Science.gov

Sample records for activate virulence gene

  1. Distinct Expression Levels of ALS, LIP, and SAP Genes in Candida tropicalis with Diverse Virulent Activities

    PubMed Central

    Yu, Shuanbao; Li, Wenge; Liu, Xiaoshu; Che, Jie; Wu, Yuan; Lu, Jinxing

    2016-01-01

    Candia tropicalis is an increasingly important human pathogen, causing nosocomial fungemia among patients with neutropenia or malignancy. However, limited research has been published concerning its pathogenicity. Based on the phenotypes of C. tropicalis in our previous study, we selected nine representative strains with different activities of virulence factors (adhesion, biofilm formation, secreted aspartic proteinases, and hemolysins), and one reference strain, ATCC750. The present study aimed to investigate the filamentation ability, the expression of virulence genes (ALST1-3, LIP1, LIP4, and SAPT1-4) and the cell damage of C. tropicalis strains with diverse virulences. C. tropicalis exhibited strain-dependent filamentation ability, which was positively correlated with biofilm formation. Reverse transcriptase PCR analysis showed that the ALST3 and SAPT3 genes had the highest expression in their corresponding genes for most C. tropicalis. The expressions of virulence genes, except ALST3 on polystyrene, were upregulated compared with growth in the planktonic and on human urinary bladder epithelial cell line (TCC-SUP) surface. Clustering analysis of virulence genes showed that isolates had a high biofilm forming ability on polystyrene formed a group. Lactate dehydrogenase assays showed that the cell damage induced by C. tropicalis markedly increased with longer infection time (24 and 48 h). Strain FXCT01, isolated from blood, caused the most serious cell damage; while ZRCT52, which had no filamentation ability, caused the least cell damage. Correlation analysis demonstrated significant correlation existed between adhesion on epithelial cells or the expression of ALST2-3 and cell damage. Overall, our results supported the view that adhesion and filamentation may play significant roles in the cell damage caused by C. tropicalis. PMID:27524980

  2. Distinct Expression Levels of ALS, LIP, and SAP Genes in Candida tropicalis with Diverse Virulent Activities.

    PubMed

    Yu, Shuanbao; Li, Wenge; Liu, Xiaoshu; Che, Jie; Wu, Yuan; Lu, Jinxing

    2016-01-01

    Candia tropicalis is an increasingly important human pathogen, causing nosocomial fungemia among patients with neutropenia or malignancy. However, limited research has been published concerning its pathogenicity. Based on the phenotypes of C. tropicalis in our previous study, we selected nine representative strains with different activities of virulence factors (adhesion, biofilm formation, secreted aspartic proteinases, and hemolysins), and one reference strain, ATCC750. The present study aimed to investigate the filamentation ability, the expression of virulence genes (ALST1-3, LIP1, LIP4, and SAPT1-4) and the cell damage of C. tropicalis strains with diverse virulences. C. tropicalis exhibited strain-dependent filamentation ability, which was positively correlated with biofilm formation. Reverse transcriptase PCR analysis showed that the ALST3 and SAPT3 genes had the highest expression in their corresponding genes for most C. tropicalis. The expressions of virulence genes, except ALST3 on polystyrene, were upregulated compared with growth in the planktonic and on human urinary bladder epithelial cell line (TCC-SUP) surface. Clustering analysis of virulence genes showed that isolates had a high biofilm forming ability on polystyrene formed a group. Lactate dehydrogenase assays showed that the cell damage induced by C. tropicalis markedly increased with longer infection time (24 and 48 h). Strain FXCT01, isolated from blood, caused the most serious cell damage; while ZRCT52, which had no filamentation ability, caused the least cell damage. Correlation analysis demonstrated significant correlation existed between adhesion on epithelial cells or the expression of ALST2-3 and cell damage. Overall, our results supported the view that adhesion and filamentation may play significant roles in the cell damage caused by C. tropicalis. PMID:27524980

  3. Differential activation of a Candida albicans virulence gene family during infection

    PubMed Central

    Staib, Peter; Kretschmar, Marianne; Nichterlein, Thomas; Hof, Herbert; Morschhäuser, Joachim

    2000-01-01

    The yeast Candida albicans is a harmless commensal in most healthy people, but it causes superficial as well as life-threatening systemic infections in immunocompromised patients. C. albicans can colonize or infect virtually all body sites because of its high adaptability to different host niches, which involves the activation of appropriate sets of genes in response to complex environmental signals. We have used an in vivo expression technology that is based on genetic recombination as a reporter of gene expression to monitor the differential activation of individual members of a gene family encoding secreted aspartic proteinases (Saps), which have been implicated in C. albicans virulence, at various stages of the infection process. Our results demonstrate that SAP expression depends on the type of infection, with different SAP isogenes being activated during systemic disease as compared with mucosal infection. In addition, the activation of individual SAP genes depends on the progress of the infection, some members of the gene family being induced immediately after contact with the host, whereas others are expressed only after dissemination into deep organs. In the latter case, the number of invading organisms determines whether induction of a virulence gene is necessary for successful infection. The in vivo expression technology allows the elucidation of gene expression patterns at different stages of the fungus–host interaction, thereby revealing regulatory adaptation mechanisms that make C. albicans the most successful fungal pathogen of humans and, at the same time, identifying the stage of an infection at which certain virulence genes may play a role. PMID:10811913

  4. The metabolic regulator CodY links Listeria monocytogenes metabolism to virulence by directly activating the virulence regulatory gene prfA.

    PubMed

    Lobel, Lior; Sigal, Nadejda; Borovok, Ilya; Belitsky, Boris R; Sonenshein, Abraham L; Herskovits, Anat A

    2015-02-01

    Metabolic adaptations are critical to the ability of bacterial pathogens to grow within host cells and are normally preceded by sensing of host-specific metabolic signals, which in turn can influence the pathogen's virulence state. Previously, we reported that the intracellular bacterial pathogen Listeria monocytogenes responds to low availability of branched-chain amino acids (BCAAs) within mammalian cells by up-regulating both BCAA biosynthesis and virulence genes. The induction of virulence genes required the BCAA-responsive transcription regulator, CodY, but the molecular mechanism governing this mode of regulation was unclear. In this report, we demonstrate that CodY directly binds the coding sequence of the L. monocytogenes master virulence activator gene, prfA, 15 nt downstream of its start codon, and that this binding results in up-regulation of prfA transcription specifically under low concentrations of BCAA. Mutating this site abolished CodY binding and reduced prfA transcription in macrophages, and attenuated bacterial virulence in mice. Notably, the mutated binding site did not alter prfA transcription or PrfA activity under other conditions that are known to activate PrfA, such as during growth in the presence of glucose-1-phosphate. This study highlights the tight crosstalk between L. monocytogenes metabolism and virulence, while revealing novel features of CodY-mediated regulation. PMID:25430920

  5. The metabolic regulator CodY links L. monocytogenes metabolism to virulence by directly activating the virulence regulatory gene, prfA

    PubMed Central

    Lobel, Lior; Sigal, Nadejda; Borovok, Ilya; Belitsky, Boris R.; Sonenshein, Abraham L.; Herskovits, Anat A.

    2015-01-01

    Summary Metabolic adaptations are critical to the ability of bacterial pathogens to grow within host cells and are normally preceded by sensing of host-specific metabolic signals, which in turn can influence the pathogen's virulence state. Previously, we reported that the intracellular bacterial pathogen Listeria monocytogenes responds to low availability of branched-chain amino acids (BCAA) within mammalian cells by up-regulating both BCAA biosynthesis and virulence genes. The induction of virulence genes required the BCAA-responsive transcription regulator, CodY, but the molecular mechanism governing this mode of regulation was unclear. In this report, we demonstrate that CodY directly binds the coding sequence of the L. monocytogenes master virulence activator gene, prfA, 15 nt downstream of its start codon, and that this binding results in up-regulation of prfA transcription specifically under low concentrations of BCAA. Mutating this site abolished CodY binding and reduced prfA transcription in macrophages, and attenuated bacterial virulence in mice. Notably, the mutated binding site did not alter prfA transcription or PrfA activity under other conditions that are known to activate PrfA, such as during growth in the presence of glucose-1-phosphate. This study highlights the tight crosstalk between L. monocytogenes metabolism and virulence' while revealing novel features of CodY-mediated regulation. PMID:25430920

  6. Porcine E. coli: Virulence-Associated Genes, Resistance Genes and Adhesion and Probiotic Activity Tested by a New Screening Method

    PubMed Central

    Schierack, Peter; Rödiger, Stefan; Kuhl, Christoph; Hiemann, Rico; Roggenbuck, Dirk; Li, Ganwu; Weinreich, Jörg; Berger, Enrico; Nolan, Lisa K.; Nicholson, Bryon; Römer, Antje; Frömmel, Ulrike; Wieler, Lothar H.; Schröder, Christian

    2013-01-01

    We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2) and their probiotic activity against infection by enteropathogenic E. coli (EPEC). 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars. Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation. In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars. PMID:23658605

  7. Characterization of DNase activity and gene in Streptococcus suis and evidence for a role as virulence factor

    PubMed Central

    2014-01-01

    Background The Gram-positive bacterium Streptococcus suis serotype 2 is an important swine pathogen and emerging zoonotic agent. Multilocus sequence typing allowed dividing S. suis serotype 2 into sequence types (STs). The three major STs of S. suis serotype 2 from North America are 1 (most virulent), 25 (intermediate virulence) and 28 (less virulent). Although the presence of DNase activity in S. suis has been previously reported, little data is available. The aim of this study was to investigate DNase activity in S. suis according to STs, to characterize the activity and gene, and to provide evidence for a potential role in virulence. Results We showed that ST1 and ST28 strains exhibited DNase activity that was absent in ST25 strains. The lack of activity in ST25 isolates was associated with a 14-bp deletion resulting in a shifted reading frame and a premature stop codon. The DNase of S. suis P1/7 (ST1) was cell-associated and active on linear DNA. A DNase-deficient mutant of S. suis P1/7 was found to be less virulent in an amoeba model. Stimulation of macrophages with the DNase mutant showed a decreased secretion of pro-inflammatory cytokines and matrix metalloproteinase-9 compared to the parental strain. Conclusions This study further expands our knowledge of S. suis DNase and its potential role in virulence. PMID:24996230

  8. Mutations in the control of virulence sensor gene from Streptococcus pyogenes after infection in mice lead to clonal bacterial variants with altered gene regulatory activity and virulence.

    PubMed

    Mayfield, Jeffrey A; Liang, Zhong; Agrahari, Garima; Lee, Shaun W; Donahue, Deborah L; Ploplis, Victoria A; Castellino, Francis J

    2014-01-01

    The cluster of virulence sensor (CovS)/responder (CovR) two-component operon (CovRS) regulates ∼15% of the genes of the Group A Streptococcal pyogenes (GAS) genome. Bacterial clones containing inactivating mutations in the covS gene have been isolated from patients with virulent invasive diseases. We report herein an assessment of the nature and types of covS mutations that can occur in both virulent and nonvirulent GAS strains, and assess whether a nonvirulent GAS can attain enhanced virulence through this mechanism. A group of mice were infected with a globally-disseminated clonal M1T1 GAS (isolate 5448), containing wild-type (WT) CovRS (5448/CovR+S+), or less virulent engineered GAS strains, AP53/CovR+S+ and Manfredo M5/CovR+S+. SpeB negative GAS clones from wound sites and/or from bacteria disseminated to the spleen were isolated and the covS gene was subjected to DNA sequence analysis. Numerous examples of inactivating mutations were found in CovS in all regions of the gene. The mutations found included frame-shift insertions and deletions, and in-frame small and large deletions in the gene. Many of the mutations found resulted in early translation termination of CovS. Thus, the covS gene is a genomic mutagenic target that gives GAS enhanced virulence. In cases wherein CovS- was discovered, these clonal variants exhibited high lethality, further suggesting that randomly mutated covS genes occur during the course of infection, and lead to the development of a more invasive infection. PMID:24968349

  9. Mutations in the Control of Virulence Sensor Gene from Streptococcus pyogenes after Infection in Mice Lead to Clonal Bacterial Variants with Altered Gene Regulatory Activity and Virulence

    PubMed Central

    Mayfield, Jeffrey A.; Liang, Zhong; Agrahari, Garima; Lee, Shaun W.; Donahue, Deborah L.; Ploplis, Victoria A.; Castellino, Francis J.

    2014-01-01

    The cluster of virulence sensor (CovS)/responder (CovR) two-component operon (CovRS) regulates ∼15% of the genes of the Group A Streptococcal pyogenes (GAS) genome. Bacterial clones containing inactivating mutations in the covS gene have been isolated from patients with virulent invasive diseases. We report herein an assessment of the nature and types of covS mutations that can occur in both virulent and nonvirulent GAS strains, and assess whether a nonvirulent GAS can attain enhanced virulence through this mechanism. A group of mice were infected with a globally-disseminated clonal M1T1 GAS (isolate 5448), containing wild-type (WT) CovRS (5448/CovR+S+), or less virulent engineered GAS strains, AP53/CovR+S+ and Manfredo M5/CovR+S+. SpeB negative GAS clones from wound sites and/or from bacteria disseminated to the spleen were isolated and the covS gene was subjected to DNA sequence analysis. Numerous examples of inactivating mutations were found in CovS in all regions of the gene. The mutations found included frame-shift insertions and deletions, and in-frame small and large deletions in the gene. Many of the mutations found resulted in early translation termination of CovS. Thus, the covS gene is a genomic mutagenic target that gives GAS enhanced virulence. In cases wherein CovS− was discovered, these clonal variants exhibited high lethality, further suggesting that randomly mutated covS genes occur during the course of infection, and lead to the development of a more invasive infection. PMID:24968349

  10. A spectrum of CodY activities drives metabolic reorganization and virulence gene expression in Staphylococcus aureus.

    PubMed

    Waters, Nicholas R; Samuels, David J; Behera, Ranjan K; Livny, Jonathan; Rhee, Kyu Y; Sadykov, Marat R; Brinsmade, Shaun R

    2016-08-01

    The global regulator CodY controls the expression of dozens of metabolism and virulence genes in the opportunistic pathogen Staphylococcus aureus in response to the availability of isoleucine, leucine and valine (ILV), and GTP. Using RNA-Seq transcriptional profiling and partial activity variants, we reveal that S. aureus CodY activity grades metabolic and virulence gene expression as a function of ILV availability, mediating metabolic reorganization and controlling virulence factor production in vitro. Strains lacking CodY regulatory activity produce a PIA-dependent biofilm, but development is restricted under conditions that confer partial CodY activity. CodY regulates the expression of thermonuclease (nuc) via the Sae two-component system, revealing cascading virulence regulation and factor production as CodY activity is reduced. Proteins that mediate the host-pathogen interaction and subvert the immune response are shut off at intermediate levels of CodY activity, while genes coding for enzymes and proteins that extract nutrients from tissue, that kill host cells, and that synthesize amino acids are among the last genes to be derepressed. We conclude that S. aureus uses CodY to limit host damage to only the most severe starvation conditions, providing insight into one potential mechanism by which S. aureus transitions from a commensal bacterium to an invasive pathogen. PMID:27116338

  11. Virulence gene regulation inside and outside.

    PubMed

    DiRita, V J; Engleberg, N C; Heath, A; Miller, A; Crawford, J A; Yu, R

    2000-05-29

    Much knowledge about microbial gene regulation and virulence is derived from genetic and biochemical studies done outside of hosts. The aim of this review is to correlate observations made in vitro and in vivo with two different bacterial pathogens in which the nature of regulated gene expression leading to virulence is quite different. The first is Vibrio cholerae, in which the concerted action of a complicated regulatory cascade involving several transcription activators leads ultimately to expression of cholera toxin and the toxin-coregulated pilus. The regulatory cascade is active in vivo and is also required for maintenance of V. cholerae in the intestinal tract during experimental infection. Nevertheless, specific signals predicted to be generated in vivo, such as bile and a temperature of 37 degrees C, have a severe down-modulating effect on activation of toxin and pilus expression. Another unusual aspect of gene regulation in this system is the role played by inner membrane proteins that activate transcription. Although the topology of these proteins suggests an appealing model for signal transduction leading to virulence gene expression, experimental evidence suggests that such a model may be simplistic. In Streptococcus pyogenes, capsule production is critical for virulence in an animal model of necrotizing skin infection. Yet capsule is apparently produced to high levels only from mutation in a two-component regulatory system, CsrR and CsrS. Thus it seems that in V. cholerae a complex regulatory pathway has evolved to control virulence by induction of gene expression in vivo, whereas in S. pyogenes at least one mode of pathogenicity is potentiated by the absence of regulation. PMID:10874738

  12. UreR, the transcriptional activator of the Proteus mirabilis urease gene cluster, is required for urease activity and virulence in experimental urinary tract infections.

    PubMed

    Dattelbaum, Jonathan D; Lockatell, C Virginia; Johnson, David E; Mobley, Harry L T

    2003-02-01

    Proteus mirabilis, a cause of complicated urinary tract infection, produces urease, an essential virulence factor for this species. UreR, a member of the AraC/XylS family of transcriptional regulators, positively activates expression of the ure gene cluster in the presence of urea. To specifically evaluate the contribution of UreR to urease activity and virulence in the urinary tract, a ureR mutation was introduced into P. mirabilis HI4320 by homologous recombination. The isogenic ureR::aphA mutant, deficient in UreR production, lacked measurable urease activity. Expression was not detected in the UreR-deficient strain by Western blotting with monoclonal antibodies raised against UreD. Urease activity and UreD expression were restored by complementation of the mutant strain with ureR expressed from a low-copy-number plasmid. Virulence was assessed by transurethral cochallenge of CBA mice with wild-type and mutant strains. The isogenic ureR::aphA mutant of HI4320 was outcompeted in the urine (P = 0.004), bladder (P = 0.016), and kidneys (P < or = 0.001) 7 days after inoculation. Thus, UreR is required for basal urease activity in the absence of urea, for induction of urease by urea, and for virulence of P. mirabilis in the urinary tract. PMID:12540589

  13. An In Vivo Selection Identifies Listeria monocytogenes Genes Required to Sense the Intracellular Environment and Activate Virulence Factor Expression

    PubMed Central

    Portnoy, Daniel A.

    2016-01-01

    Listeria monocytogenes is an environmental saprophyte and facultative intracellular bacterial pathogen with a well-defined life-cycle that involves escape from a phagosome, rapid cytosolic growth, and ActA-dependent cell-to-cell spread, all of which are dependent on the master transcriptional regulator PrfA. The environmental cues that lead to temporal and spatial control of L. monocytogenes virulence gene expression are poorly understood. In this study, we took advantage of the robust up-regulation of ActA that occurs intracellularly and expressed Cre recombinase from the actA promoter and 5’ untranslated region in a strain in which loxP sites flanked essential genes, so that activation of actA led to bacterial death. Upon screening for transposon mutants that survived intracellularly, six genes were identified as necessary for ActA expression. Strikingly, most of the genes, including gshF, spxA1, yjbH, and ohrA, are predicted to play important roles in bacterial redox regulation. The mutants identified in the genetic selection fell into three broad categories: (1) those that failed to reach the cytosolic compartment; (2) mutants that entered the cytosol, but failed to activate the master virulence regulator PrfA; and (3) mutants that entered the cytosol and activated transcription of actA, but failed to synthesize it. The identification of mutants defective in vacuolar escape suggests that up-regulation of ActA occurs in the host cytosol and not the vacuole. Moreover, these results provide evidence for two non-redundant cytosolic cues; the first results in allosteric activation of PrfA via increased glutathione levels and transcriptional activation of actA while the second results in translational activation of actA and requires yjbH. Although the precise host cues have not yet been identified, we suggest that intracellular redox stress occurs as a consequence of both host and pathogen remodeling their metabolism upon infection. PMID:27414028

  14. An In Vivo Selection Identifies Listeria monocytogenes Genes Required to Sense the Intracellular Environment and Activate Virulence Factor Expression.

    PubMed

    Reniere, Michelle L; Whiteley, Aaron T; Portnoy, Daniel A

    2016-07-01

    Listeria monocytogenes is an environmental saprophyte and facultative intracellular bacterial pathogen with a well-defined life-cycle that involves escape from a phagosome, rapid cytosolic growth, and ActA-dependent cell-to-cell spread, all of which are dependent on the master transcriptional regulator PrfA. The environmental cues that lead to temporal and spatial control of L. monocytogenes virulence gene expression are poorly understood. In this study, we took advantage of the robust up-regulation of ActA that occurs intracellularly and expressed Cre recombinase from the actA promoter and 5' untranslated region in a strain in which loxP sites flanked essential genes, so that activation of actA led to bacterial death. Upon screening for transposon mutants that survived intracellularly, six genes were identified as necessary for ActA expression. Strikingly, most of the genes, including gshF, spxA1, yjbH, and ohrA, are predicted to play important roles in bacterial redox regulation. The mutants identified in the genetic selection fell into three broad categories: (1) those that failed to reach the cytosolic compartment; (2) mutants that entered the cytosol, but failed to activate the master virulence regulator PrfA; and (3) mutants that entered the cytosol and activated transcription of actA, but failed to synthesize it. The identification of mutants defective in vacuolar escape suggests that up-regulation of ActA occurs in the host cytosol and not the vacuole. Moreover, these results provide evidence for two non-redundant cytosolic cues; the first results in allosteric activation of PrfA via increased glutathione levels and transcriptional activation of actA while the second results in translational activation of actA and requires yjbH. Although the precise host cues have not yet been identified, we suggest that intracellular redox stress occurs as a consequence of both host and pathogen remodeling their metabolism upon infection. PMID:27414028

  15. The Agrobacterium tumefaciens virulence protein VirE3 is a transcriptional activator of the F-box gene VBF.

    PubMed

    Niu, Xiaolei; Zhou, Meiliang; Henkel, Christiaan V; van Heusden, G Paul H; Hooykaas, Paul J J

    2015-12-01

    During Agrobacterium tumefaciens-mediated transformation of plant cells a part of the tumour-inducing plasmid, T-DNA, is integrated into the host genome. In addition, a number of virulence proteins are translocated into the host cell. The virulence protein VirE3 binds to the Arabidopsis thaliana pBrp protein, a plant-specific general transcription factor of the TFIIB family. To study a possible role for VirE3 in transcriptional regulation, we stably expressed virE3 in A. thaliana under control of a tamoxifen-inducible promoter. By RNA sequencing we showed that upon expression of virE3 the RNA levels of 607 genes were increased more than three-fold and those of 132 genes decreased more than three-fold. One of the strongly activated genes was that encoding VBF (At1G56250), an F-box protein that may affect the levels of the VirE2 and VIP1 proteins. Using Arabidopsis cell suspension protoplasts we showed that VirE3 stimulates the VBF promoter, especially when co-expressed with pBrp. Although pBrp is localized at the external surface of plastids, co-expression of VirE3 and pBrp in Arabidopsis cell suspension protoplasts resulted in the accumulation of pBrp in the nucleus. Our results suggest that VirE3 affects the transcriptional machinery of the host cell to favour the transformation process. PMID:26461850

  16. DIFFERENTIAL GENE EXPRESSION OF PUTATIVE VIRULENCE GENES IN Flavobacterium columnare

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A shot-gun genomic library of the Flavobacterium columnare ALG-530 virulent strain has been constructed and more than 3,000 clones have been sequenced to date (800 contigs). Based on sequence identity with putative known virulence genes from related species, seven genes were selected for differentia...

  17. Virulence Gene Regulation in Escherichia coli.

    PubMed

    Mellies, Jay L; Barron, Alex M S

    2006-01-01

    Escherichia colicauses three types of illnesses in humans: diarrhea, urinary tract infections, and meningitis in newborns. The acquisition of virulence-associated genes and the ability to properly regulate these, often horizontally transferred, loci distinguishes pathogens from the normally harmless commensal E. coli found within the human intestine. This review addresses our current understanding of virulence gene regulation in several important diarrhea-causing pathotypes, including enteropathogenic, enterohemorrhagic,enterotoxigenic, and enteroaggregativeE. coli-EPEC, EHEC, ETEC and EAEC, respectively. The intensely studied regulatory circuitry controlling virulence of uropathogenicE. coli, or UPEC, is also reviewed, as is that of MNEC, a common cause of meningitis in neonates. Specific topics covered include the regulation of initial attachment events necessary for infection, environmental cues affecting virulence gene expression, control of attaching and effacing lesionformation, and control of effector molecule expression and secretion via the type III secretion systems by EPEC and EHEC. How phage control virulence and the expression of the Stx toxins of EHEC, phase variation, quorum sensing, and posttranscriptional regulation of virulence determinants are also addressed. A number of important virulence regulators are described, including the AraC-like molecules PerA of EPEC, CfaR and Rns of ETEC, and AggR of EAEC;the Ler protein of EPEC and EHEC;RfaH of UPEC;and the H-NS molecule that acts to silence gene expression. The regulatory circuitry controlling virulence of these greatly varied E. colipathotypes is complex, but common themes offerinsight into the signals and regulators necessary forE. coli disease progression. PMID:26443571

  18. VirD2 gene product from the nopaline plasmid pTiC58 has at least two activities required for virulence.

    PubMed Central

    Steck, T R; Lin, T S; Kado, C I

    1990-01-01

    Virulence genes virD1 and virD2 are required for T-DNA processing in Agrobacterium tumefaciens. The regions within virD2 contributing to T-DNA processing and virulence were investigated. Some insertional mutations in virD2 prevented T-DNA border endonucleolytic cleavage and produced an avirulent phenotype. However, a non-polar insertion immediately after bp 684 of the 1344 bp open reading frame of virD2 did not inhibit endonucleolytic cleavage but still caused a loss of virulence. This suggested that in addition to T-DNA border cleaving activity, the VirD2 protein has another virulence function which resides in the C-terminal half of the protein. Comparative nucleotide sequence analyses of virD2 showed that the first 684 bp were 81% homologous to virD2 of an octopine Ti plasmid whereas the remaining 660 bp were only 44% homologous. A plasmid containing the virD region from octopine Ti plasmid could restore both virulence and processing to a nopaline virD2 mutant. No complementation resulted when a nopaline virD2 clone containing a region similar to eukaryotic nuclear envelope transport sequences was deleted from the 3' end. These results suggest that virD1 and only the first half of virD2 are required to encode for the T-DNA processing endonuclease, and that the 3'-half of virD2 encodes a function separate from endonuclease activity that is required for virulence. Images PMID:2263456

  19. Pathogenomic Inference of Virulence-Associated Genes in Leptospira interrogans

    PubMed Central

    Lehmann, Jason S.; Fouts, Derrick E.; Haft, Daniel H.; Cannella, Anthony P.; Ricaldi, Jessica N.; Brinkac, Lauren; Harkins, Derek; Durkin, Scott; Sanka, Ravi; Sutton, Granger; Moreno, Angelo; Vinetz, Joseph M.; Matthias, Michael A.

    2013-01-01

    Leptospirosis is a globally important, neglected zoonotic infection caused by spirochetes of the genus Leptospira. Since genetic transformation remains technically limited for pathogenic Leptospira, a systems biology pathogenomic approach was used to infer leptospiral virulence genes by whole genome comparison of culture-attenuated Leptospira interrogans serovar Lai with its virulent, isogenic parent. Among the 11 pathogen-specific protein-coding genes in which non-synonymous mutations were found, a putative soluble adenylate cyclase with host cell cAMP-elevating activity, and two members of a previously unstudied ∼15 member paralogous gene family of unknown function were identified. This gene family was also uniquely found in the alpha-proteobacteria Bartonella bacilliformis and Bartonella australis that are geographically restricted to the Andes and Australia, respectively. How the pathogenic Leptospira and these two Bartonella species came to share this expanded gene family remains an evolutionary mystery. In vivo expression analyses demonstrated up-regulation of 10/11 Leptospira genes identified in the attenuation screen, and profound in vivo, tissue-specific up-regulation by members of the paralogous gene family, suggesting a direct role in virulence and host-pathogen interactions. The pathogenomic experimental design here is generalizable as a functional systems biology approach to studying bacterial pathogenesis and virulence and should encourage similar experimental studies of other pathogens. PMID:24098822

  20. Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A2 activity and attenuates virulence

    PubMed Central

    Theiss, Stephanie; Ishdorj, Ganchimeg; Brenot, Audrey; Kretschmar, Marianne; Lan, Chung-Yu; Nichterlein, Thomas; Hacker, Jörg; Nigam, Santosh; Agabian, Nina; Köhler, Gerwald A.

    2008-01-01

    Phospholipases are critical for modification and redistribution of lipid substrates, membrane remodeling and microbial virulence. Among the many different classes of phospholipases, fungal phospholipase B (Plb) proteins show the broadest range of substrate specificity and hydrolytic activity, hydrolyzing acyl ester bonds in phospholipids and lysophospholipids and further catalyzing lysophospholipase-transacylase reactions. The genome of the opportunistic fungal pathogen Candida albicans encodes a PLB multigene family with five putative members; we present the first characterization of this group of potential virulence determinants. CaPLB5, the third member of this multigene family characterized herein is a putative secretory protein with a predicted GPI-anchor attachment site. Real-time RT-PCR gene expression analysis of CaPLB5 and the additional CaPLB gene family members revealed that filamentous growth and physiologically relevant environmental conditions are associated with increased phospholipase B gene activity. The phenotypes expressed by null mutant and revertant strains of CaPLB5 indicate that this lipid hydrolase plays an important role for cell-associated phospholipase A2 activity and in vivo organ colonization. PMID:16759910

  1. CovS simultaneously activates and inhibits the CovR-mediated repression of distinct subsets of group A Streptococcus virulence factor-encoding genes.

    PubMed

    Treviño, Jeanette; Perez, Nataly; Ramirez-Peña, Esmeralda; Liu, Zhuyun; Shelburne, Samuel A; Musser, James M; Sumby, Paul

    2009-08-01

    To colonize and cause disease at distinct anatomical sites, bacterial pathogens must tailor gene expression in a microenvironment-specific manner. The molecular mechanisms that control the ability of the human bacterial pathogen group A Streptococcus (GAS) to transition between infection sites have yet to be fully elucidated. A key regulator of GAS virulence gene expression is the CovR-CovS two-component regulatory system (also known as CsrR-CsrS). covR and covS mutant strains arise spontaneously during invasive infections and, in in vivo models of infection, rapidly become dominant. Here, we compared wild-type GAS with covR, covS, and covRS isogenic mutant strains to investigate the heterogeneity in the types of natural mutations that occur in covR and covS and the phenotypic consequences of covR or covS mutation. We found that the response regulator CovR retains some regulatory function in the absence of CovS and that CovS modulates CovR to significantly enhance repression of one group of genes (e.g., the speA, hasA, and ska genes) while it reduces repression of a second group of genes (e.g., the speB, grab, and spd3 genes). We also found that different in vivo-induced covR mutations can lead to strikingly different transcriptomes. While covS mutant strains show increased virulence in several invasive models of infection, we determined that these mutants are significantly outcompeted by wild-type GAS during growth in human saliva, an ex vivo model of upper respiratory tract infection. We propose that CovS-mediated regulation of CovR activity plays an important role in the ability of GAS to cycle between pharyngeal and invasive infections. PMID:19451242

  2. Transcriptional Regulators Cph1p and Efg1p Mediate Activation of the Candida albicans Virulence Gene SAP5 during Infection

    PubMed Central

    Staib, Peter; Kretschmar, Marianne; Nichterlein, Thomas; Hof, Herbert; Morschhäuser, Joachim

    2002-01-01

    The opportunistic fungal pathogen Candida albicans can cause superficial as well as systemic infections. Successful adaptation to the different host niches encountered during infection requires coordinated expression of various virulence traits, including the switch between yeast and hyphal growth forms and secretion of aspartic proteinases. Using an in vivo expression technology that is based on genetic recombination as a reporter of gene activation during experimental candidiasis in mice, we investigated whether two signal transduction pathways controlling hyphal growth, a mitogen-activated protein kinase cascade ending in the transcriptional activator Cph1p and a cyclic AMP-dependent regulatory pathway that involves the transcription factor Efg1p, also control expression of the SAP5 gene, which encodes one of the secreted aspartic proteinases and is induced by host signals soon after infection. Our results show that both transcriptional regulators are important for SAP5 activation in vivo. SAP5 expression was reduced in a cph1 mutant, although filamentous growth in infected tissue was not detectably impaired. SAP5 expression was also reduced, but not eliminated, in an efg1 null mutant, although this strain grew exclusively in the yeast form in infected tissue, demonstrating that in contrast to in vitro conditions, SAP5 activation during infection does not depend on growth of C. albicans in the hyphal form. In a cph1 efg1 double mutant, however, SAP5 expression in infected mice was almost completely eliminated, suggesting that the two signal transduction pathways are important for SAP5 expression in vivo. The avirulence of the cph1 efg1 mutant seemed to be caused not only by the inability to form hyphae but also by a loss of expression of additional virulence genes in the host. PMID:11796627

  3. Virulence Characterization of Salmonella enterica by a New Microarray: Detection and Evaluation of the Cytolethal Distending Toxin Gene Activity in the Unusual Host S. Typhimurium

    PubMed Central

    Figueiredo, Rui; Card, Roderick; Nunes, Carla; AbuOun, Manal; Bagnall, Mary C.; Nunez, Javier; Mendonça, Nuno; Anjum, Muna F.; da Silva, Gabriela Jorge

    2015-01-01

    Salmonella enterica is a zoonotic foodborne pathogen that causes acute gastroenteritis in humans. We assessed the virulence potential of one-hundred and six Salmonella strains isolated from food animals and products. A high through-put virulence genes microarray demonstrated Salmonella Pathogenicity Islands (SPI) and adherence genes were highly conserved, while prophages and virulence plasmid genes were variably present. Isolates were grouped by serotype, and virulence plasmids separated S. Typhimurium in two clusters. Atypical microarray results lead to whole genome sequencing (WGS) of S. Infantis Sal147, which identified deletion of thirty-eight SPI-1 genes. Sal147 was unable to invade HeLa cells and showed reduced mortality in Galleria mellonella infection model, in comparison to a SPI-1 harbouring S. Infantis. Microarray and WGS of S. Typhimurium Sal199, established for the first time in S. Typhimurium presence of cdtB and other Typhi-related genes. Characterization of Sal199 showed cdtB genes were upstream of transposase IS911, and co-expressed with other Typhi-related genes. Cell cycle arrest, cytoplasmic distension, and nuclear enlargement were detected in HeLa cells infected by Sal199, but not with S. Typhimurium LT2. Increased mortality of Galleria was detected on infection with Sal199 compared to LT2. Thus, Salmonella isolates were rapidly characterized using a high through-put microarray; helping to identify unusual virulence features which were corroborated by further characterisation. This work demonstrates that the use of suitable screening methods for Salmonella virulence can help assess the potential risk associated with certain Salmonella to humans. Incorporation of such methodology into surveillance could help reduce the risk of emergence of epidemic Salmonella strains. PMID:26244504

  4. Targeted activation tagging of the Arabidopsis NBS-LRR gene, ADR1, conveys resistance to virulent pathogens.

    PubMed

    Grant, John J; Chini, Andrea; Basu, Debrabata; Loake, Gary J

    2003-08-01

    A transgenic Arabidopsis line containing a chimeric PR-1::luciferase (LUC) reporter gene was subjected to mutagenesis with activation tags. Screening of lines via high-throughput LUC imaging identified a number of dominant Arabidopsis mutants that exhibited enhanced PR-1 gene expression. Here, we report the characterization of one of these mutants, designated activated disease resistance (adr) 1. This line showed constitutive expression of a number of key defense marker genes and accumulated salicylic acid but not ethylene or jasmonic acid. Furthermore, adr1 plants exhibited resistance against the biotrophic pathogens Peronospora parasitica and Erysiphe cichoracearum but not the necrotrophic fungus Botrytis cinerea. Analysis of a series of adr1 double mutants suggested that adr1-mediated resistance against P. parasitica was salicylic acid (SA)-dependent, while resistance against E. cichoracearum was both SA-dependent and partially NPR1-dependent. The ADR1 gene encoded a protein possessing a number of key features, including homology to subdomains of protein kinases, a nucleotide binding domain, and leucine-rich repeats. The controlled, transient expression of ADR1 conveyed striking disease resistance in the absence of yield penalty, highlighting the potential utility of this gene in crop protection. PMID:12906111

  5. Fungal virulence genes as targets for antifungal chemotherapy.

    PubMed Central

    Perfect, J R

    1996-01-01

    Fungal virulence genes have now met the age of molecular pathogenesis. The definition of virulence genes needs to be broad so that it encompasses the focus on molecular antifungal targets and vaccine epitopes. However, in the broad but simple definition of a virulence gene, there will be many complex genetic and host interactions which investigators will need to carefully define. Nevertheless, with the increasing numbers of serious fungal infections produced by old and newly reported organisms, the paucity of present antifungal drugs, and the likelihood of increasing drug resistance, the need for investigations into understanding fungal virulence at the molecular level has never been more important. PMID:8807043

  6. The Transcription Factor AmrZ Utilizes Multiple DNA Binding Modes to Recognize Activator and Repressor Sequences of Pseudomonas aeruginosa Virulence Genes

    PubMed Central

    Pryor, Edward E.; Waligora, Elizabeth A.; Xu, Binjie; Dellos-Nolan, Sheri; Wozniak, Daniel J.; Hollis, Thomas

    2012-01-01

    AmrZ, a member of the Ribbon-Helix-Helix family of DNA binding proteins, functions as both a transcriptional activator and repressor of multiple genes encoding Pseudomonas aeruginosa virulence factors. The expression of these virulence factors leads to chronic and sustained infections associated with worsening prognosis. In this study, we present the X-ray crystal structure of AmrZ in complex with DNA containing the repressor site, amrZ1. Binding of AmrZ to this site leads to auto-repression. AmrZ binds this DNA sequence as a dimer-of-dimers, and makes specific base contacts to two half sites, separated by a five base pair linker region. Analysis of the linker region shows a narrowing of the minor groove, causing significant distortions. AmrZ binding assays utilizing sequences containing variations in this linker region reveals that secondary structure of the DNA, conferred by the sequence of this region, is an important determinant in binding affinity. The results from these experiments allow for the creation of a model where both intrinsic structure of the DNA and specific nucleotide recognition are absolutely necessary for binding of the protein. We also examined AmrZ binding to the algD promoter, which results in activation of the alginate exopolysaccharide biosynthetic operon, and found the protein utilizes different interactions with this site. Finally, we tested the in vivo effects of this differential binding by switching the AmrZ binding site at algD, where it acts as an activator, for a repressor binding sequence and show that differences in binding alone do not affect transcriptional regulation. PMID:22511872

  7. The mitogen-activated protein kinase gene, VdHog1, regulates osmotic stress response, microsclerotia formation and virulence in Verticillium dahliae.

    PubMed

    Wang, Yonglin; Tian, Longyan; Xiong, Dianguang; Klosterman, Steven J; Xiao, Shuxiao; Tian, Chengming

    2016-03-01

    The fungus Verticillium dahliae has gained worldwide notoriety as a destructive plant pathogen, causing vascular wilt diseases on diverse plant species. V. dahliae produces melanized resting bodies, known as microsclerotia, which can survive for 15years in the soil, and are thus critically important in its disease cycle. However, the molecular mechanisms that underpin microsclerotia formation, survival, and germination remain poorly understood. In this study, we observed that deletion of VdHog1 (ΔVdHog1), encoding a homolog of a high-osmolarity glycerol (HOG) response mitogen-activated protein kinase, displayed decreased numbers of melanized microsclerotia in culture, heightened sensitivity to hyperosmotic stress, and increased resistance to the fungicide fludioxonil. Through RNA-Seq analysis, we identified 221 genes differentially expressed in the ΔVdHog1 strain. Interestingly, the expression levels of genes involved in melanin biosynthesis, as well as the hydrophobin gene VDH1, involved in the early stage of microsclerotia formation, were significantly decreased in the ΔVdHog1 strains relative to the wild-type expression levels. The ΔVdHog1 strains exhibited decreased virulence relative to the wild type strain on smoke tree seedlings. These results indicate that VdHog1 regulates hyperosmotic stress responses in V. dahliae, and establishes the Hog1-mediated pathway as a target to further probe the up- and downstream processes that regulate asexual development in this fungus. PMID:26812120

  8. Investigation of Specific Substitutions in Virulence Genes Characterizing Phenotypic Groups of Low-Virulence Field Strains of Listeria monocytogenes

    PubMed Central

    Roche, S. M.; Gracieux, P.; Milohanic, E.; Albert, I.; Virlogeux-Payant, I.; Témoin, S.; Grépinet, O.; Kerouanton, A.; Jacquet, C.; Cossart, P.; Velge, P.

    2005-01-01

    Several models have shown that virulence varies from one strain of Listeria monocytogenes to another, but little is known about the cause of low virulence. Twenty-six field L. monocytogenes strains were shown to be of low virulence in a plaque-forming assay and in a subcutaneous inoculation test in mice. Using the results of cell infection assays and phospholipase activities, the low-virulence strains were assigned to one of four groups by cluster analysis and then virulence-related genes were sequenced. Group I included 11 strains that did not enter cells and had no phospholipase activity. These strains exhibited a mutated PrfA; eight strains had a single amino acid substitution, PrfAK220T, and the other three had a truncated PrfA, PrfAΔ174-237. These genetic modifications could explain the low virulence of group I strains, since mutated PrfA proteins were inactive. Group II and III strains entered cells but did not form plaques. Group II strains had low phosphatidylcholine phospholipase C activity, whereas group III strains had low phosphatidylinositol phospholipase C activity. Several substitutions were observed for five out of six group III strains in the plcA gene and for one out of three group II strains in the plcB gene. Group IV strains poorly colonized spleens of mice and were practically indistinguishable from fully virulent strains on the basis of the above-mentioned in vitro criteria. These results demonstrate a relationship between the phenotypic classification and the genotypic modifications for at least group I and III strains and suggest a common evolution of these strains within a group. PMID:16204519

  9. Virulence Factor-activity Relationships: Workshop Summary

    EPA Science Inventory

    The concept or notion of virulence factor–activity relationships (VFAR) is an approach for identifying an analogous process to the use of qualitative structure–activity relationships (QSAR) for identifying new microbial contaminants. In QSAR, it is hypothesized that, for new chem...

  10. Staphylococcus aureus CodY Negatively Regulates Virulence Gene Expression▿

    PubMed Central

    Majerczyk, Charlotte D.; Sadykov, Marat R.; Luong, Thanh T.; Lee, Chia; Somerville, Greg A.; Sonenshein, Abraham L.

    2008-01-01

    CodY is a global regulatory protein that was first discovered in Bacillus subtilis, where it couples gene expression to changes in the pools of critical metabolites through its activation by GTP and branched-chain amino acids. Homologs of CodY can be found encoded in the genomes of nearly all low-G+C gram-positive bacteria, including Staphylococcus aureus. The introduction of a codY-null mutation into two S. aureus clinical isolates, SA564 and UAMS-1, through allelic replacement, resulted in the overexpression of several virulence genes. The mutant strains had higher levels of hemolytic activity toward rabbit erythrocytes in their culture fluid, produced more polysaccharide intercellular adhesin (PIA), and formed more robust biofilms than did their isogenic parent strains. These phenotypes were associated with derepressed levels of RNA for the hemolytic alpha-toxin (hla), the accessory gene regulator (agr) (RNAII and RNAIII/hld), and the operon responsible for the production of PIA (icaADBC). These data suggest that CodY represses, either directly or indirectly, the synthesis of a number of virulence factors of S. aureus. PMID:18156263

  11. The Daiokanzoto (TJ-84) Kampo Formulation Reduces Virulence Factor Gene Expression in Porphyromonas gingivalis and Possesses Anti-Inflammatory and Anti-Protease Activities.

    PubMed

    Fournier-Larente, Jade; Azelmat, Jabrane; Yoshioka, Masami; Hinode, Daisuke; Grenier, Daniel

    2016-01-01

    Kampo formulations used in Japan to treat a wide variety of diseases and to promote health are composed of mixtures of crude extracts from the roots, bark, leaves, and rhizomes of a number of herbs. The present study was aimed at identifying the beneficial biological properties of Daiokanzoto (TJ-84), a Kampo formulation composed of crude extracts of Rhubarb rhizomes and Glycyrrhiza roots, with a view to using it as a potential treatment for periodontal disease. Daiokanzoto dose-dependently inhibited the expression of major Porphyromonas gingivalis virulence factors involved in host colonization and tissue destruction. More specifically, Daiokanzoto reduced the expression of the fimA, hagA, rgpA, and rgpB genes, as determined by quantitative real-time PCR. The U937-3xκB-LUC monocyte cell line transfected with a luciferase reporter gene was used to evaluate the anti-inflammatory properties of Daiokanzoto. Daiokanzoto attenuated the P. gingivalis-mediated activation of the NF-κB signaling pathway. It also reduced the secretion of pro-inflammatory cytokines (IL-6 and CXCL8) by lipopolysaccharide-stimulated oral epithelial cells and gingival fibroblasts. Lastly, Daiokanzoto, dose-dependently inhibited the catalytic activity of matrix metalloproteinases (-1 and -9). In conclusion, the present study provided evidence that Daiokanzoto shows potential for treating and/or preventing periodontal disease. The ability of this Kampo formulation to act on both bacterial pathogens and the host inflammatory response, the two etiological components of periodontal disease, is of high therapeutic interest. PMID:26859747

  12. The Daiokanzoto (TJ-84) Kampo Formulation Reduces Virulence Factor Gene Expression in Porphyromonas gingivalis and Possesses Anti-Inflammatory and Anti-Protease Activities

    PubMed Central

    Fournier-Larente, Jade; Azelmat, Jabrane; Yoshioka, Masami; Hinode, Daisuke; Grenier, Daniel

    2016-01-01

    Kampo formulations used in Japan to treat a wide variety of diseases and to promote health are composed of mixtures of crude extracts from the roots, bark, leaves, and rhizomes of a number of herbs. The present study was aimed at identifying the beneficial biological properties of Daiokanzoto (TJ-84), a Kampo formulation composed of crude extracts of Rhubarb rhizomes and Glycyrrhiza roots, with a view to using it as a potential treatment for periodontal disease. Daiokanzoto dose-dependently inhibited the expression of major Porphyromonas gingivalis virulence factors involved in host colonization and tissue destruction. More specifically, Daiokanzoto reduced the expression of the fimA, hagA, rgpA, and rgpB genes, as determined by quantitative real-time PCR. The U937-3xκB-LUC monocyte cell line transfected with a luciferase reporter gene was used to evaluate the anti-inflammatory properties of Daiokanzoto. Daiokanzoto attenuated the P. gingivalis-mediated activation of the NF-κB signaling pathway. It also reduced the secretion of pro-inflammatory cytokines (IL-6 and CXCL8) by lipopolysaccharide-stimulated oral epithelial cells and gingival fibroblasts. Lastly, Daiokanzoto, dose-dependently inhibited the catalytic activity of matrix metalloproteinases (-1 and -9). In conclusion, the present study provided evidence that Daiokanzoto shows potential for treating and/or preventing periodontal disease. The ability of this Kampo formulation to act on both bacterial pathogens and the host inflammatory response, the two etiological components of periodontal disease, is of high therapeutic interest. PMID:26859747

  13. Salmonella plasmid virulence gene spvB enhances bacterial virulence by inhibiting autophagy in a zebrafish infection model.

    PubMed

    Li, Yuan-Yuan; Wang, Ting; Gao, Song; Xu, Guang-Mei; Niu, Hua; Huang, Rui; Wu, Shu-Yan

    2016-02-01

    Salmonella enterica serovar typhimurium (S. typhimurium) is a facultative intracellular pathogen that can cause gastroenteritis and systemic infection in a wide range of hosts. Salmonella plasmid virulence gene spvB is closely related to bacterial virulence in different cells and animal models, and the encoded protein acts as an intracellular toxin required for ADP-ribosyl transferase activity. However, until now there is no report about the pathogenecity of spvB gene on zebrafish. Due to the outstanding advantages of zebrafish in analyzing bacteria-host interactions, a S. typhimurium infected zebrafish model was set up here to study the effect of spvB on autophagy and intestinal pathogenesis in vivo. We found that spvB gene could decrease the LD50 of S. typhimurium, and the strain carrying spvB promoted bacterial proliferation and aggravated the intestinal damage manifested by the narrowed intestines, fallen microvilli, blurred epithelium cell structure and infiltration of inflammatory cells. Results demonstrated the enhanced virulence induced by spvB in zebrafish. In spvB-mutant strain infected zebrafish, the levels of Lc3 turnover and Beclin1 expression increased, and the double-membraned autophagosome structures were observed, suggesting that spvB can inhibit autophagy activity. In summary, our results indicate that S. typhimurium strain containing spvB displays more virulence, triggering an increase in bacterial survival and intestine injuries by suppressing autophagy for the first time. This model provides novel insights into the role of Salmonella plasmid virulence gene in bacterial pathogenesis, and can help to further elucidate the relationship between bacteria and host immune response. PMID:26723267

  14. Large-Scale Identification of Virulence Genes from Streptococcus pneumoniae

    PubMed Central

    Polissi, Alessandra; Pontiggia, Andrea; Feger, Georg; Altieri, Mario; Mottl, Harald; Ferrari, Livia; Simon, Daniel

    1998-01-01

    Streptococcus pneumoniae is the major cause of bacterial pneumonia, and it is also responsible for otitis media and meningitis in children. Apart from the capsule, the virulence factors of this pathogen are not completely understood. Recent technical advances in the field of bacterial pathogenesis (in vivo expression technology and signature-tagged mutagenesis [STM]) have allowed a large-scale identification of virulence genes. We have adapted to S. pneumoniae the STM technique, originally used for the discovery of Salmonella genes involved in pathogenicity. A library of pneumococcal chromosomal fragments (400 to 600 bp) was constructed in a suicide plasmid vector carrying unique DNA sequence tags and a chloramphenicol resistance marker. The recent clinical isolate G54 was transformed with this library. Chloramphenicol-resistant mutants were obtained by homologous recombination, resulting in genes inactivated by insertion of the suicide vector carrying a unique tag. In a mouse pneumonia model, 1.250 candidate clones were screened; 200 of these were not recovered from the lungs were therefore considered virulence-attenuated mutants. The regions flanking the chloramphenicol gene of the attenuated mutants were amplified by inverse PCR and sequenced. The sequence analysis showed that the 200 mutants had insertions in 126 different genes that could be grouped in six classes: (i) known pneumococcal virulence genes; (ii) genes involved in metabolic pathways; (iii) genes encoding proteases; (iv) genes coding for ATP binding cassette transporters; (v) genes encoding proteins involved in DNA recombination/repair; and (vi) DNA sequences that showed similarity to hypothetical genes with unknown function. To evaluate the virulence attenuation for each mutant, all 126 clones were individually analyzed in a mouse septicemia model. Not all mutants selected in the pneumonia model were confirmed in septicemia, thus indicating the existence of virulence factors specific for pneumonia

  15. Antimicrobial activity and the presence of virulence factors and bacteriocin structural genes in Enterococcus faecium CM33 isolated from ewe colostrum

    PubMed Central

    Nami, Yousef; Haghshenas, Babak; Haghshenas, Minoo; Yari Khosroushahi, Ahmad

    2015-01-01

    Screening of lactic acid bacteria (LAB) isolated from ewe colostrum led to the identification and isolation of Enterococcus faecium CM33 with interesting features like high survival rates under acidic or bile salts condition, high tolerance for the simulated gastrointestinal condition, and high adhesive potential to Caco-2 cells. According the inhibition of pathogen adhesion test results, this strain can reduce more than 50% adhesion capacity of Escherichia coli, Shigella flexneri, Klebsiella pneumoniae, Listeria monocytogenes, and Staphylococcus aureus to Caco-2 cells. Based on the antibiotic sensitivity test findings, E. faecium CM33 was susceptible to gentamycin, vancomycin, erythromycin, ampicillin, penicillin, tetracycline, and rifampicin, but resistant to chloramphenicol, clindamycin, and kanamycin. Upon assessment of the virulence determinants for E. faecium CM33, this strain was negative for all tested virulence genes. Furthermore, the genome of this strain was evaluated for the incidence of the known enterocin genes by specific PCR amplification and discovered the genes encoding enterocins A, 31, X, and Q. Based on this study findings, the strain E. faecium CM33 can be considered as a valuable nutraceutical and can be introduced as a new potential probiotic. PMID:26284059

  16. Fur is required for the activation of virulence gene expression through the induction of the sae regulatory system in Staphylococcus aureus

    PubMed Central

    Johnson, Miranda; Sengupta, Mrittika; Purves, Joanne; Tarrant, Emma; Williams, Peter H.; Cockayne, Alan; Muthaiyan, Arunachalam; Stephenson, Robert; Ledala, Nagender; Wilkinson, Brian J.; Jayaswal, Radheshyam K.; Morrissey, Julie A.

    2010-01-01

    Our previous studies showed that both Sae and Fur are required for the induction of eap and emp expression in low iron. In this study, we show that expression of sae is also iron-regulated, as sae expression is activated by Fur in low iron. We also demonstrate that both Fur and Sae are required for full induction of the oxidative stress response and expression of non-covalently bound surface proteins in low-iron growth conditions. In addition, Sae is required for the induced expression of the important virulence factors isdA and isdB in low iron. Our studies also indicate that Fur is required for the induced expression of the global regulators Agr and Rot in low iron and a number of extracellular virulence factors such as the haemolysins which are also Sae- and Agr-regulated. Hence, we show that Fur is central to a complex regulatory network that is required for the induced expression of a number of important S. aureus virulence determinants in low iron. PMID:20705504

  17. Attenuating Staphylococcus aureus Virulence Gene Regulation: A Medicinal Chemistry Perspective

    PubMed Central

    2013-01-01

    Virulence gene expression in Staphylococcus aureus is tightly regulated by intricate networks of transcriptional regulators and two-component signal transduction systems. There is now an emerging body of evidence to suggest that the blockade of S. aureus virulence gene expression significantly attenuates infection in experimental models. In this Perspective, we will provide insights into medicinal chemistry strategies for the development of chemical reagents that have the capacity to inhibit staphylococcal virulence expression. These reagents can be broadly grouped into four categories: (1) competitive inhibitors of the accessory gene regulator (agr) quorum sensing system, (2) inhibitors of AgrA–DNA interactions, (3) RNAIII transcription inhibitors, and (4) inhibitors of the SarA family of transcriptional regulators. We discuss the potential of specific examples of antivirulence agents for the management and treatment of staphylococcal infections. PMID:23294220

  18. Rcs signalling-activated transcription of rcsA induces strong anti-sense transcription of upstream fliPQR flagellar genes from a weak intergenic promoter: regulatory roles for the anti-sense transcript in virulence and motility.

    PubMed

    Wang, Qingfeng; Harshey, Rasika M

    2009-10-01

    In Salmonella enterica, an activated Rcs signalling system inhibits initiation of transcription of the flhD master operon. Under these conditions, where motility is shut down, microarray experiments showed an increased RNA signal for three flagellar genes -fliPQR- located upstream of rcsA. We show here that it is the anti-sense (AS) strand of these genes that is transcribed, originating at a weak promoter in the intergenic region between fliR and rcsA. RcsA is an auxiliary regulator for the Rcs system, whose transcription is dependent on the response regulator RcsB. Rcs-activated rightward transcription, but not translation, of rcsA is required for stimulation of leftward AS transcription. Our results implicate a combined action of RcsB and rcsA transcription in activating the AS promoter, likely by modulating DNA superhelicity in the intergenic region. We show that the AS transcript regulates many genes in the Rcs regulon, including SPI-1 and SPI-2 virulence and stress-response genes. In the wild-type strain the AS transcript is present in low amounts, independent of Rcs signalling. Here, AS transcription modulates complementary sense RNA levels and impacts swarming motility. It appears that the flagellar AS transcript has been co-opted by the Rcs system to regulate virulence. PMID:19703110

  19. Rcs signaling-activated transcription of rcsA induces strong anti-sense transcription of upstream fliPQR flagellar genes from a weak intergenic promoter: regulatory roles for the anti-sense transcript in virulence and motility

    PubMed Central

    Wang, Qingfeng; Harshey, Rasika M.

    2009-01-01

    Summary In Salmonella enterica, an activated Rcs signaling system inhibits initiation of transcription of the flhD master operon. Under these conditions, where motility is shut down, microarray experiments showed an increased RNA signal for three flagellar genes - fliPQR - located upstream of rcsA. We show here that it is the anti-sense (AS) strand of these genes that is transcribed, originating at a weak promoter in the intergenic region between fliR and rcsA. RcsA is an auxiliary regulator for the Rcs system, whose transcription is dependent on the response regulator RcsB. Rcs-activated rightward transcription, but not translation, of rcsA is required for stimulation of leftward AS transcription. Our results implicate a combined action of RcsB and rcsA transcription in activating the AS promoter, likely by modulating DNA superhelicity in the intergenic region. We show that the AS transcript regulates many genes in the Rcs regulon, including SPI-1 and SPI-2 virulence and stress-response genes. In the wild-type strain the AS transcript is present in low amounts, independent of Rcs signaling. Here, AS transcription modulates complementary sense RNA levels and impacts swarming motility. It appears that the flagellar AS transcript has been co-opted by the Rcs system to regulate virulence. PMID:19703110

  20. Implication of an Aldehyde Dehydrogenase Gene and a Phosphinothricin N-Acetyltransferase Gene in the Diversity of Pseudomonas cichorii Virulence

    PubMed Central

    Tanaka, Masayuki; Wali, Ullah Md; Nakayashiki, Hitoshi; Fukuda, Tatsuya; Mizumoto, Hiroyuki; Ohnishi, Kouhei; Kiba, Akinori; Hikichi, Yasufumi

    2011-01-01

    Pseudomonas cichorii harbors the hrp genes. hrp-mutants lose their virulence on eggplant but not on lettuce. A phosphinothricin N-acetyltransferase gene (pat) is located between hrpL and an aldehyde dehydrogenase gene (aldH) in the genome of P. cichorii. Comparison of nucleotide sequences and composition of the genes among pseudomonads suggests a common ancestor of hrp and pat between P. cichorii strains and P. viridiflava strains harboring the single hrp pathogenicity island. In contrast, phylogenetic diversification of aldH corresponded to species diversification amongst pseudomonads. In this study, the involvement of aldH and pat in P. cichorii virulence was analyzed. An aldH-deleted mutant (ΔaldH) and a pat-deleted mutant (Δpat) lost their virulence on eggplant but not on lettuce. P. cichorii expressed both genes in eggplant leaves, independent of HrpL, the transcriptional activator for the hrp. Inoculation into Asteraceae species susceptible to P. cichorii showed that the involvement of hrp, pat and aldH in P. cichorii virulence is independent of each other and has no relationship with the phylogeny of Asteraceae species based on the nucleotide sequences of ndhF and rbcL. It is thus thought that not only the hrp genes but also pat and aldH are implicated in the diversity of P. cichorii virulence on susceptible host plant species. PMID:24704843

  1. Natural Selection in Virulence Genes of Francisella tularensis.

    PubMed

    Gunnell, Mark K; Robison, Richard A; Adams, Byron J

    2016-06-01

    A fundamental tenet of evolution is that alleles that are under negative selection are often deleterious and confer no evolutionary advantage. Negatively selected alleles are removed from the gene pool and are eventually extinguished from the population. Conversely, alleles under positive selection do confer an evolutionary advantage and lead to an increase in the overall fitness of the organism. These alleles increase in frequency until they eventually become fixed in the population. Francisella tularensis is a zoonotic pathogen and a potential biothreat agent. The most virulent type of F. tularensis, Type A, is distributed across North America with Type A.I occurring mainly in the east and Type A.II appearing mainly in the west. F. tularensis is thought to be a genome in decay (losing genes) because of the relatively large number of pseudogenes present in its genome. We hypothesized that the observed frequency of gene loss/pseudogenes may be an artifact of evolution in response to a changing environment, and that genes involved in virulence should be under strong positive selection. To test this hypothesis, we sequenced and compared whole genomes of Type A.I and A.II isolates. We analyzed a subset of virulence and housekeeping genes from several F. tularensis subspecies genomes to ascertain the presence and extent of positive selection. Eleven previously identified virulence genes were screened for positive selection along with 10 housekeeping genes. Analyses of selection yielded one housekeeping gene and 7 virulence genes which showed significant evidence of positive selection at loci implicated in cell surface structures and membrane proteins, metabolism and biosynthesis, transcription, translation and cell separation, and substrate binding and transport. Our results suggest that while the loss of functional genes through disuse could be accelerated by negative selection, the genome decay in Francisella could also be the byproduct of adaptive evolution

  2. Carbohydrate Availability Regulates Virulence Gene Expression in Streptococcus suis

    PubMed Central

    Ferrando, M. Laura; van Baarlen, Peter; Orrù, Germano; Piga, Rosaria; Bongers, Roger S.; Wels, Michiel; De Greeff, Astrid; Smith, Hilde E.; Wells, Jerry M.

    2014-01-01

    Streptococcus suis is a major bacterial pathogen of young pigs causing worldwide economic problems for the pig industry. S. suis is also an emerging pathogen of humans. Colonization of porcine oropharynx by S. suis is considered to be a high risk factor for invasive disease. In the oropharyngeal cavity, where glucose is rapidly absorbed but dietary α-glucans persist, there is a profound effect of carbohydrate availability on the expression of virulence genes. Nineteen predicted or confirmed S. suis virulence genes that promote adhesion to and invasion of epithelial cells were expressed at higher levels when S. suis was supplied with the α-glucan starch/pullulan compared to glucose as the single carbon source. Additionally the production of suilysin, a toxin that damages epithelial cells, was increased more than ten-fold when glucose levels were low and S. suis was growing on pullulan. Based on biochemical, bioinformatics and in vitro and in vivo gene expression studies, we developed a biological model that postulates the effect of carbon catabolite repression on expression of virulence genes in the mucosa, organs and blood. This research increases our understanding of S. suis virulence mechanisms and has important implications for the design of future control strategies including the development of anti-infective strategies by modulating animal feed composition. PMID:24642967

  3. Carbohydrate availability regulates virulence gene expression in Streptococcus suis.

    PubMed

    Ferrando, M Laura; van Baarlen, Peter; Orrù, Germano; Piga, Rosaria; Bongers, Roger S; Wels, Michiel; De Greeff, Astrid; Smith, Hilde E; Wells, Jerry M

    2014-01-01

    Streptococcus suis is a major bacterial pathogen of young pigs causing worldwide economic problems for the pig industry. S. suis is also an emerging pathogen of humans. Colonization of porcine oropharynx by S. suis is considered to be a high risk factor for invasive disease. In the oropharyngeal cavity, where glucose is rapidly absorbed but dietary α-glucans persist, there is a profound effect of carbohydrate availability on the expression of virulence genes. Nineteen predicted or confirmed S. suis virulence genes that promote adhesion to and invasion of epithelial cells were expressed at higher levels when S. suis was supplied with the α-glucan starch/pullulan compared to glucose as the single carbon source. Additionally the production of suilysin, a toxin that damages epithelial cells, was increased more than ten-fold when glucose levels were low and S. suis was growing on pullulan. Based on biochemical, bioinformatics and in vitro and in vivo gene expression studies, we developed a biological model that postulates the effect of carbon catabolite repression on expression of virulence genes in the mucosa, organs and blood. This research increases our understanding of S. suis virulence mechanisms and has important implications for the design of future control strategies including the development of anti-infective strategies by modulating animal feed composition. PMID:24642967

  4. Effects of the HN gene c-terminal extensions on the Newcastle disease virus virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hemagglutinin-neuraminidase (HN) of Newcastle disease virus (NDV) is a multifunctional protein that has receptor recognition, neuraminidase and fusion promotion activities. Sequence analysis revealed that the HN gene of many extremely low virulence NDV strains encodes a larger open reading frame...

  5. Bicarbonate Induces Vibrio cholerae Virulence Gene Expression by Enhancing ToxT Activity▿ †

    PubMed Central

    Abuaita, Basel H.; Withey, Jeffrey H.

    2009-01-01

    Vibrio cholerae is a gram-negative bacterium that is the causative agent of cholera, a severe diarrheal illness. The two biotypes of V. cholerae O1 capable of causing cholera, classical and El Tor, require different in vitro growth conditions for induction of virulence gene expression. Growth under the inducing conditions or infection of a host initiates a complex regulatory cascade that results in production of ToxT, a regulatory protein that directly activates transcription of the genes encoding cholera toxin (CT), toxin-coregulated pilus (TCP), and other virulence genes. Previous studies have shown that sodium bicarbonate induces CT expression in the V. cholerae El Tor biotype. However, the mechanism for bicarbonate-mediated CT induction has not been defined. In this study, we demonstrate that bicarbonate stimulates virulence gene expression by enhancing ToxT activity. Both the classical and El Tor biotypes produce inactive ToxT protein when they are cultured statically in the absence of bicarbonate. Addition of bicarbonate to the culture medium does not affect ToxT production but causes a significant increase in CT and TCP expression in both biotypes. Ethoxyzolamide, a potent carbonic anhydrase inhibitor, inhibits bicarbonate-mediated virulence induction, suggesting that conversion of CO2 into bicarbonate by carbonic anhydrase plays a role in virulence induction. Thus, bicarbonate is the first positive effector for ToxT activity to be identified. Given that bicarbonate is present at high concentration in the upper small intestine where V. cholerae colonizes, bicarbonate is likely an important chemical stimulus that V. cholerae senses and that induces virulence during the natural course of infection. PMID:19564378

  6. A functional gene array for detection of bacterial virulence elements

    SciTech Connect

    Jaing, C

    2007-11-01

    We report our development of the first of a series of microarrays designed to detect pathogens with known mechanisms of virulence and antibiotic resistance. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples. To validate our approach, we developed a first generation array targeting genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for microorganism detection and discrimination, measured the required target concentration, and assessed tolerance for mismatches between probe and target sequences. Mismatch tolerance is a priority for this application, due to DNA sequence variability among members of gene families. Arrays were created using the NimbleGen Maskless Array Synthesizer at Lawrence Livermore National Laboratory. Purified genomic DNA from combinations of one or more of the four target organisms, pure cultures of four related organisms, and environmental aerosol samples with spiked-in genomic DNA were hybridized to the arrays. Based on the success of this prototype, we plan to design further arrays in this series, with the goal of detecting all known virulence and antibiotic resistance gene families in a greatly expanded set of organisms.

  7. Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana.

    PubMed

    Valero-Jiménez, Claudio A; Wiegers, Harm; Zwaan, Bas J; Koenraadt, Constantianus J M; van Kan, Jan A L

    2016-01-01

    Pest insects cause severe damage to global crop production and pose a threat to human health by transmitting diseases. Traditionally, chemical pesticides (insecticides) have been used to control such pests and have proven to be effective only for a limited amount of time because of the rapid spread of genetic insecticide resistance. The basis of this resistance is mostly caused by (co)dominant mutations in single genes, which explains why insecticide use alone is an unsustainable solution. Therefore, robust solutions for insect pest control need to be sought in alternative methods such as biological control agents for which single-gene resistance is less likely to evolve. The entomopathogenic fungus Beauveria bassiana has shown potential as a biological control agent of insects, and insight into the mechanisms of virulence is essential to show the robustness of its use. With the recent availability of the whole genome sequence of B. bassiana, progress in understanding the genetics that constitute virulence toward insects can be made more quickly. In this review we divide the infection process into distinct steps and provide an overview of what is currently known about genes and mechanisms influencing virulence in B. bassiana. We also discuss the need for novel strategies and experimental methods to better understand the infection mechanisms deployed by entomopathogenic fungi. Such knowledge can help improve biocontrol agents, not only by selecting the most virulent genotypes, but also by selecting the genotypes that use combinations of virulence mechanisms for which resistance in the insect host is least likely to develop. PMID:26628209

  8. High abundance of virulence gene homologues in marine bacteria

    PubMed Central

    Persson, Olof P; Pinhassi, Jarone; Riemann, Lasse; Marklund, Britt-Inger; Rhen, Mikael; Normark, Staffan; González, José M; Hagström, Åke

    2009-01-01

    Marine bacteria can cause harm to single-celled and multicellular eukaryotes. However, relatively little is known about the underlying genetic basis for marine bacterial interactions with higher organisms. We examined whole-genome sequences from a large number of marine bacteria for the prevalence of homologues to virulence genes and pathogenicity islands known from bacteria that are pathogenic to terrestrial animals and plants. As many as 60 out of 119 genomes of marine bacteria, with no known association to infectious disease, harboured genes of virulence-associated types III, IV, V and VI protein secretion systems. Type III secretion was relatively uncommon, while type IV was widespread among alphaproteobacteria (particularly among roseobacters) and type VI was primarily found among gammaproteobacteria. Other examples included homologues of the Yersinia murine toxin and a phage-related ‘antifeeding’ island. Analysis of the Global Ocean Sampling metagenomic data indicated that virulence genes were present in up to 8% of the planktonic bacteria, with highest values in productive waters. From a marine ecology perspective, expression of these widely distributed genes would indicate that some bacteria infect or even consume live cells, that is, generate a previously unrecognized flow of organic matter and nutrients directly from eukaryotes to bacteria. PMID:19207573

  9. Genome Sequence of Brucella abortus Vaccine Strain S19 Compared to Virulent Strains Yields Candidate Virulence Genes

    PubMed Central

    Crasta, Oswald R.; Folkerts, Otto; Fei, Zhangjun; Mane, Shrinivasrao P.; Evans, Clive; Martino-Catt, Susan; Bricker, Betsy; Yu, GongXin; Du, Lei; Sobral, Bruno W.

    2008-01-01

    The Brucella abortus strain S19, a spontaneously attenuated strain, has been used as a vaccine strain in vaccination of cattle against brucellosis for six decades. Despite many studies, the physiological and molecular mechanisms causing the attenuation are not known. We have applied pyrosequencing technology together with conventional sequencing to rapidly and comprehensively determine the complete genome sequence of the attenuated Brucella abortus vaccine strain S19. The main goal of this study is to identify candidate virulence genes by systematic comparative analysis of the attenuated strain with the published genome sequences of two virulent and closely related strains of B. abortus, 9–941 and 2308. The two S19 chromosomes are 2,122,487 and 1,161,449 bp in length. A total of 3062 genes were identified and annotated. Pairwise and reciprocal genome comparisons resulted in a total of 263 genes that were non-identical between the S19 genome and any of the two virulent strains. Amongst these, 45 genes were consistently different between the attenuated strain and the two virulent strains but were identical amongst the virulent strains, which included only two of the 236 genes that have been implicated as virulence factors in literature. The functional analyses of the differences have revealed a total of 24 genes that may be associated with the loss of virulence in S19. Of particular relevance are four genes with more than 60bp consistent difference in S19 compared to both the virulent strains, which, in the virulent strains, encode an outer membrane protein and three proteins involved in erythritol uptake or metabolism. PMID:18478107

  10. Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes.

    PubMed

    Crasta, Oswald R; Folkerts, Otto; Fei, Zhangjun; Mane, Shrinivasrao P; Evans, Clive; Martino-Catt, Susan; Bricker, Betsy; Yu, GongXin; Du, Lei; Sobral, Bruno W

    2008-01-01

    The Brucella abortus strain S19, a spontaneously attenuated strain, has been used as a vaccine strain in vaccination of cattle against brucellosis for six decades. Despite many studies, the physiological and molecular mechanisms causing the attenuation are not known. We have applied pyrosequencing technology together with conventional sequencing to rapidly and comprehensively determine the complete genome sequence of the attenuated Brucella abortus vaccine strain S19. The main goal of this study is to identify candidate virulence genes by systematic comparative analysis of the attenuated strain with the published genome sequences of two virulent and closely related strains of B. abortus, 9-941 and 2308. The two S19 chromosomes are 2,122,487 and 1,161,449 bp in length. A total of 3062 genes were identified and annotated. Pairwise and reciprocal genome comparisons resulted in a total of 263 genes that were non-identical between the S19 genome and any of the two virulent strains. Amongst these, 45 genes were consistently different between the attenuated strain and the two virulent strains but were identical amongst the virulent strains, which included only two of the 236 genes that have been implicated as virulence factors in literature. The functional analyses of the differences have revealed a total of 24 genes that may be associated with the loss of virulence in S19. Of particular relevance are four genes with more than 60 bp consistent difference in S19 compared to both the virulent strains, which, in the virulent strains, encode an outer membrane protein and three proteins involved in erythritol uptake or metabolism. PMID:18478107

  11. Virulence of a Porphyromonas gingivalis W83 mutant defective in the prtH gene.

    PubMed Central

    Fletcher, H M; Schenkein, H A; Morgan, R M; Bailey, K A; Berry, C R; Macrina, F L

    1995-01-01

    In a previous study we cloned and determined the nucleotide sequence of the prtH gene from Porphyromonas gingivalis W83. This gene specifies a 97-kDa protease which is normally found in the membrane vesicles produced by P. gingivalis and which cleaves the C3 complement protein under defined conditions. We developed a novel ermF-ermAM antibiotic resistance gene cassette, which was used with the cloned prtH gene to prepare an insertionally inactivated allele of this gene. This genetic construct was introduced by electroporation into P. gingivalis W83 in order to create a protease-deficient mutant by recombinational allelic exchange. The mutant strain, designated V2296, was compared with the parent strain W83 for proteolytic activity and virulence. Extracellular protein preparations from V2296 showed decreased proteolytic activity compared with preparations from W83. Casein substrate zymography revealed that the 97-kDa proteolytic component as well as a 45-kDa protease was missing in the mutant. In in vivo experiments using a mouse model, V2296 was dramatically reduced in virulence compared with the wild-type W83 strain. A molecular survey of several clinical isolates of P. gingivalis using the prtH gene as a probe suggested that prtH gene sequences were conserved and that they may have been present in multiple copies. Two of 10 isolates did not hybridize with the prtH gene probe. These strains, like the V2296 mutant, also displayed decreased virulence in the mouse model. Taken together, these results suggest an important role for P. gingivalis proteases in soft tissue infections and specifically indicate that the prtH gene product is a virulence factor. PMID:7890419

  12. Antibiogram characterization and putative virulence genes in Aeromonas species isolated from pig fecal samples.

    PubMed

    Igbinosa, Isoken H; Igbinosa, Etinosa O; Okoh, Anthony I

    2016-06-01

    Aeromonas species are broadly distributed in nature and agricultural environments and have been isolated from feces, bedding, and drinking water of healthy pigs. We assessed the incidence, virulence properties, and antimicrobial resistance profile of Aeromonas spp., isolated from pig feces. Antibiogram was done using the disc diffusion methods, and polymerase chain reaction was used for the detection of putative virulence genes. Identification of isolates revealed three phenotypic species with percentage distribution as follows: Aeromonas hydrophila 23 (45.1 %), Aeromonas caviae 16 (31.4 %), and Aeromonas sobria 12 (23.5 %). All Aeromonas isolates in the study were absolutely susceptible to cefotaxime and resistant to penicillin. A. cavaie and A. sobria demonstrated absolute susceptibility against ciprofloxacin and streptomycin. Aeromonas species showed varied susceptibility to cephalothin as follows: A. hydrophila 78.3 %, A. cavaie 93.7 %, and A. sobria 91.7 %. The percentage distribution of virulence genes among Aeromonas isolates were as follows: Aerolysin (aer) 74.5 %, flagellin gene (fla) 68.6 %, cytotoxin (hly A) 43.1 %, lipase (lip) 39.2 %, enterotoxic activities (ast) 31.3 %, and cytotonic gene (alt) 13.7 %. Reports from this study shows that Aeromonas species isolated from pig fecal samples are multi-drug resistant and possess virulence potential which may result to possible risk of human or animal infection and likely contamination of food and water from this sources. PMID:26971520

  13. Cryptococcus gattii Virulence Composite: Candidate Genes Revealed by Microarray Analysis of High and Less Virulent Vancouver Island Outbreak Strains

    PubMed Central

    Ngamskulrungroj, Popchai; Price, Jennifer; Sorrell, Tania; Perfect, John R.; Meyer, Wieland

    2011-01-01

    Human and animal cryptococcosis due to an unusual molecular type of Cryptococcus gattii (VGII) emerged recently on Vancouver Island, Canada. Unlike C. neoformans, C. gattii causes disease mainly in immunocompetent hosts, despite producing a similar suite of virulence determinants. To investigate a potential relationship between the regulation of expression of a virulence gene composite and virulence, we took advantage of two subtypes of VGII (a and b), one highly virulent (R265) and one less virulent (R272), that were identified from the Vancouver outbreak. By expression microarray analysis, 202 genes showed at least a 2-fold difference in expression with 108 being up- and 94 being down-regulated in strain R265 compared with strain R272. Specifically, expression levels of genes encoding putative virulence factors (e.g. LAC1, LAC2, CAS3 and MPK1) and genes encoding proteins involved in cell wall assembly, carbohydrate and lipid metabolism were increased in strain R265, whereas genes involved in the regulation of mitosis and ergosterol biosynthesis were suppressed. In vitro phenotypic studies and transcription analysis confirmed the microarray results. Gene disruption of LAC1 and MPK1 revealed defects in melanin synthesis and cell wall integrity, respectively, where CAS3 was not essential for capsule production. Moreover, MPK1 also controls melanin and capsule production and causes a severe attenuation of the virulence in a murine inhalational model. Overall, this study provides the basis for further genetic studies to characterize the differences in the virulence composite of strains with minor evolutionary divergences in gene expression in the primary pathogen C. gattii, that have led to a major invasive fungal infection outbreak. PMID:21249145

  14. Network analysis of S. aureus response to ramoplanin reveals modules for virulence factors and resistance mechanisms and characteristic novel genes.

    PubMed

    Subramanian, Devika; Natarajan, Jeyakumar

    2015-12-10

    Staphylococcus aureus is a major human pathogen and ramoplanin is an antimicrobial attributed for effective treatment. The goal of this study was to examine the transcriptomic profiles of ramoplanin sensitive and resistant S. aureus to identify putative modules responsible for virulence and resistance-mechanisms and its characteristic novel genes. The dysregulated genes were used to reconstruct protein functional association networks for virulence-factors and resistance-mechanisms individually. Strong link between metabolic-pathways and development of virulence/resistance is suggested. We identified 15 putative modules of virulence factors. Six hypothetical genes were annotated with novel virulence activity among which SACOL0281 was discovered to be an essential virulence factor EsaD. The roles of MazEF toxin-antitoxin system, SACOL0202/SACOL0201 two-component system and that of amino-sugar and nucleotide-sugar metabolism in virulence are also suggested. In addition, 14 putative modules of resistance mechanisms including modules of ribosomal protein-coding genes and metabolic pathways such as biotin-synthesis, TCA-cycle, riboflavin-biosynthesis, peptidoglycan-biosynthesis etc. are also indicated. PMID:26255091

  15. Denitrification Genes Regulate Brucella Virulence in Mice

    PubMed Central

    Baek, Seung-Hun; Rajashekara, Gireesh; Splitter, Gary A.; Shapleigh, James P.

