Science.gov

Sample records for activate virulence gene

  1. Differential activation of virulence gene expression by PrfA, the Listeria monocytogenes virulence regulator.

    PubMed Central

    Sheehan, B; Klarsfeld, A; Msadek, T; Cossart, P

    1995-01-01

    PrfA is a pleiotropic activator of virulence gene expression in the pathogenic bacterium Listeria monocytogenes. Several lines of evidence have suggested that a hierarchy of virulence gene activation by PrfA exists. This hypothesis was investigated by assessing the ability of PrfA to activate the expression of virulence gene fusions to lacZ in Bacillus subtilis. Expression of PrfA in this heterologous host was sufficient for activation of transcription at the hly, plcA, mpl, and actA promoters. Activation was most efficient at the divergently transcribed hly and plcA promoters. The putative PrfA binding site shared by these promoters is perfectly symmetrical and appears to represent the optimum sequence for target gene activation by PrfA. The activation of actA and mpl expression was considerably weaker and occurred more slowly than that observed at the hly and plcA promoters, suggesting that greater quantities of PrfA are required for productive interaction at these promoters. Interestingly, expression of an inlA-lacZ transcriptional fusion was very poorly activated by PrfA in B. subtilis, suggesting that other Listeria factors, in addition to PrfA, are required for PrfA-mediated activation at this promoter. Further support for the involvement of such factors was obtained by constructing and analyzing a prfA deletion mutant of L. monocytogenes. We observed that, in contrast to that of the other genes of the PrfA regulon, expression of inlA is only partially dependent on PrfA. PMID:7592422

  2. Transcriptional activation of virulence genes of Rhizobium etli.

    PubMed

    Wang, Luyao; Lacroix, Benoît; Guo, Jianhua; Citovsky, Vitaly

    2017-01-09

    Recently, Rhizobium etli has emerged, in addition to Agrobacterium spp., as a prokaryotic species that encodes a functional machinery for DNA transfer to plant cells. To understand this R. etli-mediated genetic transformation, it would be useful to define how its vir genes respond to the host plants. Here, we explored the transcriptional activation of the vir genes contained on the R. etli p42a plasmid. Using a reporter construct harboring lacZ under the control of the R. etli virE promoter, we showed that the signal phenolic molecule acetosyringone (AS) induced R. etli vir gene expression both in R. etli and in A. tumefaciens background. Furthermore, in both bacterial backgrounds, the p42a plasmid also promoted plant genetic transformation with a reporter T-DNA. Importantly, the R. etli vir genes were transcriptionally activated by AS in a bacterial species-specific fashion in regard to the VirA/VirG signal sensor system, and this activation was induced by signals from the natural host species of this bacterium, but not from non-host plants. Early kinetics of transcriptional activation of the major vir genes of R. etli also revealed several features distinct from those known for A. tumefaciens: the expression of the virG gene reached saturation relatively quickly, and virB2, which in R. etli is located outside of the virB operon, was expressed only at low levels and did not respond to AS. These differences in vir gene transcription may contribute to the lower efficiency of T-DNA transfer of R. etli p42a versus pTiC58 of A. tumefaciens IMPORTANCE: The region encoding homologs of Agrobacterium tumefaciens virulence genes in the Rhizobium etli CE3 p42a plasmid was the first endogenous virulence system encoded by a non-Agrobacterium species demonstrated to be functional in DNA transfer and stable integration into plant cell genome. In this study, we explore the transcriptional regulation and induction of virulence genes in R. etli and show similarities and differences

  3. Evidence that PrfA, the pleiotropic activator of virulence genes in Listeria monocytogenes, can be present but inactive.

    PubMed Central

    Renzoni, A; Klarsfeld, A; Dramsi, S; Cossart, P

    1997-01-01

    All virulence genes of Listeria monocytogenes identified to date are positively regulated by PrfA, a transcriptional activator belonging to the Crp-Fnr family. Low temperature and cellobiose are two environmental signals known to repress expression of virulence genes in L. monocytogenes. In the present work, we analyzed the effect of temperature and cellobiose on the expression of the PrfA protein. At low temperature, PrfA was undetected, although prfA monocistronic transcripts are present. In contrast, PrfA was fully expressed in the presence of cellobiose. These results strongly suggest that virulence gene activation depends on both the presence of PrfA and additional regulatory pathways that either modify PrfA or act synergistically with PrfA. PMID:9119495

  4. Characterization of DNase activity and gene in Streptococcus suis and evidence for a role as virulence factor

    PubMed Central

    2014-01-01

    Background The Gram-positive bacterium Streptococcus suis serotype 2 is an important swine pathogen and emerging zoonotic agent. Multilocus sequence typing allowed dividing S. suis serotype 2 into sequence types (STs). The three major STs of S. suis serotype 2 from North America are 1 (most virulent), 25 (intermediate virulence) and 28 (less virulent). Although the presence of DNase activity in S. suis has been previously reported, little data is available. The aim of this study was to investigate DNase activity in S. suis according to STs, to characterize the activity and gene, and to provide evidence for a potential role in virulence. Results We showed that ST1 and ST28 strains exhibited DNase activity that was absent in ST25 strains. The lack of activity in ST25 isolates was associated with a 14-bp deletion resulting in a shifted reading frame and a premature stop codon. The DNase of S. suis P1/7 (ST1) was cell-associated and active on linear DNA. A DNase-deficient mutant of S. suis P1/7 was found to be less virulent in an amoeba model. Stimulation of macrophages with the DNase mutant showed a decreased secretion of pro-inflammatory cytokines and matrix metalloproteinase-9 compared to the parental strain. Conclusions This study further expands our knowledge of S. suis DNase and its potential role in virulence. PMID:24996230

  5. Mutations in the control of virulence sensor gene from Streptococcus pyogenes after infection in mice lead to clonal bacterial variants with altered gene regulatory activity and virulence.

    PubMed

    Mayfield, Jeffrey A; Liang, Zhong; Agrahari, Garima; Lee, Shaun W; Donahue, Deborah L; Ploplis, Victoria A; Castellino, Francis J

    2014-01-01

    The cluster of virulence sensor (CovS)/responder (CovR) two-component operon (CovRS) regulates ∼15% of the genes of the Group A Streptococcal pyogenes (GAS) genome. Bacterial clones containing inactivating mutations in the covS gene have been isolated from patients with virulent invasive diseases. We report herein an assessment of the nature and types of covS mutations that can occur in both virulent and nonvirulent GAS strains, and assess whether a nonvirulent GAS can attain enhanced virulence through this mechanism. A group of mice were infected with a globally-disseminated clonal M1T1 GAS (isolate 5448), containing wild-type (WT) CovRS (5448/CovR+S+), or less virulent engineered GAS strains, AP53/CovR+S+ and Manfredo M5/CovR+S+. SpeB negative GAS clones from wound sites and/or from bacteria disseminated to the spleen were isolated and the covS gene was subjected to DNA sequence analysis. Numerous examples of inactivating mutations were found in CovS in all regions of the gene. The mutations found included frame-shift insertions and deletions, and in-frame small and large deletions in the gene. Many of the mutations found resulted in early translation termination of CovS. Thus, the covS gene is a genomic mutagenic target that gives GAS enhanced virulence. In cases wherein CovS- was discovered, these clonal variants exhibited high lethality, further suggesting that randomly mutated covS genes occur during the course of infection, and lead to the development of a more invasive infection.

  6. Does the possession of virulence factor genes mean that those genes will be active?

    PubMed

    Edberg, Stephen C

    2009-01-01

    There are a number of relationships the host can establish with the microbes we ingest. For the vast majority of microbes, they have a short-lived liaison with the human host. Either they are destroyed by the stomach acid or bile, or can not establish even a temporary residency in the gastrointestinal tract. Early in life the mucosal surfaces of the body establishes a resident, and generally stable, normal flora. These normal flora microbes, the majority of which are bacteria, have specific receptors for specific areas of the alimentary tract. If the foreign microbe can establish residency, it then may transiently or permanently become part of the normal flora. However, in order to produce disease, it must possess an additional set of virulence factors. While some of these are known, many are not. Those that are known include enzymes, such as protease, lipase, and esterase. Accordingly, VFAR may not be associated with human disease and its presence or absence has no public health meaning.

  7. The Agrobacterium tumefaciens virulence protein VirE3 is a transcriptional activator of the F-box gene VBF.

    PubMed

    Niu, Xiaolei; Zhou, Meiliang; Henkel, Christiaan V; van Heusden, G Paul H; Hooykaas, Paul J J

    2015-12-01

    During Agrobacterium tumefaciens-mediated transformation of plant cells a part of the tumour-inducing plasmid, T-DNA, is integrated into the host genome. In addition, a number of virulence proteins are translocated into the host cell. The virulence protein VirE3 binds to the Arabidopsis thaliana pBrp protein, a plant-specific general transcription factor of the TFIIB family. To study a possible role for VirE3 in transcriptional regulation, we stably expressed virE3 in A. thaliana under control of a tamoxifen-inducible promoter. By RNA sequencing we showed that upon expression of virE3 the RNA levels of 607 genes were increased more than three-fold and those of 132 genes decreased more than three-fold. One of the strongly activated genes was that encoding VBF (At1G56250), an F-box protein that may affect the levels of the VirE2 and VIP1 proteins. Using Arabidopsis cell suspension protoplasts we showed that VirE3 stimulates the VBF promoter, especially when co-expressed with pBrp. Although pBrp is localized at the external surface of plastids, co-expression of VirE3 and pBrp in Arabidopsis cell suspension protoplasts resulted in the accumulation of pBrp in the nucleus. Our results suggest that VirE3 affects the transcriptional machinery of the host cell to favour the transformation process.

  8. Antimicrobial medium- and long-chain free fatty acids prevent PrfA-dependent activation of virulence genes in Listeria monocytogenes.

    PubMed

    Sternkopf Lillebæk, Eva Maria; Lambert Nielsen, Stine; Scheel Thomasen, Rikke; Færgeman, Nils J; Kallipolitis, Birgitte H

    2017-03-23

    The foodborne pathogen Listeria monocytogenes is the causative agent of the invasive disease listeriosis. Infection by L. monocytogenes involves bacterial crossing of the intestinal barrier and intracellular replication in a variety of host cells. The PrfA protein is the master regulator of virulence factors required for bacterial entry, intracellular replication and cell-to-cell spread. PrfA-dependent activation of virulence genes occurs primarily in the blood and during intracellular infection. In contrast, PrfA does not play a significant role in regulation of virulence gene expression in the intestinal environment. In the gastrointestinal phase of infection, the bacterium encounters a variety of antimicrobial agents, including medium- and long-chain free fatty acids that are commonly found in our diet and as active components of bile. Here we show that subinhibitory concentrations of specific antimicrobial free fatty acids act to downregulate transcription of PrfA-activated virulence genes. Interestingly, the inhibitory effect is also evident in cells encoding a constitutively active variant of PrfA. Collectively, our data suggest that antimicrobial medium- and long-chain free fatty acids may act as signals to prevent PrfA-mediated activation of virulence genes in environments where PrfA activation is not required, such as in food and the gastrointestinal tract.

  9. RovM, a novel LysR-type regulator of the virulence activator gene rovA, controls cell invasion, virulence and motility of Yersinia pseudotuberculosis.

    PubMed

    Heroven, Ann Kathrin; Dersch, Petra

    2006-12-01

    RovA is a MarR-type transcriptional regulator that controls transcription of rovA, the expression of the primary invasive factor invasin and other virulence genes of Yersinia pseudotuberculosis in response to environmental signals. Using a genetic approach to identify regulatory components that negatively influence rovA expression, we identified a new LysR-type regulatory protein, designated RovM, which exhibits homology to the virulence regulator PecT/HexA of plant pathogenic Erwinia species. DNA-binding studies revealed that RovM interacts specifically with a short binding site between promoters P1 and P2 within the rovA regulatory region and negatively modulates rovA transcription in cooperation with the histone-like protein H-NS. The rovM gene itself is under positive autoregulatory control and is significantly induced during growth in minimal media as shown in regulation studies. Disruption of the rovM gene leads to a significant increase of RovA and invasin synthesis and enhances internalization of Y. pseudotuberculosis into host cells. Finally, we show that a Y. pseudotuberculosis rovM mutant is more virulent than wild type and higher numbers of the bacteria are detectable in gut-associated lymphatic tissues and organs in the mouse infection model system. In contrast, elevated levels of the RovM protein, which exert a positive effect on flagellar motility, severely attenuate the ability of Y. pseudotuberculosis to disseminate to deeper tissues. Together, our data show, that RovM is a key regulator implicated in the environmental control of virulence factors, which are crucial for the initiation of a Yersinia infection.

  10. An In Vivo Selection Identifies Listeria monocytogenes Genes Required to Sense the Intracellular Environment and Activate Virulence Factor Expression

    PubMed Central

    Portnoy, Daniel A.

    2016-01-01

    Listeria monocytogenes is an environmental saprophyte and facultative intracellular bacterial pathogen with a well-defined life-cycle that involves escape from a phagosome, rapid cytosolic growth, and ActA-dependent cell-to-cell spread, all of which are dependent on the master transcriptional regulator PrfA. The environmental cues that lead to temporal and spatial control of L. monocytogenes virulence gene expression are poorly understood. In this study, we took advantage of the robust up-regulation of ActA that occurs intracellularly and expressed Cre recombinase from the actA promoter and 5’ untranslated region in a strain in which loxP sites flanked essential genes, so that activation of actA led to bacterial death. Upon screening for transposon mutants that survived intracellularly, six genes were identified as necessary for ActA expression. Strikingly, most of the genes, including gshF, spxA1, yjbH, and ohrA, are predicted to play important roles in bacterial redox regulation. The mutants identified in the genetic selection fell into three broad categories: (1) those that failed to reach the cytosolic compartment; (2) mutants that entered the cytosol, but failed to activate the master virulence regulator PrfA; and (3) mutants that entered the cytosol and activated transcription of actA, but failed to synthesize it. The identification of mutants defective in vacuolar escape suggests that up-regulation of ActA occurs in the host cytosol and not the vacuole. Moreover, these results provide evidence for two non-redundant cytosolic cues; the first results in allosteric activation of PrfA via increased glutathione levels and transcriptional activation of actA while the second results in translational activation of actA and requires yjbH. Although the precise host cues have not yet been identified, we suggest that intracellular redox stress occurs as a consequence of both host and pathogen remodeling their metabolism upon infection. PMID:27414028

  11. Systemic Approach to Virulence Gene Network Analysis for Gaining New Insight into Cryptococcal Virulence

    PubMed Central

    Malachowski, Antoni N.; Yosri, Mohamed; Park, Goun; Bahn, Yong-Sun; He, Yongqun; Olszewski, Michal A.

    2016-01-01

    Cryptococcus neoformans is pathogenic yeast, responsible for highly lethal infections in compromised patients around the globe. C. neoformans typically initiates infections in mammalian lung tissue and subsequently disseminates to the central nervous system where it causes significant pathologies. Virulence genes of C. neoformans are being characterized at an increasing rate, however, we are far from a comprehensive understanding of their roles and genetic interactions. Some of these reported virulence genes are scattered throughout different databases, while others are not yet included. This study gathered and analyzed 150 reported virulence associated factors (VAFs) of C. neoformans. Using the web resource STRING database, our study identified different interactions between the total VAFs and those involved specifically in lung and brain infections and identified a new strain specific virulence gene, SHO1, involved in the mitogen-activated protein kinase signaling pathway. As predicted by our analysis, SHO1 expression enhanced C. neoformans virulence in a mouse model of pulmonary infection, contributing to enhanced non-protective immune Th2 bias and progressively enhancing fungal growth in the infected lungs. Sequence analysis indicated 77.4% (116) of total studied VAFs are soluble proteins, and 22.7% (34) are transmembrane proteins. Motifs involved in regulation and signaling such as protein kinases and transcription factors are highly enriched in Cryptococcus VAFs. Altogether, this study represents a pioneering effort in analysis of the virulence composite network of C. neoformans using a systems biology approach. PMID:27833589

  12. Benzaldehyde Schiff bases regulation to the metabolism, hemolysis, and virulence genes expression in vitro and their structure-microbicidal activity relationship.

    PubMed

    Xia, Lei; Xia, Yu-Fen; Huang, Li-Rong; Xiao, Xiao; Lou, Hua-Yong; Liu, Tang-Jingjun; Pan, Wei-Dong; Luo, Heng

    2015-06-05

    There is an urgent need to develop new antibacterial agents because of multidrug resistance by bacteria and fungi. Schiff bases (aldehyde or ketone-like compounds) exhibit intense antibacterial characteristics, and are therefore, promising candidates as antibacterial agents. To investigate the mechanism of action of newly designed benzaldehyde Schiff bases, a series of high-yielding benzaldehyde Schiff bases were synthesized, and their structures were determined by NMR and MS spectra data. The structure-microbicidal activity relationship of derivatives was investigated, and the antibacterial mechanisms were investigated by gene assays for the expression of functional genes in vitro using Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The active compounds were selective for certain active groups. The polar substitution of the R2 group of the amino acids in the Schiff bases, affected the antibacterial activity against E. coli and S. aureus; specific active group at the R3 or R4 groups of the acylhydrazone Schiff bases could improve their inhibitory activity against these three tested organisms. The antibacterial mechanism of the active benzaldehyde Schiff bases appeared to regulate the expression of metabolism-associated genes in E. coli, hemolysis-associated genes in B. subtilis, and key virulence genes in S. aureus. Some benzaldehyde Schiff bases were bactericidal to all the three strains and appeared to regulate gene expression associated with metabolism, hemolysis, and virulence, in vitro. The newly designed benzaldehyde Schiff bases possessed unique antibacterial activity and might be potentially useful for prophylactic or therapeutic intervention of bacterial infections.

  13. L-glutamine Induces Expression of Listeria monocytogenes Virulence Genes

    PubMed Central

    Lobel, Lior; Burg-Golani, Tamar; Sigal, Nadejda; Rose, Jessica; Livnat-Levanon, Nurit; Lewinson, Oded; Herskovits, Anat A.

    2017-01-01

    The high environmental adaptability of bacteria is contingent upon their ability to sense changes in their surroundings. Bacterial pathogen entry into host poses an abrupt and dramatic environmental change, during which successful pathogens gauge multiple parameters that signal host localization. The facultative human pathogen Listeria monocytogenes flourishes in soil, water and food, and in ~50 different animals, and serves as a model for intracellular infection. L. monocytogenes identifies host entry by sensing both physical (e.g., temperature) and chemical (e.g., metabolite concentrations) factors. We report here that L-glutamine, an abundant nitrogen source in host serum and cells, serves as an environmental indicator and inducer of virulence gene expression. In contrast, ammonia, which is the most abundant nitrogen source in soil and water, fully supports growth, but fails to activate virulence gene transcription. We demonstrate that induction of virulence genes only occurs when the Listerial intracellular concentration of L-glutamine crosses a certain threshold, acting as an on/off switch: off when L-glutamine concentrations are below the threshold, and fully on when the threshold is crossed. To turn on the switch, L-glutamine must be present, and the L-glutamine high affinity ABC transporter, GlnPQ, must be active. Inactivation of GlnPQ led to complete arrest of L-glutamine uptake, reduced type I interferon response in infected macrophages, dramatic reduction in expression of virulence genes, and attenuated virulence in a mouse infection model. These results may explain observations made with other pathogens correlating nitrogen metabolism and virulence, and suggest that gauging of L-glutamine as a means of ascertaining host localization may be a general mechanism. PMID:28114430

  14. Bacterial Human Virulence Genes across Diverse Habitats As Assessed by In silico Analysis of Environmental Metagenomes

    PubMed Central

    Søborg, Ditte A.; Hendriksen, Niels B.; Kilian, Mogens; Christensen, Jan H.; Kroer, Niels

    2016-01-01

    The occurrence and distribution of clinically relevant bacterial virulence genes across natural (non-human) environments is not well understood. We aimed to investigate the occurrence of homologs to bacterial human virulence genes in a variety of ecological niches to better understand the role of natural environments in the evolution of bacterial virulence. Twenty four bacterial virulence genes were analyzed in 46 diverse environmental metagenomic datasets, representing various soils, seawater, freshwater, marine sediments, hot springs, the deep-sea, hypersaline mats, microbialites, gutless worms and glacial ice. Homologs to 16 bacterial human virulence genes, involved in urinary tract infections, gastrointestinal diseases, skin diseases, and wound and systemic infections, showed global ubiquity. A principal component analysis did not demonstrate clear trends across the metagenomes with respect to occurrence and frequency of observed gene homologs. Full-length (>95%) homologs of several virulence genes were identified, and translated sequences of the environmental and clinical genes were up to 50–100% identical. Furthermore, phylogenetic analyses indicated deep branching positions of some of the environmental gene homologs, suggesting that they represent ancient lineages in the phylogeny of the clinical genes. Fifteen virulence gene homologs were detected in metatranscriptomes, providing evidence of environmental expression. The ubiquitous presence and transcription of the virulence gene homologs in non-human environments point to an important ecological role of the genes for the activity and survival of environmental bacteria. Furthermore, the high degree of sequence conservation between several of the environmental and clinical genes suggests common ancestral origins. PMID:27857707

  15. Regulation of virulence gene expression in pathogenic Listeria.

    PubMed

    Brehm, K; Kreft, J; Ripio, M T; Vázquez-Boland, J A

    1996-06-01

    Dynamic interactions between host and pathogen are characteristic of infections caused by intracellular bacteria. This has favoured the evolution of highly effective control systems by which these pathogens regulate the expression of different virulence factors during sequential steps of the infection process. In the case of the facultative intracellular bacterium Listeria monocytogenes, these steps involve internalization by eukaryotic cells, lysis of the resulting phagosome, replication as well as movement within the host cytoplasm, direct cell-to-cell spread, and subsequent lysis of a double-membrane vacuole when entering neighbouring cells. Virulence factors which are involved in each of these steps have been identified and the expression of these factors is subject to a co-ordinate and differential control exerted by the major listerial virulence regulator PrfA. This protein belongs to the Crp/Fnr-family of transcriptional activators and recognizes specific target sequences in promoter regions of several listerial virulence genes. Differential expression of these genes during sequential steps of the infection seems to be at least partially mediated by different binding affinities of PrfA to its target sequences. Activity of PrfA-dependent genes and of prfA itself is under the control of several environmental variables which are used by the pathogen to recognize its transition from the free environment into a eukaryotic host.

  16. Roles of the Polymerase-Associated Protein Genes in Newcastle Disease Virus Virulence

    PubMed Central

    Yu, Xiao-hui; Cheng, Jin-long; Xue, Jia; Jin, Ji-hui; Song, Yang; Zhao, Jing; Zhang, Guo-zhong

    2017-01-01

    The virulence of Newcastle disease virus varies greatly and is determined by multiple genetic factors. In this study, we systematically evaluated the roles of the polymerase-associated (NP, P and L) protein genes in genotype VII NDV virulence after confirming the envelope-associated (F and HN) proteins contributed greatly to NDV virulence. The results revealed that the polymerase-associated protein genes individually had certain effect on virulence, while transfer of these three genes in combination significantly affected the chimeric virus virulence, especially when the L gene was involved. These results indicated that the L protein was a major contributor to NDV virulence when combined with the homologous NP and P proteins. We also investigated viral RNA synthesis using NDV minigenome systems to assess the interaction between the NP, P, and L proteins, which showed that the activity of the polymerase-associated proteins were directly related to viral RNA transcription and replication. PMID:28220114

  17. Fungal virulence genes as targets for antifungal chemotherapy.

    PubMed Central

    Perfect, J R

    1996-01-01

    Fungal virulence genes have now met the age of molecular pathogenesis. The definition of virulence genes needs to be broad so that it encompasses the focus on molecular antifungal targets and vaccine epitopes. However, in the broad but simple definition of a virulence gene, there will be many complex genetic and host interactions which investigators will need to carefully define. Nevertheless, with the increasing numbers of serious fungal infections produced by old and newly reported organisms, the paucity of present antifungal drugs, and the likelihood of increasing drug resistance, the need for investigations into understanding fungal virulence at the molecular level has never been more important. PMID:8807043

  18. The mitogen-activated protein kinase gene, VdHog1, regulates osmotic stress response, microsclerotia formation and virulence in Verticillium dahliae.

    PubMed

    Wang, Yonglin; Tian, Longyan; Xiong, Dianguang; Klosterman, Steven J; Xiao, Shuxiao; Tian, Chengming

    2016-03-01

    The fungus Verticillium dahliae has gained worldwide notoriety as a destructive plant pathogen, causing vascular wilt diseases on diverse plant species. V. dahliae produces melanized resting bodies, known as microsclerotia, which can survive for 15 years in the soil, and are thus critically important in its disease cycle. However, the molecular mechanisms that underpin microsclerotia formation, survival, and germination remain poorly understood. In this study, we observed that deletion of VdHog1 (ΔVdHog1), encoding a homolog of a high-osmolarity glycerol (HOG) response mitogen-activated protein kinase, displayed decreased numbers of melanized microsclerotia in culture, heightened sensitivity to hyperosmotic stress, and increased resistance to the fungicide fludioxonil. Through RNA-Seq analysis, we identified 221 genes differentially expressed in the ΔVdHog1 strain. Interestingly, the expression levels of genes involved in melanin biosynthesis, as well as the hydrophobin gene VDH1, involved in the early stage of microsclerotia formation, were significantly decreased in the ΔVdHog1 strains relative to the wild-type expression levels. The ΔVdHog1 strains exhibited decreased virulence relative to the wild type strain on smoke tree seedlings. These results indicate that VdHog1 regulates hyperosmotic stress responses in V. dahliae, and establishes the Hog1-mediated pathway as a target to further probe the up- and downstream processes that regulate asexual development in this fungus.

  19. Virulence Factor-activity Relationships: Workshop Summary

    EPA Science Inventory

    The concept or notion of virulence factor–activity relationships (VFAR) is an approach for identifying an analogous process to the use of qualitative structure–activity relationships (QSAR) for identifying new microbial contaminants. In QSAR, it is hypothesized that, for new chem...

  20. Vibrio cholerae anaerobic induction of virulence gene expression is controlled by thiol-based switches of virulence regulator AphB

    PubMed Central

    Liu, Zhi; Yang, Menghua; Peterfreund, Gregory L.; Tsou, Amy M.; Selamoglu, Nur; Daldal, Fevzi; Zhong, Zengtao; Kan, Biao; Zhu, Jun

    2011-01-01

    Bacterial pathogens have evolved sophisticated signal transduction systems to coordinately control the expression of virulence determinants. For example, the human pathogen Vibrio cholerae is able to respond to host environmental signals by activating transcriptional regulatory cascades. The host signals that stimulate V. cholerae virulence gene expression, however, are still poorly understood. Previous proteomic studies indicated that the ambient oxygen concentration plays a role in V. cholerae virulence gene expression. In this study, we found that under oxygen-limiting conditions, an environment similar to the intestines, V. cholerae virulence genes are highly expressed. We show that anaerobiosis enhances dimerization and activity of AphB, a transcriptional activator that is required for the expression of the key virulence regulator TcpP, which leads to the activation of virulence factor production. We further show that one of the three cysteine residues in AphB, C235, is critical for oxygen responsiveness, as the AphBC235S mutant can activate virulence genes under aerobic conditions in vivo and can bind to tcpP promoters in the absence of reducing agents in vitro. Mass spectrometry analysis suggests that under aerobic conditions, AphB is modified at the C235 residue. This modification is reversible between oxygen-rich aquatic environments and oxygen-limited human hosts, suggesting that V. cholerae may use a thiol-based switch mechanism to sense intestinal signals and activate virulence. PMID:21187377

  1. Antibacterial activity of Pyrrosia petiolosa ethyl acetate extract against Staphylococcus aureus by decreasing hla and sea virulence genes.

    PubMed

    Song, Liju; Cao, Mei; Chen, Chong; Qi, Panpan; Li, Ningzhe; Wu, Daoyan; Peng, Jingshan; Wang, Xuege; Zhang, Mao; Hu, Guoku; Zhao, Jian

    2017-06-01

    The aim of this study was to explore the antibacterial activity of Pyrrosia petiolosa ethyl acetate extract (PPEAE) against Staphylococcus aureus in vitro and analyse its chemical components by gas chromatograph-mass spectrometry. The results of anti-microbial assay revealed that PPEAE had strong inhibitory activity against S .aureus, with MIC and MBC of 7.8 and 15.6 mg/mL, respectively. The transcriptional levels of hla and sea were reduced to 14.33 and 46.39% at the MIC compared to the control. Analysing test result exhibited that eugenol made a great contribution to antibacterial activity. This experiment indicated that PPEAE had prominent antibacterial activity against S. aureus.

  2. Salmonella plasmid virulence gene spvB enhances bacterial virulence by inhibiting autophagy in a zebrafish infection model.

    PubMed

    Li, Yuan-Yuan; Wang, Ting; Gao, Song; Xu, Guang-Mei; Niu, Hua; Huang, Rui; Wu, Shu-Yan

    2016-02-01

    Salmonella enterica serovar typhimurium (S. typhimurium) is a facultative intracellular pathogen that can cause gastroenteritis and systemic infection in a wide range of hosts. Salmonella plasmid virulence gene spvB is closely related to bacterial virulence in different cells and animal models, and the encoded protein acts as an intracellular toxin required for ADP-ribosyl transferase activity. However, until now there is no report about the pathogenecity of spvB gene on zebrafish. Due to the outstanding advantages of zebrafish in analyzing bacteria-host interactions, a S. typhimurium infected zebrafish model was set up here to study the effect of spvB on autophagy and intestinal pathogenesis in vivo. We found that spvB gene could decrease the LD50 of S. typhimurium, and the strain carrying spvB promoted bacterial proliferation and aggravated the intestinal damage manifested by the narrowed intestines, fallen microvilli, blurred epithelium cell structure and infiltration of inflammatory cells. Results demonstrated the enhanced virulence induced by spvB in zebrafish. In spvB-mutant strain infected zebrafish, the levels of Lc3 turnover and Beclin1 expression increased, and the double-membraned autophagosome structures were observed, suggesting that spvB can inhibit autophagy activity. In summary, our results indicate that S. typhimurium strain containing spvB displays more virulence, triggering an increase in bacterial survival and intestine injuries by suppressing autophagy for the first time. This model provides novel insights into the role of Salmonella plasmid virulence gene in bacterial pathogenesis, and can help to further elucidate the relationship between bacteria and host immune response.

  3. Malonate inhibits virulence gene expression in Vibrio cholerae.

    PubMed

    Minato, Yusuke; Fassio, Sara R; Häse, Claudia C

    2013-01-01

    We previously found that inhibition of the TCA cycle, either through mutations or chemical inhibition, increased toxT transcription in Vibrio cholerae. In this study, we found that the addition of malonate, an inhibitor of succinate dehydrogenase (SDH), decreased toxT transcription in V. cholerae, an observation inconsistent with the previous pattern observed. Unlike another SDH inhibitor, 2-thenoyltrifluoroacetone (TTFA), which increased toxT transcription and slightly inhibited V. cholerae growth, malonate inhibited toxT transcription in both the wild-type strain and TCA cycle mutants, suggesting malonate-mediated inhibition of virulence gene expression is independent to TCA cycle activity. Addition of malonate also inhibited ctxB and tcpA expressions but did not affect aphA, aphB, tcpP and toxR expressions. Malonate inhibited cholera toxin (CT) production in both V. cholerae classical biotype strains O395N1 and CA401, and El Tor biotype strain, N16961. Consistent with previous reports, we confirmed that these strains of V. cholerae did not utilize malonate as a primary carbon source. However, we found that the addition of malonate to the growth medium stimulated V. cholerae growth. All together, these results suggest that metabolizing malonate as a nutrient source negatively affects virulence gene expression in V. cholerae.

  4. Antimicrobial activity and the presence of virulence factors and bacteriocin structural genes in Enterococcus faecium CM33 isolated from ewe colostrum

    PubMed Central

    Nami, Yousef; Haghshenas, Babak; Haghshenas, Minoo; Yari Khosroushahi, Ahmad

    2015-01-01

    Screening of lactic acid bacteria (LAB) isolated from ewe colostrum led to the identification and isolation of Enterococcus faecium CM33 with interesting features like high survival rates under acidic or bile salts condition, high tolerance for the simulated gastrointestinal condition, and high adhesive potential to Caco-2 cells. According the inhibition of pathogen adhesion test results, this strain can reduce more than 50% adhesion capacity of Escherichia coli, Shigella flexneri, Klebsiella pneumoniae, Listeria monocytogenes, and Staphylococcus aureus to Caco-2 cells. Based on the antibiotic sensitivity test findings, E. faecium CM33 was susceptible to gentamycin, vancomycin, erythromycin, ampicillin, penicillin, tetracycline, and rifampicin, but resistant to chloramphenicol, clindamycin, and kanamycin. Upon assessment of the virulence determinants for E. faecium CM33, this strain was negative for all tested virulence genes. Furthermore, the genome of this strain was evaluated for the incidence of the known enterocin genes by specific PCR amplification and discovered the genes encoding enterocins A, 31, X, and Q. Based on this study findings, the strain E. faecium CM33 can be considered as a valuable nutraceutical and can be introduced as a new potential probiotic. PMID:26284059

  5. Antimicrobial activity and the presence of virulence factors and bacteriocin structural genes in Enterococcus faecium CM33 isolated from ewe colostrum.

    PubMed

    Nami, Yousef; Haghshenas, Babak; Haghshenas, Minoo; Yari Khosroushahi, Ahmad

    2015-01-01

    Screening of lactic acid bacteria (LAB) isolated from ewe colostrum led to the identification and isolation of Enterococcus faecium CM33 with interesting features like high survival rates under acidic or bile salts condition, high tolerance for the simulated gastrointestinal condition, and high adhesive potential to Caco-2 cells. According the inhibition of pathogen adhesion test results, this strain can reduce more than 50% adhesion capacity of Escherichia coli, Shigella flexneri, Klebsiella pneumoniae, Listeria monocytogenes, and Staphylococcus aureus to Caco-2 cells. Based on the antibiotic sensitivity test findings, E. faecium CM33 was susceptible to gentamycin, vancomycin, erythromycin, ampicillin, penicillin, tetracycline, and rifampicin, but resistant to chloramphenicol, clindamycin, and kanamycin. Upon assessment of the virulence determinants for E. faecium CM33, this strain was negative for all tested virulence genes. Furthermore, the genome of this strain was evaluated for the incidence of the known enterocin genes by specific PCR amplification and discovered the genes encoding enterocins A, 31, X, and Q. Based on this study findings, the strain E. faecium CM33 can be considered as a valuable nutraceutical and can be introduced as a new potential probiotic.

  6. Cryptococcus neoformans Virulence Gene Discovery through Insertional Mutagenesis

    PubMed Central

    Idnurm, Alexander; Reedy, Jennifer L.; Nussbaum, Jesse C.; Heitman, Joseph

    2004-01-01

    Insertional mutagenesis was applied to Cryptococcus neoformans to identify genes associated with virulence attributes. Using biolistic transformation, we generated 4,300 nourseothricin (NAT)-resistant strains, of which 590 exhibited stable resistance. We focused on mutants with defects in established virulence factors and identified two with reduced growth at 37°C, four with reduced production of the antioxidant pigment melanin, and two with an increased sensitivity to nitric oxide (NO). The NAT insertion and mutant phenotypes were genetically linked in five of eight mutants, and the DNA flanking the insertions was characterized. For the strains with altered growth at 37°C and altered melanin production, mutations were in previously uncharacterized genes, while the two NO-sensitive strains bore insertions in the flavohemoglobin gene FHB1, whose product counters NO stress. Because of the frequent instability of nourseothricin resistance associated with biolistic transformation, Agrobacterium-mediated transformation was tested. This transkingdom DNA delivery approach produced 100% stable nourseothricin-resistant transformants, and three melanin-defective strains were identified from 576 transformants, of which 2 were linked to NAT in segregation analysis. One of these mutants contained a T-DNA insertion in the promoter of the LAC1 (laccase) gene, which encodes a key enzyme required for melanin production, while the second contained an insertion in the promoter of the CLC1 gene, encoding a voltage-gated chloride channel. Clc1 and its homologs are required for ion homeostasis, and in their absence Cu+ transport into the secretory pathway is compromised, depriving laccase and other Cu+-dependent proteins of their essential cofactor. The NAT resistance cassette was optimized for cryptococcal codon usage and GC content and was then used to disrupt a mitogen-activated protein kinase gene, a predicted gene, and two putative chloride channel genes to analyze their

  7. Fur is required for the activation of virulence gene expression through the induction of the sae regulatory system in Staphylococcus aureus.

    PubMed

    Johnson, Miranda; Sengupta, Mrittika; Purves, Joanne; Tarrant, Emma; Williams, Peter H; Cockayne, Alan; Muthaiyan, Arunachalam; Stephenson, Robert; Ledala, Nagender; Wilkinson, Brian J; Jayaswal, Radheshyam K; Morrissey, Julie A

    2011-01-01

    Our previous studies showed that both Sae and Fur are required for the induction of eap and emp expression in low iron. In this study, we show that expression of sae is also iron-regulated, as sae expression is activated by Fur in low iron. We also demonstrate that both Fur and Sae are required for full induction of the oxidative stress response and expression of non-covalently bound surface proteins in low-iron growth conditions. In addition, Sae is required for the induced expression of the important virulence factors isdA and isdB in low iron. Our studies also indicate that Fur is required for the induced expression of the global regulators Agr and Rot in low iron and a number of extracellular virulence factors such as the haemolysins which are also Sae- and Agr-regulated. Hence, we show that Fur is central to a complex regulatory network that is required for the induced expression of a number of important S. aureus virulence determinants in low iron.

  8. Rcs signalling-activated transcription of rcsA induces strong anti-sense transcription of upstream fliPQR flagellar genes from a weak intergenic promoter: regulatory roles for the anti-sense transcript in virulence and motility.

    PubMed

    Wang, Qingfeng; Harshey, Rasika M

    2009-10-01

    In Salmonella enterica, an activated Rcs signalling system inhibits initiation of transcription of the flhD master operon. Under these conditions, where motility is shut down, microarray experiments showed an increased RNA signal for three flagellar genes -fliPQR- located upstream of rcsA. We show here that it is the anti-sense (AS) strand of these genes that is transcribed, originating at a weak promoter in the intergenic region between fliR and rcsA. RcsA is an auxiliary regulator for the Rcs system, whose transcription is dependent on the response regulator RcsB. Rcs-activated rightward transcription, but not translation, of rcsA is required for stimulation of leftward AS transcription. Our results implicate a combined action of RcsB and rcsA transcription in activating the AS promoter, likely by modulating DNA superhelicity in the intergenic region. We show that the AS transcript regulates many genes in the Rcs regulon, including SPI-1 and SPI-2 virulence and stress-response genes. In the wild-type strain the AS transcript is present in low amounts, independent of Rcs signalling. Here, AS transcription modulates complementary sense RNA levels and impacts swarming motility. It appears that the flagellar AS transcript has been co-opted by the Rcs system to regulate virulence.

  9. Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana.

    PubMed

    Valero-Jiménez, Claudio A; Wiegers, Harm; Zwaan, Bas J; Koenraadt, Constantianus J M; van Kan, Jan A L

    2016-01-01

    Pest insects cause severe damage to global crop production and pose a threat to human health by transmitting diseases. Traditionally, chemical pesticides (insecticides) have been used to control such pests and have proven to be effective only for a limited amount of time because of the rapid spread of genetic insecticide resistance. The basis of this resistance is mostly caused by (co)dominant mutations in single genes, which explains why insecticide use alone is an unsustainable solution. Therefore, robust solutions for insect pest control need to be sought in alternative methods such as biological control agents for which single-gene resistance is less likely to evolve. The entomopathogenic fungus Beauveria bassiana has shown potential as a biological control agent of insects, and insight into the mechanisms of virulence is essential to show the robustness of its use. With the recent availability of the whole genome sequence of B. bassiana, progress in understanding the genetics that constitute virulence toward insects can be made more quickly. In this review we divide the infection process into distinct steps and provide an overview of what is currently known about genes and mechanisms influencing virulence in B. bassiana. We also discuss the need for novel strategies and experimental methods to better understand the infection mechanisms deployed by entomopathogenic fungi. Such knowledge can help improve biocontrol agents, not only by selecting the most virulent genotypes, but also by selecting the genotypes that use combinations of virulence mechanisms for which resistance in the insect host is least likely to develop.

  10. Implication of an Aldehyde Dehydrogenase Gene and a Phosphinothricin N-Acetyltransferase Gene in the Diversity of Pseudomonas cichorii Virulence

    PubMed Central

    Tanaka, Masayuki; Wali, Ullah Md; Nakayashiki, Hitoshi; Fukuda, Tatsuya; Mizumoto, Hiroyuki; Ohnishi, Kouhei; Kiba, Akinori; Hikichi, Yasufumi

    2011-01-01

    Pseudomonas cichorii harbors the hrp genes. hrp-mutants lose their virulence on eggplant but not on lettuce. A phosphinothricin N-acetyltransferase gene (pat) is located between hrpL and an aldehyde dehydrogenase gene (aldH) in the genome of P. cichorii. Comparison of nucleotide sequences and composition of the genes among pseudomonads suggests a common ancestor of hrp and pat between P. cichorii strains and P. viridiflava strains harboring the single hrp pathogenicity island. In contrast, phylogenetic diversification of aldH corresponded to species diversification amongst pseudomonads. In this study, the involvement of aldH and pat in P. cichorii virulence was analyzed. An aldH-deleted mutant (ΔaldH) and a pat-deleted mutant (Δpat) lost their virulence on eggplant but not on lettuce. P. cichorii expressed both genes in eggplant leaves, independent of HrpL, the transcriptional activator for the hrp. Inoculation into Asteraceae species susceptible to P. cichorii showed that the involvement of hrp, pat and aldH in P. cichorii virulence is independent of each other and has no relationship with the phylogeny of Asteraceae species based on the nucleotide sequences of ndhF and rbcL. It is thus thought that not only the hrp genes but also pat and aldH are implicated in the diversity of P. cichorii virulence on susceptible host plant species. PMID:24704843

  11. CodY in Staphylococcus aureus: a Regulatory Link between Metabolism and Virulence Gene Expression▿ †

    PubMed Central

    Pohl, Konstanze; Francois, Patrice; Stenz, Ludwig; Schlink, Frank; Geiger, Tobias; Herbert, Silvia; Goerke, Christiane; Schrenzel, Jacques; Wolz, Christiane

    2009-01-01

    The repressor CodY is reported to inhibit metabolic genes mainly involved in nitrogen metabolism. We analyzed codY mutants from three unrelated Staphylococcus aureus strains (Newman, UAMS-1, and RN1HG). The mutants grew more slowly than their parent strains in a chemically defined medium. However, only codY mutants were able to grow in medium lacking threonine. An excess of isoleucine resulted in growth inhibition in the wild type but not in the codY mutants, indicating that isoleucine plays a role in CodY-dependent repression. Prototypic CodY-repressed genes including the virulence regulator agr are repressed after up-shift with isoleucine. The CodY-dependent repression of agr is consistent with the concomitant influence of CodY on typical agr-regulated genes such as cap, spa, fnbA, and coa. However, some of these virulence genes (e.g., cap, fnbA, and spa) were also regulated by CodY in an agr-negative background. Microarray analysis revealed that the large majority of CodY-repressed genes were involved in amino acid metabolism; CodY-activated genes were mainly involved in nucleotide metabolism or virulence. In summary, CodY in S. aureus not only acts as a repressor for genes involved in nitrogen metabolism but also contributes to virulence gene regulation by supporting as well as substituting for agr function. PMID:19251851

  12. Carbohydrate Availability Regulates Virulence Gene Expression in Streptococcus suis

    PubMed Central

    Ferrando, M. Laura; van Baarlen, Peter; Orrù, Germano; Piga, Rosaria; Bongers, Roger S.; Wels, Michiel; De Greeff, Astrid; Smith, Hilde E.; Wells, Jerry M.

    2014-01-01

    Streptococcus suis is a major bacterial pathogen of young pigs causing worldwide economic problems for the pig industry. S. suis is also an emerging pathogen of humans. Colonization of porcine oropharynx by S. suis is considered to be a high risk factor for invasive disease. In the oropharyngeal cavity, where glucose is rapidly absorbed but dietary α-glucans persist, there is a profound effect of carbohydrate availability on the expression of virulence genes. Nineteen predicted or confirmed S. suis virulence genes that promote adhesion to and invasion of epithelial cells were expressed at higher levels when S. suis was supplied with the α-glucan starch/pullulan compared to glucose as the single carbon source. Additionally the production of suilysin, a toxin that damages epithelial cells, was increased more than ten-fold when glucose levels were low and S. suis was growing on pullulan. Based on biochemical, bioinformatics and in vitro and in vivo gene expression studies, we developed a biological model that postulates the effect of carbon catabolite repression on expression of virulence genes in the mucosa, organs and blood. This research increases our understanding of S. suis virulence mechanisms and has important implications for the design of future control strategies including the development of anti-infective strategies by modulating animal feed composition. PMID:24642967

  13. Virulence factors genes in enterococci isolated from beavers (Castor fiber).

    PubMed

    Lauková, Andrea; Strompfová, Viola; Kandričáková, Anna; Ščerbová, Jana; Semedo-Lemsaddek, Teresa; Miltko, Renata; Belzecki, Grzegorz

    2015-03-01

    Only limited information exists concerning the microbiota in beaver (Castor fiber). This study has been focused on the virulence factors genes detection in enterococci from beavers. In general, animals are not affected by enterococcal infections, but they can be a reservoir of, e.g. pathogenic strains. Moreover, detection of virulence factors genes in enterococci from beavers was never tested before. Free-living beavers (12), male and female (age 4-5 years) were caught in the north-east part of Poland. Sampling of lower gut and faeces was provided according to all ethical rules for animal handling. Samples were treated using a standard microbiological method. Pure bacterial colonies were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) identification system. Virulence factors genes-gelE (gelatinase), agg (aggregation), cylA (cytolysin A), efaAfs (adhesin Enterococcus faecalis), efaAfm (adhesin Enterococcus faecium) and esp (surface protein) were tested by PCR. Moreover, gelatinase and antibiotic phenotypes were tested. Species detected were Enterococcus thailandicus, E. faecium, E. faecalis and Enterococcus durans. In literature, enterococcal species distribution was never reported yet up to now. Strains were mostly sensitive to antibiotics. Vancomycin-resistant E. faecalis EE9Tr1 possess cylA, efaAfs, esp and gelE genes. Strains were aggregation substance genes absent. Adhesin E. faecium (efaAfm) gene was detected in two of three E. faecium strains, but it was present also in E. thailandicus. Esp gene was present in EE9Tr1 and E. durans EDTr92. The most detected were gelE, efaAfm genes; in EF 4Hc1 also gelatinase phenotype was found. Strains with virulence factors genes will be tested for their sensitivity to antimicrobial enterocins.

  14. The two CcdA proteins of Bacillus anthracis differentially affect virulence gene expression and sporulation.

    PubMed

    Han, Hesong; Wilson, Adam C

    2013-12-01

    The cytochrome c maturation system influences the expression of virulence factors in Bacillus anthracis. B. anthracis carries two copies of the ccdA gene, encoding predicted thiol-disulfide oxidoreductases that contribute to cytochrome c maturation, while the closely related organism Bacillus subtilis carries only one copy of ccdA. To investigate the roles of the two ccdA gene copies in B. anthracis, strains were constructed without each ccdA gene, and one strain was constructed without both copies simultaneously. Loss of both ccdA genes results in a reduction of cytochrome c production, an increase in virulence factor expression, and a reduction in sporulation efficiency. Complementation and expression analyses indicate that ccdA2 encodes the primary CcdA in B. anthracis, active in all three pathways. While CcdA1 retains activity in cytochrome c maturation and virulence control, it has completely lost its activity in the sporulation pathway. In support of this finding, expression of ccdA1 is strongly reduced when cells are grown under sporulation-inducing conditions. When the activities of CcdA1 and CcdA2 were analyzed in B. subtilis, neither protein retained activity in cytochrome c maturation, but CcdA2 could still function in sporulation. These observations reveal the complexities of thiol-disulfide oxidoreductase function in pathways relevant to virulence and physiology.

  15. Temperature Regulation of Shigella Virulence: Identification of Temperature-Regulated Shigella Invasion Genes by the Isolation of inv::lacZ Operon Fusions and the Characterization of the Virulence Gene Regulator virR

    DTIC Science & Technology

    1991-04-10

    promoters was also isolated and shown to require a virulence plasmid-encoded transcriptional activator for activity . Virulence in both Shigella spp. and...Insertional mutagenesis of this coding sequence caused a loss of VirR* activity . It was concluded that the S. flexneri virR gene is an allele of hns, the...Sereny test 47 iv) Assay for Contact Hemolytic Activity 48 Phage lysates and generalized transduction 49 Western blot 50 ELISA 52 Mutagenesis

  16. Evidence that Plasmodium falciparum chromosome end clusters are cross-linked by protein and are the sites of both virulence gene silencing and activation.

    PubMed

    Marty, Allison J; Thompson, Jennifer K; Duffy, Michael F; Voss, Till S; Cowman, Alan F; Crabb, Brendan S

    2006-10-01

    The malaria parasite Plasmodium falciparum undergoes antigenic variation through allelic exclusion and variant expression of surface proteins encoded by the var gene family. Regulation of var genes is under epigenetic control and involves reversible silencing and activation that requires the physical repositioning of a var locus into a transcriptionally permissive zone of the nuclear periphery. P. falciparum chromosome ends appear to aggregate into large perinuclear clusters which house both subtelomeric and chromosome central var genes. In this study we further define the composition of telomeric clusters using fluorescent in situ hybridization, and provide evidence that chromosome end clusters are formed by cross-linking protein. In addition, we demonstrate that a subtelomeric reporter gene and a var gene remain within clusters regardless of their transcriptional status. Our findings support a model whereby a highly localized structure dedicated to the activation of a single var gene can be housed within a gene dense chromosome end cluster that is otherwise transcriptionally silent.

  17. Effects of the HN gene c-terminal extensions on the Newcastle disease virus virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hemagglutinin-neuraminidase (HN) of Newcastle disease virus (NDV) is a multifunctional protein that has receptor recognition, neuraminidase and fusion promotion activities. Sequence analysis revealed that the HN gene of many extremely low virulence NDV strains encodes a larger open reading frame...

  18. A functional gene array for detection of bacterial virulence elements

    SciTech Connect

    Jaing, C

    2007-11-01

    We report our development of the first of a series of microarrays designed to detect pathogens with known mechanisms of virulence and antibiotic resistance. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples. To validate our approach, we developed a first generation array targeting genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for microorganism detection and discrimination, measured the required target concentration, and assessed tolerance for mismatches between probe and target sequences. Mismatch tolerance is a priority for this application, due to DNA sequence variability among members of gene families. Arrays were created using the NimbleGen Maskless Array Synthesizer at Lawrence Livermore National Laboratory. Purified genomic DNA from combinations of one or more of the four target organisms, pure cultures of four related organisms, and environmental aerosol samples with spiked-in genomic DNA were hybridized to the arrays. Based on the success of this prototype, we plan to design further arrays in this series, with the goal of detecting all known virulence and antibiotic resistance gene families in a greatly expanded set of organisms.

  19. DNA Adenine Methylation Regulates Virulence Gene Expression in Salmonella enterica Serovar Typhimurium▿

    PubMed Central

    Balbontín, Roberto; Rowley, Gary; Pucciarelli, M. Graciela; López-Garrido, Javier; Wormstone, Yvette; Lucchini, Sacha; García-del Portillo, Francisco; Hinton, Jay C. D.; Casadesús, Josep

    2006-01-01

    Transcriptomic analyses during growth in Luria-Bertani medium were performed in strain SL1344 of Salmonella enterica serovar Typhimurium and in two isogenic derivatives lacking Dam methylase. More genes were repressed than were activated by Dam methylation (139 versus 37). Key genes that were differentially regulated by Dam methylation were verified independently. The largest classes of Dam-repressed genes included genes belonging to the SOS regulon, as previously described in Escherichia coli, and genes of the SOS-inducible Salmonella prophages ST64B, Gifsy-1, and Fels-2. Dam-dependent virulence-related genes were also identified. Invasion genes in pathogenicity island SPI-1 were activated by Dam methylation, while the fimbrial operon std was repressed by Dam methylation. Certain flagellar genes were repressed by Dam methylation, and Dam− mutants of S. enterica showed reduced motility. Altered expression patterns in the absence of Dam methylation were also found for the chemotaxis genes cheR (repressed by Dam) and STM3216 (activated by Dam) and for the Braun lipoprotein gene, lppB (activated by Dam). The requirement for DNA adenine methylation in the regulation of specific virulence genes suggests that certain defects of Salmonella Dam− mutants in the mouse model may be caused by altered patterns of gene expression. PMID:16997949

  20. Molecular insight into the activity of LasR protein from Pseudomonas aeruginosa in the regulation of virulence gene expression by this organism.

    PubMed

    Chowdhury, Nilkanta; Bagchi, Angshuman

    2016-04-10

    Pseudomonas aeruginosa is an opportunistic human pathogen. This organism attacks human patients suffering from diseases like AIDS, cancer, cystic fibrosis, etc. One of the important virulent factors produced by this organism is Hydrogen Cyanide. This is expressed from the genes encoded by the hcnABC operon. The expressions of the genes encoded by hcnABC operon are mediated mainly by the interactions of LasR protein with the corresponding promoter region of the hcnABC operon. The LasR protein acts as a dimer and binds to the promoter DNA with the help of an autoinducer ligand. However, till date the detailed molecular mechanism of how the LasR protein interacts with the promoter DNA is not clearly known. Therefore, in this work, an attempt has been made to analyze the mode of interactions of the LasR protein with the promoter DNA region of the hcnABC operon. We analyzed the three dimensional structure of the LasR protein from Pseudomonas aeruginosa and docked the protein with the autoinducer ligand. We then docked the ligand-bound-LasR-protein as well the LasR-protein-without-the-autoinducer-ligand on to the promoter DNA region of hcnABC operon. We analyzed the details of the interaction profiles of LasR protein with the autoinducer ligand. We also deciphered the details of the LasR promoter-DNA interactions. We compared the modes of DNA bindings by the LasR protein in presence and absence of the autoinducer ligand and tried to analyze the molecular details of the binding of LasR protein with the promoter DNA region of hcnABC operon during hcnABC gene expression. This study may therefore pave the pathway for future experiments to determine the relative effects of the amino acid residues of LasR protein in DNA binding during the transcription of hcnABC operon.

  1. H-NS, Its Family Members and Their Regulation of Virulence Genes in Shigella Species

    PubMed Central

    Picker, Michael A.; Wing, Helen J.

    2016-01-01

    The histone-like nucleoid structuring protein (H-NS) has played a key role in shaping the evolution of Shigella spp., and provides the backdrop to the regulatory cascade that controls virulence by silencing many genes found on the large virulence plasmid. H-NS and its paralogue StpA are present in all four Shigella spp., but a second H-NS paralogue, Sfh, is found in the Shigella flexneri type strain 2457T, which is routinely used in studies of Shigella pathogenesis. While StpA and Sfh have been proposed to serve as “molecular backups” for H-NS, the apparent redundancy of these proteins is questioned by in vitro studies and work done in Escherichia coli. In this review, we describe the current understanding of the regulatory activities of the H-NS family members, the challenges associated with studying these proteins and their role in the regulation of virulence genes in Shigella. PMID:27916940

  2. VIRULENCE AND CITRULLINE UREIDASE ACTIVITY OF PASTEURELLA TULARENSIS12

    PubMed Central

    Marchette, Nyven J.; Nicholes, Paul S.

    1961-01-01

    Marchette, Nyven J. (University of Utah, Salt Lake City), and Paul S. Nicholes. Virulence and citrulline ureidase activity of Pasteurella tularensis. J. Bacteriol. 82:26–32. 1961.—The presence of a citrulline ureidase system in Pasteurella tularensis strains of high virulence, and its absence in avirulent strains and strains of low virulence was confirmed. The presence of this system, however, was shown to be not directly related to virulence. The only wild strain of P. tularensis tested that lacked a citrulline ureidase system was isolated from a rodent. All the strains, isolated from rabbits, rabbit ticks, a human being, and a horse, that were tested possessed this system. The existence of two North American varieties of P. tularensis was postulated on the basis of virulence and citrulline ureidase activity. PMID:13766500

  3. Virulence and citrulline ureidase activity of Pasteurella tularensis.

    PubMed

    MARCHETTE, N J; NICHOLES, P S

    1961-07-01

    Marchette, Nyven J. (University of Utah, Salt Lake City), and Paul S. Nicholes. Virulence and citrulline ureidase activity of Pasteurella tularensis. J. Bacteriol. 82:26-32. 1961.-The presence of a citrulline ureidase system in Pasteurella tularensis strains of high virulence, and its absence in avirulent strains and strains of low virulence was confirmed. The presence of this system, however, was shown to be not directly related to virulence. The only wild strain of P. tularensis tested that lacked a citrulline ureidase system was isolated from a rodent. All the strains, isolated from rabbits, rabbit ticks, a human being, and a horse, that were tested possessed this system. The existence of two North American varieties of P. tularensis was postulated on the basis of virulence and citrulline ureidase activity.

  4. Differential modulation of Bordetella pertussis virulence genes as evidenced by DNA microarray analysis.

    PubMed

    Hot, D; Antoine, R; Renauld-Mongénie, G; Caro, V; Hennuy, B; Levillain, E; Huot, L; Wittmann, G; Poncet, D; Jacob-Dubuisson, F; Guyard, C; Rimlinger, F; Aujame, L; Godfroid, E; Guiso, N; Quentin-Millet, M-J; Lemoine, Y; Locht, C

    2003-07-01

    The production of most factors involved in Bordetella pertussis virulence is controlled by a two-component regulatory system termed BvgA/S. In the Bvg+ phase virulence-activated genes (vags) are expressed, and virulence-repressed genes (vrgs) are down-regulated. The expression of these genes can also be modulated by MgSO(4) or nicotinic acid. In this study we used microarrays to analyse the influence of BvgA/S or modulation on the expression of nearly 200 selected genes. With the exception of one vrg, all previously known vags and vrgs were correctly assigned as such, and the microarray analyses identified several new vags and vrgs, including genes coding for putative autotransporters, two-component systems, extracellular sigma factors, the adenylate cyclase accessory genes cyaBDE, and two genes coding for components of a type III secretion system. For most of the new vrgs and vags the results of the microarray analyses were confirmed by RT-PCR analysis and/or lacZfusions. The degree of regulation and modulation varied between genes, and showed a continuum from strongly BvgA/S-activated genes to strongly BvgA/S-repressed genes. The microarray analyses also led to the identification of a subset of vags and vrgs that are differentially regulated and modulated by MgSO(4) or nicotinic acid, indicating that these genes may be targets for multiple regulatory circuits. For example, the expression of bilA, a gene predicted to encode an intimin-like protein, was found to be activated by BvgA/S and up-modulated by nicotinic acid. Furthermore, surprisingly, in the strain analysed here, which produces only type 2 fimbriae, the fim3 gene was identified as a vrg, while fim2 was confirmed to be a vag.

  5. Virulence genes in clinical and environmental Stenotrophomas maltophilia isolates: a genome sequencing and gene expression approach.

    PubMed

    Adamek, Martina; Linke, Burkhard; Schwartz, Thomas

    2014-01-01

    The rate of nosocomial infections with the opportunistic pathogen Stenotrophomonas maltophilia has remarkably increased in the last decade. To determine S. maltophilia virulence genes, the complete genome sequences of two S. maltophilia isolates were compared. The clinical strain SKK35 was proved virulent in an amoeba host-pathogen model, and wastewater strain RA8 was determined as non-virulent in the amoeba model. The genome sequences of three additional S. maltophilia strains, K279a (clinical, non-virulent against amoeba), R511-3 and SKA14 (both environmental, non-virulent against amoeba) were taken into account as reference strains. We were able to show that all clinical and environmental S. maltophilia strains presented comparable distribution of so far identified potential virulence genes, regardless to their virulence potential against amoebae. Aside from that, strain SKK35 was found harboring a putative, strain specific pathogenicity island, encoding two proteins from the RTX (repeats-in-toxin) family. The actual expression of the RTX genes was verified in growth experiments in different culture media containing blood or blood components and in co-cultures with amoeba.

  6. Chamaecyparis obtusa Suppresses Virulence Genes in Streptococcus mutans

    PubMed Central

    Kim, Eun-Hee; Kang, Sun-Young; Park, Bog-Im; Kim, Young-Hoi; Lee, Young-Rae; Hoe, Jin-Hee; Choi, Na-Young; Ra, Ji-Young; An, So-Youn; You, Yong-Ouk

    2016-01-01

    Chamaecyparis obtusa (C. obtusa) is known to have antimicrobial effects and has been used as a medicinal plant and in forest bathing. This study aimed to evaluate the anticariogenic activity of essential oil of C. obtusa on Streptococcus mutans, which is one of the most important bacterial causes of dental caries and dental biofilm formation. Essential oil from C. obtusa was extracted, and its effect on bacterial growth, acid production, and biofilm formation was evaluated. C. obtusa essential oil exhibited concentration-dependent inhibition of bacterial growth over 0.025 mg/mL, with 99% inhibition at a concentration of 0.2 mg/mL. The bacterial biofilm formation and acid production were also significantly inhibited at the concentration greater than 0.025 mg/mL. The result of LIVE/DEAD® BacLight™ Bacterial Viability Kit showed a concentration-dependent bactericidal effect on S. mutans and almost all bacteria were dead over 0.8 mg/mL. Real-time PCR analysis showed that gene expression of some virulence factors such as brpA, gbpB, gtfC, and gtfD was also inhibited. In GC and GC-MS analysis, the major components were found to be α-terpinene (40.60%), bornyl acetate (12.45%), α-pinene (11.38%), β-pinene (7.22%), β-phellandrene (3.45%), and α-terpinolene (3.40%). These results show that C. obtusa essential oil has anticariogenic effect on S. mutans. PMID:27293453

  7. Chamaecyparis obtusa Suppresses Virulence Genes in Streptococcus mutans.

    PubMed

    Kim, Eun-Hee; Kang, Sun-Young; Park, Bog-Im; Kim, Young-Hoi; Lee, Young-Rae; Hoe, Jin-Hee; Choi, Na-Young; Ra, Ji-Young; An, So-Youn; You, Yong-Ouk

    2016-01-01

    Chamaecyparis obtusa (C. obtusa) is known to have antimicrobial effects and has been used as a medicinal plant and in forest bathing. This study aimed to evaluate the anticariogenic activity of essential oil of C. obtusa on Streptococcus mutans, which is one of the most important bacterial causes of dental caries and dental biofilm formation. Essential oil from C. obtusa was extracted, and its effect on bacterial growth, acid production, and biofilm formation was evaluated. C. obtusa essential oil exhibited concentration-dependent inhibition of bacterial growth over 0.025 mg/mL, with 99% inhibition at a concentration of 0.2 mg/mL. The bacterial biofilm formation and acid production were also significantly inhibited at the concentration greater than 0.025 mg/mL. The result of LIVE/DEAD® BacLight™ Bacterial Viability Kit showed a concentration-dependent bactericidal effect on S. mutans and almost all bacteria were dead over 0.8 mg/mL. Real-time PCR analysis showed that gene expression of some virulence factors such as brpA, gbpB, gtfC, and gtfD was also inhibited. In GC and GC-MS analysis, the major components were found to be α-terpinene (40.60%), bornyl acetate (12.45%), α-pinene (11.38%), β-pinene (7.22%), β-phellandrene (3.45%), and α-terpinolene (3.40%). These results show that C. obtusa essential oil has anticariogenic effect on S. mutans.

