protein and with an anti-Ral antibody. A mutation to the region of RalA analogous to the 'effector domain' of Ras did not reduce the ability of RalA to complex with PLD, although deletion of a Ral-specific amino-terminal region did. Overexpression of RalA potentiated PLD activation by v-Src, and expression of dominant negative RalA mutants inhibited both v-Src- and v-Ras-induced PLD activity. Thus RalA is involved in the tyrosine kinase activation of PLD through its unique N terminus, and that PLD is a downstream target of a Ras/Ral GTPase cascade.

  4. Interaction between small GTPase Rab7 and PI3KC3 links autophagy and endocytosis: A new Rab7 effector protein sheds light on membrane trafficking pathways.

    PubMed

    Lin, Mary Grace; Zhong, Qing

    2011-03-01

    Endocytosis and autophagy are both membrane trafficking pathways vital for cell survival. Endocytosis, the primary means by which cells internalize material such as cell-surface receptors and their protein ligands, is essential for proper cell growth and communication. Autophagy is a catabolic process that degrades cargo ranging from organelles to protein aggregates to bacteria, and it is important for maintaining cellular homeostasis. Defects in both endosome and autophagosome maturation lead to an array of human diseases, including cancer; however, the molecular mechanisms underlying endosome and autophagosome maturation are not well characterized. In the case of endocytosis, small GTPases, key players in membrane organization, are required for endosome maturation. Specifically, activation of the small GTPase Rab7 is required for the initiation of the early-to-late endosome transition, although how this is regulated is largely unknown. Now recent findings from our laboratory show that Rubicon, a component of the PI3KC3 complex, inhibits endosome maturation by preventing activation of Rab7. Not only do our results clarify the molecular link between PI3KC3 and Rab7 function in endosome maturation, they lead us to propose new models for PI3KC3 involvement in membrane trafficking, particularly at the convergence between the endosome and autophagosome pathways.

  5. A Rac1/Cdc42 GTPase-specific small molecule inhibitor suppresses growth of primary human prostate cancer xenografts and prolongs survival in mice.

    PubMed

    Zins, Karin; Lucas, Trevor; Reichl, Patrick; Abraham, Dietmar; Aharinejad, Seyedhossein

    2013-01-01

    Deregulated Rho GTPases Rac1 and Cdc42 have been discovered in various tumors, including prostate and Rac protein expression significantly increases in prostate cancer. The Rac and Cdc42 pathways promote the uncontrolled proliferation, invasion and metastatic properties of human cancer cells. We synthesized the novel compound AZA1 based on structural information of the known Rac1 inhibitor NSC23766. In the current study we investigated the effects of inhibition of these pathways by AZA1 on prostate tumorigenicity by performing preclinical studies using a xenograft mouse model of prostate cancer. In androgen-independent prostate cancer cells, AZA1 inhibited both Rac1 and Cdc42 but not RhoA GTPase activity in a dose-dependent manner and blocked cellular migration and proliferation. Cyclin D1 expression significantly decreased following Rac1/Cdc42 inhibition in prostate cancer cells. AZA1 treatment also down-regulated PAK and AKT activity in prostate cancer cells, associated with induction of the pro-apoptotic function of BAD by suppression of serine-112 phosphorylation. Daily systemic administration of AZA1 for 2 weeks reduced growth of human 22Rv1 prostate tumor xenografts in mice and improved the survival of tumor-bearing animals significantly. These data suggest a role of AZA1 in blocking Rac1/Cdc42-dependent cell cycle progression, cancer cell migration and increase of cancer cell apoptosis involving down-regulation of the AKT and PAK signaling pathway in prostate cancer cells. We therefore propose that a small-molecule inhibitor therapy targeting Rac1/Cdc42 Rho GTPase signaling pathways may be used as a novel treatment for patients with advanced prostate cancer.

  6. Genetic analysis of the Saccharomyces cerevisiae RHO3 gene, encoding a rho-type small GTPase, provides evidence for a role in bud formation

    SciTech Connect

    Imai, Jun; Toh-e, Akio; Matsui, Yashushi

    1996-02-01

    RHO3 encodes a Rho-type small GTPase of the yeast Saccharomyces cerevisiae. We isolated temperature-sensitive alleles and a dominant active allele of RHO3. Ts{sup -} rho3 cells lost cell polarity during bud formation and grew more isotropically than wild-type cells at nonpermissive temperatures. In contrast, cells carrying a dominant active mutant RHO3 displayed cold sensitivity, and the cells became elongated and bent, often at the position where actin patches were concentrated. These phenotypes of the rho3 mutants strongly suggest that RHO3 is involved in directing the growing points during bud formation. In addition, we found that SRO6, previously isolated as a multicopy suppressor of rho3, is the same as SEC4. The sec4-2 mutation was synthetic lethal with temperature-sensitive rho3 mutations and suppressed the cold sensitivity caused by a dominant active mutant RHO3. The genetic interactions between RHO3 and SEC4, taken together with the fact that the Rab-type GTPase Sec4p is required to fuse secretory vesicles together with plasma membrane for exocytosis, support a model in which the Rho3p pathway modulates morphogenesis during bud growth via directing organization of the actin cytoskeleton and the position of the secretory machinery for exocytosis. 59 refs., 8 figs., 1 tab.

  7. Enrichment of Phosphatidylethanolamine in Viral Replication Compartments via Co-opting the Endosomal Rab5 Small GTPase by a Positive-Strand RNA Virus

    PubMed Central

    Xu, Kai; Nagy, Peter D.

    2016-01-01

    Positive-strand RNA viruses build extensive membranous replication compartments to support replication and protect the virus from antiviral responses by the host. These viruses require host factors and various lipids to form viral replication complexes (VRCs). The VRCs built by Tomato bushy stunt virus (TBSV) are enriched with phosphatidylethanolamine (PE) through a previously unknown pathway. To unravel the mechanism of PE enrichment within the TBSV replication compartment, in this paper, the authors demonstrate that TBSV co-opts the guanosine triphosphate (GTP)-bound active form of the endosomal Rab5 small GTPase via direct interaction with the viral replication protein. Deletion of Rab5 orthologs in a yeast model host or expression of dominant negative mutants of plant Rab5 greatly decreases TBSV replication and prevents the redistribution of PE to the sites of viral replication. We also show that enrichment of PE in the viral replication compartment is assisted by actin filaments. Interestingly, the closely related Carnation Italian ringspot virus, which replicates on the boundary membrane of mitochondria, uses a similar strategy to the peroxisomal TBSV to hijack the Rab5-positive endosomes into the viral replication compartments. Altogether, usurping the GTP-Rab5–positive endosomes allows TBSV to build a PE-enriched viral replication compartment, which is needed to support peak-level replication. Thus, the Rab family of small GTPases includes critical host factors assisting VRC assembly and genesis of the viral replication compartment. PMID:27760128

  8. Mulberry leaf extract inhibits vascular smooth muscle cell migration involving a block of small GTPase and Akt/NF-kappaB signals.

    PubMed

    Chan, Kuei-Chuan; Ho, Hsieh-Hsun; Huang, Chien-Ning; Lin, Ming-Cheng; Chen, Hsiang-Mei; Wang, Chau-Jong

    2009-10-14

    Mulberry, the fruit of Morus alba, is commonly used in Chinese medicines because of its many pharmacologic effects. Mulberry leaves contain many phenolic antioxidants that can reduce cardiovascular disease. Atherosclerosis involves proliferation and migration of vascular smooth muscle cell (VSMC). Thus, we investigated the mechanisms by which mulberry leaf extract (MLE) might inhibit migration of VSMC. MLE was rich in polyphenols (44.82%), including gallic acid, protocatechuic acid, catechin, gallocatechin gallate, caffeic acid, epicatechin, rutin, and quercetin. MLE could inhibit the migration of A7r5 cells in a dose- and time-dependent manner. MLE also inhibited the activities of matrix metalloproteinases (MMPs) MMP-2 and MMP-9, protein expressions, and phosphorylation of FAK and Akt, and protein expressions of small guanosine triphosphatases (GTPases: c-Raf, Ras, Rac1, Cdc42, and RhoA) in a dose-dependent manner. NF-kappaB expression was also inhibited by MLE. MLE could effectively inhibit the migration of VSMC by blocking small GTPase and Akt/NF-kappaB signals.

  9. The inhibition of the GTPase activating protein-Ha-ras interaction by acidic lipids is due to physical association of the C-terminal domain of the GTPase activating protein with micellar structures.

    PubMed Central

    Serth, J; Lautwein, A; Frech, M; Wittinghofer, A; Pingoud, A

    1991-01-01

    The effects of fatty acids and phospholipids on the interaction of the full-length GTPase activating protein (GAP) as well as its isolated C-terminal domain and the Ha-ras proto-oncogene product p21 were studied by various methods, viz. GTPase activity measurements, fluorescence titrations and gel permeation chromatography. It is shown that all fatty acids and acidic phospholipids tested, provided the critical micellar concentration and the critical micellar temperature are reached, inhibit the GAP stimulated p21 GTPase activity. This is interpreted to mean that it is not the molecular structure of acidic lipid molecules per se but rather their physical state of aggregation which is responsible for the inhibitory effect of lipids on the GTPase activity. The relative inhibitory potency of various lipids was measured under defined conditions with mixed Triton X-100 micelles to follow the order: unsaturated fatty acids greater than saturated acids approximately phosphatidic acids greater than or equal to phosphatidylinositol phosphates much greater than phosphatidylinositol and phosphatidylserine. GTPase experiments with varying concentrations of p21 and constant concentrations of GAP and lipids indicate that the binding of GAP by the lipid micelles is responsible for the inhibition, a finding which was confirmed by fluorescence titrations and gel filtrations which show that the C-terminal domain of GAP is bound by lipid micelles. PMID:2026138

  10. Small GTPase Rac1 and its interaction partner Cla4 regulate polarized growth and pathogenicity in Verticillium dahliae.

    PubMed

    Tian, Hui; Zhou, Lei; Guo, Wangzhen; Wang, Xinyu

    2015-01-01

    Rac1 is a small GTPase coordinating diverse cellular functions such as cell polarity, vesicular trafficking, the cell cycle and transcriptional dynamics in many organisms. In this study, we investigate the biological functions of VdRac1, a Rac1 homolog in the soil-borne, wilt-causing fungus Verticillium dahliae. The VdRac1 gene was deleted in a V. dahliae virulence strain Vd8 isolated from a local cotton cultivar. ΔVdrac1 mutants display drastic reduction in colony expansion and form compact, convoluted colonies, show hyper-branching, loss of polarity and ability to penetrate, leading to severely reduced virulence. The p21-activated kinase Cla4 (named as VdCla4 in V. dahliae) null mutants ΔVdcla4 share identical phenotypes with ΔVdrac1. Yeast two-hybrid studies prove that VdCla4 is an effector of VdRac1. Localizations of actin and reactive oxygen species (ROS) in ΔVdrac1 and ΔVdcla4 compared with the corresponding wild-type strain reveal that VdRac1 and VdCla4 play a primary role in polarized hyphal growth via organization of ROS and play only a minor role in the organization of actin. The Vdrac1 and Vdcla4 null mutants are defective in conidiation and trace elements can partially compensate for the defect. Our data demonstrate that VdRac1 regulates polarized growth and pathogenicity by interacting with its effector VdCla4 in V. dahliae.

  11. GTPase activity and biochemical characterization of a recombinant cotton fiber annexin.

    PubMed

    Shin, H; Brown, R M

    1999-03-01

    A cDNA encoding annexin was isolated from a cotton (Gossypium hirsutum) fiber cDNA library. The cDNA was expressed in Escherichia coli, and the resultant recombinant protein was purified. We then investigated some biochemical properties of the recombinant annexin based on the current understanding of plant annexins. An "add-back experiment" was performed to study the effect of the recombinant annexin on beta-glucan synthase activity, but no effect was found. However, it was found that the recombinant annexin could display ATPase/GTPase activities. The recombinant annexin showed much higher GTPase than ATPase activity. Mg2+ was essential for these activities, whereas a high concentration of Ca2+ was inhibitory. A photolabeling assay showed that this annexin could bind GTP more specifically than ATP. The GTP-binding site on the annexin was mapped into the carboxyl-terminal fourth repeat of annexin from the photolabeling experiment using domain-deletion mutants of this annexin. Northern-blot analysis showed that the annexin gene was highly expressed in the elongation stages of cotton fiber differentiation, suggesting a role of this annexin in cell elongation. PMID:10069831

  12. GTPase activity and biochemical characterization of a recombinant cotton fiber annexin

    SciTech Connect

    Shin, H.; Brown, R.M. Jr. . Dept. of Botany)

    1999-03-01

    A cDNA encoding annexin was isolated from a cotton (Gossypium hirsutum) fiber cDNA library. The cDNA was expressed in Escherichia coli, and the resultant recombinant protein was purified. The authors then investigated some biochemical properties of the recombinant annexin based on the current understanding of plant annexins. An add-back experiment was performed to study the effect of the recombinant annexin on [beta]-glucan synthase activity, but no effect was found. However, it was found that the recombinant annexin could display ATPase/GTPase activities. The recombinant annexin showed much higher GTPase than ATPase activity. Mg[sup 2+] was essential for these activities, whereas a high concentration of Ca[sup 2+] was inhibitory. A photolabeling assay showed that this annexin could bind GTP more specifically than ATP. The GTP-binding site on the annexin was mapped into the carboxyl-terminal fourth repeat of annexin from the photolabeling experiment using domain-deletion mutants of this annexin. Northern-blot analysis showed that the annexin gene was highly expressed in the elongation stages of cotton fiber differentiation, suggesting a role of this annexin in cell elongation.

  13. Ubiquitylation and activation of a Rab GTPase is promoted by a β₂AR-HACE1 complex.

    PubMed

    Lachance, Véronik; Degrandmaison, Jade; Marois, Sébastien; Robitaille, Mélanie; Génier, Samuel; Nadeau, Stéphanie; Angers, Stéphane; Parent, Jean-Luc

    2014-01-01

    We and others have shown that trafficking of G-protein-coupled receptors is regulated by Rab GTPases. Cargo-mediated regulation of vesicular transport has received great attention lately. Rab GTPases, which form the largest branch of the Ras GTPase superfamily, regulate almost every step of vesicle-mediated trafficking. Rab GTPases are well-recognized targets of human diseases but their regulation and the mechanisms connecting them to cargo proteins are still poorly understood. Here, we show by overexpression and depletion studies that HACE1, a HECT-domain-containing ubiquitin ligase, promotes the recycling of the β₂-adrenergic receptor (β₂AR), a prototypical G-protein-coupled receptor, through a Rab11a-dependent mechanism. Interestingly, the β₂AR in conjunction with HACE1 triggered ubiquitylation of Rab11a, as observed by western blot analysis. LC-MS/MS experiments determined that Rab11a is ubiquitylated on Lys145. A Rab11a-K145R mutant failed to undergo β₂AR-HACE1-induced ubiquitylation and inhibited the HACE1-mediated recycling of the β₂AR. Rab11a, but not Rab11a-K145R, was activated by β₂AR-HACE1, indicating that ubiquitylation of Lys145 is involved in activation of Rab11a. Co-expression of β₂AR-HACE1 also potentiated ubiquitylation of Rab6a and Rab8a, but not of other Rab GTPases that were tested. We report a novel regulatory mechanism of Rab GTPases through their ubiquitylation, with associated functional effects demonstrated on Rab11a. This suggests a new pathway whereby a cargo protein, such as a G-protein-coupled receptor, can regulate its own trafficking by inducing the ubiquitylation and activation of a Rab GTPase.

  14. Regulation of Synaptic Rac1 Activity, Long-Term Potentiation Maintenance, and Learning and Memory by BCR and ABR Rac GTPase-Activating Proteins

    PubMed Central

    Oh, Daeyoung; Han, Seungnam; Seo, Jinsoo; Lee, Jae-Ran; Choi, Jeonghoon; Groffen, John; Kim, Karam; Cho, Yi Sul; Choi, Han-Saem; Shin, Hyewon; Woo, Jooyeon; Won, Hyejung; Park, Soon Kwon; Kim, Soo-Young; Jo, Jihoon; Whitcomb, Daniel J.; Cho, Kwangwook; Kim, Hyun; Bae, Yong Chul; Heisterkamp, Nora; Choi, Se-Young; Kim, Eunjoon

    2016-01-01

    Rho family small GTPases are important regulators of neuronal development. Defective Rho regulation causes nervous system dysfunctions including mental retardation and Alzheimer’s disease. Rac1, a member of the Rho family, regulates dendritic spines and excitatory synapses, but relatively little is known about how synaptic Rac1 is negatively regulated. Breakpoint cluster region (BCR) is a Rac GTPase-activating protein known to form a fusion protein with the c-Abl tyrosine kinase in Philadelphia chromosome-positive chronic myelogenous leukemia. Despite the fact that BCR mRNAs are abundantly expressed in the brain, the neural functions of BCR protein have remained obscure. We report here that BCR and its close relative active BCR-related (ABR) localize at excitatory synapses and directly interact with PSD-95, an abundant postsynaptic scaffolding protein. Mice deficient for BCR or ABR show enhanced basal Rac1 activity but only a small increase in spine density. Importantly, mice lacking BCR or ABR exhibit a marked decrease in the maintenance, but not induction, of long-term potentiation, and show impaired spatial and object recognition memory. These results suggest that BCR and ABR have novel roles in the regulation of synaptic Rac1 signaling, synaptic plasticity, and learning and memory, and that excessive Rac1 activity negatively affects synaptic and cognitive functions. PMID:20962234

  15. Rho GTPase activity modulates paramyxovirus fusion protein-mediated cell-cell fusion

    SciTech Connect

    Schowalter, Rachel M.; Wurth, Mark A.; Aguilar, Hector C.; Lee, Benhur; Moncman, Carole L.; McCann, Richard O.; Dutch, Rebecca Ellis . E-mail: rdutc2@uky.edu

    2006-07-05

    The paramyxovirus fusion protein (F) promotes fusion of the viral envelope with the plasma membrane of target cells as well as cell-cell fusion. The plasma membrane is closely associated with the actin cytoskeleton, but the role of actin dynamics in paramyxovirus F-mediated membrane fusion is unclear. We examined cell-cell fusion promoted by two different paramyxovirus F proteins in three cell types in the presence of constitutively active Rho family GTPases, major cellular coordinators of actin dynamics. Reporter gene and syncytia assays demonstrated that expression of either Rac1{sup V12} or Cdc42{sup V12} could increase cell-cell fusion promoted by the Hendra or SV5 glycoproteins, though the effect was dependent on the cell type expressing the viral glycoproteins. In contrast, RhoA{sup L63} decreased cell-cell fusion promoted by Hendra glycoproteins but had little affect on SV5 F-mediated fusion. Also, data suggested that GTPase activation in the viral glycoprotein-containing cell was primarily responsible for changes in fusion. Additionally, we found that activated Cdc42 promoted nuclear rearrangement in syncytia.

  16. The structural basis of FtsY recruitment and GTPase activation by SRP RNA.

    PubMed

    Voigts-Hoffmann, Felix; Schmitz, Nikolaus; Shen, Kuang; Shan, Shu-Ou; Ataide, Sandro F; Ban, Nenad

    2013-12-12

    The universally conserved signal recognition particle (SRP) system mediates the targeting of membrane proteins to the translocon in a multistep process controlled by GTP hydrolysis. Here we present the 2.6 Å crystal structure of the GTPase domains of the E. coli SRP protein (Ffh) and its receptor (FtsY) in complex with the tetraloop and the distal region of SRP-RNA, trapped in the activated state in presence of GDP:AlF4. The structure reveals the atomic details of FtsY recruitment and, together with biochemical experiments, pinpoints G83 as the key RNA residue that stimulates GTP hydrolysis. Insertion of G83 into the FtsY active site orients a single glutamate residue provided by Ffh (E277), triggering GTP hydrolysis and complex disassembly at the end of the targeting cycle. The complete conservation of the key residues of the SRP-RNA and the SRP protein implies that the suggested chemical mechanism of GTPase activation is applicable across all kingdoms. PMID:24211265

  17. Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase

    PubMed Central

    Pick, Edgar

    2014-01-01

    The superoxide-generating NADPH oxidase of phagocytes consists of the membrane-associated cytochrome b558 (a heterodimer of Nox2 and p22phox) and 4 cytosolic components: p47phox, p67phox, p40phox, and the small GTPase, Rac, in complex with RhoGDI. Superoxide is produced by the NADPH-driven reduction of molecular oxygen, via a redox gradient located in Nox2. Electron flow in Nox2 is initiated by interaction with cytosolic components, which translocate to the membrane, p67phox playing the central role. The participation of Rac is expressed in the following sequence: (1) Translocation of the RacGDP-RhoGDI complex to the membrane; (2) Dissociation of RacGDP from RhoGDI; (3) GDP to GTP exchange on Rac, mediated by a guanine nucleotide exchange factor; (4) Binding of RacGTP to p67phox; (5) Induction of a conformational change in p67phox, promoting interaction with Nox2. The particular involvement of Rac in NADPH oxidase assembly serves as a paradigm for signaling by Rho GTPases, in general. PMID:24598074

  18. Regulation of Cancer Cell Behavior by the Small GTPase Rab13.

    PubMed

    Ioannou, Maria S; McPherson, Peter S

    2016-05-01

    The members of the Rab family of GTPases are master regulators of cellular membrane trafficking. With ∼70 members in humans, Rabs have been implicated in all steps of membrane trafficking ranging from vesicle formation and transport to vesicle docking/tethering and fusion. Vesicle trafficking controls the localization and levels of a myriad of proteins, thus regulating cellular functions including proliferation, metabolism, cell-cell adhesion, and cell migration. It is therefore not surprising that impairment of Rab pathways is associated with diseases including cancer. In this review, we highlight evidence supporting the role of Rab13 as a potent driver of cancer progression. PMID:27044746

  19. Small GTPases Rab8a and Rab11a Are Dispensable for Rhodopsin Transport in Mouse Photoreceptors

    PubMed Central

    Ying, Guoxin; Gerstner, Cecilia D.; Frederick, Jeanne M.; Boye, Sanford L.; Hauswirth, William W.; Baehr, Wolfgang

    2016-01-01

    Rab11a and Rab8a are ubiquitous small GTPases shown as required for rhodopsin transport in Xenopus laevis and zebrafish photoreceptors by dominant negative (dn) disruption of function. Here, we generated retina-specific Rab11a (retRab11a) and Rab8a (retRab8a) single and double knockout mice to explore the consequences in mouse photoreceptors. Rhodopsin and other outer segment (OS) membrane proteins targeted correctly to OS and electroretinogram (ERG) responses in all three mutant mouse lines were indistinguishable from wild-type (WT). Further, AAV (adeno-associated virus)-mediated expression of dnRab11b in retRab11a-/- retina, or expression of dnRab8b in retRab8a-/- retina did not cause OS protein mislocalization. Finally, a retRab8a-/- retina injected at one month of age with AAVs expressing dnRab11a, dnRab11b, dnRab8b, and dnRab10 (four dn viruses on Rab8a-/- background) and harvested three months later exhibited normal OS protein localization. In contrast to results obtained with dnRab GTPases in Xenopus and zebrafish, mouse Rab11a and Rab8a are dispensable for proper rhodopsin and outer segment membrane protein targeting. Absence of phenotype after expression of four dn Rab GTPases in a Rab8a-/- retina suggests that Rab8b and Rab11b paralogs maybe dispensable as well. Our data thus demonstrate significant interspecies variation in photoreceptor membrane protein and rhodopsin trafficking. PMID:27529348

  20. The membrane remodeling protein Pex11p activates the GTPase Dnm1p during peroxisomal fission

    PubMed Central

    Opalinski, Lukasz; Landgraf, Christiane; Costello, Joseph; Schrader, Michael; Krikken, Arjen M.; Knoops, Kèvin; Kram, Anita M.; Volkmer, Rudolf; van der Klei, Ida J.

    2015-01-01

    The initial phase of peroxisomal fission requires the peroxisomal membrane protein Peroxin 11 (Pex11p), which remodels the membrane, resulting in organelle elongation. Here, we identify an additional function for Pex11p, demonstrating that Pex11p also plays a crucial role in the final step of peroxisomal fission: dynamin-like protein (DLP)-mediated membrane scission. First, we demonstrate that yeast Pex11p is necessary for the function of the GTPase Dynamin-related 1 (Dnm1p) in vivo. In addition, our data indicate that Pex11p physically interacts with Dnm1p and that inhibiting this interaction compromises peroxisomal fission. Finally, we demonstrate that Pex11p functions as a GTPase activating protein (GAP) for Dnm1p in vitro. Similar observations were made for mammalian Pex11β and the corresponding DLP Drp1, indicating that DLP activation by Pex11p is conserved. Our work identifies a previously unknown requirement for a GAP in DLP function. PMID:25941407

  1. The Small GTPase ROP6 Interacts with NFR5 and Is Involved in Nodule Formation in Lotus japonicus1[C][W][OA

    PubMed Central

    Ke, Danxia; Fang, Qing; Chen, Chunfen; Zhu, Hui; Chen, Tao; Chang, Xiaojun; Yuan, Songli; Kang, Heng; Ma, Lian; Hong, Zonglie; Zhang, Zhongming

    2012-01-01

    Nod Factor Receptor5 (NFR5) is an atypical receptor-like kinase, having no activation loop in the protein kinase domain. It forms a heterodimer with NFR1 and is required for the early plant responses to Rhizobium infection. A Rho-like small GTPase from Lotus japonicus was identified as an NFR5-interacting protein. The amino acid sequence of this Rho-like GTPase is closest to the Arabidopsis (Arabidopsis thaliana) ROP6 and Medicago truncatula ROP6 and was designated as LjROP6. The interaction between Rop6 and NFR5 occurred both in vitro and in planta. No interaction between Rop6 and NFR1 was observed. Green fluorescent protein-tagged ROP6 was localized at the plasma membrane and cytoplasm. The interaction between ROP6 and NFR5 appeared to take place at the plasma membrane. The expression of the ROP6 gene could be detected in vascular tissues of Lotus roots. After inoculation with Mesorhizobium loti, elevated levels of ROP6 expression were found in the root hairs, root tips, vascular bundles of roots, nodule primordia, and young nodules. In transgenic hairy roots expressing ROP6 RNA interference constructs, Rhizobium entry into the root hairs did not appear to be affected, but infection thread growth through the root cortex were severely inhibited, resulting in the development of fewer nodules per plant. These data demonstrate a role of ROP6 as a positive regulator of infection thread formation and nodulation in L. japonicus. PMID:22434040

  2. Discovery and characterization of small molecules that target the GTPase Ral

    NASA Astrophysics Data System (ADS)

    Yan, Chao; Liu, Degang; Li, Liwei; Wempe, Michael F.; Guin, Sunny; Khanna, May; Meier, Jeremy; Hoffman, Brenton; Owens, Charles; Wysoczynski, Christina L.; Nitz, Matthew D.; Knabe, William E.; Ahmed, Mansoor; Brautigan, David L.; Paschal, Bryce M.; Schwartz, Martin A.; Jones, David N. M.; Ross, David; Meroueh, Samy O.; Theodorescu, Dan

    2014-11-01

    The Ras-like GTPases RalA and RalB are important drivers of tumour growth and metastasis. Chemicals that block Ral function would be valuable as research tools and for cancer therapeutics. Here we used protein structure analysis and virtual screening to identify drug-like molecules that bind to a site on the GDP-bound form of Ral. The compounds RBC6, RBC8 and RBC10 inhibited the binding of Ral to its effector RALBP1, as well as inhibiting Ral-mediated cell spreading of murine embryonic fibroblasts and anchorage-independent growth of human cancer cell lines. The binding of the RBC8 derivative BQU57 to RalB was confirmed by isothermal titration calorimetry, surface plasmon resonance and 1H-15N transverse relaxation-optimized spectroscopy (TROSY) NMR spectroscopy. RBC8 and BQU57 show selectivity for Ral relative to the GTPases Ras and RhoA and inhibit tumour xenograft growth to a similar extent to the depletion of Ral using RNA interference. Our results show the utility of structure-based discovery for the development of therapeutics for Ral-dependent cancers.

  3. RalA, a GTPase targeted by miR-181a, promotes transformation and progression by activating the Ras-related signaling pathway in chronic myelogenous leukemia

    PubMed Central

    Luo, Xiaochuang; Yang, Juhua; Li, Yumin; Li, Tianfu; Wang, Ruirui; Fei, Jia

    2016-01-01

    BCR/ABL is a well-known activator of multiple signaling pathways. RalA, a Ras downstream signaling molecule and a small GTPase, plays an important role in Bcr-Abl-induced leukemogenesis but the exact mechanism remains elusive. Here, we show that RalA GTPase activity is commonly high in chronic myelogenous leukemia (CML) cell lines and patient samples. Overexpression of RalA results in malignant transformation and progression, and induces resistance to imatinib (IM) in BaF3 and K562 cell lines. RalA reduced survival and led to IM resistance in a xenografted mouse model. Ablation of RalA by either siRNA or miR-181a, a RalA targeting microRNA, attenuated the malignant phenotypes in K562 cells. RBC8, a selective Ral inhibitor, enhanced the inhibitory effects of IM in K562, KCL22 and BaF3-P210 cells. Interestingly, the phospho-specific protein microarray assay revealed that multiple phosphorylation signal proteins were decreased by RalA inhibition, including SAPK, JNK, SRC, VEGFR2, P38 MAPK, c-Kit, JunB, and Keratin18. Among them, P38 MAPK and SAPK/JNK are Ras downstream signaling kinases. Taken together, RalA GTPase might be an important oncogene activating the Ras-related signaling pathway in CML. PMID:26967392

  4. Activation of Dbl restores migration in polyamine-depleted intestinal epithelial cells via Rho-GTPases.

    PubMed

    Ray, Ramesh M; Bavaria, Mitulkumar N; Bhattacharya, Sujoy; Johnson, Leonard R

    2011-06-01

    Integrin binding to the extracellular matrix (ECM) activated Rho GTPases, Src, and focal adhesion kinase in intestinal epithelial cells (IEC)-6. Polyamine depletion inhibited activities of Rac1, RhoA, and Cdc42 and thereby migration. However, constitutively active (CA) Rac1 expression abolished the inhibitory effect of polyamine depletion, indicating that polyamines are involved in a process upstream of Rac1. In the present study, we examined the role of polyamines in the regulation of the guanine nucleotide exchange factor, diffuse B-cell lymphoma (Dbl), for Rho GTPases. Polyamine depletion decreased the level as well as the activation of Dbl protein. Dbl knockdown by siRNA altered cytoskeletal structure and decreased Rac1 activity and migration. Cells expressing CA-Dbl increased migration, Rac1 activity, and proliferation. CA-Dbl restored migration in polyamine-depleted cells by activating RhoA, Rac1, and Cdc42. CA-Dbl caused extensive reorganization of the F-actin cortex into stress fibers. Inhibition of Rac1 by NSC23766 significantly decreased migration of vector-transfected cells and CA-Dbl-transfected cells. However, the inhibition of migration was significantly higher in the vector-transfected cells compared with that seen in the CA-Dbl-transfected cells. Dbl localized in the perinuclear region in polyamine-depleted cells, whereas it localized with the stress fibers in control cells. CA-Dbl localized with stress fibers in both the control and polyamine-depleted cells. These results suggest that polyamines regulate the activation of Dbl, a membrane-proximal process upstream of Rac1.

  5. Regulation of cargo-selective endocytosis by dynamin 2 GTPase-activating protein girdin.

    PubMed

    Weng, Liang; Enomoto, Atsushi; Miyoshi, Hiroshi; Takahashi, Kiyofumi; Asai, Naoya; Morone, Nobuhiro; Jiang, Ping; An, Jian; Kato, Takuya; Kuroda, Keisuke; Watanabe, Takashi; Asai, Masato; Ishida-Takagishi, Maki; Murakumo, Yoshiki; Nakashima, Hideki; Kaibuchi, Kozo; Takahashi, Masahide

    2014-09-17

    In clathrin-mediated endocytosis (CME), specificity and selectivity for cargoes are thought to be tightly regulated by cargo-specific adaptors for distinct cellular functions. Here, we show that the actin-binding protein girdin is a regulator of cargo-selective CME. Girdin interacts with dynamin 2, a GTPase that excises endocytic vesicles from the plasma membrane, and functions as its GTPase-activating protein. Interestingly, girdin depletion leads to the defect in clathrin-coated pit formation in the center of cells. Also, we find that girdin differentially interacts with some cargoes, which competitively prevents girdin from interacting with dynamin 2 and confers the cargo selectivity for CME. Therefore, girdin regulates transferrin and E-cadherin endocytosis in the center of cells and their subsequent polarized intracellular localization, but has no effect on integrin and epidermal growth factor receptor endocytosis that occurs at the cell periphery. Our results reveal that girdin regulates selective CME via a mechanism involving dynamin 2, but not by operating as a cargo-specific adaptor.

  6. TSC1 controls distribution of actin fibers through its effect on function of Rho family of small GTPases and regulates cell migration and polarity.

    PubMed

    Ohsawa, Maki; Kobayashi, Toshiyuki; Okura, Hidehiro; Igarashi, Takashi; Mizuguchi, Masashi; Hino, Okio

    2013-01-01

    The tumor-suppressor genes TSC1 and TSC2 are mutated in tuberous sclerosis, an autosomal dominant multisystem disorder. The gene products of TSC1 and TSC2 form a protein complex that inhibits the signaling of the mammalian target of rapamycin complex1 (mTORC1) pathway. mTORC1 is a crucial molecule in the regulation of cell growth, proliferation and survival. When the TSC1/TSC2 complex is not functional, uncontrolled mTORC1 activity accelerates the cell cycle and triggers tumorigenesis. Recent studies have suggested that TSC1 and TSC2 also regulate the activities of Rac1 and Rho, members of the Rho family of small GTPases, and thereby influence the ensuing actin cytoskeletal organization at focal adhesions. However, how TSC1 contributes to the establishment of cell polarity is not well understood. Here, the relationship between TSC1 and the formation of the actin cytoskeleton was analyzed in stable TSC1-expressing cell lines originally established from a Tsc1-deficient mouse renal tumor cell line. Our analyses showed that cell proliferation and migration were suppressed when TSC1 was expressed. Rac1 activity in these cells was also decreased as was formation of lamellipodia and filopodia. Furthermore, the number of basal actin stress fibers was reduced; by contrast, apical actin fibers, originating at the level of the tight junction formed a network in TSC1-expressing cells. Treatment with Rho-kinase (ROCK) inhibitor diminished the number of apical actin fibers, but rapamycin had no effect. Thus, the actin fibers were regulated by the Rho-ROCK pathway independently of mTOR. In addition, apical actin fibers appeared in TSC1-deficient cells after inhibition of Rac1 activity. These results suggest that TSC1 regulates cell polarity-associated formation of actin fibers through the spatial regulation of Rho family of small GTPases.

  7. Recessive Inactivating Mutations in TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy.

    PubMed

    Chong, Jessica X; Caputo, Viviana; Phelps, Ian G; Stella, Lorenzo; Worgan, Lisa; Dempsey, Jennifer C; Nguyen, Alina; Leuzzi, Vincenzo; Webster, Richard; Pizzuti, Antonio; Marvin, Colby T; Ishak, Gisele E; Ardern-Holmes, Simone; Richmond, Zara; Bamshad, Michael J; Ortiz-Gonzalez, Xilma R; Tartaglia, Marco; Chopra, Maya; Doherty, Dan

    2016-04-01

    Infantile encephalopathies are a group of clinically and biologically heterogeneous disorders for which the genetic basis remains largely unknown. Here, we report a syndromic neonatal encephalopathy characterized by profound developmental disability, severe hypotonia, seizures, diminished respiratory drive requiring mechanical ventilation, brain atrophy, dysgenesis of the corpus callosum, cerebellar vermis hypoplasia, and facial dysmorphism. Biallelic inactivating mutations in TBCK (TBC1-domain-containing kinase) were independently identified by whole-exome sequencing as the cause of this condition in four unrelated families. Matching these families was facilitated by the sharing of phenotypic profiles and WES data in a recently released web-based tool (Geno2MP) that links phenotypic information to rare variants in families with Mendelian traits. TBCK is a putative GTPase-activating protein (GAP) for small GTPases of the Rab family and has been shown to control cell growth and proliferation, actin-cytoskeleton dynamics, and mTOR signaling. Two of the three mutations (c.376C>T [p.Arg126(∗)] and c.1363A>T [p.Lys455(∗)]) are predicted to truncate the protein, and loss of the major TBCK isoform was confirmed in primary fibroblasts from one affected individual. The third mutation, c.1532G>A (p.Arg511His), alters a conserved residue within the TBC1 domain. Structural analysis implicated Arg511 as a required residue for Rab-GAP function, and in silico homology modeling predicted impaired GAP function in the corresponding mutant. These results suggest that loss of Rab-GAP activity is the underlying mechanism of disease. In contrast to other disorders caused by dysregulated mTOR signaling associated with focal or global brain overgrowth, impaired TBCK function results in progressive loss of brain volume. PMID:27040692

  8. Recessive Inactivating Mutations in TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy

    PubMed Central

    Chong, Jessica X.; Caputo, Viviana; Phelps, Ian G.; Stella, Lorenzo; Worgan, Lisa; Dempsey, Jennifer C.; Nguyen, Alina; Leuzzi, Vincenzo; Webster, Richard; Pizzuti, Antonio; Marvin, Colby T.; Ishak, Gisele E.; Ardern-Holmes, Simone; Richmond, Zara; Bamshad, Michael J.; Ortiz-Gonzalez, Xilma R.; Tartaglia, Marco; Chopra, Maya; Doherty, Dan

    2016-01-01

    Infantile encephalopathies are a group of clinically and biologically heterogeneous disorders for which the genetic basis remains largely unknown. Here, we report a syndromic neonatal encephalopathy characterized by profound developmental disability, severe hypotonia, seizures, diminished respiratory drive requiring mechanical ventilation, brain atrophy, dysgenesis of the corpus callosum, cerebellar vermis hypoplasia, and facial dysmorphism. Biallelic inactivating mutations in TBCK (TBC1-domain-containing kinase) were independently identified by whole-exome sequencing as the cause of this condition in four unrelated families. Matching these families was facilitated by the sharing of phenotypic profiles and WES data in a recently released web-based tool (Geno2MP) that links phenotypic information to rare variants in families with Mendelian traits. TBCK is a putative GTPase-activating protein (GAP) for small GTPases of the Rab family and has been shown to control cell growth and proliferation, actin-cytoskeleton dynamics, and mTOR signaling. Two of the three mutations (c.376C>T [p.Arg126∗] and c.1363A>T [p.Lys455∗]) are predicted to truncate the protein, and loss of the major TBCK isoform was confirmed in primary fibroblasts from one affected individual. The third mutation, c.1532G>A (p.Arg511His), alters a conserved residue within the TBC1 domain. Structural analysis implicated Arg511 as a required residue for Rab-GAP function, and in silico homology modeling predicted impaired GAP function in the corresponding mutant. These results suggest that loss of Rab-GAP activity is the underlying mechanism of disease. In contrast to other disorders caused by dysregulated mTOR signaling associated with focal or global brain overgrowth, impaired TBCK function results in progressive loss of brain volume. PMID:27040692

  9. Recessive Inactivating Mutations in TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy.

    PubMed

    Chong, Jessica X; Caputo, Viviana; Phelps, Ian G; Stella, Lorenzo; Worgan, Lisa; Dempsey, Jennifer C; Nguyen, Alina; Leuzzi, Vincenzo; Webster, Richard; Pizzuti, Antonio; Marvin, Colby T; Ishak, Gisele E; Ardern-Holmes, Simone; Richmond, Zara; Bamshad, Michael J; Ortiz-Gonzalez, Xilma R; Tartaglia, Marco; Chopra, Maya; Doherty, Dan

    2016-04-01

    Infantile encephalopathies are a group of clinically and biologically heterogeneous disorders for which the genetic basis remains largely unknown. Here, we report a syndromic neonatal encephalopathy characterized by profound developmental disability, severe hypotonia, seizures, diminished respiratory drive requiring mechanical ventilation, brain atrophy, dysgenesis of the corpus callosum, cerebellar vermis hypoplasia, and facial dysmorphism. Biallelic inactivating mutations in TBCK (TBC1-domain-containing kinase) were independently identified by whole-exome sequencing as the cause of this condition in four unrelated families. Matching these families was facilitated by the sharing of phenotypic profiles and WES data in a recently released web-based tool (Geno2MP) that links phenotypic information to rare variants in families with Mendelian traits. TBCK is a putative GTPase-activating protein (GAP) for small GTPases of the Rab family and has been shown to control cell growth and proliferation, actin-cytoskeleton dynamics, and mTOR signaling. Two of the three mutations (c.376C>T [p.Arg126(∗)] and c.1363A>T [p.Lys455(∗)]) are predicted to truncate the protein, and loss of the major TBCK isoform was confirmed in primary fibroblasts from one affected individual. The third mutation, c.1532G>A (p.Arg511His), alters a conserved residue within the TBC1 domain. Structural analysis implicated Arg511 as a required residue for Rab-GAP function, and in silico homology modeling predicted impaired GAP function in the corresponding mutant. These results suggest that loss of Rab-GAP activity is the underlying mechanism of disease. In contrast to other disorders caused by dysregulated mTOR signaling associated with focal or global brain overgrowth, impaired TBCK function results in progressive loss of brain volume.

  10. Genetic Screening in C. Elegans Identifies Rho-GTPAse Activating Protein 6 as Novel HERG Regulator

    PubMed Central

    Potet, Franck; Petersen, Christina I.; Boutaud, Olivier; Shuai, Wen; Stepanovic, Svetlana Z.; Balser, Jeffrey R.; Kupershmidt, Sabina

    2009-01-01

    The human ether-a-go-go related gene (HERG) constitutes the pore forming subunit of IKr, a K+ current involved in repolarization of the cardiac action potential. While mutations in HERG predispose patients to cardiac arrhythmias (Long QT syndrome; LQTS), altered function of HERG regulators are undoubtedly LQTS risk factors. We have combined RNA interference with behavioral screening in Caenorhabditis elegans to detect genes that influence function of the HERG homolog, UNC-103. One such gene encodes the worm ortholog of the rho-GTPase activating protein 6 (ARHGAP6). In addition to its GAP function, ARHGAP6 induces cytoskeletal rearrangements and activates phospholipase C (PLC). Here we show that IKr recorded in cells co-expressing HERG and ARHGAP6 was decreased by 43% compared to HERG alone. Biochemical measurements of cell-surface associated HERG revealed that ARHGAP6 reduced membrane expression of HERG by 35%, which correlates well with the reduction in current. In an atrial myocyte cell line, suppression of endogenous ARHGAP6 by virally transduced shRNA led to a 53 % enhancement of IKr. ARHGAP6 effects were maintained when we introduced a dominant negative rho-GTPase, or ARHGAP6 devoid of rhoGAP function, indicating ARHGAP6 regulation of HERG is independent of rho activation. However, ARHGAP6 lost effectiveness when PLC was inhibited. We further determined that ARHGAP6 effects are mediated by a consensus SH3 binding domain within the C-terminus of HERG, although stable ARHGAP6-HERG complexes were not observed. These data link a rhoGAP-activated PLC pathway to HERG membrane expression and implicate this family of proteins as candidate genes in disorders involving HERG. PMID:19038263

  11. Bem3, a Cdc42 GTPase-activating protein, traffics to an intracellular compartment and recruits the secretory Rab GTPase Sec4 to endomembranes

    PubMed Central

    Mukherjee, Debarati; Sen, Arpita; Boettner, Douglas R.; Fairn, Gregory D.; Schlam, Daniel; Bonilla Valentin, Fernando J.; Michael McCaffery, J.; Hazbun, Tony; Staiger, Chris J.; Grinstein, Sergio; Lemmon, Sandra K.; Claudio Aguilar, R.

    2013-01-01

    Summary Cell polarity is essential for many cellular functions including division and cell-fate determination. Although RhoGTPase signaling and vesicle trafficking are both required for the establishment of cell polarity, the mechanisms by which they are coordinated are unclear. Here, we demonstrate that the yeast RhoGAP (GTPase activating protein), Bem3, is targeted to sites of polarized growth by the endocytic and recycling pathways. Specifically, deletion of SLA2 or RCY1 led to mislocalization of Bem3 to depolarized puncta and accumulation in intracellular compartments, respectively. Bem3 partitioned between the plasma membrane and an intracellular membrane-bound compartment. These Bem3-positive structures were polarized towards sites of bud emergence and were mostly observed during the pre-mitotic phase of apical growth. Cell biological and biochemical approaches demonstrated that this intracellular Bem3 compartment contained markers for both the endocytic and secretory pathways, which were reminiscent of the Spitzenkörper present in the hyphal tips of growing fungi. Importantly, Bem3 was not a passive cargo, but recruited the secretory Rab protein, Sec4, to the Bem3-containing compartments. Moreover, Bem3 deletion resulted in less efficient localization of Sec4 to bud tips during early stages of bud emergence. Surprisingly, these effects of Bem3 on Sec4 were independent of its GAP activity, but depended on its ability to efficiently bind endomembranes. This work unveils unsuspected and important details of the relationship between vesicle traffic and elements of the cell polarity machinery: (1) Bem3, a cell polarity and peripherally associated membrane protein, relies on vesicle trafficking to maintain its proper localization; and (2) in turn, Bem3 influences secretory vesicle trafficking. PMID:23943876

  12. Cdc42 and k-Ras Control Endothelial Tubulogenesis through Apical Membrane and Cytoskeletal Polarization: Novel Stimulatory Roles for GTPase Effectors, the Small GTPases, Rac2 and Rap1b, and Inhibitory Influence of Arhgap31 and Rasa1

    PubMed Central

    Norden, Pieter R.; Kim, Dae Joong; Barry, David M.; Cleaver, Ondine B.; Davis, George E.

    2016-01-01

    A critical and understudied property of endothelial cells is their ability to form lumens and tube networks. Although considerable information has been obtained concerning these issues, including the role of Cdc42 and Rac1 and their effectors such as Pak2, Pak4, Par6b, and co-regulators such as integrins, MT1-MMP and Par3; many key questions remain that are necessary to elucidate molecular and signaling requirements for this fundamental process. In this work, we identify new small GTPase regulators of EC tubulogenesis including k-Ras, Rac2 and Rap1b that act in conjunction with Cdc42 as well as the key downstream effectors, IQGAP1, MRCKβ, beta-Pix, GIT1, and Rasip1 (which can assemble into multiprotein complexes with key regulators including α2β1 integrin and MT1-MMP). In addition, we identify the negative regulators, Arhgap31 (by inactivating Cdc42 and Rac) and Rasa1 (by inactivating k-Ras) and the positive regulator, Arhgap29 (by inactivating RhoA) which play a major functional role during the EC tubulogenic process. Human EC siRNA suppression or mouse knockout of Rasip1 leads to identical phenotypes where ECs form extensive cord networks, but cannot generate lumens or tubes. Essential roles for these molecules during EC tubulogenesis include; i) establishment of asymmetric EC cytoskeletal polarization (subapical distribution of acetylated tubulin and basal membrane distribution of F-actin); and ii) directed membrane trafficking of pinocytic vacuoles or other intracellular vesicles along acetylated tubulin tracks to the developing apical membrane surface. Cdc42 co-localizes subapically with acetylated tubulin, while Rac1 and k-Ras strongly label vacuole/ vesicle membranes which accumulate and fuse together in a polarized, perinuclear manner. We observe polarized apical membrane and subapical accumulation of key GTPases and effectors regulating EC lumen formation including Cdc42, Rac1, Rac2, k-Ras, Rap1b, activated c-Raf and Rasip1 to control EC tube network

  13. Cdc42 and k-Ras Control Endothelial Tubulogenesis through Apical Membrane and Cytoskeletal Polarization: Novel Stimulatory Roles for GTPase Effectors, the Small GTPases, Rac2 and Rap1b, and Inhibitory Influence of Arhgap31 and Rasa1.

    PubMed

    Norden, Pieter R; Kim, Dae Joong; Barry, David M; Cleaver, Ondine B; Davis, George E

    2016-01-01

    A critical and understudied property of endothelial cells is their ability to form lumens and tube networks. Although considerable information has been obtained concerning these issues, including the role of Cdc42 and Rac1 and their effectors such as Pak2, Pak4, Par6b, and co-regulators such as integrins, MT1-MMP and Par3; many key questions remain that are necessary to elucidate molecular and signaling requirements for this fundamental process. In this work, we identify new small GTPase regulators of EC tubulogenesis including k-Ras, Rac2 and Rap1b that act in conjunction with Cdc42 as well as the key downstream effectors, IQGAP1, MRCKβ, beta-Pix, GIT1, and Rasip1 (which can assemble into multiprotein complexes with key regulators including α2β1 integrin and MT1-MMP). In addition, we identify the negative regulators, Arhgap31 (by inactivating Cdc42 and Rac) and Rasa1 (by inactivating k-Ras) and the positive regulator, Arhgap29 (by inactivating RhoA) which play a major functional role during the EC tubulogenic process. Human EC siRNA suppression or mouse knockout of Rasip1 leads to identical phenotypes where ECs form extensive cord networks, but cannot generate lumens or tubes. Essential roles for these molecules during EC tubulogenesis include; i) establishment of asymmetric EC cytoskeletal polarization (subapical distribution of acetylated tubulin and basal membrane distribution of F-actin); and ii) directed membrane trafficking of pinocytic vacuoles or other intracellular vesicles along acetylated tubulin tracks to the developing apical membrane surface. Cdc42 co-localizes subapically with acetylated tubulin, while Rac1 and k-Ras strongly label vacuole/ vesicle membranes which accumulate and fuse together in a polarized, perinuclear manner. We observe polarized apical membrane and subapical accumulation of key GTPases and effectors regulating EC lumen formation including Cdc42, Rac1, Rac2, k-Ras, Rap1b, activated c-Raf and Rasip1 to control EC tube network

  14. Crystal structure of M-Ras reveals a GTP-bound "off" state conformation of Ras family small GTPases.

    PubMed

    Ye, Min; Shima, Fumi; Muraoka, Shin; Liao, Jingling; Okamoto, Hidetsugu; Yamamoto, Masaki; Tamura, Atsuo; Yagi, Naoto; Ueki, Tatzuo; Kataoka, Tohru

    2005-09-01

    Although some members of Ras family small GTPases, including M-Ras, share the primary structure of their effector regions with Ras, they exhibit vastly different binding properties to Ras effectors such as c-Raf-1. We have solved the crystal structure of M-Ras in the GDP-bound and guanosine 5'-(beta,gamma-imido)triphosphate (Gpp(NH)p)-bound forms. The overall structure of M-Ras resembles those of H-Ras and Rap2A, except that M-Ras-Gpp(NH)p exhibits a distinctive switch I conformation, which is caused by impaired intramolecular interactions between Thr-45 (corresponding to Thr-35 of H-Ras) of the effector region and the gamma-phosphate of Gpp(NH)p. Previous 31P NMR studies showed that H-Ras-Gpp(NH)p exists in two interconverting conformations, states 1 and 2. Whereas state 2 is a predominant form of H-Ras and corresponds to the "on" conformation found in the complex with effectors, state 1 is thought to represent the "off" conformation, whose tertiary structure remains unknown. 31P NMR analysis shows that free M-Ras-Gpp(NH)p predominantly assumes the state 1 conformation, which undergoes conformational transition to state 2 upon association with c-Raf-1. These results indicate that the solved structure of M-Ras-Gp-p(NH)p corresponds to the state 1 conformation. The predominance of state 1 in M-Ras is likely to account for its weak binding ability to the Ras effectors, suggesting the importance of the tertiary structure factor in small GTPase-effector interaction. Further, the first determination of the state 1 structure provides a molecular basis for developing novel anti-cancer drugs as compounds that hold Ras in the state 1 "off" conformation. PMID:15994326

  15. A Small GTPase, OsRab6a, is Involved in the Regulation of Iron Homeostasis in Rice.

    PubMed

    Yang, An; Zhang, Wen-Hao

    2016-06-01

    Plants have evolved two distinct strategies to acquire iron (Fe) from soils. However, the regulatory mechanisms underlying the Fe acquisition remain largely elusive. There is emerging evidence that small GTPases are involved in the responses of plants to environmental cues. Here, we identified a gene encoding a small GTPase, OsRab6a, in rice and characterized its role in Fe acquisition by generating transgenic rice plants with overexpression and knockdown of OsRab6a OsRab6a shared conserved functional domains with other known members of the Rab subfamily and localized ubiquitously in the cytoplasm and nucleus. The expression of OsRab6a was rapidly and transiently up-regulated by Fe deficiency. No differences in growth and development among the OsRab6a-overexpression, OsRab6a-RNAi (RNA interference) and wild-type plants were detected when grown in Fe-sufficient medium. However, overexpression of OsRab6a in rice plants conferred greater tolerance to Fe deficiency than RNAi and wild-type plants, as evidenced by higher seedling height, and greater biomass, Chl contents and Fe concentrations in shoots, roots and grains in the overexpression lines than wild-type and RNAi plants. Moreover, the overexpression lines exhibited larger root systems than wild-type and RNAi plants in Fe-deficient medium. Exposure to Fe-deficient medium led to up-regulation of OsIRO2, OsIRT1, OsNAS1 and OsNAS2 in both wild-type and transgenic rice plants, with the magnitude of up-regulation positively correlated with the expression levels of OsRab6a These results may suggest that OsRab6a plays an important role in the regulation of Fe acquisition in rice plants by modulating physiological processes involved in Fe acquisition and root system architecture in response to Fe-deficient medium. PMID:27257291

  16. DYNLT (Tctex-1) forms a tripartite complex with dynein intermediate chain and RagA, hence linking this small GTPase to the dynein motor.

    PubMed

    Merino-Gracia, Javier; García-Mayoral, María Flor; Rapali, Peter; Valero, Ruth Ana; Bruix, Marta; Rodríguez-Crespo, Ignacio

    2015-10-01

    It has been suggested that DYNLT, a dynein light chain known to bind to various cellular and viral proteins, can function as a microtubule-cargo adaptor. Recent data showed that DYNLT links the small GTPase Rab3D to microtubules and, for this to occur, the DYNLT homodimer needs to display a binding site for dynein intermediate chain together with a binding site for the small GTPase. We have analysed in detail how RagA, another small GTPase, associates to DYNLT. After narrowing down the binding site of RagA to DYNLT we could identify that a β strand, part of the RagA G3 box involved in nucleotide binding, mediates this association. Interestingly, we show that both microtubule-associated DYNLT and cytoplasmic DYNLT are equally able to bind to the small GTPases Rab3D and RagA. Using NMR spectroscopy, we analysed the binding of dynein intermediate chain and RagA to mammalian DYNLT. Our experiments identify residues of DYNLT affected by dynein intermediate chain binding and residues affected by RagA binding, hence distinguishing the docking site for each of them. In summary, our results shed light on the mechanisms adopted by DYNLT when binding to protein cargoes that become transported alongside microtubules bound to the dynein motor.

  17. Optineurin mediates a negative regulation of Rab8 by the GTPase-activating protein TBC1D17.

    PubMed

    Vaibhava, Vipul; Nagabhushana, Ananthamurthy; Chalasani, Madhavi Latha Somaraju; Sudhakar, Cherukuri; Kumari, Asha; Swarup, Ghanshyam

    2012-11-01

    Rab GTPases regulate various membrane trafficking pathways but the mechanisms by which GTPase-activating proteins recognise specific Rabs are not clear. Rab8 is involved in controlling several trafficking processes, including the trafficking of transferrin receptor from the early endosome to the recycling endosome. Here, we provide evidence to show that TBC1D17, a Rab GTPase-activating protein, through its catalytic activity, regulates Rab8-mediated endocytic trafficking of transferrin receptor. Optineurin, a Rab8-binding effector protein, mediates the interaction and colocalisation of TBC1D17 with Rab8. A non-catalytic region of TBC1D17 is required for direct interaction with optineurin. Co-expression of Rab8, but not other Rabs tested, rescues the inhibition of transferrin receptor trafficking by TBC1D17. The activated GTP-bound form of Rab8 is localised to the tubules emanating from the endocytic recycling compartment. Through its catalytic activity, TBC1D17 inhibits recruitment of Rab8 to the tubules and reduces colocalisation of transferrin receptor and Rab8. Knockdown of optineurin or TBC1D17 results in enhanced recruitment of Rab8 to the tubules. A glaucoma-associated mutant of optineurin, E50K, causes enhanced inhibition of Rab8 by TBC1D17, resulting in defective endocytic recycling of transferrin receptor. Our results show that TBC1D17, through its interaction with optineurin, regulates Rab8-mediated endocytic recycling of transferrin receptor and recruitment of Rab8 to the endocytic recycling tubules. We describe a mechanism of regulating a Rab GTPase by an effector protein (optineurin) that acts as an adaptor to bring together a Rab (Rab8) and its GTPase-activating protein (TBC1D17).

  18. A Stretch of Polybasic Residues Mediates Cdc42 GTPase-activating Protein (CdGAP) Binding to Phosphatidylinositol 3,4,5-Trisphosphate and Regulates Its GAP Activity*

    PubMed Central

    Karimzadeh, Fereshteh; Primeau, Martin; Mountassif, Driss; Rouiller, Isabelle; Lamarche-Vane, Nathalie

    2012-01-01

    The Rho family of small GTPases are membrane-associated molecular switches involved in the control of a wide range of cellular activities, including cell migration, adhesion, and proliferation. Cdc42 GTPase-activating protein (CdGAP) is a phosphoprotein showing GAP activity toward Rac1 and Cdc42. CdGAP activity is regulated in an adhesion-dependent manner and more recently, we have identified CdGAP as a novel molecular target in signaling and an essential component in the synergistic interaction between TGFβ and Neu/ErbB-2 signaling pathways in breast cancer cells. In this study, we identified a small polybasic region (PBR) preceding the RhoGAP domain that mediates specific binding to negatively charged phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3). In vitro reconstitution of membrane vesicles loaded with prenylated Rac1 demonstrates that the PBR is required for full activation of CdGAP in the presence of PI(3,4,5)P3. In fibroblast cells, the expression of CdGAP protein mutants lacking an intact PBR shows a significant reduced ability of the protein mutants to induce cell rounding or to mediate negative effects on cell spreading. Furthermore, an intact PBR is required for CdGAP to inactivate Rac1 signaling into cells, whereas it is not essential in an in vitro context. Altogether, these studies reveal that specific interaction between negatively charged phospholipid PI(3,4,5)P3 and the stretch of polybasic residues preceding the RhoGAP domain regulates CdGAP activity in vivo and is required for its cellular functions. PMID:22518840

  19. Catalysis of GTP hydrolysis by small GTPases at atomic detail by integration of X-ray crystallography, experimental, and theoretical IR spectroscopy.

    PubMed

    Rudack, Till; Jenrich, Sarah; Brucker, Sven; Vetter, Ingrid R; Gerwert, Klaus; Kötting, Carsten

    2015-10-01

    Small GTPases regulate key processes in cells. Malfunction of their GTPase reaction by mutations is involved in severe diseases. Here, we compare the GTPase reaction of the slower hydrolyzing GTPase Ran with Ras. By combination of time-resolved FTIR difference spectroscopy and QM/MM simulations we elucidate that the Mg(2+) coordination by the phosphate groups, which varies largely among the x-ray structures, is the same for Ran and Ras. A new x-ray structure of a Ran·RanBD1 complex with improved resolution confirmed this finding and revealed a general problem with the refinement of Mg(2+) in GTPases. The Mg(2+) coordination is not responsible for the much slower GTPase reaction of Ran. Instead, the location of the Tyr-39 side chain of Ran between the γ-phosphate and Gln-69 prevents the optimal positioning of the attacking water molecule by the Gln-69 relative to the γ-phosphate. This is confirmed in the RanY39A·RanBD1 crystal structure. The QM/MM simulations provide IR spectra of the catalytic center, which agree very nicely with the experimental ones. The combination of both methods can correlate spectra with structure at atomic detail. For example the FTIR difference spectra of RasA18T and RanT25A mutants show that spectral differences are mainly due to the hydrogen bond of Thr-25 to the α-phosphate in Ran. By integration of x-ray structure analysis, experimental, and theoretical IR spectroscopy the catalytic center of the x-ray structural models are further refined to sub-Å resolution, allowing an improved understanding of catalysis.

  20. Catalysis of GTP Hydrolysis by Small GTPases at Atomic Detail by Integration of X-ray Crystallography, Experimental, and Theoretical IR Spectroscopy*

    PubMed Central

    Rudack, Till; Jenrich, Sarah; Brucker, Sven; Vetter, Ingrid R.; Gerwert, Klaus; Kötting, Carsten

    2015-01-01

    Small GTPases regulate key processes in cells. Malfunction of their GTPase reaction by mutations is involved in severe diseases. Here, we compare the GTPase reaction of the slower hydrolyzing GTPase Ran with Ras. By combination of time-resolved FTIR difference spectroscopy and QM/MM simulations we elucidate that the Mg2+ coordination by the phosphate groups, which varies largely among the x-ray structures, is the same for Ran and Ras. A new x-ray structure of a Ran·RanBD1 complex with improved resolution confirmed this finding and revealed a general problem with the refinement of Mg2+ in GTPases. The Mg2+ coordination is not responsible for the much slower GTPase reaction of Ran. Instead, the location of the Tyr-39 side chain of Ran between the γ-phosphate and Gln-69 prevents the optimal positioning of the attacking water molecule by the Gln-69 relative to the γ-phosphate. This is confirmed in the RanY39A·RanBD1 crystal structure. The QM/MM simulations provide IR spectra of the catalytic center, which agree very nicely with the experimental ones. The combination of both methods can correlate spectra with structure at atomic detail. For example the FTIR difference spectra of RasA18T and RanT25A mutants show that spectral differences are mainly due to the hydrogen bond of Thr-25 to the α-phosphate in Ran. By integration of x-ray structure analysis, experimental, and theoretical IR spectroscopy the catalytic center of the x-ray structural models are further refined to sub-Å resolution, allowing an improved understanding of catalysis. PMID:26272610

  1. E-cadherin dis-engagement activates the Rap1 GTPase

    PubMed Central

    Asuri, Sirisha; Yan, Jingliang; Paranavitana, Nivanka C.; Quilliam, Lawrence A.