    2004-01-01

    Brucella is the causative agent of the zoonotic disease brucellosis, which is endemic in many parts of the world. Genome sequencing of B. suis and B. melitensis revealed that both are complete denitrifiers. To learn more about the role of denitrification in these animal pathogens, a study of the role of denitrification in the closely related B. neotomae was undertaken. In contrast to B. suis and B. melitensis, it was found that B. neotomae is a partial denitrifier that can reduce nitrate to nitrite but no further. Examination of the B. neotomae genome showed that a deletion in the denitrification gene cluster resulted in complete loss of nirV and the partial deletion of nirK and nnrA. Even though the nor operon is intact, a norC-lacZ promoter fusion was not expressed in B. neotomae. However, the norC-lacZ fusion was expressed in the related denitrifier Agrobacterium tumefaciens, suggesting that the lack of expression in B. neotomae is due to inactivation of NnrA. A narK-lacZ promoter fusion was found to exhibit nitrate-dependent expression consistent with the partial denitrifier phenotype. Complementation of the deleted region in B. neotomae by using nirK, nirV, and nnrA from B. melitensis restored the ability of B. neotomae to reduce nitrite. There was a significant difference in the death of IRF-1−/− mice when infected with B. neotomae containing nirK, nirV, and nnrA and those infected with wild-type B. neotomae. The wild-type strain killed all the infected mice, whereas most of the mice infected with B. neotomae containing nirK, nirV, and nnrA survived. PMID:15342571

  16. Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence

    PubMed Central

    Gácser, Attila; Trofa, David; Schäfer, Wilhelm; Nosanchuk, Joshua D.

    2007-01-01

    Candida parapsilosis is a major cause of human disease, yet little is known about the pathogen’s virulence. We have developed an efficient gene deletion system for C. parapsilosis based on the repeated use of the dominant nourseothricin resistance marker (caSAT1) and its subsequent deletion by FLP-mediated, site-specific recombination. Using this technique, we deleted the lipase locus in the C. parapsilosis genome consisting of adjacent genes CpLIP1 and CpLIP2. Additionally we reconstructed the CpLIP2 gene, which restored lipase activity. Lipolytic activity was absent in the null mutants, whereas the WT, heterozygous, and reconstructed mutants showed similar lipase production. Biofilm formation was inhibited with lipase-negative mutants and their growth was significantly reduced in lipid-rich media. The knockout mutants were more efficiently ingested and killed by J774.16 and RAW 264.7 macrophage-like cells. Additionally, the lipase-negative mutants were significantly less virulent in infection models that involve inoculation of reconstituted human oral epithelium or murine intraperitoneal challenge. These studies represent what we believe to be the first targeted disruption of a gene in C. parapsilosis and show that C. parapsilosis–secreted lipase is involved in disease pathogenesis. This efficient system for targeted gene deletion holds great promise for rapidly enhancing our knowledge of the biology and virulence of this increasingly common invasive fungal pathogen. PMID:17853941

  17. Reduced diversity and increased virulence-gene carriage in intestinal enterobacteria of coeliac children

    PubMed Central

    Sánchez, Ester; Nadal, Inmaculada; Donat, Ester; Ribes-Koninckx, Carmen; Calabuig, Miguel; Sanz, Yolanda

    2008-01-01

    Background Coeliac disease is an immune-mediated enteropathology triggered by the ingestion of cereal gluten proteins. This disorder is associated with imbalances in the composition of the gut microbiota that could be involved in its pathogenesis. The aim of the present study was to determine whether intestinal Enterobacteriaceae populations of active and non-active coeliac patients and healthy children differ in diversity and virulence-gene carriage, so as to establish a possible link between the pathogenic potential of enterobacteria and the disease. Methods Enterobacteriaceae clones were isolated on VRBD agar from faecal samples of 31 subjects (10 active coeliac patients, 10 symptom-free coeliac patients and 11 healthy controls) and identified at species level by the API 20E system. Escherichia coli clones were classified into four phylogenetic groups A, B1, B2 and D and the prevalence of eight virulence-associated genes (type-1 fimbriae [fimA], P fimbriae [papC], S fimbriae [sfaD/E], Dr haemagglutinin [draA], haemolysin [hlyA], capsule K1 [neuB], capsule K5 [KfiC] and aerobactin [iutA]) was determined by multiplex PCR. Results A total of 155 Enterobacteriaceae clones were isolated. Non-E. coli clones were more commonly isolated in healthy children than in coeliac patients. The four phylogenetic E. coli groups were equally distributed in healthy children, while in both coeliac patients most commensal isolates belonged to group A. Within the virulent groups, B2 was the most prevalent in active coeliac disease children, while D was the most prevalent in non-active coeliac patients. E coli clones of the virulent phylogenetic groups (B2+D) from active and non-active coeliac patients carried a higher number of virulence genes than those from healthy individuals. Prevalence of P fimbriae (papC), capsule K5 (sfaD/E) and haemolysin (hlyA) genes was higher in E. coli isolated from active and non-active coeliac children than in those from control subjects. Conclusion This

  18. Chamaecyparis obtusa Suppresses Virulence Genes in Streptococcus mutans

    PubMed Central

    Kim, Eun-Hee; Kang, Sun-Young; Park, Bog-Im; Kim, Young-Hoi; Lee, Young-Rae; Hoe, Jin-Hee; Choi, Na-Young; Ra, Ji-Young; An, So-Youn; You, Yong-Ouk

    2016-01-01

    Chamaecyparis obtusa (C. obtusa) is known to have antimicrobial effects and has been used as a medicinal plant and in forest bathing. This study aimed to evaluate the anticariogenic activity of essential oil of C. obtusa on Streptococcus mutans, which is one of the most important bacterial causes of dental caries and dental biofilm formation. Essential oil from C. obtusa was extracted, and its effect on bacterial growth, acid production, and biofilm formation was evaluated. C. obtusa essential oil exhibited concentration-dependent inhibition of bacterial growth over 0.025 mg/mL, with 99% inhibition at a concentration of 0.2 mg/mL. The bacterial biofilm formation and acid production were also significantly inhibited at the concentration greater than 0.025 mg/mL. The result of LIVE/DEAD® BacLight™ Bacterial Viability Kit showed a concentration-dependent bactericidal effect on S. mutans and almost all bacteria were dead over 0.8 mg/mL. Real-time PCR analysis showed that gene expression of some virulence factors such as brpA, gbpB, gtfC, and gtfD was also inhibited. In GC and GC-MS analysis, the major components were found to be α-terpinene (40.60%), bornyl acetate (12.45%), α-pinene (11.38%), β-pinene (7.22%), β-phellandrene (3.45%), and α-terpinolene (3.40%). These results show that C. obtusa essential oil has anticariogenic effect on S. mutans. PMID:27293453

  19. Comparative Transcriptome Profiling Reveals Different Expression Patterns in Xanthomonas oryzae pv. oryzae Strains with Putative Virulence-Relevant Genes

    PubMed Central

    Zhang, Fan; Du, Zhenglin; Huang, Liyu; Cruz, Casiana Vera; Zhou, Yongli; Li, Zhikang

    2013-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice bacterial blight, which is a major rice disease in tropical Asian countries. An attempt has been made to investigate gene expression patterns of three Xoo strains on the minimal medium XOM2, PXO99 (P6) and PXO86 (P2) from the Philippines, and GD1358 (C5) from China, which exhibited different virulence in 30 rice varieties, with putative virulence factors using deep sequencing. In total, 4,781 transcripts were identified in this study, and 1,151 and 3,076 genes were differentially expressed when P6 was compared with P2 and with C5, respectively. Our results indicated that Xoo strains from different regions exhibited distinctly different expression patterns of putative virulence-relevant genes. Interestingly, 40 and 44 genes involved in chemotaxis and motility exhibited higher transcript alterations in C5 compared with P6 and P2, respectively. Most other genes associated with virulence, including exopolysaccharide (EPS) synthesis, Hrp genes and type III effectors, including Xanthomonas outer protein (Xop) effectors and transcription activator-like (TAL) effectors, were down-regulated in C5 compared with P6 and P2. The data were confirmed by real-time quantitative RT-PCR, tests of bacterial motility, and enzyme activity analysis of EPS and xylanase. These results highlight the complexity of Xoo and offer new avenues for improving our understanding of Xoo-rice interactions and the evolution of Xoo virulence. PMID:23734193

  20. covR Mediated Antibiofilm Activity of 3-Furancarboxaldehyde Increases the Virulence of Group A Streptococcus

    PubMed Central

    Ashwinkumar Subramenium, Ganapathy; Viszwapriya, Dharmaprakash; Iyer, Prasanth Mani; Balamurugan, Krishnaswamy; Karutha Pandian, Shunmugiah

    2015-01-01

    Background Group A streptococcus (GAS, Streptococcus pyogenes), a multi-virulent, exclusive human pathogen responsible for various invasive and non-invasive diseases possesses biofilm forming phenomenon as one of its pathogenic armaments. Recently, antibiofilm agents have gained prime importance, since inhibiting the biofilm formation is expected to reduce development of antibiotic resistance and increase their susceptibility to the host immune cells. Principal Findings The current study demonstrates the antibiofilm activity of 3Furancarboxaldehyde (3FCA), a floral honey derived compound, against GAS biofilm, which was divulged using crystal violet assay, light microscopy, and confocal laser scanning microscopy. The report is extended to study its effect on various aspects of GAS (morphology, virulence, aggregation) at its minimal biofilm inhibitory concentration (132μg/ml). 3FCA was found to alter the growth pattern of GAS in solid and liquid medium and increased the rate of auto-aggregation. Electron microscopy unveiled the increase in extra polymeric substances around cell. Gene expression studies showed down-regulation of covR gene, which is speculated to be the prime target for the antibiofilm activity. Increased hyaluronic acid production and down regulation of srtB gene is attributed to the enhanced rate of auto-aggregation. The virulence genes (srv, mga, luxS and hasA) were also found to be over expressed, which was manifested with the increased susceptibility of the model organism Caenorhabditis elegans to 3FCA treated GAS. The toxicity of 3FCA was ruled out with no adverse effect on C. elegans. Significance Though 3FCA possess antibiofilm activity against GAS, it was also found to increase the virulence of GAS. This study demonstrates that, covR mediated antibiofilm activity may increase the virulence of GAS. This also emphasizes the importance to analyse the acclimatization response and virulence of the pathogen in the presence of antibiofilm compounds

  1. Beta-hemolytic activity of Trichomonas vaginalis correlates with virulence.

    PubMed Central

    Krieger, J N; Poisson, M A; Rein, M F

    1983-01-01

    The reasons that some women develop symptomatic trichomonal vaginitis, whereas many other infected women remain asymptomatic, are unclear, but it has been suggested that Trichomonas vaginalis strains vary in their intrinsic virulence. We describe beta-hemolytic activity in T. vaginalis which correlates with virulence in patients as well as in an animal model and in tissue culture. Fresh T. vaginalis isolates from four women with severe, symptomatic trichomoniasis had high-level (86.3 +/- 6.6%) hemolytic activity, whereas isolates from three completely asymptomatic women had low-level (45.3 +/- 8.4%) hemolytic activity (P less than 0.001). Hemolytic activity also correlated with the production of subcutaneous abscesses in mice (r = 0.74) and with destruction of CHO cell monolayers (r = 0.94). All of the 20 clinical isolates of T. vaginalis tested possessed hemolytic activity. The beta-hemolysin may be a virulence factor for T. vaginalis. Images PMID:6604026

  2. Identification of novel virulence-associated genes via genome analysis of hypothetical genes.

    PubMed

    Garbom, Sara; Forsberg, Ake; Wolf-Watz, Hans; Kihlberg, Britt-Marie

    2004-03-01

    The sequencing of bacterial genomes has opened new perspectives for identification of targets for treatment of infectious diseases. We have identified a set of novel virulence-associated genes (vag genes) by comparing the genome sequences of six human pathogens that are known to cause persistent or chronic infections in humans: Yersinia pestis, Neisseria gonorrhoeae, Helicobacter pylori, Borrelia burgdorferi, Streptococcus pneumoniae, and Treponema pallidum. This comparison was limited to genes annotated as hypothetical in the T. pallidum genome project. Seventeen genes with unknown functions were found to be conserved among these pathogens. Insertional inactivation of 14 of these genes generated nine mutants that were attenuated for virulence in a mouse infection model. Out of these nine genes, five were found to be specifically associated with virulence in mice as demonstrated by infection with Yersinia pseudotuberculosis in-frame deletion mutants. In addition, these five vag genes were essential only in vivo, since all the mutants were able to grow in vitro. These genes are broadly conserved among bacteria. Therefore, we propose that the corresponding vag gene products may constitute novel targets for antimicrobial therapy and that some vag mutants could serve as carrier strains for live vaccines. PMID:14977936

  3. Gene deletion strategy to examine the involvement of the two chondroitin lyases in Flavobacterium columnare virulence.

    PubMed

    Li, Nan; Qin, Ting; Zhang, Xiao Lin; Huang, Bei; Liu, Zhi Xin; Xie, Hai Xia; Zhang, Jin; McBride, Mark J; Nie, Pin

    2015-11-01

    Flavobacterium columnare is an important bacterial pathogen of freshwater fish that causes high mortality of infected fish and heavy economic losses in aquaculture. The pathogenesis of this bacterium is poorly understood, in part due to the lack of efficient methods for genetic manipulation. In this study, a gene deletion strategy was developed and used to determine the relationship between the production of chondroitin lyases and virulence. The F. johnsoniae ompA promoter (PompA) was fused to sacB to construct a counterselectable marker for F. columnare. F. columnare carrying PompA-sacB failed to grow on media containing 10% sucrose. A suicide vector carrying PompA-sacB was constructed, and a gene deletion strategy was developed. Using this approach, the chondroitin lyase-encoding genes, cslA and cslB, were deleted. The ΔcslA and ΔcslB mutants were both partially deficient in digestion of chondroitin sulfate A, whereas a double mutant (ΔcslA ΔcslB) was completely deficient in chondroitin lyase activity. Cells of F. columnare wild-type strain G4 and of the chondroitin lyase-deficient ΔcslA ΔcslB mutant exhibited similar levels of virulence toward grass carp in single-strain infections. Coinfections, however, revealed a competitive advantage for the wild type over the chondroitin lyase mutant. The results indicate that chondroitin lyases are not essential virulence factors of F. columnare but may contribute to the ability of the pathogen to compete and cause disease in natural infections. The gene deletion method developed in this study may be employed to investigate the virulence factors of this bacterium and may have wide application in many other members of the phylum Bacteroidetes. PMID:26253667

  4. In Silico Detection of Virulence Gene Homologues in the Human Pathogen Sphingomonas Spp.

    PubMed Central

    Saeb, Amr TM; David, Satish Kumar; Al-Brahim, Hissa

    2014-01-01

    There is an ongoing debate about the clinical significance of Sphingomonas paucimobilis as a virulent bacterial pathogen. In the present study, we investigated the presence of different virulence factors and genes in Sphingomonas bacteria. We utilized phylogenetic, comparative genomics and bioinformatics analysis to investigate the potentiality of Sphingomonas bacteria as virulent pathogenic bacteria. The 16S ribosomal RNA gene (16S rDNA) phylogenetic tree showed that the closest bacterial taxon to Sphingomonas is Brucella with a bootstrap value of 87 followed by Helicobacter, Campylobacter, Pseudomonas, and then Legionella. Sphingomonas shared no virulence factors with Helicobacter or Campylobacter, despite their close phylogenic relationship. In spite of the phylogenetic divergence between Sphingomonas and Pseudomonas, they shared many major virulence factors, such as adherence, antiphagocytosis, iron uptake, proteases, and quorum sensing. In conclusion, Sphingomonas spp. contains several major virulence factors resembling Pseudomonas sp., Legionella sp., Brucella sp., and Bordetella sp. virulence factors. Similarity of virulence factors did not match phylogenetic relationships. These findings suggest horizontal gene transfer of virulence factors rather than sharing a common pathogenic ancestor. Sphingomonas spp. is potential virulent bacterial pathogen. PMID:25574122

  5. Dual control of Agrobacterium tumefaciens Ti plasmid virulence genes.

    PubMed Central

    Close, T J; Rogowsky, P M; Kado, C I; Winans, S C; Yanofsky, M F; Nester, E W

    1987-01-01

    The virulence genes of nopaline (pTiC58) and octopine (pTiA6NC) Ti plasmids are similarly affected by the Agrobacterium tumefaciens ros mutation. Of six vir region complementation groups (virA, virB, virG, virC, virD, and virE) examined by using fusions to reporter genes, the promoters of only two (virC and virD) responded to the ros mutation. For each promoter that was affected by ros, the level of expression of its associated genes was substantially elevated in the mutant. This increase was not influenced by Ti plasmid-encoded factors, and the mutation did not interfere with the induction of pTiC58 vir genes by phenolic compounds via the VirA/VirG regulatory control mechanism. The effects of the ros mutation and acetosyringone were cumulative for all vir promoters examined. The pleiotropic characteristics of the ros mutant include the complete absence of the major acidic capsular polysaccharide. Images PMID:3667525

  6. The enhancin gene: One of the genetic determinants of population variation in baculoviral virulence.

    PubMed

    Martemyanov, V V; Kabilov, M R; Tupikin, A E; Baturina, O A; Belousova, I A; Podgwaite, J D; Ilynykh, A V; Vlassov, V V

    2015-01-01

    It was established that the virulence of the North American baculovirus strain LdMNPV-45 is almost two orders of magnitude higher than the virulence of the Asian strain LdMNPV-27 and does not depend on the test host population (gypsy moth). The Asian strain carries deletions in bro-p and vef-1 genes (82 and 91%, respectively). In accordance with the published data, the product of the latter can greatly increase the virulence of the virus. This result indicates that the population polymorphism of the virulence of baculoviruses can be explained by the vef-1 gene deletion. PMID:26728722

  7. Post-transcriptional gene regulation in the biology and virulence of Candida albicans.

    PubMed

    Verma-Gaur, Jiyoti; Traven, Ana

    2016-06-01

    In the human fungal pathogen Candida albicans, remodelling of gene expression drives host adaptation and virulence. Recent studies revealed that in addition to transcription, post-transcriptional mRNA control plays important roles in virulence-related pathways. Hyphal morphogenesis, biofilm formation, stress responses, antifungal drug susceptibility and virulence in animal models require post-transcriptional regulators. This includes RNA binding proteins that control mRNA localization, decay and translation, as well as the cytoplasmic mRNA decay pathway. Comprehensive understanding of how modulation of gene expression networks drives C. albicans virulence will necessitate integration of our knowledge on transcriptional and post-transcriptional mRNA control. PMID:26999710

  8. Ape parasite origins of human malaria virulence genes.

    PubMed

    Larremore, Daniel B; Sundararaman, Sesh A; Liu, Weimin; Proto, William R; Clauset, Aaron; Loy, Dorothy E; Speede, Sheri; Plenderleith, Lindsey J; Sharp, Paul M; Hahn, Beatrice H; Rayner, Julian C; Buckee, Caroline O

    2015-01-01

    Antigens encoded by the var gene family are major virulence factors of the human malaria parasite Plasmodium falciparum, exhibiting enormous intra- and interstrain diversity. Here we use network analysis to show that var architecture and mosaicism are conserved at multiple levels across the Laverania subgenus, based on var-like sequences from eight single-species and three multi-species Plasmodium infections of wild-living or sanctuary African apes. Using select whole-genome amplification, we also find evidence of multi-domain var structure and synteny in Plasmodium gaboni, one of the ape Laverania species most distantly related to P. falciparum, as well as a new class of Duffy-binding-like domains. These findings indicate that the modular genetic architecture and sequence diversity underlying var-mediated host-parasite interactions evolved before the radiation of the Laverania subgenus, long before the emergence of P. falciparum. PMID:26456841

  9. Ape parasite origins of human malaria virulence genes

    PubMed Central

    Larremore, Daniel B.; Sundararaman, Sesh A.; Liu, Weimin; Proto, William R.; Clauset, Aaron; Loy, Dorothy E.; Speede, Sheri; Plenderleith, Lindsey J.; Sharp, Paul M.; Hahn, Beatrice H.; Rayner, Julian C.; Buckee, Caroline O.

    2015-01-01

    Antigens encoded by the var gene family are major virulence factors of the human malaria parasite Plasmodium falciparum, exhibiting enormous intra- and interstrain diversity. Here we use network analysis to show that var architecture and mosaicism are conserved at multiple levels across the Laverania subgenus, based on var-like sequences from eight single-species and three multi-species Plasmodium infections of wild-living or sanctuary African apes. Using select whole-genome amplification, we also find evidence of multi-domain var structure and synteny in Plasmodium gaboni, one of the ape Laverania species most distantly related to P. falciparum, as well as a new class of Duffy-binding-like domains. These findings indicate that the modular genetic architecture and sequence diversity underlying var-mediated host-parasite interactions evolved before the radiation of the Laverania subgenus, long before the emergence of P. falciparum. PMID:26456841

  10. Epigenetic Regulation of Virulence Gene Expression in Parasitic Protozoa.

    PubMed

    Duraisingh, Manoj T; Horn, David

    2016-05-11

    Protozoan parasites colonize numerous metazoan hosts and insect vectors through their life cycles, with the need to respond quickly and reversibly while encountering diverse and often hostile ecological niches. To succeed, parasites must also persist within individuals until transmission between hosts is achieved. Several parasitic protozoa cause a huge burden of disease in humans and livestock, and here we focus on the parasites that cause malaria and African trypanosomiasis. Efforts to understand how these pathogens adapt to survive in varied host environments, cause disease, and transmit between hosts have revealed a wealth of epigenetic phenomena. Epigenetic switching mechanisms appear to be ideally suited for the regulation of clonal antigenic variation underlying successful parasitism. We review the molecular players and complex mechanistic layers that mediate the epigenetic regulation of virulence gene expression. Understanding epigenetic processes will aid the development of antiparasitic therapeutics. PMID:27173931

  11. Loss of σI affects heat-shock response and virulence gene expression in Bacillus anthracis.

    PubMed

    Kim, Jenny Gi Yae; Wilson, Adam C

    2016-03-01

    The pathogenesis of Bacillus anthracis depends on several virulence factors, including the anthrax toxin. Loss of the alternative sigma factor σI results in a coordinate decrease in expression of all three toxin subunits. Our observations suggest that loss of σI alters the activity of the master virulence regulator AtxA, but atxA transcription is unaffected by loss of σI. σI-containing RNA polymerase does not appear to directly transcribe either atxA or the toxin gene pagA. As in Bacillus subtilis, loss of σI in B. anthracis results in increased sensitivity to heat shock and transcription of sigI, encoding σI, is induced by elevated temperature. Encoded immediately downstream of and part of a bicistronic message with sigI is an anti-sigma factor, RsgI, which controls σI activity. Loss of RsgI has no direct effect on virulence gene expression. sigI appears to be expressed from both the σI and σA promoters, and transcription from the σA promoter is likely more significant to virulence regulation. We propose a model in which σI can be induced in response to heat shock, whilst, independently, σI is produced under non-heat-shock, toxin-inducing conditions to indirectly regulate virulence gene expression. PMID:26744224

  12. The central metabolism regulator EIIAGlc switches Salmonella from growth arrest to acute virulence through activation of virulence factor secretion.

    PubMed

    Mazé, Alain; Glatter, Timo; Bumann, Dirk

    2014-06-12

    The ability of Salmonella to cause disease depends on metabolic activities and virulence factors. Here, we show that a key metabolic protein, EIIAGlc, is absolutely essential for acute infection, but not for Salmonella survival, in a mouse typhoid fever model. Surprisingly, phosphorylation-dependent EIIAGlc functions, including carbohydrate transport and activation of adenylate cyclase for global regulation, do not explain this virulence phenotype. Instead, biochemical studies, in vitro secretion and translocation assays, and in vivo genetic epistasis experiments suggest that EIIAGlc binds to the type three secretion system 2 (TTSS-2) involved in systemic virulence, stabilizes its cytoplasmic part including the crucial TTSS-2 ATPase, and activates virulence factor secretion. This unexpected role of EIIAGlc reveals a striking direct link between central Salmonella metabolism and a crucial virulence mechanism. PMID:24835993

  13. Detection of virulence genes of Clostridium difficile by multiplex PCR.

    PubMed

    Antikainen, Jenni; Pasanen, Tanja; Mero, Sointu; Tarkka, Eveliina; Kirveskari, Juha; Kotila, Saara; Mentula, Silja; Könönen, Eija; Virolainen-Julkunen, Anni-Riitta; Vaara, Martti; Tissari, Päivi

    2009-08-01

    Clostridium difficile strains belonging to the PCR ribotype 027, pulse-field gel electrophoresis (PFGE) type NAP1, toxinotype III and restriction endonuclease analysis group BI harbouring mutations in the tcdC gene and possessing binary toxin components A and B have been described to cause epidemics with increased morbidity and mortality. In the present study we developed a conventional multiplex PCR designed to detect selected virulence associated markers of the hypervirulent C. difficile PCR ribotype 027. The multiplex PCR assay detected the major toxins A and B, binary toxin components A and B as well as a possible deletion in the tcdC gene: a characteristic pattern of amplification products for the PCR ribotype 027 strains was detected. This rather simple method was specific for the screening of this hypervirulent C. difficile strain. The correlation between the multiplex PCR and PCR ribotyping methods was excellent. The sensitivity and specificity were 100% in our epidemiological situation. In conclusion, this multiplex PCR was found useful in the preliminary screening for the hypervirulent C. difficile PCR ribotype 027. PMID:19664132

  14. Regulation of bacterial virulence gene expression by cell envelope stress responses

    PubMed Central

    Flores-Kim, Josué; Darwin, Andrew J

    2014-01-01

    The bacterial cytoplasm lies within a multilayered envelope that must be protected from internal and external hazards. This protection is provided by cell envelope stress responses (ESRs), which detect threats and reprogram gene expression to ensure survival. Pathogens frequently need these ESRs to survive inside the host, where their envelopes face dangerous environmental changes and attack from antimicrobial molecules. In addition, some virulence genes have become integrated into ESR regulons. This might be because these genes can protect the cell envelope from damage by host molecules, or it might help ESRs to reduce stress by moderating the assembly of virulence factors within the envelope. Alternatively, it could simply be a mechanism to coordinate the induction of virulence gene expression with entry into the host. Here, we briefly describe some of the bacterial ESRs, followed by examples where they control virulence gene expression in both Gram-negative and Gram-positive pathogens. PMID:25603429

  15. Unfolded Protein Response (UPR) Regulator Cib1 Controls Expression of Genes Encoding Secreted Virulence Factors in Ustilago maydis.

    PubMed

    Hampel, Martin; Jakobi, Mareike; Schmitz, Lara; Meyer, Ute; Finkernagel, Florian; Doehlemann, Gunther; Heimel, Kai

    2016-01-01

    The unfolded protein response (UPR), a conserved eukaryotic signaling pathway to ensure protein homeostasis in the endoplasmic reticulum (ER), coordinates biotrophic development in the corn smut fungus Ustilago maydis. Exact timing of UPR activation is required for virulence and presumably connected to the elevated expression of secreted effector proteins during infection of the host plant Zea mays. In the baker's yeast Saccharomyces cerevisiae, expression of UPR target genes is induced upon binding of the central regulator Hac1 to unfolded protein response elements (UPREs) in their promoters. While a role of the UPR in effector secretion has been described previously, we investigated a potential UPR-dependent regulation of genes encoding secreted effector proteins. In silico prediction of UPREs in promoter regions identified the previously characterized effector genes pit2 and tin1-1, as bona fide UPR target genes. Furthermore, direct binding of the Hac1-homolog Cib1 to the UPRE containing promoter fragments of both genes was confirmed by quantitative chromatin immunoprecipitation (qChIP) analysis. Targeted deletion of the UPRE abolished Cib1-dependent expression of pit2 and significantly affected virulence. Furthermore, ER stress strongly increased Pit2 expression and secretion. This study expands the role of the UPR as a signal hub in fungal virulence and illustrates, how biotrophic fungi can coordinate cellular physiology, development and regulation of secreted virulence factors. PMID:27093436

  16. Unfolded Protein Response (UPR) Regulator Cib1 Controls Expression of Genes Encoding Secreted Virulence Factors in Ustilago maydis

    PubMed Central

    Hampel, Martin; Jakobi, Mareike; Schmitz, Lara; Meyer, Ute; Finkernagel, Florian; Doehlemann, Gunther; Heimel, Kai

    2016-01-01

    The unfolded protein response (UPR), a conserved eukaryotic signaling pathway to ensure protein homeostasis in the endoplasmic reticulum (ER), coordinates biotrophic development in the corn smut fungus Ustilago maydis. Exact timing of UPR activation is required for virulence and presumably connected to the elevated expression of secreted effector proteins during infection of the host plant Zea mays. In the baker’s yeast Saccharomyces cerevisiae, expression of UPR target genes is induced upon binding of the central regulator Hac1 to unfolded protein response elements (UPREs) in their promoters. While a role of the UPR in effector secretion has been described previously, we investigated a potential UPR-dependent regulation of genes encoding secreted effector proteins. In silico prediction of UPREs in promoter regions identified the previously characterized effector genes pit2 and tin1-1, as bona fide UPR target genes. Furthermore, direct binding of the Hac1-homolog Cib1 to the UPRE containing promoter fragments of both genes was confirmed by quantitative chromatin immunoprecipitation (qChIP) analysis. Targeted deletion of the UPRE abolished Cib1-dependent expression of pit2 and significantly affected virulence. Furthermore, ER stress strongly increased Pit2 expression and secretion. This study expands the role of the UPR as a signal hub in fungal virulence and illustrates, how biotrophic fungi can coordinate cellular physiology, development and regulation of secreted virulence factors. PMID:27093436

  17. The role of regulator Eha in Edwardsiella tarda pathogenesis and virulence gene transcription.

    PubMed

    Gao, Daqing; Li, Yuhong; Xu, Zeyan; Sheng, Ankang; Zheng, Enjin; Shao, Zeye; Liu, Nian; Lu, Chengping

    2016-06-01

    Edwardsiella tarda is a pathogen with a broad host range that infects both animals and humans. Eha is a new transcriptional regulator identified in ET13, which is involved in the bacterial hemolytic activity. This study explored the effect of the Eha in the pathogenesis of E. tarda and the transcriptional regulation of the bacterial virulence genes (eseC, fliC, pagC and fimA). Our results found that the virulence of the eha mutant was 2.5-fold less than the one of its wild ET13 by LD50 in a murine model of i.p. infection, and the bacterial loads of the mutant displayed a different profile from the one of the wild strain. Most significantly, the mice infected with the mutant have greatly reduced acute inflammation in the liver, spleen and kidney compared to the ones infected with the wild. We further demonstrated that eseC, fliC and pagC were regulated directly by the Eha with qRT-PCR and β-Galactosidase assay, but fimA wasn't done. The promoter regions of the genes modulated and the cly gene reported before had been found to contain a common conserved motif by using software. In addition, we found that the wild strain was more toxic to RAW264.7 macrophages, and induced less the host cell apoptotic responses than the eha mutant did. Altogether, these data suggested that the Eha was required for the bacterial infection and the transcriptive regulation of the important virulence genes of E. tarda. PMID:27038844

  18. Large scale analysis of virulence genes in Escherichia coli strains isolated from Avalon Bay, CA.

    PubMed

    Hamilton, Matthew J; Hadi, Asbah Z; Griffith, John F; Ishii, Satoshi; Sadowsky, Michael J

    2010-10-01

    Contamination of recreational waters with Escherichia coli and Enterococcus sp. is a widespread problem resulting in beach closures and loss of recreational activity. While E. coli is frequently used as an indicator of fecal contamination, and has been extensively measured in waterways, few studies have examined the presence of potentially pathogenic E. coli strains in beach waters. In this study, a combination of high-throughput, robot-assisted colony hybridization and PCR-based analyses were used to determine the genomic composition and frequency of virulence genes present in E. coli isolated from beach water in Avalon Bay, Santa Catalina Island, CA. A total of 24,493 E. coli isolates were collected from two sites at a popular swimming beach between August through September 2007 and from July through August 2008. All isolates were examined for the presence of shiga-like toxins (stx1/stx2), intimin (eaeA), and enterotoxins (ST/LT). Of the 24,493 isolates examined, 3.6% contained the eaeA gene, indicating that these isolates were potential EPEC strains. On five dates, however, greater than 10% of the strains were potential EPEC, suggesting that incidence of virulence genes at this beach has a strong temporal component. No STEC or ETEC isolates were detected, and only eight (<1.0%) of the potential EPEC isolates were found to carry the EAF plasmid. The potential EPEC isolates mainly belonged to E. coli phylogenetic groups B1 or B2, and carried the β intimin subtype. DNA fingerprint analyses of the potential EPEC strains indicated that the isolates belonged to several genetically diverse groups, although clonal isolates were frequently detected. While the presence of virulence genes alone cannot be used to determine the pathogenicity of strains, results from this study show that potential EPEC strains can be found in marine beach water and their presence needs to be considered as one of the factors used in decisions concerning beach closures. PMID:20643468

  19. Diverse Virulence Gene Content of Shiga Toxin-Producing Escherichia coli from Finishing Swine

    PubMed Central

    Fratamico, Pina M.; Bagi, Lori; Delannoy, Sabine; Fach, Patrick; Manning, Shannon D.; Funk, Julie A.

    2014-01-01

    Shiga toxin-producing Escherichia coli (STEC) infections are a critical public health concern because they can cause severe clinical outcomes, such as hemolytic uremic syndrome, in humans. Determining the presence or absence of virulence genes is essential in assessing the potential pathogenicity of STEC strains. Currently, there is limited information about the virulence genes carried by swine STEC strains; therefore, this study was conducted to examine the presence and absence of 69 virulence genes in STEC strains recovered previously from finishing swine in a longitudinal study. A subset of STEC strains was analyzed by pulsed-field gel electrophoresis (PFGE) to examine their genetic relatedness. Swine STEC strains (n = 150) were analyzed by the use of a high-throughput real-time PCR array system, which included 69 virulence gene targets. Three major pathotypes consisted of 16 different combinations of virulence gene profiles, and serotypes were determined in the swine STEC strains. The majority of the swine STEC strains (n = 120) belonged to serotype O59:H21 and carried the same virulence gene profile, which consisted of 9 virulence genes: stx2e, iha, ecs1763, lpfAO113, estIa (STa), ehaA, paa, terE, and ureD. The eae, nleF, and nleH1-2 genes were detected in one swine STEC strain (O49:H21). Other genes encoding adhesins, including iha, were identified (n = 149). The PFGE results demonstrated that swine STEC strains from pigs raised in the same finishing barn were closely related. Our results revealed diverse virulence gene contents among the members of the swine STEC population and enhance understanding of the dynamics of transmission of STEC strains among pigs housed in the same barn. PMID:25107960

  20. Salmonella Modulates Metabolism During Growth under Conditions that Induce Expression of Virulence Genes

    SciTech Connect

    Kim, Young-Mo; Schmidt, Brian; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-04-05

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Excitingly, we observed possible sequestration of metabolites recently suggested to have immune modulating roles. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Model-guided analysis suggested that alterations in metabolism prioritized other activities necessary for pathogenesis instead, such as lipopolysaccharide biosynthesis.

  1. Uropathogenic Escherichia coli virulence genes: invaluable approaches for designing DNA microarray probes

    PubMed Central

    Jahandeh, Nadia; Ranjbar, Reza; Behzadi, Elham

    2015-01-01

    Introduction The pathotypes of uropathogenic Escherichia coli (UPEC) cause different types of urinary tract infections (UTIs). The presence of a wide range of virulence genes in UPEC enables us to design appropriate DNA microarray probes. These probes, which are used in DNA microarray technology, provide us with an accurate and rapid diagnosis and definitive treatment in association with UTIs caused by UPEC pathotypes. The main goal of this article is to introduce the UPEC virulence genes as invaluable approaches for designing DNA microarray probes. Material and methods Main search engines such as Google Scholar and databases like NCBI were searched to find and study several original pieces of literature, review articles, and DNA gene sequences. In parallel with in silico studies, the experiences of the authors were helpful for selecting appropriate sources and writing this review article. Results There is a significant variety of virulence genes among UPEC strains. The DNA sequences of virulence genes are fabulous patterns for designing microarray probes. The location of virulence genes and their sequence lengths influence the quality of probes. Conclusions The use of selected virulence genes for designing microarray probes gives us a wide range of choices from which the best probe candidates can be chosen. DNA microarray technology provides us with an accurate, rapid, cost-effective, sensitive, and specific molecular diagnostic method which is facilitated by designing microarray probes. Via these tools, we are able to have an accurate diagnosis and a definitive treatment regarding UTIs caused by UPEC pathotypes. PMID:26855801

  2. Analysis of the Flavobacterium columnare transcriptome reveals gene expression signatures mediating virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavobacterium columnare, the causative agent of columnaris disease causes substantial mortality worldwide in numerous freshwater cultured fish species. Despite its importance, a broader understanding of the genes and their protein products that mediate virulence is urgently needed. Therefore, in t...

  3. Signal structure for transcriptional activation in the upstream regions of virulence genes on the hairy-root-inducing plasmid A4.

    PubMed Central

    Aoyama, T; Takanami, M; Oka, A

    1989-01-01

    The inducibility of the vir genes (virA, -B, -C, -D, -E, and -G) on pRiA4 was examined at the transcriptional level, and the RNA-starting sites were determined by S1-nuclease mapping and primer-extension experiments. All of these genes were inducible, while virA, -E, and -G were transcribed even under noninducing conditions. Each transcription of virB, -C, -D, and -E was initiated at one particular site, but that of virA and -G occurred at two and three sites, respectively, depending on the conditions used. In the DNA region upstream from each inducible transcript, one or more blocks of six base-pairs, 5'TGATAACT3' (vir box), were found to be placed characteristically. These blocks were phasing with an interval of 11 base-pairs, and the most upstream one in each upstream region was preceded by an additional block in the inverted orientation. Although the distance between the block(s) and the promoter varied with the vir gene, every block was placed in a phase nearly opposite to the -35 and -10 regions of the promoter. Images PMID:2479910

  4. Inactivation of thyA in Staphylococcus aureus attenuates virulence and has a strong impact on metabolism and virulence gene expression.

    PubMed

    Kriegeskorte, Andre; Block, Desiree; Drescher, Mike; Windmüller, Nadine; Mellmann, Alexander; Baum, Cathrin; Neumann, Claudia; Lorè, Nicola Ivan; Bragonzi, Alessandra; Liebau, Eva; Hertel, Patrick; Seggewiss, Jochen; Becker, Karsten; Proctor, Richard A; Peters, Georg; Kahl, Barbara C

    2014-01-01

    Staphylococcus aureus thymidine-dependent small-colony variants (TD-SCVs) are frequently isolated from patients with chronic S. aureus infections after long-term treatment with trimethoprim-sulfamethoxazole (TMP-SMX). While it has been shown that TD-SCVs were associated with mutations in thymidylate synthase (TS; thyA), the impact of such mutations on protein function is lacking. In this study, we showed that mutations in thyA were leading to inactivity of TS proteins, and TS inactivity led to tremendous impact on S. aureus physiology and virulence. Whole DNA microarray analysis of the constructed ΔthyA mutant identified severe alterations compared to the wild type. Important virulence regulators (agr, arlRS, sarA) and major virulence determinants (hla, hlb, sspAB, and geh) were downregulated, while genes important for colonization (fnbA, fnbB, spa, clfB, sdrC, and sdrD) were upregulated. The expression of genes involved in pyrimidine and purine metabolism and nucleotide interconversion changed significantly. NupC was identified as a major nucleoside transporter, which supported growth of the mutant during TMP-SMX exposure by uptake of extracellular thymidine. The ΔthyA mutant was strongly attenuated in virulence models, including a Caenorhabditis elegans killing model and an acute pneumonia mouse model. This study identified inactivation of TS as the molecular basis of clinical TD-SCV and showed that thyA activity has a major role for S. aureus virulence and physiology. Importance: Thymidine-dependent small-colony variants (TD-SCVs) of Staphylococcus aureus carry mutations in the thymidylate synthase (TS) gene (thyA) responsible for de novo synthesis of thymidylate, which is essential for DNA synthesis. TD-SCVs have been isolated from patients treated for long periods with trimethoprim-sulfamethoxazole (TMP-SMX) and are associated with chronic and recurrent infections. In the era of community-associated methicillin-resistant S. aureus, the therapeutic use of TMP

  5. Loss of Virulence Genes in Escherichia coli Populations during Manure Storage on a Commercial Swine Farm▿

    PubMed Central

    Duriez, Patrick; Zhang, Yun; Lu, Zexun; Scott, Andrew; Topp, Edward

    2008-01-01

    Confined livestock production farms typically store their wastes prior to land application. Here, we employed three complementary approaches to evaluate changes in the population structure and stability of virulence genes in Escherichia coli during manure storage on a commercial farm that housed healthy swine. Isolates were genotyped by repetitive extragenic palindromic PCR using the BOXA1R primer and evaluated for the presence of selected virulence genes by PCR. Isolates obtained from the manure holding tank (n = 392) carried estB, fedA, stx2e, astA, paa, aida-I, and sepA at lower frequencies than isolates obtained from fresh feces (n = 412). Fresh fecal material from the barn was added into diffusion chambers and immersed in the manure holding tank for 7 weeks. The fecal E. coli population was initially dominated by a single genotype, all isolates of which carried fedA and aida-I. After 7 weeks, a genotype that did not carry any virulence genes dominated the surviving population. In a second experiment, 48 fecal isolates of E. coli that varied in their genotypes and virulence gene complement were incubated in diffusion chambers in the manure holding tank for 3 weeks. Over 95% of the inoculum population carried at least one virulence gene, whereas after 3 weeks 90% of the recovered isolates carried no virulence genes. Taken together, these results indicate that during commercial manure storage, there was a significant reduction in the carriage of these virulence genes by E. coli. We propose that loss of virulence genes from enteric pathogens in the farm and in natural environments may, if generalized, contribute to the attenuation of a public health risk from contamination with agricultural wastes. PMID:18441108

  6. Loss of virulence genes in Escherichia coli populations during manure storage on a commercial swine farm.

    PubMed

    Duriez, Patrick; Zhang, Yun; Lu, Zexun; Scott, Andrew; Topp, Edward

    2008-07-01

    Confined livestock production farms typically store their wastes prior to land application. Here, we employed three complementary approaches to evaluate changes in the population structure and stability of virulence genes in Escherichia coli during manure storage on a commercial farm that housed healthy swine. Isolates were genotyped by repetitive extragenic palindromic PCR using the BOXA1R primer and evaluated for the presence of selected virulence genes by PCR. Isolates obtained from the manure holding tank (n = 392) carried estB, fedA, stx(2e), astA, paa, aida-I, and sepA at lower frequencies than isolates obtained from fresh feces (n = 412). Fresh fecal material from the barn was added into diffusion chambers and immersed in the manure holding tank for 7 weeks. The fecal E. coli population was initially dominated by a single genotype, all isolates of which carried fedA and aida-I. After 7 weeks, a genotype that did not carry any virulence genes dominated the surviving population. In a second experiment, 48 fecal isolates of E. coli that varied in their genotypes and virulence gene complement were incubated in diffusion chambers in the manure holding tank for 3 weeks. Over 95% of the inoculum population carried at least one virulence gene, whereas after 3 weeks 90% of the recovered isolates carried no virulence genes. Taken together, these results indicate that during commercial manure storage, there was a significant reduction in the carriage of these virulence genes by E. coli. We propose that loss of virulence genes from enteric pathogens in the farm and in natural environments may, if generalized, contribute to the attenuation of a public health risk from contamination with agricultural wastes. PMID:18441108

  7. A Genome-Wide Screen Reveals that the Vibrio cholerae Phosphoenolpyruvate Phosphotransferase System Modulates Virulence Gene Expression

    PubMed Central

    Millet, Yves A.; Chao, Michael C.; Sasabe, Jumpei; Davis, Brigid M.

    2015-01-01

    Diverse environmental stimuli and a complex network of regulatory factors are known to modulate expression of Vibrio cholerae's principal virulence factors. However, there is relatively little known about how metabolic factors impinge upon the pathogen's well-characterized cascade of transcription factors that induce expression of cholera toxin and the toxin-coregulated pilus (TCP). Here, we used a transposon insertion site (TIS) sequencing-based strategy to identify new factors required for expression of tcpA, which encodes the major subunit of TCP, the organism's chief intestinal colonization factor. Besides identifying most of the genes known to modulate tcpA expression, the screen yielded ptsI and ptsH, which encode the enzyme I (EI) and Hpr components of the V. cholerae phosphoenolpyruvate phosphotransferase system (PTS). In addition to reduced expression of TcpA, strains lacking EI, Hpr, or the associated EIIAGlc protein produced less cholera toxin (CT) and had a diminished capacity to colonize the infant mouse intestine. The PTS modulates virulence gene expression by regulating expression of tcpPH and aphAB, which themselves control expression of toxT, the central activator of virulence gene expression. One mechanism by which PTS promotes virulence gene expression appears to be by modulating the amounts of intracellular cyclic AMP (cAMP). Our findings reveal that the V. cholerae PTS is an additional modulator of the ToxT regulon and demonstrate the potency of loss-of-function TIS sequencing screens for defining regulatory networks. PMID:26056384

  8. Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression

    PubMed Central

    Sperandio, Brice; Regnault, Béatrice; Guo, Jianhua; Zhang, Zhi; Stanley, Samuel L.; Sansonetti, Philippe J.; Pédron, Thierry

    2008-01-01

    Antimicrobial factors are efficient defense components of the innate immunity, playing a crucial role in the intestinal homeostasis and protection against pathogens. In this study, we report that upon infection of polarized human intestinal cells in vitro, virulent Shigella flexneri suppress transcription of several genes encoding antimicrobial cationic peptides, particularly the human β-defensin hBD-3, which we show to be especially active against S. flexneri. This is an example of targeted survival strategy. We also identify the MxiE bacterial regulator, which controls a regulon encompassing a set of virulence plasmid-encoded effectors injected into host cells and regulating innate signaling, as being responsible for this dedicated regulatory process. In vivo, in a model of human intestinal xenotransplant, we confirm at the transcriptional and translational level, the presence of a dedicated MxiE-dependent system allowing S. flexneri to suppress expression of antimicrobial cationic peptides and promoting its deeper progression toward intestinal crypts. We demonstrate that this system is also able to down-regulate additional innate immunity genes, such as the chemokine CCL20 gene, leading to compromised recruitment of dendritic cells to the lamina propria of infected tissues. Thus, S. flexneri has developed a dedicated strategy to weaken the innate immunity to manage its survival and colonization ability in the intestine. PMID:18426984

  9. Detection of Bacterial Virulence Genes by Subtractive Hybridization: Identification of Capsular Polysaccharide of Burkholderia pseudomallei as a Major Virulence Determinant

    PubMed Central

    Reckseidler, Shauna L.; DeShazer, David; Sokol, Pamela A.; Woods, Donald E.

    2001-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is responsible for a broad spectrum of illnesses in humans and animals particularly in Southeast Asia and northern Australia, where it is endemic. Burkholderia thailandensis is a nonpathogenic environmental organism closely related to B. pseudomallei. Subtractive hybridization was carried out between these two species to identify genes encoding virulence determinants in B. pseudomallei. Screening of the subtraction library revealed A-T-rich DNA sequences unique to B. pseudomallei, suggesting they may have been acquired by horizontal transfer. One of the subtraction clones, pDD1015, encoded a protein with homology to a glycosyltransferase from Pseudomonas aeruginosa. This gene was insertionally inactivated in wild-type B. pseudomallei to create SR1015. It was determined by enzyme-linked immunosorbent assay and immunoelectron microscopy that the inactivated gene was involved in the production of a major surface polysaccharide. The 50% lethal dose (LD50) for wild-type B. pseudomallei is <10 CFU; the LD50 for SR1015 was determined to be 3.5 × 105 CFU, similar to that of B. thailandensis (6.8 × 105 CFU). DNA sequencing of the region flanking the glycosyltransferase gene revealed open reading frames similar to capsular polysaccharide genes in Haemophilus influenzae, Escherichia coli, and Neisseria meningitidis. In addition, DNA from Burkholderia mallei and Burkholderia stabilis hybridized to a glycosyltransferase fragment probe, and a capsular structure was identified on the surface of B. stabilis via immunoelectron microscopy. Thus, the combination of PCR-based subtractive hybridization, insertional inactivation, and animal virulence studies has facilitated the identification of an important virulence determinant in B. pseudomallei. PMID:11119486

  10. Sigma E Regulators Control Hemolytic Activity and Virulence in a Shrimp Pathogenic Vibrio harveyi

    PubMed Central

    Rattanama, Pimonsri; Thompson, Janelle R.; Kongkerd, Natthawan; Srinitiwarawong, Kanchana; Vuddhakul, Varaporn; Mekalanos, John J.

    2012-01-01

    Members of the genus Vibrio are important marine and aquaculture pathogens. Hemolytic activity has been identified as a virulence factor in many pathogenic vibrios including V. cholerae, V. parahaemolyticus, V. alginolyticus, V. harveyi and V. vulnificus. We have used transposon mutagenesis to identify genes involved in the hemolytic activity of shrimp-pathogenic V. harveyi strain PSU3316. Out of 1,764 mutants screened, five mutants showed reduced hemolytic activity on sheep blood agar and exhibited virulence attenuation in shrimp (Litopenaeus vannamei). Mutants were identified by comparing transposon junction sequences to a draft of assembly of the PSU3316 genome. Surprisingly none of the disrupted open reading frames or gene neighborhoods contained genes annotated as hemolysins. The gene encoding RseB, a negative regulator of the sigma factor (σE), was interrupted in 2 out of 5 transposon mutants, in addition, the transcription factor CytR, a threonine synthetase, and an efflux-associated cytoplasmic protein were also identified. Knockout mutations introduced into the rpoE operon at the rseB gene exhibited low hemolytic activity in sheep blood agar, and were 3-to 7-fold attenuated for colonization in shrimp. Comparison of whole cell extracted proteins in the rseB mutant (PSU4030) to the wild-type by 2-D gel electrophoresis revealed 6 differentially expressed proteins, including two down-regulated porins (OmpC-like and OmpN) and an upregulated protease (DegQ) which have been associated with σE in other organisms. Our study is the first report linking hemolytic activity to the σE regulators in pathogenic Vibrio species and suggests expression of this virulence-linked phenotype is governed by multiple regulatory pathways within the V. harveyi. PMID:22384269

  11. Virulence gene profiles of avian pathogenic Escherichia coli isolated from chickens with colibacillosis in Bulawayo, Zimbabwe.

    PubMed

    Mbanga, Joshua; Nyararai, Yvonne O

    2015-01-01

    Colibacillosis, a disease caused by avian pathogenic Escherichia coli (APEC), is one of the main causes of economic losses in the poultry industry worldwide. This study was carried out in order to determine the APEC-associated virulence genes contained by E. coli isolates causing colibacillosis in chickens. A total of 45 E. coli isolates were obtained from the diagnostics and research branch of the Central Veterinary Laboratories, Bulawayo, Zimbabwe. These isolates were obtained from chickens with confirmed cases of colibacillosis after postmortem examination. The presence of the iutA, hlyF, ompT, frz, sitD, fimH, kpsM, sitA, sopB, uvrY, pstB and vat genes were investigated by multiplex polymerase chain reaction (PCR) assay. Of the 45 isolates, 93% were positive for the presence of at least one virulence gene. The three most prevalent virulence genes were iutA (80%), fimH (33.3%) and hlyF (24.4%). The kpsM, pstB and ompT genes had the lowest prevalence, having been detected in only 2.2% of the isolates. All 12 virulence genes studied were detected in the 45 APEC isolates. Virulence gene profiles were constructed for each APEC isolate from the multiplex data. The APEC isolates were profiled as 62.2% fitting profile A, 31.1% profile B and 6.7% profile C. None of the isolates had more than seven virulence genes. Virulence profiles of Zimbabwean APEC isolates are different from those previously reported. Zimbabwean APEC isolates appear to be less pathogenic and may rely on environmental factors and stress in hosts to establish infection. PMID:26017325

  12. Virulence Gene Pool Detected in Bovine Group C Streptococcus dysgalactiae subsp. dysgalactiae Isolates by Use of a Group A S. pyogenes Virulence Microarray ▿

    PubMed Central

    Rato, Márcia G.; Nerlich, Andreas; Bergmann, René; Bexiga, Ricardo; Nunes, Sandro F.; Vilela, Cristina L.; Santos-Sanches, Ilda; Chhatwal, Gursharan S.

    2011-01-01

    A custom-designed microarray containing 220 virulence genes of Streptococcus pyogenes (group A Streptococcus [GAS]) was used to test group C Streptococcus dysgalactiae subsp. dysgalactiae (GCS) field strains causing bovine mastitis and group C or group G Streptococcus dysgalactiae subsp. equisimilis (GCS/GGS) isolates from human infections, with the latter being used for comparative purposes, for the presence of virulence genes. All bovine and all human isolates carried a fraction of the 220 genes (23% and 39%, respectively). The virulence genes encoding streptolysin S, glyceraldehyde-3-phosphate dehydrogenase, the plasminogen-binding M-like protein PAM, and the collagen-like protein SclB were detected in the majority of both bovine and human isolates (94 to 100%). Virulence factors, usually carried by human beta-hemolytic streptococcal pathogens, such as streptokinase, laminin-binding protein, and the C5a peptidase precursor, were detected in all human isolates but not in bovine isolates. Additionally, GAS bacteriophage-associated virulence genes encoding superantigens, DNase, and/or streptodornase were detected in bovine isolates (72%) but not in the human isolates. Determinants located in non-bacteriophage-related mobile elements, such as the gene encoding R28, were detected in all bovine and human isolates. Several virulence genes, including genes of bacteriophage origin, were shown to be expressed by reverse transcriptase PCR (RT-PCR). Phylogenetic analysis of superantigen gene sequences revealed a high level (>98%) of identity among genes of bovine GCS, of the horse pathogen Streptococcus equi subsp. equi, and of the human pathogen GAS. Our findings indicate that alpha-hemolytic bovine GCS, an important mastitis pathogen and considered to be a nonhuman pathogen, carries important virulence factors responsible for virulence and pathogenesis in humans. PMID:21525223

  13. Virulence-associated genes in Escherichia coli isolates from poultry with colibacillosis.

    PubMed

    Delicato, Elaine R; de Brito, Benito Guimarães; Gaziri, Luis Carlos J; Vidotto, Marilda C

    2003-07-01

    Avian pathogenic Escherichia coli, the causative agent of colibacillosis, harbors several putative virulence genes. In this study we examined by polymerase chain reaction (PCR) the presence of 16 of those genes in 200 colibacillosis isolates from our region. The seven virulence genes iutA, iss, cvaC, tsh, papC, papG and felA were detected significantly more often amongst colibacillosis isolates than in fecal isolates from healthy birds, thereby confirming their worldwide occurrence and possible pathogenic role in colibacillosis. However, several of those genes were not detected in many colibacillosis isolates, and none of them were detected in 27.5% of those isolates, which suggests that variants of those genes and yet undetected virulence factors should be searched for. PMID:12781478

  14. The two faces of Janus: virulence gene regulation by CovR/S in group A streptococci.

    PubMed

    Churchward, Gordon

    2007-04-01

    The group A streptococcus (GAS) causes a variety of human diseases, including toxic shock syndrome and necrotizing fasciitis, which are both associated with significant mortality. Even the superficial self-limiting diseases caused by GAS, such as pharyngitis, impose a significant economic burden on society. GAS can cause a wide spectrum of diseases because it elaborates virulence factors that enable it to spread and survive in different environmental niches within the human host. The production of many of these virulence factors is directly controlled by the activity of the CovR/S two-component regulatory system. CovS acts in one direction as a kinase primarily to activate the response regulator CovR and repress the expression of major virulence factors and in the other direction as a phosphatase to permit gene expression in response to environmental changes that mimic conditions found during human infection. This Janus-like behaviour of the CovR/S system is recapitulated in the binding of CovR to the promoters that it directly regulates. Interactions between different faces of the CovR DNA binding domain appear to depend upon DNA sequence, leading to the potential for differential regulation of virulence gene expression. PMID:17376070

  15. Bile salt–induced intermolecular disulfide bond formation activates Vibrio cholerae virulence

    PubMed Central

    Yang, Menghua; Liu, Zhi; Hughes, Chambers; Stern, Andrew M.; Wang, Hui; Zhong, Zengtao; Kan, Biao; Fenical, William; Zhu, Jun

    2013-01-01

    To be successful pathogens, bacteria must often restrict the expression of virulence genes to host environments. This requires a physical or chemical marker of the host environment as well as a cognate bacterial system for sensing the presence of a host to appropriately time the activation of virulence. However, there have been remarkably few such signal–sensor pairs identified, and the molecular mechanisms for host-sensing are virtually unknown. By directly applying a reporter strain of Vibrio cholerae, the causative agent of cholera, to a thin layer chromatography (TLC) plate containing mouse intestinal extracts, we found two host signals that activate virulence gene transcription. One of these was revealed to be the bile salt taurocholate. We then show that a set of bile salts cause dimerization of the transmembrane transcription factor TcpP by inducing intermolecular disulfide bonds between cysteine (C)-207 residues in its periplasmic domain. Various genetic and biochemical analyses led us to propose a model in which the other cysteine in the periplasmic domain, C218, forms an inhibitory intramolecular disulfide bond with C207 that must be isomerized to form the active C207–C207 intermolecular bond. We then found bile salt–dependent effects of these cysteine mutations on survival in vivo, correlating to our in vitro model. Our results are a demonstration of a mechanism for direct activation of the V. cholerae virulence cascade by a host signal molecule. They further provide a paradigm for recognition of the host environment in pathogenic bacteria through periplasmic cysteine oxidation. PMID:23341592

  16. Glycosylation defects and virulence phenotypes of Leishmania mexicana phosphomannomutase and dolicholphosphate-mannose synthase gene deletion mutants.

    PubMed

    Garami, A; Mehlert, A; Ilg, T

    2001-12-01

    Leishmania parasites synthesize an abundance of mannose (Man)-containing glycoconjugates thought to be essential for virulence to the mammalian host and for viability. These glycoconjugates include lipophosphoglycan (LPG), proteophosphoglycans (PPGs), glycosylphosphatidylinositol (GPI)-anchored proteins, glycoinositolphospholipids (GIPLs), and N-glycans. A prerequisite for their biosynthesis is an ample supply of the Man donors GDP-Man and dolicholphosphate-Man. We have cloned from Leishmania mexicana the gene encoding the enzyme phosphomannomutase (PMM) and the previously described dolicholphosphate-Man synthase gene (DPMS) that are involved in Man activation. Surprisingly, gene deletion experiments resulted in viable parasite lines lacking the respective open reading frames (DeltaPMM and DeltaDPMS), a result against expectation and in contrast to the lethal phenotype observed in gene deletion experiments with fungi. L. mexicana DeltaDPMS exhibits a selective defect in LPG, protein GPI anchor, and GIPL biosynthesis, but despite the absence of these structures, which have been implicated in parasite virulence and viability, the mutant remains infectious to macrophages and mice. By contrast, L. mexicana DeltaPMM are largely devoid of all known Man-containing glycoconjugates and are unable to establish an infection in mouse macrophages or the living animal. Our results define Man activation leading to GDP-Man as a virulence pathway in Leishmania. PMID:11689705

  17. Both msa genes in Renibacterium salmoninarum are needed for full virulence in bacterial kidney disease

    USGS Publications Warehouse

    Coady, A.M.; Murray, A.L.; Elliott, D.G.; Rhodes, L.D.

    2006-01-01

    Renibacterium salmoninarum, a gram-positive diplococcobacillus that causes bacterial kidney disease among salmon and trout, has two chromosomal loci encoding the major soluble antigen (msa) gene. Because the MSA protein is widely suspected to be an important virulence factor, we used insertion-duplication mutagenesis to generate disruptions of either the msa1 or msa2 gene. Surprisingly, expression of MSA protein in broth cultures appeared unaffected. However, the virulence of either mutant in juvenile Chinook salmon (Oncorhynchus tshawytscha) by intraperitoneal challenge was severely attenuated, suggesting that disruption of the msa1 or msa2 gene affected in vivo expression. Copyright ?? 2006, American Society for Microbiology. All Rights Reserved.

  18. Both msa genes in Renibacterium salmoninarum are needed for full virulence in bacterial kidney disease.

    PubMed

    Coady, Alison M; Murray, Anthony L; Elliott, Diane G; Rhodes, Linda D

    2006-04-01

    Renibacterium salmoninarum, a gram-positive diplococcobacillus that causes bacterial kidney disease among salmon and trout, has two chromosomal loci encoding the major soluble antigen (msa) gene. Because the MSA protein is widely suspected to be an important virulence factor, we used insertion-duplication mutagenesis to generate disruptions of either the msa1 or msa2 gene. Surprisingly, expression of MSA protein in broth cultures appeared unaffected. However, the virulence of either mutant in juvenile chinook salmon (Oncorhynchus tshawytscha) by intraperitoneal challenge was severely attenuated, suggesting that disruption of the msa1 or msa2 gene affected in vivo expression. PMID:16597972

  19. Both msa Genes in Renibacterium salmoninarum Are Needed for Full Virulence in Bacterial Kidney Disease

    PubMed Central

    Coady, Alison M.; Murray, Anthony L.; Elliott, Diane G.; Rhodes, Linda D.

    2006-01-01

    Renibacterium salmoninarum, a gram-positive diplococcobacillus that causes bacterial kidney disease among salmon and trout, has two chromosomal loci encoding the major soluble antigen (msa) gene. Because the MSA protein is widely suspected to be an important virulence factor, we used insertion-duplication mutagenesis to generate disruptions of either the msa1 or msa2 gene. Surprisingly, expression of MSA protein in broth cultures appeared unaffected. However, the virulence of either mutant in juvenile chinook salmon (Oncorhynchus tshawytscha) by intraperitoneal challenge was severely attenuated, suggesting that disruption of the msa1 or msa2 gene affected in vivo expression. PMID:16597972

  20. Intercellular and intracellular signalling systems that globally control the expression of virulence genes in plant pathogenic bacteria.

    PubMed

    Ham, Jong Hyun

    2013-04-01

    Plant pathogenic bacteria utilize complex signalling systems to control the expression of virulence genes at the cellular level and within populations. Quorum sensing (QS), an important intercellular communication mechanism, is mediated by different types of small molecules, including N-acyl homoserine lactones (AHLs), fatty acids and small proteins. AHL-mediated signalling systems dependent on the LuxI and LuxR family proteins play critical roles in the virulence of a wide range of Gram-negative plant pathogenic bacteria belonging to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Xanthomonas spp. and Xylella fastidiosa, members of the Gammaproteobacteria, however, possess QS systems that are mediated by fatty acid-type diffusible signal factors (DSFs). Recent studies have demonstrated that Ax21, a 194-amino-acid protein in Xanthomonas oryzae pv. oryzae, plays dual functions in activating a rice innate immune pathway through binding to the rice XA21 pattern recognition receptor and in regulating bacterial virulence and biofilm formation as a QS signal molecule. In xanthomonads, DSF-mediated QS systems are connected with the signalling pathways mediated by cyclic diguanosine monophosphate (c-di-GMP), which functions as a second messenger for the control of virulence gene expression in these bacterial pathogens. PMID:23186372

  1. The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum.

    PubMed

    Niño-Sánchez, Jonathan; Casado-Del Castillo, Virginia; Tello, Vega; De Vega-Bartol, José J; Ramos, Brisa; Sukno, Serenella A; Díaz Mínguez, José María

    2016-09-01

    The FTF (Fusarium transcription factor) gene family comprises a single copy gene, FTF2, which is present in all the filamentous ascomycetes analysed, and several copies of a close relative, FTF1, which is exclusive to Fusarium oxysporum. An RNA-mediated gene silencing system was developed to target mRNA produced by all the FTF genes, and tested in two formae speciales: F. oxysporum f. sp. phaseoli (whose host is common bean) and F. oxysporum f. sp. lycopersici (whose host is tomato). Quantification of the mRNA levels showed knockdown of FTF1 and FTF2 in randomly isolated transformants of both formae speciales. The attenuation of FTF expression resulted in a marked reduction in virulence, a reduced expression of several SIX (Secreted In Xylem) genes, the best studied family of effectors in F. oxysporum, and lower levels of SGE1 (Six Gene Expression 1) mRNA, the presumptive regulator of SIX expression. Moreover, the knockdown mutants showed a pattern of colonization of the host plant similar to that displayed by strains devoid of FTF1 copies (weakly virulent strains). Gene knockout of FTF2 also resulted in a reduction in virulence, but to a lesser extent. These results demonstrate the role of the FTF gene expansion, mostly the FTF1 paralogues, as a regulator of virulence in F. oxysporum and suggest that the control of effector expression is the mechanism involved. PMID:26817616

  2. Host–Pathogen Coevolution: The Selective Advantage of Bacillus thuringiensis Virulence and Its Cry Toxin Genes

    PubMed Central

    Papkou, Andrei; Laehnemann, David; Guenther, Patrick S.; Prahl, Swantje; Saebelfeld, Manja; Hollensteiner, Jacqueline; Liesegang, Heiko; Brzuszkiewicz, Elzbieta; Daniel, Rolf; Michiels, Nicolaas K.; Schulte, Rebecca D.; Kurtz, Joachim; Rosenstiel, Philip; Telschow, Arndt; Bornberg-Bauer, Erich; Schulenburg, Hinrich

    2015-01-01

    Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i) high virulence was specifically favoured during pathogen–host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii) the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii) high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv) loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins. We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen's genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host–pathogen interaction system. PMID:26042786

  3. Gain of Virulence Caused by Loss of a Gene in Murine Cytomegalovirus‡

    PubMed Central

    Bubić, Ivan; Wagner, Markus; Krmpotić, Astrid; Saulig, Tanja; Kim, Sungjin; Yokoyama, Wayne M.; Jonjić, Stipan; Koszinowski, Ulrich H.

    2004-01-01

    Mouse strains are either resistant or susceptible to murine cytomegalovirus (MCMV). Resistance is determined by the Cmv1r (Ly49h) gene, which encodes the Ly49H NK cell activation receptor. The protein encoded by the m157 gene of MCMV has been defined as a ligand for Ly49H. To find out whether the m157 protein is the only Ly49H ligand encoded by MCMV, we constructed the m157 deletion mutant and a revertant virus. Viruses were tested for susceptibility to NK cell control in Ly49H+ and Ly49H− mouse strains. Deletion of the m157 gene abolished the viral activation of Ly49H+ NK cells, resulting in higher virus virulence in vivo. Thus, in the absence of m157, Ly49H+ mice react like susceptible strains. 129/SvJ mice lack the Ly49H activation NK cell receptor but express the inhibitory Ly49I NK cell receptor that binds to the m157 protein. The Δm157 inhibitory phenotype was weak because MCMV encodes a number of proteins that mediate NK inhibition, whose contribution could be shown by another mutant. PMID:15220428

  4. Temperature-dependent expression of virulence genes in fish-pathogenic bacteria

    PubMed Central

    Guijarro, José A.; Cascales, Desirée; García-Torrico, Ana I.; García-Domínguez, Mario; Méndez, Jessica

    2015-01-01

    Virulence gene expression in pathogenic bacteria is modulated by environmental parameters. A key factor in this expression is temperature. Its effect on virulence gene expression in bacteria infecting warm-blooded hosts is well documented. Transcription of virulence genes in these bacteria is induced upon a shift from low environmental to a higher host temperature (37°C). Interestingly, host temperatures usually correspond to the optimum for growth of these pathogenic bacteria. On the contrary, in ectothermic hosts such as fish, molluscs, and amphibians, infection processes generally occur at a temperature lower than that for the optimal growth of the bacteria. Therefore, regulation of virulence gene expression in response to temperature shift has to be modulated in a different way to that which is found in bacteria infecting warm-blooded hosts. The current understanding of virulence gene expression and its regulation in response to temperature in fish-pathogenic bacteria is limited, but constant extension of our knowledge base is essential to enable a rational approach to the problem of the bacterial fish diseases affecting the aquaculture industry. This is an interesting issue and progress needs to be made in order to diminish the economic losses caused by these diseases. The intention of this review is, for the first time, to compile the scattered results existing in the field in order to lay the groundwork for future research. This article is an overview of those relevant virulence genes that are expressed at temperatures lower than that for optimal bacterial growth in different fish-pathogenic bacteria as well as the principal mechanisms that could be involved in their regulation. PMID:26217329

  5. Virulence Factors and Antibiotic Susceptibility of Staphylococcus aureus Isolates in Ready-to-Eat Foods: Detection of S. aureus Contamination and a High Prevalence of Virulence Genes

    PubMed Central

    Puah, Suat Moi; Chua, Kek Heng; Tan, Jin Ai Mary Anne

    2016-01-01

    Staphylococcus aureus is one of the leading causes of food poisoning. Its pathogenicity results from the possession of virulence genes that produce different toxins which result in self-limiting to severe illness often requiring hospitalization. In this study of 200 sushi and sashimi samples, S. aureus contamination was confirmed in 26% of the food samples. The S. aureus isolates were further characterized for virulence genes and antibiotic susceptibility. A high incidence of virulence genes was identified in 96.2% of the isolates and 20 different virulence gene profiles were confirmed. DNA amplification showed that 30.8% (16/52) of the S. aureus carried at least one SE gene which causes staphylococcal food poisoning. The most common enterotoxin gene was seg (11.5%) and the egc cluster was detected in 5.8% of the isolates. A combination of hla and hld was the most prevalent coexistence virulence genes and accounted for 59.6% of all isolates. Antibiotic resistance studies showed tetracycline resistance to be the most common at 28.8% while multi-drug resistance was found to be low at 3.8%. In conclusion, the high rate of S. aureus in the sampled sushi and sashimi indicates the need for food safety guidelines. PMID:26861367

  6. Virulence Factors and Antibiotic Susceptibility of Staphylococcus aureus Isolates in Ready-to-Eat Foods: Detection of S. aureus Contamination and a High Prevalence of Virulence Genes.

    PubMed

    Puah, Suat Moi; Chua, Kek Heng; Tan, Jin Ai Mary Anne

    2016-02-01

    Staphylococcus aureus is one of the leading causes of food poisoning. Its pathogenicity results from the possession of virulence genes that produce different toxins which result in self-limiting to severe illness often requiring hospitalization. In this study of 200 sushi and sashimi samples, S. aureus contamination was confirmed in 26% of the food samples. The S. aureus isolates were further characterized for virulence genes and antibiotic susceptibility. A high incidence of virulence genes was identified in 96.2% of the isolates and 20 different virulence gene profiles were confirmed. DNA amplification showed that 30.8% (16/52) of the S. aureus carried at least one SE gene which causes staphylococcal food poisoning. The most common enterotoxin gene was seg (11.5%) and the egc cluster was detected in 5.8% of the isolates. A combination of hla and hld was the most prevalent coexistence virulence genes and accounted for 59.6% of all isolates. Antibiotic resistance studies showed tetracycline resistance to be the most common at 28.8% while multi-drug resistance was found to be low at 3.8%. In conclusion, the high rate of S. aureus in the sampled sushi and sashimi indicates the need for food safety guidelines. PMID:26861367

  7. The genome of a pathogenic rhodococcus: cooptive virulence underpinned by key gene acquisitions.

    PubMed

    Letek, Michal; González, Patricia; Macarthur, Iain; Rodríguez, Héctor; Freeman, Tom C; Valero-Rello, Ana; Blanco, Mónica; Buckley, Tom; Cherevach, Inna; Fahey, Ruth; Hapeshi, Alexia; Holdstock, Jolyon; Leadon, Desmond; Navas, Jesús; Ocampo, Alain; Quail, Michael A; Sanders, Mandy; Scortti, Mariela M; Prescott, John F; Fogarty, Ursula; Meijer, Wim G; Parkhill, Julian; Bentley, Stephen D; Vázquez-Boland, José A

    2010-09-01

    We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid-rich intestine and manure of herbivores--two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche-adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT-acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi. PMID:20941392

  8. The Genome of a Pathogenic Rhodococcus: Cooptive Virulence Underpinned by Key Gene Acquisitions

    PubMed Central

    Letek, Michal; González, Patricia; MacArthur, Iain; Rodríguez, Héctor; Freeman, Tom C.; Valero-Rello, Ana; Blanco, Mónica; Buckley, Tom; Cherevach, Inna; Fahey, Ruth; Hapeshi, Alexia; Holdstock, Jolyon; Leadon, Desmond; Navas, Jesús; Ocampo, Alain; Quail, Michael A.; Sanders, Mandy; Scortti, Mariela M.; Prescott, John F.; Fogarty, Ursula; Meijer, Wim G.; Parkhill, Julian; Bentley, Stephen D.; Vázquez-Boland, José A.

    2010-01-01

    We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi. PMID:20941392

  9. Steps toward broad-spectrum therapeutics: discovering virulence-associated genes present in diverse human pathogens

    PubMed Central

    Stubben, Chris J; Duffield, Melanie L; Cooper, Ian A; Ford, Donna C; Gans, Jason D; Karlyshev, Andrey V; Lingard, Bryan; Oyston, Petra CF; de Rochefort, Anna; Song, Jian; Wren, Brendan W; Titball, Rick W; Wolinsky, Murray

    2009-01-01

    Background New and improved antimicrobial countermeasures are urgently needed to counteract increased resistance to existing antimicrobial treatments and to combat currently untreatable or new emerging infectious diseases. We demonstrate that computational comparative genomics, together with experimental screening, can identify potential generic (i.e., conserved across multiple pathogen species) and novel virulence-associated genes that may serve as targets for broad-spectrum countermeasures. Results Using phylogenetic profiles of protein clusters from completed microbial genome sequences, we identified seventeen protein candidates that are common to diverse human pathogens and absent or uncommon in non-pathogens. Mutants of 13 of these candidates were successfully generated in Yersinia pseudotuberculosis and the potential role of the proteins in virulence was assayed in an animal model. Six candidate proteins are suggested to be involved in the virulence of Y. pseudotuberculosis, none of which have previously been implicated in the virulence of Y. pseudotuberculosis and three have no record of involvement in the virulence of any bacteria. Conclusion This work demonstrates a strategy for the identification of potential virulence factors that are conserved across a number of human pathogenic bacterial species, confirming the usefulness of this tool. PMID:19874620

  10. Mutation of a novel virulence-related gene mltD in Vibrio anguillarum enhances lethality in zebra fish.

    PubMed

    Xu, Zinan; Wang, Ying; Han, Yin; Chen, Jixiang; Zhang, Xiao-Hua

    2011-01-01

    Vibrio anguillarum, a halophilic Gram-negative bacterium, is the causative agent of vibriosis, which is a major problem for the aquaculture industry worldwide. Previously, a virulence-related gene fragment of V. anguillarum was obtained from a suppression subtractive hybridization (SSH) library. In this study, the complete gene sequence was obtained by long and accurate PCR (LA-PCR). After sequence analysis and homologous comparison, this new virulence-related gene was revealed to encode a putative membrane-bound lytic murein transglycosylase D (MltD), which consisted of 547 amino acids, and showed 34% identity to the MltD in Escherichia coli. An mltD mutant of pathogenic V. anguillarum CW-1 was constructed by homologous recombination. Production of extracellular gelatinase and protease of the mltD mutant decreased markedly compared with those of the wild-type strain, and the hemolytic activity was totally lost. Sodium chloride challenge and antibiotic sensitivity assay showed that the resistance of the mltD mutant to high concentrations of sodium chloride, and rocephin, fortun, cefobid, gentamicin, kanamycin and carbenicillin was enhanced. Most importantly, virulence of the mltD mutant was enhanced compared with that of the wild type when it was inoculated intraperitoneally into zebra fish; the LD₅₀ of the wild type and the mutant was 3.92 × 10³ CFU and 1.01 × 10² CFU fish⁻¹, respectively. The mltD was cloned and overexpressed in E. coli, and the recombinant MltD protein showed hemolytic, phospholipase, gelatinase and diastase activities. This is the first report that MltD possibly has a virulence-related function. PMID:21070855

  11. Comparative Pathogenomics Reveals Horizontally Acquired Novel Virulence Genes in Fungi Infecting Cereal Hosts

    PubMed Central

    Gardiner, Donald M.; McDonald, Megan C.; Covarelli, Lorenzo; Solomon, Peter S.; Rusu, Anca G.; Marshall, Mhairi; Kazan, Kemal; Chakraborty, Sukumar; McDonald, Bruce A.; Manners, John M.