  8. covR Mediated Antibiofilm Activity of 3-Furancarboxaldehyde Increases the Virulence of Group A Streptococcus

    PubMed Central

    Ashwinkumar Subramenium, Ganapathy; Viszwapriya, Dharmaprakash; Iyer, Prasanth Mani; Balamurugan, Krishnaswamy; Karutha Pandian, Shunmugiah

    2015-01-01

    Background Group A streptococcus (GAS, Streptococcus pyogenes), a multi-virulent, exclusive human pathogen responsible for various invasive and non-invasive diseases possesses biofilm forming phenomenon as one of its pathogenic armaments. Recently, antibiofilm agents have gained prime importance, since inhibiting the biofilm formation is expected to reduce development of antibiotic resistance and increase their susceptibility to the host immune cells. Principal Findings The current study demonstrates the antibiofilm activity of 3Furancarboxaldehyde (3FCA), a floral honey derived compound, against GAS biofilm, which was divulged using crystal violet assay, light microscopy, and confocal laser scanning microscopy. The report is extended to study its effect on various aspects of GAS (morphology, virulence, aggregation) at its minimal biofilm inhibitory concentration (132μg/ml). 3FCA was found to alter the growth pattern of GAS in solid and liquid medium and increased the rate of auto-aggregation. Electron microscopy unveiled the increase in extra polymeric substances around cell. Gene expression studies showed down-regulation of covR gene, which is speculated to be the prime target for the antibiofilm activity. Increased hyaluronic acid production and down regulation of srtB gene is attributed to the enhanced rate of auto-aggregation. The virulence genes (srv, mga, luxS and hasA) were also found to be over expressed, which was manifested with the increased susceptibility of the model organism Caenorhabditis elegans to 3FCA treated GAS. The toxicity of 3FCA was ruled out with no adverse effect on C. elegans. Significance Though 3FCA possess antibiofilm activity against GAS, it was also found to increase the virulence of GAS. This study demonstrates that, covR mediated antibiofilm activity may increase the virulence of GAS. This also emphasizes the importance to analyse the acclimatization response and virulence of the pathogen in the presence of antibiofilm compounds

  9. A Novel Virulence Gene in Klebsiella pneumoniae Strains Causing Primary Liver Abscess and Septic Metastatic Complications

    PubMed Central

    Fang, Chi-Tai; Chuang, Yi-Ping; Shun, Chia-Tung; Chang, Shan-Chwen; Wang, Jin-Town

    2004-01-01

    Primary Klebsiella pneumoniae liver abscess complicated with metastatic meningitis or endophthalmitis is a globally emerging infectious disease. Its pathogenic mechanism remains unclear. The bacterial virulence factors were explored by comparing clinical isolates. Differences in mucoviscosity were observed between strains that caused primary liver abscess (invasive) and those that did not (noninvasive). Hypermucoviscosity correlated with a high serum resistance and was more prevalent in invasive strains (52/53 vs. 9/52; P < 0.0001). Transposon mutagenesis identified candidate virulence genes. A novel 1.2-kb locus, magA, which encoded a 43-kD outer membrane protein, was significantly more prevalent in invasive strains (52/53 vs. 14/52; P < 0.0001). The wild-type strain produced a mucoviscous exopolysaccharide web, actively proliferated in nonimmune human serum, resisted phagocytosis, and caused liver microabscess and meningitis in mice. However, magA− mutants lost the exopolysaccharide web and became extremely serum sensitive, phagocytosis susceptible, and avirulent to mice. Virulence was restored by complementation using a magA-containing plasmid. We conclude that magA fits molecular Koch's postulates as a virulence gene. Thus, this locus can be used as a marker for the rapid diagnosis and for tracing the source of this emerging infectious disease. PMID:14993253

  10. Various Enterotoxin and Other Virulence Factor Genes Widespread Among Bacillus cereus and Bacillus thuringiensis Strains.

    PubMed

    Kim, Min-Ju; Han, Jae-Kwang; Park, Jong-Su; Lee, Jin-Sung; Lee, Soon-Ho; Cho, Joon-Il; Kim, Keun-Sung

    2015-06-01

    Many strains of Bacillus cereus cause gastrointestinal diseases, and the closely related insect pathogen Bacillus thuringiensis has also been involved in outbreaks of diarrhea. The diarrheal diseases are attributed to enterotoxins. Sixteen reference strains of B. cereus and nine commercial and 12 reference strains of B. thuringiensis were screened by PCR for the presence of 10 enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK, bceT, entFM, and entS), one emetogenic gene (ces), seven hemolytic genes (hlyA, hlyII, hlyIII, plcA, cerA, cerB, and cerO), and a pleiotropic transcriptional activator gene (plcR). These genes encode various enterotoxins and other virulence factors thought to play a role in infections of mammals. Amplicons were successfully generated from the strains of B. cereus and B. thuringiensis for each of these sequences, except the ces gene. Intriguingly, the majority of these B. cereus enterotoxin genes and other virulence factor genes appeared to be widespread among B. thuringiensis strains as well as B. cereus strains.

  11. Gene Deletion Strategy To Examine the Involvement of the Two Chondroitin Lyases in Flavobacterium columnare Virulence

    PubMed Central

    Li, Nan; Qin, Ting; Zhang, Xiao Lin; Huang, Bei; Liu, Zhi Xin; Xie, Hai Xia; Zhang, Jin; McBride, Mark J.

    2015-01-01

    Flavobacterium columnare is an important bacterial pathogen of freshwater fish that causes high mortality of infected fish and heavy economic losses in aquaculture. The pathogenesis of this bacterium is poorly understood, in part due to the lack of efficient methods for genetic manipulation. In this study, a gene deletion strategy was developed and used to determine the relationship between the production of chondroitin lyases and virulence. The F. johnsoniae ompA promoter (PompA) was fused to sacB to construct a counterselectable marker for F. columnare. F. columnare carrying PompA-sacB failed to grow on media containing 10% sucrose. A suicide vector carrying PompA-sacB was constructed, and a gene deletion strategy was developed. Using this approach, the chondroitin lyase-encoding genes, cslA and cslB, were deleted. The ΔcslA and ΔcslB mutants were both partially deficient in digestion of chondroitin sulfate A, whereas a double mutant (ΔcslA ΔcslB) was completely deficient in chondroitin lyase activity. Cells of F. columnare wild-type strain G4 and of the chondroitin lyase-deficient ΔcslA ΔcslB mutant exhibited similar levels of virulence toward grass carp in single-strain infections. Coinfections, however, revealed a competitive advantage for the wild type over the chondroitin lyase mutant. The results indicate that chondroitin lyases are not essential virulence factors of F. columnare but may contribute to the ability of the pathogen to compete and cause disease in natural infections. The gene deletion method developed in this study may be employed to investigate the virulence factors of this bacterium and may have wide application in many other members of the phylum Bacteroidetes. PMID:26253667

  12. Gene deletion strategy to examine the involvement of the two chondroitin lyases in Flavobacterium columnare virulence.

    PubMed

    Li, Nan; Qin, Ting; Zhang, Xiao Lin; Huang, Bei; Liu, Zhi Xin; Xie, Hai Xia; Zhang, Jin; McBride, Mark J; Nie, Pin

    2015-11-01

    Flavobacterium columnare is an important bacterial pathogen of freshwater fish that causes high mortality of infected fish and heavy economic losses in aquaculture. The pathogenesis of this bacterium is poorly understood, in part due to the lack of efficient methods for genetic manipulation. In this study, a gene deletion strategy was developed and used to determine the relationship between the production of chondroitin lyases and virulence. The F. johnsoniae ompA promoter (PompA) was fused to sacB to construct a counterselectable marker for F. columnare. F. columnare carrying PompA-sacB failed to grow on media containing 10% sucrose. A suicide vector carrying PompA-sacB was constructed, and a gene deletion strategy was developed. Using this approach, the chondroitin lyase-encoding genes, cslA and cslB, were deleted. The ΔcslA and ΔcslB mutants were both partially deficient in digestion of chondroitin sulfate A, whereas a double mutant (ΔcslA ΔcslB) was completely deficient in chondroitin lyase activity. Cells of F. columnare wild-type strain G4 and of the chondroitin lyase-deficient ΔcslA ΔcslB mutant exhibited similar levels of virulence toward grass carp in single-strain infections. Coinfections, however, revealed a competitive advantage for the wild type over the chondroitin lyase mutant. The results indicate that chondroitin lyases are not essential virulence factors of F. columnare but may contribute to the ability of the pathogen to compete and cause disease in natural infections. The gene deletion method developed in this study may be employed to investigate the virulence factors of this bacterium and may have wide application in many other members of the phylum Bacteroidetes.

  13. Differential regulation of Bvg-activated virulence factors plays a role in Bordetella pertussis pathogenicity.

    PubMed

    Kinnear, S M; Marques, R R; Carbonetti, N H

    2001-04-01

    Bordetella pertussis, the causative agent of whooping cough, regulates expression of many virulence factors via a two-component signal transduction system encoded by the bvgAS regulatory locus. It has been shown by transcription activation kinetics that several of the virulence factors are differentially regulated. fha is transcribed within 10 min following a bvgAS-inducing signal, while prn is transcribed after 1 h and ptx is not transcribed until 2 to 4 h after induction. These genes therefore represent early, intermediate, and late classes of bvg-activated promoters, respectively. Although there have been many insightful studies into the mechanisms of BvgAS-mediated regulation, the role that differential regulation of virulence genes plays in B. pertussis pathogenicity has not been characterized. We provide evidence that alterations to the promoter regions of bvg-activated genes can alter the kinetic pattern of expression of these genes without changing steady-state transcription levels. In addition, B. pertussis strains containing these promoter alterations that express either ptx at an early time or fha at a late time demonstrate a significant reduction in their ability to colonize respiratory tracts in an intranasal mouse model of infection. These data suggest a role for differential regulation of bvg-activated genes, and therefore for the BvgAS regulatory system, in the pathogenicity of B. pertussis.

  14. Differential Regulation of Bvg-Activated Virulence Factors Plays a Role in Bordetella pertussis Pathogenicity

    PubMed Central

    Kinnear, Susan M.; Marques, Ryan R.; Carbonetti, Nicholas H.

    2001-01-01

    Bordetella pertussis, the causative agent of whooping cough, regulates expression of many virulence factors via a two-component signal transduction system encoded by the bvgAS regulatory locus. It has been shown by transcription activation kinetics that several of the virulence factors are differentially regulated. fha is transcribed within 10 min following a bvgAS-inducing signal, while prn is transcribed after 1 h and ptx is not transcribed until 2 to 4 h after induction. These genes therefore represent early, intermediate, and late classes of bvg-activated promoters, respectively. Although there have been many insightful studies into the mechanisms of BvgAS-mediated regulation, the role that differential regulation of virulence genes plays in B. pertussis pathogenicity has not been characterized. We provide evidence that alterations to the promoter regions of bvg-activated genes can alter the kinetic pattern of expression of these genes without changing steady-state transcription levels. In addition, B. pertussis strains containing these promoter alterations that express either ptx at an early time or fha at a late time demonstrate a significant reduction in their ability to colonize respiratory tracts in an intranasal mouse model of infection. These data suggest a role for differential regulation of bvg-activated genes, and therefore for the BvgAS regulatory system, in the pathogenicity of B. pertussis. PMID:11254549

  15. Ape parasite origins of human malaria virulence genes

    PubMed Central

    Larremore, Daniel B.; Sundararaman, Sesh A.; Liu, Weimin; Proto, William R.; Clauset, Aaron; Loy, Dorothy E.; Speede, Sheri; Plenderleith, Lindsey J.; Sharp, Paul M.; Hahn, Beatrice H.; Rayner, Julian C.; Buckee, Caroline O.

    2015-01-01

    Antigens encoded by the var gene family are major virulence factors of the human malaria parasite Plasmodium falciparum, exhibiting enormous intra- and interstrain diversity. Here we use network analysis to show that var architecture and mosaicism are conserved at multiple levels across the Laverania subgenus, based on var-like sequences from eight single-species and three multi-species Plasmodium infections of wild-living or sanctuary African apes. Using select whole-genome amplification, we also find evidence of multi-domain var structure and synteny in Plasmodium gaboni, one of the ape Laverania species most distantly related to P. falciparum, as well as a new class of Duffy-binding-like domains. These findings indicate that the modular genetic architecture and sequence diversity underlying var-mediated host-parasite interactions evolved before the radiation of the Laverania subgenus, long before the emergence of P. falciparum. PMID:26456841

  16. Burkholderia cepacia Complex Regulation of Virulence Gene Expression: A Review.

    PubMed

    Sousa, Sílvia A; Feliciano, Joana R; Pita, Tiago; Guerreiro, Soraia I; Leitão, Jorge H

    2017-01-19

    Burkholderia cepacia complex (Bcc) bacteria emerged as opportunistic pathogens in cystic fibrosis and immunocompromised patients. Their eradication is very difficult due to the high level of intrinsic resistance to clinically relevant antibiotics. Bcc bacteria have large and complex genomes, composed of two to four replicons, with variable numbers of insertion sequences. The complexity of Bcc genomes confers a high genomic plasticity to these bacteria, allowing their adaptation and survival to diverse habitats, including the human host. In this work, we review results from recent studies using omics approaches to elucidate in vivo adaptive strategies and virulence gene regulation expression of Bcc bacteria when infecting the human host or subject to conditions mimicking the stressful environment of the cystic fibrosis lung.

  17. Burkholderia cepacia Complex Regulation of Virulence Gene Expression: A Review

    PubMed Central

    Sousa, Sílvia A.; Feliciano, Joana R.; Pita, Tiago; Guerreiro, Soraia I.; Leitão, Jorge H.

    2017-01-01

    Burkholderia cepacia complex (Bcc) bacteria emerged as opportunistic pathogens in cystic fibrosis and immunocompromised patients. Their eradication is very difficult due to the high level of intrinsic resistance to clinically relevant antibiotics. Bcc bacteria have large and complex genomes, composed of two to four replicons, with variable numbers of insertion sequences. The complexity of Bcc genomes confers a high genomic plasticity to these bacteria, allowing their adaptation and survival to diverse habitats, including the human host. In this work, we review results from recent studies using omics approaches to elucidate in vivo adaptive strategies and virulence gene regulation expression of Bcc bacteria when infecting the human host or subject to conditions mimicking the stressful environment of the cystic fibrosis lung. PMID:28106859

  18. Cloning and expression of Staphylococcus saprophyticus urease gene sequences in Staphylococcus carnosus and contribution of the enzyme to virulence.

    PubMed Central

    Gatermann, S; Marre, R

    1989-01-01

    The urease gene of Staphylococcus saprophyticus CCM883 was cloned and expressed in Staphylococcus carnosus TM300. In vitro translation of the cloned DNA sequences revealed six polypeptides (of 70, 47, 29, 27, 20, and 17 kilodaltons) that were associated with enzyme activity. Introduction of the cloned genes into a urease-negative mutant of S. saprophyticus restored the virulence of this strain, confirming our previous suggestion (S. Gatermann, J. John, and R. Marre, Infect. Immun. 57:110-116, 1989) that this enzyme is a major virulence factor of the organism and contributes mainly to cystopathogenicity. Images PMID:2777370

  19. Allele-Dependent Differences in Quorum-Sensing Dynamics Result in Variant Expression of Virulence Genes in Staphylococcus aureus

    PubMed Central

    Geisinger, Edward; Chen, John

    2012-01-01

    Agr is an autoinducing, quorum-sensing system that functions in many Gram-positive species and is best characterized in the pathogen Staphylococcus aureus, in which it is a global regulator of virulence gene expression. Allelic variations in the agr genes have resulted in the emergence of four quorum-sensing specificity groups in S. aureus, which correlate with different strain pathotypes. The basis for these predilections is unclear but is hypothesized to involve the phenomenon of quorum-sensing interference between strains of different agr groups, which may drive S. aureus strain isolation and divergence. Whether properties intrinsic to each agr allele directly influence virulence phenotypes within S. aureus is unknown. In this study, we examined group-specific differences in agr autoinduction and virulence gene regulation by utilizing congenic strains, each harboring a unique S. aureus agr allele, enabling a dissection of agr locus-dependent versus genotype-dependent effects on quorum-sensing dynamics and virulence factor production. Employing a reporter fusion to the principal agr promoter, P3, we observed allele-dependent differences in the timing and magnitude of agr activation. These differences were mediated by polymorphisms within the agrBDCA genes and translated to significant variations in the expression of a key transcriptional regulator, Rot, and of several important exoproteins and surface factors involved in pathogenesis. This work uncovers the contribution of divergent quorum-sensing alleles to variant expression of virulence determinants within a bacterial species. PMID:22467783

  20. Phenotypic and genotypic analysis of pathogenic Escherichia coli virulence genes recovered from Riyadh, Saudi Arabia.

    PubMed

    Al-Arfaj, Abdullah A; Ali, Mohamed S; Hessain, Ashgan M; Zakri, Adel M; Dawoud, Turki M; Al-Maary, Khalid S; Moussa, Ihab M

    2016-11-01

    The current study was carried out to evaluate the phenotypic and genotypic characterization of avian pathogenic Escherichia coli recovered from Riyadh, Saudi Arabia. During the period of 10th February-30th May 2015, 70 E. coli strains were isolated from chicken farms located in Riyadh, Saudi Arabia. All strains were tested phenotypically by standard microbiological techniques, serotyped and the virulence genes of such strains were detected by polymerase chain reaction (PCR). Most of the recovered strains from chickens belonged to serotype O111:K58 25 strains (35.7%), followed by serotype O157:H7 13 strains (18.57%), followed by serotype O114:K90 10 strains (14.29%), then serotype O126:K71 9 strains (12.9%), serotype O78:K80 8 strains (11.43%) and in lower percentage serotype O114:K90 and O119:K69 5 strains (7.14%). The virulence genotyping of E. coli isolates recovered from broilers revealed the presence of the uidA gene in all the field isolates (6 serovars) examined in an incidence of 100%, as well as the cvaC gene was also present in all field isolates (6 serovars), while the iutA gene and the iss gene were detected in 5 out of 6 field serovars in an incidence of 81.43% and 64.29%, respectively. Phenotypical examination of the other virulence factors revealed that 65 isolates were hemolytic (92.9%), as well as 15 isolates (21.42%) were positive for enterotoxin production. Meanwhile, 21 isolates (30%) were positive for verotoxin production, 58 isolates (82.86%) for the invasiveness and 31 isolates (44.29%) for Congo red binding activities of the examined serotypes.

  1. Main functions and taxonomic distribution of virulence genes in Brucella melitensis 16 M.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Armenta-Medina, Dagoberto; Rivera-Gomez, Nancy; Perez-Rueda, Ernesto

    2014-01-01

    Many virulence genes have been detected in attenuated mutants of Brucella melitensis 16 M; nevertheless, a complete report of these genes, including the main Cluster of Orthologous Groups (COG) represented as well as the taxonomical distribution among all complete bacterial and archaeal genomes, has not been analyzed. In this work a total of 160 virulence genes that have been reported in attenuated mutants in B. melitensis were included and analyzed. Additionally, we obtained 250 B. melitensis randomly selected genes as a reference group for the taxonomical comparisons. The COGs and the taxonomical distribution profile for 789 nonredundant bacterial and archaeal genomes were obtained and compared with the whole-genome COG distribution and with the 250 randomly selected genes, respectively. The main COGs associated with virulence genes corresponded to the following: intracellular trafficking, secretion and vesicular transport (U); cell motility (N); nucleotide transport and metabolism (F); transcription (K); and cell wall/membrane/envelope biogenesis (M). In addition, we found that virulence genes presented a higher proportion of orthologs in the Euryarchaeota and Proteobacteria phyla, with a significant decrease in Chlamydiae, Bacteroidetes, Tenericutes, Firmicutes and Thermotogae. In conclusion, we found that genes related to specific functions are more relevant to B. melitensis virulence, with the COG U the most significant. Additionally, the taxonomical distribution of virulence genes highlights the importance of these genes in the related Proteobacteria, being less relevant in distant groups of organisms with the exception of Euryarchaeota.

  2. Main Functions and Taxonomic Distribution of Virulence Genes in Brucella melitensis 16 M

    PubMed Central

    Brambila-Tapia, Aniel Jessica Leticia; Armenta-Medina, Dagoberto; Rivera-Gomez, Nancy; Perez-Rueda, Ernesto

    2014-01-01

    Many virulence genes have been detected in attenuated mutants of Brucella melitensis 16 M; nevertheless, a complete report of these genes, including the main Cluster of Orthologous Groups (COG) represented as well as the taxonomical distribution among all complete bacterial and archaeal genomes, has not been analyzed. In this work a total of 160 virulence genes that have been reported in attenuated mutants in B. melitensis were included and analyzed. Additionally, we obtained 250 B. melitensis randomly selected genes as a reference group for the taxonomical comparisons. The COGs and the taxonomical distribution profile for 789 nonredundant bacterial and archaeal genomes were obtained and compared with the whole-genome COG distribution and with the 250 randomly selected genes, respectively. The main COGs associated with virulence genes corresponded to the following: intracellular trafficking, secretion and vesicular transport (U); cell motility (N); nucleotide transport and metabolism (F); transcription (K); and cell wall/membrane/envelope biogenesis (M). In addition, we found that virulence genes presented a higher proportion of orthologs in the Euryarchaeota and Proteobacteria phyla, with a significant decrease in Chlamydiae, Bacteroidetes, Tenericutes, Firmicutes and Thermotogae. In conclusion, we found that genes related to specific functions are more relevant to B. melitensis virulence, with the COG U the most significant. Additionally, the taxonomical distribution of virulence genes highlights the importance of these genes in the related Proteobacteria, being less relevant in distant groups of organisms with the exception of Euryarchaeota. PMID:24964015

  3. Virulence factor activity relationships (VFARs): a bioinformatics perspective.

    PubMed

    Waseem, Hassan; Williams, Maggie R; Stedtfeld, Tiffany; Chai, Benli; Stedtfeld, Robert D; Cole, James R; Tiedje, James M; Hashsham, Syed A

    2017-03-06

    Virulence factor activity relationships (VFARs) - a concept loosely based on quantitative structure-activity relationships (QSARs) for chemicals was proposed as a predictive tool for ranking risks due to microorganisms relevant to water safety. A rapid increase in sequencing capabilities and bioinformatics tools has significantly increased the potential for VFAR-based analyses. This review summarizes more than 20 bioinformatics databases and tools, developed over the last decade, along with their virulence and antimicrobial resistance prediction capabilities. With the number of bacterial whole genome sequences exceeding 241 000 and metagenomic analysis projects exceeding 13 000 and the ability to add additional genome sequences for few hundred dollars, it is evident that further development of VFARs is not limited by the availability of information at least at the genomic level. However, additional information related to co-occurrence, treatment response, modulation of virulence due to environmental and other factors, and economic impact must be gathered and incorporated in a manner that also addresses the associated uncertainties. Of the bioinformatics tools, a majority are either designed exclusively for virulence/resistance determination or equipped with a dedicated module. The remaining have the potential to be employed for evaluating virulence. This review focusing broadly on omics technologies and tools supports the notion that these tools are now sufficiently developed to allow the application of VFAR approaches combined with additional engineering and economic analyses to rank and prioritize organisms important to a given niche. Knowledge gaps do exist but can be filled with focused experimental and theoretical analyses that were unimaginable a decade ago. Further developments should consider the integration of the measurement of activity, risk, and uncertainty to improve the current capabilities.

  4. Molecular detection of virulence genes as markers in Pseudomonas aeruginosa isolated from urinary tract infections.

    PubMed

    Sabharwal, Neha; Dhall, Shriya; Chhibber, Sanjay; Harjai, Kusum

    2014-01-01

    Catheter associated urinary tract infections by P. aeruginosa are related to variety of complications. Quorum sensing and related circuitry guard its virulence potential. Though P. aeruginosa accounts for an appreciable amount of virulence factors, this organism is highly unstable phenotypically. Thus, genotyping of clinical isolates of P. aeruginosa is of utmost importance for understanding the epidemiology of infection. This may contribute towards development of immunotherapeutic approaches against this multi drug resistant pathogen. Moreover, no epidemiological study has been reported yet on uroisolates of P. aeruginosa. Thus this study was planned to obtain information regarding presence, distribution and rate of occurrence of quorum sensing and some associated virulence genes at genetic level. The profiling of quorum sensing genes lasI, lasR, rhlI, rhlR and virulence genes like toxA, aprA, rhlAB, plcH, lasB and fliC of twelve strains of P. aeruginosa isolated from patients with UTIs was done by direct PCR. The results showed variable distribution of quorum sensing genes and virulence genes. Their percentage occurrence may be specifically associated with different levels of intrinsic virulence and pathogenicity in urinary tract. Such information can help in identifying these virulence genes as useful diagnostic markers for clinical P. aeruginosa strains isolated from UTIs.

  5. Presence of Bacterial Virulence Gene Homologues in the dibenzo-p-dioxins degrading bacterium Sphingomonas wittichii

    PubMed Central

    Saeb, Amr T. M.

    2016-01-01

    Sphingomonas wittichii, a close relative of the human pathogen Sphingomonas paucimobilis, is a microorganism of great interest to the bioremediation community for its ability of biodegradation to a large number of toxic polychlorinated dioxins. In the present study we investigated the presence of different virulence factors and genes in S. wittichii. We utilized phylogenetic, comparative genomics and bioinformatics analysis to investigate the potentiality of S. wittichii as a potential virulent pathogen. The 16SrDNA phylogenetic tree showed that the closest bacterial taxon to S. wittichii is Brucella followed by Helicobacter, Campylobacter, Pseudomonas then Legionella. Despite their close phylogenetic relationship, S. wittichii did not share any virulence factors with Helicobacter or Campylobacter. On the contrary, in spite of the phylogenetic divergence between S. wittichii and Pseudomonas spp., they shared many major virulence factors, such as, adherence, antiphagocytosis, Iron uptake, proteases and quorum sensing. S. wittichii contains several major virulence factors resembling Pseudomonas sp., Legionella sp., Brucella sp. and Bordetella sp. virulence factors. Similarity of virulence factors did not match phylogenetic relationships. These findings suggest horizontal gene transfer of virulence factors rather than sharing a common pathogenic ancestor. S. wittichii is a potential virulent bacterium. Another possibility is that reductive evolution process attenuated S. wittichii pathogenic capabilities. Thus plenty of care must be taken when using this bacterium in soil remediation purposes. PMID:28197061

  6. Regulation of bacterial virulence gene expression by cell envelope stress responses

    PubMed Central

    Flores-Kim, Josué; Darwin, Andrew J

    2014-01-01

    The bacterial cytoplasm lies within a multilayered envelope that must be protected from internal and external hazards. This protection is provided by cell envelope stress responses (ESRs), which detect threats and reprogram gene expression to ensure survival. Pathogens frequently need these ESRs to survive inside the host, where their envelopes face dangerous environmental changes and attack from antimicrobial molecules. In addition, some virulence genes have become integrated into ESR regulons. This might be because these genes can protect the cell envelope from damage by host molecules, or it might help ESRs to reduce stress by moderating the assembly of virulence factors within the envelope. Alternatively, it could simply be a mechanism to coordinate the induction of virulence gene expression with entry into the host. Here, we briefly describe some of the bacterial ESRs, followed by examples where they control virulence gene expression in both Gram-negative and Gram-positive pathogens. PMID:25603429

  7. Virulence Meets Metabolism: Cra and KdpE Gene Regulation in Enterohemorrhagic Escherichia coli

    PubMed Central

    Njoroge, Jacqueline W.; Nguyen, Y.; Curtis, Meredith M.; Moreira, Cristiano G.; Sperandio, Vanessa

    2012-01-01

    ABSTRACT Gastrointestinal (GI) bacteria sense diverse environmental signals as cues for differential gene regulation and niche adaptation. Pathogens such as enterohemorrhagic Escherichia coli (EHEC), which causes bloody diarrhea, use these signals for the temporal and energy-efficient regulation of their virulence factors. One of the main virulence strategies employed by EHEC is the formation of attaching and effacing (AE) lesions on enterocytes. Most of the genes necessary for the formation of these lesions are grouped within a pathogenicity island, the locus of enterocyte effacement (LEE), whose expression requires the LEE-encoded regulator Ler. Here we show that growth of EHEC in glycolytic environments inhibits the expression of ler and consequently all other LEE genes. Conversely, growth within a gluconeogenic environment activates expression of these genes. This sugar-dependent regulation is achieved through two transcription factors: KdpE and Cra. Both Cra and KdpE directly bind to the ler promoter, and Cra’s affinity to this promoter is catabolite dependent. Moreover, we show that the Cra and KdpE proteins interact in vitro and that KdpE’s ability to bind DNA is enhanced by the presence of Cra. Cra is important for AE lesion formation, and KdpE contributes to this Cra-dependent regulation. The deletion of cra and kdpE resulted in the ablation of AE lesions. One of the many challenges that bacteria face within the GI tract is to successfully compete for carbon sources. Linking carbon metabolism to the precise coordination of virulence expression is a key step in the adaptation of pathogens to the GI environment. PMID:23073764

  8. Unfolded Protein Response (UPR) Regulator Cib1 Controls Expression of Genes Encoding Secreted Virulence Factors in Ustilago maydis

    PubMed Central

    Hampel, Martin; Jakobi, Mareike; Schmitz, Lara; Meyer, Ute; Finkernagel, Florian; Doehlemann, Gunther; Heimel, Kai

    2016-01-01

    The unfolded protein response (UPR), a conserved eukaryotic signaling pathway to ensure protein homeostasis in the endoplasmic reticulum (ER), coordinates biotrophic development in the corn smut fungus Ustilago maydis. Exact timing of UPR activation is required for virulence and presumably connected to the elevated expression of secreted effector proteins during infection of the host plant Zea mays. In the baker’s yeast Saccharomyces cerevisiae, expression of UPR target genes is induced upon binding of the central regulator Hac1 to unfolded protein response elements (UPREs) in their promoters. While a role of the UPR in effector secretion has been described previously, we investigated a potential UPR-dependent regulation of genes encoding secreted effector proteins. In silico prediction of UPREs in promoter regions identified the previously characterized effector genes pit2 and tin1-1, as bona fide UPR target genes. Furthermore, direct binding of the Hac1-homolog Cib1 to the UPRE containing promoter fragments of both genes was confirmed by quantitative chromatin immunoprecipitation (qChIP) analysis. Targeted deletion of the UPRE abolished Cib1-dependent expression of pit2 and significantly affected virulence. Furthermore, ER stress strongly increased Pit2 expression and secretion. This study expands the role of the UPR as a signal hub in fungal virulence and illustrates, how biotrophic fungi can coordinate cellular physiology, development and regulation of secreted virulence factors. PMID:27093436

  9. Salmonella Modulates Metabolism During Growth under Conditions that Induce Expression of Virulence Genes

    SciTech Connect

    Kim, Young-Mo; Schmidt, Brian; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-04-05

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Excitingly, we observed possible sequestration of metabolites recently suggested to have immune modulating roles. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Model-guided analysis suggested that alterations in metabolism prioritized other activities necessary for pathogenesis instead, such as lipopolysaccharide biosynthesis.

  10. Deletion analysis of Streptococcus pneumoniae late competence genes distinguishes virulence determinants that are dependent or independent of competence induction

    PubMed Central

    Zhu, Luchang; Lin, Jingjun; Kuang, Zhizhou; Vidal, Jorge E.; Lau, Gee W.

    2015-01-01

    Summary The competence regulon of Streptococcus pneumoniae (pneumococcus) is crucial for genetic transformation. During competence development, the alternative sigma factor ComX is activated, which in turn, initiates transcription of 80 “late” competence genes. Interestingly, only 16 late genes are essential for genetic transformation. We hypothesized that these late genes that are dispensable for competence are beneficial to pneumococcal fitness during infection. These late genes were systematically deleted, and the resulting mutants were examined for their fitness during mouse models of bacteremia and acute pneumonia. Among these, 14 late genes were important for fitness in mice. Significantly, deletion of some late genes attenuated pneumococcal fitness to the same level in both wild-type and ComX-null genetic backgrounds, suggesting that the constitutive baseline expression of these genes was important for bacterial fitness. In contrast, some mutants were attenuated only in the wild-type genetic background but not in the ComX-null background, suggesting that specific expression of these genes during competence state contributed to pneumococcal fitness. Increased virulence during competence state was partially caused by the induction of allolytic enzymes that enhanced pneumolysin release. These results distinguish the role of basal expression versus competence induction in virulence functions encoded by ComX-regulated late competence genes. Graphical abstract During genetic transformation of pneumococcus, the alternative sigma factor ComX regulates expression of 14 late competence genes important for virulence. The constitutive baseline expression of some of these genes is important for bacteremia and acute pneumonia infections. In contrast, elevated expression of DprA, CbpD, CibAB, and Cinbox are dependent on competence development, enhancing the release of pneumolysin. These results distinguish the role of basal expression versus competence induction in

  11. Identification of virulence genes carried by bacteriophages obtained from clinically isolated methicillin-resistant Staphylococcus aureus.

    PubMed

    Karasartova, Djursun; Cavusoglu, Zeynep Burcin; Turegun, Buse; Ozsan, Murat T; Şahin, Fikret

    2016-12-01

    Bacteriophages play an important role in the pathogenicity of Staphylococcus aureus (S. aureus) either by carrying accessory virulence factors or several superantigens. Despite their importance, there are not many studies showing the actual distribution of the virulence genes carried by the prophages obtained from the clinically isolated Staphylococcus. In this study, we investigated prophages obtained from methicillin-resistant S. aureus (MRSA) strains isolated from hospital- and community-associated (HA-CA) infections for the virulence factors. In the study, 43 phages isolated from 48 MRSA were investigated for carrying toxin genes including the sak, eta, lukF-PV, sea, selp, sek, seg, seq chp, and scn virulence genes using polymerase chain reaction (PCR) and Southern blot. Restriction fragment length polymorphism was used to analyze phage genomes to investigate the relationship between the phage profiles and the toxin genes' presence. MRSA strains isolated from HA infections tended to have higher prophage presence than the MRSA strains obtained from the CA infections (97% and 67%, respectively). The study showed that all the phages with the exception of one phage contained one or more virulence genes in their genomes with different combinations. The most common toxin genes found were sea (83%) followed by sek (77%) and seq (64%). The study indicates that prophages encode a significant proportion of MRSA virulence factors.

  12. A Nonsynonymous SNP Catalog of Mycobacterium tuberculosis Virulence Genes and Its Use for Detecting New Potentially Virulent Sublineages

    PubMed Central

    Mikheecheva, Natalya E.; Zaychikova, Marina V.; Melerzanov, Alexander V.

    2017-01-01

    Mycobacterium tuberculosis is divided into several distinct lineages, and various genetic markers such as IS-elements, VNTR, and SNPs are used for lineage identification. We propose an M. tuberculosis classification approach based on functional polymorphisms in virulence genes. An M. tuberculosis virulence genes catalog has been established, including 319 genes from various protein groups, such as proteases, cell wall proteins, fatty acid and lipid metabolism proteins, sigma factors, toxin–antitoxin systems. Another catalog of 1,573 M. tuberculosis isolates of different lineages has been developed. The developed SNP-calling program has identified 3,563 nonsynonymous SNPs. The constructed SNP-based phylogeny reflected the evolutionary relationship between lineages and detected new sublineages. SNP analysis of sublineage F15/LAM4/KZN revealed four lineage-specific mutations in cyp125, mce3B, vapC25, and vapB34. The Ural lineage has been divided into two geographical clusters based on different SNPs in virulence genes. A new sublineage, B0/N-90, was detected inside the Beijing-B0/W-148 by SNPs in irtB, mce3F and vapC46. We have found 27 members of B0/N-90 among the 227 available genomes of the Beijing-B0/W-148 sublineage. Whole-genome sequencing of strain B9741, isolated from an HIV-positive patient, was demonstrated to belong to the new B0/N-90 group. A primer set for PCR detection of B0/N-90 lineage-specific mutations has been developed. The prospective use of mce3 mutant genes as genetically engineered vaccine is discussed. PMID:28338924

  13. Variation in virulence of Beauveria bassiana and B. pseudobassiana to the pine weevil Pissodes nemorensis in relation to mycelium characteristics and virulence genes.

    PubMed

    Romón, Pedro; Hatting, Hardus; Goldarazena, Arturo; Iturrondobeitia, Juan Carlos

    2017-02-01

    Entomopathogenic fungi such as Beauveria spp. have potential applications in the biocontrol of insect pests but little is known regarding their infectivity to the pine weevil Pissodes nemorensis. In this study, five isolates of Beauveria pseudobassiana and five isolates of Beauveria bassiana were tested for characteristics correlating with virulence on P. nemorensis. Isolate UAMH301 had the lowest mean lethal concentration value whereas the highest value was obtained with isolate LRC137. Growth rate was negatively correlated with virulence in B. bassiana, because isolate LRC137, the least virulent isolate, grew much more rapidly than the other B. bassiana isolates on SDYA. In contrast, its growth on a hyperosmotic medium was the slowest. Sporulation rate and conidial area were not correlated with virulence. Mycelial cell density was positively correlated with virulence in both species, and the four tested genes appear to be one-copy genes. Bbchit1 and Bbhog1, genes respectively encoding a chitinase and a protein kinase, induced relative expression levels were positively correlated with virulence in B. pseudobassiana. We discuss in terms of previous morphological, physiological and genetic parameters related to virulence in Beauveria and the importance of testing the expression of putative virulence genes in comparison with their basal transcript levels.

  14. The distribution of Escherichia coli serovars, virulence genes, gene association and combinations and virulence genes encoding serotypes in pathogenic E. coli recovered from diarrhoeic calves, sheep and goat.

    PubMed

    Osman, K M; Mustafa, A M; Elhariri, M; Abdelhamed, G S

    2013-02-01

    Ruminants, especially cattle, have been implicated as a principal reservoir of one of the enterovirulent Escherichia coli pathotypes. The detection of the virulence genes in diarrhoeic calves and small ruminants has not been studied in Egypt. To determine the occurrence, serotypes and the virulence gene markers, stx1, stx2, hylA, Flic(h7) , stb, F41, K99, sta, F17, LT-I, LT-II and eae, rectal swabs were taken from diarrhoeic calves, sheep and goats and subjected to bacterial culture and PCR. The E. coli prevalence rate in the diarrhoeic animals was 63.6% in calves, 27.3% in goat and 9.1% in sheep. The 102 E. coli strains isolated from the calves, goat and sheep were 100% haemolytic non-verotoxic and fitted into the Eagg group. The isolates belonged to seven O serogroups (O25, O78, O86, O119, O158, O164 and O157). The eae gene was detected in six of the strains isolated from the calves. The 102 bovine, ovine and caprine E. coli strains isolated in this study were negative for stx1, stx2, F41, LT-I and Flic(h7) genes. The highest gene combinations were found to occur in the form of 24/102 isolates (23.5%) that carried the F17 gene predominantly associated with eaeA, hylA, K99 and Stb genes in the calves, while the hylA, K99 and Sta were the only genes found to be in conjunction in both calves and goats (6/102; 5.9% each). Our data show that in Egypt, large and small ruminants could be a potential source of infection in humans.

  15. Iron-Regulated Phospholipase C Activity Contributes to the Cytolytic Activity and Virulence of Acinetobacter baumannii

    PubMed Central

    Fiester, Steven E.; Schmidt, Robert E.; Beckett, Amber C.; Ticak, Tomislav; Carrier, Mary V.; Ghosh, Rajarshi; Ohneck, Emily J.; Metz, Maeva L.; Sellin Jeffries, Marlo K.; Actis, Luis A.

    2016-01-01

    Acinetobacter baumannii is an opportunistic Gram-negative pathogen that causes a wide range of infections including pneumonia, septicemia, necrotizing fasciitis and severe wound and urinary tract infections. Analysis of A. baumannii representative strains grown in Chelex 100-treated medium for hemolytic activity demonstrated that this pathogen is increasingly hemolytic to sheep, human and horse erythrocytes, which interestingly contain increasing amounts of phosphatidylcholine in their membranes. Bioinformatic, genetic and functional analyses of 19 A. baumannii isolates showed that the genomes of each strain contained two phosphatidylcholine-specific phospholipase C (PC-PLC) genes, which were named plc1 and plc2. Accordingly, all of these strains were significantly hemolytic to horse erythrocytes and their culture supernatants tested positive for PC-PLC activity. Further analyses showed that the transcriptional expression of plc1 and plc2 and the production of phospholipase and thus hemolytic activity increased when bacteria were cultured under iron-chelation as compared to iron-rich conditions. Testing of the A. baumannii ATCC 19606T plc1::aph-FRT and plc2::aph isogenic insertion derivatives showed that these mutants had a significantly reduced PC-PLC activity as compared to the parental strain, while testing of plc1::ermAM/plc2::aph demonstrated that this double PC-PLC isogenic mutant expressed significantly reduced cytolytic and hemolytic activity. Interestingly, only plc1 was shown to contribute significantly to A. baumannii virulence using the Galleria mellonella infection model. Taken together, our data demonstrate that both PLC1 and PLC2, which have diverged from a common ancestor, play a concerted role in hemolytic and cytolytic activities; although PLC1 seems to play a more critical role in the virulence of A. baumannii when tested in an invertebrate model. These activities would provide access to intracellular iron stores this pathogen could use during

  16. Inhibition of Virulence Gene Expression in Staphylococcus aureus by Novel Depsipeptides from a Marine Photobacterium

    PubMed Central

    Mansson, Maria; Nielsen, Anita; Kjærulff, Louise; Gotfredsen, Charlotte H.; Wietz, Matthias; Ingmer, Hanne; Gram, Lone; Larsen, Thomas O.

    2011-01-01

    During a global research expedition, more than five hundred marine bacterial strains capable of inhibiting the growth of pathogenic bacteria were collected. The purpose of the present study was to determine if these marine bacteria are also a source of compounds that interfere with the agr quorum sensing system that controls virulence gene expression in Staphylococcus aureus. Using a gene reporter fusion bioassay, we recorded agr interference as enhanced expression of spa, encoding Protein A, concomitantly with reduced expression of hla, encoding α-hemolysin, and rnaIII encoding RNAIII, the effector molecule of agr. A marine Photobacterium produced compounds interfering with agr in S. aureus strain 8325-4, and bioassay-guided fractionation of crude extracts led to the isolation of two novel cyclodepsipeptides, designated solonamide A and B. Northern blot analysis confirmed the agr interfering activity of pure solonamides in both S. aureus strain 8325-4 and the highly virulent, community-acquired strain USA300 (CA-MRSA). To our knowledge, this is the first report of inhibitors of the agr system by a marine bacterium. PMID:22363239

  17. Golden Pigment Production and Virulence Gene Expression Are Affected by Metabolisms in Staphylococcus aureus▿ †

    PubMed Central

    Lan, Lefu; Cheng, Alice; Dunman, Paul M.; Missiakas, Dominique; He, Chuan

    2010-01-01

    The pathogenesis of staphylococcal infections is multifactorial. Golden pigment is an eponymous feature of the human pathogen Staphylococcus aureus that shields the microbe from oxidation-based clearance, an innate host immune response to infection. Here, we screened a collection of S. aureus transposon mutants for pigment production variants. A total of 15 previously unidentified genes were discovered. Notably, disrupting metabolic pathways such as the tricarboxylic acid cycle, purine biosynthesis, and oxidative phosphorylation yields mutants with enhanced pigmentation. The dramatic effect on pigment production seems to correlate with altered expression of virulence determinants. Microarray analysis further indicates that purine biosynthesis impacts the expression of ∼400 genes involved in a broad spectrum of functions including virulence. The purine biosynthesis mutant and oxidative phosphorylation mutant strains exhibit significantly attenuated virulence in a murine abscess model of infection. Inhibition of purine biosynthesis with a known small-molecule inhibitor results in altered virulence gene expression and virulence attenuation during infection. Taken together, these results suggest an intimate link between metabolic processes and virulence gene expression in S. aureus. This study also establishes the importance of purine biosynthesis and oxidative phosphorylation for in vivo survival. PMID:20400547

  18. Antibiotic resistance, efflux pump genes and virulence determinants in Enterococcus spp. from surface water systems.

    PubMed

    Molale, L G; Bezuidenhout, Cornelius Carlos

    2016-11-01

    The aim of this study was to report on antibiotic susceptibility patterns as well as highlight the presence of efflux pump genes and virulence genetic determinants in Enterococcus spp. isolated from South African surface water systems. One hundred and twenty-four Enterococcus isolates consisting of seven species were identified. Antimicrobial susceptibility testing revealed a high percentage of isolates was resistant to β-lactams and vancomycin. Many were also resistant to other antibiotic groups. These isolates were screened by PCR, for the presence of four efflux pump genes (mefA, tetK, tetL and msrC). Efflux genes mefA and tetK were not detected in any of the Enterococcus spp. However, tetL and msrC were detected in 17 % of the Enterococcus spp. The presence of virulence factors in the Enterococcus spp. harbouring efflux pump genes was determined. Virulence determinants were detected in 86 % of the Enterococcus spp. harbouring efflux pump genes. Four (asa1, cylA, gel and hyl) of the five virulence factors were detected. The findings of this study have demonstrated that Enterococcus from South African surface water systems are resistant to multiple antibiotics, some of which are frequently used for therapy. Furthermore, these isolates harbour efflux pump genes coding for resistance to antibiotics and virulence factors which enhance their pathogenic potential.

  19. Extraintestinal Escherichia coli carrying virulence genes in coastal marine sediments.

    PubMed

    Luna, G M; Vignaroli, C; Rinaldi, C; Pusceddu, A; Nicoletti, L; Gabellini, M; Danovaro, R; Biavasco, F

    2010-09-01

    Despite the recognized potential of long-term survival or even growth of fecal indicators bacteria (FIB) in marine sediments, this compartment is largely ignored by health protection authorities. We conducted a large-scale study over approximately 50 km of the Marche coasts (Adriatic Sea) at depths ranging from 2 to 5 m. Total and fecal coliforms (FC) were counted by culture-based methods. Escherichia coli was also quantified using fluorescence in situ hybridization targeting specific 16S rRNA sequences, which yielded significantly higher abundances than culture-based methods, suggesting the potential importance of viable but nonculturable E. coli cells. Fecal coliforms displayed high abundances at most sites and showed a prevalence of E. coli. FC isolates (n = 113) were identified by API 20E, additional biochemical tests, and internal transcribed spacer-PCR. E. coli strains, representing 96% of isolates, were then characterized for genomic relatedness and phylogenetic group (A, B1, B2, and D) of origin by randomly amplified polymorphic DNA and multiplex-PCR. The results indicated that E. coli displayed a wide genotypic diversity, also among isolates from the same station, and that 44 of the 109 E. coli isolates belonged to groups B2 and D. Further characterization of B2 and D isolates for the presence of 11 virulence factor genes (pap, sfa/foc, afa, eaeA, ibeA, traT, hlyA, stx(1), stx(2), aer, and fyuA) showed that 90% of B2 and 65% of D isolates were positive for at least one of these. Most of the variance of both E. coli abundance and assemblage composition (>62%) was explained by a combination of physical-chemical and trophic variables. These findings indicate that coastal sediments could represent a potential reservoir for commensal and pathogenic E. coli and that E. coli distribution in marine coastal sediments largely depends upon the physical and trophic status of the sediment. We conclude that future sampling designs aimed at monitoring the microbiological

  20. Activation of CpxRA in Haemophilus ducreyi primarily inhibits the expression of its targets, including major virulence determinants.

    PubMed

    Gangaiah, Dharanesh; Zhang, Xinjun; Fortney, Kate R; Baker, Beth; Liu, Yunlong; Munson, Robert S; Spinola, Stanley M

    2013-08-01

    Haemophilus ducreyi causes chancroid, a genital ulcer disease that facilitates the transmission of human immunodeficiency virus type 1. In humans, H. ducreyi is surrounded by phagocytes and must adapt to a hostile environment to survive. To sense and respond to environmental cues, bacteria frequently use two-component signal transduction (2CST) systems. The only obvious 2CST system in H. ducreyi is CpxRA; CpxR is a response regulator, and CpxA is a sensor kinase. Previous studies by Hansen and coworkers showed that CpxR directly represses the expression of dsrA, the lspB-lspA2 operon, and the flp operon, which are required for virulence in humans. They further showed that CpxA functions predominantly as a phosphatase in vitro to maintain the expression of virulence determinants. Since a cpxA mutant is avirulent while a cpxR mutant is fully virulent in humans, CpxA also likely functions predominantly as a phosphatase in vivo. To better understand the role of H. ducreyi CpxRA in controlling virulence determinants, here we defined genes potentially regulated by CpxRA by using RNA-Seq. Activation of CpxR by deletion of cpxA repressed nearly 70% of its targets, including seven established virulence determinants. Inactivation of CpxR by deletion of cpxR differentially regulated few genes and increased the expression of one virulence determinant. We identified a CpxR binding motif that was enriched in downregulated but not upregulated targets. These data reinforce the hypothesis that CpxA phosphatase activity plays a critical role in controlling H. ducreyi virulence in vivo. Characterization of the downregulated genes may offer new insights into pathogenesis.

  1. The alternative sigma factor B modulates virulence gene expression in a murine Staphylococcus aureus infection model but does not influence kidney gene expression pattern of the host.

    PubMed

    Depke, Maren; Burian, Marc; Schäfer, Tina; Bröker, Barbara M; Ohlsen, Knut; Völker, Uwe

    2012-01-01

    Infections caused by Staphylococcus aureus are associated with significant morbidity and mortality and are an increasing threat not only in hospital settings. The expression of the staphylococcal virulence factor repertoire is known to be affected by the alternative sigma factor B (SigB). However, its impact during infection still is a matter of debate. Kidney tissues of controls or mice infected with S. aureus HG001 or its isogenic sigB mutant were analyzed by transcriptome profiling to monitor the host response, and additionally expression of selected S. aureus genes was monitored by RT-qPCR. Direct transcript analysis by RT-qPCR revealed significant SigB activity in all mice infected with the wild-type strain, but not in its isogenic sigB mutant (p<0.0001). Despite a clear-cut difference in the SigB-dependent transcription pattern of virulence genes (clfA, aur, and hla), the host reaction to infection (either wild type or sigB mutant) was almost identical. Despite its significant activity in vivo, loss of SigB did neither have an effect on the outcome of infection nor on murine kidney gene expression pattern. Thus, these data support the role of SigB as virulence modulator rather than being a virulence determinant by itself.

  2. Both msa genes in Renibacterium salmoninarum are needed for full virulence in bacterial kidney disease

    USGS Publications Warehouse

    Coady, A.M.; Murray, A.L.; Elliott, D.G.; Rhodes, L.D.

    2006-01-01

    Renibacterium salmoninarum, a gram-positive diplococcobacillus that causes bacterial kidney disease among salmon and trout, has two chromosomal loci encoding the major soluble antigen (msa) gene. Because the MSA protein is widely suspected to be an important virulence factor, we used insertion-duplication mutagenesis to generate disruptions of either the msa1 or msa2 gene. Surprisingly, expression of MSA protein in broth cultures appeared unaffected. However, the virulence of either mutant in juvenile Chinook salmon (Oncorhynchus tshawytscha) by intraperitoneal challenge was severely attenuated, suggesting that disruption of the msa1 or msa2 gene affected in vivo expression. Copyright ?? 2006, American Society for Microbiology. All Rights Reserved.

  3. Coronavirus Gene 7 Counteracts Host Defenses and Modulates Virus Virulence

    PubMed Central

    Cruz, Jazmina L. G.; Sola, Isabel; Becares, Martina; Alberca, Berta; Plana, Joan; Enjuanes, Luis; Zuñiga, Sonia

    2011-01-01

    Transmissible gastroenteritis virus (TGEV) genome contains three accessory genes: 3a, 3b and 7. Gene 7 is only present in members of coronavirus genus a1, and encodes a hydrophobic protein of 78 aa. To study gene 7 function, a recombinant TGEV virus lacking gene 7 was engineered (rTGEV-Δ7). Both the mutant and the parental (rTGEV-wt) viruses showed the same growth and viral RNA accumulation kinetics in tissue cultures. Nevertheless, cells infected with rTGEV-Δ7 virus showed an increased cytopathic effect caused by an enhanced apoptosis mediated by caspase activation. Macromolecular synthesis analysis showed that rTGEV-Δ7 virus infection led to host translational shut-off and increased cellular RNA degradation compared with rTGEV-wt infection. An increase of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation and an enhanced nuclease, most likely RNase L, activity were observed in rTGEV-Δ7 virus infected cells. These results suggested that the removal of gene 7 promoted an intensified dsRNA-activated host antiviral response. In protein 7 a conserved sequence motif that potentially mediates binding to protein phosphatase 1 catalytic subunit (PP1c), a key regulator of the cell antiviral defenses, was identified. We postulated that TGEV protein 7 may counteract host antiviral response by its association with PP1c. In fact, pull-down assays demonstrated the interaction between TGEV protein 7, but not a protein 7 mutant lacking PP1c binding motif, with PP1. Moreover, the interaction between protein 7 and PP1 was required, during the infection, for eIF2α dephosphorylation and inhibition of cell RNA degradation. Inoculation of newborn piglets with rTGEV-Δ7 and rTGEV-wt viruses showed that rTGEV-Δ7 virus presented accelerated growth kinetics and pathology compared with the parental virus. Overall, the results indicated that gene 7 counteracted host cell defenses, and modified TGEV persistence increasing TGEV survival. Therefore, the acquisition of

  4. The Composition and Spatial Patterns of Bacterial Virulence Factors and Antibiotic Resistance Genes in 19 Wastewater Treatment Plants

    PubMed Central

    Zhang, Bing; Xia, Yu; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong; Zhang, Yu

    2016-01-01

    Bacterial pathogenicity and antibiotic resistance are of concern for environmental safety and public health. Accumulating evidence suggests that wastewater treatment plants (WWTPs) are as an important sink and source of pathogens and antibiotic resistance genes (ARGs). Virulence genes (encoding virulence factors) are good indicators for bacterial pathogenic potentials. To achieve a comprehensive understanding of bacterial pathogenic potentials and antibiotic resistance in WWTPs, bacterial virulence genes and ARGs in 19 WWTPs covering a majority of latitudinal zones of China were surveyed by using GeoChip 4.2. A total of 1610 genes covering 13 virulence factors and 1903 genes belonging to 11 ARG families were detected respectively. The bacterial virulence genes exhibited significant spatial distribution patterns of a latitudinal biodiversity gradient and a distance-decay relationship across China. Moreover, virulence genes tended to coexist with ARGs as shown by their strongly positive associations. In addition, key environmental factors shaping the overall virulence gene structure were identified. This study profiles the occurrence, composition and distribution of virulence genes and ARGs in current WWTPs in China, and uncovers spatial patterns and important environmental variables shaping their structure, which may provide the basis for further studies of bacterial virulence factors and antibiotic resistance in WWTPs. PMID:27907117

  5. The Composition and Spatial Patterns of Bacterial Virulence Factors and Antibiotic Resistance Genes in 19 Wastewater Treatment Plants.

    PubMed

    Zhang, Bing; Xia, Yu; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong; Zhang, Yu

    2016-01-01

    Bacterial pathogenicity and antibiotic resistance are of concern for environmental safety and public health. Accumulating evidence suggests that wastewater treatment plants (WWTPs) are as an important sink and source of pathogens and antibiotic resistance genes (ARGs). Virulence genes (encoding virulence factors) are good indicators for bacterial pathogenic potentials. To achieve a comprehensive understanding of bacterial pathogenic potentials and antibiotic resistance in WWTPs, bacterial virulence genes and ARGs in 19 WWTPs covering a majority of latitudinal zones of China were surveyed by using GeoChip 4.2. A total of 1610 genes covering 13 virulence factors and 1903 genes belonging to 11 ARG families were detected respectively. The bacterial virulence genes exhibited significant spatial distribution patterns of a latitudinal biodiversity gradient and a distance-decay relationship across China. Moreover, virulence genes tended to coexist with ARGs as shown by their strongly positive associations. In addition, key environmental factors shaping the overall virulence gene structure were identified. This study profiles the occurrence, composition and distribution of virulence genes and ARGs in current WWTPs in China, and uncovers spatial patterns and important environmental variables shaping their structure, which may provide the basis for further studies of bacterial virulence factors and antibiotic resistance in WWTPs.

  6. Microevolution During Serial Mouse Passage Demonstrates FRE3 as a Virulence Adaptation Gene in Cryptococcus neoformans

    PubMed Central

    Hu, Guowu; Chen, Shu Hui; Qiu, Jin; Bennett, John E.; Myers, Timothy G.; Williamson, Peter R.

    2014-01-01

    ABSTRACT Passage in mice of opportunistic pathogens such as Cryptococcus neoformans is known to increase virulence, but little is known about the molecular mechanisms involved in virulence adaptation. Serial mouse passage of nine environmental strains of serotype A C. neoformans identified two highly adapted virulent strains that showed a 4-fold reduction in time to death after four passages. Transcriptome sequencing expression studies demonstrated increased expression of a FRE3-encoded iron reductase in the two strains but not in a control strain that did not demonstrate increased virulence during mouse passage. FRE3 was shown to express an iron reductase activity and to play a role in iron-dependent growth of C. neoformans. Overexpression of FRE3 in the two original environmental strains increased growth in the macrophage cell line J774.16 and increased virulence. These data demonstrate a role for FRE3 in the virulence of C. neoformans and demonstrate how the increased expression of such a “virulence acquisition gene” during the environment-to-mammal transition, can optimize the virulence of environmental strains in mammalian hosts. PMID:24692633

  7. The Riemerella anatipestifer AS87_01735 Gene Encodes Nicotinamidase PncA, an Important Virulence Factor

    PubMed Central

    Wang, Xiaolan; Liu, Beibei; Dou, Yafeng; Fan, Hongjie; Wang, Shaohui; Li, Tao; Ding, Chan

    2016-01-01

    ABSTRACT Riemerella anatipestifer is a major bacterial pathogen that causes septicemic and exudative diseases in domestic ducks. In our previous study, we found that deletion of the AS87_01735 gene significantly decreased the bacterial virulence of R. anatipestifer strain Yb2 (mutant RA625). The AS87_01735 gene was predicted to encode a nicotinamidase (PncA), a key enzyme that catalyzes the conversion of nicotinamide to nicotinic acid, which is an important reaction in the NAD+ salvage pathway. In this study, the AS87_01735 gene was expressed and identified as the PncA-encoding gene, using an enzymatic assay. Western blot analysis demonstrated that R. anatipestifer PncA was localized to the cytoplasm. The mutant strain RA625 (named Yb2ΔpncA in this study) showed a similar growth rate but decreased NAD+ quantities in both the exponential and stationary phases in tryptic soy broth culture, compared with the wild-type strain Yb2. In addition, Yb2ΔpncA-infected ducks showed much lower bacterial loads in their blood, and no visible histological changes were observed in the heart, liver, and spleen. Furthermore, Yb2ΔpncA immunization of ducks conferred effective protection against challenge with the virulent wild-type strain Yb2. Our results suggest that the R. anatipestifer AS87_01735 gene encodes PncA, which is an important virulence factor, and that the Yb2ΔpncA mutant can be used as a novel live vaccine candidate. IMPORTANCE Riemerella anatipestifer is reported worldwide as a cause of septicemic and exudative diseases of domestic ducks. The pncA gene encodes a nicotinamidase (PncA), a key enzyme that catalyzes the conversion of nicotinamide to nicotinic acid, which is an important reaction in the NAD+ salvage pathway. In this study, we identified and characterized the pncA-homologous gene AS87_01735 in R. anatipestifer strain Yb2. R. anatipestifer PncA is a cytoplasmic protein that possesses similar PncA activity, compared with other organisms. Generation of the

  8. Expression profiling of virulence and pathogenicity genes of Xanthomonas axonopodis pv. citri.

    PubMed

    Astua-Monge, Gustavo; Freitas-Astua, Juliana; Bacocina, Gisele; Roncoletta, Juliana; Carvalho, Sérgio A; Machado, Marcos A

    2005-02-01

    DNA macroarrays of 279 genes of Xanthomonas axonopodis pv. citri potentially associated with pathogenicity and virulence were used to compare the transcriptional alterations of this bacterium in response to two synthetic media. Data analysis indicated that 31 genes were up-regulated by synthetic medium XVM2, while only 7 genes were repressed. The results suggest that XVM2 could be used as an in vitro system to identify candidate genes involved in pathogenesis of X. axonopodis pv. citri.

  9. Uropathogenic Escherichia coli isolates with different virulence genes content exhibit similar pathologic influence on Vero cells.

    PubMed

    Obaid, Jamil M A S; Mansour, Samira R; Elshahedy, Mohammed S; Rabie, Tarik E; Azab, Adel M H

    2014-01-01

    Uropathogenic Escherichia coli are the major causative agent of urinary tract infection--they may simultaneously express a number of virulence factors to cause disease. The aim of this study was to investigate the relation between virulence factors content of fifteen UPEC isolates and their pathogenic potential. The isolates belonged to the five serotypes O78:K80, O114:K90, O142:K86, O164 and O157. Nine of the virulence factors have been explored, ibeA, pap, sfa/foc, cnfl, hly, fyuA, pil, ompT and traT. Virulence factors profiling of the isolates revealed a different content ranging from 22% to 100% of the virulence genes explored. The pathogenic capacity of all fifteen isolates when tested on Vero cells showed that the cytotoxicity for all tested strains on Vero cells was approximately equal and enhanced after growth in syncase broth, leading mainly to cell lysis. The toxic effects reduced slightly after heat treatment of the toxin, and greatly after formalin detoxification, but not all the deleterious effect was abolished. Endotoxin also has cytotoxic effects on Vero cells, but longer time is needed for cytolysis which is greatly diminished with formalin treatment. In conclusion, our study revealed that pathogenic strains of UPEC can exert their pathogenic effect on live cells or system with limited virulence factors gene content.

  10. Use of Metarhizium anisopliae Chitinase Genes for Genotyping and Virulence Characterization

    PubMed Central

    Niassy, Saliou; Subramanian, Sevgan; Ekesi, Sunday; Bargul, Joel L.; Villinger, Jandouwe; Maniania, Nguya K.

    2013-01-01

    Virulence is the primary factor used for selection of entomopathogenic fungi (EPF) for development as biopesticides. To understand the genetic mechanisms underlying differences in virulence of fungal isolates on various arthropod pests, we compared the chitinase genes, chi2 and chi4, of 8 isolates of Metarhizium anisopliae. The clustering of the isolates showed various groups depending on their virulence. However, the analysis of their chitinase DNA sequences chi2 and chi4 did not reveal major divergences. Although their protein translates have been implicated in fungal virulence, the predicted protein structure of chi2 was identical for all isolates. Despite the critical role of chitin digestion in fungal infection, we conclude that chi2 and chi4 genes cannot serve as molecular markers to characterize observed variations in virulence among M. anisopliae isolates as previously suggested. Nevertheless, processes controlling the efficient upregulation of chitinase expression might be responsible for different virulence characteristics. Further studies using comparative “in vitro” chitin digestion techniques would be more appropriate to compare the quality and the quantity of chitinase production between fungal isolates. PMID:23936804

  11. Virulence of Klebsiella pneumoniae isolates harboring bla KPC-2 carbapenemase gene in a Caenorhabditis elegans model.

    PubMed

    Lavigne, Jean-Philippe; Cuzon, Gaelle; Combescure, Christophe; Bourg, Gisèle; Sotto, Albert; Nordmann, Patrice

    2013-01-01

    Klebsiella pneumoniae carbapenemase (KPC) is a carbapenemase increasingly reported worldwide in Enterobacteriaceae. The aim of this study was to analyze the virulence of several KPC-2-producing K. pneumoniae isolates. The studied strains were (i) five KPC-2 clinical strains from different geographical origins, belonging to different ST-types and possessing plasmids of different incompatibility groups; (ii) seven transformants obtained after electroporation of either these natural KPC plasmids or a recombinant plasmid harboring only the bla KPC-2 gene into reference strains K. pneumoniae ATCC10031/CIP53153; and (iii) five clinical strains cured of plasmids. The virulence of K. pneumoniae isolates was evaluated in the Caenorhabditis elegans model. The clinical KPC producers and transformants were significantly less virulent (LT50: 5.5 days) than K. pneumoniae reference strain (LT50: 4.3 days) (p<0.01). However, the worldwide spread KPC-2 positive K. pneumoniae ST258 strains and reference strains containing plasmids extracted from K. pneumoniae ST258 strains had a higher virulence than KPC-2 strains belonging to other ST types (LT50: 5 days vs. 6 days, p<0.01). The increased virulence observed in cured strains confirmed this trend. The bla KPC-2 gene itself was not associated to increased virulence.