    2008-01-01

    E-cadherin based adherens junctions are finely regulated by multiple cellular signaling events. Here we show that the Ras-related Rap1 GTPase is enriched in regions of nascent cell-cell contacts and strengthens E-cadherin junctions: constitutively active Rap1 expressing MDCK cells exhibit increased junctional contact and resisted calcium depletion-induced cell-cell junction disruption. E-cadherin disengagement activated Rap1 and this correlated with E-cadherin association with the Rap GEFs, C3G and PDZ-GEF I. PDZ-GEF I associated with E-cadherin and β-catenin whereas C3G interaction with E-cadherin did not involve β-catenin. Knockdown of PDZ-GEF I in MDCK cells decreased Rap1 activity following E-cadherin junction disruption. We hereby show that Rap1 plays a role in the maintenance and repair of E-cadherin junctions and is activated via an “outside-in” signaling pathway initiated by E-cadherin and mediated at least in part by PDZ-GEF I. PMID:18767072

  2. Effect of Angiotensin II and Small GTPase Ras Signaling Pathway Inhibition on Early Renal Changes in a Murine Model of Obstructive Nephropathy

    PubMed Central

    Rodríguez-Peña, Ana B.; Fuentes-Calvo, Isabel; Docherty, Neil G.; Arévalo, Miguel; Grande, María T.; Eleno, Nélida; Pérez-Barriocanal, Fernando; López-Novoa, José M.

    2014-01-01

    Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis. PMID:25101263

  3. Effect of angiotensin II and small GTPase Ras signaling pathway inhibition on early renal changes in a murine model of obstructive nephropathy.

    PubMed

    Rodríguez-Peña, Ana B; Fuentes-Calvo, Isabel; Docherty, Neil G; Arévalo, Miguel; Grande, María T; Eleno, Nélida; Pérez-Barriocanal, Fernando; López-Novoa, José M

    2014-01-01

    Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis.

  4. Rac GTPase Activating Protein ARHGAP25 Regulates Leukocyte Transendothelial Migration in Mice.

    PubMed

    Csépányi-Kömi, Roland; Wisniewski, Éva; Bartos, Balázs; Lévai, Petra; Németh, Tamás; Balázs, Bernadett; Kurz, Angela R M; Bierschenk, Susanne; Sperandio, Markus; Ligeti, Erzsébet

    2016-10-01

    ARHGAP25 is a Rac-specific GTPase-activating protein that is expressed primarily in hematopoietic cells. The involvement of ARHGAP25 in regulating the recruitment of leukocytes to inflammatory sites was investigated in genetically modified mice. Using intravital microscopy, we show that Arhgap25 deficiency affects all steps of leukocyte recruitment with a predominant enhancement of transendothelial migration of neutrophilic granulocytes. Increased transmigration of Arhgap25-deficient leukocytes is demonstrated in inflamed cremaster muscle venules, in a peritonitis model, and in an in vitro chemotaxis assay. Using bone marrow chimeric mice lacking ARHGAP25 in the hematopoietic compartment, we show that enhanced migration in the absence of ARHGAP25 is due to defective leukocyte function. In search for potential mechanisms of ARHGAP25-regulated migration of neutrophils, we detected an increase in the amount of active, GTP-bound Rac and Rac-dependent cytoskeletal changes in the absence of ARHGAP25, suggesting a critical role of ARHGAP25 in counterbalancing the Rac-activating effect of nucleotide exchange factors. Taken together, using Arhgap25-deficient mice, we identified ARHGAP25 as a relevant negative regulator of leukocyte transendothelial migration. PMID:27566826

  5. The Rho GTPase-activating proteins RGA-3 and RGA-4 are required to set the initial size of PAR domains in Caenorhabditis elegans one-cell embryos.

    PubMed

    Schonegg, Stephanie; Constantinescu, Alexandru T; Hoege, Carsten; Hyman, Anthony A

    2007-09-18

    Caenorhabditis elegans embryos establish cortical domains of PAR proteins of reproducible size before asymmetric cell division. The ways in which the size of these domains is set remain unknown. Here we identify the GTPase-activating proteins (GAPs) RGA-3 and RGA-4, which regulate the activity of the small GTPase RHO-1. rga-3/4(RNAi) embryos have a hypercontractile cortex, and the initial relative size of their anterior and posterior PAR domains is altered. Thus, RHO-1 activity appears to control the level of cortical contractility and concomitantly the size of cortical domains. These data support the idea that in C. elegans embryos the initial size of the PAR domains is set by regulating the contractile activity of the acto-myosin cytoskeleton through the activity of RHO-1. RGA-3/4 have functions different from CYK-4, the other known GAP required for the first cell division, showing that different GAPs cooperate to control the activity of the acto-myosin cytoskeleton in the first cell division of C. elegans embryos.

  6. Regulation of Plasticity and Fibrogenic Activity of Trabecular Meshwork Cells by Rho GTPase Signaling

    PubMed Central

    Pattabiraman, Padmanabhan P; Maddala, Rupalatha; Rao, Ponugoti Vasantha

    2014-01-01

    Glaucoma, a prevalent blinding disease is commonly associated with increased intraocular pressure due to impaired aqueous humor (AH) drainage through the trabecular meshwork (TM). Although increased TM tissue contraction and stiffness in association with accumulation of extracellular matrix (ECM) are believed to be partly responsible for increased resistance to AH outflow, the extracellular cues and intracellular mechanisms regulating TM cell contraction and ECM production are not well defined. This study tested the hypothesis that sustained activation of Rho GTPase signaling induced by lysophosphatidic acid (LPA), TGF-β and connective tissue growth factor (CTGF) influences TM cell plasticity and fibrogenic activity which may eventually impact resistance to AH outflow. Various experiments performed using human TM cells revealed that constitutively active RhoA (RhoAV14), TGF-β2, LPA and CTGF significantly increase the levels and expression of Fibroblast Specific Protein-1 (FSP-1), α-smooth muscle actin (αSMA), collagen-1A1 and secretory total collagen, as determined by q-RT-PCR, immunofluorescence, immunoblot, flow cytometry and the Sircol assay. Significantly, these changes appear to be mediated by Serum Response Factor (SRF), myocardin-related transcription factor (MRTF-A), Slug and Twist-1, which are transcriptional regulators known to control cell plasticity, myofibroblast generation/activation and fibrogenic activity. Additionally, the Rho kinase inhibitor-Y27632 and anti-fibrotic agent-pirfenidone were both found to suppress the TGF-β2-induced expression of αSMA, FSP-1 and collagen-1A1. Taken together, these observations demonstrate the significance of RhoA/Rho kinase signaling in regulation of TM cell plasticity, fibrogenic activity and myofibroblast activation, events with potential implications for the pathobiology of elevated intraocular pressure in glaucoma patients. PMID:24318513

  7. Hepatitis C Virus Co-Opts Ras-GTPase-Activating Protein-Binding Protein 1 for Its Genome Replication ▿

    PubMed Central

    Yi, Zhigang; Pan, Tingting; Wu, Xianfang; Song, Wuhui; Wang, Shanshan; Xu, Yan; Rice, Charles M.; MacDonald, Margaret R.; Yuan, Zhenghong

    2011-01-01

    We recently reported that Ras-GTPase-activating protein-binding protein 1 (G3BP1) interacts with hepatitis C virus (HCV) nonstructural protein (NS)5B and the 5′ end of the HCV minus-strand RNA. In the current study we confirmed these observations using immunoprecipitation and RNA pulldown assays, suggesting that G3BP1 might be an HCV replication complex (RC) component. In replicon cells, transfected G3BP1 interacts with multiple HCV nonstructural proteins. Using immunostaining and confocal microscopy, we demonstrate that G3BP1 is colocalized with HCV RCs in replicon cells. Small interfering RNA (siRNA)-mediated knockdown of G3BP1 moderately reduces established HCV RNA replication in HCV replicon cells and dramatically reduces HCV replication-dependent colony formation and cell-culture-produced HCV (HCVcc) infection. In contrast, knockdown of G3BP2 has no effect on HCVcc infection. Transient replication experiments show that G3BP1 is involved in HCV genome amplification. Thus, G3BP1 is associated with HCV RCs and may be co-opted as a functional RC component for viral replication. These findings may facilitate understanding of the molecular mechanisms of HCV genome replication. PMID:21561913

  8. Regulation of Cdc42 polarization by the Rsr1 GTPase and Rga1, a Cdc42 GTPase-activating protein, in budding yeast

    PubMed Central

    Lee, Mid Eum; Lo, Wing-Cheong; Miller, Kristi E.; Chou, Ching-Shan; Park, Hay-Oak

    2015-01-01

    ABSTRACT Cdc42 plays a central role in establishing polarity in yeast and animals, yet how polarization of Cdc42 is achieved in response to spatial cues is poorly understood. Using live-cell imaging, we found distinct dynamics of Cdc42 polarization in haploid budding yeast in correlation with two temporal steps of the G1 phase. The position at which the Cdc42–GTP cluster develops changes rapidly around the division site during the first step but becomes stabilized in the second step, suggesting that an axis of polarized growth is determined in mid G1. Cdc42 polarization in the first step and its proper positioning depend on Rsr1 and its GTPase-activating protein (GAP) Bud2. Interestingly, Rga1, a Cdc42 GAP, exhibits transient localization to a site near the bud neck and to the division site during cytokinesis and G1, and this temporal change of Rga1 distribution is necessary for determination of a proper growth site. Mathematical modeling suggests that a proper axis of Cdc42 polarization in haploid cells might be established through a biphasic mechanism involving sequential positive feedback and transient negative feedback. PMID:25908844

  9. Activation of the Rab7 GTPase by the MON1-CCZ1 Complex Is Essential for PVC-to-Vacuole Trafficking and Plant Growth in Arabidopsis.

    PubMed

    Cui, Yong; Zhao, Qiong; Gao, Caiji; Ding, Yu; Zeng, Yonglun; Ueda, Takashi; Nakano, Akihiko; Jiang, Liwen

    2014-05-13

    Rab GTPases serve as multifaceted organizers during vesicle trafficking. Rab7, a member of the Rab GTPase family, has been shown to perform various essential functions in endosome trafficking and in endosome-to-lysosome trafficking in mammalian systems. The Arabidopsis thaliana genome encodes eight putative Rab7 homologs; however, the detailed function and activation mechanism of Rab7 in plants remain unknown. Here, we demonstrate that Arabidopsis RABG3f, a member of the plant Rab7 small GTPase family, localizes to prevacuolar compartments (PVCs) and the tonoplast. The proper activation of Rab7 is essential for both PVC-to-vacuole trafficking and vacuole biogenesis. Expression of a dominant-negative Rab7 mutant (RABG3f(T22N)) induces the formation of enlarged PVCs and affects vacuole morphology in plant cells. We also identify Arabidopsis MON1 (MONENSIN SENSITIVITY1) and CCZ1 (CALCIUM CAFFEINE ZINC SENSITIVITY1) proteins as a dimeric complex that functions as the Rab7 guanine nucleotide exchange factor. The MON1-CCZ1 complex also serves as the Rab5 effector to mediate Rab5-to-Rab7 conversion on PVCs. Loss of functional MON1 causes the formation of enlarged Rab5-positive PVCs that are separated from Rab7-positive endosomes. Similar to the dominant-negative Rab7 mutant, the mon1 mutants show pleiotropic growth defects, fragmented vacuoles, and altered vacuolar trafficking. Thus, Rab7 activation by the MON1-CCZ1 complex is critical for vacuolar trafficking, vacuole biogenesis, and plant growth.

  10. How to get to the right place at the right time: Rab/Ypt small GTPases and vesicle transport.

    PubMed

    Ragnini-Wilson, A

    1999-01-01

    Vesicles often must be transported over long distances in a very crowded cytoplasmic environment encumbered by the cytoskeleton and membranes of different origin that provide an important barrier to their free diffusion. In animal cells with specialised tasks, such as neurons or endothelial cells, vesicles that are directed to the cell periphery are linked to the microtubular cytoskeleton tracks via association with motor proteins that allow their vectorial movement. In lower eukaryotes the actin cytoskeleton plays a prominent role in organising vesicle movement during polarised growth and mating. The Ras-like small GTPases of the Rab/Ypt family play an essential role in vesicle trafficking and due to their diversity and specific localisation have long been implicated in the selective delivery of vesicles. Recent evidence has cast doubt on the classical point of view of how this class of proteins acts in vesicle transport and suggests their involvement also in the events that permit vesicle anchoring to the cytoskeleton. Therefore, after a brief review of what is known about how vesicle movement is achieved in mammalian and yeast systems, and how Rab/Ypt proteins regulate the vesicle predocking events, it is discussed how these proteins might participate in the events that lead to vesicle movement through association with the cytoskeleton machinery. PMID:18987791

  11. Molecular pathways: targeting the kinase effectors of RHO-family GTPases.

    PubMed

    Prudnikova, Tatiana Y; Rawat, Sonali J; Chernoff, Jonathan

    2015-01-01

    RHO GTPases, members of the RAS superfamily of small GTPases, are adhesion and growth factor-activated molecular switches that play important roles in tumor development and progression. When activated, RHO-family GTPases such as RAC1, CDC42, and RHOA, transmit signals by recruiting a variety of effector proteins, including the protein kinases PAK, ACK, MLK, MRCK, and ROCK. Genetically induced loss of RHO function impedes transformation by a number of oncogenic stimuli, leading to an interest in developing small-molecule inhibitors that either target RHO GTPases directly, or that target their downstream protein kinase effectors. Although inhibitors of RHO GTPases and their downstream signaling kinases have not yet been widely adopted for clinical use, their potential value as cancer therapeutics continues to facilitate pharmaceutical research and development and is a promising therapeutic strategy.

  12. Tax-interacting protein 1 coordinates the spatiotemporal activation of Rho GTPases and regulates the infiltrative growth of human glioblastoma

    PubMed Central

    Wang, Hailun; Han, Miaojun; Whetsell, William; Wang, Jialiang; Rich, Jeremy; Hallahan, Dennis; Han, Zhaozhong

    2014-01-01

    PDZ domains represent one group of the major structural units that mediate protein interactions in intercellular contact, signal transduction and assembly of biological machineries. TIP-1 protein is composed of a single PDZ domain that distinguishes TIP-1 from other PDZ domain proteins that more often contain multiple protein domains and function as scaffolds for protein complex assembly. However, the biological functions of TIP-1, especially in cell transformation and tumor progression, are still controversial as observed in a variety of cell types. In this study, we have identified ARHGEF7, a guanine nucleotide exchange factor (GEF) for Rho GTPases, as one novel TIP-1 interacting protein in human glioblastoma cells. We found that the presence of TIP-1 protein is essential to the intracellular redistribution of ARHGEF7 and rhotekin, one Rho effector, and the spatiotemporally coordinated activation of Rho GTPases (RhoA, Cdc42 and Rac1) in migrating glioblastoma cells. TIP-1 knockdown resulted in both aberrant localization of ARHGEF7 and rhotekin, as well as abnormal activation of Rho GTPases that was accompanied with impaired motility of glioblastoma cells. Furthermore, TIP-1 knockdown suppressed tumor cell dispersal in orthotopic glioblastoma murine models. We also observed high levels of TIP-1 expression in human glioblastoma specimens, and the elevated TIP-1 levels are associated with advanced staging and poor prognosis in glioma patients. Although more studies are needed to further dissect the mechanism(s) by which TIP-1 modulates the intracellular redistribution and activation of Rho GTPases, this study suggests that TIP-1 holds potential as both a prognostic biomarker and a therapeutic target of malignant gliomas. PMID:23563176

  13. CDC42 Gtpase Activation Affects Hela Cell DNA Repair and Proliferation Following UV Radiation-Induced Genotoxic Stress.

    PubMed

    Ascer, Liv G; Magalhaes, Yuli T; Espinha, Gisele; Osaki, Juliana H; Souza, Renan C; Forti, Fabio L

    2015-09-01

    Cell division control protein 42 (CDC42) homolog is a small Rho GTPase enzyme that participates in such processes as cell cycle progression, migration, polarity, adhesion, and transcription. Recent studies suggest that CDC42 is a potent tumor suppressor in different tissues and is related to aging processes. Although DNA damage is crucial in aging, a potential role for CDC42 in genotoxic stress remains to be explored. Migration, survival/proliferation and DNA damage/repair experiments were performed to demonstrate CDC42 involvement in the recovery of HeLa cells exposed to ultraviolet radiation-induced stress. Sub-lines of HeLa cells ectopically expressing the constitutively active CDC42-V12 mutant were generated to examine whether different CDC42-GTP backgrounds might reflect different sensitivities to UV radiation. Our results show that CDC42 constitutive activation does not interfere with HeLa cell migration after UV radiation. However, the minor DNA damage exhibited by the CDC42-V12 mutant exposed to UV radiation most likely results in cell cycle arrest at the G2/M checkpoint and reduced proliferation and survival. HeLa cells and Mock clones, which express endogenous wild-type CDC42 and show normal activity, are more resistant to UV radiation. None of these effects are altered by pharmacological CDC42 inhibition. Finally, the phosphorylation status of the DNA damage response proteins γ-H2AX and p-Chk1 was found to be delayed and attenuated, respectively, in CDC42-V12 clones. In conclusion, the sensitivity of HeLa cells to ultraviolet radiation increases with CDC42 over-activation due to inadequate DNA repair signaling, culminating in G2/M cell accumulation, which is translated into reduced cellular proliferation and survival.

  14. Secretory Pathway-Dependent Localization of the Saccharomyces cerevisiae Rho GTPase-Activating Protein Rgd1p at Growth Sites

    PubMed Central

    Lefèbvre, Fabien; Prouzet-Mauléon, Valérie; Hugues, Michel; Crouzet, Marc; Vieillemard, Aurélie; McCusker, Derek; Thoraval, Didier

    2012-01-01

    Establishment and maintenance of cell polarity in eukaryotes depends upon the regulation of Rho GTPases. In Saccharomyces cerevisiae, the Rho GTPase activating protein (RhoGAP) Rgd1p stimulates the GTPase activities of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively. Consistent with the distribution of Rho3p and Rho4p, Rgd1p is found mostly in areas of polarized growth during cell cycle progression. Rgd1p was mislocalized in mutants specifically altered for Golgi apparatus-based phosphatidylinositol 4-P [PtdIns(4)P] synthesis and for PtdIns(4,5)P2 production at the plasma membrane. Analysis of Rgd1p distribution in different membrane-trafficking mutants suggested that Rgd1p was delivered to growth sites via the secretory pathway. Rgd1p may associate with post-Golgi vesicles by binding to PtdIns(4)P and then be transported by secretory vesicles to the plasma membrane. In agreement, we show that Rgd1p coimmunoprecipitated and localized with markers specific to secretory vesicles and cofractionated with a plasma membrane marker. Moreover, in vivo imaging revealed that Rgd1p was transported in an anterograde manner from the mother cell to the daughter cell in a vectoral manner. Our data indicate that secretory vesicles are involved in the delivery of RhoGAP Rgd1p to the bud tip and bud neck. PMID:22447923

  15. The Small GTPase ROP10 of Medicago truncatula Is Required for Both Tip Growth of Root Hairs and Nod Factor-Induced Root Hair Deformation

    PubMed Central

    Lei, Ming-Juan; Wang, Qi; Li, Xiaolin; Chen, Aimin; Luo, Li; Xie, Yajun; Li, Guan; Luo, Da; Mysore, Kirankumar S.; Wen, Jiangqi; Xie, Zhi-Ping; Staehelin, Christian; Wang, Yan-Zhang

    2015-01-01

    Rhizobia preferentially enter legume root hairs via infection threads, after which root hairs undergo tip swelling, branching, and curling. However, the mechanisms underlying such root hair deformation are poorly understood. Here, we showed that a type II small GTPase, ROP10, of Medicago truncatula is localized at the plasma membrane (PM) of root hair tips to regulate root hair tip growth. Overexpression of ROP10 and a constitutively active mutant (ROP10CA) generated depolarized growth of root hairs, whereas a dominant negative mutant (ROP10DN) inhibited root hair elongation. Inoculated with Sinorhizobium meliloti, the depolarized swollen and ballooning root hairs exhibited extensive root hair deformation and aberrant infection symptoms. Upon treatment with rhizobia-secreted nodulation factors (NFs), ROP10 was transiently upregulated in root hairs, and ROP10 fused to green fluorescent protein was ectopically localized at the PM of NF-induced outgrowths and curls around rhizobia. ROP10 interacted with the kinase domain of the NF receptor NFP in a GTP-dependent manner. Moreover, NF-induced expression of the early nodulin gene ENOD11 was enhanced by the overexpression of ROP10 and ROP10CA. These data suggest that NFs spatiotemporally regulate ROP10 localization and activity at the PM of root hair tips and that interactions between ROP10 and NF receptors are required for root hair deformation and continuous curling during rhizobial infection. PMID:25794934

  16. Aldynoglia cells and modulation of RhoGTPase activity as useful tools for spinal cord injury repair

    PubMed Central

    Doncel-Pérez, Ernesto; Nieto-Sampedro, Manuel

    2016-01-01

    A combined approach in spinal cord injury (SCI) therapy is the modulation of the cellular and molecular processes involved in glial scarring. Aldaynoglial cells are neural cell precursors with a high capacity to differentiate into neurons, promote axonal growth, wrapping and myelination of resident neurons. These important characteristics of aldaynoglia can be combined with specific inhibition of the RhoGTPase activity in astroglia and microglia that cause reduction of glial proliferation, retraction of glial cell processes and myelin production by oligodendrocytes. Previously we used experimental central nervous system (CNS) injury models, like spinal cord contusion and striatal lacunar infarction and observed that administration of RhoGTPase glycolipid inhibitor or aldaynoglial cells, respectively, produced a significant gain of functional recovery in treated animals. The combined therapy with neuro-regenerative properties strategy is highly desirable to treat SCI for functional potentiation of neurons and oligodendrocytes, resulting in better locomotor recovery. Here we suggest that treatment of spinal lesions with aldaynoglia from neurospheres plus local administration of a RhoGTPase inhibitor could have an additive effect and promote recovery from SCI. PMID:27630672

  17. Aldynoglia cells and modulation of RhoGTPase activity as useful tools for spinal cord injury repair

    PubMed Central

    Doncel-Pérez, Ernesto; Nieto-Sampedro, Manuel

    2016-01-01

    A combined approach in spinal cord injury (SCI) therapy is the modulation of the cellular and molecular processes involved in glial scarring. Aldaynoglial cells are neural cell precursors with a high capacity to differentiate into neurons, promote axonal growth, wrapping and myelination of resident neurons. These important characteristics of aldaynoglia can be combined with specific inhibition of the RhoGTPase activity in astroglia and microglia that cause reduction of glial proliferation, retraction of glial cell processes and myelin production by oligodendrocytes. Previously we used experimental central nervous system (CNS) injury models, like spinal cord contusion and striatal lacunar infarction and observed that administration of RhoGTPase glycolipid inhibitor or aldaynoglial cells, respectively, produced a significant gain of functional recovery in treated animals. The combined therapy with neuro-regenerative properties strategy is highly desirable to treat SCI for functional potentiation of neurons and oligodendrocytes, resulting in better locomotor recovery. Here we suggest that treatment of spinal lesions with aldaynoglia from neurospheres plus local administration of a RhoGTPase inhibitor could have an additive effect and promote recovery from SCI.

  18. Aldynoglia cells and modulation of RhoGTPase activity as useful tools for spinal cord injury repair.

    PubMed

    Doncel-Pérez, Ernesto; Nieto-Sampedro, Manuel

    2016-07-01

    A combined approach in spinal cord injury (SCI) therapy is the modulation of the cellular and molecular processes involved in glial scarring. Aldaynoglial cells are neural cell precursors with a high capacity to differentiate into neurons, promote axonal growth, wrapping and myelination of resident neurons. These important characteristics of aldaynoglia can be combined with specific inhibition of the RhoGTPase activity in astroglia and microglia that cause reduction of glial proliferation, retraction of glial cell processes and myelin production by oligodendrocytes. Previously we used experimental central nervous system (CNS) injury models, like spinal cord contusion and striatal lacunar infarction and observed that administration of RhoGTPase glycolipid inhibitor or aldaynoglial cells, respectively, produced a significant gain of functional recovery in treated animals. The combined therapy with neuro-regenerative properties strategy is highly desirable to treat SCI for functional potentiation of neurons and oligodendrocytes, resulting in better locomotor recovery. Here we suggest that treatment of spinal lesions with aldaynoglia from neurospheres plus local administration of a RhoGTPase inhibitor could have an additive effect and promote recovery from SCI. PMID:27630672

  19. LAT-independent Erk activation via Bam32-PLC-γ1-Pak1 complexes: GTPase-independent Pak1 activation.

    PubMed

    Rouquette-Jazdanian, Alexandre K; Sommers, Connie L; Kortum, Robert L; Morrison, Deborah K; Samelson, Lawrence E

    2012-10-26

    In T cells, the adaptor Bam32 is coupled to Erk activation downstream of the TCR by an unknown mechanism. We characterized in Jurkat cells and primary T lymphocytes a pathway dependent on Bam32-PLC-γ1-Pak1 complexes, in which Pak1 kinase activates Raf-1 and Mek-1, both upstream of Erk. In the Bam32-PLC-γ1-Pak1 complex, catalytically inactive PLC-γ1 is used as a scaffold linking Bam32 to Pak1. PLC-γ1(C-SH2) directly binds S141 of Bam32, preventing LAT-mediated activation of Ras by PLC-γ1. The Bam32-PLC-γ1 interaction enhances the binding of the SH3 domain of the phospholipase with Pak1. The PLC-γ1(SH3)-Pak1 interaction activates Pak1 independently of the small GTPases Rac1/Cdc42, previously described as being the only activators of Pak1 in T cells. Direct binding of the SH3 domain of PLC-γ1 to Pak1 dissociates inactive Pak1 homodimers, a mechanism required for Pak1 activation. We have thus uncovered a LAT/Ras-independent, Bam32-nucleated pathway that activates Erk signaling in T cells.

  20. The Regulation of Vesicle Trafficking by Small GTPases and Phospholipids during Pollen Tube Growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polarized and directional growth of pollen tubes is the only means by which immotile sperm of flowering plants reach the deeply embedded female gametes for fertilization. Vesicle trafficking is among the most critical cellular activities for pollen tube growth. Vesicle trafficking maintains membrane...

  1. Role of the guanine nucleotide exchange factor Ost in negative regulation of receptor endocytosis by the small GTPase Rac1.

    PubMed

    Ieguchi, Katsuaki; Ueda, Shuji; Kataoka, Tohru; Satoh, Takaya

    2007-08-10

    The Rho family of GTPases has been implicated in the regulation of intracellular vesicle trafficking. Here, we investigated the mechanism underlying the negative regulation of clathrin-mediated endocytosis of cell surface receptors mediated by the Rho family protein Rac1. Contrary to previous reports, only the activated mutant of Rac1, but not other Rho family members including RhoA and Cdc42, suppressed internalization of the transferrin receptor. On the other hand, down-regulation of Rac1 expression by RNA interference resulted in enhanced receptor internalization, suggesting that endogenous Rac1 in fact functions as a negative regulator. We identified a guanine nucleotide exchange factor splice variant designated Ost-III, which contains a unique C-terminal region including an Src homology 3 domain, as a regulator of Rac1 involved in the inhibition of receptor endocytosis. In contrast, other splice variants Ost-I and Ost-II exerted virtually no effect on receptor endocytosis. We also examined subcellular localization of synaptojanin 2, a putative Rac1 effector implicated in negative regulation of receptor endocytosis. Each Ost splice variant induced distinct subcellular localization of synaptojanin 2, depending on Rac1 activation. Furthermore, we isolated gamma-aminobutyric acid type A receptor-associated protein (GABARAP) as a protein that binds to the C-terminal region of Ost-III. When ectopically expressed, GABARAP was co-localized with Ost-III and potently suppressed the Ost-III-dependent Rac1 activation and the inhibition of receptor endocytosis. Lipid modification of GABARAP was necessary for the suppression of Ost-III. These results are discussed in terms of subcellular region-specific regulation of the Rac1-dependent signaling pathway that negatively regulates clathrin-mediated endocytosis.

  2. Rap1 GTPase Activation and Barrier Enhancement in RPE Inhibits Choroidal Neovascularization In Vivo

    PubMed Central

    McCloskey, Manabu; Wang, Haibo; Quilliam, Lawrence A.; Chrzanowska-Wodnicka, Magdalena; Hartnett, M. Elizabeth

    2013-01-01

    Loss of barrier integrity precedes the development of pathologies such as metastasis, inflammatory disorders, and blood-retinal barrier breakdown present in neovascular age-related macular degeneration. Rap1 GTPase is involved in regulating both endothelial and epithelial cell junctions; the specific role of Rap1A vs. Rap1B isoforms is less clear. Compromise of retinal pigment epithelium barrier function is a contributing factor to the development of AMD. We utilized shRNA of Rap1 isoforms in cultured human retinal pigment epithelial cells, along with knockout mouse models to test the role of Rap1 on promoting RPE barrier properties, with emphasis on the dynamic junctional regulation that is triggered when the adhesion between cells is challenged. In vitro, Rap1A shRNA reduced steady-state barrier integrity, whereas Rap1B shRNA affected dynamic junctional responses. In a laser-induced choroidal neovascularization (CNV) model of macular degeneration, Rap1b−/− mice exhibited larger CNV volumes compared to wild-type or Rap1a−/−. In vivo, intravitreal injection of a cAMP analog (8CPT-2′-O-Me-cAMP) that is a known Rap1 activator significantly reduced laser-induced CNV volume, which correlated with the inhibition of CEC transmigration across 8CPT-2′O-Me-cAMP-treated RPE monolayers in vitro. Rap1 activation by 8CPT-2′-O-Me-cAMP treatment increased recruitment of junctional proteins and F-actin to cell-cell contacts, increasing both the linearity of junctions in vitro and in cells surrounding laser-induced lesions in vivo. We conclude that in vitro, Rap1A may be important for steady state barrier integrity, while Rap1B is involved more in dynamic junctional responses such as resistance to junctional disassembly induced by EGTA and reassembly of cell junctions following disruption. Furthermore, activation of Rap1 in vivo inhibited development of choroidal neovascular lesions in a laser-injury model. Our data suggest that targeting Rap1 isoforms in vivo with 8

  3. Structural basis for activation and non-canonical catalysis of the Rap GTPase activating protein domain of plexin.

    PubMed

    Wang, Yuxiao; Pascoe, Heath G; Brautigam, Chad A; He, Huawei; Zhang, Xuewu

    2013-10-01

    Plexins are cell surface receptors that bind semaphorins and transduce signals for regulating neuronal axon guidance and other processes. Plexin signaling depends on their cytoplasmic GTPase activating protein (GAP) domain, which specifically inactivates the Ras homolog Rap through an ill-defined non-canonical catalytic mechanism. The plexin GAP is activated by semaphorin-induced dimerization, the structural basis for which remained unknown. Here we present the crystal structures of the active dimer of zebrafish PlexinC1 cytoplasmic region in the apo state and in complex with Rap. The structures show that the dimerization induces a large-scale conformational change in plexin, which opens the GAP active site to allow Rap binding. Plexin stabilizes the switch II region of Rap in an unprecedented conformation, bringing Gln63 in Rap into the active site for catalyzing GTP hydrolysis. The structures also explain the unique Rap-specificity of plexins. Mutational analyses support that these mechanisms underlie plexin activation and signaling. DOI:http://dx.doi.org/10.7554/eLife.01279.001.

  4. The Arf GTPase-Activating Protein Family Is Exploited by Salmonella enterica Serovar Typhimurium To Invade Nonphagocytic Host Cells

    PubMed Central

    Davidson, Anthony C.; Humphreys, Daniel; Brooks, Andrew B. E.; Hume, Peter J.

    2015-01-01

    ABSTRACT To establish intracellular infections, Salmonella bacteria trigger host cell membrane ruffling and invasion by subverting cellular Arf guanine nucleotide exchange factors (GEFs) that activate Arf1 and Arf6 GTPases by promoting GTP binding. A family of cellular Arf GTPase-activating proteins (GAPs) can downregulate Arf signaling by stimulating GTP hydrolysis, but whether they do this during infection is unknown. Here, we uncovered a remarkable role for distinct Arf GAP family members in Salmonella invasion. The Arf6 GAPs ACAP1 and ADAP1 and the Arf1 GAP ASAP1 localized at Salmonella-induced ruffles, which was not the case for the plasma membrane-localized Arf6 GAPs ARAP3 and GIT1 or the Golgi-associated Arf1 GAP1. Surprisingly, we found that loss of ACAP1, ADAP1, or ASAP1 impaired Salmonella invasion, revealing that GAPs cannot be considered mere terminators of cytoskeleton remodeling. Salmonella invasion was restored in Arf GAP-depleted cells by expressing fast-cycling Arf derivatives, demonstrating that Arf GTP/GDP cycles facilitate Salmonella invasion. Consistent with this view, both constitutively active and dominant-negative Arf derivatives that cannot undergo GTP/GDP cycles inhibited invasion. Furthermore, we demonstrated that Arf GEFs and GAPs colocalize at invading Salmonella and collaborate to drive Arf1-dependent pathogen invasion. This study revealed that Salmonella bacteria exploit a remarkable interplay between Arf GEFs and GAPs to direct cycles of Arf GTPase activation and inactivation. These cycles drive Salmonella cytoskeleton remodeling and enable intracellular infections. PMID:25670778

  5. Clostridium sordellii Lethal-Toxin Autoprocessing and Membrane Localization Activities Drive GTPase Glucosylation Profiles in Endothelial Cells

    PubMed Central

    Craven, Ryan

    2015-01-01

    ABSTRACT Clostridium sordellii infections cause gangrene and edema in humans and gastrointestinal infections in livestock. One of the principle virulence factors is TcsL, a large protein toxin which glucosylates host GTPases to cause cytopathic and cytotoxic effects. TcsL has two enzymatic domains, an N-terminal glucosyltransferase domain (GTD) and an autoprocessing domain responsible for release of the GTD within the cell. The GTD can then use its N-terminal membrane localization domain (MLD) for orientation on membranes and modification of GTPases. This study describes the use of conditionally immortalized murine pulmonary microvascular endothelial cells as a model for the study of TcsL functional activities. Point mutations that disrupt the glucosyltransferase, autoprocessing, or membrane localization activities were introduced into a recombinant version of TcsL, and the activities of these mutants were compared to those of wild-type toxin. We observed that all mutants are defective or impaired in cytotoxicity but differ in their modification of Rac1 and Ras. The data suggest a model where differences in GTPase localization dictate cellular responses to intoxication and highlight the importance of autoprocessing in the function of TcsL. IMPORTANCE Clostridium sordellii is a bacterium that can infect humans and cause serious disease and death. The principle virulence factor associated with clinical symptoms is a large protein toxin known as lethal toxin. The mechanism of lethal-toxin intoxication is assumed to be similar to that of the homologous toxins from C. difficile, but very few studies have been done in the context of endothelial cells, a relevant target in C. sordellii infections. This study was designed to test the role of the lethal-toxin enzymatic activities and membrane localization in endothelial cell toxicity and host substrate modification. PMID:27303685

  6. Hypoxia/reoxygenation-experienced cancer cell migration and metastasis are regulated by Rap1- and Rac1-GTPase activation via the expression of thymosin beta-4.

    PubMed

    Lee, Jae-Wook; Ryu, Yun-Kyoung; Ji, Young-Hoon; Kang, Joo Hyun; Moon, Eun-Yi

    2015-01-01

    Signaling by small guanosine triphosphatases (GTPase), Rap1/Rac1, is one of the major pathways controlling cancer cell migration and tumor metastasis. Thymosin beta-4 (Tβ4), an actin-sequestering protein, has been shown to increase migration of cancer cells. Episodes of hypoxia and re-oxygenation (H/R) are an important phenomenon in tumor microenvironment (TME). We investigated whether Tβ4 could play as an intermediary to crosstalk between Rac1- and Rap1- GTPase activation under hypoxia/reoxygenation (H/R) conditions. Inhibition of Tβ4 expression using transcription activator-like effector nucleases (TALEN) significantly decreased lung metastasis of B16F10 cells. Rac1 and Rap1 activity, as well as cancer cell migration, increased following induction of Tβ4 expression in normoxia- or H/R-experienced cells, but were barely detectable in Tβ4-depleted cells. Rap1-regulated Rac1 activity was decreased by a dominant negative Rap1 (Rap1N17), and increased by 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (CPT), a Rap1 activator. In contrast, a Rac1-specific inhibitor, NSC23766, and dominant negative Rac1 (Rac1N17) enhanced Tβ4 expression and aberrant Rap1 activity. While NSC23766 and Rac1N17 incompletely inhibited tumor metastasis in vivo, and H/R-experienced cancer cell migration in vitro, more efficient attenuation of cancer cell migration was accomplished by simultaneous inactivation of Rap1 and Rac1 with Rap1N17 and Rac1N17, respectively. These data suggest that a combination therapy targeting both Rap1 and Rac1 activity may be an effective method of inhibiting tumor metastasis.

  7. A competitive nucleotide binding inhibitor: in vitro characterization of Rab7 GTPase inhibition.

    PubMed

    Agola, Jacob O; Hong, Lin; Surviladze, Zurab; Ursu, Oleg; Waller, Anna; Strouse, J Jacob; Simpson, Denise S; Schroeder, Chad E; Oprea, Tudor I; Golden, Jennifer E; Aubé, Jeffrey; Buranda, Tione; Sklar, Larry A; Wandinger-Ness, Angela

    2012-06-15

    Mapping the functionality of GTPases through small molecule inhibitors represents an underexplored area in large part due to the lack of suitable compounds. Here we report on the small chemical molecule 2-(benzoylcarbamothioylamino)-5,5-dimethyl-4,7-dihydrothieno[2,3-c]pyran-3-carboxylic acid (PubChem CID 1067700) as an inhibitor of nucleotide binding by Ras-related GTPases. The mechanism of action of this pan-GTPase inhibitor was characterized in the context of the Rab7 GTPase as there are no known inhibitors of Rab GTPases. Bead-based flow cytometry established that CID 1067700 has significant inhibitory potency on Rab7 nucleotide binding with nanomolar inhibitor (K(i)) values and an inhibitory response of ≥97% for BODIPY-GTP and BODIPY-GDP binding. Other tested GTPases exhibited significantly lower responses. The compound behaves as a competitive inhibitor of Rab7 nucleotide binding based on both equilibrium binding and dissociation assays. Molecular docking analyses are compatible with CID 1067700 fitting into the nucleotide binding pocket of the GTP-conformer of Rab7. On the GDP-conformer, the molecule has greater solvent exposure and significantly less protein interaction relative to GDP, offering a molecular rationale for the experimental results. Structural features pertinent to CID 1067700 inhibitory activity have been identified through initial structure-activity analyses and identified a molecular scaffold that may serve in the generation of more selective probes for Rab7 and other GTPases. Taken together, our study has identified the first competitive GTPase inhibitor and demonstrated the potential utility of the compound for dissecting the enzymology of the Rab7 GTPase, as well as serving as a model for other small molecular weight GTPase inhibitors.

  8. Rab GTPases as regulators of endocytosis, targets of disease and therapeutic opportunities.

    PubMed

    Agola, J O; Jim, P A; Ward, H H; Basuray, S; Wandinger-Ness, A

    2011-10-01

    Rab GTPases are well-recognized targets in human disease, although are underexplored therapeutically. Elucidation of how mutant or dysregulated Rab GTPases and accessory proteins contribute to organ specific and systemic disease remains an area of intensive study and an essential foundation for effective drug targeting. Mutation of Rab GTPases or associated regulatory proteins causes numerous human genetic diseases. Cancer, neurodegeneration and diabetes represent examples of acquired human diseases resulting from the up- or downregulation or aberrant function of Rab GTPases. The broad range of physiologic processes and organ systems affected by altered Rab GTPase activity is based on pivotal roles in responding to cell signaling and metabolic demand through the coordinated regulation of membrane trafficking. The Rab-regulated processes of cargo sorting, cytoskeletal translocation of vesicles and appropriate fusion with the target membranes control cell metabolism, viability, growth and differentiation. In this review, we focus on Rab GTPase roles in endocytosis to illustrate normal function and the consequences of dysregulation resulting in human disease. Selected examples are designed to illustrate how defects in Rab GTPase cascades alter endocytic trafficking that underlie neurologic, lipid storage, and metabolic bone disorders as well as cancer. Perspectives on potential therapeutic modulation of GTPase activity through small molecule interventions are provided.

  9. Coordinated regulation by two VPS9 domain-containing guanine nucleotide exchange factors in small GTPase Rab5 signaling pathways in fission yeast

    SciTech Connect

    Tsukamoto, Yuta; Kagiwada, Satoshi; Shimazu, Sayuri; Takegawa, Kaoru; Noguchi, Tetsuko; Miyamoto, Masaaki

    2015-03-20

    The small GTPase Rab5 is reported to regulate various cellular functions, such as vesicular transport and endocytosis. VPS9 domain-containing proteins are thought to activate Rab5(s) by their guanine-nucleotide exchange activities. Numerous VPS9 proteins have been identified and are structurally conserved from yeast to mammalian cells. However, the functional relationships among VPS9 proteins in cells remain unclear. Only one Rab5 and two VPS9 proteins were identified in the Schizosaccharomyces pombe genome. Here, we examined the cellular function of two VPS9 proteins and the relationship between these proteins in cellular functions. Vps901-GFP and Vps902-GFP exhibited dotted signals in vegetative and differentiated cells. vps901 deletion mutant (Δvps901) cells exhibited a phenotype deficient in the mating process and responses to high concentrations of ions, such as calcium and metals, and Δvps901Δvps902 double mutant cells exhibited round cell shapes similar to ypt5-909 (Rab5 mutant allele) cells. Deletion of both vps901 and vps902 genes completely abolished the mating process and responses to various stresses. A lack of vacuole formation and aberrant inner cell membrane structures were also observed in Δvps901Δvps902 cells by electron microscopy. These data strongly suggest that Vps901 and Vps902 are cooperatively involved in the regulation of cellular functions, such as cell morphology, sexual development, response to ion stresses, and vacuole formation, via Rab5 signaling pathways in fission yeast cells. - Highlights: • Roles of Rab5 activator VPS9 proteins in cellular functions. • Cooperation between VPS9 proteins in Rab5 signaling pathway. • Roles of each VPS9 protein in Rab5 signaling pathway are discussed.

  10. Control of cellular morphogenesis by the Ip12/Bem2 GTPase-activating protein: possible role of protein phosphorylation

    PubMed Central

    1994-01-01

    The IPL2 gene is known to be required for normal polarized cell growth in the budding yeast Saccharomyces cerevisiae. We now show that IPL2 is identical to the previously identified BEM2 gene. bem2 mutants are defective in bud site selection at 26 degrees C and localized cell surface growth and organization of the actin cytoskeleton at 37 degrees C. BEM2 encodes a protein with a COOH-terminal domain homologous to sequences found in several GTPase-activating proteins, including human Bcr. The GTPase-activating protein-domain from the Bem2 protein (Bem2p) or human Bcr can functionally substitute for Bem2p. The Rho1 and Rho2 GTPases are the likely in vivo targets of Bem2p because bem2 mutant phenotypes can be partially suppressed by increasing the gene dosage of RHO1 or RHO2. CDC55 encodes the putative regulatory B subunit of protein phosphatase 2A, and mutations in BEM2 have previously been identified as suppressors of the cdc55-1 mutation. We show here that mutations in the previously identified GRR1 gene can suppress bem2 mutations. grr1 and cdc55 mutants are both elongated in shape and cold- sensitive for growth, and cells lacking both GRR1 and CDC55 exhibit a synthetic lethal phenotype. bem2 mutant phenotypes also can be suppressed by the SSD1-vl (also known as SRK1) mutation, which was shown previously to suppress mutations in the protein phosphatase- encoding SIT4 gene. Cells lacking both BEM2 and SIT4 exhibit a synthetic lethal phenotype even in the presence of the SSD1-v1 suppressor. These genetic interactions together suggest that protein phosphorylation and dephosphorylation play an important role in the BEM2-mediated process of polarized cell growth. PMID:7962097

  11. Control of cellular morphogenesis by the Ip12/Bem2 GTPase-activating protein: possible role of protein phosphorylation.

    PubMed

    Kim, Y J; Francisco, L; Chen, G C; Marcotte, E; Chan, C S

    1994-12-01

    The IPL2 gene is known to be required for normal polarized cell growth in the budding yeast Saccharomyces cerevisiae. We now show that IPL2 is identical to the previously identified BEM2 gene. bem2 mutants are defective in bud site selection at 26 degrees C and localized cell surface growth and organization of the actin cytoskeleton at 37 degrees C. BEM2 encodes a protein with a COOH-terminal domain homologous to sequences found in several GTPase-activating proteins, including human Bcr. The GTPase-activating protein-domain from the Bem2 protein (Bem2p) or human Bcr can functionally substitute for Bem2p. The Rho1 and Rho2 GTPases are the likely in vivo targets of Bem2p because bem2 mutant phenotypes can be partially suppressed by increasing the gene dosage of RHO1 or RHO2. CDC55 encodes the putative regulatory B subunit of protein phosphatase 2A, and mutations in BEM2 have previously been identified as suppressors of the cdc55-1 mutation. We show here that mutations in the previously identified GRR1 gene can suppress bem2 mutations. grr1 and cdc55 mutants are both elongated in shape and cold-sensitive for growth, and cells lacking both GRR1 and CDC55 exhibit a synthetic lethal phenotype. bem2 mutant phenotypes also can be suppressed by the SSD1-vl (also known as SRK1) mutation, which was shown previously to suppress mutations in the protein phosphatase-encoding SIT4 gene. Cells lacking both BEM2 and SIT4 exhibit a synthetic lethal phenotype even in the presence of the SSD1-v1 suppressor. These genetic interactions together suggest that protein phosphorylation and dephosphorylation play an important role in the BEM2-mediated process of polarized cell growth. PMID:7962097

  12. Rho GTPase protein expression and activation in murine monocytes/macrophages is not modulated by model biomaterial surfaces in serum-containing in vitro cultures.

    PubMed

    Godek, M L; Sampson, J A; Duchsherer, N L; McElwee, Q; Grainger, D W

    2006-01-01

    The Rho GTPase cellular signaling cascade was investigated in pro-monocyte and (monocyte-)macrophage cells by examining GTPase expression and activation in serum-containing cultures on model biomaterials. Abundance of Rho GDI and the Rho GTPase proteins RhoA, Cdc42 and Rac1 was determined in cells grown on tissue culture polystyrene, polystyrene, poly-l-lactide and Teflon(®) AF surfaces. Protein expression was compared based on cell maturity (pro-monocyte to monocyte to macrophage lineages) and by model surface chemistry: Rho proteins were present in the majority of macrophage cells tested on model surfaces suggesting that a pool of Rho proteins is readily available for signaling events in response to numerous activating cues, including biomaterials surface encounter. Rho GTPase activation profiles in these cell lines indicate active Cdc42 and Rho proteins in RAW 264.7, Rac1 and Rho in J774A.1, and Cdc42 and Rac1 in IC-21 cell lines, respectively. Collectively, these proteins are known to play critical roles in all actin-based cytoskeletal rearrangement necessary for cell adhesion, spreading and motility, and remain important to establishing cellular responses required for foreign body reactions in vivo. Differences in Rho GTPase protein expression levels based on cell sourcing (primary versus secondary-derived cell source), or as a function of surface chemistry were insignificant. Rho GTPase expression profiles varied between pro-monocytic non-adherent precursor cells and mature adherent monocyte/macrophage cells. The active GTP-bound forms of the Rho GTPase proteins were detected from monocyte-macrophage cell lines RAW 264.7 and J774A.1 on all polymer surfaces, suggesting that while these proteins are central to cell adhesive behavior, differences in surface chemistry are insufficient to differentially regulate GTPase activation in these cell types. Active Cdc42 was detected from cells cultured on the more-polar tissue culture polystyrene and poly

  13. Rho GTPase protein expression and activation in murine monocytes/macrophages is not modulated by model biomaterial surfaces in serum-containing in vitro cultures

    PubMed Central

    GODEK, M. L.; SAMPSON, J. A.; DUCHSHERER, N. L.; McELWEE, Q.; GRAINGER, D. W.

    2006-01-01

    The Rho GTPase cellular signaling cascade was investigated in pro-monocyte and (monocyte-)macrophage cells by examining GTPase expression and activation in serum-containing cultures on model biomaterials. Abundance of Rho GDI and the Rho GTPase proteins RhoA, Cdc42 and Rac1 was determined in cells grown on tissue culture polystyrene, polystyrene, poly-l-lactide and Teflon® AF surfaces. Protein expression was compared based on cell maturity (pro-monocyte to monocyte to macrophage lineages) and by model surface chemistry: Rho proteins were present in the majority of macrophage cells tested on model surfaces suggesting that a pool of Rho proteins is readily available for signaling events in response to numerous activating cues, including biomaterials surface encounter. Rho GTPase activation profiles in these cell lines indicate active Cdc42 and Rho proteins in RAW 264.7, Rac1 and Rho in J774A.1, and Cdc42 and Rac1 in IC-21 cell lines, respectively. Collectively, these proteins are known to play critical roles in all actin-based cytoskeletal rearrangement necessary for cell adhesion, spreading and motility, and remain important to establishing cellular responses required for foreign body reactions in vivo. Differences in Rho GTPase protein expression levels based on cell sourcing (primary versus secondary-derived cell source), or as a function of surface chemistry were insignificant. Rho GTPase expression profiles varied between pro-monocytic non-adherent precursor cells and mature adherent monocyte/macrophage cells. The active GTP-bound forms of the Rho GTPase proteins were detected from monocyte-macrophage cell lines RAW 264.7 and J774A.1 on all polymer surfaces, suggesting that while these proteins are central to cell adhesive behavior, differences in surface chemistry are insufficient to differentially regulate GTPase activation in these cell types. Active Cdc42 was detected from cells cultured on the more-polar tissue culture polystyrene and poly

  14. Characterization of RAB-like4, the first identified RAB-like protein from Trypanosoma cruzi with GTPase activity.

    PubMed

    Ramos, Fabiane Pereira; Araripe, Júlia Rolão; Urményi, Turán Péter; Silva, Rosane; Cunha e Silva, Narcisa Leal; Leite Fontes, Carlos Frederico; da Silveira, José Franco; Rondinelli, Edson

    2005-08-01

    RAB proteins, which belong to the RAS superfamily, regulate exocytic and endocytic pathways of eukaryotic cells, controlling vesicle docking and fusion. Few RAB proteins have been identified in parasites. Molecular markers for cellular compartments are important to studies concerning about the protein traffic in Trypanosoma cruzi, the causal agent of Chagas disease. In this work, we describe the characterization of TcRABL4, the first RAB-like gene identified in T. cruzi (GenBank Accession No.: ), present as a single-copy gene. TcRABL4 contains all five consensus RAB motifs but lacks cysteine residues at the C terminus, which are essential to isoprenylation, an absolute prerequisite for membrane association of these proteins. TcRABL4 is a functional GTPase that is able to bind and hydrolyze GTP, and its gene is transcribed as a single 1.2 kb mRNA in epimastigotes. TcRABL4 appears to be differentially regulated in the three cell forms of the parasite, and the protein is not associated to membranes, unlike other RAB proteins. It is possible that TcRABL4 may be a member of a novel family of small GTPases.

  15. The Legionella pneumophila GTPase Activating Protein LepB Accelerates Rab1 Deactivation by a Non-canonical Hydrolytic Mechanism*

    PubMed Central

    Mishra, Ashwini K.; Del Campo, Claudia M.; Collins, Robert E.; Roy, Craig R.; Lambright, David G.

    2013-01-01

    GTPase activating proteins (GAPs) from pathogenic bacteria and eukaryotic host organisms deactivate Rab GTPases by supplying catalytic arginine and glutamine fingers in trans and utilizing the cis-glutamine in the DXXGQ motif of the GTPase for binding rather than catalysis. Here, we report the transition state mimetic structure of the Legionella pneumophila GAP LepB in complex with Rab1 and describe a comprehensive structure-based mutational analysis of potential catalytic and recognition determinants. The results demonstrate that LepB does not simply mimic other GAPs but instead deploys an expected arginine finger in conjunction with a novel glutamic acid finger, which forms a salt bridge with an indispensible switch II arginine that effectively locks the cis-glutamine in the DXXGQ motif of Rab1 in a catalytically competent though unprecedented transition state configuration. Surprisingly, a heretofore universal transition state interaction with the cis-glutamine is supplanted by an elaborate polar network involving critical P-loop and switch I serines. LepB further employs an unusual tandem domain architecture to clamp a switch I tyrosine in an open conformation that facilitates access of the arginine finger to the hydrolytic site. Intriguingly, the critical P-loop serine corresponds to an oncogenic substitution in Ras and replaces a conserved glycine essential for the canonical transition state stereochemistry. In addition to expanding GTP hydrolytic paradigms, these observations reveal the unconventional dual finger and non-canonical catalytic network mechanisms of Rab GAPs as necessary alternative solutions to a major impediment imposed by substitution of the conserved P-loop glycine. PMID:23821544

  16. IQ Motif-Containing GTPase-Activating Protein 2 (IQGAP2) Is a Novel Regulator of Colonic Inflammation in Mice

    PubMed Central

    Ghaleb, Amr M.; Bialkowska, Agnieszka B.; Snider, Ashley J.; Gnatenko, Dmitri V.; Hannun, Yusuf A.; Yang, Vincent W.; Schmidt, Valentina A.

    2015-01-01

    IQ motif-containing GTPase-activating protein 2 (IQGAP2) is a multidomain scaffolding protein that plays a role in cytoskeleton regulation by juxtaposing Rho GTPase and Ca2+/calmodulin signals. While IQGAP2 suppresses tumorigenesis in liver, its role in pathophysiology of the gastrointestinal tract remains unexplored. Here we report that IQGAP2 is required for the inflammatory response in colon. Mice lacking Iqgap2 gene (Iqgap2-/- mice) were resistant to chemically-induced colitis. Unlike wild-type controls, Iqgap2-/- mice treated with 3% dextran sulfate sodium (DSS) in water for 13 days displayed no injury to colonic epithelium. Mechanistically, resistance to colitis was associated with suppression of colonic NF-κB signaling and IL-6 synthesis, along with diminished neutrophil and macrophage production and recruitment in Iqgap2-/- mice. Finally, alterations in IQGAP2 expression were found in colons of patients with inflammatory bowel disease (IBD). Our findings indicate that IQGAP2 promotes inflammatory response at two distinct levels; locally, in colonic epithelium through TLR4/NF-κB signaling pathway, and systemically, via control of maturation and recruitment of myeloid immune cells. This work identifies a novel mechanism of colonic inflammation mediated by signal transducing scaffolding protein IQGAP2. IQGAP2 domain-specific blocking agents may represent a conceptually novel strategy for therapy of IBD and other inflammation-associated disorders, including cancer. PMID:26047140

  17. Arhgap17, a RhoGTPase activating protein, regulates mucosal and epithelial barrier function in the mouse colon

    PubMed Central

    Lee, So-young; Kim, Hwain; Kim, Kyoungmi; Lee, Hyunji; Lee, Seungbok; Lee, Daekee

    2016-01-01

    Coordinated regulation of the actin cytoskeleton by the Rho GTPase family is required for the maintenance of polarity in epithelial cells as well as for their proliferation and migration. A RhoGTPase-activating protein 17 (Arhgap17) is known to be involved in multiple cellular processes in vitro, including the maintenance of tight junctions and vesicle trafficking. However, the function of Arhgap17 has not been studied in the physiological context. Here, we generated Arhgap17-deficient mice and examined the effect in the epithelial and mucosal barriers of the intestine. Reporter staining revealed that Arhgap17 expression is limited to the luminal epithelium of intestine. Arhgap17-deficient mice show an increased paracellular permeability and aberrant localization of the apical junction complex in the luminal epithelium, but do not develop spontaneous colitis. The inner mucus layer is impervious to the enteric bacteria irrespective of Tff3 downregulation in the Arhgap17-deficient mice. Interestingly however, treatment with dextran sulfate sodium (DSS) causes an increased accumulation of DSS and TNF production in intraluminal cells and rapid destruction of the inner mucus layer, resulting in increased severity of colitis in mutant mice. Overall, these data reveal that Arhgap17 has a novel function in regulating transcellular transport and maintaining integrity of intestinal barriers. PMID:27229483

  18. Arhgap17, a RhoGTPase activating protein, regulates mucosal and epithelial barrier function in the mouse colon.

    PubMed

    Lee, So-Young; Kim, Hwain; Kim, Kyoungmi; Lee, Hyunji; Lee, Seungbok; Lee, Daekee

    2016-01-01

    Coordinated regulation of the actin cytoskeleton by the Rho GTPase family is required for the maintenance of polarity in epithelial cells as well as for their proliferation and migration. A RhoGTPase-activating protein 17 (Arhgap17) is known to be involved in multiple cellular processes in vitro, including the maintenance of tight junctions and vesicle trafficking. However, the function of Arhgap17 has not been studied in the physiological context. Here, we generated Arhgap17-deficient mice and examined the effect in the epithelial and mucosal barriers of the intestine. Reporter staining revealed that Arhgap17 expression is limited to the luminal epithelium of intestine. Arhgap17-deficient mice show an increased paracellular permeability and aberrant localization of the apical junction complex in the luminal epithelium, but do not develop spontaneous colitis. The inner mucus layer is impervious to the enteric bacteria irrespective of Tff3 downregulation in the Arhgap17-deficient mice. Interestingly however, treatment with dextran sulfate sodium (DSS) causes an increased accumulation of DSS and TNF production in intraluminal cells and rapid destruction of the inner mucus layer, resulting in increased severity of colitis in mutant mice. Overall, these data reveal that Arhgap17 has a novel function in regulating transcellular transport and maintaining integrity of intestinal barriers.

  19. Rho 1 GTPase activates the (1-3)beta-D-glucan synthase and is involved in Schizosaccharomyces pombe morphogenesis.

    PubMed Central

    Arellano, M; Durán, A; Pérez, P

    1996-01-01

    The Schizosaccharomyces pombe Cdc42 and Rho1 GTPases were tested for their ability to complement the cwg2-1 mutant phenotype of a decrease in (1-3)beta-D-glucan synthase activity when grown at the non-permissive temperature. Only Rho1 is able to partly complement the defect in glucan synthase associated with the cwg2-1 mutation. Moreover, overexpression of the rho1 gene in wild-type S.pombe cells causes aberrant morphology with loss of polarity and cells with several septa. Under this condition (1-3)beta-D-glucan synthase activity is increased four times, but is still dependent on GTP. When S.pombe is transformed with constitutively active rho1 mutant alleles (rho1-G15V or rho1-Q64L), cells stop growing and show a very thick cell wall with hardly any septum. Under this condition the level of (1-3)beta-D-glucan synthase activity is at least 20 times higher than wild-type and is independent of GTP. Neither cdc42+ nor the cdc42-V12G or cdc42-Q61L constitutively active mutant alleles affect (1-3)beta-D-glucan synthase activity when overexpressed in S.pombe. Cells overproducing Rho1 are hypersensitive to inhibitors of cell wall biosynthesis or to cell wall degrading enzymes. We conclude that Rho1 GTPase directly activates (1-3)beta-D-glucan synthase and regulates S.pombe morphogenesis. Images PMID:8887550

  20. Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation

    SciTech Connect

    Vallon, Mario; Rohde, Franziska; Janssen, Klaus-Peter; Essler, Markus

    2010-02-01

    Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile, an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.

  1. Neuronal apoptosis induced by selective inhibition of Rac GTPase versus global suppression of Rho family GTPases is mediated by alterations in distinct mitogen-activated protein kinase signaling cascades.

    PubMed

    Stankiewicz, Trisha R; Ramaswami, Sai Anandi; Bouchard, Ron J; Aktories, Klaus; Linseman, Daniel A

    2015-04-10

    Rho family GTPases play integral roles in neuronal differentiation and survival. We have shown previously that Clostridium difficile toxin B (ToxB), an inhibitor of RhoA, Rac1, and Cdc42, induces apoptosis of cerebellar granule neurons (CGNs). In this study, we compared the effects of ToxB to a selective inhibitor of the Rac-specific guanine nucleotide exchange factors Tiam1 and Trio (NSC23766). In a manner similar to ToxB, selective inhibition of Rac induces CGN apoptosis associated with enhanced caspase-3 activation and reduced phosphorylation of the Rac effector p21-activated kinase. In contrast to ToxB, caspase inhibitors do not protect CGNs from targeted inhibition of Rac. Also dissimilar to ToxB, selective inhibition of Rac does not inhibit MEK1/2/ERK1/2 or activate JNK/c-Jun. Instead, targeted inhibition of Rac suppresses distinct MEK5/ERK5, p90Rsk, and Akt-dependent signaling cascades known to regulate the localization and expression of the Bcl-2 homology 3 domain-only protein Bad. Adenoviral expression of a constitutively active mutant of MEK5 is sufficient to attenuate neuronal cell death induced by selective inhibition of Rac with NSC23766 but not apoptosis induced by global inhibition of Rho GTPases with ToxB. Collectively, these data demonstrate that global suppression of Rho family GTPases with ToxB causes a loss of MEK1/2/ERK1/2 signaling and activation of JNK/c-Jun, resulting in diminished degradation and enhanced transcription of the Bcl-2 homology 3 domain-only protein Bim. In contrast, selective inhibition of Rac induces CGN apoptosis by repressing unique MEK5/ERK5, p90Rsk, and Akt-dependent prosurvival pathways, ultimately leading to enhanced expression, dephosphorylation, and mitochondrial localization of proapoptotic Bad.