    2012-01-01

    Comparative analyses of pathogen genomes provide new insights into how pathogens have evolved common and divergent virulence strategies to invade related plant species. Fusarium crown and root rots are important diseases of wheat and barley world-wide. In Australia, these diseases are primarily caused by the fungal pathogen Fusarium pseudograminearum. Comparative genomic analyses showed that the F. pseudograminearum genome encodes proteins that are present in other fungal pathogens of cereals but absent in non-cereal pathogens. In some cases, these cereal pathogen specific genes were also found in bacteria associated with plants. Phylogenetic analysis of selected F. pseudograminearum genes supported the hypothesis of horizontal gene transfer into diverse cereal pathogens. Two horizontally acquired genes with no previously known role in fungal pathogenesis were studied functionally via gene knockout methods and shown to significantly affect virulence of F. pseudograminearum on the cereal hosts wheat and barley. Our results indicate using comparative genomics to identify genes specific to pathogens of related hosts reveals novel virulence genes and illustrates the importance of horizontal gene transfer in the evolution of plant infecting fungal pathogens. PMID:23028337

  12. Detection of influent virulence and resistance genes in microarray data through quasi likelihood modeling.

    PubMed

    Romeo, José S; Torres-Avilés, Francisco; López-Kleine, Liliana

    2013-02-01

    Publicly available genomic data are a great source of biological knowledge that can be extracted when appropriate data analysis is used. Predicting the biological function of genes is of interest to understand molecular mechanisms of virulence and resistance in pathogens and hosts and is important for drug discovery and disease control. This is commonly done by searching for similar gene expression behavior. Here, we used publicly available Streptococcus pyogenes microarray data obtained during primate infection to identify genes that have a potential influence on virulence and Phytophtora infestance inoculated tomato microarray data to identify genes potentially implicated in resistance processes. This approach goes beyond co-expression analysis. We employed a quasi-likelihood model separated by primate gender/inoculation condition to model median gene expression of known virulence/resistance factors. Based on this model, an influence analysis considering time course measurement was performed to detect genes with atypical expression. This procedure allowed for the detection of genes potentially implicated in the infection process. Finally, we discuss the biological meaning of these results, showing that influence analysis is an efficient and useful alternative for functional gene prediction. PMID:23296985

  13. Co-Detection of Virulent Escherichia coli Genes in Surface Water Sources

    PubMed Central

    Ndlovu, Thando; Le Roux, Marcellous; Khan, Wesaal; Khan, Sehaam

    2015-01-01

    McNemar’s test and the Pearson Chi-square were used to assess the co-detection and observed frequency, respectively, for potentially virulent E. coli genes in river water. Conventional multiplex Polymerase Chain Reaction (PCR) assays confirmed the presence of the aggR gene (69%), ipaH gene (23%) and the stx gene (15%) carried by Enteroaggregative E. coli (EAEC), Enteroinvasive E. coli (EIEC) and Enterohermorrhagic E. coli (EHEC), respectively, in river water samples collected from the Berg River (Paarl, South Africa). Only the aggR gene was present in 23% of samples collected from the Plankenburg River system (Stellenbosch, South Africa). In a comparative study, real-time multiplex PCR assays confirmed the presence of aggR (EAEC) in 69%, stx (EHEC) in 15%, ipaH (EIEC) in 31% and eae (EPEC) in 8% of the river water samples collected from the Berg River. In the Plankenburg River, aggR (EAEC) was detected in 46% of the samples, while eae (EPEC) was present in 15% of the water samples analyzed using real-time multiplex PCR in the Plankenburg River. Pearson Chi-square showed that there was no statistical difference (p > 0.05) between the conventional and real-time multiplex PCRs for the detection of virulent E. coli genes in water samples. However, the McNemar’s test showed some variation in the co-detection of virulent E. coli genes, for example, there was no statistical difference in the misclassification of the discordant results for stx versus ipaH, which implies that the ipaH gene was frequently detected with the stx gene. This study thus highlights the presence of virulent E. coli genes in river water and while early detection is crucial, quantitative microbial risk analysis has to be performed to identify and estimate the risk to human health. PMID:25659126

  14. A combination of independent transcriptional regulators shapes bacterial virulence gene expression during infection.

    PubMed

    Shelburne, Samuel A; Olsen, Randall J; Suber, Bryce; Sahasrabhojane, Pranoti; Sumby, Paul; Brennan, Richard G; Musser, James M

    2010-03-01

    Transcriptional regulatory networks are fundamental to how microbes alter gene expression in response to environmental stimuli, thereby playing a critical role in bacterial pathogenesis. However, understanding how bacterial transcriptional regulatory networks function during host-pathogen interaction is limited. Recent studies in group A Streptococcus (GAS) suggested that the transcriptional regulator catabolite control protein A (CcpA) influences many of the same genes as the control of virulence (CovRS) two-component gene regulatory system. To provide new information about the CcpA and CovRS networks, we compared the CcpA and CovR transcriptomes in a serotype M1 GAS strain. The transcript levels of several of the same genes encoding virulence factors and proteins involved in basic metabolic processes were affected in both DeltaccpA and DeltacovR isogenic mutant strains. Recombinant CcpA and CovR bound with high-affinity to the promoter regions of several co-regulated genes, including those encoding proteins involved in carbohydrate and amino acid metabolism. Compared to the wild-type parental strain, DeltaccpA and DeltacovRDeltaccpA isogenic mutant strains were significantly less virulent in a mouse myositis model. Inactivation of CcpA and CovR alone and in combination led to significant alterations in the transcript levels of several key GAS virulence factor encoding genes during infection. Importantly, the transcript level alterations in the DeltaccpA and DeltacovRDeltaccpA isogenic mutant strains observed during infection were distinct from those occurring during growth in laboratory medium. These data provide new knowledge regarding the molecular mechanisms by which pathogenic bacteria respond to environmental signals to regulate virulence factor production and basic metabolic processes during infection. PMID:20333240

  15. Sheeppox virus kelch-like gene SPPV-019 affects virus virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheeppox virus (SPPV), a member of the Capripoxvirus genus of the Poxviridae, is the etiologic agent of a significant disease of sheep in the developing world. Genomic analysis of pathogenic and vaccine capripoxviruses identified genes with potential roles in virulence and host-range, including thr...

  16. Identification and functional analysis of Penicillium digitatum genes putatively involved in virulence towards citrus fruit.

    PubMed

    López-Pérez, Mario; Ballester, Ana-Rosa; González-Candelas, Luis

    2015-04-01

    The fungus Penicillium digitatum, the causal agent of green mould rot, is the most destructive post-harvest pathogen of citrus fruit in Mediterranean regions. In order to identify P. digitatum genes up-regulated during the infection of oranges that may constitute putative virulence factors, we followed a polymerase chain reaction (PCR)-based suppression subtractive hybridization and cDNA macroarray hybridization approach. The origin of expressed sequence tags (ESTs) was determined by comparison against the available genome sequences of both organisms. Genes coding for fungal proteases and plant cell wall-degrading enzymes represent the largest categories in the subtracted cDNA library. Northern blot analysis of a selection of P. digitatum genes, including those coding for proteases, cell wall-related enzymes, redox homoeostasis and detoxification processes, confirmed their up-regulation at varying time points during the infection process. Agrobacterium tumefaciens-mediated transformation was used to generate knockout mutants for two genes encoding a pectin lyase (Pnl1) and a naphthalene dioxygenase (Ndo1). Two independent P. digitatum Δndo1 mutants were as virulent as the wild-type. However, the two Δpnl1 mutants analysed were less virulent than the parental strain or an ectopic transformant. Together, these results provide a significant advance in our understanding of the putative determinants of the virulence mechanisms of P. digitatum. PMID:25099378

  17. Analysis of subtelomeric virulence gene families in Plasmodium falciparum by comparative transcriptional profiling

    PubMed Central

    Witmer, Kathrin; Schmid, Christoph D; Brancucci, Nicolas M B; Luah, Yen-Hoon; Preiser, Peter R; Bozdech, Zbynek; Voss, Till S

    2012-01-01

    Summary The Plasmodium falciparum genome is equipped with several subtelomeric gene families that are implicated in parasite virulence and immune evasion. Members of these families are uniformly positioned within heterochromatic domains and are thus subject to variegated expression. The best-studied example is that of the var family encoding the major parasite virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 undergoes antigenic variation through switches in mutually exclusive var gene transcription. var promoters function as crucial regulatory elements in the underlying epigenetic control strategy. Here, we analysed promoters of upsA, upsB and upsC var, rifA1-type rif, stevor, phist and pfmc-2tm genes and investigated their role in endogenous gene transcription by comparative genome-wide expression profiling of transgenic parasite lines. We find that the three major var promoter types are functionally equal and play an essential role in singular gene choice. Unlike var promoters, promoters of non-var families are not silenced by default, and transcription of non-var families is not subject to the same mode of mutually exclusive transcription as has been observed for var genes. Our findings identified a differential logic in the regulation of var and other subtelomeric virulence gene families, which will have important implications for our understanding and future analyses of phenotypic variation in malaria parasites. PMID:22435676

  18. Analysis of subtelomeric virulence gene families in Plasmodium falciparum by comparative transcriptional profiling.

    PubMed

    Witmer, Kathrin; Schmid, Christoph D; Brancucci, Nicolas M B; Luah, Yen-Hoon; Preiser, Peter R; Bozdech, Zbynek; Voss, Till S

    2012-04-01

    The Plasmodium falciparum genome is equipped with several subtelomeric gene families that are implicated in parasite virulence and immune evasion. Members of these families are uniformly positioned within heterochromatic domains and are thus subject to variegated expression. The best-studied example is that of the var family encoding the major parasite virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 undergoes antigenic variation through switches in mutually exclusive var gene transcription. var promoters function as crucial regulatory elements in the underlying epigenetic control strategy. Here, we analysed promoters of upsA, upsB and upsC var, rifA1-type rif, stevor, phist and pfmc-2tm genes and investigated their role in endogenous gene transcription by comparative genome-wide expression profiling of transgenic parasite lines. We find that the three major var promoter types are functionally equal and play an essential role in singular gene choice. Unlike var promoters, promoters of non-var families are not silenced by default, and transcription of non-var families is not subject to the same mode of mutually exclusive transcription as has been observed for var genes. Our findings identified a differential logic in the regulation of var and other subtelomeric virulence gene families, which will have important implications for our understanding and future analyses of phenotypic variation in malaria parasites. PMID:22435676

  19. Development and evaluation of multiplex PCR assays for rapid detection of virulence-associated genes in Arcobacter species.

    PubMed

    Whiteduck-Léveillée, Jenni; Cloutier, Michel; Topp, Edward; Lapen, David R; Talbot, Guylaine; Villemur, Richard; Khan, Izhar U H

    2016-02-01

    As the pathogenicity of Arcobacter species might be associated with various virulence factors, this study was aimed to develop and optimize three single-tube multiplex PCR (mPCR) assays that can efficiently detect multiple virulence-associated genes (VAGs) in Arcobacter spp. including the Arcobacter butzleri, Arcobacter cryaerophilus and Arcobacter skirrowii, respectively. The recognized target virulence factors used in the study were fibronectin binding protein (cj1349), filamentous hemagglutinin (hecA), hemolysin activation protein (hecB), hemolysin (tlyA), integral membrane protein virulence factor (mviN), invasin (ciaB), outer membrane protein (irgA) and phospholipase (pldA). Identical results were obtained between singleplex PCR and mPCR assays and no cross- and/or non-specific amplification products were obtained when tested against other closely related bacterial species. The sensitivities of these three mPCR assays were ranging from 1ngμL(-1) to 100ngμL(-1) DNA. The developed assays with combinations of duplex or triplex PCR primer pairs of VAGs were further evaluated and validated by applying them to isolates of the A. butzleri, A. cryaerophilus and A. skirrowii recovered from fecal samples of human and animal origins. The findings revealed that the distribution of the ciaB (90%), mviN (70%), tlyA (50%) and pldA (45%) genes among these target species was significantly higher than the hecA (16%), hecB (10%) and each of irgA and cj1349 (6%) genes, respectively. The newly developed mPCR assays can be used as rapid technique and useful markers for the detection, prevalence and profiling of VAGs in the Arcobacter spp. Moreover, these assays can easily be performed with a high throughput to give a presumptive identification of the causal pathogen in epidemiological investigation of human infections. PMID:26769558

  20. Gene expression patterns and dynamics of the colonization of common bean (Phaseolus vulgaris L.) by highly virulent and weakly virulent strains of Fusarium oxysporum

    PubMed Central

    Niño-Sánchez, Jonathan; Tello, Vega; Casado-del Castillo, Virginia; Thon, Michael R.; Benito, Ernesto P.; Díaz-Mínguez, José María

    2015-01-01

    The dynamics of root and hypocotyl colonization, and the gene expression patterns of several fungal virulence factors and plant defense factors have been analyzed and compared in the interaction of two Fusarium oxysporum f. sp. phaseoli strains displaying clear differences in virulence, with a susceptible common bean cultivar. The growth of the two strains on the root surface and the colonization of the root was quantitatively similar although the highly virulent (HV) strain was more efficient reaching the central root cylinder. The main differences between both strains were found in the temporal and spatial dynamics of crown root and hypocotyl colonization. The increase of fungal biomass in the crown root was considerably larger for the HV strain, which, after an initial stage of global colonization of both the vascular cylinder and the parenchymal cells, restricted its growth to the newly differentiated xylem vessels. The weakly virulent (WV) strain was a much slower and less efficient colonizer of the xylem vessels, showing also growth in the intercellular spaces of the parenchyma. Most of the virulence genes analyzed showed similar expression patterns in both strains, except SIX1, SIX6 and the gene encoding the transcription factor FTF1, which were highly upregulated in root crown and hypocotyl. The response induced in the infected plant showed interesting differences for both strains. The WV strain induced an early and strong transcription of the PR1 gene, involved in SAR response, while the HV strain preferentially induced the early expression of the ethylene responsive factor ERF2. PMID:25883592

  1. Burkholderia cenocepacia ShvR-regulated genes that influence colony morphology, biofilm formation, and virulence.

    PubMed

    Subramoni, Sujatha; Nguyen, David T; Sokol, Pamela A

    2011-08-01

    Burkholderia cenocepacia is an opportunistic pathogen that primarily infects cystic fibrosis (CF) patients. Previously, we reported that ShvR, a LysR regulator, influences colony morphology, virulence, and biofilm formation and regulates the expression of an adjacent 24-kb genomic region encoding 24 genes. In this study, we report the functional characterization of selected genes in this region. A Tn5 mutant with shiny colony morphology was identified with a polar mutation in BCAS0208, predicted to encode an acyl-coenzyme A dehydrogenase. Mutagenesis of BCAS0208 and complementation analyses revealed that BCAS0208 is required for rough colony morphology, biofilm formation, and virulence on alfalfa seedlings. It was not possible to complement with BCAS0208 containing a mutation in the catalytic site. BCAS0201, encoding a putative flavin adenine dinucleotide (FAD)-dependent oxidoreductase, and BCAS0207, encoding a putative citrate synthase, do not influence colony morphology but are required for optimum levels of biofilm formation and virulence. Both BCAS0208 and BCAS0201 contribute to pellicle formation, although individual mutations in each of these genes had no appreciable effect on pellicle formation. A mutant with a polar insertion in BCAS0208 was significantly less virulent in a rat model of chronic lung infection as well as in the alfalfa model. Genes in this region were shown to influence utilization of branched-chain fatty acids, tricarboxylic acid cycle substrates, l-arabinose, and branched-chain amino acids. Together, our data show that the ShvR-regulated genes BCAS0208 to BCAS0201 are required for the rough colony morphotype, biofilm and pellicle formation, and virulence in B. cenocepacia. PMID:21690240

  2. Host stress hormone norepinephrine stimulates pneumococcal growth, biofilm formation and virulence gene expression

    PubMed Central

    2014-01-01

    Background Host signals are being shown to have a major impact on the bacterial phenotype. One of them is the endogenously produced catecholamine stress hormones, which are also used therapeutically as inotropes. Recent work form our laboratories have found that stress hormones can markedly increase bacterial growth and virulence. This report reveals that Streptococcus pneumoniae, a commensal that can also be a major cause of community acquired and nosocomial pneumonia, is highly inotrope responsive. Therapeutic levels of the stress hormone norepinephrine increased pneumococcal growth via a mechanism involving provision of iron from serum-transferrin and inotrope uptake, as well as enhancing expression of key genes in central metabolism and virulence. Collectively, our data suggests that Streptococcus pneumoniae recognises host stress as an environmental cue to initiate growth and pathogenic processes. Results Effects of a clinically attainable concentration of norepinephrine on S. pneumoniae pathogenicity were explored using in vitro growth and virulence assays, and RT-PCR gene expression profiling of genes involved in metabolism and virulence. We found that norepinephrine was a potent stimulator of growth, via a mechanism involving norepinephrine-delivery of transferrin-iron and internalisation of the inotrope. Stress hormone exposure also markedly increased biofilm formation. Importantly, gene profiling showed that norepinephrine significantly enhanced expression of genes involved in central metabolism and host colonisation. Analysis of the response of the pneumococcal pspA and pspC mutants to the stress hormone showed them to have a central involvement in the catecholamine response mechanism. Conclusions Collectively, our evidence suggests that the pneumococcus has mechanisms to recognise and process host stress hormones to augment its virulence properties. The ability to respond to host stress signals may be important for the pneumococcal transition from

  3. Systems Level Analyses Reveal Multiple Regulatory Activities of CodY Controlling Metabolism, Motility and Virulence in Listeria monocytogenes.

    PubMed

    Lobel, Lior; Herskovits, Anat A

    2016-02-01

    Bacteria sense and respond to many environmental cues, rewiring their regulatory network to facilitate adaptation to new conditions/niches. Global transcription factors that co-regulate multiple pathways simultaneously are essential to this regulatory rewiring. CodY is one such global regulator, controlling expression of both metabolic and virulence genes in Gram-positive bacteria. Branch chained amino acids (BCAAs) serve as a ligand for CodY and modulate its activity. Classically, CodY was considered to function primarily as a repressor under rich growth conditions. However, our previous studies of the bacterial pathogen Listeria monocytogenes revealed that CodY is active also when the bacteria are starved for BCAAs. Under these conditions, CodY loses the ability to repress genes (e.g., metabolic genes) and functions as a direct activator of the master virulence regulator gene, prfA. This observation raised the possibility that CodY possesses multiple functions that allow it to coordinate gene expression across a wide spectrum of metabolic growth conditions, and thus better adapt bacteria to the mammalian niche. To gain a deeper understanding of CodY's regulatory repertoire and identify direct target genes, we performed a genome wide analysis of the CodY regulon and DNA binding under both rich and minimal growth conditions, using RNA-Seq and ChIP-Seq techniques. We demonstrate here that CodY is indeed active (i.e., binds DNA) under both conditions, serving as a repressor and activator of different genes. Further, we identified new genes and pathways that are directly regulated by CodY (e.g., sigB, arg, his, actA, glpF, gadG, gdhA, poxB, glnR and fla genes), integrating metabolism, stress responses, motility and virulence in L. monocytogenes. This study establishes CodY as a multifaceted factor regulating L. monocytogenes physiology in a highly versatile manner. PMID:26895237

  4. Systems Level Analyses Reveal Multiple Regulatory Activities of CodY Controlling Metabolism, Motility and Virulence in Listeria monocytogenes

    PubMed Central

    Lobel, Lior; Herskovits, Anat A.

    2016-01-01

    Bacteria sense and respond to many environmental cues, rewiring their regulatory network to facilitate adaptation to new conditions/niches. Global transcription factors that co-regulate multiple pathways simultaneously are essential to this regulatory rewiring. CodY is one such global regulator, controlling expression of both metabolic and virulence genes in Gram-positive bacteria. Branch chained amino acids (BCAAs) serve as a ligand for CodY and modulate its activity. Classically, CodY was considered to function primarily as a repressor under rich growth conditions. However, our previous studies of the bacterial pathogen Listeria monocytogenes revealed that CodY is active also when the bacteria are starved for BCAAs. Under these conditions, CodY loses the ability to repress genes (e.g., metabolic genes) and functions as a direct activator of the master virulence regulator gene, prfA. This observation raised the possibility that CodY possesses multiple functions that allow it to coordinate gene expression across a wide spectrum of metabolic growth conditions, and thus better adapt bacteria to the mammalian niche. To gain a deeper understanding of CodY’s regulatory repertoire and identify direct target genes, we performed a genome wide analysis of the CodY regulon and DNA binding under both rich and minimal growth conditions, using RNA-Seq and ChIP-Seq techniques. We demonstrate here that CodY is indeed active (i.e., binds DNA) under both conditions, serving as a repressor and activator of different genes. Further, we identified new genes and pathways that are directly regulated by CodY (e.g., sigB, arg, his, actA, glpF, gadG, gdhA, poxB, glnR and fla genes), integrating metabolism, stress responses, motility and virulence in L. monocytogenes. This study establishes CodY as a multifaceted factor regulating L. monocytogenes physiology in a highly versatile manner. PMID:26895237

  5. Virulent Treponema pallidum activates human vascular endothelial cells.

    PubMed

    Riley, B S; Oppenheimer-Marks, N; Hansen, E J; Radolf, J D; Norgard, M V

    1992-03-01

    Perivascular lymphocytic infiltration, fibrin deposition, and endothelial cell abnormalities consistent with cellular activation are prominent histopathologic features of syphilis, a sexually transmitted disease caused by the spirochetal bacterium Treponema pallidum. Because activated endothelial cells play important roles in lymphocyte homing and hemostasis, the ability of virulent T. pallidum to activate cultured human umbilical vein endothelial cells (HUVEC) was investigated. T. pallidum induced the expression of intercellular adhesion molecule-1 (ICAM-1) and procoagulant activity on the surface of HUVEC. Electron microscopy of T. pallidum-stimulated HUVEC revealed extensive networks of fibrin strands not observed in cultures without treponemes. ICAM-1 expression in HUVEC also was promoted by a 47-kDa integral membrane lipoprotein purified from T. pallidum, implicating a role for spirochete membrane lipoproteins in endothelial cell activation. The combined findings are consistent with the pathology of syphilis and provide the first evidence that a pathogenic spirochetal bacterium such as T. pallidum or its constituent integral membrane lipoprotein(s) can activate directly host vascular endothelium. PMID:1347056

  6. Virulence-associated genes in Escherichia coli isolates from poultry with colibacillosis: correction.

    PubMed

    Vidotto, Marilda C; Gaziri, Luis Carlos J; Delicato, Elaine R

    2004-08-19

    Several virulence genes of avian Escherichia coli were detected in 200 colibacillosis isolates from our region by PCR. However, the genes sfaDE and facA were not detected in that study. In this work we correct those data, showing by colony hybridization that sfaDE and facA are present in 40% and 30% of those isolates, respectively. PMID:15288931

  7. Genome sequencing of a virulent avian Pasteurella multocida strain GX-Pm reveals the candidate genes involved in the pathogenesis.

    PubMed

    Yu, Chengjie; Sizhu, Suolang; Luo, Qingping; Xu, Xuewen; Fu, Lei; Zhang, Anding

    2016-04-01

    Pasteurella multocida (P. multocida) was first shown to be the causative agent of fowl cholera by Louis Pasteur in 1881. First genomic study was performed on an avirulent avian strain Pm70, and until 2013, two genomes of virulent avian strains X73 and P1059 were sequenced. Comparative genome study supplied important information for further study on the pathogenesis of fowl cholera. In the previous study, a capsular serotype A strain GX-Pm was isolated from the liver of a chicken, which died during an outbreak of fowl cholera in 2011. The strain showed multiple drug resistance and was highly virulent to chickens. Therefore, the present study performed the genome sequencing and a comparative genomic analysis to reveal the candidate genes involved in virulence of P. multocida. Sequenced draft genome sequence of GX-Pm was 2,292,886 bp, contained 2941 protein-coding genes, 5 genomic islands, 4 IS elements and 2 prophage regions. Notability, all the predicted drug-resistance genes were included in predicted genomic islands. A comparative genome study on virulent avian strains P1059, X73 and GX-Pm with the avirulent avian strain Pm 70 indicated that 475 unique genes were only identified in either of virulent strains but absent in the avirulent strain. Among these genes, 20 genes were contained within genomes of all three virulent strains, including a few of putative virulence genes. Further characterization of the pathogenic functions of these genes would benefit the understanding of pathogenesis of fowl cholera. PMID:27033902

  8. Impact of virulence genes on sepsis severity and survival in Escherichia coli bacteremia

    PubMed Central

    Mora-Rillo, Marta; Fernández-Romero, Natalia; Francisco, Carolina Navarro-San; Díez-Sebastián, Jesús; Romero-Gómez, Maria Pilar; Fernández, Francisco Arnalich; López, Jose Ramon Arribas; Mingorance, Jesús

    2015-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) are a frequent cause of bacteremia and sepsis, but the role of ExPEC genetic virulence factors (VFs) in sepsis development and outcome is ill-defined. Prospective study including 120 adult patients with E. coli bacteremia to investigate the impact of bacterial and host factors on sepsis severity and mortality. Patients' clinical and demographic data were registered. Phylogenetic background of E. coli isolates was analyzed by SNP pyrosequencing and VFs by PCR. The E. coli isolates presented an epidemic population structure with 6 dominant clones making up to half of the isolates. VF gene profiles were highly diverse. Multivariate analysis for sepsis severity showed that the presence of cnf and blaTEM genes increased the risk of severe illness by 6.75 (95% confidence interval [CI] 1.79–24.71) and 2.59 (95% CI 1.04–6.43) times respectively, while each point in the Pitt score increased the risk by 1.34 (95% CI 1.02–1.76) times. Multivariate analysis for mortality showed that active chemotherapy (OR 17.87, 95% CI 3.35–95.45), McCabe-Jackson Index (OR for rapidly fatal category 120.15, 95% CI 4.19–3446.23), Pitt index (OR 1.78, 95% CI 1.25–2.56) and presence of fyuA gene (OR 8.05, 95% CI 1.37–47.12) were associated to increased mortality while the presence of P fimbriae genes had a protective role (OR 0.094, 95%IC 0.018–0.494). Bacteremic E. coli had a high diversity of genetic backgrounds and VF gene profiles. Bacterial VFs and host determinants had an impact on disease evolution and mortality. PMID:25654604

  9. Quantitative Trait Locus Based Virulence Determinant Mapping of the HSV-1 Genome in Murine Ocular Infection: Genes Involved in Viral Regulatory and Innate Immune Networks Contribute to Virulence

    PubMed Central

    Larsen, Inna; Craven, Mark; Brandt, Curtis R.

    2016-01-01

    Herpes simplex virus type 1 causes mucocutaneous lesions, and is the leading cause of infectious blindness in the United States. Animal studies have shown that the severity of HSV-1 ocular disease is influenced by three main factors; innate immunity, host immune response and viral strain. We previously showed that mixed infection with two avirulent HSV-1 strains (OD4 and CJ994) resulted in recombinants that exhibit a range of disease phenotypes from severe to avirulent, suggesting epistatic interactions were involved. The goal of this study was to develop a quantitative trait locus (QTL) analysis of HSV-1 ocular virulence determinants and to identify virulence associated SNPs. Blepharitis and stromal keratitis quantitative scores were characterized for 40 OD4:CJ994 recombinants. Viral titers in the eye were also measured. Virulence quantitative trait locus mapping (vQTLmap) was performed using the Lasso, Random Forest, and Ridge regression methods to identify significant phenotypically meaningful regions for each ocular disease parameter. The most predictive Ridge regression model identified several phenotypically meaningful SNPs for blepharitis and stromal keratitis. Notably, phenotypically meaningful nonsynonymous variations were detected in the UL24, UL29 (ICP8), UL41 (VHS), UL53 (gK), UL54 (ICP27), UL56, ICP4, US1 (ICP22), US3 and gG genes. Network analysis revealed that many of these variations were in HSV-1 regulatory networks and viral genes that affect innate immunity. Several genes previously implicated in virulence were identified, validating this approach, while other genes were novel. Several novel polymorphisms were also identified in these genes. This approach provides a framework that will be useful for identifying virulence genes in other pathogenic viruses, as well as epistatic effects that affect HSV-1 ocular virulence. PMID:26962864

  10. Quantitative Trait Locus Based Virulence Determinant Mapping of the HSV-1 Genome in Murine Ocular Infection: Genes Involved in Viral Regulatory and Innate Immune Networks Contribute to Virulence.

    PubMed

    Kolb, Aaron W; Lee, Kyubin; Larsen, Inna; Craven, Mark; Brandt, Curtis R

    2016-03-01

    Herpes simplex virus type 1 causes mucocutaneous lesions, and is the leading cause of infectious blindness in the United States. Animal studies have shown that the severity of HSV-1 ocular disease is influenced by three main factors; innate immunity, host immune response and viral strain. We previously showed that mixed infection with two avirulent HSV-1 strains (OD4 and CJ994) resulted in recombinants that exhibit a range of disease phenotypes from severe to avirulent, suggesting epistatic interactions were involved. The goal of this study was to develop a quantitative trait locus (QTL) analysis of HSV-1 ocular virulence determinants and to identify virulence associated SNPs. Blepharitis and stromal keratitis quantitative scores were characterized for 40 OD4:CJ994 recombinants. Viral titers in the eye were also measured. Virulence quantitative trait locus mapping (vQTLmap) was performed using the Lasso, Random Forest, and Ridge regression methods to identify significant phenotypically meaningful regions for each ocular disease parameter. The most predictive Ridge regression model identified several phenotypically meaningful SNPs for blepharitis and stromal keratitis. Notably, phenotypically meaningful nonsynonymous variations were detected in the UL24, UL29 (ICP8), UL41 (VHS), UL53 (gK), UL54 (ICP27), UL56, ICP4, US1 (ICP22), US3 and gG genes. Network analysis revealed that many of these variations were in HSV-1 regulatory networks and viral genes that affect innate immunity. Several genes previously implicated in virulence were identified, validating this approach, while other genes were novel. Several novel polymorphisms were also identified in these genes. This approach provides a framework that will be useful for identifying virulence genes in other pathogenic viruses, as well as epistatic effects that affect HSV-1 ocular virulence. PMID:26962864

  11. Diversities in virulence, antifungal activity, pigmentation and DNA fingerprint among strains of Burkholderia glumae.

    PubMed

    Karki, Hari S; Shrestha, Bishnu K; Han, Jae Woo; Groth, Donald E; Barphagha, Inderjit K; Rush, Milton C; Melanson, Rebecca A; Kim, Beom Seok; Ham, Jong Hyun

    2012-01-01

    Burkholderia glumae is the primary causal agent of bacterial panicle blight of rice. In this study, 11 naturally avirulent and nine virulent strains of B. glumae native to the southern United States were characterized in terms of virulence in rice and onion, toxofalvin production, antifungal activity, pigmentation and genomic structure. Virulence of B. glumae strains on rice panicles was highly correlated to virulence on onion bulb scales, suggesting that onion bulb can be a convenient alternative host system to efficiently determine the virulence of B. glumae strains. Production of toxoflavin, the phytotoxin that functions as a major virulence factor, was closely associated with the virulence phenotypes of B. glumae strains in rice. Some strains of B. glumae showed various levels of antifungal activity against Rhizoctonia solani, the causal agent of sheath blight, and pigmentation phenotypes on casamino acid-peptone-glucose (CPG) agar plates regardless of their virulence traits. Purple and yellow-green pigments were partially purified from a pigmenting strain of B. glumae, 411gr-6, and the purple pigment fraction showed a strong antifungal activity against Collectotrichum orbiculare. Genetic variations were detected among the B. glumae strains from DNA fingerprinting analyses by repetitive element sequence-based PCR (rep-PCR) for BOX-A1R-based repetitive extragenic palindromic (BOX) or enterobacterial repetitive intergenic consensus (ERIC) sequences of bacteria; and close genetic relatedness among virulent but pigment-deficient strains were revealed by clustering analyses of DNA fingerprints from BOX-and ERIC-PCR. PMID:23028972

  12. PhoB Activates Escherichia coli O157:H7 Virulence Factors in Response to Inorganic Phosphate Limitation

    PubMed Central

    Chekabab, Samuel Mohammed; Jubelin, Grégory; Dozois, Charles M.; Harel, Josée

    2014-01-01

    Enterohemorrhagic Escherichia coli (EHEC), an emerging food- and water-borne hazard, is highly pathogenic to humans. In the environment, EHEC must survive phosphate (Pi) limitation. The response to such Pi starvation is an induction of the Pho regulon including the Pst system that senses Pi variation. The interplay between the virulence of EHEC, Pho-Pst system and environmental Pi remains unknown. To understand the effects of Pi deprivation on the molecular mechanisms involved in EHEC survival and virulence under Pho regulon control, we undertook transcriptome profiling of the EDL933 wild-type strain grown under high Pi and low Pi conditions and its isogenic ΔphoB mutant grown in low Pi conditions. The differentially expressed genes included 1067 Pi-dependent genes and 603 PhoB-dependent genes. Of these 131 genes were both Pi and PhoB-dependent. Differentially expressed genes that were selected included those involved in Pi homeostasis, cellular metabolism, acid stress, oxidative stress and RpoS-dependent stress responses. Differentially expressed virulence systems included the locus of enterocyte effacement (LEE) encoding the type-3 secretion system (T3SS) and its effectors, as well as BP-933W prophage encoded Shiga toxin 2 genes. Moreover, PhoB directly regulated LEE and stx2 gene expression through binding to specific Pho boxes. However, in Pi-rich medium, constitutive activation of the Pho regulon decreased LEE gene expression and reduced adherence to HeLa cells. Together, these findings reveal that EHEC has evolved a sophisticated response to Pi limitation involving multiple biochemical strategies that contribute to its ability to respond to variations in environmental Pi and to coordinating the virulence response. PMID:24710330

  13. Salmonella Modulates Metabolism during Growth under Conditions that Induce Expression of Virulence Genes

    PubMed Central

    Kim, Young-Mo; Schmidt, Brian J.; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage Kaiser, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-01-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes to virulence in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Furthermore, analyses of omics data in the context of the metabolic model indicated rewiring of the metabolic network to support pathways associated with virulence. For example, cellular concentrations of polyamines were perturbed, as well as the predicted capacity for secretion and uptake. PMID:23559334

  14. Identification of virulence genes in a pathogenic strain of Pseudomonas aeruginosa by representational difference analysis.

    PubMed

    Choi, Ji Young; Sifri, Costi D; Goumnerov, Boyan C; Rahme, Laurence G; Ausubel, Frederick M; Calderwood, Stephen B

    2002-02-01

    Pseudomonas aeruginosa is an opportunistic pathogen that may cause severe infections in humans and other vertebrates. In addition, a human clinical isolate of P. aeruginosa, strain PA14, also causes disease in a variety of nonvertebrate hosts, including plants, Caenorhabditis elegans, and the greater wax moth, Galleria mellonella. This has led to the development of a multihost pathogenesis system in which plants, nematodes, and insects have been used as adjuncts to animal models for the identification of P. aeruginosa virulence factors. Another approach to identifying virulence genes in bacteria is to take advantage of the natural differences in pathogenicity between isolates of the same species and to use a subtractive hybridization technique to recover relevant genomic differences. The sequenced strain of P. aeruginosa, strain PAO1, has substantial differences in virulence from strain PA14 in several of the multihost models of pathogenicity, and we have utilized the technique of representational difference analysis (RDA) to directly identify genomic differences between P. aeruginosa strains PA14 and PAO1. We have found that the pilC, pilA, and uvrD genes in strain PA14 differ substantially from their counterparts in strain PAO1. In addition, we have recovered a gene homologous to the ybtQ gene from Yersinia, which is specifically present in strain PA14 but absent in strain PAO1. Mutation of the ybtQ homolog in P. aeruginosa strain PA14 significantly attenuates the virulence of this strain in both G. mellonella and a burned mouse model of sepsis to levels comparable to those seen with PAO1. This suggests that the increased virulence of P. aeruginosa strain PA14 compared to PAO1 may relate to specific genomic differences identifiable by RDA. PMID:11807055

  15. Novel virulence gene of Pseudomonas syringae pv. tomato strain DC3000.

    PubMed

    Preiter, Karen; Brooks, David M; Penaloza-Vazquez, Alejandro; Sreedharan, Aswathy; Bender, Carol L; Kunkel, Barbara N

    2005-11-01

    Previously, we conducted a mutant screen of Pseudomonas syringae pv. tomato strain DC3000 to identify genes that contribute to virulence on Arabidopsis thaliana plants. Here we describe the characterization of one mutant strain, DB4H2, which contains a single Tn5 insertion in PSPTO3576, an open reading frame that is predicted to encode a protein belonging to the TetR family of transcriptional regulators. We demonstrate that PSPTO3576 is necessary for virulence in DC3000 and designate the encoded protein TvrR (TetR-like virulence regulator). TvrR, like many other TetR-like transcriptional regulators, negatively regulates its own expression. Despite the presence of a putative HrpL binding site in the tvrR promoter region, tvrR is not regulated by HrpL, an alternative sigma factor that regulates the expression of many known DC3000 virulence genes. tvrR mutant strains grow comparably to wild-type DC3000 in culture and possess an intact type III secretion system. However, tvrR mutants do not cause disease symptoms on inoculated A. thaliana and tomato plants, and their growth within plant tissue is significantly impaired. We demonstrate that tvrR mutant strains are able to synthesize coronatine (COR), a phytotoxin required for virulence of DC3000 on A. thaliana. Given that tvrR mutant strains are not defective for type III secretion or COR production, tvrR appears to be a novel virulence factor required for a previously unexplored process that is necessary for pathogenesis. PMID:16267304

  16. Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection.

    PubMed Central

    Wang, J; Mushegian, A; Lory, S; Jin, S

    1996-01-01

    Pseudomonas aeruginosa, an opportunistic human pathogen, is a major causative agent of mortality and morbidity in immunocompromised patients and those with cystic fibrosis genetic disease. To identify new virulence genes of P. aeruginosa, a selection system was developed based on the in vivo expression technology (IVET) that was first reported in Salmonella system. An adenine-requiring auxotrophic mutant strain of P. aeruginosa was isolated and found avirulent on neutropenic mice. A DNA fragment that can complement the mutant strain, containing purEK operon that is required for de novo biosynthesis of purine, was sequenced and used in the IVET vector construction. By applying the IVET selection system to a neutropenic mouse infection model, genetic loci that are specifically induced in vivo were identified. Twenty-two such loci were partially sequenced and analyzed. One of them was a well-studied virulence factor, pyochelin receptor (FptA), that is involved in iron acquisition. Fifteen showed significant homology to reported sequences in GenBank, while the remaining six did not. One locus, designated np20, encodes an open reading frame that shares amino acid sequence homology to transcriptional regulators, especially to the ferric uptake regulator (Fur) proteins of other bacteria. An insertional np20 null mutant strain of P. aeruginosa did not show a growth defect on laboratory media; however, its virulence on neutropenic mice was significantly reduced compared with that of a wild-type parent strain, demonstrating the importance of the np20 locus in the bacterial virulence. The successful isolation of genetic loci that affect bacterial virulence demonstrates the utility of the IVET system in identification of new virulence genes of P. aeruginosa. Images Fig. 2 Fig. 4 PMID:8816818

  17. A Bistable Switch and Anatomical Site Control Vibrio cholerae Virulence Gene Expression in the Intestine

    PubMed Central

    Nielsen, Alex T.; Dolganov, Nadia A.; Rasmussen, Thomas; Otto, Glen; Miller, Michael C.; Felt, Stephen A.; Torreilles, Stéphanie; Schoolnik, Gary K.

    2010-01-01

    A fundamental, but unanswered question in host-pathogen interactions is the timing, localization and population distribution of virulence gene expression during infection. Here, microarray and in situ single cell expression methods were used to study Vibrio cholerae growth and virulence gene expression during infection of the rabbit ligated ileal loop model of cholera. Genes encoding the toxin-coregulated pilus (TCP) and cholera toxin (CT) were powerfully expressed early in the infectious process in bacteria adjacent to epithelial surfaces. Increased growth was found to co-localize with virulence gene expression. Significant heterogeneity in the expression of tcpA, the repeating subunit of TCP, was observed late in the infectious process. The expression of tcpA, studied in single cells in a homogeneous medium, demonstrated unimodal induction of tcpA after addition of bicarbonate, a chemical inducer of virulence gene expression. Striking bifurcation of the population occurred during entry into stationary phase: one subpopulation continued to express tcpA, whereas the expression declined in the other subpopulation. ctxA, encoding the A subunit of CT, and toxT, encoding the proximal master regulator of virulence gene expression also exhibited the bifurcation phenotype. The bifurcation phenotype was found to be reversible, epigenetic and to persist after removal of bicarbonate, features consistent with bistable switches. The bistable switch requires the positive-feedback circuit controlling ToxT expression and formation of the CRP-cAMP complex during entry into stationary phase. Key features of this bistable switch also were demonstrated in vivo, where striking heterogeneity in tcpA expression was observed in luminal fluid in later stages of the infection. When this fluid was diluted into artificial seawater, bacterial aggregates continued to express tcpA for prolonged periods of time. The bistable control of virulence gene expression points to a mechanism that could

  18. cj0371: A Novel Virulence-Associated Gene of Campylobacter jejuni

    PubMed Central

    Du, Xueqing; Wang, Nan; Ren, Fangzhe; Tang, Hong; Jiao, Xinan; Huang, Jinlin

    2016-01-01

    Campylobacter jejuni is the major cause of human bacterial diarrhea worldwide. Its pathogenic mechanism remains poorly understood. cj0371 is a novel gene that was uncovered using immunoscreening. There have been no previous reports regarding its function. In this study, we constructed an insertion mutant and complement of this gene in C. jejuni and examined changes in virulence. We observed that the cj0371 mutant showed significantly increased invasion and colonization ability. We also investigated the role of cj0371 in motility, chemotaxis, and growth kinetics to further study its function. We found that the cj0371 mutant displays hypermotility, enhanced chemotaxis, and enhanced growth kinetics. In addition, we localized the Cj0371 protein at the poles of C. jejuni by fluorescence microscopy. We present data that collectively significantly proves our hypothesis that cj0371 is a new virulence-associated gene and through the influence of chemotaxis plays a negative role in C. jejuni pathogenicity. PMID:27471500

  19. cj0371: A Novel Virulence-Associated Gene of Campylobacter jejuni.

    PubMed

    Du, Xueqing; Wang, Nan; Ren, Fangzhe; Tang, Hong; Jiao, Xinan; Huang, Jinlin

    2016-01-01

    Campylobacter jejuni is the major cause of human bacterial diarrhea worldwide. Its pathogenic mechanism remains poorly understood. cj0371 is a novel gene that was uncovered using immunoscreening. There have been no previous reports regarding its function. In this study, we constructed an insertion mutant and complement of this gene in C. jejuni and examined changes in virulence. We observed that the cj0371 mutant showed significantly increased invasion and colonization ability. We also investigated the role of cj0371 in motility, chemotaxis, and growth kinetics to further study its function. We found that the cj0371 mutant displays hypermotility, enhanced chemotaxis, and enhanced growth kinetics. In addition, we localized the Cj0371 protein at the poles of C. jejuni by fluorescence microscopy. We present data that collectively significantly proves our hypothesis that cj0371 is a new virulence-associated gene and through the influence of chemotaxis plays a negative role in C. jejuni pathogenicity. PMID:27471500

  20. Environmental regulation of virulence in group A streptococci: transcription of the gene encoding M protein is stimulated by carbon dioxide.

    PubMed Central

    Caparon, M G; Geist, R T; Perez-Casal, J; Scott, J R

    1992-01-01

    We have found that different atmospheres can have significant effects on the transcription of emm, the gene that encodes M protein, the major virulence factor of the group A streptococcus (Streptococcus pyogenes). Expression of emm was monitored by constructing a transcriptional fusion of the promoter for emm6.1 from S. pyogenes JRS4 to a promoterless chloramphenicol acetyltransferase gene. Transcription, as measured by determining chloramphenicol acetyltransferase specific activity, was stimulated by as much as 25-fold by increased carbon dioxide tension. Expression was greater in the latter stages of growth and was not affected by growth at 30 instead of 37 degrees C. Insertional inactivation of mry, a gene encoding a positive regulator of emm6.1, reduced chloramphenicol acetyltransferase activity below the detectable level. We conclude that expression of emm is influenced by environmental factors and that the level of carbon dioxide is one signal that may influence expression of M protein during infection. Images PMID:1512202

  1. Characterization of aminoglycoside resistance and virulence genes among Enterococcus spp. isolated from a hospital in China.

    PubMed

    Li, Wanxiang; Li, Jing; Wei, Quhao; Hu, Qingfeng; Lin, Xiaowei; Chen, Mengquan; Ye, Renji; Lv, Huoyang

    2015-03-01

    This study investigated the aminoglycoside resistance phenotypes and genotypes, as well as the prevalence of virulence genes, in Enterococcus species isolated from clinical patients in China. A total of 160 enterococcal isolates from various clinical samples collected from September 2013 to July 2014 were identified to the species level using the VITEK-2 COMPACT system. The antimicrobial susceptibilities of the identified Enterococcus strains were determined by the Kirby-Bauer (K-B) disc diffusion method. PCR-based assays were used to detect the aminoglycoside resistance and virulence genes in all enterococcal isolates. Of 160 Enterococcus isolates, 105 were identified as E. faecium, 35 as E. faecalis, and 20 isolates were classified as "other" Enterococcus species. High-level aminoglycoside resistance (HLAR) for gentamicin, streptomycin, and both antibiotics was identified in 58.8, 50, and 34.4% of strains, respectively. The most common virulence gene (50.6% of isolates) was efaA, followed by asa1 (28.8%). The most prevalent aminoglycoside resistance genes were aac(6')-Ie-aph(2''), aph(2')-Id, aph(3')-IIIa, and ant(6')-Ia, present in 49.4%, 1.3%, 48.8% and 31.3% of strains, respectively. Overall, E. faecium and E. faecalis were most frequently associated with hospital-acquired enterococcal infections in Zhejiang Province. All aminoglycoside resistance genes, except aph(2'')-Id, were significantly more prevalent in HLAR strains than amongst high level aminoglycoside susceptible (HLAS) strains, while there was no significant difference between HLAR and HLAS strains in regard to the prevalence of virulence genes, apart from esp, therefore, measures should be taken to manage infections caused by multi-drug resistant Enterococcus species. PMID:25768240

  2. Erythromycin resistance and virulence genes in Enterococcus faecalis from swine in China.

    PubMed

    Zou, Li-Kou; Wang, Hong-Ning; Zeng, Bo; Li, Jin-Niang; Li, Xu-Ting; Zhang, An-Yun; Zhou, Ying-Shun; Yang, Xin; Xu, Chang-Wen; Xia, Qing-Qing

    2011-01-01

    This study aims to describe the erythromycin resistance phenotypes and genotypes, and the prevalence of virulence genes of Enterococcus faecalis isolated from swine in China. A total of 117 nonreplicate E. faecalis isolates, obtained from 502 clinical samples taken from different pig farms between 2007 and 2009 were included in the study. Minimum inhibitory concentrations were determined using the broth microdilution method. All of the isolates were screened for the presence of seven virulence genes (ace, asa1, cylA, efaA, esp, gelE, and hyl). In addition, the DNA from rythromycin-resistant isolates were amplified with primers specific for erythromycin resistance erm(A), erm(B), erm(C), mef(A/E), and msr(C) genes. Results show that erythromycin, tylosin, and ciprofloxacin resistance rates in E. faecalis were 66.67% (n=78), 66.67% (n=78), and 64.10% (n=75), respectively. About 69.23% of isolates (n=81) were positive for gelE, 48.72% (n=57) for ace, 15.38% (n=18) for efa, 7.69% (n=9) for asa1, and 6.84% (n=8) for esp. Among the erythromycin-resistant isolates, erm(B) (n=54) was the most prevalent resistance gene, followed by erm(A) (n=37). A significant correlation was found between the presence of the gelE virulence gene and erythromycin resistance (P<0.05). These findings suggest that enterococci from swine should be regarded with caution because they can be reservoirs for antimicrobial resistance and virulence genes. PMID:21344149

  3. Virulence gene profiles in Staphylococcus aureus isolated from cows with subclinical mastitis in eastern Poland.

    PubMed

    Kot, Barbara; Szweda, Piotr; Frankowska-Maciejewska, Aneta; Piechota, Małgorzata; Wolska, Katarzyna

    2016-05-01

    Staphylococcus aureus is arguably the most important pathogen involved in bovine mastitis. The aim of this study was to determine the virulence gene profiles of 124 Staph. aureus isolates from subclinical mastitis in cows in eastern Poland. The presence of 30 virulence genes encoding adhesins, proteases and superantigenic toxins was investigated by PCR. The 17 different combinations of adhesin genes were identified. Occurrence of eno (91·1%) and fib (82·3%) genes was found to be common. The frequency of other adhesion genes fnbA, fnbB, ebps were 14·5, 50, 25%, respectively, and for cna and bbp were 1·6%. The etA and etD genes, encoding exfoliative toxins, were present in genomes of 5·6 and 8·9% isolates, respectively. The splA and sspA, encoding serine protease, were detected in above 90% isolates. The most frequent enterotoxin genes were sei (21%), sem (19·4%), sen (19·4%), seg (18·5%) and seo (13·7%). The tst gene was harboured by 2·4% isolates. The 19 combinations of the superantigenic toxin genes were obtained and found in 35·5% of isolates. Three of them (seg, sei, sem, sen, seo; sec, seg, sei, sem, sen, seo and seg, sei, sem, sen) were the most frequent and found in 16·1% of the isolates. The most common virulotype, present in 17·7% of the isolates, was fib, eno, fnbB, splA, splE, sspA. The results indicate the variation in the presence of virulence genes in Staph. aureus isolates and considerable diversity of isolates that are able to cause mastitis in cows. PMID:27032339

  4. Microevolution of Virulence-Related Genes in Helicobacter pylori Familial Infection

    PubMed Central

    Furuta, Yoshikazu; Konno, Mutsuko; Osaki, Takako; Yonezawa, Hideo; Ishige, Taichiro; Imai, Misaki; Shiwa, Yuh; Shibata-Hatta, Mari; Kanesaki, Yu; Yoshikawa, Hirofumi; Kamiya, Shigeru; Kobayashi, Ichizo

    2015-01-01

    Helicobacter pylori, a bacterial pathogen that can infect human stomach causing gastritis, ulcers and cancer, is known to have a high degree of genome/epigenome diversity as the result of mutation and recombination. The bacteria often infect in childhood and persist for the life of the host. One of the reasons of the rapid evolution of H. pylori is that it changes its genome drastically for adaptation to a new host. To investigate microevolution and adaptation of the H. pylori genome, we undertook whole genome sequencing of the same or very similar sequence type in multi-locus sequence typing (MLST) with seven genes in members of the same family consisting of parents and children in Japan. Detection of nucleotide substitutions revealed likely transmission pathways involving children. Nonsynonymous (amino acid changing) mutations were found in virulence-related genes (cag genes, vacA, hcpDX, tnfα, ggt, htrA and the collagenase gene), outer membrane protein (OMP) genes and other cell surface-related protein genes, signal transduction genes and restriction-modification genes. We reconstructed various pathways by which H. pylori can adapt to a new human host, and our results raised the possibility that the mutational changes in virulence-related genes have a role in adaptation to a child host. Changes in restriction-modification genes might remodel the methylome and transcriptome to help adaptation. This study has provided insights into H. pylori transmission and virulence and has implications for basic research as well as clinical practice. PMID:25978460

  5. Virulence Plasmid of Rhodococcus equi Contains Inducible Gene Family Encoding Secreted Proteins

    PubMed Central

    Byrne, Barbara A.; Prescott, John F.; Palmer, Guy H.; Takai, Shinji; Nicholson, Vivian M.; Alperin, Debra C.; Hines, Stephen A.

    2001-01-01

    Rhodococcus equi causes severe pyogranulomatous pneumonia in foals. This facultative intracellular pathogen produces similar lesions in immunocompromised humans, particularly in AIDS patients. Virulent strains of R. equi bear a large plasmid that is required for intracellular survival within macrophages and for virulence in foals and mice. Only two plasmid-encoded proteins have been described previously; a 15- to 17-kDa surface protein designated virulence-associated protein A (VapA) and an antigenically related 20-kDa protein (herein designated VapB). These two proteins are not expressed by the same R. equi isolate. We describe here the substantial similarity between VapA and VapB. Moreover, we identify three additional genes carried on the virulence plasmid, vapC, -D, and -E, that are tandemly arranged downstream of vapA. These new genes are members of a gene family and encode proteins that are approximately 50% homologous to VapA, VapB, and each other. vapC, -D, and -E are found only in R. equi strains that express VapA and are highly conserved in VapA-positive isolates from both horses and humans. VapC, -D, and -E are secreted proteins coordinately regulated by temperature with VapA; the proteins are expressed when R. equi is cultured at 37°C but not at 30°C, a finding that is compatible with a role in virulence. As secreted proteins, VapC, -D, and -E may represent targets for the prevention of rhodococcal pneumonia. An immunologic study using VapA-specific antibodies and recombinant Vap proteins revealed no evidence of cross-reactivity despite extensive sequence similarity over the carboxy terminus of all four proteins. PMID:11159951

  6. Comparison of antibiotic resistance, virulence gene profiles, and pathogenicity of methicillin-resistant and methicillin-susceptible Staphylococcus aureus using a Caenorhabditis elegans infection model

    PubMed Central

    Thompson, Terissa; Brown, Paul D

    2014-01-01

    Objectives: This study compared the presence of 35 virulence genes, resistance phenotypes to 11 anti-staphylococcal antibiotics, and pathogenicity in methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA). Methods: Multiplex PCR analysis was used to differentiate Staphylococcus aureus isolates (n = 102) based on characterization of the Staphylococcal Cassette Chromosome mec (SCCmec). Singleplex and multiplex PCR assays targeting 35 virulence determinants were used to analyze the virulence repertoire of S. aureus. In vitro activities of the antibiotics were determined by the disk-diffusion method. The pathogenicity of representative isolates was assessed using Caenorhabditis elegans survival assays. Significance in virulence distribution and antibiotic resistance phenotypes was assessed using the Chi-squared tests. Kaplan–Meier survival estimates were used to analyze nematode survival and significance of survival rates evaluated using the log-rank test. Results: Except for sei (staphylococcal enterotoxin I) (P  =  0.027), all other virulence genes were not significantly associated with MRSA. Resistance to clindamycin (P  =  0.03), tetracycline (P  =  0.048), trimethoprim/sulfamethoxazole (P  =  0.038), and oxacillin (P  =  0.004) was significantly associated with MRSA. Survival assay showed MSSA having a lower median lifespan of 3 days than MRSA that had a median lifespan of 6 days. The difference in the killing time of MRSA and MSSA was significant (P < 0.001). Conclusion: While antibiotic resistance was significantly associated with MRSA, there was no preferential distribution of the virulence genes. The quicker killing potential of MSSA compared to MRSA suggests that carriage of virulence determinants per se does not determine pathogenicity in S. aureus. Pathogenicity is impacted by other factors, possibly antibiotic resistance. PMID:25319852

  7. Molecular Characterization of Virulence Genes in Vancomycin-Resistant and Vancomycin-Sensitive Enterococci

    PubMed Central

    Biswas, Priyanka Paul; Dey, Sangeeta; Sen, Aninda; Adhikari, Luna

    2016-01-01

    Background: The aim of this study was to find out the correlation between presence of virulence (gelatinase [gel E], enterococcal surface protein [esp], cytolysin A [cyl A], hyaluronidase [hyl], and aggregation substance [asa1]) and vancomycin-resistant genes (van A and van B) in enterococci, with their phenotypic expression. Materials and Methods: A total of 500 isolates (250 each clinical and fecal) were processed. Enterococci were isolated from various clinical samples and from fecal specimens of colonized patients. Various virulence determinants namely asa1, esp, hyl, gel E, and cyl were detected by phenotypic methods. Minimum inhibitory concentration (MIC) of vancomycin was determined by agar dilution method. Multiplex polymerase chain reaction (PCR) was used to detect the presence of virulence and van genes. Results: Out of all the samples processed, 12.0% (60/500) isolates carried van A or van B genes as confirmed by MIC test and PCR methods. Genes responsible for virulence were detected by multiplex PCR and at least one of the five was detected in all the clinical vancomycin-resistant enterococci (VRE) and vancomycin-sensitive enterococci (VSE). gel E, esp, and hyl genes were found to be significantly higher in clinical VRE. Of the fecal isolates, presence of gel E, esp, and asa1 was significantly higher in VRE as compared to VSE. The presence of hyl gene in the clinical VRE was found to be statistically significant (P = 0.043) as against the fecal VRE. Correlation between the presence of virulence genes and their expression as detected by phenotypic tests showed that while biofilm production was seen in 61.1% (22/36) of clinical VRE, the corresponding genes, i.e., asa1 and esp were detected in 30.5% (11/36) and 27.8% (10/36) of strains only. Conclusion: Enterococcus faecium isolates were found to carry esp gene, a phenomenon that has been described previously only for Enterococcus faecalis, but we were unable to correlate the presence of esp with their

  8. Virulence determinants in the PB2 gene of a mouse-adapted H9N2 virus.

    PubMed

    Liu, Qingtao; Huang, Junqing; Chen, Yuxin; Chen, Hongzhi; Li, Qunhui; He, Liang; Hao, Xiaoli; Liu, Jingjing; Gu, Min; Hu, Jiao; Wang, Xiaoquan; Hu, Shunlin; Liu, Xiaowen; Liu, Xiufan

    2015-01-01

    The molecular bases of adaptation and pathogenicity of H9N2 influenza virus in mammals are largely unknown. Here, we show that a mouse-adapted PB2 gene with a phenylalanine-to-leucine mutation (F404L) mainly contributes to enhanced polymerase activity, replication, and pathogenicity of H9N2 in mice and also increases the virulence of the H5N1 and 2009 pandemic H1N1 influenza viruses. Therefore, we defined a novel pathogenic determinant, providing further insights into the pathogenesis of influenza viruses in mammals. PMID:25339773

  9. TrxR, a new CovR-repressed response regulator that activates the Mga virulence regulon in group A Streptococcus.

    PubMed

    Leday, Temekka V; Gold, Kathryn M; Kinkel, Traci L; Roberts, Samantha A; Scott, June R; McIver, Kevin S

    2008-10-01

    Coordinate regulation of virulence factors by the group A streptococcus (GAS) Streptococcus pyogenes is important in this pathogen's ability to cause disease. To further elucidate the regulatory network in this human pathogen, the CovR-repressed two-component system (TCS) trxSR was chosen for further analysis based on its homology to a virulence-related TCS in Streptococcus pneumoniae. In a murine skin infection model, an insertion mutation in the response regulator gene, trxR, led to a significant reduction in lesion size, lesion severity, and lethality. Curing the trxR mutation restored virulence comparable to the wild-type strain. The trxSR operon was defined in vivo, and CovR was found to directly repress its promoter in vitro. DNA microarray analysis established that TrxR activates transcription of Mga-regulated virulence genes, which may explain the virulence attenuation of the trxR mutant. This regulation appears to occur by activation of the mga promoter, Pmga, as demonstrated by analysis of a luciferase reporter fusion. Complementation of the trxR mutant with trxR on a plasmid restored expression of Mga regulon genes and restored virulence in the mouse model to wild-type levels. TrxR is the first TCS shown to regulate Mga expression. Because it is CovR repressed, TrxR defines a new pathway by which CovR can influence Mga to affect pathogenesis in the GAS. PMID:18678666

  10. TrxR, a New CovR-Repressed Response Regulator That Activates the Mga Virulence Regulon in Group A Streptococcus▿ †

    PubMed Central

    Leday, Temekka V.; Gold, Kathryn M.; Kinkel, Traci L.; Roberts, Samantha A.; Scott, June R.; McIver, Kevin S.

    2008-01-01

    Coordinate regulation of virulence factors by the group A streptococcus (GAS) Streptococcus pyogenes is important in this pathogen's ability to cause disease. To further elucidate the regulatory network in this human pathogen, the CovR-repressed two-component system (TCS) trxSR was chosen for further analysis based on its homology to a virulence-related TCS in Streptococcus pneumoniae. In a murine skin infection model, an insertion mutation in the response regulator gene, trxR, led to a significant reduction in lesion size, lesion severity, and lethality. Curing the trxR mutation restored virulence comparable to the wild-type strain. The trxSR operon was defined in vivo, and CovR was found to directly repress its promoter in vitro. DNA microarray analysis established that TrxR activates transcription of Mga-regulated virulence genes, which may explain the virulence attenuation of the trxR mutant. This regulation appears to occur by activation of the mga promoter, Pmga, as demonstrated by analysis of a luciferase reporter fusion. Complementation of the trxR mutant with trxR on a plasmid restored expression of Mga regulon genes and restored virulence in the mouse model to wild-type levels. TrxR is the first TCS shown to regulate Mga expression. Because it is CovR repressed, TrxR defines a new pathway by which CovR can influence Mga to affect pathogenesis in the GAS. PMID:18678666

  11. Silver-coated carbon nanotubes downregulate the expression of Pseudomonas aeruginosa virulence genes: a potential mechanism for their antimicrobial effect

    PubMed Central

    Dosunmu, Ejovwoke; Chaudhari, Atul A; Singh, Shree R; Dennis, Vida A; Pillai, Shreekumar R

    2015-01-01

    The antimicrobial activity of silver-coated carbon nanotubes (AgCNTs) and their potential mode of action against mucoid and nonmucoid strains of Pseudomonas aeruginosa was investigated in vitro. The results showed that AgCNTs exhibited antimicrobial activity against both strains with minimum inhibitory concentrations of approximately 8 µg/mL, indicating a high sensitivity of P. aeruginosa to AgCNTs. AgCNTs were also bactericidal against both strains at the same minimum inhibitory concentration. Scanning and transmission electron-microscopy studies further revealed that a majority of the cells treated with AgCNTs transformed from smooth rod-shape morphology to disintegrated cells with broken/damaged membranes, resulting in leakage of cytoplasmic contents to produce ghost cells. The molecular effects of AgCNTs on P. aeruginosa genes involved in virulence and pathogenicity, stress response, and efflux pumps were evaluated for changes in their expression. Quantitative real-time PCR (qRT-PCR) showed that after exposure to AgCNTs, the expression levels of the rpoS, rsmZ, and oprD genes were significantly downregulated in both strains of P. aeruginosa compared to the untreated samples. These results suggest that the mechanism of action of AgCNTs may be attributed to their effect on cell-membrane integrity, downregulation of virulence-gene expression, and induction of general and oxidative stress in P. aeruginosa. PMID:26346483

  12. Silver-coated carbon nanotubes downregulate the expression of Pseudomonas aeruginosa virulence genes: a potential mechanism for their antimicrobial effect.

    PubMed

    Dosunmu, Ejovwoke; Chaudhari, Atul A; Singh, Shree R; Dennis, Vida A; Pillai, Shreekumar R

    2015-01-01

    The antimicrobial activity of silver-coated carbon nanotubes (AgCNTs) and their potential mode of action against mucoid and nonmucoid strains of Pseudomonas aeruginosa was investigated in vitro. The results showed that AgCNTs exhibited antimicrobial activity against both strains with minimum inhibitory concentrations of approximately 8 µg/mL, indicating a high sensitivity of P. aeruginosa to AgCNTs. AgCNTs were also bactericidal against both strains at the same minimum inhibitory concentration. Scanning and transmission electron-microscopy studies further revealed that a majority of the cells treated with AgCNTs transformed from smooth rod-shape morphology to disintegrated cells with broken/damaged membranes, resulting in leakage of cytoplasmic contents to produce ghost cells. The molecular effects of AgCNTs on P. aeruginosa genes involved in virulence and pathogenicity, stress response, and efflux pumps were evaluated for changes in their expression. Quantitative real-time PCR (qRT-PCR) showed that after exposure to AgCNTs, the expression levels of the rpoS, rsmZ, and oprD genes were significantly downregulated in both strains of P. aeruginosa compared to the untreated samples. These results suggest that the mechanism of action of AgCNTs may be attributed to their effect on cell-membrane integrity, downregulation of virulence-gene expression, and induction of general and oxidative stress in P. aeruginosa. PMID:26346483

  13. Use of a Salmonella typhimurium hilA fusion strain to assess effects of environmental fresh water sources on virulence gene expression.

    PubMed

    Nutt, J D; Pillai, S D; Woodward, C L; Sternes, K L; Zabala-Díaz, I B; Kwon, Y M; Ricke, S C

    2003-08-01

    Many fruits and vegetables are irrigated with water from rivers, lakes and even wastewater systems. Irrigation may be a route for the introduction of Salmonella. Our objectives in this study were to determine survivability and virulence expression in a strain of Salmonella typhimurium when exposed to environmental water sources. Virulence expression was measured using a beta-galactosidase assay on a hilA:lacZY fusion strain of S. typhimurium. Water samples for environmental impact studies were taken from a local pond and specific sites along the Rio Grande River, which serves as a source of irrigation water in southern Texas. There was a significant difference (p<0.05) of virulence expression among the water sites. Certain regions along the Rio Grande River yielded greater amounts of beta-galactosidase activity than others. All sites yielded at least a two-fold greater virulence response than S. typhimurium grown in brain heart infusion. Salmonella survivors were enumerated as colony forming units (CFU)/ml as plated on a selective medium for the duration of 1 week and beta-galactosidase assays were performed to determine a possible correlation between culturable cells and virulence gene expression. Bacterial cells remained viable but decreased after 7 days incubation. In conclusion, water sampled at specific locations and at different times water samples exhibited differences in virulence expression in S. typhimurium. PMID:12834724

  14. Antimicrobial resistance and virulence genes in enterococci from wild game meat in Spain.

    PubMed

    Guerrero-Ramos, Emilia; Cordero, Jorge; Molina-González, Diana; Poeta, Patrícia; Igrejas, Gilberto; Alonso-Calleja, Carlos; Capita, Rosa

    2016-02-01

    A total of 55 enterococci (45 Enterococcus faecium, 7 Enterococcus faecalis, and three Enterococcus durans) isolated from the meat of wild game animals (roe deer, boar, rabbit, pheasant, and pigeon) in North-Western Spain were tested for susceptibility to 14 antimicrobials by the disc diffusion method. All strains showed a multi-resistant phenotype (resistance to between three and 10 antimicrobials). The strains exhibited high percentages of resistance to erythromycin (89.1%), tetracycline (67.3%), ciprofloxacin (92.7%), nitrofurantoin (67.3%), and quinupristin-dalfopristin (81.8%). The lowest values (9.1%) were observed for high-level resistance to gentamicin, kanamycin, and streptomycin. The average number of resistances per strain was 5.8 for E. faecium isolates, 7.9 for E. faecalis, and 5.7 for E. durans. Genes encoding antimicrobial resistance and virulence were studied by polymerase chain reaction. A total of 15 (57.7%) of the 26 vancomycin-resistant isolates harboured the vanA gene. Other resistance genes detected included vanB, erm(B) and/or erm(C), tet(L) and/or tet(M), acc(6')-aph(2″), and aph(3')-IIIa in strains resistant to vancomycin, erythromycin, tetracycline, gentamicin, and kanamycin, respectively. Specific genes of the Tn5397 transposon were detected in 54.8% of the tet(M)-positive enterococci. Nine virulence factors (gelE, agg, ace, cpd, frs, esp, hyl, efaAfs and efaAfm) were studied. All virulence genes, with the exception of the frs gene, were found to be present in the enterococcal isolates. At least one virulence gene was detected in 20.0% of E. faecium, 71.4% of E. faecalis and 33.3% of E. durans isolates, with ace and cpd being the most frequently detected genes (6 isolates each). This suggests that wild game meat might play a role in the spreading through the food chain of enterococci with antimicrobial resistance and virulence determinants to humans. PMID:26678143

  15. Virulence factors genes of Staphylococcus spp. isolated from caprine subclinical mastitis.

    PubMed

    Salaberry, Sandra Renata Sampaio; Saidenberg, André Becker Simões; Zuniga, Eveline; Melville, Priscilla Anne; Santos, Franklin Gerônimo Bispo; Guimarães, Ednaldo Carvalho; Gregori, Fábio; Benites, Nilson Roberti

    2015-08-01

    The aim of this study was to investigate genes involved in adhesion expression, biofilm formation, and enterotoxin production in isolates of Staphylococcus spp. from goats with subclinical mastitis and associate these results with the staphylococcal species. One hundred and twenty-four isolates were identified and polymerase chain reaction (PCR) was performed to detect the following genes: cna, ebpS, eno, fib, fnbA, fnbB, bap, sea, seb, sec, sed and see. The most commonly Staphylococcus species included S. epidermidis, S. lugdunensis, S. chromogenes, S. capitis ss capitis and S. intermedius. With the exception of fnbB, the genes were detected in different frequencies of occurrence in 86.3% of the Staphylococcus spp. isolates. Eno (73.2%) and bap (94.8%) were more frequently detected in coagulase-negative staphylococci (CNS); ebpS (76%), fib (90.9%) and fnbA (87%) were the most frequent genes in coagulase-positive staphylococci (CPS). Regarding enterotoxins, genes sed (28.2%) and see (24.2%) had a higher frequency of occurrence; sec gene was more frequently detected in CPS (58.8%). There was no association between the presence of the genes and the Staphylococcus species. Different virulence factors genes can be detected in caprine subclinical mastitis caused by CNS and CPS. The knowledge of the occurrence of these virulence factors is important for the development of effective control and prevention measures of subclinical mastitis caused by CNS and CPS in goats. PMID:26026835

  16. Virulence Gene Regulation by l-Arabinose in Salmonella enterica

    PubMed Central

    López-Garrido, Javier; Puerta-Fernández, Elena; Cota, Ignacio; Casadesús, Josep

    2015-01-01

    Invasion of the intestinal epithelium is a critical step in Salmonella enterica infection and requires functions encoded in the gene cluster known as Salmonella Pathogenicity Island 1 (SPI-1). Expression of SPI-1 genes is repressed by l-arabinose, and not by other pentoses. Transport of l-arabinose is necessary to repress SPI-1; however, repression is independent of l-arabinose metabolism and of the l-arabinose-responsive regulator AraC. SPI-1 repression by l-arabinose is exerted at a single target, HilD, and the mechanism appears to be post-translational. As a consequence of SPI-1 repression, l-arabinose reduces translocation of SPI-1 effectors to epithelial cells and decreases Salmonella invasion in vitro. These observations reveal a hitherto unknown role of l-arabinose in gene expression control and raise the possibility that Salmonella may use L-arabinose as an environmental signal. PMID:25991823

  17. Expression of a Wheat Gene Encoding a Type-1 Lipid Transfer Protein is Suppressed by Virulent Hessian Fly Larval Feeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The response of wheat to attack by the Hessian fly is mediated by a gene-for-gene recognition involving wheat R genes and Hessian fly avr genes. Interactions are characterized as compatible when virulent Hessian fly larvae establish feeding sites and survive on wheat plants and incompatible when avi...

  18. First Detection of Puccinia hordei virulence to barley leaf rust resistance gene Rph3 and combination with virulence to Rph7 in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley leaf rust, caused by Puccinia hordei Otth., has been problematic in United States barley, Hordeum vulgare L., production in the Mid-Atlantic coast region and California. During the early 1990’s P. hordei pathoytpes with virulence to resistance gene Rph7 caused average yield losses from 6-16%....

  19. A Unique Virulence Gene Occupies a Principal Position in Immune Evasion by the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Heinberg, Adina R.; Wele, Mamadou; Chen, Qijun; Deitsch, Kirk W.

    2015-01-01

    Mutually exclusive gene expression, whereby only one member of a multi-gene family is selected for activation, is used by the malaria parasite Plasmodium falciparum to escape the human immune system and perpetuate long-term, chronic infections. A family of genes called var encodes the chief antigenic and virulence determinant of P. falciparum malaria. var genes are transcribed in a mutually exclusive manner, with switching between active genes resulting in antigenic variation. While recent work has shed considerable light on the epigenetic basis for var gene activation and silencing, how switching is controlled remains a mystery. In particular, switching seems not to be random, but instead appears to be coordinated to result in timely activation of individual genes leading to sequential waves of antigenically distinct parasite populations. The molecular basis for this apparent coordination is unknown. Here we show that var2csa, an unusual and highly conserved var gene, occupies a unique position within the var gene switching hierarchy. Induction of switching through the destabilization of var specific chromatin using both genetic and chemical methods repeatedly led to the rapid and exclusive activation of var2csa. Additional experiments demonstrated that these represent “true” switching events and not simply de-silencing of the var2csa promoter, and that activation is limited to the unique locus on chromosome 12. Combined with translational repression of var2csa transcripts, frequent “default” switching to this locus and detection of var2csa untranslated transcripts in non-pregnant individuals, these data suggest that var2csa could play a central role in coordinating switching, fulfilling a prediction made by mathematical models derived from population switching patterns. These studies provide the first insights into the mechanisms by which var gene switching is coordinated as well as an example of how a pharmacological agent can disrupt antigenic variation

  20. Phosphorylation events in the multiple gene regulator of group A Streptococcus significantly influence global gene expression and virulence.

    PubMed

    Sanson, Misu; Makthal, Nishanth; Gavagan, Maire; Cantu, Concepcion; Olsen, Randall J; Musser, James M; Kumaraswami, Muthiah

    2015-06-01

    Whole-genome sequencing analysis of ∼800 strains of group A Streptococcus (GAS) found that the gene encoding the multiple virulence gene regulator of GAS (mga) is highly polymorphic in serotype M59 strains but not in strains of other serotypes. To help understand the molecular mechanism of gene regulation by Mga and its contribution to GAS pathogenesis in serotype M59 GAS, we constructed an isogenic mga mutant strain. Transcriptome studies indicated a significant regulatory influence of Mga and altered metabolic capabilities conferred by Mga-regulated genes. We assessed the phosphorylation status of Mga in GAS cell lysates with Phos-tag gels. The results revealed that Mga is phosphorylated at histidines in vivo. Using phosphomimetic and nonphosphomimetic substitutions at conserved phosphoenolpyruvate:carbohydrate phosphotransferase regulation domain (PRD) histidines of Mga, we demonstrated that phosphorylation-mimicking aspartate replacements at H207 and H273 of PRD-1 and at H327 of PRD-2 are inhibitory to Mga-dependent gene expression. Conversely, non-phosphorylation-mimicking alanine substitutions at H273 and H327 relieved inhibition, and the mutant strains exhibited a wild-type phenotype. The opposing regulatory profiles observed for phosphorylation- and non-phosphorylation-mimicking substitutions at H273 extended to global gene regulation by Mga. Consistent with these observations, the H273D mutant strain attenuated GAS virulence, whereas the H273A strain exhibited a wild-type virulence phenotype in a mouse model of necrotizing fasciitis. Together, our results demonstrate phosphoregulation of Mga and its direct link to virulence in M59 GAS strains. These data also lay a foundation toward understanding how naturally occurring gain-of-function variations in mga, such as H201R, may confer an advantage to the pathogen and contribute to M59 GAS pathogenesis. PMID:25824840

  1. Phosphorylation Events in the Multiple Gene Regulator of Group A Streptococcus Significantly Influence Global Gene Expression and Virulence

    PubMed Central

    Sanson, Misu; Makthal, Nishanth; Gavagan, Maire; Cantu, Concepcion; Olsen, Randall J.; Musser, James M.

    2015-01-01

    Whole-genome sequencing analysis of ∼800 strains of group A Streptococcus (GAS) found that the gene encoding the multiple virulence gene regulator of GAS (mga) is highly polymorphic in serotype M59 strains but not in strains of other serotypes. To help understand the molecular mechanism of gene regulation by Mga and its contribution to GAS pathogenesis in serotype M59 GAS, we constructed an isogenic mga mutant strain. Transcriptome studies indicated a significant regulatory influence of Mga and altered metabolic capabilities conferred by Mga-regulated genes. We assessed the phosphorylation status of Mga in GAS cell lysates with Phos-tag gels. The results revealed that Mga is phosphorylated at histidines in vivo. Using phosphomimetic and nonphosphomimetic substitutions at conserved phosphoenolpyruvate:carbohydrate phosphotransferase regulation domain (PRD) histidines of Mga, we demonstrated that phosphorylation-mimicking aspartate replacements at H207 and H273 of PRD-1 and at H327 of PRD-2 are inhibitory to Mga-dependent gene expression. Conversely, non-phosphorylation-mimicking alanine substitutions at H273 and H327 relieved inhibition, and the mutant strains exhibited a wild-type phenotype. The opposing regulatory profiles observed for phosphorylation- and non-phosphorylation-mimicking substitutions at H273 extended to global gene regulation by Mga. Consistent with these observations, the H273D mutant strain attenuated GAS virulence, whereas the H273A strain exhibited a wild-type virulence phenotype in a mouse model of necrotizing fasciitis. Together, our results demonstrate phosphoregulation of Mga and its direct link to virulence in M59 GAS strains. These data also lay a foundation toward understanding how naturally occurring gain-of-function variations in mga, such as H201R, may confer an advantage to the pathogen and contribute to M59 GAS pathogenesis. PMID:25824840

  2. A Nonessential African Swine Fever Virus Gene UK Is a Significant Virulence Determinant in Domestic Swine

    PubMed Central

    Zsak, L.; Caler, E.; Lu, Z.; Kutish, G. F.; Neilan, J. G.; Rock, D. L.