  12. Host–Pathogen Coevolution: The Selective Advantage of Bacillus thuringiensis Virulence and Its Cry Toxin Genes

    PubMed Central

    Papkou, Andrei; Laehnemann, David; Guenther, Patrick S.; Prahl, Swantje; Saebelfeld, Manja; Hollensteiner, Jacqueline; Liesegang, Heiko; Brzuszkiewicz, Elzbieta; Daniel, Rolf; Michiels, Nicolaas K.; Schulte, Rebecca D.; Kurtz, Joachim; Rosenstiel, Philip; Telschow, Arndt; Bornberg-Bauer, Erich; Schulenburg, Hinrich

    2015-01-01

    Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i) high virulence was specifically favoured during pathogen–host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii) the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii) high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv) loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins. We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen's genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host–pathogen interaction system. PMID:26042786

  13. Detection of virulence genes in environmental strains of Vibrio cholerae from estuaries in northeastern Brazil.

    PubMed

    Menezes, Francisca Gleire Rodrigues de; Neves, Soraya da Silva; Sousa, Oscarina Viana de; Vila-Nova, Candida Machado Vieira Maia; Maggioni, Rodrigo; Theophilo, Grace Nazareth Diogo; Hofer, Ernesto; Vieira, Regine Helena Silva dos Fernandes

    2014-01-01

    The objectives of this study were to detect the presence of Vibrio cholerae in tropical estuaries (Northeastern Brazil) and to search for virulence factors in the environmental isolates. Water and sediment samples were inoculated onto a vibrio-selective medium (TCBS), and colonies with morphological resemblance to V. cholerae were isolated. The cultures were identified phenotypically using a dichotomous key based on biochemical characteristics. The total DNA extracted was amplified by PCR to detect ompW and by multiplex PCR to detect the virulence genes ctx, tcp, zot and rfbO1. The results of the phenotypic and genotypic identification were compared. Nine strains of V. cholerae were identified phenotypically, five of which were confirmed by detection of the species-specific gene ompW. The dichotomous key was efficient at differentiating environmental strains of V. cholerae. Strains of V. cholerae were found in all four estuaries, but none possessed virulence genes.

  14. DETECTION OF VIRULENCE GENES IN ENVIRONMENTAL STRAINS OF Vibrio cholerae FROM ESTUARIES IN NORTHEASTERN BRAZIL

    PubMed Central

    de Menezes, Francisca Gleire Rodrigues; Neves, Soraya da Silva; de Sousa, Oscarina Viana; Vila-Nova, Candida Machado Vieira Maia; Maggioni, Rodrigo; Theophilo, Grace Nazareth Diogo; Hofer, Ernesto; Vieira, Regine Helena Silva dos Fernandes

    2014-01-01

    The objectives of this study were to detect the presence of Vibrio cholerae in tropical estuaries (Northeastern Brazil) and to search for virulence factors in the environmental isolates. Water and sediment samples were inoculated onto a vibrio-selective medium (TCBS), and colonies with morphological resemblance to V. cholerae were isolated. The cultures were identified phenotypically using a dichotomous key based on biochemical characteristics. The total DNA extracted was amplified by PCR to detect ompW and by multiplex PCR to detect the virulence genes ctx, tcp, zot and rfbO1. The results of the phenotypic and genotypic identification were compared. Nine strains of V. cholerae were identified phenotypically, five of which were confirmed by detection of the species-specific gene ompW. The dichotomous key was efficient at differentiating environmental strains of V. cholerae. Strains of V. cholerae were found in all four estuaries, but none possessed virulence genes. PMID:25229224

  15. Virulence Factors and Antibiotic Susceptibility of Staphylococcus aureus Isolates in Ready-to-Eat Foods: Detection of S. aureus Contamination and a High Prevalence of Virulence Genes.

    PubMed

    Puah, Suat Moi; Chua, Kek Heng; Tan, Jin Ai Mary Anne

    2016-02-05

    Staphylococcus aureus is one of the leading causes of food poisoning. Its pathogenicity results from the possession of virulence genes that produce different toxins which result in self-limiting to severe illness often requiring hospitalization. In this study of 200 sushi and sashimi samples, S. aureus contamination was confirmed in 26% of the food samples. The S. aureus isolates were further characterized for virulence genes and antibiotic susceptibility. A high incidence of virulence genes was identified in 96.2% of the isolates and 20 different virulence gene profiles were confirmed. DNA amplification showed that 30.8% (16/52) of the S. aureus carried at least one SE gene which causes staphylococcal food poisoning. The most common enterotoxin gene was seg (11.5%) and the egc cluster was detected in 5.8% of the isolates. A combination of hla and hld was the most prevalent coexistence virulence genes and accounted for 59.6% of all isolates. Antibiotic resistance studies showed tetracycline resistance to be the most common at 28.8% while multi-drug resistance was found to be low at 3.8%. In conclusion, the high rate of S. aureus in the sampled sushi and sashimi indicates the need for food safety guidelines.

  16. Temperature-dependent expression of virulence genes in fish-pathogenic bacteria.

    PubMed

    Guijarro, José A; Cascales, Desirée; García-Torrico, Ana I; García-Domínguez, Mario; Méndez, Jessica

    2015-01-01

    Virulence gene expression in pathogenic bacteria is modulated by environmental parameters. A key factor in this expression is temperature. Its effect on virulence gene expression in bacteria infecting warm-blooded hosts is well documented. Transcription of virulence genes in these bacteria is induced upon a shift from low environmental to a higher host temperature (37°C). Interestingly, host temperatures usually correspond to the optimum for growth of these pathogenic bacteria. On the contrary, in ectothermic hosts such as fish, molluscs, and amphibians, infection processes generally occur at a temperature lower than that for the optimal growth of the bacteria. Therefore, regulation of virulence gene expression in response to temperature shift has to be modulated in a different way to that which is found in bacteria infecting warm-blooded hosts. The current understanding of virulence gene expression and its regulation in response to temperature in fish-pathogenic bacteria is limited, but constant extension of our knowledge base is essential to enable a rational approach to the problem of the bacterial fish diseases affecting the aquaculture industry. This is an interesting issue and progress needs to be made in order to diminish the economic losses caused by these diseases. The intention of this review is, for the first time, to compile the scattered results existing in the field in order to lay the groundwork for future research. This article is an overview of those relevant virulence genes that are expressed at temperatures lower than that for optimal bacterial growth in different fish-pathogenic bacteria as well as the principal mechanisms that could be involved in their regulation.

  17. Temperature-dependent expression of virulence genes in fish-pathogenic bacteria

    PubMed Central

    Guijarro, José A.; Cascales, Desirée; García-Torrico, Ana I.; García-Domínguez, Mario; Méndez, Jessica

    2015-01-01

    Virulence gene expression in pathogenic bacteria is modulated by environmental parameters. A key factor in this expression is temperature. Its effect on virulence gene expression in bacteria infecting warm-blooded hosts is well documented. Transcription of virulence genes in these bacteria is induced upon a shift from low environmental to a higher host temperature (37°C). Interestingly, host temperatures usually correspond to the optimum for growth of these pathogenic bacteria. On the contrary, in ectothermic hosts such as fish, molluscs, and amphibians, infection processes generally occur at a temperature lower than that for the optimal growth of the bacteria. Therefore, regulation of virulence gene expression in response to temperature shift has to be modulated in a different way to that which is found in bacteria infecting warm-blooded hosts. The current understanding of virulence gene expression and its regulation in response to temperature in fish-pathogenic bacteria is limited, but constant extension of our knowledge base is essential to enable a rational approach to the problem of the bacterial fish diseases affecting the aquaculture industry. This is an interesting issue and progress needs to be made in order to diminish the economic losses caused by these diseases. The intention of this review is, for the first time, to compile the scattered results existing in the field in order to lay the groundwork for future research. This article is an overview of those relevant virulence genes that are expressed at temperatures lower than that for optimal bacterial growth in different fish-pathogenic bacteria as well as the principal mechanisms that could be involved in their regulation. PMID:26217329

  18. Vaccinia virus protein C4 inhibits NF-κB activation and promotes virus virulence

    PubMed Central

    Ember, Stuart W. J.; Ren, Hongwei; Ferguson, Brian J.

    2012-01-01

    Vaccinia virus (VACV) strain Western Reserve protein C4 has been characterized and its function and contribution to virus virulence assessed. Bioinformatic analysis showed that C4 is conserved in six orthopoxvirus species and shares 43 % amino acid identity with VACV protein C16, a known virulence factor. A recombinant VACV expressing a C-terminally tagged version of C4 showed that, like C16, this 37 kDa protein is expressed early during infection and localizes to both the cytoplasm and the nucleus. Functional assays using a firefly luciferase reporter plasmid under the control of a nuclear factor kappa B (NF-κB)-dependent promoter demonstrated that C4 inhibits NF-κB activation at, or downstream of, the inhibitor of kappa kinase (IKK) complex. Consistent with this, C4 inhibited interleukin-1β-induced translocation of p65 into the nucleus. A VACV lacking the C4L gene (vΔC4) showed no significant differences from wild-type virus in growth kinetics or spread in cell culture, but had reduced virulence in a murine intranasal model of infection. vΔC4-infected mice exhibited fewer symptoms, lost less weight and recovered 7 days earlier than animals infected with control viruses expressing C4. Furthermore, bronchoalveolar lavage fluid from vΔC4-infected mice had increased cell numbers at day 5 post-infection, which correlated with reduced lung virus titres from this time onward. C4 represents the ninth VACV protein to inhibit NF-κB activation and remarkably, in every case examined, loss of each protein individually caused an alteration in virus virulence, despite the presence of other NF-κB inhibitors. PMID:22791606

  19. The genome of a pathogenic rhodococcus: cooptive virulence underpinned by key gene acquisitions.

    PubMed

    Letek, Michal; González, Patricia; Macarthur, Iain; Rodríguez, Héctor; Freeman, Tom C; Valero-Rello, Ana; Blanco, Mónica; Buckley, Tom; Cherevach, Inna; Fahey, Ruth; Hapeshi, Alexia; Holdstock, Jolyon; Leadon, Desmond; Navas, Jesús; Ocampo, Alain; Quail, Michael A; Sanders, Mandy; Scortti, Mariela M; Prescott, John F; Fogarty, Ursula; Meijer, Wim G; Parkhill, Julian; Bentley, Stephen D; Vázquez-Boland, José A

    2010-09-30

    We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid-rich intestine and manure of herbivores--two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche-adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT-acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi.

  20. The Genome of a Pathogenic Rhodococcus: Cooptive Virulence Underpinned by Key Gene Acquisitions

    PubMed Central

    Letek, Michal; González, Patricia; MacArthur, Iain; Rodríguez, Héctor; Freeman, Tom C.; Valero-Rello, Ana; Blanco, Mónica; Buckley, Tom; Cherevach, Inna; Fahey, Ruth; Hapeshi, Alexia; Holdstock, Jolyon; Leadon, Desmond; Navas, Jesús; Ocampo, Alain; Quail, Michael A.; Sanders, Mandy; Scortti, Mariela M.; Prescott, John F.; Fogarty, Ursula; Meijer, Wim G.; Parkhill, Julian; Bentley, Stephen D.; Vázquez-Boland, José A.

    2010-01-01

    We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi. PMID:20941392

  1. Antibiotic resistance profile and virulence genes of uropathogenic Escherichia coli isolates in relation to phylogeny.

    PubMed

    Adib, N; Ghanbarpour, R; Solatzadeh, H; Alizade, H

    2014-03-01

    Escherichia coli (E. coli) strains are the major cause of urinary tract infections (UTI) and belong to the large group of extra-intestinal pathogenic E. coli. The purposes of this study were to determine the antibiotic resistance profile, virulence genes and phylogenetic background of E. coli isolates from UTI cases. A total of 137 E. coli isolates were obtained from UTI samples. The antimicrobial susceptibility of confirmed isolates was determined by disk diffusion method against eight antibiotics. The isolates were examined to determine the presence and prevalence of selected virulence genes including iucD, sfa/focDE, papEF and hly. ECOR phylo-groups of isolates were determined by detection of yjaA and chuA genes and fragment TspE4.C2. The antibiogram results showed that 71% of the isolates were resistant to cefazolin, 60.42% to co-trimoxazole, 54.16% to nalidixic acid, 36.45% to gentamicin, 29.18% to ciprofloxacin, 14.58% to cefepime, 6.25% to nitrofurantoin and 0.00% to imipenem. Twenty-two antibiotic resistance patterns were observed among the isolates. Virulence genotyping of isolates revealed that 58.39% isolates had at least one of the four virulence genes. The iucD gene was the most prevalent gene (43.06%). The other genes including sfa/focDE, papEF and hly genes were detected in 35.76%, 18.97% and 2.18% isolates, respectively. Nine combination patterns of the virulence genes were detected in isolates. Phylotyping of 137 isolates revealed that the isolates fell into A (45.99%), B1 (13.14%), B2 (19.71%) and D (21.16%) groups. Phylotyping of multidrug resistant isolates indicated that these isolates are mostly in A (60.34%) and D (20.38%) groups. In conclusion, the isolates that possessed the iucD, sfa/focDE, papEF and hly virulence genes mostly belonged to A and B2 groups, whereas antibiotic resistant isolates were in groups A and D. Escherichia coli strains carrying virulence factors and antibiotic resistance are distributed in specific phylogenetic

  2. A vir-repressed gene of Bordetella pertussis is required for virulence.

    PubMed Central

    Beattie, D T; Shahin, R; Mekalanos, J J

    1992-01-01

    Coordinate regulation of gene expression in Bordetella pertussis is controlled by the products of the vir locus, BvgA and BvgS. In the presence of modulating signals such as MgSO4 and nicotinic acid, expression of vir-activated genes (vag) is reduced, while expression of vir-repressed genes (vrg) is maximal. We have cloned one of these vir-repressed genes, vrg-6, in Escherichia coli. DNA sequencing has shown that vrg-6 is contained on a single EcoRI restriction endonuclease fragment and is predicted to code for a protein of 105 amino acids with a molecular weight of 11,441. The predicted protein product appears to have two domains, one consisting of seven hydrophobic proline-rich pentameric repeats and the other consisting of five alkaline trimeric repeats. Southern blot analysis has revealed vrg-6-homologous sequences in the chromosomes of Bordetella bronchiseptica and Bordetella parapertussis, but, unlike Bordetella pertussis, these species do not express vrg-6-homologous RNA when grown under modulating conditions. In order to assess the role of vrg gene products in B. pertussis pathogenesis, two 18323 derivatives which harbor TnphoA insertions in vrg genes were analyzed in a mouse model of respiratory infection. Strain SK6, which carries a vrg-6::TnphoA mutation, failed to induce lymphocytosis and was significantly less able to colonize lungs and trachea than its parent strain 18323 or than SK18, which harbors a TnphoA fusion in the vrg-18 locus. This is the first evidence that a vir-repressed gene may play an important role in the virulence of B. pertussis and the pathogenesis of whooping cough. Images PMID:1730491

  3. Virulence characteristics of extraintestinal pathogenic Escherichia coli deletion of gene encoding the outer membrane protein X

    PubMed Central

    MENG, Xianrong; LIU, Xueling; ZHANG, Liyuan; HOU, Bo; LI, Binyou; TAN, Chen; LI, Zili; ZHOU, Rui; LI, Shaowen

    2016-01-01

    Outer membrane protein X (OmpX) and its homologues have been proposed to contribute to the virulence in various bacterial species. But, their role in virulence of extraintestinal pathogenic Escherichia coli (ExPEC) is yet to be determined. This study evaluates the role of OmpX in ExPEC virulence in vitro and in vivo using a clinical strain PPECC42 of porcine origin. The ompX deletion mutant exhibited increased swimming motility and decreased adhesion to, and invasion of pulmonary epithelial A549 cell, compared to the wild-type strain. A mild increase in LD50 and distinct decrease in bacterial load in such organs as heart, liver, spleen, lung and kidney were observed in mice infected with the ompX mutant. Complementation of the complete ompX gene in trans restored the virulence of mutant strain to the level of wild-type strain. Our results reveal that OmpX contributes to ExPEC virulence, but may be not an indispensable virulence determinant. PMID:27149893

  4. Steps toward broad-spectrum therapeutics: discovering virulence-associated genes present in diverse human pathogens

    PubMed Central

    Stubben, Chris J; Duffield, Melanie L; Cooper, Ian A; Ford, Donna C; Gans, Jason D; Karlyshev, Andrey V; Lingard, Bryan; Oyston, Petra CF; de Rochefort, Anna; Song, Jian; Wren, Brendan W; Titball, Rick W; Wolinsky, Murray

    2009-01-01

    Background New and improved antimicrobial countermeasures are urgently needed to counteract increased resistance to existing antimicrobial treatments and to combat currently untreatable or new emerging infectious diseases. We demonstrate that computational comparative genomics, together with experimental screening, can identify potential generic (i.e., conserved across multiple pathogen species) and novel virulence-associated genes that may serve as targets for broad-spectrum countermeasures. Results Using phylogenetic profiles of protein clusters from completed microbial genome sequences, we identified seventeen protein candidates that are common to diverse human pathogens and absent or uncommon in non-pathogens. Mutants of 13 of these candidates were successfully generated in Yersinia pseudotuberculosis and the potential role of the proteins in virulence was assayed in an animal model. Six candidate proteins are suggested to be involved in the virulence of Y. pseudotuberculosis, none of which have previously been implicated in the virulence of Y. pseudotuberculosis and three have no record of involvement in the virulence of any bacteria. Conclusion This work demonstrates a strategy for the identification of potential virulence factors that are conserved across a number of human pathogenic bacterial species, confirming the usefulness of this tool. PMID:19874620

  5. [Differences in virulence genes in Vibrio cholerae eltor strains isolated from different sources in Turkmenistan territory].

    PubMed

    Smirnova, N I; Kostromitina, E A; Cheldyshova, N B; Kutyrev, V V

    2002-01-01

    Polymerase chain reaction (PCR) detected the presence of various genes associated with virulence in genome of strains V. cholerae eltor isolated in Turkmenistan territory during epidemic and epidemic-free perios. It was found that a complete set of virulence genes (ctxA+, tcpA+ and toxR+) contained strains isolated from patients, carriers and environment only in cholera epidemics. Strains isolated from the environment in the period free of epidemics did not contain ctxA and tcpA in 78.2% of cases, but 5.2% of the strains carried a complete set of virulence genes. There were also nontoxigenic strains containing genes tcpA and toxR. Such strains were isolated from the environment (16.6%) and vibrion carriers (42.9%). Isolated were also strains V.cholerae eltor carrying bacteriophage CTX phi with incomplete set of virulence genes and having genotype ctxA-, ace+ and zot+. Almost all the strains ctxA-, tcpA+ carry attRS1-site in genome. This shows that such strains may transform into toxigenic as a result of infection with bacteriophage CTX phi.

  6. Distribution and pathogenic relationship of virulence associated genes among Vibrio alginolyticus from the mariculture systems.

    PubMed

    Ren, Chunhua; Hu, Chaoqun; Jiang, Xiao; Sun, Hongyan; Zhao, Zhe; Chen, Chang; Luo, Peng

    2013-01-01

    Vibrio alginolyticus has been confirmed as an important pathogen for aquatic animals. However, the pathogenic mechanism of V. alginolyticus is not completely understood. A total of 31 isolates of V. alginolyticus from sea water, fish and shrimp on the mariculture systems were fingerprinted by pulsed-field gel electrophoresis. The pathogenicity of these isolates was tested by challenge and the 21 genes associated with the virulence of Vibrio cholerae or Vibrio parahaemolyticus were examined in V. alginolyticus using PCR. The results showed that the 31 V. alginolyticus isolates belonged to 26 PFGE genotypes and the isolates from different source had different genotypes. Nine of the 31 isolates were confirmed as pathogenic strains by challenge. Moreover, 12 vibrio virulence genes were detected in this study. Of the detected genes, VCtoxR, VCtoxS, hlyA, VPtoxR and tlh were found in both pathogenic and non-pathogenic isolates. However, the other 7 virulence genes, ctxB, zot, tagA, stn, sto, tdh and trh, were only present in pathogenic isolates. Analysis of the relationship between virulence associated genes and pathogenicity of V. alginolyticus provides a possible explanation that the pathogenic mechanism of V. alginolyticus might be similar to that of V. parahaemolyticus instead of V. cholerae.

  7. Effect of Negative Pressure on Proliferation, Virulence Factor Secretion, Biofilm Formation, and Virulence-Regulated Gene Expression of Pseudomonas aeruginosa In Vitro

    PubMed Central

    Wang, Guo-Qi; Li, Tong-Tong; Li, Zhi-Rui; Zhang, Li-Cheng

    2016-01-01

    Objective. To investigate the effect of negative pressure conditions induced by NPWT on P. aeruginosa. Methods. P. aeruginosa was cultured in a Luria–Bertani medium at negative pressure of −125 mmHg for 24 h in the experimental group and at atmospheric pressure in the control group. The diameters of the colonies of P. aeruginosa were measured after 24 h. ELISA kit, orcinol method, and elastin-Congo red assay were used to quantify the virulence factors. Biofilm formation was observed by staining with Alexa Fluor® 647 conjugate of concanavalin A (Con A). Virulence-regulated genes were determined by quantitative RT-PCR. Results. As compared with the control group, growth of P. aeruginosa was inhibited by negative pressure. The colony size under negative pressure was significantly smaller in the experimental group than that in the controls (p < 0.01). Besides, reductions in the total amount of virulence factors were observed in the negative pressure group, including exotoxin A, rhamnolipid, and elastase. RT-PCR results revealed a significant inhibition in the expression level of virulence-regulated genes. Conclusion. Negative pressure could significantly inhibit the growth of P. aeruginosa. It led to a decrease in the virulence factor secretion, biofilm formation, and a reduction in the expression level of virulence-regulated genes. PMID:28074188

  8. Accessory genes confer a high replication rate to virulent feline immunodeficiency virus.

    PubMed

    Troyer, Ryan M; Thompson, Jesse; Elder, John H; VandeWoude, Sue

    2013-07-01

    Feline immunodeficiency virus (FIV) is a lentivirus that causes AIDS in domestic cats, similar to human immunodeficiency virus (HIV)/AIDS in humans. The FIV accessory protein Vif abrogates the inhibition of infection by cat APOBEC3 restriction factors. FIV also encodes a multifunctional OrfA accessory protein that has characteristics similar to HIV Tat, Vpu, Vpr, and Nef. To examine the role of vif and orfA accessory genes in FIV replication and pathogenicity, we generated chimeras between two FIV molecular clones with divergent disease potentials: a highly pathogenic isolate that replicates rapidly in vitro and is associated with significant immunopathology in vivo, FIV-C36 (referred to here as high-virulence FIV [HV-FIV]), and a less-pathogenic strain, FIV-PPR (referred to here as low-virulence FIV [LV-FIV]). Using PCR-driven overlap extension, we produced viruses in which vif, orfA, or both genes from virulent HV-FIV replaced equivalent genes in LV-FIV. The generation of these chimeras is more straightforward in FIV than in primate lentiviruses, since FIV accessory gene open reading frames have very little overlap with other genes. All three chimeric viruses exhibited increased replication kinetics in vitro compared to the replication kinetics of LV-FIV. Chimeras containing HV-Vif or Vif/OrfA had replication rates equivalent to those of the virulent HV-FIV parental virus. Furthermore, small interfering RNA knockdown of feline APOBEC3 genes resulted in equalization of replication rates between LV-FIV and LV-FIV encoding HV-FIV Vif. These findings demonstrate that Vif-APOBEC interactions play a key role in controlling the replication and pathogenicity of this immunodeficiency-inducing virus in its native host species and that accessory genes act as mediators of lentiviral strain-specific virulence.

  9. Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis.

    PubMed

    Skwark, Marcin J; Croucher, Nicholas J; Puranen, Santeri; Chewapreecha, Claire; Pesonen, Maiju; Xu, Ying Ying; Turner, Paul; Harris, Simon R; Beres, Stephen B; Musser, James M; Parkhill, Julian; Bentley, Stephen D; Aurell, Erik; Corander, Jukka

    2017-02-01

    Recent advances in the scale and diversity of population genomic datasets for bacteria now provide the potential for genome-wide patterns of co-evolution to be studied at the resolution of individual bases. Here we describe a new statistical method, genomeDCA, which uses recent advances in computational structural biology to identify the polymorphic loci under the strongest co-evolutionary pressures. We apply genomeDCA to two large population data sets representing the major human pathogens Streptococcus pneumoniae (pneumococcus) and Streptococcus pyogenes (group A Streptococcus). For pneumococcus we identified 5,199 putative epistatic interactions between 1,936 sites. Over three-quarters of the links were between sites within the pbp2x, pbp1a and pbp2b genes, the sequences of which are critical in determining non-susceptibility to beta-lactam antibiotics. A network-based analysis found these genes were also coupled to that encoding dihydrofolate reductase, changes to which underlie trimethoprim resistance. Distinct from these antibiotic resistance genes, a large network component of 384 protein coding sequences encompassed many genes critical in basic cellular functions, while another distinct component included genes associated with virulence. The group A Streptococcus (GAS) data set population represents a clonal population with relatively little genetic variation and a high level of linkage disequilibrium across the genome. Despite this, we were able to pinpoint two RNA pseudouridine synthases, which were each strongly linked to a separate set of loci across the chromosome, representing biologically plausible targets of co-selection. The population genomic analysis method applied here identifies statistically significantly co-evolving locus pairs, potentially arising from fitness selection interdependence reflecting underlying protein-protein interactions, or genes whose product activities contribute to the same phenotype. This discovery approach greatly

  10. Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis

    PubMed Central

    Pesonen, Maiju; Musser, James M.; Bentley, Stephen D.; Aurell, Erik; Corander, Jukka

    2017-01-01

    Recent advances in the scale and diversity of population genomic datasets for bacteria now provide the potential for genome-wide patterns of co-evolution to be studied at the resolution of individual bases. Here we describe a new statistical method, genomeDCA, which uses recent advances in computational structural biology to identify the polymorphic loci under the strongest co-evolutionary pressures. We apply genomeDCA to two large population data sets representing the major human pathogens Streptococcus pneumoniae (pneumococcus) and Streptococcus pyogenes (group A Streptococcus). For pneumococcus we identified 5,199 putative epistatic interactions between 1,936 sites. Over three-quarters of the links were between sites within the pbp2x, pbp1a and pbp2b genes, the sequences of which are critical in determining non-susceptibility to beta-lactam antibiotics. A network-based analysis found these genes were also coupled to that encoding dihydrofolate reductase, changes to which underlie trimethoprim resistance. Distinct from these antibiotic resistance genes, a large network component of 384 protein coding sequences encompassed many genes critical in basic cellular functions, while another distinct component included genes associated with virulence. The group A Streptococcus (GAS) data set population represents a clonal population with relatively little genetic variation and a high level of linkage disequilibrium across the genome. Despite this, we were able to pinpoint two RNA pseudouridine synthases, which were each strongly linked to a separate set of loci across the chromosome, representing biologically plausible targets of co-selection. The population genomic analysis method applied here identifies statistically significantly co-evolving locus pairs, potentially arising from fitness selection interdependence reflecting underlying protein-protein interactions, or genes whose product activities contribute to the same phenotype. This discovery approach greatly

  11. Sheeppox virus kelch-like gene SPPV-019 affects virus virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheeppox virus (SPPV), a member of the Capripoxvirus genus of the Poxviridae, is the etiologic agent of a significant disease of sheep in the developing world. Genomic analysis of pathogenic and vaccine capripoxviruses identified genes with potential roles in virulence and host-range, including thr...

  12. Differentially expressed genes of virulent and nonvirulent Entamoeba histolytica strains identified by suppression subtractive hybridization.

    PubMed

    Freitas, Michelle A R; Alvarenga, Ângela C; Fernandes, Helen C; Gil, Frederico F; Melo, Maria N; Pesquero, Jorge L; Gomes, Maria A

    2014-01-01

    Entamoeba histolytica is a parasite which presents capacity to degrade tissues and therefore has a pathogenic behavior. As this behavior is not shown by all strains, there have been several studies investigating molecular basis of the cytotoxicity process. Using the suppression subtractive hybridization (SSH) technique, differential gene expressions of two E. histolytica strains, one virulent (EGG) and one nonvirulent (452), have been analyzed with the purpose of isolating genes which may be involved with amoebic virulence. Nine cDNA fragments presenting high homology with E. histolytica previously sequenced genes were subtracted. Of these, four genes were confirmed by RT-PCR. Two coding for hypothetical proteins, one for a cysteine-rich protein, expressed only in the virulent strain, EGG and another one, coding for grainin 2 protein, exclusive from 452 strain. This study provided new insight into the proteins differences in the virulent and nonvirulent E. histolytica strains. We believe that further studies with these proteins may prove association of them with tissue damage, providing new perceptions to improve treatment or diagnosis of the invasive disease.

  13. Identification and functional analysis of Penicillium digitatum genes putatively involved in virulence towards citrus fruit.

    PubMed

    López-Pérez, Mario; Ballester, Ana-Rosa; González-Candelas, Luis

    2015-04-01

    The fungus Penicillium digitatum, the causal agent of green mould rot, is the most destructive post-harvest pathogen of citrus fruit in Mediterranean regions. In order to identify P. digitatum genes up-regulated during the infection of oranges that may constitute putative virulence factors, we followed a polymerase chain reaction (PCR)-based suppression subtractive hybridization and cDNA macroarray hybridization approach. The origin of expressed sequence tags (ESTs) was determined by comparison against the available genome sequences of both organisms. Genes coding for fungal proteases and plant cell wall-degrading enzymes represent the largest categories in the subtracted cDNA library. Northern blot analysis of a selection of P. digitatum genes, including those coding for proteases, cell wall-related enzymes, redox homoeostasis and detoxification processes, confirmed their up-regulation at varying time points during the infection process. Agrobacterium tumefaciens-mediated transformation was used to generate knockout mutants for two genes encoding a pectin lyase (Pnl1) and a naphthalene dioxygenase (Ndo1). Two independent P. digitatum Δndo1 mutants were as virulent as the wild-type. However, the two Δpnl1 mutants analysed were less virulent than the parental strain or an ectopic transformant. Together, these results provide a significant advance in our understanding of the putative determinants of the virulence mechanisms of P. digitatum.

  14. Gene expression patterns and dynamics of the colonization of common bean (Phaseolus vulgaris L.) by highly virulent and weakly virulent strains of Fusarium oxysporum

    PubMed Central

    Niño-Sánchez, Jonathan; Tello, Vega; Casado-del Castillo, Virginia; Thon, Michael R.; Benito, Ernesto P.; Díaz-Mínguez, José María

    2015-01-01

    The dynamics of root and hypocotyl colonization, and the gene expression patterns of several fungal virulence factors and plant defense factors have been analyzed and compared in the interaction of two Fusarium oxysporum f. sp. phaseoli strains displaying clear differences in virulence, with a susceptible common bean cultivar. The growth of the two strains on the root surface and the colonization of the root was quantitatively similar although the highly virulent (HV) strain was more efficient reaching the central root cylinder. The main differences between both strains were found in the temporal and spatial dynamics of crown root and hypocotyl colonization. The increase of fungal biomass in the crown root was considerably larger for the HV strain, which, after an initial stage of global colonization of both the vascular cylinder and the parenchymal cells, restricted its growth to the newly differentiated xylem vessels. The weakly virulent (WV) strain was a much slower and less efficient colonizer of the xylem vessels, showing also growth in the intercellular spaces of the parenchyma. Most of the virulence genes analyzed showed similar expression patterns in both strains, except SIX1, SIX6 and the gene encoding the transcription factor FTF1, which were highly upregulated in root crown and hypocotyl. The response induced in the infected plant showed interesting differences for both strains. The WV strain induced an early and strong transcription of the PR1 gene, involved in SAR response, while the HV strain preferentially induced the early expression of the ethylene responsive factor ERF2. PMID:25883592

  15. Burkholderia cenocepacia ShvR-regulated genes that influence colony morphology, biofilm formation, and virulence.

    PubMed

    Subramoni, Sujatha; Nguyen, David T; Sokol, Pamela A

    2011-08-01

    Burkholderia cenocepacia is an opportunistic pathogen that primarily infects cystic fibrosis (CF) patients. Previously, we reported that ShvR, a LysR regulator, influences colony morphology, virulence, and biofilm formation and regulates the expression of an adjacent 24-kb genomic region encoding 24 genes. In this study, we report the functional characterization of selected genes in this region. A Tn5 mutant with shiny colony morphology was identified with a polar mutation in BCAS0208, predicted to encode an acyl-coenzyme A dehydrogenase. Mutagenesis of BCAS0208 and complementation analyses revealed that BCAS0208 is required for rough colony morphology, biofilm formation, and virulence on alfalfa seedlings. It was not possible to complement with BCAS0208 containing a mutation in the catalytic site. BCAS0201, encoding a putative flavin adenine dinucleotide (FAD)-dependent oxidoreductase, and BCAS0207, encoding a putative citrate synthase, do not influence colony morphology but are required for optimum levels of biofilm formation and virulence. Both BCAS0208 and BCAS0201 contribute to pellicle formation, although individual mutations in each of these genes had no appreciable effect on pellicle formation. A mutant with a polar insertion in BCAS0208 was significantly less virulent in a rat model of chronic lung infection as well as in the alfalfa model. Genes in this region were shown to influence utilization of branched-chain fatty acids, tricarboxylic acid cycle substrates, l-arabinose, and branched-chain amino acids. Together, our data show that the ShvR-regulated genes BCAS0208 to BCAS0201 are required for the rough colony morphotype, biofilm and pellicle formation, and virulence in B. cenocepacia.

  16. Quantitative Trait Locus Based Virulence Determinant Mapping of the HSV-1 Genome in Murine Ocular Infection: Genes Involved in Viral Regulatory and Innate Immune Networks Contribute to Virulence

    PubMed Central

    Larsen, Inna; Craven, Mark; Brandt, Curtis R.

    2016-01-01

    Herpes simplex virus type 1 causes mucocutaneous lesions, and is the leading cause of infectious blindness in the United States. Animal studies have shown that the severity of HSV-1 ocular disease is influenced by three main factors; innate immunity, host immune response and viral strain. We previously showed that mixed infection with two avirulent HSV-1 strains (OD4 and CJ994) resulted in recombinants that exhibit a range of disease phenotypes from severe to avirulent, suggesting epistatic interactions were involved. The goal of this study was to develop a quantitative trait locus (QTL) analysis of HSV-1 ocular virulence determinants and to identify virulence associated SNPs. Blepharitis and stromal keratitis quantitative scores were characterized for 40 OD4:CJ994 recombinants. Viral titers in the eye were also measured. Virulence quantitative trait locus mapping (vQTLmap) was performed using the Lasso, Random Forest, and Ridge regression methods to identify significant phenotypically meaningful regions for each ocular disease parameter. The most predictive Ridge regression model identified several phenotypically meaningful SNPs for blepharitis and stromal keratitis. Notably, phenotypically meaningful nonsynonymous variations were detected in the UL24, UL29 (ICP8), UL41 (VHS), UL53 (gK), UL54 (ICP27), UL56, ICP4, US1 (ICP22), US3 and gG genes. Network analysis revealed that many of these variations were in HSV-1 regulatory networks and viral genes that affect innate immunity. Several genes previously implicated in virulence were identified, validating this approach, while other genes were novel. Several novel polymorphisms were also identified in these genes. This approach provides a framework that will be useful for identifying virulence genes in other pathogenic viruses, as well as epistatic effects that affect HSV-1 ocular virulence. PMID:26962864

  17. Comparative Genomics and an Insect Model Rapidly Identify Novel Virulence Genes of Burkholderia mallei

    DTIC Science & Technology

    2008-04-01

    2,500 shared “housekeeping” genes whose products share 60% amino acid sequence identity. Of greater interest are the spe - cies- or isolate-specific...FEMS Microbiol. Lett. 192:67–72. 42 . Liu, B., G. C . Koo, E. H. Yap, K. L. Chua, and Y. H. Gan. 2002. Model of differential susceptibility to mucosal...Microbiology. All Rights Reserved. Comparative Genomics and an Insect Model Rapidly Identify Novel Virulence Genes of Burkholderia mallei† Mark A

  18. Impact of virulence genes on sepsis severity and survival in Escherichia coli bacteremia

    PubMed Central

    Mora-Rillo, Marta; Fernández-Romero, Natalia; Francisco, Carolina Navarro-San; Díez-Sebastián, Jesús; Romero-Gómez, Maria Pilar; Fernández, Francisco Arnalich; López, Jose Ramon Arribas; Mingorance, Jesús

    2015-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) are a frequent cause of bacteremia and sepsis, but the role of ExPEC genetic virulence factors (VFs) in sepsis development and outcome is ill-defined. Prospective study including 120 adult patients with E. coli bacteremia to investigate the impact of bacterial and host factors on sepsis severity and mortality. Patients' clinical and demographic data were registered. Phylogenetic background of E. coli isolates was analyzed by SNP pyrosequencing and VFs by PCR. The E. coli isolates presented an epidemic population structure with 6 dominant clones making up to half of the isolates. VF gene profiles were highly diverse. Multivariate analysis for sepsis severity showed that the presence of cnf and blaTEM genes increased the risk of severe illness by 6.75 (95% confidence interval [CI] 1.79–24.71) and 2.59 (95% CI 1.04–6.43) times respectively, while each point in the Pitt score increased the risk by 1.34 (95% CI 1.02–1.76) times. Multivariate analysis for mortality showed that active chemotherapy (OR 17.87, 95% CI 3.35–95.45), McCabe-Jackson Index (OR for rapidly fatal category 120.15, 95% CI 4.19–3446.23), Pitt index (OR 1.78, 95% CI 1.25–2.56) and presence of fyuA gene (OR 8.05, 95% CI 1.37–47.12) were associated to increased mortality while the presence of P fimbriae genes had a protective role (OR 0.094, 95%IC 0.018–0.494). Bacteremic E. coli had a high diversity of genetic backgrounds and VF gene profiles. Bacterial VFs and host determinants had an impact on disease evolution and mortality. PMID:25654604

  19. FlhA influences Bacillus thuringiensis PlcR-regulated gene transcription, protein production, and virulence.

    PubMed

    Bouillaut, Laurent; Ramarao, Nalini; Buisson, Christophe; Gilois, Nathalie; Gohar, Michel; Lereclus, Didier; Nielsen-Leroux, Christina

    2005-12-01

    Bacillus thuringiensis and Bacillus cereus are closely related. B. thuringiensis is well known for its entomopathogenic properties, principally due to the synthesis of plasmid-encoded crystal toxins. B. cereus appears to be an emerging opportunistic human pathogen. B. thuringiensis and B. cereus produce many putative virulence factors which are positively controlled by the pleiotropic transcriptional regulator PlcR. The inactivation of plcR decreases but does not abolish virulence, indicating that additional factors like flagella may contribute to pathogenicity. Therefore, we further analyzed a mutant (B. thuringiensis 407 Cry(-) DeltaflhA) previously described as being defective in flagellar apparatus assembly and in motility as well as in the production of hemolysin BL and phospholipases. A large picture of secreted proteins was obtained by two-dimensional electrophoresis analysis, which revealed that flagellar proteins are not secreted and that production of several virulence-associated factors is reduced in the flhA mutant. Moreover, we quantified the effect of FlhA on plcA and hblC gene transcription. The results show that the flhA mutation results in a significant reduction of plcA and hblC transcription. These results indicate that the transcription of several PlcR-regulated virulence factors is coordinated with the flagellar apparatus. Consistently, the flhA mutant also shows a strong decrease in cytotoxicity towards HeLa cells and in virulence against Galleria mellonella larvae following oral and intrahemocoelic inoculation. The decrease in virulence may be due to both a lack of flagella and a lower production of secreted factors. Hence, FlhA appears to be an essential virulence factor with a pleiotropic role.

  20. Virulence Associated Genes-Deleted Salmonella Montevideo Is Attenuated, Highly Immunogenic and Confers Protection against Virulent Challenge in Chickens

    PubMed Central

    Lalsiamthara, Jonathan; Lee, John H.

    2016-01-01

    To construct a novel live vaccine against Salmonella enterica serovar Montevideo (SM) infection in chickens, two important bacterial regulatory genes, lon and cpxR, which are associated with invasion and virulence, were deleted from the wild type SM genome. Attenuated strains, JOL1625 (Δlon), JOL1597 (ΔcpxR), and JOL1599 (ΔlonΔcpxR) were thereby generated. Observations with scanning electron microscopy suggested that JOL1625 and JOL1599 cells showed increased ruffled surface which may be related to abundant extracellular polysaccharide (EPS) production. JOL1597 depicted milder ruffled surface but showed increased surface corrugation. ConA affinity-based fluorometric quantification and fluorescence microscopy revealed significant increases in EPS production in JOL1625 and JOL1599. Four weeks old chickens were used for safety and immunological studies. The mutants were not observed in feces beyond day 3 nor in spleen and cecum beyond day 7, whereas wild type SM was detected for at least 2 weeks in spleen and cecum. JOL1599 was further evaluated as a vaccine candidate. Chickens immunized with JOL1599 showed strong humoral responses, as indicated by systemic IgG and secretory IgA levels, as well as strong cell-mediated immune response, as indicated by increased lymphocyte proliferation. JOL1599-immunized groups also showed significant degree of protection against wild type challenge. Our results indicate that Δlon- and/or ΔcpxR-deleted SM exhibited EPS-enhanced immunogenicity and attenuation via reduced bacterial cell intracellular replication, conferred increased protection, and possess safety qualities favorable for effective vaccine development against virulent SM infections. PMID:27785128

  1. Identification and Isolation of Brucella suis Virulence Genes Involved in Resistance to the Human Innate Immune System▿

    PubMed Central

    Liautard, Janny; Ouahrani-Bettache, Safia; Jubier-Maurin, Véronique; Lafont, Virginie; Köhler, Stephan; Liautard, Jean-Pierre

    2007-01-01

    Brucella strains are facultative intracellular pathogens that induce chronic diseases in humans and animals. This observation implies that Brucella subverts innate and specific immune responses of the host to develop its full virulence. Deciphering the genes involved in the subversion of the immune system is of primary importance for understanding the virulence of the bacteria, for understanding the pathogenic consequences of infection, and for designing an efficient vaccine. We have developed an in vitro system involving human macrophages infected by Brucella suis and activated syngeneic γ9δ2 T lymphocytes. Under these conditions, multiplication of B. suis inside macrophages is only slightly reduced. To identify the genes responsible for this reduced sensitivity, we screened a library of 2,000 clones of transposon-mutated B. suis. For rapid and quantitative analysis of the multiplication of the bacteria, we describe a simple method based on Alamar blue reduction, which is compatible with screening a large library. By comparing multiplication inside macrophages alone and multiplication inside macrophages with activated γ9δ2 T cells, we identified four genes of B. suis that were necessary to resist to the action of the γ9δ2 T cells. The putative functions of these genes are discussed in order to propose possible explanations for understanding their exact role in the subversion of innate immunity. PMID:17709411

  2. Deletion of virulence associated genes from attenuated African swine fever virus isolate OUR T88/3 decreases its ability to protect against challenge with virulent virus.

    PubMed

    Abrams, Charles C; Goatley, Lynnette; Fishbourne, Emma; Chapman, David; Cooke, Lyndsay; Oura, Christopher A; Netherton, Christopher L; Takamatsu, Haru-Hisa; Dixon, Linda K

    2013-08-15

    African swine fever virus (ASFV) causes an acute haemorrhagic disease of domestic pigs against which there is no effective vaccine. The attenuated ASFV strain OUR T88/3 has been shown previously to protect vaccinated pigs against challenge with some virulent strains including OUR T88/1. Two genes, DP71L and DP96R were deleted from the OUR T88/3 genome to create recombinant virus OUR T88/3ΔDP2. Deletion of these genes from virulent viruses has previously been shown to reduce ASFV virulence in domestic pigs. Groups of 6 pigs were immunised with deletion virus OUR T88/3ΔDP2 or parental virus OUR T88/3 and challenged with virulent OUR T88/1 virus. Four pigs (66%) were protected by inoculation with the deletion virus OUR T88/3ΔDP2 compared to 100% protection with the parental virus OUR T88/3. Thus the deletion of the two genes DP71L and DP96R from OUR T88/3 strain reduced its ability to protect pigs against challenge with virulent virus.

  3. TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae.

    PubMed

    Häse, C C; Mekalanos, J J

    1998-01-20

    The production of several virulence factors in Vibrio cholerae O1, including cholera toxin and the pilus colonization factor TCP (toxin-coregulated pilus), is strongly influenced by environmental conditions. To specifically identify membrane proteins involved in these signal transduction events, we examined a transposon library of V. cholerae generated by Tnbla mutagenesis for cells that produce TCP when grown under various nonpermissive conditions. To select for TCP-producing cells we used the recently described bacteriophage CTX phi-Kan, which uses TCP as its receptor and carries a gene encoding resistance to kanamycin. Among the isolated mutants was a transposon insertion in a gene homologous to nqrB from Vibrio alginolyticus, which encodes a subunit of a Na(+)-translocating NADH:ubiquinone oxidoreductase, and tcpI, encoding a chemo-receptor previously implicated in the negative regulation of TCP production. A third transposon mutant had an insertion in tcpP, which is in an operon with tcpH, a known positive regulator of TCP production. However, TcpP was shown to be essential for TCP production in V. cholerae, as a tcpP-deletion strain was deficient in pili production. The amino-terminal region of TcpP shows sequence homology to the DNA-binding domains of several regulatory proteins, including ToxR from V. cholerae and PsaE from Yersinia pestis. Like ToxR, TcpP activates transcription of the toxT gene, an essential activator of tcp operon transcription. Furthermore, TcpH, with its large periplasmic domain and inner membrane anchor, has a structure similar to that of ToxS and was shown to enhance the activity of TcpP. We propose that TcpP/TcpH constitute a pair of regulatory proteins functionally similar to ToxR/ToxS and PsaE/PsaF that are required for toxT transcription in V. cholerae.

  4. Intra- and inter-generic transfer of pathogenicity island-encoded virulence genes by cos phages.

    PubMed

    Chen, John; Carpena, Nuria; Quiles-Puchalt, Nuria; Ram, Geeta; Novick, Richard P; Penadés, José R

    2015-05-01

    Bacteriophage-mediated horizontal gene transfer is one of the primary driving forces of bacterial evolution. The pac-type phages are generally thought to facilitate most of the phage-mediated gene transfer between closely related bacteria, including that of mobile genetic elements-encoded virulence genes. In this study, we report that staphylococcal cos-type phages transferred the Staphylococcus aureus pathogenicity island SaPIbov5 to non-aureus staphylococcal species and also to different genera. Our results describe the first intra- and intergeneric transfer of a pathogenicity island by a cos phage, and highlight a gene transfer mechanism that may have important implications for pathogen evolution.

  5. Characterization of Frog Virus 3 knockout mutants lacking putative virulence genes.

    PubMed

    Andino, Francisco De Jesús; Grayfer, Leon; Chen, Guangchun; Chinchar, V Gregory; Edholm, Eva-Stina; Robert, Jacques

    2015-11-01

    To identify ranavirus virulence genes, we engineered Frog Virus 3 (FV3) knockout (KO) mutants defective for a putative viral caspase activation and recruitment domain-containing (CARD) protein (Δ64R-FV3) and a β-hydroxysteroid dehydrogenase homolog (Δ52L-FV3). Compared to wild type (WT) FV3, infection of Xenopus tadpoles with Δ64R- or Δ52L-FV3 resulted in significantly lower levels of mortality and viral replication. We further characterized these and two earlier KO mutants lacking the immediate-early18kDa protein (FV3-Δ18K) or the truncated viral homolog of eIF-2α (FV3-ΔvIF-2α). All KO mutants replicated as well as WT-FV3 in non-amphibian cell lines, whereas in Xenopus A6 kidney cells replication of ΔvCARD-, ΔvβHSD- and ΔvIF-2α-FV3 was markedly reduced. Furthermore, Δ64R- and ΔvIF-2α-FV3 were more sensitive to interferon than WT and Δ18-FV3. Notably, Δ64R-, Δ18K- and ΔvIF-2α- but not Δ52L-FV3 triggered more apoptosis than WT FV3. These data suggest that vCARD (64R) and vβ-HSD (52L) genes contribute to viral pathogenesis.

  6. A Bistable Switch and Anatomical Site Control Vibrio cholerae Virulence Gene Expression in the Intestine

    PubMed Central

    Nielsen, Alex T.; Dolganov, Nadia A.; Rasmussen, Thomas; Otto, Glen; Miller, Michael C.; Felt, Stephen A.; Torreilles, Stéphanie; Schoolnik, Gary K.

    2010-01-01

    A fundamental, but unanswered question in host-pathogen interactions is the timing, localization and population distribution of virulence gene expression during infection. Here, microarray and in situ single cell expression methods were used to study Vibrio cholerae growth and virulence gene expression during infection of the rabbit ligated ileal loop model of cholera. Genes encoding the toxin-coregulated pilus (TCP) and cholera toxin (CT) were powerfully expressed early in the infectious process in bacteria adjacent to epithelial surfaces. Increased growth was found to co-localize with virulence gene expression. Significant heterogeneity in the expression of tcpA, the repeating subunit of TCP, was observed late in the infectious process. The expression of tcpA, studied in single cells in a homogeneous medium, demonstrated unimodal induction of tcpA after addition of bicarbonate, a chemical inducer of virulence gene expression. Striking bifurcation of the population occurred during entry into stationary phase: one subpopulation continued to express tcpA, whereas the expression declined in the other subpopulation. ctxA, encoding the A subunit of CT, and toxT, encoding the proximal master regulator of virulence gene expression also exhibited the bifurcation phenotype. The bifurcation phenotype was found to be reversible, epigenetic and to persist after removal of bicarbonate, features consistent with bistable switches. The bistable switch requires the positive-feedback circuit controlling ToxT expression and formation of the CRP-cAMP complex during entry into stationary phase. Key features of this bistable switch also were demonstrated in vivo, where striking heterogeneity in tcpA expression was observed in luminal fluid in later stages of the infection. When this fluid was diluted into artificial seawater, bacterial aggregates continued to express tcpA for prolonged periods of time. The bistable control of virulence gene expression points to a mechanism that could

  7. Characterization of Putative Virulence Genes on the Related RepFIB Plasmids Harbored by Cronobacter spp. ▿ †

    PubMed Central

    Franco, A. A.; Hu, L.; Grim, C. J.; Gopinath, G.; Sathyamoorthy, V.; Jarvis, K. G.; Lee, C.; Sadowski, J.; Kim, J.; Kothary, M. H.; McCardell, B. A.; Tall, B. D.

    2011-01-01

    Cronobacter spp. are emerging neonatal pathogens that cause meningitis, sepsis, and necrotizing enterocolitis. The genus Chronobacter consists of six species: C. sakazakii, C. malonaticus, C. muytjensii, C. turicensis, C. dublinensis, and Cronobacter genomospecies group 1. Whole-genome sequencing of C. sakazakii BAA-894 and C. turicensis z3032 revealed that they harbor similarly sized plasmids identified as pESA3 (131 kb) and pCTU1 (138 kb), respectively. In silico analysis showed that both plasmids encode a single RepFIB-like origin of replication gene, repA, as well as two iron acquisition systems (eitCBAD and iucABCD/iutA). In a chrome azurol S agar diffusion assay, it was demonstrated that siderophore activity was associated with the presence of pESA3 or pCTU1. Additionally, pESA3 contains a cpa (Cronobacter plasminogen activator) gene and a 17-kb type 6 secretion system (T6SS) locus, while pCTU1 contains a 27-kb region encoding a filamentous hemagglutinin gene (fhaB), its specifc transporter gene (fhaC), and associated putative adhesins (FHA locus), suggesting that these are virulence plasmids. In a repA-targeted PCR assay, 97% of 229 Cronobacter species isolates were found to possess a homologous RepFIB plasmid. All repA PCR-positive strains were also positive for the eitCBAD and iucABCD/iutA iron acquisition systems. However, the presence of cpa, T6SS, and FHA loci depended on species, demonstrating a strong correlation with the presence of virulence traits, plasmid type, and species. These results support the hypothesis that these plasmids have evolved from a single archetypical plasmid backbone through the cointegration, or deletion, of specific virulence traits in each species. PMID:21421789

  8. cj0371: A Novel Virulence-Associated Gene of Campylobacter jejuni

    PubMed Central

    Du, Xueqing; Wang, Nan; Ren, Fangzhe; Tang, Hong; Jiao, Xinan; Huang, Jinlin

    2016-01-01

    Campylobacter jejuni is the major cause of human bacterial diarrhea worldwide. Its pathogenic mechanism remains poorly understood. cj0371 is a novel gene that was uncovered using immunoscreening. There have been no previous reports regarding its function. In this study, we constructed an insertion mutant and complement of this gene in C. jejuni and examined changes in virulence. We observed that the cj0371 mutant showed significantly increased invasion and colonization ability. We also investigated the role of cj0371 in motility, chemotaxis, and growth kinetics to further study its function. We found that the cj0371 mutant displays hypermotility, enhanced chemotaxis, and enhanced growth kinetics. In addition, we localized the Cj0371 protein at the poles of C. jejuni by fluorescence microscopy. We present data that collectively significantly proves our hypothesis that cj0371 is a new virulence-associated gene and through the influence of chemotaxis plays a negative role in C. jejuni pathogenicity. PMID:27471500

  9. Evaluating the virulence of a Brucella melitensis hemagglutinin gene in the caprine model.

    PubMed

    Perry, Quinesha L; Hagius, Sue D; Walker, Joel V; Elzer, Philip H

    2010-10-01

    With the completion of the genomic sequence of Brucella melitensis 16M, a putative hemagglutinin gene was identified which is present in 16M and absent in Brucella abortus. The possibility of this hemagglutinin being a potential virulence factor was evaluated via gene replacement in B. melitensis yielding 16MΔE and expression in trans in B. abortus 2308-QAE. Utilizing the caprine brucellosis model, colonization and pathogenesis studies were performed to evaluate these strains. B. melitensis 16M hemagglutinin gene expression in trans in 2308-QAE revealed a significant (p≤0.05) increase in colonization and abortion rates when compared to B. abortus 2308, mimicking B. melitensis 16M virulence in pregnant goats. The B. melitensis disruption mutant's colonization and abortion rates demonstrated no attenuation in colonization but displayed a 28% reduction in abortions when compared to parental B. melitensis 16M.

  10. In silico clustering of Salmonella global gene expression data reveals novel genes co-regulated with the SPI-1 virulence genes through HilD

    PubMed Central

    Martínez-Flores, Irma; Pérez-Morales, Deyanira; Sánchez-Pérez, Mishael; Paredes, Claudia C.; Collado-Vides, Julio; Salgado, Heladia; Bustamante, Víctor H.

    2016-01-01

    A wide variety of Salmonella enterica serovars cause intestinal and systemic infections to humans and animals. Salmonella Patogenicity Island 1 (SPI-1) is a chromosomal region containing 39 genes that have crucial virulence roles. The AraC-like transcriptional regulator HilD, encoded in SPI-1, positively controls the expression of the SPI-1 genes, as well as of several other virulence genes located outside SPI-1. In this study, we applied a clustering method to the global gene expression data of S. enterica serovar Typhimurium from the COLOMBOS database; thus genes that show an expression pattern similar to that of SPI-1 genes were selected. This analysis revealed nine novel genes that are co-expressed with SPI-1, which are located in different chromosomal regions. Expression analyses and protein-DNA interaction assays showed regulation by HilD for six of these genes: gtgE, phoH, sinR, SL1263 (lpxR) and SL4247 were regulated directly, whereas SL1896 was regulated indirectly. Interestingly, phoH is an ancestral gene conserved in most of bacteria, whereas the other genes show characteristics of genes acquired by Salmonella. A role in virulence has been previously demonstrated for gtgE, lpxR and sinR. Our results further expand the regulon of HilD and thus identify novel possible Salmonella virulence genes. PMID:27886269

  11. Characterization of aminoglycoside resistance and virulence genes among Enterococcus spp. isolated from a hospital in China.

    PubMed

    Li, Wanxiang; Li, Jing; Wei, Quhao; Hu, Qingfeng; Lin, Xiaowei; Chen, Mengquan; Ye, Renji; Lv, Huoyang

    2015-03-11

    This study investigated the aminoglycoside resistance phenotypes and genotypes, as well as the prevalence of virulence genes, in Enterococcus species isolated from clinical patients in China. A total of 160 enterococcal isolates from various clinical samples collected from September 2013 to July 2014 were identified to the species level using the VITEK-2 COMPACT system. The antimicrobial susceptibilities of the identified Enterococcus strains were determined by the Kirby-Bauer (K-B) disc diffusion method. PCR-based assays were used to detect the aminoglycoside resistance and virulence genes in all enterococcal isolates. Of 160 Enterococcus isolates, 105 were identified as E. faecium, 35 as E. faecalis, and 20 isolates were classified as "other" Enterococcus species. High-level aminoglycoside resistance (HLAR) for gentamicin, streptomycin, and both antibiotics was identified in 58.8, 50, and 34.4% of strains, respectively. The most common virulence gene (50.6% of isolates) was efaA, followed by asa1 (28.8%). The most prevalent aminoglycoside resistance genes were aac(6')-Ie-aph(2''), aph(2')-Id, aph(3')-IIIa, and ant(6')-Ia, present in 49.4%, 1.3%, 48.8% and 31.3% of strains, respectively. Overall, E. faecium and E. faecalis were most frequently associated with hospital-acquired enterococcal infections in Zhejiang Province. All aminoglycoside resistance genes, except aph(2'')-Id, were significantly more prevalent in HLAR strains than amongst high level aminoglycoside susceptible (HLAS) strains, while there was no significant difference between HLAR and HLAS strains in regard to the prevalence of virulence genes, apart from esp, therefore, measures should be taken to manage infections caused by multi-drug resistant Enterococcus species.

  12. Microevolution of Virulence-Related Genes in Helicobacter pylori Familial Infection

    PubMed Central

    Furuta, Yoshikazu; Konno, Mutsuko; Osaki, Takako; Yonezawa, Hideo; Ishige, Taichiro; Imai, Misaki; Shiwa, Yuh; Shibata-Hatta, Mari; Kanesaki, Yu; Yoshikawa, Hirofumi; Kamiya, Shigeru; Kobayashi, Ichizo

    2015-01-01

    Helicobacter pylori, a bacterial pathogen that can infect human stomach causing gastritis, ulcers and cancer, is known to have a high degree of genome/epigenome diversity as the result of mutation and recombination. The bacteria often infect in childhood and persist for the life of the host. One of the reasons of the rapid evolution of H. pylori is that it changes its genome drastically for adaptation to a new host. To investigate microevolution and adaptation of the H. pylori genome, we undertook whole genome sequencing of the same or very similar sequence type in multi-locus sequence typing (MLST) with seven genes in members of the same family consisting of parents and children in Japan. Detection of nucleotide substitutions revealed likely transmission pathways involving children. Nonsynonymous (amino acid changing) mutations were found in virulence-related genes (cag genes, vacA, hcpDX, tnfα, ggt, htrA and the collagenase gene), outer membrane protein (OMP) genes and other cell surface-related protein genes, signal transduction genes and restriction-modification genes. We reconstructed various pathways by which H. pylori can adapt to a new human host, and our results raised the possibility that the mutational changes in virulence-related genes have a role in adaptation to a child host. Changes in restriction-modification genes might remodel the methylome and transcriptome to help adaptation. This study has provided insights into H. pylori transmission and virulence and has implications for basic research as well as clinical practice. PMID:25978460

  13. Evolution of the cutinase gene family: evidence for lateral gene transfer of a candidate Phytophthora virulence factor.

    PubMed

    Belbahri, Lassaad; Calmin, Gautier; Mauch, Felix; Andersson, Jan O

    2008-01-31

    Lateral gene transfer (LGT) can facilitate the acquisition of new functions in recipient lineages, which may enable them to colonize new environments. Several recent publications have shown that gene transfer between prokaryotes and eukaryotes occurs with appreciable frequency. Here we present a study of interdomain gene transfer of cutinases -- well documented virulence factors in fungi -- between eukaryotic plant pathogens Phytophthora species and prokaryotic bacterial lineages. Two putative cutinase genes were cloned from Phytophthora brassicae and Northern blotting experiments showed that these genes are expressed early during the infection of the host Arabidopsis thaliana and induced during cyst germination of the pathogen. Analysis of the gene organisation of this gene family in Phytophthora ramorum and P. sojae showed three and ten copies in tight succession within a region of 5 and 25 kb, respectively, probably indicating a recent expansion in Phytophthora lineages by gene duplications. Bioinformatic analyses identified orthologues only in three genera of Actinobacteria, and in two distantly related eukaryotic groups: oomycetes and fungi. Together with phylogenetic analyses this limited distribution of the gene in the tree of life strongly support a scenario where cutinase genes originated after the origin of land plants in a microbial lineage living in proximity of plants and subsequently were transferred between distantly related plant-degrading microbes. More precisely, a cutinase gene was likely acquired by an ancestor of P. brassicae, P. sojae, P. infestans and P. ramorum, possibly from an actinobacterial source, suggesting that gene transfer might be an important mechanism in the evolution of their virulence. These findings could indeed provide an interesting model system to study acquisition of virulence factors in these important plant pathogens.

  14. Differences in virulence gene expression between atypical enteropathogenic Escherichia coli strains isolated from diarrheic and healthy ruminants.

    PubMed

    Horcajo, Pilar; Domínguez-Bernal, Gustavo; Carrión, Javier; De La Fuente, Ricardo; Ruiz-Santa-Quiteria, José A; Orden, José A

    2013-04-01

    Differences in the pathogenicity of atypical enteropathogenic Escherichia coli (EPEC) strains may be due, at least partially, to different expression patterns of some virulence genes. To investigate this hypothesis, the virulence gene expression patterns of 6 atypical EPEC strains isolated from healthy and diarrheic ruminants were compared using quantitative real-time reverse transcription polymerase chain reaction after growing the bacteria in culture medium alone or after binding it to HeLa epithelial cells. Some virulence genes in strains from diarrheic animals were upregulated relative to their expression in strains from healthy animals. When bacteria were cultured in the presence of HeLa cells, the ehxA and efa1/lifA genes, previously associated with the production of diarrhea, were expressed at higher levels in strains from diarrheic animals than in strains from healthy animals. Thus, the expression levels of some virulence genes may help determine which atypical EPEC strains cause diarrhea in ruminants.

  15. Differences in virulence gene expression between atypical enteropathogenic Escherichia coli strains isolated from diarrheic and healthy ruminants

    PubMed Central

    Horcajo, Pilar; Domínguez-Bernal, Gustavo; Carrión, Javier; De La Fuente, Ricardo; Ruiz-Santa-Quiteria, José A.; Orden, José A.

    2013-01-01

    Differences in the pathogenicity of atypical enteropathogenic Escherichia coli (EPEC) strains may be due, at least partially, to different expression patterns of some virulence genes. To investigate this hypothesis, the virulence gene expression patterns of 6 atypical EPEC strains isolated from healthy and diarrheic ruminants were compared using quantitative real-time reverse transcription polymerase chain reaction after growing the bacteria in culture medium alone or after binding it to HeLa epithelial cells. Some virulence genes in strains from diarrheic animals were upregulated relative to their expression in strains from healthy animals. When bacteria were cultured in the presence of HeLa cells, the ehxA and efa1/lifA genes, previously associated with the production of diarrhea, were expressed at higher levels in strains from diarrheic animals than in strains from healthy animals. Thus, the expression levels of some virulence genes may help determine which atypical EPEC strains cause diarrhea in ruminants. PMID:24082409

  16. Anr and its activation by PlcH activity in Pseudomonas aeruginosa host colonization and virulence.

    PubMed

    Jackson, Angelyca A; Gross, Maegan J; Daniels, Emily F; Hampton, Thomas H; Hammond, John H; Vallet-Gely, Isabelle; Dove, Simon L; Stanton, Bruce A; Hogan, Deborah A

    2013-07-01

    Pseudomonas aeruginosa hemolytic phospholipase C (PlcH) degrades phosphatidylcholine (PC), an abundant lipid in cell membranes and lung surfactant. A ΔplcHR mutant, known to be defective in virulence in animal models, was less able to colonize epithelial cell monolayers and was defective in biofilm formation on plastic when grown in lung surfactant. Microarray analyses found that strains defective in PlcH production had lower levels of Anr-regulated transcripts than the wild type. PC degradation stimulated the Anr regulon in an Anr-dependent manner under conditions where Anr activity was submaximal because of the presence of oxygen. Two PC catabolites, choline and glycine betaine (GB), were sufficient to stimulate Anr activity, and their catabolism was required for Anr activation. The addition of choline or GB to glucose-containing medium did not alter Anr protein levels, growth rates, or respiratory activity, and Anr activation could not be attributed to the osmoprotectant functions of GB. The Δanr mutant was defective in virulence in a mouse pneumonia model. Several lines of evidence indicate that Anr is important for the colonization of biotic and abiotic surfaces in both P. aeruginosa PAO1 and PA14 and that increases in Anr activity resulted in enhanced biofilm formation. Our data suggest that PlcH activity promotes Anr activity in oxic environments and that Anr activity contributes to virulence, even in the acute infection phase, where low oxygen tensions are not expected. This finding highlights the relationships among in vivo bacterial metabolism, the activity of the oxygen-sensitive regulator Anr, and virulence.