  2. Neuronal Apoptosis Induced by Selective Inhibition of Rac GTPase versus Global Suppression of Rho Family GTPases Is Mediated by Alterations in Distinct Mitogen-activated Protein Kinase Signaling Cascades*

    PubMed Central

    Stankiewicz, Trisha R.; Ramaswami, Sai Anandi; Bouchard, Ron J.; Aktories, Klaus; Linseman, Daniel A.

    2015-01-01

    Rho family GTPases play integral roles in neuronal differentiation and survival. We have shown previously that Clostridium difficile toxin B (ToxB), an inhibitor of RhoA, Rac1, and Cdc42, induces apoptosis of cerebellar granule neurons (CGNs). In this study, we compared the effects of ToxB to a selective inhibitor of the Rac-specific guanine nucleotide exchange factors Tiam1 and Trio (NSC23766). In a manner similar to ToxB, selective inhibition of Rac induces CGN apoptosis associated with enhanced caspase-3 activation and reduced phosphorylation of the Rac effector p21-activated kinase. In contrast to ToxB, caspase inhibitors do not protect CGNs from targeted inhibition of Rac. Also dissimilar to ToxB, selective inhibition of Rac does not inhibit MEK1/2/ERK1/2 or activate JNK/c-Jun. Instead, targeted inhibition of Rac suppresses distinct MEK5/ERK5, p90Rsk, and Akt-dependent signaling cascades known to regulate the localization and expression of the Bcl-2 homology 3 domain-only protein Bad. Adenoviral expression of a constitutively active mutant of MEK5 is sufficient to attenuate neuronal cell death induced by selective inhibition of Rac with NSC23766 but not apoptosis induced by global inhibition of Rho GTPases with ToxB. Collectively, these data demonstrate that global suppression of Rho family GTPases with ToxB causes a loss of MEK1/2/ERK1/2 signaling and activation of JNK/c-Jun, resulting in diminished degradation and enhanced transcription of the Bcl-2 homology 3 domain-only protein Bim. In contrast, selective inhibition of Rac induces CGN apoptosis by repressing unique MEK5/ERK5, p90Rsk, and Akt-dependent prosurvival pathways, ultimately leading to enhanced expression, dephosphorylation, and mitochondrial localization of proapoptotic Bad. PMID:25666619

  3. Adenylylation of Tyr77 stabilizes Rab1b GTPase in an active state: A molecular dynamics simulation analysis

    PubMed Central

    Luitz, Manuel P.; Bomblies, Rainer; Ramcke, Evelyn; Itzen, Aymelt; Zacharias, Martin

    2016-01-01

    The pathogenic pathway of Legionella pneumophila exploits the intercellular vesicle transport system via the posttranslational attachment of adenosine monophosphate (AMP) to the Tyr77 sidechain of human Ras like GTPase Rab1b. The modification, termed adenylylation, is performed by the bacterial enzyme DrrA/SidM, however the effect on conformational properties of the molecular switch mechanism of Rab1b remained unresolved. In this study we find that the adenylylation of Tyr77 stabilizes the active Rab1b state by locking the switch in the active signaling conformation independent of bound GTP or GDP and that electrostatic interactions due to the additional negative charge in the switch region make significant contributions. The stacking interaction between adenine and Phe45 however, seems to have only minor influence on this stabilisation. The results may also have implications for the mechanistic understanding of conformational switching in other signaling proteins. PMID:26818796

  4. Rho GTPases and their effector proteins.

    PubMed Central

    Bishop, A L; Hall, A

    2000-01-01

    Rho GTPases are molecular switches that regulate many essential cellular processes, including actin dynamics, gene transcription, cell-cycle progression and cell adhesion. About 30 potential effector proteins have been identified that interact with members of the Rho family, but it is still unclear which of these are responsible for the diverse biological effects of Rho GTPases. This review will discuss how Rho GTPases physically interact with, and regulate the activity of, multiple effector proteins and how specific effector proteins contribute to cellular responses. To date most progress has been made in the cytoskeleton field, and several biochemical links have now been established between GTPases and the assembly of filamentous actin. The main focus of this review will be Rho, Rac and Cdc42, the three best characterized mammalian Rho GTPases, though the genetic analysis of Rho GTPases in lower eukaryotes is making increasingly important contributions to this field. PMID:10816416

  5. Gluten quality of bread wheat is associated with activity of RabD GTPases

    PubMed Central

    Tyler, Adam M; Bhandari, Dhan G; Poole, Mervin; Napier, Johnathan A; Jones, Huw D; Lu, Chungui; Lycett, Grantley W

    2015-01-01

    In the developing endosperm of bread wheat (Triticum aestivum), seed storage proteins are produced on the rough endoplasmic reticulum (ER) and transported to protein bodies, specialized vacuoles for the storage of protein. The functionally important gluten proteins of wheat are transported by two distinct routes to the protein bodies where they are stored: vesicles that bud directly off the ER and transport through the Golgi. However, little is known about the processing of glutenin and gliadin proteins during these steps or the possible impact on their properties. In plants, the RabD GTPases mediate ER-to-Golgi vesicle transport. Available sequence information for Rab GTPases in Arabidopsis, rice, Brachypodium and bread wheat was compiled and compared to identify wheat RabD orthologs. Partial genetic sequences were assembled using the first draft of the Chinese Spring wheat genome. A suitable candidate gene from the RabD clade (TaRabD2a) was chosen for down-regulation by RNA interference (RNAi), and an RNAi construct was used to transform wheat plants. All four available RabD genes were shown by qRT-PCR to be down-regulated in the transgenic developing endosperm. The transgenic grain was found to produce flour with significantly altered processing properties when measured by farinograph and extensograph. SE-HPLC found that a smaller proportion of HMW-GS and large proportion of LMW-GS are incorporated into the glutenin macropolymer in the transgenic dough. Lower protein content but a similar protein profile on SDS-PAGE was seen in the transgenic grain. PMID:25047236

  6. Protein Disulfide Isomerase Is Required for Platelet-derived Growth Factor-induced Vascular Smooth Muscle Cell Migration, Nox1 NADPH Oxidase Expression, and RhoGTPase Activation

    PubMed Central

    Pescatore, Luciana A.; Bonatto, Diego; Forti, Fábio L.; Sadok, Amine; Kovacic, Hervé; Laurindo, Francisco R. M.

    2012-01-01

    Vascular Smooth Muscle Cell (VSMC) migration into vessel neointima is a therapeutic target for atherosclerosis and postinjury restenosis. Nox1 NADPH oxidase-derived oxidants synergize with growth factors to support VSMC migration. We previously described the interaction between NADPH oxidases and the endoplasmic reticulum redox chaperone protein disulfide isomerase (PDI) in many cell types. However, physiological implications, as well as mechanisms of such association, are yet unclear. We show here that platelet-derived growth factor (PDGF) promoted subcellular redistribution of PDI concomitant to Nox1-dependent reactive oxygen species production and that siRNA-mediated PDI silencing inhibited such reactive oxygen species production, while nearly totally suppressing the increase in Nox1 expression, with no change in Nox4. Furthermore, PDI silencing inhibited PDGF-induced VSMC migration assessed by distinct methods, whereas PDI overexpression increased spontaneous basal VSMC migration. To address possible mechanisms of PDI effects, we searched for PDI interactome by systems biology analysis of physical protein-protein interaction networks, which indicated convergence with small GTPases and their regulator RhoGDI. PDI silencing decreased PDGF-induced Rac1 and RhoA activities, without changing their expression. PDI co-immunoprecipitated with RhoGDI at base line, whereas such association was decreased after PDGF. Also, PDI co-immunoprecipitated with Rac1 and RhoA in a PDGF-independent way and displayed detectable spots of perinuclear co-localization with Rac1 and RhoGDI. Moreover, PDI silencing promoted strong cytoskeletal changes: disorganization of stress fibers, decreased number of focal adhesions, and reduced number of RhoGDI-containing vesicular recycling adhesion structures. Overall, these data suggest that PDI is required to support Nox1/redox and GTPase-dependent VSMC migration. PMID:22773830

  7. Control of Polarized Growth by the Rho Family GTPase Rho4 in Budding Yeast: Requirement of the N-Terminal Extension of Rho4 and Regulation by the Rho GTPase-Activating Protein Bem2

    PubMed Central

    Gong, Ting; Liao, Yuan; He, Fei; Yang, Yang; Yang, Dan-Dan; Chen, Xiang-Dong

    2013-01-01

    In the budding yeast Saccharomyces cerevisiae, Rho4 GTPase partially plays a redundant role with Rho3 in the control of polarized growth, as deletion of RHO4 and RHO3 together, but not RHO4 alone, caused lethality and a loss of cell polarity at 30°C. Here, we show that overexpression of the constitutively active rho4Q131L mutant in an rdi1Δ strain caused a severe growth defect and generated large, round, unbudded cells, suggesting that an excess of Rho4 activity could block bud emergence. We also generated four temperature-sensitive rho4-Ts alleles in a rho3Δ rho4Δ strain. These mutants showed growth and morphological defects at 37°C. Interestingly, two rho4-Ts alleles contain mutations that cause amino acid substitutions in the N-terminal region of Rho4. Rho4 possesses a long N-terminal extension that is unique among the six Rho GTPases in the budding yeast but is common in Rho4 homologs in other yeasts and filamentous fungi. We show that the N-terminal extension plays an important role in Rho4 function since rho3Δ rho4Δ61 cells expressing truncated Rho4 lacking amino acids (aa) 1 to 61 exhibited morphological defects at 24°C and a growth defect at 37°C. Furthermore, we show that Rho4 interacts with Bem2, a Rho GTPase-activating protein (RhoGAP) for Cdc42 and Rho1, by yeast two-hybrid, bimolecular fluorescence complementation (BiFC), and glutathione S-transferase (GST) pulldown assays. Bem2 specifically interacts with the GTP-bound form of Rho4, and the interaction is mediated by its RhoGAP domain. Overexpression of BEM2 aggravates the defects of rho3Δ rho4 mutants. These results suggest that Bem2 might be a novel GAP for Rho4. PMID:23264647

  8. Conservation and function of Rab small GTPases in Entamoeba: annotation of E. invadens Rab and its use for the understanding of Entamoeba biology.

    PubMed

    Nakada-Tsukui, Kumiko; Saito-Nakano, Yumiko; Husain, Afzal; Nozaki, Tomoyoshi

    2010-11-01

    Entamoeba invadens is a reptilian enteric protozoan parasite closely related to the human pathogen Entamoeba histolytica and a good model organism of encystation. To understand the molecular mechanism of vesicular trafficking involved in the encystation of Entamoeba, we examined the conservation of Rab small GTPases between the two species. E. invadens has over 100 Rab genes, similar to E. histolytica. Most of the Rab subfamilies are conserved between the two species, while a number of species-specific Rabs are also present. We annotated all E. invadens Rabs according to the previous nomenclature [Saito-Nakano, Y., Loftus, B.J., Hall, N., Nozaki, T., 2005. The diversity of Rab GTPases in Entamoeba histolytica. Experimental Parasitology 110, 244-252]. Comparative genomic analysis suggested that the fundamental vesicular traffic machinery is well conserved, while there are species-specific protein transport mechanisms. We also reviewed the function of Rabs in Entamoeba, and proposed the use of the annotation of E. invadens Rab genes to understand the ubiquitous importance of Rab-mediated membrane trafficking during important biological processes including differentiation in Entamoeba.

  9. Structure-Function Analyses of the Interactions between Rab11 and Rab14 Small GTPases with Their Shared Effector Rab Coupling Protein (RCP).

    PubMed

    Lall, Patrick; Lindsay, Andrew J; Hanscom, Sara; Kecman, Tea; Taglauer, Elizabeth S; McVeigh, Una M; Franklin, Edward; McCaffrey, Mary W; Khan, Amir R

    2015-07-24

    Rab GTPases recruit effector proteins, via their GTP-dependent switch regions, to distinct subcellular compartments. Rab11 and Rab25 are closely related small GTPases that bind to common effectors termed the Rab11 family of interacting proteins (FIPs). The FIPs are organized into two subclasses (class I and class II) based on sequence and domain organization, and both subclasses contain a highly conserved Rab-binding domain at their C termini. Yeast two-hybrid and biochemical studies have revealed that the more distantly related Rab14 also interacts with class I FIPs. Here, we perform detailed structural, thermodynamic, and cellular analyses of the interactions between Rab14 and one of the class I FIPs, the Rab-coupling protein (RCP), to clarify the molecular aspects of the interaction. We find that Rab14 indeed binds to RCP, albeit with reduced affinity relative to conventional Rab11-FIP and Rab25-FIP complexes. However, in vivo, Rab11 recruits RCP onto biological membranes. Furthermore, biophysical analyses reveal a noncanonical 1:2 stoichiometry between Rab14-RCP in dilute solutions, in contrast to Rab11/25 complexes. The structure of Rab14-RCP reveals that Rab14 interacts with the canonical Rab-binding domain and also provides insight into the unusual properties of the complex. Finally, we show that both the Rab coupling protein and Rab14 function in neuritogenesis.

  10. Activation of Jun kinase/stress-activated protein kinase by GTPase-deficient mutants of G alpha 12 and G alpha 13.

    PubMed

    Prasad, M V; Dermott, J M; Heasley, L E; Johnson, G L; Dhanasekaran, N

    1995-08-01

    Signal transduction pathways regulated by G12 and G13 heterotrimeric G proteins are largely unknown. Expression of activated, GTPase-deficient mutants of alpha 12 and alpha 13 alter physiological responses such as Na+/H+ exchanger activity, but the effector pathways controlling these responses have not been defined. We have found that the expression of GTPase-deficient mutants of alpha 12 (alpha 12Q229L) or alpha 13 (alpha 13Q226L) leads to robust activation of the Jun kinase/stress-activated protein kinase (JNK/SAPK) pathway. Inducible alpha 12Q229L and alpha 13Q226L expression vectors stably transfected in NIH 3T3 cells demonstrated JNK/SAPK activation but not extracellular response/mitogen-activated protein kinase activation. Transient transfection of alpha 12Q229L and alpha 13Q226L also activated the JNK/SAPK pathway in COS-1 cells. Expression of the GTPase-deficient mutant of alpha q (alpha qQ209L) but not alpha i (alpha iQ205L) or alpha s (alpha sQ227L) was also able to activate the JNK/SAPK pathway. Functional Ras signaling was required for alpha 12Q229L and alpha 13Q226L activation of the JNK/SAPK pathway; expression of competitive inhibitory N17Ras inhibited JNK/SAPK activation in response to both alpha 12Q229L and alpha 13Q226L. The results describe for the first time a Ras-dependent signal transduction pathway involving JNK/SAPK regulated by alpha 12 and alpha 13. PMID:7629196

  11. Multicopy suppression screen in a Saccharomyces cerevisiae strain lacking the Rab GTPase-activating protein Msb3p.

    PubMed

    Biver, Sophie; Portetelle, Daniel; Vandenbol, Micheline

    2011-01-01

    The yeast proteins, Msb3p and Msb4p, are two Ypt/Rab-specific GTPase-activating proteins sharing redundant functions in exocytosis, organization of the actin cytoskeleton, and budding site selection. To see if Msb3p might play an additional, specific role, we first tested the sensitivities of msb3 and msb4 mutant strains to different drugs and then screened a genomic library for multicopy suppressors of msb3 sensitivity to CdCl(2) or to the calcium channel blocker diltiazem hydrochloride. Three genes (ADH1, RNT1, and SUI1) were found to suppress the CdCl(2) sensitivity of the msb3 strain and three others (YAP6, ZEO1, and SLM1) its diltiazem-HCl sensitivity. The results suggest a possible involvement of Msb3p in calcineurin-mediated signalling.

  12. The RAP1GA1 locus for human Rap1-GTPase activating protein 1 maps to chromosome 1p36.1-->p35.

    PubMed

    Weiss, J; Rubinfeld, B; Polakis, P G; McCormick, F; Cavenee, W K; Arden, K C

    1994-01-01

    Using a panel of somatic cell hybrids we have mapped the locus for Rap1-GTPase activating protein 1 (RAP1GA1) to human chromosome 1. Fluorescence in situ hybridization experiments independently confirmed the chromosomal localization and refined it to 1p36.1-->p35.

  13. Influence of FtsZ GTPase activity and concentration on nanoscale Z-ring structure in vivo revealed by three-dimensional Superresolution imaging.

    PubMed

    Lyu, Zhixin; Coltharp, Carla; Yang, Xinxing; Xiao, Jie

    2016-10-01

    FtsZ is an essential bacterial cytoskeletal protein that assembles into a ring-like structure (Z-ring) at midcell to carry out cytokinesis. In vitro, FtsZ exhibits polymorphism in polymerizing into different forms of filaments based on its GTPase activity, concentration, and buffer condition. In vivo, the Z-ring appeared to be punctate and heterogeneously organized, although continuous, homogenous Z-ring structures have also been observed. Understanding how the Z-ring is organized in vivo is important because it provides a structural basis for the functional role of the Z-ring in cytokinesis. Here, we assess the effects of both GTPase activity and FtsZ concentration on the organization of the Z-ring in vivo using three-dimensional (3D) superresolution microscopy. We found that the Z-ring became more homogenous when assembled in the presence of a GTPase-deficient mutant, and upon overexpression of either wt or mutant FtsZ. These results suggest that the in vivo organization of the Z-ring is largely dependent on the intrinsic polymerization properties of FtsZ, which are significantly influenced by the GTPase activity and concentration of FtsZ. Our work provides a unifying theme to reconcile previous observations of different Z-ring structures, and supports a model in which the wt Z-ring comprises loosely associated, heterogeneously distributed FtsZ clusters. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 725-734, 2016. PMID:27310678

  14. Influence of FtsZ GTPase activity and concentration on nanoscale Z-ring structure in vivo revealed by three-dimensional Superresolution imaging.

    PubMed

    Lyu, Zhixin; Coltharp, Carla; Yang, Xinxing; Xiao, Jie

    2016-10-01

    FtsZ is an essential bacterial cytoskeletal protein that assembles into a ring-like structure (Z-ring) at midcell to carry out cytokinesis. In vitro, FtsZ exhibits polymorphism in polymerizing into different forms of filaments based on its GTPase activity, concentration, and buffer condition. In vivo, the Z-ring appeared to be punctate and heterogeneously organized, although continuous, homogenous Z-ring structures have also been observed. Understanding how the Z-ring is organized in vivo is important because it provides a structural basis for the functional role of the Z-ring in cytokinesis. Here, we assess the effects of both GTPase activity and FtsZ concentration on the organization of the Z-ring in vivo using three-dimensional (3D) superresolution microscopy. We found that the Z-ring became more homogenous when assembled in the presence of a GTPase-deficient mutant, and upon overexpression of either wt or mutant FtsZ. These results suggest that the in vivo organization of the Z-ring is largely dependent on the intrinsic polymerization properties of FtsZ, which are significantly influenced by the GTPase activity and concentration of FtsZ. Our work provides a unifying theme to reconcile previous observations of different Z-ring structures, and supports a model in which the wt Z-ring comprises loosely associated, heterogeneously distributed FtsZ clusters. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 725-734, 2016.

  15. The LIM domain-containing Dbm1 GTPase-activating protein is required for normal cellular morphogenesis in Saccharomyces cerevisiae.

    PubMed Central

    Chen, G C; Zheng, L; Chan, C S

    1996-01-01

    Normal cell growth in the yeast Saccharomyces cerevisiae involves the selection of genetically determined bud sites where most growth is localized. Previous studies have shown that BEM2, which encodes a GTPase-activating protein (GAP) that is specific for the Rho-type GTPase Rho1p in vitro, is required for proper bud site selection and bud emergence. We show here that DBM1, which encodes another putative Rho-type GAP with two tandemly arranged cysteine-rich LIM domains, also is needed for proper bud site selection, as haploid cells lacking Dbm1p bud predominantly in a bipolar, rather than the normal axial, manner. Furthermore, yeast cells lacking both Bem2p and Dbm1p are inviable. The nonaxial budding defect of dbm1 mutants can be rescued partially by overproduction of Bem3p and is exacerbated by its absence. Since Bem3p has previously been shown to function as a GAP for Cdc42p, and also less efficiently for Rho1p, our results suggest that Dbm1p, like Bem2p and Bem3p, may function in vivo as a GAP for Cdc42p and/or Rho1p. Both LIM domains of Dbm1p are essential for its normal function. Point mutations that alter single conserved cysteine residues within either LIM domain result in mutant forms of Dbm1p that can no longer function in bud site selection but instead are capable of rescuing the inviability of bem2 mutants at 35 degrees C. PMID:8657111

  16. Mutations in the Small GTP-ase Late Endosomal Protein RAB7 Cause Charcot-Marie-Tooth Type 2B Neuropathy

    PubMed Central

    Verhoeven, Kristien; De Jonghe, Peter; Coen, Katrien; Verpoorten, Nathalie; Auer-Grumbach, Michaela; Kwon, Jennifer M.; FitzPatrick, David; Schmedding, Eric; De Vriendt, Els; Jacobs, An; Van Gerwen, Veerle; Wagner, Klaus; Hartung, Hans-Peter; Timmerman, Vincent

    2003-01-01

    Charcot-Marie-Tooth type 2B (CMT2B) is clinically characterized by marked distal muscle weakness and wasting and a high frequency of foot ulcers, infections, and amputations of the toes because of recurrent infections. CMT2B maps to chromosome 3q13-q22. We refined the CMT2B locus to a 2.5-cM region and report two missense mutations (Leu129Phe and Val162Met) in the small GTP-ase late endosomal protein RAB7 which causes the CMT2B phenotype in three extended families and in three patients with a positive family history. The alignment of RAB7 orthologs shows that both missense mutations target highly conserved amino acid residues. RAB7 is ubiquitously expressed, and we found expression in sensory and motor neurons. PMID:12545426

  17. MIRO GTPases in Mitochondrial Transport, Homeostasis and Pathology

    PubMed Central

    Tang, Bor Luen

    2015-01-01

    The evolutionarily-conserved mitochondrial Rho (MIRO) small GTPase is a Ras superfamily member with three unique features. It has two GTPase domains instead of the one found in other small GTPases, and it also has two EF hand calcium binding domains, which allow Ca2+-dependent modulation of its activity and functions. Importantly, it is specifically associated with the mitochondria and via a hydrophobic transmembrane domain, rather than a lipid-based anchor more commonly found in other small GTPases. At the mitochondria, MIRO regulates mitochondrial homeostasis and turnover. In metazoans, MIRO regulates mitochondrial transport and organization at cellular extensions, such as axons, and, in some cases, intercellular transport of the organelle through tunneling nanotubes. Recent findings have revealed a myriad of molecules that are associated with MIRO, particularly the kinesin adaptor Milton/TRAK, mitofusin, PINK1 and Parkin, as well as the endoplasmic reticulum-mitochondria encounter structure (ERMES) complex. The mechanistic aspects of the roles of MIRO and its interactors in mitochondrial homeostasis and transport are gradually being revealed. On the other hand, MIRO is also increasingly associated with neurodegenerative diseases that have roots in mitochondrial dysfunction. In this review, I discuss what is currently known about the cellular physiology and pathophysiology of MIRO functions. PMID:26729171

  18. MIRO GTPases in Mitochondrial Transport, Homeostasis and Pathology.

    PubMed

    Tang, Bor Luen

    2015-01-01

    The evolutionarily-conserved mitochondrial Rho (MIRO) small GTPase is a Ras superfamily member with three unique features. It has two GTPase domains instead of the one found in other small GTPases, and it also has two EF hand calcium binding domains, which allow Ca(2+)-dependent modulation of its activity and functions. Importantly, it is specifically associated with the mitochondria and via a hydrophobic transmembrane domain, rather than a lipid-based anchor more commonly found in other small GTPases. At the mitochondria, MIRO regulates mitochondrial homeostasis and turnover. In metazoans, MIRO regulates mitochondrial transport and organization at cellular extensions, such as axons, and, in some cases, intercellular transport of the organelle through tunneling nanotubes. Recent findings have revealed a myriad of molecules that are associated with MIRO, particularly the kinesin adaptor Milton/TRAK, mitofusin, PINK1 and Parkin, as well as the endoplasmic reticulum-mitochondria encounter structure (ERMES) complex. The mechanistic aspects of the roles of MIRO and its interactors in mitochondrial homeostasis and transport are gradually being revealed. On the other hand, MIRO is also increasingly associated with neurodegenerative diseases that have roots in mitochondrial dysfunction. In this review, I discuss what is currently known about the cellular physiology and pathophysiology of MIRO functions.

  19. The RJL family of small GTPases is an ancient eukaryotic invention probably functionally associated with the flagellar apparatus.

    PubMed

    Elias, Marek; Archibald, John M

    2009-08-01

    A patchily distributed gene family is often taken as evidence for horizontal gene transfer (HGT) events, but it may also result solely from multiple gene losses. The RJL family of uncharacterised Ras-like GTPases was previously suggested to have undergone HGT events between protists and deuterostome metazoans, owing to the apparent absence of RJL in intermediate groups (Nepomuceno-Silva, J.L., de Melo, L.D., Mendonca, S.M., Paixao, J.C., Lopes, U.G., 2004. RJLs: a new family of Ras-related GTP-binding proteins. Gene 327, 221-232). We have reanalysed the phylogenetic distribution and phylogeny of the RJL family, taking advantage of the recent expansion of sequence data available from diverse eukaryotes. We found that RJL orthologs are much more widely distributed than previously assumed. At least one representative encoding an RJL protein could be identified for each of the six major eukaryotic "supergroups" (Opisthokonta, Amoebozoa, Excavata, Archaeplastida, Chromalveolata, and Rhizaria) as well as for a species of Apusomonadida, a deep lineage that may not be specifically related to any of the recognized supergroups. Phylogenetic analyses do not support HGT of RJL genes between the major eukaryotic lineages, indicating that the RJL family was present in the last eukaryotic common ancestor and was lost several times over the course of eukaryotic evolution. Interestingly, RJL was lost from all taxa lacking flagellated cells and from a few lineages that build structurally unusual or reduced flagella, raising the intriguing possibility that RJL proteins are functionally associated with the flagellar apparatus. The RJL GTPase domain has been fused with the DnaJ domain on two separate occasions: in the Holozoa (before the split of Metazoa and choanoflagellates), giving rise to the previously known Rbj type of RJL with the DnaJ domain at the C-terminus, and independently in Alveolata resulting in novel proteins with the DnaJ domain at the N-terminus. These independent

  20. The RJL family of small GTPases is an ancient eukaryotic invention probably functionally associated with the flagellar apparatus.

    PubMed

    Elias, Marek; Archibald, John M

    2009-08-01

    A patchily distributed gene family is often taken as evidence for horizontal gene transfer (HGT) events, but it may also result solely from multiple gene losses. The RJL family of uncharacterised Ras-like GTPases was previously suggested to have undergone HGT events between protists and deuterostome metazoans, owing to the apparent absence of RJL in intermediate groups (Nepomuceno-Silva, J.L., de Melo, L.D., Mendonca, S.M., Paixao, J.C., Lopes, U.G., 2004. RJLs: a new family of Ras-related GTP-binding proteins. Gene 327, 221-232). We have reanalysed the phylogenetic distribution and phylogeny of the RJL family, taking advantage of the recent expansion of sequence data available from diverse eukaryotes. We found that RJL orthologs are much more widely distributed than previously assumed. At least one representative encoding an RJL protein could be identified for each of the six major eukaryotic "supergroups" (Opisthokonta, Amoebozoa, Excavata, Archaeplastida, Chromalveolata, and Rhizaria) as well as for a species of Apusomonadida, a deep lineage that may not be specifically related to any of the recognized supergroups. Phylogenetic analyses do not support HGT of RJL genes between the major eukaryotic lineages, indicating that the RJL family was present in the last eukaryotic common ancestor and was lost several times over the course of eukaryotic evolution. Interestingly, RJL was lost from all taxa lacking flagellated cells and from a few lineages that build structurally unusual or reduced flagella, raising the intriguing possibility that RJL proteins are functionally associated with the flagellar apparatus. The RJL GTPase domain has been fused with the DnaJ domain on two separate occasions: in the Holozoa (before the split of Metazoa and choanoflagellates), giving rise to the previously known Rbj type of RJL with the DnaJ domain at the C-terminus, and independently in Alveolata resulting in novel proteins with the DnaJ domain at the N-terminus. These independent

  1. Resveratrol induces apoptosis by directly targeting Ras-GTPase-activating protein SH3 domain-binding protein 1.

    PubMed

    Oi, N; Yuan, J; Malakhova, M; Luo, K; Li, Y; Ryu, J; Zhang, L; Bode, A M; Xu, Z; Li, Y; Lou, Z; Dong, Z

    2015-05-14

    Resveratrol (trans-3,5,4'-truhydroxystilbene) possesses a strong anticancer activity exhibited as the induction of apoptosis through p53 activation. However, the molecular mechanism and direct target(s) of resveratrol-induced p53 activation remain elusive. Here, the Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) was identified as a potential target of resveratrol, and in vitro binding assay results using resveratrol-conjugated Sepharose 4B beads confirmed their direct binding. Depletion of G3BP1 significantly diminishes resveratrol-induced p53 expression and apoptosis. We also found that G3BP1 negatively regulates p53 expression by interacting with ubiquitin-specific protease 10 (USP10), a deubiquitinating enzyme of p53. Disruption of the interaction of p53 with USP10 by G3BP1 interference leads to the suppression of p53 deubiquitination. Resveratrol, on the other hand, directly binds to G3BP1 and prevents the G3BP1/USP10 interaction, resulting in enhanced USP10-mediated deubiquitination of p53, and consequently increased p53 expression. These findings disclose a novel mechanism of resveratrol-induced p53 activation and resveratrol-induced apoptosis by direct targeting of G3BP1.

  2. Common chaperone activity in the G-domain of trGTPase protects L11–L12 interaction on the ribosome

    PubMed Central

    Zhang, Dandan; Liu, Guangqiao; Xue, Jiaying; Lou, Jizhong; Nierhaus, Knud H.; Gong, Weimin; Qin, Yan

    2012-01-01

    Translational GTPases (trGTPases) regulate all phases of protein synthesis. An early event in the interaction of a trGTPase with the ribosome is the contact of the G-domain with the C-terminal domain (CTD) of ribosomal protein L12 (L12-CTD) and subsequently interacts with the N-terminal domain of L11 (L11-NTD). However, the structural and functional relationships between L12-CTD and L11-NTD remain unclear. Here, we performed mutagenesis, biochemical and structural studies to identify the interactions between L11-NTD and L12-CTD. Mutagenesis of conserved residues in the interaction site revealed their role in the docking of trGTPases. During docking, loop62 of L11-NTD protrudes into a cleft in L12-CTD, leading to an open conformation of this domain and exposure of hydrophobic core. This unfavorable situation for L12-CTD stability is resolved by a chaperone-like activity of the contacting G-domain. Our results suggest that all trGTPases—regardless of their different specific functions—use a common mechanism for stabilizing the L11-NTD•L12-CTD interactions. PMID:22965132

  3. Rab-small GTPases are involved in fluvastatin and pravastatin-induced vacuolation in rat skeletal myofibers.

    PubMed

    Sakamoto, Kazuho; Honda, Takashi; Yokoya, Sachihiko; Waguri, Satoshi; Kimura, Junko

    2007-12-01

    Three-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitors, known as statins, induce skeletal muscle injury including myalgia, myositis, and rhabdomyolysis. The mechanism of this myotoxicity remains unknown. This study examined the effect of statins on single skeletal myofibers enzymatically isolated from the rat flexor digitorum brevis muscles. Fluvastatin and pravastatin induced the formation of numerous vacuoles in the myofibers after 72 h of treatment. This effect progressed in a time- and concentration-dependent manner and, consequently, cell death occurred after 120 h. Electron micrographs revealed craters along the sarcolemma and swelling of the sarcoplasmic reticula and mitochondria, in addition to intracellular vacuoles. When caffeine was added after 72 h of fluvastatin treatment, contractile shortening of statin-treated myofibers was significantly attenuated and blebs formed on the surface of the myofibers. The coapplication of geranylgeranylpyrophosphate (GGPP) with fluvastatin prevented the morphological changes, while that of farnesylpyrophosphate (FPP) was ineffective. Furthermore, perillyl alcohol, an inhibitor of Rab geranylgeranyl transferase and geranylgeranyl transferase-I (GGTase-I), mimicked the effect of statins, while a specific GGTase-I inhibitor (GGTI-298) or a farnesyl transferase inhibitor (FTI-277) failed to do so. These results suggest that the inactivation of Rab GTPase, which involved in intracellular membrane transport, is a crucial factor in statin-induced-morphological abnormality in skeletal muscle fibers. PMID:17634390

  4. Downregulation of the small GTPase SAR1A: a key event underlying alcohol-induced Golgi fragmentation in hepatocytes

    PubMed Central

    Petrosyan, Armen; Cheng, Pi-Wan; Clemens, Dahn L.; Casey, Carol A.

    2015-01-01

    The hepatic asialoglycoprotein receptor (ASGP-R) is posttranslationally modified in the Golgi en route to the plasma membrane, where it mediates clearance of desialylated serum glycoproteins. It is known that content of plasma membrane-associated ASGP-R is decreased after ethanol exposure, although the mechanisms remain elusive. Previously, we found that formation of compact Golgi requires dimerization of the largest Golgi matrix protein giantin. We hypothesize that ethanol-impaired giantin function may be related to altered trafficking of ASGP-R. Here we report that in HepG2 cells expressing alcohol dehydrogenase and hepatocytes of ethanol-fed rats, ethanol metabolism results in Golgi disorganization. This process is initiated by dysfunction of SAR1A GTPase followed by altered COPII vesicle formation and impaired Golgi delivery of the protein disulfide isomerase A3 (PDIA3), an enzyme that catalyzes giantin dimerization. Additionally, we show that SAR1A gene silencing in hepatocytes mimics the effect of ethanol: dedimerization of giantin, arresting PDIA3 in the endoplasmic reticulum (ER) and large-scale alterations in Golgi architecture. Ethanol-induced Golgi fission has no effect on ER-to-Golgi transportation of ASGP-R, however, it results in its deposition in cis-medial-, but not trans-Golgi. Thus, alcohol-induced deficiency in COPII vesicle formation predetermines Golgi fragmentation which, in turn, compromises the Golgi-to-plasma membrane transportation of ASGP-R. PMID:26607390

  5. Downregulation of the small GTPase SAR1A: a key event underlying alcohol-induced Golgi fragmentation in hepatocytes.

    PubMed

    Petrosyan, Armen; Cheng, Pi-Wan; Clemens, Dahn L; Casey, Carol A

    2015-11-26

    The hepatic asialoglycoprotein receptor (ASGP-R) is posttranslationally modified in the Golgi en route to the plasma membrane, where it mediates clearance of desialylated serum glycoproteins. It is known that content of plasma membrane-associated ASGP-R is decreased after ethanol exposure, although the mechanisms remain elusive. Previously, we found that formation of compact Golgi requires dimerization of the largest Golgi matrix protein giantin. We hypothesize that ethanol-impaired giantin function may be related to altered trafficking of ASGP-R. Here we report that in HepG2 cells expressing alcohol dehydrogenase and hepatocytes of ethanol-fed rats, ethanol metabolism results in Golgi disorganization. This process is initiated by dysfunction of SAR1A GTPase followed by altered COPII vesicle formation and impaired Golgi delivery of the protein disulfide isomerase A3 (PDIA3), an enzyme that catalyzes giantin dimerization. Additionally, we show that SAR1A gene silencing in hepatocytes mimics the effect of ethanol: dedimerization of giantin, arresting PDIA3 in the endoplasmic reticulum (ER) and large-scale alterations in Golgi architecture. Ethanol-induced Golgi fission has no effect on ER-to-Golgi transportation of ASGP-R, however, it results in its deposition in cis-medial-, but not trans-Golgi. Thus, alcohol-induced deficiency in COPII vesicle formation predetermines Golgi fragmentation which, in turn, compromises the Golgi-to-plasma membrane transportation of ASGP-R.

  6. The Adaptor Proteins p66Shc and Grb2 Regulate the Activation of the GTPases ARF1 and ARF6 in Invasive Breast Cancer Cells*

    PubMed Central

    Haines, Eric; Saucier, Caroline; Claing, Audrey

    2014-01-01

    Signals downstream of growth factor receptors play an important role in mammary carcinogenesis. Recently, we demonstrated that the small GTPases ARF1 and ARF6 were shown to be activated downstream of the epidermal growth factor receptor (EGFR) and act as a key regulator of growth, migration, and invasion of breast cancer cells. However, the mechanism via which the EGFR recruits and activates ARF1 and ARF6 to transmit signals has yet to be fully elucidated. Here, we identify adaptor proteins Grb2 and p66Shc as important regulators mediating ARF activation. We demonstrate that ARF1 can be found in complex with Grb2 and p66Shc upon EGF stimulation of the basal-like breast cancer MDA-MB-231 cell line. However, we report that these two adaptors regulate ARF1 activation differently, with Grb2 promoting ARF1 activation and p66Shc blocking this response. Furthermore, we show that Grb2 is essential for the recruitment of ARF1 to the EGFR, whereas p66Shc hindered ARF1 receptor recruitment. We demonstrate that the negative regulatory role of p66Shc stemmed from its ability to block the recruitment of Grb2/ARF1 to the EGFR. Conversely, p66Shc potentiates ARF6 activation as well as the recruitment of this ARF isoform to the EGFR. Interestingly, we demonstrate that Grb2 is also required for the activation and receptor recruitment of ARF6. Additionally, we show an important role for p66Shc in modulating ARF activation, cell growth, and migration in HER2-positive breast cancer cells. Together, our results highlight a central role for adaptor proteins p66Shc and Grb2 in the regulation of ARF1 and ARF6 activation in invasive breast cancer cells. PMID:24407288

  7. Regulation of gene expression by the small GTPase Rho through the ERK6 (p38γ) MAP kinase pathway

    PubMed Central

    Marinissen, Maria Julia; Chiariello, Mario; Gutkind, J. Silvio

    2001-01-01

    Small GTP-binding proteins of the Rho-family, Rho, Rac, and Cdc42, have been traditionally linked to the regulation of the cellular actin-based cytoskeleton. Rac and Cdc42 can also control the activity of JNK, thus acting in a molecular pathway transmitting extracellular signals to the nucleus. Interestingly, Rho can also regulate gene expression, albeit by a not fully understood mechanism. Here, we found that activated RhoA can stimulate c-jun expression and the activity of the c-jun promoter. As the complexity of the signaling pathways controlling the expression of c-jun has begun to be unraveled, this finding provided a unique opportunity to elucidate the biochemical routes whereby RhoA regulates nuclear events. We found that RhoA can initiate a linear kinase cascade leading to the activation of ERK6 (p38γ), a recently identified member of the p38 family of MAPKs. Furthermore, we present evidence that RhoA, PKN, MKK3/MKK6, and ERK6 (p38γ) are components of a novel signal transduction pathway involved in the regulation of gene expression and cellular transformation. PMID:11238375

  8. The Sec7 N-terminal regulatory domains facilitate membrane-proximal activation of the Arf1 GTPase

    PubMed Central

    Richardson, Brian C; Halaby, Steve L; Gustafson, Margaret A; Fromme, J Christopher

    2016-01-01

    The Golgi complex is the central sorting compartment of eukaryotic cells. Arf guanine nucleotide exchange factors (Arf-GEFs) regulate virtually all traffic through the Golgi by activating Arf GTPase trafficking pathways. The Golgi Arf-GEFs contain multiple autoregulatory domains, but the precise mechanisms underlying their function remain largely undefined. We report a crystal structure revealing that the N-terminal DCB and HUS regulatory domains of the Arf-GEF Sec7 form a single structural unit. We demonstrate that the established role of the N-terminal region in dimerization is not conserved; instead, a C-terminal autoinhibitory domain is responsible for dimerization of Sec7. We find that the DCB/HUS domain amplifies the ability of Sec7 to activate Arf1 on the membrane surface by facilitating membrane insertion of the Arf1 amphipathic helix. This enhancing function of the Sec7 N-terminal domains is consistent with the high rate of Arf1-dependent trafficking to the plasma membrane necessary for maximal cell growth. DOI: http://dx.doi.org/10.7554/eLife.12411.001 PMID:26765562

  9. Structure-based design and screening of inhibitors for an essential bacterial GTPase, Der.

    PubMed

    Hwang, Jihwan; Tseitin, Vladimir; Ramnarayan, Kal; Shenderovich, Mark D; Inouye, Masayori

    2012-05-01

    Der is an essential and widely conserved GTPase that assists assembly of a large ribosomal subunit in bacteria. Der associates specifically with the 50S subunit in a GTP-dependent manner and the cells depleted of Der accumulate the structurally unstable 50S subunit, which dissociates into an aberrant subunit at a lower Mg(2+) concentration. As Der is an essential and ubiquitous protein in bacteria, it may prove to be an ideal cellular target against which new antibiotics can be developed. In the present study, we describe our attempts to identify novel antibiotics specifically targeting Der GTPase. We performed the structure-based design of Der inhibitors using the X-ray crystal structure of Thermotoga maritima Der (TmDer). Virtual screening of commercially available chemical library retrieved 257 small molecules that potentially inhibit Der GTPase activity. These 257 chemicals were tested for their in vitro effects on TmDer GTPase and in vivo antibacterial activities. We identified three structurally diverse compounds, SBI-34462, -34566 and -34612, that are both biologically active against bacterial cells and putative enzymatic inhibitors of Der GTPase homologs. We also presented the possible interactions of each compound with the Der GTP-binding site to understand the mechanism of inhibition. Therefore, our lead compounds inhibiting Der GTPase provide scaffolds for the development of novel antibiotics against antibiotic-resistant pathogenic bacteria. PMID:22377538

  10. Cdc15 integrates Tem1 GTPase-mediated spatial signals with Polo kinase-mediated temporal cues to activate mitotic exit.

    PubMed

    Rock, Jeremy M; Amon, Angelika

    2011-09-15

    In budding yeast, a Ras-like GTPase signaling cascade known as the mitotic exit network (MEN) promotes exit from mitosis. To ensure the accurate execution of mitosis, MEN activity is coordinated with other cellular events and restricted to anaphase. The MEN GTPase Tem1 has been assumed to be the central switch in MEN regulation. We show here that during an unperturbed cell cycle, restricting MEN activity to anaphase can occur in a Tem1 GTPase-independent manner. We found that the anaphase-specific activation of the MEN in the absence of Tem1 is controlled by the Polo kinase Cdc5. We further show that both Tem1 and Cdc5 are required to recruit the MEN kinase Cdc15 to spindle pole bodies, which is both necessary and sufficient to induce MEN signaling. Thus, Cdc15 functions as a coincidence detector of two essential cell cycle oscillators: the Polo kinase Cdc5 synthesis/degradation cycle and the Tem1 G-protein cycle. The Cdc15-dependent integration of these temporal (Cdc5 and Tem1 activity) and spatial (Tem1 activity) signals ensures that exit from mitosis occurs only after proper genome partitioning.

  11. RhoA GTPase-Induced Ocular Hypertension in a Rodent Model Is Associated with Increased Fibrogenic Activity in the Trabecular Meshwork

    PubMed Central

    Pattabiraman, Padmanabhan P.; Rinkoski, Tommy; Poeschla, Eric; Proia, Alan; Challa, Pratap; Rao, Ponugoti V.

    2016-01-01

    Ocular hypertension arising from increased resistance to aqueous humor (AH) outflow through the trabecular meshwork is a primary risk factor for open-angle glaucoma, a leading cause of blindness. Ongoing efforts have found little about the molecular and cellular bases of increased resistance to AH outflow through the trabecular meshwork in ocular hypertension patients. To test the hypothesis that dysregulated Rho GTPase signaling and a resulting fibrotic activity within the trabecular meshwork may result in ocular hypertension, we investigated the effects of expressing a constitutively active RhoA GTPase (RhoAV14) in the AH outflow pathway in Sprague-Dawley rats by using lentiviral vector-based gene delivery. Rats expressing RhoAV14 in the iridocorneal angle exhibited a significantly elevated intraocular pressure. Elevated intraocular pressure in the RhoAV14-expressing rats was associated with fibrotic trabecular meshwork and increased levels of F-actin, phosphorylated myosin light chain, α-smooth muscle actin, collagen-1A, and total collagen in the trabecular AH outflow pathway. Most of these changes were ameliorated by topical application of Rho kinase inhibitor. Human autopsy eyes from patients with glaucoma exhibited significant increases in levels of collagen-1A and total collagen in the trabecular AH outflow pathway. Collectively, these observations indicate that increased fibrogenic activity because of dysregulated RhoA GTPase activity in the trabecular AH outflow pathway increases intraocular pressure in a Rho kinase-dependent manner. PMID:25499974

  12. VPS9a, the common activator for two distinct types of Rab5 GTPases, is essential for the development of Arabidopsis thaliana.

    PubMed

    Goh, Tatsuaki; Uchida, Wakana; Arakawa, Satoko; Ito, Emi; Dainobu, Tomoko; Ebine, Kazuo; Takeuchi, Masaki; Sato, Ken; Ueda, Takashi; Nakano, Akihiko

    2007-11-01

    Rab5, a subfamily of Rab GTPases, regulates a variety of endosomal functions as a molecular switch. Arabidopsis thaliana has two different types of Rab5-member GTPases: conventional type, ARA7 and RHA1, and a plant-specific type, ARA6. We found that only one guanine nucleotide exchange factor (GEF), named VPS9a, can activate all Rab5 members to GTP-bound forms in vitro in spite of their diverged structures. In the vps9a-1 mutant, whose GEF activity is completely lost, embryogenesis was arrested at the torpedo stage. Green fluorescent protein (GFP)-ARA7 and ARA6-GFP were diffused in cytosol like GDP-fixed mutants of Rab5 in vps9a-1, indicating that both types of GTPase are regulated by VPS9a. In the leaky vps9a-2 mutant, elongation of the primary root was severely affected. Overexpression of the GTP-fixed form of ARA7 suppressed the vps9a-2 mutation, but overexpression of ARA6 had no apparent effects. These results indicate that the two types of plant Rab5 members are functionally differentiated, even though they are regulated by the same activator, VPS9a.

  13. A homogeneous quenching resonance energy transfer assay for the kinetic analysis of the GTPase nucleotide exchange reaction.

    PubMed

    Kopra, Kari; Ligabue, Alessio; Wang, Qi; Syrjänpää, Markku; Blaževitš, Olga; Veltel, Stefan; van Adrichem, Arjan J; Hänninen, Pekka; Abankwa, Daniel; Härmä, Harri

    2014-07-01

    A quenching resonance energy transfer (QRET) assay for small GTPase nucleotide exchange kinetic monitoring is demonstrated using nanomolar protein concentrations. Small GTPases are central signaling proteins in all eukaryotic cells acting as a "molecular switches" that are active in the GTP-state and inactive in the GDP-state. GTP-loading is highly regulated by guanine nucleotide exchange factors (GEFs). In several diseases, most prominently cancer, this process in misregulated. The kinetics of the nucleotide exchange reaction reports on the enzymatic activity of the GEF reaction system and is, therefore, of special interest. We determined the nucleotide exchange kinetics using europium-labeled GTP (Eu-GTP) in the QRET assay for small GTPases. After GEF catalyzed GTP-loading of a GTPase, a high time-resolved luminescence signal was found to be associated with GTPase bound Eu-GTP, whereas the non-bound Eu-GTP fraction was quenched by soluble quencher. The association kinetics of the Eu-GTP was measured after GEF addition, whereas the dissociation kinetics could be determined after addition of unlabeled GTP. The resulting association and dissociation rates were in agreement with previously published values for H-Ras(Wt), H-Ras(Q61G), and K-Ras(Wt), respectively. The broader applicability of the QRET assay for small GTPases was demonstrated by determining the kinetics of the Ect2 catalyzed RhoA(Wt) GTP-loading. The QRET assay allows the use of nanomolar protein concentrations, as more than 3-fold signal-to-background ratio was achieved with 50 nM GTPase and GEF proteins. Thus, small GTPase exchange kinetics can be efficiently determined in a HTS compatible 384-well plate format.

  14. Reduced expression of SynGAP, a neuronal GTPase-activating protein, enhances capsaicin-induced peripheral sensitization

    PubMed Central

    Duarte, Djane Braz; Duan, Jian-Hong; Nicol, Grant D.; Vasko, Michael R.

    2011-01-01

    Synaptic GTPase-activating protein (SynGAP) is a neuronal-specific Ras/Rap-GAP that increases the hydrolysis rate of GTP to GDP, converting Ras/Rap from the active into the inactive form. The Ras protein family modulates a wide range of cellular pathways including those involved in sensitization of sensory neurons. Since GAPs regulate Ras activity, SynGAP might be an important regulator of peripheral sensitization and pain. Therefore, we evaluated excitability, stimulus-evoked release of the neuropeptide calcitonin gene-related peptide (CGRP), and nociception from wild-type (WT) mice and those with a heterozygous mutation of the SynGAP gene (SynGAP+/−). Our results demonstrate that SynGAP is expressed in primary afferent sensory neurons and that the capsaicin-stimulated CGRP release from spinal cord slices was two-fold higher from SynGAP+/− mice than that observed from WT mouse tissue, consistent with an increase in expression of the capsaicin receptor, transient receptor potential cation channel subfamily V member 1 (TRPV1), in SynGAP+/− dorsal root ganglia. However, there was no difference between the two genotypes in potassium-stimulated release of CGRP, the number of action potentials generated by a ramp of depolarizing current, or mechanical hypernociception elicited by intraplantar injection of capsaicin. In contrast, capsaicin-induced thermal hypernociception occurred at lower doses of capsaicin and had a longer duration in SynGAP+/− mice than WT mice. These results provide the first evidence that SynGAP is an important regulator of neuropeptide release from primary sensory neurons and can modulate capsaicin-induced hypernociception, demonstrating the importance of GAP regulation in signaling pathways that play a role in peripheral sensitization. PMID:21525372

  15. Small Active Radiation Monitor

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2004-01-01

    A device, named small active radiation monitor, allows on-orbit evaluations during periods of increased radiation, after extravehicular activities, or at predesignated times for crews on such long-duration space missions as on the International Space Station. It also permits direct evaluation of biological doses, a task now performed using a combination of measurements and potentially inaccurate simulations. Indeed the new monitor can measure a full array of radiation levels, from soft x-rays to hard galactic cosmic-ray particles. With refinement, it will benefit commercial (nuclear power-plant workers, airline pilots, medical technicians, physicians/dentists, and others) and military personnel as well as the astronauts for whom thermoluminescent dosimeters are inadequate. Civilian and military personnel have long since graduated from film badges to thermoluminescent dosimeters. Once used, most dosimeters must be returned to a central facility for processing, a step that can take days or even weeks. While this suffices for radiation workers for whom exposure levels are typically very low and of brief duration, it does not work for astronauts. Even in emergencies and using express mail, the results can often be delayed by as much as 24 hours. Electronic dosimeters, which are the size of electronic oral thermometers, and tattlers, small electronic dosimeters that sound an alarm when the dose/dose rate exceeds preset values, are also used but suffer disadvantages similar to those of thermoluminescent dosimeters. None of these devices fully answers the need of rapid monitoring during the space missions. Instead, radiation is monitored by passive detectors, which are read out after the missions. Unfortunately, these detectors measure only the absorbed dose and not the biologically relevant dose equivalent. The new monitor provides a real-time readout, a time history of radiation exposures (both absorbed dose and biologically relevant dose equivalent), and a count of the

  16. The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse.

    PubMed

    Finetti, Francesca; Patrussi, Laura; Galgano, Donatella; Cassioli, Chiara; Perinetti, Giuseppe; Pazour, Gregory J; Baldari, Cosima T

    2015-07-15

    IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, regulates immune synapse assembly in the non-ciliated T-cell by promoting T-cell receptor (TCR) recycling. Here, we have addressed the role of Rab8 (for which there are two isoforms Rab8a and Rab8b), a small GTPase implicated in ciliogenesis, in TCR traffic to the immune synapse. We show that Rab8, which colocalizes with IFT20 in Rab11(+) endosomes, is required for TCR recycling. Interestingly, as opposed to in IFT20-deficient T-cells, TCR(+) endosomes polarized normally beneath the immune synapse membrane in the presence of dominant-negative Rab8, but were unable to undergo the final docking or fusion step. This could be accounted for by the inability of the vesicular (v)-SNARE VAMP-3 to cluster at the immune synapse in the absence of functional Rab8, which is responsible for its recruitment. Of note, and similar to in T-cells, VAMP-3 interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of the protein smoothened. The results identify Rab8 as a new player in vesicular traffic to the immune synapse and provide insight into the pathways co-opted by different cell types for immune synapse assembly and ciliogenesis.

  17. The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse

    PubMed Central

    Finetti, Francesca; Patrussi, Laura; Galgano, Donatella; Cassioli, Chiara; Perinetti, Giuseppe; Pazour, Gregory J.; Baldari, Cosima T.

    2015-01-01

    ABSTRACT IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, regulates immune synapse assembly in the non-ciliated T-cell by promoting T-cell receptor (TCR) recycling. Here, we have addressed the role of Rab8 (for which there are two isoforms Rab8a and Rab8b), a small GTPase implicated in ciliogenesis, in TCR traffic to the immune synapse. We show that Rab8, which colocalizes with IFT20 in Rab11+ endosomes, is required for TCR recycling. Interestingly, as opposed to in IFT20-deficient T-cells, TCR+ endosomes polarized normally beneath the immune synapse membrane in the presence of dominant-negative Rab8, but were unable to undergo the final docking or fusion step. This could be accounted for by the inability of the vesicular (v)-SNARE VAMP-3 to cluster at the immune synapse in the absence of functional Rab8, which is responsible for its recruitment. Of note, and similar to in T-cells, VAMP-3 interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of the protein smoothened. The results identify Rab8 as a new player in vesicular traffic to the immune synapse and provide insight into the pathways co-opted by different cell types for immune synapse assembly and ciliogenesis. PMID:26034069

  18. An Arabidopsis Ran-binding protein, AtRanBP1c, is a co-activator of Ran GTPase-activating protein and requires the C-terminus for its cytoplasmic localization

    NASA Technical Reports Server (NTRS)

    Kim, Soo-Hwan; Roux, Stanley J.

    2003-01-01

    Ran-binding proteins (RanBPs) are a group of proteins that bind to Ran (Ras-related nuclear small GTP-binding protein), and thus either control the GTP/GDP-bound states of Ran or help couple the Ran GTPase cycle to a cellular process. AtRanBP1c is a Ran-binding protein from Arabidopsis thaliana (L.) Heynh. that was recently shown to be critically involved in the regulation of auxin-induced mitotic progression [S.-H. Kim et al. (2001) Plant Cell 13:2619-2630]. Here we report that AtRanBP1c inhibits the EDTA-induced release of GTP from Ran and serves as a co-activator of Ran-GTPase-activating protein (RanGAP) in vitro. Transient expression of AtRanBP1c fused to a beta-glucuronidase (GUS) reporter reveals that the protein localizes primarily to the cytosol. Neither the N- nor C-terminus of AtRanBP1c, which flank the Ran-binding domain (RanBD), is necessary for the binding of PsRan1-GTP to the protein, but both are needed for the cytosolic localization of GUS-fused AtRanBP1c. These findings, together with a previous report that AtRanBP1c is critically involved in root growth and development, imply that the promotion of GTP hydrolysis by the Ran/RanGAP/AtRanBP1c complex in the cytoplasm, and the resulting concentration gradient of Ran-GDP to Ran-GTP across the nuclear membrane could be important in the regulation of auxin-induced mitotic progression in root tips of A. thaliana.

  19. FilGAP, a Rac-specific Rho GTPase-activating protein, is a novel prognostic factor for follicular lymphoma.

    PubMed

    Nishi, Tatsuya; Takahashi, Hiroyuki; Hashimura, Miki; Yoshida, Tsutomu; Ohta, Yasutaka; Saegusa, Makoto

    2015-06-01

    FilGAP, a Rho GTPase-activating protein (GAP), acts as a mediator of Rho/ROCK (Rho-associated protein kinase)-dependent amoeboid movement, and its knockdown results in Rac-driven mesenchymal morphology. Herein, we focus on the possible roles of FilGAP expression in normal and malignant lymphocytes. Eighty-three cases of follicular lymphoma (FL), 84 of diffuse large B-cell lymphoma (DLBCL), and 25 of peripheral T-cell lymphoma (PTCL), as well as 10 of normal lymph nodes, were immunohistochemically investigated. In normal lymph nodes, FilGAP immunoreactivity was significantly higher in lymphocytes in the mantle zone as compared to those in the germinal center and paracortical areas. In contrast, the expression levels of both cytoplasmic and perinuclear Rac1 were significantly lower in the germinal center as compared to paracortical regions, suggesting that changes in the FilGAP/Rac axis may occur in B-cell lineages. In malignant lymphomas, FilGAP expression was significantly higher in B-cell lymphomas than PTCL, and the immunohistochemical scores were positively correlated with cytoplasmic Rac1 scores in FL and DLBCL, but not in PTCL. Patients with FL and germinal center B-cell-like (GCB)-type DLBCL showing high FilGAP scores had poor overall survival rates as compared to the low-score patients. Moreover, multivariate Cox regression analysis showed that a high FilGAP score was a significant and independent unfavorable prognostic factor in FL, but not in DLBCL. In conclusion, FilGAP may contribute to change in cell motility of B-lymphocytes. In addition, its expression appears to be useful for predicting the behavior of B-cell lymphoma, in particular FL. PMID:25641953

  20. The Cytotoxic Necrotizing Factor of Yersinia pseudotuberculosis (CNFY) Enhances Inflammation and Yop Delivery during Infection by Activation of Rho GTPases

    PubMed Central

    Schweer, Janina; Kulkarni, Devesha; Kochut, Annika; Pezoldt, Joern; Pisano, Fabio; Pils, Marina C.; Genth, Harald; Huehn, Jochen; Dersch, Petra

    2013-01-01

    Some isolates of Yersinia pseudotuberculosis produce the cytotoxic necrotizing factor (CNFY), but the functional consequences of this toxin for host-pathogen interactions during the infection are unknown. In the present study we show that CNFY has a strong influence on virulence. We demonstrate that the CNFY toxin is thermo-regulated and highly expressed in all colonized lymphatic tissues and organs of orally infected mice. Most strikingly, we found that a cnfY knock-out variant of a naturally toxin-expressing Y. pseudotuberculosis isolate is strongly impaired in its ability to disseminate into the mesenteric lymph nodes, liver and spleen, and has fully lost its lethality. The CNFY toxin contributes significantly to the induction of acute inflammatory responses and to the formation of necrotic areas in infected tissues. The analysis of the host immune response demonstrated that presence of CNFY leads to a strong reduction of professional phagocytes and natural killer cells in particular in the spleen, whereas loss of the toxin allows efficient tissue infiltration of these immune cells and rapid killing of the pathogen. Addition of purified CNFY triggers formation of actin-rich membrane ruffles and filopodia, which correlates with the activation of the Rho GTPases, RhoA, Rac1 and Cdc42. The analysis of type III effector delivery into epithelial and immune cells in vitro and during the course of the infection further demonstrated that CNFY enhances the Yop translocation process and supports a role for the toxin in the suppression of the antibacterial host response. In summary, we highlight the importance of CNFY for pathogenicity by showing that this toxin modulates inflammatory responses, protects the bacteria from attacks of innate immune effectors and enhances the severity of a Yersinia infection. PMID:24244167

  1. Locking GTPases covalently in their functional states.

    PubMed

    Wiegandt, David; Vieweg, Sophie; Hofmann, Frank; Koch, Daniel; Li, Fu; Wu, Yao-Wen; Itzen, Aymelt; Müller, Matthias P; Goody, Roger S

    2015-01-01

    GTPases act as key regulators of many cellular processes by switching between active (GTP-bound) and inactive (GDP-bound) states. In many cases, understanding their mode of action has been aided by artificially stabilizing one of these states either by designing mutant proteins or by complexation with non-hydrolysable GTP analogues. Because of inherent disadvantages in these approaches, we have developed acryl-bearing GTP and GDP derivatives that can be covalently linked with strategically placed cysteines within the GTPase of interest. Binding studies with GTPase-interacting proteins and X-ray crystallography analysis demonstrate that the molecular properties of the covalent GTPase-acryl-nucleotide adducts are a faithful reflection of those of the corresponding native states and are advantageously permanently locked in a defined nucleotide (that is active or inactive) state. In a first application, in vivo experiments using covalently locked Rab5 variants provide new insights into the mechanism of correct intracellular localization of Rab proteins.

  2. Locking GTPases covalently in their functional states

    NASA Astrophysics Data System (ADS)

    Wiegandt, David; Vieweg, Sophie; Hofmann, Frank; Koch, Daniel; Li, Fu; Wu, Yao-Wen; Itzen, Aymelt; Müller, Matthias P.; Goody, Roger S.