    1998-01-01

    Sequence analysis of the right variable genomic region of the pathogenic African swine fever virus (ASFV) isolate E70 revealed a novel gene, UK, that is immediately upstream from the previously described ASFV virulence-associated gene NL-S (L. Zsak, Z. Lu, G. F. Kutish, J. G. Neilan, and D. L. Rock, J. Virol. 70:8865–8871, 1996). UK, transcriptionally oriented toward the right end of the genome, predicts a protein of 96 amino acids with a molecular mass of 10.7 kDa. Searches of genetic databases did not find significant similarity between UK and other known genes. Sequence analysis of the UK genes from several pathogenic ASFVs from Europe, the Caribbean, and Africa demonstrated that this gene was highly conserved among diverse pathogenic isolates, including those from both tick and pig sources. Polyclonal antibodies raised against the UK protein specifically precipitated a 15-kDa protein from ASFV-infected macrophage cell cultures as early as 2 h postinfection. A recombinant UK gene deletion mutant, ΔUK, and its revertant, UK-R, were constructed from the E70 isolate to study gene function. Although deletion of UK did not affect the growth characteristics of the virus in macrophage cell cultures, ΔUK exhibited reduced virulence in infected pigs. While mortality among parental E70- or UK-R-infected animals was 100%, all ΔUK-infected pigs survived infection. Fever responses were comparable in E70-, UK-R-, and ΔUK-infected groups; however, ΔUK-infected animals exhibited significant, 100- to 1,000-fold, reductions in viremia titers. These data indicate that the highly conserved UK gene of ASFV, while being nonessential for growth in macrophages in vitro, is an important viral virulence determinant for domestic pigs. PMID:9444996

  3. A nonessential African swine fever virus gene UK is a significant virulence determinant in domestic swine.

    PubMed

    Zsak, L; Caler, E; Lu, Z; Kutish, G F; Neilan, J G; Rock, D L

    1998-02-01

    Sequence analysis of the right variable genomic region of the pathogenic African swine fever virus (ASFV) isolate E70 revealed a novel gene, UK, that is immediately upstream from the previously described ASFV virulence-associated gene NL-S (L. Zsak, Z. Lu, G. F. Kutish, J. G. Neilan, and D. L. Rock, J. Virol. 70:8865-8871, 1996). UK, transcriptionally oriented toward the right end of the genome, predicts a protein of 96 amino acids with a molecular mass of 10.7 kDa. Searches of genetic databases did not find significant similarity between UK and other known genes. Sequence analysis of the UK genes from several pathogenic ASFVs from Europe, the Caribbean, and Africa demonstrated that this gene was highly conserved among diverse pathogenic isolates, including those from both tick and pig sources. Polyclonal antibodies raised against the UK protein specifically precipitated a 15-kDa protein from ASFV-infected macrophage cell cultures as early as 2 h postinfection. A recombinant UK gene deletion mutant, deltaUK, and its revertant, UK-R, were constructed from the E70 isolate to study gene function. Although deletion of UK did not affect the growth characteristics of the virus in macrophage cell cultures, deltaUK exhibited reduced virulence in infected pigs. While mortality among parental E70- or UK-R-infected animals was 100%, all deltaUK-infected pigs survived infection. Fever responses were comparable in E70-, UK-R-, and deltaUK-infected groups; however, deltaUK-infected animals exhibited significant, 100- to 1,000-fold, reductions in viremia titers. These data indicate that the highly conserved UK gene of ASFV, while being nonessential for growth in macrophages in vitro, is an important viral virulence determinant for domestic pigs. PMID:9444996

  4. Intracellular and Interstitial Expression of Helicobacter pylori Virulence Genes in Gastric Precancerous Intestinal Metaplasia and Adenocarcinoma

    PubMed Central

    Semino-Mora, Cristina; Doi, Sonia Q.; Marty, Aileen; Simko, Vlado; Carlstedt, Ingemar; Dubois, Andre

    2008-01-01

    Gastric intestinal metaplasia (IM) and gastric cancer are associated with Helicobacter pylori, but the bacterium often is undetectable in these lesions. To unravel this apparent paradox, IM, H. pylori presence, and the expression of H. pylori virulence genes were quantified concurrently using histologic testing, in situ hybridization, and immunohistochemistry. H. pylori was detected inside metaplastic, dysplastic, and neoplastic epithelial cells, and cagA and babA2 expression was colocalized. Importantly, expression of cagA was significantly higher in patients with IM and adenocarcinoma than in control subjects. The preneoplastic “acidic” MUC2 mucin was detected only in the presence of H. pylori, and MUC2 expression was higher in patients with IM, dysplasia, and cancer. These novel findings are compatible with the hypothesis that all stages of gastric carcinogenesis are fostered by persistent intracellular expression of H. pylori virulence genes, especially cagA inside MUC2-producing precancerous gastric cells and pleomorphic cancer cells. PMID:12695995

  5. Identification of Differentially Expressed Genes in Virulent and Nonvirulent Entamoeba Species: Potential Implications for Amebic Pathogenesis †

    PubMed Central

    MacFarlane, Ryan C.; Singh, Upinder

    2006-01-01

    Entamoeba histolytica is a protozoan parasite that causes colitis and liver abscesses. Several Entamoeba species and strains with differing levels of virulence have been identified. E. histolytica HM-1:IMSS is a virulent strain, E. histolytica Rahman is a nonvirulent strain, and Entamoeba dispar is a nonvirulent species. We used an E. histolytica DNA microarray consisting of 2,110 genes to assess the transcriptional differences between these species/strains with the goal of identifying genes whose expression correlated with a virulence phenotype. We found 415 genes expressed at lower levels in E. dispar and 32 genes with lower expression in E. histolytica Rahman than in E. histolytica HM-1:IMSS. Overall, 29 genes had decreased expression in both the nonvirulent species/strains than the virulent E. histolytica HM-1:IMSS. Interestingly, a number of genes with potential roles in stress response and virulence had decreased expression in either one or both nonvirulent Entamoeba species/strains. These included genes encoding Fe hydrogenase (9.m00419), peroxiredoxin (176.m00112), type A flavoprotein (6.m00467), lysozyme (6.m00454), sphingomyelinase C (29.m00231), and a hypothetical protein with homology to both a Plasmodium sporozoite threonine-asparagine-rich protein (STARP) and a streptococcal hemagglutinin (238.m00054). The function of these genes in Entamoeba and their specific roles in parasite virulence need to be determined. We also found that a number of the non-long-terminal-repeat retrotransposons (EhLINEs and EhSINEs), which have been shown to modulate gene expression and genomic evolution, had lower expression in the nonvirulent species/strains than in E. histolytica HM-1:IMSS. Our results, identifying expression profiles and patterns indicative of a virulence phenotype, may be useful in characterizing the transcriptional framework of virulence. PMID:16368989

  6. Variable switching rates of malaria virulence genes are associated with chromosomal position and gene subclass

    PubMed Central

    Frank, Matthias; Dzikowski, Ron; Amulic, Borko; Deitsch, Kirk

    2013-01-01

    SUMMARY Antigenic variation in Plasmodium falciparum malaria is mediated by transcriptional switches between different members of the multicopy var gene family. Each var gene encodes a member of a group of heterogeneous surface proteins collectively referred to as PfEMP1. Mutually exclusive expression ensures that an individual parasite only transcribes a single var gene at a time. In this work we studied var gene switching to determine if transcriptional switches favor expression of particular subgroups of var genes and if var gene activation within a clonal population of parasites follows a predetermined order. We show that in clonal parasite populations, expression of var genes located in the central regions of chromosomes is remarkably stable and that they rarely undergo transcriptional switches in the absence of selection. In contrast, parasites expressing subtelomerically located var genes readily switched to alternative var loci. We confirmed these observations by generating transgenic parasites carrying drug selectable markers in subtelomeric and central var loci and monitoring switching after release from selection. Our data show that different var genes have different intrinsic switching rates that correlate with var gene subtype, and that there is no pre-determined order of expression. PMID:17555435

  7. Diagnostic Strategy for Identifying Avian Pathogenic Escherichia coli Based on Four Patterns of Virulence Genes

    PubMed Central

    Schaeffer, Brigitte; Brée, Annie; Mora, Azucena; Dahbi, Ghizlane; Biet, François; Oswald, Eric; Mainil, Jacques; Blanco, Jorge; Moulin-Schouleur, Maryvonne

    2012-01-01

    In order to improve the identification of avian pathogenic Escherichia coli (APEC) strains, an extensive characterization of 1,491 E. coli isolates was conducted, based on serotyping, virulence genotyping, and experimental pathogenicity for chickens. The isolates originated from lesions of avian colibacillosis (n = 1,307) or from the intestines of healthy animals (n = 184) from France, Spain, and Belgium. A subset (460 isolates) of this collection was defined according to their virulence for chicks. Six serogroups (O1, O2, O5, O8, O18, and O78) accounted for 56.5% of the APEC isolates and 22.5% of the nonpathogenic isolates. Thirteen virulence genes were more frequently present in APEC isolates than in nonpathogenic isolates but, individually, none of them could allow the identification of an isolate as an APEC strain. In order to take into account the diversity of APEC strains, a statistical analysis based on a tree-modeling method was therefore conducted on the sample of 460 pathogenic and nonpathogenic isolates. This resulted in the identification of four different associations of virulence genes that enables the identification of 70.2% of the pathogenic strains. Pathogenic strains were identified with an error margin of 4.3%. The reliability of the link between these four virulence patterns and pathogenicity for chickens was validated on a sample of 395 E. coli isolates from the collection. The genotyping method described here allowed the identification of more APEC isolates with greater reliability than the classical serotyping methods currently used in veterinary laboratories. PMID:22378905

  8. [New Virulent Bacteriophages Active against Multiresistant Pseudomonas aeruginosa Strains].

    PubMed

    Balarjishvili, N Sh; Kvachadze, L I; Kutateladze, M I; Meskhi, T Sh; Pataridze, T K; Berishvili, T A; Tevdoradze, E Sh

    2015-01-01

    The sensitivity of 512 newly isolated Pseudomonas aeruginosa clinical strains to six classes of anti-microbial preparations has been studied. Antibiotic-resistant strains were selected and genotyped. Three new virulent bacteriophages of the families Myoviridae and Podoviridae were isolated against these strains. The parameters of the intracellular phage development cycle were established, and the influence of inactivating factors (temperature, pH, and UV exposure) on phage viability was studied. The molecular weight of the phage genome was determined. Phage DNA restriction analysis and polyacrylamide gel electrophoresis in the presence of envelope protein SDS were carried out. The plating efficacy of phages on 28 genetically distant antibiotic-resistant P. aeruginosa strains was studied. It was established that 26 of them were lysed by phages with a high efficacy. The range of antibacterial action of the studied phages and their mixtures on 427 multi-drug-resistant clinical isolates was assessed. It is shown that including these phages in one multicomponent preparation enhanced their lytic activity. PMID:26859962

  9. Virulence genes and antimicrobial resistance of Pasteurella multocida isolated from poultry and swine

    PubMed Central

    Furian, Thales Quedi; Borges, Karen Apellanis; Laviniki, Vanessa; da Silveira Rocha, Silvio Luis; de Almeida, Camila Neves; do Nascimento, Vladimir Pinheiro; Salle, Carlos Tadeu Pippi; de Souza Moraes, Hamilton Luiz

    2016-01-01

    Pasteurella multocida causes atrophic rhinitis in swine and fowl cholera in birds, and is a secondary agent in respiratory syndromes. Pathogenesis and virulence factors involved are still poorly understood. The aim of this study was to detect 22 virulence-associated genes by PCR, including capsular serogroups A, B and D genes and to evaluate the antimicrobial susceptibility of P. multocida strains from poultry and swine. ompH, oma87, plpB, psl, exbD-tonB, fur, hgbA, nanB, sodA, sodC, ptfA were detected in more than 90% of the strains of both hosts. 91% and 92% of avian and swine strains, respectively, were classified in serogroup A. toxA and hsf-1 showed a significant association to serogroup D; pmHAS and pfhA to serogroup A. Gentamicin and amoxicillin were the most effective drugs with susceptibility higher than 97%; however, 76.79% of poultry strains and 85% of swine strains were resistant to sulphonamides. Furthermore, 19.64% and 36.58% of avian and swine strains, respectively, were multi-resistant. Virulence genes studied were not specific to a host and may be the result of horizontal transmission throughout evolution. High multidrug resistance demonstrates the need for responsible use of antimicrobials in animals intended for human consumption, in addition to antimicrobial susceptibility testing to P. multocida. PMID:26887247

  10. Characterization of Antimicrobial Resistance Patterns and Detection of Virulence Genes in Campylobacter Isolates in Italy

    PubMed Central

    Di Giannatale, Elisabetta; Di Serafino, Gabriella; Zilli, Katiuscia; Alessiani, Alessandra; Sacchini, Lorena; Garofolo, Giuliano; Aprea, Giuseppe; Marotta, Francesca

    2014-01-01

    Campylobacter has developed resistance to several antimicrobial agents over the years, including macrolides, quinolones and fluoroquinolones, becoming a significant public health hazard. A total of 145 strains derived from raw milk, chicken faeces, chicken carcasses, cattle faeces and human faeces collected from various Italian regions, were screened for antimicrobial susceptibility, molecular characterization (SmaI pulsed-field gel electrophoresis) and detection of virulence genes (sequencing and DNA microarray analysis). The prevalence of C. jejuni and C. coli was 62.75% and 37.24% respectively. Antimicrobial susceptibility revealed a high level of resistance for ciprofloxacin (62.76%), tetracycline (55.86%) and nalidixic acid (55.17%). Genotyping of Campylobacter isolates using PFGE revealed a total of 86 unique SmaI patterns. Virulence gene profiles were determined using a new microbial diagnostic microarray composed of 70-mer oligonucleotide probes targeting genes implicated in Campylobacter pathogenicity. Correspondence between PFGE and microarray clusters was observed. Comparisons of PFGE and virulence profiles reflected the high genetic diversity of the strains examined, leading us to speculate different degrees of pathogenicity inside Campylobacter populations. PMID:24556669

  11. Growth of Yersinia pseudotuberculosis in human plasma: impacts on virulence and metabolic gene expression

    PubMed Central

    Rosso, Marie-Laure; Chauvaux, Sylvie; Dessein, Rodrigue; Laurans, Caroline; Frangeul, Lionel; Lacroix, Céline; Schiavo, Angèle; Dillies, Marie-Agnès; Foulon, Jeannine; Coppée, Jean-Yves; Médigue, Claudine; Carniel, Elisabeth; Simonet, Michel; Marceau, Michaël

    2008-01-01

    Background In man, infection by the Gram-negative enteropathogen Yersinia pseudotuberculosis is usually limited to the terminal ileum. However, in immunocompromised patients, the microorganism may disseminate from the digestive tract and thus cause a systemic infection with septicemia. Results To gain insight into the metabolic pathways and virulence factors expressed by the bacterium at the blood stage of pseudotuberculosis, we compared the overall gene transcription patterns (the transcriptome) of bacterial cells cultured in either human plasma or Luria-Bertani medium. The most marked plasma-triggered metabolic consequence in Y. pseudotuberculosis was the switch to high glucose consumption, which is reminiscent of the acetogenic pathway (known as "glucose overflow") in Escherichia coli. However, upregulation of the glyoxylate shunt enzymes suggests that (in contrast to E. coli) acetate may be further metabolized in Y. pseudotuberculosis. Our data also indicate that the bloodstream environment can regulate major virulence genes (positively or negatively); the yadA adhesin gene and most of the transcriptional units of the pYV-encoded type III secretion apparatus were found to be upregulated, whereas transcription of the pH6 antigen locus was strongly repressed. Conclusion Our results suggest that plasma growth of Y. pseudotuberculosis is responsible for major transcriptional regulatory events and prompts key metabolic reorientations within the bacterium, which may in turn have an impact on virulence. PMID:19055764

  12. Expression of the Salmonella virulence plasmid gene spvB in cultured macrophages and nonphagocytic cells.

    PubMed

    Fierer, J; Eckmann, L; Fang, F; Pfeifer, C; Finlay, B B; Guiney, D

    1993-12-01

    Certain serotypes of salmonellae carry virulence plasmids that greatly enhance the pathogenicity of these bacteria in experimentally infected mice. This phenotype is largely attributable to the 8-kb spv regulon. However, spv genes are not expressed while bacteria grow in vitro. We now show that spvB, which is required for virulence, is expressed rapidly after Salmonella dublin is ingested by cultured J774 and murine peritoneal macrophages and that expression is not affected by the alkalinization of intracellular vesicles. The level of induction of spvB is reduced when macrophages are pretreated with gamma interferon. spvB is also expressed in human and canine epithelial cell lines and a human hepatoma cell line. In all cases, spvB expression is dependent on the spvR gene, just as it is in stationary-phase cultures in vitro. These data suggest that spv virulence genes are expressed by intracellular salmonellae in vivo in response to a signal that is common to the intracellular compartments of cells that are invaded by salmonellae. PMID:8225598

  13. Virulence genes in a probiotic E. coli product with a recorded long history of safe use

    PubMed Central

    Zschüttig, Anke; Beimfohr, Claudia; Geske, Thomas; Auerbach, Christian; Cook, Helen; Zimmermann, Kurt; Gunzer, Florian

    2015-01-01

    The probiotic product Symbioflor2 (DSM 17252) is a bacterial concentrate of six different Escherichia coli genotypes, whose complete genome sequences are compared here, between each other as well as to other E. coli genomes. The genome sequences of Symbioflor2 E. coli components contained a number of virulence-associated genes. Their presence seems to be in conflict with a recorded history of safe use, and with the observed low frequency of adverse effects over a period of more than 6 years. The genome sequences were used to identify unique sequences for each component, for which strain-specific hybridization probes were designed. A colonization study was conducted whereby five volunteers were exposed to an exceptionally high single dose. The results showed that the probiotic E. coli could be detected for 3 months or longer in their stools, and this was in particular the case for those components containing higher numbers of virulence-associated genes. Adverse effects from this long-term colonization were absent. Thus, the presence of the identified virulence genes does not result in a pathogenic phenotype in the genetic background of these probiotic E. coli. PMID:25883796

  14. Relationship of biofilm formation and different virulence genes in uropathogenic Escherichia coli isolates from Northwest Iran

    PubMed Central

    Fattahi, Sargol; Kafil, Hossein Samadi; Nahai, Mohammad Reza; Asgharzadeh, Mohammad; Nori, Roghaya; Aghazadeh, Mohammad

    2015-01-01

    Background and objectives: The Escherichia coli (E. coli) bacterium is one of the main causative agents of urinary tract infections (UTI) worldwide. The ability of this bacterium to form biofilms on medical devices such as catheters plays an important role in the development of UTI. The aim of the present study was to investigate the possible relationship between virulence factors and biofilm formation of E. coli isolates responsible for urinary tract infection. Materials and methods: A total of 100 E. coli isolates isolated from patients with UTI were collected and characterized by routine bacteriological methods. In vitro biofilm formation by these isolates was determined using the 96-well microtiter-plate test, and the presence of fimA, papC, and hly virulence genes was examined by PCR assay. Data analysis was performed using SPSS 16.0 software. Results: From 100 E. coli isolates isolated from UTIs, 92% were shown to be biofilm positive. The genes papC, fimA, and hly were detected in 43%, 94% and 26% of isolates, respectively. Biofilm formation in isolates that expressed papC, fimA, and hly genes was 100%, 93%, and 100%, respectively. A significant relationship was found between presence of the papC gene and biofilm formation in E. coli isolates isolated from UTI (P<0.01), but there was no statistically significant correlation between presence of fimA and hly genes with biofilm formation (P<0.072, P<0.104). Conclusion: Results showed that fimA and hly genes do not seem to be necessary or sufficient for the production of biofilm in E. coli, but the presence of papC correlates with increased biofilm formation of urinary tract isolates. Overall, the presence of fimA, papC, and hly virulence genes coincides with in vitro biofilm formation in uropathogenic E. coli isolates. PMID:26213679

  15. Patterns of virulence gene expression differ between biofilm and tissue communities of Streptococcus pyogenes.

    PubMed

    Cho, Kyu Hong; Caparon, Michael G

    2005-09-01

    The ability of Streptococcus pyogenes to form biofilm-like bacterial communities during infection of soft tissue has suggested that the capacity to produce biofilm may be important for pathogenesis. To examine this relationship, a panel of mutants was evaluated for their ability to form biofilm on abiotic surfaces in several assays. Several established virulence factors were crucial for biofilm formation, including the M protein, required for initial cell-surface interactions, and the hyaluronic acid capsule, required for subsequent maturation into a three-dimensional structure. Mutants lacking the transcription regulators Mga and CovR (CsrR) also failed to form biofilm. Comparison of transcriptional profiles revealed differential regulation of approximately 25% of the genome upon adaptation to biofilm. During infection of zebrafish, several virulence factors (notably cysteine protease and streptokinase) were regulated in a biofilm-like manner. However, the overall profile of virulence factor expression indicated that tissue communities have a pattern of gene expression different from biofilm. Taken together, these data show that while biofilm and tissue communities have many characteristics in common, that biofilm reproduces only a subset of the myriad cues used by tissue communities for regulation of virulence. PMID:16135223

  16. Anr and Its Activation by PlcH Activity in Pseudomonas aeruginosa Host Colonization and Virulence

    PubMed Central

    Jackson, Angelyca A.; Gross, Maegan J.; Daniels, Emily F.; Hampton, Thomas H.; Hammond, John H.; Vallet-Gely, Isabelle; Dove, Simon L.; Stanton, Bruce A.

    2013-01-01

    Pseudomonas aeruginosa hemolytic phospholipase C (PlcH) degrades phosphatidylcholine (PC), an abundant lipid in cell membranes and lung surfactant. A ΔplcHR mutant, known to be defective in virulence in animal models, was less able to colonize epithelial cell monolayers and was defective in biofilm formation on plastic when grown in lung surfactant. Microarray analyses found that strains defective in PlcH production had lower levels of Anr-regulated transcripts than the wild type. PC degradation stimulated the Anr regulon in an Anr-dependent manner under conditions where Anr activity was submaximal because of the presence of oxygen. Two PC catabolites, choline and glycine betaine (GB), were sufficient to stimulate Anr activity, and their catabolism was required for Anr activation. The addition of choline or GB to glucose-containing medium did not alter Anr protein levels, growth rates, or respiratory activity, and Anr activation could not be attributed to the osmoprotectant functions of GB. The Δanr mutant was defective in virulence in a mouse pneumonia model. Several lines of evidence indicate that Anr is important for the colonization of biotic and abiotic surfaces in both P. aeruginosa PAO1 and PA14 and that increases in Anr activity resulted in enhanced biofilm formation. Our data suggest that PlcH activity promotes Anr activity in oxic environments and that Anr activity contributes to virulence, even in the acute infection phase, where low oxygen tensions are not expected. This finding highlights the relationships among in vivo bacterial metabolism, the activity of the oxygen-sensitive regulator Anr, and virulence. PMID:23667230

  17. Mutually Exclusive Expression of Virulence Genes by Malaria Parasites Is Regulated Independently of Antigen Production

    PubMed Central

    Dzikowski, Ron; Frank, Matthias; Deitsch, Kirk

    2006-01-01

    The primary virulence determinant of Plasmodium falciparum malaria parasite–infected cells is a family of heterogeneous surface receptors collectively referred to as PfEMP1. These proteins are encoded by a large, polymorphic gene family called var. The family contains approximately 60 individual genes, which are subject to strict, mutually exclusive expression, with the single expressed var gene determining the antigenic, cytoadherent, and virulence phenotype of the infected cell. The mutually exclusive expression pattern of var genes is imperative for the parasite's ability to evade the host's immune response and is similar to the process of “allelic exclusion” described for mammalian Ig and odorant receptor genes. In mammalian systems, mutually exclusive expression is ensured by negative feedback inhibition mediated by production of a functional protein. To investigate how expression of the var gene family is regulated, we have created transgenic lines of parasites in which expression of individual var loci can be manipulated. Here we show that no such negative feedback system exists in P. falciparum and that this process is dependent solely on the transcriptional regulatory elements immediately adjacent to each gene. Transgenic parasites that are selected to express a var gene in which the PfEMP1 coding region has been replaced by a drug-selectable marker silence all other var genes in the genome, thus effectively knocking out all PfEMP1 expression and indicating that the modified gene is still recognized as a member of the var gene family. Mutually exclusive expression in P. falciparum is therefore regulated exclusively at the level of transcription, and a functional PfEMP1 protein is not necessary for viability or for proper gene regulation in cultured parasites. PMID:16518466

  18. Antimicrobial Effects of Blueberry, Raspberry, and Strawberry Aqueous Extracts and their Effects on Virulence Gene Expression in Vibrio cholerae.

    PubMed

    Khalifa, Hazim O; Kamimoto, Maki; Shimamoto, Toshi; Shimamoto, Tadashi

    2015-11-01

    The antimicrobial effects of aqueous extracts of blueberry, raspberry, and strawberry on 13 pathogenic bacteria were evaluated. The minimum inhibitory concentrations and minimum bactericidal concentrations of the extracts were determined before and after neutralization to pH 7.03 ± 0.15. Both Gram-positive and Gram-negative pathogenic bacteria were selectively inhibited by the non-neutralized berries. Blueberry was the best inhibitor, and Vibrio and Listeria were the most sensitive bacteria. After neutralization, blueberry affected only Vibrio and Listeria, whereas the antimicrobial activities of raspberry and strawberry were abolished. The total contents of phenolics, flavonoids, and proanthocyanidins in the extracts were measured with colorimetric methods and were highest in strawberry, followed by raspberry, and then blueberry. We also studied the effects of sub-bactericidal concentrations of the three berry extracts on virulence gene expression in Vibrio cholerae. Real-time quantitative reverse transcription-polymerase chain reaction revealed that the three berry extracts effectively repressed the transcription of the tcpA gene. Raspberry also repressed the transcription of the ctxA gene, whereas blueberry and strawberry did not. However, the three berry extracts did not affect the transcription of toxT. These results suggest that the three berry extracts exert potent antimicrobial effects and inhibit the expression of the virulence factors of V. cholerae. PMID:26292998

  19. The Salmonella virulence plasmid spv genes are required for cytopathology in human monocyte-derived macrophages.

    PubMed

    Libby, S J; Lesnick, M; Hasegawa, P; Weidenhammer, E; Guiney, D G

    2000-02-01

    The pathogenesis of serious systemic Salmonella infections is characterized by survival and proliferation of bacteria inside macrophages. Infection of human monocyte-derived macrophages in vitro with S. typhimurium or S. dublin produces cytopathology characterized by detachment of cells that contain large numbers of proliferating bacteria. This cytopathology is dependent on the expression of the bacterial spv genes, a virulence locus previously shown to markedly enhance the ability of Salmonella to produce systemic disease. After 24 h of infection, macrophage cultures contain two populations of bacteria: (i) proliferating organisms present in a detached cell fraction; and (ii) a static bacterial population in macrophages remaining attached to the culture well. Mutations in either the essential transcriptional activator SpvR or the key SpvB protein markedly reduce the cytopathic effect of Salmonella infection. The spv-dependent cytopathology in macrophages exhibits characteristics of apoptosis, with release of nucleosomes into the cytoplasm, nuclear condensation and DNA fragmentation. The current findings suggest that the mechanism of the spv effect is through induction of increased cytopathology in host macrophages. PMID:11207562

  20. Activation of the salicylic acid signaling pathway enhances Clover yellow vein virus virulence in susceptible pea cultivars.

    PubMed

    Atsumi, Go; Kagaya, Uiko; Kitazawa, Hiroaki; Nakahara, Kenji Suto; Uyeda, Ichiro

    2009-02-01

    The wild-type strain (Cl-WT) of Clover yellow vein virus (ClYVV) systemically induces cell death in pea cv. Plant introduction (PI) 118501 but not in PI 226564. A single incompletely dominant gene, Cyn1, controls systemic cell death in PI 118501. Here, we show that activation of the salicylic acid (SA) signaling pathway enhances ClYVV virulence in susceptible pea cultivars. The kinetics of virus accumulation was not significantly different between PI 118501 (Cyn1) and PI 226564 (cyn1); however, the SA-responsive chitinase gene (SA-CHI) and the hypersensitive response (HR)-related gene homologous to tobacco HSR203J were induced only in PI 118501 (Cyn1). Two mutant viruses with mutations in P1/HCPro, which is an RNA-silencing suppressor, reduced the ability to induce cell death and SA-CHI expression. The application of SA and of its analog benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (BTH) partially complemented the reduced virulence of mutant viruses. These results suggest that high activation of the SA signaling pathway is required for ClYVV virulence. Interestingly, BTH could enhance Cl-WT symptoms in PI 226564 (cyn1). However, it could not enhance symptoms induced by White clover mosaic virus and Bean yellow mosaic virus. Our report suggests that the SA signaling pathway has opposing functions in compatible interactions, depending on the virus-host combination. PMID:19132869

  1. Integrated whole-genome screening for Pseudomonas aeruginosa virulence genes using multiple disease models reveals that pathogenicity is host specific.

    PubMed

    Dubern, Jean-Frédéric; Cigana, Cristina; De Simone, Maura; Lazenby, James; Juhas, Mario; Schwager, Stephan; Bianconi, Irene; Döring, Gerd; Eberl, Leo; Williams, Paul; Bragonzi, Alessandra; Cámara, Miguel

    2015-11-01

    Pseudomonas aeruginosa is a multi-host opportunistic pathogen causing a wide range of diseases because of the armoury of virulence factors it produces, and it is difficult to eradicate because of its intrinsic resistance to antibiotics. Using an integrated whole-genome approach, we searched for P. aeruginosa virulence genes with multi-host relevance. We constructed a random library of 57 360 Tn5 mutants in P. aeruginosa PAO1-L and screened it in vitro for those showing pleiotropic effects in virulence phenotypes (reduced swarming, exo-protease and pyocyanin production). A set of these pleiotropic mutants were assayed for reduced toxicity in Drosophila melanogaster, Caenorhabditis elegans, human cell lines and mice. Surprisingly, the screening revealed that the virulence of the majority of P. aeruginosa mutants varied between disease models, suggesting that virulence is dependent on the disease model used and hence the host environment. Genomic analysis revealed that these virulence-related genes encoded proteins from almost all functional classes, which were conserved among P. aeruginosa strains. Thus, we provide strong evidence that although P. aeruginosa is capable of infecting a wide range of hosts, many of its virulence determinants are host specific. These findings have important implication when searching for novel anti-virulence targets to develop new treatments against P. aeruginosa. PMID:25845292

  2. Molecular analysis of Helicobacter pylori virulent-associated genes in hepatobiliary patients

    PubMed Central

    Boonyanugomol, Wongwarut; Chomvarin, Chariya; Sripa, Banchob; Chau-in, Siri; Pugkhem, Ake; Namwat, Wises; Wongboot, Warawan; Khampoosa, Bandit

    2012-01-01

    Objectives The Helicobacter pylori virulence-associated genes in hepatobiliary patients, including vacA, iceA, babA2, cagA and cagE, have not been reported. The aim of this study was to investigate these genes and the association of those and the clinical outcomes in hepatobiliary diseases. Methods Eighty H. pylori-PCR-positive cases were obtained from hepatobiliary patients, representing both cholangiocarcinoma (CCA) (n = 58) and cholelithiasis (n = 22). The diversity of virulence genes was examined by polymerase chain reaction and DNA sequencing. Phylogenetic analysis of cagA was determined using the maximum parsimony method. Results The vacAs1a + c/m1, iceA1 and babA2 genes were the most predominant genotypes in both CCA and cholelithiasis patients. The cagA and cagE genes were found significantly more frequently in patients with CCA than those with cholelithiasis (P < 0.05). The cagA positive samples were the Western-type cagA and showed that almost all of the detected sequences in Thai hepatobiliary and Thai gastric cancer patients were classified in the same cluster but separated from the cluster of Japan and other countries. Conclusions The cagA and cagE genes may be associated in the pathogenesis of hepatobiliary diseases, especially of CCA. Besides the bacterial variation, other host factors may be involved in the pathogenesis of hepatobiliary cancer. PMID:23043664

  3. Protective potency of clove oil and its transcriptional down-regulation of Aeromonas sobria virulence genes in African catfish (Clarias gariepinus L.).

    PubMed

    Abd El-Hamid, M I; Abd El-Aziz, N K; Ali, H A

    2016-01-01

    Disease episodes of fish caused by Aeromonas species are moved to the top list of limiting problems worldwide. The present study was planned to verify the in vitro antibacterial activities as well as the in vivo potential values of clove oil and ciprofloxacin against Aeromonas sobria in African catfish (Clarias gariepinus). The in vitro phenotypic virulence activities and the successful amplification of aerolysin and hemolysin genes in the precisely identified A. sobria strain were predictive for its virulence. In the in vivo assay, virulence of A. sobria strain was fully demonstrated based on constituent mRNA expression profile of tested virulence genes and typical septicemia associated with high mortalities of infected fish. Apparent lower mortality rates were correlated well with both decrescent bacterial burden and significant down-regulated transcripts of representative genes in the treated groups with clove oil, followed by ciprofloxacin as a prophylactic use for 15 days (P < 0.0001); however, the essential oil apart from ciprofloxacin significantly enhanced different hematological parameters (P < 0.05). In addition, administration of antibiotic may be considered as a pronounced stress factor in the fish even when it used in the prophylactic dose. In conclusion, medicinal plants-derived essential oils provide a virtually safer alternative to chemotherapeutics on fish, consumers and ecosystems. PMID:27609474

  4. Erwinia amylovora Expresses Fast and Simultaneously hrp/dsp Virulence Genes during Flower Infection on Apple Trees

    PubMed Central

    Pester, Doris; Milčevičová, Renáta; Schaffer, Johann; Wilhelm, Eva; Blümel, Sylvia

    2012-01-01

    Background Pathogen entry through host blossoms is the predominant infection pathway of the Gram-negative bacterium Erwinia amylovora leading to manifestation of the disease fire blight. Like in other economically important plant pathogens, E. amylovora pathogenicity depends on a type III secretion system encoded by hrp genes. However, timing and transcriptional order of hrp gene expression during flower infections are unknown. Methodology/Principal Findings Using quantitative real-time PCR analyses, we addressed the questions of how fast, strong and uniform key hrp virulence genes and the effector dspA/E are expressed when bacteria enter flowers provided with the full defense mechanism of the apple plant. In non-invasive bacterial inoculations of apple flowers still attached to the tree, E. amylovora activated expression of key type III secretion genes in a narrow time window, mounting in a single expression peak of all investigated hrp/dspA/E genes around 24–48 h post inoculation (hpi). This single expression peak coincided with a single depression in the plant PR-1 expression at 24 hpi indicating transient manipulation of the salicylic acid pathway as one target of E. amylovora type III effectors. Expression of hrp/dspA/E genes was highly correlated to expression of the regulator hrpL and relative transcript abundances followed the ratio: hrpA>hrpN>hrpL>dspA/E. Acidic conditions (pH 4) in flower infections led to reduced virulence/effector gene expression without the typical expression peak observed under natural conditions (pH 7). Conclusion/Significance The simultaneous expression of hrpL, hrpA, hrpN, and the effector dspA/E during early floral infection indicates that speed and immediate effector transmission is important for successful plant invasion. When this delicate balance is disturbed, e.g., by acidic pH during infection, virulence gene expression is reduced, thus partly explaining the efficacy of acidification in fire blight control on a molecular

  5. Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans

    PubMed Central

    Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

    2012-01-01

    Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

  6. Prevalence of ten putative virulence genes in the emerging foodborne pathogen Arcobacter isolated from food products.

    PubMed

    Girbau, Cecilia; Guerra, Cristian; Martínez-Malaxetxebarria, Irati; Alonso, Rodrigo; Fernández-Astorga, Aurora

    2015-12-01

    Arcobacter spp. are considered to be emerging food- and waterborne pathogens for both humans and animals. However, their virulence mechanisms are still poorly understood. In this study the presence of ten virulence genes (cadF, ciaB, cj1349, hecA, hecB, mviN, pldA, irgA, tlyA and iroE) was assessed in a set of 47 strains of Arcobacter butzleri, 10 of Arcobacter cryaerophilus and 1 Arcobacter skirrowii strain recovered from different food products (pork, chicken, beef, milk, clams and mussels). Overall, the genes cadF, ciaB, cj1349, mviN, pldA and tlyA were detected in all A. butzleri and A. skirrowii strains. Lower detection rates were observed for irgA, iroE, hecA and hecB. The genes hecB and iroE were detected neither in A. cryaerophilus nor in A. skirrowii. The genes hecA and irgA were not detected in A. skirrowii. It was noteworthy that the genes hecA and hecB were significantly (P < 0.05) highly detected in A. butzleri strains isolated from clams compared with strains isolated from milk and chicken. Therefore, our findings underline clams as a source of A. butzleri strains with high prevalence of putative virulence genes. This could be hazardous to human health, especially because these bivalves are usually consumed raw or undercooked. PMID:26338128

  7. Human Serum Promotes Candida albicans Biofilm Growth and Virulence Gene Expression on Silicone Biomaterial

    PubMed Central

    Samaranayake, Yuthika Hemamala; Cheung, Becky P. K.; Yau, Joyce Y. Y.; Yeung, Shadow K. W.; Samaranayake, Lakshman P.

    2013-01-01

    Objectives Systemic candidal infections are a common problem in hospitalized patients due to central venous catheters fabricated using silicone biomaterial (SB). We therefore evaluated the effect of human serum on C. albicans biofilm morphology, growth, and the expression of virulence-related genes on SB in vitro. Methods We cultivated C. albicans SC5314 (wild-type strain, WT) and its derivative HLC54 (hyphal mutant, HM) for 48 h in various conditions, including the presence or absence of SB discs, and human serum. The growth of planktonic and biofilm cells of both strains was monitored at three time points by a tetrazolium salt reduction assay and by scanning electron microscopy. We also analyzed by RT-PCR its expression of the virulence-related genes ALS3, HWP1, EAP1, ECE1, SAP1 - SAP10, PLB1, PLB2, PLC and PLD. Results At each time point, planktonic cells of WT strain cultured in yeast nitrogen base displayed a much higher expression of EAP1 and HWP1, and a moderately higher ALS3 expression, than HM cells. In planktonic cells, expression of the ten SAP genes was higher in the WT strain initially, but were highly expressed in the HM strain by 48 h. Biofilm growth of both strains on SB was promoted in the presence of human serum than in its absence. Significant upregulation of ALS3, HWP1, EAP1, ECE1, SAP1, SAP4, SAP6 - SAP10, PLB1, PLB2 and PLC was observed for WT biofilms grown on serum-treated SB discs for at least one time point, compared with biofilms on serum-free SB discs. Conclusions Human serum stimulates C. albicans biofilm growth on SB discs and upregulates the expression of virulence genes, particularly adhesion genes ALS3 and HWP1, and hydrolase-encoding genes SAP, PLB1 and PLB2. This response is likely to promote the colonization of this versatile pathogen within the human host. PMID:23704884

  8. Identification of virulence genes in the crucifer anthracnose fungus Colletotrichum higginsianum by insertional mutagenesis.

    PubMed

    Liu, Liping; Zhao, Dian; Zheng, Lu; Hsiang, Tom; Wei, Yangdou; Fu, Yanping; Huang, Junbin

    2013-11-01

    To investigate the molecular and genetic mechanisms underlying virulence of Colletotrichum higginsianum on Arabidopsis thaliana, a T-DNA insertion mutant library of C. higginsianum, the causal agent of crucifer anthracnose, was established using Agrobacterium tumefaciens-mediated transformation. Among 875 transformants tested for virulence on Arabidopsis, six mutants with altered virulence, including an appressorial melanin-deficient mutant T734, two mutants defective in penetration, T45 and B30, and three mutants, T679, T732 and T801, that cause hypersensitive reactions on host Arabidopsis, were obtained. Southern blot analysis indicated that the mutants T732 and T734 harbored single-site T-DNA integrations, while B30 harbored two T-DNA insertions. Border flanking sequences of T-DNAs from these mutants were recovered by inverse polymerase chain reaction (PCR) and thermal asymmetric interlaced PCR. Sequence analyses revealed that single T-DNA insertions in mutant T734 targeted the coding region of a gene with unknown function, and in mutant T732 targeted a gene encoding a copper amine oxidase. The two T-DNA insertion sites in mutant B30 were found in the coding region of a gene encoding an exosome component and in the upstream region of a DUF221-domain gene. None of these genes have previously been implicated in virulence of the phytopathogenic fungi. Among these avirulent mutants, T734 showed altered color in colony growth and produced melanin-deficient, albino appressoria. The T-DNA insert in T734 was detected in the coding region of a gene named C. higginsianum melanin-deficiency gene (Ch-MEL1), which is highly similar to a gene encoding a hypothetical protein in Colletotrichum gloeosporioides (GenBank ELA33048). To validate whether the Ch-MEL1 gene was associated with virulence of the mutant T734, a targeted gene disruption and complementation approach was used. The appressoria of ▵Ch-mel1 null mutants were defective in melanization and failed to penetrate

  9. Virulence Genes in Expanded-Spectrum-Cephalosporin-Resistant and -Susceptible Escherichia coli Isolates from Treated and Untreated Chickens.

    PubMed

    Baron, S; Delannoy, S; Bougeard, S; Larvor, E; Jouy, E; Balan, O; Fach, P; Kempf, I

    2016-03-01

    This study investigated antimicrobial resistance, screened for the presence of virulence genes involved in intestinal infections, and determined phylogenetic groups of Escherichia coli isolates from untreated poultry and poultry treated with ceftiofur, an expanded-spectrum cephalosporin. Results show that none of the 76 isolates appeared to be Shiga toxin-producing E. coli or enteropathogenic E. coli. All isolates were negative for the major virulence factors/toxins tested (ehxA, cdt, heat-stable enterotoxin [ST], and heat-labile enterotoxin [LT]). The few virulence genes harbored in isolates generally did not correlate with isolate antimicrobial resistance or treatment status. However, some of the virulence genes were significantly associated with certain phylogenetic groups. PMID:26666927

  10. Virulence genes regulated at the transcriptional level by Ca2+ in Yersinia pestis include structural genes for outer membrane proteins.

    PubMed Central

    Straley, S C; Bowmer, W S

    1986-01-01

    Yersinia pestis, the causative agent of plague, has a virulence determinant called the low-Ca2+ response (Lcr+ phenotype) that confers on the bacterium Ca2+ dependence for growth at 37 degrees C and expression of V antigen. This virulence determinant is common to the three species of Yersinia and is mediated by Lcr plasmids (called pCD in Y. pestis). In this study, we generated insertions of Mu dI1(Ap lac) in pCD1 of Y. pestis KIM, screened for cells showing transcriptional regulation by Ca2+, and obtained inserts that define at least four pCD1 genes. Their patterns of transcription under different growth conditions closely paralleled the pattern of expression of the V antigen. We tested for expression of Lcr-specific yersinial outer membrane proteins (Yops) by the pCD1::Mu dI1(Ap lac) plasmids. Four of the inserts each eliminated expression of a different Yop; one of these Yops was unique to Y. pestis. Two of the insertions affecting Yops caused avirulence, and one caused strongly decreased virulence of Y. pestis in mice. These data indicate that Yops, like the V antigen, are virulence attributes regulated in the low-Ca2+ response. Images PMID:3002984

  11. Different distribution patterns of ten virulence genes in Legionella reference strains and strains isolated from environmental water and patients.

    PubMed

    Zhan, Xiao-Yong; Hu, Chao-Hui; Zhu, Qing-Yi

    2016-04-01

    Virulence genes are distinct regions of DNA which are present in the genome of pathogenic bacteria and absent in nonpathogenic strains of the same or related species. Virulence genes are frequently associated with bacterial pathogenicity in genus Legionella. In the present study, an assay was performed to detect ten virulence genes, including iraA, iraB, lvrA, lvrB, lvhD, cpxR, cpxA, dotA, icmC and icmD in different pathogenicity islands of 47 Legionella reference strains, 235 environmental strains isolated from water, and 4 clinical strains isolated from the lung tissue of pneumonia patients. The distribution frequencies of these genes in reference or/and environmental L. pneumophila strains were much higher than those in reference non-L. pneumophila or/and environmental non-L. pneumophila strains, respectively. L. pneumophila clinical strains also maintained higher frequencies of these genes compared to four other types of Legionella strains. Distribution frequencies of these genes in reference L. pneumophila strains were similar to those in environmental L. pneumophila strains. In contrast, environmental non-L. pneumophila maintained higher frequencies of these genes compared to those found in reference non-L. pneumophila strains. This study illustrates the association of virulence genes with Legionella pathogenicity and reveals the possible virulence evolution of non-L. pneumophia strains isolated from environmental water. PMID:26757724

  12. Exposure to Synthetic Gray Water Inhibits Amoeba Encystation and Alters Expression of Legionella pneumophila Virulence Genes

    PubMed Central

    Lu, Jingrang; Ashbolt, Nicholas J.

    2014-01-01

    Water conservation efforts have focused on gray water (GW) usage, especially for applications that do not require potable water quality. However, there is a need to better understand environmental pathogens and their free-living amoeba (FLA) hosts within GW, given their growth potential in stored gray water. Using synthetic gray water (sGW) we examined three strains of the water-based pathogen Legionella pneumophila and its FLA hosts Acanthamoeba polyphaga, A. castellanii, and Vermamoeba vermiformis. Exposure to sGW for 72 h resulted in significant inhibition (P < 0.0001) of amoebal encystation versus control-treated cells, with the following percentages of cysts in sGW versus controls: A. polyphaga (0.6 versus 6%), A. castellanii (2 versus 62%), and V. vermiformis (1 versus 92%), suggesting sGW induced maintenance of the actively feeding trophozoite form. During sGW exposure, L. pneumophila culturability decreased as early as 5 h (1.3 to 2.9 log10 CFU, P < 0.001) compared to controls (Δ0 to 0.1 log10 CFU) with flow cytometric analysis revealing immediate changes in membrane permeability. Furthermore, reverse transcription-quantitative PCR was performed on total RNA isolated from L. pneumophila cells at 0 to 48 h after sGW incubation, and genes associated with virulence (gacA, lirR, csrA, pla, and sidF), the type IV secretion system (lvrB and lvrE), and metabolism (ccmF and lolA) were all shown to be differentially expressed. These results suggest that conditions within GW may promote interactions between water-based pathogens and FLA hosts, through amoebal encystment inhibition and alteration of bacterial gene expression, thus warranting further exploration into FLA and L. pneumophila behavior in GW systems. PMID:25381242

  13. Two enzymes with redundant fructose bisphosphatase activity sustain gluconeogenesis and virulence in Mycobacterium tuberculosis

    PubMed Central

    Ganapathy, Uday; Marrero, Joeli; Calhoun, Susannah; Eoh, Hyungjin; de Carvalho, Luiz Pedro Sorio; Rhee, Kyu; Ehrt, Sabine

    2015-01-01

    The human pathogen Mycobacterium tuberculosis (Mtb) likely utilizes host fatty acids as a carbon source during infection. Gluconeogenesis is essential for the conversion of fatty acids into biomass. A rate-limiting step in gluconeogenesis is the conversion of fructose 1,6-bisphosphate to fructose 6-phosphate by a fructose bisphosphatase (FBPase). The Mtb genome contains only one annotated FBPase gene, glpX. Here we show that, unexpectedly, an Mtb mutant lacking GLPX grows on gluconeogenic carbon sources and has detectable FBPase activity. We demonstrate that the Mtb genome encodes an alternative FBPase (GPM2, Rv3214) that can maintain gluconeogenesis in the absence of GLPX. Consequently, deletion of both GLPX and GPM2 is required for disruption of gluconeogenesis and attenuation of Mtb in a mouse model of infection. Our work affirms a role for gluconeogenesis in Mtb virulence and reveals previously unidentified metabolic redundancy at the FBPase-catalysed reaction step of the pathway. PMID:26258286

  14. Impact of Hfq on Global Gene Expression and Virulence in Klebsiella pneumoniae

    PubMed Central

    Chiang, Ming-Ko; Lu, Min-Chi; Liu, Li-Cheng; Lin, Ching-Ting; Lai, Yi-Chyi

    2011-01-01

    Klebsiella pneumoniae is responsible for a wide range of clinical symptoms. How this bacterium adapts itself to ever-changing host milieu is still a mystery. Recently, small non-coding RNAs (sRNAs) have received considerable attention for their functions in fine-tuning gene expression at a post-transcriptional level to promote bacterial adaptation. Here we demonstrate that Hfq, an RNA-binding protein, which facilitates interactions between sRNAs and their mRNA targets, is critical for K. pneumoniae virulence. A K. pneumoniae mutant lacking hfq (Δhfq) failed to disseminate into extra-intestinal organs and was attenuated on induction of a systemic infection in a mouse model. The absence of Hfq was associated with alteration in composition of envelope proteins, increased production of capsular polysaccharides, and decreased resistance to H2O2, heat shock, and UV irradiation. Microarray-based transcriptome analyses revealed that 897 genes involved in numerous cellular processes were deregulated in the Δhfq strain. Interestingly, Hfq appeared to govern expression of many genes indirectly by affecting sigma factor RpoS and RpoE, since 19.5% (175/897) and 17.3% (155/897) of Hfq-dependent genes belong to the RpoE- and RpoS-regulon, respectively. These results indicate that Hfq regulates global gene expression at multiple levels to modulate the physiological fitness and virulence potential of K. pneumoniae. PMID:21779404

  15. Use of a Continuous-Flow Anaerobic Culture To Characterize Enteric Virulence Gene Expression

    PubMed Central

    Ruiz-Perez, Fernando; Sheikh, Jalaluddin; Davis, Suzanne; Boedeker, Edgar C.; Nataro, James P.

    2004-01-01

    We developed an in vitro culture method to characterize the expression of bacterial genes under conditions mimicking the colonic environment. Our culture system (the intestinal simulator) comprised a continuous-flow anaerobic culture which was inoculated with fecal samples from healthy volunteers. As a test organism, we employed enteroaggregative Escherichia coli (EAEC), an emerging diarrheal pathogen that is thought to cause infection in both the small and large intestines. After the simulator culture achieved equilibrium conditions, we inoculated the system with prototype EAEC strain 042 and assessed the expression of three EAEC virulence-related genes. We focused particularly on expression of aggR, which encodes a global transcriptional regulator of EAEC virulence factors, and two AggR-regulated genes. By using real-time quantitative reverse transcription-PCR, we showed that aggR expression in the simulator is increased 3- to 10-fold when 042 is grown under low-pH (5.5 to 6.0) conditions, compared with results with neutral pH (7.0). Interestingly, however, this effect was seen only when the strain was grown in the presence of commensal bacteria. We also found that expression of aggR is 10- to 20-fold higher at low NaCl concentrations, and this effect was also observed only in the presence of commensal bacteria. Using coculture and conditioned-media experiments, we identified specific strains of Enterococcus and Clostridium that upregulated aggR expression; in contrast, strains of Lactobacillus and Veillonella downregulated aggR expression. Our data provide new insights into regulation of virulence genes in EAEC and suggest the utility of intestinal simulation cultures in characterizing enteric gene regulation. PMID:15213120

  16. Virulence Gene Profiles of Multidrug-Resistant Pseudomonas aeruginosa Isolated From Iranian Hospital Infections

    PubMed Central

    Fazeli, Nastaran; Momtaz, Hassan

    2014-01-01

    Background: The most common hospital-acquired pathogen is Pseudomonas aeruginosa. It is a multidrug resistant bacterium causing systemic infections. Objectives: The present study was carried out in order to investigate the distribution of virulence factors and antibiotic resistance properties of Pseudomonas aeruginosa isolated from various types of hospital infections in Iran. Patients and Methods: Two-hundred and seventeen human infection specimens were collected from Baqiyatallah and Payambaran hospitals in Tehran, Iran. The clinical samples were cultured immediately and samples positive for P. aeruginosa were analyzed for the presence of antibiotic resistance and bacterial virulence genes using PCR (polymerase chain reaction). Antimicrobial susceptibility testing was performed using disk diffusion methodology with Müeller–Hinton agar. Results: Fifty-eight out of 127 (45.66%) male infection specimens and 44 out of 90 (48.88%) female infection specimens harbored P. aeruginosa. Also, 65% (in male specimens) and 21% (in female specimens) of respiratory system infections were positive for P. aeruginosa, which was a high rate. The genes encoding exoenzyme S (67.64%) and phospholipases C (45.09%) were the most common virulence genes found among the strains. The incidences of various β-lactams encoding genes, including blaTEM, blaSHV, blaOXA, blaCTX-M, blaDHA, and blaVEB were 94.11%, 16.66%, 15.68%, 18.62%, 21.56%, and 17.64%, respectively. The most commonly detected fluoroquinolones encoding gene was gyrA (15. 68%). High resistance levels to penicillin (100%), tetracycline (90.19%), streptomycin (64.70%), and erythromycin (43.13%) were observed too. Conclusions: Our findings should raise awareness about antibiotic resistance in hospitalized patients in Iran. Clinicians should exercise caution in prescribing antibiotics, especially in cases of human infections. PMID:25763199

  17. Detection of multiple virulence-associated genes in Listeria monocytogenes isolated from bovine mastitis cases.

    PubMed

    Rawool, D B; Malik, S V S; Shakuntala, I; Sahare, A M; Barbuddhe, S B

    2007-01-25

    Clinical samples (n=725) were collected from bovines (n=243) which were positive for mastitis using the California mastitis test (CMT) and somatic cell count (SCC). The clinical samples comprising blood (n=239), milk (n=243), and faecal swabs (n=243) were examined for the presence of pathogenic Listeria spp. Isolation of the pathogen was done using selective enrichment in University of Vermont Medium and plating onto Dominguez-Rodriguez isolation agar. Confirmation of the isolates was based on biochemical tests and Christie, Atkins, Munch-Petersen (CAMP) test followed by pathogenicity testing. Pathogenicity of the isolates was tested by phosphatidylinositol-specific phospholipase C (PI-PLC) assay as well as in vivo tests namely, chick embryo and mice inoculation tests. The isolates were subjected to PCR assay for five virulence-associated genes, plcA, prfA, hlyA, actA and iap. Listeria spp. were isolated from 12 (1.66%) samples. Of these 4 (0.55%) and 1 (0.14%) were confirmed as Listeria monocytogenes and Listeria ivanovii, respectively. L. monocytogenes and L. ivanovii were recovered from milk samples (2) and faecal (3) of mastitic cattle (3) and buffaloes (2). L. monocytogenes recovered from the milk of mastitic cattle and L. ivanovii from the faecal swab of buffalo turned out to be pathogenic. However, the remaining three hemolytic isolates exhibiting positive CAMP test turned out to be negative in PI-PLC assay, chick embryo and mice inoculation. L. monocytogenes and L. ivanovii isolates characterized as pathogenic by PI-PLC assay and in vivo pathogenicity tests were found to possess all the five virulence-associated genes and three genes, plcA, prfA and actA respectively. The remaining three hemolytic but non-pathogenic L. monocytogenes isolates were negative for plcA by PCR. It seems that the plcA gene and its expression (in the PI-PLC assay) have an important role as virulence determinants in pathogenic Listeria spp. In conclusion, the PI-PLC assay and

  18. Detection and characterization of virulence genes and integrons in Aeromonas veronii isolated from catfish.

    PubMed

    Nawaz, Mohamed; Khan, Saeed A; Khan, Ashraf A; Sung, Kidon; Tran, Quynhtien; Kerdahi, Khalil; Steele, Roger

    2010-05-01

    The presence of virulence genes and integrons was determined in 81 strains of Aeromonas veronii isolated from farm-raised catfish. Polymerase chain reaction (PCR) protocols were used to determine the presence of genes for cytotoxic enterotoxin (act), aerolysin (aerA), two cytotonic enterotoxins (ast, alt), lipase (lip), glycerophospholipid:cholesterol acyltransferase (gcaT), serine protease (ser), DNases (exu), elastase (ahyB) and the structural gene flagellin (fla) in the template DNA. Oligonucleotide primers amplified a 231-bp region of the act gene from the template DNA of 97.0% of the isolates. Primers specific for the amplification of the aerA gene amplified a 431-bp region of the aerA gene from the template DNA of 96.0% of the isolates. None of the isolates contained ast or alt genes. Oligonucleotide primers specific for the amplification of lip, gcaT, ser and fla genes, amplified their respective amplicons from 85.0, 78.0, 82.0 and 80.0% of the isolates. None of the isolates contained exu or the elastase genes. Several of the isolates (48.0%) contained class I integrons that confer resistance to multiple antibiotics; various sizes between 0.6 and 3.1 kb were found. None of the isolates contained Class II integrons. Our results indicate that farm-raised catfish may be a source of pathogenic A. veronii and that the potential health risks posed by virulent strains of A. veronii should not be underestimated. PMID:20227596

  19. Construction of a Multiplex Promoter Reporter Platform to Monitor Staphylococcus aureus Virulence Gene Expression and the Identification of Usnic Acid as a Potent Suppressor of psm Gene Expression

    PubMed Central

    Gao, Peng; Wang, Yanli; Villanueva, Iván; Ho, Pak Leung; Davies, Julian; Kao, Richard Yi Tsun

    2016-01-01

    As antibiotic resistance becomes phenomenal, alternative therapeutic strategies for bacterial infections such as anti-virulence treatments have been advocated. We have constructed a total of 20 gfp-luxABCDE dual-reporter plasmids with selected promoters from S. aureus virulence-associated genes. The plasmids were introduced into various S. aureus strains to establish a gfp-lux based multiplex promoter reporter platform for monitoring S. aureus virulence gene expressions in real time to identify factors or compounds that may perturb virulence of S. aureus. The gene expression profiles monitored by luminescence correlated well with qRT-PCR results and extrinsic factors including carbon dioxide and some antibiotics were shown to suppress or induce the expression of virulence factors in this platform. Using this platform, sub-inhibitory ampicillin was shown to be a potent inducer for the expression of many virulence factors in S. aureus. Bacterial adherence and invasion assays using mammalian cells were employed to measure S. aureus virulence induced by ampicillin. The platform was used for screening of natural extracts that perturb the virulence of S. aureus and usnic acid was identified to be a potent repressor for the expression of psm. PMID:27625639

  20. Construction of a Multiplex Promoter Reporter Platform to Monitor Staphylococcus aureus Virulence Gene Expression and the Identification of Usnic Acid as a Potent Suppressor of psm Gene Expression.

    PubMed

    Gao, Peng; Wang, Yanli; Villanueva, Iván; Ho, Pak Leung; Davies, Julian; Kao, Richard Yi Tsun

    2016-01-01

    As antibiotic resistance becomes phenomenal, alternative therapeutic strategies for bacterial infections such as anti-virulence treatments have been advocated. We have constructed a total of 20 gfp-luxABCDE dual-reporter plasmids with selected promoters from S. aureus virulence-associated genes. The plasmids were introduced into various S. aureus strains to establish a gfp-lux based multiplex promoter reporter platform for monitoring S. aureus virulence gene expressions in real time to identify factors or compounds that may perturb virulence of S. aureus. The gene expression profiles monitored by luminescence correlated well with qRT-PCR results and extrinsic factors including carbon dioxide and some antibiotics were shown to suppress or induce the expression of virulence factors in this platform. Using this platform, sub-inhibitory ampicillin was shown to be a potent inducer for the expression of many virulence factors in S. aureus. Bacterial adherence and invasion assays using mammalian cells were employed to measure S. aureus virulence induced by ampicillin. The platform was used for screening of natural extracts that perturb the virulence of S. aureus and usnic acid was identified to be a potent repressor for the expression of psm. PMID:27625639

  1. Reduced Fitness of Virulent Aphis glycines (Hemiptera: Aphididae) Biotypes May Influence the Longevity of Resistance Genes in Soybean

    PubMed Central

    Varenhorst, Adam J.; McCarville, Michael T.; O’Neal, Matthew E.

    2015-01-01

    Sustainable use of insect resistance in crops require insect resistance management plans that may include a refuge to limit the spread of virulence to this resistance. However, without a loss of fitness associated with virulence, a refuge may not prevent virulence from becoming fixed within a population of parthenogenetically reproducing insects like aphids. Aphid-resistance in soybeans (i.e., Rag genes) prevent outbreaks of soybean aphid (Aphis glycines), yet four biotypes defined by their capacity to survive on aphid-resistant soybeans (e.g., biotype-2 survives on Rag1 soybean) are found in North America. Although fitness costs are reported for biotype-3 on aphid susceptible and Rag1 soybean, it is not clear if virulence to aphid resistance in general is associated with a decrease in fitness on aphid susceptible soybeans. In laboratory assays, we measured fitness costs for biotype 2, 3 and 4 on an aphid-susceptible soybean cultivar. In addition, we also observed negative cross-resistance for biotype-2 on Rag3, and biotype-3 on Rag1 soybean. We utilized a simple deterministic, single-locus, four compartment genetic model to account for the impact of these findings on the frequency of virulence alleles. When a refuge of aphid susceptible was included within this model, fitness costs and negative cross-resistance delayed the increase of virulence alleles when virulence was inherited recessively or additively. If virulence were inherited additively, fitness costs decreased the frequency of virulence. Combined, these results suggest that a refuge may prevent virulent A. glycines biotypes from overcoming Rag genes if this aphid-resistance were used commercially in North America. PMID:26372106

  2. Characterization of Shiga Toxin Subtypes and Virulence Genes in Porcine Shiga Toxin-Producing Escherichia coli.

    PubMed

    Baranzoni, Gian Marco; Fratamico, Pina M; Gangiredla, Jayanthi; Patel, Isha; Bagi, Lori K; Delannoy, Sabine; Fach, Patrick; Boccia, Federica; Anastasio, Aniello; Pepe, Tiziana

    2016-01-01

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using a Minimal Signature E. coli Array Strip. As expected, stx 2e (81%) was the most common Stx variant, followed by stx 1a (14%), stx 2d (3%), and stx 1c (1%). The STEC serogroups that carried stx 2d were O15:H27, O159:H16 and O159:H-. Similar to stx 2a and stx 2c, the stx 2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. The present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections. PMID:27148249

  3. Characterization of Shiga toxin subtypes and virulence genes in porcine Shiga toxin-producing Escherichia coli

    DOE PAGESBeta

    Baranzoni, Gian Marco; Fratamico, Pina M.; Gangiredla, Jayanthi; Patel, Isha; Bagi, Lori K.; Delannoy, Sabine; Fach, Patrick; Boccia, Federica; Anastasio, Aniello; Pepe, Tiziana

    2016-04-21

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using amore » Minimal Signature E. coli Array Strip. As expected, stx2e (81%) was the most common Stx variant, followed by stx1a (14%), stx2d (3%), and stx1c (1%). The STEC serogroups that carried stx2d were O15:H27, O159:H16 and O159:H-. Similar to stx2a and stx2c, the stx2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. Furthermore, the present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections.« less

  4. Characterization of Shiga Toxin Subtypes and Virulence Genes in Porcine Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Baranzoni, Gian Marco; Fratamico, Pina M.; Gangiredla, Jayanthi; Patel, Isha; Bagi, Lori K.; Delannoy, Sabine; Fach, Patrick; Boccia, Federica; Anastasio, Aniello; Pepe, Tiziana

    2016-01-01

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using a Minimal Signature E. coli Array Strip. As expected, stx2e (81%) was the most common Stx variant, followed by stx1a (14%), stx2d (3%), and stx1c (1%). The STEC serogroups that carried stx2d were O15:H27, O159:H16 and O159:H-. Similar to stx2a and stx2c, the stx2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. The present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections. PMID:27148249

  5. Differential expression of the virulence-associated protein p57 and characterization of its duplicated gene rosa in virulent and attenuated strains of Renibacterium salmoninarum

    USGS Publications Warehouse

    O'Farrell, C. L.; Strom, M.S.

    1999-01-01

    Virulence mechanisms utilized by the salmonid fish pathogen Renibacterium salmoninarum are poorly understood. One potential virulence factor is p57 (also designated MSA for major soluble antigen), an abundant 57 kDa soluble protein that is predominately localized on the bacterial cell surface with significant levels released into the extracellular milieu. Previous studies of an attenuated strain, MT 239, indicated that it differs from virulent strains in the amount of surface-associated p57. In this report, we show overall expression of p57 in R. salmoninarum MT 239 is considerably reduced as compared to a virulent strain, ATCC 33209. The amount of cell-associated p57 is decreased while the level of p57 in the culture supernatant is nearly equivalent between the strains. To determine if lowered amount of cell-associated p57 was due to a sequence defect in p57, a genetic comparison was performed. Two copies of the gene encoding p57 (msa1 and msa2) were found in 33209 and MT 239, as well as in several other virulent isolates. Both copies from 33209 and MT 239 were cloned and sequenced and found to be identical to each other, and identical between the 2 strains. A comparison of msa1 and msa2 within each strain showed that their sequences diverge 40 base pairs 5, to the open reading frame, while sequences 3' to the open reading frame are essentially identical for at least 225 base pairs. Northern blot analysis showed no difference in steady state levels of rosa mRNA between the 2 strains. These data suggest that while cell-surface localization of p57 may be important for R. salmoninarum virulence, the differences in localization, and total p57 expression between 33209 anti MT 239 are not due to differences in rosa sequence or differences in steady state transcript levels.

  6. Differential expression of the virulence-associated protein p57 and characterization of its duplicated gene msa in virulent and attenuated strains of Renibacterium salmoninarum.

    PubMed

    O'Farrell, C L; Strom, M S

    1999-11-01

    Virulence mechanisms utilized by the salmonid fish pathogen Renibacterium salmoninarum are poorly understood. One potential virulence factor is p57 (also designated MSA for major soluble antigen), an abundant 57 kDa soluble protein that is predominately localized on the bacterial cell surface with significant levels released into the extracellular milieu. Previous studies of an attenuated strain, MT 239, indicated that it differs from virulent strains in the amount of surface-associated p57. In this report, we show overall expression of p57 in R. salmoninarum MT 239 is considerably reduced as compared to a virulent strain, ATCC 33209. The amount of cell-associated p57 is decreased while the level of p57 in the culture supernatant is nearly equivalent between the strains. To determine if the lowered amount of cell-associated p57 was due to a sequence defect in p57, a genetic comparison was performed. Two copies of the gene encoding p57 (msa1 and msa2) were found in 33209 and MT 239, as well as in several other virulent isolates. Both copies from 33209 and MT 239 were cloned and sequenced and found to be identical to each other, and identical between the 2 strains. A comparison of msa1 and msa2 within each strain showed that their sequences diverge 40 base pairs 5' to the open reading frame, while sequences 3' to the open reading frame are essentially identical for at least 225 base pairs. Northern blot analysis showed no difference in steady state levels of msa mRNA between the 2 strains. These data suggest that while cell-surface localization of p57 may be important for R. salmoninarum virulence, the differences in localization and total p57 expression between 33209 and MT 239 are not due to differences in msa sequence or differences in steady state transcript levels. PMID:10598282

  7. The role of the st313-td gene in virulence of Salmonella Typhimurium ST313.

    PubMed

    Herrero-Fresno, Ana; Wallrodt, Inke; Leekitcharoenphon, Pimlapas; Olsen, John Elmerdahl; Aarestrup, Frank M; Hendriksen, Rene S

    2014-01-01

    Multidrug-resistant Salmonella enterica serovar Typhimurium ST313 has emerged in sub-Saharan Africa causing severe infections in humans. Therefore, it has been speculated that this specific sequence type, ST313, carries factors associated with increased pathogenicity. We assessed the role in virulence of a gene with a yet unknown function, st313-td, detected in ST313 through comparative genomics. Additionally, the structure of the genomic island ST313-GI, harbouring the gene was determined. The gene st313-td was cloned into wild type S. Typhimurium 4/74 (4/74-C) as well as knocked out in S. Typhimurium ST313 02-03/002 (Δst313-td) followed by complementation (02-03/002-C). Δst313-td was less virulent in mice following i.p. challenge than the wild type and this phenotype could be partly complemented in trans, indicating that st313-td plays a role during systemic infection. The gene st313-td was shown not to affect invasion of cultured epithelial cells, while the absence of the gene significantly affects uptake and intracellular survival within macrophages. The gene st313-td was proven to be strongly associated to invasiveness, harboured by 92.5% of S. Typhimurium blood isolates (n = 82) and 100% of S. Dublin strains (n = 50) analysed. On the contrary, S. Typhimurium isolates of animal and food origin (n = 82) did not carry st313-td. Six human, non-blood isolates of S. Typhimurium from Belarus, China and Nepal harboured the gene and belonged to sequence types ST398 and ST19. Our data showed a global presence of the st313-td gene and in other sequence types than ST313. The gene st313-td was shown to be expressed during logarithmic phase of growth in 14 selected Salmonella strains carrying the gene. This study reveals that st313-td plays a role in S. Typhimurium ST313 pathogenesis and adds another chapter to understanding of the virulence of S. Typhimurium and in particular of the emerging sequence type ST313. PMID:24404174

  8. The Role of the st313-td Gene in Virulence of Salmonella Typhimurium ST313

    PubMed Central

    Herrero-Fresno, Ana; Wallrodt, Inke; Leekitcharoenphon, Pimlapas; Olsen, John Elmerdahl; Aarestrup, Frank M.; Hendriksen, Rene S.

    2014-01-01

    Multidrug-resistant Salmonella enterica serovar Typhimurium ST313 has emerged in sub-Saharan Africa causing severe infections in humans. Therefore, it has been speculated that this specific sequence type, ST313, carries factors associated with increased pathogenicity. We assessed the role in virulence of a gene with a yet unknown function, st313-td, detected in ST313 through comparative genomics. Additionally, the structure of the genomic island ST313-GI, harbouring the gene was determined. The gene st313-td was cloned into wild type S. Typhimurium 4/74 (4/74-C) as well as knocked out in S. Typhimurium ST313 02–03/002 (Δst313-td) followed by complementation (02-03/002-C). Δst313-td was less virulent in mice following i.p. challenge than the wild type and this phenotype could be partly complemented in trans, indicating that st313-td plays a role during systemic infection. The gene st313-td was shown not to affect invasion of cultured epithelial cells, while the absence of the gene significantly affects uptake and intracellular survival within macrophages. The gene st313-td was proven to be strongly associated to invasiveness, harboured by 92.5% of S. Typhimurium blood isolates (n = 82) and 100% of S. Dublin strains (n = 50) analysed. On the contrary, S. Typhimurium isolates of animal and food origin (n = 82) did not carry st313-td. Six human, non-blood isolates of S. Typhimurium from Belarus, China and Nepal harboured the gene and belonged to sequence types ST398 and ST19. Our data showed a global presence of the st313-td gene and in other sequence types than ST313. The gene st313-td was shown to be expressed during logarithmic phase of growth in 14 selected Salmonella strains carrying the gene. This study reveals that st313-td plays a role in S. Typhimurium ST313 pathogenesis and adds another chapter to understanding of the virulence of S. Typhimurium and in particular of the emerging sequence type ST313. PMID:24404174

  9. Mechanism of resistance to complement-mediated killing of bacteria encoded by the Salmonella typhimurium virulence plasmid gene rck.

    PubMed Central

    Heffernan, E J; Reed, S; Hackett, J; Fierer, J; Roudier, C; Guiney, D

    1992-01-01

    We find that pADEO16, a recombinant cosmid carrying the rck gene of the Salmonella typhimurium virulence plasmid, when cloned into either rough or smooth Escherichia coli and Salmonella strains, confers high level resistance to the bactericidal activity of pooled normal human serum. The rck gene encodes a 17-kD outer membrane protein that is homologous to a family of virulence-associated outer membrane proteins, including pagC and Ail. Complement depletion, C3 and C5 binding, and membrane-bound C3 cleavage products are similar in strains with and without rck. Although a large difference in C9 binding was not seen, trypsin cleaved 55.7% of bound 125I-C9 counts from rough S. typhimurium with pADEO16, whereas only 26.4% were released from S. typhimurium with K2011, containing a mutation in rck. The majority of C9 extracted from rck strain membranes sediments at a lower molecular weight than in strains without rck, suggesting less C9 polymerization. Furthermore, SDS-PAGE analysis of gradient peak fractions indicated that the slower sedimenting C9-containing complexes in rck strains did not contain polymerized C9 typical of the tubular membrane attack complex. These results indicate that complement resistance mediated by Rck is associated with a failure to form fully polymerized tubular membrane attack complexes. Images PMID:1522243

  10. Virulence and Immunity Orchestrated by the Global Gene Regulator sigL in Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Ghosh, Pallab; Steinberg, Howard

    2014-01-01

    Mycobacterium avium subsp. paratuberculosis causes Johne's disease in ruminants, a chronic enteric disease responsible for severe economic losses in the dairy industry. Global gene regulators, including sigma factors are important in regulating mycobacterial virulence. However, the biological significance of such regulators in M. avium subsp. paratuberculosis rremains elusive. To better decipher the role of sigma factors in M. avium subsp. paratuberculosis pathogenesis, we targeted a key sigma factor gene, sigL, activated in mycobacterium-infected macrophages. We interrogated an M. avium subsp. paratuberculosis ΔsigL mutant against a selected list of stressors that mimic the host microenvironments. Our data showed that sigL was important in maintaining bacterial survival under such stress conditions. Survival levels further reflected the inability of the ΔsigL mutant to persist inside the macrophage microenvironments. Additionally, mouse infection studies suggested a substantial role for sigL in M. avium subsp. paratuberculosis virulence, as indicated by the significant attenuation of the ΔsigL-deficient mutant compared to the parental strain. More importantly, when the sigL mutant was tested for its vaccine potential, protective immunity was generated in a vaccine/challenge model of murine paratuberculosis. Overall, our study highlights critical role of sigL in the pathogenesis and immunity of M. avium subsp. paratuberculosis infection, a potential role that could be shared by similar proteins in other intracellular pathogens. PMID:24799632

  11. Bicarbonate-mediated transcriptional activation of divergent operons by the virulence regulatory protein, RegA, from Citrobacter rodentium.

    PubMed

    Yang, Ji; Hart, Emily; Tauschek, Marija; Price, G Dean; Hartland, Elizabeth L; Strugnell, Richard A; Robins-Browne, Roy M

    2008-04-01

    Regulation of virulence gene expression plays a central role in the pathogenesis of enteric bacteria as they encounter diverse environmental conditions in the gastrointestinal tract of their hosts. In this study, we investigated environmental regulation of two putative virulence determinants adcA and kfc by RegA, an AraC/XylS-like regulator, from Citrobacter rodentium, and identified bicarbonate as the environmental signal which induced transcription of adcA and kfc through RegA. Primer extension experiments showed that adcA and kfc were divergently transcribed from sigma(70) promoters. In vivo and in vitro experiments demonstrated that bicarbonate facilitated and stabilized the binding of RegA to an operator located between the two promoters. The interaction of RegA with its DNA target resulted in the formation of a nucleosome-like structure, which evidently displaced the histone-like proteins, H-NS and StpA, from the adcA and kfc promoter regions, leading to transcriptional derepression. In addition, our results indicated that RegA also behaved as a Class I activator by directly stimulating transcription initiation by RNA polymerase. This is the first report to describe the molecular mechanism by which an environmental chemical stimulates transcription of virulence-associated genes of an enteric pathogen through an AraC/XlyS-like activator. PMID:18284589

  12. Current European Labyrinthula zosterae are not virulent and modulate seagrass (Zostera marina) defense gene expression.

    PubMed

    Brakel, Janina; Werner, Franziska Julie; Tams, Verena; Reusch, Thorsten B H; Bockelmann, Anna-Christina

    2014-01-01

    Pro- and eukaryotic microbes associated with multi-cellular organisms are receiving increasing attention as a driving factor in ecosystems. Endophytes in plants can change host performance by altering nutrient uptake, secondary metabolite production or defense mechanisms. Recent studies detected widespread prevalence of Labyrinthula zosterae in European Zostera marina meadows, a protist that allegedly caused a massive amphi-Atlantic seagrass die-off event in the 1930's, while showing only limited virulence today. As a limiting factor for pathogenicity, we investigated genotype × genotype interactions of host and pathogen from different regions (10-100 km-scale) through reciprocal infection. Although the endophyte rapidly infected Z. marina, we found little evidence that Z. marina was negatively impacted by L. zosterae. Instead Z. marina showed enhanced leaf growth and kept endophyte abundance low. Moreover, we found almost no interaction of protist × eelgrass-origin on different parameters of L. zosterae virulence/Z. marina performance, and also no increase in mortality after experimental infection. In a target gene approach, we identified a significant down-regulation in the expression of 6/11 genes from the defense cascade of Z. marina after real-time quantitative PCR, revealing strong immune modulation of the host's defense by a potential parasite for the first time in a marine plant. Nevertheless, one gene involved in phenol synthesis was strongly up-regulated, indicating that Z. marina plants were probably able to control the level of infection. There was no change in expression in a general stress indicator gene (HSP70). Mean L. zosterae abundances decreased below 10% after 16 days of experimental runtime. We conclude that under non-stress conditions L. zosterae infection in the study region is not associated with substantial virulence. PMID:24691450

  13. Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide

    PubMed Central

    Green, Jeffrey; Rolfe, Matthew D; Smith, Laura J

    2014-01-01

    Molecular oxygen (O2) and nitric oxide (NO) are diatomic gases that play major roles in infection. The host innate immune system generates reactive oxygen species and NO as bacteriocidal agents and both require O2 for their production. Furthermore, the ability to adapt to changes in O2 availability is crucial for many bacterial pathogens, as many niches within a host are hypoxic. Pathogenic bacteria have evolved transcriptional regulatory systems that perceive these gases and respond by reprogramming gene expression. Direct sensors possess iron-containing co-factors (iron–sulfur clusters, mononuclear iron, heme) or reactive cysteine thiols that react with O2 and/or NO. Indirect sensors perceive the physiological effects of O2 starvation. Thus, O2 and NO act as environmental cues that trigger the coordinated expression of virulence genes and metabolic adaptations necessary for survival within a host. Here, the mechanisms of signal perception by key O2- and NO-responsive bacterial transcription factors and the effects on virulence gene expression are reviewed, followed by consideration of these aspects of gene regulation in two major pathogens, Staphylococcus aureus and Mycobacterium tuberculosis. PMID:25603427

  14. Detection of antibiotic resistance, virulence gene determinants and biofilm formation in Aeromonas species isolated from cattle.

    PubMed

    Igbinosa, Isoken H; Igbinosa, Etinosa O; Okoh, Anthony I

    2015-11-01

    This study aimed to assess the antibiogram of Aeromonas strains recovered from cattle faeces and the potential pathogenic status of the isolates. The antibiogram of the Aeromonas isolates demonstrated total resistance to clindamycin oxacillin, trimethoprim, novobiocin and ticarcillin. However, Aeromonas strains were sensitive to cefotaxime, oxytetracycline and tobramycin. The Aeromonas strains from Lovedale and Fort Cox farms were found to possess some virulence genes. The percentage distribution was aer 71.4%, ast 35.7%, fla 60.7%, lip 35.7% and hlyA 25% for Lovedale farm and aer 63.1%, alt 10.5%, ast 55.2%, fla 78.9%, lip 21% and hlyA 35.9% for Fort Cox farm. Class 1 integron was present in 27% of Aeromonas isolates; the bla TEM gene was present in 34.8%, while the blaP1 class A β-lactamase gene was detected in 12.1% of the isolates. Approximately 86% of the isolates formed a biofilm on microtitre plates. The presence of multiple antibiotic resistance and virulence genes in Aeromonas isolates from cattle faeces reveals the pathogenic and infectious importance of these isolates and is of great significance to public health. The possession of a biofilm-forming capability by such isolates may lead to difficulty during the management of infection related to Aeromonas species. PMID:26143545

  15. Virulence genes, antibiotic resistance and integrons in Escherichia coli strains isolated from synanthropic birds from Spain.

    PubMed

    Sacristán, C; Esperón, F; Herrera-León, S; Iglesias, I; Neves, E; Nogal, V; Muñoz, M J; de la Torre, A

    2014-01-01

    The aim of this study was to determine the presence of virulence genes and antibiotic resistance profiles in 164 Escherichia coli strains isolated from birds (feral pigeons, hybrid ducks, house sparrows and spotless starlings) inhabiting urban and rural environments. A total of eight atypical enteropathogenic E. coli strains were identified: one in a house sparrow, four in feral pigeons and three in spotless starlings. Antibiotic resistance was present in 32.9% (54) of E. coli strains. The dominant type of resistance was to tetracycline (21.3%), ampicillin (19.5%) and sulfamethoxazole (18.9%). Five isolates had class 1 integrons containing gene cassettes encoding for dihydrofolate reductase A (dfrA) and aminoglycoside adenyltransferase A (aadA), one in a feral pigeon and four in spotless starlings. To our knowledge, the present study constitutes the first detection of virulence genes from E. coli in spotless starlings and house sparrows, and is also the first identification worldwide of integrons containing antibiotic resistance gene cassettes in E. coli strains from spotless starlings and pigeons. PMID:24689431

  16. Detection of virulence-associated genes in pathogenic and commensal avian Escherichia coli isolates.

    PubMed

    Paixão, A C; Ferreira, A C; Fontes, M; Themudo, P; Albuquerque, T; Soares, M C; Fevereiro, M; Martins, L; Corrêa de Sá, M I

    2016-07-01

    Poultry colibacillosis due to Avian Pathogenic Escherichia coli (APEC) is responsible for several extra-intestinal pathological conditions, leading to serious economic damage in poultry production. The most commonly associated pathologies are airsacculitis, colisepticemia, and cellulitis in broiler chickens, and salpingitis and peritonitis in broiler breeders. In this work a total of 66 strains isolated from dead broiler breeders affected with colibacillosis and 61 strains from healthy broilers were studied. Strains from broiler breeders were typified with serogroups O2, O18, and O78, which are mainly associated with disease. The serogroup O78 was the most prevalent (58%). All the strains were checked for the presence of 11 virulence genes: 1) arginine succinyltransferase A (astA); ii) E.coli hemeutilization protein A (chuA); iii) colicin V A/B (cvaA/B); iv) fimbriae mannose-binding type 1 (fimC); v) ferric yersiniabactin uptake A (fyuA); vi) iron-repressible high-molecular-weight proteins 2 (irp2); vii) increased serum survival (iss); viii) iron-uptake systems of E.coli D (iucD); ix) pielonefritis associated to pili C (papC); x) temperature sensitive haemaglutinin (tsh), and xi) vacuolating autotransporter toxin (vat), by Multiplex-PCR. The results showed that all genes are present in both commensal and pathogenic E. coli strains. The iron uptake-related genes and the serum survival gene were more prevalent among APEC. The adhesin genes, except tsh, and the toxin genes, except astA, were also more prevalent among APEC isolates. Except for astA and tsh, APEC strains harbored the majority of the virulence-associated genes studied and fimC was the most prevalent gene, detected in 96.97 and 88.52% of APEC and AFEC strains, respectively. Possession of more than one iron transport system seems to play an important role on APEC survival. PMID:26976911

  17. The minimal gene set member msrA, encoding peptide methionine sulfoxide reductase, is a virulence determinant of the plant pathogen Erwinia chrysanthemi.