  17. Virulence Gene Regulation by L-Arabinose in Salmonella enterica.

    PubMed

    López-Garrido, Javier; Puerta-Fernández, Elena; Cota, Ignacio; Casadesús, Josep

    2015-07-01

    Invasion of the intestinal epithelium is a critical step in Salmonella enterica infection and requires functions encoded in the gene cluster known as Salmonella Pathogenicity Island 1 (SPI-1). Expression of SPI-1 genes is repressed by L-arabinose, and not by other pentoses. Transport of L-arabinose is necessary to repress SPI-1; however, repression is independent of L-arabinose metabolism and of the L-arabinose-responsive regulator AraC. SPI-1 repression by L-arabinose is exerted at a single target, HilD, and the mechanism appears to be post-translational. As a consequence of SPI-1 repression, l-arabinose reduces translocation of SPI-1 effectors to epithelial cells and decreases Salmonella invasion in vitro. These observations reveal a hitherto unknown role of L-arabinose in gene expression control and raise the possibility that Salmonella may use L-arabinose as an environmental signal.

  18. Virulence Gene Regulation by l-Arabinose in Salmonella enterica

    PubMed Central

    López-Garrido, Javier; Puerta-Fernández, Elena; Cota, Ignacio; Casadesús, Josep

    2015-01-01

    Invasion of the intestinal epithelium is a critical step in Salmonella enterica infection and requires functions encoded in the gene cluster known as Salmonella Pathogenicity Island 1 (SPI-1). Expression of SPI-1 genes is repressed by l-arabinose, and not by other pentoses. Transport of l-arabinose is necessary to repress SPI-1; however, repression is independent of l-arabinose metabolism and of the l-arabinose-responsive regulator AraC. SPI-1 repression by l-arabinose is exerted at a single target, HilD, and the mechanism appears to be post-translational. As a consequence of SPI-1 repression, l-arabinose reduces translocation of SPI-1 effectors to epithelial cells and decreases Salmonella invasion in vitro. These observations reveal a hitherto unknown role of l-arabinose in gene expression control and raise the possibility that Salmonella may use L-arabinose as an environmental signal. PMID:25991823

  19. Involvement of the Haemophilus ducreyi gmhA Gene Product in Lipooligosaccharide Expression and Virulence

    PubMed Central

    Bauer, Beth A.; Stevens, Marla K.; Hansen, Eric J.

    1998-01-01

    The lipooligosaccharide (LOS) present in the outer membrane of Haemophilus ducreyi is likely a virulence factor for this sexually transmitted pathogen. An open reading frame in H. ducreyi 35000 was found to encode a predicted protein that had 87% identity with the protein product of the gmhA (isn) gene of Haemophilus influenzae. In H. influenzae type b, inactivation of the gmhA gene caused the synthesis of a significantly truncated LOS which possessed only lipid A and a single 2-keto-3-deoxyoctulosonic acid molecule (A. Preston, D. J. Maskell, A. Johnson, and E. R. Moxon, J. Bacteriol. 178:396–402, 1996). The H. ducreyi gmhA gene was able to complement a gmhA-deficient Escherichia coli strain, a result which confirmed the identity of this gene. When the gmhA gene of H. ducreyi was inactivated by insertion of a cat cartridge, the resultant H. ducreyi gmhA mutant, 35000.252, expressed a LOS that migrated much faster than wild-type LOS in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When the wild-type H. ducreyi strain and its isogenic gmhA mutant were used in the temperature-dependent rabbit model for dermal lesion production by H. ducreyi, the gmhA mutant was found to be substantially less virulent than the wild-type parent strain. The H. ducreyi gmhA gene was amplified by PCR from the H. ducreyi chromosome and cloned into the pLS88 vector. When the H. ducreyi gmhA gene was present in trans in gmhA mutant 35000.252, expression of the gmhA gene product restored the virulence of this mutant to wild-type levels. These results indicate that the gmhA gene product of H. ducreyi is essential for the expression of wild-type LOS by this pathogen. PMID:9712780

  20. In silico identification of potential virulence genes in 1,3-propanediol producer Klebsiella pneumonia.

    PubMed

    Gao, L R; Jiang, X; Fu, S L; Gong, H

    2014-11-10

    The pathogenic characteristics of Klebsiella pneumoniae could pose security risks for industrial applications. In this study, the existence and distribution of 2457 known virulence genes (VFs) in 9 strains of K. pneumoniae were systematically analyzed by high-throughput in silico methods. We found different numbers and types of VFs in 9 K. pneumoniae strains using database sequences. Some VFs in the database were highly homologous with the corresponding genes in K. pneumoniae genomes. Four large fragments with contiguous potential virulence genes named VF1, VF2, VF3 and VF4 were identified. VF1 and VF2 were found in all 9 sequenced strains and the 1,3-propanediol-producing strain KG1. When the VF2 fragment was knocked out in KG1, cell growth and 1,3-propanediol production in the mutant were nearly the same as in KG1. Consequently the resulting information by in silico methods is useful for identifying potential virulence genes of K. pneumoniae used for 1,3-propanediol production.

  1. First Detection of Puccinia hordei virulence to barley leaf rust resistance gene Rph3 and combination with virulence to Rph7 in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley leaf rust, caused by Puccinia hordei Otth., has been problematic in United States barley, Hordeum vulgare L., production in the Mid-Atlantic coast region and California. During the early 1990’s P. hordei pathoytpes with virulence to resistance gene Rph7 caused average yield losses from 6-16%....

  2. Silver-coated carbon nanotubes downregulate the expression of Pseudomonas aeruginosa virulence genes: a potential mechanism for their antimicrobial effect.

    PubMed

    Dosunmu, Ejovwoke; Chaudhari, Atul A; Singh, Shree R; Dennis, Vida A; Pillai, Shreekumar R

    2015-01-01

    The antimicrobial activity of silver-coated carbon nanotubes (AgCNTs) and their potential mode of action against mucoid and nonmucoid strains of Pseudomonas aeruginosa was investigated in vitro. The results showed that AgCNTs exhibited antimicrobial activity against both strains with minimum inhibitory concentrations of approximately 8 µg/mL, indicating a high sensitivity of P. aeruginosa to AgCNTs. AgCNTs were also bactericidal against both strains at the same minimum inhibitory concentration. Scanning and transmission electron-microscopy studies further revealed that a majority of the cells treated with AgCNTs transformed from smooth rod-shape morphology to disintegrated cells with broken/damaged membranes, resulting in leakage of cytoplasmic contents to produce ghost cells. The molecular effects of AgCNTs on P. aeruginosa genes involved in virulence and pathogenicity, stress response, and efflux pumps were evaluated for changes in their expression. Quantitative real-time PCR (qRT-PCR) showed that after exposure to AgCNTs, the expression levels of the rpoS, rsmZ, and oprD genes were significantly downregulated in both strains of P. aeruginosa compared to the untreated samples. These results suggest that the mechanism of action of AgCNTs may be attributed to their effect on cell-membrane integrity, downregulation of virulence-gene expression, and induction of general and oxidative stress in P. aeruginosa.

  3. Antimicrobial resistance and virulence genes in enterococci from wild game meat in Spain.

    PubMed

    Guerrero-Ramos, Emilia; Cordero, Jorge; Molina-González, Diana; Poeta, Patrícia; Igrejas, Gilberto; Alonso-Calleja, Carlos; Capita, Rosa

    2016-02-01

    A total of 55 enterococci (45 Enterococcus faecium, 7 Enterococcus faecalis, and three Enterococcus durans) isolated from the meat of wild game animals (roe deer, boar, rabbit, pheasant, and pigeon) in North-Western Spain were tested for susceptibility to 14 antimicrobials by the disc diffusion method. All strains showed a multi-resistant phenotype (resistance to between three and 10 antimicrobials). The strains exhibited high percentages of resistance to erythromycin (89.1%), tetracycline (67.3%), ciprofloxacin (92.7%), nitrofurantoin (67.3%), and quinupristin-dalfopristin (81.8%). The lowest values (9.1%) were observed for high-level resistance to gentamicin, kanamycin, and streptomycin. The average number of resistances per strain was 5.8 for E. faecium isolates, 7.9 for E. faecalis, and 5.7 for E. durans. Genes encoding antimicrobial resistance and virulence were studied by polymerase chain reaction. A total of 15 (57.7%) of the 26 vancomycin-resistant isolates harboured the vanA gene. Other resistance genes detected included vanB, erm(B) and/or erm(C), tet(L) and/or tet(M), acc(6')-aph(2″), and aph(3')-IIIa in strains resistant to vancomycin, erythromycin, tetracycline, gentamicin, and kanamycin, respectively. Specific genes of the Tn5397 transposon were detected in 54.8% of the tet(M)-positive enterococci. Nine virulence factors (gelE, agg, ace, cpd, frs, esp, hyl, efaAfs and efaAfm) were studied. All virulence genes, with the exception of the frs gene, were found to be present in the enterococcal isolates. At least one virulence gene was detected in 20.0% of E. faecium, 71.4% of E. faecalis and 33.3% of E. durans isolates, with ace and cpd being the most frequently detected genes (6 isolates each). This suggests that wild game meat might play a role in the spreading through the food chain of enterococci with antimicrobial resistance and virulence determinants to humans.

  4. Subtyping Escherichia coli Virulence Genes Isolated from Feces of Beef Cattle and Clinical Cases in Alberta.

    PubMed

    Tostes, Renata; Goji, Noriko; Amoako, Kingsley; Chui, Linda; Kastelic, John; DeVinney, Rebekah; Stanford, Kim; Reuter, Tim

    2017-01-01

    Clinical outcomes of Shiga toxin (stx)-producing Escherichia coli infection are largely determined by virulence gene subtypes. This study used a polymerase chain reaction (PCR)-pyrosequencing assay to analyze single-nucleotide polymorphisms for subtyping three major virulence genes (stx1, stx2, eae) of pathogenic E. coli (O157, O26, O111, and O103) isolated from cattle over a 2-year interval (n = 465) and human clinical cases (n = 42) in western Canada. Most bovine isolates were PCR positive for at least one target virulence gene (367/465), whereas 100% of human isolates harbored eae in combination with at least one stx gene. Four Shiga toxin (1a, 2a, 2c, and 2e) and four eae (λ/γ1-eae, ɛ-eae, θ/γ2-eae, and β-eae) subtypes were identified in over 25 distinct virulence genotypes. Among cattle isolates, every serogroup, but O103, presented a dominant genotype (O157: stx1a+stx2a+λ/γ1-eae, O26: β-eae alone, and O111: stx1a+θ/γ2-eae). Similar patterns were found in human isolates, although it was not possible to establish a clear genotypic association between the two sources. Many O157 and non-O157 cattle isolates lacked stx genes; the absence was greater in non-O157 (75/258) and O157:non-H7 (19/40) than in O157:H7 strains (1/164). In addition, there was a greater diversity of virulence genotypes of E. coli isolated from cattle than those of human diseases, which could be due to sample characteristics (e.g., source and clinical condition). However, the majority of cattle strains had virulence profiles identical to those of clinical cases. Consequently, determining the presence of certain stx (stx1a and stx2a) and eae (λ/γ1-eae) subtypes known to cause human disease would be a valuable tool for risk assessment and prediction of disease outcome along the farm-to-fork continuum.

  5. Virulence-associated gene pattern of porcine and human Yersinia enterocolitica biotype 4 isolates.

    PubMed

    Schneeberger, M; Brodard, I; Overesch, G

    2015-04-02

    Yersinia enterocolitica 4/O:3 is the most important human pathogenic bioserotype in Europe and the predominant pathogenic bioserotype in slaughter pigs. Although many studies on the virulence of Y. enterocolitica strains have showed a broad spectrum of detectable factors in pigs and humans, an analysis based on a strict comparative approach and serving to verify the virulence capability of porcine Y. enterocolitica as a source for human yersiniosis is lacking. Therefore, in the present study, strains of biotype (BT) 4 isolated from Swiss slaughter pig tonsils and feces and isolates from human clinical cases were compared in terms of their spectrum of virulence-associated genes (yadA, virF, ail, inv, rovA, ymoA, ystA, ystB and myfA). An analysis of the associated antimicrobial susceptibility pattern completed the characterization. All analyzed BT 4 strains showed a nearly similar pattern, comprising the known fundamental virulence-associated genes yadA, virF, ail, inv, rovA, ymoA, ystA and myfA. Only ystB was not detectable among all analyzed isolates. Importantly, neither the source of the isolates (porcine tonsils and feces, humans) nor the serotype (ST) had any influence on the gene pattern. From these findings, it can be concluded that the presence of the full complement of virulence genes necessary for human infection is common among porcine BT 4 strains. Swiss porcine BT 4 strains not only showed antimicrobial susceptibility to chloramphenicol, cefotaxime, ceftazidime, ciprofloxacin, colistin, florfenicol, gentamicin, kanamycin, nalidixic acid, sulfamethoxazole, streptomycin, tetracycline and trimethoprim but also showed 100% antibiotic resistance to ampicillin. The human BT 4 strains revealed comparable results. However, in addition to 100% antibiotic resistance to ampicillin, 2 strains were resistant to chloramphenicol and nalidixic acid. Additionally, 1 of these strains was resistant to sulfamethoxazole. The results demonstrated that Y. enterocolitica BT 4

  6. Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans

    PubMed Central

    Sadeghinejad, Lida; Cvitkovitch, Dennis G.; Siqueira, Walter L.; Santerre, J. Paul; Finer, Yoav

    2016-01-01

    Triethylene glycol dimethacrylate (TEGDMA) is a diluent monomer used pervasively in dental composite resins. Through hydrolytic degradation of the composites in the oral cavity it yields a hydrophilic biodegradation product, triethylene glycol (TEG), which has been shown to promote the growth of Streptococcus mutans, a dominant cariogenic bacterium. Previously it was shown that TEG up-regulated gtfB, an important gene contributing to polysaccharide synthesis function in biofilms. However, molecular mechanisms related to TEG’s effect on bacterial function remained poorly understood. In the present study, S. mutans UA159 was incubated with clinically relevant concentrations of TEG at pH 5.5 and 7.0. Quantitative real-time PCR, proteomics analysis, and glucosyltransferase enzyme (GTF) activity measurements were employed to identify the bacterial phenotypic response to TEG. A S. mutans vicK isogenic mutant (SMΔvicK1) and its associated complemented strain (SMΔvicK1C), an important regulatory gene for biofilm-associated genes, were used to determine if this signaling pathway was involved in modulation of the S. mutans virulence-associated genes. Extracted proteins from S. mutans biofilms grown in the presence and absence of TEG were subjected to mass spectrometry for protein identification, characterization and quantification. TEG up-regulated gtfB/C, gbpB, comC, comD and comE more significantly in biofilms at cariogenic pH (5.5) and defined concentrations. Differential response of the vicK knock-out (SMΔvicK1) and complemented strains (SMΔvicK1C) implicated this signalling pathway in TEG-modulated cellular responses. TEG resulted in increased GTF enzyme activity, responsible for synthesizing insoluble glucans involved in the formation of cariogenic biofilms. As well, TEG increased protein abundance related to biofilm formation, carbohydrate transport, acid tolerance, and stress-response. Proteomics data was consistent with gene expression findings for the

  7. Virulence factors genes of Staphylococcus spp. isolated from caprine subclinical mastitis.

    PubMed

    Salaberry, Sandra Renata Sampaio; Saidenberg, André Becker Simões; Zuniga, Eveline; Melville, Priscilla Anne; Santos, Franklin Gerônimo Bispo; Guimarães, Ednaldo Carvalho; Gregori, Fábio; Benites, Nilson Roberti

    2015-08-01

    The aim of this study was to investigate genes involved in adhesion expression, biofilm formation, and enterotoxin production in isolates of Staphylococcus spp. from goats with subclinical mastitis and associate these results with the staphylococcal species. One hundred and twenty-four isolates were identified and polymerase chain reaction (PCR) was performed to detect the following genes: cna, ebpS, eno, fib, fnbA, fnbB, bap, sea, seb, sec, sed and see. The most commonly Staphylococcus species included S. epidermidis, S. lugdunensis, S. chromogenes, S. capitis ss capitis and S. intermedius. With the exception of fnbB, the genes were detected in different frequencies of occurrence in 86.3% of the Staphylococcus spp. isolates. Eno (73.2%) and bap (94.8%) were more frequently detected in coagulase-negative staphylococci (CNS); ebpS (76%), fib (90.9%) and fnbA (87%) were the most frequent genes in coagulase-positive staphylococci (CPS). Regarding enterotoxins, genes sed (28.2%) and see (24.2%) had a higher frequency of occurrence; sec gene was more frequently detected in CPS (58.8%). There was no association between the presence of the genes and the Staphylococcus species. Different virulence factors genes can be detected in caprine subclinical mastitis caused by CNS and CPS. The knowledge of the occurrence of these virulence factors is important for the development of effective control and prevention measures of subclinical mastitis caused by CNS and CPS in goats.

  8. Polygalacturonase gene pgxB in Aspergillus niger is a virulence factor in apple fruit

    PubMed Central

    Yang, Ying; Yang, Feng; Li, Yan-Hong; Liu, He-Ping; Chen, Xiao-Yan

    2017-01-01

    Aspergillus niger, a saprophytic fungus, is widely distributed in soil, air and cereals, and can cause postharvest diseases in fruit. Polygalacturonase (PG) is one of the main enzymes in fungal pathogens to degrade plant cell wall. To evaluate whether the deletion of an exo-polygalacturonase gene pgxB would influence fungal pathogenicity to fruit, pgxB gene was deleted in Aspergillus niger MA 70.15 (wild type) via homologous recombination. The ΔpgxB mutant showed similar growth behavior compared with the wild type. Pectin medium induced significant higher expression of all pectinase genes in both wild type and ΔpgxB in comparison to potato dextrose agar medium. However, the ΔpgxB mutant was less virulent on apple fruits as the necrosis diameter caused by ΔpgxB mutant was significantly smaller than that of wild type. Results of quantitive-PCR showed that, in the process of infection in apple fruit, gene expressions of polygalacturonase genes pgaI, pgaII, pgaA, pgaC, pgaD and pgaE were enhanced in ΔpgxB mutant in comparison to wild type. These results prove that, despite the increased gene expression of other polygalacturonase genes in ΔpgxB mutant, the lack of pgxB gene significantly reduced the virulence of A. niger on apple fruit, suggesting that pgxB plays an important role in the infection process on the apple fruit. PMID:28257463

  9. Presence of fimH, mrkD, and irp2 virulence genes in KPC-2-producing Klebsiella pneumoniae isolates in Recife-PE, Brazil.

    PubMed

    de Cássia Andrade Melo, Rita; de Barros, Emmily Margate Rodrigues; Loureiro, Noel Guedes; de Melo, Heloísa Ramos Lacerda; Maciel, Maria Amélia Vieira; Souza Lopes, Ana Catarina

    2014-12-01

    Klebsiella pneumoniae strains can produce different virulence factors, such as fimbrial adhesins and siderophores, which are important in the colonization and development of the infection. The aims of this study were to determine the occurrence of fimH, mrkD, and irp2 virulence genes in 22 KPC-2-producing K. pneumoniae isolates as well as 22 not producing-KPC isolates, from patients from different hospitals in Recife-PE, Brazil, and also to analyze the clonal relationship of the isolates by enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). The genes were detected by PCR and DNA sequencing. The bla KPC-2 gene was identified in 22 KPC-positive isolates. On analyzing the antimicrobial susceptibility profile of the isolates, it was detected that polymyxin and amikacin were the antimicrobials of best activity against K. pneumoniae. On the other hand, five isolates exhibited resistance to polymyxin. In the KPC-positive group, was observed a high rate of resistance to cephalosporins, followed by carbapenems. Molecular typing by ERIC-PCR detected 38 genetic profiles, demonstrating a multiclonal spread of the isolates analyzed. It was observed that the virulence genes irp2, mrkD, and fimH were seen to have together a higher frequency in the KPC-positive group. The accumulation of virulence genes of KPC-positive K. pneumoniae isolates, observed in this study, along with the multi-resistance impose significant therapeutic limitations on the treatment of infections caused by K. pneumoniae.

  10. Deacetylation of sialic acid by esterases potentiates pneumococcal neuraminidase activity for mucin utilization, colonization and virulence

    PubMed Central

    Kahya, Hasan F.; Andrew, Peter W.

    2017-01-01

    Pneumococcal neuraminidase is a key enzyme for sequential deglycosylation of host glycans, and plays an important role in host survival, colonization, and pathogenesis of infections caused by Streptococcus pneumoniae. One of the factors that can affect the activity of neuraminidase is the amount and position of acetylation present in its substrate sialic acid. We hypothesised that pneumococcal esterases potentiate neuraminidase activity by removing acetylation from sialic acid, and that will have a major effect on pneumococcal survival on mucin, colonization, and virulence. These hypotheses were tested using isogenic mutants and recombinant esterases in microbiological, biochemical and in vivo assays. We found that pneumococcal esterase activity is encoded by at least four genes, SPD_0534 (EstA) was found to be responsible for the main esterase activity, and the pneumococcal esterases are specific for short acyl chains. Assay of esterase activity by using natural substrates showed that both the Axe and EstA esterases could use acetylated xylan and Bovine Sub-maxillary Mucin (BSM), a highly acetylated substrate, but only EstA was active against tributyrin (triglyceride). Incubation of BSM with either Axe or EstA led to the acetate release in a time and concentration dependent manner, and pre-treatment of BSM with either enzyme increased sialic acid release on subsequent exposure to neuraminidase A. qRT-PCR results showed that the expression level of estA and axe increased when exposed to BSM and in respiratory tissues. Mutation of estA alone or in combination with nanA (codes for neuraminidase A), or the replacement of its putative serine active site to alanine, reduced the pneumococcal ability to utilise BSM as a sole carbon source, sialic acid release, colonization, and virulence in a mouse model of pneumococcal pneumonia. PMID:28257499

  11. Skin-bacteria communication: Involvement of the neurohormone Calcitonin Gene Related Peptide (CGRP) in the regulation of Staphylococcus epidermidis virulence.

    PubMed

    N'Diaye, Awa R; Leclerc, Camille; Kentache, Takfarinas; Hardouin, Julie; Poc, Cecile Duclairoir; Konto-Ghiorghi, Yoan; Chevalier, Sylvie; Lesouhaitier, Olivier; Feuilloley, Marc G J

    2016-10-14

    Staphylococci can sense Substance P (SP) in skin, but this molecule is generally released by nerve terminals along with another neuropeptide, Calcitonin Gene Related Peptide (CGRP). In this study, we investigated the effects of αCGRP on Staphylococci. CGRP induced a strong stimulation of Staphylococcus epidermidis virulence with a low threshold (<10(-12 )M) whereas Staphylococcus aureus was insensitive to CGRP. We observed that CGRP-treated S. epidermidis induced interleukin 8 release by keratinocytes. This effect was associated with an increase in cathelicidin LL37 secretion. S. epidermidis displayed no change in virulence factors secretion but showed marked differences in surface properties. After exposure to CGRP, the adherence of S. epidermidis to keratinocytes increased, whereas its internalization and biofilm formation activity were reduced. These effects were correlated with an increase in surface hydrophobicity. The DnaK chaperone was identified as the S. epidermidis CGRP-binding protein. We further showed that the effects of CGRP were blocked by gadolinium chloride (GdCl3), an inhibitor of MscL mechanosensitive channels. In addition, GdCl3 inhibited the membrane translocation of EfTu, the Substance P sensor. This work reveals that through interaction with specific sensors S. epidermidis integrates different skin signals and consequently adapts its virulence.

  12. Skin-bacteria communication: Involvement of the neurohormone Calcitonin Gene Related Peptide (CGRP) in the regulation of Staphylococcus epidermidis virulence

    PubMed Central

    N’Diaye, Awa R.; Leclerc, Camille; Kentache, Takfarinas; Hardouin, Julie; Poc, Cecile Duclairoir; Konto-Ghiorghi, Yoan; Chevalier, Sylvie; Lesouhaitier, Olivier; Feuilloley, Marc G. J.

    2016-01-01

    Staphylococci can sense Substance P (SP) in skin, but this molecule is generally released by nerve terminals along with another neuropeptide, Calcitonin Gene Related Peptide (CGRP). In this study, we investigated the effects of αCGRP on Staphylococci. CGRP induced a strong stimulation of Staphylococcus epidermidis virulence with a low threshold (<10−12 M) whereas Staphylococcus aureus was insensitive to CGRP. We observed that CGRP-treated S. epidermidis induced interleukin 8 release by keratinocytes. This effect was associated with an increase in cathelicidin LL37 secretion. S. epidermidis displayed no change in virulence factors secretion but showed marked differences in surface properties. After exposure to CGRP, the adherence of S. epidermidis to keratinocytes increased, whereas its internalization and biofilm formation activity were reduced. These effects were correlated with an increase in surface hydrophobicity. The DnaK chaperone was identified as the S. epidermidis CGRP-binding protein. We further showed that the effects of CGRP were blocked by gadolinium chloride (GdCl3), an inhibitor of MscL mechanosensitive channels. In addition, GdCl3 inhibited the membrane translocation of EfTu, the Substance P sensor. This work reveals that through interaction with specific sensors S. epidermidis integrates different skin signals and consequently adapts its virulence. PMID:27739485

  13. Phosphorylation Events in the Multiple Gene Regulator of Group A Streptococcus Significantly Influence Global Gene Expression and Virulence

    PubMed Central

    Sanson, Misu; Makthal, Nishanth; Gavagan, Maire; Cantu, Concepcion; Olsen, Randall J.; Musser, James M.

    2015-01-01

    Whole-genome sequencing analysis of ∼800 strains of group A Streptococcus (GAS) found that the gene encoding the multiple virulence gene regulator of GAS (mga) is highly polymorphic in serotype M59 strains but not in strains of other serotypes. To help understand the molecular mechanism of gene regulation by Mga and its contribution to GAS pathogenesis in serotype M59 GAS, we constructed an isogenic mga mutant strain. Transcriptome studies indicated a significant regulatory influence of Mga and altered metabolic capabilities conferred by Mga-regulated genes. We assessed the phosphorylation status of Mga in GAS cell lysates with Phos-tag gels. The results revealed that Mga is phosphorylated at histidines in vivo. Using phosphomimetic and nonphosphomimetic substitutions at conserved phosphoenolpyruvate:carbohydrate phosphotransferase regulation domain (PRD) histidines of Mga, we demonstrated that phosphorylation-mimicking aspartate replacements at H207 and H273 of PRD-1 and at H327 of PRD-2 are inhibitory to Mga-dependent gene expression. Conversely, non-phosphorylation-mimicking alanine substitutions at H273 and H327 relieved inhibition, and the mutant strains exhibited a wild-type phenotype. The opposing regulatory profiles observed for phosphorylation- and non-phosphorylation-mimicking substitutions at H273 extended to global gene regulation by Mga. Consistent with these observations, the H273D mutant strain attenuated GAS virulence, whereas the H273A strain exhibited a wild-type virulence phenotype in a mouse model of necrotizing fasciitis. Together, our results demonstrate phosphoregulation of Mga and its direct link to virulence in M59 GAS strains. These data also lay a foundation toward understanding how naturally occurring gain-of-function variations in mga, such as H201R, may confer an advantage to the pathogen and contribute to M59 GAS pathogenesis. PMID:25824840

  14. Characterization of Antimicrobial Resistance Patterns and Detection of Virulence Genes in Campylobacter Isolates in Italy

    PubMed Central

    Di Giannatale, Elisabetta; Di Serafino, Gabriella; Zilli, Katiuscia; Alessiani, Alessandra; Sacchini, Lorena; Garofolo, Giuliano; Aprea, Giuseppe; Marotta, Francesca

    2014-01-01

    Campylobacter has developed resistance to several antimicrobial agents over the years, including macrolides, quinolones and fluoroquinolones, becoming a significant public health hazard. A total of 145 strains derived from raw milk, chicken faeces, chicken carcasses, cattle faeces and human faeces collected from various Italian regions, were screened for antimicrobial susceptibility, molecular characterization (SmaI pulsed-field gel electrophoresis) and detection of virulence genes (sequencing and DNA microarray analysis). The prevalence of C. jejuni and C. coli was 62.75% and 37.24% respectively. Antimicrobial susceptibility revealed a high level of resistance for ciprofloxacin (62.76%), tetracycline (55.86%) and nalidixic acid (55.17%). Genotyping of Campylobacter isolates using PFGE revealed a total of 86 unique SmaI patterns. Virulence gene profiles were determined using a new microbial diagnostic microarray composed of 70-mer oligonucleotide probes targeting genes implicated in Campylobacter pathogenicity. Correspondence between PFGE and microarray clusters was observed. Comparisons of PFGE and virulence profiles reflected the high genetic diversity of the strains examined, leading us to speculate different degrees of pathogenicity inside Campylobacter populations. PMID:24556669

  15. Expression of the Salmonella virulence plasmid gene spvB in cultured macrophages and nonphagocytic cells.

    PubMed Central

    Fierer, J; Eckmann, L; Fang, F; Pfeifer, C; Finlay, B B; Guiney, D

    1993-01-01

    Certain serotypes of salmonellae carry virulence plasmids that greatly enhance the pathogenicity of these bacteria in experimentally infected mice. This phenotype is largely attributable to the 8-kb spv regulon. However, spv genes are not expressed while bacteria grow in vitro. We now show that spvB, which is required for virulence, is expressed rapidly after Salmonella dublin is ingested by cultured J774 and murine peritoneal macrophages and that expression is not affected by the alkalinization of intracellular vesicles. The level of induction of spvB is reduced when macrophages are pretreated with gamma interferon. spvB is also expressed in human and canine epithelial cell lines and a human hepatoma cell line. In all cases, spvB expression is dependent on the spvR gene, just as it is in stationary-phase cultures in vitro. These data suggest that spv virulence genes are expressed by intracellular salmonellae in vivo in response to a signal that is common to the intracellular compartments of cells that are invaded by salmonellae. PMID:8225598

  16. Characterization of antimicrobial resistance patterns and detection of virulence genes in Campylobacter isolates in Italy.

    PubMed

    Di Giannatale, Elisabetta; Di Serafino, Gabriella; Zilli, Katiuscia; Alessiani, Alessandra; Sacchini, Lorena; Garofolo, Giuliano; Aprea, Giuseppe; Marotta, Francesca

    2014-02-19

    Campylobacter has developed resistance to several antimicrobial agents over the years, including macrolides, quinolones and fluoroquinolones, becoming a significant public health hazard. A total of 145 strains derived from raw milk, chicken faeces, chicken carcasses, cattle faeces and human faeces collected from various Italian regions, were screened for antimicrobial susceptibility, molecular characterization (SmaI pulsed-field gel electrophoresis) and detection of virulence genes (sequencing and DNA microarray analysis). The prevalence of C. jejuni and C. coli was 62.75% and 37.24% respectively. Antimicrobial susceptibility revealed a high level of resistance for ciprofloxacin (62.76%), tetracycline (55.86%) and nalidixic acid (55.17%). Genotyping of Campylobacter isolates using PFGE revealed a total of 86 unique SmaI patterns. Virulence gene profiles were determined using a new microbial diagnostic microarray composed of 70-mer oligonucleotide probes targeting genes implicated in Campylobacter pathogenicity. Correspondence between PFGE and microarray clusters was observed. Comparisons of PFGE and virulence profiles reflected the high genetic diversity of the strains examined, leading us to speculate different degrees of pathogenicity inside Campylobacter populations.

  17. Growth of Yersinia pseudotuberculosis in human plasma: impacts on virulence and metabolic gene expression

    PubMed Central

    Rosso, Marie-Laure; Chauvaux, Sylvie; Dessein, Rodrigue; Laurans, Caroline; Frangeul, Lionel; Lacroix, Céline; Schiavo, Angèle; Dillies, Marie-Agnès; Foulon, Jeannine; Coppée, Jean-Yves; Médigue, Claudine; Carniel, Elisabeth; Simonet, Michel; Marceau, Michaël

    2008-01-01

    Background In man, infection by the Gram-negative enteropathogen Yersinia pseudotuberculosis is usually limited to the terminal ileum. However, in immunocompromised patients, the microorganism may disseminate from the digestive tract and thus cause a systemic infection with septicemia. Results To gain insight into the metabolic pathways and virulence factors expressed by the bacterium at the blood stage of pseudotuberculosis, we compared the overall gene transcription patterns (the transcriptome) of bacterial cells cultured in either human plasma or Luria-Bertani medium. The most marked plasma-triggered metabolic consequence in Y. pseudotuberculosis was the switch to high glucose consumption, which is reminiscent of the acetogenic pathway (known as "glucose overflow") in Escherichia coli. However, upregulation of the glyoxylate shunt enzymes suggests that (in contrast to E. coli) acetate may be further metabolized in Y. pseudotuberculosis. Our data also indicate that the bloodstream environment can regulate major virulence genes (positively or negatively); the yadA adhesin gene and most of the transcriptional units of the pYV-encoded type III secretion apparatus were found to be upregulated, whereas transcription of the pH6 antigen locus was strongly repressed. Conclusion Our results suggest that plasma growth of Y. pseudotuberculosis is responsible for major transcriptional regulatory events and prompts key metabolic reorientations within the bacterium, which may in turn have an impact on virulence. PMID:19055764

  18. Role of mga in growth phase regulation of virulence genes of the group A streptococcus.

    PubMed Central

    McIver, K S; Scott, J R

    1997-01-01

    To determine whether growth phase affects the expression of mga and other virulence-associated genes in the group A streptococcus (GAS), total RNA was isolated from the serotype M6 GAS strain JRS4 at different phases of growth and transcript levels were quantitated by hybridization with radiolabeled DNA probes. Expression of mga (which encodes a multiple gene regulator) and the Mga-regulated genes emm (which encodes M protein) and scpA (which encodes a complement C5a peptidase) was found to be maximal in exponential phase and shut off as the bacteria entered stationary phase, while the housekeeping genes recA and rpsL showed constant transcript levels over the same period of growth. Expression of mga from a foreign phage promoter in a mga-deleted GAS strain (JRS519) altered the wild-type growth phase-dependent transcription profile seen for emm and scpA, as well as for mga. Therefore, the temporal control of mga expression requires its upstream promoter region, and the subsequent growth phase regulation of emm and scpA is Mga dependent. A number of putative virulence genes in JRS4 were shown not to require Mga for their expression, although several exhibited growth phase-dependent regulation that was similar to mga, i.e., slo (which encodes streptolysin O) and plr (encoding the plasmin receptor/glyceraldehyde-3-phosphate dehydrogenase). Still others showed a markedly different pattern of expression (the genes for the superantigen toxins MF and SpeC). These results suggest the existence of complex levels of global regulation sensitive to growth phase that directly control the expression of virulence genes and mga in GAS. PMID:9260962

  19. Molecular population genetic analysis differentiates two virulence mechanisms of the fungal avirulence gene NIP1.

    PubMed

    Schürch, Stéphanie; Linde, Celeste C; Knogge, Wolfgang; Jackson, Lee F; McDonald, Bruce A

    2004-10-01

    Deletion or alteration of an avirulence gene are two mechanisms that allow pathogens to escape recognition mediated by the corresponding resistance gene in the host. We studied these two mechanisms for the NIP1 avirulence gene in field populations of the fungal barley pathogen Rhynchosporium secalis. The product of the avirulence gene, NIP1, causes leaf necrosis and elicits a defense response on plants with the Rrs1 resistance gene. A high NIP1 deletion frequency (45%) was found among 614 isolates from different geographic populations on four continents. NIP1 was also sequenced for 196 isolates, to identify DNA polymorphisms and corresponding NIP1 types. Positive diversifying selection was found to act on NIP1. A total of 14 NIP1 types were found, 11 of which had not been described previously. The virulence of the NIP1 types was tested on Rrs1 and rrs1 barley lines. Isolates carrying three of these types were virulent on the Rrs1 cultivar. One type each was found in California, Western Europe, and Jordan. Additionally, a field experiment with one pair of near-isogenic lines was conducted to study the selection pressure imposed by Rrs1 on field populations of R. secalis. Deletion of NIP1 was the only mechanism used to infect the Rrs1 cultivar in the field experiment. In this first comprehensive study on the population genetics of a fungal avirulence gene, virulence to Rrs1 in R. secalis was commonly achieved through deletion of the NIP1 avirulence gene but rarely also through point mutations in NIP1.

  20. Genome-Wide Identification of Pseudomonas aeruginosa Virulence-Related Genes Using a Caenorhabditis elegans Infection Model

    PubMed Central

    Feinbaum, Rhonda L.; Urbach, Jonathan M.; Liberati, Nicole T.; Djonovic, Slavica; Adonizio, Allison; Carvunis, Anne-Ruxandra; Ausubel, Frederick M.

    2012-01-01

    Pseudomonas aeruginosa strain PA14 is an opportunistic human pathogen capable of infecting a wide range of organisms including the nematode Caenorhabditis elegans. We used a non-redundant transposon mutant library consisting of 5,850 clones corresponding to 75% of the total and approximately 80% of the non-essential PA14 ORFs to carry out a genome-wide screen for attenuation of PA14 virulence in C. elegans. We defined a functionally diverse 180 mutant set (representing 170 unique genes) necessary for normal levels of virulence that included both known and novel virulence factors. Seven previously uncharacterized virulence genes (ABC transporters PchH and PchI, aminopeptidase PepP, ATPase/molecular chaperone ClpA, cold shock domain protein PA0456, putative enoyl-CoA hydratase/isomerase PA0745, and putative transcriptional regulator PA14_27700) were characterized with respect to pigment production and motility and all but one of these mutants exhibited pleiotropic defects in addition to their avirulent phenotype. We examined the collection of genes required for normal levels of PA14 virulence with respect to occurrence in P. aeruginosa strain-specific genomic regions, location on putative and known genomic islands, and phylogenetic distribution across prokaryotes. Genes predominantly contributing to virulence in C. elegans showed neither a bias for strain-specific regions of the P. aeruginosa genome nor for putatively horizontally transferred genomic islands. Instead, within the collection of virulence-related PA14 genes, there was an overrepresentation of genes with a broad phylogenetic distribution that also occur with high frequency in many prokaryotic clades, suggesting that in aggregate the genes required for PA14 virulence in C. elegans are biased towards evolutionarily conserved genes. PMID:22911607

  1. Antimicrobial Effects of Blueberry, Raspberry, and Strawberry Aqueous Extracts and their Effects on Virulence Gene Expression in Vibrio cholerae.

    PubMed

    Khalifa, Hazim O; Kamimoto, Maki; Shimamoto, Toshi; Shimamoto, Tadashi

    2015-11-01

    The antimicrobial effects of aqueous extracts of blueberry, raspberry, and strawberry on 13 pathogenic bacteria were evaluated. The minimum inhibitory concentrations and minimum bactericidal concentrations of the extracts were determined before and after neutralization to pH 7.03 ± 0.15. Both Gram-positive and Gram-negative pathogenic bacteria were selectively inhibited by the non-neutralized berries. Blueberry was the best inhibitor, and Vibrio and Listeria were the most sensitive bacteria. After neutralization, blueberry affected only Vibrio and Listeria, whereas the antimicrobial activities of raspberry and strawberry were abolished. The total contents of phenolics, flavonoids, and proanthocyanidins in the extracts were measured with colorimetric methods and were highest in strawberry, followed by raspberry, and then blueberry. We also studied the effects of sub-bactericidal concentrations of the three berry extracts on virulence gene expression in Vibrio cholerae. Real-time quantitative reverse transcription-polymerase chain reaction revealed that the three berry extracts effectively repressed the transcription of the tcpA gene. Raspberry also repressed the transcription of the ctxA gene, whereas blueberry and strawberry did not. However, the three berry extracts did not affect the transcription of toxT. These results suggest that the three berry extracts exert potent antimicrobial effects and inhibit the expression of the virulence factors of V. cholerae.

  2. Identification of Genes Preferentially Expressed by Highly Virulent Piscine Streptococcus agalactiae upon Interaction with Macrophages

    PubMed Central

    Guo, Chang-Ming; Chen, Rong-Rong; Kalhoro, Dildar Hussain; Wang, Zhao-Fei; Liu, Guang-Jin; Lu, Cheng-Ping; Liu, Yong-Jie

    2014-01-01

    Streptococcus agalactiae, long recognized as a mammalian pathogen, is an emerging concern with regard to fish. In this study, we used a mouse model and in vitro cell infection to evaluate the pathogenetic characteristics of S. agalactiae GD201008-001, isolated from tilapia in China. This bacterium was found to be highly virulent and capable of inducing brain damage by migrating into the brain by crossing the blood–brain barrier (BBB). The phagocytosis assays indicated that this bacterium could be internalized by murine macrophages and survive intracellularly for more than 24 h, inducing injury to macrophages. Further, selective capture of transcribed sequences (SCOTS) was used to investigate microbial gene expression associated with intracellular survival. This positive cDNA selection technique identified 60 distinct genes that could be characterized into 6 functional categories. More than 50% of the differentially expressed genes were involved in metabolic adaptation. Some genes have previously been described as associated with virulence in other bacteria, and four showed no significant similarities to any other previously described genes. This study constitutes the first step in further gene expression analyses that will lead to a better understanding of the molecular mechanisms used by S. agalactiae to survive in macrophages and to cross the BBB. PMID:24498419

  3. Role of feedback and network architecture in controlling virulence gene expression in Bordetella.

    PubMed

    Prajapat, Mahendra Kumar; Saini, Supreet

    2013-11-01

    Bordetella is a Gram-negative bacterium responsible for causing whooping cough in a broad range of host organisms. For successful infection, Bordetella controls expression of four distinct classes of genes (referred to as class 1, 2, 3, and 4 genes) at distinct times in the infection cycle. This control is executed by a single two-component system, BvgAS. Interestingly, the transmembrane component of the two-component system, BvgS, consists of three phospho-transfer domains leading to phosphorylation of the response regulator, BvgA. Phosphorylated BvgA then controls expression of virulence genes and also controls bvgAS transcription. In this work, we perform simulations to characterize the role of the network architecture in governing gene expression in Bordetella. Our results show that the wild-type network is locally optimal for controlling the timing of expression of the different classes of genes involved in infection. In addition, the interplay between environmental signals and positive feedback aids the bacterium identify precise conditions for and control expression of virulence genes.

  4. SarA, a global regulator of virulence determinants in Staphylococcus aureus, binds to a conserved motif essential for sar-dependent gene regulation.

    PubMed

    Chien, Y; Manna, A C; Projan, S J; Cheung, A L

    1999-12-24

    The expression of many virulence determinants in Staphylococcus aureus including alpha-hemolysin-, protein A-, and fibronectin-binding proteins is controlled by global regulatory loci such as sar and agr. In addition to controlling target gene expression via agr (e.g. alpha-hemolysin), the sar locus can also regulate target gene transcription via agr-independent mechanisms. In particular, we have found that SarA, the major regulatory protein encoded within sar, binds to a conserved sequence, homologous to the SarA-binding site on the agr promoter, upstream of the -35 promoter boxes of several target genes including hla (alpha-hemolysin gene), spa (protein A gene), fnb (fibronectin-binding protein genes), and sec (enterotoxin C gene). Deletion of the SarA recognition motif in the promoter regions of agr and hla in shuttle plasmids rendered the transcription of these genes undetectable in agr and hla mutants, respectively. Likewise, the transcription activity of spa (a gene normally repressed by sar), as measured by a XylE reporter fusion assay, became derepressed in a wild type strain containing a shuttle plasmid in which the SarA recognition site had been deleted from the spa promoter region. However, DNase I footprinting assays demonstrated that the SarA-binding region on the spa and hla promoter is more extensive than the predicted consensus sequence, thus raising the possibility that the consensus sequence is an activation site within a larger binding region. Because the sar and agr regulate an assortment of virulence factors in S. aureus, we propose, based on our data, a unifying hypothesis for virulence gene activation in S. aureus whereby SarA is a regulatory protein that binds to its consensus SarA recognition motif to activate (e.g. hla) or repress (e.g. spa) the transcription of sar target genes, thus accounting for both agr-dependent and agr-independent mode of regulation.

  5. Prevalence of ten putative virulence genes in the emerging foodborne pathogen Arcobacter isolated from food products.

    PubMed

    Girbau, Cecilia; Guerra, Cristian; Martínez-Malaxetxebarria, Irati; Alonso, Rodrigo; Fernández-Astorga, Aurora

    2015-12-01

    Arcobacter spp. are considered to be emerging food- and waterborne pathogens for both humans and animals. However, their virulence mechanisms are still poorly understood. In this study the presence of ten virulence genes (cadF, ciaB, cj1349, hecA, hecB, mviN, pldA, irgA, tlyA and iroE) was assessed in a set of 47 strains of Arcobacter butzleri, 10 of Arcobacter cryaerophilus and 1 Arcobacter skirrowii strain recovered from different food products (pork, chicken, beef, milk, clams and mussels). Overall, the genes cadF, ciaB, cj1349, mviN, pldA and tlyA were detected in all A. butzleri and A. skirrowii strains. Lower detection rates were observed for irgA, iroE, hecA and hecB. The genes hecB and iroE were detected neither in A. cryaerophilus nor in A. skirrowii. The genes hecA and irgA were not detected in A. skirrowii. It was noteworthy that the genes hecA and hecB were significantly (P < 0.05) highly detected in A. butzleri strains isolated from clams compared with strains isolated from milk and chicken. Therefore, our findings underline clams as a source of A. butzleri strains with high prevalence of putative virulence genes. This could be hazardous to human health, especially because these bivalves are usually consumed raw or undercooked.

  6. Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans

    PubMed Central

    Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

    2012-01-01

    Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

  7. Protective potency of clove oil and its transcriptional down-regulation of Aeromonas sobria virulence genes in African catfish (Clarias gariepinus L.).

    PubMed

    Abd El-Hamid, M I; Abd El-Aziz, N K; Ali, H A

    2016-08-31

    Disease episodes of fish caused by Aeromonas species are moved to the top list of limiting problems worldwide. The present study was planned to verify the in vitro antibacterial activities as well as the in vivo potential values of clove oil and ciprofloxacin against Aeromonas sobria in African catfish (Clarias gariepinus). The in vitro phenotypic virulence activities and the successful amplification of aerolysin and hemolysin genes in the precisely identified A. sobria strain were predictive for its virulence. In the in vivo assay, virulence of A. sobria strain was fully demonstrated based on constituent mRNA expression profile of tested virulence genes and typical septicemia associated with high mortalities of infected fish. Apparent lower mortality rates were correlated well with both decrescent bacterial burden and significant down-regulated transcripts of representative genes in the treated groups with clove oil, followed by ciprofloxacin as a prophylactic use for 15 days (P < 0.0001); however, the essential oil apart from ciprofloxacin significantly enhanced different hematological parameters (P < 0.05). In addition, administration of antibiotic may be considered as a pronounced stress factor in the fish even when it used in the prophylactic dose. In conclusion, medicinal plants-derived essential oils provide a virtually safer alternative to chemotherapeutics on fish, consumers and ecosystems.

  8. Erwinia amylovora Expresses Fast and Simultaneously hrp/dsp Virulence Genes during Flower Infection on Apple Trees

    PubMed Central

    Pester, Doris; Milčevičová, Renáta; Schaffer, Johann; Wilhelm, Eva; Blümel, Sylvia

    2012-01-01

    Background Pathogen entry through host blossoms is the predominant infection pathway of the Gram-negative bacterium Erwinia amylovora leading to manifestation of the disease fire blight. Like in other economically important plant pathogens, E. amylovora pathogenicity depends on a type III secretion system encoded by hrp genes. However, timing and transcriptional order of hrp gene expression during flower infections are unknown. Methodology/Principal Findings Using quantitative real-time PCR analyses, we addressed the questions of how fast, strong and uniform key hrp virulence genes and the effector dspA/E are expressed when bacteria enter flowers provided with the full defense mechanism of the apple plant. In non-invasive bacterial inoculations of apple flowers still attached to the tree, E. amylovora activated expression of key type III secretion genes in a narrow time window, mounting in a single expression peak of all investigated hrp/dspA/E genes around 24–48 h post inoculation (hpi). This single expression peak coincided with a single depression in the plant PR-1 expression at 24 hpi indicating transient manipulation of the salicylic acid pathway as one target of E. amylovora type III effectors. Expression of hrp/dspA/E genes was highly correlated to expression of the regulator hrpL and relative transcript abundances followed the ratio: hrpA>hrpN>hrpL>dspA/E. Acidic conditions (pH 4) in flower infections led to reduced virulence/effector gene expression without the typical expression peak observed under natural conditions (pH 7). Conclusion/Significance The simultaneous expression of hrpL, hrpA, hrpN, and the effector dspA/E during early floral infection indicates that speed and immediate effector transmission is important for successful plant invasion. When this delicate balance is disturbed, e.g., by acidic pH during infection, virulence gene expression is reduced, thus partly explaining the efficacy of acidification in fire blight control on a molecular

  9. [Investigation of the virulence genes in methicillin-resistant Staphylococcus aureus strains isolated from biomaterial surfaces].

    PubMed

    Sudağidan, Mert; Cavuşoğlu, Cengiz; Bacakoğlu, Feza

    2008-01-01

    Staphylococci are the most important agents of nosocomial infections originating from biomaterials. The aim of this study was to investigate the presence of virulence genes and their phenotypic expressions in 11 methicillin-resistant Staphylococcus aureus strains isolated from the surfaces of clinically used biomaterials of 48 thorasic intensive-care unit patients. By the use of specific primers, the presence of genes encoding the attachment and biofilm production (icaA, icaC, bap), methicillin resistance (mecA), enterotoxins A-E (sea, seb, sec, sed, see), toxic shock syndrome toxin (tst), exfoliative toxins A and B (eta and etb), alpha- and beta-hemolysins (hla and hlb), staphylococcal exotoxin-like protein-1 (set1), proteases (sspA, sspB, aur, serine proteaz gene), lipase (geh) and the regulatory genes (sarA and agrCA) were investigated by polymerase chain reaction (PCR). The phenotypic properties of the isolates such as biofilm formation, antibiotic susceptibility, extracellular protease and lipase production were also evaluated. None of the isolates were found to be biofilm and/or slime producers, however, all strains were found to have icaA gene which is responsible for biofilm formation. Nevertheless the presence of icaC and bap genes that are also responsible for biofilm formation were not detected. All the strains have had mecA gene and were resistant to oxacillin, penicilin G and gentamicin, while 10 were also resistant to erythromycin and nine were also resistant to ofloxacin. The isolates were susceptible to vancomycin, teicoplanin and co-trimoxazole. Screening of toxin and regulatory genes revealed that all the strains harboured sea, set1, hla, hlb and sarA genes. The phenotypic tests for the determination of extracellular protease production revealed that all the strains formed very weak zones on skim milk and milk agar plates, and yielded negative results on casein agar plates. Furthermore, all strains were found to harbour sspA, sspB, aur and serine

  10. Virulence Genes in Expanded-Spectrum-Cephalosporin-Resistant and -Susceptible Escherichia coli Isolates from Treated and Untreated Chickens.

    PubMed

    Baron, S; Delannoy, S; Bougeard, S; Larvor, E; Jouy, E; Balan, O; Fach, P; Kempf, I

    2015-12-14

    This study investigated antimicrobial resistance, screened for the presence of virulence genes involved in intestinal infections, and determined phylogenetic groups of Escherichia coli isolates from untreated poultry and poultry treated with ceftiofur, an expanded-spectrum cephalosporin. Results show that none of the 76 isolates appeared to be Shiga toxin-producing E. coli or enteropathogenic E. coli. All isolates were negative for the major virulence factors/toxins tested (ehxA, cdt, heat-stable enterotoxin [ST], and heat-labile enterotoxin [LT]). The few virulence genes harbored in isolates generally did not correlate with isolate antimicrobial resistance or treatment status. However, some of the virulence genes were significantly associated with certain phylogenetic groups.

  11. Exposure to Synthetic Gray Water Inhibits Amoeba Encystation and Alters Expression of Legionella pneumophila Virulence Genes

    PubMed Central

    Lu, Jingrang; Ashbolt, Nicholas J.

    2014-01-01

    Water conservation efforts have focused on gray water (GW) usage, especially for applications that do not require potable water quality. However, there is a need to better understand environmental pathogens and their free-living amoeba (FLA) hosts within GW, given their growth potential in stored gray water. Using synthetic gray water (sGW) we examined three strains of the water-based pathogen Legionella pneumophila and its FLA hosts Acanthamoeba polyphaga, A. castellanii, and Vermamoeba vermiformis. Exposure to sGW for 72 h resulted in significant inhibition (P < 0.0001) of amoebal encystation versus control-treated cells, with the following percentages of cysts in sGW versus controls: A. polyphaga (0.6 versus 6%), A. castellanii (2 versus 62%), and V. vermiformis (1 versus 92%), suggesting sGW induced maintenance of the actively feeding trophozoite form. During sGW exposure, L. pneumophila culturability decreased as early as 5 h (1.3 to 2.9 log10 CFU, P < 0.001) compared to controls (Δ0 to 0.1 log10 CFU) with flow cytometric analysis revealing immediate changes in membrane permeability. Furthermore, reverse transcription-quantitative PCR was performed on total RNA isolated from L. pneumophila cells at 0 to 48 h after sGW incubation, and genes associated with virulence (gacA, lirR, csrA, pla, and sidF), the type IV secretion system (lvrB and lvrE), and metabolism (ccmF and lolA) were all shown to be differentially expressed. These results suggest that conditions within GW may promote interactions between water-based pathogens and FLA hosts, through amoebal encystment inhibition and alteration of bacterial gene expression, thus warranting further exploration into FLA and L. pneumophila behavior in GW systems. PMID:25381242

  12. Exposure to synthetic gray water inhibits amoeba encystation and alters expression of Legionella pneumophila virulence genes.

    PubMed

    Buse, Helen Y; Lu, Jingrang; Ashbolt, Nicholas J

    2015-01-01

    Water conservation efforts have focused on gray water (GW) usage, especially for applications that do not require potable water quality. However, there is a need to better understand environmental pathogens and their free-living amoeba (FLA) hosts within GW, given their growth potential in stored gray water. Using synthetic gray water (sGW) we examined three strains of the water-based pathogen Legionella pneumophila and its FLA hosts Acanthamoeba polyphaga, A. castellanii, and Vermamoeba vermiformis. Exposure to sGW for 72 h resulted in significant inhibition (P < 0.0001) of amoebal encystation versus control-treated cells, with the following percentages of cysts in sGW versus controls: A. polyphaga (0.6 versus 6%), A. castellanii (2 versus 62%), and V. vermiformis (1 versus 92%), suggesting sGW induced maintenance of the actively feeding trophozoite form. During sGW exposure, L. pneumophila culturability decreased as early as 5 h (1.3 to 2.9 log10 CFU, P < 0.001) compared to controls (Δ0 to 0.1 log10 CFU) with flow cytometric analysis revealing immediate changes in membrane permeability. Furthermore, reverse transcription-quantitative PCR was performed on total RNA isolated from L. pneumophila cells at 0 to 48 h after sGW incubation, and genes associated with virulence (gacA, lirR, csrA, pla, and sidF), the type IV secretion system (lvrB and lvrE), and metabolism (ccmF and lolA) were all shown to be differentially expressed. These results suggest that conditions within GW may promote interactions between water-based pathogens and FLA hosts, through amoebal encystment inhibition and alteration of bacterial gene expression, thus warranting further exploration into FLA and L. pneumophila behavior in GW systems.

  13. Comparison of phenotypic and virulence genes characteristics in human and chicken isolates of Proteus mirabilis.

    PubMed

    Barbour, Elie K; Hajj, Zahi G; Hamadeh, Shadi; Shaib, Houssam A; Farran, Mohamad T; Araj, George; Faroon, Obaid; Barbour, Kamil E; Jirjis, Faris; Azhar, Esam; Kumosani, Taha; Harakeh, Steve

    2012-10-01

    The objective of this work is to compare the phenotypic and virulence genes characteristics in human and chicken isolates of Proteus mirabilis. The bacterial examination of 50 livers of individual broilers, marketed by four major outlets, revealed a high recovery of P. mirabilis (66%), and a low recovery frequency of Salmonella spp. (4%), Serratia odorifera (2%), Citrobacter brakii (2%), and Providencia stuartii (2%). The phenotypic biochemical characterization of the recovered 33 chicken isolates of P. mirabilis were compared to 30 human isolates (23 urinary and six respiratory isolates). The comparison revealed significant differences in the presence of gelatinase enzyme (100% presence in chicken isolates versus 91.3 and 83.3% presence in human urinary and respiratory isolates, respectively, P,0.05). The H(2)S production occurred in 100% of chicken isolates versus 95.6 and 66.7% presence in human urinary and respiratory isolates, respectively, P,0.05). The other 17 biochemical characteristics did not differ significantly among the three groups of isolates (P.0.05). Two virulence genes, the mrpA and FliL, were having a typical 100% presence in randomly selected isolates of P. mirabilis recovered from chicken livers (N510) versus isolates recovered from urinary (N55) and respiratory specimens of humans (N55) (P.0.05). The average percentage similarity of mrpA gene nucleotide sequence of poultry isolates to human urinary and respiratory isolates was 93.2 and 97.5-%, respectively. The high similarity in phenotypic characteristics, associated with typical frequency of presence of two virulence genes, and high similarity in sequences of mrpA gene among poultry versus human P. mirabilis isolates justifies future investigations targeting the evaluation of adaptable pathogenicity of avian Proteus mirabilis isolates to mammalian hosts.

  14. Relationship between Helicobacter pylori Virulence Genes and Clinical Outcomes in Saudi Patients

    PubMed Central

    2012-01-01

    Helicobacter pylori has been strongly associated with gastritis, gastric and duodenal ulcers, and it is a risk factor for gastric cancer. Two major virulence factors of H. pylori have been described: the cytotoxin-associated gene product (cagA) and the vacuolating toxin (vacA). Since considerable geographic diversity in the prevalence of H. pylori virulence factors has been reported, the aim of this work was to determine if there is a significant correlation between different H. pylori virulence genes (cagA and vacA) in 68 patients, from Saudi Arabia, and gastric clinical outcomes. H. pylor was recognized in cultures of gastric biopsies. vacA and cagA genes were detected by polymerase chain reaction (PCR). The cagA gene was obtained with 42 isolates (61.8%). The vacA s- and m- region genotypes were determined in all strains studied. Three genotypes were found: s1/m1 (28%), s1/m2 (40%) and s2/m2 (26%). The s2/m1 genotype was not found in this study. The relation of the presence of cagA and the development of cases to gastritis and ulcer was statistically significant (P < 0.05). The study showed a significant correlation between the vacA s1/m2 genotype and gastritis cases, and a significant correlation between vacA s1/m1 genotype and peptic ulcer cases. The results of this study might be used for the identification of high-risk patients who are infected by vacA s1/m1 genotype of H. pylori strains. In conclusion, H. pylori strains of vacA type s1 and the combination of s1/m1 were associated with peptic ulceration and the presence of cagA gene. PMID:22323867

  15. Comparison of phenotypic and virulence genes characteristics in human and chicken isolates of Proteus mirabilis

    PubMed Central

    Barbour, Elie K; Hajj, Zahi G; Hamadeh, Shadi; Shaib, Houssam A; Farran, Mohamad T; Araj, George; Faroon, Obaid; Barbour, Kamil E; Jirjis, Faris; Azhar, Esam; Kumosani, Taha; Harakeh, Steve

    2012-01-01

    The objective of this work is to compare the phenotypic and virulence genes characteristics in human and chicken isolates of Proteus mirabilis. The bacterial examination of 50 livers of individual broilers, marketed by four major outlets, revealed a high recovery of P. mirabilis (66%), and a low recovery frequency of Salmonella spp. (4%), Serratia odorifera (2%), Citrobacter brakii (2%), and Providencia stuartii (2%). The phenotypic biochemical characterization of the recovered 33 chicken isolates of P. mirabilis were compared to 30 human isolates (23 urinary and six respiratory isolates). The comparison revealed significant differences in the presence of gelatinase enzyme (100% presence in chicken isolates versus 91.3 and 83.3% presence in human urinary and respiratory isolates, respectively, P<0.05). The H2S production occurred in 100% of chicken isolates versus 95.6 and 66.7% presence in human urinary and respiratory isolates, respectively, P<0.05). The other 17 biochemical characteristics did not differ significantly among the three groups of isolates (P>0.05). Two virulence genes, the mrpA and FliL, were having a typical 100% presence in randomly selected isolates of P. mirabilis recovered from chicken livers (N = 10) versus isolates recovered from urinary (N = 5) and respiratory specimens of humans (N = 5) (P>0.05). The average percentage similarity of mrpA gene nucleotide sequence of poultry isolates to human urinary and respiratory isolates was 93.2 and 97.5-%, respectively. The high similarity in phenotypic characteristics, associated with typical frequency of presence of two virulence genes, and high similarity in sequences of mrpA gene among poultry versus human P. mirabilis isolates justifies future investigations targeting the evaluation of adaptable pathogenicity of avian Proteus mirabilis isolates to mammalian hosts. PMID:23182140

  16. Macrolide, glycopeptide resistance and virulence genes in Enterococcus species isolates from dairy cattle.

    PubMed

    Iweriebor, Benson C; Obi, Larry C; Okoh, Anthony I

    2016-07-01

    The genus Enterococcus is known to possess the capacity to acquire and disseminate antimicrobial resistant determinants alongside the ability to produce various virulence genes that enables it to establish infections. We assessed the prevalence and antibiogram profiles of Enterococcus spp. in faecal samples of dairy cattle. Faecal swab samples were collected from 400 dairy cattle from two commercial cattle farms in two rural communities in the Eastern Cape, South Africa. Confirmation of enterococci isolates was carried out by PCR targeting of the tuf gene. Species delineation was by species-specific primers targeting the superoxide dismutase (sod A) gene in a multiplex PCR assay. Isolates were screened for the presence of the following virulence genes (ace, gel E, esp, efa A, cyl A and hyl E) and antimicrobial resistance determinants to erythromycin, vancomycin and streptomycin were evaluated molecularly. A total of 340 isolates were confirmed as belonging to the genus Enterococcus . Species distribution among the isolates consisted of Enterococcus faecium (52.94 %) and Enterococcus durans (23.53 %) in preponderance compared to the three other species, namely Enterococcus faecalis (8.8 %), Enterococcus hirae (8.6 %) and Enterococcus casseliflavus (5.9 %). All were resistant to vancomycin, while 99 % showed resistance to aminoglycoside and 94 % to macrolide. Three virulence genes (ace, gel E and esp) were detected in almost all the confirmed isolates. The resistance determinants van B (19.7 %), van C1 (25 %), van C2/3 (26.3 %) erm B (40.29 %) and str A (50.88 %) were detected among the isolates. A high prevalence of multidrug-resistant enterococci isolates was detected in this study and the genetic repertoire to survive in the presence of antimicrobial agents was present in these organisms.