    2015-07-01

    GTPases act as key regulators of many cellular processes by switching between active (GTP-bound) and inactive (GDP-bound) states. In many cases, understanding their mode of action has been aided by artificially stabilizing one of these states either by designing mutant proteins or by complexation with non-hydrolysable GTP analogues. Because of inherent disadvantages in these approaches, we have developed acryl-bearing GTP and GDP derivatives that can be covalently linked with strategically placed cysteines within the GTPase of interest. Binding studies with GTPase-interacting proteins and X-ray crystallography analysis demonstrate that the molecular properties of the covalent GTPase-acryl-nucleotide adducts are a faithful reflection of those of the corresponding native states and are advantageously permanently locked in a defined nucleotide (that is active or inactive) state. In a first application, in vivo experiments using covalently locked Rab5 variants provide new insights into the mechanism of correct intracellular localization of Rab proteins.

  3. Nonradioactive methods for detecting activation of Ras-related small G proteins.

    PubMed

    Andres, Douglas A

    2004-01-01

    Ras-related small GTPases serve as critical regulators for a wide range of cellular signaling pathways and are activated by the conversion of the GDP-bound state to the GTP-bound conformation. Until recently, measurement of the GTP-bound active form of Ras-related G proteins involved immunoprecipitation of 32P-labeled protein followed by separation of the labeled GTP/GDP bound to GTPase. A new method based on the large affinity difference of the GTP- and GDP-bound form of Ras proteins for specific binding domains of effector proteins in vitro has been developed. By using glutathione S-transferase (GST) fusion proteins containing these binding domains, the GTP-bound form of the GTPase can be precipitated from cell lysates. In principle, this method can be used for all members of the Ras superfamily. Here we describe a general procedure to monitor the GTP-bound form of Ras-related GTPases. PMID:15173615

  4. Control of synapse development and plasticity by Rho GTPase regulatory proteins

    PubMed Central

    Tolias, Kimberley F.; Duman, Joseph G.; Um, Kyongmi

    2011-01-01

    Synapses are specialized cell-cell contacts that mediate communication between neurons. Most excitatory synapses in the brain are housed on dendritic spines, small actin-rich protrusions extending from dendrites. During development and in response to environmental stimuli, spines undergo marked changes in shape and number thought to underlie processes like learning and memory. Improper spine development, in contrast, likely impedes information processing in the brain, since spine abnormalities are associated with numerous brain disorders. Elucidating the mechanisms that regulate the formation and plasticity of spines and their resident synapses is therefore crucial to our understanding of cognition and disease. Rho-family GTPases, key regulators of the actin cytoskeleton, play essential roles in orchestrating the development and remodeling of spines and synapses. Precise spatio-temporal regulation of Rho GTPase activity is critical for their function, since aberrant Rho GTPase signaling can cause spine and synapse defects as well as cognitive impairments. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) and inhibited by GTPase-activating proteins (GAPs). We propose that Rho-family GEFs and GAPs provide the spatiotemporal regulation and signaling specificity necessary for proper Rho GTPase function based on the following features they possess: (i) existence of multiple GEFs and GAPs per Rho GTPase, (ii) developmentally regulated expression, (iii) discrete localization, (iv) ability to bind to and organize specific signaling networks, and (v) tightly regulated activity, perhaps involving GEF/GAP interactions. Recent studies describe several Rho-family GEFs and GAPs that uniquely contribute to spinogenesis and synaptogenesis. Here, we highlight several of these proteins and discuss how they occupy distinct biochemical niches critical for synaptic development. PMID:21530608

  5. RUTBC1 Functions as a GTPase-activating Protein for Rab32/38 and Regulates Melanogenic Enzyme Trafficking in Melanocytes.

    PubMed

    Marubashi, Soujiro; Shimada, Hikaru; Fukuda, Mitsunori; Ohbayashi, Norihiko

    2016-01-15

    Two cell type-specific Rab proteins, Rab32 and Rab38 (Rab32/38), have been proposed as regulating the trafficking of melanogenic enzymes, including tyrosinase and tyrosinase-related protein 1 (Tyrp1), to melanosomes in melanocytes. Like other GTPases, Rab32/38 function as switch molecules that cycle between a GDP-bound inactive form and a GTP-bound active form; the cycle is thought to be regulated by an activating enzyme, guanine nucleotide exchange factor (GEF), and an inactivating enzyme, GTPase-activating protein (GAP), which stimulates the GTPase activity of Rab32/38. Although BLOC-3 has already been identified as a Rab32/38-specific GEF that regulates the trafficking of tyrosinase and Tyrp1, no physiological GAP for Rab32/38 in melanocytes has ever been identified, and it has remained unclear whether Rab32/38 is involved in the trafficking of dopachrome tautomerase, another melanogenic enzyme, in mouse melanocytes. In this study we investigated RUTBC1, which was originally characterized as a Rab9-binding protein and GAP for Rab32 and Rab33B in vitro, and the results demonstrated that RUTBC1 functions as a physiological GAP for Rab32/38 in the trafficking of all three melanogenic enzymes in mouse melanocytes. The results of this study also demonstrated the involvement of Rab9A in the regulation of the RUTBC1 localization and in the trafficking of all three melanogenic enzymes. We discovered that either excess activation or inactivation of Rab32/38 achieved by manipulating RUTBC1 inhibits the trafficking of all three melanogenic enzymes. These results collectively indicate that proper spatiotemporal regulation of Rab32/38 is essential for the trafficking of all three melanogenic enzymes in mouse melanocytes. PMID:26620560

  6. RUTBC1 Functions as a GTPase-activating Protein for Rab32/38 and Regulates Melanogenic Enzyme Trafficking in Melanocytes.

    PubMed

    Marubashi, Soujiro; Shimada, Hikaru; Fukuda, Mitsunori; Ohbayashi, Norihiko

    2016-01-15

    Two cell type-specific Rab proteins, Rab32 and Rab38 (Rab32/38), have been proposed as regulating the trafficking of melanogenic enzymes, including tyrosinase and tyrosinase-related protein 1 (Tyrp1), to melanosomes in melanocytes. Like other GTPases, Rab32/38 function as switch molecules that cycle between a GDP-bound inactive form and a GTP-bound active form; the cycle is thought to be regulated by an activating enzyme, guanine nucleotide exchange factor (GEF), and an inactivating enzyme, GTPase-activating protein (GAP), which stimulates the GTPase activity of Rab32/38. Although BLOC-3 has already been identified as a Rab32/38-specific GEF that regulates the trafficking of tyrosinase and Tyrp1, no physiological GAP for Rab32/38 in melanocytes has ever been identified, and it has remained unclear whether Rab32/38 is involved in the trafficking of dopachrome tautomerase, another melanogenic enzyme, in mouse melanocytes. In this study we investigated RUTBC1, which was originally characterized as a Rab9-binding protein and GAP for Rab32 and Rab33B in vitro, and the results demonstrated that RUTBC1 functions as a physiological GAP for Rab32/38 in the trafficking of all three melanogenic enzymes in mouse melanocytes. The results of this study also demonstrated the involvement of Rab9A in the regulation of the RUTBC1 localization and in the trafficking of all three melanogenic enzymes. We discovered that either excess activation or inactivation of Rab32/38 achieved by manipulating RUTBC1 inhibits the trafficking of all three melanogenic enzymes. These results collectively indicate that proper spatiotemporal regulation of Rab32/38 is essential for the trafficking of all three melanogenic enzymes in mouse melanocytes.

  7. Synaptotagmin-like protein 1 interacts with the GTPase-activating protein Rap1GAP2 and regulates dense granule secretion in platelets.

    PubMed

    Neumüller, Olga; Hoffmeister, Meike; Babica, Jan; Prelle, Carola; Gegenbauer, Kristina; Smolenski, Albert P

    2009-08-13

    The small guanine-nucleotide-binding protein Rap1 plays a key role in platelet aggregation and hemostasis, and we recently identified Rap1GAP2 as the only GTPase-activating protein of Rap1 in platelets. In search of Rap1GAP2-associated proteins, we performed yeast-2-hybrid screening and found synaptotagmin-like protein 1 (Slp1) as a new binding partner. We confirmed the interaction of Rap1GAP2 and Slp1 in transfected COS-1 and HeLa cells and at endogenous level in human platelets. Mapping studies showed that Rap1GAP2 binds through amino acids T524-K525-X-T527 within its C-terminus to the C2A domain of Slp1. Slp1 contains a Rab27-binding domain, and we demonstrate that Rap1GAP2, Slp1, and Rab27 form a trimeric complex in transfected cells and in platelets. Purified Slp1 dose-dependently decreased dense granule secretion in streptolysin-O-permeabilized platelets stimulated with calcium or guanosine 5'-O-[gamma-thio] triphosphate. The isolated C2A domain of Slp1 had a stimulatory effect on granule secretion and reversed the inhibitory effect of full-length Slp1. Purified Rap1GAP2 augmented dense granule secretion of permeabilized platelets, whereas deletion of the Slp1-binding TKXT motif abolished the effect of Rap1GAP2. We conclude that Slp1 inhibits dense granule secretion in platelets and that Rap1GAP2 modulates secretion by binding to Slp1. PMID:19528539

  8. Dynamin GTPase Regulation is Altered by PH Domain Mutations Found in Centronuclear Myopathy Patients

    SciTech Connect

    Kenniston, J.; Lemmon, M

    2010-01-01

    The large GTPase dynamin has an important membrane scission function in receptor-mediated endocytosis and other cellular processes. Self-assembly on phosphoinositide-containing membranes stimulates dynamin GTPase activity, which is crucial for its function. Although the pleckstrin-homology (PH) domain is known to mediate phosphoinositide binding by dynamin, it remains unclear how this promotes activation. Here, we describe studies of dynamin PH domain mutations found in centronuclear myopathy (CNM) that increase dynamin's GTPase activity without altering phosphoinositide binding. CNM mutations in the PH domain C-terminal {alpha}-helix appear to cause conformational changes in dynamin that alter control of the GTP hydrolysis cycle. These mutations either 'sensitize' dynamin to lipid stimulation or elevate basal GTPase rates by promoting self-assembly and thus rendering dynamin no longer lipid responsive. We also describe a low-resolution structure of dimeric dynamin from small-angle X-ray scattering that reveals conformational changes induced by CNM mutations, and defines requirements for domain rearrangement upon dynamin self-assembly at membrane surfaces. Our data suggest that changes in the PH domain may couple lipid binding to dynamin GTPase activation at sites of vesicle invagination.

  9. AMPA, not NMDA, activates RhoA GTPases and subsequently phosphorylates moesin.

    PubMed

    Kim, Su-Jin; Jeon, Songhee; Shin, Eun-Young; Kim, Eung-Gook; Park, Joobae; Bae, Chang-Dae

    2004-02-29

    Glutamate induced rapid phosphorylation of moesin, one of ERM family proteins involved in the ligation of membrane to actin cytoskeleton, in rat hippocampal cells (JBC, 277:16576-16584, 2002). However, the identity of glutamate receptor has not been explored. Here we show that a-amino- 3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor is responsible for glutamate-induced RhoA activation and phosphorylation of moesin. Glutamate induced phosphorylation at Thr-558 of moesin was still detectible upon chelation of Ca(2+), suggesting involvement of AMPA receptor instead of N-methyl D-Aspartate (NMDA) receptor in this phosphorylation of moesin. AMPA but not NMDA- induced moesin phosphorylation was independent of Ca(2+). Both AMPA and NMDA but not Kainate induced moesin phosphorylation at similar levels. However, the kinetics of phosphorylation varied greatly between AMPA and NMDA where AMPA treatment rapidly increased phosphomoesin, which reached a maximum at 10 min after treatment and returned to a basal level at 30 min. In contrast, NMDA-induced phosphorylation of moesin reached a maximum at 30 min after treatment and was remained at higher levels at 60 min. A possible involvement of RhoA and its downstream effector, Rho kinase in the AMPA receptor-triggered phosphorylation of moesin was also explored. The kinetics for the glutamate- induced membrane translocation of RhoA was similar to that of moesin phosphorylation induced by AMPA. Moreover, Y-27632, a specific Rho kinase inhibitor, completely blocked AMPA-induced moesin phosphorylation but had no effect on NMDA-induced moesin phosphorylation. These results suggest that glutamate-induced phosphorylation of moesin may be mediated through the AMPA receptor/RhoA/Rho kinase pathway.

  10. Structure-function analyses of the small GTPase Rab35 and its effector protein centaurin-β2/ACAP2 during neurite outgrowth of PC12 cells.

    PubMed

    Etoh, Kan; Fukuda, Mitsunori

    2015-04-01

    The small GTPase Rab35 is a molecular switch for membrane trafficking that regulates a variety of cellular events. We previously showed that Rab35 promotes neurite outgrowth of nerve growth factor-stimulated PC12 cells through interaction with centaurin-β2 (also called ACAP2). Centaurin-β2 is the only Rab35-binding protein reported thus far that exclusively recognizes Rab35 and does not recognize any of the other 59 Rabs identified in mammals, but the molecular basis for the exclusive specificity of centaurin-β2 for Rab35 has remained completely unknown. In this study, we performed deletion and mutation analyses and succeeded in identifying the residues of Rab35 and centaurin-β2 that are crucial for formation of a Rab35·centaurin-β2 complex. We found that two threonine residues (Thr-76 and Thr-81) in the switch II region of Rab35 are responsible for binding centaurin-β2 and that the same residues are dispensable for Rab35 recognition by other Rab35-binding proteins. We also determined the minimal Rab35-binding site of centaurin-β2 and identified two asparagine residues (Asn-610 and Asn-691) in the Rab35-binding site as key residues for its specific Rab35 recognition. We further showed by knockdown-rescue approaches that neither a centaurin-β2 binding-deficient Rab35(T76S/T81A) mutant nor a Rab35 binding-deficient centaurin-β2(N610A/N691A) mutant supported neurite outgrowth of PC12 cells, thereby demonstrating the functional significance of the Rab35/centaurin-β2 interaction during neurite outgrowth of PC12 cells.

  11. E50K-OPTN-induced retinal cell death involves the Rab GTPase-activating protein, TBC1D17 mediated block in autophagy.

    PubMed

    Chalasani, Madhavi Latha Somaraju; Kumari, Asha; Radha, Vegesna; Swarup, Ghanshyam

    2014-01-01

    The protein optineurin coded by OPTN gene is involved in several functions including regulation of endocytic trafficking, autophagy and signal transduction. Certain missense mutations in the gene OPTN cause normal tension glaucoma. A glaucoma-causing mutant of optineurin, E50K, induces death selectively in retinal cells. This mutant induces defective endocytic recycling of transferrin receptor by causing inactivation of Rab8 mediated by the GTPase-activating protein, TBC1D17. Here, we have explored the mechanism of E50K-induced cell death. E50K-OPTN-induced cell death was inhibited by co-expression of a catalytically inactive mutant of TBC1D17 and also by shRNA mediated knockdown of TBC1D17. Endogenous TBC1D17 colocalized with E50K-OPTN in vesicular structures. Co-expression of transferrin receptor partially protected against E50K-induced cell death. Overexpression of the E50K-OPTN but not WT-OPTN inhibited autophagy flux. Treatment of cells with rapamycin, an inducer of autophagy, reduced E50K-OPTN-induced cell death. An LC3-binding-defective mutant of E50K-OPTN showed reduced cell death, further suggesting the involvement of autophagy. TBC1D17 localized to autophagosomes and inhibited autophagy flux dependent on its catalytic activity. Knockdown of TBC1D17 rescued cells from E50K-mediated inhibition of autophagy flux. Overall, our results suggest that E50K mutant induced death of retinal cells involves impaired autophagy as well as impaired transferrin receptor function. TBC1D17, a GTPase-activating protein for Rab GTPases, plays a crucial role in E50K-induced impaired autophagy and cell death.

  12. The mammalian guanine nucleotide exchange factor mSec12 is essential for activation of the Sar1 GTPase directing endoplasmic reticulum export.

    PubMed

    Weissman, J T; Plutner, H; Balch, W E

    2001-07-01

    The Sar1 GTPase is an essential component of COPII vesicle coats involved in export of cargo from the endoplasmic reticulum of mammalian cells. To begin to elucidate its mechanism of action, we now report the identity of the mammalian homolog to the yeast Sec12 guanine nucleotide exchange factor (18% identity) that promotes Sar1 activation. Mammalian Sec12 (mSec12) is a type II transmembrane protein with a large cytosolic domain, a fragment of which has previously been reported as the transcription factor prolactin regulatory element binding protein (PREB). mSec12 promotes efficient guanine nucleotide exchange on Sar1, but not Arf1 or Rab GTPases. mSec12 is localized to the endoplasmic reticulum and an antibody to the cytosolic domain of mSec12 potently inhibits Sar1 recruitment and the formation of COPII vesicles in vitro. The dominant negative GDP-restricted mutant Sar1[T39N] is shown to be a potent inhibitor of mSec12 activity, consistent with its role in preventing COPII vesicle formation in vitro and during transient expression in vivo. We propose that mSec12 is an evolutionarily distant guanine nucleotide exchange factor directing Sar1 GTPase activation in mammalian cells. Its divergence from yeast Sec12p may reflect the specialized needs of the mammalian endoplasmic reticulum involving the formation of Sar1-dependent transitional elements (Aridor M, et al. J Cell Biol 2001;152:213-229) and selection of cargo into prebudding complexes.

  13. Inhibition of RhoA GTPase and the subsequent activation of PTP1B protects cultured hippocampal neurons against amyloid β toxicity

    PubMed Central

    2011-01-01

    Background Amyloid beta (Aβ) is the main agent responsible for the advent and progression of Alzheimer's disease. This peptide can at least partially antagonize nerve growth factor (NGF) signalling in neurons, which may be responsible for some of the effects produced by Aβ. Accordingly, better understanding the NGF signalling pathway may provide clues as to how to protect neurons from the toxic effects of Aβ. Results We show here that Aβ activates the RhoA GTPase by binding to p75NTR, thereby preventing the NGF-induced activation of protein tyrosine phosphatase 1B (PTP1B) that is required for neuron survival. We also show that the inactivation of RhoA GTPase and the activation of PTP1B protect cultured hippocampal neurons against the noxious effects of Aβ. Indeed, either pharmacological inhibition of RhoA with C3 ADP ribosyl transferase or the transfection of cultured neurons with a dominant negative form of RhoA protects cultured hippocampal neurons from the effects of Aβ. In addition, over-expression of PTP1B also prevents the deleterious effects of Aβ on cultured hippocampal neurons. Conclusion Our findings indicate that potentiating the activity of NGF at the level of RhoA inactivation and PTP1B activation may represent a new means to combat the noxious effects of Aβ in Alzheimer's disease. PMID:21294893

  14. Modulation of RhoA GTPase Activity Sensitizes Human Cervix Carcinoma Cells to γ-Radiation by Attenuating DNA Repair Pathways.

    PubMed

    Osaki, Juliana H; Espinha, Gisele; Magalhaes, Yuli T; Forti, Fabio L

    2016-01-01

    Radiotherapy with γ-radiation is widely used in cancer treatment to induce DNA damage reducing cell proliferation and to kill tumor cells. Although RhoA GTPase overexpression/hyperactivation is observed in many malignancies, the effect of RhoA activity modulation on cancer radiosensitivity has not been previously investigated. Here, we generated stable HeLa cell clones expressing either the dominant negative RhoA-N19 or the constitutively active RhoA-V14 and compared the responses of these cell lines with those of parental HeLa cells, after treatment with low doses of γ-radiation. HeLa-RhoA-N19 and HeLa-RhoA-V14 clones displayed reduced proliferation and survival compared to parental cells after radiation and became arrested at cell cycle stages correlated with increased cellular senescence and apoptosis. Also, Chk1/Chk2 and histone H2A phosphorylation data, as well as comet assays, suggest that the levels of DNA damage and DNA repair activation and efficiency in HeLa cell lines are correlated with active RhoA. In agreement with these results, RhoA inhibition by C3 toxin expression drastically affected homologous recombination (HR) and nonhomologous end joining (NHEJ). These data suggest that modulation of RhoA GTPase activity impairs DNA damage repair, increasing HeLa cell radiosensitivity.

  15. Modulation of RhoA GTPase Activity Sensitizes Human Cervix Carcinoma Cells to γ-Radiation by Attenuating DNA Repair Pathways

    PubMed Central

    Osaki, Juliana H.; Espinha, Gisele; Magalhaes, Yuli T.; Forti, Fabio L.

    2016-01-01

    Radiotherapy with γ-radiation is widely used in cancer treatment to induce DNA damage reducing cell proliferation and to kill tumor cells. Although RhoA GTPase overexpression/hyperactivation is observed in many malignancies, the effect of RhoA activity modulation on cancer radiosensitivity has not been previously investigated. Here, we generated stable HeLa cell clones expressing either the dominant negative RhoA-N19 or the constitutively active RhoA-V14 and compared the responses of these cell lines with those of parental HeLa cells, after treatment with low doses of γ-radiation. HeLa-RhoA-N19 and HeLa-RhoA-V14 clones displayed reduced proliferation and survival compared to parental cells after radiation and became arrested at cell cycle stages correlated with increased cellular senescence and apoptosis. Also, Chk1/Chk2 and histone H2A phosphorylation data, as well as comet assays, suggest that the levels of DNA damage and DNA repair activation and efficiency in HeLa cell lines are correlated with active RhoA. In agreement with these results, RhoA inhibition by C3 toxin expression drastically affected homologous recombination (HR) and nonhomologous end joining (NHEJ). These data suggest that modulation of RhoA GTPase activity impairs DNA damage repair, increasing HeLa cell radiosensitivity. PMID:26649141

  16. Modulation of Endocytic Traffic in Polarized Madin-Darby Canine Kidney Cells by the Small GTPase RhoA

    PubMed Central

    Leung, Som-Ming; Rojas, Raul; Maples, Christopher; Flynn, Christopher; Ruiz, Wily G.; Jou, Tzuu-Shuh; Apodaca, Gerard

    1999-01-01

    Efficient postendocytic membrane traffic in polarized epithelial cells is thought to be regulated in part by the actin cytoskeleton. RhoA modulates assemblies of actin in the cell, and it has been shown to regulate pinocytosis and phagocytosis; however, its effects on postendocytic traffic are largely unexplored. To this end, we expressed wild-type RhoA (RhoAWT), dominant active RhoA (RhoAV14), and dominant inactive RhoA (RhoAN19) in Madin-Darby canine kidney (MDCK) cells expressing the polymeric immunoglobulin receptor. RhoAV14 expression stimulated the rate of apical and basolateral endocytosis, whereas RhoAN19 expression decreased the rate from both membrane domains. Polarized basolateral recycling of transferrin was disrupted in RhoAV14-expressing cells as a result of increased ligand release at the apical pole of the cell. Degradation of basolaterally internalized epidermal growth factor was slowed in RhoAV14-expressing cells. Although apical recycling of immunoglobulin A (IgA) was largely unaffected in cells expressing RhoAV14, transcytosis of basolaterally internalized IgA was severely impaired. Morphological and biochemical analyses demonstrated that a large proportion of IgA internalized from the basolateral pole of RhoAV14-expressing cells remained within basolateral early endosomes and was slow to exit these compartments. RhoAN19 and RhoAWT expression had little effect on these postendocytic pathways. These results indicate that in polarized MDCK cells activated RhoA may modulate endocytosis from both membrane domains and postendocytic traffic at the basolateral pole of the cell. PMID:10588664

  17. Single-molecule tracking of small GTPase Rac1 uncovers spatial regulation of membrane translocation and mechanism for polarized signaling

    PubMed Central

    Das, Sulagna; Yin, Taofei; Yang, Qingfen; Zhang, Jingqiao; Wu, Yi I.; Yu, Ji

    2015-01-01

    Polarized Rac1 signaling is a hallmark of many cellular functions, including cell adhesion, motility, and cell division. The two steps of Rac1 activation are its translocation to the plasma membrane and the exchange of nucleotide from GDP to GTP. It is, however, unclear whether these two processes are regulated independent of each other and what their respective roles are in polarization of Rac1 signaling. We designed a single-particle tracking (SPT) method to quantitatively analyze the kinetics of Rac1 membrane translocation in living cells. We found that the rate of Rac1 translocation was significantly elevated in protrusions during cell spreading on collagen. Furthermore, combining FRET sensor imaging with SPT measurements in the same cell, the recruitment of Rac1 was found to be polarized to an extent similar to that of the nucleotide exchange process. Statistical analysis of single-molecule trajectories and optogenetic manipulation of membrane lipids revealed that Rac1 membrane translocation precedes nucleotide exchange, and is governed primarily by interactions with phospholipids, particularly PI(3,4,5)P3, instead of protein factors. Overall, the study highlights the significance of membrane translocation in spatial Rac1 signaling, which is in addition to the traditional view focusing primarily on GEF distribution and exchange reaction. PMID:25561548

  18. Restricting mobility of Gsalpha relative to the beta2-adrenoceptor enhances adenylate cyclase activity by reducing Gsalpha GTPase activity.

    PubMed Central

    Wenzel-Seifert, K; Lee, T W; Seifert, R; Kobilka, B K

    1998-01-01

    The beta2-adrenoceptor (beta2AR) activates the G-protein Gsalpha to stimulate adenylate cyclase (AC). Fusion of the beta2AR C-terminus to the N-terminus of Gsalpha (producing beta2ARGsalpha) markedly increases the efficiency of receptor/G-protein coupling compared with the non-fused state. This increase in coupling efficiency can be attributed to the physical proximity of receptor and G-protein. To determine the optimal length for the tether between receptor and G-protein we constructed fusion proteins from which 26 [beta2AR(Delta26)Gsalpha] or 70 [beta2AR(Delta70)Gsalpha] residues of the beta2AR C-terminus had been deleted and compared the properties of these fusion proteins with the previously described beta2ARGsalpha. Compared with beta2ARGsalpha, basal and agonist-stimulated GTP hydrolysis was markedly decreased in beta2AR(Delta70)Gsalpha, whereas the effect of the deletion on binding of guanosine 5'-[gamma-thio]triphosphate (GTP[S]) was relatively small. Surprisingly, deletions did not alter the efficiency of coupling of the beta2AR to Gsalpha as assessed by GTP[S]-sensitive high-affinity agonist binding. Moreover, basal and ligand-regulated AC activities in membranes expressing beta2AR(Delta70)Gsalpha and beta2AR(Delta26)Gsalpha were higher than in membranes expressing beta2ARGsalpha. These findings suggest that restricting the mobility of Gsalpha relative to the beta2AR results in a decrease in G-protein inactivation by GTP hydrolysis and thereby enhanced activation of AC. PMID:9729456

  19. Are There Rab GTPases in Archaea?

    PubMed Central

    Surkont, Jaroslaw; Pereira-Leal, Jose B.

    2016-01-01

    A complex endomembrane system is one of the hallmarks of Eukaryotes. Vesicle trafficking between compartments is controlled by a diverse protein repertoire, including Rab GTPases. These small GTP-binding proteins contribute identity and specificity to the system, and by working as molecular switches, trigger multiple events in vesicle budding, transport, and fusion. A diverse collection of Rab GTPases already existed in the ancestral Eukaryote, yet, it is unclear how such elaborate repertoire emerged. A novel archaeal phylum, the Lokiarchaeota, revealed that several eukaryotic-like protein systems, including small GTPases, are present in Archaea. Here, we test the hypothesis that the Rab family of small GTPases predates the origin of Eukaryotes. Our bioinformatic pipeline detected multiple putative Rab-like proteins in several archaeal species. Our analyses revealed the presence and strict conservation of sequence features that distinguish eukaryotic Rabs from other small GTPases (Rab family motifs), mapping to the same regions in the structure as in eukaryotic Rabs. These mediate Rab-specific interactions with regulators of the REP/GDI (Rab Escort Protein/GDP dissociation Inhibitor) family. Sensitive structure-based methods further revealed the existence of REP/GDI-like genes in Archaea, involved in isoprenyl metabolism. Our analysis supports a scenario where Rabs differentiated into an independent family in Archaea, interacting with proteins involved in membrane biogenesis. These results further support the archaeal nature of the eukaryotic ancestor and provide a new insight into the intermediate stages and the evolutionary path toward the complex membrane-associated signaling circuits that characterize the Ras superfamily of small GTPases, and specifically Rab proteins. PMID:27034425

  20. rRNA suppressor of a eukaryotic translation initiation factor 5B/initiation factor 2 mutant reveals a binding site for translational GTPases on the small ribosomal subunit.

    PubMed

    Shin, Byung-Sik; Kim, Joo-Ran; Acker, Michael G; Maher, Kathryn N; Lorsch, Jon R; Dever, Thomas E

    2009-02-01

    The translational GTPases promote initiation, elongation, and termination of protein synthesis by interacting with the ribosome. Mutations that impair GTP hydrolysis by eukaryotic translation initiation factor 5B/initiation factor 2 (eIF5B/IF2) impair yeast cell growth due to failure to dissociate from the ribosome following subunit joining. A mutation in helix h5 of the 18S rRNA in the 40S ribosomal subunit and intragenic mutations in domain II of eIF5B suppress the toxic effects associated with expression of the eIF5B-H480I GTPase-deficient mutant in yeast by lowering the ribosome binding affinity of eIF5B. Hydroxyl radical mapping experiments reveal that the domain II suppressors interface with the body of the 40S subunit in the vicinity of helix h5. As the helix h5 mutation also impairs elongation factor function, the rRNA and eIF5B suppressor mutations provide in vivo evidence supporting a functionally important docking of domain II of the translational GTPases on the body of the small ribosomal subunit.

  1. Molecular Analysis and Localization of CaARA7 a Conventional RAB5 GTPase from Characean Algae.

    PubMed

    Hoepflinger, Marion C; Geretschlaeger, Anja; Sommer, Aniela; Hoeftberger, Margit; Hametner, Christina; Ueda, Takashi; Foissner, Ilse

    2015-05-01

    RAB5 GTPases are important regulators of endosomal membrane traffic. Among them Arabidopsis thaliana ARA7/RABF2b is highly conserved and homologues are present in fungal, animal and plant kingdoms. In land plants ARA7 and its homologues are involved in endocytosis and transport towards the vacuole. Here we report on the isolation of an ARA7 homologue (CaARA7/CaRABF2) in the highly evolved characean green alga Chara australis. It encodes a polypeptide of 202 amino acids with a calculated molecular mass of 22.2 kDa and intrinsic GTPase activity. Immunolabelling of internodal cells with a specific antibody reveals CaARA7 epitopes at multivesicular endosomes (MVEs) and at MVE-containing wortmannin (WM) compartments. When transiently expressed in epidermal cells of Nicotiana benthamiana leaves, fluorescently tagged CaARA7 localizes to small organelles (putative MVEs) and WM compartments, and partially colocalizes with AtARA7 and CaARA6, a plant specific RABF1 GTPase. Mutations in membrane anchoring and GTP binding sites alter localization of CaARA7 and affect GTPase activity, respectively. This first detailed study of a conventional RAB5 GTPase in green algae demonstrates that CaARA7 is similar to RAB5 GTPases from land plants and other organisms and shows conserved structure and localization. PMID:25639563

  2. Molecular Analysis and Localization of CaARA7 a Conventional RAB5 GTPase from Characean Algae.

    PubMed

    Hoepflinger, Marion C; Geretschlaeger, Anja; Sommer, Aniela; Hoeftberger, Margit; Hametner, Christina; Ueda, Takashi; Foissner, Ilse

    2015-05-01

    RAB5 GTPases are important regulators of endosomal membrane traffic. Among them Arabidopsis thaliana ARA7/RABF2b is highly conserved and homologues are present in fungal, animal and plant kingdoms. In land plants ARA7 and its homologues are involved in endocytosis and transport towards the vacuole. Here we report on the isolation of an ARA7 homologue (CaARA7/CaRABF2) in the highly evolved characean green alga Chara australis. It encodes a polypeptide of 202 amino acids with a calculated molecular mass of 22.2 kDa and intrinsic GTPase activity. Immunolabelling of internodal cells with a specific antibody reveals CaARA7 epitopes at multivesicular endosomes (MVEs) and at MVE-containing wortmannin (WM) compartments. When transiently expressed in epidermal cells of Nicotiana benthamiana leaves, fluorescently tagged CaARA7 localizes to small organelles (putative MVEs) and WM compartments, and partially colocalizes with AtARA7 and CaARA6, a plant specific RABF1 GTPase. Mutations in membrane anchoring and GTP binding sites alter localization of CaARA7 and affect GTPase activity, respectively. This first detailed study of a conventional RAB5 GTPase in green algae demonstrates that CaARA7 is similar to RAB5 GTPases from land plants and other organisms and shows conserved structure and localization.

  3. Molecular Analysis and Localization of CaARA7 a Conventional RAB5 GTPase from Characean Algae

    PubMed Central

    Hoepflinger, Marion C.; Geretschlaeger, Anja; Sommer, Aniela; Hoeftberger, Margit; Hametner, Christina; Ueda, Takashi; Foissner, Ilse

    2015-01-01

    RAB5 GTPases are important regulators of endosomal membrane traffic. Among them Arabidopsis thaliana ARA7/RABF2b is highly conserved and homologues are present in fungal, animal and plant kingdoms. In land plants ARA7 and its homologues are involved in endocytosis and transport towards the vacuole. Here we report on the isolation of an ARA7 homologue (CaARA7/CaRABF2) in the highly evolved characean green alga Chara australis. It encodes a polypeptide of 202 amino acids with a calculated molecular mass of 22.2 kDa and intrinsic GTPase activity. Immunolabelling of internodal cells with a specific antibody reveals CaARA7 epitopes at multivesicular endosomes (MVEs) and at MVE-containing wortmannin (WM) compartments. When transiently expressed in epidermal cells of Nicotiana benthamiana leaves, fluorescently tagged CaARA7 localizes to small organelles (putative MVEs) and WM compartments, and partially colocalizes with AtARA7 and CaARA6, a plant specific RABF1 GTPase. Mutations in membrane anchoring and GTP binding sites alter localization of CaARA7 and affect GTPase activity, respectively. This first detailed study of a conventional RAB5 GTPase in green algae demonstrates that CaARA7 is similar to RAB5 GTPases from land plants and other organisms and shows conserved structure and localization. PMID:25639563

  4. GTPase-deficient G alpha 16 and G alpha q induce PC12 cell differentiation and persistent activation of cJun NH2-terminal kinases.

    PubMed Central

    Heasley, L E; Storey, B; Fanger, G R; Butterfield, L; Zamarripa, J; Blumberg, D; Maue, R A

    1996-01-01

    Persistent stimulation of specific protein kinase pathways has been proposed as a key feature of receptor tyrosine kinases and intracellular oncoproteins that signal neuronal differentiation of rat pheochromocytoma (PC12) cells. Among the protein serine/threonine kinases identified to date, the p42/44 mitogen-activated protein (MAP) kinases have been highlighted for their potential role in signalling PC12 cell differentiation. We report here that retrovirus-mediated expression of GTPase-deficient, constitutively active forms of the heterotrimeric Gq family members, G alpha qQ209L and G alpha 16Q212L, in PC12 cells induces neuronal differentiation as indicated by neurite outgrowth and the increased expression of voltage-dependent sodium channels. Differentiation was not observed after cellular expression of GTPase-deficient forms of alpha i2 or alpha 0, indicating selectivity for the Gq family of G proteins. As predicted, overexpression of alpha qQ209L and alpha 16Q212L constitutively elevated basal phospholipase C activity approximately 10-fold in PC12 cells. Significantly, little or no p42/44 MAP kinase activity was detected in PC12 cells differentiated with alpha 16Q212L or alpha qQ209L, although these proteins were strongly activated following expression of constitutively active cRaf-1. Rather, a persistent threefold activation of the cJun NH2-terminal kinases (JNKs) was observed in PC12 cells expressing alpha qQ209L and alpha 16Q212L. This level of JNK activation was similar to that achieved with nerve growth factor, a strong inducer of PC12 cell differentiation. Supportive of a role for JNK activation in PC12 cell differentiation, retrovirus-mediated overexpression of cJun, a JNK target, in PC12 cells induced neurite outgrowth. The results define a p42/44 MAP kinase-independent mechanism for differentiation of PC12 cells and suggest that persistent activation of the JNK members of the proline-directed protein kinase family by GTPase-deficient G alpha q and G

  5. Enucleation of cultured mouse fetal erythroblasts requires Rac GTPases and mDia2.

    PubMed

    Ji, Peng; Jayapal, Senthil Raja; Lodish, Harvey F

    2008-03-01

    Mammalian erythroid cells undergo enucleation, an asymmetric cell division involving extrusion of a pycnotic nucleus enveloped by the plasma membrane. The mechanisms that power and regulate the enucleation process have remained obscure. Here, we show that deregulation of Rac GTPase during a late stage of erythropoiesis completely blocks enucleation of cultured mouse fetal erythroblasts without affecting their proliferation or differentiation. Formation of the contractile actin ring (CAR) on the plasma membrane of enucleating erythroblasts was disrupted by inhibition of Rac GTPases. Furthermore, we demonstrate that mDia2, a downstream effector of Rho GTPases and a formin protein required for nucleation of unbranched actin filaments, is also required for enucleation of mouse fetal erythroblasts. We show that Rac1 and Rac2 bind to mDia2 in a GTP-dependent manner and that downregulation of mDia2, but not mDia1, by small interfering RNA (siRNA) during the late stages of erythropoiesis blocked both CAR formation and erythroblast enucleation. Additionally, overexpression of a constitutively active mutant of mDia2 rescued the enucleation defects induced by the inhibition of Rac GTPases. These results reveal important roles for Rac GTPases and their effector mDia2 in enucleation of mammalian erythroblasts.

  6. Speckled-like Pattern in the Germinal Center (SLIP-GC), a Nuclear GTPase Expressed in Activation-induced Deaminase-expressing Lymphomas and Germinal Center B Cells*

    PubMed Central

    Richter, Kathleen; Brar, Sukhdev; Ray, Madhumita; Pisitkun, Prapaporn; Bolland, Silvia; Verkoczy, Laurent; Diaz, Marilyn

    2009-01-01

    We identified a novel GTPase, SLIP-GC, with expression limited to a few tissues, in particular germinal center B cells. It lacks homology to any known proteins, indicating that it may belong to a novel family of GTPases. SLIP-GC is expressed in germinal center B cells and in lymphomas derived from germinal center B cells such as large diffuse B cell lymphomas. In cell lines, SLIP-GC is expressed in lymphomas that express activation-induced deaminase (AID) and that likely undergo somatic hypermutation. SLIP-GC is a nuclear protein, and it localizes to replication factories. Reduction of SLIP-GC levels in the Burkitt lymphoma cell line Raji and in non-Hodgkin lymphoma cell lines resulted in an increase in DNA breaks and apoptosis that was AID-dependent, as simultaneous reduction of AID abrogated the deleterious effects of SLIP-GC reduction. These results strongly suggest that SLIP-GC is a replication-related protein in germinal center B cells whose reduction is toxic to cells through an AID-dependent mechanism. PMID:19734146

  7. The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast

    SciTech Connect

    Tsukamoto, Yuta; Katayama, Chisako; Shinohara, Miki; Shinohara, Akira; Maekawa, Shohei; Miyamoto, Masaaki

    2013-11-29

    Highlights: •Multiple functions of Rab5 GTPase in fission yeast were found. •Roles of Rab5 in fission yeast were discussed. •Relation between Rab5 and actin cytoskeleton were discussed. -- Abstract: Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our data strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions.

  8. The Small GTPase MoSec4 Is Involved in Vegetative Development and Pathogenicity by Regulating the Extracellular Protein Secretion in Magnaporthe oryzae

    PubMed Central

    Zheng, Huakun; Chen, Simiao; Chen, Xiaofeng; Liu, Shuyan; Dang, Xie; Yang, Chengdong; Giraldo, Martha C.; Oliveira-Garcia, Ely; Zhou, Jie; Wang, Zonghua; Valent, Barbara

    2016-01-01

    The Rab GTPase proteins play important roles in the membrane trafficking, and consequently protein secretion and development of eukaryotic organisms. However, little is known about the function of Rab GTPases in Magnaporthe oryzae. To further explore the function of Rab GTPases, we deleted the ortholog of the yeast Sec4p protein in M. oryzae, namely MoSEC4. The ΔMosec4 mutant is defective in polarized growth and conidiation, and it displays decreased appressorium turgor pressure and attenuated pathogenicity. Notably, the biotrophic invasive hyphae produced in rice cells are more bulbous and compressed in the ΔMosec4 mutant. Further studies showed that deletion of the MoSEC4 gene resulted in decreased secretion of extracellular enzymes and mislocalization of the cytoplasmic effector PWL2-mCherry-NLS. In accordance with a role in secretion, the GFP-MoSec4 fusion protein mainly accumulates at tips of growing vegetative hyphae. Our results suggest that the MoSec4 protein plays important roles in the secretion of extracellular proteins and consequently hyphal development and pathogenicity in the rice blast fungus. PMID:27729922

  9. Prenylation of a Rab1B mutant with altered GTPase activity is impaired in cell-free systems but not in intact mammalian cells.

    PubMed

    Wilson, A L; Sheridan, K M; Erdman, R A; Maltese, W A

    1996-09-15

    Previous studies have reached differing conclusions as to whether or not guanine-nucleotide-dependent conformational changes affect the ability of Rab proteins to undergo post-translational modification by Rab:geranylgeranyltransferase (Rab-GGTase). We now show that the ability of a Rab1B mutant [Q67L (Gln-67-->Leu)] with reduced intrinsic GTPase activity to undergo geranylgeranylation in cell-free assays depends on the guanine nucleotide composition of the system. When GTP is the predominant nucleotide in the assay, Rab1BQ67L is a poor substrate. However, when GDP is present and GTP is omitted, prenylation of the Q67L mutant is comparable with that of the wild-type (WT) protein. These studies, coupled with the poor prenylation of Rab1BWT in the presence of the non-hydrolysable GTP analogue guanosine 5'-[gamma-thio]triphosphate, support the notion that Rab-GGTase prefers substrates in the GDP conformation. When the abilities of Rab1BQ67L and Rab1BWT to undergo prenylation were compared by metabolic labelling of transiently expressed proteins in cultured human 293 cells, we did not observe a decline in prenylation of the mutant protein as predicted on the basis of the cell-free assays. Moreover, the Q67L mutant was comparable with the wild-type Rab1B in its ability to associate with co-expressed Rab GDP dissociation inhibitors in 293 cells. These findings raise the possibility that unidentified proteins present in intact cells may compensate for the reduced intrinsic GTPase activity of the Q67L mutant, allowing a significant proportion of the nascent Rab1BQ67L to assume a GDP conformation. The differential prenylation of Rab1BQ67L in cell-free systems versus intact cells underscores the importance of evaluating the post-translational modification of specific Rab mutants in vivo, where poorly characterized regulatory proteins may have a significant effect on GTPase activity or nucleotide exchange rates.

  10. Intrinsic disorder and metal binding in UreG proteins from Archae hyperthermophiles: GTPase enzymes involved in the activation of Ni(II) dependent urease.

    PubMed

    Miraula, Manfredi; Ciurli, Stefano; Zambelli, Barbara

    2015-06-01

    Urease is a Ni(II) enzyme present in every domain of life, in charge for nitrogen recycling through urea hydrolysis. Its activity requires the presence of two Ni(II) ions in the active site. These are delivered by the concerted action of four accessory proteins, named UreD, UreF, UreG and UreE. This process requires protein flexibility at different levels and some disorder-to-order transition events that coordinate the mechanism of protein-protein interaction. In particular, UreG, the GTPase in charge of nucleotide hydrolysis required for urease activation, presents a significant degree of intrinsic disorder, existing as a conformational ensemble featuring characteristics that recall a molten globule. Here, the folding properties of UreG were explored in Archaea hyperthermophiles, known to generally feature significantly low level of structural disorder in their proteome. UreG proteins from Methanocaldococcus jannaschii (Mj) and Metallosphaera sedula (Ms) were structurally and functionally analyzed by integrating circular dichroism, NMR, light scattering and enzymatic assays. Metal-binding properties were studied using isothermal titration calorimetry. The results indicate that, as the mesophilic counterparts, both proteins contain a significant amount of secondary structure but maintain a flexible fold and a low GTPase activity. As opposed to other UreGs, secondary structure is lost at high temperatures (68 and 75 °C, respectively) with an apparent two-state mechanism. Both proteins bind Zn(II) and Ni(II), with affinities two orders of magnitude higher for Zn(II) than for Ni(II). No major modifications of the average conformational ensemble are observed, but binding of Zn(II) yields a more compact dimeric form in MsUreG. PMID:25846143

  11. A functional interplay between the small GTPase Rab11a and mitochondria-shaping proteins regulates mitochondrial positioning and polarization of the actin cytoskeleton downstream of Src family kinases.

    PubMed

    Landry, Marie-Claude; Champagne, Claudia; Boulanger, Marie-Chloé; Jetté, Alexandra; Fuchs, Margit; Dziengelewski, Claire; Lavoie, Josée N

    2014-01-24

    It is believed that mitochondrial dynamics is coordinated with endosomal traffic rates during cytoskeletal remodeling, but the mechanisms involved are largely unknown. The adenovirus early region 4 ORF4 protein (E4orf4) subverts signaling by Src family kinases (SFK) to perturb cellular morphology, membrane traffic, and organellar dynamics and to trigger cell death. Using E4orf4 as a model, we uncovered a functional connection between mitochondria-shaping proteins and the small GTPase Rab11a, a key regulator of polarized transport via recycling endosomes. We found that E4orf4 induced dramatic changes in the morphology of mitochondria along with their mobilization at the vicinity of a polarized actin network typifying E4orf4 action, in a manner controlled by SFK and Rab11a. Mitochondrial remodeling was associated with increased proximity between Rab11a and mitochondrial membranes, changes in fusion-fission dynamics, and mitochondrial relocalization of the fission factor dynamin-related protein 1 (Drp1), which was regulated by the Rab11a effector protein FIP1/RCP. Knockdown of FIP1/RCP or inhibition of Drp1 markedly impaired mitochondrial remodeling and actin assembly, involving Rab11a-mediated mitochondrial dynamics in E4orf4-induced signaling. A similar mobilization of mitochondria near actin-rich structures was mediated by Rab11 and Drp1 in viral Src-transformed cells and contributed to the biogenesis of podosome rosettes. These findings suggest a role for Rab11a in the trafficking of Drp1 to mitochondria upon SFK activation and unravel a novel functional interplay between Rab11a and mitochondria during reshaping of the cell cytoskeleton, which would facilitate mitochondria redistribution near energy-requiring actin-rich structures.

  12. Crucial Role of Rapgef2 and Rapgef6, a Family of Guanine Nucleotide Exchange Factors for Rap1 Small GTPase, in Formation of Apical Surface Adherens Junctions and Neural Progenitor Development in the Mouse Cerebral Cortex123

    PubMed Central

    Maeta, Kazuhiro; Edamatsu, Hironori; Nishihara, Kaori; Ikutomo, Junji; Bilasy, Shymaa E.

    2016-01-01

    Abstract Cerebral neocortex development in mammals requires highly orchestrated events involving proliferation, differentiation, and migration of neural progenitors and neurons. Rapgef2 and Rapgef6 constitute a unique family of guanine nucleotide exchange factors for Rap1 small GTPase, which is known to play crucial roles in migration of postmitotic neurons. We previously reported that conditional knockout of Rapgef2 in dorsal telencephalon (Rapgef2-cKO) resulted in the formation of an ectopic cortical mass (ECM) resembling that of subcortical band heterotopia. Here we show that double knockout of Rapgef6 in Rapgef2-cKO mice (Rapgef2/6-dKO) results in marked enlargement of the ECM. While Rapgef2-cKO affects late-born neurons only, Rapgef2/6-dKO affects both early-born and late-born neurons. The Rapgef2-cKO cortex at embryonic day (E) 15.5, and the Rapgef2/6-dKO cortex at E13.5 and E15.5 show disruption of the adherens junctions (AJs) on the apical surface, detachment of radial glial cells (RGCs) from the apical surface and disorganization of the radial glial fiber system, which are accompanied by aberrant distribution of RGCs and intermediate progenitors, normally located in the ventricular zone and the subventricular zone, respectively, over the entire cerebral cortex. Moreover, intrauterine transduction of Cre recombinase into the Rapgef2flox/flox brains also results in the apical surface AJ disruption and the RGC detachment from the apical surface, both of which are effectively suppressed by cotransduction of the constitutively active Rap1 mutant Rap1G12V. These results demonstrate a cell-autonomous role of the Rapgef2/6-Rap1 pathway in maintaining the apical surface AJ structures, which is necessary for the proper development of neural progenitor cells. PMID:27390776

  13. A Functional Interplay between the Small GTPase Rab11a and Mitochondria-shaping Proteins Regulates Mitochondrial Positioning and Polarization of the Actin Cytoskeleton Downstream of Src Family Kinases*

    PubMed Central

    Landry, Marie-Claude; Champagne, Claudia; Boulanger, Marie-Chloé; Jetté, Alexandra; Fuchs, Margit; Dziengelewski, Claire; Lavoie, Josée N.

    2014-01-01

    It is believed that mitochondrial dynamics is coordinated with endosomal traffic rates during cytoskeletal remodeling, but the mechanisms involved are largely unknown. The adenovirus early region 4 ORF4 protein (E4orf4) subverts signaling by Src family kinases (SFK) to perturb cellular morphology, membrane traffic, and organellar dynamics and to trigger cell death. Using E4orf4 as a model, we uncovered a functional connection between mitochondria-shaping proteins and the small GTPase Rab11a, a key regulator of polarized transport via recycling endosomes. We found that E4orf4 induced dramatic changes in the morphology of mitochondria along with their mobilization at the vicinity of a polarized actin network typifying E4orf4 action, in a manner controlled by SFK and Rab11a. Mitochondrial remodeling was associated with increased proximity between Rab11a and mitochondrial membranes, changes in fusion-fission dynamics, and mitochondrial relocalization of the fission factor dynamin-related protein 1 (Drp1), which was regulated by the Rab11a effector protein FIP1/RCP. Knockdown of FIP1/RCP or inhibition of Drp1 markedly impaired mitochondrial remodeling and actin assembly, involving Rab11a-mediated mitochondrial dynamics in E4orf4-induced signaling. A similar mobilization of mitochondria near actin-rich structures was mediated by Rab11 and Drp1 in viral Src-transformed cells and contributed to the biogenesis of podosome rosettes. These findings suggest a role for Rab11a in the trafficking of Drp1 to mitochondria upon SFK activation and unravel a novel functional interplay between Rab11a and mitochondria during reshaping of the cell cytoskeleton, which would facilitate mitochondria redistribution near energy-requiring actin-rich structures. PMID:24302731

  14. Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating actin assembly through Rac/Cdc42 GTPase-activating proteins.

    PubMed

    Schlam, Daniel; Bagshaw, Richard D; Freeman, Spencer A; Collins, Richard F; Pawson, Tony; Fairn, Gregory D; Grinstein, Sergio

    2015-10-14

    Phagocytosis is responsible for the elimination of particles of widely disparate sizes, from large fungi or effete cells to small bacteria. Though superficially similar, the molecular mechanisms involved differ: engulfment of large targets requires phosphoinositide 3-kinase (PI3K), while that of small ones does not. Here, we report that inactivation of Rac and Cdc42 at phagocytic cups is essential to complete internalization of large particles. Through a screen of 62 RhoGAP-family members, we demonstrate that ARHGAP12, ARHGAP25 and SH3BP1 are responsible for GTPase inactivation. Silencing these RhoGAPs impairs phagocytosis of large targets. The GAPs are recruited to large--but not small--phagocytic cups by products of PI3K, where they synergistically inactivate Rac and Cdc42. Remarkably, the prominent accumulation of phosphatidylinositol 3,4,5-trisphosphate characteristic of large-phagosome formation is less evident during phagocytosis of small targets, accounting for the contrasting RhoGAP distribution and the differential requirement for PI3K during phagocytosis of dissimilarly sized particles.

  15. A Small Ras-like protein Ray/Rab1c modulates the p53-regulating activity of PRPK

    SciTech Connect

    Abe, Yasuhito . E-mail: yasuhito@m.ehime-u.ac.jp; Takeuchi, Takashi; Imai, Yoshinori; Murase, Ryuichi; Kamei, Yoshiaki; Fujibuchi, Taketsugu; Matsumoto, Suguru; Ueda, Norifumi; Kito, Katsumi; Ogasawara, Masahito; Shigemoto, Kazuhiro

    2006-05-26

    PRPK phosphorylates serine-15 residue of p53 and enhances transcriptional activity. PRPK possesses a bipartite nuclear localization signal and localizes in nucleus when over-expressed in cells. However, intrinsic PRPK localizes mainly in the cytosol in situ. While studying the mechanisms in the distribution of intrinsic PRPK, we identified a PRPK binding protein, an ubiquitously expressed Small Ras-like GTPase, Rab1c, also named Ray or Rab35. The over-expressed Ray was distributed in the nucleus, cytosol, and cell membrane. Both Ray wild type and GTP-restrictively binding mutant Ray-Q67L, but not guanine nucleotide unstable binding mutant Ray-N120I, partially distributed the over-expressed PRPK to the cytosol and also suppressed the PRPK-induced p53-transcriptional activity profoundly. A Small Ras-like GTPase protein Ray was thus indicated to modulate p53 transcriptional activity of PRPK.

  16. cDNA cloning and chromosomal mapping of a novel human GAP (GAP1M), GTPase-activating protein of Ras

    SciTech Connect

    Li, Shaowei; Nakamura, Shun; Hattori, Seisuke

    1996-08-01

    We have previously isolated a novel Ras GTPase-activating protein (Ras GAP), Gapl{sup m}, from rat brain. Gap1{sup m} is considered to be a negative regulator of the Ras signaling pathways, like other Ras GAPs, neurofibromin, which is a gene product of the neurofibromatosis type I gene, and p120GAP. In this study we have isolated a human cDNA of this Gap and mapped the gene. The gene encodes a protein of 853 amino acids that shows 89% sequence identity to rat Gapl{sup m}. The human gene was mapped to chromosome 3 by PCR analysis on a panel of human-mouse hybrid cells. FISH analysis refined the location of the gene further to 3q22-q23. 11 refs., 2 figs.

  17. The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast.

    PubMed

    Tsukamoto, Yuta; Katayama, Chisako; Shinohara, Miki; Shinohara, Akira; Maekawa, Shohei; Miyamoto, Masaaki

    2013-11-29

    Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our data strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions.

  18. The Nucleoid Occlusion SlmA Protein Accelerates the Disassembly of the FtsZ Protein Polymers without Affecting Their GTPase Activity

    PubMed Central

    Cabré, Elisa J.; Monterroso, Begoña; Alfonso, Carlos; Sánchez-Gorostiaga, Alicia; Reija, Belén; Jiménez, Mercedes

    2015-01-01

    Division site selection is achieved in bacteria by different mechanisms, one of them being nucleoid occlusion, which prevents Z-ring assembly nearby the chromosome. Nucleoid occlusion in E. coli is mediated by SlmA, a sequence specific DNA binding protein that antagonizes FtsZ assembly. Here we show that, when bound to its specific target DNA sequences (SBS), SlmA reduces the lifetime of the FtsZ protofilaments in solution and of the FtsZ bundles when located inside permeable giant vesicles. This effect appears to be essentially uncoupled from the GTPase activity of the FtsZ protofilaments, which is insensitive to the presence of SlmA·SBS. The interaction of SlmA·SBS with either FtsZ protofilaments containing GTP or FtsZ oligomers containing GDP results in the disassembly of FtsZ polymers. We propose that SlmA·SBS complexes control the polymerization state of FtsZ by accelerating the disassembly of the FtsZ polymers leading to their fragmentation into shorter species that are still able to hydrolyze GTP at the same rate. SlmA defines therefore a new class of inhibitors of the FtsZ ring different from the SOS response regulator SulA and from the moonlighting enzyme OpgH, inhibitors of the GTPase activity. SlmA also shows differences compared with MinC, the inhibitor of the division site selection Min system, which shortens FtsZ protofilaments by interacting with the GDP form of FtsZ. PMID:25950808

  19. Independent and Coordinate Effects of ADP-Ribosyltransferase and GTPase-Activating Activities of Exoenzyme S on HT-29 Epithelial Cell Function

    PubMed Central

    Fraylick, Jennifer E.; La Rocque, Jeannine R.; Vincent, Timothy S.; Olson, Joan C.

    2001-01-01

    Type III-mediated translocation of exoenzyme S (ExoS) into HT-29 epithelial cells by Pseudomonas aeruginosa causes complex alterations in cell function, including inhibition of DNA synthesis, altered cytoskeletal structure, loss of readherence, microvillus effacement, and interruption of signal transduction. ExoS is a bifunctional protein having both GTPase-activating (GAP) and ADP-ribosyltransferase (ADPRT) functional domains. Comparisons of alterations in HT-29 cell function caused by P. aeruginosa strains that translocate ExoS having GAP or ADPRT mutations allowed the independent and coordinate functions of the two activities to be assessed. An E381A ADPRT mutation revealed that ExoS ADPRT activity was required for effects of ExoS on DNA synthesis and long-term cell rounding. Conversely, the R146A GAP mutation appeared to have little impact on the cellular effects of ExoS. While transient cell rounding was detected following exposure to the E381A mutant, this rounding was eliminated by an E379A-E381A ADPRT double mutation, implying that residual ADPRT activity, rather than GAP activity, was effecting transient cell rounding by the E381A mutant. To explore this possibility, E381A and R146A-E381A mutants were examined for their ability to ADP-ribosylate Ras in vitro or in vivo. While no ADP-ribosylation of Ras was detected by either mutant in vitro, both mutants were able to modify Ras when translocated by the bacteria, with the R146A-E381A mutant causing more efficient modification than the E381A mutant, in association with increased inhibition of DNA synthesis. Comparisons of Ras ADP-ribosylation by wild-type and E381A mutant ExoS by two-dimensional electrophoresis found the former to ADP-ribosylate Ras at two sites, while the latter modified Ras only once. These studies draw attention to the key role of ExoS ADPRT activity in causing the effects of bacterially translocated ExoS on DNA synthesis and cell rounding. In addition, the studies provide insight into

  20. Recruitment of PLANT U-BOX13 and the PI4Kβ1/β2 Phosphatidylinositol-4 Kinases by the Small GTPase RabA4B Plays Important Roles during Salicylic Acid-Mediated Plant Defense Signaling in Arabidopsis[OPEN

    PubMed Central

    Antignani, Vincenzo; Klocko, Amy L.; Bak, Gwangbae; Chandrasekaran, Suma D.; Dunivin, Taylor; Nielsen, Erik

    2015-01-01

    Protection against microbial pathogens involves the activation of cellular immune responses in eukaryotes, and this cellular immunity likely involves changes in subcellular membrane trafficking. In eukaryotes, members of the Rab GTPase family of small monomeric regulatory GTPases play prominent roles in the regulation of membrane trafficking. We previously showed that RabA4B is recruited to vesicles that emerge from trans-Golgi network (TGN) compartments and regulates polarized membrane trafficking in plant cells. As part of this regulation, RabA4B recruits the closely related phosphatidylinositol 4-kinase (PI4K) PI4Kβ1 and PI4Kβ2 lipid kinases. Here, we identify a second Arabidopsis thaliana RabA4B-interacting protein, PLANT U-BOX13 (PUB13), which has recently been identified to play important roles in salicylic acid (SA)-mediated defense signaling. We show that PUB13 interacts with RabA4B through N-terminal domains and with phosphatidylinositol 4-phosphate (PI-4P) through a C-terminal armadillo domain. Furthermore, we demonstrate that a functional fluorescent PUB13 fusion protein (YFP-PUB13) localizes to TGN and Golgi compartments and that PUB13, PI4Kβ1, and PI4Kβ2 are negative regulators of SA-mediated induction of pathogenesis-related gene expression. Taken together, these results highlight a role for RabA4B and PI-4P in SA-dependent defense responses. PMID:25634989

  1. The dynamics of spatio-temporal Rho GTPase signaling: formation of signaling patterns

    PubMed Central

    Fritz, Rafael Dominik; Pertz, Olivier

    2016-01-01

    Rho GTPases are crucial signaling molecules that regulate a plethora of biological functions. Traditional biochemical, cell biological, and genetic approaches have founded the basis of Rho GTPase biology. The development of biosensors then allowed measuring Rho GTPase activity with unprecedented spatio-temporal resolution. This revealed that Rho GTPase activity fluctuates on time and length scales of tens of seconds and micrometers, respectively. In this review, we describe Rho GTPase activity patterns observed in different cell systems. We then discuss the growing body of evidence that upstream regulators such as guanine nucleotide exchange factors and GTPase-activating proteins shape these patterns by precisely controlling the spatio-temporal flux of Rho GTPase activity. Finally, we comment on additional mechanisms that might feed into the regulation of these signaling patterns and on novel technologies required to dissect this spatio-temporal complexity. PMID:27158467

  2. The Rho GDI Rdi1 Regulates Rho GTPases by Distinct Mechanisms

    PubMed Central

    Tiedje, Christopher; Sakwa, Imme; Just, Ursula

    2008-01-01

    The small guanosine triphosphate (GTP)-binding proteins of the Rho family are implicated in various cell functions, including establishment and maintenance of cell polarity. Activity of Rho guanosine triphosphatases (GTPases) is not only regulated by guanine nucleotide exchange factors and GTPase-activating proteins but also by guanine nucleotide dissociation inhibitors (GDIs). These proteins have the ability to extract Rho proteins from membranes and keep them in an inactive cytosolic complex. Here, we show that Rdi1, the sole Rho GDI of the yeast Saccharomyces cerevisiae, contributes to pseudohyphal growth and mitotic exit. Rdi1 interacts only with Cdc42, Rho1, and Rho4, and it regulates these Rho GTPases by distinct mechanisms. Binding between Rdi1 and Cdc42 as well as Rho1 is modulated by the Cdc42 effector and p21-activated kinase Cla4. After membrane extraction mediated by Rdi1, Rho4 is degraded by a novel mechanism, which includes the glycogen synthase kinase 3β homologue Ygk3, vacuolar proteases, and the proteasome. Together, these results indicate that Rdi1 uses distinct modes of regulation for different Rho GTPases. PMID:18417612

  3. Ras and GTPase-activating protein (GAP) drive GTP into a precatalytic state as revealed by combining FTIR and biomolecular simulations.