    PubMed

    Hassouni, M E; Chambost, J P; Expert, D; Van Gijsegem, F; Barras, F

    1999-02-01

    Peptide methionine sulfoxide reductase (MsrA), which repairs oxidized proteins, is present in most living organisms, and the cognate structural gene belongs to the so-called minimum gene set [Mushegian, A. R. & Koonin, E. V., (1996) Proc. Natl. Acad. Sci. USA 93, 10268-10273]. In this work, we report that MsrA is required for full virulence of the plant pathogen Erwinia chrysanthemi. The following differences were observed between the wild-type and a MsrA- mutant: (i) the MsrA- mutant was more sensitive to oxidative stress; (ii) the MsrA- mutant was less motile on solid surface; (iii) the MsrA- mutant exhibited reduced virulence on chicory leaves; and (iv) no systemic invasion was observed when the MsrA- mutant was inoculated into whole Saintpaulia ionantha plants. These results suggest that plants respond to virulent pathogens by producing active oxygen species, and that enzymes repairing oxidative damage allow virulent pathogens to survive the host environment, thereby supporting the theory that active oxygen species play a key role in plant defense. PMID:9927663

  18. Molecular characterization of protease activity in Serratia sp. strain SCBI and its importance in cytotoxicity and virulence.

    PubMed

    Petersen, Lauren M; Tisa, Louis S

    2014-11-01

    A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. PMID:25182493

  19. Molecular Characterization of Protease Activity in Serratia sp. Strain SCBI and Its Importance in Cytotoxicity and Virulence

    PubMed Central

    Petersen, Lauren M.

    2014-01-01

    A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. PMID:25182493

  20. Magnaporthe Grisea Genes for Pathogenicity and Virulence Identified through a Series of Backcrosses

    PubMed Central

    Valent, B.; Farrall, L.; Chumley, F. G.

    1991-01-01

    We have identified genes for pathogenicity toward rice (Oryza sativa) and genes for virulence toward specific rice cultivars in the plant pathogenic fungus Magnaporthe grisea. A genetic cross was conducted between the weeping lovegrass (Eragrostis curvula) pathogen 4091-5-8, a highly fertile, hermaphroditic laboratory strain, and the rice pathogen O-135, a poorly fertile, female-sterile field isolate that infects weeping lovegrass as well as rice. A six-generation backcrossing scheme was then undertaken with the rice pathogen as the recurrent parent. One goal of these crosses was to generate rice pathogenic progeny with the high fertility characteristic of strain 4091-5-8, which would permit rigorous genetic analysis of rice pathogens. Therefore, progeny strains to be used as parents for backcross generations were chosen only on the basis of fertility. The ratios of pathogenic to nonpathogenic (and virulent to avirulent) progeny through the backcross generations suggested that the starting parent strains differ in two types of genes that control the ability to infect rice. First, they differ by polygenic factors that determine the extent of lesion development achieved by those progeny that infect rice. These genes do not appear to play a role in infection of weeping lovegrass because both parents and all progeny infect weeping lovegrass. Second, the parents differ by simple Mendelian determinants, ``avirulence genes,'' that govern virulence toward specific rice cultivars in all-or-none fashion. Several crosses confirm the segregation of three unlinked avirulence genes, Avr1-CO39, Avr1-M201 and Avr1-YAMO, alleles of which determine avirulence on rice cultivars CO39, M201, and Yashiro-mochi, respectively. Interestingly, avirulence alleles of Avr1-CO39, Avr1-M201 and Avr1-YAMO were inherited from the parent strain 4091-5-8, which is a nonpathogen of rice. Middle repetitive DNA sequences (``MGR sequences''), present in approximately 40-50 copies in the genome of the

  1. Frequency of virulence genes in Escherichia coli strains isolated from piglets with diarrhea in the North Parana State, Brazil

    PubMed Central

    Vidotto, Marilda C.; de Lima, Natália C.S.; Fritzen, Juliana T.T.; de Freitas, Júlio C.; Venâncio, merson J.; Ono, Mario A.

    2009-01-01

    Identification of Escherichia coli causing porcine postweaning diarrhea requires knowledge regarding the prevalent pathotypes within a given region. A total of 100 Escherichia coli isolates from piglets with diarrhea in Londrina city, Parana State, South Brazil, were screened for the presence of genes for F4, F5, F6, F18, F41 fimbrial antigens by specific probes and for enterotoxins (STa, STb, LT and STx2e) by polymerase chain reaction (PCR). The results showed that 60% of the isolates were positive for one or more of the fimbrial antigens and 92% were positive at least for one of the virulence factors examined. Virulence factor genes detected were F4 (44%), F18 (38%), F5 (30%), F41 (32%), F6 (25%), LTp-I (71%), STa (40%), STb (47%) and STx2e (3%). Twenty four patterns of virulence factor according to the different virulence genes form were found and the most frequent virulence gene pattern was F4, F18, F41, STa, STb and LT. Most of the isolates that carried genes for adhesins also harboured genes for toxins. PMID:24031344

  2. Development of a DNA Microarray for Enterococcal Species, Virulence, and Antibiotic Resistance Gene Determinations among Isolates from Poultry▿

    PubMed Central

    Champagne, J.; Diarra, M. S.; Rempel, H.; Topp, E.; Greer, C. W.; Harel, J.; Masson, L.

    2011-01-01

    A DNA microarray (Enteroarray) was designed with probes targeting four species-specific taxonomic identifiers to discriminate among 18 different enterococcal species, while other probes were designed to identify 18 virulence factors and 174 antibiotic resistance genes. In total, 262 genes were utilized for rapid species identification of enterococcal isolates, while characterizing their virulence potential through the simultaneous identification of endogenous antibiotic resistance and virulence genes. Enterococcal isolates from broiler chicken farms were initially identified by using the API 20 Strep system, and the results were compared to those obtained with the taxonomic genes atpA, recA, pheS, and ddl represented on our microarray. Among the 171 isolates studied, five different enterococcal species were identified by using the API 20 Strep system: Enterococcus faecium, E. faecalis, E. durans, E. gallinarum, and E. avium. The Enteroarray detected the same species as API 20 Strep, as well as two more: E. casseliflavus and E. hirae. Species comparisons resulted in 15% (27 isolates) disagreement between the two methods among the five API 20 Strep identifiable species and 24% (42 isolates) disagreement when considering the seven Enteroarray identified species. The species specificity of key antibiotic and virulence genes identified by the Enteroarray were consistent with the literature adding further robustness to the redundant taxonomic probe data. Sequencing of the cpn60 gene further confirmed the complete accuracy of the microarray results. The new Enteroarray should prove to be a useful tool to accurately genotype strains of enterococci and assess their virulence potential. PMID:21335389

  3. The biphasic virulence activities of gingipains: activation and inactivation of host proteins.

    PubMed

    Imamura, Takahisa; Travis, James; Potempa, Jan

    2003-12-01

    Gingipains are trypsin-like cysteine proteinases produced by Porphyromonas gingivalis, a major causative bacterium of adult periodontitis. Rgps (HRgpA and RgpB) and Kgp are specific for -Arg-Xaa- and -Lys-Xaa- peptide bonds, respectively. HRgpA and Kgp are non-covalent complexes containing separate catalytic and adhesion/hemagglutinin domains, while RgpB has only a catalytic domain with a primary structure essentially identical to that of the cata-lytic subunit of HRgpA. The multiple virulence activities of gingipains are reviewed in view of the biphasic mechanisms: activation and inactivation of host proteins. Rgps enhanced vascular permeability through prekallikrein activation or direct bradykinin release in combination with Kgp. This Rgp action is potentially associated with gingival edema and crevicular fluid production. Rgps activate the blood coagulation system, leading to progression of inflammation and consequent alveolar bone loss in the periodontitis site. Rgps also activate protease-activated receptors and induce platelet aggregation, which, together with the coagulation-inducing activity, may explain an emerging link between periodontitis and cardiovascular disease. Kgp is the most potent fibrinogen/fibrin degrading enzyme of the three gingipains in human plasma, being involved in the bleeding tendency at the diseased gingiva. Gingipains stimulate expression of matrix metalloproteinases (MMPs) in fibroblasts and activate secreted latent MMPs that can destroy periodontal tissues. Gingipains degrade cytokines, components of the complement system and several receptors, including macrophage CD14, T cell CD4 and CD8, thus perturbing the host-defense systems and thereby facilitating sustained colonization of P. gingivalis. Gingipains are potent virulence factors of P. gingivalis, and in many regards their pathogenic activities constitute new mechanisms of bacterial virulence. PMID:14683429

  4. Altered virulence potential of Salmonella Enteritidis cultured in different foods: A cumulative effect of differential gene expression and immunomodulation.

    PubMed

    Jaiswal, Sangeeta; Sahoo, Prakash Kumar; Ryan, Daniel; Das, Jugal Kishore; Chakraborty, Eesha; Mohakud, Nirmal Kumar; Suar, Mrutyunjay

    2016-08-01

    Salmonella enterica serovars Enteritidis (S. Enteritidis) is one of the most common causes of food borne illness. Bacterial growth environment plays an important role in regulating gene expression thereby affecting the virulence profile of the bacteria. Different foods present diverse growth conditions which may affect the pathogenic potential of the bacteria. In the present study, the effect of food environments on the pathogenic potential of S. Enteritidis has been evaluated. S. Enteritidis was grown in different foods e.g. egg white, peanut butter and milk, and virulent phenotypes were compared to those grown in Luria Bertani broth. In-vivo experiments in C57BL/6 mice revealed S. Enteritidis grown in egg white did not induce significant (p<0.001) production of proinflammatory cytokines in mice and were unable to cause colitis despite efficient colonization in cecum, mesenteric lymph node, spleen and liver. Further studies revealed that bacteria grown in LB activated MAP Kinase and NFκB pathways efficiently, while those grown in egg white poorly activated the above pathways which can account for the decreased production of proinflammatory cytokines. qRT PCR analysis revealed SPI-1 effectors were downregulated in bacteria grown in egg white. Interestingly, bacteria grown in egg white showed reversal of phenotype upon change in growth media to LB. Additionally, bacteria grown in milk and peanut butter showed different degrees of virulence in mice as compared to those grown in LB media. Thus, the present study demonstrates that, S. Enteritidis grown in egg white colonizes systemic sites without causing colitis in a mouse model, while bacteria grown in milk and peanut butter show different pathogenicity profiles suggesting that food environments significantly affect the pathogenicity of S. Enteritidis. PMID:27132148

  5. Insight into the specific virulence related genes and toxin-antitoxin virulent pathogenicity islands in swine streptococcosis pathogen Streptococcus equi ssp. zooepidemicus strain ATCC35246

    PubMed Central

    2013-01-01

    Background Streptococcus equi ssp. zooepidemicus (S. zooepidemicus) is an important pathogen causing swine streptococcosis in China. Pathogenicity islands (PAIs) of S. zooepidemicus have been transferred among bacteria through horizontal gene transfer (HGT) and play important roles in the adaptation and increased virulence of S. zooepidemicus. The present study used comparative genomics to examine the different pathogenicities of S. zooepidemicus. Results Genome of S. zooepidemicus ATCC35246 (Sz35246) comprises 2,167,264-bp of a single circular chromosome, with a GC content of 41.65%. Comparative genome analysis of Sz35246, S. zooepidemicus MGCS10565 (Sz10565), Streptococcus equi. ssp. equi. 4047 (Se4047) and S. zooepidemicus H70 (Sz70) identified 320 Sz35246-specific genes, clustered into three toxin-antitoxin (TA) systems PAIs and one restriction modification system (RM system) PAI. These four acquired PAIs encode proteins that may contribute to the overall pathogenic capacity and fitness of this bacterium to adapt to different hosts. Analysis of the in vivo and in vitro transcriptomes of this bacterium revealed differentially expressed PAI genes and non-PAI genes, suggesting that Sz35246 possess mechanisms for infecting animals and adapting to a wide range of host environments. Analysis of the genome identified potential Sz35246 virulence genes. Genes of the Fim III operon were presumed to be involved in breaking the host-restriction of Sz35246. Conclusion Genome wide comparisons of Sz35246 with three other strains and transcriptome analysis revealed novel genes related to bacterial virulence and breaking the host-restriction. Four specific PAIs, which were judged to have been transferred into Sz35246 genome through HGT, were identified for the first time. Further analysis of the TA and RM systems in the PAIs will improve our understanding of the pathogenicity of this bacterium and could lead to the development of diagnostics and vaccines. PMID:23742619

  6. Sub-lethal stress effects on virulence gene expression in Enterococcus faecalis.

    PubMed

    Lenz, Christian A; Hew Ferstl, Carrie M; Vogel, Rudi F

    2010-05-01

    Enterococci are ubiquitous lactic acid bacteria commonly associated with the human digestive tract as commensal organisms. Additionally, these organisms have a long history of use in foods improving flavor as well as providing protective mechanisms as either a probiotic or antimicrobial additive. However, Enterococcus faecalis accounts for up to 10% of all nosocomial infections of the bloodstream, wounds, urinary tract and heart. Knowledge about the regulation of virulence factors is limited and the involvement of environmental signals contributing to E. faecalis pathogenicity is poorly documented. In this study, two clinical E. faecalis isolates, TMW 2.63 and OG1RF, as well as one food isolate, TMW 2.629, were subjected to six sub-lethal food- and host-related stresses including 6.8% NaCl, 200 ppm nitrite, 51 degrees C, 80 MPa, pH 4.1 and 0.08% bile salts (cholic acid:chenodeoxycholic acid 1:1), respectively, reducing their growth rate to 10%. Relative gene expression of 15 stress and virulence-associated genes including dnaK, groEL, ctsR, clpPBCEX, gls24, efaAfs, ace, fsrB, gelE, sprE and cylB, was quantified by using real time PCR and Lightcycler((R)) technology (reference conditions: BHI broth, 37 degrees C, pH = 7.4). Apart from strain-dependent differences, sub-lethal environmental stress was capable of provoking significant alterations in the expression of virulence-associated genes in E. faecalis from clinical as well as food origins of isolation. These results help to avoid preconditioning enterococci in food production processes and to understand the complex mechanisms in E. faecalis' switch to pathogenicity. PMID:20227595

  7. Control of Gene Expression in Leptospira spp. by Transcription Activator-Like Effectors Demonstrates a Potential Role for LigA and LigB in Leptospira interrogans Virulence.

    PubMed

    Pappas, Christopher J; Picardeau, Mathieu

    2015-11-01

    Leptospirosis is a zoonotic disease that affects ∼1 million people annually, with a mortality rate of >10%. Currently, there is an absence of effective genetic manipulation tools for targeted mutagenesis in pathogenic leptospires. Transcription activator-like effectors (TALEs) are a recently described group of repressors that modify transcriptional activity in prokaryotic and eukaryotic cells by directly binding to a targeted sequence within the host genome. To determine the applicability of TALEs within Leptospira spp., two TALE constructs were designed. First, a constitutively expressed TALE gene specific for the lacO-like region upstream of bgaL was trans inserted in the saprophyte Leptospira biflexa (the TALEβgal strain). Reverse transcriptase PCR (RT-PCR) analysis and enzymatic assays demonstrated that BgaL was not expressed in the TALEβgal strain. Second, to study the role of LigA and LigB in pathogenesis, a constitutively expressed TALE gene with specificity for the homologous promoter regions of ligA and ligB was cis inserted into the pathogen Leptospira interrogans (TALElig). LigA and LigB expression was studied by using three independent clones: TALElig1, TALElig2, and TALElig3. Immunoblot analysis of osmotically induced TALElig clones demonstrated 2- to 9-fold reductions in the expression levels of LigA and LigB, with the highest reductions being noted for TALElig1 and TALElig2, which were avirulent in vivo and nonrecoverable from animal tissues. This study reconfirms galactosidase activity in the saprophyte and suggests a role for LigA and LigB in pathogenesis. Collectively, this study demonstrates that TALEs are effective at reducing the expression of targeted genes within saprophytic and pathogenic strains of Leptospira spp., providing an additional genetic manipulation tool for this genus. PMID:26341206

  8. Control of Gene Expression in Leptospira spp. by Transcription Activator-Like Effectors Demonstrates a Potential Role for LigA and LigB in Leptospira interrogans Virulence

    PubMed Central

    Pappas, Christopher J.

    2015-01-01

    Leptospirosis is a zoonotic disease that affects ∼1 million people annually, with a mortality rate of >10%. Currently, there is an absence of effective genetic manipulation tools for targeted mutagenesis in pathogenic leptospires. Transcription activator-like effectors (TALEs) are a recently described group of repressors that modify transcriptional activity in prokaryotic and eukaryotic cells by directly binding to a targeted sequence within the host genome. To determine the applicability of TALEs within Leptospira spp., two TALE constructs were designed. First, a constitutively expressed TALE gene specific for the lacO-like region upstream of bgaL was trans inserted in the saprophyte Leptospira biflexa (the TALEβgal strain). Reverse transcriptase PCR (RT-PCR) analysis and enzymatic assays demonstrated that BgaL was not expressed in the TALEβgal strain. Second, to study the role of LigA and LigB in pathogenesis, a constitutively expressed TALE gene with specificity for the homologous promoter regions of ligA and ligB was cis inserted into the pathogen Leptospira interrogans (TALElig). LigA and LigB expression was studied by using three independent clones: TALElig1, TALElig2, and TALElig3. Immunoblot analysis of osmotically induced TALElig clones demonstrated 2- to 9-fold reductions in the expression levels of LigA and LigB, with the highest reductions being noted for TALElig1 and TALElig2, which were avirulent in vivo and nonrecoverable from animal tissues. This study reconfirms galactosidase activity in the saprophyte and suggests a role for LigA and LigB in pathogenesis. Collectively, this study demonstrates that TALEs are effective at reducing the expression of targeted genes within saprophytic and pathogenic strains of Leptospira spp., providing an additional genetic manipulation tool for this genus. PMID:26341206

  9. Molecular Screening of Virulence Genes in Extraintestinal Pathogenic Escherichia coli Isolated from Human Blood Culture in Brazil

    PubMed Central

    Koga, Vanessa L.; Cyoia, Paula S.; Neves, Meiriele S.; Vidotto, Marilda C.; Nakazato, Gerson; Kobayashi, Renata K. T.

    2014-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) is one of the main etiological agents of bloodstream infections caused by Gram-negative bacilli. In the present study, 20 E. coli isolates from human hemocultures were characterized to identify genetic features associated with virulence (pathogenicity islands markers, phylogenetic group, virulence genes, plasmid profiles, and conjugative plasmids) and these results were compared with commensal isolates. The most prevalent pathogenicity island, in strains from hemoculture, were PAI IV536, described by many researchers as a stable island in enterobacteria. Among virulence genes, iutA gene was found more frequently and this gene enconding the aerobactin siderophore receptor. According to the phylogenetic classification, group B2 was the most commonly found. Additionally, through plasmid analysis, 14 isolates showed plasmids and 3 of these were shown to be conjugative. Although in stool samples of healthy people the presence of commensal strains is common, human intestinal tract may serve as a reservoir for ExPEC. PMID:24822211

  10. Key Hub and Bottleneck Genes Differentiate the Macrophage Response to Virulent and Attenuated Mycobacterium bovis

    PubMed Central

    Killick, Kate E.; Magee, David A.; Park, Stephen D. E.; Taraktsoglou, Maria; Browne, John A.; Conlon, Kevin M.; Nalpas, Nicolas C.; Gormley, Eamonn; Gordon, Stephen V.; MacHugh, David E.; Hokamp, Karsten

    2014-01-01

    Mycobacterium bovis is an intracellular pathogen that causes tuberculosis in cattle. Following infection, the pathogen resides and persists inside host macrophages by subverting host immune responses via a diverse range of mechanisms. Here, a high-density bovine microarray platform was used to examine the bovine monocyte-derived macrophage transcriptome response to M. bovis infection relative to infection with the attenuated vaccine strain, M. bovis Bacille Calmette–Guérin. Differentially expressed genes were identified (adjusted P-value ≤0.01) and interaction networks generated across an infection time course of 2, 6, and 24 h. The largest number of biological interactions was observed in the 24-h network, which exhibited scale-free network properties. The 24-h network featured a small number of key hub and bottleneck gene nodes, including IKBKE, MYC, NFKB1, and EGR1 that differentiated the macrophage response to virulent and attenuated M. bovis strains, possibly via the modulation of host cell death mechanisms. These hub and bottleneck genes represent possible targets for immuno-modulation of host macrophages by virulent mycobacterial species that enable their survival within a hostile environment. PMID:25324841

  11. CORONAVIRUS VIRULENCE GENES WITH MAIN FOCUS ON SARS-CoV ENVELOPE GENE

    PubMed Central

    DeDiego, Marta L.; Nieto-Torres, Jose L.; Jimenez-Guardeño, Jose M.; Regla-Nava, Jose A.; Castaño-Rodriguez, Carlos; Fernandez-Delgado, Raul; Usera, Fernando; Enjuanes, Luis

    2014-01-01

    models and in humans. The modification or deletion of different motifs within E protein, including the transmembrane domain that harbors an ion channel activity, small sequences within the middle region of the carboxy-terminus of E protein, and its most carboxy-terminal end, which contains a PDZ domain-binding motif (PBM) is sufficient to attenuate the virus. Interestingly, a comprehensive collection of SARS-CoVs in which these motifs have been modified elicited full and long-term protection even in old mice, making those deletion mutants promising vaccine candidates. These data indicate that despite its small size, E protein drastically influences the replication of CoVs and their pathogenicity. Although E protein is not essential for CoV genome replication or subgenomic mRNA synthesis, it affects virus morphogenesis, budding, assembly, intracellular trafficking, and virulence. In fact, E protein is responsible in a significant proportion of the inflammasome activation and the associated inflammation elicited by SARS-CoV in the lung parenchyma. This exacerbated inflammation causes edema accumulation leading to acute respiratory distress syndrome (ARDS) and, frequently, to the death of infected animal models or human patients. PMID:25093995

  12. RbdB, a Rhomboid Protease Critical for SREBP Activation and Virulence in Aspergillus fumigatus

    PubMed Central

    Dhingra, Sourabh; Kowlaski, Caitlin H.; Thammahong, Arsa; Beattie, Sarah R.; Bultman, Katherine M.

    2016-01-01

    ABSTRACT SREBP transcription factors play a critical role in fungal virulence; however, the mechanisms of sterol regulatory element binding protein (SREBP) activation in pathogenic fungi remains ill-defined. Screening of the Neurospora crassa whole-genome deletion collection for genes involved in hypoxia responses identified a gene for an uncharacterized rhomboid protease homolog, rbdB, required for growth under hypoxic conditions. Loss of rbdB in Aspergillus fumigatus also inhibited growth under hypoxic conditions. In addition, the A. fumigatus ΔrbdB strain also displayed phenotypes consistent with defective SREBP activity, including increased azole drug susceptibility, reduced siderophore production, and full loss of virulence. Expression of the basic helix-loop-helix (bHLH) DNA binding domain of the SREBP SrbA in ΔrbdB restored all of the phenotypes linking RdbB activity with SrbA function. Furthermore, the N-terminal domain of SrbA containing the bHLH DNA binding region was absent from ΔrbdB under inducing conditions, suggesting that RbdB regulates the protein levels of this important transcription factor. As SrbA controls clinically relevant aspects of fungal pathobiology in A. fumigatus, understanding the mechanisms of SrbA activation provides opportunities to target this pathway for therapeutic development. IMPORTANCE Aspergillus fumigatus causes life-threatening infections, and treatment options remain limited. Thus, there is an urgent need to find new therapeutic targets to treat this deadly disease. Previously, we have shown that SREBP transcription factors and their regulatory components are critical for the pathobiology of A. fumigatus. Here we identify a role for RbdB, a rhomboid protease, as an essential component of SREBP activity. Our results indicate that mutants lacking rbdB have growth defects under hypoxic conditions, are hypersusceptible to voriconazole, lack extracellular siderophore production, and fail to cause disease in a murine

  13. Detection of Virulence to Resistance Gene Sr36 within Race TTKS Lineage of Puccinia graminis f. sp. tritici

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stem rust resistance gene Sr36 is highly effective against race TTKS (syn. Ug99) of Puccinia graminis f. sp. tritici, conferring near immunity to TTKS that possesses unusually broad virulence combinations. Because of this gene is widely spread in the adapted US soft winter wheat breeding germpla...

  14. Development and Validation of an Oligonucleotide Microarray for Detection of Multiple Virulence and Antimicrobial Resistance Genes in Escherichia coli†

    PubMed Central

    Bruant, Guillaume; Maynard, Christine; Bekal, Sadjia; Gaucher, Isabelle; Masson, Luke; Brousseau, Roland; Harel, Josée

    2006-01-01

    An oligonucleotide microarray detecting 189 Escherichia coli virulence genes or markers and 30 antimicrobial resistance genes was designed and validated using DNA from known reference strains. This microarray was confirmed to be a powerful diagnostic tool for monitoring emerging E. coli pathotypes and antimicrobial resistance, as well as for environmental, epidemiological, and phylogenetic studies including the evaluation of genome plasticity. PMID:16672535

  15. Deletion of AS87_03730 gene changed the bacterial virulence and gene expression of Riemerella anatipestifer

    PubMed Central

    Wang, Xiaolan; Yue, Jiaping; Ding, Chan; Wang, Shaohui; Liu, Beibei; Tian, Mingxing; Yu, Shengqing

    2016-01-01

    Riemerella anatipestifer is an important pathogen of waterfowl, which causes septicemia anserum exsudativa in ducks. In this study, an AS87_03730 gene deletion R. anatipestifer mutant Yb2ΔAS87_03730 was constructed to investigate the role of AS87_03730 on R. anatipestifer virulence and gene regulation. By deleting a 708-bp fragment from AS87_03730, the mutant Yb2ΔAS87_03730 showed a significant decreased growth rate in TSB and invasion capacity in Vero cells, compared to wild-type strain Yb2. Moreover, the median lethal dose (LD50) of Yb2ΔAS87_03730 was 1.24 × 107 colony forming units (CFU), which is about 80-fold attenuated than that of Yb2 (LD50 = 1.53 × 105 CFU). Furthermore, RNA-Seq analysis and Real-time PCR indicated 19 up-regulated and two down-regulated genes in Yb2ΔAS87_03730. Functional analysis revealed that 12 up-regulated genes were related to “Translation, ribosomal structure and biogenesis”, two were classified into “Cell envelope biogenesis, outer membrane”, one was involved in “Amino acid transport and metabolism”, and the other four had unknown functions. Polymerase chain reaction and sequence analysis indicated that the AS87_03730 gene is highly conserved among R. anatipestifer strains, as the percent sequence identity was over 93.5%. This study presents evidence that AS87_03730 gene is involved in bacterial virulence and gene regulation of R. anatipestifer. PMID:26928424

  16. Virulence genes detection of Salmonella serovars isolated from pork and slaughterhouse environment in Ahmedabad, Gujarat

    PubMed Central

    Chaudhary, J. H.; Nayak, J. B.; Brahmbhatt, M. N.; Makwana, P. P.

    2015-01-01

    Aim: The aim was to detect virulence gene associated with the Salmonella serovars isolated from pork and Slaughterhouse environment. Materials and Methods: Salmonella isolates (n=37) used in this study were isolated from 270 pork and slaughter house environmental samples collected from the Ahmedabad Municipal Corporation Slaughter House, Ahmedabad, Gujarat, India. Salmonella serovars were isolated and identified as per BAM USFDA method and serotyped at National Salmonella and Escherichia Centre, Central Research Institute, Kasauli (Himachal Pradesh, India). Polymerase chain reaction technique was used for detection of five genes, namely invA, spvR, spvC, fimA and stn among different serovars of Salmonella. Results: Out of a total of 270 samples, 37 (13.70%) Salmonella were isolated with two serovars, namely Enteritidis and Typhimurium. All Salmonella serovars produced 284 bp invA gene, 84 bp fimA and 260 bp amplicon for enterotoxin (stn) gene whereas 30 isolates possessed 310 bp spvR gene, but no isolate possessed spvC gene. Conclusion: Presence of invA, fimA and stn gene in all isolates shows that they are the specific targets for Salmonella identification and are capable of producing gastroenteric illness to humans, whereas 20 Typhimurium serovars and 10 Enteritidis serovars can able to produce systemic infection. PMID:27047008

  17. The global response regulator ExpA controls virulence gene expression through RsmA-mediated and RsmA-independent pathways in Pectobacterium wasabiae SCC3193.

    PubMed

    Broberg, M; Lee, G W; Nykyri, J; Lee, Y H; Pirhonen, M; Palva, E T

    2014-03-01

    ExpA (GacA) is a global response regulator that controls the expression of major virulence genes, such as those encoding plant cell wall-degrading enzymes (PCWDEs) in the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. Several studies with pectobacteria as well as related phytopathogenic gammaproteobacteria, such as Dickeya and Pseudomonas, suggest that the control of virulence by ExpA and its homologues is executed partly by modulating the activity of RsmA, an RNA-binding posttranscriptional regulator. To elucidate the extent of the overlap between the ExpA and RsmA regulons in P. wasabiae, we characterized both regulons by microarray analysis. To do this, we compared the transcriptomes of the wild-type strain, an expA mutant, an rsmA mutant, and an expA rsmA double mutant. The microarray data for selected virulence-related genes were confirmed through quantitative reverse transcription (qRT-PCR). Subsequently, assays were performed to link the observed transcriptome differences to changes in bacterial phenotypes such as growth, motility, PCWDE production, and virulence in planta. An extensive overlap between the ExpA and RsmA regulons was observed, suggesting that a substantial portion of ExpA regulation appears to be mediated through RsmA. However, a number of genes involved in the electron transport chain and oligogalacturonide metabolism, among other processes, were identified as being regulated by ExpA independently of RsmA. These results suggest that ExpA may only partially impact fitness and virulence via RsmA. PMID:24441162

  18. The Global Response Regulator ExpA Controls Virulence Gene Expression through RsmA-Mediated and RsmA-Independent Pathways in Pectobacterium wasabiae SCC3193

    PubMed Central

    Broberg, M.; Lee, G. W.; Nykyri, J.; Lee, Y. H.; Pirhonen, M.

    2014-01-01

    ExpA (GacA) is a global response regulator that controls the expression of major virulence genes, such as those encoding plant cell wall-degrading enzymes (PCWDEs) in the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. Several studies with pectobacteria as well as related phytopathogenic gammaproteobacteria, such as Dickeya and Pseudomonas, suggest that the control of virulence by ExpA and its homologues is executed partly by modulating the activity of RsmA, an RNA-binding posttranscriptional regulator. To elucidate the extent of the overlap between the ExpA and RsmA regulons in P. wasabiae, we characterized both regulons by microarray analysis. To do this, we compared the transcriptomes of the wild-type strain, an expA mutant, an rsmA mutant, and an expA rsmA double mutant. The microarray data for selected virulence-related genes were confirmed through quantitative reverse transcription (qRT-PCR). Subsequently, assays were performed to link the observed transcriptome differences to changes in bacterial phenotypes such as growth, motility, PCWDE production, and virulence in planta. An extensive overlap between the ExpA and RsmA regulons was observed, suggesting that a substantial portion of ExpA regulation appears to be mediated through RsmA. However, a number of genes involved in the electron transport chain and oligogalacturonide metabolism, among other processes, were identified as being regulated by ExpA independently of RsmA. These results suggest that ExpA may only partially impact fitness and virulence via RsmA. PMID:24441162

  19. Structure of Rot, a global regulator of virulence genes in Staphylococcus aureus.

    PubMed

    Zhu, Yuwei; Fan, Xiaojiao; Zhang, Xu; Jiang, Xuguang; Niu, Liwen; Teng, Maikun; Li, Xu

    2014-09-01

    Staphylococcus aureus is a highly versatile pathogen that can infect human tissue by producing a large arsenal of virulence factors that are tightly regulated by a complex regulatory network. Rot, which shares sequence similarity with SarA homologues, is a global regulator that regulates numerous virulence genes. However, the recognition model of Rot for the promoter region of target genes and the putative regulation mechanism remain elusive. In this study, the 1.77 Å resolution X-ray crystal structure of Rot is reported. The structure reveals that two Rot molecules form a compact homodimer, each of which contains a typical helix-turn-helix module and a β-hairpin motif connected by a flexible loop. Fluorescence polarization results indicate that Rot preferentially recognizes AT-rich dsDNA with ~30-base-pair nucleotides and that the conserved positively charged residues on the winged-helix motif are vital for binding to the AT-rich dsDNA. It is proposed that the DNA-recognition model of Rot may be similar to that of SarA, SarR and SarS, in which the helix-turn-helix motifs of each monomer interact with the major grooves of target dsDNA and the winged motifs contact the minor grooves. Interestingly, the structure shows that Rot adopts a novel dimerization model that differs from that of other SarA homologues. As expected, perturbation of the dimer interface abolishes the dsDNA-binding ability of Rot, suggesting that Rot functions as a dimer. In addition, the results have been further confirmed in vivo by measuring the transcriptional regulation of α-toxin, a major virulence factor produced by most S. aureus strains. PMID:25195759

  20. Occurrence of virulent genes among environmental isolates of Legionella pneumophila serogroup 1 strains from various parts of peninsular Malaysia.

    PubMed

    Arushothy, Revathy; Ahmad, Norazah

    2008-12-01

    Legionella pneumophila are intracellular pathogens, associated with human disease, attributed to the presence and absence of certain virulent genes. In this study, virulent gene loci (lvh and rtxA regions) associated with human disease were determined. Thirty-three cooling tower water isolates, isolated between 2004 to 2006, were analyzed for the presence of these genes by PCR method. Results showed that 19 of 33 (57.5%) of the L. pneumophila serogroup 1 isolates have both the genes. Six (18.2%) of the isolates have only the lvh gene and 2 (6.1%) of the isolates have only the rtxA gene. However, both genes were absent in 6 (18.2%) of the L. pneumophila isolates. The result of our study provides some insight into the presence of the disease causing L. pneumophila serogroup 1 in the environment. Molecular epidemiological studies will provide better understanding of the prevalence of the disease in Malaysia. PMID:19287368

  1. Antimicrobial resistance, virulence genes, and genetic lineages of Staphylococcus pseudintermedius in healthy dogs in tunisia.

    PubMed

    Gharsa, Haythem; Ben Slama, Karim; Gómez-Sanz, Elena; Lozano, Carmen; Klibi, Naouel; Jouini, Ahlem; Messadi, Lilia; Boudabous, Abdellatif; Torres, Carmen

    2013-08-01

    Nasal swabs of 100 healthy dogs were obtained in 2011 in Tunisia and tested for Staphylococcus pseudintermedius recovery. Antimicrobial resistance profile and virulence gene content were determined. Multilocus-sequence-typing (MLST) and SmaI-pulsed-field gel electrophoresis (PFGE) were investigated. S. pseudintermedius was recovered in 55 of the 100 tested samples (55 %), and one isolate per sample was further studied. All 55 S. pseudintermedius isolates were susceptible to methicillin (MSSP) but showed resistance to the following antimicrobials (% resistant isolates/resistance gene): penicillin (56.4/blaZ), tetracycline (40/tetM), trimethoprim-sulfamethoxazole (23.7), fusidic acid (9), kanamycin (3.7/aph(3´)-Ia), erythromycin-clindamycin (1.8/erm(B)), streptomycin (1.8/ant(6)-Ia), chloramphenicol (1.8) and ciprofloxacin (1.8). The following toxin genes were identified (% of isolates): lukS/F-I (98.2), expA (5.5), se-int (98.2), sec canine (1.8), siet (100), sea (5.5), seb (3.6), sec (10.9), sed (54.5), sei (5.5), sej (29.1), sek (3.6), ser (9.1), and hlg v (38.2). Ten different sequence-types were detected among 11 representative MSSP isolates: ST20, ST44, ST69, ST70, ST78, ST100, ST108, ST160, ST161, and ST162, the last three ones revealing novel alleles or allele combinations. Eleven different PFGE-patterns were identified in these isolates. The nares of healthy dogs could be a reservoir of antimicrobial resistant and virulent MSSP, highlighting the presence of the recently described exfoliating gene expA and several enterotoxin genes. PMID:23686400

  2. Diversity of antimicrobial resistance and virulence genes in methicillin-resistant non-Staphylococcus aureus staphylococci from veal calves.

    PubMed

    Argudín, M Angeles; Vanderhaeghen, Wannes; Butaye, Patrick

    2015-04-01

    In this study we determined whether methicillin-resistant non-Staphylococcus aureus (MRNAS) from veal calves may be a potential reservoir of antimicrobial-resistance and virulence genes. Fifty-eight MRNAS were studied by means of DNA-microarray and PCR for detection of antimicrobial resistance and virulence genes. The isolates carried a variety of antimicrobial-resistance genes [aacA-aphD, aadD, aph3, aadE, sat, spc, ampA, erm(A), erm(B), erm(C), erm(F), erm(T), lnu(A), msr(A)-msr(B), vga(A), mph(C), tet(K), tet(M), tet(L), cat, fexA, dfrA, dfrD, dfrG, dfrK, cfr, fusB, fosB, qacA, qacC, merA-merB]. Some isolates carried resistance genes without showing the corresponding resistance phenotype. Most MRNAS carried typical S. aureus virulence factors like proteases (sspP) and enterotoxins (seg) genes. Most Staphylococcus epidermidis isolates carried the arginine catabolic element, and nearly 40% of the Staphylococcus sciuri isolates carried leukocidins, and/or fibronectin-binding protein genes. MRNAS were highly multi-resistant and represent an important reservoir of antimicrobial resistance and virulence genes. PMID:25637268

  3. Duplex real-time PCR assays for rapid detection of virulence genes in E. coli isolated from post-weaning pigs and calves with diarrhoea.

    PubMed

    Sting, R; Stermann, M

    2008-06-01

    Duplex real-time PCR assays were used as modules to cover partially automated detection of 12 genes encoding adhesins, enterotoxins and Shiga toxins in faecal E. coli isolates. For this a total of 194 E. coli isolates from pigs suffering from post-weaning diarrhoea (PWD), including 65 isolates with haemolytic activity, and 83 isolates from calves with diarrhoea were examined. Data obtained by PCR were compared with O-typing and with haemolytic activity as indirect virulence markers. E. coli O-types O139:K82, O141:K85, and O149:K91 accounted for 43.8% (n = 85) of all porcine strains and for 55.4% (n = 36) of the porcine strains, which exhibited haemolytic activity. These strains carried virulence genes by 65.9% (n = 56) and 80.6% (haemolytic E. coli, n = 29), respectively. The E. coli O-types O139:K82 and O141:K85 were significantly associated with the adhesin gene F18, and O149:K81 with the F4 gene. In this context, detection of the gene encoding F18 was coupled predominantly with the genes responsible for the production of the toxins ST-I, ST-II and Stx2, and the F4 gene with those of the enterotoxins ST-I, ST-II and LT. Both virulence patterns were detected more pronounced in E. coli strains with haemolytic activity. Fifty-six of a total of 83 E. coli isolates originating from calves were O-typed as O101 (O101:K28, O101:K30, O101:K32; n = 29), O78:K80 (n = 23), and O9:K35 (n = 4). Most of the E. coli O78:K80 strains carried the F17 gene (69.6%, n = 16). Virulence genes encoding for F4, F5 or ST-I were detected only in single cases. Intimin and Shiga toxin genes that are present in enterohaemorrhagic E. coli (EHEC) were not detected. PMID:18605375

  4. Prevalence of Virulence/Stress Genes in Campylobacter jejuni from Chicken Meat Sold in Qatari Retail Outlets

    PubMed Central

    Behnke, Jerzy M.; Sharma, Aarti; Bearden, Rebecca; Al-Banna, Nadia

    2016-01-01

    Chicken meat from the shelves of supermarkets in Qatar was tested for the presence of Campylobacter spp. and the presence of five virulence genes (htrB, cdtB, clpP, cadF and ciaB) was assessed in isolates. Forty eight percent of the chickens provided for supermarkets by Saudi (53%) and Qatari (45.9%) producers were found to be contaminated and the most important factor affecting the overall prevalence of contaminated chickens was the store from which chicken samples originated. Variation in prevalence of Campylobacter in chicken meat from different stores was evident even when the same producer supplied the three stores in our survey. Differences in the prevalence and in the combinations of virulence genes in isolates that can and cannot grow in a classic maintenance medium (Karmali) were identified, providing a starting point for linking presence/absence of particular virulence genes with actual in vivo virulence and pathogenicity. Because of the relatively low infective doses of Campylobacter that are required to initiate infection in humans, it will be important to explore further the relationships we identified between certain Campylobacter virulence genes and their capacity for survival in poultry meat, and hence their contribution to the incidence of campylobacteriosis. PMID:27258021

  5. Genes Similar to the Vibrio parahaemolyticus Virulence-Related Genes tdh, tlh, and vscC2 Occur in Other Vibrionaceae Species Isolated from a Pristine Estuary

    PubMed Central

    Klein, Savannah L.; Gutierrez West, Casandra K.; Mejia, Diana M.

    2014-01-01

    Detection of the human pathogen Vibrio parahaemolyticus often relies on molecular biological analysis of species-specific virulence factor genes. These genes have been employed in determinations of V. parahaemolyticus population numbers and the prevalence of pathogenic V. parahaemolyticus strains. Strains of the Vibrionaceae species Photobacterium damselae, Vibrio diabolicus, Vibrio harveyi, and Vibrio natriegens, as well as strains similar to Vibrio tubiashii, were isolated from a pristine salt marsh estuary. These strains were examined for the V. parahaemolyticus hemolysin genes tdh, trh, and tlh and for the V. parahaemolyticus type III secretion system 2α gene vscC2 using established PCR primers and protocols. Virulence-related genes occurred at high frequencies in non-V. parahaemolyticus Vibrionaceae species. V. diabolicus was of particular interest, as several strains were recovered, and the large majority (>83%) contained virulence-related genes. It is clear that detection of these genes does not ensure correct identification of virulent V. parahaemolyticus. Further, the occurrence of V. parahaemolyticus-like virulence factors in other vibrios potentially complicates tracking of outbreaks of V. parahaemolyticus infections. PMID:24212573

  6. [Virulence factor of Escherichia coli strains isolated during asymptomatic bacteriura among patients treated by drugs with acetylcholine antagonistic activity in a psychiatric institute].

    PubMed

    Bourlioux, F; Eveillard, M; Le Bouguenec, C; Bourlioux, P

    2001-02-01

    In two successive investigations on nosocomial infections in our hospital, wa have found that asymptomatic bacteriuria is closely related to age (over 50 years) and to treatment with acetylcholine antagonistic activity. We therefore searched for the presence and expression of genes coding for the virulence factors usually present in uropathogenic E. coli in our strains, in strains isolated during asymptomatic bacteriura related to neurologic bladder, and in strains isolated during symptomatic bacteriura. We found that strains from neurologic bladders rarely carried one or two virulence factors while 50% of our strains isolated from asymptomatic bacteriuria carriea at least 3 virulence factors commonly found in strains isolated from symptomatic urinary tract infection. Consequently, it appears important to look for urinary tract infection in patients (over 50 years of age) treated with such drugs, and to look for virulence factors in case of asymptomatic bacteriura. If the stains carry no virulence factors, no antibiotic treatment shoud be instituted but the patients should be invited to drink more water than usual in order to promote elimination of the strains in the urine. Inversely, if the strains carry virulence factors, an adpted antibiotic treatment should be started. PMID:11223576

  7. Identification of seven novel virulence genes from Xanthomonas citri subsp. citri by Tn5-based random mutagenesis.

    PubMed

    Song, Xue; Guo, Jing; Ma, Wen-xiu; Ji, Zhi-yuan; Zou, Li-fang; Chen, Gong-you; Zou, Hua-song

    2015-05-01

    To identify novel virulence genes, a mutant library of Xanthomonas citri subsp. citri 29-1 was produced using EZ-Tn5 transposon and the mutants were inoculated into susceptible grapefruit. Forty mutants with altered virulence phenotypes were identified. Nine of the mutants showed a complete loss of citrus canker induction, and the other 31 mutants resulted in attenuated canker symptoms. Southern blot analysis revealed that each of the mutants carried a single copy of Tn5. The flanking sequence was identified by plasmid rescue and 18 different ORFs were identified in the genome sequence. Of these 18 ORFs, seven had not been previously associated with the virulence of X. citri subsp. citri and were therefore confirmed by complementation analysis. Real-time PCR analysis showed that the seven genes were upregulated when the bacteria were grown in citrus plants, suggesting that the expression of these genes was essential for canker development. PMID:25935304

  8. Spatial Segregation of Virulence Gene Expression during Acute Enteric Infection with Salmonella enterica serovar Typhimurium

    PubMed Central

    Laughlin, Richard C.; Knodler, Leigh A.; Barhoumi, Roula; Payne, H. Ross; Wu, Jing; Gomez, Gabriel; Pugh, Roberta; Lawhon, Sara D.; Bäumler, Andreas J.; Steele-Mortimer, Olivia; Adams, L. Garry

    2014-01-01

    ABSTRACT To establish a replicative niche during its infectious cycle between the intestinal lumen and tissue, the enteric pathogen Salmonella enterica serovar Typhimurium requires numerous virulence genes, including genes for two type III secretion systems (T3SS) and their cognate effectors. To better understand the host-pathogen relationship, including early infection dynamics and induction kinetics of the bacterial virulence program in the context of a natural host, we monitored the subcellular localization and temporal expression of T3SS-1 and T3SS-2 using fluorescent single-cell reporters in a bovine, ligated ileal loop model of infection. We observed that the majority of bacteria at 2 h postinfection are flagellated, express T3SS-1 but not T3SS-2, and are associated with the epithelium or with extruding enterocytes. In epithelial cells, S. Typhimurium cells were surrounded by intact vacuolar membranes or present within membrane-compromised vacuoles that typically contained numerous vesicular structures. By 8 h postinfection, T3SS-2-expressing bacteria were detected in the lamina propria and in the underlying mucosa, while T3SS-1-expressing bacteria were in the lumen. Our work identifies for the first time the temporal and spatial regulation of T3SS-1 and -2 expression during an enteric infection in a natural host and provides further support for the concept of cytosolic S. Typhimurium in extruding epithelium as a mechanism for reseeding the lumen. PMID:24496791

  9. Phenotypes Associated with Knockouts of Eight Dense Granule Gene Loci (GRA2-9) in Virulent Toxoplasma gondii.

    PubMed

    Rommereim, Leah M; Bellini, Valeria; Fox, Barbara A; Pètre, Graciane; Rak, Camille; Touquet, Bastien; Aldebert, Delphine; Dubremetz, Jean-François; Cesbron-Delauw, Marie-France; Mercier, Corinne; Bzik, David J

    2016-01-01

    Toxoplasma gondii actively invades host cells and establishes a parasitophorous vacuole (PV) that accumulates many proteins secreted by the dense granules (GRA proteins). To date, at least 23 GRA proteins have been reported, though the function(s) of most of these proteins still remains unknown. We targeted gene knockouts at ten GRA gene loci (GRA1-10) to investigate the cellular roles and essentiality of these classical GRA proteins during acute infection in the virulent type I RH strain. While eight of these genes (GRA2-9) were successfully knocked out, targeted knockouts at the GRA1 and GRA10 loci were not obtained, suggesting these GRA proteins may be essential. As expected, the Δgra2 and Δgra6 knockouts failed to form an intravacuolar network (IVN). Surprisingly, Δgra7 exhibited hyper-formation of the IVN in both normal and lipid-free growth conditions. No morphological alterations were identified in parasite or PV structures in the Δgra3, Δgra4, Δgra5, Δgra8, or Δgra9 knockouts. With the exception of the Δgra3 and Δgra8 knockouts, all of the GRA knockouts exhibited defects in their infection rate in vitro. While the single GRA knockouts did not exhibit reduced replication rates in vitro, replication rate defects were observed in three double GRA knockout strains (Δgra4Δgra6, Δgra3Δgra5 and Δgra3Δgra7). However, the virulence of single or double GRA knockout strains in CD1 mice was not affected. Collectively, our results suggest that while the eight individual GRA proteins investigated in this study (GRA2-9) are not essential, several GRA proteins may provide redundant and potentially important functions during acute infection. PMID:27458822

  10. Phenotypes Associated with Knockouts of Eight Dense Granule Gene Loci (GRA2-9) in Virulent Toxoplasma gondii

    PubMed Central

    Fox, Barbara A.; Pètre, Graciane; Rak, Camille; Touquet, Bastien; Aldebert, Delphine; Dubremetz, Jean-François; Cesbron-Delauw, Marie-France; Mercier, Corinne; Bzik, David J.

    2016-01-01

    Toxoplasma gondii actively invades host cells and establishes a parasitophorous vacuole (PV) that accumulates many proteins secreted by the dense granules (GRA proteins). To date, at least 23 GRA proteins have been reported, though the function(s) of most of these proteins still remains unknown. We targeted gene knockouts at ten GRA gene loci (GRA1-10) to investigate the cellular roles and essentiality of these classical GRA proteins during acute infection in the virulent type I RH strain. While eight of these genes (GRA2-9) were successfully knocked out, targeted knockouts at the GRA1 and GRA10 loci were not obtained, suggesting these GRA proteins may be essential. As expected, the Δgra2 and Δgra6 knockouts failed to form an intravacuolar network (IVN). Surprisingly, Δgra7 exhibited hyper-formation of the IVN in both normal and lipid-free growth conditions. No morphological alterations were identified in parasite or PV structures in the Δgra3, Δgra4, Δgra5, Δgra8, or Δgra9 knockouts. With the exception of the Δgra3 and Δgra8 knockouts, all of the GRA knockouts exhibited defects in their infection rate in vitro. While the single GRA knockouts did not exhibit reduced replication rates in vitro, replication rate defects were observed in three double GRA knockout strains (Δgra4Δgra6, Δgra3Δgra5 and Δgra3Δgra7). However, the virulence of single or double GRA knockout strains in CD1 mice was not affected. Collectively, our results suggest that while the eight individual GRA proteins investigated in this study (GRA2-9) are not essential, several GRA proteins may provide redundant and potentially important functions during acute infection. PMID:27458822

  11. Virulence genes and genetic diversity of Streptococcus suis serotype 2 isolates from Thailand.

    PubMed

    Maneerat, K; Yongkiettrakul, S; Kramomtong, I; Tongtawe, P; Tapchaisri, P; Luangsuk, P; Chaicumpa, W; Gottschalk, M; Srimanote, P

    2013-11-01

    Isolates of Streptococcus suis from different Western countries as well as those from China and Vietnam have been previously well characterized. So far, the genetic characteristics and relationship between S. suis strains isolated from both humans and pigs in Thailand are unknown. In this study, a total of 245 S. suis isolates were collected from both human cases (epidemic and sporadic) and pigs (diseased and asymptomatic) in Thailand. Bacterial strains were identified by biochemical tests and PCR targeting both, the 16S rRNA and gdh genes. Thirty-six isolates were identified as serotype 2 based on serotyping and the cps2-PCR. These isolates were tested for the presence of six virulence-associated genes: an arginine deiminase (arcA), a 38-kDa protein and protective antigen (bay046), an extracellular factor (epf), an hyaluronidase (hyl), a muramidase-released protein (mrp) and a suilysin (sly). In addition, the genetic diversities of these isolates were studied by RAPD PCR and multilocus sequence typing (MLST) analysis. Four virulence-associated gene patterns (VAGP 1 to 4) were obtained, and the majority of isolates (32/36) carried all genes tested (VAGP1). Each of the three OPB primers used provided 4 patterns designated RAPD-A to RAPD-D. Furthermore, MLST analysis could also distinguish the 36 isolates into four sequence types (STs): ST1 (n = 32), ST104 (n = 2), ST233 (n = 1) and a newly identified ST, ST336 (n = 1). Dendrogram constructions based on RAPD patterns indicated that S. suis serotype 2 isolates from Thailand could be divided into four groups and that the characteristics of the individual groups were in complete agreement with the virulence gene profiles and STs. The majority (32/36) of isolates recovered from diseased pigs, slaughterhouse pigs or human patients could be classified into a single group (VAGP1, RAPD-A and ST1). This genetic information strongly suggests the transmission of S. suis isolates from pigs to humans in Thailand. Our findings are

  12. Insights into the virulence-related genes of Edwardsiella tarda isolated from turbot in Europe: genetic homogeneity and evidence for vibrioferrin production.

    PubMed

    Castro, N; Osorio, C R; Buján, N; Fuentes, J C; Rodríguez, J; Romero, M; Jiménez, C; Toranzo, A E; Magariños, B

    2016-05-01

    Edwardsiella tarda has long been known as a pathogen that causes severe economic losses in aquaculture industry. Insights gained on E. tarda pathogenesis may prove useful in the development of new methods for the treatment of infections as well as preventive measures against future outbreaks. In this report, we have established the correlation between the presence of virulence genes, related with three aspects typically involved in bacterial pathogenesis (chondroitinase activity, quorum sensing and siderophore-mediated ferric uptake systems), in the genome of E. tarda strains isolated from turbot in Europe and their phenotypic traits. A total of 8 genes were tested by PCR for their presence in 73 E. tarda isolates. High homogeneity was observed in the presence/absence pattern of all the strains. Positive results in the amplification of virulence-related genes were correlated with the detection of chondroitinase activity in agar plates, in vivo AHL production during fish infection and determination of type of siderophore produced by E. tarda. To the best of our knowledge, this is the first study carried out with European strains on potential virulence factors. Furthermore, we demonstrated for the first time that E. tarda produces the siderophore vibrioferrin. PMID:26096159

  13. Distribution of genes encoding virulence factors and molecular analysis of Shigella spp. isolated from patients with diarrhea in Kerman, Iran.

    PubMed

    Hosseini Nave, Hossein; Mansouri, Shahla; Emaneini, Mohammad; Moradi, Mohammad

    2016-03-01

    Shigella is one of the important causes of diarrhea worldwide. Shigella has several virulence factors contributing in colonization and invasion of epithelial cells and eventually death of host cells. The present study was performed in order to investigate the distribution of virulence factors genes in Shigella spp. isolated from patients with acute diarrhea in Kerman, Iran as well as the genetic relationship of these isolates. A total of 56 isolates including 31 S. flexneri, 18 S. sonnei and 7 S. boydii were evaluated by polymerase chain reaction (PCR) for the presence of 11 virulence genes (ipaH, ial, set1A, set1B, sen, virF, invE, sat, sigA, pic and sepA). Then, the clonal relationship of these strains was analyzed by multilocus variable-number tandem repeat analysis (MLVA) method. All isolates were positive for ipaH gene. The other genes include ial, invE and virF were found in 80.4%, 60.7% and 67.9% of the isolates, respectively. Both set1A and set1B were detected in 32.3% of S. flexneri isolates, whereas 66.1% of the isolates belonging to different serogroup carried sen gene. The sat gene was present in all S. flexneri isolates, but not in the S. sonnei and S. boydii isolates. The result showed, 30.4% of isolates were simultaneously positive and the rest of the isolates were negative for sepA and pic genes. The Shigella isolates were divided into 29 MLVA types. This study, for the first time, investigated distribution of 11 virulence genes in Shigella spp. Our results revealed heterogeneity of virulence genes in different Shigella serogroups. Furthermore, the strains belonging to the same species had little diversity. PMID:26654792

  14. Occurrence of virulence-associated genes in Pasteurella multocida isolates obtained from different hosts.

    PubMed

    Shirzad Aski, Hesamaddin; Tabatabaei, Mohammad

    2016-07-01

    Pasteurella multocida infects a wide range of animals and the infection may spread to human through animal bites and scratches. Pasteurella multocida isolates, obtained from several clinically healthy and diseased animals (bovine, sheep, goat, poultry, dog and cat), were investigated for capsule biosynthesis (capA, B, D, E and F) and expression of 22 virulence-associated genes using Polymerase Chain Reaction (PCR). Multiplex PCR results revealed expression of capA, capD and capB genes in 81 (61.83%), 30 (22.90%) and 10 isolates (7.29%), respectively. However, neither of the isolates harbored capE or capF genes and ten isolates (7.29%) were negative for all cap genes. The expression of the capB gene was observed in small ruminant isolates. The occurrence of the ompA, ompH, oma87, sodA and sodC genes was noticed in all of the samples. More than 90% of the isolates harbored hgbA (96.18%), ptfA (95.41%), exbBD-tonB (93.12%), nanB (93.12%) and plbB genes (90.83%). The transferrin binding protein encoding gene tbpA was exclusively detected in the ruminant isolates. The limited number of isolates (25.95%) harbored dermonecrotoxin gene (toxA) and the highest occurrence was noted in the small ruminants, and the capsular type D isolates. This study highlights that the toxA, tbpA, and pfhA genes can be considered as important epidemiological markers for the characterization of P. multocida isolates. PMID:27057674

  15. RNA Helicase Important for Listeria monocytogenes Hemolytic Activity and Virulence Factor Expression

    PubMed Central

    Netterling, Sakura; Bäreclev, Caroline; Vaitkevicius, Karolis

    2015-01-01

    RNA helicases have been shown to be important for the function of RNA molecules at several levels, although their putative involvement in microbial pathogenesis has remained elusive. We have previously shown that Listeria monocytogenes DExD-box RNA helicases are important for bacterial growth, motility, ribosomal maturation, and rRNA processing. We assessed the importance of the RNA helicase Lmo0866 (here named CshA) for expression of virulence traits. We observed a reduction in hemolytic activity in a strain lacking CshA compared to the wild type. This phenomenon was less evident in strains lacking other RNA helicases. The reduced hemolysis was accompanied by lower expression of major listerial virulence factors in the ΔcshA strain, mainly listeriolysin O, but also to some degree the actin polymerizing factor ActA. Reduced expression of these virulence factors in the strain lacking CshA did not, however, correlate with a decreased level of the virulence regulator PrfA. When combining the ΔcshA knockout with a mutation creating a constitutively active PrfA protein (PrfA*), the effect of the ΔcshA knockout on LLO expression was negated. These data suggest a role for the RNA helicase CshA in posttranslational activation of PrfA. Surprisingly, although the expression of several virulence factors was reduced, the ΔcshA strain did not demonstrate any reduced ability to infect nonphagocytic cells compared to the wild-type strain. PMID:26483402

  16. Clinical Escherichia coli Strains Carrying stx Genes: stx Variants and stx-Positive Virulence Profiles

    PubMed Central

    Eklund, Marjut; Leino, Kirsikka; Siitonen, Anja

    2002-01-01

    Altogether, 173 Shiga toxin-producing Escherichia coli (STEC) serotype O157 (n = 111) and non-O157 (n = 62) isolates from 170 subjects were screened by PCR-restriction fragment length polymorphism for eight different stx genes. The results were compiled according to serotypes, phage types of O157, production of Stx toxin and enterohemolysin, and the presence of eae. The stx genes occurred in 11 combinations; the most common were stx2 with stx2c (42%), stx2 alone (21%), and stx1 alone (16%). Of the O157 strains, 64% carried stx2 with stx2c versus 2% of the non-O157 strains (P < 0.001). In the non-O157 strains, the prevailing gene was stx1 (99% versus 1% in O157 strains; P < 0.001). In addition, one strain (O Rough:H4:stx2c) which has not previously been described as associated with hemolytic-uremic syndrome (HUS) was found. Ten stx-positive virulence profiles were responsible for 71% of all STEC infections. Of these profiles, five accounted for 71% of the 21 strains isolated from 20 patients with HUS or thrombotic thrombocytopenic purpura (TTP). The strains having the virulence profile that caused mainly HUS or TTP or bloody diarrhea produced Stx with titers of ≥1:128 (90%) more commonly than did other strains (51%; P < 0.001). These strains were also more commonly enterohemolytic (98% versus 68% for other strains; P < 0.001) and possessed the eae gene (100%) more commonly than did other strains (74%; P < 0.001). A particular virulence profile, O157:H7:PT2:stx2:stx2c:eae:Ehly, was significantly more frequently associated with HUS and bloody diarrhea than were other profiles (P = 0.02) and also caused the deaths of two children. In this study, the risk factors for severe symptoms were an age of <5 years and infection by the strain of O157:H7:PT2 mentioned above. PMID:12454157

  17. A Naturally Occurring Single Amino Acid Replacement in Multiple Gene Regulator of Group A Streptococcus Significantly Increases Virulence

    PubMed Central

    Sanson, Misu; O'Neill, Brian E.; Kachroo, Priyanka; Anderson, Jeff R.; Flores, Anthony R.; Valson, Chandni; Cantu, Concepcion C.; Makthal, Nishanth; Karmonik, Christof; Fittipaldi, Nahuel; Kumaraswami, Muthiah; Musser, James M.; Olsen, Randall J.

    2016-01-01

    Single-nucleotide polymorphisms (SNPs) are the most common source of genetic variation within a species; however, few investigations demonstrate how naturally occurring SNPs may increase strain virulence. We recently used group A Streptococcus as a model pathogen to study bacteria strain genotype–patient disease phenotype relationships. Whole-genome sequencing of approximately 800 serotype M59 group A Streptococcus strains, recovered during an outbreak of severe invasive infections across North America, identified a disproportionate number of SNPs in the gene encoding multiple gene regulator of group A Streptococcus (mga). Herein, we report results of studies designed to test the hypothesis that the most commonly occurring SNP, encoding a replacement of arginine for histidine at codon 201 of Mga (H201R), significantly increases virulence. Whole transcriptome analysis revealed that the H201R replacement significantly increased expression of mga and 54 other genes, including many proven virulence factors. Compared to the wild-type strain, a H201R isogenic mutant strain caused significantly larger skin lesions in mice. Serial quantitative bacterial culture and noninvasive magnetic resonance imaging also demonstrated that the isogenic H201R strain was significantly more virulent in a nonhuman primate model of joint infection. These findings show that the H201R replacement in Mga increases the virulence of M59 group A Streptococcus and provide new insight to how a naturally occurring SNP in bacteria contributes to human disease phenotypes. PMID:25476528

  18. A naturally occurring single amino acid replacement in multiple gene regulator of group A Streptococcus significantly increases virulence.

    PubMed

    Sanson, Misu; O'Neill, Brian E; Kachroo, Priyanka; Anderson, Jeff R; Flores, Anthony R; Valson, Chandni; Cantu, Concepcion C; Makthal, Nishanth; Karmonik, Christof; Fittipaldi, Nahuel; Kumaraswami, Muthiah; Musser, James M; Olsen, Randall J

    2015-02-01

    Single-nucleotide polymorphisms (SNPs) are the most common source of genetic variation within a species; however, few investigations demonstrate how naturally occurring SNPs may increase strain virulence. We recently used group A Streptococcus as a model pathogen to study bacteria strain genotype-patient disease phenotype relationships. Whole-genome sequencing of approximately 800 serotype M59 group A Streptococcus strains, recovered during an outbreak of severe invasive infections across North America, identified a disproportionate number of SNPs in the gene encoding multiple gene regulator of group A Streptococcus (mga). Herein, we report results of studies designed to test the hypothesis that the most commonly occurring SNP, encoding a replacement of arginine for histidine at codon 201 of Mga (H201R), significantly increases virulence. Whole transcriptome analysis revealed that the H201R replacement significantly increased expression of mga and 54 other genes, including many proven virulence factors. Compared to the wild-type strain, a H201R isogenic mutant strain caused significantly larger skin lesions in mice. Serial quantitative bacterial culture and noninvasive magnetic resonance imaging also demonstrated that the isogenic H201R strain was significantly more virulent in a nonhuman primate model of joint infection. These findings show that the H201R replacement in Mga increases the virulence of M59 group A Streptococcus and provide new insight to how a naturally occurring SNP in bacteria contributes to human disease phenotypes. PMID:25476528

  19. The Pathogen of the Great Barrier Reef Sponge Rhopaloeides odorabile Is a New Strain of Pseudoalteromonas agarivorans Containing Abundant and Diverse Virulence-Related Genes.

    PubMed

    Choudhury, Jayanta D; Pramanik, Arnab; Webster, Nicole S; Llewellyn, Lyndon E; Gachhui, Ratan; Mukherjee, Joydeep

    2015-08-01

    Sponge diseases have increased dramatically, yet the causative agents of disease outbreaks have eluded identification. We undertook a polyphasic taxonomic analysis of the only confirmed sponge pathogen and identified it as a novel strain of Pseudoalteromonas agarivorans. 16S ribosomal RNA (rRNA) and gyraseB (gyrB) gene sequences along with phenotypic characteristics demonstrated that strain NW4327 was most closely related to P. agarivorans. DNA-DNA hybridization and in silico genome comparisons established NW4327 as a novel strain of P. agarivorans. Genes associated with type IV pili, mannose-sensitive hemagglutinin pili, and curli formation were identified in NW4327. One gene cluster encoding ATP-binding cassette (ABC) transporter, HlyD and TolC, and two clusters related to the general secretion pathway indicated the presence of type I secretion system (T1SS) and type II secretion system (T2SS), respectively. A contiguous gene cluster of at least 19 genes related to type VI secretion system (T6SS) which included all 13 core genes was found. The absence of T1SS and T6SS in nonpathogenic P. agarivorans S816 established NW4327 as the virulent strain. Serine proteases and metalloproteases of the classes S8, S9, M4, M6, M48, and U32 were identified in NW4327, many of which can degrade collagen. Collagenase activity in NW4327 and its absence in the nonpathogenic P. agarivorans KMM 255(T) reinforced the invasiveness of NW4327. This is the first report unambiguously identifying a sponge pathogen and providing the first insights into the virulence genes present in any pathogenic Pseudoalteromonas genome. The investigation supports a theoretical study predicting high abundance of terrestrial virulence gene homologues in marine bacteria. PMID:25837832

  20. A Monoallelic Deletion of the TcCRT Gene Increases the Attenuation of a Cultured Trypanosoma cruzi Strain, Protecting against an In Vivo Virulent Challenge

    PubMed Central

    Sánchez-Valdéz, Fernando J.; Pérez Brandán, Cecilia; Ramírez, Galia; Uncos, Alejandro D.; Zago, M. Paola; Cimino, Rubén O.; Cardozo, Rubén M.; Marco, Jorge D.; Ferreira, Arturo; Basombrío, Miguel Ángel

    2014-01-01

    Trypanosoma cruzi calreticulin (TcCRT) is a virulence factor that binds complement C1, thus inhibiting the activation of the classical complement pathway and generating pro-phagocytic signals that increase parasite infectivity. In a previous work, we characterized a clonal cell line lacking one TcCRT allele (TcCRT+/−) and another overexpressing it (TcCRT+), both derived from the attenuated TCC T. cruzi strain. The TcCRT+/− mutant was highly susceptible to killing by the complement machinery and presented a remarkable reduced propagation and differentiation rate both in vitro and in vivo. In this report, we have extended these studies to assess, in a mouse model of disease, the virulence, immunogenicity and safety of the mutant as an experimental vaccine. Balb/c mice were inoculated with TcCRT+/− parasites and followed-up during a 6-month period. Mutant parasites were not detected by sensitive techniques, even after mice immune suppression. Total anti-T. cruzi IgG levels were undetectable in TcCRT+/− inoculated mice and the genetic alteration was stable after long-term infection and it did not revert back to wild type form. Most importantly, immunization with TcCRT+/− parasites induces a highly protective response after challenge with a virulent T. cruzi strain, as evidenced by lower parasite density, mortality, spleen index and tissue inflammatory response. TcCRT+/− clones are restricted in two important properties conferred by TcCRT and indirectly by C1q: their ability to evade the host immune response and their virulence. Therefore, deletion of one copy of the TcCRT gene in the attenuated TCC strain generated a safe and irreversibly gene-deleted live attenuated parasite with high immunoprotective properties. Our results also contribute to endorse the important role of TcCRT as a T. cruzi virulence factor. PMID:24551259

  1. Multilocus analysis of extracellular putative virulence proteins made by group A Streptococcus: population genetics, human serologic response, and gene transcription.

    PubMed

    Reid, S D; Green, N M; Buss, J K; Lei, B; Musser, J M

    2001-06-19

    Species of pathogenic microbes are composed of an array of evolutionarily distinct chromosomal genotypes characterized by diversity in gene content and sequence (allelic variation). The occurrence of substantial genetic diversity has hindered progress in developing a comprehensive understanding of the molecular basis of virulence and new therapeutics such as vaccines. To provide new information that bears on these issues, 11 genes encoding extracellular proteins in the human bacterial pathogen group A Streptococcus identified by analysis of four genomes were studied. Eight of the 11 genes encode proteins with a LPXTG(L) motif that covalently links Gram-positive virulence factors to the bacterial cell surface. Sequence analysis of the 11 genes in 37 geographically and phylogenetically diverse group A Streptococcus strains cultured from patients with different infection types found that recent horizontal gene transfer has contributed substantially to chromosomal diversity. Regions of the inferred proteins likely to interact with the host were identified by molecular population genetic analysis, and Western immunoblot analysis with sera from infected patients confirmed that they were antigenic. Real-time reverse transcriptase-PCR (TaqMan) assays found that transcription of six of the 11 genes was substantially up-regulated in the stationary phase. In addition, transcription of many genes was influenced by the covR and mga trans-acting gene regulatory loci. Multilocus investigation of putative virulence genes by the integrated approach described herein provides an important strategy to aid microbial pathogenesis research and rapidly identify new targets for therapeutics research. PMID:11416223

  2. Dual-site phosphorylation of the control of virulence regulator impacts group a streptococcal global gene expression and pathogenesis.

    PubMed

    Horstmann, Nicola; Saldaña, Miguel; Sahasrabhojane, Pranoti; Yao, Hui; Su, Xiaoping; Thompson, Erika; Koller, Antonius; Shelburne, Samuel A

    2014-05-01

    Phosphorylation relays are a major mechanism by which bacteria alter transcription in response to environmental signals, but understanding of the functional consequences of bacterial response regulator phosphorylation is limited. We sought to characterize how phosphorylation of the control of virulence regulator (CovR) protein from the major human pathogen group A Streptococcus (GAS) influences GAS global gene expression and pathogenesis. CovR mainly serves to repress GAS virulence factor-encoding genes and has been shown to homodimerize following phosphorylation on aspartate-53 (D53) in vitro. We discovered that CovR is phosphorylated in vivo and that such phosphorylation is partially heat-stable, suggesting additional phosphorylation at non-aspartate residues. Using mass spectroscopy along with targeted mutagenesis, we identified threonine-65 (T65) as an additional CovR phosphorylation site under control of the serine/threonine kinase (Stk). Phosphorylation on T65, as mimicked by the recombinant CovR T65E variant, abolished in vitro CovR D53 phosphorylation. Similarly, isoallelic GAS strains that were either unable to be phosphorylated at D53 (CovR-D53A) or had functional constitutive phosphorylation at T65 (CovR-T65E) had essentially an identical gene repression profile to each other and to a CovR-inactivated strain. However, the CovR-D53A and CovR-T65E isoallelic strains retained the ability to positively influence gene expression that was abolished in the CovR-inactivated strain. Consistent with these observations, the CovR-D53A and CovR-T65E strains were hypervirulent compared to the CovR-inactivated strain in a mouse model of invasive GAS disease. Surprisingly, an isoalleic strain unable to be phosphorylated at CovR T65 (CovR-T65A) was hypervirulent compared to the wild-type strain, as auto-regulation of covR gene expression resulted in lower covR gene transcript and CovR protein levels in the CovR-T65A strain. Taken together, these data establish that Cov

  3. Dual-Site Phosphorylation of the Control of Virulence Regulator Impacts Group A Streptococcal Global Gene Expression and Pathogenesis

    PubMed Central

    Horstmann, Nicola; Saldaña, Miguel; Sahasrabhojane, Pranoti; Yao, Hui; Su, Xiaoping; Thompson, Erika; Koller, Antonius; Shelburne, Samuel A.

    2014-01-01

    Phosphorylation relays are a major mechanism by which bacteria alter transcription in response to environmental signals, but understanding of the functional consequences of bacterial response regulator phosphorylation is limited. We sought to characterize how phosphorylation of the control of virulence regulator (CovR) protein from the major human pathogen group A Streptococcus (GAS) influences GAS global gene expression and pathogenesis. CovR mainly serves to repress GAS virulence factor-encoding genes and has been shown to homodimerize following phosphorylation on aspartate-53 (D53) in vitro. We discovered that CovR is phosphorylated in vivo and that such phosphorylation is partially heat-stable, suggesting additional phosphorylation at non-aspartate residues. Using mass spectroscopy along with targeted mutagenesis, we identified threonine-65 (T65) as an additional CovR phosphorylation site under control of the serine/threonine kinase (Stk). Phosphorylation on T65, as mimicked by the recombinant CovR T65E variant, abolished in vitro CovR D53 phosphorylation. Similarly, isoallelic GAS strains that were either unable to be phosphorylated at D53 (CovR-D53A) or had functional constitutive phosphorylation at T65 (CovR-T65E) had essentially an identical gene repression profile to each other and to a CovR-inactivated strain. However, the CovR-D53A and CovR-T65E isoallelic strains retained the ability to positively influence gene expression that was abolished in the CovR-inactivated strain. Consistent with these observations, the CovR-D53A and CovR-T65E strains were hypervirulent compared to the CovR-inactivated strain in a mouse model of invasive GAS disease. Surprisingly, an isoalleic strain unable to be phosphorylated at CovR T65 (CovR-T65A) was hypervirulent compared to the wild-type strain, as auto-regulation of covR gene expression resulted in lower covR gene transcript and CovR protein levels in the CovR-T65A strain. Taken together, these data establish that Cov

  4. Analysis of Core Housekeeping and Virulence Genes Reveals Cryptic Lineages of Clostridium perfringens That Are Associated With Distinct Disease Presentations

    PubMed Central

    Rooney, Alejandro P.; Swezey, James L.; Friedman, Robert; Hecht, David W.; Maddox, Carol W.

    2006-01-01

    Clostridium perfringens is an important human and animal pathogen that causes a number of diseases that vary in their etiology and severity. Differences between strains regarding toxin gene composition and toxin production partly explain why some strains cause radically different diseases than others. However, they do not provide a complete explanation. The purpose of this study was to determine if there is a phylogenetic component that explains the variance in C. perfringens strain virulence by assessing patterns of genetic polymorphism in genes (colA gyrA, plc, pfoS, and rplL) that form part of the core genome in 248 type A strains. We found that purifying selection plays a central role in shaping the patterns of nucleotide substitution and polymorphism in both housekeeping and virulence genes. In contrast, recombination was found to be a significant factor only for the virulence genes plc and colA and the housekeeping gene gyrA. Finally, we found that the strains grouped into five distinct evolutionary lineages that show evidence of host adaptation and the early stages of speciation. The discovery of these previously unknown lineages and their association with distinct disease presentations carries important implications for human and veterinary clostridial disease epidemiology and provides important insights into the pathways through which virulence has evolved in C. perfringens. PMID:16489222

  5. Reciprocal interaction between dental alloy biocorrosion and Streptococcus mutans virulent gene expression.

    PubMed

    Zhang, Songmei; Qiu, Jing; Ren, Yanfang; Yu, Weiqiang; Zhang, Fuqiang; Liu, Xiuxin

    2016-04-01

    Corrosion of dental alloys is a major concern in dental restorations. Streptococcus mutans reduces the pH in oral cavity and induces demineralization of the enamel as well as corrosion of restorative dental materials. The rough surfaces of dental alloys induced by corrosion enhance the subsequent accumulation of plaque. In this study, the corrosion process of nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys in a nutrient-rich medium containing S. mutans was studied using inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test. Our results showed that the release of Ni and Co ions increased, particularly after incubation for 3 days. The electrochemical corrosion results showed a significant decrease in the corrosion resistance (Rp) value after the alloys were immersed in the media containing S. mutans for 3 days. Correspondingly, XPS revealed a reduction in the relative dominance of Ni, Co, and Cr in the surface oxides after the alloys were immersed in the S. mutans culture. After removal of the biofilm, the pre-corroded alloys were re-incubated in S. mutans medium, and the expressions of genes associated with the adhesion and acidogenesis of S. mutans, including gtfBCD, gbpB, fif and ldh, were evaluated by detecting the mRNA levels using real-time reverse transcription polymerase chain reaction (RT-PCR). We found that the gtfBCD, gbpB, ftf and Idh expression of S. mutans were noticeably increased after incubation with pre-corroded alloys for 24 h. This study demonstrated that S. mutans enhanced the corrosion behavior of the dental alloys, on the other hand, the presence of corroded alloy surfaces up-regulated the virulent gene expression in S. mutans. Compared with smooth surfaces, the rough corroded surfaces of dental alloys accelerated the bacteria-adhesion and corrosion process by changing the virulence gene expression of S. mutans. PMID:26896953

  6. Virulence genes and cytokine profile in systemic murine Campylobacter coli infection

    PubMed Central

    Klančnik, Anja; Pogačar, Maja Šikić; Raspor, Peter; Abram, Maja; Možina, Sonja Smole; Vučković, Darinka

    2015-01-01

    Campylobacter coli are one of the most common bacteria in bacterial gastroenteritis and acute enterocolitis in humans. However, relatively little is known regarding the mechanisms of pathogenesis and host response to C. coli infections. To investigate the influence of genetic changes, we first used PCR to demonstrate the presence of the known virulence genes cadF, virB11, cdtB, cdtC and ceuE in the clinical isolate C. coli 26536, which was isolated from the liver of infected BALB/c mice. Sequence analyses of the cadF, virB11, cdtB and ceuE genes in C. coli 26536 confirmed the stability in these virulence genes during their transmission through the host. We further investigated C. coli infection for the bacterial clearance from the liver and spleen of infected mice, and for their immune response. C. coli persisted well in both organs, with better survival in the liver. We also determined the levels of several pro-inflammatory cytokines (i.e., interleukin [IL]-6, IL-12, interferon-γ, tumor necrosis factor-α) and the anti-inflammatory cytokine IL-10 in plasma and in liver homogenates from the infected mice, using enzyme-linked immunosorbent assays. The lowest levels among these cytokines were for tumor necrosis factor-α in the plasma and IL-6 in the liver on days 1, 3 and 8 post-infection. The most pronounced production was for IL-10, in both plasma (days 1 and 8 post-infection) and liver (day 8 post-infection), which suggests that it has a role in healing of the organ inflammation. Our findings showed dynamic relationships between pro- and anti-inflammatory cytokines and thus contribute toward clarification of the healing processes involved in the resolution of C. coli infections. PMID:26039573

  7. Natural plant products inhibits growth and alters the swarming motility, biofilm formation, and expression of virulence genes in enteroaggregative and enterohemorrhagic Escherichia coli.