  17. Virulence Gene Profiles of Multidrug-Resistant Pseudomonas aeruginosa Isolated From Iranian Hospital Infections

    PubMed Central

    Fazeli, Nastaran; Momtaz, Hassan

    2014-01-01

    Background: The most common hospital-acquired pathogen is Pseudomonas aeruginosa. It is a multidrug resistant bacterium causing systemic infections. Objectives: The present study was carried out in order to investigate the distribution of virulence factors and antibiotic resistance properties of Pseudomonas aeruginosa isolated from various types of hospital infections in Iran. Patients and Methods: Two-hundred and seventeen human infection specimens were collected from Baqiyatallah and Payambaran hospitals in Tehran, Iran. The clinical samples were cultured immediately and samples positive for P. aeruginosa were analyzed for the presence of antibiotic resistance and bacterial virulence genes using PCR (polymerase chain reaction). Antimicrobial susceptibility testing was performed using disk diffusion methodology with Müeller–Hinton agar. Results: Fifty-eight out of 127 (45.66%) male infection specimens and 44 out of 90 (48.88%) female infection specimens harbored P. aeruginosa. Also, 65% (in male specimens) and 21% (in female specimens) of respiratory system infections were positive for P. aeruginosa, which was a high rate. The genes encoding exoenzyme S (67.64%) and phospholipases C (45.09%) were the most common virulence genes found among the strains. The incidences of various β-lactams encoding genes, including blaTEM, blaSHV, blaOXA, blaCTX-M, blaDHA, and blaVEB were 94.11%, 16.66%, 15.68%, 18.62%, 21.56%, and 17.64%, respectively. The most commonly detected fluoroquinolones encoding gene was gyrA (15. 68%). High resistance levels to penicillin (100%), tetracycline (90.19%), streptomycin (64.70%), and erythromycin (43.13%) were observed too. Conclusions: Our findings should raise awareness about antibiotic resistance in hospitalized patients in Iran. Clinicians should exercise caution in prescribing antibiotics, especially in cases of human infections. PMID:25763199

  18. Mutation in fucose synthesis gene of Klebsiella pneumoniae affects capsule composition and virulence in mice.

    PubMed

    Pan, Po-Chang; Chen, Hui-Wen; Wu, Po-Kuan; Wu, Yu-Yang; Lin, Chun-Hung; Wu, June H

    2011-02-01

    The emerging pathogenicity of Klebsiella pneumoniae (KP) is evident by the increasing number of clinical cases of liver abscess (LA) due to KP infection. A unique property of KP is its thick mucoid capsule. The bacterial capsule has been found to contain fucose in KP strains causing LA but not in those causing urinary tract infections. The products of the gmd and wcaG genes are responsible for converting mannose to fucose in KP. A KP strain, KpL1, which is known to have a high death rate in infected mice, was mutated by inserting an apramycin-resistance gene into the gmd. The mutant expressed genes upstream and downstream of gmd, but not gmd itself, as determined by reverse transcriptase polymerase chain reaction. The DNA mapping confirmed the disruption of the gmd gene. This mutant decreased its ability to kill infected mice and showed decreased virulence in infected HepG2 cells. Compared with wild-type KpL1, the gmd mutant lost fucose in capsular polysaccharides, increased biofilm formation and interacted more readily with macrophages. The mutant displayed morphological changes with long filament forms and less uniform sizes. The mutation also converted the serotype from K1 of wild-type to K2 and weak K3. The results indicate that disruption of the fucose synthesis gene affected the pathophysiology of this bacterium and may be related to the virulence of this KpL1 strain.

  19. Different distribution patterns of ten virulence genes in Legionella reference strains and strains isolated from environmental water and patients.

    PubMed

    Zhan, Xiao-Yong; Hu, Chao-Hui; Zhu, Qing-Yi

    2016-04-01

    Virulence genes are distinct regions of DNA which are present in the genome of pathogenic bacteria and absent in nonpathogenic strains of the same or related species. Virulence genes are frequently associated with bacterial pathogenicity in genus Legionella. In the present study, an assay was performed to detect ten virulence genes, including iraA, iraB, lvrA, lvrB, lvhD, cpxR, cpxA, dotA, icmC and icmD in different pathogenicity islands of 47 Legionella reference strains, 235 environmental strains isolated from water, and 4 clinical strains isolated from the lung tissue of pneumonia patients. The distribution frequencies of these genes in reference or/and environmental L. pneumophila strains were much higher than those in reference non-L. pneumophila or/and environmental non-L. pneumophila strains, respectively. L. pneumophila clinical strains also maintained higher frequencies of these genes compared to four other types of Legionella strains. Distribution frequencies of these genes in reference L. pneumophila strains were similar to those in environmental L. pneumophila strains. In contrast, environmental non-L. pneumophila maintained higher frequencies of these genes compared to those found in reference non-L. pneumophila strains. This study illustrates the association of virulence genes with Legionella pathogenicity and reveals the possible virulence evolution of non-L. pneumophia strains isolated from environmental water.

  20. Enteroaggregative Escherichia coli from humans and animals differ in major phenotypical traits and virulence genes.

    PubMed

    Uber, Ana Paula; Trabulsi, Luiz R; Irino, Kinue; Beutin, Lothar; Ghilardi, Angela C R; Gomes, Tânia A T; Liberatore, Ana Maria A; de Castro, Antônio F P; Elias, Waldir P

    2006-03-01

    Enteroaggregative Escherichia coli (EAEC) is characterized by the expression of the aggregative adherence pattern to cultured epithelial cells. In this study, we determined the phenotypic and genotypic relationships among 86 EAEC strains of human and animal (calves, piglets and horses) feces. Serotypes and the presence of EAEC virulence markers were determined, and these results were associated with ribotyping. Strains harboring aggR (typical EAEC) of human origin were found carrying several of the searched markers, while atypical EAEC harbored none or a few markers. The strains of animal origin were classified as atypical EAEC (strains lacking aggR) and harbored only irp2 or shf. Strains from humans and animals belonged to several different serotypes, although none of them prevailed. Sixteen ribotypes were determined, and there was no association with virulence genes profiles or serotypes. Relationship was not found among the strains of this study, and the assessed animals may not represent a reservoir of human pathogenic typical EAEC.

  1. Enzymatic and Non-Enzymatic Virulence Activities of Dermatophytes on Solid Media

    PubMed Central

    Elavarashi, Elangovan; Rangarajan, Sudha

    2017-01-01

    Introduction Dermatophytes are keratinophilic fungi causing superficial cutaneous infections that account 20-25% of the global population. As per literature search, there is a dearth in the study on virulence factors of dermatophytes from the Indian sub-continent and moreover the association of the virulence factors and the host tissue in vitro helps in understanding the host-pathogen interaction. Aim To analyse the enzymatic and non-enzymatic virulence activities of dermatophytes on solid media. Materials and Methods A total of 11 isolates, three standard American Type Culture Collection (ATCC) strains- Trichophyton rubrum- 28188, Trichophyton mentagrophytes- 9533, Trichophyton tonsurans- 28942, one CBS KNAW Fungal Biodiversity Centre strain- Arthroderma grubyi- 243.66, five clinical isolates- T. rubrum, T. mentagrophytes, Trichophyton rubrum var. raubitschekii, Trichophyton interdigitale, Epidermophyton floccosum, and two laboratory isolates - Microsporum gypseum and Microsporum canis were screened for the production of virulence enzymes such as phospholipase, lipase, protease, gelatinase and non-enzyme virulence factors (haemolytic activity) of dermatophytes. The clinical isolates were identified from a tertiary care hospital, Chennai. These dermatophytes were tested upon specific substrates on solid media such as egg yolk, tween 80, bovine serum albumin, gelatin powder and sheep blood respectively. Results The virulence activity of phospholipase, lipase, protease and gelatinase was observed from all the dermatophyte species. T. rubrum, T. rubrum ATCC strain, T. rubrum var. raubitschekii, T. mentagrophytes, T. mentagrophytes ATCC strain, T. interdigitale and A. grubyi CBS strain produced complete haemolysis, whereas other dermatophytes showed no haemolytic activity. Conclusion Phospholipase, lipase, protease and gelatinase act as enzymatic virulence marker and the T. rubrum complex, T. mentagrophytes complex and A. grubyi showed complete haemolysis and hence

  2. Mycobacterial gene cuvA is required for optimal nutrient utilization and virulence.

    PubMed

    Mir, Mushtaq; Prisic, Sladjana; Kang, Choong-Min; Lun, Shichun; Guo, Haidan; Murry, Jeffrey P; Rubin, Eric J; Husson, Robert N

    2014-10-01

    To persist and cause disease in the host, Mycobacterium tuberculosis must adapt to its environment during infection. Adaptations include changes in nutrient utilization and alterations in growth rate. M. tuberculosis Rv1422 is a conserved gene of unknown function that was found in a genetic screen to interact with the mce4 cholesterol uptake locus. The Rv1422 protein is phosphorylated by the M. tuberculosis Ser/Thr kinases PknA and PknB, which regulate cell growth and cell wall synthesis. Bacillus subtilis strains lacking the Rv1422 homologue yvcK grow poorly on several carbon sources, and yvcK is required for proper localization of peptidoglycan synthesis. Here we show that Mycobacterium smegmatis and M. tuberculosis strains lacking Rv1422 have growth defects in minimal medium containing limiting amounts of several different carbon sources. These strains also have morphological abnormalities, including shortened and bulging cells, suggesting a cell wall defect. In both mycobacterial species, the Rv1422 protein localizes uniquely to the growing cell pole, the site of peptidoglycan synthesis in mycobacteria. An M. tuberculosis ΔRv1422 strain is markedly attenuated for virulence in a mouse infection model, where it elicits decreased inflammation in the lungs and shows impaired bacterial persistence. These findings led us to name this gene cuvA (carbon utilization and virulence protein A) and to suggest a model in which deletion of cuvA leads to changes in nutrient uptake and/or metabolism that affect cell wall structure, morphology, and virulence. Its role in virulence suggests that CuvA may be a useful target for novel inhibitors of M. tuberculosis during infection.

  3. Differential expression of the virulence-associated protein p57 and characterization of its duplicated gene rosa in virulent and attenuated strains of Renibacterium salmoninarum

    USGS Publications Warehouse

    O'Farrell, C. L.; Strom, M.S.

    1999-01-01

    Virulence mechanisms utilized by the salmonid fish pathogen Renibacterium salmoninarum are poorly understood. One potential virulence factor is p57 (also designated MSA for major soluble antigen), an abundant 57 kDa soluble protein that is predominately localized on the bacterial cell surface with significant levels released into the extracellular milieu. Previous studies of an attenuated strain, MT 239, indicated that it differs from virulent strains in the amount of surface-associated p57. In this report, we show overall expression of p57 in R. salmoninarum MT 239 is considerably reduced as compared to a virulent strain, ATCC 33209. The amount of cell-associated p57 is decreased while the level of p57 in the culture supernatant is nearly equivalent between the strains. To determine if lowered amount of cell-associated p57 was due to a sequence defect in p57, a genetic comparison was performed. Two copies of the gene encoding p57 (msa1 and msa2) were found in 33209 and MT 239, as well as in several other virulent isolates. Both copies from 33209 and MT 239 were cloned and sequenced and found to be identical to each other, and identical between the 2 strains. A comparison of msa1 and msa2 within each strain showed that their sequences diverge 40 base pairs 5, to the open reading frame, while sequences 3' to the open reading frame are essentially identical for at least 225 base pairs. Northern blot analysis showed no difference in steady state levels of rosa mRNA between the 2 strains. These data suggest that while cell-surface localization of p57 may be important for R. salmoninarum virulence, the differences in localization, and total p57 expression between 33209 anti MT 239 are not due to differences in rosa sequence or differences in steady state transcript levels.

  4. Distribution of virulence genes of Staphylococcus aureus isolated from stable nasal carriers.

    PubMed

    Nashev, Dimitar; Toshkova, Katia; Salasia, S Isrina O; Hassan, Abdulwahed A; Lämmler, Christoph; Zschöck, Michael

    2004-04-01

    In the present study, we report data on virulence determinants of Staphylococcus aureus from stable nasal carriers, emphasizing on the genes encoding fibronectin (fnbA, fnbB) and collagen (cna) adhesive molecules. Of the 44 S. aureus isolates included, 32 isolates (16 pairs) were cultured from the anterior nares of 16 healthy carriers, eight isolates (four pairs) were collected from the nose of four patients with recurrent skin infections and four isolates were obtained from the infection site of these patients. The period between the two nasal swabs taken was 3-5 days. The persistency of carriage could be demonstrated by the indistinguishable genotypic characteristics of the S. aureus isolates in each pair. This could be shown by determination of gene polymorphisms of coa gene and the X-region and IgG-binding region encoding segments of spa gene. In addition, the isolates within the pairs showed identical toxin patterns. This was determined by PCR amplification of the genes encoding staphylococcal enterotoxins (SEA to SEJ) and TSST-1. The genotypic properties also yielded an identity between persistent nasal carriage isolates and the corresponding skin infection isolates of the four patients. In addition, all S. aureus nasal and skin infection isolates were positive for gene fnbA, fnbB and cna could be found with a high frequency. Among the 44 isolates investigated, 16 isolates (36.7%) harbored gene fnbB and 21 isolates (47.7%) gene cna. The data in the present study showed a relatively wide distribution of the genes fnb and cna among the investigated isolates, indicating that the persistent carriage of strains harboring these virulence determinants may increase the risk for subsequent invasive infections in carriers.

  5. Reduced Fitness of Virulent Aphis glycines (Hemiptera: Aphididae) Biotypes May Influence the Longevity of Resistance Genes in Soybean.

    PubMed

    Varenhorst, Adam J; McCarville, Michael T; O'Neal, Matthew E

    2015-01-01

    Sustainable use of insect resistance in crops require insect resistance management plans that may include a refuge to limit the spread of virulence to this resistance. However, without a loss of fitness associated with virulence, a refuge may not prevent virulence from becoming fixed within a population of parthenogenetically reproducing insects like aphids. Aphid-resistance in soybeans (i.e., Rag genes) prevent outbreaks of soybean aphid (Aphis glycines), yet four biotypes defined by their capacity to survive on aphid-resistant soybeans (e.g., biotype-2 survives on Rag1 soybean) are found in North America. Although fitness costs are reported for biotype-3 on aphid susceptible and Rag1 soybean, it is not clear if virulence to aphid resistance in general is associated with a decrease in fitness on aphid susceptible soybeans. In laboratory assays, we measured fitness costs for biotype 2, 3 and 4 on an aphid-susceptible soybean cultivar. In addition, we also observed negative cross-resistance for biotype-2 on Rag3, and biotype-3 on Rag1 soybean. We utilized a simple deterministic, single-locus, four compartment genetic model to account for the impact of these findings on the frequency of virulence alleles. When a refuge of aphid susceptible was included within this model, fitness costs and negative cross-resistance delayed the increase of virulence alleles when virulence was inherited recessively or additively. If virulence were inherited additively, fitness costs decreased the frequency of virulence. Combined, these results suggest that a refuge may prevent virulent A. glycines biotypes from overcoming Rag genes if this aphid-resistance were used commercially in North America.

  6. Role of Staphylococcus aureus global regulators sae and sigmaB in virulence gene expression during device-related infection.

    PubMed

    Goerke, Christiane; Fluckiger, Ursula; Steinhuber, Andrea; Bisanzio, Vittoria; Ulrich, Martina; Bischoff, Markus; Patti, Joseph M; Wolz, Christiane

    2005-06-01

    The ability of Staphylococcus aureus to adapt to different environments is due to a regulatory network comprising several loci. Here we present a detailed study of the interaction between the two global regulators sae and sigmaB of S. aureus and their influence on virulence gene expression in vitro, as well as during device-related infection. The expression of sae, asp23, hla, clfA, coa, and fnbA was determined in strain Newman and its isogenic saeS/R and sigB mutants by Northern analysis and LightCycler reverse transcription-PCR. There was no indication of direct cross talk between the two regulators. sae had a dominant effect on target gene expression during device-related infection. SigmaB seemed to be less active throughout the infection than under induced conditions in vitro.

  7. Characterization of Shiga toxin subtypes and virulence genes in porcine Shiga toxin-producing Escherichia coli

    DOE PAGES

    Baranzoni, Gian Marco; Fratamico, Pina M.; Gangiredla, Jayanthi; ...

    2016-04-21

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using amore » Minimal Signature E. coli Array Strip. As expected, stx2e (81%) was the most common Stx variant, followed by stx1a (14%), stx2d (3%), and stx1c (1%). The STEC serogroups that carried stx2d were O15:H27, O159:H16 and O159:H-. Similar to stx2a and stx2c, the stx2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. Furthermore, the present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections.« less

  8. Characterization of Shiga Toxin Subtypes and Virulence Genes in Porcine Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Baranzoni, Gian Marco; Fratamico, Pina M.; Gangiredla, Jayanthi; Patel, Isha; Bagi, Lori K.; Delannoy, Sabine; Fach, Patrick; Boccia, Federica; Anastasio, Aniello; Pepe, Tiziana

    2016-01-01

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using a Minimal Signature E. coli Array Strip. As expected, stx2e (81%) was the most common Stx variant, followed by stx1a (14%), stx2d (3%), and stx1c (1%). The STEC serogroups that carried stx2d were O15:H27, O159:H16 and O159:H-. Similar to stx2a and stx2c, the stx2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. The present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections. PMID:27148249

  9. Construction of a Multiplex Promoter Reporter Platform to Monitor Staphylococcus aureus Virulence Gene Expression and the Identification of Usnic Acid as a Potent Suppressor of psm Gene Expression.

    PubMed

    Gao, Peng; Wang, Yanli; Villanueva, Iván; Ho, Pak Leung; Davies, Julian; Kao, Richard Yi Tsun

    2016-01-01

    As antibiotic resistance becomes phenomenal, alternative therapeutic strategies for bacterial infections such as anti-virulence treatments have been advocated. We have constructed a total of 20 gfp-luxABCDE dual-reporter plasmids with selected promoters from S. aureus virulence-associated genes. The plasmids were introduced into various S. aureus strains to establish a gfp-lux based multiplex promoter reporter platform for monitoring S. aureus virulence gene expressions in real time to identify factors or compounds that may perturb virulence of S. aureus. The gene expression profiles monitored by luminescence correlated well with qRT-PCR results and extrinsic factors including carbon dioxide and some antibiotics were shown to suppress or induce the expression of virulence factors in this platform. Using this platform, sub-inhibitory ampicillin was shown to be a potent inducer for the expression of many virulence factors in S. aureus. Bacterial adherence and invasion assays using mammalian cells were employed to measure S. aureus virulence induced by ampicillin. The platform was used for screening of natural extracts that perturb the virulence of S. aureus and usnic acid was identified to be a potent repressor for the expression of psm.

  10. Construction of a Multiplex Promoter Reporter Platform to Monitor Staphylococcus aureus Virulence Gene Expression and the Identification of Usnic Acid as a Potent Suppressor of psm Gene Expression

    PubMed Central

    Gao, Peng; Wang, Yanli; Villanueva, Iván; Ho, Pak Leung; Davies, Julian; Kao, Richard Yi Tsun

    2016-01-01

    As antibiotic resistance becomes phenomenal, alternative therapeutic strategies for bacterial infections such as anti-virulence treatments have been advocated. We have constructed a total of 20 gfp-luxABCDE dual-reporter plasmids with selected promoters from S. aureus virulence-associated genes. The plasmids were introduced into various S. aureus strains to establish a gfp-lux based multiplex promoter reporter platform for monitoring S. aureus virulence gene expressions in real time to identify factors or compounds that may perturb virulence of S. aureus. The gene expression profiles monitored by luminescence correlated well with qRT-PCR results and extrinsic factors including carbon dioxide and some antibiotics were shown to suppress or induce the expression of virulence factors in this platform. Using this platform, sub-inhibitory ampicillin was shown to be a potent inducer for the expression of many virulence factors in S. aureus. Bacterial adherence and invasion assays using mammalian cells were employed to measure S. aureus virulence induced by ampicillin. The platform was used for screening of natural extracts that perturb the virulence of S. aureus and usnic acid was identified to be a potent repressor for the expression of psm. PMID:27625639

  11. Virulence and immunity orchestrated by the global gene regulator sigL in Mycobacterium avium subsp. paratuberculosis.

    PubMed

    Ghosh, Pallab; Steinberg, Howard; Talaat, Adel M

    2014-07-01

    Mycobacterium avium subsp. paratuberculosis causes Johne's disease in ruminants, a chronic enteric disease responsible for severe economic losses in the dairy industry. Global gene regulators, including sigma factors are important in regulating mycobacterial virulence. However, the biological significance of such regulators in M. avium subsp. paratuberculosis rremains elusive. To better decipher the role of sigma factors in M. avium subsp. paratuberculosis pathogenesis, we targeted a key sigma factor gene, sigL, activated in mycobacterium-infected macrophages. We interrogated an M. avium subsp. paratuberculosis ΔsigL mutant against a selected list of stressors that mimic the host microenvironments. Our data showed that sigL was important in maintaining bacterial survival under such stress conditions. Survival levels further reflected the inability of the ΔsigL mutant to persist inside the macrophage microenvironments. Additionally, mouse infection studies suggested a substantial role for sigL in M. avium subsp. paratuberculosis virulence, as indicated by the significant attenuation of the ΔsigL-deficient mutant compared to the parental strain. More importantly, when the sigL mutant was tested for its vaccine potential, protective immunity was generated in a vaccine/challenge model of murine paratuberculosis. Overall, our study highlights critical role of sigL in the pathogenesis and immunity of M. avium subsp. paratuberculosis infection, a potential role that could be shared by similar proteins in other intracellular pathogens.

  12. Current European Labyrinthula zosterae Are Not Virulent and Modulate Seagrass (Zostera marina) Defense Gene Expression

    PubMed Central

    Brakel, Janina; Werner, Franziska Julie; Tams, Verena; Reusch, Thorsten B. H.; Bockelmann, Anna-Christina

    2014-01-01

    Pro- and eukaryotic microbes associated with multi-cellular organisms are receiving increasing attention as a driving factor in ecosystems. Endophytes in plants can change host performance by altering nutrient uptake, secondary metabolite production or defense mechanisms. Recent studies detected widespread prevalence of Labyrinthula zosterae in European Zostera marina meadows, a protist that allegedly caused a massive amphi-Atlantic seagrass die-off event in the 1930's, while showing only limited virulence today. As a limiting factor for pathogenicity, we investigated genotype×genotype interactions of host and pathogen from different regions (10–100 km-scale) through reciprocal infection. Although the endophyte rapidly infected Z. marina, we found little evidence that Z. marina was negatively impacted by L. zosterae. Instead Z. marina showed enhanced leaf growth and kept endophyte abundance low. Moreover, we found almost no interaction of protist×eelgrass-origin on different parameters of L. zosterae virulence/Z. marina performance, and also no increase in mortality after experimental infection. In a target gene approach, we identified a significant down-regulation in the expression of 6/11 genes from the defense cascade of Z. marina after real-time quantitative PCR, revealing strong immune modulation of the host's defense by a potential parasite for the first time in a marine plant. Nevertheless, one gene involved in phenol synthesis was strongly up-regulated, indicating that Z. marina plants were probably able to control the level of infection. There was no change in expression in a general stress indicator gene (HSP70). Mean L. zosterae abundances decreased below 10% after 16 days of experimental runtime. We conclude that under non-stress conditions L. zosterae infection in the study region is not associated with substantial virulence. PMID:24691450

  13. Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide

    PubMed Central

    Green, Jeffrey; Rolfe, Matthew D; Smith, Laura J

    2014-01-01

    Molecular oxygen (O2) and nitric oxide (NO) are diatomic gases that play major roles in infection. The host innate immune system generates reactive oxygen species and NO as bacteriocidal agents and both require O2 for their production. Furthermore, the ability to adapt to changes in O2 availability is crucial for many bacterial pathogens, as many niches within a host are hypoxic. Pathogenic bacteria have evolved transcriptional regulatory systems that perceive these gases and respond by reprogramming gene expression. Direct sensors possess iron-containing co-factors (iron–sulfur clusters, mononuclear iron, heme) or reactive cysteine thiols that react with O2 and/or NO. Indirect sensors perceive the physiological effects of O2 starvation. Thus, O2 and NO act as environmental cues that trigger the coordinated expression of virulence genes and metabolic adaptations necessary for survival within a host. Here, the mechanisms of signal perception by key O2- and NO-responsive bacterial transcription factors and the effects on virulence gene expression are reviewed, followed by consideration of these aspects of gene regulation in two major pathogens, Staphylococcus aureus and Mycobacterium tuberculosis. PMID:25603427

  14. Cas9-dependent endogenous gene regulation is required for bacterial virulence.

    PubMed

    Sampson, Timothy R; Weiss, David S

    2013-12-01

    CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems are known to mediate bacterial defence against foreign nucleic acids. We recently demonstrated a non-canonical role for a CRISPR-Cas system in controlling endogenous gene expression, which had not previously been appreciated. In the present article, we describe the studies that led to this discovery, beginning with an unbiased genome-wide screen to identify virulence genes in the intracellular pathogen Francisella novicida. A gene annotated as encoding a hypothetical protein, but which we now know encodes the Cas protein Cas9, was identified as one of the most critical to the ability of F. novicida to replicate and survive during murine infection. Subsequent studies revealed a role for this protein in evasion of the host innate immune response. Specifically, Cas9 represses the expression of a BLP (bacterial lipoprotein) that could otherwise be recognized by TLR2 (Toll-like receptor 2), a host protein involved in initiating an antibacterial pro-inflammatory response. By repressing BLP levels, Cas9 mediates evasion of TLR2, promoting bacterial virulence. Finally, we described the molecular mechanism by which Cas9 functions in complex with two small RNAs to target the mRNA encoding the BLP for degradation. This work greatly broadened the paradigm for CRISPR-Cas function, highlighting a role in gene regulation that could be conserved in numerous bacteria, and elucidating its integral contribution to bacterial pathogenesis.

  15. Virulence genes, antibiotic resistance and integrons in Escherichia coli strains isolated from synanthropic birds from Spain.

    PubMed

    Sacristán, C; Esperón, F; Herrera-León, S; Iglesias, I; Neves, E; Nogal, V; Muñoz, M J; de la Torre, A

    2014-01-01

    The aim of this study was to determine the presence of virulence genes and antibiotic resistance profiles in 164 Escherichia coli strains isolated from birds (feral pigeons, hybrid ducks, house sparrows and spotless starlings) inhabiting urban and rural environments. A total of eight atypical enteropathogenic E. coli strains were identified: one in a house sparrow, four in feral pigeons and three in spotless starlings. Antibiotic resistance was present in 32.9% (54) of E. coli strains. The dominant type of resistance was to tetracycline (21.3%), ampicillin (19.5%) and sulfamethoxazole (18.9%). Five isolates had class 1 integrons containing gene cassettes encoding for dihydrofolate reductase A (dfrA) and aminoglycoside adenyltransferase A (aadA), one in a feral pigeon and four in spotless starlings. To our knowledge, the present study constitutes the first detection of virulence genes from E. coli in spotless starlings and house sparrows, and is also the first identification worldwide of integrons containing antibiotic resistance gene cassettes in E. coli strains from spotless starlings and pigeons.

  16. Antimicrobial resistance and virulence genes in Escherichia coli and enterococci from red foxes (Vulpes vulpes).

    PubMed

    Radhouani, Hajer; Igrejas, Gilberto; Gonçalves, Alexandre; Pacheco, Rui; Monteiro, Ricardo; Sargo, Roberto; Brito, Francisco; Torres, Carmen; Poeta, Patrícia

    2013-10-01

    The aims of the study were to analyse the prevalence of antimicrobial resistance and the mechanisms implicated, as well as the virulence factors, in faecal Escherichia coli and Enterococcus spp. from red foxes. From 52 faecal samples, 22 E. coli (42.3%) and 50 enterococci (96.2%) isolates were recovered (one/sample). A high percentage of E. coli isolates exhibited resistance to streptomycin, tetracycline, trimethoprim-sulfamethoxazole or ampicillin (54-27%), and they harboured the aadA, tet(A) and/or tet(B), sul1 and blaTEM resistance genes, respectively. The E. coli isolates were ascribed to the 4 major phylogroups, D (41% of isolates), A (31.8%), B1 (18.2%) and B2 (9.1%), and carried the fimA (63.3%) or aer (13.6%) virulence genes. Among enterococcal isolates, Enterococcus faecium was the most prevalent species (50%). A high percentage of enterococcal isolates showed tetracycline resistance (88%) harbouring different combinations of tet(M) and tet(L) genes. The erm(B) or the aph(3')-IIIa gene were identified in most of our erythromycin- or kanamycin-resistant enterococci, respectively. This report suggests the role of red foxes from rural areas in the cycle of transmission and spread of antimicrobial-resistant E. coli and enterococci into the environment, representing a reservoir of these antimicrobial-resistant microorganisms.

  17. Detection of virulence-associated genes in pathogenic and commensal avian Escherichia coli isolates.

    PubMed

    Paixão, A C; Ferreira, A C; Fontes, M; Themudo, P; Albuquerque, T; Soares, M C; Fevereiro, M; Martins, L; Corrêa de Sá, M I

    2016-07-01

    Poultry colibacillosis due to Avian Pathogenic Escherichia coli (APEC) is responsible for several extra-intestinal pathological conditions, leading to serious economic damage in poultry production. The most commonly associated pathologies are airsacculitis, colisepticemia, and cellulitis in broiler chickens, and salpingitis and peritonitis in broiler breeders. In this work a total of 66 strains isolated from dead broiler breeders affected with colibacillosis and 61 strains from healthy broilers were studied. Strains from broiler breeders were typified with serogroups O2, O18, and O78, which are mainly associated with disease. The serogroup O78 was the most prevalent (58%). All the strains were checked for the presence of 11 virulence genes: 1) arginine succinyltransferase A (astA); ii) E.coli hemeutilization protein A (chuA); iii) colicin V A/B (cvaA/B); iv) fimbriae mannose-binding type 1 (fimC); v) ferric yersiniabactin uptake A (fyuA); vi) iron-repressible high-molecular-weight proteins 2 (irp2); vii) increased serum survival (iss); viii) iron-uptake systems of E.coli D (iucD); ix) pielonefritis associated to pili C (papC); x) temperature sensitive haemaglutinin (tsh), and xi) vacuolating autotransporter toxin (vat), by Multiplex-PCR. The results showed that all genes are present in both commensal and pathogenic E. coli strains. The iron uptake-related genes and the serum survival gene were more prevalent among APEC. The adhesin genes, except tsh, and the toxin genes, except astA, were also more prevalent among APEC isolates. Except for astA and tsh, APEC strains harbored the majority of the virulence-associated genes studied and fimC was the most prevalent gene, detected in 96.97 and 88.52% of APEC and AFEC strains, respectively. Possession of more than one iron transport system seems to play an important role on APEC survival.

  18. RbdB, a Rhomboid Protease Critical for SREBP Activation and Virulence in Aspergillus fumigatus

    PubMed Central

    Dhingra, Sourabh; Kowlaski, Caitlin H.; Thammahong, Arsa; Beattie, Sarah R.; Bultman, Katherine M.

    2016-01-01

    ABSTRACT SREBP transcription factors play a critical role in fungal virulence; however, the mechanisms of sterol regulatory element binding protein (SREBP) activation in pathogenic fungi remains ill-defined. Screening of the Neurospora crassa whole-genome deletion collection for genes involved in hypoxia responses identified a gene for an uncharacterized rhomboid protease homolog, rbdB, required for growth under hypoxic conditions. Loss of rbdB in Aspergillus fumigatus also inhibited growth under hypoxic conditions. In addition, the A. fumigatus ΔrbdB strain also displayed phenotypes consistent with defective SREBP activity, including increased azole drug susceptibility, reduced siderophore production, and full loss of virulence. Expression of the basic helix-loop-helix (bHLH) DNA binding domain of the SREBP SrbA in ΔrbdB restored all of the phenotypes linking RdbB activity with SrbA function. Furthermore, the N-terminal domain of SrbA containing the bHLH DNA binding region was absent from ΔrbdB under inducing conditions, suggesting that RbdB regulates the protein levels of this important transcription factor. As SrbA controls clinically relevant aspects of fungal pathobiology in A. fumigatus, understanding the mechanisms of SrbA activation provides opportunities to target this pathway for therapeutic development. IMPORTANCE Aspergillus fumigatus causes life-threatening infections, and treatment options remain limited. Thus, there is an urgent need to find new therapeutic targets to treat this deadly disease. Previously, we have shown that SREBP transcription factors and their regulatory components are critical for the pathobiology of A. fumigatus. Here we identify a role for RbdB, a rhomboid protease, as an essential component of SREBP activity. Our results indicate that mutants lacking rbdB have growth defects under hypoxic conditions, are hypersusceptible to voriconazole, lack extracellular siderophore production, and fail to cause disease in a murine

  19. Development of a DNA Microarray for Enterococcal Species, Virulence, and Antibiotic Resistance Gene Determinations among Isolates from Poultry▿

    PubMed Central

    Champagne, J.; Diarra, M. S.; Rempel, H.; Topp, E.; Greer, C. W.; Harel, J.; Masson, L.

    2011-01-01

    A DNA microarray (Enteroarray) was designed with probes targeting four species-specific taxonomic identifiers to discriminate among 18 different enterococcal species, while other probes were designed to identify 18 virulence factors and 174 antibiotic resistance genes. In total, 262 genes were utilized for rapid species identification of enterococcal isolates, while characterizing their virulence potential through the simultaneous identification of endogenous antibiotic resistance and virulence genes. Enterococcal isolates from broiler chicken farms were initially identified by using the API 20 Strep system, and the results were compared to those obtained with the taxonomic genes atpA, recA, pheS, and ddl represented on our microarray. Among the 171 isolates studied, five different enterococcal species were identified by using the API 20 Strep system: Enterococcus faecium, E. faecalis, E. durans, E. gallinarum, and E. avium. The Enteroarray detected the same species as API 20 Strep, as well as two more: E. casseliflavus and E. hirae. Species comparisons resulted in 15% (27 isolates) disagreement between the two methods among the five API 20 Strep identifiable species and 24% (42 isolates) disagreement when considering the seven Enteroarray identified species. The species specificity of key antibiotic and virulence genes identified by the Enteroarray were consistent with the literature adding further robustness to the redundant taxonomic probe data. Sequencing of the cpn60 gene further confirmed the complete accuracy of the microarray results. The new Enteroarray should prove to be a useful tool to accurately genotype strains of enterococci and assess their virulence potential. PMID:21335389

  20. Virulence, bacterocin genes and antibacterial susceptibility in Enterococcus faecalis strains isolated from water wells for human consumption.

    PubMed

    Padilla, Carlos; Lobos, Olga

    2013-12-01

    The objectives of this study were to detect genes for virulence and bacteriocins in addition to studying the antimicrobial susceptibility of 78 strains of E. faecalis isolated from water wells for human consumption. The virulence and bacteriocin genes of 78 E. faecalis were amplified by PCR and visualized in agarose gels. The antimicrobial susceptibility was determined through diffusion agar tests and the MIC through microdilution. It was observed that the major percentage of virulence genes in the E. faecalis strains corresponds to aggA (93.5%). The bacteriocin gene entA (64.1%) is the most frequently detected. The studied strains exhibited different virulence and bacteriocin genes, and an important antibacterial resistance. The most common resistant phenotype (n = 14) corresponds to tetracycline and chloramphenicol and the less frequent (n = 2) to ciprofloxacin and moxifloxacin. Eight different genetic profiles were observed for virulence y bacteriocin genes. It was determined a statistical association between the bacterial resistance and some of the genetic profiles detected.

  1. Identification and characterization of msa (SA1233), a gene involved in expression of SarA and several virulence factors in Staphylococcus aureus.

    PubMed

    Sambanthamoorthy, Karthik; Smeltzer, Mark S; Elasri, Mohamed O

    2006-09-01

    The staphylococcal accessory regulator (sarA) plays a central role in the regulation of virulence in Staphylococcus aureus. To date, studies involving sarA have focused on its activity as a global regulator that modulates transcription of a wide variety of genes (>100) and its role in virulence. However, there is also evidence to suggest the existence of accessory elements that modulate SarA production and/or function. A reporter system was developed to identify such elements, and a new gene, msa (SA1233), mutation of which results in reduced expression of SarA, was identified and characterized. Additionally, it was shown that mutation of msa resulted in altered transcription of the accessory gene regulator (agr) and the genes encoding several virulence factors including alpha toxin (hla) and protein A (spa). However, the impact of mutating msa was different in the laboratory strain RN6390 and the clinical isolate UAMS-1. For instance, mutation of msa caused a decrease in spa and hla transcription in RN6390 but had a different effect in UAMS-1. The strain-dependent effects of the msa mutation were similar to those observed previously, which suggests that msa may modulate the production of specific virulence factors through its impact on sarA. Interestingly, sequence analysis of Msa suggests that it is a putative membrane protein with three membrane-spanning regions, indicating that Msa might interact with the environment. The findings show that msa is involved in the expression of SarA and several virulence factors.

  2. Effect of the silencing of the Ehcp112 gene on the in vitro virulence of Entamoeba histolytica

    PubMed Central

    2013-01-01

    Background Entamoeba histolytica is an intestinal protozoan parasite that causes amoebiasis in humans, affecting up to 50 million people worldwide each year and causing 40,000 to 100,000 deaths annually. EhCP112 is a cysteine proteinase of E. histolytica able to disrupt cell monolayers and digest extracellular matrix proteins, it is secreted by trophozoites and it can be active in a wide range of temperature and pH. These characteristics have encouraged the use of EhCP112 in the design and production of possible vaccines against amoebiasis, obtaining promising results. Nevertheless, we have no conclusive information about the role of EhCP112 in the E. histolytica pathogenesis. Methods A set of three specific siRNA sequences were used to silence the Ehcp112 gene via the soaking system. Silencing was evaluated by Western blot using an antibody against the EhCP112 recombinant protein. Finally, we analyzed the protease activity, the phagocytosis rate and the ability to destroy MDCK cells of the EhCP112-silenced trophozoites. Results The highest silencing effect on EhCP112 was detected at 16 h of treatment; time enough to perform the in vitro virulence assays, which showed that EhCP112 silencing produces a significant reduction in cytolysis and phagocytosis of target cells, indicating the participation of this proteinase in these events. Conclusions EhCP112 is involved in the in vitro virulence of E. histolytica. PMID:23981435

  3. Identification of virulence genes in the corn pathogen Colletotrichum graminicola by Agrobacterium tumefaciens-mediated transformation.

    PubMed

    Münch, Steffen; Ludwig, Nancy; Floss, Daniela S; Sugui, Janyce A; Koszucka, Anna M; Voll, Lars M; Sonnewald, Uwe; Deising, Holger B

    2011-01-01

    A previously developed Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for the plant pathogenic fungus Colletotrichum graminicola led to high rates of tandem integration of the whole Ti-plasmid, and was therefore considered to be unsuitable for the identification of pathogenicity and virulence genes by insertional mutagenesis in this pathogen. We used a modified ATMT protocol with acetosyringone present only during the co-cultivation of C. graminicola and A. tumefaciens. Analysis of 105 single-spore isolates randomly chosen from a collection of approximately 2000 transformants, indicated that almost 70% of the transformants had single T-DNA integrations. Of 500 independent transformants tested, 10 exhibited attenuated virulence in infection assays on whole plants. Microscopic analyses primarily revealed defects at different pre-penetration stages of infection-related morphogenesis. Three transformants were characterized in detail. The identification of the T-DNA integration sites was performed by amplification of genomic DNA ends after endonuclease digestion and polynucleotide tailing. In one transformant, the T-DNA had integrated into the 5'-flank of a gene with similarity to allantoicase genes of other Ascomycota. In the second and third transformants, the T-DNA had integrated into an open reading frame (ORF) and into the 5'-flank of an ORF. In both cases, the ORFs have unknown function.

  4. Virulence gene typing of methicillin-resistant Staphylococcus aureus as a complement in epidemiological typing.

    PubMed

    Nowrouzian, Forough L; Karami, Nahid; Welinder-Olsson, Christina; Ahrén, Christina

    2013-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has widely spread to all parts of the world. For surveillance and effective infection control molecular typing is required. We have evaluated the utility of virulence gene determination as a complementary tool for epidemiological typing of MRSA in relation to spa-typing and pulsed-field gel electrophoresis (PFGE). We assessed 63 community-acquired MRSA (CA-MRSA) isolates detected in the West part of Sweden for 30 virulence factor genes (VF) and agr allele variations by serial polymerase chain reaction (PCR) assays. These isolates belonged to sequence types (ST) 8, 80, 45 and 30 as classified by multilocus sequence typing. The isolates in each spa-type and PFGE-type were examined over an extended time-period and constituted a varying number of PFGE-subtypes (5-14) and spa-types (3-11) within four major PFGE types. Each ST had a unique VF profile. For isolates within a major PFGE type showing high diversity both in PFGE subtypes and spa the VF profile varied as well in contrast to those with low diversity where no alterations were seen. Thus, the accuracy of each typing method does not only vary by the method per se but is rather dependent on the genetic repertoire of the typed strains and genes evaluated. For strains demonstrating high diversity VF typing may be a useful complement in the epidemiological investigations, and may highlight the accurate discriminatory power of spa or PFGE typing.

  5. Occurrence of virulence genes among Vibrio cholerae and Vibrio parahaemolyticus strains from treated wastewaters.

    PubMed

    Khouadja, Sadok; Suffredini, Elisabetta; Baccouche, Besma; Croci, Luciana; Bakhrouf, Amina

    2014-10-01

    Pathogenic Vibrio species are an important cause of foodborne illnesses. The aim of this study was to describe the occurrence of potentially pathogenic Vibrio species in the final effluents of a wastewater treatment plant and the risk that they may pose to public health. During the 1-year monitoring, a total of 43 Vibrio strains were isolated: 23 Vibrio alginolyticus, 1 Vibrio cholerae, 4 Vibrio vulnificus, and 15 Vibrio parahaemolyticus. The PCR investigation of V. parahaemolyticus and V. cholerae virulence genes (tlh, trh, tdh, toxR, toxS, toxRS, toxT, zot, ctxAB, tcp, ace, vpi, nanH) revealed the presence of some of these genes in a significant number of strains. Intraspecies variability and genetic relationships among the environmental isolates were analyzed by random amplified polymorphic DNA-PCR (RAPD-PCR). We report the results of the first isolation and characterization of an environmental V. cholerae non-O1 non-O139 and of a toxigenic V. parahaemolyticus strain in Tunisia. We suggest that non-pathogenic Vibrio might represent a marine reservoir of virulence genes that can be transmitted between strains by horizontal transfer.

  6. Coronavirus virulence genes with main focus on SARS-CoV envelope gene.

    PubMed

    DeDiego, Marta L; Nieto-Torres, Jose L; Jimenez-Guardeño, Jose M; Regla-Nava, Jose A; Castaño-Rodriguez, Carlos; Fernandez-Delgado, Raul; Usera, Fernando; Enjuanes, Luis

    2014-12-19

    models and in humans. The modification or deletion of different motifs within E protein, including the transmembrane domain that harbors an ion channel activity, small sequences within the middle region of the carboxy-terminus of E protein, and its most carboxy-terminal end, which contains a PDZ domain-binding motif (PBM), is sufficient to attenuate the virus. Interestingly, a comprehensive collection of SARS-CoVs in which these motifs have been modified elicited full and long-term protection even in old mice, making those deletion mutants promising vaccine candidates. These data indicate that despite its small size, E protein drastically influences the replication of CoVs and their pathogenicity. Although E protein is not essential for CoV genome replication or subgenomic mRNA synthesis, it affects virus morphogenesis, budding, assembly, intracellular trafficking, and virulence. In fact, E protein is responsible in a significant proportion of the inflammasome activation and the associated inflammation elicited by SARS-CoV in the lung parenchyma. This exacerbated inflammation causes edema accumulation leading to acute respiratory distress syndrome (ARDS) and, frequently, to the death of infected animal models or human patients.

  7. Occurrence of motile Aeromonas in municipal drinking water and distribution of genes encoding virulence factors.

    PubMed

    Pablos, Manuel; Rodríguez-Calleja, Jose M; Santos, Jesús A; Otero, Andrés; García-López, María-Luisa

    2009-10-31

    Aeromonas-associated cases of gastroenteritis are generally considered waterborne. The purpose of this study was to evaluate the potential microbiological risk associated with the presence of these bacteria in public drinking water. Over a period of one year, 132 drinking-water samples were monitored in León (NW of Spain, 137,000 inhabitants) for mandatory drinking-water standards and the occurrence of Aeromonas spp. Samples were taken at the municipal water treatment plant, one storage facility, and two public artesian drinking-water fountains. Because of low numbers of coliforms or Clostridium perfringens, the non-compliance rate with microbial standards was 3.8% whereas the percentage of positive samples for motile mesophilic Aeromonas was 26.5%. For all but two samples, Aeromonas was recovered between October and early March when the temperature was below 14 degrees C and the residual chlorine ranged from 0.21 to 0.72 mg/l. An apparent relationship was observed between rainfall and the incidence of Aeromonas. The 35 selected Aeromonas isolates were identified as A. caviae and A. media. The alt and laf genes were present in all isolates, the aerA gene was present in six isolates, and the four remaining genes investigated (hlyA, ast, stx1 and stx2) were absent. The combinations of putative virulence genes were: aerA(-)/hlyA(-)/alt(+)/ast(-)/laf(+)/stx1(-)/stx2(-) (82.9%) and aerA(+)/hlyA(-)/alt(+)/ast(-)/laf(+)/stx1(-)/stx2(-) (17.1%). None of the isolates bore plasmids. As Aeromonas strains harbouring two or more virulence-associated genes have the potential to cause disease by direct transmission via drinking water or by water use in food preparation, it would be advisable to control excessive numbers of these bacteria in drinking-water supplies.

  8. The correlation of virulence, pathogenicity, and itraconazole resistance with SAP activity in Candida albicans strains.

    PubMed

    Feng, Wenli; Yang, Jing; Pan, Yanwei; Xi, Zhiqin; Qiao, Zusha; Ma, Yan

    2016-02-01

    The relationship between SAP2 activity and drug resistance in Candida albicans was investigated by using itraconazole-resistant and itraconazole-sensitive C. albicans isolates. The precipitation zones were measured to analyze SAP2 activity. Mice were classified into itraconazole-resistant and -sensitive C. albicans isolate groups, and a control group, with their survival and mortality rate being observed over 30 days. The relative expression levels of CDR1, CDR2, MDR1, and SAP2 were measured using RT-PCR. It was found that the secreted aspartyl proteinase activity of itraconazole-resistant C. albicans strains was significantly higher than that of itraconazole-sensitive C. albicans strains (P < 0.001). A significantly higher mortality rate was recorded for mice treated with itraconazole-resistant C. albicans than for mice treated with itraconazole-sensitive C. albicans. In regards to the CDR1, CDR2, and MDR1 genes, there was no significant difference between the 2 groups of mice. Positive correlations between SAP2 and MDR1 and between CDR1 and CDR2 were found. The high expression level of SAP2 may relate to the virulence, pathogenicity, and resistance of C. albicans.

  9. The global response regulator ExpA controls virulence gene expression through RsmA-mediated and RsmA-independent pathways in Pectobacterium wasabiae SCC3193.

    PubMed

    Broberg, M; Lee, G W; Nykyri, J; Lee, Y H; Pirhonen, M; Palva, E T

    2014-03-01

    ExpA (GacA) is a global response regulator that controls the expression of major virulence genes, such as those encoding plant cell wall-degrading enzymes (PCWDEs) in the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. Several studies with pectobacteria as well as related phytopathogenic gammaproteobacteria, such as Dickeya and Pseudomonas, suggest that the control of virulence by ExpA and its homologues is executed partly by modulating the activity of RsmA, an RNA-binding posttranscriptional regulator. To elucidate the extent of the overlap between the ExpA and RsmA regulons in P. wasabiae, we characterized both regulons by microarray analysis. To do this, we compared the transcriptomes of the wild-type strain, an expA mutant, an rsmA mutant, and an expA rsmA double mutant. The microarray data for selected virulence-related genes were confirmed through quantitative reverse transcription (qRT-PCR). Subsequently, assays were performed to link the observed transcriptome differences to changes in bacterial phenotypes such as growth, motility, PCWDE production, and virulence in planta. An extensive overlap between the ExpA and RsmA regulons was observed, suggesting that a substantial portion of ExpA regulation appears to be mediated through RsmA. However, a number of genes involved in the electron transport chain and oligogalacturonide metabolism, among other processes, were identified as being regulated by ExpA independently of RsmA. These results suggest that ExpA may only partially impact fitness and virulence via RsmA.

  10. Deletion of AS87_03730 gene changed the bacterial virulence and gene expression of Riemerella anatipestifer

    PubMed Central

    Wang, Xiaolan; Yue, Jiaping; Ding, Chan; Wang, Shaohui; Liu, Beibei; Tian, Mingxing; Yu, Shengqing

    2016-01-01

    Riemerella anatipestifer is an important pathogen of waterfowl, which causes septicemia anserum exsudativa in ducks. In this study, an AS87_03730 gene deletion R. anatipestifer mutant Yb2ΔAS87_03730 was constructed to investigate the role of AS87_03730 on R. anatipestifer virulence and gene regulation. By deleting a 708-bp fragment from AS87_03730, the mutant Yb2ΔAS87_03730 showed a significant decreased growth rate in TSB and invasion capacity in Vero cells, compared to wild-type strain Yb2. Moreover, the median lethal dose (LD50) of Yb2ΔAS87_03730 was 1.24 × 107 colony forming units (CFU), which is about 80-fold attenuated than that of Yb2 (LD50 = 1.53 × 105 CFU). Furthermore, RNA-Seq analysis and Real-time PCR indicated 19 up-regulated and two down-regulated genes in Yb2ΔAS87_03730. Functional analysis revealed that 12 up-regulated genes were related to “Translation, ribosomal structure and biogenesis”, two were classified into “Cell envelope biogenesis, outer membrane”, one was involved in “Amino acid transport and metabolism”, and the other four had unknown functions. Polymerase chain reaction and sequence analysis indicated that the AS87_03730 gene is highly conserved among R. anatipestifer strains, as the percent sequence identity was over 93.5%. This study presents evidence that AS87_03730 gene is involved in bacterial virulence and gene regulation of R. anatipestifer. PMID:26928424

  11. Bacillus cereus from blood cultures: virulence genes, antimicrobial susceptibility and risk factors for blood stream infection.

    PubMed

    Horii, Toshinobu; Notake, Shigeyuki; Tamai, Kiyoko; Yanagisawa, Hideji

    2011-11-01

    We characterized the profiles of virulence genes and antimicrobial susceptibility of Bacillus cereus isolates from blood cultures as well as the risk factors for blood stream infections (BSIs). The diversity of virulence gene patterns was found to be wide among 15 B. cereus isolates from BSIs and also among 11 isolates from contaminated blood cultures. The MicroScan broth microdilution method yielded results corresponding with those of the agar dilution (reference) method for levofloxacin, linezolid, and vancomycin, while the Etest results were consistent with the reference results for clindamycin, gentamicin, imipenem, levofloxacin, and linezolid. Compared with the reference values, however, some isolates showed marked differences of the minimum inhibitory concentrations (MICs) for ampicillin and clindamycin when determined using the MicroScan method, or the MICs for ampicillin, meropenem, and vancomycin when determined using the Etest method. Significantly more patients were treated with antimicrobials for more than 3 days during the 3-month period before isolation in the BSI group. Prior antimicrobial therapy may be a risk factor for BSIs due to B. cereus.

  12. Spatial Segregation of Virulence Gene Expression during Acute Enteric Infection with Salmonella enterica serovar Typhimurium

    PubMed Central

    Laughlin, Richard C.; Knodler, Leigh A.; Barhoumi, Roula; Payne, H. Ross; Wu, Jing; Gomez, Gabriel; Pugh, Roberta; Lawhon, Sara D.; Bäumler, Andreas J.; Steele-Mortimer, Olivia; Adams, L. Garry

    2014-01-01

    ABSTRACT To establish a replicative niche during its infectious cycle between the intestinal lumen and tissue, the enteric pathogen Salmonella enterica serovar Typhimurium requires numerous virulence genes, including genes for two type III secretion systems (T3SS) and their cognate effectors. To better understand the host-pathogen relationship, including early infection dynamics and induction kinetics of the bacterial virulence program in the context of a natural host, we monitored the subcellular localization and temporal expression of T3SS-1 and T3SS-2 using fluorescent single-cell reporters in a bovine, ligated ileal loop model of infection. We observed that the majority of bacteria at 2 h postinfection are flagellated, express T3SS-1 but not T3SS-2, and are associated with the epithelium or with extruding enterocytes. In epithelial cells, S. Typhimurium cells were surrounded by intact vacuolar membranes or present within membrane-compromised vacuoles that typically contained numerous vesicular structures. By 8 h postinfection, T3SS-2-expressing bacteria were detected in the lamina propria and in the underlying mucosa, while T3SS-1-expressing bacteria were in the lumen. Our work identifies for the first time the temporal and spatial regulation of T3SS-1 and -2 expression during an enteric infection in a natural host and provides further support for the concept of cytosolic S. Typhimurium in extruding epithelium as a mechanism for reseeding the lumen. PMID:24496791

  13. Comparisons of Salmonella conjugation and virulence gene hyperexpression mediated by rumen protozoa from domestic and exotic ruminants.

    PubMed

    Brewer, Matt T; Xiong, Nalee; Dier, Jeffery D; Anderson, Kristi L; Rasmussen, Mark A; Franklin, Sharon K; Carlson, Steve A

    2011-08-05

    Recent studies have identified a phenomenon in which ciliated protozoa engulf Salmonella and the intra-protozoal environment hyperactivates virulence gene expression and provides a venue for conjugal transfer of antibiotic resistance plasmids. The former observation is relegated to Salmonella bearing the SGI1 multiresistance integron while the latter phenomenon appears to be a more generalized event for recipient Salmonella. Our previous studies have assessed virulence gene hyperexpression only with protozoa from the bovine rumen while conjugal transfer has been demonstrated in rumen protozoa from cattle and goats. The present study examined virulence gene hyperexpression for Salmonella exposed to rumen protozoa obtained from cattle, sheep, goats, or two African ruminants (giraffe and bongo). Conjugal transfer was also assessed in these protozoa using Salmonella as the recipient. Virulence gene hyperexpression was only observed following exposure to the rumen protozoa from cattle and sheep while elevated virulence was also observed in these animals. Conjugal transfer events were, however, observed in all protozoa evaluated. It therefore appears that the protozoa-based hypervirulence is not universal to all ruminants while conjugal transfer is more ubiquitous.

  14. Diversity of antimicrobial resistance and virulence genes in methicillin-resistant non-Staphylococcus aureus staphylococci from veal calves.

    PubMed

    Argudín, M Angeles; Vanderhaeghen, Wannes; Butaye, Patrick

    2015-04-01

    In this study we determined whether methicillin-resistant non-Staphylococcus aureus (MRNAS) from veal calves may be a potential reservoir of antimicrobial-resistance and virulence genes. Fifty-eight MRNAS were studied by means of DNA-microarray and PCR for detection of antimicrobial resistance and virulence genes. The isolates carried a variety of antimicrobial-resistance genes [aacA-aphD, aadD, aph3, aadE, sat, spc, ampA, erm(A), erm(B), erm(C), erm(F), erm(T), lnu(A), msr(A)-msr(B), vga(A), mph(C), tet(K), tet(M), tet(L), cat, fexA, dfrA, dfrD, dfrG, dfrK, cfr, fusB, fosB, qacA, qacC, merA-merB]. Some isolates carried resistance genes without showing the corresponding resistance phenotype. Most MRNAS carried typical S. aureus virulence factors like proteases (sspP) and enterotoxins (seg) genes. Most Staphylococcus epidermidis isolates carried the arginine catabolic element, and nearly 40% of the Staphylococcus sciuri isolates carried leukocidins, and/or fibronectin-binding protein genes. MRNAS were highly multi-resistant and represent an important reservoir of antimicrobial resistance and virulence genes.

  15. The primary transcriptome of the Escherichia coli O104:H4 pAA plasmid and novel insights into its virulence gene expression and regulation

    PubMed Central

    Berger, Petya; Knödler, Michael; Förstner, Konrad U.; Berger, Michael; Bertling, Christian; Sharma, Cynthia M.; Vogel, Jörg; Karch, Helge; Dobrindt, Ulrich; Mellmann, Alexander

    2016-01-01

    Escherichia coli O104:H4 (E. coli O104:H4), which caused a massive outbreak of acute gastroenteritis and hemolytic uremic syndrome in 2011, carries an aggregative adherence fimbriae I (AAF/I) encoding virulence plasmid, pAA. The importance of pAA in host-pathogen interaction and disease severity has been demonstrated, however, not much is known about its transcriptional organization and gene regulation. Here, we analyzed the pAA primary transcriptome using differential RNA sequencing, which allows for the high-throughput mapping of transcription start site (TSS) and non-coding RNA candidates. We identified 248 TSS candidates in the 74-kb pAA and only 21% of them could be assigned as TSS of annotated genes. We detected TSS for the majority of pAA-encoded virulence factors. Interestingly, we mapped TSS, which could allow for the transcriptional uncoupling of the AAF/I operon, and potentially regulatory antisense RNA candidates against the genes encoding dispersin and the serine protease SepA. Moreover, a computational search for transcription factor binding sites suggested for AggR-mediated activation of SepA expression, which was additionally experimentally validated. This work advances our understanding of the molecular basis of E. coli O104:H4 pathogenicity and provides a valuable resource for further characterization of pAA virulence gene regulation. PMID:27748404

  16. Virulence genes and genetic diversity of Streptococcus suis serotype 2 isolates from Thailand.

    PubMed

    Maneerat, K; Yongkiettrakul, S; Kramomtong, I; Tongtawe, P; Tapchaisri, P; Luangsuk, P; Chaicumpa, W; Gottschalk, M; Srimanote, P

    2013-11-01

    Isolates of Streptococcus suis from different Western countries as well as those from China and Vietnam have been previously well characterized. So far, the genetic characteristics and relationship between S. suis strains isolated from both humans and pigs in Thailand are unknown. In this study, a total of 245 S. suis isolates were collected from both human cases (epidemic and sporadic) and pigs (diseased and asymptomatic) in Thailand. Bacterial strains were identified by biochemical tests and PCR targeting both, the 16S rRNA and gdh genes. Thirty-six isolates were identified as serotype 2 based on serotyping and the cps2-PCR. These isolates were tested for the presence of six virulence-associated genes: an arginine deiminase (arcA), a 38-kDa protein and protective antigen (bay046), an extracellular factor (epf), an hyaluronidase (hyl), a muramidase-released protein (mrp) and a suilysin (sly). In addition, the genetic diversities of these isolates were studied by RAPD PCR and multilocus sequence typing (MLST) analysis. Four virulence-associated gene patterns (VAGP 1 to 4) were obtained, and the majority of isolates (32/36) carried all genes tested (VAGP1). Each of the three OPB primers used provided 4 patterns designated RAPD-A to RAPD-D. Furthermore, MLST analysis could also distinguish the 36 isolates into four sequence types (STs): ST1 (n = 32), ST104 (n = 2), ST233 (n = 1) and a newly identified ST, ST336 (n = 1). Dendrogram constructions based on RAPD patterns indicated that S. suis serotype 2 isolates from Thailand could be divided into four groups and that the characteristics of the individual groups were in complete agreement with the virulence gene profiles and STs. The majority (32/36) of isolates recovered from diseased pigs, slaughterhouse pigs or human patients could be classified into a single group (VAGP1, RAPD-A and ST1). This genetic information strongly suggests the transmission of S. suis isolates from pigs to humans in Thailand. Our findings are

  17. Phenotypes Associated with Knockouts of Eight Dense Granule Gene Loci (GRA2-9) in Virulent Toxoplasma gondii.

    PubMed

    Rommereim, Leah M; Bellini, Valeria; Fox, Barbara A; Pètre, Graciane; Rak, Camille; Touquet, Bastien; Aldebert, Delphine; Dubremetz, Jean-François; Cesbron-Delauw, Marie-France; Mercier, Corinne; Bzik, David J

    2016-01-01

    Toxoplasma gondii actively invades host cells and establishes a parasitophorous vacuole (PV) that accumulates many proteins secreted by the dense granules (GRA proteins). To date, at least 23 GRA proteins have been reported, though the function(s) of most of these proteins still remains unknown. We targeted gene knockouts at ten GRA gene loci (GRA1-10) to investigate the cellular roles and essentiality of these classical GRA proteins during acute infection in the virulent type I RH strain. While eight of these genes (GRA2-9) were successfully knocked out, targeted knockouts at the GRA1 and GRA10 loci were not obtained, suggesting these GRA proteins may be essential. As expected, the Δgra2 and Δgra6 knockouts failed to form an intravacuolar network (IVN). Surprisingly, Δgra7 exhibited hyper-formation of the IVN in both normal and lipid-free growth conditions. No morphological alterations were identified in parasite or PV structures in the Δgra3, Δgra4, Δgra5, Δgra8, or Δgra9 knockouts. With the exception of the Δgra3 and Δgra8 knockouts, all of the GRA knockouts exhibited defects in their infection rate in vitro. While the single GRA knockouts did not exhibit reduced replication rates in vitro, replication rate defects were observed in three double GRA knockout strains (Δgra4Δgra6, Δgra3Δgra5 and Δgra3Δgra7). However, the virulence of single or double GRA knockout strains in CD1 mice was not affected. Collectively, our results suggest that while the eight individual GRA proteins investigated in this study (GRA2-9) are not essential, several GRA proteins may provide redundant and potentially important functions during acute infection.

  18. Phenotypes Associated with Knockouts of Eight Dense Granule Gene Loci (GRA2-9) in Virulent Toxoplasma gondii

    PubMed Central

    Fox, Barbara A.; Pètre, Graciane; Rak, Camille; Touquet, Bastien; Aldebert, Delphine; Dubremetz, Jean-François; Cesbron-Delauw, Marie-France; Mercier, Corinne; Bzik, David J.

    2016-01-01

    Toxoplasma gondii actively invades host cells and establishes a parasitophorous vacuole (PV) that accumulates many proteins secreted by the dense granules (GRA proteins). To date, at least 23 GRA proteins have been reported, though the function(s) of most of these proteins still remains unknown. We targeted gene knockouts at ten GRA gene loci (GRA1-10) to investigate the cellular roles and essentiality of these classical GRA proteins during acute infection in the virulent type I RH strain. While eight of these genes (GRA2-9) were successfully knocked out, targeted knockouts at the GRA1 and GRA10 loci were not obtained, suggesting these GRA proteins may be essential. As expected, the Δgra2 and Δgra6 knockouts failed to form an intravacuolar network (IVN). Surprisingly, Δgra7 exhibited hyper-formation of the IVN in both normal and lipid-free growth conditions. No morphological alterations were identified in parasite or PV structures in the Δgra3, Δgra4, Δgra5, Δgra8, or Δgra9 knockouts. With the exception of the Δgra3 and Δgra8 knockouts, all of the GRA knockouts exhibited defects in their infection rate in vitro. While the single GRA knockouts did not exhibit reduced replication rates in vitro, replication rate defects were observed in three double GRA knockout strains (Δgra4Δgra6, Δgra3Δgra5 and Δgra3Δgra7). However, the virulence of single or double GRA knockout strains in CD1 mice was not affected. Collectively, our results suggest that while the eight individual GRA proteins investigated in this study (GRA2-9) are not essential, several GRA proteins may provide redundant and potentially important functions during acute infection. PMID:27458822

  19. Genes similar to the Vibrio parahaemolyticus virulence-related genes tdh, tlh, and vscC2 occur in other vibrionaceae species isolated from a pristine estuary.

    PubMed

    Klein, Savannah L; Gutierrez West, Casandra K; Mejia, Diana M; Lovell, Charles R

    2014-01-01

    Detection of the human pathogen Vibrio parahaemolyticus often relies on molecular biological analysis of species-specific virulence factor genes. These genes have been employed in determinations of V. parahaemolyticus population numbers and the prevalence of pathogenic V. parahaemolyticus strains. Strains of the Vibrionaceae species Photobacterium damselae, Vibrio diabolicus, Vibrio harveyi, and Vibrio natriegens, as well as strains similar to Vibrio tubiashii, were isolated from a pristine salt marsh estuary. These strains were examined for the V. parahaemolyticus hemolysin genes tdh, trh, and tlh and for the V. parahaemolyticus type III secretion system 2α gene vscC2 using established PCR primers and protocols. Virulence-related genes occurred at high frequencies in non-V. parahaemolyticus Vibrionaceae species. V. diabolicus was of particular interest, as several strains were recovered, and the large majority (>83%) contained virulence-related genes. It is clear that detection of these genes does not ensure correct identification of virulent V. parahaemolyticus. Further, the occurrence of V. parahaemolyticus-like virulence factors in other vibrios potentially complicates tracking of outbreaks of V. parahaemolyticus infections.

  20. Genes Similar to the Vibrio parahaemolyticus Virulence-Related Genes tdh, tlh, and vscC2 Occur in Other Vibrionaceae Species Isolated from a Pristine Estuary

    PubMed Central

    Klein, Savannah L.; Gutierrez West, Casandra K.; Mejia, Diana M.

    2014-01-01

    Detection of the human pathogen Vibrio parahaemolyticus often relies on molecular biological analysis of species-specific virulence factor genes. These genes have been employed in determinations of V. parahaemolyticus population numbers and the prevalence of pathogenic V. parahaemolyticus strains. Strains of the Vibrionaceae species Photobacterium damselae, Vibrio diabolicus, Vibrio harveyi, and Vibrio natriegens, as well as strains similar to Vibrio tubiashii, were isolated from a pristine salt marsh estuary. These strains were examined for the V. parahaemolyticus hemolysin genes tdh, trh, and tlh and for the V. parahaemolyticus type III secretion system 2α gene vscC2 using established PCR primers and protocols. Virulence-related genes occurred at high frequencies in non-V. parahaemolyticus Vibrionaceae species. V. diabolicus was of particular interest, as several strains were recovered, and the large majority (>83%) contained virulence-related genes. It is clear that detection of these genes does not ensure correct identification of virulent V. parahaemolyticus. Further, the occurrence of V. parahaemolyticus-like virulence factors in other vibrios potentially complicates tracking of outbreaks of V. parahaemolyticus infections. PMID:24212573

  1. A novel putative enterococcal pathogenicity island linked to the esp virulence gene of Enterococcus faecium and associated with epidemicity.