    PubMed

    Rudack, Till; Xia, Fei; Schlitter, Jürgen; Kötting, Carsten; Gerwert, Klaus

    2012-09-18

    Members of the Ras superfamily regulate many cellular processes. They are down-regulated by a GTPase reaction in which GTP is cleaved into GDP and P(i) by nucleophilic attack of a water molecule. Ras proteins accelerate GTP hydrolysis by a factor of 10(5) compared to GTP in water. GTPase-activating proteins (GAPs) accelerate hydrolysis by another factor of 10(5) compared to Ras alone. Oncogenic mutations in Ras and GAPs slow GTP hydrolysis and are a factor in many cancers. Here, we elucidate in detail how this remarkable catalysis is brought about. We refined the protein-bound GTP structure and protein-induced charge shifts within GTP beyond the current resolution of X-ray structural models by combining quantum mechanics and molecular mechanics simulations with time-resolved Fourier-transform infrared spectroscopy. The simulations were validated by comparing experimental and theoretical IR difference spectra. The reactant structure of GTP is destabilized by Ras via a conformational change from a staggered to an eclipsed position of the nonbridging oxygen atoms of the γ- relative to the β-phosphates and the further rotation of the nonbridging oxygen atoms of α- relative to the β- and γ-phosphates by GAP. Further, the γ-phosphate becomes more positive although two of its oxygen atoms remain negative. This facilitates the nucleophilic attack by the water oxygen at the phosphate and proton transfer to the oxygen. Detailed changes in geometry and charge distribution in the ligand below the resolution of X-ray structure analysis are important for catalysis. Such high resolution appears crucial for the understanding of enzyme catalysis.

  4. The GTPase Activity of Escherichia coli FtsZ Determines the Magnitude of the FtsZ Polymer Bundling by ZapA in Vitro†

    PubMed Central

    2009-01-01

    FtsZ polymerizes in a ring-like structure at mid cell to initiate cell division in Escherichia coli. The ring is stabilized by a number of proteins among which the widely conserved ZapA protein. Using antibodies against ZapA, we found surprisingly that the cellular concentration of ZapA is approximately equal to that of FtsZ. This raised the question of how the cell can prevent their interaction and thereby the premature stabilization of FtsZ protofilaments in nondividing cells. Therefore, we studied the FtsZ−ZapA interaction at the physiological pH of 7.5 instead of pH 6.5 (the optimal pH for FtsZ polymerization), under conditions that stimulate protofilament formation (5 mM MgCl2) and under conditions that stimulate and stabilize protofilaments (10 mM MgCl2). Using pelleting, light scattering, and GTPase assays, it was found that stabilization and bundling of FtsZ polymers by ZapA was inversely correlated to the GTPase activity of FtsZ. As GTP hydrolysis is the rate-limiting factor for depolymerization of FtsZ, we propose that ZapA will only enhance the cooperativity of polymer association during the transition from helical filament to mid cell ring and will not stabilize the short single protofilaments in the cytoplasm. All thus far published in vitro data on the interaction between FtsZ and ZapA have been obtained with His-ZapA. We found that in our case the presence of a His tag fused to ZapA prevented the protein to complement a ΔzapA strain in vivo and that it affected the interaction between FtsZ and ZapA in vitro. PMID:19842714

  5. Muscarinic receptors transform NIH 3T3 cells through a Ras-dependent signalling pathway inhibited by the Ras-GTPase-activating protein SH3 domain.

    PubMed Central

    Mattingly, R R; Sorisky, A; Brann, M R; Macara, I G

    1994-01-01

    Expression of certain subtypes of human muscarinic receptors in NIH 3T3 cells provides an agonist-dependent model of cellular transformation by formation of foci in response to carbachol. Although focus formation correlates with the ability of the muscarinic receptors to activate phospholipase C, the actual mitogenic signal transduction pathway is unknown. Through cotransfection experiments and measurement of the activation state of native and epitope-tagged Ras proteins, the contributions of Ras and Ras GTPase-activating protein (Ras-GAP) to muscarinic receptor-dependent transformation were defined. Transforming muscarinic receptors were able to activate Ras, and such activation was required for transformation because focus formation was inhibited by coexpression of either Ras with a dominant-negative mutation or constructs of Ras-GAP that include the catalytic domain. Coexpression of the N-terminal region of GAP or of its isolated SH3 (Src homology 3) domain, but not its SH2 domain, was also sufficient to suppress muscarinic receptor-dependent focus formation. Point mutations at conserved residues in the Ras-GAP SH3 domain reversed its action, leading to an increase in carbachol-dependent transformation. The inhibitory effect of expression of the Ras-GAP SH3 domain occurs proximal to Ras activation and is selective for the mitogenic pathway activated by carbachol, as cellular transformation by either v-Ras or trkA/nerve growth factor is unaffected. Images PMID:7969134

  6. The Type IV Secretion System Effector Protein CirA Stimulates the GTPase Activity of RhoA and Is Required for Virulence in a Mouse Model of Coxiella burnetii Infection.

    PubMed

    Weber, Mary M; Faris, Robert; van Schaik, Erin J; McLachlan, Juanita Thrasher; Wright, William U; Tellez, Andres; Roman, Victor A; Rowin, Kristina; Case, Elizabeth Di Russo; Luo, Zhao-Qing; Samuel, James E

    2016-09-01

    Coxiella burnetii, the etiological agent of Q fever in humans, is an intracellular pathogen that replicates in an acidified parasitophorous vacuole derived from host lysosomes. Generation of this replicative compartment requires effectors delivered into the host cell by the Dot/Icm type IVb secretion system. Several effectors crucial for C. burnetii intracellular replication have been identified, but the host pathways coopted by these essential effectors are poorly defined, and very little is known about how spacious vacuoles are formed and maintained. Here we demonstrate that the essential type IVb effector, CirA, stimulates GTPase activity of RhoA. Overexpression of CirA in mammalian cells results in cell rounding and stress fiber disruption, a phenotype that is rescued by overexpression of wild-type or constitutively active RhoA. Unlike other effector proteins that subvert Rho GTPases to modulate uptake, CirA is the first effector identified that is dispensable for uptake and instead recruits Rho GTPase to promote biogenesis of the bacterial vacuole. Collectively our results highlight the importance of CirA in coopting host Rho GTPases for establishment of Coxiella burnetii infection and virulence in mammalian cell culture and mouse models of infection. PMID:27324482

  7. Rac GTPases in Human Diseases

    PubMed Central

    Pai, Sung-Yun; Kim, Chaekyun; Williams, David A.

    2010-01-01

    Rho GTPases are members of the Ras superfamily of GTPases that regulate a wide variety of cellular functions. While Rho GTPase pathways have been implicated in various pathological conditions in humans, to date coding mutations in only the hematopoietic specific GTPase, RAC2, have been found to cause a human disease, a severe phagocytic immunodeficiency characterized by life-threatening infections in infancy. Interestingly, the phenotype was predicted by a mouse knock-out of RAC2 and resembles leukocyte adhesion deficiency (LAD). Here we review Rho GTPases with a specific focus on Rac GTPases. In particular, we discuss a new understanding of the unique and overlapping roles of Rac2 in blood cells that has developed since the generation of mice deficient in Rac1, Rac2 and Rac3 proteins. We propose that Rac2 mutations leading to disease be termed LAD type IV. PMID:21178276

  8. Solubilization and partial characterization of a microsomal high affinity GTPase

    SciTech Connect

    Nicchitta, C.; Williamson, J.R.

    1987-05-01

    Isolated rat liver microsomes release sequestered Ca/sup 2 +/ following addition of GTP. In contrast to permeabilized cells, GTP dependent microsomal Ca/sup 2 +/ release requires low concentrations of polyethylene glycol (PEG). They have identified a microsomal, PEG-sensitive high affinity GTPase which shares a number of characteristics with the GTP-dependent Ca/sup 2 +/ release system. To aid in further characterization of this activity they have initiated studies on the solubilization and purification of the microsomal GTPases. When microsomes are solubilized under the following conditions (150 mM NaCl, 5 mg protein/ml, 1% Triton X-114) PEG sensitive GTPase activity selectively partitions into the detergent rich phase of the Triton X-114 extract. As observed in intact microsomal membranes the Triton X-114 soluble GTPase is maximally stimulated by 3% PEG. Half maximal stimulation is observed at 1% PEG. PEG increases the Vmax of this activity; no effects on Km were observed. The Km for GTP of the detergent soluble GTPase is 5 ..mu..M. This GTPase is sensitive to inhibition by sulfhydryl reagents. PEG-sensitive GTPase activity was completely inhibited in the presence of 25 ..mu..M p-hydroxymercuribenzoate (PHMB); half maximal inhibition was observed at 5 ..mu..M. Labeling of the Triton X-114 extract with the photosensitive compound (/sup 32/P) 8-azido GTP indicated the presence of two prominent GTP binding proteins of approximate molecular weights 17 and 54 kD.

  9. Four GTPases differentially regulate the Sec7 Arf-GEF to direct traffic at the trans-golgi network.

    PubMed

    McDonold, Caitlin M; Fromme, J Christopher

    2014-09-29

    Traffic through the Golgi complex is controlled by small GTPases of the Arf and Rab families. Guanine nucleotide exchange factor (GEF) proteins activate these GTPases to control Golgi function, yet the full assortment of signals regulating these GEFs is unknown. The Golgi Arf-GEF Sec7 and the homologous BIG1/2 proteins are effectors of the Arf1 and Arl1 GTPases. We demonstrate that Sec7 is also an effector of two Rab GTPases, Ypt1 (Rab1) and Ypt31/32 (Rab11), signifying unprecedented signaling crosstalk between GTPase pathways. The molecular basis for the role of Ypt31/32 and Rab11 in vesicle formation has remained elusive. We find that Arf1, Arl1, and Ypt1 primarily affect the membrane localization of Sec7, whereas Ypt31/32 exerts a dramatic stimulatory effect on the nucleotide exchange activity of Sec7. The convergence of multiple signaling pathways on a master regulator reveals a mechanism for balancing incoming and outgoing traffic at the Golgi.

  10. Phosphorylation-dependent inhibition of Cdc42 GEF Gef1 by 14-3-3 protein Rad24 spatially regulates Cdc42 GTPase activity and oscillatory dynamics during cell morphogenesis

    PubMed Central

    Das, Maitreyi; Nuñez, Illyce; Rodriguez, Marbelys; Wiley, David J.; Rodriguez, Juan; Sarkeshik, Ali; Yates, John R.; Buchwald, Peter; Verde, Fulvia

    2015-01-01

    Active Cdc42 GTPase, a key regulator of cell polarity, displays oscillatory dynamics that are anticorrelated at the two cell tips in fission yeast. Anticorrelation suggests competition for active Cdc42 or for its effectors. Here we show how 14-3-3 protein Rad24 associates with Cdc42 guanine exchange factor (GEF) Gef1, limiting Gef1 availability to promote Cdc42 activation. Phosphorylation of Gef1 by conserved NDR kinase Orb6 promotes Gef1 binding to Rad24. Loss of Rad24–Gef1 interaction increases Gef1 protein localization and Cdc42 activation at the cell tips and reduces the anticorrelation of active Cdc42 oscillations. Increased Cdc42 activation promotes precocious bipolar growth activation, bypassing the normal requirement for an intact microtubule cytoskeleton and for microtubule-dependent polarity landmark Tea4-PP1. Further, increased Cdc42 activation by Gef1 widens cell diameter and alters tip curvature, countering the effects of Cdc42 GTPase-activating protein Rga4. The respective levels of Gef1 and Rga4 proteins at the membrane define dynamically the growing area at each cell tip. Our findings show how the 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, a homologue of mammalian Cdc42 GEF DNMBP/TUBA, to spatially control Cdc42 GTPase activity and promote cell polarization and cell shape emergence. PMID:26246599

  11. Resveratrol induces apoptosis by directly targeting Ras-GTPase activating protein SH3 domain binding protein 1 (G3BP1)

    PubMed Central

    Oi, Naomi; Yuan, Jian; Malakhova, Margarita; Luo, Kuntian; Li, Yunhui; Ryu, Joohyun; Zhang, Lei; Bode, Ann M.; Xu, Zengguang; Li, Yan; Lou, Zhenkun; Dong, Zigang

    2014-01-01

    Resveratrol possesses a strong anticancer activity exhibited as the induction of apoptosis through p53 activation. However, the molecular mechanism and direct target(s) of resveratrol-induced p53 activation remain elusive. Here, the Ras-GTPase activating protein SH3 domain binding protein 1 (G3BP1) was identified as a potential target of resveratrol, and in vitro binding assay results using resveratrol (RSVL)-conjugated Sepharose 4B beads confirmed their direct binding. Depletion of G3BP1 significantly diminishes resveratrol-induced p53 expression and apoptosis. We also found that G3BP1 negatively regulates p53 expression by interacting with ubiquitin-specific protease 10 (USP10), a deubiquitinating enzyme of p53. Disruption of the interaction of p53 with USP10 by G3BP1 interference leads to suppression of p53 deubiquitination. Resveratrol, on the other hand, directly binds to G3BP1 and prevents the G3BP1/USP10 interaction, resulting in enhanced USP10-mediated deubiquitination of p53 and consequently increased p53 expression. These findings disclose a novel mechanism of resveratrol-induced p53 activation and resveratrol-induced apoptosis by direct targeting of G3BP1. PMID:24998844

  12. PTP-PEST targets a novel tyrosine site in p120 catenin to control epithelial cell motility and Rho GTPase activity

    PubMed Central

    Espejo, Rosario; Jeng, Yowjiun; Paulucci-Holthauzen, Adriana; Rengifo-Cam, William; Honkus, Krysta; Anastasiadis, Panos Z.; Sastry, Sarita K.

    2014-01-01

    ABSTRACT Tyrosine phosphorylation is implicated in regulating the adherens junction protein, p120 catenin (p120), however, the mechanisms are not well defined. Here, we show, using substrate trapping, that p120 is a direct target of the protein tyrosine phosphatase, PTP-PEST, in epithelial cells. Stable shRNA knockdown of PTP-PEST in colon carcinoma cells results in an increased cytosolic pool of p120 concomitant with its enhanced tyrosine phosphorylation and decreased association with E-cadherin. Consistent with this, PTP-PEST knockdown cells exhibit increased motility, enhanced Rac1 and decreased RhoA activity on a collagen substrate. Furthermore, p120 localization is enhanced at actin-rich protrusions and lamellipodia and has an increased association with the guanine nucleotide exchange factor, VAV2, and cortactin. Exchange factor activity of VAV2 is enhanced by PTP-PEST knockdown whereas overexpression of a VAV2 C-terminal domain or DH domain mutant blocks cell motility. Analysis of point mutations identified tyrosine 335 in the N-terminal domain of p120 as the site of PTP-PEST dephosphorylation. A Y335F mutant of p120 failed to induce the ‘p120 phenotype’, interact with VAV2, stimulate cell motility or activate Rac1. Together, these data suggest that PTP-PEST affects epithelial cell motility by controlling the distribution and phosphorylation of p120 and its availability to control Rho GTPase activity. PMID:24284071

  13. Interferon-Inducible GTPases in Host Resistance, Inflammation and Disease.

    PubMed

    Pilla-Moffett, Danielle; Barber, Matthew F; Taylor, Gregory A; Coers, Jörn

    2016-08-28

    Cell-autonomous immunity is essential for host organisms to defend themselves against invasive microbes. In vertebrates, both the adaptive and the innate branches of the immune system operate cell-autonomous defenses as key effector mechanisms that are induced by pro-inflammatory interferons (IFNs). IFNs can activate cell-intrinsic host defenses in virtually any cell type ranging from professional phagocytes to mucosal epithelial cells. Much of this IFN-induced host resistance program is dependent on four families of IFN-inducible GTPases: the myxovirus resistance proteins, the immunity-related GTPases, the guanylate-binding proteins (GBPs), and the very large IFN-inducible GTPases. These GTPase families provide host resistance to a variety of viral, bacterial, and protozoan pathogens through the sequestration of microbial proteins, manipulation of vesicle trafficking, regulation of antimicrobial autophagy (xenophagy), execution of intracellular membranolytic pathways, and the activation of inflammasomes. This review discusses our current knowledge of the molecular function of IFN-inducible GTPases in providing host resistance, as well as their role in the pathogenesis of autoinflammatory Crohn's disease. While substantial advances were made in the recent past, few of the known functions of IFN-inducible GTPases have been explored in any depth, and new functions await discovery. This review will therefore highlight key areas of future exploration that promise to advance our understanding of the role of IFN-inducible GTPases in human diseases. PMID:27181197

  14. PmTBC1D20, a Rab GTPase-activating protein from the black tiger shrimp, Penaeus monodon, is involved in white spot syndrome virus infection.

    PubMed

    Yingvilasprasert, Wanchart; Supungul, Premruethai; Tassanakajon, Anchalee

    2014-02-01

    TBC (TRE2/BUB2/CDC16) domain proteins contain an ≈ 200-amino-acid motif and function as Rab GTPase-activating proteins that are required for regulating the activity of Rab proteins, and so, in turn, endocytic membrane trafficking in cells. TBC domain family member 20 (TBC1D20) has recently been reported to mediate Hepatitis C virus replication. Herein, PmTBC1D20 identified from the black tiger shrimp, Penaeus monodon, was characterized and evaluated for its role in white spot syndrome virus (WSSV) infection. The full-length cDNA sequence of PmTBC1D20 contains 2003 bp with a predicted 1443 bp open reading frame encoding a deduced 480 amino acid protein. Its transcript levels were significantly up-regulated at 24 and 48 h by ≈ 2.3- and 2.1-fold, respectively, after systemic infection with WSSV. In addition, depletion of PmTBC1D20 transcript in shrimps by double stranded RNA interference led to a decrease in the level of transcripts of three WSSV genes (VP28, ie1 and wsv477). This suggests the importance of PmTBC1D20 in WSSV infection. This is the first report of TBC1D20 in a crustacean and reveals the possible mechanism used by WSSV to modulate the activity of the host protein, PmTBC1D20, for its benefit in viral trafficking and replication.

  15. An N-terminally acetylated Arf-like GTPase is localised to lysosomes and affects their motility.

    PubMed

    Hofmann, Irmgard; Munro, Sean

    2006-04-15

    Small GTPases of the Arf and Rab families play key roles in the function of subcellular organelles. Each GTPase is usually found on only one compartment and, hence, they confer organelle specificity to many intracellular processes. However, there has so far been little evidence for specific GTPases present on lysosomes. Here, we report that two closely related human Arf-like GTPases, Arl8a and Arl8b (also known as Arl10b/c and Gie1/2), localise to lysosomes in mammalian cells, with the single homologue in Drosophila cells having a similar location. Conventionally, membrane binding of Arf and Arl proteins is mediated by both an N-terminal myristoyl group and an N-terminal amphipathic helix that is inserted into the lipid bilayer upon activation of the GTPase. Arl8a and Arl8b do not have N-terminal myristoylation sites, and we find that Arl8b is instead N-terminally acetylated, and an acetylated methionine is necessary for its lysosomal localization. Overexpression of Arl8a or Arl8b results in a microtubule-dependent redistribution of lysosomes towards the cell periphery. Live cell imaging shows that lysosomes move more frequently both toward and away from the cell periphery, suggesting a role for Arl8a and Arl8b as positive regulators of lysosomal transport. PMID:16537643

  16. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    SciTech Connect

    Choi, Hye Jin; Lee, Dong-Hyung; Park, Seong-Hwan; Kim, Juil; Do, Kee Hun; An, Tae Jin; Ahn, Young Sup; Park, Chung Berm; Moon, Yuseok

    2011-09-30

    Highlights: {yields} As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. {yields} RhoA activation increases PGE{sub 2} levels and its metabolic enzyme mPGES-1. {yields} RhoA-activated NF-{kappa}B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E{sub 2} (PGE{sub 2}), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE{sub 2} levels and gene expression of the rate-limiting PGE{sub 2} producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1{beta}-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1{beta}-mediated phosphorylated nuclear factor-{kappa}B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE{sub 2} production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  17. A Barley ROP GTPase ACTIVATING PROTEIN Associates with Microtubules and Regulates Entry of the Barley Powdery Mildew Fungus into Leaf Epidermal Cells[C][W

    PubMed Central

    Hoefle, Caroline; Huesmann, Christina; Schultheiss, Holger; Börnke, Frederik; Hensel, Götz; Kumlehn, Jochen; Hückelhoven, Ralph

    2011-01-01

    Little is known about the function of host factors involved in disease susceptibility. The barley (Hordeum vulgare) ROP (RHO of plants) G-protein RACB is required for full susceptibility of the leaf epidermis to invasion by the biotrophic fungus Blumeria graminis f. sp hordei. Stable transgenic knockdown of RACB reduced the ability of barley to accommodate haustoria of B. graminis in intact epidermal leaf cells and to form hairs on the root epidermis, suggesting that RACB is a common element of root hair outgrowth and ingrowth of haustoria in leaf epidermal cells. We further identified a barley MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN (MAGAP1) interacting with RACB in yeast and in planta. Fluorescent MAGAP1 decorated cortical microtubules and was recruited by activated RACB to the cell periphery. Under fungal attack, MAGAP1-labeled microtubules built a polarized network at sites of successful defense. By contrast, microtubules loosened where the fungus succeeded in penetration. Genetic evidence suggests a function of MAGAP1 in limiting susceptibility to penetration by B. graminis. Additionally, MAGAP1 influenced the polar organization of cortical microtubules. These results add to our understanding of how intact plant cells accommodate fungal infection structures and suggest that RACB and MAGAP1 might be antagonistic players in cytoskeleton organization for fungal entry. PMID:21685259

  18. The function of RhoGTPases in axon ensheathment and myelination

    PubMed Central

    Feltri, M. Laura; Suter, Ueli; Relvas, João B.

    2008-01-01

    RhoGTPases are molecular switches that integrate extracellular signals to perform diverse cellular responses. This ability relies on the network of proteins regulating RhoGTPases activity and localization, and on the interaction of RhoGTPases with many different cellular effectors. Myelination is an ideal place for RhoGTPases regulation, as it is the result of fine orchestration of many stimuli from at least two cell types. Recent work has revealed that RhoGTPases are required for Schwann cells to sort, ensheath and myelinate axons. Here we will review recent advances showing the critical roles for RhoGTPases in various aspects of Schwann development and myelination, including the recent discovery of their involvement in Charcot-Marie-Tooth disease. Comparison with potential roles of RhoGTPases in central nervous system myelination will be drawn. PMID:18803320

  19. Clustered basic amino acids of the small sendai virus C protein Y1 are critical to its RAN GTPase-mediated nuclear localization.

    PubMed

    Irie, Takashi; Yoshida, Asuka; Sakaguchi, Takemasa

    2013-01-01

    The Sendai virus (SeV) C proteins are shown to exert multiple functions during the course of infection. Perhaps reflecting their many functions, they occur at multiple sites of the cell. In this study, we focused on the nuclear-localizing ability of the smaller C protein, Y1, and found that this translocation is mediated by Ran GTPase but not by passive diffusion, and that basic residues within the 149-157 amino acid region are critical for that. The mechanism of inhibition of interferon (IFN)-signaling seemed to differ between the C and Y1 proteins, since deletion of 12 C-terminal amino acids resulted in a loss of the function for the C but not for the Y1 protein. The ability of Y1 mutants to inhibit IFN-α-induced, ISRE-driven expression of a reporter gene almost paralleled with that to localize in the nucleus. These results suggest that nuclear localization of the Y1 protein might be important for the inhibitory effect on type-I IFN-stimulated gene expression.

  20. The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily.

    PubMed

    Pereira-Leal, J B; Seabra, M C

    2000-08-25

    The Rab/Ypt/Sec4 family forms the largest branch of the Ras superfamily of GTPases, acting as essential regulators of vesicular transport pathways. We used the large amount of information in the databases to analyse the mammalian Rab family. We defined Rab-conserved sequences that we designate Rab family (RabF) motifs using the conserved PM and G motifs as "landmarks". The Rab-specific regions were used to identify new Rab proteins in the databases and suggest rules for nomenclature. Surprisingly, we find that RabF regions cluster in and around switch I and switch II regions, i.e. the regions that change conformation upon GDP or GTP binding. This finding suggests that specificity of Rab-effector interaction cannot be conferred solely through the switch regions as is usually inferred. Instead, we propose a model whereby an effector binds to RabF (switch) regions to discriminate between nucleotide-bound states and simultaneously to other regions that confer specificity to the interaction, possibly Rab subfamily (RabSF) specific regions that we also define here. We discuss structural and functional data that support this model and its general applicability to the Ras superfamily of proteins.

  1. The dual action of poly(ADP-ribose) polymerase -1 (PARP-1) inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity

    PubMed Central

    Rom, Slava; Reichenbach, Nancy L.; Dykstra, Holly; Persidsky, Yuri

    2015-01-01

    Multifactorial mechanisms comprising countless cellular factors and virus-encoded transactivators regulate the transcription of HIV-1 (HIV). Since poly(ADP-ribose) polymerase 1 (PARP-1) regulates numerous genes through its interaction with various transcription factors, inhibition of PARP-1 has surfaced recently as a powerful anti-inflammatory tool. We suggest a novel tactic to diminish HIV replication via PARP-1 inhibition in an in vitro model system, exploiting human primary monocyte-derived macrophages (MDM). PARP-1 inhibition was capable to lessen HIV replication in MDM by 60–80% after 7 days infection. Tat, tumor necrosis factor α (TNFα), and phorbol 12-myristate 13-acetate (PMA) are known triggers of the Long Terminal Repeat (LTR), which can switch virus replication. Tat overexpression in MDM transfected with an LTR reporter plasmid resulted in a 4.2-fold increase in LTR activation; PARP inhibition caused 70% reduction of LTR activity. LTR activity, which increased 3-fold after PMA or TNFα treatment, was reduced by PARP inhibition (by 85–95%). PARP inhibition in MDM exhibited 90% diminution in NFκB activity (known to mediate TNFα- and PMA-induced HIV LTR activation). Cytoskeleton rearrangements are important in effective HIV-1 infection. PARP inactivation reduced actin cytoskeleton rearrangements by affecting Rho GTPase machinery. These discoveries suggest that inactivation of PARP suppresses HIV replication in MDM by via attenuation of LTR activation, NFκB suppression and its effects on the cytoskeleton. PARP appears to be essential for HIV replication and its inhibition may provide an effective approach to management of HIV infection. PMID:26379653

  2. New alternative splicing BCR/ABL-OOF shows an oncogenic role by lack of inhibition of BCR GTPase activity and an increased of persistence of Rac activation in chronic myeloid leukemia.

    PubMed

    Panuzzo, Cristina; Volpe, Gisella; Cibrario Rocchietti, Elisa; Casnici, Claudia; Crotta, Katia; Crivellaro, Sabrina; Carrà, Giovanna; Lorenzatti, Roberta; Peracino, Barbara; Torti, Davide; Morotti, Alessandro; Camacho-Leal, Maria Pilar; Defilippi, Paola; Marelli, Ornella; Saglio, Giuseppe

    2015-01-01

    In Chronic Myeloid Leukemia 80% of patients present alternative splice variants involving BCR exons 1, 13 or 14 and ABL exon 4, with a consequent impairment in the reading frame of the ABL gene. Therefore BCR/ABL fusion proteins (BCR/ABL-OOF) are characterized by an in-frame BCR portion followed by an amino acids sequence arising from the out of frame (OOF) reading of the ABL gene. The product of this new transcript contains the characteristic BCR domains while lacking the COOH-terminal Rho GTPase GAP domain. The present work aims to characterize the protein functionality in terms of cytoskeleton (re-)modelling, adhesion and activation of canonical oncogenic signalling pathways. Here, we show that BCR/ABL-OOF has a peculiar endosomal localization which affects EGF receptor activation and turnover. Moreover, we demonstrate that BCR/ABL-OOF expression leads to aberrant cellular adhesion due to the activation of Rac GTPase, increase in cellular proliferation, migration and survival. When overexpressed in a BCR/ABL positive cell line, BCR/ABL-OOF induces hyperactivation of Rac signaling axis offering a therapeutic window for Rac-targeted therapy. Our data support a critical role of BCR/ABL-OOF in leukemogenesis and identify a subset of patients that may benefit from Rac-targeted therapies. PMID:26682280

  3. New alternative splicing BCR/ABL-OOF shows an oncogenic role by lack of inhibition of BCR GTPase activity and an increased of persistence of Rac activation in chronic myeloid leukemia

    PubMed Central

    Panuzzo, Cristina; Volpe, Gisella; Rocchietti, Elisa Cibrario; Casnici, Claudia; Crotta, Katia; Crivellaro, Sabrina; Carrà, Giovanna; Lorenzatti, Roberta; Peracino, Barbara; Torti, Davide; Morotti, Alessandro; Camacho-Leal, Maria Pilar; Defilippi, Paola; Marelli, Ornella; Saglio, Giuseppe

    2015-01-01

    In Chronic Myeloid Leukemia 80% of patients present alternative splice variants involving BCR exons 1, 13 or 14 and ABL exon 4, with a consequent impairment in the reading frame of the ABL gene. Therefore BCR/ABL fusion proteins (BCR/ABL-OOF) are characterized by an in-frame BCR portion followed by an amino acids sequence arising from the out of frame (OOF) reading of the ABL gene. The product of this new transcript contains the characteristic BCR domains while lacking the COOH-terminal Rho GTPase GAP domain. The present work aims to characterize the protein functionality in terms of cytoskeleton (re-)modelling, adhesion and activation of canonical oncogenic signalling pathways. Here, we show that BCR/ABL-OOF has a peculiar endosomal localization which affects EGF receptor activation and turnover. Moreover, we demonstrate that BCR/ABL-OOF expression leads to aberrant cellular adhesion due to the activation of Rac GTPase, increase in cellular proliferation, migration and survival. When overexpressed in a BCR/ABL positive cell line, BCR/ABL-OOF induces hyperactivation of Rac signaling axis offering a therapeutic window for Rac-targeted therapy. Our data support a critical role of BCR/ABL-OOF in leukemogenesis and identify a subset of patients that may benefit from Rac-targeted therapies. PMID:26682280

  4. Dexras1 a unique ras-GTPase interacts with NMDA receptor activity and provides a novel dissociation between anxiety, working memory and sensory gating.

    PubMed

    Carlson, G C; Lin, R E; Chen, Y; Brookshire, B R; White, R S; Lucki, I; Siegel, S J; Kim, S F

    2016-05-13

    Dexras1 is a novel GTPase that acts at a confluence of signaling mechanisms associated with psychiatric and neurological disease including NMDA receptors, NOS1AP and nNOS. Recent work has shown that Dexras1 mediates iron trafficking and NMDA-dependent neurodegeneration but a role for Dexras1 in normal brain function or psychiatric disease has not been studied. To test for such a role, mice with germline knockout (KO) of Dexras1 were assayed for behavioral abnormalities as well as changes in NMDA receptor subunit protein expression. Because Dexras1 is up-regulated during stress or by dexamethasone treatment, we included measures associated with emotion including anxiety and depression. Baseline anxiety-like measures (open field and zero maze) were not altered, nor were depression-like behavior (tail suspension). Measures of memory function yielded mixed results, with no changes in episodic memory (novel object recognition) but a significant decrement on working memory (T-maze). Alternatively, there was an increase in pre-pulse inhibition (PPI), without concomitant changes in either startle amplitude or locomotor activity. PPI data are consistent with the direction of change seen following exposure to dopamine D2 antagonists. An examination of NMDA subunit expression levels revealed an increased expression of the NR2A subunit, contrary to previous studies demonstrating down-regulation of the receptor following antipsychotic exposure (Schmitt et al., 2003) and up-regulation after exposure to isolation rearing (Turnock-Jones et al., 2009). These findings suggest a potential role for Dexras1 in modulating a selective subset of psychiatric symptoms, possibly via its interaction with NMDARs and/or other disease-related binding-partners. Furthermore, data suggest that modulating Dexras1 activity has contrasting effects on emotional, sensory and cognitive domains.

  5. Dexras1 a unique ras-GTPase interacts with NMDA receptor activity and provides a novel dissociation between anxiety, working memory and sensory gating.

    PubMed

    Carlson, G C; Lin, R E; Chen, Y; Brookshire, B R; White, R S; Lucki, I; Siegel, S J; Kim, S F

    2016-05-13

    Dexras1 is a novel GTPase that acts at a confluence of signaling mechanisms associated with psychiatric and neurological disease including NMDA receptors, NOS1AP and nNOS. Recent work has shown that Dexras1 mediates iron trafficking and NMDA-dependent neurodegeneration but a role for Dexras1 in normal brain function or psychiatric disease has not been studied. To test for such a role, mice with germline knockout (KO) of Dexras1 were assayed for behavioral abnormalities as well as changes in NMDA receptor subunit protein expression. Because Dexras1 is up-regulated during stress or by dexamethasone treatment, we included measures associated with emotion including anxiety and depression. Baseline anxiety-like measures (open field and zero maze) were not altered, nor were depression-like behavior (tail suspension). Measures of memory function yielded mixed results, with no changes in episodic memory (novel object recognition) but a significant decrement on working memory (T-maze). Alternatively, there was an increase in pre-pulse inhibition (PPI), without concomitant changes in either startle amplitude or locomotor activity. PPI data are consistent with the direction of change seen following exposure to dopamine D2 antagonists. An examination of NMDA subunit expression levels revealed an increased expression of the NR2A subunit, contrary to previous studies demonstrating down-regulation of the receptor following antipsychotic exposure (Schmitt et al., 2003) and up-regulation after exposure to isolation rearing (Turnock-Jones et al., 2009). These findings suggest a potential role for Dexras1 in modulating a selective subset of psychiatric symptoms, possibly via its interaction with NMDARs and/or other disease-related binding-partners. Furthermore, data suggest that modulating Dexras1 activity has contrasting effects on emotional, sensory and cognitive domains. PMID:26946266

  6. Exploring potassium-dependent GTP hydrolysis in TEES family GTPases.

    PubMed

    Rafay, Abu; Majumdar, Soneya; Prakash, Balaji

    2012-01-01

    GTPases are important regulatory proteins that hydrolyze GTP to GDP. A novel GTP-hydrolysis mechanism is employed by MnmE, YqeH and FeoB, where a potassium ion plays a role analogous to the Arginine finger of the Ras-RasGAP system, to accelerate otherwise slow GTP hydrolysis rates. In these proteins, two conserved asparagines and a 'K-loop' present in switch-I, were suggested as attributes of GTPases employing a K(+)-mediated mechanism. Based on their conservation, a similar mechanism was suggested for TEES family GTPases. Recently, in Dynamin, Fzo1 and RbgA, which also conserve these attributes, a similar mechanism was shown to be operative. Here, we probe K(+)-activated GTP hydrolysis in TEES (TrmE-Era-EngA-YihA-Septin) GTPases - Era, EngB and the two contiguous G-domains, GD1 and GD2 of YphC (EngA homologue) - and also in HflX, another GTPase that also conserves the same attributes. While GD1-YphC and Era exhibit a K(+)-mediated activation of GTP hydrolysis, surprisingly GD2-YphC, EngB and HflX do not. Therefore, the attributes identified thus far, do not necessarily predict a K(+)-mechanism in GTPases and hence warrant extensive structural investigations. PMID:23650596

  7. Locking GTPases covalently in their functional states

    PubMed Central

    Wiegandt, David; Vieweg, Sophie; Hofmann, Frank; Koch, Daniel; Li, Fu; Wu, Yao-Wen; Itzen, Aymelt; Müller, Matthias P.; Goody, Roger S.

    2015-01-01

    GTPases act as key regulators of many cellular processes by switching between active (GTP-bound) and inactive (GDP-bound) states. In many cases, understanding their mode of action has been aided by artificially stabilizing one of these states either by designing mutant proteins or by complexation with non-hydrolysable GTP analogues. Because of inherent disadvantages in these approaches, we have developed acryl-bearing GTP and GDP derivatives that can be covalently linked with strategically placed cysteines within the GTPase of interest. Binding studies with GTPase-interacting proteins and X-ray crystallography analysis demonstrate that the molecular properties of the covalent GTPase–acryl–nucleotide adducts are a faithful reflection of those of the corresponding native states and are advantageously permanently locked in a defined nucleotide (that is active or inactive) state. In a first application, in vivo experiments using covalently locked Rab5 variants provide new insights into the mechanism of correct intracellular localization of Rab proteins. PMID:26178622

  8. Regulation of Gβγi-dependent PLC-β3 activity in smooth muscle: inhibitory phosphorylation of PLC-β3 by PKA and PKG and stimulatory phosphorylation of Gαi-GTPase-activating protein RGS2 by PKG.

    PubMed

    Nalli, Ancy D; Kumar, Divya P; Al-Shboul, Othman; Mahavadi, Sunila; Kuemmerle, John F; Grider, John R; Murthy, Karnam S

    2014-11-01

    In gastrointestinal smooth muscle, agonists that bind to Gi-coupled receptors activate preferentially PLC-β3 via Gβγ to stimulate phosphoinositide (PI) hydrolysis and generate inositol 1,4,5-trisphosphate (IP3) leading to IP3-dependent Ca(2+) release and muscle contraction. In the present study, we identified the mechanism of inhibition of PLC-β3-dependent PI hydrolysis by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG). Cyclopentyl adenosine (CPA), an adenosine A1 receptor agonist, caused an increase in PI hydrolysis in a concentration-dependent fashion; stimulation was blocked by expression of the carboxyl-terminal sequence of GRK2(495-689), a Gβγ-scavenging peptide, or Gαi minigene but not Gαq minigene. Isoproterenol and S-nitrosoglutathione (GSNO) induced phosphorylation of PLC-β3 and inhibited CPA-induced PI hydrolysis, Ca(2+) release, and muscle contraction. The effect of isoproterenol on all three responses was inhibited by PKA inhibitor, myristoylated PKI, or AKAP inhibitor, Ht-31, whereas the effect of GSNO was selectively inhibited by PKG inhibitor, Rp-cGMPS. GSNO, but not isoproterenol, also phosphorylated Gαi-GTPase-activating protein, RGS2, and enhanced association of Gαi3-GTP and RGS2. The effect of GSNO on PI hydrolysis was partly reversed in cells (i) expressing constitutively active GTPase-resistant Gαi mutant (Q204L), (ii) phosphorylation-site-deficient RGS2 mutant (S46A/S64A), or (iii) siRNA for RGS2. We conclude that PKA and PKG inhibit Gβγi-dependent PLC-β3 activity by direct phosphorylation of PLC-β3. PKG, but not PKA, also inhibits PI hydrolysis indirectly by a mechanism involving phosphorylation of RGS2 and its association with Gαi-GTP. This allows RGS2 to accelerate Gαi-GTPase activity, enhance Gαβγi trimer formation, and inhibit Gβγi-dependent PLC-β3 activity.

  9. The dynamics of Rho GTPase signaling and implications for targeting cancer and the tumor microenvironment

    PubMed Central

    Pajic, Marina; Herrmann, David; Vennin, Claire; Conway, James RW; Chin, Venessa T; Johnsson, Anna-Karin E; Welch, Heidi CE; Timpson, Paul

    2015-01-01

    Numerous large scale genomics studies have demonstrated that cancer is a molecularly heterogeneous disease, characterized by acquired changes in the structure and DNA sequence of tumor genomes. More recently, the role of the equally complex tumor microenvironment in driving the aggressiveness of this disease is increasingly being realized. Tumor cells are surrounded by activated stroma, creating a dynamic environment that promotes cancer development, metastasis and chemoresistance. The Rho family of small GTPases plays an essential role in the regulation of cell shape, cytokinesis, cell adhesion, and cell motility. Importantly, these processes need to be considered in the context of a complex 3-dimensional (3D) environment, with reciprocal feedback and cross-talk taking place between the tumor cells and host environment. Here we discuss the role of molecular networks involving Rho GTPases in cancer, and the therapeutic implications of inhibiting Rho signaling in both cancer cells and the emerging concept of targeting the surrounding stroma. PMID:26103062

  10. Vesicular Trafficking Defects, Developmental Abnormalities, and Alterations in the Cellular Death Process Occur in Cell Lines that Over-Express Dictyostelium GTPase, Rab2, and Rab2 Mutants.

    PubMed

    Maringer, Katherine; Saheb, Entsar; Bush, John

    2014-01-01

    Small molecular weight GTPase Rab2 has been shown to be a resident of pre-Golgi intermediates and required for protein transport from the ER to the Golgi complex, however, the function of Rab2 in Dictyostelium has yet to be fully characterized. Using cell lines that over-express DdRab2, as well as cell lines over-expressing constitutively active (CA), and dominant negative (DN) forms of the GTPase, we report a functional role in vesicular transport specifically phagocytosis, and endocytosis. Furthermore, Rab2 like other GTPases cycles between an active GTP-bound and an inactive GDP-bound state. We found that this GTP/GDP cycle for DdRab2 is crucial for normal Dictyostelium development and cell-cell adhesion. Similar to Rab5 and Rab7 in C. elegans, we found that DdRab2 plays a role in programmed cell death, possibly in the phagocytic removal of apoptotic corpses.

  11. Small molecules that allosterically inhibit p21-activated kinase activity by binding to the regulatory p21-binding domain.

    PubMed

    Kim, Duk-Joong; Choi, Chang-Ki; Lee, Chan-Soo; Park, Mee-Hee; Tian, Xizhe; Kim, Nam Doo; Lee, Kee-In; Choi, Joong-Kwon; Ahn, Jin Hee; Shin, Eun-Young; Shin, Injae; Kim, Eung-Gook

    2016-01-01

    p21-activated kinases (PAKs) are key regulators of actin dynamics, cell proliferation and cell survival. Deregulation of PAK activity contributes to the pathogenesis of various human diseases, including cancer and neurological disorders. Using an ELISA-based screening protocol, we identified naphtho(hydro)quinone-based small molecules that allosterically inhibit PAK activity. These molecules interfere with the interactions between the p21-binding domain (PBD) of PAK1 and Rho GTPases by binding to the PBD. Importantly, they inhibit the activity of full-length PAKs and are selective for PAK1 and PAK3 in vitro and in living cells. These compounds may potentially be useful for determining the details of the PAK signaling pathway and may also be used as lead molecules in the development of more selective and potent PAK inhibitors. PMID:27126178

  12. Small molecules that allosterically inhibit p21-activated kinase activity by binding to the regulatory p21-binding domain

    PubMed Central

    Kim, Duk-Joong; Choi, Chang-Ki; Lee, Chan-Soo; Park, Mee-Hee; Tian, Xizhe; Kim, Nam Doo; Lee, Kee-In; Choi, Joong-Kwon; Ahn, Jin Hee; Shin, Eun-Young; Shin, Injae; Kim, Eung-Gook

    2016-01-01

    p21-activated kinases (PAKs) are key regulators of actin dynamics, cell proliferation and cell survival. Deregulation of PAK activity contributes to the pathogenesis of various human diseases, including cancer and neurological disorders. Using an ELISA-based screening protocol, we identified naphtho(hydro)quinone-based small molecules that allosterically inhibit PAK activity. These molecules interfere with the interactions between the p21-binding domain (PBD) of PAK1 and Rho GTPases by binding to the PBD. Importantly, they inhibit the activity of full-length PAKs and are selective for PAK1 and PAK3 in vitro and in living cells. These compounds may potentially be useful for determining the details of the PAK signaling pathway and may also be used as lead molecules in the development of more selective and potent PAK inhibitors. PMID:27126178

  13. Rab-family GTPase regulates TOR complex 2 signaling in fission yeast

    PubMed Central

    Tatebe, Hisashi; Morigasaki, Susumu; Murayama, Shinichi; Zeng, Cui Tracy; Shiozaki, Kazuhiro

    2010-01-01

    Summary Background From yeast to human, TOR (Target Of Rapamycin) kinase plays pivotal roles in coupling extracellular stimuli to cell growth and metabolism. TOR kinase functions in two distinct protein complexes, TOR complex 1 (TORC1) and 2 (TORC2), which phosphorylate and activate different AGC-family protein kinases. TORC1 is controlled by the small GTPase Rheb, but little is known about TORC2 regulators. Results We have identified the Ryh1 GTPase, a human Rab6 ortholog, as an activator of TORC2 signaling in the fission yeast Schizosaccharomyces pombe. Mutational inactivation of Ryh1 or its guanine nucleotide exchange factor compromises the TORC2-dependent phosphorylation of the AGC-family Gad8 kinase. In addition, the effector domain of Ryh1 is important for its physical interaction with TORC2 and for stimulation of TORC2 signaling. Thus, GTP-bound Ryh1 is likely to be the active form stimulatory to TORC2–Gad8 signaling. Consistently, expression of the GTP-locked mutant Ryh1 is sufficient to promote interaction between TORC2 and Gad8 and to induce Gad8 hyper-phosphorylation. The loss of functional Ryh1, TORC2 or Gad8 brings about similar vacuolar fragmentation and stress sensitivity, further corroborating their involvement in a common cellular process. Human Rab6 can substitute Ryh1 in S. pombe and therefore, Rab6 may be a potential activator of TORC2 in mammals. Conclusions In its GTP-bound form, Ryh1, an evolutionarily conserved Rab GTPase, activates TORC2 signaling to the AGC kinase Gad8. The Ryh1 GTPase and the TORC2–Gad8 pathway are required for vacuolar integrity and cellular stress resistance in S. pombe. PMID:21035342

  14. Reverse engineering GTPase programming languages with reconstituted signaling networks.

    PubMed

    Coyle, Scott M

    2016-07-01

    The Ras superfamily GTPases represent one of the most prolific signaling currencies used in Eukaryotes. With these remarkable molecules, evolution has built GTPase networks that control diverse cellular processes such as growth, morphology, motility and trafficking. (1-4) Our knowledge of the individual players that underlie the function of these networks is deep; decades of biochemical and structural data has provided a mechanistic understanding of the molecules that turn GTPases ON and OFF, as well as how those GTPase states signal by controlling the assembly of downstream effectors. However, we know less about how these different activities work together as a system to specify complex dynamic signaling outcomes. Decoding this molecular "programming language" would help us understand how different species and cell types have used the same GTPase machinery in different ways to accomplish different tasks, and would also provide new insights as to how mutations to these networks can cause disease. We recently developed a bead-based microscopy assay to watch reconstituted H-Ras signaling systems at work under arbitrary configurations of regulators and effectors. (5) Here we highlight key observations and insights from this study and propose extensions to our method to further study this and other GTPase signaling systems. PMID:27128855

  15. Reverse engineering GTPase programming languages with reconstituted signaling networks.

    PubMed

    Coyle, Scott M

    2016-07-01

    The Ras superfamily GTPases represent one of the most prolific signaling currencies used in Eukaryotes. With these remarkable molecules, evolution has built GTPase networks that control diverse cellular processes such as growth, morphology, motility and trafficking. (1-4) Our knowledge of the individual players that underlie the function of these networks is deep; decades of biochemical and structural data has provided a mechanistic understanding of the molecules that turn GTPases ON and OFF, as well as how those GTPase states signal by controlling the assembly of downstream effectors. However, we know less about how these different activities work together as a system to specify complex dynamic signaling outcomes. Decoding this molecular "programming language" would help us understand how different species and cell types have used the same GTPase machinery in different ways to accomplish different tasks, and would also provide new insights as to how mutations to these networks can cause disease. We recently developed a bead-based microscopy assay to watch reconstituted H-Ras signaling systems at work under arbitrary configurations of regulators and effectors. (5) Here we highlight key observations and insights from this study and propose extensions to our method to further study this and other GTPase signaling systems.

  16. The Rac GTPase effector p21-activated kinase is essential for hematopoietic stem/progenitor cell migration and engraftment.

    PubMed

    Dorrance, Adrienne M; De Vita, Serena; Radu, Maria; Reddy, Pavankumar N G; McGuinness, Meaghan K; Harris, Chad E; Mathieu, Ronald; Lane, Steven W; Kosoff, Rachelle; Milsom, Michael D; Chernoff, Jonathan; Williams, David A

    2013-03-28

    The p21-activated kinases (Paks) are serine/threonine kinases that are major effectors of the Rho guanosine 5'\\x{2011}triphosphatase, Rac, and Cdc42. Rac and Cdc42 are known regulators of hematopoietic stem and progenitor cell (HSPC) function, however, a direct role for Paks in HSPCs has yet to be elucidated. Lin(-)Sca1(+)c-kit(+) (LSK) cells from wild-type mice were transduced with retrovirus expressing Pak inhibitory domain (PID), a well-characterized inhibitor of Pak activation. Defects in marrow homing and in vitro cell migration, assembly of the actin cytoskeleton, proliferation, and survival were associated with engraftment failure of PID-LSK. The PID-LSK demonstrated decreased phosphorylation of extracellular signal-regulated kinase (ERK), whereas constitutive activation of ERK in these cells led to rescue of hematopoietic progenitor cell proliferation in vitro and partial rescue of Pak-deficient HSPC homing and engraftment in vivo. Using conditional knock-out mice, we demonstrate that among group A Paks, Pak2(-/-) HSPC show reduced homing to the bone marrow and altered cell shape similar to PID-LSK cells in vitro and are completely defective in HSPC engraftment. These data demonstrate that Pak proteins are key components of multiple engraftment-associated HSPC functions and play a direct role in activation of ERK in HSPCs, and that Pak2 is specifically essential for HSPC engraftment.

  17. Phosphorylation of synaptic GTPase-activating protein (synGAP) by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (CDK5) alters the ratio of its GAP activity toward Ras and Rap GTPases.

    PubMed

    Walkup, Ward G; Washburn, Lorraine; Sweredoski, Michael J; Carlisle, Holly J; Graham, Robert L; Hess, Sonja; Kennedy, Mary B

    2015-02-20

    synGAP is a neuron-specific Ras and Rap GTPase-activating protein (GAP) found in high concentrations in the postsynaptic density (PSD) fraction from the mammalian forebrain. We have previously shown that, in situ in the PSD fraction or in recombinant form in Sf9 cell membranes, synGAP is phosphorylated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), another prominent component of the PSD. Here, we show that recombinant synGAP (r-synGAP), lacking 102 residues at the N terminus, can be purified in soluble form and is phosphorylated by cyclin-dependent kinase 5 (CDK5) as well as by CaMKII. Phosphorylation of r-synGAP by CaMKII increases its HRas GAP activity by 25% and its Rap1 GAP activity by 76%. Conversely, phosphorylation by CDK5 increases r-synGAP's HRas GAP activity by 98% and its Rap1 GAP activity by 20%. Thus, phosphorylation by both kinases increases synGAP activity; CaMKII shifts the relative GAP activity toward inactivation of Rap1, and CDK5 shifts the relative activity toward inactivation of HRas. GAP activity toward Rap2 is not altered by phosphorylation by either kinase. CDK5 phosphorylates synGAP primarily at two sites, Ser-773 and Ser-802. Phosphorylation at Ser-773 inhibits r-synGAP activity, and phosphorylation at Ser-802 increases it. However, the net effect of concurrent phosphorylation of both sites, Ser-773 and Ser-802, is an increase in GAP activity. synGAP is phosphorylated at Ser-773 and Ser-802 in the PSD fraction, and its phosphorylation by CDK5 and CaMKII is differentially regulated by activation of NMDA-type glutamate receptors in cultured neurons.

  18. Adjacent positioning of cellular structures enabled by a Cdc42 GTPase-activating protein-mediated zone of inhibition.

    PubMed

    Tong, Zongtian; Gao, Xiang-Dong; Howell, Audrey S; Bose, Indrani; Lew, Daniel J; Bi, Erfei

    2007-12-31

    Cells of the budding yeast Saccharomyces cerevisiae are born carrying localized transmembrane landmark proteins that guide the subsequent establishment of a polarity axis and hence polarized growth to form a bud in the next cell cycle. In haploid cells, the relevant landmark proteins are concentrated at the site of the preceding cell division, to which they recruit Cdc24, the guanine nucleotide exchange factor for the conserved polarity regulator Cdc42. However, instead of polarizing at the division site, the new polarity axis is directed next to but not overlapping that site. Here, we show that the Cdc42 guanosine triphosphatase-activating protein (GAP) Rga1 establishes an exclusion zone at the division site that blocks subsequent polarization within that site. In the absence of localized Rga1 GAP activity, new buds do in fact form within the old division site. Thus, Cdc42 activators and GAPs establish concentric zones of action such that polarization is directed to occur adjacent to but not within the previous cell division site.

  19. Signaling through Rho GTPase pathway as viable drug target.

    PubMed

    Lu, Qun; Longo, Frank M; Zhou, Huchen; Massa, Stephen M; Chen, Yan-Hua

    2009-01-01

    Signaling through the Rho family of small GTPases has been increasingly investigated for their involvement in a wide variety of diseases such as cardiovascular, pulmonary, and neurological disorders as well as cancer. Rho GTPases are a subfamily of the Ras superfamily proteins which play essential roles in a number of biological processes, especially in the regulation of cell shape change, cytokinesis, cell adhesion, and cell migration. Many of these processes demonstrate a common theme: the rapid and dynamic reorganization of actin cytoskeleton of which Rho signaling has now emerged as a major switch control. The involvement of dynamic changes of Rho GTPases in disease states underscores the need to produce effective inhibitors for their therapeutic applications. Fasudil and Y-27632, with many newer additions, are two classes of widely used chemical compounds that inhibit Rho kinase (ROCK), an important downstream effector of RhoA subfamily GTPases. These inhibitors have been successful in many preclinical studies, indicating the potential benefit of clinical Rho pathway inhibition. On the other hand, except for Rac1 inhibitor NSC23766, there are few effective inhibitors directly targeting Rho GTPases, likely due to the lack of optimal structural information on individual Rho-RhoGEF, Rho-RhoGAP, or Rho-RhoGDI interaction to achieve specificity. Recently, LM11A-31 and other derivatives of peptide mimetic ligands for p75 neurotrophin receptor (p75(NTR)) show promising effects upstream of Rho GTPase signaling in neuronal regeneration. CCG-1423, a chemical compound showing profiles of inhibiting downstream of RhoA, is a further attempt for the development of novel pharmacological tools to disrupt Rho signaling pathway in cancer. Because of a rapidly growing number of studies deciphering the role of the Rho proteins in many diseases, specific and potent pharmaceutical modulators of various steps of Rho GTPase signaling pathway are critically needed to target for

  20. Genetic interactions in yeast between Ypt GTPases and Arf guanine nucleotide exchangers.

    PubMed Central

    Jones, S; Jedd, G; Kahn, R A; Franzusoff, A; Bartolini, F; Segev, N

    1999-01-01

    Two families of GTPases, Arfs and Ypt/rabs, are key regulators of vesicular transport. While Arf proteins are implicated in vesicle budding from the donor compartment, Ypt/rab proteins are involved in the targeting of vesicles to the acceptor compartment. Recently, we have shown a role for Ypt31/32p in exit from the yeast trans-Golgi, suggesting a possible function for Ypt/rab proteins in vesicle budding as well. Here we report the identification of a new member of the Sec7-domain family, SYT1, as a high-copy suppressor of a ypt31/32 mutation. Several proteins that belong to the Sec7-domain family, including the yeast Gea1p, have recently been shown to stimulate nucleotide exchange by Arf GTPases. Nucleotide exchange by Arf GTPases, the switch from the GDP- to the GTP-bound form, is thought to be crucial for their function. Sec7p itself has an important role in the yeast secretory pathway. However, its mechanism of action is not yet understood. We show that all members of the Sec7-domain family exhibit distinct genetic interactions with the YPT genes. Biochemical assays demonstrate that, although the homology between the members of the Sec7-domain family is relatively low (20-35%) and limited to a small domain, they all can act as guanine nucleotide exchange factors (GEFs) for Arf proteins, but not for Ypt GTPases. The Sec7-domain of Sec7p is sufficient for this activity. Interestingly, the Sec7 domain activity is inhibited by brefeldin A (BFA), a fungal metabolite that inhibits some of the Arf-GEFs, indicating that this domain is a target for BFA. These results demonstrate that the ability to act as Arf-GEFs is a general property of all Sec7-domain proteins in yeast. The genetic interactions observed between Arf GEFs and Ypt GTPases suggest the existence of a Ypt-Arf GTPase cascade in the secretory pathway. PMID:10430582

  1. Rho GTPases, oxidation, and cell redox control

    PubMed Central

    Hobbs, G Aaron; Zhou, Bingying; Cox, Adrienne D; Campbell, Sharon L

    2014-01-01

    While numerous studies support regulation of Ras GTPases by reactive oxygen and nitrogen species, the Rho subfamily has received considerably less attention. Over the last few years, increasing evidence is emerging that supports the redox sensitivity of Rho GTPases. Moreover, as Rho GTPases regulate the cellular redox state by controlling enzymes that generate and convert reactive oxygen and nitrogen species, redox feedback loops likely exist. Here, we provide an overview of cellular oxidants, Rho GTPases, and their inter-dependence. PMID:24809833

  2. Nitric oxide promotes epidermal stem cell migration via cGMP-Rho GTPase signalling.

    PubMed

    Zhan, Rixing; He, Weifeng; Wang, Fan; Yao, Zhihui; Tan, Jianglin; Xu, Rui; Zhou, Junyi; Wang, Yuzhen; Li, Haisheng; Wu, Jun; Luo, Gaoxing

    2016-01-01

    The migration and reepithelization of epidermal stem cells (ESCs) are the most critical processes in wound healing. The gaseous messenger nitric oxide (NO) has multiple biological effects, but its actions on ESCs are poorly understood. In this study, an NO donor, S-nitroso-N-acetylpenicillamine (SNAP), was found to facilitate the in vitro migration of human ESCs (huESCs) in both live-imaging and scratch models. In addition, pull-down assays demonstrated that SNAP could activate the small GTPases RhoA and Rac1 of the Rho family, but not Cdc42. Moreover, the effects of SNAP on the migration and F-actin polymerization of ESCs could be blocked by inhibitors of cGMP, PKG, RhoA or Rac1, and by a specific siRNA of RhoA or Rac1, but not by a Cdc42 inhibitor or siRNA. Furthermore, the roles of NO in ESC migration via cGMP-Rho GTPase signalling in vivo were confirmed by tracing 5-bromo-2-deoxyuridine (BrdU)-labelled cells in a superficial, partial-thickness scald mouse model. Thus, the present study demonstrated that the NO donor SNAP could promote huESC migration in vitro. Furthermore, NO was found to induce ESC migration via cGMP-Rho GTPase RhoA and Rac1 signalling, but not Cdc42 signalling, both in vivo and in vitro. PMID:27469024

  3. Nitric oxide promotes epidermal stem cell migration via cGMP-Rho GTPase signalling

    PubMed Central

    Zhan, Rixing; He, Weifeng; Wang, Fan; Yao, Zhihui; Tan, Jianglin; Xu, Rui; Zhou, Junyi; Wang, Yuzhen; Li, Haisheng; Wu, Jun; LUO, Gaoxing

    2016-01-01

    The migration and reepithelization of epidermal stem cells (ESCs) are the most critical processes in wound healing. The gaseous messenger nitric oxide (NO) has multiple biological effects, but its actions on ESCs are poorly understood. In this study, an NO donor, S-nitroso-N-acetylpenicillamine (SNAP), was found to facilitate the in vitro migration of human ESCs (huESCs) in both live-imaging and scratch models. In addition, pull-down assays demonstrated that SNAP could activate the small GTPases RhoA and Rac1 of the Rho family, but not Cdc42. Moreover, the effects of SNAP on the migration and F-actin polymerization of ESCs could be blocked by inhibitors of cGMP, PKG, RhoA or Rac1, and by a specific siRNA of RhoA or Rac1, but not by a Cdc42 inhibitor or siRNA. Furthermore, the roles of NO in ESC migration via cGMP-Rho GTPase signalling in vivo were confirmed by tracing 5-bromo-2-deoxyuridine (BrdU)-labelled cells in a superficial, partial-thickness scald mouse model. Thus, the present study demonstrated that the NO donor SNAP could promote huESC migration in vitro. Furthermore, NO was found to induce ESC migration via cGMP-Rho GTPase RhoA and Rac1 signalling, but not Cdc42 signalling, both in vivo and in vitro. PMID:27469024

  4. Environmental Education and Small Business Environmental Activity

    ERIC Educational Resources Information Center

    Redmond, Janice; Walker, Beth

    2011-01-01

    Environmental education is seen as a key driver of small business environmental management, yet little is known about the activities small business owner-managers are undertaking to reduce their environmental impact or in what areas they may need education. Therefore, research that can identify environmental management activities being undertaken…

  5. Nobiletin, a citrus flavonoid, suppresses invasion and migration involving FAK/PI3K/Akt and small GTPase signals in human gastric adenocarcinoma AGS cells.

    PubMed

    Lee, Yi-Chieh; Cheng, Tsan-Hwang; Lee, Jung-Shin; Chen, Jiun-Hwan; Liao, Yi-Chen; Fong, Yao; Wu, Cheng-Hsun; Shih, Yuan-Wei

    2011-01-01

    Nobiletin, a compound isolated from citrus fruits, is a polymethoxylated flavone derivative shown to have anti-inflammatory, antitumor, and neuroprotective properties. This study has investigated that nobiletin exerted inhibitory effects on the cell adhesion, invasion, and migration abilities of a highly metastatic AGS cells under non-cytotoxic concentrations. Data also showed nobiletin could inhibit the activation of focal adhesion kinase (FAK) and phosphoinositide-3-kinase/Akt (PI3K/Akt) involved in the downregulation of the enzyme activities, protein expressions, messenger RNA levels of matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-2 (MMP-9). Also, our data revealed that nobiletin inhibited FAK/PI3K/Akt with concurrent reduction in the protein expressions of Ras, c-Raf, Rac-1, Cdc42, and RhoA by western blotting, whereas the protein level of RhoB increased progressively. Otherwise, nobiletin-treated AGS cells showed tremendously decreased in the phosphorylation and degradation of inhibitor of kappaBα (IκBα), the nuclear level of NF-κB, and the binding ability of NF-κB to NF-κB response element. Furthermore, nobiletin significantly decreased the levels of phospho-Akt and MMP-2/9 in Akt1-cDNA-transfected cells concomitantly with a marked reduction in cell invasion and migration. These results suggest that nobiletin can reduce invasion and migration of AGS cells, and such a characteristic may be of great value in the development of a potential cancer therapy.