    PubMed

    García-Heredia, Alam; García, Santos; Merino-Mascorro, José Ángel; Feng, Peter; Heredia, Norma

    2016-10-01

    The purpose of this study was to determine the effects of plant products on the growth, swarming motility, biofilm formation and virulence gene expression in enterohemorrhagic Escherichia coli O157:H7 and enteroaggregative E. coli strain 042 and a strain of O104:H4 serotype. Extracts of Lippia graveolens and Haematoxylon brassiletto, and carvacrol, brazilin were tested by an antimicrobial microdilution method using citral and rifaximin as controls. All products showed bactericidal activity with minimal bactericidal concentrations ranging from 0.08 to 8.1 mg/ml. Swarming motility was determined in soft LB agar. Most compounds reduced swarming motility by 7%-100%; except carvacrol which promoted motility in two strains. Biofilm formation studies were done in microtiter plates. Rifaximin inhibited growth and reduced biofilm formation, but various concentrations of other compounds actually induced biofilm formation. Real time PCR showed that most compounds decreased stx2 expression. The expression of pic and rpoS in E. coli 042 were suppressed but in E. coli O104:H4 they varied depending on compounds. In conclusion, these extracts affect E. coli growth, swarming motility and virulence gene expression. Although these compounds were bactericidal for pathogenic E. coli, sublethal concentrations had varied effects on phenotypic and genotypic traits, and some increased virulence gene expression. PMID:27375253

  8. Ongoing Horizontal and Vertical Transmission of Virulence Genes and papA Alleles among Escherichia coli Blood Isolates from Patients with Diverse-Source Bacteremia

    PubMed Central

    Johnson, James R.; O'Bryan, Timothy T.; Kuskowski, Michael; Maslow, Joel N.

    2001-01-01

    The phylogenetic distributions of multiple putative virulence factors (VFs) and papA (P fimbrial structural subunit) alleles among 182 Escherichia coli blood isolates from patients with diverse-source bacteremia were defined. Phylogenetic correspondence among these strains, the E. coli Reference (ECOR) collection, and other collections of extraintestinal pathogenic E. coli (ExPEC) was assessed. Although among the 182 bacteremia isolates phylogenetic group B2 predominated, exhibited the greatest concentration of individual VFs, and contained the largest number of familiar virulent clones, other phylogenetic groups exhibited greater concentrations of certain VFs than did group B2 and included several additional virulent clones. Certain of the newly detected VF genes, e.g., fyuA (yersiniabactin; 76%) and focG (F1C fimbriae; 25%), were as prevalent or more prevalent than their more familiar traditional counterparts, e.g., iut (aerobactin; 57%) and sfaS (S fimbriae; 14%), thus possibly offering additional useful targets for preventive interventions. Considerable diversity of VF profiles was observed at every level within the phylogenetic tree, including even within individual lineages. This suggested that many different pathways can lead to extraintestinal virulence in E. coli and that the evolution of ExPEC, which involves extensive horizontal transmission of VFs and continuous remodeling of pathogenicity-associated islands, is a highly active, ongoing process. PMID:11500406

  9. Shigella in Brazilian children with acute diarrhoea: prevalence, antimicrobial resistance and virulence genes

    PubMed Central

    Sousa, Mireille Ângela Bernardes; Mendes, Edilberto Nogueira; Collares, Guilherme Birchal; Péret-Filho, Luciano Amedée; Penna, Francisco José; Magalhães, Paula Prazeres

    2013-01-01

    Diarrhoeal disease is still considered a major cause of morbidity and mortality among children. Among diarrhoeagenic agents, Shigella should be highlighted due to its prevalence and the severity of the associated disease. Here, we assessed Shigella prevalence, drug susceptibility and virulence factors. Faeces from 157 children with diarrhoea who sought treatment at the Children's Hospital João Paulo II, a reference children´s hospital in Belo Horizonte, state of Minas Gerais, Brazil, were cultured and drug susceptibility of the Shigella isolates was determined by the disk diffusion technique. Shigella virulence markers were identified by polymerase chain reaction. The bacterium was recovered from 10.8% of the children (88.2% Shigella sonnei). The ipaH, iuc, sen and ial genes were detected in strains isolated from all shigellosis patients; set1A was only detected in Shigella flexneri. Additionally, patients were infected by Shigella strains of different ial, sat, sen and set1A genotypes. Compared to previous studies, we observed a marked shift in the distribution of species from S. flexneri to S. sonnei and high rates of trimethoprim/sulfamethoxazole resistance. PMID:23440111

  10. Identification of Genes Contributing to the Virulence of Francisella tularensis SCHU S4 in a Mouse Intradermal Infection Model

    PubMed Central

    Golovliov, Igor; Bolanowski, Mark; Shen, Hua; Conlan, Wayne; Sjöstedt, Anders

    2009-01-01

    Background Francisella tularensis is a highly virulent human pathogen. The most virulent strains belong to subspecies tularensis and these strains cause a sometimes fatal disease. Despite an intense recent research effort, there is very limited information available that explains the unique features of subspecies tularensis strains that distinguish them from other F. tularensis strains and that explain their high virulence. Here we report the use of targeted mutagenesis to investigate the roles of various genes or pathways for the virulence of strain SCHU S4, the type strain of subspecies tularensis. Methodology/Principal Findings The virulence of SCHU S4 mutants was assessed by following the outcome of infection after intradermal administration of graded doses of bacteria. By this route, the LD50 of the SCHU S4 strain is one CFU. The virulence of 20 in-frame deletion mutants and 37 transposon mutants was assessed. A majority of the mutants did not show increased prolonged time to death, among them notably ΔpyrB and ΔrecA. Of the remaining, mutations in six unique targets, tolC, rep, FTT0609, FTT1149c, ahpC, and hfq resulted in significantly prolonged time to death and mutations in nine targets, rplA, wbtI, iglB, iglD, purL, purF, ggt, kdtA, and glpX, led to marked attenuation with an LD50 of >103 CFU. In fact, the latter seven mutants showed very marked attenuation with an LD50 of ≥107 CFU. Conclusions/Significance The results demonstrate that the characterization of targeted mutants yielded important information about essential virulence determinants that will help to identify the so far little understood extreme virulence of F. tularensis subspecies tularensis. PMID:19424499

  11. Refining the Balance of Attenuation and Immunogenicity of Respiratory Syncytial Virus by Targeted Codon Deoptimization of Virulence Genes

    PubMed Central

    Meng, Jia; Lee, Sujin; Hotard, Anne L.

    2014-01-01

    ABSTRACT Respiratory syncytial virus (RSV) is the most important pathogen for lower respiratory tract illness in children for which there is no licensed vaccine. Live-attenuated RSV vaccines are the most clinically advanced in children, but achieving an optimal balance of attenuation and immunogenicity is challenging. One way to potentially retain or enhance immunogenicity of attenuated virus is to mutate virulence genes that suppress host immune responses. The NS1 and NS2 virulence genes of the RSV A2 strain were codon deoptimized according to either human or virus codon usage bias, and the resulting recombinant viruses (dNSh and dNSv, respectively) were rescued by reverse genetics. RSV dNSh exhibited the desired phenotype of reduced NS1 and NS2 expression. RSV dNSh was attenuated in BEAS-2B and primary differentiated airway epithelial cells but not in HEp-2 or Vero cells. In BALB/c mice, RSV dNSh exhibited a lower viral load than did A2, and yet it induced slightly higher levels of RSV-neutralizing antibodies than did A2. RSV A2 and RSV dNSh induced equivalent protection against challenge strains A/1997/12-35 and A2-line19F. RSV dNSh caused less STAT2 degradation and less NF-κB activation than did A2 in vitro. Serial passage of RSV dNSh in BEAS-2B cells did not result in mutations in the deoptimized sequences. Taken together, RSV dNSh was moderately attenuated, more immunogenic, and equally protective compared to wild-type RSV and genetically stable. PMID:25249281

  12. RegA, an AraC-like protein, is a global transcriptional regulator that controls virulence gene expression in Citrobacter rodentium.

    PubMed

    Hart, Emily; Yang, Ji; Tauschek, Marija; Kelly, Michelle; Wakefield, Matthew J; Frankel, Gad; Hartland, Elizabeth L; Robins-Browne, Roy M

    2008-11-01

    Citrobacter rodentium is an attaching and effacing pathogen which causes transmissible colonic hyperplasia in mice. Infection with C. rodentium serves as a model for infection of humans with enteropathogenic and enterohemorrhagic Escherichia coli. To identify novel colonization factors of C. rodentium, we screened a signature-tagged mutant library of C. rodentium in mice. One noncolonizing mutant had a single transposon insertion in an open reading frame (ORF) which we designated regA because of its homology to genes encoding members of the AraC family of transcriptional regulators. Deletion of regA in C. rodentium resulted in markedly reduced colonization of the mouse intestine. Examination of lacZ transcriptional fusions using promoter regions of known and putative virulence-associated genes of C. rodentium revealed that RegA strongly stimulated transcription of two newly identified genes located close to regA, which we designated adcA and kfcC. The cloned adcA gene conferred autoaggregation and adherence to mammalian cells to E. coli strain DH5alpha, and a kfc mutation led to a reduction in the duration of intestinal colonization, but the kfc mutant was far less attenuated than the regA mutant. These results indicated that other genes of C. rodentium whose expression required activation by RegA were required for colonization. Microarray analysis revealed a number of RegA-regulated ORFs encoding proteins homologous to known colonization factors. Transcription of these putative virulence determinants was activated by RegA only in the presence of sodium bicarbonate. Taken together, these results show that RegA is a global regulator of virulence in C. rodentium which activates factors that are required for intestinal colonization. PMID:18765720

  13. The SloR/Dlg Metalloregulator Modulates Streptococcus mutans Virulence Gene Expression

    PubMed Central

    Rolerson, Elizabeth; Swick, Adam; Newlon, Lindsay; Palmer, Cameron; Pan, Yong; Keeshan, Britton; Spatafora, Grace

    2006-01-01

    Metal ion availability in the human oral cavity plays a putative role in Streptococcus mutans virulence gene expression and in appropriate formation of the plaque biofilm. In this report, we present evidence that supports such a role for the DtxR-like SloR metalloregulator (called Dlg in our previous publications) in this oral pathogen. Specifically, the results of gel mobility shift assays revealed the sloABC, sloR, comDE, ropA, sod, and spaP promoters as targets of SloR binding. We confirmed differential expression of these genes in a GMS584 SloR-deficient mutant versus the UA159 wild-type progenitor by real-time semiquantitative reverse transcriptase PCR experiments. The results of additional expression studies support a role for SloR in S. mutans control of glucosyltransferases, glucan binding proteins, and genes relevant to antibiotic resistance. Phenotypic analysis of GMS584 revealed that it forms aberrant biofilms on an abiotic surface, is compromised for genetic competence, and demonstrates heightened incorporation of iron and manganese as well as resistance to oxidative stress compared to the wild type. Taken together, these findings support a role for SloR in S. mutans adherence, biofilm formation, genetic competence, metal ion homeostasis, oxidative stress tolerance, and antibiotic gene regulation, all of which contribute to S. mutans-induced disease. PMID:16816176

  14. The SloR/Dlg metalloregulator modulates Streptococcus mutans virulence gene expression.

    PubMed

    Rolerson, Elizabeth; Swick, Adam; Newlon, Lindsay; Palmer, Cameron; Pan, Yong; Keeshan, Britton; Spatafora, Grace

    2006-07-01

    Metal ion availability in the human oral cavity plays a putative role in Streptococcus mutans virulence gene expression and in appropriate formation of the plaque biofilm. In this report, we present evidence that supports such a role for the DtxR-like SloR metalloregulator (called Dlg in our previous publications) in this oral pathogen. Specifically, the results of gel mobility shift assays revealed the sloABC, sloR, comDE, ropA, sod, and spaP promoters as targets of SloR binding. We confirmed differential expression of these genes in a GMS584 SloR-deficient mutant versus the UA159 wild-type progenitor by real-time semiquantitative reverse transcriptase PCR experiments. The results of additional expression studies support a role for SloR in S. mutans control of glucosyltransferases, glucan binding proteins, and genes relevant to antibiotic resistance. Phenotypic analysis of GMS584 revealed that it forms aberrant biofilms on an abiotic surface, is compromised for genetic competence, and demonstrates heightened incorporation of iron and manganese as well as resistance to oxidative stress compared to the wild type. Taken together, these findings support a role for SloR in S. mutans adherence, biofilm formation, genetic competence, metal ion homeostasis, oxidative stress tolerance, and antibiotic gene regulation, all of which contribute to S. mutans-induced disease. PMID:16816176

  15. Directed evolution induces tributyrin hydrolysis in a virulence factor of Xylella fastidiosa using a duplicated gene as a template.

    PubMed

    Gouran, Hossein; Chakraborty, Sandeep; Rao, Basuthkar J; Asgeirsson, Bjarni; Dandekar, Abhaya

    2014-01-01

    Duplication of genes is one of the preferred ways for natural selection to add advantageous functionality to the genome without having to reinvent the wheel with respect to catalytic efficiency and protein stability. The duplicated secretory virulence factors of Xylella fastidiosa (LesA, LesB and LesC), implicated in Pierce's disease of grape and citrus variegated chlorosis of citrus species, epitomizes the positive selection pressures exerted on advantageous genes in such pathogens. A deeper insight into the evolution of these lipases/esterases is essential to develop resistance mechanisms in transgenic plants. Directed evolution, an attempt to accelerate the evolutionary steps in the laboratory, is inherently simple when targeted for loss of function. A bigger challenge is to specify mutations that endow a new function, such as a lost functionality in a duplicated gene. Previously, we have proposed a method for enumerating candidates for mutations intended to transfer the functionality of one protein into another related protein based on the spatial and electrostatic properties of the active site residues (DECAAF). In the current work, we present in vivo validation of DECAAF by inducing tributyrin hydrolysis in LesB based on the active site similarity to LesA. The structures of these proteins have been modeled using RaptorX based on the closely related LipA protein from Xanthomonas oryzae. These mutations replicate the spatial and electrostatic conformation of LesA in the modeled structure of the mutant LesB as well, providing in silico validation before proceeding to the laborious in vivo work. Such focused mutations allows one to dissect the relevance of the duplicated genes in finer detail as compared to gene knockouts, since they do not interfere with other moonlighting functions, protein expression levels or protein-protein interaction. PMID:25717364

  16. The RcsCDB signaling system and swarming motility in Salmonella enterica serovar typhimurium: dual regulation of flagellar and SPI-2 virulence genes.

    PubMed

    Wang, Qingfeng; Zhao, Yifang; McClelland, Michael; Harshey, Rasika M

    2007-12-01

    The Rcs phosphorelay is a multicomponent signaling system that positively regulates colanic acid synthesis and negatively regulates motility and virulence. We have exploited a spontaneously isolated mutant, IgaA(T191P), that is nearly maximally activated for the Rcs system to identify a vast set of genes that respond to the stimulation, and we report new regulatory properties of this signaling system in Salmonella enterica serovar Typhimurium. Microarray data show that the Rcs system normally functions as a positive regulator of SPI-2 and other genes important for the growth of Salmonella in macrophages, although when highly activated the system completely represses the SPI-1/SPI-2 virulence, flagellar, and fimbrial biogenesis pathways. The auxiliary protein RcsA, which works with RcsB to positively regulate colanic acid and other target genes, not only stimulates but also antagonizes the positive regulation of many genes in the igaA mutant. We show that RcsB represses motility through the RcsB box in the promoter region of the master operon flhDC and that RcsA is not required for this regulation. Curiously, RcsB selectively stimulates expression of the flagellar type 3 secretion genes fliPQR; an RcsAB box located downstream of fliR influences this regulation. We show that excess colanic acid impairs swimming and inhibits swarming motility, consistent with the inverse regulation of the two pathways by the Rcs system. PMID:17905992

  17. Dual role of RsmA in the coordinated regulation of expression of virulence genes in Pectobacterium wasabiae strain SCC3193.

    PubMed

    Andresen, Liis; Frolova, Jekaterina; Põllumaa, Lee; Mäe, Andres

    2015-11-01

    The CsrA/RsmA family of post-transcriptional regulators in bacteria is involved in regulating many cellular processes, including pathogenesis. Using a bioinformatics approach, we identified an RsmA binding motif, A(N)GGA, in the Shine-Dalgarno regions of 901 genes. Among these genes with the predicted RsmA binding motif, 358 were regulated by RsmA according to our previously published gene expression profiling analysis (WT vs rsmA negative mutant; Kõiv et al., 2013). A small subset of the predicted targets known to be important as virulence factors was selected for experimental validation. RNA footprint analyses demonstrated that RsmA binds specifically to the ANGGA motif in the 5'UTR sequences of celV1, pehA, pelB, pel2 and prtW. RsmA-dependent regulation of these five genes was examined in vivo using plasmid-borne translational and transcriptional fusions with a reporter gusA gene. They were all affected negatively by RsmA. However, we demonstrated that whereas the overall effect of RsmA on celV1 and prtW was determined on both the translational and transcriptional level, expression of pectinolytic enzyme genes (pehA, pel2 and pelB) was affected mainly on the level of transcription in tested conditions. In summary, these data indicate that RsmA controls virulence by integration of its regulatory activities at various levels. PMID:26306750

  18. Mutagenesis of Bordetella pertussis with transposon Tn5tac1: conditional expression of virulence-associated genes.

    PubMed Central

    Cookson, B T; Berg, D E; Goldman, W E

    1990-01-01

    The Tn5tac1 transposon contains a strong outward-facing promoter, Ptac, a lacI repressor gene, and a selectable Kanr gene. Transcription from Ptac is repressed by the lacI protein unless an inducer (isopropyl-beta-D-thiogalactopyranoside [IPTG]) is present. Thus, Tn5tac1 generates insertion mutations in Escherichia coli with conditional phenotypes because it is polar on distal gene expression when IPTG is absent and directs transcription of these genes when the inducer is present. To test the usefulness of Tn5tac1 in Bordetella pertussis, a nonenteric gram-negative bacterial pathogen, we chose the bifunctional adenylate cyclase-hemolysin determinant as an easily scored marker to monitor insertional mutagenesis. Tn5tac1 delivered to B. pertussis on conjugal suicide plasmids resulted in Kanr exconjugants at a frequency of 10(-3) per donor cell, and nonhemolytic (Hly-) mutants were found among the Kanr colonies at a frequency of about 1%. Of eight independent Kanr Hly- mutants, two were conditional and exhibited an Hly+ phenotype only in the presence of IPTG. Using a new quantitative assay for adenylate cyclase based on high-pressure liquid chromatography, we found that enzymatic activity in these two strains was specifically induced at least 500-fold in a dose-dependent fashion over the range of 0 to 125 microM IPTG. These data show that Ptac serves as a promoter, lacI is expressed and is functional, and IPTG can induce Ptac transcription in B. pertussis. Adenylate cyclase expression in whole cells, culture supernatants, and cell extracts from these strains depended upon IPTG, suggesting that the insertions do not merely alter secretion of adenylate cyclase-hemolysin. Other virulence determinants under control of the vir locus are expressed normally, implying that these Tn5tac1 insertions specifically regulate adenylate cyclase-hemolysin expression. We conclude that Tn5tac1 insertion mutations permit sensitive, exogenous control over the expression of genes of

  19. Differential Virulence Gene Expression of Group A Streptococcus Serotype M3 in Response to Co-Culture with Moraxella catarrhalis

    PubMed Central

    Verhaegh, Suzanne J. C.; Flores, Anthony R.; van Belkum, Alex; Musser, James M.; Hays, John P.

    2013-01-01

    Streptococcus pyogenes (group A Streptococcus, GAS) and Moraxella catarrhalis are important colonizers and (opportunistic) pathogens of the human respiratory tract. However, current knowledge regarding colonization and pathogenic potential of these two pathogens is based on work involving single bacterial species, even though the interplay between respiratory bacterial species is increasingly important in niche occupation and the development of disease. Therefore, to further define and understand polymicrobial species interactions, we investigated whether gene expression (and hence virulence potential) of GAS would be affected upon co-culture with M. catarrhalis. For co-culture experiments, GAS and M. catarrhalis were cultured in Todd-Hewitt broth supplemented with 0.2% yeast extract (THY) at 37°C with 5% CO2 aeration. Each strain was grown in triplicate so that triplicate experiments could be performed. Bacterial RNA was isolated, cDNA synthesized, and microarray transcriptome expression analysis performed. We observed significantly increased (≥4-fold) expression for genes playing a role in GAS virulence such as hyaluronan synthase (hasA), streptococcal mitogenic exotoxin Z (smeZ) and IgG endopeptidase (ideS). In contrast, significantly decreased (≥4-fold) expression was observed in genes involved in energy metabolism and in 12 conserved GAS two-component regulatory systems. This study provides the first evidence that M. catarrhalis increases GAS virulence gene expression during co-culture, and again shows the importance of polymicrobial infections in directing bacterial virulence. PMID:23626831

  20. Frequency of virulence genes of Escherichia coli among newborn piglets from an intensive pig farm in Argentina.

    PubMed

    Alustiza, Fabrisio E; Picco, Natalia Y; Bellingeri, Romina V; Terzolo, Horacio R; Vivas, Adriana B

    2012-01-01

    The enterotoxigenic and porcine enteropathogenic Escherichia coli (EtEc and PEPEc) strains are agents associated with swine neonatal diarrhea, causing economic losses in swine production. The main goal of this study was to identify virulence genes of EtEc, verotoxigenic (VtEc) and PEPEc in intestinal strains responsible for swine diseases, by molecular typing using Pcr in newborn piglets from an intensive farm system. Two hundred and sixty seven rectal swabbings from 7-15 days- old landrace x large White crossbred piglets were taken, and 123 randomly selected samples, biochemically compatible with E. coli, were tested for E. coli virulence genes by Pcr. A frequency (%) compatible with: 68 EtEc, 24 VtEc, and 8 EPEc were found. of all E. coli strains studied, 19.51 % carried at least one virulence gene. These data showed conclusively that, in spite of the application of strict sanitary measures in the intensive farm, genes encoding virulence factors of intestinal pathogens compatible with EtEc are still detected; therefore these strains will probably keep circulating among animals. PMID:23267620

  1. Detection of type III secretion system genes in Aeromonas hydrophila and their relationship with virulence in Nile tilapia.

    PubMed

    Carvalho-Castro, G A; Lopes, C O; Leal, C A G; Cardoso, P G; Leite, R C; Figueiredo, H C P

    2010-08-26

    The goals of this study were to develop a PCR technique to detect ascV and aopB genes from the type III secretion system (T3SS), to evaluate the frequency of these genes in Aeromonas hydrophila strains isolated from diseased fish and from aquaculture environments, and to determine the relationship between the presence of these genes and virulence of A. hydrophila in Nile tilapia. The PCR assay developed here successfully detected the target genes, showing three different profiles for the strains ascV+/aopB+, ascV+/aopB-, and ascV-/aopB-. A higher frequency of ascV+/aopB+ was verified in isolates from diseased fish compared to those from aquaculture environments (P<0.05). Among 64 isolates from diseased fish, ascV+/aopB+ (62.5%) was the most frequent profile (P<0.05) and caused more intensive mortality rates. Environmental strains containing the ascV+/aopB+ profile were less virulent than isolates from clinical cases. These results suggest that the presence of a functional T3SS probably increases the virulence of A. hydrophila. The PCR technique was shown to be a specific and efficient tool for detection of T3SS, and this technique can be used for virulence typing of A. hydrophila isolates. PMID:20185253

  2. Frequency, virulence genes and antimicrobial resistance of Listeria spp. isolated from bovine clinical mastitis.

    PubMed

    Jamali, Hossein; Radmehr, Behrad

    2013-11-01

    The aims of this study were to determine the prevalence, characteristics and antimicrobial resistance of Listeria spp. isolated from bovine clinical mastitis in Iran. Listeria spp. were detected in 21/207 bovine mastitic milk samples from dairy farms in Iran, comprising L. monocytogenes (n=17), L. innocua (n=3) and L. ivanovii (n=1). L. monocytogenes isolates were grouped into serogroups '4b, 4d, 4e', '1/2a, 3a', '1/2b, 3b, 7' and '1/2c, 3c'; all harboured inlA, inlC and inlJ virulence genes. Listeria spp. were most frequently resistant to penicillin G (14/21 isolates, 66.7%) and tetracyclines (11/21 isolates, 52.4%). PMID:23880504

  3. VdSNF1, the sucrose nonfermenting protein kinase gene of Verticillium dahliae, is required for virulence and expression of genes involved in cell-wall degradation.

    PubMed

    Tzima, Aliki K; Paplomatas, Epaminondas J; Rauyaree, Payungsak; Ospina-Giraldo, Manuel D; Kang, Seogchan

    2011-01-01

    Verticillium dahliae is a soilborne fungus causing vascular wilt in a diverse array of plant species. Its virulence has been attributed, among other factors, to the activity of hydrolytic cell wall-degrading enzymes (CWDE). The sucrose nonfermenting 1 gene (VdSNF1), which regulates catabolic repression, was disrupted in V. dahliae tomato race 1. Expression of CWDE in the resulting mutants was not induced in inductive medium and in simulated xylem fluid medium. Growth of the mutants was significantly reduced when grown with pectin or galactose as a carbon source whereas, with glucose, sucrose, and xylose, they grew similarly to wild-type and ectopic transformants. The mutants were severely impaired in virulence on tomato and eggplant (final disease severity reduced by an average of 87%). Microscopic observation of the infection behavior of a green fluorescent protein (gfp)-labeled VdSNF1 mutant (70ΔSF-gfp1) showed that it was defective in initial colonization of roots. Cross sections of tomato stem at the cotyledonary level showed that 70ΔSF-gfp1 colonized xylem vessels considerably less than the wild-type strain. The wild-type strain heavily colonized xylem vessels and adjacent parenchyma cells. Quantification of fungal biomass in plant tissues further confirmed reduced colonization of roots, stems, and cotyledons by 70ΔSF-gfp1 relative to that by the wild-type strain. PMID:20839958

  4. Non Mycobacterial Virulence Genes in the Genome of the Emerging Pathogen Mycobacterium abscessus

    PubMed Central

    Schenowitz, Chantal; Dossat, Carole; Barbe, Valérie; Rottman, Martin; Macheras, Edouard; Heym, Beate; Herrmann, Jean-Louis; Daffé, Mamadou; Brosch, Roland; Risler, Jean-Loup; Gaillard, Jean-Louis

    2009-01-01

    Mycobacterium abscessus is an emerging rapidly growing mycobacterium (RGM) causing a pseudotuberculous lung disease to which patients with cystic fibrosis (CF) are particularly susceptible. We report here its complete genome sequence. The genome of M. abscessus (CIP 104536T) consists of a 5,067,172-bp circular chromosome including 4920 predicted coding sequences (CDS), an 81-kb full-length prophage and 5 IS elements, and a 23-kb mercury resistance plasmid almost identical to pMM23 from Mycobacterium marinum. The chromosome encodes many virulence proteins and virulence protein families absent or present in only small numbers in the model RGM species Mycobacterium smegmatis. Many of these proteins are encoded by genes belonging to a “mycobacterial” gene pool (e.g. PE and PPE proteins, MCE and YrbE proteins, lipoprotein LpqH precursors). However, many others (e.g. phospholipase C, MgtC, MsrA, ABC Fe(3+) transporter) appear to have been horizontally acquired from distantly related environmental bacteria with a high G+C content, mostly actinobacteria (e.g. Rhodococcus sp., Streptomyces sp.) and pseudomonads. We also identified several metabolic regions acquired from actinobacteria and pseudomonads (relating to phenazine biosynthesis, homogentisate catabolism, phenylacetic acid degradation, DNA degradation) not present in the M. smegmatis genome. Many of the “non mycobacterial” factors detected in M. abscessus are also present in two of the pathogens most frequently isolated from CF patients, Pseudomonas aeruginosa and Burkholderia cepacia. This study elucidates the genetic basis of the unique pathogenicity of M. abscessus among RGM, and raises the question of similar mechanisms of pathogenicity shared by unrelated organisms in CF patients. PMID:19543527

  5. Virulence gene content in Escherichia coli isolates from poultry flocks with clinical signs of colibacillosis in Brazil.

    PubMed

    De Carli, Silvia; Ikuta, Nilo; Lehmann, Fernanda Kieling Moreira; da Silveira, Vinicius Proença; de Melo Predebon, Gabriela; Fonseca, André Salvador Kazantzi; Lunge, Vagner Ricardo

    2015-11-01

    Escherichia coli is a commensal bacterium of the bird's intestinal tract, but it can invade different tissues resulting in systemic symptoms (colibacillosis). This disease occurs only when the E. coli infecting strain presents virulence factors (encoded by specific genes) that enable the adhesion and proliferation in the host organism. Thus, it is important to differentiate pathogenic (APEC, avian pathogenic E. coli) and non-pathogenic or fecal (AFEC, avian fecal E. coli) isolates. Previous studies analyzed the occurrence of virulence factors in E. coli strains isolated from birds with colibacillosis, demonstrating a high frequency of the bacterial genes cvaC, iroN, iss, iutA, sitA, tsh, fyuA, irp-2, ompT and hlyF in pathogenic strains. The aim of the present study was to evaluate the occurrence and frequency of these virulence genes in E. coli isolated from poultry flocks in Brazil. A total of 138 isolates of E. coli was obtained from samples of different tissues and/or organs (spleen, liver, kidney, trachea, lungs, skin, ovary, oviduct, intestine, cloaca) and environmental swabs collected from chicken and turkey flocks suspected to have colibacillosis in farms from the main Brazilian producing regions. Total DNA was extracted and the 10 virulence genes were detected by traditional and/or real-time PCR. At least 11 samples of each gene were sequenced and compared to reference strains. All 10 virulence factors were detected in Brazilian E. coli isolates, with frequencies ranging from 39.9% (irp-2) to 68.8% (hlyF and sitA). Moreover, a high nucleotide similarity (over 99%) was observed between gene sequences of Brazilian isolates and reference strains. Seventy-nine isolates were defined as pathogenic (APEC) and 59 as fecal (AFEC) based on previously described criteria. In conclusion, the main virulence genes of the reference E. coli strains are also present in isolates associated with colibacillosis in Brazil. The analysis of this set of virulence factors can be

  6. The effect of γ radiation on the expression of the virulence genes of Salmonella typhimurium and Vibrio spp.

    NASA Astrophysics Data System (ADS)

    Lim, Sangyong; Jung, Jinwoo; Kim, Dongho

    2007-11-01

    The principle benefit of food irradiation is the reduction of food-borne bacteria in food products. However, the microbiological safety with respect to increased virulence of surviving pathogens after irradiation remains an important issue with regard to the effectiveness of food irradiation. In this study, the transcriptional changes of virulence genes of Salmonella and Vibrio spp. after γ radiation were investigated by real-time PCR (RT-PCR). Samonella typhimurium is dependent upon the products of a large number of genes located within Salmonella pathogenicity islands (SPI) on the chromosome. The expressions of seven genes including four SPI genes, hilD, ssrB, pipB, and sopD, were measured at 1 h after 1 kGy irradiation. Compared with non-irradiated controls, the expression of hilD encoded within SPI1 and sopD encoding SPI1-related effector proteins was reduced about 4- and 16-fold, respectively. The expressions of Vibrio toxin genes, vvhA, ctxA, and tdh, were also monitored during the course of a growth cycle after re-inoculation of irradiated Vibrio spp. (0.5 and 1.0 kGy). The expressions of Vibrio toxin genes tested did not increase compared with non-irradiated counterparts. Results from this study indicate that γ radiation is much more likely to reduce the virulence gene expression of surviving pathogens.

  7. cis-Acting elements that control expression of the master virulence regulatory gene atxA in Bacillus anthracis.

    PubMed

    Dale, Jennifer L; Raynor, Malik J; Dwivedi, Prabhat; Koehler, Theresa M

    2012-08-01

    Transcription of the Bacillus anthracis structural genes for the anthrax toxin proteins and biosynthetic operon for capsule is positively regulated by AtxA, a transcription regulator with unique properties. Consistent with the role of atxA in virulence factor expression, a B. anthracis atxA-null mutant is avirulent in a murine model for anthrax. In culture, multiple signals impact atxA transcript levels, and the timing and steady-state level of atxA expression are critical for optimal toxin and capsule synthesis. Despite the apparent complex control of atxA transcription, only one trans-acting protein, the transition state regulator AbrB, has been demonstrated to interact directly with the atxA promoter. Here we employ 5' and 3' deletion analysis and site-directed mutagenesis of the atxA control region to demonstrate that atxA transcription from the major start site P1 is dependent upon a consensus sequence for the housekeeping sigma factor SigA and an A+T-rich upstream element for RNA polymerase. We also show that an additional trans-acting protein(s) binds specifically to atxA promoter sequences located between -13 and +36 relative to P1 and negatively impacts transcription. Deletion of this region increases promoter activity up to 15-fold. Site-directed mutagenesis of a 9-bp palindromic sequence within the region prevents binding of the trans-acting protein(s), increasing promoter activity 7-fold and resulting in a corresponding increase in AtxA and anthrax toxin production. Notably, an atxA promoter mutant that produced elevated levels of AtxA and toxin proteins during culture was unaffected for virulence in a murine model for anthrax. PMID:22636778

  8. The mtfA Transcription Factor Gene Controls Morphogenesis, Gliotoxin Production, and Virulence in the Opportunistic Human Pathogen Aspergillus fumigatus

    PubMed Central

    Smith, Timothy D.

    2014-01-01

    Aspergillus fumigatus is the leading causative agent of invasive aspergillosis (IA). The number of cases is on the rise, with mortality rates as high as 90% among immunocompromised patients. Molecular genetic studies in A. fumigatus could provide novel targets to potentially set the basis for antifungal therapies. In the current study, we investigated the role of the transcription factor gene mtfA in A. fumigatus. Our results revealed that mtfA plays a role in the growth and development of the fungus. Deletion or overexpression of mtfA leads to a slight reduction in colony growth, as well as a reduction in conidiation levels, in the overexpression strain compared to the wild-type strain. Furthermore, production of the secondary metabolite gliotoxin increased when mtfA was overexpressed, coinciding with an increase in the transcription levels of the gliotoxin genes gliZ and gliP with respect to the wild type. In addition, our study showed that mtfA is also necessary for normal protease activity in A. fumigatus; deletion of mtfA resulted in a reduction of protease activity compared to wild-type levels. Importantly, the absence of mtfA caused a decrease in virulence in the Galleria mellonella infection model, indicating that mtfA is necessary for A. fumigatus wild-type pathogenesis. PMID:24728192

  9. Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation.

    PubMed

    Müller, Christine; Birmes, Franziska S; Rückert, Christian; Kalinowski, Jörn; Fetzner, Susanne

    2015-11-01

    Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 μM and 21 s(-1), respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases. PMID:26319870

  10. Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation

    PubMed Central

    Müller, Christine; Birmes, Franziska S.; Rückert, Christian; Kalinowski, Jörn

    2015-01-01

    Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 μM and 21 s−1, respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases. PMID:26319870

  11. Sir2 Paralogues Cooperate to Regulate Virulence Genes and Antigenic Variation in Plasmodium falciparum

    PubMed Central

    Duraisingh, Manoj T; Voss, Till S; Ralph, Stuart A; Hommel, Mirja; Duffy, Michael F; da Silva, Liliana Mancio; Scherf, Artur; Ivens, Alasdair; Speed, Terence P; Beeson, James G; Cowman, Alan F

    2009-01-01

    Cytoadherance of Plasmodium falciparum-infected erythrocytes in the brain, organs and peripheral microvasculature is linked to morbidity and mortality associated with severe malaria. Parasite-derived P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) molecules displayed on the erythrocyte surface are responsible for cytoadherance and undergo antigenic variation in the course of an infection. Antigenic variation of PfEMP1 is achieved by in situ switching and mutually exclusive transcription of the var gene family, a process that is controlled by epigenetic mechanisms. Here we report characterisation of the P. falciparum silent information regulator's A and B (PfSir2A and PfSir2B) and their involvement in mutual exclusion and silencing of the var gene repertoire. Analysis of P. falciparum parasites lacking either PfSir2A or PfSir2B shows that these NAD+-dependent histone deacetylases are required for silencing of different var gene subsets classified by their conserved promoter type. We also demonstrate that in the absence of either of these molecules mutually exclusive expression of var genes breaks down. We show that var gene silencing originates within the promoter and PfSir2 paralogues are involved in cis spreading of silenced chromatin into adjacent regions. Furthermore, parasites lacking PfSir2A but not PfSir2B have considerably longer telomeric repeats, demonstrating a role for this molecule in telomeric end protection. This work highlights the pivotal but distinct role for both PfSir2 paralogues in epigenetic silencing of P. falciparum virulence genes and the control of pathogenicity of malaria infection. PMID:19402747

  12. The Abi-domain protein Abx1 interacts with the CovS histidine kinase to control virulence gene expression in group B Streptococcus.

    PubMed

    Firon, Arnaud; Tazi, Asmaa; Da Cunha, Violette; Brinster, Sophie; Sauvage, Elisabeth; Dramsi, Shaynoor; Golenbock, Douglas T; Glaser, Philippe; Poyart, Claire; Trieu-Cuot, Patrick

    2013-02-01

    Group B Streptococcus (GBS), a common commensal of the female genital tract, is the leading cause of invasive infections in neonates. Expression of major GBS virulence factors, such as the hemolysin operon cyl, is regulated directly at the transcriptional level by the CovSR two-component system. Using a random genetic approach, we identified a multi-spanning transmembrane protein, Abx1, essential for the production of the GBS hemolysin. Despite its similarity to eukaryotic CaaX proteases, the Abx1 function is not involved in a post-translational modification of the GBS hemolysin. Instead, we demonstrate that Abx1 regulates transcription of several virulence genes, including those comprising the hemolysin operon, by a CovSR-dependent mechanism. By combining genetic analyses, transcriptome profiling, and site-directed mutagenesis, we showed that Abx1 is a regulator of the histidine kinase CovS. Overexpression of Abx1 is sufficient to activate virulence gene expression through CovS, overcoming the need for an additional signal. Conversely, the absence of Abx1 has the opposite effect on virulence gene expression consistent with CovS locked in a kinase-competent state. Using a bacterial two-hybrid system, direct interaction between Abx1 and CovS was mapped specifically to CovS domains involved in signal processing. We demonstrate that the CovSR two-component system is the core of a signaling pathway integrating the regulation of CovS by Abx1 in addition to the regulation of CovR by the serine/threonine kinase Stk1. In conclusion, our study reports a regulatory function for Abx1, a member of a large protein family with a characteristic Abi-domain, which forms a signaling complex with the histidine kinase CovS in GBS. PMID:23436996

  13. Comparative genomic analysis of Brucella abortus vaccine strain 104M reveals a set of candidate genes associated with its virulence attenuation

    PubMed Central

    Yu, Dong; Hui, Yiming; Zai, Xiaodong; Xu, Junjie; Liang, Long; Wang, Bingxiang; Yue, Junjie; Li, Shanhu

    2015-01-01

    The Brucella abortus strain 104M, a spontaneously attenuated strain, has been used as a vaccine strain in humans against brucellosis for 6 decades in China. Despite many studies, the molecular mechanisms that cause the attenuation are still unclear. Here, we determined the whole-genome sequence of 104M and conducted a comprehensive comparative analysis against the whole genome sequences of the virulent strain, A13334, and other reference strains. This analysis revealed a highly similar genome structure between 104M and A13334. The further comparative genomic analysis between 104M and A13334 revealed a set of genes missing in 104M. Some of these genes were identified to be directly or indirectly associated with virulence. Similarly, a set of mutations in the virulence-related genes was also identified, which may be related to virulence alteration. This study provides a set of candidate genes associated with virulence attenuation in B.abortus vaccine strain 104M. PMID:26039674

  14. Shiga toxin-producing Escherichia coli strains isolated from dairy products - Genetic diversity and virulence gene profiles.

    PubMed

    Douëllou, T; Delannoy, S; Ganet, S; Mariani-Kurkdjian, P; Fach, P; Loukiadis, E; Montel, Mc; Thevenot-Sergentet, D

    2016-09-01

    Shiga toxin-producing Escherichia coli (STEC) are widely recognized as pathogens causing food borne disease. Here we evaluate the genetic diversity of 197 strains, mainly STEC, from serotypes O157:H7, O26:H11, O103:H2, O111:H8 and O145:28 and compared strains recovered in dairy products against strains from human, meat and environment cases. For this purpose, we characterized a set of reference-collection STEC isolates from dairy products by PFGE DNA fingerprinting and a subset of these by virulence-gene profiling. PFGE profiles of restricted STEC total DNA showed high genomic variability (0.9976 on Simpson's discriminatory index), enabling all dairy isolates to be differentiated. High-throughput real-time PCR screening of STEC virulence genes were applied on the O157:H7 and O26:H11 STEC isolates from dairy products and human cases. The virulence gene profiles of dairy and human STEC strains were similar. Nevertheless, frequency-wise, stx1 was more prevalent among dairy O26:H11 isolates than in human cases ones (87% vs. 44%) while stx2 was more prevalent among O26:H11 human isolates (23% vs. 81%). For O157:H7 isolates, stx1 (0% vs. 39%), nleF (40% vs 94%) and Z6065 (40% vs 100%) were more prevalent among human than dairy strains. Our data point to differences between human and dairy strains but these differences were not sufficient to associate PFGE and virulence gene profiles to a putative lower pathogenicity of dairy strains based on their lower incidence in disease. Further comparison of whole-genome expression and virulence gene profiles should be investigated in cheese and intestinal tract samples. PMID:27257743

  15. Transcriptional Modulation of Enterotoxigenic Escherichia coli Virulence Genes in Response to Epithelial Cell Interactions

    PubMed Central

    Kansal, Rita; Rasko, David A.; Sahl, Jason W.; Munson, George P.; Roy, Koushik; Luo, Qingwei; Sheikh, Alaullah; Kuhne, Kurt J.

    2013-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of morbidity and mortality due to diarrheal illness in developing countries. There is currently no effective vaccine against these important pathogens. Because genes modulated by pathogen-host interactions potentially encode putative vaccine targets, we investigated changes in gene expression and surface morphology of ETEC upon interaction with intestinal epithelial cells in vitro. Pan-genome microarrays, quantitative reverse transcriptase PCR (qRT-PCR), and transcriptional reporter fusions of selected promoters were used to study changes in ETEC transcriptomes. Flow cytometry, immunofluorescence microscopy, and scanning electron microscopy were used to investigate alterations in surface antigen expression and morphology following pathogen-host interactions. Following host cell contact, genes for motility, adhesion, toxin production, immunodominant peptides, and key regulatory molecules, including cyclic AMP (cAMP) receptor protein (CRP) and c-di-GMP, were substantially modulated. These changes were accompanied by visible changes in both ETEC architecture and the expression of surface antigens, including a novel highly conserved adhesin molecule, EaeH. The studies reported here suggest that pathogen-host interactions are finely orchestrated by ETEC and are characterized by coordinated responses involving the sequential deployment of multiple virulence molecules. Elucidation of the molecular details of these interactions could highlight novel strategies for development of vaccines for these important pathogens. PMID:23115039

  16. Virulence genes and antimicrobial resistance profiles of Pasteurella multocida strains isolated from rabbits in Brazil.

    PubMed

    Ferreira, Thais Sebastiana Porfida; Felizardo, Maria Roberta; Sena de Gobbi, Débora Dirani; Gomes, Cleise Ribeiro; Nogueira Filsner, Pedro Henrique de Lima; Moreno, Marina; Paixão, Renata; Pereira, Jucélia de Jesus; Micke Moreno, Andrea

    2012-01-01

    Pasteurella multocida is responsible for a wide range of diseases in domestic animals. In rabbits, the agent is related to nasal discharge, pneumonia, otitis media, pyometra, orchitis, abscess, and septicemia. One hundred and forty rabbits with respiratory diseases from four rabbitries in São Paulo State, Brazil were evaluated for the detection of P. multocida in their nasal cavities. A total of twenty-nine animals were positive to P. multocida isolation, and 46 strains were selected and characterized by means of biochemical tests and PCR. P. multocida strains were tested for capsular type, virulence genes, and resistance profile. A total of 45.6% (21/46) of isolates belonged to capsular type A, and 54.34% (25/46) of the isolates were untypeable. None of the strains harboured toxA or pfhA genes. The frequency of the other twenty genes tested was variable, and the data generated was used to build a dendrogram, showing the relatedness of strains, which were clustered according to origin. Resistance revealed to be more common against sulfonamides and cotrimoxazole, followed by erythromycin, penicillin, and amoxicillin. PMID:22919347

  17. Distribution and sequence variations of selected virulence genes among group A streptococcal isolates from western Norway.

    PubMed

    Mylvaganam, H; Bjorvatn, B; Osland, A

    2000-11-01

    In order to compare the distribution of selected virulence genes among group A streptococci recovered from invasive disease and superficial infections, 42 isolates were screened for mga, speB, speA, ssa and ska, by PCR. The isolates were predominantly of the sequence types emm1, emm3 and emm6, but also included a few of the types emm22, emm28, emm75 and emm78. The phage-mediated speA seemed to be prevalent in emm types 1 and 3, and its distribution was not related to disease severity. The other genes were present in all isolates. The mga, speB and speA were further studied by sequence analysis. Although allotypic associations with invasiveness were not found, allelic specificity to the emm sequence type was observed. In addition, the mga sequences indicated two lineages, related to opacity factor production. A possible recombination between these two main divergent mga genes was observed in isolates of the types emm22 and emm75. A logical nomenclature of the alleles of mga and speB is suggested. PMID:11211972

  18. Antimicrobial resistance and virulence gene profiles in P. multocida strains isolated from cats

    PubMed Central

    Ferreira, Thais Sebastiana Porfida; Felizardo, Maria Roberta; de Gobbi, Debora Dirani Sena; Moreno, Marina; Moreno, Andrea Micke

    2015-01-01

    Cats are often described as carriers of Pasteurella multocida in their oral microbiota. This agent is thought to cause pneumonia, conjunctivitis, rhinitis, gingivostomatitis, abscess and osteonecrosis in cats. Human infection with P. multocida has been described in several cases affecting cat owners or after cat bites. In Brazil, the cat population is approximately 21 million animals and is increasing, but there are no studies of the presence of P. multocida in the feline population or of human cases of infection associated with cats. In this study, one hundred and ninety-one healthy cats from owners and shelters in São Paulo State, Brazil, were evaluated for the presence of P. multocida in their oral cavities. Twenty animals were positive for P. multocida , and forty-one strains were selected and characterized by means of biochemical tests and PCR. The P. multocida strains were tested for capsular type, virulence genes and resistance profile. A total of 75.6% (31/41) of isolates belonged to capsular type A, and 24.4% (10/41) of the isolates were untypeable. None of the strains harboured toxA, tbpA or pfhA genes. The frequencies of the other genes tested were variable, and the data generated were used to build a dendrogram showing the relatedness of strains, which were clustered according to origin. The most common resistance profile observed was against sulfizoxazole and trimethoprim-sulphamethoxazole. PMID:26221117

  19. Transcriptional modulation of enterotoxigenic Escherichia coli virulence genes in response to epithelial cell interactions.

    PubMed

    Kansal, Rita; Rasko, David A; Sahl, Jason W; Munson, George P; Roy, Koushik; Luo, Qingwei; Sheikh, Alaullah; Kuhne, Kurt J; Fleckenstein, James M

    2013-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of morbidity and mortality due to diarrheal illness in developing countries. There is currently no effective vaccine against these important pathogens. Because genes modulated by pathogen-host interactions potentially encode putative vaccine targets, we investigated changes in gene expression and surface morphology of ETEC upon interaction with intestinal epithelial cells in vitro. Pan-genome microarrays, quantitative reverse transcriptase PCR (qRT-PCR), and transcriptional reporter fusions of selected promoters were used to study changes in ETEC transcriptomes. Flow cytometry, immunofluorescence microscopy, and scanning electron microscopy were used to investigate alterations in surface antigen expression and morphology following pathogen-host interactions. Following host cell contact, genes for motility, adhesion, toxin production, immunodominant peptides, and key regulatory molecules, including cyclic AMP (cAMP) receptor protein (CRP) and c-di-GMP, were substantially modulated. These changes were accompanied by visible changes in both ETEC architecture and the expression of surface antigens, including a novel highly conserved adhesin molecule, EaeH. The studies reported here suggest that pathogen-host interactions are finely orchestrated by ETEC and are characterized by coordinated responses involving the sequential deployment of multiple virulence molecules. Elucidation of the molecular details of these interactions could highlight novel strategies for development of vaccines for these important pathogens. PMID:23115039

  20. PCR detection, characterization, and distribution of virulence genes in Aeromonas spp.

    PubMed

    Kingombe, C I; Huys, G; Tonolla, M; Albert, M J; Swings, J; Peduzzi, R; Jemmi, T

    1999-12-01

    We found 73.1 to 96.9% similarity by aligning the cytolytic enterotoxin gene of Aeromonas hydrophila SSU (AHCYTOEN; GenBank accession no. M84709) against aerolysin genes of Aeromonas spp., suggesting the possibility of selecting common primers. Identities of 90 to 100% were found among the eight selected primers from those genes. Amplicons obtained from Aeromonas sp. reference strains by using specific primers for each gene or a cocktail of primers were 232 bp long. Of hybridization group 4/5A/5B (HG4/5A/5B), HG9, and HG12 or non-Aeromonas reference strains, none were positive. PCR-restriction fragment length polymorphism (PCR-RFLP) with HpaII yielded three types of patterns. PCR-RFLP 1 contained two fragments (66 and 166 bp) found in HG6, HG7, HG8, HG10, and HG11. PCR-RFLP 2 contained three fragments (18, 66, and 148 bp) found in HG1, HG2, HG3, and HG11. PCR-RFLP 3, with four fragments (7, 20, 66, and 139 bp), was observed only in HG13. PCR-amplicon sequence analysis (PCR-ASA) revealed three main types. PCR-ASA 1 had 76 to 78% homology with AHCYTOEN and included strains in HG6, HG7, HG8, HG10, and HG11. PCR-ASA 2, with 82% homology, was found only in HG13. PCR-ASA 3, with 91 to 99% homology, contained the strains in HG1, HG2, HG3, and HG11. This method indicated that 37 (61%) of the 61 reference strains were positive with the primer cocktail master mixture, and 34 (58%) of 59 environmental isolates, 93 (66%) of 141 food isolates, and 100 (67%) of 150 clinical isolates from around the world carried a virulence factor when primers AHCF1 and AHCR1 were used. In conclusion, this PCR-based method is rapid, sensitive, and specific for the detection of virulence factors of Aeromonas spp. It overcomes the handicap of time-consuming biochemical and other DNA-based methods. PMID:10583979

  1. Effects of partial deletion of the wzm and wzt genes on lipopolysaccharide synthesis and virulence of Brucella abortus S19.

    PubMed

    Wang, Xiuran; Wang, Lin; Lu, Tiancheng; Yang, Yanling; Chen, Si; Zhang, Rui; Lang, Xulong; Yan, Guangmou; Qian, Jing; Wang, Xiaoxu; Meng, Lingyi; Wang, Xinglong

    2014-06-01

    Brucellosis is a worldwide human and animal infectious disease, and the effective methods of its control are immunisation of animals by vaccination and elimination. Brucella abortus S19 is one of the popular vaccines with virulence in the control of cattle Brucellosis. In the present study, allelic exchange plasmids of wzm and wzt genes and partial knockout mutants of wzm and wzt were constructed to evaluate the resulting difference in virulence of B. abortus S19. PCR analysis revealed that the target genes were knocked out. The mutants were rough mutants and they could be differentiated from natural infection by the Rose Bengal plate and standard agglutination tests. The molecular weights of lipopolysaccharides of the Δwzm and Δwzt mutants were clustered between 25 and 40 kDa, and 30 and 35 kDa separately, and were markedly different from those in B. abortus S19. The virulence of B. abortus Δwzm and Δwzt was decreased compared with that of B. abortus S19 in mice. All these results identified that there were several differences between the wzm and wzt genes on lipopolysaccharide synthesis and on the virulence of B. abortus. PMID:24718931

  2. Characterization of Pathogenic Escherichia coli in River Water by Simultaneous Detection and Sequencing of 14 Virulence Genes.

    PubMed

    Gomi, Ryota; Matsuda, Tomonari; Fujimori, Yuji; Harada, Hidenori; Matsui, Yasuto; Yoneda, Minoru

    2015-06-01

    The occurrence of pathogenic Escherichia coli in environmental waters increases the risk of waterborne disease. In this study, 14 virulence genes in 669 E. coli isolates (549 isolates from the Yamato River in Japan, and 30 isolates from each of the following hosts: humans, cows, pigs, and chickens) were simultaneously quantified by multiplex PCR and dual index sequencing to determine the prevalence of potentially pathogenic E. coli. Among the 549 environmental isolates, 64 (12%) were classified as extraintestinal pathogenic E. coli (ExPEC) while eight (1.5%) were classified as intestinal pathogenic E. coli (InPEC). Only ExPEC-associated genes were detected in human isolates and pig isolates, and 11 (37%) and five (17%) isolates were classified as ExPEC, respectively. A high proportion (63%) of cow isolates possessed Shiga-toxin genes (stx1 or stx2) and they were classified as Shiga toxin-producing E. coli (STEC) or enterohemorrhagic E. coli (EHEC). Among the chicken isolates, 14 (47%) possessed iutA, which is an ExPEC-associated gene. This method can determine the sequences as well as the presence/absence of virulence genes. By comparing the sequences of virulence genes, we determined that sequences of iutA were different among sources and may be useful for discriminating isolates, although further studies including larger numbers of isolates are needed. Results indicate that humans are a likely source of ExPEC strains in the river. PMID:25919763

  3. Predicted highly expressed genes in Nocardia farcinica and the implication to its primary metabolism and nocardial virulence

    SciTech Connect

    Wu, Gang; Nie, Lei; Zhang, Weiwen

    2006-02-23

    Nocardia farcinica is a gram positive, filamentous bacterium, and is considered an opportunistic pathogen. In this study, the highly expressed genes in N. farcinica were predicted using the codon adaptation index (CAI) as a numerical estimator of gene expressivity. Using ribosomal protein (RP) genes as references, the top {approx}10% of the genes were predicted to be the predicted highly expressed (PHX) genes in N. farcinica using a CAI cutoff of greater than 0.73. Consistent with early analysis in Streptomyces genomes, most of the PHX genes in N. farcinica were involved in various ''house-keeping'' functions important for cell growth. However, fifteen genes putatively involved in no cardial virulence were predicted as PHX in N. farcinica, which included genes encoding four Mce virulence proteins, cyclopropane fatty acid synthase which is involved in the modification of cell wall important for nocardia virulence, polyketide synthase PKS13 for mycolic acid synthesis and non-ribosomal peptide synthetase involved in biosynthesis of a mycobactin-related siderophore. In addition, multiple genes involved in defense against reactive oxygen species (ROS) produced by the phagocyte were predicted with high expressivity, which included alkylhydroperoxide reductase (ahpC), catalase (katG), superoxide dismutase (sodF), thioredoxin, thioredoxin reductase, glutathione peroxidase, and peptide methionine sulfoxide reductase, suggesting that combating against ROS was essential for survival of N. farcinica in host cells. The study also showed that the distribution of PHX genes in the N. farcinica circular chromosome was uneven, with more PHX genes located in the regions close to replication initiation site. The results provided the first approximates of global gene expression patterns in N. farcinica, which will be useful in guiding experimental design for further investigation.

  4. Identification of Spodoptera exigua nucleopolyhedrovirus genes involved in pathogenicity and virulence.

    PubMed

    Serrano, Amaya; Pijlman, Gorben P; Vlak, Just M; Muñoz, Delia; Williams, Trevor; Caballero, Primitivo

    2015-03-01

    Genome sequence analysis of seven different Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) isolates that differed in insecticidal phenotype permitted the identification of genes likely to be involved in pathogenicity of occlusion bodies (OBs) and speed of kill (virulence) of this virus: se4 (hoar), se5 (unknown function), se28 (unknown function), se76 (cg30), se87 (p26) and se129 (p26). To study the role of these genes experimentally on the insecticidal phenotype, a bacmid-based recombination system was constructed to delete selected genes from a SeMNPV isolate, VT-SeAL1, designated as SeBacAL1. All of the knockout viruses were viable and the repair viruses behaved like the wild-type control, vSeBacAL1. Deletion of se4, se5, se76 and se129 resulted in decreased OB pathogenicity compared to vSeBacAL1 OBs. In contrast, deletion of se87 did not significantly affect OB pathogenicity, whereas deletion of se28 resulted in significantly increased OB pathogenicity. Deletion of se4, se28, se76, se87 and se129 did not affect speed of kill compared to the bacmid vSeBacAL1, whereas speed of kill was significantly extended following deletion of se5 and in the wild-type isolate (SeAL1), compared to that of the bacmid. Therefore, biological assays confirmed that several genes had effects on virus insecticidal phenotype. Se5 is an attractive candidate gene for further studies, as it affects both biological parameters of this important biocontrol virus. PMID:25644432

  5. Molecular Analysis of Virulence Profiles and Shiga Toxin Genes in Food-Borne Shiga Toxin-Producing Escherichia coli▿

    PubMed Central

    Slanec, T.; Fruth, A.; Creuzburg, K.; Schmidt, H.

    2009-01-01

    In this study, 75 Shiga toxin (Stx)-producing Escherichia coli (STEC) strains originating from foods (n = 73) and drinking water (n = 2) were analyzed for their stx genotype, as well as for further chromosome-, phage-, and plasmid-encoded virulence factors. A broad spectrum of stx genes was detected. Fifty-three strains (70.7%) contained stx2 or stx2 variants, including stx2d, mucus-activatable stx2d, stx2e, and stx2g. Seven strains (9.3%) harbored stx1 or stx1c, and 15 strains (20.0%) carried both stx2 and/or stx2 variants and stx1 or stx1c. Beside stx, the most abundant accessory virulence markers in STEC food isolates were iha (57.3%), ehxA (40.0%), espP (28.0%), and subAB (25.3%). Only four strains were eae positive; three of these belonged to the serogroups O26, O103, and O157 and contained a typical enterohemorrhagic E. coli virulence spectrum. The results of this study show that a number of STEC strains that occur in foods appear to be pathogenic for humans, based on their virulence profiles. Analysis of stx subtypes and detection of additional virulence factors in eae-negative strains may help to better assess the risk of such strains for causing human infection. PMID:19684176

  6. Detection of Virulence Genes and Growth Potential in Listeria monocytogenes Strains Isolated from Ricotta Salata Cheese.

    PubMed

    Coroneo, Valentina; Carraro, Valentina; Aissani, Nadhem; Sanna, Adriana; Ruggeri, Alessandra; Succa, Sara; Meloni, Barbara; Pinna, Antonella; Sanna, Clara

    2016-01-01

    Ricotta Salata is a traditional ripened and salted whey cheese made in Sardinia (Italy) from sheep's milk. This product is catalogued as ready-to-eat food (RTE) since it is not submitted to any further treatment before consumption. Thus, foodborne pathogens, such as Listeria monocytogenes, can represent a health risk for consumers. In September 2012, the FDA ordered the recall of several batches of Ricotta Salata imported from Italy linked to 22 cases of Listeriosis in the United States. This study was aimed at evaluating the presence and virulence properties of L. monocytogenes in 87 samples of Ricotta Salata produced in Sardinia. The ability of this product to support its growth under foreseen packing and storing conditions was also evaluated in 252 samples. Of the 87 samples 17.2% were positive for the presence of L. monocytogenes with an average concentration of 2.2 log10 cfu/g. All virulence-associated genes (prfA, rrn, hlyA, actA, inlA, inlB, iap, plcA, and plcB) were detected in only one isolated strain. The Ricotta Salata samples were artificially inoculated and growth potential (δ) was assessed over a period of 3 mo. The value of the growth potential was always >0.5 log10 cfu/g under foreseen packing and storing conditions. This study indicates that Ricotta Salata supports the L. monocytogenes growth to levels that may present a serious risk to public health, even while stored at refrigeration temperatures. PMID:26666835

  7. Riemerella anatipestifer M949_1360 Gene Functions on the Lipopolysaccharide Biosynthesis and Bacterial Virulence

    PubMed Central

    Yu, Guijing; Wang, Xiaolan; Dou, Yafeng; Wang, Shaohui; Tian, Mingxing; Qi, Jingjing; Li, Tao; Ding, Chan; Wu, Yantao; Yu, Shengqing

    2016-01-01

    Riemerella anatipestifer causes septicemic and exudative diseases in poultry, resulting in major economic losses to the duck industry. Lipopolysaccharide (LPS), as an important virulence factor in Gram-negative bacteria, can be recognized by the immune system and plays a crucial role in many interactions between bacteria and animal hosts. In this study, we screened out one LPS defective mutant strain RAΔ604 from a random transposon mutant library of R. anatipestifer serotype 1 strain CH3, which did not react with the anti-CH3 LPS monoclonal antibody 1C1 in an indirect enzyme-linked immunosorbent assay. Southern blot analysis confirmed that the genome of RAΔ604 contained a single Tn4351 insert. Then, we found that the M949_1360 gene was inactivated by insertion of the transposon. Using silver staining and western blot analyses, we found that the LPS pattern of RAΔ604 was defective, as compared with that of the wild-type (WT) strain CH3. The mutant strain RAΔ604 showed no significant influence on bacterial growth, while bacterial counting and Live/dead BacLight Bacterial Viability staining revealed that bacterial viability was decreased, as compared with the WT strain CH3. In addition, the abilities of the mutant strain RAΔ604 to adhere and invade Vero cells were significantly decreased. Animal studies revealed that the virulence of the mutant strain RAΔ604 was decreased by more than 200-fold in a duck infection model, as compared with the WT strain CH3. Furthermore, immunization with live bacteria of the mutant strain RAΔ604 protected 87.5% ducks from challenge with R. anatipestifer serotype 1 strain WJ4, indicating that the mutant strain RAΔ604 could be used as a potential vaccine candidate in the future. PMID:27500736

  8. Riemerella anatipestifer M949_1360 Gene Functions on the Lipopolysaccharide Biosynthesis and Bacterial Virulence.

    PubMed

    Yu, Guijing; Wang, Xiaolan; Dou, Yafeng; Wang, Shaohui; Tian, Mingxing; Qi, Jingjing; Li, Tao; Ding, Chan; Wu, Yantao; Yu, Shengqing

    2016-01-01

    Riemerella anatipestifer causes septicemic and exudative diseases in poultry, resulting in major economic losses to the duck industry. Lipopolysaccharide (LPS), as an important virulence factor in Gram-negative bacteria, can be recognized by the immune system and plays a crucial role in many interactions between bacteria and animal hosts. In this study, we screened out one LPS defective mutant strain RAΔ604 from a random transposon mutant library of R. anatipestifer serotype 1 strain CH3, which did not react with the anti-CH3 LPS monoclonal antibody 1C1 in an indirect enzyme-linked immunosorbent assay. Southern blot analysis confirmed that the genome of RAΔ604 contained a single Tn4351 insert. Then, we found that the M949_1360 gene was inactivated by insertion of the transposon. Using silver staining and western blot analyses, we found that the LPS pattern of RAΔ604 was defective, as compared with that of the wild-type (WT) strain CH3. The mutant strain RAΔ604 showed no significant influence on bacterial growth, while bacterial counting and Live/dead BacLight Bacterial Viability staining revealed that bacterial viability was decreased, as compared with the WT strain CH3. In addition, the abilities of the mutant strain RAΔ604 to adhere and invade Vero cells were significantly decreased. Animal studies revealed that the virulence of the mutant strain RAΔ604 was decreased by more than 200-fold in a duck infection model, as compared with the WT strain CH3. Furthermore, immunization with live bacteria of the mutant strain RAΔ604 protected 87.5% ducks from challenge with R. anatipestifer serotype 1 strain WJ4, indicating that the mutant strain RAΔ604 could be used as a potential vaccine candidate in the future. PMID:27500736

  9. Mutations in the bvgA gene of Bordetella pertussis that differentially affect regulation of virulence determinants.

    PubMed Central

    Stibitz, S

    1994-01-01

    By using chemical mutagenesis and genetic mapping, a search was undertaken for previously undescribed genes which may be involved in different regulatory mechanisms governing different virulence factors of Bordetella pertussis. Previous studies have shown that the fha locus encoding filamentous hemagglutinin is regulated directly by the bvgAS two component system, while regulation of ptx encoding pertussis toxin is less direct or occurs by a different mechanism. With a strain containing gene fusions to each of these regulated loci, screening was done for mutations which were defective for ptx expression but maintained normal or nearly normal levels of fha expression. Two mutations which had such a phenotype and were also deficient in adenylate cyclase toxin/hemolysin expression were found and characterized more fully. Both were found to affect residues in the C-terminal portion of the BvgA response regulator protein, a domain which shares sequence similarity with a family of regulatory proteins including FixJ, UhpA, MalT, RcsA, RcsB, and LuxR. The residues affected are within a region which, by extension from studies on the LuxR protein, may be involved in transcriptional activation. Images PMID:8083156

  10. The Ifchit1 chitinase gene acts as a critical virulence factor in the insect pathogenic fungus Isaria fumosorosea.

    PubMed

    Huang, Zhen; Hao, Yongfen; Gao, Tianni; Huang, Yü; Ren, Shunxiang; Keyhani, Nemat O

    2016-06-01

    The filamentous fungus, Isaria fumosorosea, is a promising insect biological control agent. Chitinases have been implicated in targeting insect cuticle structures, with biotechnological potential in insect and fungal control. The I. fumosorosea chitinase gene, Ifchit1, was isolated and determined to encode a polypeptide of 423 amino acids (46 kDa, pI = 6.53), present as a single copy in the I. fumosorosea genome. A split marker transformation system was developed and used to construct an Ifchit1 gene knockout. The ΔIfchit1 strain displayed minor alterations in mycelial growth on diverse media at 26 °C compared to the wild type and complemented (ΔIfchit1::Ifchit1) strains; however, colony morphology was affected, and the mutant strain had a temperature sensitive phenotype (32 °C). Although sporulation was delayed for the mutant, overall conidial production was almost twice than that of wild type. Biochemical assays indicated decreased chitinase activity during growth in Czapek-Dox liquid media for the ΔIfchit1 strain. Insect bioassays using diamondback moth, Plutella xylostella, larvae revealed decreased infectivity, i.e., increased LC 50 (threefold to fourfold) and a significantly delayed time to death, LT 50 from 3 to 6 days, for the ΔIfchit1 strain compared to the wild type and complemented strains. These data indicate an important role for the Ifchit1 chitinase as a virulence factor in I. fumosorosea. PMID:26910039

  11. Isolation of a Fusarium solani mutant reduced in cutinase activity and virulence.

    PubMed Central

    Dantzig, A H; Zuckerman, S H; Andonov-Roland, M M

    1986-01-01

    Fusarium solani isolate T-8 produces an extracellular enzyme, cutinase, which catalyzes the degradation of cutin in the plant cuticle. Cutinase activity can be measured by the hydrolysis of either the artifical substrate, p-nitrophenylbutyrate (PNB), or radioactive cutin containing [14C]palmitic acid. In the present study, the culture filtrate contained basal levels of cutinase when T-8 was grown on acetate as a sole source of carbon. After mutagenesis, a cutinase-defective mutant (PNB-1) was identified by screening acetate-grown colonies for a loss of PNBase activity. The mutant possessed an 80 to 90% reduction in cutinase activity when grown for 3 to 5 days on acetate- or cutin-containing medium. Induction of cutinase by cutin or hydrolyzed cutin after growth on glucose medium was similarly reduced. Kinetic analysis indicated that cutinase from the mutant possessed a near normal Km for PNB and a 92% reduction in Vmax. Fluorography and Western blotting of 15% sodium dodecyl sulfate-polyacrylamide gels of separated 35S-labeled proteins from cutin induction medium revealed that in the mutant the 22,000-molecular-weight band corresponding to cutinase was reduced approximately 85%. The virulence of the mutant in a pea stem bioassay was decreased by 55% and was restored to nearly the parental level by the addition of purified cutinase. The data suggest that the mutant synthesizes reduced quantities of a functional and immunoreactive cutinase enzyme and that cutinase plays a critical role in infection. The PNB1 mutation may be within a regulatory gene or a promoter for cutinase. Images PMID:3782031

  12. Identification of a third msa gene in Renibacterium salmoninarum and the associated virulence phenotype.

    PubMed

    Rhodes, Linda D; Coady, Alison M; Deinhard, Rebecca K

    2004-11-01

    Renibacterium salmoninarum, a gram-positive diplococcobacillus, causes bacterial kidney disease, a condition that can result in extensive morbidity and mortality among stocks of fish. An immunodominant extracellular protein, called major soluble antigen (MSA), is encoded by two identical genes, msa1 and msa2. We found evidence for a third msa gene, msa3, which appears to be a duplication of msa1. Unlike msa1 and msa2, msa3 is not present in all isolates of R. salmoninarum. The presence of the msa3 locus does not affect total MSA production in culture conditions. In a challenge study, isolates possessing the msa3 locus reduced median survival in juvenile chinook salmon (Oncorhynchus tshawytscha) by an average of 34% at doses of < or =10(5) cells per fish compared to isolates lacking the msa3 locus. In contrast, no difference in survival was observed at the highest dose, 10(6) cells per fish. The phenotype associated with the msa3 locus and its nonuniform distribution may contribute to observed differences in virulence among R. salmoninarum isolates. PMID:15528510

  13. Identification of a Third msa Gene in Renibacterium salmoninarum and the Associated Virulence Phenotype

    PubMed Central

    Rhodes, Linda D.; Coady, Alison M.; Deinhard, Rebecca K.

    2004-01-01

    Renibacterium salmoninarum, a gram-positive diplococcobacillus, causes bacterial kidney disease, a condition that can result in extensive morbidity and mortality among stocks of fish. An immunodominant extracellular protein, called major soluble antigen (MSA), is encoded by two identical genes, msa1 and msa2. We found evidence for a third msa gene, msa3, which appears to be a duplication of msa1. Unlike msa1 and msa2, msa3 is not present in all isolates of R. salmoninarum. The presence of the msa3 locus does not affect total MSA production in culture conditions. In a challenge study, isolates possessing the msa3 locus reduced median survival in juvenile chinook salmon (Oncorhynchus tshawytscha) by an average of 34% at doses of ≤105 cells per fish compared to isolates lacking the msa3 locus. In contrast, no difference in survival was observed at the highest dose, 106 cells per fish. The phenotype associated with the msa3 locus and its nonuniform distribution may contribute to observed differences in virulence among R. salmoninarum isolates. PMID:15528510

  14. Cotransfer of antibiotic resistance genes and a hylEfm-containing virulence plasmid in Enterococcus faecium.

    PubMed

    Arias, Cesar A; Panesso, Diana; Singh, Kavindra V; Rice, Louis B; Murray, Barbara E

    2009-10-01

    The hyl(Efm) gene (encoding a putative hyaluronidase) has been found almost exclusively in Enterococcus faecium clinical isolates, and recently, it was shown to be on a plasmid which increased the ability of E. faecium strains to colonize the gastrointestinal tract. In this work, the results of mating experiments between hyl(Efm)-containing strains of E. faecium belonging to clonal cluster 17 and isolated in the United States and Colombia indicated that the hyl(Efm) gene of these strains is also carried on large plasmids (>145 kb) which we showed transfer readily from clinical strains to E. faecium hosts. Cotransfer of resistance to vancomycin and high-level resistance (HLR) to aminoglycosides (gentamicin and streptomycin) and erythromycin was also observed. The vanA gene cluster and gentamicin resistance determinants were genetically linked to hyl(Efm), whereas erm(B) and ant(6)-I, conferring macrolide-lincosamide-streptogramin B resistance and HLR to streptomycin, respectively, were not. A hyl(Efm)-positive transconjugant resulting from a mating between a well-characterized endocarditis strain [TX0016 (DO)] and a derivative of a fecal strain of E. faecium from a healthy human volunteer (TX1330RF) exhibited increased virulence in a mouse peritonitis model. These results indicate that E. faecium strains use a strategy which involves the recruitment into the same genetic unit of antibiotic resistance genes and determinants that increase the ability to produce disease. Our findings indicate that the acquisition of the hyl(Efm) plasmids may explain, at least in part, the recent successful emergence of some E. faecium strains as nosocomial pathogens. PMID:19667280

  15. Natural Variation in the VELVET Gene bcvel1 Affects Virulence and Light-Dependent Differentiation in Botrytis cinerea

    PubMed Central

    Schumacher, Julia; Pradier, Jean-Marc; Simon, Adeline; Traeger, Stefanie; Moraga, Javier; Collado, Isidro González; Viaud, Muriel; Tudzynski, Bettina

    2012-01-01

    Botrytis cinerea is an aggressive plant pathogen causing gray mold disease on various plant species. In this study, we identified the genetic origin for significantly differing phenotypes of the two sequenced B. cinerea isolates, B05.10 and T4, with regard to light-dependent differentiation, oxalic acid (OA) formation and virulence. By conducting a map-based cloning approach we identified a single nucleotide polymorphism (SNP) in an open reading frame encoding a VELVET gene (bcvel1). The SNP in isolate T4 results in a truncated protein that is predominantly found in the cytosol in contrast to the full-length protein of isolate B05.10 that accumulates in the nuclei. Deletion of the full-length gene in B05.10 resulted in the T4 phenotype, namely light-independent conidiation, loss of sclerotial development and oxalic acid production, and reduced virulence on several host plants. These findings indicate that the identified SNP represents a loss-of-function mutation of bcvel1. In accordance, the expression of the B05.10 copy in T4 rescued the wild-type/B05.10 phenotype. BcVEL1 is crucial for full virulence as deletion mutants are significantly hampered in killing and decomposing plant tissues. However, the production of the two best known secondary metabolites, the phytotoxins botcinic acid and botrydial, are not affected by the deletion of bcvel1 indicating that other factors are responsible for reduced virulence. Genome-wide expression analyses of B05.10- and Δbcvel1-infected plant material revealed a number of genes differentially expressed in the mutant: while several protease- encoding genes are under-expressed in Δbcvel1 compared to the wild type, the group of over-expressed genes is enriched for genes encoding sugar, amino acid and ammonium transporters and glycoside hydrolases reflecting the response of Δbcvel1 mutants to nutrient starvation conditions. PMID:23118899

  16. Identifying Virulence-Associated Genes Using Transcriptomic and Proteomic Association Analyses of the Plant Parasitic Nematode Bursaphelenchus mucronatus.

    PubMed

    Zhou, Lifeng; Chen, Fengmao; Pan, Hongyang; Ye, Jianren; Dong, Xuejiao; Li, Chunyan; Lin, Fengling

    2016-01-01

    Bursaphelenchus mucronatus (B. mucronatus) isolates that originate from different regions may vary in their virulence, but their virulence-associated genes and proteins are poorly understood. Thus, we conducted an integrated study coupling RNA-Seq and isobaric tags for relative and absolute quantitation (iTRAQ) to analyse transcriptomic and proteomic data of highly and weakly virulent B. mucronatus isolates during the pathogenic processes. Approximately 40,000 annotated unigenes and 5000 proteins were gained from the isolates. When we matched all of the proteins with their detected transcripts, a low correlation coefficient of r = 0.138 was found, indicating probable post-transcriptional gene regulation involved in the pathogenic processes. A functional analysis showed that five differentially expressed proteins which were all highly expressed in the highly virulent isolate were involved in the pathogenic processes of nematodes. Peroxiredoxin, fatty acid- and retinol-binding protein, and glutathione peroxidase relate to resistance against plant defence responses, while β-1,4-endoglucanase and expansin are associated with the breakdown of plant cell walls. Thus, the pathogenesis of B. mucronatus depends on its successful survival in host plants. Our work adds to the understanding of B. mucronatus' pathogenesis, and will aid in controlling B. mucronatus and other pinewood nematode species complexes in the future. PMID:27618012

  17. Impact of UV and Peracetic Acid Disinfection on the Prevalence of Virulence and Antimicrobial Resistance Genes in Uropathogenic Escherichia coli in Wastewater Effluents

    PubMed Central

    Biswal, Basanta Kumar; Khairallah, Ramzi; Bibi, Kareem; Mazza, Alberto; Gehr, Ronald; Masson, Luke

    2014-01-01

    Wastewater discharges may increase the populations of pathogens, including Escherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli (UPEC), the most abundant E. coli pathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766 E. coli isolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2 and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters. PMID:24727265

  18. Metagenomic analysis of virulence-associated and antibiotic resistance genes of microbes in rumen of Indian buffalo (Bubalus bubalis).