    PubMed

    Leavis, Helen; Top, Janetta; Shankar, Nathan; Borgen, Katrine; Bonten, Marc; van Embden, Jan; Willems, Rob J L

    2004-02-01

    Enterococcus faecalis harbors a virulence-associated surface protein encoded by the esp gene. This gene has been shown to be part of a 150-kb putative pathogenicity island. A gene similar to esp has recently been found in Enterococcus faecium isolates recovered from hospitalized patients. In the present study we analyzed the polymorphism in the esp gene of E. faecium, and we investigated the association of esp with neighboring chromosomal genes. The esp gene showed considerable sequence heterogeneity in the regions encoding the nonrepeat N- and C-terminal domains of the Esp protein as well as differences in the number of repeats. DNA sequencing of chromosomal regions flanking the esp gene of E. faecium revealed seven open reading frames, representing putative genes implicated in virulence, regulation of transcription, and antibiotic resistance. These flanking regions were invariably associated with the presence or absence of the esp gene in E. faecium, indicating that esp in E. faecium is part of a distinct genetic element. Because of the presence of virulence genes in this gene cluster, the lower G+C content relative to that of the genome, and the presence of esp in E. faecium isolates associated with nosocomial outbreaks and clinically documented infections, we conclude that this genetic element constitutes a putative pathogenicity island, the first one described in E. faecium. Except for the presence of esp and araC, this pathogenicity island is completely different from the esp-containing pathogenicity island previously disclosed in E. faecalis.

  2. Plasma is the main regulator of Staphylococcus epidermidis biofilms virulence genes transcription in human blood.

    PubMed

    França, Angela; Cerca, Nuno

    2016-03-01

    Staphylococcus epidermidis is frequently associated with the emergence of medical-device-associated bloodstream infections, due to its ability to form biofilms on the surface of vascular catheters. Although these biofilms may be in continuous contact with human blood, how S. epidermidis biofilm cells interact with blood and its cellular and soluble components is poorly understood. Herein, we evaluated biofilm structure, biofilm cells culturability and viability, and the transcription of a panel of genes associated with S. epidermidis biofilms virulence, upon interaction with whole human blood or plasma. Our results showed that although whole human blood caused significant alterations in biofilm structure and in the number of culturable and viable cells, plasma was the main regulator of the transcription of genes with central role in biofilm formation, maturation and immune evasion. These findings highlight the urgent need to intensify studies aiming to evaluate the impact of host soluble factors on S. epidermidis biofilms fitness and persistence.

  3. Development and validation of a resistance and virulence gene microarray targeting Escherichia coli and Salmonella enterica

    PubMed Central

    Davis, Margaret A.; Lim, Ji Youn; Soyer, Yesim; Harbottle, Heather; Chang, Yung-Fu; New, Daniel; Orfe, Lisa H.; Besser, Thomas E.; Call, Douglas R.

    2010-01-01

    A microarray was developed to simultaneously screen Escherichia coli and Salmonella enterica for multiple genetic traits. The final array included 203 60-mer oligonucleotide probes, including 117 for resistance genes, 16 for virulence genes, 25 for replicon markers, and 45 other markers. Validity of the array was tested by assessing interlaboratory agreement among four collaborating groups using a blinded study design. Internal validation indicated that the assay was reliable (area under the receiver-operator characteristic curve=0.97). Inter-laboratory agreement, however, was poor when estimated using the intraclass correlation coefficient, which ranged from 0.27 (95% confidence interval 0.24, 0.29) to 0.29 (0.23, 0.34). These findings suggest that extensive testing and procedure standardization will be needed before bacterial genotyping arrays can be readily shared between laboratories. PMID:20362014

  4. Insights into the virulence-related genes of Edwardsiella tarda isolated from turbot in Europe: genetic homogeneity and evidence for vibrioferrin production.

    PubMed

    Castro, N; Osorio, C R; Buján, N; Fuentes, J C; Rodríguez, J; Romero, M; Jiménez, C; Toranzo, A E; Magariños, B

    2016-05-01

    Edwardsiella tarda has long been known as a pathogen that causes severe economic losses in aquaculture industry. Insights gained on E. tarda pathogenesis may prove useful in the development of new methods for the treatment of infections as well as preventive measures against future outbreaks. In this report, we have established the correlation between the presence of virulence genes, related with three aspects typically involved in bacterial pathogenesis (chondroitinase activity, quorum sensing and siderophore-mediated ferric uptake systems), in the genome of E. tarda strains isolated from turbot in Europe and their phenotypic traits. A total of 8 genes were tested by PCR for their presence in 73 E. tarda isolates. High homogeneity was observed in the presence/absence pattern of all the strains. Positive results in the amplification of virulence-related genes were correlated with the detection of chondroitinase activity in agar plates, in vivo AHL production during fish infection and determination of type of siderophore produced by E. tarda. To the best of our knowledge, this is the first study carried out with European strains on potential virulence factors. Furthermore, we demonstrated for the first time that E. tarda produces the siderophore vibrioferrin.

  5. Prevalence of virulence genes in strains of Campylobacter jejuni isolated from human, bovine and broiler.

    PubMed

    González-Hein, Gisela; Huaracán, Bernardo; García, Patricia; Figueroa, Guillermo

    2013-12-01

    Campylobacter jejuni isolates of different origins (bovine, broiler meat, human) were screened by polymerase chain reaction for the presence of 4 genes cdtB, cst-II, ggt, and virB11, previously linked to virulence such as adherence, invasion, colonization, molecular mimicry, and cytotoxin production. In addition, the isolates were screened for the presence of the global gene regulator csrA linked to oxidative stress responses, biofilms formation, and cell adhesion. All the C. jejuni isolates were positive for cdtB gene. The csrA gene was detected in 100% and 92% of C. jejuni isolates from human and animal origin and the virB11 gene was detected in 7.3% and 3.6% isolates from chicken and human respectively. All isolates from bovine were negative for the virB11 gene. The isolates showed a wide variation for the presence of the remaining genes. Of the C. jejuni recovered from human 83.6%, and 32.7% were positive for cst-II, and ggt respectively. Out of the isolates from chicken 40% and 5.5% isolates revealed the presence of cst-II, and ggt, respectively. Finally of the C. jejuni isolates from bovine, 97.7% and 22.7% were positive for cst-II, and ggt respectively. We conclude that the genes of this study circulate among humans and animals. These results led us to hypothesize that the isolates associated with enteritis (cdtB positives) are not selected by environmental or host-specific factors. On the other hand, the high frequencies of csrA gene in C. jejuni show that this gene is important for the survival of C. jejuni in animals and humans.

  6. Prevalence of virulence genes in strains of Campylobacter jejuni isolated from human, bovine and broiler

    PubMed Central

    González-Hein, Gisela; Huaracán, Bernardo; García, Patricia; Figueroa, Guillermo

    2013-01-01

    Campylobacter jejuni isolates of different origins (bovine, broiler meat, human) were screened by polymerase chain reaction for the presence of 4 genes cdtB, cst-II, ggt, and virB11, previously linked to virulence such as adherence, invasion, colonization, molecular mimicry, and cytotoxin production. In addition, the isolates were screened for the presence of the global gene regulator csrA linked to oxidative stress responses, biofilms formation, and cell adhesion. All the C. jejuni isolates were positive for cdtB gene. The csrA gene was detected in 100% and 92% of C. jejuni isolates from human and animal origin and the virB11 gene was detected in 7.3% and 3.6% isolates from chicken and human respectively. All isolates from bovine were negative for the virB11 gene. The isolates showed a wide variation for the presence of the remaining genes. Of the C. jejuni recovered from human 83.6%, and 32.7% were positive for cst-II, and ggt respectively. Out of the isolates from chicken 40% and 5.5% isolates revealed the presence of cst-II, and ggt, respectively. Finally of the C. jejuni isolates from bovine, 97.7% and 22.7% were positive for cst-II, and ggt respectively. We conclude that the genes of this study circulate among humans and animals. These results led us to hypothesize that the isolates associated with enteritis (cdtB positives) are not selected by environmental or host-specific factors. On the other hand, the high frequencies of csrA gene in C. jejuni show that this gene is important for the survival of C. jejuni in animals and humans. PMID:24688515

  7. Analysis of occurrence of virulence genes among Yersinia enterocolitica isolates belonging to different biotypes and serotypes.

    PubMed

    Kot, B; Piechota, M; Jakubczak, A

    2010-01-01

    The 150 Y enterocolitica strains isolated from humans and from pigs belonged to biotypes 4 (68.7%), 1A (18.7%) and 2 (4%), or were biochemically untypeable (8.6%). Biotype 4 was comprised of Y. enterocolitica strains representing serotype O:3, within biotype 1A the strains either belonged to serotypes O:5 and O:6 or were untypeable, and biotype 2 was represented by the strains of serotype O:9. The strains which were biochemically untypeable belonged to serotypes O:5, O:6 and O:3. Among the strains tested there also were those of an unidentified biotype and serotype. Nearly all the strains of biotype 1A represented genotype ystB+myfA+, and few belonged to genotype ystB+. The presence of the ystB gene in the strains of biotype 1A and only occasional occurrence of the gene in the other biotypes makes ystB a distinguishing marker of biotype 1A. The strains of genotype ystA+ail+myfA+yadA+ predominated in biotype 4 (serotype O:3). The strains of biotype 2 (serotype O:9) represented genotype ystA+ail+myfA+, and the plasmid yadA gene was detected in some of them. Within the group of biochemically untypeable strains ystB- and myfA-specific PCR products were mainly obtained. The genotypes determined for the tested biotypes and serotypes of Y. enterocolitica, based upon the selected genes of virulence, can be applied as distinguishing markers and indicators of the potential virulence of Y. enterocolitica strains, excluding bioserotyping.

  8. Distribution of genes encoding virulence factors and molecular analysis of Shigella spp. isolated from patients with diarrhea in Kerman, Iran.

    PubMed

    Hosseini Nave, Hossein; Mansouri, Shahla; Emaneini, Mohammad; Moradi, Mohammad

    2016-03-01

    Shigella is one of the important causes of diarrhea worldwide. Shigella has several virulence factors contributing in colonization and invasion of epithelial cells and eventually death of host cells. The present study was performed in order to investigate the distribution of virulence factors genes in Shigella spp. isolated from patients with acute diarrhea in Kerman, Iran as well as the genetic relationship of these isolates. A total of 56 isolates including 31 S. flexneri, 18 S. sonnei and 7 S. boydii were evaluated by polymerase chain reaction (PCR) for the presence of 11 virulence genes (ipaH, ial, set1A, set1B, sen, virF, invE, sat, sigA, pic and sepA). Then, the clonal relationship of these strains was analyzed by multilocus variable-number tandem repeat analysis (MLVA) method. All isolates were positive for ipaH gene. The other genes include ial, invE and virF were found in 80.4%, 60.7% and 67.9% of the isolates, respectively. Both set1A and set1B were detected in 32.3% of S. flexneri isolates, whereas 66.1% of the isolates belonging to different serogroup carried sen gene. The sat gene was present in all S. flexneri isolates, but not in the S. sonnei and S. boydii isolates. The result showed, 30.4% of isolates were simultaneously positive and the rest of the isolates were negative for sepA and pic genes. The Shigella isolates were divided into 29 MLVA types. This study, for the first time, investigated distribution of 11 virulence genes in Shigella spp. Our results revealed heterogeneity of virulence genes in different Shigella serogroups. Furthermore, the strains belonging to the same species had little diversity.

  9. Expression of Vibrio cholerae virulence genes in response to environmental signals.

    PubMed

    Peterson, Kenneth M

    2002-09-01

    Vibrio cholerae, the causative agent of Asiatic cholera, is a gram-negative motile bacterial species acquired via oral ingestion of contaminated food or water sources. The O1 serogroup of V. cholerae is responsible for pandemic cholera and is divided into two biotypes, classical and El Tor (Butterton and Calderwood, 1995; Mekalanos, 1985). The El Tor biotype is responsible for the current cholera pandemic. In the absence of disease, the vibrio life cycle consists of a free-swimming phase in marine and estuarine environments in association with zooplankton, crustaceans, insects, and water plants. Vibrios interact with various surfaces found in the environment to generate biofilms which may promote survival (Watnick etaL, 1999). Within the host the motile vibrios must evade the innate host defense mechanisms, penetrate the mucus layer covering the intestinal villi, adhere to and colonize the epithelial surface of the small intestine, assume a non-motile phase, replicate and cause disease by secreting numerous exoproteins at the site of infection (Oliver and Kaper, 1997). The voluminous diarrhea associated with cholera infection leads to the dissemination of the vibrios back into a watery environment and thus a continuation of the environmental phase of the life cycle. The host phase of the vibrio life cycle is only possible through the action of a group of virulence genes (ToxR-regulon) controlled by a complex and incompletely understood regulatory cascade. The ToxR regulon colonization and toxin genes are coordinately expressed in response to specific host signals that have yet to be completely defined (Skorupsky and Taylor 1997). Although little is known regarding the host signals that impact the ToxR regulatory cascade, it is clear that these intraintestinal signals play an important role in maximizing the ability of the vibrios to survive and multiply within the host. Key to understanding the complex events involved in the pathogenesis of V. cholerae will be

  10. A Naturally Occurring Single Amino Acid Replacement in Multiple Gene Regulator of Group A Streptococcus Significantly Increases Virulence

    PubMed Central

    Sanson, Misu; O'Neill, Brian E.; Kachroo, Priyanka; Anderson, Jeff R.; Flores, Anthony R.; Valson, Chandni; Cantu, Concepcion C.; Makthal, Nishanth; Karmonik, Christof; Fittipaldi, Nahuel; Kumaraswami, Muthiah; Musser, James M.; Olsen, Randall J.

    2016-01-01

    Single-nucleotide polymorphisms (SNPs) are the most common source of genetic variation within a species; however, few investigations demonstrate how naturally occurring SNPs may increase strain virulence. We recently used group A Streptococcus as a model pathogen to study bacteria strain genotype–patient disease phenotype relationships. Whole-genome sequencing of approximately 800 serotype M59 group A Streptococcus strains, recovered during an outbreak of severe invasive infections across North America, identified a disproportionate number of SNPs in the gene encoding multiple gene regulator of group A Streptococcus (mga). Herein, we report results of studies designed to test the hypothesis that the most commonly occurring SNP, encoding a replacement of arginine for histidine at codon 201 of Mga (H201R), significantly increases virulence. Whole transcriptome analysis revealed that the H201R replacement significantly increased expression of mga and 54 other genes, including many proven virulence factors. Compared to the wild-type strain, a H201R isogenic mutant strain caused significantly larger skin lesions in mice. Serial quantitative bacterial culture and noninvasive magnetic resonance imaging also demonstrated that the isogenic H201R strain was significantly more virulent in a nonhuman primate model of joint infection. These findings show that the H201R replacement in Mga increases the virulence of M59 group A Streptococcus and provide new insight to how a naturally occurring SNP in bacteria contributes to human disease phenotypes. PMID:25476528

  11. Adherence and virulence genes of Escherichia coli from children diarrhoea in the Brazilian Amazon.

    PubMed

    Benevides-Matos, Najla; Pieri, Fabio A; Penatti, Marilene; Orlandi, Patrícia P

    2015-03-01

    The bacterial pathogen most commonly associated with endemic forms of childhood diarrhoea is Escherichia coli . Studies of epidemiological characteristics of HEp-2 cell-adherent E. coli in diarrhoeal disease are required, particularly in developing countries. The aim of this study was evaluate the presence and significance of adherent Escherichia coli from diarrhoeal disease in children. The prevalence of LA, AA, and DA adherence patterns were determined in HEp-2 cells, the presence of virulence genes and the presence of the O serogroups in samples obtained from 470 children with acute diarrhoea and 407 controls in Porto Velho, Rondônia, Brazil. E. coli isolates were identified by PCR specific for groups of adherent E. coli . Out of 1,156 isolates obtained, 128 (11.0%) were positive for eae genes corresponding to EPEC, however only 38 (29.6%) of these amplified bfpA gene . EAEC were isolated from 164 (14.1%) samples; of those 41(25%), 32 (19%) and 16 (9.7%) amplified eagg , aggA or aafA genes, respectively and aggA was significantly associated with diarrhoea ( P = 0.00006). DAEC identified by their adhesion pattern and there were few isolates. In conclusion, EAEC was the main cause of diarrhoea in children, especially when the aggA gene was present, followed by EPEC and with a negligible presence of DAEC.

  12. Adherence and virulence genes of Escherichia coli from children diarrhoea in the Brazilian Amazon

    PubMed Central

    Benevides-Matos, Najla; Pieri, Fabio A.; Penatti, Marilene; Orlandi, Patrícia P.

    2015-01-01

    The bacterial pathogen most commonly associated with endemic forms of childhood diarrhoea is Escherichia coli . Studies of epidemiological characteristics of HEp-2 cell-adherent E. coli in diarrhoeal disease are required, particularly in developing countries. The aim of this study was evaluate the presence and significance of adherent Escherichia coli from diarrhoeal disease in children. The prevalence of LA, AA, and DA adherence patterns were determined in HEp-2 cells, the presence of virulence genes and the presence of the O serogroups in samples obtained from 470 children with acute diarrhoea and 407 controls in Porto Velho, Rondônia, Brazil. E. coli isolates were identified by PCR specific for groups of adherent E. coli . Out of 1,156 isolates obtained, 128 (11.0%) were positive for eae genes corresponding to EPEC, however only 38 (29.6%) of these amplified bfpA gene . EAEC were isolated from 164 (14.1%) samples; of those 41(25%), 32 (19%) and 16 (9.7%) amplified eagg , aggA or aafA genes, respectively and aggA was significantly associated with diarrhoea ( P = 0.00006). DAEC identified by their adhesion pattern and there were few isolates. In conclusion, EAEC was the main cause of diarrhoea in children, especially when the aggA gene was present, followed by EPEC and with a negligible presence of DAEC. PMID:26221098

  13. Clinical and Genomic Analysis of Liver Abscess-Causing Klebsiella pneumoniae Identifies New Liver Abscess-Associated Virulence Genes

    PubMed Central

    Ye, Meiping; Tu, Jianfei; Jiang, Jianping; Bi, Yingmin; You, Weibo; Zhang, Yanliang; Ren, Jianmin; Zhu, Taohui; Cao, Zhuo; Yu, Zuochun; Shao, Chuxiao; Shen, Zhen; Ding, Baixing; Yuan, Jinyi; Zhao, Xu; Guo, Qinglan; Xu, Xiaogang; Huang, Jinwei; Wang, Minggui

    2016-01-01

    Hypervirulent variants of Klebsiella pneumoniae (hvKp) that cause invasive community-acquired pyogenic liver abscess (PLA) have emerged globally. Little is known about the virulence determinants associated with hvKp, except for the virulence genes rmpA/A2 and siderophores (iroBCD/iucABCD) carried by the pK2044-like large virulence plasmid. Here, we collected most recent clinical isolates of hvKp from PLA samples in China, and performed clinical, molecular, and genomic sequencing analyses. We found that 90.9% (40/44) of the pathogens causing PLA were K. pneumoniae. Among the 40 LA-Kp, K1 (62.5%), and K2 (17.5%) were the dominant serotypes, and ST23 (47.5%) was the major sequence type. S1-PFGE analyses demonstrated that although 77.5% (31/40) of the LA-Kp isolates harbored a single large virulence plasmid varied in size, 5 (12.5%) isolates had no plasmid and 4 (10%) had two or three plasmids. Whole genome sequencing and comparative analysis of 3 LA-Kp and 3 non-LA-Kp identified 133 genes present only in LA-Kp. Further, large scale screening of the 133 genes in 45 LA-Kp and 103 non-LA-Kp genome sequences from public databases identified 30 genes that were highly associated with LA-Kp, including iroBCD, iucABCD and rmpA/A2 and 21 new genes. Then, these 21 new genes were analyzed in 40 LA-Kp and 86 non-LA-Kp clinical isolates collected in this study by PCR, showing that new genes were present 80–100% among LA-Kp isolates while 2–11% in K. pneumoniae isolates from sputum and urine. Several of the 21 genes have been proposed as virulence factors in other bacteria, such as the gene encoding SAM-dependent methyltransferase and pagO which protects bacteria from phagocytosis. Taken together, these genes are likely new virulence factors contributing to the hypervirulence phenotype of hvKp, and may deepen our understanding of virulence mechanism of hvKp. PMID:27965935

  14. Clinical and Genomic Analysis of Liver Abscess-Causing Klebsiella pneumoniae Identifies New Liver Abscess-Associated Virulence Genes.

    PubMed

    Ye, Meiping; Tu, Jianfei; Jiang, Jianping; Bi, Yingmin; You, Weibo; Zhang, Yanliang; Ren, Jianmin; Zhu, Taohui; Cao, Zhuo; Yu, Zuochun; Shao, Chuxiao; Shen, Zhen; Ding, Baixing; Yuan, Jinyi; Zhao, Xu; Guo, Qinglan; Xu, Xiaogang; Huang, Jinwei; Wang, Minggui

    2016-01-01

    Hypervirulent variants of Klebsiella pneumoniae (hvKp) that cause invasive community-acquired pyogenic liver abscess (PLA) have emerged globally. Little is known about the virulence determinants associated with hvKp, except for the virulence genes rmpA/A2 and siderophores (iroBCD/iucABCD) carried by the pK2044-like large virulence plasmid. Here, we collected most recent clinical isolates of hvKp from PLA samples in China, and performed clinical, molecular, and genomic sequencing analyses. We found that 90.9% (40/44) of the pathogens causing PLA were K. pneumoniae. Among the 40 LA-Kp, K1 (62.5%), and K2 (17.5%) were the dominant serotypes, and ST23 (47.5%) was the major sequence type. S1-PFGE analyses demonstrated that although 77.5% (31/40) of the LA-Kp isolates harbored a single large virulence plasmid varied in size, 5 (12.5%) isolates had no plasmid and 4 (10%) had two or three plasmids. Whole genome sequencing and comparative analysis of 3 LA-Kp and 3 non-LA-Kp identified 133 genes present only in LA-Kp. Further, large scale screening of the 133 genes in 45 LA-Kp and 103 non-LA-Kp genome sequences from public databases identified 30 genes that were highly associated with LA-Kp, including iroBCD, iucABCD and rmpA/A2 and 21 new genes. Then, these 21 new genes were analyzed in 40 LA-Kp and 86 non-LA-Kp clinical isolates collected in this study by PCR, showing that new genes were present 80-100% among LA-Kp isolates while 2-11% in K. pneumoniae isolates from sputum and urine. Several of the 21 genes have been proposed as virulence factors in other bacteria, such as the gene encoding SAM-dependent methyltransferase and pagO which protects bacteria from phagocytosis. Taken together, these genes are likely new virulence factors contributing to the hypervirulence phenotype of hvKp, and may deepen our understanding of virulence mechanism of hvKp.

  15. Assessment of virulence factors, antibiotic resistance and amino-decarboxylase activity in Enterococcus faecium MXVK29 isolated from Mexican chorizo.

    PubMed

    Alvarez-Cisneros, Y M; Fernández, F J; Sainz-Espuñez, T; Ponce-Alquicira, E

    2017-02-01

    Enterococcus faecium MXVK29 has the ability to produce an antimicrobial compound that belongs to Class IIa of the Klaenhammer classification, and could be used as part of a biopreservation technology through direct inoculation of the strain as a starter or protective culture. However, Enterococcus is considered as an opportunistic pathogen, hence, the purpose of this work was to study the food safety determinants of E. faecium MXVK29. The strain was sensitive to all of the antibiotics tested (penicillin, tetracycline, vancomycin, erythromycin, chloramphenicol, gentamicin, neomycin, kanamycin and netilmicin) and did not demonstrate histamine, cadaverine or putrescine formation. Furthermore, tyrosine-decarboxylase activity was detected by qualitative assays and PCR. Among the virulence factors analysed for the strain, only the genes encoding the sexual pheromone cCF10 precursor lipoprotein (ccf) and cell-wall adhesion (efaAfm ) were amplified. The presence of these genes has low impact on pathogenesis, as there are no other genes encoding for virulence factors, such as aggregation proteins. Therefore, Enterococcus faecium could be employed as part of a bioconservation method, because it does not produce risk factors for consumer's health; in addition, it could be used as part of the hurdle technology in foods.

  16. Virulence of Meloidogyne incognita to expression of N gene in pepper.

    PubMed

    Thies, Judy A

    2011-06-01

    Four pepper genotypes classified as resistant and four pepper genotypes classified as susceptible to several avirulent populations of M. incognita were compared for their reactions against a population of Meloidogyne incognita (Chitwood) Kofoid and White which had been shown to be virulent to resistant bell pepper (Capsicum annuum) in preliminary tests. The virulent population of M. incognita originated from a commercial bell pepper field in California. The resistant pepper genotypes used in all experiments were the Capsicum annuum cultivars Charleston Belle, Carolina Wonder, and Carolina Cayenne, and the C. chinense cultigen PA-426. The susceptible pepper genotypes used in the experiments were the C. annuum cultivars Keystone Resistant Giant, Yolo Wonder B, California Wonder, and the C. chinense cultigen PA-350. Root gall indices (GI) were ≥ 3.0 for all genotypes in both tests except for PA-426 (GI=2.57) in test 1 and 'Carolina Cayenne' (GI=2.83) in test 2. Numbers of eggs per gram fresh root weight ranged from 20,635 to 141,319 and reproductive indices ranged from 1.20 to 27.2 for the pepper genotypes in both tests, indicating that all eight pepper genotypes tested were susceptible to the M. incognita population used in these tests. The M. incognita population used in these studies overcame resistance conferred by the N gene in all resistant genotypes of both C. annuum and C. chinense.

  17. The type VI secretion system gene cluster of Salmonella typhimurium: required for full virulence in mice.

    PubMed

    Liu, Ji; Guo, Ji-Tao; Li, Yong-Guo; Johnston, Randal N; Liu, Gui-Rong; Liu, Shu-Lin

    2013-07-01

    Type VI secretion system (T6SS) has increasingly been believed to participate in the infection process for many bacterial pathogens, but its role in the virulence of Salmonella typhimurium remains unclear. To look into this, we deleted the T6SS cluster from the genome of S. typhimurium 14028s and analyzed the phenotype of the resulting T6SS knockout mutant (T6SSKO mutant) in vitro and in vivo. We found that the T6SSKO mutant exhibited reduced capability in colonizing the spleen and liver in an in vivo colonization competition model in BALB/c mice infected by the oral route. Additionally, infection via intraperitoneal administration also showed that the T6SSKO mutant was less capable of colonizing the mouse spleen and liver than the wild-type strain. We did not detect significant differences between the T6SSKO and wild-type strains in epithelial cell invasion tests. However, in the macrophage RAW264.7 cell line, the T6SSKO mutant survived and proliferated significantly more poorly than the wild-type strain. These findings indicate that T6SS gene cluster is required for full virulence of S. typhimurium 14028s in BALB/c mice, possibly due to its roles in bacterial survival and proliferation in macrophages.

  18. Shigella in Brazilian children with acute diarrhoea: prevalence, antimicrobial resistance and virulence genes.

    PubMed

    Sousa, Mireille Ângela Bernardes; Mendes, Edilberto Nogueira; Collares, Guilherme Birchal; Péret-Filho, Luciano Amedée; Penna, Francisco José; Magalhães, Paula Prazeres

    2013-02-01

    Diarrhoeal disease is still considered a major cause of morbidity and mortality among children. Among diarrhoeagenic agents, Shigella should be highlighted due to its prevalence and the severity of the associated disease. Here, we assessed Shigella prevalence, drug susceptibility and virulence factors. Faeces from 157 children with diarrhoea who sought treatment at the Children's Hospital João Paulo II, a reference children´s hospital in Belo Horizonte, state of Minas Gerais, Brazil, were cultured and drug susceptibility of the Shigella isolates was determined by the disk diffusion technique. Shigella virulence markers were identified by polymerase chain reaction. The bacterium was recovered from 10.8% of the children (88.2% Shigella sonnei). The ipaH, iuc, sen and ial genes were detected in strains isolated from all shigellosis patients; set1A was only detected in Shigella flexneri. Additionally, patients were infected by Shigella strains of different ial, sat, sen and set1A genotypes. Compared to previous studies, we observed a marked shift in the distribution of species from S. flexneri to S. sonnei and high rates of trimethoprim/sulfamethoxazole resistance.

  19. Shigella in Brazilian children with acute diarrhoea: prevalence, antimicrobial resistance and virulence genes

    PubMed Central

    Sousa, Mireille Ângela Bernardes; Mendes, Edilberto Nogueira; Collares, Guilherme Birchal; Péret-Filho, Luciano Amedée; Penna, Francisco José; Magalhães, Paula Prazeres

    2013-01-01

    Diarrhoeal disease is still considered a major cause of morbidity and mortality among children. Among diarrhoeagenic agents, Shigella should be highlighted due to its prevalence and the severity of the associated disease. Here, we assessed Shigella prevalence, drug susceptibility and virulence factors. Faeces from 157 children with diarrhoea who sought treatment at the Children's Hospital João Paulo II, a reference children´s hospital in Belo Horizonte, state of Minas Gerais, Brazil, were cultured and drug susceptibility of the Shigella isolates was determined by the disk diffusion technique. Shigella virulence markers were identified by polymerase chain reaction. The bacterium was recovered from 10.8% of the children (88.2% Shigella sonnei). The ipaH, iuc, sen and ial genes were detected in strains isolated from all shigellosis patients; set1A was only detected in Shigella flexneri. Additionally, patients were infected by Shigella strains of different ial, sat, sen and set1A genotypes. Compared to previous studies, we observed a marked shift in the distribution of species from S. flexneri to S. sonnei and high rates of trimethoprim/sulfamethoxazole resistance. PMID:23440111

  20. Natural plant products inhibits growth and alters the swarming motility, biofilm formation, and expression of virulence genes in enteroaggregative and enterohemorrhagic Escherichia coli.

    PubMed

    García-Heredia, Alam; García, Santos; Merino-Mascorro, José Ángel; Feng, Peter; Heredia, Norma

    2016-10-01

    The purpose of this study was to determine the effects of plant products on the growth, swarming motility, biofilm formation and virulence gene expression in enterohemorrhagic Escherichia coli O157:H7 and enteroaggregative E. coli strain 042 and a strain of O104:H4 serotype. Extracts of Lippia graveolens and Haematoxylon brassiletto, and carvacrol, brazilin were tested by an antimicrobial microdilution method using citral and rifaximin as controls. All products showed bactericidal activity with minimal bactericidal concentrations ranging from 0.08 to 8.1 mg/ml. Swarming motility was determined in soft LB agar. Most compounds reduced swarming motility by 7%-100%; except carvacrol which promoted motility in two strains. Biofilm formation studies were done in microtiter plates. Rifaximin inhibited growth and reduced biofilm formation, but various concentrations of other compounds actually induced biofilm formation. Real time PCR showed that most compounds decreased stx2 expression. The expression of pic and rpoS in E. coli 042 were suppressed but in E. coli O104:H4 they varied depending on compounds. In conclusion, these extracts affect E. coli growth, swarming motility and virulence gene expression. Although these compounds were bactericidal for pathogenic E. coli, sublethal concentrations had varied effects on phenotypic and genotypic traits, and some increased virulence gene expression.

  1. Antimicrobial susceptibility, virulence genes, and randomly amplified polymorphic DNA analysis of Staphylococcus aureus recovered from bovine mastitis in Ningxia, China.

    PubMed

    Wang, Dong; Zhang, Limei; Zhou, Xuezhang; He, Yulong; Yong, Changfu; Shen, Mingliang; Szenci, Otto; Han, Bo

    2016-12-01

    Staphylococcus aureusis the leading pathogen involved inbovine mastitis, but knowledgeabout antimicrobial resistance, virulence factors, and genotypes of Staphylococcus aureus resulting in bovine mastitis in Ningxia, China, is limited. Therefore, antimicrobial susceptibility, virulence gene, and randomly amplified polymorphic DNA (RAPD) analyses of Staph. aureus were carried out. A total of 327 milk samples from cows with clinical and subclinical mastitis in 4 regions of Ningxia were used for the isolation and identification of pathogens according to phenotypic and molecular characteristics. Antimicrobial susceptibility against 22 antimicrobial agents was determined by disk diffusion. The presence of 8 virulence genes in Staph. aureus isolates was tested by PCR. Genotypes of isolates were investigated based on RAPD. Results showed that 35 isolates obtained from mastitis milk samples were identified as Staph. aureus. The isolates were resistant to sulfamethoxazole (100%), penicillin G (94.3%), ampicillin (94.3%), erythromycin (68.6%), azithromycin (68.6%), clindamycin (25.7%), amoxicillin (11.4%), and tetracycline (5.7%). All of the isolates contained one or more virulence genes with average (standard deviation) of 6.6±1.6. The most prevalent virulence genes were hlb (97.1%), followed by fnbpA, hla, coa (94.3% each), nuc (85.7%), fnbpB (80%), clfA (77.1%), and tsst-1 (40%). Nine different gene patterns were found and 3 of them were the dominant gene combinations (77.1%). Staphylococcus aureus isolates (n=35) were divided into 6 genotypes by RAPD tying, the genotypes III and VI were the most prevalent genotypes. There was greatvariation in genotypes of Staph. aureus isolates, not only among different farms, but also within the same herd in Ningxia province. The study showed a high incidence of Staph. aureus with genomic variation of resistance genes, which is matter of great concern in public and animal health in Ningxia province of China.

  2. High frequency of virulence factor genes tdh, trh, and tlh in Vibrio parahaemolyticus strains isolated from a pristine estuary.

    PubMed

    Gutierrez West, Casandra K; Klein, Savannah L; Lovell, Charles R

    2013-04-01

    Virulence factor genes encoding the thermostable direct hemolysin (tdh) and the thermostable direct hemolysin-related hemolysin (trh) are strongly correlated with virulence of the emergent human pathogen Vibrio parahaemolyticus. The gene encoding the thermolabile hemolysin (tlh) is also considered a signature molecular marker for the species. These genes are typically reported in very low percentages (1 to 2%) of nonclinical strains. V. parahaemolyticus strains were isolated from various niches within a pristine estuary (North Inlet, SC) and were screened for these genes using both newly designed PCR primers and more commonly used primers. DNA sequences of tdh and trh were recovered from 48% and 8.3%, respectively, of these North Inlet strains. The recovery of pathogenic V. parahaemolyticus strains in such high proportions from an estuarine ecosystem that is virtually free of anthropogenic influences indicates the potential for additional, perhaps environmental roles of the tdh and trh genes.

  3. Diversity of CRISPR loci and virulence genes in pathogenic Escherichia coli isolates from various sources.

    PubMed

    Jiang, Yun; Yin, Shuang; Dudley, Edward G; Cutter, Catherine N

    2015-07-02

    Shiga toxin-producing Escherichia coli (STEC) strains, including those of O157:H7 and the "big six" serogroups (i.e., O26, O45, O103, O111, O121, and O145) are food-borne pathogens that pose a serious health threat to humans. Ruminants, especially cattle, are a major reservoir for O157 and non-O157 STEC. In the present study, 115 E. coli strains isolated from small and very small beef processing plants were screened for virulence genes (stx1, stx2, eae) using a multiplex polymerase chain reaction (PCR). Thirteen (11.3%) of the 115 isolates tested positive for stx1, stx2, or eae genes, but only 4 (3.5%) tested positive for either stx1 or stx2. A multiplex PCR reaction targeting eight O-serogroups (O26, O45, O103, O111, O113, O121, O145, O157) identified 12 isolates as O26, O103, O111, or O145, with E. coli O26 being the most predominant serogroup (61.5%). The thirteen isolates were further analyzed using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) subtyping. Consistent with previous studies, CRISPR alleles from strains of the same serogroup were similar in their spacer content and order, regardless of the isolation source. A completely different CRISPR allele was observed in one isolate ("7-J") which exhibited a different O-serogroup (O78). Our results confirmed previous findings that CRISPR loci are conserved among phylogenetically-related strains. In addition, 8 E. coli O26 isolates and a collection of 42 E. coli O26 isolates were screened for 12 enterohemorrhagic E. coli-specific genes. Seven genes (ECs848-Hypothetical Protein, ECs2226-Hypothetical Protein, ECs3857-nleB, ECs3858-Hypothetical Protein, ECs4552-escF, ECs4553-Hypothetical Protein, and ECs4557-sepL) were found in all 50 isolates. An additional 5 genes (ECs1322-ureA urease subunit γ, ECs1323-ureB urease subunit β, ECs1326-ureF, ECs1561-Hypothetical Protein, and ECs1568-Hypothetical Protein) were found to be highly prevalent in isolates from human sources, while lower in

  4. Effects of a Mutation in the gyrA Gene on the Virulence of Uropathogenic Escherichia coli

    PubMed Central

    Sánchez-Céspedes, Javier; Sáez-López, Emma; Frimodt-Møller, N.; Vila, Jordi

    2015-01-01

    Fluoroquinolones are among the drugs most extensively used for the treatment of bacterial infections in human and veterinary medicine. Resistance to quinolones can be chromosome or plasmid mediated. The chromosomal mechanism of resistance is associated with mutations in the DNA gyrase- and topoisomerase IV-encoding genes and mutations in regulatory genes affecting different efflux systems, among others. We studied the role of the acquisition of a mutation in the gyrA gene in the virulence and protein expression of uropathogenic Escherichia coli (UPEC). The HC14366M strain carrying a mutation in the gyrA gene (S83L) was found to lose the capacity to cause cystitis and pyelonephritis mainly due to a decrease in the expression of the fimA, papA, papB, and ompA genes. The levels of expression of the fimA, papB, and ompA genes were recovered on complementing the strain with a plasmid containing the gyrA wild-type gene. However, only a slight recovery was observed in the colonization of the bladder in the GyrA complement strain compared to the mutant strain in a murine model of ascending urinary tract infection. In conclusion, a mutation in the gyrA gene of uropathogenic E. coli reduced the virulence of the bacteria, likely in association with the effect of DNA supercoiling on the expression of several virulence factors and proteins, thereby decreasing their capacity to cause cystitis and pyelonephritis. PMID:26014933

  5. Directed evolution induces tributyrin hydrolysis in a virulence factor of Xylella fastidiosa using a duplicated gene as a template

    PubMed Central

    Rao, Basuthkar J.; Asgeirsson, Bjarni; Dandekar, Abhaya

    2014-01-01

    Duplication of genes is one of the preferred ways for natural selection to add advantageous functionality to the genome without having to reinvent the wheel with respect to catalytic efficiency and protein stability. The duplicated secretory virulence factors of Xylella fastidiosa (LesA, LesB and LesC), implicated in Pierce's disease of grape and citrus variegated chlorosis of citrus species, epitomizes the positive selection pressures exerted on advantageous genes in such pathogens. A deeper insight into the evolution of these lipases/esterases is essential to develop resistance mechanisms in transgenic plants. Directed evolution, an attempt to accelerate the evolutionary steps in the laboratory, is inherently simple when targeted for loss of function. A bigger challenge is to specify mutations that endow a new function, such as a lost functionality in a duplicated gene. Previously, we have proposed a method for enumerating candidates for mutations intended to transfer the functionality of one protein into another related protein based on the spatial and electrostatic properties of the active site residues (DECAAF). In the current work, we present in vivo validation of DECAAF by inducing tributyrin hydrolysis in LesB based on the active site similarity to LesA. The structures of these proteins have been modeled using RaptorX based on the closely related LipA protein from Xanthomonas oryzae. These mutations replicate the spatial and electrostatic conformation of LesA in the modeled structure of the mutant LesB as well, providing in silico validation before proceeding to the laborious in vivo work. Such focused mutations allows one to dissect the relevance of the duplicated genes in finer detail as compared to gene knockouts, since they do not interfere with other moonlighting functions, protein expression levels or protein-protein interaction. PMID:25717364

  6. Frequency, virulence genes and antimicrobial resistance of Listeria spp. isolated from bovine clinical mastitis.

    PubMed

    Jamali, Hossein; Radmehr, Behrad

    2013-11-01

    The aims of this study were to determine the prevalence, characteristics and antimicrobial resistance of Listeria spp. isolated from bovine clinical mastitis in Iran. Listeria spp. were detected in 21/207 bovine mastitic milk samples from dairy farms in Iran, comprising L. monocytogenes (n=17), L. innocua (n=3) and L. ivanovii (n=1). L. monocytogenes isolates were grouped into serogroups '4b, 4d, 4e', '1/2a, 3a', '1/2b, 3b, 7' and '1/2c, 3c'; all harboured inlA, inlC and inlJ virulence genes. Listeria spp. were most frequently resistant to penicillin G (14/21 isolates, 66.7%) and tetracyclines (11/21 isolates, 52.4%).

  7. Virulence gene content in Escherichia coli isolates from poultry flocks with clinical signs of colibacillosis in Brazil.

    PubMed

    De Carli, Silvia; Ikuta, Nilo; Lehmann, Fernanda Kieling Moreira; da Silveira, Vinicius Proença; de Melo Predebon, Gabriela; Fonseca, André Salvador Kazantzi; Lunge, Vagner Ricardo

    2015-11-01

    Escherichia coli is a commensal bacterium of the bird's intestinal tract, but it can invade different tissues resulting in systemic symptoms (colibacillosis). This disease occurs only when the E. coli infecting strain presents virulence factors (encoded by specific genes) that enable the adhesion and proliferation in the host organism. Thus, it is important to differentiate pathogenic (APEC, avian pathogenic E. coli) and non-pathogenic or fecal (AFEC, avian fecal E. coli) isolates. Previous studies analyzed the occurrence of virulence factors in E. coli strains isolated from birds with colibacillosis, demonstrating a high frequency of the bacterial genes cvaC, iroN, iss, iutA, sitA, tsh, fyuA, irp-2, ompT and hlyF in pathogenic strains. The aim of the present study was to evaluate the occurrence and frequency of these virulence genes in E. coli isolated from poultry flocks in Brazil. A total of 138 isolates of E. coli was obtained from samples of different tissues and/or organs (spleen, liver, kidney, trachea, lungs, skin, ovary, oviduct, intestine, cloaca) and environmental swabs collected from chicken and turkey flocks suspected to have colibacillosis in farms from the main Brazilian producing regions. Total DNA was extracted and the 10 virulence genes were detected by traditional and/or real-time PCR. At least 11 samples of each gene were sequenced and compared to reference strains. All 10 virulence factors were detected in Brazilian E. coli isolates, with frequencies ranging from 39.9% (irp-2) to 68.8% (hlyF and sitA). Moreover, a high nucleotide similarity (over 99%) was observed between gene sequences of Brazilian isolates and reference strains. Seventy-nine isolates were defined as pathogenic (APEC) and 59 as fecal (AFEC) based on previously described criteria. In conclusion, the main virulence genes of the reference E. coli strains are also present in isolates associated with colibacillosis in Brazil. The analysis of this set of virulence factors can be

  8. The effect of γ radiation on the expression of the virulence genes of Salmonella typhimurium and Vibrio spp.

    NASA Astrophysics Data System (ADS)

    Lim, Sangyong; Jung, Jinwoo; Kim, Dongho

    2007-11-01

    The principle benefit of food irradiation is the reduction of food-borne bacteria in food products. However, the microbiological safety with respect to increased virulence of surviving pathogens after irradiation remains an important issue with regard to the effectiveness of food irradiation. In this study, the transcriptional changes of virulence genes of Salmonella and Vibrio spp. after γ radiation were investigated by real-time PCR (RT-PCR). Samonella typhimurium is dependent upon the products of a large number of genes located within Salmonella pathogenicity islands (SPI) on the chromosome. The expressions of seven genes including four SPI genes, hilD, ssrB, pipB, and sopD, were measured at 1 h after 1 kGy irradiation. Compared with non-irradiated controls, the expression of hilD encoded within SPI1 and sopD encoding SPI1-related effector proteins was reduced about 4- and 16-fold, respectively. The expressions of Vibrio toxin genes, vvhA, ctxA, and tdh, were also monitored during the course of a growth cycle after re-inoculation of irradiated Vibrio spp. (0.5 and 1.0 kGy). The expressions of Vibrio toxin genes tested did not increase compared with non-irradiated counterparts. Results from this study indicate that γ radiation is much more likely to reduce the virulence gene expression of surviving pathogens.

  9. Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation.

    PubMed

    Müller, Christine; Birmes, Franziska S; Rückert, Christian; Kalinowski, Jörn; Fetzner, Susanne

    2015-11-01

    Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 μM and 21 s(-1), respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases.

  10. Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation

    PubMed Central

    Müller, Christine; Birmes, Franziska S.; Rückert, Christian; Kalinowski, Jörn

    2015-01-01

    Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 μM and 21 s−1, respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases. PMID:26319870

  11. Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum.

    PubMed

    Tonkin, Christopher J; Carret, Céline K; Duraisingh, Manoj T; Voss, Till S; Ralph, Stuart A; Hommel, Mirja; Duffy, Michael F; Silva, Liliana Mancio da; Scherf, Artur; Ivens, Alasdair; Speed, Terence P; Beeson, James G; Cowman, Alan F

    2009-04-14

    Cytoadherance of Plasmodium falciparum-infected erythrocytes in the brain, organs and peripheral microvasculature is linked to morbidity and mortality associated with severe malaria. Parasite-derived P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) molecules displayed on the erythrocyte surface are responsible for cytoadherance and undergo antigenic variation in the course of an infection. Antigenic variation of PfEMP1 is achieved by in situ switching and mutually exclusive transcription of the var gene family, a process that is controlled by epigenetic mechanisms. Here we report characterisation of the P. falciparum silent information regulator's A and B (PfSir2A and PfSir2B) and their involvement in mutual exclusion and silencing of the var gene repertoire. Analysis of P. falciparum parasites lacking either PfSir2A or PfSir2B shows that these NAD(+)-dependent histone deacetylases are required for silencing of different var gene subsets classified by their conserved promoter type. We also demonstrate that in the absence of either of these molecules mutually exclusive expression of var genes breaks down. We show that var gene silencing originates within the promoter and PfSir2 paralogues are involved in cis spreading of silenced chromatin into adjacent regions. Furthermore, parasites lacking PfSir2A but not PfSir2B have considerably longer telomeric repeats, demonstrating a role for this molecule in telomeric end protection. This work highlights the pivotal but distinct role for both PfSir2 paralogues in epigenetic silencing of P. falciparum virulence genes and the control of pathogenicity of malaria infection.

  12. Detection of multiple virulence-associated genes of Listeria monocytogenes by PCR in artificially contaminated milk samples.

    PubMed Central

    Cooray, K J; Nishibori, T; Xiong, H; Matsuyama, T; Fujita, M; Mitsuyama, M

    1994-01-01

    The inhibitory effect of milk in the PCR detection of Listeria monocytogenes could be overcome by washing the contaminated milk sample with phosphate-buffered saline and concentrating the bacteria to 1/10 of the original volume. In order to avoid a possible failure in the detection of virulent L. monocytogenes, a one-step procedure which enabled demonstration of three virulence-associated genes, prfA, hlyA, and plcB, simultaneously in a single PCR mixture was developed. Images PMID:8085838

  13. Shiga toxin-producing Escherichia coli strains isolated from dairy products - Genetic diversity and virulence gene profiles.

    PubMed

    Douëllou, T; Delannoy, S; Ganet, S; Mariani-Kurkdjian, P; Fach, P; Loukiadis, E; Montel, Mc; Thevenot-Sergentet, D

    2016-09-02

    Shiga toxin-producing Escherichia coli (STEC) are widely recognized as pathogens causing food borne disease. Here we evaluate the genetic diversity of 197 strains, mainly STEC, from serotypes O157:H7, O26:H11, O103:H2, O111:H8 and O145:28 and compared strains recovered in dairy products against strains from human, meat and environment cases. For this purpose, we characterized a set of reference-collection STEC isolates from dairy products by PFGE DNA fingerprinting and a subset of these by virulence-gene profiling. PFGE profiles of restricted STEC total DNA showed high genomic variability (0.9976 on Simpson's discriminatory index), enabling all dairy isolates to be differentiated. High-throughput real-time PCR screening of STEC virulence genes were applied on the O157:H7 and O26:H11 STEC isolates from dairy products and human cases. The virulence gene profiles of dairy and human STEC strains were similar. Nevertheless, frequency-wise, stx1 was more prevalent among dairy O26:H11 isolates than in human cases ones (87% vs. 44%) while stx2 was more prevalent among O26:H11 human isolates (23% vs. 81%). For O157:H7 isolates, stx1 (0% vs. 39%), nleF (40% vs 94%) and Z6065 (40% vs 100%) were more prevalent among human than dairy strains. Our data point to differences between human and dairy strains but these differences were not sufficient to associate PFGE and virulence gene profiles to a putative lower pathogenicity of dairy strains based on their lower incidence in disease. Further comparison of whole-genome expression and virulence gene profiles should be investigated in cheese and intestinal tract samples.

  14. Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence

    PubMed Central

    Juhas, Mario; Crook, Derrick W; Hood, Derek W

    2008-01-01

    Type IV secretion systems (T4SSs) are multisubunit cell-envelope-spanning structures, ancestrally related to bacterial conjugation machines, which transfer proteins and nucleoprotein complexes across membranes. T4SSs mediate horizontal gene transfer, thus contributing to genome plasticity and the evolution of pathogens through dissemination of antibiotic resistance and virulence genes. Moreover, T4SSs are also used for the delivery of bacterial effector proteins across the bacterial membrane and the plasmatic membrane of eukaryotic host cell, thus contributing directly to pathogenicity. T4SSs are usually encoded by multiple genes organized into a single functional unit. Based on a number of features, the organization of genetic determinants, shared homologies and evolutionary relationships, T4SSs have been divided into several groups. Type F and P (type IVA) T4SSs resembling the archetypal VirB/VirD4 system of Agrobacterium tumefaciens are considered to be the paradigm of type IV secretion, while type I (type IVB) T4SSs are found in intracellular bacterial pathogens, Legionella pneumophila and Coxiella burnetii. Several novel T4SSs have been identified recently and their functions await investigation. The most recently described GI type T4SSs play a key role in the horizontal transfer of a wide variety of genomic islands derived from a broad spectrum of bacterial strains. PMID:18549454

  15. Transcriptional Modulation of Enterotoxigenic Escherichia coli Virulence Genes in Response to Epithelial Cell Interactions

    PubMed Central

    Kansal, Rita; Rasko, David A.; Sahl, Jason W.; Munson, George P.; Roy, Koushik; Luo, Qingwei; Sheikh, Alaullah; Kuhne, Kurt J.

    2013-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of morbidity and mortality due to diarrheal illness in developing countries. There is currently no effective vaccine against these important pathogens. Because genes modulated by pathogen-host interactions potentially encode putative vaccine targets, we investigated changes in gene expression and surface morphology of ETEC upon interaction with intestinal epithelial cells in vitro. Pan-genome microarrays, quantitative reverse transcriptase PCR (qRT-PCR), and transcriptional reporter fusions of selected promoters were used to study changes in ETEC transcriptomes. Flow cytometry, immunofluorescence microscopy, and scanning electron microscopy were used to investigate alterations in surface antigen expression and morphology following pathogen-host interactions. Following host cell contact, genes for motility, adhesion, toxin production, immunodominant peptides, and key regulatory molecules, including cyclic AMP (cAMP) receptor protein (CRP) and c-di-GMP, were substantially modulated. These changes were accompanied by visible changes in both ETEC architecture and the expression of surface antigens, including a novel highly conserved adhesin molecule, EaeH. The studies reported here suggest that pathogen-host interactions are finely orchestrated by ETEC and are characterized by coordinated responses involving the sequential deployment of multiple virulence molecules. Elucidation of the molecular details of these interactions could highlight novel strategies for development of vaccines for these important pathogens. PMID:23115039

  16. The agr Locus Regulates Virulence and Colonization Genes in Clostridium difficile 027

    PubMed Central

    Martin, Melissa J.; Clare, Simon; Goulding, David; Faulds-Pain, Alexandra; Barquist, Lars; Browne, Hilary P.; Pettit, Laura; Dougan, Gordon; Lawley, Trevor D.

    2013-01-01

    The transcriptional regulator AgrA, a member of the LytTR family of proteins, plays a key role in controlling gene expression in some Gram-positive pathogens, including Staphylococcus aureus and Enterococcus faecalis. AgrA is encoded by the agrACDB global regulatory locus, and orthologues are found within the genome of most Clostridium difficile isolates, including the epidemic lineage 027/BI/NAP1. Comparative RNA sequencing of the wild type and otherwise isogenic agrA null mutant derivatives of C. difficile R20291 revealed a network of approximately 75 differentially regulated transcripts at late exponential growth phase, including many genes associated with flagellar assembly and function, such as the major structural subunit, FliC. Other differentially regulated genes include several involved in bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) synthesis and toxin A expression. C. difficile 027 R20291 agrA mutant derivatives were poorly flagellated and exhibited reduced levels of colonization and relapses in the murine infection model. Thus, the agr locus likely plays a contributory role in the fitness and virulence potential of C. difficile strains in the 027/BI/NAP1 lineage. PMID:23772065

  17. Antimicrobial resistance and virulence gene profiles in P. multocida strains isolated from cats

    PubMed Central

    Ferreira, Thais Sebastiana Porfida; Felizardo, Maria Roberta; de Gobbi, Debora Dirani Sena; Moreno, Marina; Moreno, Andrea Micke

    2015-01-01

    Cats are often described as carriers of Pasteurella multocida in their oral microbiota. This agent is thought to cause pneumonia, conjunctivitis, rhinitis, gingivostomatitis, abscess and osteonecrosis in cats. Human infection with P. multocida has been described in several cases affecting cat owners or after cat bites. In Brazil, the cat population is approximately 21 million animals and is increasing, but there are no studies of the presence of P. multocida in the feline population or of human cases of infection associated with cats. In this study, one hundred and ninety-one healthy cats from owners and shelters in São Paulo State, Brazil, were evaluated for the presence of P. multocida in their oral cavities. Twenty animals were positive for P. multocida , and forty-one strains were selected and characterized by means of biochemical tests and PCR. The P. multocida strains were tested for capsular type, virulence genes and resistance profile. A total of 75.6% (31/41) of isolates belonged to capsular type A, and 24.4% (10/41) of the isolates were untypeable. None of the strains harboured toxA, tbpA or pfhA genes. The frequencies of the other genes tested were variable, and the data generated were used to build a dendrogram showing the relatedness of strains, which were clustered according to origin. The most common resistance profile observed was against sulfizoxazole and trimethoprim-sulphamethoxazole. PMID:26221117

  18. Antimicrobial resistance and virulence gene profiles in P. multocida strains isolated from cats.

    PubMed

    Ferreira, Thais Sebastiana Porfida; Felizardo, Maria Roberta; de Gobbi, Debora Dirani Sena; Moreno, Marina; Moreno, Andrea Micke

    2015-03-01

    Cats are often described as carriers of Pasteurella multocida in their oral microbiota. This agent is thought to cause pneumonia, conjunctivitis, rhinitis, gingivostomatitis, abscess and osteonecrosis in cats. Human infection with P. multocida has been described in several cases affecting cat owners or after cat bites. In Brazil, the cat population is approximately 21 million animals and is increasing, but there are no studies of the presence of P. multocida in the feline population or of human cases of infection associated with cats. In this study, one hundred and ninety-one healthy cats from owners and shelters in São Paulo State, Brazil, were evaluated for the presence of P. multocida in their oral cavities. Twenty animals were positive for P. multocida , and forty-one strains were selected and characterized by means of biochemical tests and PCR. The P. multocida strains were tested for capsular type, virulence genes and resistance profile. A total of 75.6% (31/41) of isolates belonged to capsular type A, and 24.4% (10/41) of the isolates were untypeable. None of the strains harboured toxA, tbpA or pfhA genes. The frequencies of the other genes tested were variable, and the data generated were used to build a dendrogram showing the relatedness of strains, which were clustered according to origin. The most common resistance profile observed was against sulfizoxazole and trimethoprim-sulphamethoxazole.

  19. Virulence Genes and Antimicrobial Resistance Profiles of Pasteurella multocida Strains Isolated from Rabbits in Brazil

    PubMed Central

    Ferreira, Thais Sebastiana Porfida; Felizardo, Maria Roberta; Sena de Gobbi, Débora Dirani; Gomes, Cleise Ribeiro; Nogueira Filsner, Pedro Henrique de Lima; Moreno, Marina; Paixão, Renata; Pereira, Jucélia de Jesus; Micke Moreno, Andrea

    2012-01-01

    Pasteurella multocida is responsible for a wide range of diseases in domestic animals. In rabbits, the agent is related to nasal discharge, pneumonia, otitis media, pyometra, orchitis, abscess, and septicemia. One hundred and forty rabbits with respiratory diseases from four rabbitries in São Paulo State, Brazil were evaluated for the detection of P. multocida in their nasal cavities. A total of twenty-nine animals were positive to P. multocida isolation, and 46 strains were selected and characterized by means of biochemical tests and PCR. P. multocida strains were tested for capsular type, virulence genes, and resistance profile. A total of 45.6% (21/46) of isolates belonged to capsular type A, and 54.34% (25/46) of the isolates were untypeable. None of the strains harboured toxA or pfhA genes. The frequency of the other twenty genes tested was variable, and the data generated was used to build a dendrogram, showing the relatedness of strains, which were clustered according to origin. Resistance revealed to be more common against sulfonamides and cotrimoxazole, followed by erythromycin, penicillin, and amoxicillin. PMID:22919347

  20. Comparative genomic analysis of Brucella abortus vaccine strain 104M reveals a set of candidate genes associated with its virulence attenuation.

    PubMed

    Yu, Dong; Hui, Yiming; Zai, Xiaodong; Xu, Junjie; Liang, Long; Wang, Bingxiang; Yue, Junjie; Li, Shanhu

    2015-01-01

    The Brucella abortus strain 104M, a spontaneously attenuated strain, has been used as a vaccine strain in humans against brucellosis for 6 decades in China. Despite many studies, the molecular mechanisms that cause the attenuation are still unclear. Here, we determined the whole-genome sequence of 104M and conducted a comprehensive comparative analysis against the whole genome sequences of the virulent strain, A13334, and other reference strains. This analysis revealed a highly similar genome structure between 104M and A13334. The further comparative genomic analysis between 104M and A13334 revealed a set of genes missing in 104M. Some of these genes were identified to be directly or indirectly associated with virulence. Similarly, a set of mutations in the virulence-related genes was also identified, which may be related to virulence alteration. This study provides a set of candidate genes associated with virulence attenuation in B.abortus vaccine strain 104M.

  1. Effects of partial deletion of the wzm and wzt genes on lipopolysaccharide synthesis and virulence of Brucella abortus S19.

    PubMed

    Wang, Xiuran; Wang, Lin; Lu, Tiancheng; Yang, Yanling; Chen, Si; Zhang, Rui; Lang, Xulong; Yan, Guangmou; Qian, Jing; Wang, Xiaoxu; Meng, Lingyi; Wang, Xinglong

    2014-06-01

    Brucellosis is a worldwide human and animal infectious disease, and the effective methods of its control are immunisation of animals by vaccination and elimination. Brucella abortus S19 is one of the popular vaccines with virulence in the control of cattle Brucellosis. In the present study, allelic exchange plasmids of wzm and wzt genes and partial knockout mutants of wzm and wzt were constructed to evaluate the resulting difference in virulence of B. abortus S19. PCR analysis revealed that the target genes were knocked out. The mutants were rough mutants and they could be differentiated from natural infection by the Rose Bengal plate and standard agglutination tests. The molecular weights of lipopolysaccharides of the Δwzm and Δwzt mutants were clustered between 25 and 40 kDa, and 30 and 35 kDa separately, and were markedly different from those in B. abortus S19. The virulence of B. abortus Δwzm and Δwzt was decreased compared with that of B. abortus S19 in mice. All these results identified that there were several differences between the wzm and wzt genes on lipopolysaccharide synthesis and on the virulence of B. abortus.

  2. Significance of tagI and mfd genes in the virulence of non-typeable Haemophilus influenzae.

    PubMed

    Spricigo, Denis A; Cortés, Pilar; Moranta, David; Barbé, Jordi; Bengoechea, José Antonio; Lagostera, Montserrat

    2014-09-01

    Non-typeable Haemophilus influenzae (NTHi) is an opportunist pathogen well adapted to the human upper respiratory tract and responsible for many respiratory diseases. In the human airway, NTHi is exposed to pollutants, such as alkylating agents, that damage its DNA. In this study, we examined the significance of genes involved in the repair of DNA alkylation damage in NTHi virulence. Two knockout mutants, tagI and mfd, encoding N³-methyladenine-DNA glycosylase I and the key protein involved in transcription-coupled repair, respectively, were constructed and their virulence in a BALB/c mice model was examined. This work shows that N³-methyladenine-DNA glycosylase I is constitutively expressed in NTHi and that it is relevant for its virulence.

  3. Trichothecenes and aspinolides produced by Trichoderma arundinaceum regulate expression of Botrytis cinerea genes involved in virulence and growth.

    PubMed

    Malmierca, Mónica G; Izquierdo-Bueno, Inmaculada; McCormick, Susan P; Cardoza, Rosa E; Alexander, Nancy J; Barua, Javier; Lindo, Laura; Casquero, Pedro A; Collado, Isidro G; Monte, Enrique; Gutiérrez, Santiago

    2016-11-01

    Trichoderma arundinaceum (Ta37) and Botrytis cinerea (B05.10) produce the sesquiterpenoids harzianum A (HA) and botrydial (BOT), respectively. TaΔTri5, an HA non-producer mutant, produces high levels of the polyketide compounds aspinolides (Asp) B and C. We analyzed the role of HA and Asp in the B. cinerea-T. arundinaceum interaction, including changes in BOT production as well as transcriptomic changes of BcBOT genes involved in BOT biosynthesis, and also of genes associated with virulence and ergosterol biosynthesis. We found that exogenously added HA up-regulated the expression of the BcBOT and all the virulence genes analyzed when B. cinerea was grown alone. However, a decrease in the amount of BOT and a down-regulation of BcBOT gene expression was observed in the interaction zone of B05.10-Ta37 dual cultures, compared to TaΔTri5. Thus, the confrontation with T. arundinaceum results in an up-regulation of most of the B. cinerea genes involved in virulence yet the presence of T. arundinaceum secondary metabolites, HA and AspC, act separately and together to down-regulate the B. cinerea genes analyzed. The present work emphasizes the existence of a chemical cross-regulation between B. cinerea and T. arundinaceum and contributes to understanding how a biocontrol fungus and its prey interact with each other.

  4. Predicted highly expressed genes in Nocardia farcinica and the implication to its primary metabolism and nocardial virulence

    SciTech Connect

    Wu, Gang; Nie, Lei; Zhang, Weiwen

    2006-02-23

    Nocardia farcinica is a gram positive, filamentous bacterium, and is considered an opportunistic pathogen. In this study, the highly expressed genes in N. farcinica were predicted using the codon adaptation index (CAI) as a numerical estimator of gene expressivity. Using ribosomal protein (RP) genes as references, the top {approx}10% of the genes were predicted to be the predicted highly expressed (PHX) genes in N. farcinica using a CAI cutoff of greater than 0.73. Consistent with early analysis in Streptomyces genomes, most of the PHX genes in N. farcinica were involved in various ''house-keeping'' functions important for cell growth. However, fifteen genes putatively involved in no cardial virulence were predicted as PHX in N. farcinica, which included genes encoding four Mce virulence proteins, cyclopropane fatty acid synthase which is involved in the modification of cell wall important for nocardia virulence, polyketide synthase PKS13 for mycolic acid synthesis and non-ribosomal peptide synthetase involved in biosynthesis of a mycobactin-related siderophore. In addition, multiple genes involved in defense against reactive oxygen species (ROS) produced by the phagocyte were predicted with high expressivity, which included alkylhydroperoxide reductase (ahpC), catalase (katG), superoxide dismutase (sodF), thioredoxin, thioredoxin reductase, glutathione peroxidase, and peptide methionine sulfoxide reductase, suggesting that combating against ROS was essential for survival of N. farcinica in host cells. The study also showed that the distribution of PHX genes in the N. farcinica circular chromosome was uneven, with more PHX genes located in the regions close to replication initiation site. The results provided the first approximates of global gene expression patterns in N. farcinica, which will be useful in guiding experimental design for further investigation.