  6. The Orphan Adhesion G Protein-coupled Receptor GPR97 Regulates Migration of Lymphatic Endothelial Cells via the Small GTPases RhoA and Cdc42*

    PubMed Central

    Valtcheva, Nadejda; Primorac, Adriana; Jurisic, Giorgia; Hollmén, Maija; Detmar, Michael

    2013-01-01

    The important role of the lymphatic vascular system in pathological conditions such as inflammation and cancer has been increasingly recognized, but its potential as a pharmacological target is poorly exploited. Our study aimed at the identification and molecular characterization of lymphatic-specific G protein-coupled receptors (GPCRs) to assess new targets for pharmacological manipulation of the lymphatic vascular system. We used a TaqMan quantitative RT-PCR-based low density array to determine the GPCR expression profiles of ex vivo isolated intestinal mouse lymphatic (LECs) and blood vascular endothelial cells (BECs). GPR97, an orphan adhesion GPCR of unknown function, was the most highly and specifically expressed GPCR in mouse lymphatic endothelium. Using siRNA silencing, we found that GPR97-deficient primary human LECs displayed increased adhesion and collective cell migration, whereas single cell migration was decreased as compared with nontargeting siRNA-transfected control LECs. Loss of GPR97 shifted the ratio of active Cdc42 and RhoA and initiated cytoskeletal rearrangements, including F-actin redistribution, paxillin and PAK4 phosphorylation, and β1-integrin activation. Our data suggest a possible role of GPR97 in lymphatic remodeling and furthermore provide the first insights into the biological functions of GPR97. PMID:24178298

  7. The Structural Basis of Oncogenic Mutations G12, G13 and Q61 in Small GTPase K-Ras4B

    PubMed Central

    Lu, Shaoyong; Jang, Hyunbum; Nussinov, Ruth; Zhang, Jian

    2016-01-01

    Ras mediates cell proliferation, survival and differentiation. Mutations in K-Ras4B are predominant at residues G12, G13 and Q61. Even though all impair GAP-assisted GTP → GDP hydrolysis, the mutation frequencies of K-Ras4B in human cancers vary. Here we aim to figure out their mechanisms and differential oncogenicity. In total, we performed 6.4 μs molecular dynamics simulations on the wild-type K-Ras4B (K-Ras4BWT-GTP/GDP) catalytic domain, the K-Ras4BWT-GTP–GAP complex, and the mutants (K-Ras4BG12C/G12D/G12V-GTP/GDP, K-Ras4BG13D-GTP/GDP, K-Ras4BQ61H-GTP/GDP) and their complexes with GAP. In addition, we simulated ‘exchanged’ nucleotide states. These comprehensive simulations reveal that in solution K-Ras4BWT-GTP exists in two, active and inactive, conformations. Oncogenic mutations differentially elicit an inactive-to-active conformational transition in K-Ras4B-GTP; in K-Ras4BG12C/G12D-GDP they expose the bound nucleotide which facilitates the GDP-to-GTP exchange. These mechanisms may help elucidate the differential mutational statistics in K-Ras4B-driven cancers. Exchanged nucleotide simulations reveal that the conformational transition is more accessible in the GTP-to-GDP than in the GDP-to-GTP exchange. Importantly, GAP not only donates its R789 arginine finger, but stabilizes the catalytically-competent conformation and pre-organizes catalytic residue Q61; mutations disturb the R789/Q61 organization, impairing GAP-mediated GTP hydrolysis. Together, our simulations help provide a mechanistic explanation of key mutational events in one of the most oncogenic proteins in cancer. PMID:26902995

  8. Acetylsalicylic acid regulates overexpressed small GTPase RhoA in vascular smooth muscle cells through prevention of new synthesis and enhancement of protein degradation.

    PubMed

    Li, Dong-Bo; Fu, Zhi-Xuan; Ruan, Shu-Qin; Hu, Shen-Jiang; Li, Xia

    2012-04-01

    RhoA has been shown to play a major role in vascular processes and acetylsalicylic acid (aspirin) is known to exert a cytoprotective effect via multiple mechanisms. In the present study, we aimed at investigating the effect of aspirin on RhoA expression under a stress state in rat VSMCs (vascular smooth muscle cells) and the underlying mechanisms. The expression of iNOS (inducible nitric oxide synthase) and iNOS activity as well as NO concentration was significantly promoted by LPS (lipopolysaccharide) accompanying the elevation of RhoA expression, which was blocked by the addition of the iNOS inhibitor L-NIL [L-N6-(1-iminoethyl)lysine dihydrochloride]. Aspirin (30 μM) significantly attenuated the elevation of RhoA, while indomethacin and salicylate had no similar effect. The sGC (soluble guanylate cyclase) inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) showed the same effect as aspirin in down-regulating RhoA but was reversed by the addition of the cGMP analogue 8-Br-PET-cGMP (β-phenyl-1,N2-ethano-8-bromoguanosine 3',5'-cyclic monophosphorothioate). 8-Br-PET-cGMP solely enhanced the RhoA expression that was abrogated by preincubation with aspirin. Degradation analysis indicated that aspirin enhanced the protein degradation rate of RhoA and GDP-bound RhoA seemed to be more susceptible to aspirin-enhanced degradation compared with the GTP-bound form. Our results indicate that aspirin attenuates the LPS-induced overexpression of RhoA both by inhibiting new synthesis and accelerating protein degradation, which may help elucidate the multiple beneficial effects of aspirin.

  9. Adenosine Diphosphate (ADP)-Ribosylation of the Guanosine Triphosphatase (GTPase) Rho in Resting Peripheral Blood Human T Lymphocytes Results in Pseudopodial Extension and the Inhibition of  T Cell Activation

    PubMed Central

    Woodside, Darren G.; Wooten, David K.; McIntyre, Bradley W.

    1998-01-01

    Scrape loading Clostridium botulinum C3 exoenzyme into primary peripheral blood human T lymphocytes (PB T cells) efficiently adenosine diphosphate (ADP)-ribosylates and thus inactivates the guanosine triphosphatase (GTPase) Rho. Basal adhesion of PB T cells to the β1 integrin substrate fibronectin (Fn) was not inhibited by inactivation of Rho, nor was upregulation of adhesion using phorbol myristate acetate (PMA; 10 ng/ml) or Mn++ (1 mM) affected. Whereas untreated PB T cells adherent to Fn remain spherical, C3-treated PB T cells extend F-actin–containing pseudopodia. Inactivation of Rho delayed the kinetics of PMA-dependent PB T cell homotypic aggregation, a process involving integrin αLβ2. Although C3 treatment of PB T cells did not prevent adhesion to the β1 integrin substrate Fn, it did inhibit β1 integrin/CD3-mediated costimulation of proliferation. Analysis of intracellular cytokine production at the single cell level demonstrated that ADP-ribosylation of Rho inhibited β1 integrin/ CD3 and CD28/CD3 costimulation of IL-2 production within 6 h of activation. Strikingly, IL-2 production induced by PMA and ionomycin was unaffected by C3 treatment. Thus, the GTPase Rho is a novel regulator of T lymphocyte cytoarchitecture, and functional Rho is required for very early events regulating costimulation of IL-2 production in PB T cells. PMID:9763600

  10. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange.

    PubMed

    Burns, Michael C; Sun, Qi; Daniels, R Nathan; Camper, DeMarco; Kennedy, J Phillip; Phan, Jason; Olejniczak, Edward T; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W

    2014-03-01

    Aberrant activation of the small GTPase Ras by oncogenic mutation or constitutively active upstream receptor tyrosine kinases results in the deregulation of cellular signals governing growth and survival in ∼30% of all human cancers. However, the discovery of potent inhibitors of Ras has been difficult to achieve. Here, we report the identification of small molecules that bind to a unique pocket on the Ras:Son of Sevenless (SOS):Ras complex, increase the rate of SOS-catalyzed nucleotide exchange in vitro, and modulate Ras signaling pathways in cells. X-ray crystallography of Ras:SOS:Ras in complex with these molecules reveals that the compounds bind in a hydrophobic pocket in the CDC25 domain of SOS adjacent to the Switch II region of Ras. The structure-activity relationships exhibited by these compounds can be rationalized on the basis of multiple X-ray cocrystal structures. Mutational analyses confirmed the functional relevance of this binding site and showed it to be essential for compound activity. These molecules increase Ras-GTP levels and disrupt MAPK and PI3K signaling in cells at low micromolar concentrations. These small molecules represent tools to study the acute activation of Ras and highlight a pocket on SOS that may be exploited to modulate Ras signaling.

  11. Regulation of phagocytosis by Rho GTPases.

    PubMed

    Mao, Yingyu; Finnemann, Silvia C

    2015-01-01

    Phagocytosis is defined as a cellular uptake pathway for particles of greater than 0.5 μm in diameter. Particle clearance by phagocytosis is of critical importance for tissue health and homeostasis. The ultimate goal of anti-pathogen phagocytosis is to destroy engulfed bacteria or fungi and to stimulate cell-cell signaling that mount an efficient immune defense. In contrast, clearance phagocytosis of apoptotic cells and cell debris is anti-inflammatory. High capacity clearance phagocytosis pathways are available to professional phagocytes of the immune system and the retina. Additionally, a low capacity, so-called bystander phagocytic pathway is available to most other cell types. Different phagocytic pathways are stimulated by particle ligation of distinct surface receptors but all forms of phagocytosis require F-actin recruitment beneath tethered particles and F-actin re-arrangement promoting engulfment, which are controlled by Rho family GTPases. The specificity of Rho GTPase activity during the different forms of phagocytosis by mammalian cells is the subject of this review.

  12. DLC-1, a GTPase-activating protein for Rho, is associated with cell proliferation, morphology, and migration in human hepatocellular carcinoma

    SciTech Connect

    Kim, Tai Young; Lee, Jung Weon; Kim, Hwang-Phill; Jong, Hyun-Soon; Kim, Tae-You; Jung, Mira; Bang, Yung-Jue; E-mail: bangyj@plaza.snu.ac.kr

    2007-03-30

    DLC-1 (deleted in liver cancer-1) is a tumor suppressor gene for hepatocellular carcinoma and other cancers. To characterize its functions, we constructed recombinant adenovirus encoding the wild-type DLC-1 and examined its effects on behaviors of a hepatocellular carcinoma cell line (SNU-368), which does not express DLC-1. Here, we found that restoration of DLC-1 expression in the SNU-368 cells caused an inhibition of cell proliferation with an increase of a subG1 population. Furthermore, DLC-1 overexpression induced disassembly of stress fibers and extensive membrane protrusions around cells on laminin-1. DLC-1 overexpression also inhibited cell migration and dephosphorylated focal adhesion proteins such as focal adhesion kinase (FAK), Cas (p130Cas; Crk-associated substrate), and paxillin. These observations suggest that DLC-1 plays important roles in signal transduction pathway regulating cell proliferation, cell morphology, and cell migration by affecting Rho family GTPases and focal adhesion proteins.

  13. RAB GTPases and RAB-interacting proteins and their role in the control of cognitive functions.

    PubMed

    D'Adamo, Patrizia; Masetti, Michela; Bianchi, Veronica; Morè, Lorenzo; Mignogna, Maria Lidia; Giannandrea, Maila; Gatti, Silvia

    2014-10-01

    A RAS-related class of small monomeric G proteins, the RAB GTPases, is emerging as of key biological importance in compartment specific directional control of vesicles formation, transport and fusion. Thanks to human genetic observation and to the consequent dedicated biochemical work, substantial progress has been made on the understanding of the role played by RAB GTPases and their effector proteins on neuronal development and the shaping of cognitive functions. This review is highlighting these initial elements to broaden the current scope of research on developmental cognitive deficits and take the point of view of RAB GTPases control on membrane transport in neurons and astrocytes.

  14. Deregulation of Rho GTPases in cancer

    PubMed Central

    Porter, Andrew P.; Papaioannou, Alexandra; Malliri, Angeliki

    2016-01-01

    ABSTRACT In vitro and in vivo studies and evidence from human tumors have long implicated Rho GTPase signaling in the formation and dissemination of a range of cancers. Recently next generation sequencing has identified direct mutations of Rho GTPases in human cancers. Moreover, the effects of ablating genes encoding Rho GTPases and their regulators in mouse models, or through pharmacological inhibition, strongly suggests that targeting Rho GTPase signaling could constitute an effective treatment. In this review we will explore the various ways in which Rho signaling can be deregulated in human cancers. PMID:27104658

  15. TD-60 links RalA GTPase function to the CPC in mitosis

    PubMed Central

    Papini, Diana; Langemeyer, Lars; Abad, Maria A.; Kerr, Alastair; Samejima, Itaru; Eyers, Patrick A.; Jeyaprakash, A. Arockia; Higgins, Jonathan M. G.; Barr, Francis A.; Earnshaw, William C.

    2015-01-01

    TD-60 (also known as RCC2) is a highly conserved protein that structurally resembles the Ran guanine exchange factor (GEF) RCC1, but has not previously been shown to have GEF activity. TD-60 has a typical chromosomal passenger complex (CPC) distribution in mitotic cells, but associates with integrin complexes and is involved in cell motility during interphase. Here we show that TD-60 exhibits GEF activity, in vitro and in cells, for the small GTPase RalA. TD-60 or RalA depletion causes spindle abnormalities in prometaphase associated with abnormal centromeric accumulation of CPC components. TD-60 and RalA apparently work together to contribute to the regulation of kinetochore–microtubule interactions in early mitosis. Importantly, several mitotic phenotypes caused by TD-60 depletion are reverted by the expression of a GTP-locked mutant, RalA (Q72L). The demonstration that a small GTPase participates in the regulation of the CPC reveals a level of mitotic regulation not suspected in previous studies. PMID:26158537

  16. TD-60 links RalA GTPase function to the CPC in mitosis.

    PubMed

    Papini, Diana; Langemeyer, Lars; Abad, Maria A; Kerr, Alastair; Samejima, Itaru; Eyers, Patrick A; Jeyaprakash, A Arockia; Higgins, Jonathan M G; Barr, Francis A; Earnshaw, William C

    2015-01-01

    TD-60 (also known as RCC2) is a highly conserved protein that structurally resembles the Ran guanine exchange factor (GEF) RCC1, but has not previously been shown to have GEF activity. TD-60 has a typical chromosomal passenger complex (CPC) distribution in mitotic cells, but associates with integrin complexes and is involved in cell motility during interphase. Here we show that TD-60 exhibits GEF activity, in vitro and in cells, for the small GTPase RalA. TD-60 or RalA depletion causes spindle abnormalities in prometaphase associated with abnormal centromeric accumulation of CPC components. TD-60 and RalA apparently work together to contribute to the regulation of kinetochore-microtubule interactions in early mitosis. Importantly, several mitotic phenotypes caused by TD-60 depletion are reverted by the expression of a GTP-locked mutant, RalA (Q72L). The demonstration that a small GTPase participates in the regulation of the CPC reveals a level of mitotic regulation not suspected in previous studies. PMID:26158537

  17. Subcellular localization and functional analysis of the Arabidopsis GTPase RabE.

    PubMed

    Speth, Elena Bray; Imboden, Lori; Hauck, Paula; He, Sheng Yang

    2009-04-01

    Membrane trafficking plays a fundamental role in eukaryotic cell biology. Of the numerous known or predicted protein components of the plant cell trafficking system, only a relatively small subset have been characterized with respect to their biological roles in plant growth, development, and response to stresses. In this study, we investigated the subcellular localization and function of an Arabidopsis (Arabidopsis thaliana) small GTPase belonging to the RabE family. RabE proteins are phylogenetically related to well-characterized regulators of polarized vesicle transport from the Golgi apparatus to the plasma membrane in animal and yeast cells. The RabE family of GTPases has also been proposed to be a putative host target of AvrPto, an effector protein produced by the plant pathogen Pseudomonas syringae, based on yeast two-hybrid analysis. We generated transgenic Arabidopsis plants that constitutively expressed one of the five RabE proteins (RabE1d) fused to green fluorescent protein (GFP). GFP-RabE1d and endogenous RabE proteins were found to be associated with the Golgi apparatus and the plasma membrane in Arabidopsis leaf cells. RabE down-regulation, due to cosuppression in transgenic plants, resulted in drastically altered leaf morphology and reduced plant size, providing experimental evidence for an important role of RabE GTPases in regulating plant growth. RabE down-regulation did not affect plant susceptibility to pathogenic P. syringae bacteria; conversely, expression of the constitutively active RabE1d-Q74L enhanced plant defenses, conferring resistance to P. syringae infection. PMID:19233904

  18. The interdependence of the Rho GTPases and apicobasal cell polarity

    PubMed Central

    Mack, Natalie Ann; Georgiou, Marios

    2014-01-01

    Signaling via the Rho GTPases provides crucial regulation of numerous cell polarization events, including apicobasal (AB) polarity, polarized cell migration, polarized cell division and neuronal polarity. Here we review the relationships between the Rho family GTPases and epithelial AB polarization events, focusing on the 3 best-characterized members: Rho, Rac and Cdc42. We discuss a multitude of processes that are important for AB polarization, including lumen formation, apical membrane specification, cell-cell junction assembly and maintenance, as well as tissue polarity. Our discussions aim to highlight the immensely complex regulatory mechanisms that encompass Rho GTPase signaling during AB polarization. More specifically, in this review we discuss several emerging common themes, that include: 1) the need for Rho GTPase activities to be carefully balanced in both a spatial and temporal manner through a multitude of mechanisms; 2) the existence of signaling feedback loops and crosstalk to create robust cellular responses; and 3) the frequent multifunctionality that exists among AB polarity regulators. Regarding this latter theme, we provide further discussion of the potential plasticity of the cell polarity machinery and as a result the possible implications for human disease. PMID:25469537

  19. The interdependence of the Rho GTPases and apicobasal cell polarity.

    PubMed

    Mack, Natalie Ann; Georgiou, Marios

    2014-01-01

    Signaling via the Rho GTPases provides crucial regulation of numerous cell polarization events, including apicobasal (AB) polarity, polarized cell migration, polarized cell division and neuronal polarity. Here we review the relationships between the Rho family GTPases and epithelial AB polarization events, focusing on the 3 best-characterized members: Rho, Rac and Cdc42. We discuss a multitude of processes that are important for AB polarization, including lumen formation, apical membrane specification, cell-cell junction assembly and maintenance, as well as tissue polarity. Our discussions aim to highlight the immensely complex regulatory mechanisms that encompass Rho GTPase signaling during AB polarization. More specifically, in this review we discuss several emerging common themes, that include: 1) the need for Rho GTPase activities to be carefully balanced in both a spatial and temporal manner through a multitude of mechanisms; 2) the existence of signaling feedback loops and crosstalk to create robust cellular responses; and 3) the frequent multifunctionality that exists among AB polarity regulators. Regarding this latter theme, we provide further discussion of the potential plasticity of the cell polarity machinery and as a result the possible implications for human disease.

  20. AMPylation of Rho GTPases Subverts Multiple Host Signaling Processes*

    PubMed Central

    Woolery, Andrew R.; Yu, Xiaobo; LaBaer, Joshua; Orth, Kim

    2014-01-01

    Rho GTPases are frequent targets of virulence factors as they are keystone signaling molecules. Herein, we demonstrate that AMPylation of Rho GTPases by VopS is a multifaceted virulence mechanism that counters several host immunity strategies. Activation of NFκB, Erk, and JNK kinase signaling pathways were inhibited in a VopS-dependent manner during infection with Vibrio parahaemolyticus. Phosphorylation and degradation of IKBα were inhibited in the presence of VopS as was nuclear translocation of the NFκB subunit p65. AMPylation also prevented the generation of superoxide by the phagocytic NADPH oxidase complex, potentially by inhibiting the interaction of Rac and p67. Furthermore, the interaction of GTPases with the E3 ubiquitin ligases cIAP1 and XIAP was hindered, leading to decreased degradation of Rac and RhoA during infection. Finally, we screened for novel Rac1 interactions using a nucleic acid programmable protein array and discovered that Rac1 binds to the protein C1QA, a protein known to promote immune signaling in the cytosol. Interestingly, this interaction was disrupted by AMPylation. We conclude that AMPylation of Rho Family GTPases by VopS results in diverse inhibitory consequences during infection beyond the most obvious phenotype, the collapse of the actin cytoskeleton. PMID:25301945

  1. Control of T lymphocyte morphology by the GTPase Rho

    NASA Technical Reports Server (NTRS)

    Woodside, Darren G.; Wooten, David K.; Teague, T. Kent; Miyamoto, Yuko J.; Caudell, Eva G.; Udagawa, Taturo; Andruss, Bernard F.; McIntyre, Bradley W.

    2003-01-01

    BACKGROUND: Rho family GTPase regulation of the actin cytoskeleton governs a variety of cell responses. In this report, we have analyzed the role of the GTPase Rho in maintenance of the T lymphocyte actin cytoskeleton. RESULTS: Inactivation of the GTPase Rho in the human T lymphocytic cell line HPB-ALL does not inhibit constitutively high adhesion to the integrin beta1 substrate fibronectin. It did however result in the aberrant extension of finger-like dendritic processes on the substrates VCAM-1, Fn, and mAb specific to beta1 integrins. Time-lapse video microscopy demonstrated that C3 induced extensions were primarily the result of an altered pseudopod elongation rather than retraction. Once the stellate pseudopodia extended, none retracted, and cells became completely immobile. Filipodial structures were absent and the dendritic-like processes in C3 treated cells were rich in filamentous actin. Immunolocalization of RhoA in untreated HPB-ALL cells spreading on fibronectin demonstrated a diffuse staining pattern within the pseudopodia. In C3 treated cells, clusters of RhoA were pronounced and localized within the altered extensions. CONCLUSIONS: GTPase Rho is actively involved in the regulation of T lymphocyte morphology and motility.

  2. Structural Mechanisms and Drug Discovery Prospects of Rho GTPases.

    PubMed

    Smithers, Cameron C; Overduin, Michael

    2016-06-13

    Rho GTPases regulate cellular morphology and dynamics, and some are key drivers of cancer progression. This superfamily offers attractive potential targets for therapeutic intervention, with RhoA, Rac1 and Cdc42 being prime examples. The challenges in developing agents that act on these signaling enzymes include the lack of obvious druggable pockets and their membrane-bound activities. However, progress in targeting the similar Ras protein is illuminating new strategies for specifically inhibiting oncogenic GTPases. The structures of multiple signaling and regulatory states of Rho proteins have been determined, and the post-translational modifications including acylation and phosphorylation points have been mapped and their functional effects examined. The development of inhibitors to probe the significance of overexpression and mutational hyperactivation of these GTPases underscores their importance in cancer progression. The ability to integrate in silico, in vitro, and in vivo investigations of drug-like molecules indicates the growing tractability of GTPase systems for lead optimization. Although no Rho-targeted drug molecules have yet been clinically approved, this family is clearly showing increasing promise for the development of precision medicine and combination cancer therapies.

  3. Structural Mechanisms and Drug Discovery Prospects of Rho GTPases

    PubMed Central

    Smithers, Cameron C.; Overduin, Michael

    2016-01-01

    Rho GTPases regulate cellular morphology and dynamics, and some are key drivers of cancer progression. This superfamily offers attractive potential targets for therapeutic intervention, with RhoA, Rac1 and Cdc42 being prime examples. The challenges in developing agents that act on these signaling enzymes include the lack of obvious druggable pockets and their membrane-bound activities. However, progress in targeting the similar Ras protein is illuminating new strategies for specifically inhibiting oncogenic GTPases. The structures of multiple signaling and regulatory states of Rho proteins have been determined, and the post-translational modifications including acylation and phosphorylation points have been mapped and their functional effects examined. The development of inhibitors to probe the significance of overexpression and mutational hyperactivation of these GTPases underscores their importance in cancer progression. The ability to integrate in silico, in vitro, and in vivo investigations of drug-like molecules indicates the growing tractability of GTPase systems for lead optimization. Although no Rho-targeted drug molecules have yet been clinically approved, this family is clearly showing increasing promise for the development of precision medicine and combination cancer therapies. PMID:27304967

  4. Uranium-mediated activation of small molecules.

    PubMed

    Arnold, Polly L

    2011-08-28

    Molecular complexes of uranium are capable of activating a range of industrially and economically important small molecules such as CO, CO(2), and N(2); new and often unexpected reactions provide insight into an element that needs to be well-understood if future clean-energy solutions are to involve nuclear power.

  5. Timing Is Everything: GTPase Regulation in Phototransduction

    PubMed Central

    Arshavsky, Vadim Y.; Wensel, Theodore G.

    2013-01-01

    As the molecular mechanisms of vertebrate phototransduction became increasingly clear in the 1980s, a persistent problem was the discrepancy between the slow GTP hydrolysis catalyzed by the phototransduction G protein, transducin, and the much more rapid physiological recovery of photoreceptor cells from light stimuli. Beginning with a report published in 1989, a series of studies revealed that transducin GTPase activity could approach the rate needed to explain physiological recovery kinetics in the presence of one or more factors present in rod outer segment membranes. One by one, these factors were identified, beginning with PDEγ, the inhibitory subunit of the cGMP phosphodiesterase activated by transducin. There followed the discovery of the crucial role played by the regulator of G protein signaling, RGS9, a member of a ubiquitous family of GTPase-accelerating proteins, or GAPs, for heterotrimeric G proteins. Soon after, the G protein β isoform Gβ5 was identified as an obligate partner subunit, followed by the discovery or R9AP, a transmembrane protein that anchors the RGS9 GAP complex to the disk membrane, and is essential for the localization, stability, and activity of this complex in vivo. The physiological importance of all of the members of this complex was made clear first by knockout mouse models, and then by the discovery of a human visual defect, bradyopsia, caused by an inherited deficiency in one of the GAP components. Further insights have been gained by high-resolution crystal structures of subcomplexes, and by extensive mechanistic studies both in vitro and in animal models. PMID:24265205

  6. Emerging nexus between RAB GTPases, autophagy and neurodegeneration.

    PubMed

    Jain, Navodita; Ganesh, Subramaniam

    2016-05-01

    The RAB class of small GTPases includes the major regulators of intracellular communication, which are involved in vesicle generation through fusion and fission, and vesicular trafficking. RAB proteins also play an imperative role in neuronal maintenance and survival. Recent studies in the field of neurodegeneration have also highlighted the process of autophagy as being essential for neuronal maintenance. Here we review the emerging roles of RAB proteins in regulating macroautophagy and its impact in the context of neurodegenerative diseases. PMID:26985808

  7. Requirement of nucleotide exchange factor for Ypt1 GTPase mediated protein transport.

    PubMed

    Jones, S; Litt, R J; Richardson, C J; Segev, N

    1995-09-01

    Small GTPases of the rab family are involved in the regulation of vesicular transport. It is believed that cycling between the GTP- and GDP-bound forms, and accessory factors regulating this cycling are crucial for rab function. However, an essential role for rab nucleotide exchange factors has not yet been demonstrated. In this report we show the requirement of nucleotide exchange factor activity for Ypt1 GTPase mediated protein transport. The Ypt1 protein, a member of the rab family, plays a role in targeting vesicles to the acceptor compartment and is essential for the first two steps of the yeast secretory pathway. We use two YPT1 dominant mutations that contain alterations in a highly conserved GTP-binding domain, N121I and D124N. YPT1-D124N is a novel mutation that encodes a protein with nucleotide specificity modified from guanine to xanthine. This provides a tool for the study of an individual rab GTPase in crude extracts: a xanthosine triphosphate (XTP)-dependent conditional dominant mutation. Both mutations confer growth inhibition and a block in protein secretion when expressed in vivo. The purified mutant proteins do not bind either GDP or GTP. Moreover, they completely inhibit the ability of the exchange factor to stimulate nucleotide exchange for wild type Ypt1 protein, and are potent inhibitors of ER to Golgi transport in vitro at the vesicle targeting step. The inhibitory effects of the Ypt1-D124N mutant protein on both nucleotide exchange activity and protein transport in vitro can be relieved by XTP, indicating that it is the nucleotide-free form of the mutant protein that is inhibitory. These results suggest that the dominant mutant proteins inhibit protein transport by sequestering the exchange factor from the wild type Ypt1 protein, and that this factor has an essential role in vesicular transport.

  8. CD81 regulates cell migration through its association with Rac GTPase

    PubMed Central

    Tejera, Emilio; Rocha-Perugini, Vera; López-Martín, Soraya; Pérez-Hernández, Daniel; Bachir, Alexia I.; Horwitz, Alan Rick; Vázquez, Jesús; Sánchez-Madrid, Francisco; Yáñez-Mo, María

    2013-01-01

    CD81 is a member of the tetraspanin family that has been described to have a key role in cell migration of tumor and immune cells. To unravel the mechanisms of CD81-regulated cell migration, we performed proteomic analyses that revealed an interaction of the tetraspanin C-terminal domain with the small GTPase Rac. Direct interaction was confirmed biochemically. Moreover, microscopy cross-correlation analysis demonstrated the in situ integration of both molecules into the same molecular complex. Pull-down experiments revealed that CD81-Rac interaction was direct and independent of Rac activation status. Knockdown of CD81 resulted in enhanced protrusion rate, altered focal adhesion formation, and decreased cell migration, correlating with increased active Rac. Reexpression of wild-type CD81, but not its truncated form lacking the C-terminal cytoplasmic domain, rescued these effects. The phenotype of CD81 knockdown cells was mimicked by treatment with a soluble peptide with the C-terminal sequence of the tetraspanin. Our data show that the interaction of Rac with the C-terminal cytoplasmic domain of CD81 is a novel regulatory mechanism of the GTPase activity turnover. Furthermore, they provide a novel mechanism for tetraspanin-dependent regulation of cell motility and open new avenues for tetraspanin-targeted reagents by the use of cell-permeable peptides. PMID:23264468

  9. Mutant K-RAS Promotes Invasion and Metastasis in Pancreatic Cancer Through GTPase Signaling Pathways

    PubMed Central

    Padavano, Julianna; Henkhaus, Rebecca S; Chen, Hwudaurw; Skovan, Bethany A; Cui, Haiyan; Ignatenko, Natalia A

    2015-01-01

    Pancreatic ductal adenocarcinoma is one of the most aggressive malignancies, characterized by the local invasion into surrounding tissues and early metastasis to distant organs. Oncogenic mutations of the K-RAS gene occur in more than 90% of human pancreatic cancers. The goal of this study was to investigate the functional significance and downstream effectors of mutant K-RAS oncogene in the pancreatic cancer invasion and metastasis. We applied the homologous recombination technique to stably disrupt K-RAS oncogene in the human pancreatic cell line MiaPaCa-2, which carries the mutant K-RASG12C oncogene in both alleles. Using in vitro assays, we found that clones with disrupted mutant K-RAS gene exhibited low RAS activity, reduced growth rates, increased sensitivity to the apoptosis inducing agents, and suppressed motility and invasiveness. In vivo assays showed that clones with decreased RAS activity had reduced tumor formation ability in mouse xenograft model and increased survival rates in the mouse orthotopic pancreatic cancer model. We further examined molecular pathways downstream of mutant K-RAS and identified RhoA GTP activating protein 5, caveolin-1, and RAS-like small GTPase A (RalA) as key effector molecules, which control mutant K-RAS-dependent migration and invasion in MiaPaCa-2 cells. Our study provides rational for targeting RhoA and RalA GTPase signaling pathways for inhibition of pancreatic cancer metastasis. PMID:26512205

  10. Flow Cytometry for Real-Time Measurement of Guanine Nucleotide Binding and Exchange by Ras-like GTPases

    PubMed Central

    Schwartz, Samantha L.; Tessema, Mathewos; Buranda, Tione; Phlypenko, Olena; Rak, Alexey; Simons, Peter C.; Surviladze, Zurab; Sklar, Larry A.; Wandinger-Ness, Angela

    2008-01-01

    Ras-like small GTPases cycle between GTP-bound active and GDP-bound inactive conformational states to regulate diverse cellular processes. Despite their importance, detailed kinetic or comparative studies of family members are rarely undertaken due to the lack of real-time assays measuring nucleotide binding or exchange. Here, we report a bead-based, flow cytometric assay that quantitatively measures the nucleotide binding properties of GST-chimeras for prototypical Ras-family members Rab7 and Rho. Measurements are possible in the presence or absence of Mg2+, with magnesium cations principally increasing affinity and slowing nucleotide dissociation rate 8- to 10-fold. GST-Rab7 exhibited a 3-fold higher affinity for GDP relative to GTP that is consistent with a 3-fold slower dissociation rate of GDP. Strikingly, GST-Rab7 had a marked preference for GTP with ribose ring-conjugated BODIPY FL. The more commonly used γ-NH-conjugated BODIPY FL GTP analogue failed to bind to GST-Rab7. In contrast, both BODIPY analogues bound equally well to GST-RhoA and GST-RhoC. Comparisons of the GST-Rab7 and GST-RhoA GTP-binding pockets provide a structural basis for the observed binding differences. In sum, the flow cytometric assay can be used to measure nucleotide binding properties of GTPases in real-time and quantitatively assess differences between GTPases. PMID:18638444

  11. Caspase 3-Mediated Inactivation of Rac GTPases Promotes Drug-Induced Apoptosis in Human Lymphoma Cells

    PubMed Central

    Zhang, Baolin; Zhang, Yaqin; Shacter, Emily

    2003-01-01

    The Rac members of the Rho family GTPases control signaling pathways that regulate diverse cellular activities, including cytoskeletal organization, gene transcription, and cell transformation. Rac is implicated in apoptosis, but little is known about the mechanism by which it responds to apoptotic stimuli. Here we demonstrate that endogenous Rac GTPases are caspase 3 substrates that are cleaved in human lymphoma cells during drug-induced apoptosis. Cleavage of Rac1 occurs at two unconventional caspase 3 sites, VVGD11/G and VMVD47/G, and results in inactivation of the GTPase and effector functions of the protein (binding to the p21-activated protein kinase PAK1). Expression of caspase 3-resistant Rac1 mutants in the cells suppresses drug-induced apoptosis. Thus, proteolytic inactivation of Rac GTPases represents a novel, irreversible mechanism of Rac downregulation that allows maximal cell death following drug treatment. PMID:12897143

  12. Activation of small molecules by phosphorus biradicaloids.

    PubMed

    Hinz, Alexander; Kuzora, Rene; Rosenthal, Uwe; Schulz, Axel; Villinger, Alexander

    2014-11-01

    The reactivity of biradicaloid [P(μ-NTer)]2 was employed to activate small molecules bearing single, double, and triple bonds. Addition of chalcogens (O2 , S8 , Sex and Tex ) led to the formation of dichalcogen-bridged P2 N2 heterocycles, except from the reaction with molecular oxygen, which gave a P2 N2 ring featuring a dicoordinated P(III) and a four-coordinated P(V) center. In formal [2πe+2πe] addition reactions, small unsaturated compounds such as ethylene, acetylene, acetone, acetonitrile, tolane, diphenylcarbodiimide, and bis(trimethylsilyl)sulfurdiimide are readily added to the P2 N2 heterocycle of the biradicaloid [P(μ-NTer)]2 , yielding novel heteroatom cage compounds. The synthesis, reactivity, and bonding of the biradicaloid [P(μ-NTer)]2 were studied in detail as well as the synthesis, properties, and structural features of all addition products. PMID:25266101

  13. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view.

    PubMed

    Lu, Shaoyong; Jang, Hyunbum; Gu, Shuo; Zhang, Jian; Nussinov, Ruth

    2016-09-21

    Ras proteins are small GTPases, cycling between inactive GDP-bound and active GTP-bound states. Through these switches they regulate signaling that controls cell growth and proliferation. Activating Ras mutations are associated with approximately 30% of human cancers, which are frequently resistant to standard therapies. Over the past few years, structural biology and in silico drug design, coupled with improved screening technology, led to a handful of promising inhibitors, raising the possibility of drugging Ras proteins. At the same time, the invariable emergence of drug resistance argues for the critical importance of additionally honing in on signaling pathways which are likely to be involved. Here we overview current advances in Ras structural knowledge, including the conformational dynamic of full-length Ras in solution and at the membrane, therapeutic inhibition of Ras activity by targeting its active site, allosteric sites, and Ras-effector protein-protein interfaces, Ras dimers, the K-Ras4B/calmodulin/PI3Kα trimer, and targeting Ras with siRNA. To mitigate drug resistance, we propose signaling pathways that can be co-targeted along with Ras and explain why. These include pathways leading to the expression (or activation) of YAP1 and c-Myc. We postulate that these and Ras signaling pathways, MAPK/ERK and PI3K/Akt/mTOR, act independently and in corresponding ways in cell cycle control. The structural data are instrumental in the discovery and development of Ras inhibitors for treating RAS-driven cancers. Together with the signaling blueprints through which drug resistance can evolve, this review provides a comprehensive and innovative master plan for tackling mutant Ras proteins.

  14. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view.

    PubMed

    Lu, Shaoyong; Jang, Hyunbum; Gu, Shuo; Zhang, Jian; Nussinov, Ruth

    2016-09-21

    Ras proteins are small GTPases, cycling between inactive GDP-bound and active GTP-bound states. Through these switches they regulate signaling that controls cell growth and proliferation. Activating Ras mutations are associated with approximately 30% of human cancers, which are frequently resistant to standard therapies. Over the past few years, structural biology and in silico drug design, coupled with improved screening technology, led to a handful of promising inhibitors, raising the possibility of drugging Ras proteins. At the same time, the invariable emergence of drug resistance argues for the critical importance of additionally honing in on signaling pathways which are likely to be involved. Here we overview current advances in Ras structural knowledge, including the conformational dynamic of full-length Ras in solution and at the membrane, therapeutic inhibition of Ras activity by targeting its active site, allosteric sites, and Ras-effector protein-protein interfaces, Ras dimers, the K-Ras4B/calmodulin/PI3Kα trimer, and targeting Ras with siRNA. To mitigate drug resistance, we propose signaling pathways that can be co-targeted along with Ras and explain why. These include pathways leading to the expression (or activation) of YAP1 and c-Myc. We postulate that these and Ras signaling pathways, MAPK/ERK and PI3K/Akt/mTOR, act independently and in corresponding ways in cell cycle control. The structural data are instrumental in the discovery and development of Ras inhibitors for treating RAS-driven cancers. Together with the signaling blueprints through which drug resistance can evolve, this review provides a comprehensive and innovative master plan for tackling mutant Ras proteins. PMID:27396271

  15. Proapoptotic and antiinvasive activity of Rac1 small molecule inhibitors on malignant glioma cells

    PubMed Central

    Cardama, Georgina A; Gonzalez, Nazareno; Ciarlantini, Matias; Gandolfi Donadío, Lucia; Comin, María Julieta; Alonso, Daniel F; Menna, Pablo Lorenzano; Gomez, Daniel E

    2014-01-01

    Malignant gliomas are characterized by an intrinsic ability to invade diffusely throughout the normal brain tissue. This feature contributes mainly to the failure of existing therapies. Deregulation of small GTPases signaling, in particular Rac1 activity, plays a key role in the invasive phenotype of gliomas. Here we report the effect of ZINC69391, a specific Rac1 inhibitor developed by our group, on human glioma cell lines LN229 and U-87 MG. ZINC69391 is able to interfere with the interaction of Rac1 with Dock180, a relevant Rac1 activator in glioma invasion, and to reduce Rac1-GTP levels. The kinase Pak1, a downstream effector of Dock180–Rac1 signaling, was also downregulated upon ZINC69391 treatment. ZINC69391 reduced cell proliferation, arrested cells in G1 phase, and triggered apoptosis in glioma cells. Importantly, ZINC69391 dramatically affected cell migration and invasion in vitro, interfering with actin cytoskeleton dynamics. We also evaluated the effect of analog 1A-116, a compound derived from ZINC69391 structure. 1A-116 showed an improved antiproliferative and antiinvasive activity on glioma cells. These findings encourage further preclinical testing in clinically relevant animal models. PMID:25378937

  16. Targeting an Essential GTPase Obg for the Development of Broad-Spectrum Antibiotics

    PubMed Central

    Bonventre, Josephine A.; Zielke, Ryszard A.; Korotkov, Konstantin V.; Sikora, Aleksandra E.

    2016-01-01

    A promising new drug target for the development of novel broad-spectrum antibiotics is the highly conserved small GTPase Obg (YhbZ, CgtA), a protein essential for the survival of all bacteria including Neisseria gonorrhoeae (GC). GC is the agent of gonorrhea, a prevalent sexually transmitted disease resulting in serious consequences on reproductive and neonatal health. A preventive anti-gonorrhea vaccine does not exist, and options for effective antibiotic treatments are increasingly limited. To address the dire need for alternative antimicrobial strategies, we have designed and optimized a 384-well GTPase assay to identify inhibitors of Obg using as a model Obg protein from GC, ObgGC. The assay was validated with a pilot screen of 40,000 compounds and achieved an average Z’ value of 0.58 ± 0.02, which suggests a robust assay amenable to high-throughput screening. We developed secondary assessments for identified lead compounds that utilize the interaction between ObgGC and fluorescent guanine nucleotide analogs, mant-GTP and mant-GDP, and an ObgGC variant with multiple alterations in the G-domains that prevent nucleotide binding. To evaluate the broad-spectrum potential of ObgGC inhibitors, Obg proteins of Klebsiella pneumoniae and methicillin-resistant Staphylococcus aureus were assessed using the colorimetric and fluorescence-based activity assays. These approaches can be useful in identifying broad-spectrum Obg inhibitors and advancing the therapeutic battle against multidrug resistant bacteria. PMID:26848972

  17. Targeting an Essential GTPase Obg for the Development of Broad-Spectrum Antibiotics.

    PubMed

    Bonventre, Josephine A; Zielke, Ryszard A; Korotkov, Konstantin V; Sikora, Aleksandra E

    2016-01-01

    A promising new drug target for the development of novel broad-spectrum antibiotics is the highly conserved small GTPase Obg (YhbZ, CgtA), a protein essential for the survival of all bacteria including Neisseria gonorrhoeae (GC). GC is the agent of gonorrhea, a prevalent sexually transmitted disease resulting in serious consequences on reproductive and neonatal health. A preventive anti-gonorrhea vaccine does not exist, and options for effective antibiotic treatments are increasingly limited. To address the dire need for alternative antimicrobial strategies, we have designed and optimized a 384-well GTPase assay to identify inhibitors of Obg using as a model Obg protein from GC, ObgGC. The assay was validated with a pilot screen of 40,000 compounds and achieved an average Z' value of 0.58 ± 0.02, which suggests a robust assay amenable to high-throughput screening. We developed secondary assessments for identified lead compounds that utilize the interaction between ObgGC and fluorescent guanine nucleotide analogs, mant-GTP and mant-GDP, and an ObgGC variant with multiple alterations in the G-domains that prevent nucleotide binding. To evaluate the broad-spectrum potential of ObgGC inhibitors, Obg proteins of Klebsiella pneumoniae and methicillin-resistant Staphylococcus aureus were assessed using the colorimetric and fluorescence-based activity assays. These approaches can be useful in identifying broad-spectrum Obg inhibitors and advancing the therapeutic battle against multidrug resistant bacteria. PMID:26848972

  18. The Rab GTPase-activating protein TBC1D4/AS160 contains an atypical phosphotyrosine-binding domain that interacts with plasma membrane phospholipids to facilitate GLUT4 trafficking in adipocytes.

    PubMed

    Tan, Shi-Xiong; Ng, Yvonne; Burchfield, James G; Ramm, Georg; Lambright, David G; Stöckli, Jacqueline; James, David E

    2012-12-01

    The Rab GTPase-activating protein TBC1D4/AS160 regulates GLUT4 trafficking in adipocytes. Nonphosphorylated AS160 binds to GLUT4 vesicles and inhibits GLUT4 translocation, and AS160 phosphorylation overcomes this inhibitory effect. In the present study we detected several new functional features of AS160. The second phosphotyrosine-binding domain in AS160 encodes a phospholipid-binding domain that facilitates plasma membrane (PM) targeting of AS160, and this function is conserved in other related RabGAP/Tre-2/Bub2/Cdc16 (TBC) proteins and an AS160 ortholog in Drosophila. This region also contains a nonoverlapping intracellular GLUT4-containing storage vesicle (GSV) cargo-binding site. The interaction of AS160 with GSVs and not with the PM confers the inhibitory effect of AS160 on insulin-dependent GLUT4 translocation. Constitutive targeting of AS160 to the PM increased the surface GLUT4 levels, and this was attributed to both enhanced AS160 phosphorylation and 14-3-3 binding and inhibition of AS160 GAP activity. We propose a model wherein AS160 acts as a regulatory switch in the docking and/or fusion of GSVs with the PM.

  19. The Rab GTPase-Activating Protein TBC1D4/AS160 Contains an Atypical Phosphotyrosine-Binding Domain That Interacts with Plasma Membrane Phospholipids To Facilitate GLUT4 Trafficking in Adipocytes

    PubMed Central

    Tan, Shi-Xiong; Ng, Yvonne; Burchfield, James G.; Ramm, Georg; Lambright, David G.; Stöckli, Jacqueline

    2012-01-01

    The Rab GTPase-activating protein TBC1D4/AS160 regulates GLUT4 trafficking in adipocytes. Nonphosphorylated AS160 binds to GLUT4 vesicles and inhibits GLUT4 translocation, and AS160 phosphorylation overcomes this inhibitory effect. In the present study we detected several new functional features of AS160. The second phosphotyrosine-binding domain in AS160 encodes a phospholipid-binding domain that facilitates plasma membrane (PM) targeting of AS160, and this function is conserved in other related RabGAP/Tre-2/Bub2/Cdc16 (TBC) proteins and an AS160 ortholog in Drosophila. This region also contains a nonoverlapping intracellular GLUT4-containing storage vesicle (GSV) cargo-binding site. The interaction of AS160 with GSVs and not with the PM confers the inhibitory effect of AS160 on insulin-dependent GLUT4 translocation. Constitutive targeting of AS160 to the PM increased the surface GLUT4 levels, and this was attributed to both enhanced AS160 phosphorylation and 14-3-3 binding and inhibition of AS160 GAP activity. We propose a model wherein AS160 acts as a regulatory switch in the docking and/or fusion of GSVs with the PM. PMID:23045393

  20. Bacterial factors exploit eukaryotic Rho GTPase signaling cascades to promote invasion and proliferation within their host

    PubMed Central

    Popoff, Michel R

    2014-01-01

    Actin cytoskeleton is a main target of many bacterial pathogens. Among the multiple regulation steps of the actin cytoskeleton, bacterial factors interact preferentially with RhoGTPases. Pathogens secrete either toxins which diffuse in the surrounding environment, or directly inject virulence factors into target cells. Bacterial toxins, which interfere with RhoGTPases, and to some extent with RasGTPases, catalyze a covalent modification (ADPribosylation, glucosylation, deamidation, adenylation, proteolysis) blocking these molecules in their active or inactive state, resulting in alteration of epithelial and/or endothelial barriers, which contributes to dissemination of bacteria in the host. Injected bacterial virulence factors preferentially manipulate the RhoGTPase signaling cascade by mimicry of eukaryotic regulatory proteins leading to local actin cytoskeleton rearrangement, which mediates bacterial entry into host cells or in contrast escape to phagocytosis and immune defense. Invasive bacteria can also manipulate RhoGTPase signaling through recognition and stimulation of cell surface receptor(s). Changes in RhoGTPase activation state is sensed by the innate immunity pathways and allows the host cell to adapt an appropriate defense response. PMID:25203748

  1. RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance.

    PubMed

    Baxter-Burrell, Airica; Yang, Zhenbiao; Springer, Patricia S; Bailey-Serres, Julia

    2002-06-14

    Transient soil flooding limits cellular oxygen to roots and reduces crop yield. Plant response to oxygen deprivation involves increased expression of the alcohol dehydrogenase gene (ADH) and ethanolic fermentation. Disruption of the Arabidopsis gene that encodes Rop (RHO-like small G protein of plants) guanosine triphosphatase (GTPase) activating protein 4 (ROPGAP4), a Rop deactivator, elevates ADH expression in response to oxygen deprivation but decreases tolerance to stress. Rop-dependent production of hydrogen peroxide via a diphenylene iodonium chloride-sensitive calcium-dependent reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is necessary for induction of both ADH and RopGAP4 expression. Tolerance to oxygen deprivation requires Rop activation and RopGAP4-dependent negative feedback regulation. This Rop signal transduction rheostat balances the ability to increase ethanolic fermentation with survival.

  2. The erbB-2 mitogenic signaling pathway: tyrosine phosphorylation of phospholipase C-gamma and GTPase-activating protein does not correlate with erbB-2 mitogenic potency.

    PubMed Central

    Fazioli, F; Kim, U H; Rhee, S G; Molloy, C J; Segatto, O; Di Fiore, P P

    1991-01-01

    The erbB-2 gene product, gp185erbB-2, unlike the structurally related epidermal growth factor (EGF) receptor (EGFR), exhibits constitutive kinase and transforming activity. We used a chimeric EGFR/erbB-2 expression vector to compare the mitogenic signaling pathway of the erbB-2 kinase with that of the EGFR, at similar levels of expression, in response to EGF stimulation. The EGFR/erbB-2 chimera was significantly more active in inducing DNA synthesis than the EGFR when either was expressed in NIH 3T3 cells. Analysis of biochemical pathways implicated in signal transduction by growth factor receptors indicated that both phospholipase C type gamma (PLC-gamma) and the p21ras GTPase-activating protein (GAP) are substrates for the erbB-2 kinase in NIH 3T3 fibroblasts. However, under conditions in which activation of the erbB-2 kinase induced DNA synthesis at least fivefold more efficiently than the EGFR, the levels of erbB-2- or EGFR-induced tyrosine phosphorylation of PLC-gamma and GAP were comparable. In addition, the stoichiometry of tyrosine phosphorylation of these putative substrates by erbB-2 appeared to be at least an order of magnitude lower than that induced by platelet-derived growth factor receptors at comparable levels of mitogenic potency. Thus, our results indicate that differences in tyrosine phosphorylation of PLC-gamma and GAP do not account for the differences in mitogenic activity of the erbB-2 kinase compared with either the EGFR or platelet-derived growth factor receptor in NIH 3T3 fibroblasts. Images PMID:1672440

  3. Small business activity does not measure entrepreneurship.

    PubMed

    Henrekson, Magnus; Sanandaji, Tino

    2014-02-01

    Entrepreneurship policy mainly aims to promote innovative Schumpeterian entrepreneurship. However, the rate of entrepreneurship is commonly proxied using quantity-based metrics, such as small business activity, the self-employment rate, or the number of startups. We argue that those metrics give rise to misleading inferences regarding high-impact Schumpeterian entrepreneurship. To unambiguously identify high-impact entrepreneurs we focus on self-made billionaires (in US dollars) who appear on Forbes Magazine's list and who became wealthy by founding new firms. We identify 996 such billionaire entrepreneurs in 50 countries in 1996-2010, a systematic cross-country study of billionaire entrepreneurs. The rate of billionaire entrepreneurs correlates negatively with self-employment, small business ownership, and firm startup rates. Countries with higher income, higher trust, lower taxes, more venture capital investment, and lower regulatory burdens have higher billionaire entrepreneurship rates but less self-employment. Despite its limitations, the number of billionaire entrepreneurs appears to be a plausible cross-country measure of Schumpeterian entrepreneurship. PMID:24449873

  4. Small business activity does not measure entrepreneurship

    PubMed Central

    Henrekson, Magnus; Sanandaji, Tino

    2014-01-01

    Entrepreneurship policy mainly aims to promote innovative Schumpeterian entrepreneurship. However, the rate of entrepreneurship is commonly proxied using quantity-based metrics, such as small business activity, the self-employment rate, or the number of startups. We argue that those metrics give rise to misleading inferences regarding high-impact Schumpeterian entrepreneurship. To unambiguously identify high-impact entrepreneurs we focus on self-made billionaires (in US dollars) who appear on Forbes Magazine’s list and who became wealthy by founding new firms. We identify 996 such billionaire entrepreneurs in 50 countries in 1996–2010, a systematic cross-country study of billionaire entrepreneurs. The rate of billionaire entrepreneurs correlates negatively with self-employment, small business ownership, and firm startup rates. Countries with higher income, higher trust, lower taxes, more venture capital investment, and lower regulatory burdens have higher billionaire entrepreneurship rates but less self-employment. Despite its limitations, the number of billionaire entrepreneurs appears to be a plausible cross-country measure of Schumpeterian entrepreneurship. PMID:24449873

  5. Small business activity does not measure entrepreneurship.

    PubMed

    Henrekson, Magnus; Sanandaji, Tino

    2014-02-01

    Entrepreneurship policy mainly aims to promote innovative Schumpeterian entrepreneurship. However, the rate of entrepreneurship is commonly proxied using quantity-based metrics, such as small business activity, the self-employment rate, or the number of startups. We argue that those metrics give rise to misleading inferences regarding high-impact Schumpeterian entrepreneurship. To unambiguously identify high-impact entrepreneurs we focus on self-made billionaires (in US dollars) who appear on Forbes Magazine's list and who became wealthy by founding new firms. We identify 996 such billionaire entrepreneurs in 50 countries in 1996-2010, a systematic cross-country study of billionaire entrepreneurs. The rate of billionaire entrepreneurs correlates negatively with self-employment, small business ownership, and firm startup rates. Countries with higher income, higher trust, lower taxes, more venture capital investment, and lower regulatory burdens have higher billionaire entrepreneurship rates but less self-employment. Despite its limitations, the number of billionaire entrepreneurs appears to be a plausible cross-country measure of Schumpeterian entrepreneurship.

  6. Unique Structural and Nucleotide Exchange Features of the Rho1 GTPase of Entamoeba histolytica

    SciTech Connect

    Bosch, Dustin E.; Wittchen, Erika S.; Qiu, Connie; Burridge, Keith; Siderovski, David P.

    2012-08-10

    The single-celled human parasite Entamoeba histolytica possesses a dynamic actin cytoskeleton vital for its intestinal and systemic pathogenicity. The E. histolytica genome encodes several Rho family GTPases known to regulate cytoskeletal dynamics. EhRho1, the first family member identified, was reported to be insensitive to the Rho GTPase-specific Clostridium botulinum C3 exoenzyme, raising the possibility that it may be a misclassified Ras family member. Here, we report the crystal structures of EhRho1 in both active and inactive states. EhRho1 is activated by a conserved switch mechanism, but diverges from mammalian Rho GTPases in lacking a signature Rho insert helix. EhRho1 engages a homolog of mDia, EhFormin1, suggesting a role in mediating serum-stimulated actin reorganization and microtubule formation during mitosis. EhRho1, but not a constitutively active mutant, interacts with a newly identified EhRhoGDI in a prenylation-dependent manner. Furthermore, constitutively active EhRho1 induces actin stress fiber formation in mammalian fibroblasts, thereby identifying it as a functional Rho family GTPase. EhRho1 exhibits a fast rate of nucleotide exchange relative to mammalian Rho GTPases due to a distinctive switch one isoleucine residue reminiscent of the constitutively active F28L mutation in human Cdc42, which for the latter protein, is sufficient for cellular transformation. Nonconserved, nucleotide-interacting residues within EhRho1, revealed by the crystal structure models, were observed to contribute a moderating influence on fast spontaneous nucleotide exchange. Collectively, these observations indicate that EhRho1 is a bona fide member of the Rho GTPase family, albeit with unique structural and functional aspects compared with mammalian Rho GTPases.

  7. Rho GTPases in primary brain tumor malignancy and invasion.

    PubMed

    Khalil, Bassem D; El-Sibai, Mirvat

    2012-07-01

    Gliomas are the most common type of malignant primary brain tumor in humans, accounting for 80 % of malignant cases. Expression and activity of Rho GTPases, which coordinate several cellular processes including cell-cycle progression and cell migration, are commonly altered in many types of primary brain tumor. Here we review the suggested effects of deregulated Rho GTPase signaling on brain tumor malignancy, highlighting the controversy in the field. For instance, whereas expression of RhoA and RhoB has been found to be significantly reduced in astrocytic tumors, other studies have reported Rho-dependent LPA-induced migration in glioma cells. Moreover, whereas the Rac1 expression level has been found to be reduced in astrocytic tumor, it was overexpressed and induced invasion in medulloblastoma tumors. In addition to the Rho GTPases themselves, several of their downstream effectors (including ROCK, mDia, and N-WASP) and upstream regulators (including GEFs, GAPs, PI3K, and PTEN) have also been implicated in primary brain tumors.

  8. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling

    PubMed Central

    Gee, Heon Yung; Saisawat, Pawaree; Ashraf, Shazia; Hurd, Toby W.; Vega-Warner, Virginia; Fang, Humphrey; Beck, Bodo B.; Gribouval, Olivier; Zhou, Weibin; Diaz, Katrina A.; Natarajan, Sivakumar; Wiggins, Roger C.; Lovric, Svjetlana; Chernin, Gil; Schoeb, Dominik S.; Ovunc, Bugsu; Frishberg, Yaacov; Soliman, Neveen A.; Fathy, Hanan M.; Goebel, Heike; Hoefele, Julia; Weber, Lutz T.; Innis, Jeffrey W.; Faul, Christian; Han, Zhe; Washburn, Joseph; Antignac, Corinne; Levy, Shawn; Otto, Edgar A.; Hildebrandt, Friedhelm

    2013-01-01

    Nephrotic syndrome (NS) is divided into steroid-sensitive (SSNS) and -resistant (SRNS) variants. SRNS causes end-stage kidney disease, which cannot be cured. While the disease mechanisms of NS are not well understood, genetic mapping studies suggest a multitude of unknown single-gene causes. We combined homozygosity mapping with whole-exome resequencing and identified an ARHGDIA mutation that causes SRNS. We demonstrated that ARHGDIA is in a complex with RHO GTPases and is prominently expressed in podocytes of rat glomeruli. ARHGDIA mutations (R120X and G173V) from individuals with SRNS abrogated interaction with RHO GTPases and increased active GTP-bound RAC1 and CDC42, but not RHOA, indicating that RAC1 and CDC42 are more relevant to the pathogenesis of this SRNS variant than RHOA. Moreover, the mutations enhanced migration of cultured human podocytes; however, enhanced migration was reversed by treatment with RAC1 inhibitors. The nephrotic phenotype was recapitulated in arhgdia-deficient zebrafish. RAC1 inhibitors were partially effective in ameliorating arhgdia-associated defects. These findings identify a single-gene cause of NS and reveal that RHO GTPase signaling is a pathogenic mediator of SRNS. PMID:23867502

  9. Vesicular Trafficking Defects, Developmental Abnormalities, and Alterations in the Cellular Death Process Occur in Cell Lines that Over-Express Dictyostelium GTPase, Rab2, and Rab2 Mutants

    PubMed Central

    Maringer, Katherine; Saheb, Entsar; Bush, John

    2014-01-01

    Small molecular weight GTPase Rab2 has been shown to be a resident of pre-Golgi intermediates and required for protein transport from the ER to the Golgi complex, however, the function of Rab2 in Dictyostelium has yet to be fully characterized. Using cell lines that over-express DdRab2, as well as cell lines over-expressing constitutively active (CA), and dominant negative (DN) forms of the GTPase, we report a functional role in vesicular transport specifically phagocytosis, and endocytosis. Furthermore, Rab2 like other GTPases cycles between an active GTP-bound and an inactive GDP-bound state. We found that this GTP/GDP cycle for DdRab2 is crucial for normal Dictyostelium development and cell–cell adhesion. Similar to Rab5 and Rab7 in C. elegans, we found that DdRab2 plays a role in programmed cell death, possibly in the phagocytic removal of apoptotic corpses. PMID:25157910

  10. Differential Effects of B Cell Receptor and B Cell Receptor–FcγRIIB1 Engagement on Docking of Csk to GTPase-activating Protein (GAP)-associated p62

    PubMed Central

    Vuica, Milena; Desiderio, Stephen; Schneck, Jonathan P.