    PubMed

    Singh, K M; Jakhesara, S J; Koringa, P G; Rank, D N; Joshi, C G

    2012-10-10

    A major research goal in rumen microbial ecology is to understand the relationship between community composition and its function, particularly involved in fermentation process is of a potential interest. The buffalo rumen microbiota impacts human food safety as well as animal health. Although the bacteria of bovine rumen have been well characterized, techniques have been lacking to correlate total community structure with gene function. We applied 454 next generations sequencing technology to characterize general microbial diversity present in buffalo rumen metagenome and also identified the repertoire of microbial genes present, including genes associated with antibiotic resistance and bacterial virulence. Results suggest that over six percent (6.44%) of the sequences from our buffalo rumen pool sample could be categorized as virulence genes and genes associated with resistance to antibiotic and toxic compounds (RATC), which is a higher proportion of virulence genes reported from metagenome samples of chicken cecum (5.39%), cow rumen (4.43%) and Sargasso sea (2.95%). However, it was lower than the proportion found in cow milk (11.33%) cattle faeces (8.4%), Antarctic marine derived lake (8.45%), human fecal (7.7%) and farm soil (7.79%). The dynamic nature of metagenomic data, together with the large number of RATC classes observed in samples from widely different ecologies indicates that metagenomic data can be used to track potential targets and relative amounts of antibiotic resistance genes in individual animals. In addition, these data can be also used to generate antibiotic resistance gene profiles to facilitate an understanding of the ecology of the microbial communities in each habitat as well as the epidemiology of antibiotic resistant gene transport between and among habitats. PMID:22850272

  19. The Role of Mitogen-Activated Protein (MAP) Kinase Signaling Components in the Fungal Development, Stress Response and Virulence of the Fungal Cereal Pathogen Bipolaris sorokiniana

    PubMed Central

    Leng, Yueqiang; Zhong, Shaobin

    2015-01-01

    Mitogen-activated protein kinases (MAPKs) have been demonstrated to be involved in fungal development, sexual reproduction, pathogenicity and/or virulence in many filamentous plant pathogenic fungi, but genes for MAPKs in the fungal cereal pathogen Bipolaris sorokiniana have not been characterized. In this study, orthologues of three MAPK genes (CsSLT2, CsHOG1 and CsFUS3) and one MAPK kinase kinase (MAPKKK) gene (CsSTE11) were identified in the whole genome sequence of the B. sorokiniana isolate ND90Pr, and knockout mutants were generated for each of them. The ∆Csfus3 and ∆Csste11 mutants were defective in conidiation and formation of appressoria-like structures, showed hypersensitivity to oxidative stress and lost pathogenicity on non-wounded leaves of barley cv. Bowman. When inoculated on wounded leaves of Bowman, the ∆Csfus3 and ∆Csste11 mutants were reduced in virulence compared to the wild type. No morphological changes were observed in the ∆Cshog1 mutants in comparison with the wild type; however, they were slightly reduced in growth under oxidative stress and were hypersensitive to hyperosmotic stress. The ∆Cshog1 mutants formed normal appressoria-like structures but were reduced in virulence when inoculated on Bowman leaves. The ∆Csslt2 mutants produced more vegetative hyphae, had lighter pigmentation, were more sensitive to cell wall degrading enzymes, and were reduced in virulence on Bowman leaves, although they formed normal appressoria like the wild type. Root infection assays indicated that the ∆Cshog1 and ∆Csslt2 mutants were able to infect barley roots while the ∆Csfus3 and ∆Csste11 failed to cause any symptoms. However, no significant difference in virulence was observed for ∆Cshog1 mutants while ∆Csslt2 mutants showed significantly reduced virulence on barley roots in comparison with the wild type. Our results indicated that all of these MAPK and MAPKKK genes are involved in the regulation of fungal development under

  20. Mycobacterium tuberculosis Phosphate Uptake System Component PstA2 Is Not Required for Gene Regulation or Virulence

    PubMed Central

    Leistikow, Rachel L.; Ramakrishnan, Pavithra; Voskuil, Martin I.; McKinney, John D.

    2016-01-01

    The Mycobacterium tuberculosis genome encodes two complete high-affinity Pst phosphate-specific transporters. We previously demonstrated that a membrane-spanning component of one Pst system, PstA1, was essential both for M. tuberculosis virulence and for regulation of gene expression in response to external phosphate availability. To determine if the alternative Pst system is similarly required for virulence or gene regulation, we constructed a deletion of pstA2. Transcriptome analysis revealed that PstA2 is not required for regulation of gene expression in phosphate-replete growth conditions. PstA2 was also dispensable for replication and virulence of M. tuberculosis in a mouse aerosol infection model. However, a ΔpstA1ΔpstA2 double mutant was attenuated in mice lacking the cytokine interferon-gamma, suggesting that M. tuberculosis requires high-affinity phosphate transport to survive phosphate limitation encountered in the host. Surprisingly, ΔpstA2 bacteria were more resistant to acid stress in vitro. This phenotype is intrinsic to the alternative Pst transporter since a ΔpstS1 mutant exhibited similar acid resistance. Our data indicate that the two M. tuberculosis Pst transporters have distinct physiological functions, with the PstA1 transporter being specifically involved in phosphate sensing and gene regulation while the PstA2 transporter influences survival in acidic conditions. PMID:27557082

  1. The Agrobacterium tumefaciens virulence gene chvE is part of a putative ABC-type sugar transport operon.

    PubMed Central

    Kemner, J M; Liang, X; Nester, E W

    1997-01-01

    The Agrobacterium tumefaciens virulence determinant ChvE is a periplasmic binding protein which participates in chemotaxis and virulence gene induction in response to monosaccharides which occur in the plant wound environment. The region downstream of the A. tumefaciens chvE gene was cloned and sequenced for nucleotide and expression analysis. Three open reading frames transcribed in the same direction as chvE were revealed. The first two, together with chvE, encode putative proteins of a periplasmic binding protein-dependent sugar uptake system, or ABC-type (ATP binding cassette) transporter. The third open reading frame encodes a protein of unknown function. The deduced transporter gene products are related on the amino acid level to bacterial sugar transporters and probably function in glucose and galactose uptake. We have named these genes gguA, -B, and -C, for glucose galactose uptake. Mutations in gguA, gguB, or gguC do not affect virulence of A. tumefaciens on Kalanchoe diagremontiana; growth on 1 mM galactose, glucose, xylose, ribose, arabinose, fucose, or sucrose; or chemotaxis toward glucose, galactose, xylose, or arabinose. PMID:9079938

  2. Mycobacterium tuberculosis Phosphate Uptake System Component PstA2 Is Not Required for Gene Regulation or Virulence.

    PubMed

    Tischler, Anna D; Leistikow, Rachel L; Ramakrishnan, Pavithra; Voskuil, Martin I; McKinney, John D

    2016-01-01

    The Mycobacterium tuberculosis genome encodes two complete high-affinity Pst phosphate-specific transporters. We previously demonstrated that a membrane-spanning component of one Pst system, PstA1, was essential both for M. tuberculosis virulence and for regulation of gene expression in response to external phosphate availability. To determine if the alternative Pst system is similarly required for virulence or gene regulation, we constructed a deletion of pstA2. Transcriptome analysis revealed that PstA2 is not required for regulation of gene expression in phosphate-replete growth conditions. PstA2 was also dispensable for replication and virulence of M. tuberculosis in a mouse aerosol infection model. However, a ΔpstA1ΔpstA2 double mutant was attenuated in mice lacking the cytokine interferon-gamma, suggesting that M. tuberculosis requires high-affinity phosphate transport to survive phosphate limitation encountered in the host. Surprisingly, ΔpstA2 bacteria were more resistant to acid stress in vitro. This phenotype is intrinsic to the alternative Pst transporter since a ΔpstS1 mutant exhibited similar acid resistance. Our data indicate that the two M. tuberculosis Pst transporters have distinct physiological functions, with the PstA1 transporter being specifically involved in phosphate sensing and gene regulation while the PstA2 transporter influences survival in acidic conditions. PMID:27557082

  3. AlgU controls expression of virulence genes in Pseudomonas syringae pv. tomato DC3000

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant pathogenic bacteria are able to integrate information about their environment and adjust gene expression to provide adaptive functions. AlgU, an ECF sigma factor encoded by Pseudomonas syringae, controls expression of genes for alginate biosynthesis and is active while the bacteria are associa...

  4. AmrZ Beta-Sheet Residues Are Essential for DNA Binding and Transcriptional Control of Pseudomonas aeruginosa Virulence Genes ▿ †

    PubMed Central

    Waligora, Elizabeth A.; Ramsey, Deborah M.; Pryor, Edward E.; Lu, Haiping; Hollis, Thomas; Sloan, Gina P.; Deora, Rajendar; Wozniak, Daniel J.

    2010-01-01

    AmrZ is a putative ribbon-helix-helix (RHH) transcriptional regulator. RHH proteins utilize residues within the β-sheet for DNA binding, while the α-helices promote oligomerization. AmrZ is of interest due to its dual roles as a transcriptional activator and as a repressor, regulating genes encoding virulence factors associated with both chronic and acute Pseudomonas aeruginosa infection. In this study, cross-linking revealed that AmrZ forms oligomers in solution but that the amino terminus, containing an unordered region and a β-sheet, were not required for oligomerization. The first 12 unordered residues (extended amino terminus) contributed minimally to DNA binding. Mutagenesis of the AmrZ β-sheet demonstrated that residues 18, 20, and 22 were essential for DNA binding at both activation and repressor sites, suggesting that AmrZ utilizes a similar mechanism for binding to these sites. Mice infected with amrZ mutants exhibited reduced bacterial burden, morbidity, and mortality. Direct in vivo competition assays showed a 5-fold competitive advantage for the wild type over an isogenic amrZ mutant. Finally, the reduced infection phenotype of the amrZ-null strain was similar to that of a strain expressing a DNA-binding-deficient AmrZ variant, indicating that DNA binding and transcriptional regulation by AmrZ is responsible for the in vivo virulence defect. These recent infection data, along with previously identified AmrZ-regulated virulence factors, suggest the necessity of AmrZ transcriptional regulation for optimal virulence during acute infection. PMID:20709902

  5. Virulence-associated and antibiotic resistance genes of microbial populations in cattle feces analyzed using a metagenomic approach.

    PubMed

    Durso, Lisa M; Harhay, Gregory P; Bono, James L; Smith, Timothy P L

    2011-02-01

    The bovine fecal microbiota impacts human food safety as well as animal health. Although the bacteria of cattle feces have been well characterized using culture-based and culture-independent methods, techniques have been lacking to correlate total community composition with community function. We used high throughput sequencing of total DNA extracted from fecal material to characterize general community composition and examine the repertoire of microbial genes present in beef cattle feces, including genes associated with antibiotic resistance and bacterial virulence. Results suggest that traditional 16S sequencing using "universal" primers to generate full-length sequence may under represent Acitinobacteria and Proteobacteria. Over eight percent (8.4%) of the sequences from our beef cattle fecal pool sample could be categorized as virulence genes, including a suite of genes associated with resistance to antibiotic and toxic compounds (RATC). This is a higher proportion of virulence genes found in Sargasso sea, chicken cecum, and cow rumen samples, but comparable to the proportion found in Antarctic marine derived lake, human fecal, and farm soil samples. The quantitative nature of metagenomic data, combined with the large number of RATC classes represented in samples from widely different habitats indicates that metagenomic data can be used to track relative amounts of antibiotic resistance genes in individual animals over time. Consequently, these data can be used to generate sample-specific and temporal antibiotic resistance gene profiles to facilitate an understanding of the ecology of the microbial communities in each habitat as well as the epidemiology of antibiotic resistant gene transport between and among habitats. PMID:21167876

  6. Comparative analysis of agr groups and virulence genes among subclinical and clinical mastitis Staphylococcus aureus isolates from sheep flocks of the Northeast of Brazil.

    PubMed

    de Almeida, Lara M; de Almeida, Mayra Zilta P R B; de Mendonça, Carla L; Mamizuka, Elsa M

    2013-01-01

    Staphylococcus aureus is one of the most frequent mastitis causative agents in small ruminants. The expression of most virulence genes of S. aureus is controlled by an accessory gene regulator (agr) locus. This study aimed to ascertain the prevalence of the different agr groups and to evaluate the occurrence of encoding genes for cytotoxin, adhesins and toxins with superantigen activity in S. aureus isolates from milk of ewes with clinical and subclinical mastitis in sheep flocks raised for meat production The agr groups I and II were identified in both cases of clinical and subclinical mastitis. Neither the arg groups III and IV nor negative agr were found. The presence of cflA gene was identified in 100% of the isolates. The frequency of hla and lukE-D genes was high - 77.3 and 82.8%, respectively and all isolates from clinical mastitis presented these genes. The sec gene, either associated to tst gene or not, was identified only in isolates from subclinical mastitis. None of the following genes were identified: bbp, ebpS, cna, fnbB, icaA, icaD, bap, hlg, lukM-lukF-PV and se-a-b-d-e. PMID:24294245

  7. Pallial mucus of the oyster Crassostrea virginica regulates the expression of putative virulence genes of its pathogen Perkinsus marinus.

    PubMed

    Pales Espinosa, Emmanuelle; Corre, Erwan; Allam, Bassem

    2014-04-01

    Perkinsus marinus is a pathogen responsible for severe mortalities of the eastern oyster Crassostrea virginica along the East and Gulf coasts of the United States. When cultivated, the pathogenicity of this microorganism decreases significantly, hampering the study of its virulence factors. Recent investigations have shown a significant increase of the in vivo virulence of P. marinus exposed to oyster pallial mucus. In the current study, we investigated the effect of pallial mucus on P. marinus gene expression compared with cultures supplemented with oyster digestive extracts or with un-supplemented cultures. In parallel, parasite cells cultured under these three conditions were used to challenge oysters and to assess virulence in vivo. Perkinsus marinus mRNA sequencing was performed on an Illumina GAIIX sequencer and data were analysed using the Tuxedo RNAseq suite for mapping against the draft P. marinus genome and for differential expression analysis. Results showed that exposure of P. marinus to mucus induces significant regulation of nearly 3,600 transcripts, many of which are considered as putative virulence factors. Pallial mucus is suspected to mimic internal host conditions, thereby preparing the pathogen to overcome defense factors before invasion. This hypothesis is supported by significant regulation in several antioxidant proteins, heat shock proteins, protease inhibitors and proteasome subunits. In addition, mucus exposure induced the modulation of several genes known to affect immunity and apoptosis in vertebrates and invertebrates. Several proteases (proteolysis) and merozoite surface proteins (cell recognition) were also modulated. Overall, these results provide a baseline for targeted, in depth analysis of candidate virulence factors in P. marinus. PMID:24560916

  8. Leishmania parasites possess a platelet-activating factor acetylhydrolase important for virulence

    PubMed Central

    Pawlowic, Mattie C.; Zhang, Kai

    2012-01-01

    Leishmania parasites are intracellular protozoans capable of salvaging and remodeling lipids from the host. To understand the role of lipid metabolism in Leishmania virulence, it is necessary to characterize the enzymes involved in the uptake and turnover of phospholipids. This study focuses on a putative phospholipase A2 (PLA2)/platelet-activating factor acetylhydrolase (PAF-AH) in L. major. In mammals, PAF-AH is a subgroup of PLA2 catalyzing the hydrolysis/inactivation of platelet-activating factor (PAF), a potent mediator of many leukocyte functions. By immunofluorescence microscopy, L. major PLA2/PAF-AH is predominantly localized in the ER. While wild type L. major parasites are able to hydrolyze PAF, this activity is completely absent in the PLA2/PAF-AH-null mutants. Meanwhile, deletion of PLA2/PAF-AH had no significant effect on the turnover of common glycerophospholipids such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol. PLA2/PAF-AH is not required for the growth of L. major parasites in culture, or the production of GPI-anchored virulence factors. Nonetheless, it does play a key role in the mammalian host as the PLA2/PAF-AH null mutants exhibit attenuated virulence in BALB/c mice. In conclusion, these data suggest that Leishmania parasites possess a functional PAF-AH and the degradation of PAF or PAF-like lipids is an important step in infection. PMID:22954769

  9. Mutation of the Erwinia amylovora argD gene causes arginine auxotrophy, nonpathogenicity in apples, and reduced virulence in pears.

    PubMed

    Ramos, Laura S; Lehman, Brian L; Peter, Kari A; McNellis, Timothy W

    2014-11-01

    Fire blight is caused by Erwinia amylovora and is the most destructive bacterial disease of apples and pears worldwide. In this study, we found that E. amylovora argD(1000)::Tn5, an argD Tn5 transposon mutant that has the Tn5 transposon inserted after nucleotide 999 in the argD gene-coding region, was an arginine auxotroph that did not cause fire blight in apple and had reduced virulence in immature pear fruits. The E. amylovora argD gene encodes a predicted N-acetylornithine aminotransferase enzyme, which is involved in the production of the amino acid arginine. A plasmid-borne copy of the wild-type argD gene complemented both the nonpathogenic and the arginine auxotrophic phenotypes of the argD(1000)::Tn5 mutant. However, even when mixed with virulent E. amylovora cells and inoculated onto immature apple fruit, the argD(1000)::Tn5 mutant still failed to grow, while the virulent strain grew and caused disease. Furthermore, the pCR2.1-argD complementation plasmid was stably maintained in the argD(1000)::Tn5 mutant growing in host tissues without any antibiotic selection. Therefore, the pCR2.1-argD complementation plasmid could be useful for the expression of genes, markers, and reporters in E. amylovora growing in planta, without concern about losing the plasmid over time. The ArgD protein cannot be considered an E. amylovora virulence factor because the argD(1000)::Tn5 mutant was auxotrophic and had a primary metabolism defect. Nevertheless, these results are informative about the parasitic nature of the fire blight disease interaction, since they indicate that E. amylovora cannot obtain sufficient arginine from apple and pear fruit tissues or from apple vegetative tissues, either at the beginning of the infection process or after the infection has progressed to an advanced state. PMID:25172854

  10. Modulation of virulence genes by the two-component system PhoP-PhoQ in avian pathogenic Escherichia coli.

    PubMed

    Tu, Jian; Huang, Boyan; Zhang, Yu; Zhang, Yuxi; Xue, Ting; Li, Shaocan; Qi, Kezong

    2016-01-01

    Avian pathogenic Escherichia coli (APEC) infections are a very important problem in the poultry industry. PhoP-PhoQ is a two-component system that regulates virulence genes in APEC. In this study, we constructed strains that lacked the PhoP or PhoQ genes to assess regulation of APEC pathogenicity by the PhoP-PhoQ two-component system. The PhoP mutant strain AE18, PhoQ mutant strain AE19, and PhoP/PhoQ mutant strain AE20 were constructed by the Red homologous recombination method. Swim plates were used to evaluate the motility of the APEC strains, viable bacteria counting was used to assess adhesion and invasion of chick embryo fibroblasts, and Real-Time PCR was used to measure mRNA expression of virulence genes. We first confirmed that AE18, AE19, and AE20 were successfully constructed from the wild-type AE17 strain. AE18, AE19, and AE20 showed significant decreases in motility of 70.97%, 83.87%, and 37.1%, respectively, in comparison with AE17. Moreover, in comparison with AE17, AE18, AE19, and AE20 showed significant decreases of 63.11%, 65.42%, and 30.26%, respectively, in CEF cell adhesion, and significant decreases of 59.83%, 57.82%, and 37.90%, respectively, in CEF cell invasion. In comparison with AE17, transcript levels of sodA, polA, and iss were significantly decreased in AE18, while transcript levels of fimC and iss were significantly decreased in AE19. Our results demonstrate that deletion of PhoP or PhoQ inhibits invasion and adhesion of APEC to CEF cells and significantly reduces APEC virulence by regulating transcription of virulence genes. PMID:27096785

  11. Accessory Gene Regulator-1 Locus Is Essential for Virulence and Pathogenesis of Clostridium difficile

    PubMed Central

    Odo, Chioma; DuPont, Herbert L.

    2016-01-01

    ABSTRACT Clostridium difficile infection (CDI) is responsible for most of the definable cases of antibiotic- and hospital-associated diarrhea worldwide and is a frequent cause of morbidity and mortality in older patients. C. difficile, a multidrug-resistant anaerobic pathogen, causes disease by producing toxins A and B, which are controlled by an accessory gene regulator (Agr) quorum signaling system. Some C. difficile strains encode two Agr loci in their genomes, designated agr1 and agr2. The agr1 locus is present in all of the C. difficile strains sequenced to date, whereas the agr2 locus is present in a few strains. The functional roles of agr1 and agr2 in C. difficile toxin regulation and pathogenesis were unknown until now. Using allelic exchange, we deleted components of both agr loci and examined the mutants for toxin production and virulence. The results showed that the agr1 mutant cannot produce toxins A and B; toxin production can be restored by complementation with wild-type agr1. Furthermore, the agr1 mutant is able to colonize but unable to cause disease in a murine CDI model. These findings have profound implications for CDI treatment because we have uncovered a promising therapeutic target for the development of nonantibiotic drugs to treat this life-threatening emerging pathogen by targeting the toxins directly responsible for disease. PMID:27531912

  12. Highly frequent mutations in negative regulators of multiple virulence genes in group A streptococcal toxic shock syndrome isolates.

    PubMed

    Ikebe, Tadayoshi; Ato, Manabu; Matsumura, Takayuki; Hasegawa, Hideki; Sata, Tetsutaro; Kobayashi, Kazuo; Watanabe, Haruo

    2010-04-01

    Streptococcal toxic shock syndrome (STSS) is a severe invasive infection characterized by the sudden onset of shock and multiorgan failure; it has a high mortality rate. Although a number of studies have attempted to determine the crucial factors behind the onset of STSS, the responsible genes in group A Streptococcus have not been clarified. We previously reported that mutations of csrS/csrR genes, a two-component negative regulator system for multiple virulence genes of Streptococcus pyogenes, are found among the isolates from STSS patients. In the present study, mutations of another negative regulator, rgg, were also found in clinical isolates of STSS patients. The rgg mutants from STSS clinical isolates enhanced lethality and impaired various organs in the mouse models, similar to the csrS mutants, and precluded their being killed by human neutrophils, mainly due to an overproduction of SLO. When we assessed the mutation frequency of csrS, csrR, and rgg genes among S. pyogenes isolates from STSS (164 isolates) and non-invasive infections (59 isolates), 57.3% of the STSS isolates had mutations of one or more genes among three genes, while isolates from patients with non-invasive disease had significantly fewer mutations in these genes (1.7%). The results of the present study suggest that mutations in the negative regulators csrS/csrR and rgg of S. pyogenes are crucial factors in the pathogenesis of STSS, as they lead to the overproduction of multiple virulence factors. PMID:20368967

  13. Highly Frequent Mutations in Negative Regulators of Multiple Virulence Genes in Group A Streptococcal Toxic Shock Syndrome Isolates

    PubMed Central

    Ikebe, Tadayoshi; Ato, Manabu; Matsumura, Takayuki; Hasegawa, Hideki; Sata, Tetsutaro; Kobayashi, Kazuo; Watanabe, Haruo

    2010-01-01

    Streptococcal toxic shock syndrome (STSS) is a severe invasive infection characterized by the sudden onset of shock and multiorgan failure; it has a high mortality rate. Although a number of studies have attempted to determine the crucial factors behind the onset of STSS, the responsible genes in group A Streptococcus have not been clarified. We previously reported that mutations of csrS/csrR genes, a two-component negative regulator system for multiple virulence genes of Streptococcus pyogenes, are found among the isolates from STSS patients. In the present study, mutations of another negative regulator, rgg, were also found in clinical isolates of STSS patients. The rgg mutants from STSS clinical isolates enhanced lethality and impaired various organs in the mouse models, similar to the csrS mutants, and precluded their being killed by human neutrophils, mainly due to an overproduction of SLO. When we assessed the mutation frequency of csrS, csrR, and rgg genes among S. pyogenes isolates from STSS (164 isolates) and non-invasive infections (59 isolates), 57.3% of the STSS isolates had mutations of one or more genes among three genes, while isolates from patients with non-invasive disease had significantly fewer mutations in these genes (1.7%). The results of the present study suggest that mutations in the negative regulators csrS/csrR and rgg of S. pyogenes are crucial factors in the pathogenesis of STSS, as they lead to the overproduction of multiple virulence factors. PMID:20368967

  14. Bacterial Ortholog of Mammalian Translocator Protein (TSPO) with Virulence Regulating Activity

    PubMed Central

    Chapalain, Annelise; Chevalier, Sylvie; Orange, Nicole; Murillo, Laurence; Papadopoulos, Vassilios; Feuilloley, Marc G. J.

    2009-01-01

    The translocator protein (TSPO), previously designated as peripheral-type benzodiazepine receptor, is a protein mainly located in the outer mitochondrial membrane of eukaryotic cells. TSPO is implicated in major physiological functions and functionally associated with other proteins such as the voltage-dependent anionic channel, also designated as mitochondrial porin. Surprisingly, a TSPO-related protein was identified in the photosynthetic bacterium Rhodobacter sphaeroides but it was initially considered as a relict of evolution. In the present study we cloned a tspO gene in Pseudomonas fluorescens MF37, a non-photosynthetic eubacterium and we used bioinformatics tools to identify TSPO in the genome of 97 other bacteria. P. fluorescens TSPO was recognized by antibodies against mouse protein and by PK 11195, an artificial ligand of mitochondrial TSPO. As in eukaryotes, bacterial TSPO appears functionally organized as a dimer and the apparent Kd for PK 11195 is in the same range than for its eukaryotic counterpart. When P. fluorescens MF37 was treated with PK 11195 (10−5 M) adhesion to living or artificial surfaces and biofilm formation activity were increased. Conversely, the apoptotic potential of bacteria on eukaryotic cells was significantly reduced. This effect of PK11195 was abolished in a mutant of P. fluorescens MF37 deficient for its major outer membrane porin, OprF. The present results demonstrate the existence of a bacterial TSPO that shares common structural and functional characteristics with its mammalian counterpart. This protein, apparently involved in adhesion and virulence, reveals the existence of a possible new inter kingdom signalling system and suggests that the human microbiome should be involuntarily exposed to the evolutionary pressure of benzodiazepines and related molecules. This discovery also represents a promising opportunity for the development of alternative antibacterial strategies. PMID:19564920

  15. Bacterial ortholog of mammalian translocator protein (TSPO) with virulence regulating activity.

    PubMed

    Chapalain, Annelise; Chevalier, Sylvie; Orange, Nicole; Murillo, Laurence; Papadopoulos, Vassilios; Feuilloley, Marc G J

    2009-01-01

    The translocator protein (TSPO), previously designated as peripheral-type benzodiazepine receptor, is a protein mainly located in the outer mitochondrial membrane of eukaryotic cells. TSPO is implicated in major physiological functions and functionally associated with other proteins such as the voltage-dependent anionic channel, also designated as mitochondrial porin. Surprisingly, a TSPO-related protein was identified in the photosynthetic bacterium Rhodobacter sphaeroides but it was initially considered as a relict of evolution. In the present study we cloned a tspO gene in Pseudomonas fluorescens MF37, a non-photosynthetic eubacterium and we used bioinformatics tools to identify TSPO in the genome of 97 other bacteria. P. fluorescens TSPO was recognized by antibodies against mouse protein and by PK 11195, an artificial ligand of mitochondrial TSPO. As in eukaryotes, bacterial TSPO appears functionally organized as a dimer and the apparent Kd for PK 11195 is in the same range than for its eukaryotic counterpart. When P. fluorescens MF37 was treated with PK 11195 (10(-5) M) adhesion to living or artificial surfaces and biofilm formation activity were increased. Conversely, the apoptotic potential of bacteria on eukaryotic cells was significantly reduced. This effect of PK11195 was abolished in a mutant of P. fluorescens MF37 deficient for its major outer membrane porin, OprF. The present results demonstrate the existence of a bacterial TSPO that shares common structural and functional characteristics with its mammalian counterpart. This protein, apparently involved in adhesion and virulence, reveals the existence of a possible new inter kingdom signalling system and suggests that the human microbiome should be involuntarily exposed to the evolutionary pressure of benzodiazepines and related molecules. This discovery also represents a promising opportunity for the development of alternative antibacterial strategies. PMID:19564920

  16. Identification of Phakopsora pachyrhizi Candidate Effectors with Virulence Activity in a Distantly Related Pathosystem

    PubMed Central

    Kunjeti, Sridhara G.; Iyer, Geeta; Johnson, Ebony; Li, Eric; Broglie, Karen E.; Rauscher, Gilda; Rairdan, Gregory J.

    2016-01-01

    Phakopsora pachyrhizi is the causal agent of Asian Soybean Rust, a disease that causes enormous economic losses, most markedly in South America. P. pachyrhizi is a biotrophic pathogen that utilizes specialized feeding structures called haustoria to colonize its hosts. In rusts and other filamentous plant pathogens, haustoria have been shown to secrete effector proteins into their hosts to permit successful completion of their life cycle. We have constructed a cDNA library from P. pachyrhizi haustoria using paramagnetic bead-based methodology and have identified 35 P. pachyrhizi candidate effector (CE) genes from this library which are described here. In addition, we quantified the transcript expression pattern of six of these genes and show that two of these CEs are able to greatly increase the susceptibility of Nicotiana benthamiana to Phytophthora infestans. This strongly suggests that these genes play an important role in P. pachyrhizi virulence on its hosts. PMID:27014295

  17. The two-component system CpxR/A represses the expression of Salmonella virulence genes by affecting the stability of the transcriptional regulator HilD

    PubMed Central

    De la Cruz, Miguel A.; Pérez-Morales, Deyanira; Palacios, Irene J.; Fernández-Mora, Marcos; Calva, Edmundo; Bustamante, Víctor H.

    2015-01-01

    Salmonella enterica can cause intestinal or systemic infections in humans and animals mainly by the presence of pathogenicity islands SPI-1 and SPI-2, containing 39 and 44 genes, respectively. The AraC-like regulator HilD positively controls the expression of the SPI-1 genes, as well as many other Salmonella virulence genes including those located in SPI-2. A previous report indicates that the two-component system CpxR/A regulates the SPI-1 genes: the absence of the sensor kinase CpxA, but not the absence of its cognate response regulator CpxR, reduces their expression. The presence and absence of cell envelope stress activates kinase and phosphatase activities of CpxA, respectively, which in turn controls the level of phosphorylated CpxR (CpxR-P). In this work, we further define the mechanism for the CpxR/A-mediated regulation of SPI-1 genes. The negative effect exerted by the absence of CpxA on the expression of SPI-1 genes was counteracted by the absence of CpxR or by the absence of the two enzymes, AckA and Pta, which render acetyl-phosphate that phosphorylates CpxR. Furthermore, overexpression of the lipoprotein NlpE, which activates CpxA kinase activity on CpxR, or overexpression of CpxR, repressed the expression of SPI-1 genes. Thus, our results provide several lines of evidence strongly supporting that the absence of CpxA leads to the phosphorylation of CpxR via the AckA/Pta enzymes, which represses both the SPI-1 and SPI-2 genes. Additionally, we show that in the absence of the Lon protease, which degrades HilD, the CpxR-P-mediated repression of the SPI-1 genes is mostly lost; moreover, we demonstrate that CpxR-P negatively affects the stability of HilD and thus decreases the expression of HilD-target genes, such as hilD itself and hilA, located in SPI-1. Our data further expand the insight on the different regulatory pathways for gene expression involving CpxR/A and on the complex regulatory network governing virulence in Salmonella. PMID:26300871

  18. Activation of PrfA results in overexpression of virulence factors but does not rescue the pathogenicity of Listeria monocytogenes M7.

    PubMed

    Fang, Chun; Cao, Tong; Cheng, Changyong; Xia, Ye; Shan, Ying; Xin, Yongping; Guo, Ningning; Li, Xiaoliang; Song, Houhui; Fang, Weihuan

    2015-08-01

    Listeria monocytogenes encodes a transcriptional activator, PrfA, to positively regulate the expression of virulence factors. Several mutations in PrfA (PrfA*) have been found to contribute to increased regulatory activity. Here, we describe a strain, M7, containing a PrfA*(G145S) that activates expression of virulence factors but with low pathogenicity. To study this contradictory relationship, we exchanged the prfA genes between strains EGDe and M7 (designated EGDe-prfA(M7) and M7-prfA(EGDe)). The phospholipase B (PlcB) and listeriolysin O (LLO) activities were significantly upregulated in the strain EGDe-prfA(M7) (PrfA*). Constitutive activation of PrfA potentiated virulence of the pathogenic strain EGDe, shown as increased adhesion and invasion as well as enhanced cell-to-cell spread in cultured cell lines. However, the strain M7, though PrfA-activated, had significant defects in these virulence-related phenotypes and low pathogenicity in the murine infection model, as compared with EGDe or EGDe-PrfA(M7). To further uncover the possible mechanisms, we analysed abundance and distributions of InlA, InlB, LLO and ActA proteins, all regulated by PrfA, in EGDe, M7 and their prfA mutants. Western blotting showed that the PrfA-regulated genes of constitutively activated PrfA strains were overexpressed in vitro, while different distributions were observed. In contrast to the virulent strain EGDe-prfA(M7), the majority of InlB in M7 was detected in the culture supernatant and not on the bacterial surface. We suppose that the low virulence of strain M7 is due to its defects in infecting host cells, possibly as a result of failed anchorage on the bacterial cells of surface proteins like InlB, a major protein involved in adhesion and invasion of pathogenic L. monocytogenes strains. Further research is warranted to address why InlB detaches from the bacterial cells of this particular strain. PMID:26055558

  19. FliZ is a global regulatory protein affecting the expression of flagellar and virulence genes in individual Xenorhabdus nematophila bacterial cells.

    PubMed

    Jubelin, Grégory; Lanois, Anne; Severac, Dany; Rialle, Stéphanie; Longin, Cyrille; Gaudriault, Sophie; Givaudan, Alain

    2013-10-01

    Heterogeneity in the expression of various bacterial genes has been shown to result in the presence of individuals with different phenotypes within clonal bacterial populations. The genes specifying motility and flagellar functions are coordinately regulated and form a complex regulon, the flagellar regulon. Complex interplay has recently been demonstrated in the regulation of flagellar and virulence gene expression in many bacterial pathogens. We show here that FliZ, a DNA-binding protein, plays a key role in the insect pathogen, Xenorhabdus nematophila, affecting not only hemolysin production and virulence in insects, but efficient swimming motility. RNA-Seq analysis identified FliZ as a global regulatory protein controlling the expression of 278 Xenorhabdus genes either directly or indirectly. FliZ is required for the efficient expression of all flagellar genes, probably through its positive feedback loop, which controls expression of the flhDC operon, the master regulator of the flagellar circuit. FliZ also up- or downregulates the expression of numerous genes encoding non-flagellar proteins potentially involved in key steps of the Xenorhabdus lifecycle. Single-cell analysis revealed the bimodal expression of six identified markers of the FliZ regulon during exponential growth of the bacterial population. In addition, a combination of fluorescence-activated cell sorting and RT-qPCR quantification showed that this bimodality generated a mixed population of cells either expressing ("ON state") or not expressing ("OFF state") FliZ-dependent genes. Moreover, studies of a bacterial population exposed to a graded series of FliZ concentrations showed that FliZ functioned as a rheostat, controlling the rate of transition between the "OFF" and "ON" states in individuals. FliZ thus plays a key role in cell fate decisions, by transiently creating individuals with different potentials for motility and host interactions. PMID:24204316

  20. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity

    SciTech Connect

    Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M.

    2014-12-30

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His → Asp) and phosphoablative (His → Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (1) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (2) phosphorylation of H379 in PRD2 disrupts dimer formation. In conclusion, the AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.

  1. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity

    DOE PAGESBeta

    Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M.

    2014-12-30

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His → Asp) and phosphoablative (His → Ala) aminomore » acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (1) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (2) phosphorylation of H379 in PRD2 disrupts dimer formation. In conclusion, the AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.« less

  2. The LysR-Type Regulator QseA Regulates Both Characterized and Putative Virulence Genes in Enterohemorrhagic Escherichia coli O157:H7

    PubMed Central

    Kendall, Melissa M.; Rasko, David A.; Sperandio, Vanessa

    2010-01-01

    Summary Enterohemorrhagic E. coli (EHEC) colonizes the large intestine, causing attaching and effacing lesions (AE). Most of the genes involved in AE lesion formation are encoded within a chromosomal pathogenicity island termed the locus of enterocyte effacement (LEE). The LysR-type transcriptional factor QseA regulates the LEE by binding to the regulatory region of ler. We performed transcriptome analyses comparing WT EHEC and the qseA mutant to elucidate QseA’s role in gene regulation. During both growth phases, several genes carried in O-islands were activated by QseA, whereas genes involved in cell metabolism were repressed. During late-logarithmic growth, QseA activated expression of the LEE genes as well as non-LEE encoded effector proteins. We also performed electrophoretic mobility shift assays, competition experiments, and DNAseI footprints. The results demonstrated that QseA directly binds both the ler proximal and distal promoters, its own promoter, as well as promoters of genes encoded in EHEC-specific O-islands. Additionally, we mapped the transcriptional start site of qseA, leading to the identification of two promoter sequences. Taken together, these results indicate that QseA acts as a global regulator in EHEC, coordinating expression of virulence genes. PMID:20444105

  3. Evolution of the Multi-Domain Structures of Virulence Genes in the Human Malaria Parasite, Plasmodium falciparum

    PubMed Central

    Buckee, Caroline O.; Recker, Mario

    2012-01-01

    The var gene family of Plasmodium falciparum encodes the immunodominant variant surface antigens PfEMP1. These highly polymorphic proteins are important virulence factors that mediate cytoadhesion to a variety of host tissues, causing sequestration of parasitized red blood cells in vital organs, including the brain or placenta. Acquisition of variant-specific antibodies correlates with protection against severe malarial infections; however, understanding the relationship between gene expression and infection outcome is complicated by the modular genetic architectures of var genes that encode varying numbers of antigenic domains with differential binding specificities. By analyzing the domain architectures of fully sequenced var gene repertoires we reveal a significant, non-random association between the number of domains comprising a var gene and their sequence conservation. As such, var genes can be grouped into those that are short and diverse and genes that are long and conserved, suggesting gene length as an important characteristic in the classification of var genes. We then use an evolutionary framework to demonstrate how the same evolutionary forces acting on the level of an individual gene may have also shaped the parasite's gene repertoire. The observed associations between sequence conservation, gene architecture and repertoire structure can thus be explained by a trade-off between optimizing within-host fitness and minimizing between-host immune selection pressure. Our results demonstrate how simple evolutionary mechanisms can explain var gene structuring on multiple levels and have important implications for understanding the multifaceted epidemiology of P. falciparum malaria. PMID:22511852

  4. The Yersinia pestis V antigen is a regulatory protein necessary for Ca2(+)-dependent growth and maximal expression of low-Ca2+ response virulence genes.

    PubMed Central

    Price, S B; Cowan, C; Perry, R D; Straley, S C

    1991-01-01

    The low-Ca2+ response is a multicomponent virulence regulon of the human-pathogenic yersiniae in which 12 known virulence genes are coordinately regulated in response to environmental cues of temperature, Ca2+, and nucleotides such as ATP. Yersinial growth also is regulated, with full growth yield being permitted at 37 degrees C only if Ca2+ or a nucleotide is present. In this study, we constructed and characterized a mutant Yersinia pestis specifically defective in the gene encoding the V antigen, one of the virulence genes of the low-Ca2+ response. An in-frame internal deletion-insertion mutation was made by removing bases 51 through 645 of lcrV and inserting 61 new bases. The altered lcrV was introduced into the low-Ca2+ response plasmid in Y. pestis by allelic exchange, and the resulting mutant was characterized for its two-dimensional protein profiles, growth, expression of an operon fusion to another low-Ca2+ response virulence operon, and virulence in mice. The mutant had lost its Ca2+ and nucleotide requirement for growth, showed diminished expression of Ca2(+)-and nucleotide-regulated virulence genes, and was avirulent in mice. The mutation could be complemented with respect to the growth property by supplying native V antigen operon sequences in trans in high copy number (on pBR322). Partial complementation of the growth defect and almost complete complementation of the virulence defect were seen with a lower-copy-number complementing replicon (a pACYC184 derivative). The data are consistent with the interpretation that V antigen is bifunctional, with a role in regulating growth and expression of low-Ca2+ response virulence genes in addition to its putative role as a secreted virulence protein. Images PMID:1901573

  5. The Hos2 Histone Deacetylase Controls Ustilago maydis Virulence through Direct Regulation of Mating-Type Genes

    PubMed Central

    Elías-Villalobos, Alberto; Fernández-Álvarez, Alfonso; Moreno-Sánchez, Ismael; Helmlinger, Dominique; Ibeas, José I.

    2015-01-01

    Morphological changes are critical for host colonisation in plant pathogenic fungi. These changes occur at specific stages of their pathogenic cycle in response to environmental signals and are mediated by transcription factors, which act as master regulators. Histone deacetylases (HDACs) play crucial roles in regulating gene expression, for example by locally modulating the accessibility of chromatin to transcriptional regulators. It has been reported that HDACs play important roles in the virulence of plant fungi. However, the specific environment-sensing pathways that control fungal virulence via HDACs remain poorly characterised. Here we address this question using the maize pathogen Ustilago maydis. We find that the HDAC Hos2 is required for the dimorphic switch and pathogenic development in U. maydis. The deletion of hos2 abolishes the cAMP-dependent expression of mating type genes. Moreover, ChIP experiments detect Hos2 binding to the gene bodies of mating-type genes, which increases in proportion to their expression level following cAMP addition. These observations suggest that Hos2 acts as a downstream component of the cAMP-PKA pathway to control the expression of mating-type genes. Interestingly, we found that Clr3, another HDAC present in U. maydis, also contributes to the cAMP-dependent regulation of mating-type gene expression, demonstrating that Hos2 is not the only HDAC involved in this control system. Overall, our results provide new insights into the role of HDACs in fungal phytopathogenesis. PMID:26317403

  6. Transcriptomic analysis of the GCN5 gene reveals mechanisms of the epigenetic regulation of virulence and morphogenesis in Ustilago maydis.

    PubMed

    Martínez-Soto, Domingo; González-Prieto, Juan Manuel; Ruiz-Herrera, José

    2015-09-01

    Chromatin in the eukaryotic nucleus is highly organized in the form of nucleosomes where histones wrap DNA. This structure may be altered by some chemical modifications of histones, one of them, acetylation by histone acetyltransferases (HATs) that originates relaxation of the nucleosome structure, providing access to different transcription factors and other effectors. In this way, HATs regulate cellular processes including DNA replication, and gene transcription. Previously, we isolated Ustilago maydis mutants deficient in the GCN5 HAT that are avirulent, and grow constitutively as mycelium. In this work, we proceeded to identify the genes differentially regulated by GCN5, comparing the transcriptomes of the mutant and the wild type using microarrays, to analyse the epigenetic control of virulence and morphogenesis. We identified 1203 genes, 574 positively and 629 negatively regulated in the wild type. We found that genes belonging to different categories involved in pathogenesis were downregulated in the mutant, and that genes involved in mycelial growth were negatively regulated in the wild type, offering a working hypothesis on the epigenetic control of virulence and morphogenesis of U. maydis. Interestingly, several differentially regulated genes appeared in clusters, suggesting a common regulation. Some of these belonged to pathogenesis or secondary metabolism. PMID:26126523

  7. Isolation of Escherichia coli from piglets in South Korea with diarrhea and characteristics of the virulence genes.

    PubMed

    Kim, Yeong Ju; Kim, Ji Hee; Hur, Jin; Lee, John Hwa

    2010-01-01

    Escherichia coli was isolated from the feces of 122 piglets with diarrhea on 55 farms in Korea. The virulence genes of each isolate were characterized by polymerase chain reaction (PCR). Of the 562 isolates, 191 carried 1 or more of the virulence genes tested for in this study. Of the 191 isolates, 114 (60%) carried 1 or more of the genes for enterotoxigenic E. coli (ETEC) fimbriae F4, F5, F6, F18, and F41 and ETEC toxins LT, STa, and STb, 57 (30%) carried 1 or more of the genes for the Shiga-toxin-producing E. coli (STEC) toxins Stx1, Stx2, and Stx2e, and 21% and 37% carried the gene for enteropathogenic E. coli intimin and for enteroaggregative E. coli toxin, respectively. Collectively, our results indicate that other pathotypes of E. coli as well as ETEC can be strongly associated with diarrhea in piglets. In addition, detection of the genes for Stx1 and Stx2 indicates that pigs are reservoirs of human pathogenic STEC. PMID:20357961

  8. Identification of virulence factors genes in Escherichia coli isolates from women with urinary tract infection in Mexico.

    PubMed

    López-Banda, Daniela A; Carrillo-Casas, Erika M; Leyva-Leyva, Margarita; Orozco-Hoyuela, Gabriel; Manjarrez-Hernández, Ángel H; Arroyo-Escalante, Sara; Moncada-Barrón, David; Villanueva-Recillas, Silvia; Xicohtencatl-Cortes, Juan; Hernández-Castro, Rigoberto

    2014-01-01

    E coli isolates (108) from Mexican women, clinically diagnosed with urinary tract infection, were screened to identify virulence genes, phylogenetic groups, and antibiotic resistance. Isolates were identified by MicroScan4 system; additionally, the minimum inhibitory concentration (MIC) was assessed. The phylogenetic groups and 16 virulence genes encoding adhesins, toxins, siderophores, lipopolysaccharide (LPS), and invasins were identified by PCR. Phylogenetic groups distribution was as follows: B1 9.3%, A 30.6%, B2 55.6%, and D 4.6%. Virulence genes prevalence was ecp 98.1%, fimH 86.1%, traT 77.8%, sfa/focDE 74.1%, papC 62%, iutA 48.1%, fyuA 44.4%, focG 2.8%, sfaS 1.9%, hlyA 7.4%, cnf-1 6.5%, cdt-B 0.9%, cvaC 2.8%, ibeA 2.8%, and rfc 0.9%. Regarding antimicrobial resistance it was above 50% to ampicillin/sulbactam, ampicillin, piperacillin, trimethoprim/sulfamethoxazole, ciprofloxacin, and levofloxacin. Uropathogenic E. coli clustered mainly in the pathogenic phylogenetic group B2. The isolates showed a high presence of siderophores and adhesion genes and a low presence of genes encoding toxins. The high frequency of papC gene suggests that these isolates have the ability to colonize the kidneys. High resistance to drugs considered as first choice treatment such as trimethoprim/sulfamethoxazole and fluoroquinolones was consistently observed. PMID:24895634

  9. Identification of Virulence Factors Genes in Escherichia coli Isolates from Women with Urinary Tract Infection in Mexico

    PubMed Central

    López-Banda, Daniela A.; Carrillo-Casas, Erika M.; Orozco-Hoyuela, Gabriel; Manjarrez-Hernández, Ángel H.; Arroyo-Escalante, Sara; Moncada-Barrón, David; Villanueva-Recillas, Silvia; Xicohtencatl-Cortes, Juan; Hernández-Castro, Rigoberto

    2014-01-01

    E coli isolates (108) from Mexican women, clinically diagnosed with urinary tract infection, were screened to identify virulence genes, phylogenetic groups, and antibiotic resistance. Isolates were identified by MicroScan4 system; additionally, the minimum inhibitory concentration (MIC) was assessed. The phylogenetic groups and 16 virulence genes encoding adhesins, toxins, siderophores, lipopolysaccharide (LPS), and invasins were identified by PCR. Phylogenetic groups distribution was as follows: B1 9.3%, A 30.6%, B2 55.6%, and D 4.6%. Virulence genes prevalence was ecp 98.1%, fimH 86.1%, traT 77.8%, sfa/focDE 74.1%, papC 62%, iutA 48.1%, fyuA 44.4%, focG 2.8%, sfaS 1.9%, hlyA 7.4%, cnf-1 6.5%, cdt-B 0.9%, cvaC 2.8%, ibeA 2.8%, and rfc 0.9%. Regarding antimicrobial resistance it was above 50% to ampicillin/sulbactam, ampicillin, piperacillin, trimethoprim/sulfamethoxazole, ciprofloxacin, and levofloxacin. Uropathogenic E. coli clustered mainly in the pathogenic phylogenetic group B2. The isolates showed a high presence of siderophores and adhesion genes and a low presence of genes encoding toxins. The high frequency of papC gene suggests that these isolates have the ability to colonize the kidneys. High resistance to drugs considered as first choice treatment such as trimethoprim/sulfamethoxazole and fluoroquinolones was consistently observed. PMID:24895634

  10. Mitogen-activated protein kinases are associated with the regulation of physiological traits and virulence in Fusarium oxysporum f. sp. cubense.

    PubMed

    Ding, Zhaojian; Li, Minhui; Sun, Fei; Xi, Pinggen; Sun, Longhua; Zhang, Lianhui; Jiang, Zide

    2015-01-01

    Fusarium oxysporum f. sp. cubense (FOC) is an important soil-borne fungal pathogen causing devastating vascular wilt disease of banana plants and has become a great concern threatening banana production worldwide. However, little information is known about the molecular mechanisms that govern the expression of virulence determinants of this important fungal pathogen. In this study, we showed that null mutation of three mitogen-activated protein (MAP) kinase genes, designated as FoSlt2, FoMkk2 and FoBck1, respectively, led to substantial attenuation in fungal virulence on banana plants. Transcriptional analysis revealed that the MAP kinase signaling pathway plays a key role in regulation of the genes encoding production of chitin, peroxidase, beauvericin and fusaric acid. Biochemical analysis further confirmed the essential role of MAP kinases in modulating the production of fusaric acid, which was a crucial phytotoxin in accelerating development of Fusarium wilt symptoms in banana plants. Additionally, we found that the MAP kinase FoSlt2 was required for siderophore biosynthesis under iron-depletion conditions. Moreover, disruption of the MAP kinase genes resulted in abnormal hypha and increased sensitivity to Congo Red, Calcofluor White and H2O2. Taken together, these results depict the critical roles of MAP kinases in regulation of FOC physiology and virulence. PMID:25849862

  11. Mitogen-Activated Protein Kinases Are Associated with the Regulation of Physiological Traits and Virulence in Fusarium oxysporum f. sp. cubense

    PubMed Central

    Ding, Zhaojian; Li, Minhui; Sun, Fei; Xi, Pinggen; Sun, Longhua; Zhang, Lianhui; Jiang, Zide

    2015-01-01

    Fusarium oxysporum f. sp. cubense (FOC) is an important soil-borne fungal pathogen causing devastating vascular wilt disease of banana plants and has become a great concern threatening banana production worldwide. However, little information is known about the molecular mechanisms that govern the expression of virulence determinants of this important fungal pathogen. In this study, we showed that null mutation of three mitogen-activated protein (MAP) kinase genes, designated as FoSlt2, FoMkk2 and FoBck1, respectively, led to substantial attenuation in fungal virulence on banana plants. Transcriptional analysis revealed that the MAP kinase signaling pathway plays a key role in regulation of the genes encoding production of chitin, peroxidase, beauvericin and fusaric acid. Biochemical analysis further confirmed the essential role of MAP kinases in modulating the production of fusaric acid, which was a crucial phytotoxin in accelerating development of Fusarium wilt symptoms in banana plants. Additionally, we found that the MAP kinase FoSlt2 was required for siderophore biosynthesis under iron-depletion conditions. Moreover, disruption of the MAP kinase genes resulted in abnormal hypha and increased sensitivity to Congo Red, Calcofluor White and H2O2. Taken together, these results depict the critical roles of MAP kinases in regulation of FOC physiology and virulence. PMID:25849862

  12. Influence of Ecto-Nucleoside Triphosphate Diphosphohydrolase Activity on Trypanosoma cruzi Infectivity and Virulence

    PubMed Central

    Santos, Ramon F.; Pôssa, Marcela A. S.; Bastos, Matheus S.; Guedes, Paulo M. M.; Almeida, Márcia R.; DeMarco, Ricardo; Verjovski-Almeida, Sergio; Bahia, Maria T.; Fietto, Juliana L. R.

    2009-01-01

    Background The protozoan Trypanosoma cruzi is the causative agent of Chagas disease. There are no vaccines or effective treatment, especially in the chronic phase when most patients are diagnosed. There is a clear necessity to develop new drugs and strategies for the control and treatment of Chagas disease. Recent papers have suggested the ecto-nucleotidases (from CD39 family) from pathogenic agents as important virulence factors. In this study we evaluated the influence of Ecto-Nucleoside-Triphosphate-Diphosphohydrolase (Ecto-NTPDase) activity on infectivity and virulence of T. cruzi using both in vivo and in vitro models. Methodology/Principal Findings We followed Ecto-NTPDase activities of Y strain infective forms (trypomastigotes) obtained during sequential sub-cultivation in mammalian cells. ATPase/ADPase activity ratios of cell-derived trypomastigotes decreased 3- to 6-fold and infectivity was substantially reduced during sequential sub-cultivation. Surprisingly, at third to fourth passages most of the cell-derived trypomastigotes could not penetrate mammalian cells and had differentiated into amastigote-like parasites that exhibited 3- to 4-fold lower levels of Ecto-NTPDase activities. To evidence the participation of T. cruzi Ecto-NTPDase1 in the infective process, we evaluated the effect of known Ecto-ATPDase inhibitors (ARL 67156, Gadolinium and Suramin), or anti-NTPDase-1 polyclonal antiserum on ATPase and ADPase hydrolytic activities in recombinant T. cruzi NTPDase-1 and in live trypomastigotes. All tests showed a partial inhibition of Ecto-ATPDase activities and a marked inhibition of trypomastigotes infectivity. Mice infections with Ecto-NTPDase-inhibited trypomastigotes produced lower levels of parasitemia and higher host survival than with non-inhibited control parasites. Conclusions/Significance Our results suggest that Ecto-ATPDases act as facilitators of infection and virulence in vitro and in vivo and emerge as target candidates in chemotherapy

  13. Role for the Burkholderia pseudomallei type three secretion system cluster 1 bpscN gene in virulence.

    PubMed

    D'Cruze, Tanya; Gong, Lan; Treerat, Puthayalai; Ramm, Georg; Boyce, John D; Prescott, Mark; Adler, Ben; Devenish, Rodney J

    2011-09-01

    Burkholderia pseudomallei, the causal agent of melioidosis, employs a number of virulence factors during its infection of mammalian cells. One such factor is the type three secretion system (TTSS), which is proposed to mediate the transport and secretion of bacterial effector molecules directly into host cells. The B. pseudomallei genome contains three TTSS gene clusters (designated TTSS1, TTSS2, and TTSS3). Previous research has indicated that neither TTSS1 nor TTSS2 is involved in B. pseudomallei virulence in a hamster infection model. We have characterized a B. pseudomallei mutant lacking expression of the predicted TTSS1 ATPase encoded by bpscN. This mutant was significantly attenuated for virulence in a respiratory melioidosis mouse model of infection. In addition, analyses in vitro showed diminished survival and replication in RAW264.7 cells and an increased level of colocalization with the autophagy marker protein LC3 but an unhindered ability to escape from phagosomes. Taken together, these data provide evidence that the TTSS1 bpscN gene product plays an important role in the intracellular survival of B. pseudomallei and the pathogenesis of murine infection. PMID:21768285

  14. Correlation between In Vivo Biofilm Formation and Virulence Gene Expression in Escherichia coli O104:H4

    PubMed Central

    Safadi, Rim Al; Abu-Ali, Galeb S.; Sloup, Rudolph E.; Rudrik, James T.; Waters, Christopher M.; Eaton, Kathryn A.; Manning, Shannon D.

    2012-01-01

    The emergence of novel pathogens poses a major public health threat causing widespread epidemics in susceptible populations. The Escherichia coli O104:H4 strain implicated in a 2011 outbreak in northern Germany caused the highest frequency of hemolytic uremic syndrome (HUS) and death ever recorded in a single E. coli outbreak. Therefore, it has been suggested that this strain is more virulent than other pathogenic E. coli (e.g., E. coli O157:H7). The E. coli O104:H4 outbreak strain possesses multiple virulence factors from both Shiga toxin (Stx)-producing E. coli (STEC) and enteroaggregative E. coli (EAEC), though the mechanism of pathogenesis is not known. Here, we demonstrate that E. coli O104:H4 produces a stable biofilm in vitro and that in vivo virulence gene expression is highest when E. coli O104:H4 overexpresses genes required for aggregation and exopolysaccharide production, a characteristic of bacterial cells residing within an established biofilm. Interrupting exopolysaccharide production and biofilm formation may therefore represent effective strategies for combating future E. coli O104:H4 infections. PMID:22848550

  15. Comparative genomics of the family Vibrionaceae reveals the wide distribution of genes encoding virulence-associated proteins

    PubMed Central

    2010-01-01

    Background Species of the family Vibrionaceae are ubiquitous in marine environments. Several of these species are important pathogens of humans and marine species. Evidence indicates that genetic exchange plays an important role in the emergence of new pathogenic strains within this family. Data from the sequenced genomes of strains in this family could show how the genes encoded by all these strains, known as the pangenome, are distributed. Information about the core, accessory and panproteome of this family can show how, for example, genes encoding virulence-associated proteins are distributed and help us understand how virulence emerges. Results We deduced the complete set of orthologs for eleven strains from this family. The core proteome consists of 1,882 orthologous groups, which is 28% of the 6,629 orthologous groups in this family. There were 4,411 accessory orthologous groups (i.e., proteins that occurred in from 2 to 10 proteomes) and 5,584 unique proteins (encoded once on only one of the eleven genomes). Proteins that have been associated with virulence in V. cholerae were widely distributed across the eleven genomes, but the majority was found only on the genomes of the two V. cholerae strains examined. Conclusions The proteomes are reflective of the differing evolutionary trajectories followed by different strains to similar phenotypes. The composition of the proteomes supports the notion that genetic exchange among species of the Vibrionaceae is widespread and that this exchange aids these species in adapting to their environments. PMID:20537180

  16. Beyond the chromosome: the prevalence of unique extra-chromosomal bacteriophages with integrated virulence genes in pathogenic Staphylococcus aureus.

    PubMed

    Utter, Bryan; Deutsch, Douglas R; Schuch, Raymond; Winer, Benjamin Y; Verratti, Kathleen; Bishop-Lilly, Kim; Sozhamannan, Shanmuga; Fischetti, Vincent A

    2014-01-01

    In Staphylococcus aureus, the disease impact of chromosomally integrated prophages on virulence is well described. However, the existence of extra-chromosomal prophages, both plasmidial and episomal, remains obscure. Despite the recent explosion in bacterial and bacteriophage genomic sequencing, studies have failed to specifically focus on extra-chromosomal elements. We selectively enriched and sequenced extra-chromosomal DNA from S. aureus isolates using Roche-454 technology and uncovered evidence for the widespread distribution of multiple extra-chromosomal prophages (ExPΦs) throughout both antibiotic-sensitive and -resistant strains. We completely sequenced one such element comprised of a 43.8 kbp, circular ExPΦ (designated ФBU01) from a vancomycin-intermediate S. aureus (VISA) strain. Assembly and annotation of ФBU01 revealed a number of putative virulence determinants encoded within a bacteriophage immune evasion cluster (IEC). Our identification of several potential ExPΦs and mobile genetic elements (MGEs) also revealed numerous putative virulence factors and antibiotic resistance genes. We describe here a previously unidentified level of genetic diversity of stealth extra-chromosomal elements in S. aureus, including phages with a larger presence outside the chromosome that likely play a prominent role in pathogenesis and strain diversity driven by horizontal gene transfer (HGT). PMID:24963913

  17. Phage-mediated Dispersal of Biofilm and Distribution of Bacterial Virulence Genes Is Induced by Quorum Sensing

    PubMed Central

    Rossmann, Friederike S.; Racek, Tomas; Wobser, Dominique; Puchalka, Jacek; Rabener, Elaine M.; Reiger, Matthias; Hendrickx, Antoni P. A.; Diederich, Ann-Kristin; Jung, Kirsten; Klein, Christoph; Huebner, Johannes

    2015-01-01

    The microbiome and the phage meta-genome within the human gut are influenced by antibiotic treatments. Identifying a novel mechanism, here we demonstrate that bacteria use the universal communication molecule AI-2 to induce virulence genes and transfer them via phage release. High concentrations (i.e. 100 μM) of AI-2 promote dispersal of bacteria from already established biofilms, and is associated with release of phages capable of infecting other bacteria. Enterococcus faecalis V583ΔABC harbours 7 prophages in its genome, and a mutant deficient in one of these prophages (i.e. prophage 5) showed a greatly reduced dispersal of biofilm. Infection of a probiotic E. faecalis strain without lytic prophages with prophage 5 resulted in increased biofilm formation and also in biofilm dispersal upon induction with AI-2. Infection of the probiotic E. faecalis strain with phage-containing supernatants released through AI-2 from E. faecalis V583ΔABC resulted in a strong increase in pathogenicity of this strain. The polylysogenic probiotic strain was also more virulent in a mouse sepsis model and a rat endocarditis model. Both AI-2 and ciprofloxacin lead to phage release, indicating that conditions in the gastrointestinal tract of hospitalized patients treated with antibiotics might lead to distribution of virulence genes to apathogenic enterococci and possibly also to other commensals or even to beneficial probiotic strains. PMID:25706310

  18. Virulence Genes among Enterococcus faecalis and Enterococcus faecium Isolated from Coastal Beaches and Human and Nonhuman Sources in Southern California and Puerto Rico

    PubMed Central

    Talavera, Ginamary Negrón; Hernández, Luis A. Ríos; Ambrose, Richard F.; Jay, Jennifer A.

    2016-01-01

    Most Enterococcus faecalis and E. faecium are harmless to humans; however, strains harboring virulence genes, including esp, gelE, cylA, asa1, and hyl, have been associated with human infections. E. faecalis and E. faecium are present in beach waters worldwide, yet little is known about their virulence potential. Here, multiplex PCR was used to compare the distribution of virulence genes among E. faecalis and E. faecium isolated from beaches in Southern California and Puerto Rico to isolates from potential sources including humans, animals, birds, and plants. All five virulence genes were found in E. faecalis and E. faecium from beach water, mostly among E. faecalis. gelE was the most common among isolates from all source types. There was a lower incidence of asa1, esp, cylA, and hyl genes among isolates from beach water, sewage, septage, urban runoff, sea wrack, and eelgrass as compared to human isolates, indicating that virulent strains of E. faecalis and E. faecium may not be widely disseminated at beaches. A higher frequency of asa1 and esp among E. faecalis from dogs and of asa1 among birds (mostly seagull) suggests that further studies on the distribution and virulence potential of strains carrying these genes may be warranted. PMID:27144029

  19. Virulence Genes among Enterococcus faecalis and Enterococcus faecium Isolated from Coastal Beaches and Human and Nonhuman Sources in Southern California and Puerto Rico.

    PubMed

    Ferguson, Donna M; Talavera, Ginamary Negrón; Hernández, Luis A Ríos; Weisberg, Stephen B; Ambrose, Richard F; Jay, Jennifer A

    2016-01-01

    Most Enterococcus faecalis and E. faecium are harmless to humans; however, strains harboring virulence genes, including esp, gelE, cylA, asa1, and hyl, have been associated with human infections. E. faecalis and E. faecium are present in beach waters worldwide, yet little is known about their virulence potential. Here, multiplex PCR was used to compare the distribution of virulence genes among E. faecalis and E. faecium isolated from beaches in Southern California and Puerto Rico to isolates from potential sources including humans, animals, birds, and plants. All five virulence genes were found in E. faecalis and E. faecium from beach water, mostly among E. faecalis. gelE was the most common among isolates from all source types. There was a lower incidence of asa1, esp, cylA, and hyl genes among isolates from beach water, sewage, septage, urban runoff, sea wrack, and eelgrass as compared to human isolates, indicating that virulent strains of E. faecalis and E. faecium may not be widely disseminated at beaches. A higher frequency of asa1 and esp among E. faecalis from dogs and of asa1 among birds (mostly seagull) suggests that further studies on the distribution and virulence potential of strains carrying these genes may be warranted. PMID:27144029

  20. In Candida parapsilosis the ATC1 Gene Encodes for an Acid Trehalase Involved in Trehalose Hydrolysis, Stress Resistance and Virulence

    PubMed Central

    Sánchez-Fresneda, Ruth; Martínez-Esparza, María; Maicas, Sergi; Argüelles, Juan-Carlos; Valentín, Eulogio

    2014-01-01

    An ORF named CPAR2-208980 on contig 005809 was identified by screening a Candida parapsilosis genome data base. Its 67% identity with the acid trehalase sequence from C. albicans (ATC1) led us to designate it CpATC1. Homozygous mutants that lack acid trehalase activity were constructed by gene disruption at the two CpATC1 chromosomal alleles. Phenotypic characterization showed that atc1Δ null cells were unable to grow on exogenous trehalose as carbon source, and also displayed higher resistance to environmental challenges, such as saline exposure (1.2 M NaCl), heat shock (42°C) and both mild and severe oxidative stress (5 and 50 mM H2O2). Significant amounts of intracellular trehalose were specifically stored in response to the thermal upshift in both wild type and mutant strains. Analysis of their antioxidant activities revealed that catalase was only triggered in response to heat shock in atc1Δ cells, whereas glutathione reductase was activated upon mild oxidative stress in wild type and reintegrant strains, and in response to the whole set of stress treatments in the homozygous mutant. Furthermore, yeast cells with double CpATC1 deletion were significantly attenuated in non-mammalian infection models, suggesting that CpATC1 is required for the pathobiology of the fungus. Our results demonstrate the involvement of CpAtc1 protein in the physiological hydrolysis of external trehalose in C. parapsilosis, where it also plays a major role in stress resistance and virulence. PMID:24922533

  1. Virulence gene profiling and pathogenicity characterization of non-typhoidal Salmonella accounted for invasive disease in humans.

    PubMed

    Suez, Jotham; Porwollik, Steffen; Dagan, Amir; Marzel, Alex; Schorr, Yosef Ilan; Desai, Prerak T; Agmon, Vered; McClelland, Michael; Rahav, Galia; Gal-Mor, Ohad

    2013-01-01

    Human infection with non-typhoidal Salmonella serovars (NTS) infrequently causes invasive systemic disease and bacteremia. To understand better the nature of invasive NTS (iNTS), we studied the gene content and the pathogenicity of bacteremic strains from twelve serovars (Typhimurium, Enteritidis, Choleraesuis, Dublin, Virchow, Newport, Bredeney, Heidelberg, Montevideo, Schwarzengrund, 9,12:l,v:- and Hadar). Comparative genomic hybridization using a Salmonella enterica microarray revealed a core of 3233 genes present in all of the iNTS strains, which include the Salmonella pathogenicity islands 1-5, 9, 13, 14; five fimbrial operons (bcf, csg, stb, sth, sti); three colonization factors (misL, bapA, sinH); and the invasion gene, pagN. In the iNTS variable genome, we identified 16 novel genomic islets; various NTS virulence factors; and six typhoid-associated virulence genes (tcfA, cdtB, hlyE, taiA, STY1413, STY1360), displaying a wider distribution among NTS than was previously known. Characterization of the bacteremic strains in C3H/HeN mice showed clear differences in disease manifestation. Previously unreported characterization of serovars Schwarzengrund, 9,12:l,v:-, Bredeney and Virchow in the mouse model showed low ability to elicit systemic disease, but a profound and elongated shedding of serovars Schwarzengrund and 9,12:l,v:- (as well as Enteritidis and Heidelberg) due to chronic infection of the mouse. Phenotypic comparison in macrophages and epithelial cell lines demonstrated a remarkable intra-serovar variation, but also showed that S. Typhimurium bacteremic strains tend to present lower intracellular growth than gastroenteritis isolates. Collectively, our data demonstrated a common core of virulence genes, which might be required for invasive salmonellosis, but also an impressive degree of genetic and phenotypic heterogeneity, highlighting that bacteremia is a complex phenotype, which cannot be attributed merely to an enhanced invasion or intracellular

  2. Whole-Genome Sequence Analysis and Genome-Wide Virulence Gene Identification of Riemerella anatipestifer Strain Yb2

    PubMed Central

    Wang, Xiaolan; Ding, Chan; Wang, Shaohui; Han, Xiangan

    2015-01-01

    Riemerella anatipestifer is a well-described pathogen of waterfowl and other avian species that can cause septicemic and exudative diseases. In this study, we sequenced the complete genome of R. anatipestifer strain Yb2 and analyzed it against the published genomic sequences of R. anatipestifer strains DSM15868, RA-GD, RA-CH-1, and RA-CH-2. The Yb2 genome contains one circular chromosome of 2,184,066 bp with a 35.73% GC content and no plasmid. The genome has 2,021 open reading frames that occupy 90.88% of the genome. A comparative genomic analysis revealed that genome organization is highly conserved among R. anatipestifer strains, except for four inversions of a sequence segment in Yb2. A phylogenetic analysis found that the closest neighbor of Yb2 is RA-GD. Furthermore, we constructed a library of 3,175 mutants by random transposon mutagenesis, and 100 mutants exhibiting more than 100-fold-attenuated virulence were obtained by animal screening experiments. Southern blot analysis and genetic characterization of the mutants led to the identification of 49 virulence genes. Of these, 25 encode cytoplasmic proteins, 6 encode cytoplasmic membrane proteins, 4 encode outer membrane proteins, and the subcellular localization of the remaining 14 gene products is unknown. The functional classification of orthologous-group clusters revealed that 16 genes are associated with metabolism, 6 are associated with cellular processing and signaling, and 4 are associated with information storage and processing. The functions of the other 23 genes are poorly characterized or unknown. This genome-wide study identified genes important to the virulence of R. anatipestifer. PMID:26002892

  3. An effector gene hopA1 influences on virulence, host specificity, and lifestyles of Pseudomonas cichorii JBC1.

    PubMed

    Hung, Nguyen Bao; Ramkumar, Gandhimani; Lee, Yong Hoon

    2014-10-01

    Pseudomonas cichorii is a devastating pathogen which infects a wide range of ornamental as well as agricultural crops worldwide. Characterization of virulence genes helps to understand pathogens' infection processes, which may lead to development of resistant crops. For functional validation of novel genes, we re-constructed pUCP18 vector with λ phage red operon and sacB gene (pUCP18_RedS), which simplified conventional marker exchange system. The effector gene hopA1 of P. cichorii JBC1 was marker exchanged with PCR product of kanamycin gene flanked by hopA1 flanking region using pUCP18_RedS. The virulence and internal growth of hopA1 defective mutant (ΔhopA1) in tomato seedlings was significantly reduced compared to wild type (WT) and hopA1 complemented strain (ΔhopA1::phopA1). The analysis on role of hopA1 in host range revealed that P. cichorii was hopA1-dependent to infect cabbage, tomato, soybean, hot pepper, and cucumber, but not melon and eggplant. Despite the similarity in growth pattern, the biofilm formation and swarming motility of ΔhopA1 were significantly reduced compared to WT and ΔhopA1::phopA1. The results of this study indicate that hopA1 plays a significant role not only in virulence and host specificity, but also motility and biofilm formation of P. cichorii which may influence the infection processes. PMID:25127676

  4. The thiG Gene Is Required for Full Virulence of Xanthomonas oryzae pv. oryzae by Preventing Cell Aggregation

    PubMed Central

    Yu, Xiaoyue; Liang, Xiaoyu; Liu, Kexue; Dong, Wenxia; Wang, Jianxin; Zhou, Ming-guo

    2015-01-01

    Bacterial blight of rice is an important serious bacterial diseases of rice in many rice-growing regions, caused by Xanthomonas oryzae pv. oryzae (Xoo). The thiG gene from Xoo strain ZJ173, which is involved with thiazole moiety production in the thiamine biosynthesis pathway, is highly conserved among the members of Xanthomonas. The thiG deletion mutant displayed impaired virulence and growth in thiamine-free medium but maintained its normal growth rate in the rice tissues, indicating that the thiG gene is involved in Xoo virulence. Compared to the wild type strain, the formation of cell-cell aggregates was affected in thiG deletion mutants. Although biofilm formation was promoted, motility and migration in rice leaves were repressed in the thiG mutants, and therefore limited the expansion of pathogen infection in rice. Quorum sensing and extracellular substance are two key factors that contribute to the formation of cell-cell aggregates. Our study found that in the thiG mutant the expression of two genes, rpfC and rpfG, which form a two-component regulatory signal system involved in the regulation of biofilm formation by a second messenger cyclic di-GMP is down-regulated. In addition, our study showed that xanthan production was not affected but the expression of some genes associated with xanthan biosynthesis, like gumD, gumE, gumH and gumM, were up-regulated in thiG mutants. Taken together, these findings are the first to demonstrate the role of the thiazole biosynthsis gene, thiG, in virulence and the formation of aggregates in Xanthomonas oryzae pv. oryzae. PMID:26222282

  5. Rapidly Evolving Genes Are Key Players in Host Specialization and Virulence of the Fungal Wheat Pathogen Zymoseptoria tritici (Mycosphaerella graminicola).

    PubMed

    Poppe, Stephan; Dorsheimer, Lena; Happel, Petra; Stukenbrock, Eva Holtgrewe

    2015-07-01

    The speciation of pathogens can be driven by divergent host specialization. Specialization to a new host is possible via the acquisition of advantageous mutations fixed by positive selection. Comparative genome analyses of closely related species allows for the identification of such key substitutions via inference of genome-wide signatures of positive selection. We previously used a comparative genomics framework to identify genes that have evolved under positive selection during speciation of the prominent wheat pathogen Zymoseptoria tritici (synonym Mycosphaerella graminicola). In this study, we conducted functional analyses of four genes exhibiting strong signatures of positive selection in Z. tritici. We deleted the four genes in Z. tritici and confirm a virulence-related role of three of the four genes ΔZt80707, ΔZt89160 and ΔZt103264. The two mutants ΔZt80707 and ΔZt103264 show a significant reduction in virulence during infection of wheat; the ΔZt89160 mutant causes a hypervirulent phenotype in wheat. Mutant phenotypes of ΔZt80707, ΔZt89160 and ΔZt103264 can be restored by insertion of the wild-type genes. However, the insertion of the Zt80707 and Zt89160 orthologs from Z. pseudotritici and Z. ardabiliae do not restore wild-type levels of virulence, suggesting that positively selected substitutions in Z. tritici may relate to divergent host specialization. Interestingly, the gene Zt80707 encodes also a secretion signal that targets the protein for cell secretion. This secretion signal is however only transcribed in Z. tritici, suggesting that Z. tritici-specific substitutions relate to a new function of the protein in the extracellular space of the wheat-Z. tritici interaction. Together, the results presented here highlight that Zt80707, Zt103264 and Zt89160 represent key genes involved in virulence and host-specific disease development of Z. tritici. Our findings illustrate that evolutionary predictions provide a powerful tool for the

  6. Rapidly Evolving Genes Are Key Players in Host Specialization and Virulence of the Fungal Wheat Pathogen Zymoseptoria tritici (Mycosphaerella graminicola)

    PubMed Central

    Poppe, Stephan; Dorsheimer, Lena; Happel, Petra; Stukenbrock, Eva Holtgrewe

    2015-01-01

    The speciation of pathogens can be driven by divergent host specialization. Specialization to a new host is possible via the acquisition of advantageous mutations fixed by positive selection. Comparative genome analyses of closely related species allows for the identification of such key substitutions via inference of genome-wide signatures of positive selection. We previously used a comparative genomics framework to identify genes that have evolved under positive selection during speciation of the prominent wheat pathogen Zymoseptoria tritici (synonym Mycosphaerella graminicola). In this study, we conducted functional analyses of four genes exhibiting strong signatures of positive selection in Z. tritici. We deleted the four genes in Z. tritici and confirm a virulence-related role of three of the four genes ΔZt80707, ΔZt89160 and ΔZt103264. The two mutants ΔZt80707 and ΔZt103264 show a significant reduction in virulence during infection of wheat; the ΔZt89160 mutant causes a hypervirulent phenotype in wheat. Mutant phenotypes of ΔZt80707, ΔZt89160 and ΔZt103264 can be restored by insertion of the wild-type genes. However, the insertion of the Zt80707 and Zt89160 orthologs from Z. pseudotritici and Z. ardabiliae do not restore wild-type levels of virulence, suggesting that positively selected substitutions in Z. tritici may relate to divergent host specialization. Interestingly, the gene Zt80707 encodes also a secretion signal that targets the protein for cell secretion. This secretion signal is however only transcribed in Z. tritici, suggesting that Z. tritici-specific substitutions relate to a new function of the protein in the extracellular space of the wheat-Z. tritici interaction. Together, the results presented here highlight that Zt80707, Zt103264 and Zt89160 represent key genes involved in virulence and host-specific disease development of Z. tritici. Our findings illustrate that evolutionary predictions provide a powerful tool for the

  7. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava.

    PubMed

    Cohn, Megan; Bart, Rebecca S; Shybut, Mikel; Dahlbeck, Douglas; Gomez, Michael; Morbitzer, Robert; Hou, Bi-Huei; Frommer, Wolf B; Lahaye, Thomas; Staskawicz, Brian J

    2014-11-01

    The gene-for-gene concept has historically been applied to describe a specific resistance interaction wherein single genes from the host and the pathogen dictate the outcome. These interactions have been observed across the plant kingdom and all known plant microbial pathogens. In recent years, this concept has been extended to susceptibility phenotypes in the context of transcription activator-like (TAL) effectors that target SWEET sugar transporters. However, because this interaction has only been observed in rice, it was not clear whether the gene-for-gene susceptibility was unique to that system. Here, we show, through a combined systematic analysis of the TAL effector complement of Xanthomonas axonopodis pv. manihotis and RNA sequencing to identify targets in cassava, that TAL20Xam668 specifically induces the sugar transporter MeSWEET10a to promote virulence. Designer TAL effectors (dTALE) complement TAL20Xam668 mutant phenotypes, demonstrating that MeSWEET10a is a susceptibility gene in cassava. Sucrose uptake-deficient X. axonopodis pv. manihotis bacteria do not lose virulence, indicating that sucrose may be cleaved extracellularly and taken up as hexoses into X. axonopodis pv. manihotis. Together, our data suggest that pathogen hijacking of plant nutrients is not unique to rice blight but also plays a role in bacterial blight of the dicot cassava. PMID:25083909

  8. Expression of homologous RND efflux pump genes is dependent upon AcrB expression: implications for efflux and virulence inhibitor design

    PubMed Central

    Blair, Jessica M. A.; Smith, Helen E.; Ricci, Vito; Lawler, Amelia J.; Thompson, Louisa J.; Piddock, Laura J. V.

    2015-01-01

    Objectives Enterobacteriaceae have multiple efflux pumps that confer intrinsic resistance to antibiotics. AcrB mediates clinically relevant multidrug resistance and is required for virulence and biofilm formation, making it an attractive target for the design of inhibitors. The aim of this study was to assess the viability of single transporters as a target for efflux inhibition using Salmonella Typhimurium as the model pathogen. Methods The expression of resistance–nodulation–division (RND) efflux pump genes in response to the inactivation of single or multiple homologues was measured using real-time RT–PCR. Phenotypes of mutants were characterized by measuring antimicrobial susceptibility, dye accumulation and the ability to cause infection in vitro. Results The expression of all RND efflux pump genes was increased when single or multiple acr genes were inactivated, suggesting a feedback mechanism that activates the transcription of homologous efflux pump genes. When two or three acr genes were inactivated, the mutants had further reduced efflux, altered susceptibility to antimicrobials (including increased susceptibility to some, but conversely and counterintuitively, decreased susceptibility to some others) and were more attenuated in the tissue culture model than mutants lacking single pumps were. Conclusions These data indicate that it is critical to understand which pumps an inhibitor is active against and the effect of this on the expression of homologous systems. For some antimicrobials, an inhibitor with activity against multiple pumps will have a greater impact on susceptibility, but an unintended consequence of this may be decreased susceptibility to other drugs, such as aminoglycosides. PMID:25288678

  9. Distribution of classical and nonclassical virulence genes in enterotoxigenic Escherichia coli isolates from Chilean children and tRNA gene screening for putative insertion sites for genomic islands.