  5. Riemerella anatipestifer M949_1360 Gene Functions on the Lipopolysaccharide Biosynthesis and Bacterial Virulence

    PubMed Central

    Yu, Guijing; Wang, Xiaolan; Dou, Yafeng; Wang, Shaohui; Tian, Mingxing; Qi, Jingjing; Li, Tao; Ding, Chan; Wu, Yantao; Yu, Shengqing

    2016-01-01

    Riemerella anatipestifer causes septicemic and exudative diseases in poultry, resulting in major economic losses to the duck industry. Lipopolysaccharide (LPS), as an important virulence factor in Gram-negative bacteria, can be recognized by the immune system and plays a crucial role in many interactions between bacteria and animal hosts. In this study, we screened out one LPS defective mutant strain RAΔ604 from a random transposon mutant library of R. anatipestifer serotype 1 strain CH3, which did not react with the anti-CH3 LPS monoclonal antibody 1C1 in an indirect enzyme-linked immunosorbent assay. Southern blot analysis confirmed that the genome of RAΔ604 contained a single Tn4351 insert. Then, we found that the M949_1360 gene was inactivated by insertion of the transposon. Using silver staining and western blot analyses, we found that the LPS pattern of RAΔ604 was defective, as compared with that of the wild-type (WT) strain CH3. The mutant strain RAΔ604 showed no significant influence on bacterial growth, while bacterial counting and Live/dead BacLight Bacterial Viability staining revealed that bacterial viability was decreased, as compared with the WT strain CH3. In addition, the abilities of the mutant strain RAΔ604 to adhere and invade Vero cells were significantly decreased. Animal studies revealed that the virulence of the mutant strain RAΔ604 was decreased by more than 200-fold in a duck infection model, as compared with the WT strain CH3. Furthermore, immunization with live bacteria of the mutant strain RAΔ604 protected 87.5% ducks from challenge with R. anatipestifer serotype 1 strain WJ4, indicating that the mutant strain RAΔ604 could be used as a potential vaccine candidate in the future. PMID:27500736

  6. Norlichexanthone Reduces Virulence Gene Expression and Biofilm Formation in Staphylococcus aureus

    PubMed Central

    Bojer, Martin S.; Zhao, Yu; Friberg, Cathrine; Ifrah, Dan; Glasser Heede, Nina; Larsen, Thomas O.; Frøkiær, Hanne; Frees, Dorte; Zhang, Lixin; Dai, Huanqin

    2016-01-01

    Staphylococcus aureus is a serious human pathogen and antibiotic resistant, community-associated strains, such as the methicillin resistant S. aureus (MRSA) strain USA300, continue to spread. To avoid resistance, anti-virulence therapy has been proposed where toxicity is targeted rather than viability. Previously we have shown that norlichexanthone, a small non-reduced tricyclic polyketide produced by fungi and lichens, reduces expression of hla encoding α-hemolysin as well as the regulatory RNAIII of the agr quorum sensing system in S. aureus 8325–4. The aim of the present study was to further characterise the mode of action of norlichexanthone and its effect on biofilm formation. We find that norlichexanthone reduces expression of both hla and RNAIII also in strain USA300. Structurally, norlichexanthone resembles ω-hydroxyemodin that recently was shown to bind the agr two component response regulator, AgrA, which controls expression of RNAIII and the phenol soluble modulins responsible for human neutrophil killing. We show that norlichexanthone reduces S. aureus toxicity towards human neutrophils and interferes directly with AgrA binding to its DNA target. In contrast to ω-hydroxyemodin however, norlichexanthone reduces staphylococcal biofilm formation. Transcriptomic analysis revealed that genes regulated by the SaeRS two-component system are repressed by norlichexanthone when compared to untreated cells, an effect that was mitigated in strain Newman carrying a partially constitutive SaeRS system. Our data show that norlichexanthone treatment reduces expression of key virulence factors in CA-MRSA strain USA300 via AgrA binding and represses biofilm formation. PMID:28005941

  7. Gene expression profiling of the plant pathogenic basidiomycetous fungus Rhizoctonia solani AG 4 reveals putative virulence factors.

    PubMed

    Lakshman, Dilip K; Alkharouf, Nadim; Roberts, Daniel P; Natarajan, Savithiry S; Mitra, Amitava

    2012-01-01

    Rhizoctonia solani is a ubiquitous basidiomycetous soilborne fungal pathogen causing damping-off of seedlings, aerial blights and postharvest diseases. To gain insight into the molecular mechanisms of pathogenesis a global approach based on analysis of expressed sequence tags (ESTs) was undertaken. To get broad gene-expression coverage, two normalized EST libraries were developed from mycelia grown under high nitrogen-induced virulent and low nitrogen/methylglucose-induced hypovirulent conditions. A pilot-scale assessment of gene diversity was made from the sequence analyses of the two libraries. A total of 2280 cDNA clones was sequenced that corresponded to 220 unique sequence sets or clusters (contigs) and 805 singlets, making up a total of 1025 unique genes identified from the two virulence-differentiated cDNA libraries. From the total sequences, 295 genes (38.7%) exhibited strong similarities with genes in public databases and were categorized into 11 functional groups. Approximately 61.3% of the R. solani ESTs have no apparent homologs in publicly available fungal genome databases and are considered unique genes. We have identified several cDNAs with potential roles in fungal pathogenicity, virulence, signal transduction, vegetative incompatibility and mating, drug resistance, lignin degradation, bioremediation and morphological differentiation. A codon-usage table has been formulated based on 14694 R. solani EST codons. Further analysis of ESTs might provide insights into virulence mechanisms of R. solani AG 4 as well as roles of these genes in development, saprophytic colonization and ecological adaptation of this important fungal plant pathogen.

  8. The TIR Homologue Lies near Resistance Genes in Staphylococcus aureus, Coupling Modulation of Virulence and Antimicrobial Susceptibility

    PubMed Central

    Patot, Sabine; RC Imbert, Paul; Baude, Jessica; Martins Simões, Patricia; Campergue, Jean-Baptiste; Louche, Arthur; Bès, Michèle; Tristan, Anne; Laurent, Frédéric; Fischer, Adrien; Schrenzel, Jacques; François, Patrice; Lina, Gérard

    2017-01-01

    Toll/interleukin-1 receptor (TIR) domains in Toll-like receptors are essential for initiating and propagating the eukaryotic innate immune signaling cascade. Here, we investigate TirS, a Staphylococcus aureus TIR mimic that is part of a novel bacterial invasion mechanism. Its ectopic expression in eukaryotic cells inhibited TLR signaling, downregulating the NF-kB pathway through inhibition of TLR2, TLR4, TLR5, and TLR9. Skin lesions induced by the S. aureus knockout tirS mutant increased in a mouse model compared with wild-type and restored strains even though the tirS-mutant and wild-type strains did not differ in bacterial load. TirS also was associated with lower neutrophil and macrophage activity, confirming a central role in virulence attenuation through local inflammatory responses. TirS invariably localizes within the staphylococcal chromosomal cassettes (SCC) containing the fusC gene for fusidic acid resistance but not always carrying the mecA gene. Of note, sub-inhibitory concentration of fusidic acid increased tirS expression. Epidemiological studies identified no link between this effector and clinical presentation but showed a selective advantage with a SCCmec element with SCC fusC/tirS. Thus, two key traits determining the success and spread of bacterial infections are linked. PMID:28060920

  9. The TIR Homologue Lies near Resistance Genes in Staphylococcus aureus, Coupling Modulation of Virulence and Antimicrobial Susceptibility.

    PubMed

    Patot, Sabine; Rc Imbert, Paul; Baude, Jessica; Martins Simões, Patricia; Campergue, Jean-Baptiste; Louche, Arthur; Nijland, Reindert; Bès, Michèle; Tristan, Anne; Laurent, Frédéric; Fischer, Adrien; Schrenzel, Jacques; Vandenesch, François; P Salcedo, Suzana; François, Patrice; Lina, Gérard

    2017-01-01

    Toll/interleukin-1 receptor (TIR) domains in Toll-like receptors are essential for initiating and propagating the eukaryotic innate immune signaling cascade. Here, we investigate TirS, a Staphylococcus aureus TIR mimic that is part of a novel bacterial invasion mechanism. Its ectopic expression in eukaryotic cells inhibited TLR signaling, downregulating the NF-kB pathway through inhibition of TLR2, TLR4, TLR5, and TLR9. Skin lesions induced by the S. aureus knockout tirS mutant increased in a mouse model compared with wild-type and restored strains even though the tirS-mutant and wild-type strains did not differ in bacterial load. TirS also was associated with lower neutrophil and macrophage activity, confirming a central role in virulence attenuation through local inflammatory responses. TirS invariably localizes within the staphylococcal chromosomal cassettes (SCC) containing the fusC gene for fusidic acid resistance but not always carrying the mecA gene. Of note, sub-inhibitory concentration of fusidic acid increased tirS expression. Epidemiological studies identified no link between this effector and clinical presentation but showed a selective advantage with a SCCmec element with SCC fusC/tirS. Thus, two key traits determining the success and spread of bacterial infections are linked.

  10. Virulence genes and genetic relationship of L. monocytogenes isolated from human and food sources in Brazil.

    PubMed

    Almeida, Rosana Macedo de; Barbosa, André Victor; Lisbôa, Rodrigo de Castro; Santos, André Felipe das Mercês; Hofer, Ernesto; Vallim, Deyse Christina; Hofer, Cristina Barroso

    2017-03-05

    The herein presented assay provided a bacteriological and molecular characterization of 100 samples of L. monocytogenes isolated from human (43) and food (57) sources, from several regions of Brazil, and collected between 1975 and 2013. Antigenic characterization defined 49% of serotype 4b samples, followed by 28% of serotype 1/2b, 14% of serotype 1/2c, 8% of serotype 1/2a, and 1% of serotype 3b. Both type of samples from human and food origin express the same serotype distribution. Multiplex PCR analysis showed 13 strains of type 4b with the amplification profile 4b-VI (Variant I). Virulence genes hly, inlA, inlB, inlC, inlJ, actA, plcA, and prfA were detected in all samples, highlighting a deletion of 105pb on the actA gene in 23% of serotype 4b samples. Macrorestriction profile with ApaI at PFGE showed 55 pulsotypes, with the occurrence of the same pulsotype in hospitalized patients in São Paulo in 1992 and 1997, and two other highly related pulsotypes in patients hospitalized in Rio de Janeiro in 2008. Recognized pulsotypes in listeriosis cases have also been detected in food. Thus, the prevalence of a serotype and the persistence of certain pulsotypes herald future problems.

  11. Natural Variation in the VELVET Gene bcvel1 Affects Virulence and Light-Dependent Differentiation in Botrytis cinerea

    PubMed Central

    Schumacher, Julia; Pradier, Jean-Marc; Simon, Adeline; Traeger, Stefanie; Moraga, Javier; Collado, Isidro González; Viaud, Muriel; Tudzynski, Bettina

    2012-01-01

    Botrytis cinerea is an aggressive plant pathogen causing gray mold disease on various plant species. In this study, we identified the genetic origin for significantly differing phenotypes of the two sequenced B. cinerea isolates, B05.10 and T4, with regard to light-dependent differentiation, oxalic acid (OA) formation and virulence. By conducting a map-based cloning approach we identified a single nucleotide polymorphism (SNP) in an open reading frame encoding a VELVET gene (bcvel1). The SNP in isolate T4 results in a truncated protein that is predominantly found in the cytosol in contrast to the full-length protein of isolate B05.10 that accumulates in the nuclei. Deletion of the full-length gene in B05.10 resulted in the T4 phenotype, namely light-independent conidiation, loss of sclerotial development and oxalic acid production, and reduced virulence on several host plants. These findings indicate that the identified SNP represents a loss-of-function mutation of bcvel1. In accordance, the expression of the B05.10 copy in T4 rescued the wild-type/B05.10 phenotype. BcVEL1 is crucial for full virulence as deletion mutants are significantly hampered in killing and decomposing plant tissues. However, the production of the two best known secondary metabolites, the phytotoxins botcinic acid and botrydial, are not affected by the deletion of bcvel1 indicating that other factors are responsible for reduced virulence. Genome-wide expression analyses of B05.10- and Δbcvel1-infected plant material revealed a number of genes differentially expressed in the mutant: while several protease- encoding genes are under-expressed in Δbcvel1 compared to the wild type, the group of over-expressed genes is enriched for genes encoding sugar, amino acid and ammonium transporters and glycoside hydrolases reflecting the response of Δbcvel1 mutants to nutrient starvation conditions. PMID:23118899

  12. Identifying Virulence-Associated Genes Using Transcriptomic and Proteomic Association Analyses of the Plant Parasitic Nematode Bursaphelenchus mucronatus

    PubMed Central

    Zhou, Lifeng; Chen, Fengmao; Pan, Hongyang; Ye, Jianren; Dong, Xuejiao; Li, Chunyan; Lin, Fengling

    2016-01-01

    Bursaphelenchus mucronatus (B. mucronatus) isolates that originate from different regions may vary in their virulence, but their virulence-associated genes and proteins are poorly understood. Thus, we conducted an integrated study coupling RNA-Seq and isobaric tags for relative and absolute quantitation (iTRAQ) to analyse transcriptomic and proteomic data of highly and weakly virulent B. mucronatus isolates during the pathogenic processes. Approximately 40,000 annotated unigenes and 5000 proteins were gained from the isolates. When we matched all of the proteins with their detected transcripts, a low correlation coefficient of r = 0.138 was found, indicating probable post-transcriptional gene regulation involved in the pathogenic processes. A functional analysis showed that five differentially expressed proteins which were all highly expressed in the highly virulent isolate were involved in the pathogenic processes of nematodes. Peroxiredoxin, fatty acid- and retinol-binding protein, and glutathione peroxidase relate to resistance against plant defence responses, while β-1,4-endoglucanase and expansin are associated with the breakdown of plant cell walls. Thus, the pathogenesis of B. mucronatus depends on its successful survival in host plants. Our work adds to the understanding of B. mucronatus’ pathogenesis, and will aid in controlling B. mucronatus and other pinewood nematode species complexes in the future. PMID:27618012

  13. Blocking two-component signalling enhances Candida albicans virulence and reveals adaptive mechanisms that counteract sustained SAPK activation

    PubMed Central

    Ikeh, Mélanie A. C.; Haider, Mohammed; Brown, Alistair J. P.; Morgan, Brian A.; Erwig, Lars P.; Quinn, Janet

    2017-01-01

    The Ypd1 phosphorelay protein is a central constituent of fungal two-component signal transduction pathways. Inhibition of Ypd1 in Saccharomyces cerevisiae and Cryptococcus neoformans is lethal due to the sustained activation of the ‘p38-related’ Hog1 stress-activated protein kinase (SAPK). As two-component signalling proteins are not found in animals, Ypd1 is considered to be a prime antifungal target. However, a major fungal pathogen of humans, Candida albicans, can survive the concomitant sustained activation of Hog1 that occurs in cells lacking YPD1. Here we show that the sustained activation of Hog1 upon Ypd1 loss is mediated through the Ssk1 response regulator. Moreover, we present evidence that C. albicans survives SAPK activation in the short-term, following Ypd1 loss, by triggering the induction of protein tyrosine phosphatase-encoding genes which prevent the accumulation of lethal levels of phosphorylated Hog1. In addition, our studies reveal an unpredicted, reversible, mechanism that acts to substantially reduce the levels of phosphorylated Hog1 in ypd1Δ cells following long-term sustained SAPK activation. Indeed, over time, ypd1Δ cells become phenotypically indistinguishable from wild-type cells. Importantly, we also find that drug-induced down-regulation of YPD1 expression actually enhances the virulence of C. albicans in two distinct animal infection models. Investigating the underlying causes of this increased virulence, revealed that drug-mediated repression of YPD1 expression promotes hyphal growth both within murine kidneys, and following phagocytosis, thus increasing the efficacy by which C. albicans kills macrophages. Taken together, these findings challenge the targeting of Ypd1 proteins as a general antifungal strategy and reveal novel cellular adaptation mechanisms to sustained SAPK activation. PMID:28135328

  14. Metabolic activity, urease production, antibiotic resistance and virulence in dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus

    PubMed Central

    Vandecandelaere, Ilse; Van Nieuwerburgh, Filip; Deforce, Dieter

    2017-01-01

    In this paper, the metabolic activity in single and dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus isolates was investigated. Our results demonstrated that there was less metabolic activity in dual species biofilms compared to S. aureus biofilms. However, this was not observed if S. aureus and S. epidermidis were obtained from the same sample. The largest effect on metabolic activity was observed in biofilms of S. aureus Mu50 and S. epidermidis ET-024. A transcriptomic analysis of these dual species biofilms showed that urease genes and genes encoding proteins involved in metabolism were downregulated in comparison to monospecies biofilms. These results were subsequently confirmed by phenotypic assays. As metabolic activity is related to acid production, the pH in dual species biofilms was slightly higher compared to S. aureus Mu50 biofilms. Our results showed that S. epidermidis ET-024 in dual species biofilms inhibits metabolic activity of S. aureus Mu50, leading to less acid production. As a consequence, less urease activity is required to compensate for low pH. Importantly, this effect was biofilm-specific. Also S. aureus Mu50 genes encoding virulence-associated proteins (Spa, SplF and Dps) were upregulated in dual species biofilms compared to monospecies biofilms and using Caenorhabditis elegans infection assays, we demonstrated that more nematodes survived when co-infected with S. epidermidis ET-024 and S. aureus mutants lacking functional spa, splF or dps genes, compared to nematodes infected with S. epidermidis ET-024 and wild- type S. aureus. Finally, S. epidermidis ET-024 genes encoding resistance to oxacillin, erythromycin and tobramycin were upregulated in dual species biofilms and increased resistance was subsequently confirmed. Our data indicate that both species in dual species biofilms of S. epidermidis and S. aureus influence each other’s behavior, but additional studies are required necessary to elucidate the exact

  15. Metabolic activity, urease production, antibiotic resistance and virulence in dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus.

    PubMed

    Vandecandelaere, Ilse; Van Nieuwerburgh, Filip; Deforce, Dieter; Coenye, Tom

    2017-01-01

    In this paper, the metabolic activity in single and dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus isolates was investigated. Our results demonstrated that there was less metabolic activity in dual species biofilms compared to S. aureus biofilms. However, this was not observed if S. aureus and S. epidermidis were obtained from the same sample. The largest effect on metabolic activity was observed in biofilms of S. aureus Mu50 and S. epidermidis ET-024. A transcriptomic analysis of these dual species biofilms showed that urease genes and genes encoding proteins involved in metabolism were downregulated in comparison to monospecies biofilms. These results were subsequently confirmed by phenotypic assays. As metabolic activity is related to acid production, the pH in dual species biofilms was slightly higher compared to S. aureus Mu50 biofilms. Our results showed that S. epidermidis ET-024 in dual species biofilms inhibits metabolic activity of S. aureus Mu50, leading to less acid production. As a consequence, less urease activity is required to compensate for low pH. Importantly, this effect was biofilm-specific. Also S. aureus Mu50 genes encoding virulence-associated proteins (Spa, SplF and Dps) were upregulated in dual species biofilms compared to monospecies biofilms and using Caenorhabditis elegans infection assays, we demonstrated that more nematodes survived when co-infected with S. epidermidis ET-024 and S. aureus mutants lacking functional spa, splF or dps genes, compared to nematodes infected with S. epidermidis ET-024 and wild- type S. aureus. Finally, S. epidermidis ET-024 genes encoding resistance to oxacillin, erythromycin and tobramycin were upregulated in dual species biofilms and increased resistance was subsequently confirmed. Our data indicate that both species in dual species biofilms of S. epidermidis and S. aureus influence each other's behavior, but additional studies are required necessary to elucidate the exact

  16. Impact of UV and peracetic acid disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli in wastewater effluents.

    PubMed

    Biswal, Basanta Kumar; Khairallah, Ramzi; Bibi, Kareem; Mazza, Alberto; Gehr, Ronald; Masson, Luke; Frigon, Dominic

    2014-06-01

    Wastewater discharges may increase the populations of pathogens, including Escherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli (UPEC), the most abundant E. coli pathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766 E. coli isolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm(2) and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.

  17. Salmonella enterica virulence genes are required for bacterial attachment to plant tissue.

    PubMed

    Barak, Jeri D; Gorski, Lisa; Naraghi-Arani, Pejman; Charkowski, Amy O

    2005-10-01

    Numerous Salmonella enterica food-borne illness outbreaks have been associated with contaminated vegetables, in particular sprouted seeds, and the incidence of reported contamination has steadily risen. In order to understand the physiology of S. enterica serovar Newport on plants, a screen was developed to identify transposon mutants that were defective in attachment to alfalfa sprouts. Twenty independent mutants from a pool of 6,000 were selected for reduced adherence to alfalfa sprouts. Sixty-five percentage of these mutants had insertions in uncharacterized genes. Among the characterized genes were strains with insertions in the intergenic region between agfB, the surface-exposed aggregative fimbria (curli) nucleator, and agfD, a transcriptional regulator of the LuxR superfamily, and rpoS, the stationary-phase sigma factor. Both AgfD and RpoS have been reported to regulate curli and cellulose production and RpoS regulates other adhesins such as pili. The intergenic and rpoS mutants were reduced in initial attachment to alfalfa sprouts by 1 log unit compared to the wild type. Mutations of agfA, curli subunit, and agfB in S. enterica serovar Enteritidis differentially affected attachment to plant tissue. The agfA mutation was not reduced in ability to attach to or colonize alfalfa sprouts, whereas the agfB mutation was reduced. Thus, agfB alone can play a role in attachment of S. enterica to plant tissue. These results reveal that S. enterica genes important for virulence in animal systems are also required for colonization of plants, a secondary host that can serve as a vector of S. enterica from animal to animal.

  18. Core-Gene-Encoded Peptide Regulating Virulence-Associated Traits in Streptococcus mutans

    PubMed Central

    Kim, Jeong Nam; Stanhope, Michael J.

    2013-01-01

    Recently, high-coverage genome sequence of 57 isolates of Streptococcus mutans, the primary etiological agent of human dental caries, was completed. The SMU.1147 gene, encoding a 61-amino-acid (61-aa) peptide, was present in all sequenced strains of S. mutans but absent in all bacteria in current databases. Reverse transcription-PCR revealed that SMU.1147 is cotranscribed with scnK and scnR, which encode the histidine kinase and response regulator, respectively, of a two-component system (TCS). The C terminus of the SMU.1147 gene product was tagged with a FLAG epitope and shown to be expressed in S. mutans by Western blotting with an anti-FLAG antibody. A nonpolar mutant of SMU.1147 formed less biofilm in glucose-containing medium and grew slower than did the wild-type strain under aerobic and anaerobic conditions, at low pH, or in the presence of H2O2. Mutation of SMU.1147 dramatically reduced genetic competence and expression of comX and comY, compared to S. mutans UA159. The competence defect of the SMU.1147 mutant could not be overcome by addition of sigX-inducing peptide (XIP) in defined medium or by competence-stimulating peptide (CSP) in complex medium. Complementation with SMU.1147 on a plasmid restored all phenotypes. Interestingly, mutants lacking either one of the TCS components and a mutant lacking all three genes behaved like the wild-type strain for all phenotypes mentioned above, but all mutant strains grew slower than UA159 in medium supplemented with 0.3 M NaCl. Thus, the SMU.1147-encoded peptide affects virulence-related traits and dominantly controls quorum-sensing pathways for development of genetic competence in S. mutans. PMID:23603743

  19. CcpA and LacD.1 Affect Temporal Regulation of Streptococcus pyogenes Virulence Genes ▿ †

    PubMed Central

    Kietzman, Colin C.; Caparon, Michael G.

    2010-01-01

    Production of H2O2 follows a growth phase-dependent pattern that mimics that of many virulence factors of Streptococcus pyogenes. To gain greater insight into mechanisms coupling virulence factor expression to growth phase, we investigated the molecular basis for H2O2 generation and its regulation. Deletion of the gene encoding lactate oxidase (lctO) or culture in the presence of glucose eliminated H2O2 production, implicating carbohydrate regulation of lctO as a key element of growth phase control. In examining known carbohydrate-responsive regulators, deletion of the gene encoding CcpA but not that encoding LacD.1 resulted in both derepression and an uncoupling of lctO transcription from its growth phase pattern. Expanding this analysis to additional virulence factors demonstrated both negative (cfa, encoding CAMP factor) and positive (speB, encoding a cysteine protease) regulation by CcpA and that CcpA mutants were highly cytotoxic for cultured macrophages. This latter property resulted from enhanced transcription of the streptolysin S biogenesis operon. Examination of CcpA-promoter interactions using a DNA pull-down assay mimicking physiological conditions showed direct binding to the promoters of lctO and speB but not those of sagA. CcpA but not LacD.1 mutants were attenuated in a murine model of soft-tissue infection, and analysis of gene expression in infected tissue indicated that CcpA mutants had altered expression of lctO, cfa, and speB but not the indirectly regulated sagA gene. Taken together, these data show that CcpA regulates virulence genes via at least three distinct mechanisms and that disruption of growth phase regulation alters transcriptional patterns in infected tissues. PMID:19841076

  20. AlgU controls expression of virulence genes in Pseudomonas syringae pv. tomato DC3000

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant pathogenic bacteria are able to integrate information about their environment and adjust gene expression to provide adaptive functions. AlgU, an ECF sigma factor encoded by Pseudomonas syringae, controls expression of genes for alginate biosynthesis and is active while the bacteria are associa...

  1. Identification of Phakopsora pachyrhizi Candidate Effectors with Virulence Activity in a Distantly Related Pathosystem

    PubMed Central

    Kunjeti, Sridhara G.; Iyer, Geeta; Johnson, Ebony; Li, Eric; Broglie, Karen E.; Rauscher, Gilda; Rairdan, Gregory J.

    2016-01-01

    Phakopsora pachyrhizi is the causal agent of Asian Soybean Rust, a disease that causes enormous economic losses, most markedly in South America. P. pachyrhizi is a biotrophic pathogen that utilizes specialized feeding structures called haustoria to colonize its hosts. In rusts and other filamentous plant pathogens, haustoria have been shown to secrete effector proteins into their hosts to permit successful completion of their life cycle. We have constructed a cDNA library from P. pachyrhizi haustoria using paramagnetic bead-based methodology and have identified 35 P. pachyrhizi candidate effector (CE) genes from this library which are described here. In addition, we quantified the transcript expression pattern of six of these genes and show that two of these CEs are able to greatly increase the susceptibility of Nicotiana benthamiana to Phytophthora infestans. This strongly suggests that these genes play an important role in P. pachyrhizi virulence on its hosts. PMID:27014295

  2. The discovery of the virulence gene ToxA in the wheat and barley pathogen Bipolaris sorokiniana.

    PubMed

    McDonald, Megan C; Ahren, Dag; Simpfendorfer, Steven; Milgate, Andrew; Solomon, Peter S

    2017-01-17

    Bipolaris sorokiniana is the causal agent of multiple diseases on wheat and barley and is the primary constraint to cereal production throughout South Asia. Despite its significance, the molecular basis of disease is poorly understood. To address this, the genomes of three Australian isolates of B. sorokiniana were sequenced and screened for known pathogenicity genes. Sequence analysis revealed that the isolate BRIP10943 harboured the ToxA gene, which has been associated previously with disease in the wheat pathogens Parastagonospora nodorum and Pyrenophora tritici-repentis. Analysis of the regions flanking ToxA within B. sorokiniana revealed that it was embedded within a 12-kb genomic element nearly identical to the corresponding regions in P. nodorum and P. tritici-repentis. A screen of 35 Australian B. sorokiniana isolates confirmed that ToxA was present in 12 isolates. Sequencing of the ToxA genes within these isolates revealed two haplotypes, which differed by a single non-synonymous nucleotide substitution. Pathogenicity assays showed that a B. sorokiniana isolate harbouring ToxA was more virulent on wheat lines that contained the sensitivity gene when compared with a non-ToxA isolate. This work demonstrates that proteins that confer host-specific virulence can be horizontally acquired across multiple species. This acquisition can dramatically increase the virulence of pathogenic strains on susceptible cultivars, which, in an agricultural setting, can have devastating economic and social impacts.

  3. Inactivation of the ABC transporter ATPase gene in Brucella abortus strain 2308 attenuated the virulence of the bacteria.

    PubMed

    Zhang, Min; Han, Xiangan; Liu, Haiwen; Tian, Mingxing; Ding, Chan; Song, Jun; Sun, Xiaoqing; Liu, Zongping; Yu, Shengqing

    2013-06-28

    Brucella abortus is a Gram-negative, facultative intracellular bacterial pathogen of human and other animals. Brucella lipopolysaccharide has been identified as an important virulence factor. In this study, the ABC transporter ATPase gene (BAB1_0542) of B. abortus strain S2308 was inactivated by deleting a 446-bp fragment from the gene, thereby generating the mutant strain, S2308ΔATP. Real time PCR analysis confirmed the inactivation of this gene with no polar effect on the transcription of adjacent genes on the chromosome. The mutant was identified as a rough phenotype strain using heat agglutination test and crystal violet staining. The mutant strain had a different growth rate in Tryptic Soy Broth (TSB), compared to the wild type S2308 strain. Moreover, the mutant strain showed attenuated virulence in vitro and in vivo in RAW264.7 macrophages and Balb/c mice, respectively. Complementation of the mutant strain recovered the smooth phenotype of the bacteria and the complemented strain C2308ΔATP survived for more than four weeks in Balb/c mice, comparable to wild type strain S2308. Furthermore, immunization with the mutant strain protected mice from virulent strain challenge, which suggests the potential for the mutant strain S2308ΔATP as a future vaccine candidate. MHC I, MHC II and co-stimulatory molecule expression levels in mice following infection of S2308ΔATP and S2308 were also investigated.

  4. [NP gene of pandemic H1N1 virus attenuates virulence of mouse-adapted human influenza virus].

    PubMed

    Zhirnov, O P; Syrtsev, V V; Schwalm, F; Klenk, H D

    2011-01-01

    The authors studied a possible role of the caspase cleavage motif located in the nucleoprotein (NP) of pandemic influenza virus H1N1 in the regulation of viral virulence properties. A reverse genetics method was used to obtain chimeric seasonal-like mouse-adapted influenza virus hvA/PE/8/34 (H1N10) carrying either the NP gene of wild type pandemic virus with incomplete caspase motif ETGC or mutated pandemic NP with natural caspase cleavage site of human type ETDG. The wild-type NP gene of the pandemic virus was found to poorly fit to the gene pattern of closely related seasonal-like hvA/PR/8/34 virus (H1N1) and did not rescue mature virus production whereas a mutated NP with human-type caspase cleavage site maintained gene fitness, giving rise to a chimeric virus. The generated chimeric virus hvA/PR/8/34 carrying the mutated pandemic NP successfully replicated in the murine lung, but was attenuated and did not reach the virulence level of seasonal-like mouse-adapted virus hvA/PR/8/34. The findings indicate that the NP caspase cleavage site plays a role in viral adaptation and viral virulence in mammals.

  5. Subinhibitory Concentrations of Perilla Oil Affect the Expression of Secreted Virulence Factor Genes in Staphylococcus aureus

    PubMed Central

    Luo, Mingjing; Li, Hongen; Dong, Jing; Wang, Jianfeng; Leng, Bingfeng; Wang, Xiaoliang; Feng, Haihua; Ren, Wenzhi; Deng, Xuming

    2011-01-01

    Background The pathogenicity of staphylococcus aureus is dependent largely upon its ability to secrete a number of virulence factors, therefore, anti-virulence strategy to combat S. aureus-mediated infections is now gaining great interest. It is widely recognized that some plant essential oils could affect the production of staphylococcal exotoxins when used at subinhibitory concentrations. Perilla [Perilla frutescens (L.) Britton], a natural medicine found in eastern Asia, is primarily used as both a medicinal and culinary herb. Its essential oil (perilla oil) has been previously demonstrated to be active against S. aureus. However, there are no data on the influence of perilla oil on the production of S. aureus exotoxins. Methodology/Principal Findings A broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) of perilla oil against S. aureus strains. Hemolysis, tumour necrosis factor (TNF) release, Western blot, and real-time RT-PCR assays were performed to evaluate the effects of subinhibitory concentrations of perilla oil on exotoxins production in S. aureus. The data presented here show that perilla oil dose-dependently decreased the production of α-toxin, enterotoxins A and B (the major staphylococcal enterotoxins), and toxic shock syndrome toxin 1 (TSST-1) in both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). Conclusions/Significance The production of α-toxin, SEA, SEB, and TSST-1 in S. aureus was decreased by perilla oil. These data suggest that perilla oil may be useful for the treatment of S. aureus infections when used in combination with β-lactam antibiotics, which can increase exotoxins production by S. aureus at subinhibitory concentrations. Furthermore, perilla oil could be rationally applied in food systems as a novel food preservative both to inhibit the growth of S. aureus and to repress the production of exotoxins, particularly staphylococcal enterotoxins. PMID:21283822

  6. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity

    DOE PAGES

    Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.; ...

    2014-12-30

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His → Asp) and phosphoablative (His → Ala) aminomore » acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (1) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (2) phosphorylation of H379 in PRD2 disrupts dimer formation. In conclusion, the AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.« less

  7. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity

    SciTech Connect

    Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M.

    2014-12-30

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His → Asp) and phosphoablative (His → Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (1) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (2) phosphorylation of H379 in PRD2 disrupts dimer formation. In conclusion, the AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.

  8. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity.

    PubMed

    Hammerstrom, Troy G; Horton, Lori B; Swick, Michelle C; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M

    2015-02-01

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthetic operon. AtxA activity is elevated during growth in media containing glucose and CO(2)/bicarbonate, and there is a positive correlation between the CO(2)/bicarbonate signal, AtxA activity and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His→Asp) and phosphoablative (His→Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (i) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (ii) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator, and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.

  9. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence.

    PubMed Central

    Hube, B; Sanglard, D; Odds, F C; Hess, D; Monod, M; Schäfer, W; Brown, A J; Gow, N A

    1997-01-01

    Secreted aspartyl proteinases (Saps), encoded by a gene family with at least nine members (SAP1 to SAP9), are one of the most discussed virulence factors produced by the human pathogen Candida albicans. In order to study the role of each Sap isoenzyme in pathogenicity, we have constructed strains which harbor mutations at selected SAP genes. SAP1, SAP2, and SAP3, which are regulated differentially in vitro, were mutated by targeted gene disruption. The growth rates of all homozygous null mutants were similar to those of the isogenic wild-type parental strain (SC5314) in complex and defined media. In medium with protein as the sole source of nitrogen, sap1 and sap3 mutants grew with reduced growth rates but reached optical densities similar to those measured for SC5314. In contrast, sap2 null mutants tended to clump, grew poorly in this medium, and produced the lowest proteolytic activity. Addition of ammonium ions reversed such growth defects. These results support the view that Sap2 is the dominant isoenzyme. When sap1, sap2, and sap3 mutants were injected intravenously in guinea pigs and mice, the animals had increased survival rates compared to those of control animals infected with SC5314. However, reduction of proteolytic activity in vitro did not correlate directly with the extent of attenuation of virulence observed for all Sap-deficient mutants. These data suggest that SAP1, SAP2, and SAP3 all contribute to the overall virulence of C. albicans and presumably all play important roles during disseminated infections. PMID:9284116

  10. Virulence deficiency caused by a transposon insertion in the purH gene of Xanthomonas oryzae pv. oryzae.

    PubMed

    Chatterjee, Subhadeep; Sonti, Ramesh V

    2005-07-01

    Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, a serious disease of rice. We have identified a Tn5-induced virulence-deficient mutant (BXO1704) of X. oryzae pv. oryzae. The BXO1704 mutant exhibited growth deficiency in minimal medium but was proficient in inducing a hypersensitive response in a non-host tomato plant. Sequence analysis of the chromosomal DNA flanking the Tn5 insertion indicated that the Tn5 insertion is in the purH gene, which is highly homologous to purH genes of other closely related plant pathogenic bacteria Xanthomonas axonopodis pv. citri and Xanthomonas campestris pv. campestris. Purine supplementation reversed the growth deficiency of BXO1704 in minimal medium. These results suggest that the virulence deficiency of BXO1704 may be due to the inability to use sufficient purine in the host.

  11. A gene cluster required for coordinated biosynthesis of lipopolysaccharide and extracellular polysaccharide also affects virulence of Pseudomonas solanacearum.

    PubMed Central

    Kao, C C; Sequeira, L

    1991-01-01

    Bacterial cell surface components can be important determinants of virulence. At least three gene clusters important for extracellular polysaccharide (EPS) biosynthesis have been previously identified in the plant pathogen Pseudomonas solanacearum. We have found that one of these gene clusters, named ops, is also required for lipopolysaccharide (LPS) biosynthesis. Mutations in any complementation unit of this cluster decreased EPS production, prevented the binding of an LPS-specific phage, and altered the mobility of purified LPS in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, restoration of LPS biosynthesis alone was not sufficient to restore virulence to the wild-type level, suggesting that EPS is important for pathogenesis. Images FIG. 2 FIG. 3 PMID:1744040

  12. Pallial mucus of the oyster Crassostrea virginica regulates the expression of putative virulence genes of its pathogen Perkinsus marinus.

    PubMed

    Pales Espinosa, Emmanuelle; Corre, Erwan; Allam, Bassem

    2014-04-01

    Perkinsus marinus is a pathogen responsible for severe mortalities of the eastern oyster Crassostrea virginica along the East and Gulf coasts of the United States. When cultivated, the pathogenicity of this microorganism decreases significantly, hampering the study of its virulence factors. Recent investigations have shown a significant increase of the in vivo virulence of P. marinus exposed to oyster pallial mucus. In the current study, we investigated the effect of pallial mucus on P. marinus gene expression compared with cultures supplemented with oyster digestive extracts or with un-supplemented cultures. In parallel, parasite cells cultured under these three conditions were used to challenge oysters and to assess virulence in vivo. Perkinsus marinus mRNA sequencing was performed on an Illumina GAIIX sequencer and data were analysed using the Tuxedo RNAseq suite for mapping against the draft P. marinus genome and for differential expression analysis. Results showed that exposure of P. marinus to mucus induces significant regulation of nearly 3,600 transcripts, many of which are considered as putative virulence factors. Pallial mucus is suspected to mimic internal host conditions, thereby preparing the pathogen to overcome defense factors before invasion. This hypothesis is supported by significant regulation in several antioxidant proteins, heat shock proteins, protease inhibitors and proteasome subunits. In addition, mucus exposure induced the modulation of several genes known to affect immunity and apoptosis in vertebrates and invertebrates. Several proteases (proteolysis) and merozoite surface proteins (cell recognition) were also modulated. Overall, these results provide a baseline for targeted, in depth analysis of candidate virulence factors in P. marinus.

  13. Accessory Gene Regulator-1 Locus Is Essential for Virulence and Pathogenesis of Clostridium difficile

    PubMed Central

    Odo, Chioma; DuPont, Herbert L.

    2016-01-01

    ABSTRACT Clostridium difficile infection (CDI) is responsible for most of the definable cases of antibiotic- and hospital-associated diarrhea worldwide and is a frequent cause of morbidity and mortality in older patients. C. difficile, a multidrug-resistant anaerobic pathogen, causes disease by producing toxins A and B, which are controlled by an accessory gene regulator (Agr) quorum signaling system. Some C. difficile strains encode two Agr loci in their genomes, designated agr1 and agr2. The agr1 locus is present in all of the C. difficile strains sequenced to date, whereas the agr2 locus is present in a few strains. The functional roles of agr1 and agr2 in C. difficile toxin regulation and pathogenesis were unknown until now. Using allelic exchange, we deleted components of both agr loci and examined the mutants for toxin production and virulence. The results showed that the agr1 mutant cannot produce toxins A and B; toxin production can be restored by complementation with wild-type agr1. Furthermore, the agr1 mutant is able to colonize but unable to cause disease in a murine CDI model. These findings have profound implications for CDI treatment because we have uncovered a promising therapeutic target for the development of nonantibiotic drugs to treat this life-threatening emerging pathogen by targeting the toxins directly responsible for disease. PMID:27531912

  14. Human influence and biotic homogenization drive the distribution of Escherichia coli virulence genes in natural habitats.

    PubMed

    Cabal, Adriana; Vicente, Joaquin; Alvarez, Julio; Barasona, Jose Angel; Boadella, Mariana; Dominguez, Lucas; Gortazar, Christian

    2017-02-18

    Cattle are the main reservoirs for Shiga-toxin-producing Escherichia coli (STEC), the only known zoonotic intestinal E. coli pathotype. However, there are other intestinal pathotypes that can cause disease in humans, whose presence has been seldom investigated. Thus, our aim was to identify the effects of anthropic pressure and of wild and domestic ungulate abundance on the distribution and diversity of the main human E. coli pathotypes and nine of their representative virulence genes (VGs). We used a quantitative real-time PCR (qPCR) for the direct detection and quantification of the genus-specific gene uidA, nine E. coli VGs (stx1, sxt2, eae, ehxA, aggR, est, elt, bfpA, invA), as well as four genes related to O157:H7 (rfbO157 , fliCH7 ) and O104:H4 (wzxO104 , fliCH4 ) serotypes in animals (feces from deer, cattle, and wild boar) and water samples collected in three areas of Doñana National Park (DNP), Spain. Eight of the nine VGs were detected, being invA, eae, and stx2 followed by stx1, aggR, and ehxA the most abundant ones. In quantitative terms (gene copies per mg of sample), stx1 and stx2 gave the highest values. Significant differences were seen regarding VGs in the three animal species in the three sampled areas. The serotype-related genes were found in all but one sample types. In general, VGs were more diverse and abundant in the northern part of the Park, where the surface waters are more contaminated by human waste and farms. In the current study, we demonstrated that human influence is more relevant than host species in shaping the E. coli VGs spatial pattern and diversity in DNP. In addition, wildlife could be potential reservoirs for other pathotypes different from STEC, however further isolation steps would be needed to completely characterize those E. coli.

  15. Comparative analysis of agr groups and virulence genes among subclinical and clinical mastitis Staphylococcus aureus isolates from sheep flocks of the Northeast of Brazil.

    PubMed

    de Almeida, Lara M; de Almeida, Mayra Zilta P R B; de Mendonça, Carla L; Mamizuka, Elsa M

    2013-01-01

    Staphylococcus aureus is one of the most frequent mastitis causative agents in small ruminants. The expression of most virulence genes of S. aureus is controlled by an accessory gene regulator (agr) locus. This study aimed to ascertain the prevalence of the different agr groups and to evaluate the occurrence of encoding genes for cytotoxin, adhesins and toxins with superantigen activity in S. aureus isolates from milk of ewes with clinical and subclinical mastitis in sheep flocks raised for meat production The agr groups I and II were identified in both cases of clinical and subclinical mastitis. Neither the arg groups III and IV nor negative agr were found. The presence of cflA gene was identified in 100% of the isolates. The frequency of hla and lukE-D genes was high - 77.3 and 82.8%, respectively and all isolates from clinical mastitis presented these genes. The sec gene, either associated to tst gene or not, was identified only in isolates from subclinical mastitis. None of the following genes were identified: bbp, ebpS, cna, fnbB, icaA, icaD, bap, hlg, lukM-lukF-PV and se-a-b-d-e.

  16. Mutation of the Erwinia amylovora argD gene causes arginine auxotrophy, nonpathogenicity in apples, and reduced virulence in pears.

    PubMed

    Ramos, Laura S; Lehman, Brian L; Peter, Kari A; McNellis, Timothy W

    2014-11-01

    Fire blight is caused by Erwinia amylovora and is the most destructive bacterial disease of apples and pears worldwide. In this study, we found that E. amylovora argD(1000)::Tn5, an argD Tn5 transposon mutant that has the Tn5 transposon inserted after nucleotide 999 in the argD gene-coding region, was an arginine auxotroph that did not cause fire blight in apple and had reduced virulence in immature pear fruits. The E. amylovora argD gene encodes a predicted N-acetylornithine aminotransferase enzyme, which is involved in the production of the amino acid arginine. A plasmid-borne copy of the wild-type argD gene complemented both the nonpathogenic and the arginine auxotrophic phenotypes of the argD(1000)::Tn5 mutant. However, even when mixed with virulent E. amylovora cells and inoculated onto immature apple fruit, the argD(1000)::Tn5 mutant still failed to grow, while the virulent strain grew and caused disease. Furthermore, the pCR2.1-argD complementation plasmid was stably maintained in the argD(1000)::Tn5 mutant growing in host tissues without any antibiotic selection. Therefore, the pCR2.1-argD complementation plasmid could be useful for the expression of genes, markers, and reporters in E. amylovora growing in planta, without concern about losing the plasmid over time. The ArgD protein cannot be considered an E. amylovora virulence factor because the argD(1000)::Tn5 mutant was auxotrophic and had a primary metabolism defect. Nevertheless, these results are informative about the parasitic nature of the fire blight disease interaction, since they indicate that E. amylovora cannot obtain sufficient arginine from apple and pear fruit tissues or from apple vegetative tissues, either at the beginning of the infection process or after the infection has progressed to an advanced state.

  17. Virulence Genes Content and Antimicrobial Resistance in Escherichia coli from Broiler Chickens.

    PubMed

    Mohamed, Moemen A; Shehata, Mostafa A; Rafeek, Elshimaa

    2014-01-01

    A total of 121 E. coli strains were isolated from broiler chickens (96 extraintestinal pathogenic (ExPEC) strains from diseased broiler chickens and 25 avian fecal E. coli (AFEC) from healthy ones). Ten of the isolates (6 from diseased chickens and 4 from healthy birds) were serogrouped and 25 were examined for 4 virulence markers (tsh, papC, colV, and iss genes) as well as for their antimicrobial resistance. Five strains were nontypable and the rest were serotyped as follows: O86:K61 (2/5), O78:K80 (1/5), and O128:K67 (1/5) were recovered from diseased chickens, while O111:K58 strain (1/4) was isolated from healthy ones. The iss gene was found in 72.2% of the examined ExPEC strains in contrast to zero percentages (0%) in the AFEC strains, which may serve as a good marker for distinguishing APEC and its knocking out may help in creation of candidate vaccine that may prove sucess in elimination of infections in broiler chickens. Antimicrobial resistance patterns revealed a complete resistance to gentamicin, pefloxacin, amoxicillin, and enrofloxacin among examined strains followed by varying degrees of resistance for the rest of tested agents. The highest resistance was recorded against norfloxacin, in 24 isolates (96%), in contrast to the lowest resistance was recorded against colistin sulphate, in 14 strains (56%). These findings suggest the need for the prudent use of antimicrobials with broiler chickens and act as a warrant for the possibility of avian sources to transmit these resistant isolates to humans.

  18. Cryptococcus gattii urease as a virulence factor and the relevance of enzymatic activity in cryptococcosis pathogenesis.

    PubMed

    Feder, Vanessa; Kmetzsch, Lívia; Staats, Charley Christian; Vidal-Figueiredo, Natalia; Ligabue-Braun, Rodrigo; Carlini, Célia Regina; Vainstein, Marilene Henning

    2015-04-01

    Ureases (EC 3.5.1.5) are Ni(2+) -dependent metalloenzymes produced by plants, fungi and bacteria that hydrolyze urea to produce ammonia and CO2 . The insertion of nickel atoms into the apo-urease is better characterized in bacteria, and requires at least three accessory proteins: UreD, UreF, and UreG. Our group has demonstrated that ureases possess ureolytic activity-independent biological properties that could contribute to the pathogenicity of urease-producing microorganisms. The presence of urease in pathogenic bacteria strongly correlates with pathogenesis in some human diseases. Some medically important fungi also produce urease, including Cryptococcus neoformans and Cryptococcus gattii. C. gattii is an etiological agent of cryptococcosis, most often affecting immunocompetent individuals. The cryptococcal urease might play an important role in pathogenesis. It has been proposed that ammonia produced via urease action might damage the host endothelium, which would enable yeast transmigration towards the central nervous system. To analyze the role of urease as a virulence factor in C. gattii, we constructed knockout mutants for the structural urease-coding gene URE1 and for genes that code the accessory proteins Ure4 and Ure6. All knockout mutants showed reduced multiplication within macrophages. In intranasally infected mice, the ure1Δ (lacking urease protein) and ure4Δ (enzymatically inactive apo-urease) mutants caused reduced blood burdens and a delayed time of death, whereas the ure6Δ (enzymatically inactive apo-urease) mutant showed time and dose dependency with regard to fungal burden. Our results suggest that C. gattii urease plays an important role in virulence, in part possibly through enzyme activity-independent mechanism(s).

  19. Lsr2 is a nucleoid-associated protein that targets AT-rich sequences and virulence genes in Mycobacterium tuberculosis.

    PubMed

    Gordon, Blair R G; Li, Yifei; Wang, Linru; Sintsova, Anna; van Bakel, Harm; Tian, Songhai; Navarre, William Wiley; Xia, Bin; Liu, Jun

    2010-03-16

    Bacterial nucleoid-associated proteins play important roles in chromosome organization and global gene regulation. We find that Lsr2 of Mycobacterium tuberculosis is a unique nucleoid-associated protein that binds AT-rich regions of the genome, including genomic islands acquired by horizontal gene transfer and regions encoding major virulence factors, such as the ESX secretion systems, the lipid virulence factors PDIM and PGL, and the PE/PPE families of antigenic proteins. Comparison of genome-wide binding data with expression data indicates that Lsr2 binding results in transcriptional repression. Domain-swapping experiments demonstrate that Lsr2 has an N-terminal dimerization domain and a C-terminal DNA-binding domain. Nuclear magnetic resonance analysis of the DNA-binding domain of Lsr2 and its interaction with DNA reveals a unique structure and a unique mechanism that enables Lsr2 to discriminately target AT-rich sequences through interactions with the minor groove of DNA. Taken together, we provide evidence that mycobacteria have employed a structurally distinct molecule with an apparently different DNA recognition mechanism to achieve a function similar to the Enterobacteriaceae H-NS, likely coordinating global gene regulation and virulence in this group of medically important bacteria.

  20. Helicobacter pylori with East Asian-type cagPAI genes is more virulent than strains with Western-type in some cagPAI genes.

    PubMed

    Yuan, Xiao-Yan; Yan, Jin-Jun; Yang, Ya-Chao; Wu, Chun-Mei; Hu, Yan; Geng, Jian-Li

    2016-12-22

    The severity of Helicobacter pylori-related disease is correlated with the presence and integrity of a cag pathogenicity island (cagPAI). cagPAI genotype may have a modifying effect on the pathogenic potential of the infecting strain. After analyzing the sequences of cagPAI genes, some strains with the East Asian-type cagPAI genes were selected for further analysis to examine the association between the diversity of the cagPAI genes and the virulence of H. pylori. The results showed that gastric mucosal inflammatory cell infiltration was significantly higher in patients with East Asian-type cagPAI genes H. pylori strain compared with mosaicism cagPAI genes H. pylori strain (p<0.05). H. pylori strains with the East Asian-type cagPAI genes were closely associated with IL-8 secretion in vitro and in vivo compared with H. pylori strains with the mosaicism cagPAI genes (p<0.01). H. pylori strains with East Asian-type cagPAI genes are able to strongly translocate CagA to host cells. These results suggest that H. pylori strains with East Asian-type cagPAI genes are more virulent than the strains of cagPAI gene/genes that are Western type.

  1. The two-component system CpxR/A represses the expression of Salmonella virulence genes by affecting the stability of the transcriptional regulator HilD

    PubMed Central

    De la Cruz, Miguel A.; Pérez-Morales, Deyanira; Palacios, Irene J.; Fernández-Mora, Marcos; Calva, Edmundo; Bustamante, Víctor H.

    2015-01-01

    Salmonella enterica can cause intestinal or systemic infections in humans and animals mainly by the presence of pathogenicity islands SPI-1 and SPI-2, containing 39 and 44 genes, respectively. The AraC-like regulator HilD positively controls the expression of the SPI-1 genes, as well as many other Salmonella virulence genes including those located in SPI-2. A previous report indicates that the two-component system CpxR/A regulates the SPI-1 genes: the absence of the sensor kinase CpxA, but not the absence of its cognate response regulator CpxR, reduces their expression. The presence and absence of cell envelope stress activates kinase and phosphatase activities of CpxA, respectively, which in turn controls the level of phosphorylated CpxR (CpxR-P). In this work, we further define the mechanism for the CpxR/A-mediated regulation of SPI-1 genes. The negative effect exerted by the absence of CpxA on the expression of SPI-1 genes was counteracted by the absence of CpxR or by the absence of the two enzymes, AckA and Pta, which render acetyl-phosphate that phosphorylates CpxR. Furthermore, overexpression of the lipoprotein NlpE, which activates CpxA kinase activity on CpxR, or overexpression of CpxR, repressed the expression of SPI-1 genes. Thus, our results provide several lines of evidence strongly supporting that the absence of CpxA leads to the phosphorylation of CpxR via the AckA/Pta enzymes, which represses both the SPI-1 and SPI-2 genes. Additionally, we show that in the absence of the Lon protease, which degrades HilD, the CpxR-P-mediated repression of the SPI-1 genes is mostly lost; moreover, we demonstrate that CpxR-P negatively affects the stability of HilD and thus decreases the expression of HilD-target genes, such as hilD itself and hilA, located in SPI-1. Our data further expand the insight on the different regulatory pathways for gene expression involving CpxR/A and on the complex regulatory network governing virulence in Salmonella. PMID:26300871

  2. Selected Lactic Acid-Producing Bacterial Isolates with the Capacity to Reduce Salmonella Translocation and Virulence Gene Expression in Chickens

    PubMed Central

    Yang, Xiaojian; Brisbin, Jennifer; Yu, Hai; Wang, Qi; Yin, Fugui; Zhang, Yonggang; Sabour, Parviz; Sharif, Shayan; Gong, Joshua

    2014-01-01

    Background Probiotics have been used to control Salmonella colonization/infection in chickens. Yet the mechanisms of probiotic effects are not fully understood. This study has characterized our previously-selected lactic acid-producing bacterial (LAB) isolates for controlling Salmonella infection in chickens, particularly the mechanism underlying the control. Methodology/Principal Findings In vitro studies were conducted to characterize 14 LAB isolates for their tolerance to low pH (2.0) and high bile salt (0.3–1.5%) and susceptibility to antibiotics. Three chicken infection trials were subsequently carried out to evaluate four of the isolates for reducing the burden of Salmonella enterica serovar Typhimurium in the broiler cecum. Chicks were gavaged with LAB cultures (106–7 CFU/chick) or phosphate-buffered saline (PBS) at 1 day of age followed by Salmonella challenge (104 CFU/chick) next day. Samples of cecal digesta, spleen, and liver were examined for Salmonella counts on days 1, 3, or 4 post-challenge. Salmonella in the cecum from Trial 3 was also assessed for the expression of ten virulence genes located in its pathogenicity island-1 (SPI-1). These genes play a role in Salmonella intestinal invasion. Tested LAB isolates (individuals or mixed cultures) were unable to lower Salmonella burden in the chicken cecum, but able to attenuate Salmonella infection in the spleen and liver. The LAB treatments also reduced almost all SPI-1 virulence gene expression (9 out of 10) in the chicken cecum, particularly at the low dose. In vitro treatment with the extracellular culture fluid from a LAB culture also down-regulated most SPI-1 virulence gene expression. Conclusions/Significance The possible correlation between attenuation of Salmonella infection in the chicken spleen and liver and reduction of Salmonella SPI-1 virulence gene expression in the chicken cecum by LAB isolates is a new observation. Suppression of Salmonella virulence gene expression in vivo can be one

  3. The CTB1 gene encoding a fungal polyketide synthase is required for cercosporin biosynthesis and fungal virulence of Cercospora nicotianae.

    PubMed

    Choquer, Mathias; Dekkers, Katherine L; Chen, Hui-Qin; Cao, Lihua; Ueng, Peter P; Daub, Margaret E; Chung, Kuang-Ren

    2005-05-01

    Cercosporin is a light-activated, non-host-selective toxin produced by many Cercospora fungal species. In this study, a polyketide synthase gene (CTB1) was functionally identified and molecularly characterized to play a key role in cercosporin biosynthesis by Cercospora nicotianae. We also provide conclusive evidence to confirm the crucial role of cercosporin in fungal pathogenesis. CTB1 encoded a polypeptide with a deduced length of 2,196 amino acids containing a keto synthase (KS), an acyltransferase (AT), a thioesterase/claisen cyclase (TE/CYC), and two acyl carrier protein (ACP) domains, and had high levels of similarity to many fungal type I polyketide synthases. Expression of a 6.8-kb CTB1 transcript was highly regulated by light and medium composition, consistent with the conditions required for cercosporin biosynthesis in cultures. Targeted disruption of CTB1 resulted in the loss of both CTB1 transcript and cercosporin biosynthesis in C. nicotianae. The ctb1-null mutants incited fewer necrotic lesions on inoculated tobacco leaves compared with the wild type. Complementation of ctb1-null mutants with a full-length CTB1 clone restored wild-type levels of cercosporin production as well as the ability to induce lesions on tobacco. Thus, we have demonstrated conclusively that cercosporin is synthesized via a polyketide pathway, and cercosporin is an important virulence factor in C. nicotianae. The results also suggest that strategies that avoid the toxicity of cercosporin will be useful in reduction of disease incidence caused by Cercospora spp.

  4. Safety of raw meat and shellfish in Vietnam: an analysis of Escherichia coli isolations for antibiotic resistance and virulence genes.

    PubMed

    Van, Thi Thu Hao; Chin, James; Chapman, Toni; Tran, Linh Thuoc; Coloe, Peter J

    2008-06-10

    This study was conducted to examine a current baseline profile of antimicrobial resistance and virulence of Escherichia coli isolated from foods commonly sold in the market place in Vietnam. E. coli were isolated from 180 samples of raw meat, poultry and shellfish and also isolated from 43 chicken faeces samples. Ninety-nine E. coli isolates recovered from all sources were selected for the investigation of their susceptibility to 15 antimicrobial agents by the disk diffusion method. Eighty-four percent of the isolates were resistant to one or more antibiotics, and multi-resistance, defined as resistance to at least 3 different classes of antibiotics, was detected in all sources. The rates of multi-resistance were up to 89.5% in chicken, 95% in chicken faeces and 75% in pork isolates. Resistance was most frequently observed to tetracycline (77.8%), sulfafurazole (60.6%), ampicillin (50.5%), amoxicillin (50.5%), trimethoprim (51.5%), chloramphenicol (43.4%), streptomycin (39.4%), nalidixic acid (34.3%) and gentamicin (24.2%). In addition, the isolates also displayed resistance to fluoroquinolones (ciprofloxacin 16.2%, norfloxacin 17.2%, and enrofloxacin 21.2%), with chicken isolates showing the highest rates of resistance to these antibiotics (52.6-63.2%). Thirty-eight multi-resistant isolates were selected for further the examination of antibiotic resistance genes and were also evaluated for virulence gene profiles by multiplex and uniplex polymerase chain reaction. The beta-lactam TEM gene and tetracycline resistance tetA, tetB genes were frequently detected in the tested isolates (84.2% and 89.5% respectively). Genes which are responsible for resistance to streptomycin (aadA) (68.4%), chloramphenicol (cmlA) (42.1%), sulfonamides (sulI) (39.5%), trimethoprim (dhfrV) (26.3%) and kanamycin (aphA-1) (23.7%) were also widely distributed. Plasmid-mediated ampC genes were detected in E. coli isolates from chicken and pork. The isolates were tested for the presence of 58

  5. The Hos2 Histone Deacetylase Controls Ustilago maydis Virulence through Direct Regulation of Mating-Type Genes

    PubMed Central

    Elías-Villalobos, Alberto; Fernández-Álvarez, Alfonso; Moreno-Sánchez, Ismael; Helmlinger, Dominique; Ibeas, José I.

    2015-01-01

    Morphological changes are critical for host colonisation in plant pathogenic fungi. These changes occur at specific stages of their pathogenic cycle in response to environmental signals and are mediated by transcription factors, which act as master regulators. Histone deacetylases (HDACs) play crucial roles in regulating gene expression, for example by locally modulating the accessibility of chromatin to transcriptional regulators. It has been reported that HDACs play important roles in the virulence of plant fungi. However, the specific environment-sensing pathways that control fungal virulence via HDACs remain poorly characterised. Here we address this question using the maize pathogen Ustilago maydis. We find that the HDAC Hos2 is required for the dimorphic switch and pathogenic development in U. maydis. The deletion of hos2 abolishes the cAMP-dependent expression of mating type genes. Moreover, ChIP experiments detect Hos2 binding to the gene bodies of mating-type genes, which increases in proportion to their expression level following cAMP addition. These observations suggest that Hos2 acts as a downstream component of the cAMP-PKA pathway to control the expression of mating-type genes. Interestingly, we found that Clr3, another HDAC present in U. maydis, also contributes to the cAMP-dependent regulation of mating-type gene expression, demonstrating that Hos2 is not the only HDAC involved in this control system. Overall, our results provide new insights into the role of HDACs in fungal phytopathogenesis. PMID:26317403

  6. Identification of Virulence Factors Genes in Escherichia coli Isolates from Women with Urinary Tract Infection in Mexico

    PubMed Central

    López-Banda, Daniela A.; Carrillo-Casas, Erika M.; Orozco-Hoyuela, Gabriel; Manjarrez-Hernández, Ángel H.; Arroyo-Escalante, Sara; Moncada-Barrón, David; Villanueva-Recillas, Silvia; Xicohtencatl-Cortes, Juan; Hernández-Castro, Rigoberto

    2014-01-01

    E coli isolates (108) from Mexican women, clinically diagnosed with urinary tract infection, were screened to identify virulence genes, phylogenetic groups, and antibiotic resistance. Isolates were identified by MicroScan4 system; additionally, the minimum inhibitory concentration (MIC) was assessed. The phylogenetic groups and 16 virulence genes encoding adhesins, toxins, siderophores, lipopolysaccharide (LPS), and invasins were identified by PCR. Phylogenetic groups distribution was as follows: B1 9.3%, A 30.6%, B2 55.6%, and D 4.6%. Virulence genes prevalence was ecp 98.1%, fimH 86.1%, traT 77.8%, sfa/focDE 74.1%, papC 62%, iutA 48.1%, fyuA 44.4%, focG 2.8%, sfaS 1.9%, hlyA 7.4%, cnf-1 6.5%, cdt-B 0.9%, cvaC 2.8%, ibeA 2.8%, and rfc 0.9%. Regarding antimicrobial resistance it was above 50% to ampicillin/sulbactam, ampicillin, piperacillin, trimethoprim/sulfamethoxazole, ciprofloxacin, and levofloxacin. Uropathogenic E. coli clustered mainly in the pathogenic phylogenetic group B2. The isolates showed a high presence of siderophores and adhesion genes and a low presence of genes encoding toxins. The high frequency of papC gene suggests that these isolates have the ability to colonize the kidneys. High resistance to drugs considered as first choice treatment such as trimethoprim/sulfamethoxazole and fluoroquinolones was consistently observed. PMID:24895634

  7. Expression of stress and virulence genes in Escherichia coli O157:H7 heat shocked in fresh dairy compost.

    PubMed

    Singh, Randhir; Jiang, Xiuping

    2015-01-01

    The purpose of this study was to determine the gene expression of Escherichia coli O157:H7 heat shocked in dairy compost. A two-step real-time PCR assay was used to evaluate the expression of stress and virulence genes in E. coli O157:H7 heat shocked in compost at 47.5°C for 10 min. Heat-shocked E. coli O157:H7 in compost was isolated by using an immunomagnetic bead separation method, followed by total RNA extraction, which was then converted to cDNA by using a commercial kit. E. coli O157:H7 heat shocked in broth served as the media control. In compost, heat shock genes (clpB, dnaK, and groEL) and the alternative sigma factor (rpoH) of E. coli O157:H7 were upregulated (P < 0.05), whereas the expression of trehalose synthesis genes did not change. Virulence genes, such as stx1 and fliC, were upregulated, while genes stx2, eaeA, and hlyA were downregulated. In the toxin-antitoxin (TA) system, toxin genes, mazF, hipA, and yafQ were upregulated, whereas among antitoxin genes, only dinJ was upregulated (P < 0.05). In tryptic soy broth, all heat shock genes (rpoH, clpB, dnaK, and groEL) were upregulated (P < 0.05), and most virulence genes (stx1, stx2, hlyA, and fliC) and TA genes (mazF-mazE, hipA-hipB, and yafQ-dinJ and toxin gene chpS) were down-regulated. Our results revealed various gene expression patterns when E. coli O157:H7 inoculated in compost was exposed to a sublethal temperature. Clearly, induction of the heat shock response is one of the important protective mechanisms that prolongs the survival of pathogens during the composting process. In addition, other possible mechanisms (such as the TA system) operating along with heat shock response may be responsible for the extended survival of pathogens in compost.