    1997-01-01

    The stimulatory and inhibitory pathways initiated by engagement of stimulatory receptors such as the B cell receptor for antigen (BCR) and inhibitory receptors such as Fcγ receptors of the IIB1 type (FcγRIIB1) intersect in ways that are poorly understood at the molecular level. Because the tyrosine kinase Csk is a potential negative regulator of lymphocyte activation, we examined the effects of BCR and FcγRIIB1 engagement on the binding of Csk to phosphotyrosine-containing proteins. Stimulation of a B lymphoma cell line, A20, with intact anti-IgG antibody induced a direct, SH2-mediated association between Csk and a 62-kD phosphotyrosine-containing protein that was identified as RasGTPase-activating protein–associated p62 (GAP-A.p62). In contrast, stimulation of A20 cells with anti-IgG F(ab′)2 resulted in little increase in the association of Csk with GAP-A.p62. The effect of FcγRIIB1 engagement on this association was abolished by blockade of FcγRIIB1 with the monoclonal antibody 2.4G2. Furthermore, the increased association between Csk and GAP-A.p62 seen upon stimulation with intact anti-Ig was abrogated in the FcγRIIB1-deficient cell line IIA1.6 and recovered when FcγRIIB1 expression was restored by transfection. The differential effects of BCR and BCR-FcγRIIB1–mediated signaling on the phosphorylation of GAP-A.p62 and its association with Csk suggest that docking of Csk to GAP-A.p62 may function in the negative regulation of antigen receptor–mediated signals in B cells. PMID:9221755

  11. Rho GTPase signalling in cell migration

    PubMed Central

    Ridley, Anne J

    2015-01-01

    Cells migrate in multiple different ways depending on their environment, which includes the extracellular matrix composition, interactions with other cells, and chemical stimuli. For all types of cell migration, Rho GTPases play a central role, although the relative contribution of each Rho GTPase depends on the environment and cell type. Here, I review recent advances in our understanding of how Rho GTPases contribute to different types of migration, comparing lamellipodium-driven versus bleb-driven migration modes. I also describe how cells migrate across the endothelium. In addition to Rho, Rac and Cdc42, which are well known to regulate migration, I discuss the roles of other less-well characterized members of the Rho family. PMID:26363959

  12. Small G proteins and their regulators in cellular signalling.

    PubMed

    Csépányi-Kömi, Roland; Lévay, Magdolna; Ligeti, Erzsébet

    2012-04-28

    Small molecular weight GTPases (small G proteins) are essential in the transduction of signals from different plasma membrane receptors. Due to their endogenous GTP-hydrolyzing activity, these proteins function as time-dependent biological switches controlling diverse cellular functions including cell shape and migration, cell proliferation, gene transcription, vesicular transport and membrane-trafficking. This review focuses on endocrine diseases linked to small G proteins. We provide examples for the regulation of the activity of small G proteins by various mechanisms such as posttranslational modifications, guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) or guanine nucleotide dissociation inhibitors (GDIs). Finally we summarize endocrine diseases where small G proteins or their regulatory proteins have been revealed as the cause.

  13. Dendritic spine geometry can localize GTPase signaling in neurons

    PubMed Central

    Ramirez, Samuel A.; Raghavachari, Sridhar; Lew, Daniel J.

    2015-01-01

    Dendritic spines are the postsynaptic terminals of most excitatory synapses in the mammalian brain. Learning and memory are associated with long-lasting structural remodeling of dendritic spines through an actin-mediated process regulated by the Rho-family GTPases RhoA, Rac, and Cdc42. These GTPases undergo sustained activation after synaptic stimulation, but whereas Rho activity can spread from the stimulated spine, Cdc42 activity remains localized to the stimulated spine. Because Cdc42 itself diffuses rapidly in and out of the spine, the basis for the retention of Cdc42 activity in the stimulated spine long after synaptic stimulation has ceased is unclear. Here we model the spread of Cdc42 activation at dendritic spines by means of reaction-diffusion equations solved on spine-like geometries. Excitable behavior arising from positive feedback in Cdc42 activation leads to spreading waves of Cdc42 activity. However, because of the very narrow neck of the dendritic spine, wave propagation is halted through a phenomenon we term geometrical wave-pinning. We show that this can account for the localization of Cdc42 activity in the stimulated spine, and, of interest, retention is enhanced by high diffusivity of Cdc42. Our findings are broadly applicable to other instances of signaling in extreme geometries, including filopodia and primary cilia. PMID:26337387

  14. RhoA GTPase inhibition organizes contraction during epithelial morphogenesis.

    PubMed

    Mason, Frank M; Xie, Shicong; Vasquez, Claudia G; Tworoger, Michael; Martin, Adam C

    2016-08-29

    During morphogenesis, contraction of the actomyosin cytoskeleton within individual cells drives cell shape changes that fold tissues. Coordination of cytoskeletal contractility is mediated by regulating RhoA GTPase activity. Guanine nucleotide exchange factors (GEFs) activate and GTPase-activating proteins (GAPs) inhibit RhoA activity. Most studies of tissue folding, including apical constriction, have focused on how RhoA is activated by GEFs to promote cell contractility, with little investigation as to how GAPs may be important. Here, we identify a critical role for a RhoA GAP, Cumberland GAP (C-GAP), which coordinates with a RhoA GEF, RhoGEF2, to organize spatiotemporal contractility during Drosophila melanogaster apical constriction. C-GAP spatially restricts RhoA pathway activity to a central position in the apical cortex. RhoGEF2 pulses precede myosin, and C-GAP is required for pulsation, suggesting that contractile pulses result from RhoA activity cycling. Finally, C-GAP expression level influences the transition from reversible to irreversible cell shape change, which defines the onset of tissue shape change. Our data demonstrate that RhoA activity cycling and modulating the ratio of RhoGEF2 to C-GAP are required for tissue folding. PMID:27551058

  15. In vitro mutation analysis of Arabidopsis thaliana small GTP-binding proteins and detection of GAP-like activities in plant cells.

    PubMed

    Anai, T; Matsui, M; Nomura, N; Ishizaki, R; Uchimiya, H

    1994-06-13

    Previously, we have reported the molecular cloning of ara genes encoding a small GTP-binding protein from Arabidopsis thaliana. The criterion based on amino acid sequences suggest that such an ara gene family can be classified to be of the YPT/rab type. To examine the biochemical properties of ARA proteins, several deletions and point mutations were introduced into ara cDNAs. Mutant proteins were expressed in E. coli as GST-chimeric molecules and analyzed in terms of their GTP-binding or GTP-hydrolysing ability in vitro. The results indicate that four conserved amino acid sequence regions of ARA proteins are necessary for GTP-binding. A point mutation of Asn at position 72 for ARA-2, or 71 for ARA-4, to Ile decreased GTP-binding and a point mutation of Gln at position 126 for ARA-2, or 125 for ARA-4, to Leu suppressed GTP-hydrolysis activity. Furthermore, certain factors associated with the membrane fraction accelerated GTPase activities of ARA proteins, suggesting the presence of GTPase activating protein(s) (GAP(s)) in the vesicular transport system of higher plant cells.

  16. Rap1 GTPase Inhibits Tumor Necrosis Factor-α-Induced Choroidal Endothelial Migration via NADPH Oxidase- and NF-κB-Dependent Activation of Rac1.

    PubMed

    Wang, Haibo; Fotheringham, Lori; Wittchen, Erika S; Hartnett, M Elizabeth

    2015-12-01

    Macrophage-derived tumor necrosis factor (TNF)-α has been found in choroidal neovascularization (CNV) surgically removed from patients with age-related macular degeneration. However, the role of TNF-α in CNV development remains unclear. In a murine laser-induced CNV model, compared with un-lasered controls, TNF-α mRNA was increased in retinal pigment epithelial and choroidal tissue, and TNF-α colocalized with lectin-stained migrating choroidal endothelial cells (CECs). Inhibition of TNF-α with a neutralizing antibody reduced CNV volume and reactive oxygen species (ROS) level around CNV. In CECs, pretreatment with the antioxidant apocynin or knockdown of p22phox, a subunit of NADPH oxidase, inhibited TNF-α-induced ROS generation. Apocynin reduced TNF-α-induced NF-κB and Rac1 activation, and inhibited TNF-α-induced CEC migration. TNF-α-induced Rac1 activation and CEC migration were inhibited by NF-κB inhibitor Bay11-7082. Overexpression of Rap1a prevented TNF-α-induced ROS generation and reduced NF-κB and Rac1 activation. Activation of Rap1 by 8-(4-chlorophenylthio)adenosine-2'-O-Me-cAMP prevented TNF-α-induced CEC migration and reduced laser-induced CNV volume, ROS generation, and activation of NF-κB and Rac1. These findings provide evidence that active Rap1a inhibits TNF-α-induced CEC migration by inhibiting NADPH oxidase-dependent NF-κB and Rac1 activation and suggests that Rap1a de-escalates CNV development by interfering with ROS-dependent signaling in several steps of the pathogenic process. PMID:26476350

  17. Proteomics Identification of Nuclear Ran GTPase as an Inhibitor of Human VRK1 and VRK2 (Vaccinia-related Kinase) Activities*S⃞

    PubMed Central

    Sanz-García, Marta; López-Sánchez, Inmaculada; Lazo, Pedro A.

    2008-01-01

    Human vaccinia-related kinase (VRK) 1 is a novel serine-threonine kinase that regulates several transcription factors, nuclear envelope assembly, and chromatin condensation and is also required for cell cycle progression. The regulation of this kinase family is unknown. Mass spectrometry has permitted the identification of Ran as an interacting and regulatory protein of the VRK serine-threonine kinase activities. The stable interaction has been validated by pulldown of endogenous proteins as well as by reciprocal immunoprecipitations. The three members of the VRK family stably interact with Ran, and the interaction was not affected by the bound nucleotide, GDP or GTP. The interaction was stronger with the RanT24N that is locked in its inactive conformation and cannot bind nucleotides. None of the kinases phosphorylated Ran or RCC1. VRK1 does not directly interact with RCC1, but if Ran is present they can be isolated as a complex. The main effect of the interaction of inactive RanGDP with VRK1 is the inhibition of its kinase activity, which was detected by a reduction in VRK1 autophosphorylation and a reduction in phosphorylation of histone H3 in residues Thr-3 and Ser-10. The kinase activity inhibition can be relieved by the interaction with the constitutively active RanGTP or RanL43E, which locks Ran in its GTP-bound active conformation. In this complex, the interaction with VRK proteins does not alter the effect of its guanine exchange factor, RCC1. Ran is a novel negative regulator of nuclear VRK1 and VRK2 kinase activity, which may vary in different subcellular localizations generating an asymmetric intracellular distribution of kinase activity depending on local protein interactions. PMID:18617507

  18. Australian Small Business Participation in Training Activities

    ERIC Educational Resources Information Center

    Webster, Beverley; Walker, Elizabeth; Brown, Alan

    2005-01-01

    Purpose: This purpose of this paper is to investigate the use of on-line training by small businesses in Australia. It explores the relationship between the owners acceptance and use of the Internet, and their current participation in training opportunities. Design/Methodology/Approach: A sample of small businesses which had participated in an…

  19. Whole-exome sequencing identifies mutations of TBC1D1 encoding a Rab-GTPase-activating protein in patients with congenital anomalies of the kidneys and urinary tract (CAKUT).

    PubMed

    Kosfeld, Anne; Kreuzer, Martin; Daniel, Christoph; Brand, Frank; Schäfer, Anne-Kathrin; Chadt, Alexandra; Weiss, Anna-Carina; Riehmer, Vera; Jeanpierre, Cécile; Klintschar, Michael; Bräsen, Jan Hinrich; Amann, Kerstin; Pape, Lars; Kispert, Andreas; Al-Hasani, Hadi; Haffner, Dieter; Weber, Ruthild G

    2016-01-01

    Congenital anomalies of the kidneys and urinary tract (CAKUT) are genetically highly heterogeneous leaving most cases unclear after mutational analysis of the around 30 causative genes known so far. Assuming that phenotypes frequently showing dominant inheritance, such as CAKUT, can be caused by de novo mutations, de novo analysis of whole-exome sequencing data was done on two patient-parent-trios to identify novel CAKUT genes. In one case, we detected a heterozygous de novo frameshift variant in TBC1D1 encoding a Rab-GTPase-activating protein regulating glucose transporter GLUT4 translocation. Sequence analysis of 100 further CAKUT cases yielded three novel or rare inherited heterozygous TBC1D1 missense variants predicted to be pathogenic. TBC1D1 mutations affected Ser237-phosphorylation or protein stability and thereby act as hypomorphs. Tbc1d1 showed widespread expression in the developing murine urogenital system. A mild CAKUT spectrum phenotype, including anomalies observed in patients carrying TBC1D1 mutations, was found in kidneys of some Tbc1d1 (-/-) mice. Significantly reduced Glut4 levels were detected in kidneys of Tbc1d1 (-/-) mice and the dysplastic kidney of a TBC1D1 mutation carrier versus controls. TBC1D1 and SLC2A4 encoding GLUT4 were highly expressed in human fetal kidney. The patient with the truncating TBC1D1 mutation showed evidence for insulin resistance. These data demonstrate heterozygous deactivating TBC1D1 mutations in CAKUT patients with a similar renal and ureteral phenotype, and provide evidence that TBC1D1 mutations may contribute to CAKUT pathogenesis, possibly via a role in glucose homeostasis. PMID:26572137

  20. Engagement of the small GTPase Rab31 protein and its effector, early endosome antigen 1, is important for trafficking of the ligand-bound epidermal growth factor receptor from the early to the late endosome.

    PubMed

    Chua, Christelle En Lin; Tang, Bor Luen

    2014-05-01

    Rab31 is a member of the Rab5 subfamily of Rab GTPases. Although localized largely to the trans-Golgi network, it shares common guanine nucleotide exchange factors and effectors with other Rab5 subfamily members that have been implicated in endocytic membrane traffic. We investigated whether Rab31 also has a role in the trafficking of the ligand-bound EGF receptor (EGFR) internalized through receptor-mediated endocytosis. We found that loss of Rab31 inhibits, but overexpression enhances, EGFR trafficking to the late endosomes and that the effect of Rab31 silencing could be specifically rescued by overexpression of a silencing-resistant form of Rab31. Rab31 was found to interact with the EGFR by coimmunoprecipitation and affinity pulldown analyses, and the primarily trans-Golgi network-localized Rab31 has increased colocalization with the EGFR in A431 cells 30 min after pulsing with EGF. A glycerol gradient sedimentation assay suggested that Rab31 is sequestered into a high molecular weight complex after stimulation with EGF, as was early endosome antigen 1 (EEA1), a factor responsible for endosomal tethering and fusion events. We found that loss of EEA1 reduced the interaction between Rab31 and the EGFR and abrogated the effect of Rab31 overexpression on the trafficking of the EGFR. Likewise, loss of GAPex5, a Rab31 guanine nucleotide exchange factor that has a role in ubiquitination and degradation of the EGFR, reduced the interaction of Rab31 with the EGFR and its effect on EGFR trafficking. Taken together, our results suggest that Rab31 is an important regulator of endocytic trafficking of the EGFR and functions in an EGFR trafficking complex that includes EEA1 and GAPex5.

  1. Rab4GTPase modulates CFTR function by impairing channel expression at plasma membrane

    SciTech Connect

    Saxena, Sunil K. . E-mail: ssaxena@stevens.edu; Kaur, Simarna; George, Constantine

    2006-03-03

    Cystic fibrosis (CF), an autosomal recessive disorder, is caused by the disruption of biosynthesis or the function of a membrane cAMP-activated chloride channel, CFTR. CFTR regulatory mechanisms include recruitment of channel proteins to the cell surface from intracellular pools and by protein-protein interactions. Rab proteins are small GTPases involved in regulated trafficking controlling vesicle docking and fusion. Rab4 controls recycling events from endosome to the plasma membrane, fusion, and degradation. The colorectal cell line HT-29 natively expresses CFTR and responds to cAMP stimulation with an increase in CFTR-mediated currents. Rab4 over-expression in HT-29 cells inhibits both basal and cAMP-stimulated CFTR-mediated currents. GTPase-deficient Rab4Q67L and GDP locked Rab4S22N both inhibit channel activity, which appears characteristically different. Active status of Rab4 was confirmed by GTP overlay assay, while its expression was verified by Western blotting. The pull-down and immunoprecipitation experiments suggest that Rab4 physically interacts with CFTR through protein-protein interaction. Biotinylation with cell impermeant NHS-Sulfo-SS-Biotin implies that Rab4 impairs CFTR expression at cell surface. The enhanced cytosolic CFTR indicates that Rab4 expression restrains CFTR appearance at the cell membrane. The study suggests that Rab4 regulates the channel through multiple mechanisms that include protein-protein interaction, GTP/GDP exchange, and channel protein trafficking. We propose that Rab4 is a dynamic molecule with a significant role in CFTR function.

  2. Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling

    PubMed Central

    Fusco, Ludovico; Lefort, Riwal; Smith, Kevin; Benmansour, Fethallah; Gonzalez, German; Barillari, Caterina; Rinn, Bernd; Fleuret, Francois; Fua, Pascal

    2016-01-01

    Rho guanosine triphosphatases (GTPases) control the cytoskeletal dynamics that power neurite outgrowth. This process consists of dynamic neurite initiation, elongation, retraction, and branching cycles that are likely to be regulated by specific spatiotemporal signaling networks, which cannot be resolved with static, steady-state assays. We present NeuriteTracker, a computer-vision approach to automatically segment and track neuronal morphodynamics in time-lapse datasets. Feature extraction then quantifies dynamic neurite outgrowth phenotypes. We identify a set of stereotypic neurite outgrowth morphodynamic behaviors in a cultured neuronal cell system. Systematic RNA interference perturbation of a Rho GTPase interactome consisting of 219 proteins reveals a limited set of morphodynamic phenotypes. As proof of concept, we show that loss of function of two distinct RhoA-specific GTPase-activating proteins (GAPs) leads to opposite neurite outgrowth phenotypes. Imaging of RhoA activation dynamics indicates that both GAPs regulate different spatiotemporal Rho GTPase pools, with distinct functions. Our results provide a starting point to dissect spatiotemporal Rho GTPase signaling networks that regulate neurite outgrowth. PMID:26728857

  3. TbFRP, a novel FYVE-domain containing phosphoinositide-binding Ras-like GTPase from trypanosomes

    PubMed Central

    Adung’a, Vincent O.; Field, Mark C.

    2013-01-01

    Ras-like small GTPases are regulatory proteins that control multiple aspects of cellular function, and are particularly prevalent in vesicular transport. A proportion of GTPase paralogs appear restricted to certain eukaryote lineages, suggesting roles specific to a restricted lineage, and hence potentially reflecting adaptation to individual lifestyles or ecological niche. Here we describe the role of a GTPase, TbFRP, a FYVE domain N-terminally fused to a Ras-like GTPase, originally identified in Trypanosoma brucei. As FYVE-domains specifically bind phosphoinositol 3-phosphate (PI3P), which associates with endosomes, we suggest that TbFRP may unite phosphoinositide and small G protein endosomal signaling in trypanosomatids. TbFRP orthologs are present throughout the Euglenazoa suggesting that FRP has functions throughout the group. We show that the FYVE domain of TbFRP is functional in PI3P-dependent membrane targeting and localizes at the endosomal region. Further, while TbFRP is apparently non-essential, knockdown and immunochemical evidence indicates that TbFRP is rapidly cleaved upon synthesis, releasing the GTPase and FYVE-domains. Finally, TbFRP expression at both mRNA and protein levels is cell density-dependent. Together, these data suggest that TbFRP is an endocytic GTPase with a highly unusual mechanism of action that involves proteolysis of the nascent protein and membrane targeting via PI3P. PMID:23220323

  4. RhoGTPases as Key Players in Mammalian Cell Adaptation to Microgravity

    PubMed Central

    Deroanne, Christophe; Nusgens, Betty; Vico, Laurence; Guignandon, Alain

    2015-01-01

    A growing number of studies are revealing that cells reorganize their cytoskeleton when exposed to conditions of microgravity. Most, if not all, of the structural changes observed on flown cells can be explained by modulation of RhoGTPases, which are mechanosensitive switches responsible for cytoskeletal dynamics control. This review identifies general principles defining cell sensitivity to gravitational stresses. We discuss what is known about changes in cell shape, nucleus, and focal adhesions and try to establish the relationship with specific RhoGTPase activities. We conclude by considering the potential relevance of live imaging of RhoGTPase activity or cytoskeletal structures in order to enhance our understanding of cell adaptation to microgravity-related conditions. PMID:25649831

  5. NbRABG3f, a member of Rab GTPase, is involved in Bamboo mosaic virus infection in Nicotiana benthamiana.

    PubMed

    Huang, Ying-Ping; Jhuo, Jia-Hua; Tsai, Meng-Shan; Tsai, Ching-Hsiu; Chen, Hong-Chi; Lin, Na-Sheng; Hsu, Yau-Heiu; Cheng, Chi-Ping

    2016-06-01

    The screening of differentially expressed genes in plants after pathogen infection can uncover the potential host factors required for the pathogens. In this study, an up-regulated gene was identified and cloned from Nicotiana benthamiana plants after Bamboo mosaic virus (BaMV) inoculation. The up-regulated gene was identified as a member of the Rab small guanosine triphosphatase (GTPase) family, and was designated as NbRABG3f according to its in silico translated product with high identity to that of RABG3f of tomato. Knocking down the expression of NbRABG3f using a virus-induced gene silencing technique in a protoplast inoculation assay significantly reduced the accumulation of BaMV. A transiently expressed NbRABG3f protein in N. benthamiana plants followed by BaMV inoculation enhanced the accumulation of BaMV to approximately 150%. Mutants that had the catalytic site mutation (NbRABG3f/T22N) or had lost their membrane-targeting capability (NbRABG3f/ΔC3) failed to facilitate the accumulation of BaMV in plants. Because the Rab GTPase is responsible for vesicle trafficking between organelles, a mutant with a fixed guanosine diphosphate form was used to identify the donor compartment. The use of green fluorescent protein (GFP) fusion revealed that GFP-NbRABG3f/T22N clearly co-localized with the Golgi marker. In conclusion, BaMV may use NbRABG3f to form vesicles derived from the Golgi membrane for intracellular trafficking to deliver unidentified factors to its replication site; thus, both GTPase activity and membrane-targeting ability are crucial for BaMV accumulation at the cell level.

  6. ROS-mediated enhanced transcription of CYP38 promotes the plant tolerance to high light stress by suppressing GTPase activation of PsbO2.

    PubMed

    Wang, Yongqiang; Zeng, Lizhang; Xing, Da

    2015-01-01

    As a member of the Immunophilin family, cyclophilin38 (CYP38) is discovered to be localized in the thylakoid lumen, and is reported to be a participant in the function regulation of thylakoid membrane protein. However, the molecule mechanisms remain unclear. We found that, CYP38 plays an important role in the process of regulating and protecting the plant to resist high light (HL) stress. Under HL condition, the gene expression of CYP38 is enhanced, and if CYP38 gene is deficient, photochemistry efficiency, and chlorophyll content falls distinctly, and excessive reactive oxygen species synthesis occurs in the chloroplast. Western blot results showed that the D1 degradation rate of cyp38 mutant plants is faster than that of wide type plants. Interestingly, both gene expression and activity of PsbO2 were drastically enhanced in cyp38 mutant plants and less changed when the deleted gene of CYP38 was restored under HL treatment. This indicates that CYP38 may impose a negative regulation effect on PsbO2, which exerts a positive regulation effect in facilitating the dephosphorylation and subsequent degradation of D1. It is also found that, under HL condition, the cytoplasmic calcium ([Ca(2+)]cyt) concentration and the gene expression level of calmodulin 3 (CaM3) arose markedly, which occurs upstream of CYP38 gene expression. In conclusion, our results indicate that CYP38 plays an important role in plant strengthening HL resistibility, which provides a new insight in the research of mechanisms of CYP38 protein in plants. PMID:26483802

  7. Alpha 2-chimerin, an SH2-containing GTPase-activating protein for the ras-related protein p21rac derived by alternate splicing of the human n-chimerin gene, is selectively expressed in brain regions and testes.

    PubMed Central

    Hall, C; Sin, W C; Teo, M; Michael, G J; Smith, P; Dong, J M; Lim, H H; Manser, E; Spurr, N K; Jones, T A

    1993-01-01

    n-Chimerin (alpha 1-chimerin) is a brain GTPase-activating protein (GAP) for the ras-related p21rac. We now report the occurrence of another form of chimerin, termed alpha 2-chimerin. This is the product of an alternately spliced transcript of the human n-chimerin gene encoding an N-terminal SH2 (src homology 2) domain in addition to the phorbol ester receptor and GAP domains. alpha 1- and alpha 2-chimerin mRNAs were expressed differently. In the rat brain, only alpha 1-chimerin mRNA was expressed in cerebellar Purkinje cells, although both alpha 1- and alpha 2-chimerin mRNAs occurred in neurons in the cerebral cortex, hippocampus, and thalamus. Only alpha 2-chimerin RNA was expressed in rat testes, in early pachytene spermatocytes. A 45-kDa SH2-containing chimerin corresponding to the alpha 2 form was purified from rat brain. As with Escherichia coli 45-kDa recombinant alpha 2-chimerin, purified brain alpha 2-chimerin exhibited racGAP activity which was stimulated by phosphatidylserine. The recombinant SH2 domain bound several 32P-labelled phosphoproteins of PC12 cells, whose phosphorylation increased in response to trophic factors, including nerve growth factor. To examine the relationships of alpha 1- and alpha 2-chimerin transcripts, human genomic DNA clones were characterized. In alpha 2-chimerin mRNA, a 3' splice acceptor site within exon 1 of alpha 1-chimerin mRNA was used, replacing its 5' untranslated region and N-terminal coding sequence. The single human n-chimerin gene was mapped to chromosome 2q31-q32.1, colocalizing with the CRE-BP1 transcription factor gene (2q32). It contained several splice junctions conserved with the sequence-related protein kinase C and bcr genes. alpha 2-Chimerin is only the second SH2-containing GAP and the first example of an SH2 domain generated by alternate splicing. Images PMID:8336731

  8. Controlling the switches: Rho GTPase regulation during animal cell mitosis.

    PubMed

    Zuo, Yan; Oh, Wonkyung; Frost, Jeffrey A

    2014-12-01

    Animal cell division is a fundamental process that requires complex changes in cytoskeletal organization and function. Aberrant cell division often has disastrous consequences for the cell and can lead to cell senescence, neoplastic transformation or death. As important regulators of the actin cytoskeleton, Rho GTPases play major roles in regulating many aspects of mitosis and cytokinesis. These include centrosome duplication and separation, generation of cortical rigidity, microtubule-kinetochore stabilization, cleavage furrow formation, contractile ring formation and constriction, and abscission. The ability of Rho proteins to function as regulators of cell division depends on their ability to cycle between their active, GTP-bound and inactive, GDP-bound states. However, Rho proteins are inherently inefficient at fulfilling this cycle and require the actions of regulatory proteins that enhance GTP binding (RhoGEFs), stimulate GTPase activity (RhoGAPs), and sequester inactive Rho proteins in the cytosol (RhoGDIs). The roles of these regulatory proteins in controlling cell division are an area of active investigation. In this review we will delineate the current state of knowledge of how specific RhoGEFs, RhoGAPs and RhoGDIs control mitosis and cytokinesis, and highlight the mechanisms by which their functions are controlled.

  9. A mutation uncouples the tubulin conformational and GTPase cycles, revealing allosteric control of microtubule dynamics.

    PubMed

    Geyer, Elisabeth A; Burns, Alexander; Lalonde, Beth A; Ye, Xuecheng; Piedra, Felipe-Andres; Huffaker, Tim C; Rice, Luke M

    2015-10-06

    Microtubule dynamic instability depends on the GTPase activity of the polymerizing αβ-tubulin subunits, which cycle through at least three distinct conformations as they move into and out of microtubules. How this conformational cycle contributes to microtubule growing, shrinking, and switching remains unknown. Here, we report that a buried mutation in αβ-tubulin yields microtubules with dramatically reduced shrinking rate and catastrophe frequency. The mutation causes these effects by suppressing a conformational change that normally occurs in response to GTP hydrolysis in the lattice, without detectably changing the conformation of unpolymerized αβ-tubulin. Thus, the mutation weakens the coupling between the conformational and GTPase cycles of αβ-tubulin. By showing that the mutation predominantly affects post-GTPase conformational and dynamic properties of microtubules, our data reveal that the strength of the allosteric response to GDP in the lattice dictates the frequency of catastrophe and the severity of rapid shrinking.

  10. Dynamic MRI of small electrical activity.

    PubMed

    Song, Allen W; Truong, Trong-Kha; Woldorff, Marty

    2009-01-01

    Neuroscience methods entailing in vivo measurements of brain activity have greatly contributed to our understanding of brain function for the past decades, from the invasive early studies in animals using single-cell electrical recordings, to the noninvasive techniques in humans of scalp-recorded electroencephalography (EEG) and magnetoencephalography (MEG), positron emission tomography (PET), and, most recently, blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI). A central objective of these techniques is to measure neuronal activities with high spatial and temporal resolution. Each of these methods, however, has substantial limitations in this regard. Single-cell recording is invasive and only typically records cellular activity in a single location; EEG/MEG cannot generally provide accurate and unambiguous delineations of neuronal activation spatially; and the most sophisticated BOLD-based fMRI methods are still fundamentally limited by their dependence on the very slow hemodynamic responses upon which they are based. Even the latest neuroimaging methodology (e.g., multimodal EEG/fMRI) does not yet unambiguously provide accurate localization of neuronal activation spatially and temporally. There is hence a need to further develop noninvasive imaging methods that can directly image neuroelectric activity and thus truly achieve a high temporal resolution and spatial specificity in humans. Here, we discuss the theory, implementation, and potential utility of an MRI technique termed Lorentz effect imaging (LEI) that can detect spatially incoherent yet temporally synchronized, minute electrical activities in the neural amplitude range (microamperes) when they occur in a strong magnetic field. Moreover, we demonstrate with our preliminary results in phantoms and in vivo, the feasibility of imaging such activities with a temporal resolution on the order of milliseconds.

  11. Epac Activates the Small G Proteins Rap1 and Rab3A to Achieve Exocytosis*

    PubMed Central

    Branham, María T.; Bustos, Matías A.; De Blas, Gerardo A.; Rehmann, Holger; Zarelli, Valeria E. P.; Treviño, Claudia L.; Darszon, Alberto; Mayorga, Luis S.; Tomes, Claudia N.

    2009-01-01

    Exocytosis of the acrosome (the acrosome reaction) relies on cAMP production, assembly of a proteinaceous fusion machinery, calcium influx from the extracellular medium, and mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Addition of cAMP to human sperm suspensions bypasses some of these requirements and elicits exocytosis in a protein kinase A- and extracellular calcium-independent manner. The relevant cAMP target is Epac, a guanine nucleotide exchange factor for the small GTPase Rap. We show here that a soluble adenylyl cyclase synthesizes the cAMP required for the acrosome reaction. Epac stimulates the exchange of GDP for GTP on Rap1, upstream of a phospholipase C. The Epac-selective cAMP analogue 8-pCPT-2′-O-Me-cAMP induces a phospholipase C-dependent calcium mobilization in human sperm suspensions. In addition, our studies identify a novel connection between cAMP and Rab3A, a secretory granule-associated protein, revealing that the latter functions downstream of soluble adenylyl cyclase/cAMP/Epac but not of Rap1. Challenging sperm with calcium or 8-pCPT-2′-O-Me-cAMP boosts the exchange of GDP for GTP on Rab3A. Recombinant Epac does not release GDP from Rab3A in vitro, suggesting that the Rab3A-GEF activation by cAMP/Epac in vivo is indirect. We propose that Epac sits at a critical point during the exocytotic cascade after which the pathway splits into two limbs, one that assembles the fusion machinery into place and another that elicits intracellular calcium release. PMID:19546222

  12. A fluorescence resonance energy transfer activation sensor for Arf6.

    PubMed

    Hall, Brian; McLean, Mark A; Davis, Kathryn; Casanova, James E; Sligar, Steven G; Schwartz, Martin A

    2008-03-15

    The involvement of the small GTPase Arf6 in Rac activation, cell migration, and cancer invasiveness suggests that it is activated in a spatially and temporally regulated manner. Small GTPase activation has been imaged in cells using probes in which the GTPase and a fragment of a downstream effector protein are fused to fluorescent reporter proteins that constitute a fluorescence resonance energy transfer (FRET) donor/acceptor pair. Unlike other Ras family GTPases, the N terminus of Arf6 is critical for membrane targeting and, thus, cannot be modified by fusion to a fluorescent protein. We found that the previously described C-terminal green fluorescent protein (GFP) derivative also shows diminished membrane targeting. Therefore, we inserted a fluorescent protein into an inert loop within the Arf6 sequence. This fusion showed normal membrane targeting, nucleotide-dependent interaction with the downstream effector GGA3, and normal regulation by a GTPase-activating protein (GAP) and a guanine nucleotide exchange factor (GEF). Using the recently developed CyPET/YPET fluorescent proteins as a FRET pair, we found that Arf6-CyPET underwent efficient energy transfer when bound to YPET-GGA3 effector domain in intact cells. The addition of platelet-derived growth factor (PDGF) to fibroblasts triggered a rapid and transient increase in FRET, indicative of Arf6 activation. These reagents should be useful for investigations of Arf6 activation and function.

  13. Arf6 plays an early role in platelet activation by collagen and convulxin.

    PubMed

    Choi, Wangsun; Karim, Zubair A; Whiteheart, Sidney W

    2006-04-15

    Small GTPases play critical roles in hemostasis, though the roster of such molecules in platelets is not complete. In this study, we report the presence of Ras-related GTPases of the ADP-ribosylation factor (Arf) family. Platelets contain Arf1 or 3 and Arf6, with the latter being predominantly membrane associated. Using effector domain pull-down assays, we show, counter to other GTPases, that Arf6-GTP is present in resting platelets and decreases rapidly upon activation with collagen or convulxin. This decrease does not completely rely on secondary agonists (ADP and thromboxane A2) or require integrin signaling. The decrease in free Arf6-GTP temporally precedes activation of Rho family GTPases (RhoA, Cdc42, and Rac1). Using a membrane-permeant, myristoylated peptide, which mimics the N-terminus of Arf6, we show that the Arf6-GTP decrease is essential for collagen- and convulxin-induced aggregation, platelet adherence, and spreading on collagen-coated glass. Treatment with this peptide also affects the activation of Rho family GTPases, but has little effect on RalA and Rap1 or on agonist-induced calcium mobilization. These data show that Arf6 is a key element in activation through GPVI, and is required for activation of the Rho family GTPases and the subsequent cytoskeletal rearrangements needed for full platelet function. PMID:16352809

  14. Systematic Discovery of Rab GTPases with Synaptic Functions in Drosophila

    PubMed Central

    Chan, Chih-Chiang; Scoggin, Shane; Wang, Dong; Cherry, Smita; Dembo, Todd; Greenberg, Ben; Jin, Eugene Jennifer; Kuey, Cansu; Lopez, Antonio; Mehta, Sunil Q.; Perkins, Theodore J.; Brankatschk, Marko; Rothenfluh, Adrian; Buszczak, Michael; Hiesinger, P. Robin

    2012-01-01

    Summary Background Neurons require highly specialized intracellular membrane trafficking, especially at synapses. Rab GTPases are considered master regulators of membrane trafficking in all cells and only very few Rabs have known neuron-specific functions. Here, we present the first systematic characterization of neuronal expression, subcellular localization and function of Rab GTPases in an organism with a brain. Results We report the surprising discovery that half of all Drosophila Rabs function specifically or predominantly in distinct subsets of neurons in the brain. Furthermore, functional profiling of the GTP/GDP-bound states reveals that these neuronal Rabs are almost exclusively active at synapses and the majority of these synaptic Rabs specifically mark synaptic recycling endosomal compartments. Our profiling strategy is based on Gal4 knock-ins in large genomic fragments that are additionally designed to generated mutants by ends-out homologous recombination. We generated 36 large genomic targeting vectors and transgenic rab-Gal4 fly strains for 25 rab genes. Proof-of-principle knock-out of the synaptic rab27 reveals a sleep phenotype that matches its cell-specific expression. Conclusions Our findings suggest that up to half of all Drosophila Rabs exert specialized synaptic functions. The tools presented here allow systematic functional studies of these Rabs and provide a method that is applicable to any large gene family in Drosophila. PMID:22000105

  15. Structure and Switch Cycle of SRβ as Ancestral Eukaryotic GTPase Associated with Secretory Membranes.

    PubMed

    Jadhav, Bhalchandra; Wild, Klemens; Pool, Martin R; Sinning, Irmgard

    2015-10-01

    G proteins of the Ras-family of small GTPases trace the evolution of eukaryotes. The earliest branching involves the closely related Arf, Sar1, and SRβ GTPases associated with secretory membranes. SRβ is an integral membrane component of the signal recognition particle (SRP) receptor that targets ribosome-nascent chain complexes to the ER. How SRβ integrates into the regulation of SRP-dependent membrane protein biogenesis is not known. Here we show that SRβ-GTP interacts with ribosomes only in presence of SRα and present crystal structures of SRβ in complex with the SRX domain of SRα in the GTP-bound state at 3.2 Å, and of GDP- and GDP · Mg(2+)-bound SRβ at 1.9 Å and 2.4 Å, respectively. We define the GTPase switch cycle of SRβ and identify specific differences to the Arf and Sar1 families with implications for GTPase regulation. Our data allow a better integration of SRβ into the scheme of protein targeting.

  16. Rho family GTPase functions in Drosophila epithelial wound repair.

    PubMed

    Verboon, Jeffrey M; Parkhurst, Susan M

    2015-01-01

    Epithelial repair in the Drosophila embryo is achieved through 2 dynamic cytoskeletal machineries: a contractile actomyosin cable and actin-based cellular protrusions. Rho family small GTPases (Rho, Rac, and Cdc42) are cytoskeletal regulators that control both of these wound repair mechanisms. Cdc42 is necessary for cellular protrusions and, when absent, wounds are slow to repair and never completely close. Rac proteins accumulate at specific regions in the wound leading edge cells and Rac-deficient embryos exhibit slower repair kinetics. Mutants for both Rho1 and its effector Rok impair the ability of wounds to close by disrupting the leading-edge actin cable. Our studies highlight the importance of these proteins in wound repair and identify a downstream effector of Rho1 signaling in this process.

  17. A rac-like small G-protein from Brassica campestris activates a PKC-dependent phospholipase D.

    PubMed

    Kim, Hoyeon; Nahm, Minyeop; Lim, Chaeoh; Yun, Daejin; Cho, Mooje; Bahk, Jeongdong

    2004-01-01

    A cDNA clone encoding a rac-like small GTP binding protein was isolated from a cDNA library of Chinese cabbage (Brassica campestris L. ssp. pekinensis) flower buds and named Brac1. The Brac1 cDNA contains an open reading frame encoding 198 amino acid residues with an estimated molecular mass of 21,690 Da and this coding region has conserved residues and motifs unique to the Rho subfamily of proteins. The deduced amino acid sequence of the Brac1 protein is closely related to that of Arabidopsis thaliana Arac3 (91%), but it shares relatively little homology with other members of the Ras superfamily (about 30% identity). To further characterize Brac1, a pGBrac1 expression vector consisting of PCR-amplified Brac1 cDNA plus glutathione S-transferase (GST) and pBKS(+)II was used to purify the protein. Using a PEI-cellulose/TLC plate, GTPase activity of this protein was confirmed and competition binding studies, using the guanine nucleotides, ATP, UTP and CTP, revealed that the di- and triphosphate forms of guanine nucleotides strongly bind Brac1. Membrane-bound PLD activity was synergistically enhanced by Brac1 in the presence of protein kinase C, but not in the presence of ARF (ADP-ribosylation factor). Genomic analysis indicated that Brac1 belongs to a multigene family. Brac1 transcripts were expressed in all the organs of Brassica, but were especially prevalent in flower buds.

  18. Implementing Small-Group Activities in Large Lecture Classes

    ERIC Educational Resources Information Center

    Yazedjian, Ani; Kolkhorst, Brittany Boyle

    2007-01-01

    This study examines student perceptions regarding the effectiveness of small-group work in a large lecture class. The article considers and illustrates from students' perspectives the ways in which small-group activities could enhance comprehension of course material, reduce anonymity associated with large lecture classes, and promote student…

  19. Characterization of the autophosphorylation property of HflX, a ribosome-binding GTPase from Escherichia coli.

    PubMed

    Ghosh, Aditi; Dutta, Dipak; Bandyopadhyay, Kaustav; Parrack, Pradeep

    2016-07-01

    Escherichia coli HflX belongs to the widely distributed but poorly characterized HflX family of translation factor-related GTPases that is conserved from bacteria to humans. A 426-residue polypeptide that binds 50S ribosomes and has both GTPase and ATPase activities, HflX also exhibits autophosphorylation activity. We show that HflX(C), a C-terminal fragment of HflX, has an enhanced autophosphorylation activity compared to the full-length protein. Using a chemical stability assay and thin layer chromatography, we have determined that phosphorylation occurs at a serine residue. Each of the nine serine residues of HflX(C) was mutated to alanine. It was found that all but S211A retained autophosphorylation activity, suggesting that S211, located in the P-loop, was the likely site for autophosphorylation. While the S211A mutant lacked the autophosphorylation site, it possessed strong GTP binding and GTPase activities. PMID:27398305

  20. A novel connection between the yeast Cdc42 GTPase and the Slt2-mediated cell integrity pathway identified through the effect of secreted Salmonella GTPase modulators.

    PubMed

    Rodríguez-Pachón, José M; Martín, Humberto; North, Gaelle; Rotger, Rafael; Nombela, César; Molina, María

    2002-07-26

    Modulation of host cellular GTPases through the injection of the effector proteins SopE2 and SptP is essential for Salmonella typhimurium to enter into non-phagocytic cells. Here we show that expression of the guanine nucleotide exchange factor for Cdc42 SopE2 in Saccharomyces cerevisiae leads to the activation of Fus3 and Kss1 MAPKs, which operate in the mating and filamentation pathways, causing filamentous growth in haploid yeast cells. Furthermore, it promotes the activation of the cell integrity MAPK Slt2. Cdc42 activation by removal of its putative intrinsic GTPase-activating proteins (GAPs), Rga1, Rga2, and Bem3, also results in the phosphorylation of Kss1, Fus3, and Slt2 MAPKs. These data support the role of these GAP proteins as negative regulators of Cdc42, confirm the modulating effect of this GTPase on the filamentation and mating pathways and point to a novel connection between Cdc42 and the cell integrity pathway. Cdc42-induced activation of Slt2 occurs in a mating and filamentation pathway-dependent manner, but it does not require the function of Rho1, which is the GTPase that operates in the cell integrity pathway. Moreover, we report that Salmonella SptP can act as a GAP for Cdc42 in S. cerevisiae, down-regulating MAPK-mediated signaling. Thus, yeast provides a useful system to study the interaction of bacterial pathogenic proteins with eukaryotic signaling pathways. Furthermore, these proteins can be used as a tool to gain insight into the mechanisms that regulate MAPK-mediated signaling in eukaryotes. PMID:12016210

  1. Rho GTPases: Novel Players in the Regulation of the DNA Damage Response?

    PubMed Central

    Fritz, Gerhard; Henninger, Christian

    2015-01-01

    The Ras-related C3 botulinum toxin substrate 1 (Rac1) belongs to the family of Ras-homologous small GTPases. It is well characterized as a membrane-bound signal transducing molecule that is involved in the regulation of cell motility and adhesion as well as cell cycle progression, mitosis, cell death and gene expression. Rac1 also adjusts cellular responses to genotoxic stress by regulating the activity of stress kinases, including c-Jun-N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38 kinases as well as related transcription factors. Apart from being found on the inner side of the outer cell membrane and in the cytosol, Rac1 has also been detected inside the nucleus. Different lines of evidence indicate that genotoxin-induced DNA damage is able to activate nuclear Rac1. The exact mechanisms involved and the biological consequences, however, are unclear. The data available so far indicate that Rac1 might integrate DNA damage independent and DNA damage dependent cellular stress responses following genotoxin treatment, thereby coordinating mechanisms of the DNA damage response (DDR) that are related to DNA repair, survival and cell death. PMID:26437439

  2. Evidence from sequence information that the interleukin-1 receptor is a transmembrane GTPase.

    PubMed Central

    Hopp, T. P.

    1995-01-01

    Evidence is presented that the cytoplasmic domain of the type I interleukin-1 receptor (IL-1R) may be a GTPase. This domain conserves segments of hydrophobic amino acids that suggest a structural relatedness to the ras protooncogene protein and other members of the GTPase superfamily, despite a lack of significant detectable sequence homology. When the hydrophobic segments of the IL-1R were aligned with similar segments of the GTPases, it became apparent that the IL-1Rs possess a number of conserved amino acids that represent plausible functional residues for base-specific binding of GTP, magnesium chelation, and phosphate ester hydrolysis. Furthermore, a segment of five contiguous residues were found that is identical between ras and the IL-1R, and which is positioned to form part of the guanine base binding pocket. If this model is correct, then the IL-1Rs possess a highly conserved effector protein binding region, but one that is entirely unrelated to the effector regions of other superfamily members. Therefore, if the IL-1R is indeed a GTPase, then its activation function may be directed to as-yet unrecognized effector target proteins, as part of a unique cellular signal transduction pathway. PMID:8528083

  3. Distinct Actions of Rab3 and Rab27 GTPases on Late Stages of Exocytosis of Insulin

    PubMed Central

    Cazares, Victor A.; Subramani, Arasakumar; Saldate, Johnny J.; Hoerauf, Widmann; Stuenkel, Edward L.

    2014-01-01

    Rab GTPases associated with insulin containing secretory granules are key in targeting, docking and assembly of molecular complexes governing pancreatic β-cell exocytosis. Four Rab3 isoforms along with Rab27A are associated with insulin granules, yet elucidation of the distinct roles of these Rab families on exocytosis remains unclear. To define specific actions of these Rab families we employ Rab3GAP and/or EPI64A GTPase activating protein overexpression in β-cells from wild-type or Ashen mice to selectively transit the entire Rab3 family or Rab27A to a GDP-bound state. Ashen mice carry a spontaneous mutation that eliminates Rab27A expression. Using membrane capacitance measurements we find that GTP/GDP nucleotide cycling of Rab27A is essential for generation of the functionally defined immediately releasable pool and central to regulating the size of the readily releasable pool. By comparison, nucleotide cycling of Rab3 GTPases, but not of Rab27A, is essential for a kinetically rapid filling of the readily releasable pool with secretory granules. Aside from these distinct functions, Rab3 and Rab27A GTPases demonstrate considerable functional overlap in building the readily releasable granule pool. Hence, while Rab3 and Rab27A cooperate to generate release-ready secretory granules in β-cells, they also direct unique kinetic and functional properties of the exocytotic pathway. PMID:24909540

  4. A GTPase controls cell-substrate adhesion in Xenopus XTC fibroblasts.

    PubMed

    Symons, M H; Mitchison, T J

    1992-09-01

    Cell-substrate adhesion is crucial at various stages of development and for the maintenance of normal tissues. Little is known about the regulation of these adhesive interactions. To investigate the role of GTPases in the control of cell morphology and cell-substrate adhesion we have injected guanine nucleotide analogs into Xenopus XTC fibroblasts. Injection of GTP gamma S inhibited ruffling and increased spreading, suggesting an increase in adhesion. To further investigate this, we made use of GRGDSP, a peptide which inhibits binding of integrins to vitronectin and fibronectin. XTC fibroblasts injected with non-hydrolyzable analogs of GTP took much more time to round up than mock-injected cells in response to treatment with GRGDSP, while GDP beta S-injected cells rounded up in less time than controls. Injection with GTP gamma S did not inhibit cell rounding induced by trypsin however, showing that cell contractility is not significantly affected by the activation of GTPases. These data provide evidence for the existence of a GTPase which can control cell-substrate adhesion from the cytoplasm. Treatment of XTC fibroblasts with the phorbol ester 12-o-tetradecanoylphorbol-13-acetate reduced cell spreading and accelerated cell rounding in response to GRGDSP, which is essentially opposite to the effect exerted by non-hydrolyzable GTP analogs. These results suggest the existence of at least two distinct pathways controlling cell-substrate adhesion in XTC fibroblasts, one depending on a GTPase and another one involving protein kinase C.

  5. Rho GTPase Recognition by C3 Exoenzyme Based on C3-RhoA Complex Structure.

    PubMed

    Toda, Akiyuki; Tsurumura, Toshiharu; Yoshida, Toru; Tsumori, Yayoi; Tsuge, Hideaki

    2015-08-01

    C3 exoenzyme is a mono-ADP-ribosyltransferase (ART) that catalyzes transfer of an ADP-ribose moiety from NAD(+) to Rho GTPases. C3 has long been used to study the diverse regulatory functions of Rho GTPases. How C3 recognizes its substrate and how ADP-ribosylation proceeds are still poorly understood. Crystal structures of C3-RhoA complex reveal that C3 recognizes RhoA via the switch I, switch II, and interswitch regions. In C3-RhoA(GTP) and C3-RhoA(GDP), switch I and II adopt the GDP and GTP conformations, respectively, which explains why C3 can ADP-ribosylate both nucleotide forms. Based on structural information, we successfully changed Cdc42 to an active substrate with combined mutations in the C3-Rho GTPase interface. Moreover, the structure reflects the close relationship among Gln-183 in the QXE motif (C3), a modified Asn-41 residue (RhoA) and NC1 of NAD(H), which suggests that C3 is the prototype ART. These structures show directly for the first time that the ARTT loop is the key to target protein recognition, and they also serve to bridge the gaps among independent studies of Rho GTPases and C3.

  6. A Putative Non-Canonical Ras-Like GTPase from P. falciparum: Chemical Properties and Characterization of the Protein

    PubMed Central

    Przyborski, Jude; Kersting, David; Krüger, Mirko

    2015-01-01

    During its development the malaria parasite P. falciparum has to adapt to various different environmental contexts. Key cellular mechanisms involving G-protein coupled signal transduction chains are assumed to act at these interfaces. Heterotrimeric G-proteins are absent in Plasmodium. We here describe the first cloning and expression of a putative, non-canonical Ras-like G protein (acronym PfG) from Plasmodium. PfG reveals an open reading frame of 2736 bp encoding a protein of 912 amino acids with a theoretical pI of 8.68 and a molecular weight of 108.57 kDa. Transcript levels and expression are significantly increased in the erythrocytic phase in particular during schizont and gametocyte formation. Most notably, PfG has GTP binding capacity and GTPase activity due to an EngA2 domain present in small Ras-like GTPases in a variety of Bacillus species and Mycobacteria. By contrast, plasmodial PfG is divergent from any human alpha-subunit. PfG was expressed in E. coli as a histidine-tagged fusion protein and was stable only for 3.5 hours. Purification was only possible under native conditions by Nickel-chelate chromatography and subsequent separation by Blue Native PAGE. Binding of a fluorescent GTP analogue BODIPY® FL guanosine 5’O-(thiotriphosphate) was determined by fluorescence emission. Mastoparan stimulated GTP binding in the presence of Mg2+. GTPase activity was determined colorimetrically. Activity expressed as absolute fluorescence was 50% higher for the human paralogue than the activity of the parasitic enzyme. The PfG protein is expressed in the erythrocytic stages and binds GTP after immunoprecipitation. Immunofluorescence using specific antiserum suggests that PfG localizes to the parasite cytosol. The current data suggest that the putitative, Ras-like G-protein might be involved in a non-canonical signaling pathway in Plasmodium. Research on the function of PfG with respect to pathogenesis and antimalarial chemotherapy is currently under way. PMID

  7. A Novel Domain in Translational GTPase BipA Mediates Interaction with the 70S Ribosome and Influences GTP Hydrolysis

    SciTech Connect

    deLivron, M.; Makanji, H; Lane, M; Robinson, V

    2009-01-01

    BipA is a universally conserved prokaryotic GTPase that exhibits differential ribosome association in response to stress-related events. It is a member of the translation factor family of GTPases along with EF-G and LepA. BipA has five domains. The N-terminal region of the protein, consisting of GTPase and {beta}-barrel domains, is common to all translational GTPases. BipA domains III and V have structural counterparts in EF-G and LepA. However, the C-terminal domain (CTD) of the protein is unique to the BipA family. To investigate how the individual domains of BipA contribute to the biological properties of the protein, deletion constructs were designed and their GTP hydrolysis and ribosome binding properties assessed. Data presented show that removal of the CTD abolishes the ability of BipA to bind to the ribosome and that ribosome complex formation requires the surface provided by domains III and V and the CTD. Additional mutational analysis was used to outline the BipA-70S interaction surface extending across these domains. Steady state kinetic analyses revealed that successive truncation of domains from the C-terminus resulted in a significant increase in the intrinsic GTP hydrolysis rate and a loss of ribosome-stimulated GTPase activity. These results indicate that, similar to other translational GTPases, the ribosome binding and GTPase activities of BipA are tightly coupled. Such intermolecular regulation likely plays a role in the differential ribosome binding by the protein.

  8. Analysis of a minimal Rho-GTPase circuit regulating cell shape

    NASA Astrophysics Data System (ADS)

    Holmes, William R.; Edelstein-Keshet, Leah

    2016-08-01

    Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase (‘wave-pinning’) model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.

  9. Analysis of a minimal Rho-GTPase circuit regulating cell shape

    NASA Astrophysics Data System (ADS)

    Holmes, William R.; Edelstein-Keshet, Leah

    2016-08-01

    Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac–Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac–Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac–Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac–Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac–Rho model to an even simpler single-GTPase (‘wave-pinning’) model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.

  10. Analysis of a minimal Rho-GTPase circuit regulating cell shape.

    PubMed

    Holmes, William R; Edelstein-Keshet, Leah

    2016-07-19

    Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase ('wave-pinning') model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.

  11. Small Spacecraft Active Thermal Control: Micro-Vascular Composites Enable Small Satellite Cooling

    NASA Technical Reports Server (NTRS)

    Ghosh, Alexander

    2016-01-01

    The Small Spacecraft Integrated Power System with Active Thermal Control project endeavors to achieve active thermal control for small spacecraft in a practical and lightweight structure by circulating a coolant through embedded micro-vascular channels in deployable composite panels. Typically, small spacecraft rely on small body mounted passive radiators to discard heat. This limits cooling capacity and leads to the necessity to design for limited mission operations. These restrictions severely limit the ability of the system to dissipate large amounts of heat from radios, propulsion systems, etc. An actively pumped cooling system combined with a large deployable radiator brings two key advantages over the state of the art for small spacecraft: capacity and flexibility. The use of a large deployable radiator increases the surface area of the spacecraft and allows the radiation surface to be pointed in a direction allowing the most cooling, drastically increasing cooling capacity. With active coolant circulation, throttling of the coolant flow can enable high heat transfer rates during periods of increased heat load, or isolate the radiator during periods of low heat dissipation.

  12. The GTPase RAN regulates multiple steps of the centrosome life cycle.

    PubMed

    Lavia, Patrizia

    2016-01-01

    Growing lines of evidence implicate the small GTPase RAN, its regulators and effectors--predominantly, nuclear transport receptors--in practically all aspects of centrosome biology in mammalian cells. These include duplication licensing, cohesion, positioning, and microtubule-nucleation capacity. RAN cooperates with the protein nuclear export vector exportin 1/CRM1 to recruit scaffolding proteins containing nuclear export sequences that play roles in the structural organization of centrosomes. Together, they also limit centrosome reduplication by regulating the localization of key "licensing" proteins during the centrosome duplication cycle. In parallel, RAN also regulates the capacity of centrosomes to nucleate and organize functional microtubules, and this predominanlty involves importin vectors: many factors regulating microtubule nucleation or function harbor nuclear localization sequences that interact with importin molecules and such interaction inhibits their activity. Active RANGTP binding to importin molecules removes the inhibition and releases microtubule regulatory factors in the free productive form. A dynamic scenario emerges, in which RAN is pivotal in linking spatiotemporal control of centrosome regulators to the cell cycle machinery. PMID:26725228

  13. Rho-GTPase effector ROCK phosphorylates cofilin in actin-meditated cytokinesis during mouse oocyte meiosis.

    PubMed

    Duan, Xing; Liu, Jun; Dai, Xiao-Xin; Liu, Hong-Lin; Cui, Xiang-Shun; Kim, Nam-Hyung; Wang, Zhen-Bo; Wang, Qiang; Sun, Shao-Chen

    2014-02-01

    During oocyte meiosis, a spindle forms in the central cytoplasm and migrates to the cortex. Subsequently, the oocyte extrudes a small body and forms a highly polarized egg; this process is regulated primarily by actin. ROCK is a Rho-GTPase effector that is involved in various cellular functions, such as stress fiber formation, cell migration, tumor cell invasion, and cell motility. In this study, we investigated possible roles for ROCK in mouse oocyte meiosis. ROCK was localized around spindles after germinal vesicle breakdown and was colocalized with cytoplasmic actin and mitochondria. Disrupting ROCK activity by RNAi or an inhibitor resulted in cell cycle progression and polar body extrusion failure. Time-lapse microscopy showed that this may have been due to spindle migration and cytokinesis defects, as chromosomes segregated but failed to extrude a polar body and then realigned. Actin expression at oocyte membranes and in cytoplasm was significantly decreased after these treatments. Actin caps were also disrupted, which was confirmed by a failure to form cortical granule-free domains. The mitochondrial distribution was also disrupted, which indicated that mitochondria were involved in the ROCK-mediated actin assembly. In addition, the phosphorylation levels of Cofilin, a downstream molecule of ROCK, decreased after disrupting ROCK activity. Thus, our results indicated that a ROCK-Cofilin-actin pathway regulated meiotic spindle migration and cytokinesis during mouse oocyte maturation.

  14. A novel KLF6-Rho GTPase axis regulates hepatocellular carcinoma cell migration and dissemination

    PubMed Central

    Ahronian, Leanne G.; Zhu, Lihua Julie; Chen, Ya-Wen; Chu, Hsiao-Chien; Klimstra, David S.; Lewis, Brian C.

    2016-01-01

    The presence of invasion into the extra-hepatic portion of the portal vein or the development of distant metastases renders hepatocellular carcinoma (HCC) patients ineligible for the only potential curative options for this malignancy - tumor resection or organ transplantation. Gene expression profiling of murine HCC cell lines identified KLF6 as a potential regulator of HCC cell migration. KLF6 knockdown increases cell migration, consistent with the correlation between decreased KLF6 mRNA levels and the presence of vascular invasion in human HCC. Concordantly, single-copy deletion of Klf6 in a HCC mouse model results in increased tumor formation, increased metastasis to the lungs, and decreased survival, indicating that KLF6 suppresses both HCC development and metastasis. By combining gene expression profiling and chromatin immunoprecipitation coupled to deep sequencing, we identified novel transcriptional targets of KLF6 in HCC cells including VAV3, a known activator of the RAC1 small GTPase. Indeed, RAC1 activity is increased in KLF6 knockdown cells in a VAV3-dependent manner, and knockdown of either RAC1 or VAV3 impairs HCC cell migration. Together, our data demonstrate a novel function for KLF6 in constraining HCC dissemination through the regulation of a VAV3-RAC1 signaling axis. PMID:26876204

  15. Extensive in silico analysis of Mimivirus coded Rab GTPase homolog suggests a possible role in virion membrane biogenesis

    PubMed Central

    Zade, Amrutraj; Sengupta, Malavi; Kondabagil, Kiran

    2015-01-01

    Rab GTPases are the key regulators of intracellular membrane trafficking in eukaryotes. Many viruses and intracellular bacterial pathogens have evolved to hijack the host Rab GTPase functions, mainly through activators and effector proteins, for their benefit. Acanthamoeba polyphaga mimivirus (APMV) is one of the largest viruses and belongs to the monophyletic clade of nucleo-cytoplasmic large DNA viruses (NCLDV). The inner membrane lining is integral to the APMV virion structure. APMV assembly involves extensive host membrane modifications, like vesicle budding and fusion, leading to the formation of a membrane sheet that is incorporated into the virion. Intriguingly, APMV and all group I members of the Mimiviridae family code for a putative Rab GTPase protein. APMV is the first reported virus to code for a Rab GTPase (encoded by R214 gene). Our thorough in silico analysis of the subfamily specific (SF) region of Mimiviridae Rab GTPase sequences suggests that they are related to Rab5, a member of the group II Rab GTPases, of lower eukaryotes. Because of their high divergence from the existing three isoforms, A, B, and C of the Rab5-family, we suggest that Mimiviridae Rabs constitute a new isoform, Rab5D. Phylogenetic analysis indicated probable horizontal acquisition from a lower eukaryotic ancestor followed by selection and divergence. Furthermore, interaction network analysis suggests that vps34 (a Class III PI3K homolog, coded by APMV L615), Atg-8 and dynamin (host proteins) are recruited by APMV Rab GTPase during capsid assembly. Based on these observations, we hypothesize that APMV Rab plays a role in the acquisition of inner membrane during virion assembly. PMID:26441866

  16. RhoA and Rac1 GTPases Differentially Regulate Agonist-Receptor Mediated Reactive Oxygen Species Generation in Platelets

    PubMed Central

    Akbar, Huzoor; Duan, Xin; Saleem, Saima; Davis, Ashley K.; Zheng, Yi

    2016-01-01

    Agonist induced generation of reactive oxygen species (ROS) by NADPH oxidases (NOX) enhances platelet aggregation and hence the risk of thrombosis. RhoA and Rac1 GTPases are involved in ROS generation by NOX in a variety of cells, but their roles in platelet ROS production remain unclear. In this study we used platelets from RhoA and Rac1 conditional knockout mice as well as human platelets treated with Rhosin and NSC23767, rationally designed small molecule inhibitors of RhoA and Rac GTPases, respectively, to better define the contributions of RhoA and Rac1 signaling to ROS generation and platelet activation. Treatment of platelets with Rhosin inhibited: (a) U46619 induced activation of RhoA; (b) phosphorylation of p47phox, a critical component of NOX; (c) U46619 or thrombin induced ROS generation; (d) phosphorylation of myosin light chain (MLC); (e) platelet shape change; (f) platelet spreading on immobilized fibrinogen; and (g) release of P-selectin, secretion of ATP and aggregation. Conditional deletion of RhoA or Rac1 gene inhibited thrombin induced ROS generation in platelets. Addition of Y27632, a RhoA inhibitor, NSC23766 or Phox-I, an inhibitor of Rac1-p67phox interaction, to human platelets blocked thrombin induced ROS generation. These data suggest that: (a) RhoA/ROCK/p47phox signaling axis promotes ROS production that, at least in part, contributes to platelet activation in conjunction with or independent of the RhoA/ROCK mediated phosphorylation of MLC; and (b) RhoA and Rac1 differentially regulate ROS generation by inhibiting phosphorylation of p47phox and Rac1-p67phox interaction, respectively. PMID:27681226

  17. Miro's N-terminal GTPase domain is required for transport of mitochondria into axons and dendrites.

    PubMed

    Babic, Milos; Russo, Gary J; Wellington, Andrea J; Sangston, Ryan M; Gonzalez, Migdalia; Zinsmaier, Konrad E

    2015-04-01

    Mitochondria are dynamically transported in and out of neuronal processes to maintain neuronal excitability and synaptic function. In higher eukaryotes, the mitochondrial GTPase Miro binds Milton/TRAK adaptor proteins linking microtubule motors to mitochondria. Here we show that Drosophila Miro (dMiro), which has previously been shown to be required for kinesin-driven axonal transport, is also critically required for the dynein-driven distribution of mitochondria into dendrites. In addition, we used the loss-of-function mutations dMiroT25N and dMiroT460N to determine the significance of dMiro's N-terminal and C-terminal GTPase domains, respectively. Expression of dMiroT25N in the absence of endogenous dMiro caused premature lethality and arrested development at a pupal stage. dMiroT25N accumulated mitochondria in the soma of larval motor and sensory neurons, and prevented their kinesin-dependent and dynein-dependent distribution into axons and dendrites, respectively. dMiroT25N mutant mitochondria also were severely fragmented and exhibited reduced kinesin and dynein motility in axons. In contrast, dMiroT460N did not impair viability, mitochondrial size, or the distribution of mitochondria. However, dMiroT460N reduced dynein motility during retrograde mitochondrial transport in axons. Finally, we show that substitutions analogous to the constitutively active Ras-G12V mutation in dMiro's N-terminal and C-terminal GTPase domains cause neomorphic phenotypic effects that are likely unrelated to the normal function of each GTPase domain. Overall, our analysis indicates that dMiro's N-terminal GTPase domain is critically required for viability, mitochondrial size, and the distribution of mitochondria out of the neuronal soma regardless of the employed motor, likely by promoting the transition from a stationary to a motile state.