    PubMed

    Del Canto, Felipe; Valenzuela, Patricio; Cantero, Lidia; Bronstein, Jonathan; Blanco, Jesús E; Blanco, Jorge; Prado, Valeria; Levine, Myron; Nataro, James; Sommerfelt, Halvor; Vidal, Roberto

    2011-09-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea. Three adhesins (Tia, TibA, EtpA), an iron acquisition system (Irp1, Irp2, and FyuA), a GTPase (LeoA), and an autotransporter (EatA) are ETEC virulence-related proteins that, in contrast to the classical virulence factors (enterotoxins and fimbrial colonization factors) have not heretofore been targets in characterizing isolates from epidemiological studies. Here, we determined the occurrence of these nonclassical virulence genes in 103 ETEC isolates from Chilean children with diarrhea and described their association with O serogroups and classical virulence determinants. Because tia, leoA, irp2, and fyuA are harbored by pathogenicity islands inserted into the selC and asnT tRNA genes (tDNAs), we analyzed the regions flanking these loci. Ten additional tDNAs were also screened to identify hot spots for genetic insertions. Associations between the most frequent serogroups and classical colonization factor (CF)-toxin profiles included O6/LT-STh/CS1-CS3-CS21 (i.e., O6 serogroup, heat-labile [LT] and human heat-stable [STh] enterotoxins, and CFs CS1, -3 and -21), O6/LT-STh/CS2-CS3-CS21, and O104-O127/STh/CFAI-CS21. The eatA and etpA genes were detected in more than 70% of the collection, including diverse serogroups and virulence profiles. Sixteen percent of the ETEC strains were negative for classical and nonclassical adhesins, suggesting the presence of unknown determinants of adhesion. The leuX, thrW, and asnT tDNAs were disrupted in more than 65% of strains, suggesting they are hot spots for the insertion of mobile elements. Sequences similar to integrase genes were identified next to the thrW, asnT, pheV, and selC tDNAs. We propose that the eatA and etpA genes should be included in characterizations of ETEC isolates in future epidemiological studies to determine their prevalence in other geographical regions. Sequencing of tDNA-associated genetic insertions might identify new ETEC virulence

  10. Identification of a hard surface contact-induced gene in Colletotrichum gloeosporioides conidia as a sterol glycosyl transferase, a novel fungal virulence factor.

    PubMed

    Kim, Yeon-Ki; Wang, Yuhuan; Liu, Zhi-Mei; Kolattukudy, Pappachan E

    2002-04-01

    Hard surface contact has been known to be necessary to induce infection structure (appressorium) formation in many phytopathogenic fungi. However, the molecular basis of this requirement is unknown. We have used a differential display approach to clone some of the genes induced in the conidia by hard surface contact. We report that one of the genes induced by hard-surface contact of the conidia of Colletotrichum gloeosporioides, chip6, encodes a protein with homology to sterol glycosyl transferases. chip6 expressed in E. coli catalyses glucosyl transfer from UDP-glucose to cholesterol. Disruption of chip6 causes a marked decrease in the transferase activity and a drastic reduction in virulence on its natural host, avocado fruits, although the mutant is capable of normal growth and appressorium formation. The requirement for sterol glycosyl transferase for pathogenicity suggests a novel biological function for this transferase. PMID:12000454

  11. The prevalence of aminoglycoside-modifying enzyme and virulence genes among enterococci with high-level aminoglycoside resistance in Inner Mongolia, China.

    PubMed

    Niu, Haiying; Yu, Hui; Hu, Tangping; Tian, Gailin; Zhang, Lixia; Guo, Xiang; Hu, Hai; Wang, Zhanli

    2016-01-01

    This study highlights the prevalence of aminoglycoside-modifying enzyme genes and virulence determinants among clinical enterococci with high-level aminoglycoside resistance in Inner Mongolia, China. Screening for high-level aminoglycoside resistance against 117 enterococcal clinical isolates was performed using the agar-screening method. Out of the 117 enterococcal isolates, 46 were selected for further detection and determination of the distribution of aminoglycoside-modifying enzyme-encoding genes and virulence determinants using polymerase chain reaction -based methods. Enterococcus faecium and Enterococcus faecalis were identified as the species of greatest clinical importance. The aac(6')-Ie-aph(2″)-Ia and ant(6')-Ia genes were found to be the most common aminoglycoside-modifying enzyme genes among high-level gentamicin resistance and high-level streptomycin resistance isolates, respectively. Moreover, gelE was the most common virulence gene among high-level aminoglycoside resistance isolates. Compared to Enterococcus faecium, Enterococcus faecalis harbored multiple virulence determinants. The results further indicated no correlation between aminoglycoside-modifying enzyme gene profiles and the distribution of virulence genes among the enterococcal isolates with high-level gentamicin resistance or high-level streptomycin resistance evaluated in our study. PMID:27268115

  12. Distribution of Antimicrobial Resistance and Virulence Genes in Enterococcus spp. and Characterization of Isolates from Broiler Chickens ▿ † ‡

    PubMed Central

    Diarra, Moussa S.; Rempel, Heidi; Champagne, Julie; Masson, Luke; Pritchard, Jane; Topp, Edward

    2010-01-01

    Enterococci are now frequent causative agents of nosocomial infections. In this study, we analyzed the frequency and distribution of antibiotic resistance and virulence genotypes of Enterococcus isolates from broiler chickens. Fecal and cecal samples from nine commercial poultry farms were collected to quantify total enterococci. Sixty-nine presumptive enterococci were isolated and identified by API 20 Strep, and their susceptibilities to antibiotics were determined. Genotypes were assessed through the use of a novel DNA microarray carrying 70 taxonomic, 17 virulence, and 174 antibiotic resistance gene probes. Total enterococcal counts were different from farm to farm and between sample sources (P < 0.01). Fifty-one (74%) of the isolates were identified as E. faecium, whereas nine (13%), seven (10%), and two (3%) isolates were identified as E. hirae, E. faecalis, and E. gallinarum, respectively. Multiple-antibiotic resistance was evident in E. faecium and E. faecalis isolates. The most common multiple-antibiotic resistance phenotype was Bac Ery Tyl Lin Str Gen Tet Cip. Genes conferring resistance to aminoglycoside (aac, aacA-aphD, aadB, aphA, sat4), macrolide (ermA, ermB, ermAM, msrC), tetracycline (tetL, tetM, tetO), streptogramin (satG_vatE8), bacitracin (bcrR), and lincosamide (linB) antibiotics were detected in corresponding phenotypes. A range of 9 to 12 different virulence genes was found in E. faecalis, including ace, agg, agrBEfs (agrB gene of E. faecalis), cad1, the cAM373 and cCF10 genes, cob, cpd1, cylAB, efaAEfs, and gelE. All seven E. faecalis isolates were found to carry the gelE gene and to hydrolize gelatin and bile salts. Results from this study showed the presence of enterococci of public and environmental health concerns in broiler chicken farms and demonstrated the utility of a microarray to quickly and reliably analyze resistance and virulence genotypes of Enterococcus spp. PMID:20971861

  13. Carbon catabolite repressor gene BbCre1 influences carbon source uptake but does not have a big impact on virulence in Beauveria bassiana.

    PubMed

    Jin, Kai; Luo, Zhibing; Jiang, Xiaodong; Zhang, Yongjun; Zhou, Yonghong; Pei, Yan

    2011-03-01

    A gene (BbCre1, GenBank accession number EF108309) encoding a carbon catabolite repressor (CreA) with two Cys(2)His(2) zinc finger regions and a nuclear localization signal was cloned from the entomopathogenic fungus Beauveria bassiana. Overexpression and antisense strategies were used to investigate the biological functions of this gene. Compared with the wild type, the conidial yield and colony growth of BbCre1-overexpression transformants were significantly decreased on the plates with xylose or ethanol as the sole carbon source. With glucose as the sole carbon source, a significant difference was observed in the activity of Pr1A-like protease among BbCre1-overexpression transformants, antisense-BbCre1 transformants and the wild type. However, bioassays showed that knockdown or overexpression of BbCre1 did not have a significant impact on the virulence of B. bassiana to aphids. These results imply that the fungus remains virulent, even when simpler, less expensive nutrients are available, i.e. glucose. PMID:21130770

  14. Tannin-rich pomegranate rind extracts reduce adhesion to and invasion of Caco-2 Cells by Listeria monocytogenes and decrease its expression of virulence genes.

    PubMed

    Xu, Yunfeng; Li, Guanghui; Zhang, Baigang; Wu, Qian; Wang, Xin; Xia, Xiaodong

    2015-01-01

    Pomegranate rind is rich in tannins that have remarkable antimicrobial activities. This study aimed to evaluate the effects of a tannin-rich fraction from pomegranate rind (TFPR) on Listeria monocytogenes virulence gene expression and on the pathogen's interaction with human epithelial cells. Growth curves were monitored to determine the effect of TFPR on L. monocytogenes growth. The 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide and fluorescence staining assays were used to examine the cytotoxicity of TFPR. The effects of TFPR on L. monocytogenes adhesion to and invasion of epithelial cells were investigated using Caco-2 cells. Real-time quantitative PCR analysis was conducted to quantify mRNA levels of three virulence genes in L. monocytogenes. Results showed that a MIC of TFPR against L. monocytogenes was 5 mg/ml in this study. TFPR exhibited cytotoxicity against Caco-2 cells when the concentration was 2.5 mg/ml. Subinhibitory concentrations of TFPR significantly reduced, in a dose-dependent manner, adhesion to and invasion of Caco-2 cells by L. monocytogenes. When L. monocytogenes was grown in the presence of 2.5 mg/ml TFPR, the transcriptional levels of prfA, inlA, and hly decreased by 17-, 34-, and 28-fold, respectively. PMID:25581187

  15. Phylogenetic Distribution of Virulence Genes Among ESBL-producing Uropathogenic Escherichia coli Isolated from Long-term Hospitalized Patients

    PubMed Central

    Zhao, Ruike; Shi, Jinfang; Shen, Yimin; Li, Yanmeng; Han, Qingzhen; Zhang, Xianfeng; Gu, Guohao

    2015-01-01

    Objectives The present study was aimed to investigate the antibiotic resistance, virulence potential and phylogenetic grouping of ESBL-producing uropathogenic Escherichia coli (EP-UPEC) isolated from long-term hospitalized patients. Materials and Methods EP-UPEC isolates from September 2013 to June 2014 at a tertiary care hospital of China were screened for ESBL-production by the double disk diffusion test. Isolates with ESBL-phenotype were further characterized by antibiotic resistance testing, PCR of different ESBL and virulence genes, and phylogenetic grouping. Results One hundred and twenty EP-UPEC were isolated from long-term hospitalized patients. All EP-UPEC isolates were resistant to Ampicillin, Cefazolin, Cefuroxime, Cefotaxime, Cefoperazone and Ceftriaxone, and the majority of EP-UPEC isolates were resistant to Piperacillin (82.5%), Ciprofloxacin (81.2%), Trimethoprim-Sulfamethoxazole (72.5%). The isolates showed the highest sensitivity against Imipenem (98.4%), Piperacillin/tazobactam (96.7%), Cefoperazone/sulbactam (91.7%), Amikacin (90.8%) and Cefepime (75.8%). Nine different ESBL genotype patterns were observed and CTX-M type was the most prevalent ESBL genotype (42.5%, 51/120). Majority of EP-UPEC isolates possess more than one ESBL genes. EP-UPEC isolates belonged mainly to phylogenetic group B2(36.7%) and D(35.0%). The prevalence of traT, ompT, iss, PAI, afa, fimH and papC were 75.8%, 63.3%, 63.3%, 60.8%, 40.8%, 19.2% and 6.7%, respectively. The number of virulence genes (VGs) detected was significantly higher in group B2 than in group A (ANOVA, p<0.001), group B1(ANOVA, p= 0.012) and D (ANOVA, p<0.001). Conclusions EP-UPEC strains showed multidrug resistance and co-resistance to other non β-lactam antibiotics. CTX-M was the most prevalent ESBL genotype and majority of EP-UPEC strains more than one ESBL genes. EP-UPEC strains belonged mainly to phylogenetic group B2 and D, and most of the virulence genes were more prevalent in group B2. PMID

  16. Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling.

    PubMed

    Graham, Morag R; Smoot, Laura M; Migliaccio, Cristi A Lux; Virtaneva, Kimmo; Sturdevant, Daniel E; Porcella, Stephen F; Federle, Michael J; Adams, Gerald J; Scott, June R; Musser, James M

    2002-10-15

    Two-component gene regulatory systems composed of a membrane-bound sensor and cytoplasmic response regulator are important mechanisms used by bacteria to sense and respond to environmental stimuli. Group A Streptococcus, the causative agent of mild infections and life-threatening invasive diseases, produces many virulence factors that promote survival in humans. A two-component regulatory system, designated covRS (cov, control of virulence; csrRS), negatively controls expression of five proven or putative virulence factors (capsule, cysteine protease, streptokinase, streptolysin S, and streptodornase). Inactivation of covRS results in enhanced virulence in mouse models of invasive disease. Using DNA microarrays and quantitative RT-PCR, we found that CovR influences transcription of 15% (n = 271) of all chromosomal genes, including many that encode surface and secreted proteins mediating host-pathogen interactions. CovR also plays a central role in gene regulatory networks by influencing expression of genes encoding transcriptional regulators, including other two-component systems. Differential transcription of genes influenced by covR also was identified in mouse soft-tissue infection. This analysis provides a genome-scale overview of a virulence gene network in an important human pathogen and adds insight into the molecular mechanisms used by group A Streptococcus to interact with the host, promote survival, and cause disease. PMID:12370433

  17. Duplication of Hemolysin Genes in a Virulent Isolate of Vibrio harveyi

    PubMed Central

    Zhang, X.-H.; Meaden, P. G.; Austin, B.

    2001-01-01

    Vibrio harveyi VIB 645, which is very pathogenic towards salmonids and produces extracellular product with a high titer of hemolytic activity towards fish erythrocytes, was found to contain two closely related hemolysin genes (designated vhhA and vhhB), whereas the majority of strains examined (11 of 13) carried only a single hemolysin gene. Both genes from VIB 645 were cloned and sequenced. The open reading frames (ORFs) of vhhA and vhhB shared a high level of identity (98.8%) and were predicted to encode identical polypeptides comprising 418 amino acid residues. The VHH protein shows homology to the lecithinase of V. mimicus and V. cholerae. Transformants of Escherichia coli containing the ORF of either vhhA or vhhB displayed weak hemolytic activity in rainbow trout blood agar. The hemolytic activity was very high when the ORF of vhhB was cloned in E. coli together with the native promoter. Surprisingly, the level of vhh-specific RNA transcript produced by VIB 645 was found to be very low. We conclude that the hemolytic phenotype of VIB 645 is not due to increased expression of one or both copies of the vhh gene. PMID:11425736

  18. Virulence Genes and the Antimicrobial Susceptibility of Escherichia coli, Isolated from Wild Waterbirds, in the Netherlands and Poland.

    PubMed

    Kuczkowski, Maciej; Krawiec, Marta; Voslamber, Berend; Książczyk, Marta; Płoskońska-Bugla, Gabriela; Wieliczko, Alina

    2016-08-01

    Affiliation to four phylogroups (A, B1, B2, and D) was examined, among 190 Escherichia coli strains, collected from five, wild waterbird species, including the following: the Greylag goose-Anser anser (61) and the Canada goose-Branta canadensis (33) obtained in the Netherlands, and the Mallard-Anas platyrhynchos (38), the Mute swan-Cygnus olor (37), and the Great cormorant-Phalacrocorax carbo (21) obtained in Poland. Moreover, the prevalence of 10 virulence factors: astA, iss, iucD, irp2, papC, tsh, vat, cva/cvi, stx2f, and bfp, as well as antimicrobial susceptibility to amoxicillin, enrofloxacin, and tetracycline (minimum inhibitory concentration [MIC] using E-tests) were investigated, in the examined E. coli strains. Results demonstrated that the greatest number of E. coli strains belonged to phylogenetic groups, B1 (86 strains-45.3%) and D (49 strains-25.8%), whereas 40 (21.0%) and only 15 (7.9%) isolates were classified as being of phylogenetic groups, A and B2, respectively. Among the 10 tested virulence-associated genes, 7 genes were detected in 61 examined strains (32.1%) with highly varying frequency. Virulence profiles showed that astA, iss, and irp2 genes were detected most frequently among all examined E. coli strains, isolated from every chosen bird species. Antimicrobial susceptibility, as detected by MIC for the examined antibiotics, is variable among strains isolated from different species of birds. The aim of this study was to examine the prevalence of E. coli strains, isolated from different species of wild waterbirds and determine their potential pathogenicity to the environment, other birds, and people. PMID:27348207

  19. Host-specificity of Staphylococcus aureus causing intramammary infections in dairy animals assessed by genotyping and virulence genes.

    PubMed

    Bar-Gal, G Kahila; Blum, S E; Hadas, L; Ehricht, R; Monecke, S; Leitner, G

    2015-03-23

    Staphylococcus aureus is one of the most relevant pathogens causing clinical and subclinical, chronic mastitis in dairy animals. Routinely, mastitis pathogens are isolated and classified to genus or species level, and regarded as single entities. However, S. aureus includes a broad range of genotypes with distinct pathogenic and epidemiologic characteristics. The objective of the present study was to assess the host-specificity of S. aureus causing mastitis in dairy animals, based on phylogenetic and genotypic characterization as well as the presence of virulence and antimicrobial resistance genes in the pathogen genome. S. aureus isolates from mastitis in cows, sheep and goats in Israel, and from cows in Germany, the USA and Italy, were compared by the following methods: a. Bayesian phylogenetic comparison of sequences of genes nuc, coa, lukF and clfA, b. genotyping by spa and agr typing, and assignment to MLST Clonal Complexes (MLST CC), and c. the presence of a broad array of virulence and antimicrobial resistance genes. Overall, phylogenetic, virulence and genotyping approaches agreed with each other. Cow isolates could be differentiated from sheep and goat isolates with all three methods, with different resolution. In two phylogenetic clusters, segregation was found also between cow isolates from Israel and abroad. Sheep and goats' isolates showed less variability than isolates from cows in all methods used. In conclusion, different S. aureus lineages are associated to cows in contrast to goats and sheep, suggesting co-evolution between pathogen and host species. Modern diagnostics approaches should aim to explore molecular data for a better understanding and cost-effective management of mastitis. PMID:25631254

  20. Evaluation of Virulence Gene Expression Patterns in Acinetobacter baumannii Using Quantitative Real-Time Polymerase Chain Reaction Array.

    PubMed

    Lannan, Ford M; O'conor, Daniel K; Broderick, Joseph C; Tate, Jamison F; Scoggin, Jacob T; Moran, Nicholas A; Husson, Christopher M; Hegeman, Erik M; Ogrydziak, Cole E; Singh, Sneha A; Vafides, Andrew G; Brinkley, Carl C; Goodin, Jeremy L

    2016-09-01

    According to the Centers for Disease Control's recently devised National Strategy for Combating Antibiotic-Resistant Bacteria, Acinetobacter baumannii is a "serious" threat level pathogen. A. baumannii's notoriety stems from the fact that a large number of modern strains are multidrug resistant and persist in the hospital setting, thus causing numerous deaths per year. It is imperative that research focus on a more fundamental understanding of the factors responsible for the success of A. baumannii. Toward this end, our group investigated virulence gene expression patterns in a recently characterized wound isolate, AB5075, using quantitative real-time polymerase chain reaction array. Notably, several genes showed statistically significant upregulation at 37°C compared to 25°C; MviM, Wbbj, CarO, and certain genes of the Bas, Bar, and Csu operons. Additionally, we found that in vitro biofilm formation by Csu transposon insertion mutant strains is attenuated. These findings validate previous reports that suggest a link between the Csu operon and biofilm formation. More importantly, our results demonstrate a successful method for evaluating the significance of previously identified virulence factors in a modern and clinically relevant strain of A. baumannii, thereby providing a path toward a more fundamental understanding of the pathogenicity of A. baumannii. PMID:27612361

  1. Frequencies of virulence genes and pulse field gel electrophoresis fingerprints in Escherichia coli isolates from canine pyometra.

    PubMed

    Maluta, Renato P; Borges, Clarissa A; Beraldo, Lívia G; Cardozo, Marita V; Voorwald, Fabiana A; Santana, André M; Rigobelo, Everlon C; Toniollo, Gilson H; Avila, Fernando A

    2014-11-01

    Escherichia coli is the most common bacterial agent isolated from canine pyometra. The frequencies of 24 virulence genes and pulsed field gel electrophoresis (PFGE) profiles were determined for 23 E. coli isolates from cases of canine pyometra in Brazil. The frequencies of virulence genes were 91.3% fimH, 91.3% irp-2, 82.6% fyuA, 56.5% iroN, 47.8% traT, 39.1% usp, 34.8% sfaD/E, 34.8% tsh, 30.4% papC, 30.4% hlyA, 26.1% papGIII, 26.1% cnf-1, 21.7% papE/F, 21.7% iss, 17.4% iutA, 17.4% ompT, 17.4% cvaC, 17.4% hlyF, 17.4% iucD, 13.0% iucC, 13.0% astA, 4.3% papGII, 0% afaB/C and 0% papGI. The high frequency of yersiniabactin (fyuA and irp2) and salmochelin (iroN) genes suggests that iron uptake systems might be important in the pathogenesis of canine pyometra. PFGE profiles of 19 isolates were heterogeneous, confirming that E. coli isolates from canine pyometra are unlikely to be epidemic clones. PMID:25201253

  2. Repression of virulence genes by phosphorylation-dependent oligomerization of CsrR at target promoters in S. pyogenes.

    PubMed

    Miller, A A; Engleberg, N C; DiRita, V J

    2001-05-01

    csrRS encodes a two-component regulatory system that represses the transcription of a number of virulence factors in Streptococcus pyogenes, including the hyaluronic acid capsule and pyrogenic exotoxin B. CsrRS-regulated virulence factors have diverse functions during pathogenesis and are differentially expressed throughout growth. This suggests that multiple signals induce CsrRS-mediated gene regulation, or that regulated genes respond differently to CsrR, or both. As a first step in dissecting the csrRS signal transduction pathway, we determined the mechanism by which CsrR mediates the repression of its target promoters. We found that phosphorylated CsrR binds directly to all but one of the promoters of its regulated genes, with different affinities. Phosphorylation of CsrR enhances both oligomerization and DNA binding. We defined the binding site of CsrR at each of the regulated promoters using DNase I and hydroxyl radical footprinting. Based on these results, we propose a model for differential regulation by CsrRS. PMID:11401704

  3. Genome of the facultative scuticociliatosis pathogen Pseudocohnilembus persalinus provides insight into its virulence through horizontal gene transfer

    PubMed Central

    Xiong, Jie; Wang, Guangying; Cheng, Jun; Tian, Miao; Pan, Xuming; Warren, Alan; Jiang, Chuanqi; Yuan, Dongxia; Miao, Wei

    2015-01-01

    Certain ciliates of the subclass Scuticociliatia (scuticociliates) are facultative parasites of fishes in which they cause a suite of diseases collectively termed scuticociliatosis. Hitherto, comparatively little was known about genetics and genomics of scuticociliates or the mechanism of scuticociliatosis. In this study, a laboratory culture of the facultatively pathogenic scuticociliate Pseudocohnilembus persalinus was established and its genome sequenced, giving the first genome of a marine ciliate. Genome-wide horizontal gene transfer (HGT) analysis showed P. persalinus has acquired many unique prokaryote-derived genes that potentially contribute to the virulence of this organism, including cell adhesion, hemolysis and heme utilization genes. These findings give new insights into our understanding of the pathology of scuticociliates. PMID:26486372

  4. Transcriptome of Proteus mirabilis in the murine urinary tract: virulence and nitrogen assimilation gene expression.

    PubMed

    Pearson, Melanie M; Yep, Alejandra; Smith, Sara N; Mobley, Harry L T

    2011-07-01

    The enteric bacterium Proteus mirabilis is a common cause of complicated urinary tract infections. In this study, microarrays were used to analyze P. mirabilis gene expression in vivo from experimentally infected mice. Urine was collected at 1, 3, and 7 days postinfection, and RNA was isolated from bacteria in the urine for transcriptional analysis. Across nine microarrays, 471 genes were upregulated and 82 were downregulated in vivo compared to in vitro broth culture. Genes upregulated in vivo encoded mannose-resistant Proteus-like (MR/P) fimbriae, urease, iron uptake systems, amino acid and peptide transporters, pyruvate metabolism enzymes, and a portion of the tricarboxylic acid (TCA) cycle enzymes. Flagella were downregulated. Ammonia assimilation gene glnA (glutamine synthetase) was repressed in vivo, while gdhA (glutamate dehydrogenase) was upregulated in vivo. Contrary to our expectations, ammonia availability due to urease activity in P. mirabilis did not drive this gene expression. A gdhA mutant was growth deficient in minimal medium with citrate as the sole carbon source, and loss of gdhA resulted in a significant fitness defect in the mouse model of urinary tract infection. Unlike Escherichia coli, which represses gdhA and upregulates glnA in vivo and cannot utilize citrate, the data suggest that P. mirabilis uses glutamate dehydrogenase to monitor carbon-nitrogen balance, and this ability contributes to the pathogenic potential of P. mirabilis in the urinary tract. PMID:21505083

  5. Differences in Extended-Spectrum Beta-Lactamase Producing Escherichia coli Virulence Factor Genes in the Baltic Sea Region

    PubMed Central

    Balode, Arta; Makarova, Mariia; Huik, Kristi; Kõljalg, Siiri; Kaftyreva, Lidia; Miciuleviciene, Jolanta; Naaber, Paul; Rööp, Tiiu; Toompere, Karolin; Suzhaeva, Ludmila; Sepp, Epp

    2014-01-01

    The aim of this study was to compare the prevalence of different virulence factor (VF) genes in extended-spectrum beta-lactamase (ESBL) producing Escherichia coli strains isolated from the Baltic Sea region. A total of 432 strains of phenotypically ESBL positive E. coli were collected from 20 institutions located in Estonia, Latvia, Lithuania, and the region of St. Petersburg in Russia from January to May 2012 and analyzed for phylogenetic group and prevalence of 23 VF genes. The strains were collected from clinical material (urine, blood, wound, and respiratory tract). Bacterial isolates were compared according to phylogenetic group, clinical material, and geographical origin. Most of the VF genes were concentrated within phylogenetic group B2 and/or D. When comparing strains isolated from different countries, it was found that strains originating from Estonia and Latvia belonged mainly to group B2 and strains from Lithuania and Russia mainly to groups B2 and D. The P-fimbrial adhesin gene papEF was more prevalent in Russian strains, colicin gene cvaC in Lithuanian strains, and capsular gene kpsMTII in Latvian strains; serum resistant gene traT was less prevalent in Estonian strains. The regional differences of VF genes remained statistically significant after taking into account the phylogenetic distribution in the countries. PMID:25250320

  6. Differences in extended-spectrum beta-lactamase producing Escherichia coli virulence factor genes in the Baltic Sea region.

    PubMed

    Lillo, Jana; Pai, Kristiine; Balode, Arta; Makarova, Mariia; Huik, Kristi; Kõljalg, Siiri; Ivanova, Marina; Kaftyreva, Lidia; Miciuleviciene, Jolanta; Naaber, Paul; Parv, Kristel; Pavelkovich, Anastasia; Rööp, Tiiu; Toompere, Karolin; Suzhaeva, Ludmila; Sepp, Epp

    2014-01-01

    The aim of this study was to compare the prevalence of different virulence factor (VF) genes in extended-spectrum beta-lactamase (ESBL) producing Escherichia coli strains isolated from the Baltic Sea region. A total of 432 strains of phenotypically ESBL positive E. coli were collected from 20 institutions located in Estonia, Latvia, Lithuania, and the region of St. Petersburg in Russia from January to May 2012 and analyzed for phylogenetic group and prevalence of 23 VF genes. The strains were collected from clinical material (urine, blood, wound, and respiratory tract). Bacterial isolates were compared according to phylogenetic group, clinical material, and geographical origin. Most of the VF genes were concentrated within phylogenetic group B2 and/or D. When comparing strains isolated from different countries, it was found that strains originating from Estonia and Latvia belonged mainly to group B2 and strains from Lithuania and Russia mainly to groups B2 and D. The P-fimbrial adhesin gene papEF was more prevalent in Russian strains, colicin gene cvaC in Lithuanian strains, and capsular gene kpsMTII in Latvian strains; serum resistant gene traT was less prevalent in Estonian strains. The regional differences of VF genes remained statistically significant after taking into account the phylogenetic distribution in the countries. PMID:25250320

  7. Phosphatidylserine externalization and procoagulant activation of erythrocytes induced by Pseudomonas aeruginosa virulence factor pyocyanin.

    PubMed

    Qadri, Syed M; Donkor, David A; Bhakta, Varsha; Eltringham-Smith, Louise J; Dwivedi, Dhruva J; Moore, Jane C; Pepler, Laura; Ivetic, Nikola; Nazi, Ishac; Fox-Robichaud, Alison E; Liaw, Patricia C; Sheffield, William P

    2016-04-01

    The opportunistic pathogen Pseudomonas aeruginosa causes a wide range of infections in multiple hosts by releasing an arsenal of virulence factors such as pyocyanin. Despite numerous reports on the pleiotropic cellular targets of pyocyanin toxicity in vivo, its impact on erythrocytes remains elusive. Erythrocytes undergo an apoptosis-like cell death called eryptosis which is characterized by cell shrinkage and phosphatidylserine (PS) externalization; this process confers a procoagulant phenotype on erythrocytes as well as fosters their phagocytosis and subsequent clearance from the circulation. Herein, we demonstrate that P. aeruginosa pyocyanin-elicited PS exposure and cell shrinkage in erythrocyte while preserving the membrane integrity. Mechanistically, exposure of erythrocytes to pyocyanin showed increased cytosolic Ca(2+) activity as well as Ca(2+) -dependent proteolytic processing of μ-calpain. Pyocyanin further up-regulated erythrocyte ceramide abundance and triggered the production of reactive oxygen species. Pyocyanin-induced increased PS externalization in erythrocytes translated into enhanced prothrombin activation and fibrin generation in plasma. As judged by carboxyfluorescein succinimidyl-ester labelling, pyocyanin-treated erythrocytes were cleared faster from the murine circulation as compared to untreated erythrocytes. Furthermore, erythrocytes incubated in plasma from patients with P. aeruginosa sepsis showed increased PS exposure as compared to erythrocytes incubated in plasma from healthy donors. In conclusion, the present study discloses the eryptosis-inducing effect of the virulence factor pyocyanin, thereby shedding light on a potentially important mechanism in the systemic complications of P. aeruginosa infection. PMID:26781477

  8. CodY Regulates the Activity of the Virulence Quorum Sensor PlcR by Controlling the Import of the Signaling Peptide PapR in Bacillus thuringiensis

    PubMed Central

    Slamti, Leyla; Lemy, Christelle; Henry, Céline; Guillot, Alain; Huillet, Eugénie; Lereclus, Didier

    2016-01-01

    In Gram-positive bacteria, cell–cell communication mainly relies on cytoplasmic sensors of the RNPP family. Activity of these regulators depends on their binding to secreted signaling peptides that are imported into the cell. These quorum sensing regulators control important biological functions in bacteria of the Bacillus cereus group, such as virulence and necrotrophism. The RNPP quorum sensor PlcR, in complex with its cognate signaling peptide PapR, is the main regulator of virulence in B. cereus and Bacillus thuringiensis (Bt). Recent reports have shown that the global stationary phase regulator CodY, involved in adaptation to nutritional limitation, is required for the expression of virulence genes belonging to the PlcR regulon. However, the mechanism underlying this regulation was not described. Using genetics and proteomics approaches, we showed that CodY regulates the expression of the virulence genes through the import of PapR. We report that CodY positively controls the production of the proteins that compose the oligopeptide permease OppABCDF, and of several other Opp-like proteins. It was previously shown that the pore components of this oligopeptide permease, OppBCDF, were required for the import of PapR. However, the role of OppA, the substrate-binding protein (SBP), was not investigated. Here, we demonstrated that OppA is not the only SBP involved in the recognition of PapR, and that several other OppA-like proteins can allow the import of this peptide. Altogether, these data complete our model of quorum sensing during the lifecycle of Bt and indicate that RNPPs integrate environmental conditions, as well as cell density, to coordinate the behavior of the bacteria throughout growth. PMID:26779156

  9. CodY Regulates the Activity of the Virulence Quorum Sensor PlcR by Controlling the Import of the Signaling Peptide PapR in Bacillus thuringiensis.

    PubMed

    Slamti, Leyla; Lemy, Christelle; Henry, Céline; Guillot, Alain; Huillet, Eugénie; Lereclus, Didier

    2015-01-01

    In Gram-positive bacteria, cell-cell communication mainly relies on cytoplasmic sensors of the RNPP family. Activity of these regulators depends on their binding to secreted signaling peptides that are imported into the cell. These quorum sensing regulators control important biological functions in bacteria of the Bacillus cereus group, such as virulence and necrotrophism. The RNPP quorum sensor PlcR, in complex with its cognate signaling peptide PapR, is the main regulator of virulence in B. cereus and Bacillus thuringiensis (Bt). Recent reports have shown that the global stationary phase regulator CodY, involved in adaptation to nutritional limitation, is required for the expression of virulence genes belonging to the PlcR regulon. However, the mechanism underlying this regulation was not described. Using genetics and proteomics approaches, we showed that CodY regulates the expression of the virulence genes through the import of PapR. We report that CodY positively controls the production of the proteins that compose the oligopeptide permease OppABCDF, and of several other Opp-like proteins. It was previously shown that the pore components of this oligopeptide permease, OppBCDF, were required for the import of PapR. However, the role of OppA, the substrate-binding protein (SBP), was not investigated. Here, we demonstrated that OppA is not the only SBP involved in the recognition of PapR, and that several other OppA-like proteins can allow the import of this peptide. Altogether, these data complete our model of quorum sensing during the lifecycle of Bt and indicate that RNPPs integrate environmental conditions, as well as cell density, to coordinate the behavior of the bacteria throughout growth. PMID:26779156

  10. Ellagic Acid Derivatives from Terminalia chebula Retz. Downregulate the Expression of Quorum Sensing Genes to Attenuate Pseudomonas aeruginosa PAO1 Virulence

    PubMed Central

    Sarabhai, Sajal; Sharma, Prince; Capalash, Neena

    2013-01-01

    Background Burgeoning antibiotic resistance in Pseudomonas aeruginosa has necessitated the development of anti pathogenic agents that can quench acylhomoserine lactone (AHL) mediated QS with least risk of resistance. This study explores the anti quorum sensing potential of T. chebula Retz. and identification of probable compounds(s) showing anti QS activity and the mechanism of attenuation of P. aeruginosa PAO1 virulence factors. Methods and Results Methanol extract of T. chebula Retz. fruit showed anti QS activity using Agrobacterium tumefaciens A136. Bioactive fraction (F7), obtained by fractionation of methanol extract using Sephadex LH20, showed significant reduction (p<0.001) in QS regulated production of extracellular virulence factors in P. aeruginosa PAO1. Biofilm formation and alginate were significantly (p<0.05) reduced with enhanced (20%) susceptibility to tobramycin. Real Time PCR of F7 treated P. aeruginosa showed down regulation of autoinducer synthase (lasI and rhlI) and their cognate receptor (lasR and rhlR) genes by 89, 90, 90 and 93%, respectively. Electrospray Ionization Mass Spectrometry also showed 90 and 64% reduction in the production of 3-oxo-C12HSL and C4HSL after treatment. Decrease in AHLs as one of the mechanisms of quorum quenching by F7 was supported by the reversal of inhibited swarming motility in F7-treated P. aeruginosa PAO1 on addition of C4HSL. F7 also showed antagonistic activity against 3-oxo-C12HSL-dependent QS in E. coli bioreporter. C. elegans fed on F7-treated P. aeruginosa showed enhanced survival with LT50 increasing from 24 to 72 h. LC-ESI-MS of F7 revealed the presence of ellagic acid derivatives responsible for anti QS activity in T. chebula extract. Conclusions This is the first report on anti QS activity of T. chebula fruit linked to EADs which down regulate the expression of lasIR and rhlIR genes with concomitant decrease in AHLs in P. aeruginosa PAO1 causing attenuation of its virulence factors and enhanced

  11. Investigating boundaries of survival, growth and expression of genes associated with stress and virulence of Listeria monocytogenes in response to acid and osmotic stress.

    PubMed

    Makariti, I P; Printezi, A; Kapetanakou, A E; Zeaki, N; Skandamis, P N

    2015-02-01

    The objective of this study was to correlate the relative transcription of Listeria monocytogenes (strains C5, 6179) stress- (gad2, sigB) and virulence- (prfA) associated genes following habituation at twenty-five pH (4.8, 5.0, 5.2, 5.5, 6.4) and NaCl (2, 4, 6, 8, 10% w/v) combinations at 7 °C, with the survival against subsequent exposure to severe acid stress (pH 2.0 at 37 °C). Our findings pointed out the inter-strain variation governing growth inhibiting conditions (pH ≤5.0 and NaCl ≥6%), where C5 was less affected (a reduction of 2.0-3.0 log CFU/mL) than 6179 which was reduced by 4.0-6.0 log CFU/mL at the end of storage. Nevertheless, the higher the habituation at the growth permitting (pH ≥5.5; NaCl ≤4% w/v) or growth inhibiting conditions, the higher the acquired acid resistance or sensitization, respectively. At day 2, gad2 increased relative transcriptional levels are more related to elevated acid resistance, while at day 6 both gad2 transcriptional levels and upregulation of sigB were correlated to low log reductions and high DpH:2.0-values against severe acid stress. Regarding virulence, the increased transcriptional levels of prfA at day 2 were correlated to adverse pH and NaCl combinations, while prolonged stay in suboptimal conditions as well as exposure to severe acid stress resulted in general activation of the virulence regulator. Such data could definitely contribute in designing safe intervention strategies and additionally integrate -omics aspects in quantitative microbial risk assessment. PMID:25500389

  12. An African swine fever virus virulence-associated gene NL-S with similarity to the herpes simplex virus ICP34.5 gene.

    PubMed Central

    Zsak, L; Lu, Z; Kutish, G F; Neilan, J G; Rock, D L

    1996-01-01

    We described previously an African swine fever virus (ASFV) open reading frame, 23-NL, in the African isolate Malawi Lil 20/1 whose product shared significant similarity in a carboxyl-terminal domain with those of a mouse myeloid differentiation primary response gene, MyD116, and the herpes simplex virus neurovirulence-associated gene, ICP34.5 (M. D. Sussman, Z. Lu, G. Kutish, C. L. Afonso, P. Roberts, and D. L. Rock, J. Virol. 66:5586-5589, 1992). The similarity of 23-NL to these genes suggested that this gene may function in some aspect of ASFV virulence and/or host range. Sequence analysis of additional pathogenic viral isolates demonstrates that this gene is highly conserved among diverse ASFV isolates and that the gene product exists in either a long (184 amino acids as in 23-NL) or a short form (70 to 72 amino acids in other examined ASFV isolates). The short form of the gene, NL-S, encodes the complete highly conserved, hydrophilic, carboxyl-terminal domain of 56 amino acids common to 23-NL, MyD116, and ICP34.5. Recombinant NL-S gene deletion mutants and their revertants were constructed from the pathogenic ASFV isolate E70 and an E70 monkey cell culture-adapted virus, MS44, to study gene function. Although deletion of NL-S did not affect viral growth in primary swine macrophages or Vero cell cultures in vitro, the null mutant, E70/43, exhibited a marked reduction in pig virulence. In contrast to revertant or parental E70 where mortality was 100%, all E70/43-infected animals survived infection. With the exception of a transient fever response, E70/43-infected animals remained clinically normal and exhibited a 1,000-fold reduction in both mean and maximum viremia titers. All convalescent E70/43-infected animals survived infection when challenged with parental E70 at 30 days postinfection. These data indicate that the highly conserved NL-S gene of ASFV, while nonessential for growth in swine macrophages in vitro, is a significant viral virulence factor and may

  13. An African swine fever virus virulence-associated gene NL-S with similarity to the herpes simplex virus ICP34.5 gene.

    PubMed

    Zsak, L; Lu, Z; Kutish, G F; Neilan, J G; Rock, D L

    1996-12-01

    We described previously an African swine fever virus (ASFV) open reading frame, 23-NL, in the African isolate Malawi Lil 20/1 whose product shared significant similarity in a carboxyl-terminal domain with those of a mouse myeloid differentiation primary response gene, MyD116, and the herpes simplex virus neurovirulence-associated gene, ICP34.5 (M. D. Sussman, Z. Lu, G. Kutish, C. L. Afonso, P. Roberts, and D. L. Rock, J. Virol. 66:5586-5589, 1992). The similarity of 23-NL to these genes suggested that this gene may function in some aspect of ASFV virulence and/or host range. Sequence analysis of additional pathogenic viral isolates demonstrates that this gene is highly conserved among diverse ASFV isolates and that the gene product exists in either a long (184 amino acids as in 23-NL) or a short form (70 to 72 amino acids in other examined ASFV isolates). The short form of the gene, NL-S, encodes the complete highly conserved, hydrophilic, carboxyl-terminal domain of 56 amino acids common to 23-NL, MyD116, and ICP34.5. Recombinant NL-S gene deletion mutants and their revertants were constructed from the pathogenic ASFV isolate E70 and an E70 monkey cell culture-adapted virus, MS44, to study gene function. Although deletion of NL-S did not affect viral growth in primary swine macrophages or Vero cell cultures in vitro, the null mutant, E70/43, exhibited a marked reduction in pig virulence. In contrast to revertant or parental E70 where mortality was 100%, all E70/43-infected animals survived infection. With the exception of a transient fever response, E70/43-infected animals remained clinically normal and exhibited a 1,000-fold reduction in both mean and maximum viremia titers. All convalescent E70/43-infected animals survived infection when challenged with parental E70 at 30 days postinfection. These data indicate that the highly conserved NL-S gene of ASFV, while nonessential for growth in swine macrophages in vitro, is a significant viral virulence factor and may

  14. SuhB Is a Regulator of Multiple Virulence Genes and Essential for Pathogenesis of Pseudomonas aeruginosa

    PubMed Central

    Li, Kewei; Xu, Chang; Jin, Yongxin; Sun, Ziyu; Liu, Chang; Shi, Jing; Chen, Gukui; Chen, Ronghao; Jin, Shouguang; Wu, Weihui

    2013-01-01

    ABSTRACT During initial colonization and chronic infection, pathogenic bacteria encounter distinct host environments. Adjusting gene expression accordingly is essential for the pathogenesis. Pseudomonas aeruginosa has evolved complicated regulatory networks to regulate different sets of virulence factors to facilitate colonization and persistence. The type III secretion system (T3SS) and motility are associated with acute infections, while biofilm formation and the type VI secretion system (T6SS) are associated with chronic persistence. To identify novel regulatory genes required for pathogenesis, we screened a P. aeruginosa transposon (Tn) insertion library and found suhB to be an essential gene for the T3SS gene expression. The expression of suhB was upregulated in a mouse acute lung infection model, and loss of suhB resulted in avirulence. Suppression of T3SS gene expression in the suhB mutant is linked to a defective translation of the T3SS master regulator, ExsA. Further studies demonstrated that suhB mutation led to the upregulation of GacA and its downstream small RNAs, RsmY and RsmZ, triggering T6SS expression and biofilm formation while inhibiting the T3SS. Our results demonstrate that an in vivo-inducible gene, suhB, reciprocally regulates genes associated with acute and chronic infections and plays an essential role in the pathogenesis of P. aeruginosa. PMID:24169572

  15. FSL J1-208, a Virulent Uncommon Phylogenetic Lineage IV Listeria monocytogenes Strain with a Small Chromosome Size and a Putative Virulence Plasmid Carrying Internalin-Like Genes

    PubMed Central

    Bowen, Barbara M.; Rodriguez-Rivera, Lorraine D.; Wiedmann, Martin

    2012-01-01

    The bacterial genus Listeria contains both saprotrophic and facultative pathogenic species. A small genome size has been suggested to be associated with the loss of pathogenic potential of L. welshimeri and L. seeligeri. In this paper we present data on the genome of L. monocytogenes strain FSL J1-208, a representative of phylogenetic lineage IV. Although this strain was isolated from a clinical case in a caprine host and has no decreased invasiveness in human intestinal epithelial cells, our analyses show that this strain has one of the smallest Listeria chromosomes reported to date (2.78 Mb). The chromosome contains 2,772 protein-coding genes, including well-characterized virulence-associated genes, such as inlA, inlB, and inlC and the full prfA gene cluster. The small genome size is mainly caused by the absence of prophages in the genome of L. monocytogenes FSL J1-208, and further analyses showed that the total size of prophage-related regions is highly correlated to chromosome size in the genus Listeria. L. monocytogenes FSL J1-208 carries a unique type of plasmid of approximately 80 kbp that does not carry genes annotated as being involved in resistance to antibiotics or heavy metals. The accessory genes in this plasmid belong to the internalin family, a family of virulence-associated proteins, and therefore this is the first report of a potential virulence plasmid in the genus Listeria. PMID:22247147

  16. Effect Of Spaceflight On Microbial Gene Expression And Virulence: Preliminary Results From Microbe Payload Flown On-Board STS-115

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; HonerzuBentrup, K,; Schurr, M. J.; Buchanan, K.; Morici, L.; Hammond, T.; Allen, P.; Baker, C.; Ott, C. M.; Nelman-Gonzalez M.; Schurr, J. R.; Pierson, D. L.; Stodieck, L.; Hing, S.; Hammond, T.; Allen, P.; Baker, C.; Parra, M.; Dumars, P.; Stefanyshyn-Piper, H. M.; Nickerson, C. A.

    2007-01-01

    Human presence in space, whether permanent or temporary, is accompanied by the presence of microbes. However, the extent of microbial changes in response to spaceflight conditions and the corresponding changes to infectious disease risk is unclear. Previous studies have indicated that spaceflight weakens the immune system in humans and animals. In addition, preflight and in-flight monitoring of the International Space Station (ISS) and other spacecraft indicates the presence of opportunistic pathogens and the potential of obligate pathogens. Altered antibiotic resistance of microbes in flight has also been shown. As astronauts and cosmonauts live for longer periods in a closed environment, especially one using recycled water and air, there is an increased risk to crewmembers of infectious disease events occurring in-flight. Therefore, understanding how the space environment affects microorganisms and their disease potential is critically important for spaceflight missions and requires further study. The goal of this flight experiment, operationally called MICROBE, is to utilize three model microbial pathogens, Salmonella typhimurium, Pseudomonas aeruginosa, and Candida albicans to examine the global effects of spaceflight on microbial gene expression and virulence attributes. Specifically, the aims are (1) to perform microarray-mediated gene expression profiling of S. typhimurium, P. aeruginosa, and C. albicans, in response to spaceflight in comparison to ground controls and (2) to determine the effect of spaceflight on the virulence potential of these microorganisms immediately following their return from spaceflight using murine models. The model microorganisms were selected as they have been isolated from preflight or in-flight monitoring, represent different degrees of pathogenic behavior, are well characterized, and have sequenced genomes with available microarrays. In particular, extensive studies of S. typhimurium by the Principal Investigator, Dr. Nickerson

  17. Presence of pathogenicity island related and plasmid encoded virulence genes in cytolethal distending toxin producing Escherichia coli isolates from diarrheal cases

    PubMed Central

    Oloomi, Mana; Javadi, Maryam; Bouzari, Saeid

    2015-01-01

    Context: Mobile genetic elements such as plasmids, bacteriophages, insertion elements, and genomic islands play a critical role in virulence of bacterial pathogens. These elements transfer horizontally and could play an important role in the evolution and virulence of many pathogens. A broad spectrum of gram-negative bacterial species has been shown to produce a cytolethal distending toxin (CDT). On the other hand, Shiga toxin producing Escherichia coli are the one carry virulence genes such as stx 1 and stx 2 (Shiga toxin) and these genes can be acquired by horizontal gene transfer. Aim: The aim of this study was to investigate the presence of other virulence associated genes among CDT producing E. coli strains. Materials and Methods: Thirty CDT positive strains isolated from patients with diarrhea were characterized. Thereafter, the association with virulent genetic elements in known pathogenicity islands (PAIs) was assessed by polymerase chain reaction. Results: In this study, it was shown that the most CDT producing E. coli isolates express Shiga toxin. Moreover, the presence of prophages framing cdt genes (like P2 phage) was also identified in each cdt-type genomic group. Flanked regions of cdt-I, cdt-IV, and cdt-V-type was similar to plasmid sequences while cdt-II and cdt-III-type regions similarity with hypothetical protein (orf3) was observed. Conclusion: The occurrence of each cdt-type groups with specific virulence genes and PAI genetic elements is indicative of horizontal gene transfer by these mobile genetic elements, which could lead to diversity among the isolates. PMID:26539367

  18. Decreased in vivo virulence and altered gene expression by a Brucella melitensis light-sensing histidine kinase mutant

    PubMed Central

    Gourley, Christopher R.; Petersen, Erik; Harms, Jerome; Splitter, Gary

    2015-01-01

    Brucella species utilize diverse virulence factors. Previously, Brucella abortus light-sensing histidine kinase was identified as important for cellular infection. Here, we demonstrate that a Brucella melitensisLOV-HK (BM-LOV-HK) mutant strain has strikingly different gene expression than wild type. General stress response genes including the alternative sigma factor rpoE1 and its anti-anti-sigma factor phyR were downregulated, while flagellar, quorum sensing (QS), and type IV secretion system genes were upregulated in the ΔBM-LOV-HK strain vs. wild type. Contextually, expression results agree with other studies of transcriptional regulators involving ΔrpoE1, ΔphyR, ΔvjbR, and ΔblxR (ΔbabR) Brucella strains. Additionally, deletion of BM-LOV-HK decreases virulence in mice. During C57BL/6 mouse infection, the ΔBM-LOV-HK strain had 2 logs less CFUs in the spleen 3 days postinfection, but similar levels 6 days post infection compared to wild type. Infection of IRF-1−/− mice more specifically define ΔBM-LOV-HK strain attenuation with fewer bacteria in spleens and significantly increased survival of mutant vs. wild-type infected IRF-1−/− mice. Upregulation of flagella, QS, and VirB genes, along with downregulation of rpoE1 and related sigma factor, rpoH2 (BMEI0280) suggest that BM-LOV-HK modulates both QS and general stress response regulatory components to control Brucella gene expression on a global level. PMID:25132657

  19. Characterization of Antimicrobial Susceptibility and Its Association with Virulence Genes Related to Adherence, Invasion, and Cytotoxicity in Campylobacter jejuni and Campylobacter coli Isolates from Animals, Meat, and Humans.

    PubMed

    Lapierre, Lisette; Gatica, María A; Riquelme, Víctor; Vergara, Constanza; Yañez, José Manuel; San Martín, Betty; Sáenz, Leonardo; Vidal, Maricel; Martínez, María Cristina; Araya, Pamela; Flores, Roberto; Duery, Oscar; Vidal, Roberto

    2016-07-01

    The aim of this research was to statistically analyze the association between antimicrobial susceptibility/resistance to erythromycine, gentamicin, ciprofloxacin, and tetracycline and 11 virulence genes associated with adherence, invasion, and cytotoxicity in 528 isolates of Campylobacter coli and Campylobacter jejuni obtained from retail meat and fecal samples from food-producing animals and human patients. A high percentage of Campylobacter strains were resistant to antimicrobials, specifically ciprofloxacin and tetracycline. Moreover, we observed a wide distribution of virulence genes within the analyzed strains. C. jejuni strains were more susceptible to antimicrobials, and showed greater number of virulence genes than C. coli strains. Genes related to invasion capability, such as racR, ciaB, and pldA, were associated with antimicrobial-susceptible strains in both species. The genes cdtA and dnaJ, a citotoxin unit and an adherence-related gene, respectively, were associated with antimicrobial-resistant strains in both species. In conclusion, Campylobacter strains show a statistically significant association between antimicrobial susceptibility and the presence of virulence genes. PMID:26779841

  20. The response regulator ResD modulates virulence gene expression in response to carbohydrates in Listeria monocytogenes.

    PubMed

    Larsen, Marianne H; Kallipolitis, Birgitte H; Christiansen, Janne K; Olsen, John E; Ingmer, Hanne

    2006-09-01

    Listeria monocytogenes is a versatile bacterial pathogen that is able to accommodate to diverse environmental and host conditions. Presently, we have identified a L. monocytogenes two-component response regulator, ResD that is required for the repression of virulence gene expression known to occur in the presence of easily fermentable carbohydrates not found inside host organisms. Structurally and functionally, ResD resembles the respiration regulator ResD in Bacillus subtilis as deletion of the L. monocytogenes resD reduces respiration and expression of cydA, encoding a subunit of cytochrome bd. The resD mutation also reduces expression of mptA encoding the EIIABman component of a mannose/glucose-specific PTS system, indicating that ResD controls sugar uptake. This notion was supported by the poor growth of resD mutant cells that was alleviated by excess of selected carbohydrates. Despite the growth deficient phenotype of the mutant in vitro the mutation did not affect intracellular multiplication in epithelial or macrophage cell lines. When examining virulence gene expression we observed traditional induction by charcoal in both mutant and wild-type cells whereas the repression observed in wild-type cells by fermentable carbohydrates did not occur in resD mutant cells. Thus, ResD is a central regulator of L. monocytogenes when present in the external environment. PMID:16968229

  1. A recombinant rabies virus encoding two copies of the glycoprotein gene confers protection in dogs against a virulent challenge.

    PubMed

    Liu, Xiaohui; Yang, Youtian; Sun, Zhaojin; Chen, Jing; Ai, Jun; Dun, Can; Fu, Zhen F; Niu, Xuefeng; Guo, Xiaofeng

    2014-01-01

    The rabies virus (RABV) glycoprotein (G) is the principal antigen responsible for the induction of virus neutralizing antibodies (VNA) and is the major modality of protective immunity in animals. A recombinant RABV HEP-Flury strain was generated by reverse genetics to encode two copies of the G-gene (referred to as HEP-dG). The biological properties of HEP-dG were compared to those of the parental virus (HEP-Flury strain). The HEP-dG recombinant virus grew 100 times more efficiently in BHK-21 cell than the parental virus, yet the virulence of the dG recombinant virus in suckling mice was lower than the parental virus. The HEP-dG virus can improve the expression of G-gene mRNA and the G protein and produce more offspring viruses in cells. The amount of G protein revealed a positive relationship with immunogenicity in mice and dogs. The inactivated HEP-dG recombinant virus induced higher levels of VNA and conferred better protection against virulent RABV in mice and dogs than the inactivated parental virus and a commercial vaccine. The protective antibody persisted for at least 12 months. These data demonstrate that the HEP-dG is stable, induces a strong VNA response and confers protective immunity more effectively than the RABV HEP-Flury strain. HEP-dG could be a potential candidate in the development of novel inactivated rabies vaccines. PMID:24498294

  2. Phylogenetic grouping, epidemiological typing, analysis of virulence genes, and antimicrobial susceptibility of Escherichia coli isolated from healthy broilers in Japan

    PubMed Central

    2014-01-01

    Background The aim of our study was to investigate the possible etiology of avian colibacillosis by examining Escherichia coli isolates from fecal samples of healthy broilers. Findings Seventy-eight E. coli isolates from fecal samples of healthy broilers in Japan were subjected to analysis of phylogenetic background, virulence-associated gene profiling, multi-locus sequence typing (MLST), and antimicrobial resistance profiling. Phylogenetic analysis demonstrated that 35 of the 78 isolates belonged to group A, 28 to group B1, one to group B2, and 14 to group D. Virulence-associated genes iutA, iss, cvaC, tsh, iroN, ompT, and hlyF were found in 23 isolates (29.5%), 16 isolates (20.5%), nine isolates (11.5%), five isolates (6.4%), 19 isolates (24.4%), 23 isolates (29.5%), and 22 isolates (28.2%) respectively. Although the genetic diversity of group D isolates was revealed by MLST, the group D isolates harbored iutA (10 isolates, 71.4%), iss (6 isolates, 42.9%), cvaC (5 isolates, 35.7%), tsh (3 isolates, 21.4%), hlyF (9 isolates, 64.3%), iroN (7 isolates, 50.0%), and ompT (9 isolates, 64.3%). Conclusions Our results indicated that E. coli isolates inhabiting the intestines of healthy broilers pose a potential risk of causing avian colibacillosis. PMID:25061511

  3. PrfA regulation offsets the cost of L isteria virulence outside the host

    PubMed Central

    Vasanthakrishnan, Radhakrishnan B.; de las Heras, Aitor; Scortti, Mariela; Deshayes, Caroline; Colegrave, Nick

    2015-01-01

    Summary Virulence traits are essential for pathogen fitness, but whether they affect microbial performance in the environment, where they are not needed, remains experimentally unconfirmed. We investigated this question with the facultative pathogen L isteria monocytogenes and its PrfA virulence regulon. PrfA‐regulated genes are activated intracellularly (PrfA ‘ON’) but shut down outside the host (PrfA ‘OFF’). Using a mutant PrfA regulator locked ON (PrfA*) and thus causing PrfA‐controlled genes to be constitutively activated, we show that virulence gene expression significantly impairs the listerial growth rate (μ) and maximum growth (A) in rich medium. Deletion analysis of the PrfA regulon and complementation of a L. monocytogenes mutant lacking all PrfA‐regulated genes with PrfA* indicated that the growth reduction was specifically due to the unneeded virulence determinants and not to pleiotropic regulatory effects of PrfA ON. No PrfA*‐associated fitness disadvantage was observed in infected eukaryotic cells, where PrfA‐regulated virulence gene expression is critical for survival. Microcosm experiments demonstrated that the constitutively virulent state strongly impaired L . monocytogenes performance in soil, the natural habitat of these bacteria. Our findings provide empirical proof that virulence carries a significant cost to the pathogen. They also experimentally substantiate the assumed, although not proven, key role of virulence gene regulation systems in suppressing the cost of bacterial virulence outside the host. PMID:26178789

  4. Surface-Associated Lipoproteins Link Enterococcus faecalis Virulence to Colitogenic Activity in IL-10-Deficient Mice Independent of Their Expression Levels

    PubMed Central

    Lengfelder, Isabella; Lagkouvardos, Ilias; Steck, Natalie; Roh, Jung H.; Tchaptchet, Sandrine; Bao, Yinyin; Hansen, Jonathan J.; Huebner, Johannes; Carroll, Ian M.; Murray, Barbara E.; Sartor, R. Balfour; Haller, Dirk

    2015-01-01

    The commensal Enterococcus faecalis is among the most common causes of nosocomial infections. Recent findings regarding increased abundance of enterococci in the intestinal microbiota of patients with inflammatory bowel diseases and induction of colitis in IL-10-deficient (IL-10-/-) mice put a new perspective on the contribution of E. faecalis to chronic intestinal inflammation. Based on the expression of virulence-related genes in the inflammatory milieu of IL-10-/- mice using RNA-sequencing analysis, we characterized the colitogenic role of two bacterial structures that substantially impact on E. faecalis virulence by different mechanisms: the enterococcal polysaccharide antigen and cell surface-associated lipoproteins. Germ-free wild type and IL-10-/- mice were monoassociated with E. faecalis wild type OG1RF or the respective isogenic mutants for 16 weeks. Intestinal tissue and mesenteric lymph nodes (MLN) were collected to characterize tissue pathology, loss of intestinal barrier function, bacterial adhesion to intestinal epithelium and immune cell activation. Bone marrow-derived dendritic cells (BMDC) were stimulated with bacterial lysates and E. faecalis virulence was additionally investigated in three invertebrate models. Colitogenic activity of wild type E. faecalis (OG1RF score: 7.2±1.2) in monoassociated IL-10-/- mice was partially impaired in E. faecalis lacking enterococcal polysaccharide antigen (ΔepaB score: 4.7±2.3; p<0.05) and was almost completely abrogated in E. faecalis deficient for lipoproteins (Δlgt score: 2.3±2.3; p<0.0001). Consistently both E. faecalis mutants showed significantly impaired virulence in Galleria mellonella and Caenorhabditis elegans. Loss of E-cadherin in the epithelium was shown for all bacterial strains in inflamed IL-10-/- but not wild type mice. Inactivation of epaB in E. faecalis reduced microcolony and biofilm formation in vitro, altered bacterial adhesion to intestinal epithelium of germ-free Manduca sexta larvae

  5. The UmGcn5 gene encoding histone acetyltransferase from Ustilago maydis is involved in dimorphism and virulence.

    PubMed

    González-Prieto, Juan Manuel; Rosas-Quijano, Raymundo; Domínguez, Angel; Ruiz-Herrera, José

    2014-10-01

    We isolated a gene encoding a histone acetyltransferase from Ustilago maydis (DC.) Cda., which is orthologous to the Saccharomyces cerevisiae GCN5 gene. The gene was isolated from genomic clones identified by their specific hybridization to a gene fragment obtained by the polymerase chain reaction (PCR). This gene (Umgcn5; um05168) contains an open reading frame (ORF) of 1421bp that encodes a putative protein of 473 amino acids with a Mr. of 52.6kDa. The protein exhibits a high degree of homology with histone acetyltransferases from different organisms. Null a2b2 ΔUmgcn5 mutants were constructed by substitution of the region encoding the catalytic site with a hygromycin B resistance cassette. Null a1b1 ΔUmgcn5 mutants were isolated from genetic crosses of a2b2 ΔUmgcn5 and a1b1 wild-type strains in maize. Mutants displayed a slight reduction in growth rate under different conditions, and were more sensitive than the wild type to stress conditions, but more important, they grew as long mycelial cells, and formed fuzz-like colonies under all conditions where wild-type strains grew in the yeast-like morphology and formed smooth colonies. This phenotype was not reverted by cAMP addition. Mutants were not virulent to maize plants, and were unable to form teliospores. These phenotypic alterations of the mutants were reverted by their transformation with the wild-type gene. PMID:25242418

  6. Occurrence and characteristics of virulence genes of Escherichia coli strains isolated from healthy dairy cows in Inner Mongolia, China

    PubMed Central

    Huasai, Simujide; Chen, Aorigele; Wang, Chun-jie; Li, Yu; Tongrige, Bai

    2012-01-01

    Virulence genes of Escherichia coli (E. coli) isolates from healthy dairy cows were identified and characterized by a multiplex PCR assay and serogrouping test. The results showed that among the target genes, eaeA was most frequently detected, accounting for 22.11% (67/303) in all strains from 101 cows. For categorization of E. coli, aEPEC was the category with widest distribution detected in 55 (18.15%) strains from 22 cattle. All of 84 PCR-positive strains belonged to 14 O serogroups, and O149 (25.00%) was most common identified, followed by O2 (17.86%), O8 (11.90%) and O103 (9.52%) with relatively high prevalence. PMID:24031860

  7. A complex network regulates expression of eps and other virulence genes of Pseudomonas solanacearum.

    PubMed Central

    Huang, J; Carney, B F; Denny, T P; Weissinger, A K; Schell, M A

    1995-01-01

    We have discovered an unusual and complex regulatory network used by the phytopathogen Pseudomonas solanacearum to control transcription of eps, which encodes for production of its primary virulence factor, the exopolysaccharide EPS I. The major modules of this network were shown to be three separate signal transduction systems: PhcA, a LysR-type transcriptional regulator, an dual two-component regulatory systems, VsrA/VsrD and VsrB/VsrC. Using lacZ fusions and RNA analysis, we found that both PhcA and VsrA/VsrD control transcription of another network component, xpsR, which in turn acts in conjunction with vsrB/vsrC to increase transcription of the eps promoter by > 25-fold. Moreover, gel shift DNA binding assays showed that PhcA specifically binds to the xpsR promoter region. Thus, the unique XpsR protein interconnects the three signal transduction systems, forming a network for convergent control of EPS I in simultaneous response to multiple environmental inputs. In addition, we demonstrate that each individual signaling system of the network also acts independently to divergently regulate other unique sets of virulence factors. The purpose of this complex network may be to allow this phytopathogen to both coordinately or independently regulate diverse virulence factors in order to cope with the dynamic situations and conditions encountered during interactions with plants. PMID:7868600

  8. Pilus Gene Pool Variation and the Virulence of Corynebacterium diphtheriae Clinical Isolates during Infection of a Nematode

    PubMed Central

    Broadway, Melissa M.; Rogers, Elizabeth A.; Chang, Chungyu; Huang, I-Hsiu; Dwivedi, Prabhat; Yildirim, Suleyman; Schmitt, Michael P.; Das, Asis

    2013-01-01

    Toxigenic Corynebacterium diphtheriae strains cause diphtheria in humans. The toxigenic C. diphtheriae isolate NCTC13129 produces three distinct heterotrimeric pili that contain SpaA, SpaD, and SpaH, making up the shaft structure. The SpaA pili are known to mediate bacterial adherence to pharyngeal epithelial cells. However, to date little is known about the expression of different pili in various clinical isolates and their importance in bacterial pathogenesis. Here, we characterized a large collection of C. diphtheriae clinical isolates for their pilin gene pool by PCR and for the expression of the respective pilins by immunoblotting with antibodies against Spa pilins. Consistent with the role of a virulence factor, the SpaA-type pili were found to be prevalent among the isolates, and most significantly, corynebacterial adherence to pharyngeal epithelial cells was strictly correlated with isolates that were positive for the SpaA pili. By comparison, the isolates were heterogeneous for the presence of SpaD- and SpaH-type pili. Importantly, using Caenorhabditis elegans as a model host for infection, we show here that strain NCTC13129 rapidly killed the nematodes, the phenotype similar to isolates that were positive for toxin and all pilus types. In contrast, isogenic mutants of NCTC13129 lacking SpaA-type pili or devoid of toxin and SpaA pili exhibited delayed killing of nematodes with similar kinetics. Consistently, nontoxigenic or toxigenic isolates that lack one, two, or all three pilus types were also attenuated in virulence. This work signifies the important role of pili in corynebacterial pathogenesis and provides a simple host model to identify additional virulence factors. PMID:23772071

  9. In vivo virulence of viral haemorrhagic septicaemia virus (VHSV) in rainbow trout Oncorhynchus mykiss correlates inversely with in vitro Mx gene expression.

    PubMed

    Cano, Irene; Collet, Bertrand; Pereira, Clarissa; Paley, Richard; van Aerle, Ronny; Stone, David; Taylor, Nick G H

    2016-05-01

    The in vitro replication of viral haemorrhagic septicaemia virus (VHSV) isolates from each VHSV genotype and the associated cellular host Mx gene expression were analysed. All the isolates were able to infect RTG-2 cells and induce increased Mx gene expression (generic assay detecting isoforms 1 and 3 [Mx1/3]). A trout pathogenic, genotype Ia isolate (J167), showing high replication in RTG-2 cells (by infective titre and N gene expression) induced lower Mx1/3 gene expression than observed in VHSV isolates known to be non-pathogenic to rainbow trout: 96-43/8, 96-43/10 (Ib); 1p49, 1p53 (II); and MI03 (IVb). Paired co-inoculation assays were analysed using equal number of plaque forming units per ml (PFU) of J167 (Ia genotype) with other less pathogenic VHSV genotypes. In these co-inoculations, the Mx1/3 gene expression was significantly lower than for the non-pathogenic isolate alone. Of the three rainbow trout Mx isoforms, J167 did not induce Mx1 up-regulation in RTG-2 or RTgill-W1 cells. Co-inoculating isolates resulted in greater inhibition of Mx in both rainbow trout cell lines studied. Up-regulation of sea bream Mx in SAF-1 cells induced by 96-43/8 was also lower in co-inoculation assays with J167. The RTG-P1 cell line, expressing luciferase under the control of the interferon-induced Mx rainbow trout gene promoter, showed low luciferase activity when inoculated with pathogenic strains: J167, DK-5131 (Ic), NO-A-163/68 (Id), TR-206239-1, TR-22207111 (Ie), 99-292 (IVa), and CA-NB00-01 (IVc). Co-inoculation assays showed a J167-dose dependent inhibition of the luciferase activity. The data suggest that virulent VHSV isolates may interfere in the interferon pathways, potentially determining higher pathogenicity. PMID:27066706

  10. The extended spectrum β-lactamases (ESBL) and virulence genes of intestinal enteroaggregative Escherichia coli (EAEC) in healthy elderly individuals

    PubMed Central

    Wang, Yuan; Wu, Jian; Cao, Yi

    2015-01-01

    Aim: to analyze the detection rate of intestinal enteroaggregative Escherichia coli (EAEC) in healthy elderly (≥60 years) individuals in the Hangzhou area of China, and to investigate the extended spectrum β-lactamases and virulence genes of EAEC. Methods: Stool specimens provided by healthy elderly individuals were cultured on blood agar, SS, and MAC plates. The bacterial strains were identified using Vitek-2 Compact automatic microorganism identification system and mass spectrometry. The resistance phenotypes of the bacteria were determined using the double-disk synergy method. The resistance genes and the EAEC virulence gene, astA and aggR, were amplified by PCR and compared to the sequences available in Gen Bank. Results: Among the 1050 healthy volunteers, the majority of bacteria were E. coli, accounting for 960 strains, with an ESBL-positive rate of 36.3% (348/960). The EAEC detection rate was 10% (96/960); among them, 84 strains were astA, the detection rate of which was 8.75%; 12 strains were aggR, the detection rate of which was 1.25%. The ESBL-positive rate of EAEC strains were 56.25% (54/96), all of which carried the CTX-M type, with the CTX-M-14 predominating at 66.7% (36/54). Conclusions: The ESBL-positive rate of intestinal E. coli in healthy elderly individuals in the Hangzhou area of China was higher than the rate detected in other regions of china; and there was a high rate of antibiotic resistance among the intestinal EAEC in healthy elderly individuals. The results of this study suggest that EAEC is not only a pathogenic bacteria detected in diarrhea patients, but can also be present in healthy individuals, and high-resistance clinical strains have spread to the healthy population in the Hangzhou area. So vigilance is critical. PMID:26885024

  11. Molecular characterization and virulence gene profiling of pathogenic Streptococcus agalactiae populations from tilapia (Oreochromis sp.) farms in Thailand.

    PubMed

    Kayansamruaj, Pattanapon; Pirarat, Nopadon; Katagiri, Takayuki; Hirono, Ikuo; Rodkhum, Channarong

    2014-05-19

    Streptococcus spp. were recovered from diseased tilapia in Thailand during 2009-2010 (n = 33), and were also continually collected from environmental samples (sediment and water) from tilapia farms for 9 months in 2011 (n = 25). The relative percent recovery of streptococci from environmental samples was 13-67%. All streptococcal isolates were identified as S. agalactiae (group B streptococci [GBS]) by a species-specific polymerase chain reaction. In molecular characterization assays, 4 genotypic categories comprised of 1) molecular serotypes, 2) the infB allele, 3) virulence gene profiling patterns (cylE, hylB, scpB, lmb, cspA, dltA, fbsA, fbsB, bibA, gap, and pili backbone-encoded genes), and 4) randomly amplified polymorphic DNA (RAPD) fingerprinting patterns, were used to describe the genotypic diversity of the GBS isolates. There was only 1 isolate identified as molecular serotype III, while the others were serotype Ia. Most GBS serotype Ia isolates had an identical infB allele and virulence gene profiling patterns, but a large diversity was established by RAPD analysis with diversity tending to be geographically dependent. Experimental infection of Nile tilapia (Oreochromis niloticus) revealed that the GBS serotype III isolate was nonpathogenic in the fish, while all 5 serotype Ia isolates (3 fish and 2 environmental isolates) were pathogenic, with a median lethal dose of 6.25-7.56 log10 colony-forming units. In conclusion, GBS isolates from tilapia farms in Thailand showed a large genetic diversity, which was associated with the geographical origins of the bacteria. PMID:24842288

  12. Genome-wide mining of potential virulence-associated genes in Riemerella anatipestifer using random transposon mutagenesis.

    PubMed

    Ni, Xintao; Jiang, Pan; Xing, Linlin; Ou, Changcan; Yu, Hui; Qi, Jingjing; Sun, Bingqing; Cui, Junsheng; Wang, Guijun; Hu, Qinghai

    2016-06-30

    Riemerella anatipestifer infection is a severe disease confronting the duck industry worldwide. However, little is known about the molecular basis of R. anatipestifer pathogenesis. In this study, we screened 3580 transposon Tn4351 insertion mutagenesis mutants of the highly virulent strain YZb1 in a duckling infection experiment and found 29 of them to be attenuated and 28 potential virulence-associated genes were identified. Molecular characterization of transposon insertion sites showed that of the 28 screened genes, two were predicted to encode TonB-dependent outer membrane receptor (plugs), sixteen encoded enzymes, and seven encoded hypothetical proteins. In addition, of the 28 affected genes, 19 were only found in bacteria belonging to the phylum Bacteroidetes and 10 were only found in the family Flavobacteriaceae. The median lethal dose of the mutants M11 and M29, which was affected in Riean_0060 and Riean_1537 respectively, were about 1700-fold and 210-fold higher than that of the wild-type strain YZb1, and those of the complemented strains M11(pRES-Riean_0060) and M29(pRES-Riean_1537) were decreased by 25- and 3-fold respectively compared to those of the mutants M11 and M29. Additional analysis indicated that the blood bacterial loading of ducklings infected with M11 or M29 was decreased significantly, as compared with that in ducklings infected with the wild-type strain YZb1. Thus, our results indicate that Riean_0060 and Riean_1537 were involved in R. anatipestifer pathogenesis. PMID:27259827

  13. Prevalence of the Most Common Virulence-Associated Genes among Brucella Melitensis Isolates from Human Blood Cultures in Hamadan Province, West of Iran.

    PubMed

    Naseri, Zahra; Alikhani, Mohammad Yousef; Hashemi, Seyed Hamid; Kamarehei, Farideh; Arabestani, Mohammad Reza

    2016-09-01

    Brucellosis is a widespread zoonotic disease causing considerable economic and public health problems. Despite animal vaccination, brucellosis remains endemic in some areas such as Iran, especially in the western Iranian province of Hamadan. We sought to detect some of the most common virulence-associated genes in Brucella isolated from human blood cultures to determine the prevalence of some virulence genes among Brucella isolates. Fifty-seven isolates were studied from patients with a clinical diagnosis of brucellosis who referred to the Infectious Diseases Ward of Sina Hospital in Hamadan Province, Iran, between April 2013 and July 2014. Blood samples were collected for the diagnosis of brucellosis using the BACTEC blood culture system. All of these isolates were confirmed by the bcsp31 Brucella-specific gene. We detected 11 virulence-associated genes of Brucella, namely cβg, virB, znuA, ure, bvfA, omp25, omp31, wbkA, mviN, manA, and manB, which are important for the pathogenesis of this bacterium in the intracellular environment by multiplex PCR. Totally, 149 patients with a clinical diagnosis of brucellosis were enrolled in this study. Fifty-seven (38.3%) patients had positive blood cultures. On biochemical and molecular testing, all of the isolates were Brucella melitensis. Ten of the virulence genes were detected among all of the 57 isolates, but the bvf gene was detected in 53 (93%) isolates. The high prevalence of virulence-associated genes among the Brucella isolates detected in Hamadan Province, Iran, underscores the pathogenicity of this bacterium in this region. PMID:27582592

  14. Distribution of virulence-associated genes and genetic relationships in non-O1/O139 Vibrio cholerae aquatic isolates from China.

    PubMed

    Li, Fengjuan; Du, Pengcheng; Li, Baisheng; Ke, Changwen; Chen, Aiping; Chen, Jie; Zhou, Haijian; Li, Jie; Morris, J Glenn; Kan, Biao; Wang, Duochun

    2014-08-01

    Non-O1/O139 Vibrio cholerae is naturally present in aquatic ecosystems and has been linked with cholera-like diarrhea and local outbreaks. The distribution of virulence-associated genes and genetic relationships among aquatic isolates from China are largely unknown. In this study, 295 aquatic isolates of V. cholerae non-O1/O139 serogroups from different regions in China were investigated. Only one isolate was positive for ctxB and harbored a rare genotype; 10 (3.4%) isolates carried several types of rstR sequences, eight of which carried rare types of toxin-coregulated pili (tcpA). Furthermore, 16 (5.4%) isolates carried incomplete (with partial open reading frames [ORFs]) vibrio seventh pandemic island I (VSP-I) or VSP-II clusters, which were further classified as 11 novel types. PCR-based analyses revealed remarkable variations in the distribution of putative virulence genes, including mshA (95.6%), hlyA (95.3%), rtxC (89.8%), rtxA (82.7%), IS1004 (52.9%), chxA (30.2%), SXT (15.3%), type III secretion system (18.0%), and NAG-ST (3.7%) genes. There was no correlation between the prevalence of putative virulence genes and that of CTX prophage or TCP genes, whereas there were correlations among the putative virulence genes. Further multilocus sequence typing (MLST) placed selected isolates (n = 70) into 69 unique sequence types (STs), which were different from those of the toxigenic O1 and O139 counterparts, and each isolate occupied a different position in the MLST tree. The V. cholerae non-O1/O139 aquatic isolates predominant in China have high genotypic diversity; these strains constitute a reservoir of potential virulence genes, which may contribute to evolution of pathogenic isolates. PMID:24907334

  15. Expression of Virulence-Related Genes in Listeria monocytogenes Grown on Danish Hard Cheese as Affected by NaCl Content.

    PubMed

    Larsen, Nadja; Jespersen, Lene

    2015-06-01

    Expression of virulence-related genes in Listeria monocytogenes incubated on cheese was assessed by real-time quantitative polymerase chain reaction. The objective of the study was to investigate the impact of sodium chloride concentration in cheese on transcription of virulence genes and, thereby, virulence potential of L. monocytogenes. The expression studies were performed with L. monocytogenes strains characterized by different tolerance to salt stress. Strains ATCC(®) 51779 and DSMZ 15675 were incubated on the Danish hard-cheese type Samsoe, with low (<0.15% [wt/wt]) and high (3.6% [wt/wt]) content of NaCl. Genes differentially expressed (p<0.05) through the 48-h incubation were transcriptional regulators prfA and agrA, genes of the main virulence cluster inlA, hly, actA, involved in invasion of the epithelial cells, and genes bsh, opuC, gadC, clpP, and ami, associated with osmotic stress responses in L. monocytogenes. The more sensitive strain ATCC(®) 51779 was most responsive, showing significant upregulation of prfA, actA, hly, and bsh both at low and high NaCl. Strain DSMZ 15675 was less responsive to NaCl stress, showing reduced or consistent gene transcription at all conditions. Decreased transcription of agrA, ami, gadC, and opuC in both strains was promoted by low NaCl content. The study indicated that virulence gene expression of L. monocytogenes grown in cheese was affected by NaCl content and that effect was more significant in strains sensitive to both hypo- and hyperosmotic stresses. PMID:26067229

  16. Characterization of Salmonella enterica and detection of the virulence genes specific to diarrheagenic Escherichia coli from poultry carcasses in Ouagadougou, Burkina Faso.

    PubMed

    Kagambèga, Assèta; Barro, Nicolas; Traoré, Alfred S; Siitonen, Anja; Haukka, Kaisa

    2012-07-01

    One hundred chicken carcasses purchased from three markets selling poultry in Ouagadougou, Burkina Faso, between June 2010 and October 2010 were examined for their microbiological quality. The presence of Salmonella was investigated using standard bacteriologi