  18. The small GTPase Cdc42 interacts with Niemann-Pick C1-like 1 (NPC1L1) and controls its movement from endocytic recycling compartment to plasma membrane in a cholesterol-dependent manner.

    PubMed

    Xie, Chang; Li, Na; Chen, Zheng-Jun; Li, Bo-Liang; Song, Bao-Liang

    2011-10-14

    Niemann-Pick C1-like 1 (NPC1L1) is a multi-transmembrane protein that mediates the absorption of dietary and biliary cholesterol through vesicular endocytosis. The subcellular localization of NPC1L1 is regulated by cholesterol. Cholesterol depletion induces the transport of NPC1L1 to plasma membrane (PM) from endocytic recycling compartment that requires MyoVb·Rab11a·Rab11-FIP2 triple complex, and cholesterol-replenishment renders the internalization of NPC1L1 together with cholesterol. Here, we find that GTP-bound Cdc42 interacts with NPC1L1. Cholesterol depletion regulates the activation of Cdc42 and enhances NPC1L1-Cdc42 interaction. Overexpression of constitutive GTP-bound Cdc42 mutant form or knockdown of Cdc42 inhibits the transport of NPC1L1 to the PM and disturbs the cholesterol-regulated binding of NPC1L1 to Rab11a, MyoVb, and actin. Knockdown of Cdc42 downstream effectors N-WASP or Arp3 also leads to the similar results. In liver-specific Cdc42 knock-out (Cdc42 LKO) mice, NPC1L1 fails to localize to bile canaliculi, and the biliary cholesterol cannot be efficiently reabsorbed. These results indicate that Cdc42 controls the cholesterol-regulated transport and localization of NPC1L1, and plays a role in cholesterol absorption.

  19. The Small GTPase Cdc42 Interacts with Niemann-Pick C1-like 1 (NPC1L1) and Controls Its Movement from Endocytic Recycling Compartment to Plasma Membrane in a Cholesterol-dependent Manner*

    PubMed Central

    Xie, Chang; Li, Na; Chen, Zheng-Jun; Li, Bo-Liang; Song, Bao-Liang

    2011-01-01

    Niemann-Pick C1-like 1 (NPC1L1) is a multi-transmembrane protein that mediates the absorption of dietary and biliary cholesterol through vesicular endocytosis. The subcellular localization of NPC1L1 is regulated by cholesterol. Cholesterol depletion induces the transport of NPC1L1 to plasma membrane (PM) from endocytic recycling compartment that requires MyoVb·Rab11a·Rab11-FIP2 triple complex, and cholesterol-replenishment renders the internalization of NPC1L1 together with cholesterol. Here, we find that GTP-bound Cdc42 interacts with NPC1L1. Cholesterol depletion regulates the activation of Cdc42 and enhances NPC1L1-Cdc42 interaction. Overexpression of constitutive GTP-bound Cdc42 mutant form or knockdown of Cdc42 inhibits the transport of NPC1L1 to the PM and disturbs the cholesterol-regulated binding of NPC1L1 to Rab11a, MyoVb, and actin. Knockdown of Cdc42 downstream effectors N-WASP or Arp3 also leads to the similar results. In liver-specific Cdc42 knock-out (Cdc42 LKO) mice, NPC1L1 fails to localize to bile canaliculi, and the biliary cholesterol cannot be efficiently reabsorbed. These results indicate that Cdc42 controls the cholesterol-regulated transport and localization of NPC1L1, and plays a role in cholesterol absorption. PMID:21844200

  20. RhoA GTPase interacts with beta-catenin signaling in clinorotated osteoblasts

    PubMed Central

    Wan, Qiaoqiao; Cho, Eunhye; Yokota, Hiroki; Na, Sungsoo

    2014-01-01

    Bone is a dynamic tissue under constant remodeling in response to various signals including mechanical loading. A lack of proper mechanical loading induces disuse osteoporosis that reduces bone mass and structural integrity. β-catenin signaling together with a network of GTPases is known to play a primary role in load-driven bone formation, but little is known about potential interactions of β-catenin signaling and GTPases in bone loss. In this study, we addressed a question: Does unloading suppress an activation level of RhoA GTPase and β-catenin signaling in osteoblasts? If yes, what is the role of RhoA GTPase and actin filaments in osteoblasts in regulating β-catenin signaling? Using a fluorescence resonance energy transfer (FRET) technique with a biosensor for RhoA together with a fluorescent T-cell factor/lymphoid enhancer factor (TCF/LEF) reporter, we examined the effects of clinostat-driven simulated unloading. The results revealed that both RhoA activity and TCF/LEF activity were downregulated by unloading. Reduction in RhoA activity was correlated to a decrease in cytoskeletal organization of actin filaments. Inhibition of β-catenin signaling blocked unloading-induced RhoA suppression, and dominant negative RhoA inhibited TCF/LEF suppression. On the other hand, a constitutively active RhoA enhanced unloading-induced reduction of TCF/LEF activity. The TCF/LEF suppression by unloading was enhanced by co-culture with osteocytes, but it was independent on organization of actin filaments, myosin II activity, or a myosin light chain kinase. Collectively, the results suggest that β-catenin signaling is required for unloading-driven regulation of RhoA, and RhoA, but not actin cytoskeleton or intracellular tension, mediates the responsiveness of β-catenin signaling to unloading. PMID:23529802

  1. The GTPase Rac regulates the proliferation and invasion of fibroblast-like synoviocytes from rheumatoid arthritis patients.

    PubMed

    Chan, Amanda; Akhtar, Mumtaz; Brenner, Max; Zheng, Yi; Gulko, Percio S; Symons, Marc

    2007-01-01

    Fibroblast-like synoviocytes (FLS) isolated from joints of rheumatoid arthritis (RA) patients display proliferative and invasive properties reminiscent of those of malignant tumor cells. Rac small GTPases play an important role in tumor cell proliferation and invasion. We therefore investigated the potential role of Rac proteins in the proliferative and invasive behavior of RA-FLS. We showed that inhibiting Rac activity with the Rac-specific small molecule inhibitor NSC23766 causes a strong inhibition of RA-FLS proliferation, without affecting cell survival. Rac inhibition also results in a strong reduction in RA-FLS invasion through reconstituted extracellular matrix and a less marked inhibition of two-dimensional migration as measured by monolayer wound healing. We also showed that small interfering RNA-mediated depletion of Rac1 inhibits RA-FLS proliferation and invasion to a similar extent as NSC23766. These results demonstrate for the first time that Rac proteins play an important role in the aggressive behavior of FLS isolated from RA patients. In addition, we observed that inhibiting Rac proteins prevents JNK activation and that the JNK inhibitor SP600125 strongly inhibits RA-FLS invasion, suggesting that Rac-mediated JNK activation contributes to the role of Rac proteins in the invasive behavior of RA-FLS. In conclusion, Rac-controlled signaling pathways may present a new source of drug targets for therapeutic intervention in RA.

  2. New insights into the role of Arabidopsis RABA1 GTPases in salinity stress tolerance.

    PubMed

    Asaoka, Rin; Uemura, Tomohiro; Nishida, Sho; Fujiwara, Toru; Ueda, Takashi; Nakano, Akihiko

    2013-09-01

    RAB11 GTPases, widely conserved members of RAB small GTPases, have evolved in a unique way in plants; plant RAB11 has notable diversity compared with animals and yeast. Recently, we have shown that members of RABA1, a subgroup in Arabidopsis RAB11 group, are required for salinity stress tolerance. To obtain a clue to understand its underlying mechanism, here we investigate whether RABA1 regulates sodium transport across the plasma membrane and accumulation in the vacuole. The results indicate that the raba1 quadruple mutant is not defective in the import and intracellular distribution of sodium, implying that RABA1 members are involved in a more indirect way in the responses to salinity stress.

  3. PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility.

    PubMed

    Fiordalisi, James J; Keller, Patricia J; Cox, Adrienne D

    2006-03-15

    Phosphatase found in regenerating liver (PRL)-1, PRL-2, and PRL-3 [also known as PTP4A1, PTP4A2, and PTP4A3, respectively] constitute a unique family of putative protein tyrosine phosphatases (PTPs) modified by farnesylation. PRL-3 is amplified and its message is up-regulated in colorectal carcinoma metastases. Its ectopic expression promotes invasive and metastatic properties, supporting a causal link between PRL-3 and late-stage cancer development. However, neither PRL phosphatase substrates nor their signaling pathways have been defined. To address possible mechanisms for the biological activity of PRL-3, we sought to identify its downstream targets, reasoning that regulators of motility and invasion, such as the Rho family of small GTPases, might be logical candidates. We found that levels of active RhoA and RhoC were increased 4- to 7-fold in SW480 colorectal carcinoma cells expressing exogenous PRL-1 and PRL-3, and that PRL-mediated motility and Matrigel invasion were blocked by pharmacologic inhibition of Rho kinase (ROCK), a key Rho effector. In contrast, the activity of Rac was reduced by PRL PTPs, whereas Cdc42 activity was unaffected. PRL-3 stimulated transcription driven by the serum response element in a Rho-dependent manner. We also confirmed that the ability of PRL PTPs to induce invasion and motility is dependent on farnesylation. Catalytic PRL-3 mutants (C104A or D72A) were impaired in PRL-3-induced invasion and Rho activation, indicating that these properties require phosphatase activity. We conclude that PRL PTPs stimulate Rho signaling pathways to promote motility and invasion. Characterization of PRL activity and regulatory pathways should enhance efforts to understand and interfere with PRL-mediated events in invasion and metastasis.

  4. Structural Determinants of Clostridium difficile Toxin A Glucosyltransferase Activity

    SciTech Connect

    Pruitt, Rory N.; Chumbler, Nicole M.; Rutherford, Stacey A.; Farrow, Melissa A.; Friedman, David B.; Spiller, Ben; Lacy, D. Borden

    2012-03-28

    The principle virulence factors in Clostridium difficile pathogenesis are TcdA and TcdB, homologous glucosyltransferases capable of inactivating small GTPases within the host cell. We present crystal structures of the TcdA glucosyltransferase domain in the presence and absence of the co-substrate UDP-glucose. Although the enzymatic core is similar to that of TcdB, the proposed GTPase-binding surface differs significantly. We show that TcdA is comparable with TcdB in its modification of Rho family substrates and that, unlike TcdB, TcdA is also capable of modifying Rap family GTPases both in vitro and in cells. The glucosyltransferase activities of both toxins are reduced in the context of the holotoxin but can be restored with autoproteolytic activation and glucosyltransferase domain release. These studies highlight the importance of cellular activation in determining the array of substrates available to the toxins once delivered into the cell.

  5. Rho protein GTPases and their interactions with NFκB: crossroads of inflammation and matrix biology

    PubMed Central

    Tong, Louis; Tergaonkar, Vinay

    2014-01-01

    The RhoGTPases, with RhoA, Cdc42 and Rac being major members, are a group of key ubiquitous proteins present in all eukaryotic organisms that subserve such important functions as cell migration, adhesion and differentiation. The NFκB (nuclear factor κB) is a family of constitutive and inducible transcription factors that through their diverse target genes, play a major role in processes such as cytokine expression, stress regulation, cell division and transformation. Research over the past decade has uncovered new molecular links between the RhoGTPases and the NFκB pathway, with the RhoGTPases playing a positive or negative regulatory role on NFκB activation depending on the context. The RhoA–NFκB interaction has been shown to be important in cytokine-activated NFκB processes, such as those induced by TNFα (tumour necrosis factor α). On the other hand, Rac is important for activating the NFκB response downstream of integrin activation, such as after phagocytosis. Specific residues of Rac1 are important for triggering NFκB activation, and mutations do obliterate this response. Other upstream triggers of the RhoGTPase–NFκB interactions include the suppressive p120 catenin, with implications for skin inflammation. The networks described here are not only important areas for further research, but are also significant for discovery of targets for translational medicine. PMID:24877606

  6. The GTPase Rab26 links synaptic vesicles to the autophagy pathway.

    PubMed

    Binotti, Beyenech; Pavlos, Nathan J; Riedel, Dietmar; Wenzel, Dirk; Vorbrüggen, Gerd; Schalk, Amanda M; Kühnel, Karin; Boyken, Janina; Erck, Christian; Martens, Henrik; Chua, John J E; Jahn, Reinhard

    2015-01-01

    Small GTPases of the Rab family not only regulate target recognition in membrane traffic but also control other cellular functions such as cytoskeletal transport and autophagy. Here we show that Rab26 is specifically associated with clusters of synaptic vesicles in neurites. Overexpression of active but not of GDP-preferring Rab26 enhances vesicle clustering, which is particularly conspicuous for the EGFP-tagged variant, resulting in a massive accumulation of synaptic vesicles in neuronal somata without altering the distribution of other organelles. Both endogenous and induced clusters co-localize with autophagy-related proteins such as Atg16L1, LC3B and Rab33B but not with other organelles. Furthermore, Atg16L1 appears to be a direct effector of Rab26 and binds Rab26 in its GTP-bound form, albeit only with low affinity. We propose that Rab26 selectively directs synaptic and secretory vesicles into preautophagosomal structures, suggesting the presence of a novel pathway for degradation of synaptic vesicles.

  7. RhoA GTPase controls cytokinesis and programmed necrosis of hematopoietic progenitors

    PubMed Central

    Zhou, Xuan; Florian, Maria Carolina; Arumugam, Paritha; Chen, Xiaoyi; Cancelas, Jose A.; Lang, Richard; Malik, Punam; Geiger, Hartmut

    2013-01-01

    Hematopoietic progenitor cells (HPCs) are central to hematopoiesis as they provide large numbers of lineage-defined blood cells necessary to sustain blood homeostasis. They are one of the most actively cycling somatic cells, and their precise control is critical for hematopoietic homeostasis. The small GTPase RhoA is an intracellular molecular switch that integrates cytokine, chemokine, and adhesion signals to coordinate multiple context-dependent cellular processes. By using a RhoA conditional knockout mouse model, we show that RhoA deficiency causes a multilineage hematopoietic failure that is associated with defective multipotent HPCs. Interestingly, RhoA−/− hematopoietic stem cells retained long-term engraftment potential but failed to produce multipotent HPCs and lineage-defined blood cells. This multilineage hematopoietic failure was rescued by reconstituting wild-type RhoA into the RhoA−/− Lin−Sca-1+c-Kit+ compartment. Mechanistically, RhoA regulates actomyosin signaling, cytokinesis, and programmed necrosis of the HPCs, and loss of RhoA results in a cytokinesis failure of HPCs manifested by an accumulation of multinucleated cells caused by failed abscission of the cleavage furrow after telophase. Concomitantly, the HPCs show a drastically increased death associated with increased TNF–RIP-mediated necrosis. These results show that RhoA is a critical and specific regulator of multipotent HPCs during cytokinesis and thus essential for multilineage hematopoiesis. PMID:24101377

  8. Structural basis of AMPK regulation by small molecule activators

    NASA Astrophysics Data System (ADS)

    Xiao, Bing; Sanders, Matthew J.; Carmena, David; Bright, Nicola J.; Haire, Lesley F.; Underwood, Elizabeth; Patel, Bhakti R.; Heath, Richard B.; Walker, Philip A.; Hallen, Stefan; Giordanetto, Fabrizio; Martin, Stephen R.; Carling, David; Gamblin, Steven J.

    2013-12-01

    AMP-activated protein kinase (AMPK) plays a major role in regulating cellular energy balance by sensing and responding to increases in AMP/ADP concentration relative to ATP. Binding of AMP causes allosteric activation of the enzyme and binding of either AMP or ADP promotes and maintains the phosphorylation of threonine 172 within the activation loop of the kinase. AMPK has attracted widespread interest as a potential therapeutic target for metabolic diseases including type 2 diabetes and, more recently, cancer. A number of direct AMPK activators have been reported as having beneficial effects in treating metabolic diseases, but there has been no structural basis for activator binding to AMPK. Here we present the crystal structure of human AMPK in complex with a small molecule activator that binds at a site between the kinase domain and the carbohydrate-binding module, stabilising the interaction between these two components. The nature of the activator-binding pocket suggests the involvement of an additional, as yet unidentified, metabolite in the physiological regulation of AMPK. Importantly, the structure offers new opportunities for the design of small molecule activators of AMPK for treatment of metabolic disorders.

  9. Rab GTPases regulate endothelial cell protein C receptor-mediated endocytosis and trafficking of factor VIIa.

    PubMed

    Nayak, Ramesh C; Keshava, Shiva; Esmon, Charles T; Pendurthi, Usha R; Rao, L Vijaya Mohan

    2013-01-01

    Recent studies have established that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR). FVIIa binding to EPCR may promote the endocytosis of this receptor/ligand complex. Rab GTPases are known to play a crucial role in the endocytic and exocytic pathways of receptors or receptor/ligand complexes. The present study was undertaken to investigate the role of Rab GTPases in the intracellular trafficking of EPCR and FVIIa. CHO-EPCR cells and human umbilical vein endothelial cells (HUVEC) were transduced with recombinant adenoviral vectors to express wild-type, constitutively active, or dominant negative mutant of various Rab GTPases. Cells were exposed to FVIIa conjugated with AF488 fluorescent probe (AF488-FVIIa), and intracellular trafficking of FVIIa, EPCR, and Rab proteins was evaluated by immunofluorescence confocal microscopy. In cells expressing wild-type or constitutively active Rab4A, internalized AF488-FVIIa accumulated in early/sorting endosomes and its entry into the recycling endosomal compartment (REC) was inhibited. Expression of constitutively active Rab5A induced large endosomal structures beneath the plasma membrane where EPCR and FVIIa accumulated. Dominant negative Rab5A inhibited the endocytosis of EPCR-FVIIa. Expression of constitutively active Rab11 resulted in retention of accumulated AF488-FVIIa in the REC, whereas expression of a dominant negative form of Rab11 led to accumulation of internalized FVIIa in the cytoplasm and prevented entry of internalized FVIIa into the REC. Expression of dominant negative Rab11 also inhibited the transport of FVIIa across the endothelium. Overall our data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR-FVIIa.

  10. RhoGTPases--NODes for effector-triggered immunity in animals.

    PubMed

    Stuart, Lynda M; Boyer, Laurent

    2013-08-01

    A recent study published in Nature by Keestra and colleagues addresses how the immune system detects the pathogenic potential of microbes and provides evidence that one strategy involves NOD1, which monitors the activation state of the RhoGTPases that are targeted by virulence effectors produced by pathogenic microbes. Interestingly, their findings reveal striking similarities with previous observations made in flies and plants, establishing the evolutionary conservation of this detection system in the innate immune arsenal in many taxa. PMID:23689278

  11. Structural Basis of Rnd1 Binding to Plexin Rho GTPase Binding Domains (RBDs)

    SciTech Connect

    Wang, Hui; Hota, Prasanta K.; Tong, Yufeng; Li, Buren; Shen, Limin; Nedyalkova, Lyudmila; Borthakur, Susmita; Kim, SoonJeung; Tempel, Wolfram; Buck, Matthias; Park, Hee-Won

    2011-09-20

    Plexin receptors regulate cell adhesion, migration, and guidance. The Rho GTPase binding domain (RBD) of plexin-A1 and -B1 can bind GTPases, including Rnd1. By contrast, plexin-C1 and -D1 reportedly bind Rnd2 but associate with Rnd1 only weakly. The structural basis of this differential Rnd1 GTPase binding to plexin RBDs remains unclear. Here, we solved the structure of the plexin-A2 RBD in complex with Rnd1 and the structures of the plexin-C1 and plexin-D1 RBDs alone, also compared with the previously determined plexin-B1 RBD.Rnd1 complex structure. The plexin-A2 RBD {center_dot} Rnd1 complex is a heterodimer, whereas plexin-B1 and -A2 RBDs homodimerize at high concentration in solution, consistent with a proposed model for plexin activation. Plexin-C1 and -D1 RBDs are monomeric, consistent with major residue changes in the homodimerization loop. In plexin-A2 and -B1, the RBD {beta}3-{beta}4 loop adjusts its conformation to allow Rnd1 binding, whereas minimal structural changes occur in Rnd1. The plexin-C1 and -D1 RBDs lack several key non-polar residues at the corresponding GTPase binding surface and do not significantly interact with Rnd1. Isothermal titration calorimetry measurements on plexin-C1 and -D1 mutants reveal that the introduction of non-polar residues in this loop generates affinity for Rnd1. Structure and sequence comparisons suggest a similar mode of Rnd1 binding to the RBDs, whereas mutagenesis suggests that the interface with the highly homologous Rnd2 GTPase is different in detail. Our results confirm, from a structural perspective, that Rnd1 does not play a role in the activation of plexin-C1 and -D1. Plexin functions appear to be regulated by subfamily-specific mechanisms, some of which involve different Rho family GTPases.

  12. Anti-Ebola Activity of Diazachrysene Small Molecules.

    PubMed

    Selaković, Života; Soloveva, Veronica; Gharaibeh, Dima N; Wells, Jay; Šegan, Sandra; Panchal, Rekha G; Šolaja, Bogdan A

    2015-06-12

    Herein we report on a diazachrysene class of small molecules that exhibit potent antiviral activity against the Ebola (EBOV) virus. The antiviral compounds are easily synthesized, and the most active compounds have excellent in vitro activity (0.34-0.70 μM) and are significantly less lipophilic than their predecessors. The three most potent diazachrysene antivirals do not exhibit any toxicity in vivo and protected 70-90% of the mice at 10 mg/kg following EBOV challenge. Together, these studies suggest that diazachrysenes are a promising class of compounds for hit to lead optimization and as potential Ebola therapeutics. PMID:27622742

  13. Small molecules reveal an alternative mechanism of Bax activation

    PubMed Central

    Brahmbhatt, Hetal; Uehling, David; Al-awar, Rima; Leber, Brian; Andrews, David

    2016-01-01

    The pro-apoptotic protein Bax commits a cell to death by permeabilizing the mitochondrial outer membrane (MOM). To obtain small-molecule probes for elucidating the molecular mechanism(s) of Bax activation, we screened for compounds that induced Bax-mediated liposome permeabilization. We identified five structurally different small molecules that promoted both Bax targeting to and oligomerization at membranes. All five compounds initiated Bax oligomerization in the absence of membranes by a mechanism unlike Bax activation by Bcl-2 homology 3 domain (BH3) proteins. Some of the compounds induced Bax/Bak-dependent apoptosis in cells. Activation of Bax by the most active compound was poorly inhibited by the anti-apoptotic protein Bcl-XL and requires a cysteine residue at position 126 of Bax that is not required for activation by BH3 proteins. Our results reveal a novel pathway for Bax activation independent of pro-apoptotic BH3 proteins that may have important implications for the regulation of Bax activity in cells. PMID:26916338

  14. Telomerase activity in non-small cell lung cancer

    PubMed Central

    Dobija-Kubica, Katarzyna; Bruliński, Krzysztof; Rogoziński, Paweł; Wiczkowski, Andrzej; Gawrychowska, Agata; Gawrychowski, Jacek

    2016-01-01

    Introduction High telomerase activity has been detected in the majority of malignant neoplasms including lung cancer. The purpose of the study was to attempt to use telomerase activity as a prognostic factor in patients with non-small cell lung cancer (NSCLC). Material and methods Telomerase activity was analyzed in 47 tissue specimens taken from patients with NSCLC. The control group consisted of 30 specimens of non-cancerous lung parenchyma. Telomerase activity was measured by means of the telomeric repeat amplification protocol (TRAP). Results Telomerase activity in the neoplastic tissue was significantly higher than in the lung parenchyma that was free from neoplastic infiltration. There was no significant association between telomerase activity and age, gender, tobacco smoking, histological type of the tumor, or staging (pTNM). No association was found between the level of telomerase activity in NSCLC specimens and the two-year survival rate of patients (p = 0.326). A higher level of telomerase activity in poorly differentiated tumors (G3) as compared to moderately differentiated tumors (G2) was detected (p = 0.008). A positive association was identified between telomerase activity in pulmonary parenchyma free from tumor infiltration and the presence of leukocyte infiltration (p = 0.0001). Conclusions No association was found between the level of telomerase activity in NSCLC specimens and the two-year survival rate of patients. The study has revealed a positive association between telomerase activity and the grade of differentiation (G) in NSCLC. PMID:27212973

  15. Modulation of Plant RAB GTPase-Mediated Membrane Trafficking Pathway at the Interface Between Plants and Obligate Biotrophic Pathogens.

    PubMed

    Inada, Noriko; Betsuyaku, Shigeyuki; Shimada, Takashi L; Ebine, Kazuo; Ito, Emi; Kutsuna, Natsumaro; Hasezawa, Seiichiro; Takano, Yoshitaka; Fukuda, Hiroo; Nakano, Akihiko; Ueda, Takashi

    2016-09-01

    RAB5 is a small GTPase that acts in endosomal trafficking. In addition to canonical RAB5 members that are homologous to animal RAB5, land plants harbor a plant-specific RAB5, the ARA6 group, which regulates trafficking events distinct from canonical RAB5 GTPases. Here, we report that plant RAB5, both canonical and plant-specific members, accumulate at the interface between host plants and biotrophic fungal and oomycete pathogens. Biotrophic fungi and oomycetes colonize living plant tissues by establishing specialized infection hyphae, the haustorium, within host plant cells. We found that Arabidopsis thaliana ARA6/RABF1, a plant-specific RAB5, is localized to the specialized membrane that surrounds the haustorium, the extrahaustorial membrane (EHM), formed by the A. thaliana-adapted powdery mildew fungus Golovinomyces orontii Whereas the conventional RAB5 ARA7/RABF2b was also localized to the EHM, endosomal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) and RAB5-activating proteins were not, which suggests that the EHM has modified endosomal characteristic. The recruitment of host RAB5 to the EHM was a property shared by the barley-adapted powdery mildew fungus Blumeria graminis f.sp. hordei and the oomycete Hyaloperonospora arabidopsidis, but the extrahyphal membrane surrounding the hypha of the hemibiotrophic fungus Colletotrichum higginsianum at the biotrophic stage was devoid of RAB5. The localization of RAB5 to the EHM appears to correlate with the functionality of the haustorium. Our discovery sheds light on a novel relationship between plant RAB5 and obligate biotrophic pathogens. PMID:27318282

  16. Molecular Basis of Phosphatidylinositol 4-Phosphate and ARF1 GTPase Recognition by the FAPP1 Pleckstrin Homology (PH) Domain

    SciTech Connect

    He, J.; Heroux, A.; Scott, J. L.; Roy, S.; Lenoir, M.; Overduin, M.; Stahelin, R. V.; Kutateladze, T. G.

    2011-05-27

    Four-phosphate-adaptor protein 1 (FAPP1) regulates secretory transport from the trans-Golgi network (TGN) to the plasma membrane. FAPP1 is recruited to the Golgi through binding of its pleckstrin homology (PH) domain to phosphatidylinositol 4-phosphate (PtdIns(4)P) and a small GTPase ADP-ribosylation factor 1 (ARF1). Despite the critical role of FAPP1 in membrane trafficking, the molecular basis of its dual function remains unclear. Here, we report a 1.9 {angstrom} resolution crystal structure of the FAPP1 PH domain and detail the molecular mechanisms of the PtdIns(4)P and ARF1 recognition. The FAPP1 PH domain folds into a seven-stranded {beta}-barrel capped by an {alpha}-helix at one edge, whereas the opposite edge is flanked by three loops and the {beta}4 and {beta}7 strands that form a lipid-binding pocket within the {beta}-barrel. The ARF1-binding site is located on the outer side of the {beta}-barrel as determined by NMR resonance perturbation analysis, mutagenesis, and measurements of binding affinities. The two binding sites have little overlap, allowing FAPP1 PH to associate with both ligands simultaneously and independently. Binding to PtdIns(4)P is enhanced in an acidic environment and is required for membrane penetration and tubulation activity of FAPP1, whereas the GTP-bound conformation of the GTPase is necessary for the interaction with ARF1. Together, these findings provide structural and biochemical insight into the multivalent membrane anchoring by the PH domain that may augment affinity and selectivity of FAPP1 toward the TGN membranes enriched in both PtdIns(4)P and GTP-bound ARF1.

  17. Modulation of Plant RAB GTPase-Mediated Membrane Trafficking Pathway at the Interface Between Plants and Obligate Biotrophic Pathogens.

    PubMed

    Inada, Noriko; Betsuyaku, Shigeyuki; Shimada, Takashi L; Ebine, Kazuo; Ito, Emi; Kutsuna, Natsumaro; Hasezawa, Seiichiro; Takano, Yoshitaka; Fukuda, Hiroo; Nakano, Akihiko; Ueda, Takashi

    2016-09-01

    RAB5 is a small GTPase that acts in endosomal trafficking. In addition to canonical RAB5 members that are homologous to animal RAB5, land plants harbor a plant-specific RAB5, the ARA6 group, which regulates trafficking events distinct from canonical RAB5 GTPases. Here, we report that plant RAB5, both canonical and plant-specific members, accumulate at the interface between host plants and biotrophic fungal and oomycete pathogens. Biotrophic fungi and oomycetes colonize living plant tissues by establishing specialized infection hyphae, the haustorium, within host plant cells. We found that Arabidopsis thaliana ARA6/RABF1, a plant-specific RAB5, is localized to the specialized membrane that surrounds the haustorium, the extrahaustorial membrane (EHM), formed by the A. thaliana-adapted powdery mildew fungus Golovinomyces orontii Whereas the conventional RAB5 ARA7/RABF2b was also localized to the EHM, endosomal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) and RAB5-activating proteins were not, which suggests that the EHM has modified endosomal characteristic. The recruitment of host RAB5 to the EHM was a property shared by the barley-adapted powdery mildew fungus Blumeria graminis f.sp. hordei and the oomycete Hyaloperonospora arabidopsidis, but the extrahyphal membrane surrounding the hypha of the hemibiotrophic fungus Colletotrichum higginsianum at the biotrophic stage was devoid of RAB5. The localization of RAB5 to the EHM appears to correlate with the functionality of the haustorium. Our discovery sheds light on a novel relationship between plant RAB5 and obligate biotrophic pathogens.

  18. Control of protein signaling using a computationally designed GTPase/GEF orthogonal pair.

    PubMed

    Kapp, Gregory T; Liu, Sen; Stein, Amelie; Wong, Derek T; Reményi, Attila; Yeh, Brian J; Fraser, James S; Taunton, Jack; Lim, Wendell A; Kortemme, Tanja

    2012-04-01

    Signaling pathways depend on regulatory protein-protein interactions; controlling these interactions in cells has important applications for reengineering biological functions. As many regulatory proteins are modular, considerable progress in engineering signaling circuits has been made by recombining commonly occurring domains. Our ability to predictably engineer cellular functions, however, is constrained by complex crosstalk observed in naturally occurring domains. Here we demonstrate a strategy for improving and simplifying protein network engineering: using computational design to create orthogonal (non-crossreacting) protein-protein interfaces. We validated the design of the interface between a key signaling protein, the GTPase Cdc42, and its activator, Intersectin, biochemically and by solving the crystal structure of the engineered complex. The designed GTPase (orthoCdc42) is activated exclusively by its engineered cognate partner (orthoIntersectin), but maintains the ability to interface with other GTPase signaling circuit components in vitro. In mammalian cells, orthoCdc42 activity can be regulated by orthoIntersectin, but not wild-type Intersectin, showing that the designed interaction can trigger complex processes. Computational design of protein interfaces thus promises to provide specific components that facilitate the predictable engineering of cellular functions. PMID:22403064

  19. RhoGTPase-binding proteins, the exocyst complex and polarized vesicle trafficking.

    PubMed

    Mukherjee, Debarati; Sen, Arpita; Aguilar, R Claudio

    2014-01-01

    Cell polarity, the asymmetric distribution of proteins and lipids, is essential for a variety of cellular functions. One mechanism orchestrating cell polarity is polarized vesicle trafficking; whereby cargo loaded secretory vesicles are specifically transported to predetermined areas of the cell. The evolutionarily conserved exocyst complex and its small GTPase regulators play crucial roles in spatiotemporal control of polarized vesicle trafficking. In studies on neuronal membrane remodeling and synaptic plasticity, conserved mechanisms of exocyst regulation and cargo recycling during polarized vesicle trafficking are beginning to emerge as well. Recently, our lab demonstrated that RhoGTPase-binding proteins in both yeast (Bem3) and mammals (Ocrl1) are also required for the efficient traffic of secretory vesicles to sites of polarized growth and signaling. Together with our studies, we highlight the evolutionary conservation of the basic elements essential for polarized vesicle traffic across different cellular functions and model systems. In conclusion, we emphasize that studies on RhoGTPase-binding proteins in these processes should be included in the next level of investigation, for a more complete understanding of their hitherto unknown roles in polarized membrane traffic and exocyst regulation.

  20. Rac1 GTPase silencing counteracts microgravity-induced effects on osteoblastic cells.

    PubMed

    Guignandon, Alain; Faure, Céline; Neutelings, Thibaut; Rattner, Aline; Mineur, Pierre; Linossier, Marie-Thérèse; Laroche, Norbert; Lambert, Charles; Deroanne, Christophe; Nusgens, Betty; Demets, René; Colige, Alain; Vico, Laurence

    2014-09-01

    Bone cells exposed to real microgravity display alterations of their cytoskeleton and focal adhesions, two major mechanosensitive structures. These structures are controlled by small GTPases of the Ras homology (Rho) family. We investigated the effects of RhoA, Rac1, and Cdc42 modulation of osteoblastic cells under microgravity conditions. Human MG-63 osteoblast-like cells silenced for RhoGTPases were cultured in the automated Biobox bioreactor (European Space Agency) aboard the Foton M3 satellite and compared to replicate ground-based controls. The cells were fixed after 69 h of microgravity exposure for postflight analysis of focal contacts, F-actin polymerization, vascular endothelial growth factor (VEGF) expression, and matrix targeting. We found that RhoA silencing did not affect sensitivity to microgravity but that Rac1 and, to a lesser extent, Cdc42 abrogation was particularly efficient in counteracting the spaceflight-related reduction of the number of focal contacts [-50% in silenced, scrambled (SiScr) controls vs. -15% for SiRac1], the number of F-actin fibers (-60% in SiScr controls vs. -10% for SiRac1), and the depletion of matrix-bound VEGF (-40% in SiScr controls vs. -8% for SiRac1). Collectively, these data point out the role of the VEGF/Rho GTPase axis in mechanosensing and validate Rac1-mediated signaling pathways as potential targets for counteracting microgravity effects. PMID:24903274

  1. The Ypt1 GTPase is essential for the first two steps of the yeast secretory pathway.

    PubMed

    Jedd, G; Richardson, C; Litt, R; Segev, N

    1995-11-01

    Small GTPases of the rab family are involved in the regulation of vesicular transport. The restricted distribution of each of these proteins in mammalian cells has led to the suggestion that different rab proteins act at different steps of transport (Pryer, N. K., L. J. Wuestehube, and R. Sheckman. 1992. Annu Rev. Biochem. 61:471-516; Zerial, M., and H. Stenmark. 1993. Curr. Opin. Cell Biol. 5:613-620). However, in this report we show that the Ypt1-GTPase, a member of the rab family, is essential for more than one step of the yeast secretory pathway. We determined the secretory defect conferred by a novel ypt1 mutation by comparing the processing of several transported glycoproteins in wild-type and mutant cells. The ypt1-A136D mutant has a change in an amino acid that is conserved among rab GTPases. This mutation leads to a rapid and tight secretory block upon a shift to the restrictive temperature, and allows for the identification of the specific steps in the secretory pathway that directly require Ypt1 protein (Ypt1p). The ypt1-A136D mutant exhibits tight blocks in two secretory steps, ER to cis-Golgi and cis- to medial-Golgi, but later steps are unaffected. Thus, it is unlikely that Ypt1p functions as the sole determinant of fusion specificity. Our results are more consistent with a role for Ypt1/rab proteins in determining the directionality or fidelity of protein sorting.

  2. Rac1 GTPase silencing counteracts microgravity-induced effects on osteoblastic cells.

    PubMed

    Guignandon, Alain; Faure, Céline; Neutelings, Thibaut; Rattner, Aline; Mineur, Pierre; Linossier, Marie-Thérèse; Laroche, Norbert; Lambert, Charles; Deroanne, Christophe; Nusgens, Betty; Demets, René; Colige, Alain; Vico, Laurence

    2014-09-01

    Bone cells exposed to real microgravity display alterations of their cytoskeleton and focal adhesions, two major mechanosensitive structures. These structures are controlled by small GTPases of the Ras homology (Rho) family. We investigated the effects of RhoA, Rac1, and Cdc42 modulation of osteoblastic cells under microgravity conditions. Human MG-63 osteoblast-like cells silenced for RhoGTPases were cultured in the automated Biobox bioreactor (European Space Agency) aboard the Foton M3 satellite and compared to replicate ground-based controls. The cells were fixed after 69 h of microgravity exposure for postflight analysis of focal contacts, F-actin polymerization, vascular endothelial growth factor (VEGF) expression, and matrix targeting. We found that RhoA silencing did not affect sensitivity to microgravity but that Rac1 and, to a lesser extent, Cdc42 abrogation was particularly efficient in counteracting the spaceflight-related reduction of the number of focal contacts [-50% in silenced, scrambled (SiScr) controls vs. -15% for SiRac1], the number of F-actin fibers (-60% in SiScr controls vs. -10% for SiRac1), and the depletion of matrix-bound VEGF (-40% in SiScr controls vs. -8% for SiRac1). Collectively, these data point out the role of the VEGF/Rho GTPase axis in mechanosensing and validate Rac1-mediated signaling pathways as potential targets for counteracting microgravity effects.

  3. Active doublet method for measuring small changes in physical properties

    DOEpatents

    Roberts, Peter M.; Fehler, Michael C.; Johnson, Paul A.; Phillips, W. Scott

    1994-01-01

    Small changes in material properties of a work piece are detected by measuring small changes in elastic wave velocity and attenuation within a work piece. Active, repeatable source generate coda wave responses from a work piece, where the coda wave responses are temporally displaced. By analyzing progressive relative phase and amplitude changes between the coda wave responses as a function of elapsed time, accurate determinations of velocity and attenuation changes are made. Thus, a small change in velocity occurring within a sample region during the time periods between excitation origin times (herein called "doublets") will produce a relative delay that changes with elapsed time over some portion of the scattered waves. This trend of changing delay is easier to detect than an isolated delay based on a single arrival and provides a direct measure of elastic wave velocity changes arising from changed material properties of the work piece.

  4. 1′-Acetoxychavicol acetate suppresses angiogenesis-mediated human prostate tumor growth by targeting VEGF-mediated Src-FAK-Rho GTPase-signaling pathway

    PubMed Central

    Pang, Xiufeng; Zhang, Li; Lai, Li; Chen, Jing; Wu, Yuanyuan; Yi, Zhengfang; Zhang, Jian; Qu, Weijing; Aggarwal, Bharat B.; Liu, Mingyao

    2011-01-01

    Cancer therapeutic agents that are safe, effective and affordable are urgently needed. We describe that 1′-acetoxychavicol acetate (ACA), a component of Siamese ginger (Languas galanga), can suppress prostate tumor growth by largely abrogating angiogenesis. ACA suppressed vascular endothelial growth factor (VEGF)-induced proliferation, migration, adhesion and tubulogenesis of primary cultured human umbilical vascular endothelial cells (HUVECs) in a dose-dependent manner. ACA also inhibited VEGF-induced microvessel sprouting from aortic rings ex vivo and suppressed new vasculature formation in Matrigel plugs in vivo. We further demonstrated that the mechanisms of this chavicol were to block the activation of VEGF-mediated Src kinase, focal adhesion kinase (FAK) and Rho family of small guanosine triphosphatases (GTPases) (Rac1 and Cdc42 but not RhoA) in HUVECs. Furthermore, treatment of human prostate cancer cells (PC-3) with ACA resulted in decreased cell viability and suppression of angiogenic factor production by interference with dual Src/FAK kinases. After subcutaneous administration to mice bearing human prostate cancer PC-3 xenografts, ACA (6 mg/kg/day) remarkably inhibited tumor volume and tumor weight and decreased levels of Src, CD31, VEGF and Ki-67. As indicated by immunohistochemistry and TUNEL analysis, microvessel density and cell proliferation were also dramatically suppressed in tumors from ACA-treated mice. Taken together, our findings suggest that ACA targets the Src-FAK-Rho GTPase pathway, leading to the suppression of prostate tumor angiogenesis and growth. PMID:21427164

  5. 1'-Acetoxychavicol acetate suppresses angiogenesis-mediated human prostate tumor growth by targeting VEGF-mediated Src-FAK-Rho GTPase-signaling pathway.

    PubMed

    Pang, Xiufeng; Zhang, Li; Lai, Li; Chen, Jing; Wu, Yuanyuan; Yi, Zhengfang; Zhang, Jian; Qu, Weijing; Aggarwal, Bharat B; Liu, Mingyao

    2011-06-01

    Cancer therapeutic agents that are safe, effective and affordable are urgently needed. We describe that 1'-acetoxychavicol acetate (ACA), a component of Siamese ginger (Languas galanga), can suppress prostate tumor growth by largely abrogating angiogenesis. ACA suppressed vascular endothelial growth factor (VEGF)-induced proliferation, migration, adhesion and tubulogenesis of primary cultured human umbilical vascular endothelial cells (HUVECs) in a dose-dependent manner. ACA also inhibited VEGF-induced microvessel sprouting from aortic rings ex vivo and suppressed new vasculature formation in Matrigel plugs in vivo. We further demonstrated that the mechanisms of this chavicol were to block the activation of VEGF-mediated Src kinase, focal adhesion kinase (FAK) and Rho family of small guanosine triphosphatases (GTPases) (Rac1 and Cdc42 but not RhoA) in HUVECs. Furthermore, treatment of human prostate cancer cells (PC-3) with ACA resulted in decreased cell viability and suppression of angiogenic factor production by interference with dual Src/FAK kinases. After subcutaneous administration to mice bearing human prostate cancer PC-3 xenografts, ACA (6 mg/kg/day) remarkably inhibited tumor volume and tumor weight and decreased levels of Src, CD31, VEGF and Ki-67. As indicated by immunohistochemistry and TUNEL analysis, microvessel density and cell proliferation were also dramatically suppressed in tumors from ACA-treated mice. Taken together, our findings suggest that ACA targets the Src-FAK-Rho GTPase pathway, leading to the suppression of prostate tumor angiogenesis and growth.

  6. Metal binding properties of Escherichia coli YjiA, a member of the metal homeostasis-associated COG0523 family of GTPases.

    PubMed

    Sydor, Andrew M; Jost, Marco; Ryan, Katherine S; Turo, Kaitlyn E; Douglas, Colin D; Drennan, Catherine L; Zamble, Deborah B

    2013-03-12

    GTPases are critical molecular switches involved in a wide range of biological functions. Recent phylogenetic and genomic analyses of the large, mostly uncharacterized COG0523 subfamily of GTPases revealed a link between some COG0523 proteins and metal homeostasis pathways. In this report, we detail the bioinorganic characterization of YjiA, a representative member of COG0523 subgroup 9 and the only COG0523 protein to date with high-resolution structural information. We find that YjiA is capable of binding several types of transition metals with dissociation constants in the low micromolar range and that metal binding affects both the oligomeric structure and GTPase activity of the enzyme. Using a combination of X-ray crystallography and site-directed mutagenesis, we identify, among others, a metal-binding site adjacent to the nucleotide-binding site in the GTPase domain that involves a conserved cysteine and several glutamate residues. Mutations of the coordinating residues decrease the impact of metal, suggesting that metal binding to this site is responsible for modulating the GTPase activity of the protein. These findings point toward a regulatory function for these COG0523 GTPases that is responsive to their metal-bound state.

  7. GTP-binding of ARL-3 is activated by ARL-13 as a GEF and stabilized by UNC-119

    PubMed Central

    Zhang, Qing; Li, Yan; Zhang, Yuxia; Torres, Vicente E.; Harris, Peter C.; Ling, Kun; Hu, Jinghua

    2016-01-01

    Primary cilia are sensory organelles indispensable for organogenesis and tissue pattern formation. Ciliopathy small GTPase ARLs are proposed as prominent ciliary switches, which when disrupted result in dysfunctional cilia, yet how ARLs are activated remain elusive. Here, we discover a novel small GTPase functional module, which contains ARL-3, ARL-13, and UNC-119, localizes near the poorly understood inversin (InV)-like compartment in C. elegans. ARL-13 acts synergistically with UNC-119, but antagonistically with ARL-3, in regulating ciliogenesis. We demonstrate that ARL-3 is a unique small GTPase with unusual high intrinsic GDP release but low intrinsic GTP binding rate. Importantly, ARL-13 acts as a nucleotide exchange factor (GEF) of ARL-3, while UNC-119 can stabilize the GTP binding of ARL-3. We further show that excess inactivated ARL-3 compromises ciliogenesis. The findings reveal a novel mechanism that one ciliopathy GTPase ARL-13, as a GEF, coordinates with UNC-119, which may act as a GTP-binding stabilizing factor, to properly activate another GTPase ARL-3 in cilia, a regulatory process indispensable for ciliogenesis. PMID:27102355

  8. Small molecules inhibitors of plasminogen activator inhibitor-1 - an overview.

    PubMed

    Rouch, Anne; Vanucci-Bacqué, Corinne; Bedos-Belval, Florence; Baltas, Michel

    2015-03-01

    PAI-1, a glycoprotein from the serpin family and the main inhibitor of tPA and uPA, plays an essential role in the regulation of intra and extravascular fibrinolysis by inhibiting the formation of plasmin from plasminogen. PAI-1 is also involved in pathological processes such as thromboembolic diseases, atherosclerosis, fibrosis and cancer. The inhibition of PAI-1 activity by small organic molecules has been observed in vitro and with some in vivo models. Based on these findings, PAI-1 appears as a potential therapeutic target for several pathological conditions. Over the past decades, many efforts have therefore been devoted to developing PAI-1 inhibitors. This article provides an overview of the publishing activity on small organic molecules used as PAI-1 inhibitors. The chemical synthesis of the most potent inhibitors as well as their biological and biochemical evaluations is also presented.

  9. In vitro guanine nucleotide exchange activity of DHR-2/DOCKER/CZH2 domains.

    PubMed

    Côté, Jean-François; Vuori, Kristiina

    2006-01-01

    Rho family GTPases regulate a large variety of biological processes, including the reorganization of the actin cytoskeleton. Like other members of the Ras superfamily of small GTP-binding proteins, Rho GTPases cycle between a GDP-bound (inactive) and a GTP-bound (active) state, and, when active, the GTPases relay extracellular signals to a large number of downstream effectors. Guanine nucleotide exchange factors (GEFs) promote the exchange of GDP for GTP on Rho GTPases, thereby activating them. Most Rho-GEFs mediate their effects through their signature domain known as the Dbl Homology-Pleckstrin Homology (DH-PH) module. Recently, we and others identified a family of evolutionarily conserved, DOCK180-related proteins that also display GEF activity toward Rho GTPases. The DOCK180-family of proteins lacks the canonical DH-PH module. Instead, they rely on a novel domain, termed DHR-2, DOCKER, or CZH2, to exchange GDP for GTP on Rho targets. In this chapter, the experimental approach that we used to uncover the exchange activity of the DHR-2 domain of DOCK180-related proteins will be described.

  10. Pre-40S ribosome biogenesis factor Tsr1 is an inactive structural mimic of translational GTPases.

    PubMed

    McCaughan, Urszula M; Jayachandran, Uma; Shchepachev, Vadim; Chen, Zhuo Angel; Rappsilber, Juri; Tollervey, David; Cook, Atlanta G

    2016-01-01

    Budding yeast Tsr1 is a ribosome biogenesis factor with sequence similarity to GTPases, which is essential for cytoplasmic steps in 40S subunit maturation. Here we present the crystal structure of Tsr1 at 3.6 Å. Tsr1 has a similar domain architecture to translational GTPases such as EF-Tu and the selenocysteine incorporation factor SelB. However, active site residues required for GTP binding and hydrolysis are absent, explaining the lack of enzymatic activity in previous analyses. Modelling of Tsr1 into cryo-electron microscopy maps of pre-40S particles shows that a highly acidic surface of Tsr1 is presented on the outside of pre-40S particles, potentially preventing premature binding to 60S subunits. Late pre-40S maturation also requires the GTPase eIF5B and the ATPase Rio1. The location of Tsr1 is predicted to block binding by both factors, strongly indicating that removal of Tsr1 is an essential step during cytoplasmic maturation of 40S ribosomal subunits. PMID:27250689

  11. Pre-40S ribosome biogenesis factor Tsr1 is an inactive structural mimic of translational GTPases

    PubMed Central

    McCaughan, Urszula M.; Jayachandran, Uma; Shchepachev, Vadim; Chen, Zhuo Angel; Rappsilber, Juri; Tollervey, David; Cook, Atlanta G.

    2016-01-01

    Budding yeast Tsr1 is a ribosome biogenesis factor with sequence similarity to GTPases, which is essential for cytoplasmic steps in 40S subunit maturation. Here we present the crystal structure of Tsr1 at 3.6 Å. Tsr1 has a similar domain architecture to translational GTPases such as EF-Tu and the selenocysteine incorporation factor SelB. However, active site residues required for GTP binding and hydrolysis are absent, explaining the lack of enzymatic activity in previous analyses. Modelling of Tsr1 into cryo-electron microscopy maps of pre-40S particles shows that a highly acidic surface of Tsr1 is presented on the outside of pre-40S particles, potentially preventing premature binding to 60S subunits. Late pre-40S maturation also requires the GTPase eIF5B and the ATPase Rio1. The location of Tsr1 is predicted to block binding by both factors, strongly indicating that removal of Tsr1 is an essential step during cytoplasmic maturation of 40S ribosomal subunits. PMID:27250689

  12. Conserved regulators of Rag GTPases orchestrate amino acid-dependent TORC1 signaling

    PubMed Central

    Powis, Katie; De Virgilio, Claudio

    2016-01-01

    The highly conserved target of rapamycin complex 1 (TORC1) is the central component of a signaling network that couples a vast range of internal and external stimuli to cell growth, proliferation and metabolism. TORC1 deregulation is associated with a number of human pathologies, including many cancers and metabolic disorders, underscoring its importance in cellular and organismal growth control. The activity of TORC1 is modulated by multiple inputs; however, the presence of amino acids is a stimulus that is essential for its activation. Amino acid sufficiency is communicated to TORC1 via the highly conserved family of Rag GTPases, which assemble as heterodimeric complexes on lysosomal/vacuolar membranes and are regulated by their guanine nucleotide loading status. Studies in yeast, fly and mammalian model systems have revealed a multitude of conserved Rag GTPase modulators, which have greatly expanded our understanding of amino acid sensing by TORC1. Here we review the major known modulators of the Rag GTPases, focusing on recent mechanistic insights that highlight the evolutionary conservation and divergence of amino acid signaling to TORC1. PMID:27462445

  13. The pseudo GTPase CENP-M drives human kinetochore assembly

    PubMed Central

    Basilico, Federica; Maffini, Stefano; Weir, John R; Prumbaum, Daniel; Rojas, Ana M; Zimniak, Tomasz; De Antoni, Anna; Jeganathan, Sadasivam; Voss, Beate; van Gerwen, Suzan; Krenn, Veronica; Massimiliano, Lucia; Valencia, Alfonso; Vetter, Ingrid R; Herzog, Franz; Raunser, Stefan; Pasqualato, Sebastiano; Musacchio, Andrea

    2014-01-01

    Kinetochores, multi-subunit complexes that assemble at the interface with centromeres, bind spindle microtubules to ensure faithful delivery of chromosomes during cell division. The configuration and function of the kinetochore–centromere interface is poorly understood. We report that a protein at this interface, CENP-M, is structurally and evolutionarily related to small GTPases but is incapable of GTP-binding and conformational switching. We show that CENP-M is crucially required for the assembly and stability of a tetramer also comprising CENP-I, CENP-H, and CENP-K, the HIKM complex, which we extensively characterize through a combination of structural, biochemical, and cell biological approaches. A point mutant affecting the CENP-M/CENP-I interaction hampers kinetochore assembly and chromosome alignment and prevents kinetochore recruitment of the CENP-T/W complex, questioning a role of CENP-T/W as founder of an independent axis of kinetochore assembly. Our studies identify a single pathway having CENP-C as founder, and CENP-H/I/K/M and CENP-T/W as CENP-C-dependent followers. DOI: http://dx.doi.org/10.7554/eLife.02978.001 PMID:25006165

  14. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho- type GTPases in yeast

    PubMed Central

    1994-01-01

    The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine- nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases. PMID:7962098

  15. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast.

    PubMed

    Peterson, J; Zheng, Y; Bender, L; Myers, A; Cerione, R; Bender, A

    1994-12-01

    The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine-nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases. PMID:7962098

  16. The Rab1 GTPase of Sciaenops ocellatus modulates intracellular bacterial infection.

    PubMed

    Hu, Yong-hua; Deng, Tian; Sun, Li

    2011-12-01

    The Rab family proteins belong to the Ras-like GTPase superfamily and play important roles in intracellular membrane trafficking. To date no studies on fish Rab have been documented, though rab-like sequences have been found in a number of teleosts. In this study, we identified and analyzed a Rab homologue, SoRab1, from red drum, Sciaenops ocellatus. The cDNA of SoRab1 contains a 5'- untranslated region (UTR) of 358 bp, an open reading frame (ORF) of 612 bp, and a 3'-UTR of 265 bp. The ORF encodes a putative protein of 203 residues, which shares 92-99% overall sequence identities with the Rab1 from fish, human, and mouse. SoRab1 possesses a typical Rab1 GTPase domain with the conserved G box motifs and the switch I and switch II regions. Recombinant SoRab1 purified from Escherichia coli exhibits apparent GTPase activity. Quantitative real time RT-PCR analysis showed that SoRab1 expression was detected in a number of tissues, with the lowest expression found in blood and highest expression found in muscle. Bacterial and lipopolysaccharide challenges significantly upregulated SoRab1 expression in liver, kidney, and spleen in time-dependent manners. Transient overexpression of SoRab1 in primary hepatocytes reduced intracellular bacterial infection, whereas interference with SoRab1 expression by RNAi enhanced intracellular bacterial invasion. These results provide the first indication that a fish Rab1 GTPase, SoRab1, regulates intracellular bacterial infection and thus is likely to play a role in bacteria-induced host immune defense. PMID:21889593

  17. Structure of the ribosomal interacting GTPase YjeQ from the enterobacterial species Salmonella typhimurium

    SciTech Connect

    Nichols, C. E.; Johnson, C.; Lamb, H. K.; Lockyer, M.; Charles, I. G.; Hawkins, A. R.; Stammers, D. K.

    2007-11-01

    The X-ray crystal structure of the GTPase YjeQ from S. typhimurium is presented and compared with those of orthologues from T. maritima and B. subtilis. The YjeQ class of P-loop GTPases assist in ribosome biogenesis and also bind to the 30S subunit of mature ribosomes. YjeQ ribosomal binding is GTP-dependent and thought to specifically direct protein synthesis, although the nature of the upstream signal causing this event in vivo is as yet unknown. The attenuating effect of YjeQ mutants on bacterial growth in Escherichia coli makes it a potential target for novel antimicrobial agents. In order to further explore the structure and function of YjeQ, the isolation, crystallization and structure determination of YjeQ from the enterobacterial species Salmonella typhimurium (StYjeQ) is reported. Whilst the overall StYjeQ fold is similar to those of the previously reported Thematoga maritima and Bacillus subtilis orthologues, particularly the GTPase domain, there are larger differences in the three OB folds. Although the zinc-finger secondary structure is conserved, significant sequence differences alter the nature of the external surface in each case and may reflect varying signalling pathways. Therefore, it may be easier to develop YjeQ-specific inhibitors that target the N- and C-terminal regions, disrupting the metabolic connectivity rather than the GTPase activity. The availability of coordinates for StYjeQ will provide a significantly improved basis for threading Gram-negative orthologue sequences and in silico compound-screening studies, with the potential for the development of species-selective drugs.

  18. Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth.

    PubMed

    Molendijk, A J; Bischoff, F; Rajendrakumar, C S; Friml, J; Braun, M; Gilroy, S; Palme, K

    2001-06-01

    Plants contain a novel unique subfamily of Rho GTPases, vital components of cellular signalling networks. Here we report a general role for some members of this family in polarized plant growth processes. We show that Arabidopsis AtRop4 and AtRop6 encode functional GTPases with similar intrinsic GTP hydrolysis rates. We localized AtRop proteins in root meristem cells to the cross-wall and cell plate membranes. Polar localization of AtRops in trichoblasts specifies the growth sites for emerging root hairs. These sites were visible before budding and elongation of the Arabidopsis root hair when AtRops accumulated at their tips. Expression of constitutively active AtRop4 and AtRop6 mutant proteins in root hairs of transgenic Arabidopsis plants abolished polarized growth and delocalized the tip-focused Ca2+ gradient. Polar localization of AtRops was inhibited by brefeldin A, but not by other drugs such as latrunculin B, cytochalasin D or caffeine. Our results demonstrate a general function of AtRop GTPases in tip growth and in polar diffuse growth.

  19. Narciclasine as well as other Amaryllidaceae isocarbostyrils are promising GTP-ase targeting agents against brain cancers.

    PubMed

    Van Goietsenoven, Gwendoline; Mathieu, Véronique; Lefranc, Florence; Kornienko, Alexander; Evidente, Antonio; Kiss, Robert

    2013-03-01

    The anticancer activity of Amaryllidaceae isocarbostyrils is well documented. At pharmacological concentrations, that is, approximately 1 μM in vitro and approximately 10 mg/kg in vivo, narciclasine displays marked proapoptotic and cytotoxic activity, as does pancratistatin, and significant in vivo anticancer effects in various experimental models, but it is also associated with severe toxic side effects. At physiological doses, that is, approximately 50 nM in vitro and approximately 1 mg/kg in vivo, narciclasine is not cytotoxic but cytostatic and displays marked anticancer activity in vivo in experimental models of brain cancer (including gliomas and brain metastases), but it is not associated with toxic side effects. The cytostatic activity of narciclasine involves the impairment of actin cytoskeleton organization by targeting GTPases, including RhoA and the elongation factor eEF1A. We have demonstrated that chronic treatments of narciclasine (1 mg/kg) significantly increased the survival of immunodeficient mice orthotopically xenografted with highly invasive human glioblastomas and apoptosis-resistant brain metastases, including melanoma- and non-small-cell-lung cancer- (NSCLC) related brain metastases. Thus, narciclasine is a potentially promising agent for the treatment of primary brain cancers and various brain metastases. To date, efforts to develop synthetic analogs with anticancer properties superior to those of narciclasine have failed; thus, research efforts are now focused on narciclasine prodrugs.

  20. Active multispectral near-IR detection of small surface targets

    NASA Astrophysics Data System (ADS)

    de Jong, Arie N.; Winkel, Hans; Roos, Marco J. J.

    2001-10-01

    The detection and identification of small surface targets with Electro-Optical sensors is seriously hampered by ground clutter, leading to false alarms and reduced detection probabilities. Active ground illumination can improve the detection performance of EO sensors compared to passive skylight illumination because of the knowledge of the illumination level and of its temporal stability. Sun and sky cannot provide this due to the weather variability. In addition multispectral sensors with carefully chosen spectral bands ranging from the visual into the near IR from 400-2500 nm wavelength can take benefit of a variety of cheap active light sources, ranging from lasers to Xenon or halogen lamps. Results are presented, obtained with a two- color laser scanner with one wavelength in the chlorophyll absorption dip. Another active scanner is described operating at 4 wavebands between 1400 and 2300 nm, using tungsten halogen lamps. Finally a simple TV camera was used with either a ste of narrow band spectral filters or polarization filters in front of the lamps. The targets consisted of an array of mixed objects, most of them real mines. The results how great promise in enhancing the detection and identification probabilities of EO sensors against small surface targets.