  8. Effect of deletion of the lpxM gene on virulence and vaccine potential of Yersinia pestis in mice.

    PubMed

    Anisimov, Andrey P; Shaikhutdinova, Rima Z; Pan'kina, Lyudmila N; Feodorova, Valentina A; Savostina, Elena P; Bystrova, Ol'ga V; Lindner, Buko; Mokrievich, Aleksandr N; Bakhteeva, Irina V; Titareva, Galina M; Dentovskaya, Svetlana V; Kocharova, Nina A; Senchenkova, Sof'ya N; Holst, Otto; Devdariani, Zurab L; Popov, Yuriy A; Pier, Gerald B; Knirel, Yuriy A

    2007-04-01

    Yersinia pestis undergoes an obligate flea-rodent-flea enzootic life cycle. The rapidly fatal properties of Y. pestis are responsible for the organism's sustained survival in natural plague foci. Lipopolysaccharide (LPS) plays several roles in Y. pestis pathogenesis, prominent among them being resistance to host immune effectors and induction of a septic-shock state during the terminal phases of infection. LPS is acylated with 4-6 fatty acids, the number varying with growth temperature and affecting the molecule's toxic properties. Y. pestis mutants were constructed with a deletion insertion in the lpxM gene in both virulent and attenuated strains, preventing the organisms from synthesizing the most toxic hexa-acylated lipid A molecule when grown at 25 degrees C. The virulence and/or protective potency of pathogenic and attenuated Y. pestis DeltalpxM mutants were then examined in a mouse model. The DeltalpxM mutation in a virulent strain led to no change in the LD(50) value compared to that of the parental strain, while the DeltalpxM mutation in attenuated strains led to a modest 2.5-16-fold reduction in virulence. LPS preparations containing fully hexa-acylated lipid A were ten times more toxic in actinomycin D-treated mice then preparations lacking this lipid A isoform, although this was not significant (P>0.05). The DeltalpxM mutation in vaccine strain EV caused a significant increase in its protective potency. These studies suggest there is little impact from lipid A modifications on the virulence of Y. pestis strains but there are potential improvements in the protective properties in attenuated vaccine strains.

  9. Transcription and translation products of the cytolysin gene psm-mec on the mobile genetic element SCCmec regulate Staphylococcus aureus virulence.

    PubMed

    Kaito, Chikara; Saito, Yuki; Nagano, Gentaro; Ikuo, Mariko; Omae, Yosuke; Hanada, Yuichi; Han, Xiao; Kuwahara-Arai, Kyoko; Hishinuma, Tomomi; Baba, Tadashi; Ito, Teruyo; Hiramatsu, Keiichi; Sekimizu, Kazuhisa

    2011-02-03

    The F region downstream of the mecI gene in the SCCmec element in hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) contains two bidirectionally overlapping open reading frames (ORFs), the fudoh ORF and the psm-mec ORF. The psm-mec ORF encodes a cytolysin, phenol-soluble modulin (PSM)-mec. Transformation of the F region into the Newman strain, which is a methicillin-sensitive S. aureus (MSSA) strain, or into the MW2 (USA400) and FRP3757 (USA300) strains, which are community-acquired MRSA (CA-MRSA) strains that lack the F region, attenuated their virulence in a mouse systemic infection model. Introducing the F region to these strains suppressed colony-spreading activity and PSMα production, and promoted biofilm formation. By producing mutations into the psm-mec ORF, we revealed that (i) both the transcription and translation products of the psm-mec ORF suppressed colony-spreading activity and promoted biofilm formation; and (ii) the transcription product of the psm-mec ORF, but not its translation product, decreased PSMα production. These findings suggest that both the psm-mec transcript, acting as a regulatory RNA, and the PSM-mec protein encoded by the gene on the mobile genetic element SCCmec regulate the virulence of Staphylococcus aureus.

  10. Beyond the Chromosome: The Prevalence of Unique Extra-Chromosomal Bacteriophages with Integrated Virulence Genes in Pathogenic Staphylococcus aureus

    PubMed Central

    Utter, Bryan; Deutsch, Douglas R.; Schuch, Raymond; Winer, Benjamin Y.; Verratti, Kathleen; Bishop-Lilly, Kim; Sozhamannan, Shanmuga; Fischetti, Vincent A.

    2014-01-01

    In Staphylococcus aureus, the disease impact of chromosomally integrated prophages on virulence is well described. However, the existence of extra-chromosomal prophages, both plasmidial and episomal, remains obscure. Despite the recent explosion in bacterial and bacteriophage genomic sequencing, studies have failed to specifically focus on extra-chromosomal elements. We selectively enriched and sequenced extra-chromosomal DNA from S. aureus isolates using Roche-454 technology and uncovered evidence for the widespread distribution of multiple extra-chromosomal prophages (ExPΦs) throughout both antibiotic-sensitive and -resistant strains. We completely sequenced one such element comprised of a 43.8 kbp, circular ExPΦ (designated ФBU01) from a vancomycin-intermediate S. aureus (VISA) strain. Assembly and annotation of ФBU01 revealed a number of putative virulence determinants encoded within a bacteriophage immune evasion cluster (IEC). Our identification of several potential ExPΦs and mobile genetic elements (MGEs) also revealed numerous putative virulence factors and antibiotic resistance genes. We describe here a previously unidentified level of genetic diversity of stealth extra-chromosomal elements in S. aureus, including phages with a larger presence outside the chromosome that likely play a prominent role in pathogenesis and strain diversity driven by horizontal gene transfer (HGT). PMID:24963913

  11. Structure-Activity Relationship of Cinnamaldehyde Analogs as Inhibitors of AI-2 Based Quorum Sensing and Their Effect on Virulence of Vibrio spp

    PubMed Central

    Brackman, Gilles; Celen, Shari; Hillaert, Ulrik; Van Calenbergh, Serge; Cos, Paul; Maes, Louis; Nelis, Hans J.; Coenye, Tom

    2011-01-01

    Background Many bacteria, including Vibrio spp., regulate virulence gene expression in a cell-density dependent way through a communication process termed quorum sensing (QS). Hence, interfering with QS could be a valuable novel antipathogenic strategy. Cinnamaldehyde has previously been shown to inhibit QS-regulated virulence by decreasing the DNA-binding ability of the QS response regulator LuxR. However, little is known about the structure-activity relationship of cinnamaldehyde analogs. Methodology/Principal Findings By evaluating the QS inhibitory activity of a series of cinnamaldehyde analogs, structural elements critical for autoinducer-2 QS inhibition were identified. These include an α,β unsaturated acyl group capable of reacting as Michael acceptor connected to a hydrophobic moiety and a partially negative charge. The most active cinnamaldehyde analogs were found to affect the starvation response, biofilm formation, pigment production and protease production in Vibrio spp in vitro, while exhibiting low cytotoxicity. In addition, these compounds significantly increased the survival of the nematode Caenorhabditis elegans infected with Vibrio anguillarum, Vibrio harveyi and Vibrio vulnificus. Conclusions/Significance Several new and more active cinnamaldehyde analogs were discovered and they were shown to affect Vibrio spp. virulence factor production in vitro and in vivo. Although ligands for LuxR have not been identified so far, the nature of different cinnamaldehyde analogs and their effect on the DNA binding ability of LuxR suggest that these compounds act as LuxR-ligands. PMID:21249192

  12. In Candida parapsilosis the ATC1 Gene Encodes for an Acid Trehalase Involved in Trehalose Hydrolysis, Stress Resistance and Virulence

    PubMed Central

    Sánchez-Fresneda, Ruth; Martínez-Esparza, María; Maicas, Sergi; Argüelles, Juan-Carlos; Valentín, Eulogio

    2014-01-01

    An ORF named CPAR2-208980 on contig 005809 was identified by screening a Candida parapsilosis genome data base. Its 67% identity with the acid trehalase sequence from C. albicans (ATC1) led us to designate it CpATC1. Homozygous mutants that lack acid trehalase activity were constructed by gene disruption at the two CpATC1 chromosomal alleles. Phenotypic characterization showed that atc1Δ null cells were unable to grow on exogenous trehalose as carbon source, and also displayed higher resistance to environmental challenges, such as saline exposure (1.2 M NaCl), heat shock (42°C) and both mild and severe oxidative stress (5 and 50 mM H2O2). Significant amounts of intracellular trehalose were specifically stored in response to the thermal upshift in both wild type and mutant strains. Analysis of their antioxidant activities revealed that catalase was only triggered in response to heat shock in atc1Δ cells, whereas glutathione reductase was activated upon mild oxidative stress in wild type and reintegrant strains, and in response to the whole set of stress treatments in the homozygous mutant. Furthermore, yeast cells with double CpATC1 deletion were significantly attenuated in non-mammalian infection models, suggesting that CpATC1 is required for the pathobiology of the fungus. Our results demonstrate the involvement of CpAtc1 protein in the physiological hydrolysis of external trehalose in C. parapsilosis, where it also plays a major role in stress resistance and virulence. PMID:24922533

  13. Contribution of HN protein length diversity to Newcastle disease virus virulence, replication and biological activities

    PubMed Central

    Jin, Jihui; Zhao, Jing; Ren, Yingchao; Zhong, Qi; Zhang, Guozhong

    2016-01-01

    To evaluate the contribution of length diversity in the hemagglutinin-neuraminidase (HN) protein to the pathogenicity, replication and biological characteristics of Newcastle disease virus (NDV), we used reverse genetics to generate a series of recombinant NDVs containing truncated or extended HN proteins based on an infectious clone of genotype VII NDV (SG10 strain). The mean death times and intracerebral pathogenicity indices of these viruses showed that the different length mutations in the HN protein did not alter the virulence of NDV. In vitro studies of recombinant NDVs containing truncated or extended HN proteins revealed that the extension of HN protein increased its hemagglutination titer, receptor-binding ability and impaired its neuraminidase activity, fusogenic activity and replication ability. Furthermore, the hemadsorption, neuraminidase and fusogenic promotion activities at the protein level were consistent with those of viral level. Taken together, our results demonstrate that the HN biological activities affected by the C-terminal extension are associated with NDV replication but not the virulence. PMID:27833149

  14. The thiG Gene Is Required for Full Virulence of Xanthomonas oryzae pv. oryzae by Preventing Cell Aggregation

    PubMed Central

    Yu, Xiaoyue; Liang, Xiaoyu; Liu, Kexue; Dong, Wenxia; Wang, Jianxin; Zhou, Ming-guo

    2015-01-01

    Bacterial blight of rice is an important serious bacterial diseases of rice in many rice-growing regions, caused by Xanthomonas oryzae pv. oryzae (Xoo). The thiG gene from Xoo strain ZJ173, which is involved with thiazole moiety production in the thiamine biosynthesis pathway, is highly conserved among the members of Xanthomonas. The thiG deletion mutant displayed impaired virulence and growth in thiamine-free medium but maintained its normal growth rate in the rice tissues, indicating that the thiG gene is involved in Xoo virulence. Compared to the wild type strain, the formation of cell-cell aggregates was affected in thiG deletion mutants. Although biofilm formation was promoted, motility and migration in rice leaves were repressed in the thiG mutants, and therefore limited the expansion of pathogen infection in rice. Quorum sensing and extracellular substance are two key factors that contribute to the formation of cell-cell aggregates. Our study found that in the thiG mutant the expression of two genes, rpfC and rpfG, which form a two-component regulatory signal system involved in the regulation of biofilm formation by a second messenger cyclic di-GMP is down-regulated. In addition, our study showed that xanthan production was not affected but the expression of some genes associated with xanthan biosynthesis, like gumD, gumE, gumH and gumM, were up-regulated in thiG mutants. Taken together, these findings are the first to demonstrate the role of the thiazole biosynthsis gene, thiG, in virulence and the formation of aggregates in Xanthomonas oryzae pv. oryzae. PMID:26222282

  15. Characterization of virulence genes cagA and vacA in Helicobacter Pylori and their prevalence in gastrointestinal disorders

    PubMed Central

    Cogo, Laura Lúcia; Monteiro, Cristina Leise Bastos; Nogueira, Keite da Silva; Palmeiro, Jussara Kasuko; Ribeiro, Marcelo Lima; de Camargo, Eloá Ramalho; Neves, Daniel Locatelli; do Nascimento, Aguinaldo José; Costa, Libera Maria Dalla

    2011-01-01

    Prevalence of H. pylori infection was determined using cultures of gastric biopsy samples of patients attended at the academic hospital of the Federal University of Paraná, Curitiba, Paraná, Brazil. Molecular methods were used to characterize the cagA and vacA genes from bacterial isolates associated with different diseases presented by patients. Out of a total of 81, forty-two gastric biopsy samples tested were positive for H. pylori, with a prevalence of 51.9%. No significant difference was found with regard to the gender (p=0.793) and age (p=0.183) of the patients. Genotype s1m1 vacA gene was found in 67% of the cases of peptic ulcer investigated (p=1.0), despite the limited number of patients with this disease (n=3). A correlation between the presence of less virulent strains (s2m2) and reflux esophagitis was found in the majority of the cases (45%), but without statistical significance. An association between the prevalence of cagA gene, found in 92% of isolates, and peptic ulcer was not observed (p=1.0), suggesting that this gene cannot be considered a specific marker of severity in our environment. The results reinforce the importance of conducting regional studies and the need to characterize H. pylori virulence genes associated with different diseases. PMID:24031754

  16. Identification of resistance to new virulent races of rust in sunflowers and validation of DNA markers in the gene pool.

    PubMed

    Qi, Lili; Gulya, Tom; Seiler, Gerald J; Hulke, Brent S; Vick, Brady A

    2011-02-01

    Sunflower rust, caused by Puccinia helianthi, is a prevalent disease in many countries throughout the world. The U.S. Department of Agriculture (USDA)-Agricultural Research Service, Sunflower Research Unit has released rust resistant breeding materials for several decades. However, constantly coevolving rust populations have formed new virulent races to which current hybrids have little resistance. The objectives of this study were to identify resistance to race 336, the predominant race in North America, and to race 777, the most virulent race currently known, and to validate molecular markers known to be linked to rust resistance genes in the sunflower gene pool. A total of 104 entries, including 66 released USDA inbred lines, 14 USDA interspecific germplasm lines, and 24 foreign germplasms, all developed specifically for rust resistance, were tested for their reaction to races 336 and 777. Only 13 of the 104 entries tested were resistant to both races, whereas another six were resistant only to race 336. The interspecific germplasm line, Rf ANN-1742, was resistant to both races and was identified as a new rust resistance source. A selection of 24 lines including 19 lines resistant to races 777 and/or 336 was screened with DNA markers linked to rust resistance genes R(1), R(2), R(4u), and R(5). The results indicated that the existing resistant lines are diverse in rust resistance genes. Durable genetic resistance through gene pyramiding will be effective for the control of rust.

  17. Epigenetic Control of Virulence Gene Expression in Pseudomonas aeruginosa by a LysR-Type Transcription Regulator

    PubMed Central

    Turner, Keith H.; Vallet-Gely, Isabelle; Dove, Simon L.

    2009-01-01

    Phenotypic variation within an isogenic bacterial population is thought to ensure the survival of a subset of cells in adverse conditions. The opportunistic pathogen Pseudomonas aeruginosa variably expresses several phenotypes, including antibiotic resistance, biofilm formation, and the production of CupA fimbriae. Here we describe a previously unidentified bistable switch in P. aeruginosa. This switch controls the expression of a diverse set of genes, including aprA, which encodes the secreted virulence factor alkaline protease. We present evidence that bistable expression of PA2432, herein named bexR (bistable expression regulator), which encodes a LysR-type transcription regulator, controls this switch. In particular, using DNA microarrays, quantitative RT–PCR analysis, chromatin immunoprecipitation, and reporter gene fusions, we identify genes directly under the control of BexR and show that these genes are bistably expressed. Furthermore, we show that bexR is itself bistably expressed and positively autoregulated. Finally, using single-cell analyses of a GFP reporter fusion, we present evidence that positive autoregulation of bexR is necessary for bistable expression of the BexR regulon. Our findings suggest that a positive feedback loop involving a LysR-type transcription regulator serves as the basis for an epigenetic switch that controls virulence gene expression in P. aeruginosa. PMID:20041030

  18. Virulence Genes among Enterococcus faecalis and Enterococcus faecium Isolated from Coastal Beaches and Human and Nonhuman Sources in Southern California and Puerto Rico

    PubMed Central

    Talavera, Ginamary Negrón; Hernández, Luis A. Ríos; Ambrose, Richard F.; Jay, Jennifer A.

    2016-01-01

    Most Enterococcus faecalis and E. faecium are harmless to humans; however, strains harboring virulence genes, including esp, gelE, cylA, asa1, and hyl, have been associated with human infections. E. faecalis and E. faecium are present in beach waters worldwide, yet little is known about their virulence potential. Here, multiplex PCR was used to compare the distribution of virulence genes among E. faecalis and E. faecium isolated from beaches in Southern California and Puerto Rico to isolates from potential sources including humans, animals, birds, and plants. All five virulence genes were found in E. faecalis and E. faecium from beach water, mostly among E. faecalis. gelE was the most common among isolates from all source types. There was a lower incidence of asa1, esp, cylA, and hyl genes among isolates from beach water, sewage, septage, urban runoff, sea wrack, and eelgrass as compared to human isolates, indicating that virulent strains of E. faecalis and E. faecium may not be widely disseminated at beaches. A higher frequency of asa1 and esp among E. faecalis from dogs and of asa1 among birds (mostly seagull) suggests that further studies on the distribution and virulence potential of strains carrying these genes may be warranted. PMID:27144029

  19. Virulence genes of the phytopathogen Rhodococcus fascians show specific spatial and temporal expression patterns during plant infection.

    PubMed

    Cornelis, Karen; Maes, Tania; Jaziri, Mondher; Holsters, Marcelle; Goethals, Koen

    2002-04-01

    The phytopathogenic bacterium Rhodococcus fascians provokes shoot meristem formation and malformations on aerial plant parts, mainly at the axils. The interaction is accompanied by bacterial colonization of the plant surface and tissues. Upon infection, the two bacterial loci required for full virulence, fas and att, were expressed only at the sites of symptom development, although their expression profiles differed both spatially and temporally. The att locus was expressed principally in bacteria located on the plant surface at early stages of infection. Expression of the fas locus occurred throughout infection, mainly in bacteria that were penetrating, or had penetrated, the plant tissues and coincided with sites of meristem initiation and proliferation. The implications for the regulation of virulence genes of R. fascians during plant infection are discussed.

  20. Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes

    SciTech Connect

    Lowden, Michael J.; Skorupski, Karen; Pellegrini, Maria; Chiorazzo, Michael G.; Taylor, Ronald K.; Kull, F. Jon

    2010-03-04

    Cholera is an acute intestinal infection caused by the bacterium Vibrio cholerae. In order for V. cholerae to cause disease, it must produce two virulence factors, the toxin-coregulated pilus (TCP) and cholera toxin (CT), whose expression is controlled by a transcriptional cascade culminating with the expression of the AraC-family regulator, ToxT. We have solved the 1.9 {angstrom} resolution crystal structure of ToxT, which reveals folds in the N- and C-terminal domains that share a number of features in common with AraC, MarA, and Rob as well as the unexpected presence of a buried 16-carbon fatty acid, cis-palmitoleate. The finding that cis-palmitoleic acid reduces TCP and CT expression in V. cholerae and prevents ToxT from binding to DNA in vitro provides a direct link between the host environment of V. cholerae and regulation of virulence gene expression.

  1. Characterization of Aeromonas hydrophila Wound Pathotypes by Comparative Genomic and Functional Analyses of Virulence Genes

    PubMed Central

    Grim, Christopher J.; Kozlova, Elena V.; Sha, Jian; Fitts, Eric C.; van Lier, Christina J.; Kirtley, Michelle L.; Joseph, Sandeep J.; Read, Timothy D.; Burd, Eileen M.; Tall, Ben D.; Joseph, Sam W.; Horneman, Amy J.; Chopra, Ashok K.; Shak, Joshua R.

    2013-01-01

    ABSTRACT Aeromonas hydrophila has increasingly been implicated as a virulent and antibiotic-resistant etiologic agent in various human diseases. In a previously published case report, we described a subject with a polymicrobial wound infection that included a persistent and aggressive strain of A. hydrophila (E1), as well as a more antibiotic-resistant strain of A. hydrophila (E2). To better understand the differences between pathogenic and environmental strains of A. hydrophila, we conducted comparative genomic and functional analyses of virulence-associated genes of these two wound isolates (E1 and E2), the environmental type strain A. hydrophila ATCC 7966T, and four other isolates belonging to A. aquariorum, A. veronii, A. salmonicida, and A. caviae. Full-genome sequencing of strains E1 and E2 revealed extensive differences between the two and strain ATCC 7966T. The more persistent wound infection strain, E1, harbored coding sequences for a cytotoxic enterotoxin (Act), a type 3 secretion system (T3SS), flagella, hemolysins, and a homolog of exotoxin A found in Pseudomonas aeruginosa. Corresponding phenotypic analyses with A. hydrophila ATCC 7966T and SSU as reference strains demonstrated the functionality of these virulence genes, with strain E1 displaying enhanced swimming and swarming motility, lateral flagella on electron microscopy, the presence of T3SS effector AexU, and enhanced lethality in a mouse model of Aeromonas infection. By combining sequence-based analysis and functional assays, we characterized an A. hydrophila pathotype, exemplified by strain E1, that exhibited increased virulence in a mouse model of infection, likely because of encapsulation, enhanced motility, toxin secretion, and cellular toxicity. PMID:23611906

  2. Iron modulates the replication of virulent Mycobacterium bovis in resting and activated bovine and possum macrophages.

    PubMed

    Denis, Michel; Buddle, Bryce M

    2005-09-15

    Bovine and possum macrophages were infected in vitro with a virulent strain of Mycobacterium bovis, and mycobacterial replication was measured in the infected macrophages cultured under a variety of conditions. Virulent M. bovis replicated substantially in alveolar possum macrophages as well as in bovine blood monocyte-derived macrophages. Addition of recombinant bovine interferon-gamma (IFN-gamma) with low concentrations of lipopolysaccharide (LPS) rendered bovine macrophages significantly more resistant to M. bovis replication. Disruption of iron levels in infected macrophages by addition of apotransferrin or bovine lactoferrin blocked replication of M. bovis in both bovine and possum macrophages. On the other hand, addition of exogenous iron, either in the form of iron citrate or iron-saturated transferrin, rendered macrophages of both species much more permissive for the replication of M. bovis. The impact of iron deprivation/loading on the mycobacteriostatic activity of cells was independent of nitric-oxide release, as well as independent of the generation of oxygen radical species in both possum and bovine macrophages. Exogenous iron was shown to reverse the ability of IFN-gamma/LPS pulsed bovine macrophages to restrict M. bovis replication. When autologous possum lymphocytes from animals vaccinated with M. bovis strain BCG were added to infected macrophages, they rendered the macrophages less permissive for virulent M. bovis replication. Loading the cells with iron prior to this macrophage-lymphocyte interaction, reversed this immune effect induced by sensitized cells. We conclude that, in two important animal species, intracellular iron level plays an important role in M. bovis replication in macrophages, irrespective of their activation status.

  3. Interaction of human leukocytes and Entamoeba histolytica. Killing of virulent amebae by the activated macrophage.

    PubMed Central

    Salata, R A; Pearson, R D; Ravdin, J I

    1985-01-01

    Capable effector mechanisms in the human immune response against the cytolytic, protozoan parasite Entamoeba histolytica have not been described. To identify a competent human effector cell, we studied the in vitro interactions of normal human polymorphonuclear neutrophils, peripheral blood mononuclear cells (PBMC), monocytes (MC), and MC-derived macrophages with virulent axenic amebae (strain HMI-IMSS). Amebae killed neutrophils, PBMC, MC, and MC-derived macrophages (P less than 0.001), without loss of parasite viability. The addition of heat-inactivated immune serum did not enable leukocytes to kill amebae, nor did it protect these host cells from amebae. MC-derived macrophages, activated with lymphokine elicited by the mitogens conconavalin A, phytohemagglutinin, or an amebic soluble protein preparation (strain HK9), killed 55% of amebae by 3 h in a trypan blue exclusion assay (P less than 0.001); during this time, 40% of the activated macrophages died. Lysis of amebae was confirmed using 111Indium oxine radiolabeled parasites and was antibody independent. Macrophage death appeared to be due to the deleterious effect of lysed amebae rather than the contact-dependent effector mechanisms of E. histolytica. Adherence between activated macrophages and amebae was greater than that between other leukocytes and amebae (P less than 0.001). Microscopic observations, kinetic analysis of the killing of amebae by activated macrophages, and suspension of amebae with adherent activated macrophages in a 10% dextran solution indicated that contact by activated macrophages was necessary to initiate the killing of amebae. Catalase but not superoxide dismutase inhibited the amebicidal capacity of activated macrophages (P less than 0.001). However, activated macrophages from an individual with chronic granulomatous disease were able to kill amebae, but not as effectively as normal cells (P less than 0.01). In summary, activated MC-derived macrophages killed virulent E. histolytica

  4. RNA-mediated gene activation

    PubMed Central

    Jiao, Alan L; Slack, Frank J

    2014-01-01

    The regulation of gene expression by non-coding RNAs (ncRNAs) has become a new paradigm in biology. RNA-mediated gene silencing pathways have been studied extensively, revealing diverse epigenetic and posttranscriptional mechanisms. In contrast, the roles of ncRNAs in activating gene expression remains poorly understood. In this review, we summarize the current knowledge of gene activation by small RNAs, long non-coding RNAs, and enhancer-derived RNAs, with an emphasis on epigenetic mechanisms. PMID:24185374

  5. Characterization of Shiga toxin subtypes and virulence genes in porcine Shiga toxin-producing Escherichia coli

    SciTech Connect

    Baranzoni, Gian Marco; Fratamico, Pina M.; Gangiredla, Jayanthi; Patel, Isha; Bagi, Lori K.; Delannoy, Sabine; Fach, Patrick; Boccia, Federica; Anastasio, Aniello; Pepe, Tiziana

    2016-04-21

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using a Minimal Signature E. coli Array Strip. As expected, stx2e (81%) was the most common Stx variant, followed by stx1a (14%), stx2d (3%), and stx1c (1%). The STEC serogroups that carried stx2d were O15:H27, O159:H16 and O159:H-. Similar to stx2a and stx2c, the stx2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. Furthermore, the present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles

  6. Virulence gene expression, adhesion and invasion of Campylobacter jejuni exposed to oxidative stress (H2O2).

    PubMed

    Koolman, Leonard; Whyte, Paul; Burgess, Catherine; Bolton, Declan

    2016-03-02

    Studies were undertaken to investigate the effect of oxidative stress conditions (exposure to hydrogen peroxide, H2O2) on [1] the expression of 14 Campylobacter jejuni virulence-associated genes associated with motility and/or invasion (flaA, flaB, flhA, flhB, ciaB, iamA), adhesion (cadF), cytotoxin production (cdtA, cdtB, cdtC) as well as some of the regulators of these genes (rpoN, fliA, luxS, cj1000), in 10 C. jejuni strains (5 poultry and 5 human) and [2] the ability of these cells to adhere to and invade Caco-2 cells. Using 16S rRNA as the reference gene (preliminary research demonstrated that this gene was stably expressed), the expression of the 14 virulence associated genes was investigated under normal and oxidative stress conditions using reverse transcription PCR. A Caco-2 cell tissue culture assay was used to examine adhesion and invasion. The response to oxidative stress was strain-dependent. Two strains showed significant (p<0.05) up or down regulation in 7 of the 14 genes tested, while only 1-2 genes were affected in the remaining strains. Expression of cadF was significantly (p<0.05) changed in all strains, cdt B in 4 strains and cj1000 in 3 strains. Expression of the remaining genes was either unaffected or significantly altered in 1-2 strains. NCTC 11168 completely lost the ability to adhere to and invade Caco-2 cells. One other strain also demonstrated reduced adherence while two others were unable to invade Caco-2 cells after exposure to oxidative stress conditions. In contrast strain 7, a poultry isolate, showed increased invasion. It was concluded that oxidative stress affects expression of C. jejuni virulence genes in a strain-dependent manner, CadF may have a secondary survival function and the cdtB gene may have a different promoter than cdtA and cdtC.

  7. Virulence-related genes, adhesion and invasion of some Yersinia enterocolitica-like strains suggests its pathogenic potential.

    PubMed

    Imori, Priscilla F M; Passaglia, Jaqueline; Souza, Roberto A; Rocha, Lenaldo B; Falcão, Juliana P

    2017-03-01

    Yersina enterocolitica-like species have not been extensively studied regarding its pathogenic potential. This work aimed to assess the pathogenic potential of some Y. enterocolitica-like strains by evaluating the presence of virulence-related genes by PCR and their ability to adhere to and invade Caco-2 and HEp-2 cells. A total of 50 Y. frederiksenii, 55 Y. intermedia and 13 Y. kristensenii strains were studied. The strains contained the following genes: Y. frederiksenii, fepA(44%), fes(44%) and ystB(18%); Y. intermedia, ail(53%), fepA (35%), fepD(2%), fes(97%), hreP(2%), ystB(2%) and tccC(35%); Y. kristensenii, ail(62%), ystB(23%), fepA(77%), fepD(54%), fes(54%) and hreP(77%). Generally, the Y. enterocolitica-like strains had a reduced ability to adhere to and invade mammalian cells compared to the highly pathogenic Y. enterocolitica 8081. However, Y. kristensenii FCF410 and Y. frederiksenii FCF461 presented high invasion potentials in Caco-2 cells after five days of pre-incubation increased by 45- and 7.2-fold compared to Y. enterocolitica 8081, respectively; but, the ail gene was not detected in these strains. The presence of virulence-related genes in some of the Y. enterocolitica-like strains indicated their possible pathogenic potential. Moreover, the results suggest the existence of alternative virulence mechanisms and that the pathogenicity of Y. kristensenii and Y. frederiksenii may be strain-dependent.

  8. Growth temperature alters Salmonella Enteritidis heat/acid resistance, membrane lipid composition and stress/virulence related gene expression.

    PubMed

    Yang, Yishan; Khoo, Wei Jie; Zheng, Qianwang; Chung, Hyun-Jung; Yuk, Hyun-Gyun

    2014-02-17

    The influence of growth temperature (10, 25, 37, and 42 °C) on the survival of Salmonella Enteritidis in simulated gastric fluid (SGF; pH=2.0) and during heat treatment (54, 56, 58, and 60 °C), on the membrane fatty acid composition, as well as on stress-/virulence-related gene expression was studied. Cells incubated at temperatures lower or higher than 37 °C did not increase their acid resistance, with the maximum D-value of 3.07 min in cells grown at 37 °C; while those incubated at higher temperature increased their heat resistance, with the maximum D60 °C-values of 1.4 min in cells grown at 42 °C. A decrease in the ratio of unsaturated to saturated fatty acids was observed as the growth temperature increased. Compared to the control cells grown at 37 °C, the expression of rpoS was 16.5- and 14.4-fold higher in cells cultivated at 10 and 25 °C, respectively; while the expression of rpoH was 2.9-fold higher in those cultivated at 42 °C. The increased expression of stress response gene rpoH and the decreased ratio of unsaturated to saturated fatty acids correlated with the greater heat resistance of bacteria grown at 42 °C; while the decreased expression of stress response gene rpoS at 42 °C might contribute to the decrease in acid resistance. Virulence related genes-spvR, hilA, avrA-were induced in cells cultivated at 42 °C, except sefA which was induced in the control cells. This study indicates that environmental temperature may affect the virulence potential of S. Enteritidis, thus temperature should be well controlled during food storage.

  9. The regulatory repertoire of Pseudomonas aeruginosa AmpC ß-lactamase regulator AmpR includes virulence genes.

    PubMed

    Balasubramanian, Deepak; Schneper, Lisa; Merighi, Massimo; Smith, Roger; Narasimhan, Giri; Lory, Stephen; Mathee, Kalai

    2012-01-01

    In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. In addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, we compared the transcriptional profile generated using DNA microarrays of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion mutant, PAOΔampR. Transcriptome analysis demonstrates that the AmpR regulon is much more extensive than previously thought, with the deletion of ampR influencing the differential expression of over 500 genes. In addition to regulating resistance to β-lactam antibiotics via AmpC, AmpR also regulates non-β-lactam antibiotic resistance by modulating the MexEF-OprN efflux pump. Other virulence mechanisms including biofilm formation and QS-regulated acute virulence factors are AmpR-regulated. Real-time PCR and phenotypic assays confirmed the microarray data. Further, using a Caenorhabditis elegans model, we demonstrate that a functional AmpR is required for P. aeruginosa pathogenicity. AmpR, a member of the core genome, also regulates genes in the regions of genome plasticity that are acquired by horizontal gene transfer. Further, we show differential regulation of other transcriptional regulators and sigma factors by AmpR, accounting for the extensive AmpR regulon. The data demonstrates that AmpR functions as a global regulator in P. aeruginosa and is a positive regulator of acute virulence while negatively regulating biofilm formation, a chronic infection phenotype. Unraveling this complex regulatory circuit will provide a better understanding of the bacterial response to antibiotics and how the

  10. The Regulatory Repertoire of Pseudomonas aeruginosa AmpC ß-Lactamase Regulator AmpR Includes Virulence Genes

    PubMed Central

    Balasubramanian, Deepak; Schneper, Lisa; Merighi, Massimo; Smith, Roger; Narasimhan, Giri; Lory, Stephen; Mathee, Kalai

    2012-01-01

    In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. In addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, we compared the transcriptional profile generated using DNA microarrays of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion mutant, PAOΔampR. Transcriptome analysis demonstrates that the AmpR regulon is much more extensive than previously thought, with the deletion of ampR influencing the differential expression of over 500 genes. In addition to regulating resistance to β-lactam antibiotics via AmpC, AmpR also regulates non-β-lactam antibiotic resistance by modulating the MexEF-OprN efflux pump. Other virulence mechanisms including biofilm formation and QS-regulated acute virulence factors are AmpR-regulated. Real-time PCR and phenotypic assays confirmed the microarray data. Further, using a Caenorhabditis elegans model, we demonstrate that a functional AmpR is required for P. aeruginosa pathogenicity. AmpR, a member of the core genome, also regulates genes in the regions of genome plasticity that are acquired by horizontal gene transfer. Further, we show differential regulation of other transcriptional regulators and sigma factors by AmpR, accounting for the extensive AmpR regulon. The data demonstrates that AmpR functions as a global regulator in P. aeruginosa and is a positive regulator of acute virulence while negatively regulating biofilm formation, a chronic infection phenotype. Unraveling this complex regulatory circuit will provide a better understanding of the bacterial response to antibiotics and how the

  11. Prevalence of Virulence Factors and Vancomycin-resistant Genes among Enterococcus faecalis and E. faecium Isolated from Clinical Specimens

    PubMed Central

    NASAJ, Mona; MOUSAVI, Seyed Masoud; HOSSEINI, Seyed Mostafa; ARABESTANI, Mohammad Reza

    2016-01-01

    Background: The aim of this study was to determine the occurrence of virulence determinants and vancomycin-resistant genes among Enterococcus faecalis and E. faecium obtained from various clinical sources. Methods: The study was performed on the 280 enterococcal isolated from clinical specimens in Hamadan hospitals, western Iran in 2012–14. Antibiotic susceptibility testing was performed using disk diffusion and Minimal Inhibitory Concentration (MIC) methods. The presence of vancomycin-resistant genes and virulence genes was investigated using PCR. Results: Totally 280 enterococcal isolates were identified as follows: E. faecalis (62.5%), E. faecium (24%) and Enterococcus spp (13.5%). The results of antibiotic susceptibility testing showed that resistance rates to vancomycin and teicoplanin in E. faecalis and E. faecium isolates were 5% and 73%, respectively. Of Sixty vancomycin-resistant Enterococci strains, fifty-one isolates were identified as E. faecium (VREfm) and nine as E. faecalis (VREfs). Prevalence of esp, hyl, and asa1 genes were determined as 82%, 71.6%, and 100%, respectively in E. faecium strains; and 78%, 56/6%, and 97%, respectively in E. faecalis strains. Conclusion: The increased frequency of VREF, as seen with rapid rise in the number of vanA isolates should be considered in infection control practices. PMID:27648425

  12. Identification of Salmonella typhimurium Genes Required for Colonization of the Chicken Alimentary Tract and for Virulence in Newly Hatched Chicks

    PubMed Central

    Turner, Arthur K.; Lovell, Margaret A.; Hulme, Scott D.; Zhang-Barber, Li; Barrow, Paul A.

    1998-01-01

    From a collection of 2,800 Tn5-TC1 transposon mutants of Salmonella typhimurium F98, 18 that showed reduced intestinal colonization of 3-week-old chicks were identified. The sites of transposon insertion were determined for most of the mutants and included insertions in the lipopolysaccharide biosynthesis genes rfaK, rfaY, rfbK, and rfbB and the genes dksA, clpB, hupA, and sipC. In addition, identification was made of an insertion into a novel gene that encodes a protein showing similarity to the IIC component of the mannose class of phosphoenolpyruvate-carbohydrate phosphotransferase systems, which we putatively called ptsC. Transduction of most of the transposon mutations to a fresh S. typhimurium F98 genetic background and construction of defined mutations in the rfbK, dksA, hupA, sipC, and ptsC genes of S. typhimurium F98 supported the role in colonization of all but the pts locus. The virulence of the rfbK, dksA, hupA, sipC, and ptsC defined mutants and clpB and rfaY transductants in 1-day-old chicks was tested. All but the ptsC and rfaY mutants were attenuated for virulence. A number of other phenotypes associated with some of the mutations are described. PMID:9573095

  13. Two Isoforms of Yersinia pestis Plasminogen Activator Pla: Intraspecies Distribution, Intrinsic Disorder Propensity, and Contribution to Virulence

    PubMed Central

    Dentovskaya, Svetlana V.; Platonov, Mikhail E.; Svetoch, Tat’yana E.; Kopylov, Pavel Kh.; Kombarova, Tat’yana I.; Ivanov, Sergey A.; Shaikhutdinova, Rima Z.; Kolombet, Lyubov’ V.; Chauhan, Sadhana; Ablamunits, Vitaly G.; Motin, Vladimir L.; Uversky, Vladimir N.

    2016-01-01

    It has been shown previously that several endemic Y. pestis isolates with limited virulence contained the I259 isoform of the outer membrane protease Pla, while the epidemic highly virulent strains possessed only the T259 Pla isoform. Our sequence analysis of the pla gene from 118 Y. pestis subsp. microtus strains revealed that the I259 isoform was present exclusively in the endemic strains providing a convictive evidence of more ancestral origin of this isoform. Analysis of the effects of the I259T polymorphism on the intrinsic disorder propensity of Pla revealed that the I259T mutation slightly increases the intrinsic disorder propensity of the C-terminal tail of Pla and makes this protein slightly more prone for disorder-based protein-protein interactions, suggesting that the T259 Pla could be functionally more active than the I259 Pla. This assumption was proven experimentally by assessing the coagulase and fibrinolytic activities of the two Pla isoforms in human plasma, as well as in a direct fluorometric assay with the Pla peptide substrate. The virulence testing of Pla-negative or expressing the I259 and T259 Pla isoforms Y. pestis subsp. microtus and subsp. pestis strains did not reveal any significant difference in LD50 values and dose-dependent survival assays between them by using a subcutaneous route of challenge of mice and guinea pigs or intradermal challenge of mice. However, a significant decrease in time-to-death was observed in animals infected with the epidemic T259 Pla-producing strains as compared to the parent Pla-negative variants. Survival curves of the endemic I259 Pla+ strains fit between them, but significant difference in mean time to death post infection between the Pla−strains and their I259 Pla+ variants could be seen only in the isogenic set of subsp. pestis strains. These findings suggest an essential role for the outer membrane protease Pla evolution in Y. pestis bubonic infection exacerbation that is necessary for

  14. Evidence for Direct Control of Virulence and Defense Gene Circuits by the Pseudomonas aeruginosa Quorum Sensing Regulator, MvfR

    PubMed Central

    Maura, Damien; Hazan, Ronen; Kitao, Tomoe; Ballok, Alicia E.; Rahme, Laurence G.

    2016-01-01

    Pseudomonas aeruginosa defies eradication by antibiotics and is responsible for acute and chronic human infections due to a wide variety of virulence factors. Currently, it is believed that MvfR (PqsR) controls the expression of many of these factors indirectly via the pqs and phnAB operons. Here we provide strong evidence that MvfR may also bind and directly regulate the expression of additional 35 loci across the P. aeruginosa genome, including major regulators and virulence factors, such as the quorum sensing (QS) regulators lasR and rhlR, and genes involved in protein secretion, translation, and response to oxidative stress. We show that these anti-oxidant systems, AhpC-F, AhpB-TrxB2 and Dps, are critical for P. aeruginosa survival to reactive oxygen species and antibiotic tolerance. Considering that MvfR regulated compounds generate reactive oxygen species, this indicates a tightly regulated QS self-defense anti-poisoning system. These findings also challenge the current hierarchical regulation model of P. aeruginosa QS systems by revealing new interconnections between them that suggest a circular model. Moreover, they uncover a novel role for MvfR in self-defense that favors antibiotic tolerance and cell survival, further demonstrating MvfR as a highly desirable anti-virulence target. PMID:27678057

  15. Serum influences the expression of Pseudomonas aeruginosa quorum-sensing genes and QS-controlled virulence genes during early and late stages of growth

    PubMed Central

    Kruczek, Cassandra; Qaisar, Uzma; Colmer-Hamood, Jane A; Hamood, Abdul N

    2014-01-01

    In response to diverse environmental stimuli at different infection sites, Pseudomonas aeruginosa, a serious nosocomial pathogen, coordinates the production of different virulence factors through a complicated network of the hierarchical quorum-sensing (QS) systems including the las, rhl, and the 2-alkyl-4-quinolone-related QS systems. We recently showed that at early stages of growth serum alters the expression of numerous P. aeruginosa genes. In this study, we utilized transcriptional analysis and enzyme assays to examine the effect of serum on the QS and QS-controlled virulence factors during early and late phases of growth of the P. aeruginosa strain PAO1. At early phase, serum repressed the transcription of lasI, rhlI, and pqsA but not lasR or rhlR. However, at late phase, serum enhanced the expression of all QS genes. Serum produced a similar effect on the synthesis of the autoinducers 3OC12-HSL, C4-HSL, and HHQ/PQS. Additionally, serum repressed the expression of several QS-controlled genes in the early phase, but enhanced them in the late phase. Furthermore, serum influenced the expression of different QS-positive (vqsR, gacA, and vfr) as well as QS-negative (rpoN, qscR, mvaT, and rsmA) regulatory genes at either early or late phases of growth. However, with the exception of PAOΔvfr, we detected comparable levels of lasI/lasR expression in PAO1 and PAO1 mutants defective in these regulatory genes. At late stationary phase, serum failed to enhance lasI/lasR expression in PAOΔvfr. These results suggest that depending on the phase of growth, serum differentially influenced the expression of P. aeruginosa QS and QS-controlled virulence genes. In late phase, serum enhanced the expression of las genes through vfr. PMID:24436158

  16. Deletion of the vacJ gene affects the biology and virulence in Haemophilus parasuis serovar 5.

    PubMed

    Zhao, Liangyou; Gao, Xueli; Liu, Chaonan; Lv, Xiaoping; Jiang, Nan; Zheng, Shimin

    2017-03-01

    Haemophilus parasuis is an important pathogen causing severe infections in pigs. However, the specific bacterial factors that participate in pathogenic process are poorly understood. VacJ protein is a recently discovered outer membrane lipoprotein that relates to virulence in several pathogens. To characterize the function of the vacJ gene in H. parasuis virulent strain HS49, a vacJ gene-deletion mutant ΔvacJ and its complemented strain were constructed. Our findings supported that VacJ is essential for maintenance of cellular integrity and stress tolerance of H. parasuis, by the demonstrations that the ΔvacJ mutant showed morphological change, increased NPN fluorescence and, and decreased resistance to SDS-EDTA, osmotic and oxidation pressure. The increased susceptibility to several antibiotics in the ΔvacJ mutant further suggested that the stability of the outer membrane was impaired as a result of the mutation in the vacJ gene. Compared to the wild-type strain, the ΔvacJ mutant strain caused a decreased survival ratio from the serum and complement killing, and exhibited a significant decrease ability to adhere to and invade PK-15 cell. In addition, the ΔvacJ mutant showed reduced biofilm formation compared to the wild-type strain. Furthermore, the ΔvacJ was attenuated in a murine (Balb/C) model of infection and its LD50 value was approximately fifteen-fold higher than that of the wild-type or complementation strain. The data obtained in this study indicate that vacJ plays an essential role in maintaining outer membrane integrity, stress tolerance, biofilm formation, serum resistance, and adherence to and invasion of host cells related to H. parasuis and further suggest a putative role of VacJ lipoprotein in virulence regulation.

  17. Virulence Genes and the Antimicrobial Susceptibility of Escherichia coli, Isolated from Wild Waterbirds, in the Netherlands and Poland.

    PubMed

    Kuczkowski, Maciej; Krawiec, Marta; Voslamber, Berend; Książczyk, Marta; Płoskońska-Bugla, Gabriela; Wieliczko, Alina

    2016-08-01

    Affiliation to four phylogroups (A, B1, B2, and D) was examined, among 190 Escherichia coli strains, collected from five, wild waterbird species, including the following: the Greylag goose-Anser anser (61) and the Canada goose-Branta canadensis (33) obtained in the Netherlands, and the Mallard-Anas platyrhynchos (38), the Mute swan-Cygnus olor (37), and the Great cormorant-Phalacrocorax carbo (21) obtained in Poland. Moreover, the prevalence of 10 virulence factors: astA, iss, iucD, irp2, papC, tsh, vat, cva/cvi, stx2f, and bfp, as well as antimicrobial susceptibility to amoxicillin, enrofloxacin, and tetracycline (minimum inhibitory concentration [MIC] using E-tests) were investigated, in the examined E. coli strains. Results demonstrated that the greatest number of E. coli strains belonged to phylogenetic groups, B1 (86 strains-45.3%) and D (49 strains-25.8%), whereas 40 (21.0%) and only 15 (7.9%) isolates were classified as being of phylogenetic groups, A and B2, respectively. Among the 10 tested virulence-associated genes, 7 genes were detected in 61 examined strains (32.1%) with highly varying frequency. Virulence profiles showed that astA, iss, and irp2 genes were detected most frequently among all examined E. coli strains, isolated from every chosen bird species. Antimicrobial susceptibility, as detected by MIC for the examined antibiotics, is variable among strains isolated from different species of birds. The aim of this study was to examine the prevalence of E. coli strains, isolated from different species of wild waterbirds and determine their potential pathogenicity to the environment, other birds, and people.

  18. Deletion of the Chemokine Binding Protein Gene from the Parapoxvirus Orf Virus Reduces Virulence and Pathogenesis in Sheep

    PubMed Central

    Fleming, Stephen B.; McCaughan, Catherine; Lateef, Zabeen; Dunn, Amy; Wise, Lyn M.; Real, Nicola C.; Mercer, Andrew A.

    2017-01-01

    Orf virus (ORFV) is the type species of the Parapoxvirus genus of the family Poxviridae and infects sheep and goats, often around the mouth, resulting in acute pustular skin lesions. ORFV encodes several secreted immunomodulators including a broad-spectrum chemokine binding protein (CBP). Chemokines are a large family of secreted chemotactic proteins that activate and regulate inflammation induced leukocyte recruitment to sites of infection. In this study we investigated the role of CBP in vivo in the context of ORFV infection of sheep. The CBP gene was deleted from ORFV strain NZ7 and infections of sheep used to investigate the effect of CBP on pathogenesis. Animals were either infected with the wild type (wt) virus, CBP-knockout virus or revertant strains. Sheep were infected by scarification on the wool-less area of the hind legs at various doses of virus. The deletion of the CBP gene severely attenuated the virus, as only few papules formed when animals were infected with the CBP-knock-out virus at the highest dose (107 p.f.u). In contrast, large pustular lesions formed on almost all animals infected with the wt and revertant strains at 107 p.f.u. The lesions for the CBP-knock-out virus resolved approximately 5–6 days p.i, at a dose of 107 pfu whereas in animals infected with the wt and revertants at this dose, lesions began to resolve at approximately 10 days p.i. Few pustules developed at the lowest dose of 103 p.f.u. for all viruses. Immunohistochemistry of biopsy skin-tissue from pustules showed that the CBP-knockout virus replicated in all animals at the highest dose and was localized to the skin epithelium while haematoxylin and eosin staining showed histological features of the CBP-knockout virus typical of the parent virus with acanthosis, elongated rete ridges and orthokeratotic hyperkeratosis. MHC-II immunohistochemistry analysis for monocytes and dendritic cells showed greater staining within the papillary dermis of the CBP-knock-out virus compared

  19. The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence.

    PubMed

    Hissen, Anna H T; Wan, Adrian N C; Warwas, Mark L; Pinto, Linda J; Moore, Margo M

    2005-09-01

    Aspergillus fumigatus is the leading cause of invasive mold infection and is a serious problem in immunocompromised populations worldwide. We have previously shown that survival of A. fumigatus in serum may be related to secretion of siderophores. In this study, we identified and characterized the sidA gene of A. fumigatus, which encodes l-ornithine N(5)-oxygenase, the first committed step in hydroxamate siderophore biosynthesis. A. fumigatus sidA codes for a protein of 501 amino acids with significant homology to other fungal l-ornithine N(5)-oxygenases. A stable DeltasidA strain was created by deletion of A. fumigatus sidA. This strain was unable to synthesize the siderophores N',N",N'''-triacetylfusarinine C (TAF) and ferricrocin. Growth of the DeltasidA strain was the same as that of the wild type in rich media; however, the DeltasidA strain was unable to grow in low-iron defined media or media containing 10% human serum unless supplemented with TAF or ferricrocin. No significant differences in ferric reduction activities were observed between the parental strain and the DeltasidA strain, indicating that blocking siderophore secretion did not result in upregulation of this pathway. Unlike the parental strain, the DeltasidA strain was unable to remove iron from human transferrin. A rescued strain (DeltasidA + sidA) was constructed; it produced siderophores and had the same growth as the wild type on iron-limited media. Unlike the wild-type and rescued strains, the DeltasidA strain was avirulent in a mouse model of invasive aspergillosis, indicating that sidA is necessary for A. fumigatus virulence.

  20. Inactivation of the Haemophilus ducreyi luxS gene affects the virulence of this pathogen in human subjects.

    PubMed

    Labandeira-Rey, Maria; Janowicz, Diane M; Blick, Robert J; Fortney, Kate R; Zwickl, Beth; Katz, Barry P; Spinola, Stanley M; Hansen, Eric J

    2009-08-01

    Haemophilus ducreyi 35000HP contains a homologue of the luxS gene, which encodes an enzyme that synthesizes autoinducer 2 (AI-2) in other gram-negative bacteria. H. ducreyi 35000HP produced AI-2 that functioned in a Vibrio harveyi-based reporter system. A H. ducreyi luxS mutant was constructed by insertional inactivation of the luxS gene and lost the ability to produce AI-2. Provision of the H. ducreyi luxS gene in trans partially restored AI-2 production by the mutant. The luxS mutant was compared with its parent for virulence in the human challenge model of experimental chancroid. The pustule-formation rate in 5 volunteers was 93.3% (95% confidence interval, 81.7%-99.9%) at 15 parent sites and 60.0% (95% confidence interval, 48.3%-71.7%) at 15 mutant sites (1-tailed P < .001). Thus, the luxS mutant was partially attenuated for virulence. This is the first report of AI-2 production contributing to the pathogenesis of a genital ulcer disease.

  1. The ecological importance of the Staphylococcus sciuri species group as a reservoir for resistance and virulence genes.

    PubMed

    Nemeghaire, Stéphanie; Argudín, M Angeles; Feßler, Andrea T; Hauschild, Tomasz; Schwarz, Stefan; Butaye, Patrick

    2014-07-16

    The Staphylococcus sciuri species group includes five species that are most often presented as commensal animal-associated bacteria. The species of this group are Staphylococcus sciuri (with three subspecies), Staphylococcus lentus, Staphylococcus vitulinus, Staphylococcus fleurettii and Staphylococcus stepanovicii. Members of these group are commonly found in a broad range of habitats including animals, humans and the environment. However, those species have been isolated also from infections, both in veterinary and human medicine. Members of this group have been shown to be pathogenic, though infections caused by these species are infrequent. Furthermore, members of the S. sciuri species group have also been found to carry multiple virulence and resistance genes. Indeed, genes implicated in biofilm formation or coding for toxins responsible of toxic shock syndrome and multi-resistance, similar to those carried by Staphylococcus aureus, were detected. This group may thereby represent a reservoir for other bacteria. Despite its recognized abundance as commensal bacteria and its possible role as reservoir of virulence and resistance genes for other staphylococci, the S. sciuri species group is often considered harmless and, as such, not as well documented as, for example, S. aureus. More investigation into the role of the S. sciuri species group as commensal and pathogenic bacteria is required to fully assess its medical and veterinary importance.

  2. Frequencies of virulence genes and pulse field gel electrophoresis fingerprints in Escherichia coli isolates from canine pyometra.

    PubMed

    Maluta, Renato P; Borges, Clarissa A; Beraldo, Lívia G; Cardozo, Marita V; Voorwald, Fabiana A; Santana, André M; Rigobelo, Everlon C; Toniollo, Gilson H; Avila, Fernando A

    2014-11-01

    Escherichia coli is the most common bacterial agent isolated from canine pyometra. The frequencies of 24 virulence genes and pulsed field gel electrophoresis (PFGE) profiles were determined for 23 E. coli isolates from cases of canine pyometra in Brazil. The frequencies of virulence genes were 91.3% fimH, 91.3% irp-2, 82.6% fyuA, 56.5% iroN, 47.8% traT, 39.1% usp, 34.8% sfaD/E, 34.8% tsh, 30.4% papC, 30.4% hlyA, 26.1% papGIII, 26.1% cnf-1, 21.7% papE/F, 21.7% iss, 17.4% iutA, 17.4% ompT, 17.4% cvaC, 17.4% hlyF, 17.4% iucD, 13.0% iucC, 13.0% astA, 4.3% papGII, 0% afaB/C and 0% papGI. The high frequency of yersiniabactin (fyuA and irp2) and salmochelin (iroN) genes suggests that iron uptake systems might be important in the pathogenesis of canine pyometra. PFGE profiles of 19 isolates were heterogeneous, confirming that E. coli isolates from canine pyometra are unlikely to be epidemic clones.

  3. Enhancing the Stress Tolerance and Virulence of an Entomopathogen by Metabolic Engineering of Dihydroxynaphthalene Melanin Biosynthesis Genes ▿ †

    PubMed Central

    Tseng, Min N.; Chung, Pei C.; Tzean, Shean S.

    2011-01-01

    Entomopathogenic fungi have been used for biocontrol of insect pests for many decades. However, the efficacy of such fungi in field trials is often inconsistent, mainly due to environmental stresses, such as UV radiation, temperature extremes, and desiccation. To circumvent these hurdles, metabolic engineering of dihydroxynaphthalene (DHN) melanin biosynthetic genes (polyketide synthase, scytalone dehydratase, and 1,3,8-trihydroxynaphthalene reductase genes) cloned from Alternaria alternata were transformed into the amelanotic entomopathogenic fungus Metarhizium anisopliae via Agrobacterium-mediated transformation. Melanin expression in the transformant of M. anisopliae was verified by spectrophotometric methods, liquid chromatography/mass spectrometry (LC/MS), and confocal microscopy. The transformant, especially under stresses, showed notably enhanced antistress capacity and virulence, in terms of germination and survival rate, infectivity, and reduced median time to death (LT50) in killing diamondback moth (Plutella xylostella) larvae compared with the wild type. The possible mechanisms in enhancing the stress tolerance and virulence, and the significance and potential for engineering melanin biosynthesis genes in other biocontrol agents and crops to improve antistress fitness are discussed. PMID:21571888

  4. Hfr-2, a wheat cytolytic toxin-like gene, is up-regulated by virulent Hessian fly larval feedingdouble dagger.

    PubMed

    Puthoff, David P; Sardesai, Nagesh; Subramanyam, Subhashree; Nemacheck, Jill A; Williams, Christie E

    2005-07-01

    SUMMARY Both yield and grain-quality are dramatically decreased when susceptible wheat (Triticum aestivum) plants are infested by Hessian fly (Mayetiola destructor) larvae. Examination of the changes in wheat gene expression during infestation by virulent Hessian fly larvae has identified the up-regulation of a gene, Hessian fly responsive-2 (Hfr-2), which contains regions similar to genes encoding seed-specific agglutinin proteins from Amaranthus. Hfr-2, however, did not accumulate in developing seeds, as do other wheat seed storage proteins. Additionally, a separate region of the HFR-2 predicted amino acid sequence is similar to haemolytic proteins, from both mushroom and bacteria, that are able to form pores in cell membranes of mammalian red blood cells. The involvement of Hfr-2 in interactions with insects was supported by experiments demonstrating its up-regulation by both fall armyworm (Spodoptera frugiperda) and bird cherry-oat aphid (Rhopalosiphum padi) infestations but not by virus infection. Examination of wheat defence response pathways showed Hfr-2 up-regulation following methyl jasmonate treatment and only slight up-regulation in response to salicylic acid, abscisic acid and wounding treatments. Like related proteins, HFR-2 may normally function in defence against certain insects or pathogens. However, we propose that as virulent Hessian fly larvae manipulate the physiology of the susceptible host, the HFR-2 protein inserts in plant cell membranes at the feeding sites and by forming pores provides water, ions and other small nutritive molecules to the developing larvae.

  5. The Virulence Regulator Rns Activates the Expression of CS14 Pili

    PubMed Central

    Bodero, Maria Del Rocio; Munson, George Patrick

    2016-01-01

    Although many viral and bacterial pathogens cause diarrhea, enterotoxigenic E. coli (ETEC) is one of the most frequently encountered in impoverished regions where it is estimated to kill between 300,000 and 700,000 children and infants annually. Critical ETEC virulence factors include pili which mediate the attachment of the pathogen to receptors in the intestinal lumen. In this study we show that the ETEC virulence regulator Rns positively regulates the expression of CS14 pili. Three Rns binding sites were identified upstream of the CS14 pilus promoter centered at −34.5, −80.5, and −155.5 relative to the Rns-dependent transcription start site. Mutagenesis of the promoter proximal site significantly decreased expression from the CS14 promoter. In contrast, the contribution of Rns bound at the promoter distal site was negligible and largely masked by occupancy of the promoter proximal site. Unexpectedly, Rns bound at the site centered at −80.5 had a slight but statistically significant inhibitory effect upon the pilin promoter. Nevertheless, this weak inhibitory effect was not sufficient to overcome the substantial promoter activation from Rns bound to the promoter proximal site. Thus, CS14 pili belong to a group of pili that depend upon Rns for their expression. PMID:27941642

  6. The ROP18 and ROP5 gene allele types are highly predictive of virulence in mice across globally distributed strains of Toxoplasma gondii.

    PubMed

    Shwab, Elliot Keats; Jiang, Tiantian; Pena, Hilda F J; Gennari, Solange M; Dubey, Jitender P; Su, Chunlei

    2016-02-01

    The protozoan parasite Toxoplasma gondii is one of the most successful known eukaryotic pathogens on Earth. Virulence of T. gondii strains varies greatly in mice, and mounting evidence suggests that such variations may be relevant to the manifestation of human toxoplasmosis. Polymorphic rhoptry-secreted kinases and pseudokinases (ROP) have been demonstrated to account for murine virulence among the archetypal clonal parasite lineages that dominate the populations of North America and Europe. However, the distribution of virulence gene alleles in natural populations and the broad influence of these allele combinations on T. gondii virulence have not been examined in depth. In the present study, we performed PCR-RFLP genotyping analysis on a diverse array of globally distributed T. gondii strains at four ROP gene loci including ROP18, ROP5, ROP16 and ROP17 that were previously implicated in influencing T. gondii virulence and pathogenesis. We demonstrated through correlation with published virulence data that the combination of ROP18 and ROP5 allele types is highly predictive of T. gondii virulence across a broad range of global T. gondii isolates. These findings indicate that the importance of ROP18 and ROP5 in determining strain virulence is not limited to the North American/European archetypal lineages most commonly used in molecular studies, but also appears to apply to diverse isolates from South/central America and Asia. Restriction fragment length polymorphism analysis of these loci may thus serve as a valuable tool in determining the potential virulence of uncharacterized T. gondii strains in future studies.

  7. Paraburkholderia phytofirmans PsJN protects Arabidopsis thaliana against a virulent strain of Pseudomonas syringae through the activation of induced resistance.

    PubMed

    Timmermann, Tania; Armijo, Grace; Donoso, Raúl A; Seguel, Aldo; Holuigue, Loreto; Gonzalez, Bernardo

    2017-01-24

    Paraburkholderia phytofirmans PsJN is a plant growth-promoting rhizobacterium (PGPR) that stimulates plant growth and improves tolerance to abiotic stresses. This study analyzed whether strain PsJN can reduce plant disease severity and proliferation of the virulent strain Pseudomonas syringae pv tomato (Pst) DC3000 in Arabidopsis plants, through the activation of induced resistance. Arabidopsis plants previously exposed to strain PsJN showed a reduction in disease severity and pathogen proliferation in leaves compared to non-inoculated, infected plants. The plant defense-related genes WRKY54, PR1, ERF1, and PDF1.2 demonstrated increased and more rapid expression in strain PsJN-treated plants compared to non-inoculated, infected plants. Transcriptional analyses and functional analysis using signaling mutant plants, suggested that resistance to infection by Pst DC3000 in plants treated with strain PsJN involves salicylic acid, jasmonate, and ethylene-signaling pathways to activate defense genes. Additionally, activation occurs through a specific PGPR-host recognition, being necessary a metabolically active state of the bacterium to trigger the resistance in Arabidopsis, with a strain PsJN-associated molecular pattern only partially involved in the resistance response. This study provides the first report on the mechanism used by the PGPR P. phytofirmans PsJN to protect A. thaliana against a widespread virulent pathogenic bacterium.

  8. Abundance of Pathogenic Escherichia coli Virulence-Associated Genes in Well and Borehole Water Used for Domestic Purposes in a Peri-Urban Community of South Africa

    PubMed Central

    Abia, Akebe Luther King; Schaefer, Lisa; Ubomba-Jaswa, Eunice; Le Roux, Wouter

    2017-01-01

    In the absence of pipe-borne water, many people in Africa, especially in rural communities, depend on alternative water sources such as wells, boreholes and rivers for household and personal hygiene. Poor maintenance and nearby pit latrines, however, lead to microbial pollution of these sources. We evaluated the abundance of Escherichia coli and the prevalence of pathogenic E. coli virulence genes in water from wells, boreholes and a river in a South African peri-urban community. Monthly samples were collected between August 2015 and November 2016. In all, 144 water samples were analysed for E. coli using the Colilert 18 system. Virulence genes (eagg, eaeA, stx1, stx2, flichH7, ST, ipaH, ibeA) were investigated using real-time polymerase chain reaction. Mean E. coli counts ranged between 0 and 443.1 Most Probable Number (MPN)/100 mL of water sample. Overall, 99.3% of samples were positive for at least one virulence gene studied, with flicH7 being the most detected gene (81/140; 57.6%) and the stx2 gene the least detected gene (8/140; 5.7%). Both intestinal and extraintestinal pathogenic E. coli genes were detected. The detection of virulence genes in these water sources suggests the presence of potentially pathogenic E. coli strains and is a public health concern. PMID:28335539

  9. Abundance of Pathogenic Escherichia coli Virulence-Associated Genes in Well and Borehole Water Used for Domestic Purposes in a Peri-Urban Community of South Africa.

    PubMed

    Abia, Akebe Luther King; Schaefer, Lisa; Ubomba-Jaswa, Eunice; Le Roux, Wouter

    2017-03-20

    In the absence of pipe-borne water, many people in Africa, especially in rural communities, depend on alternative water sources such as wells, boreholes and rivers for household and personal hygiene. Poor maintenance and nearby pit latrines, however, lead to microbial pollution of these sources. We evaluated the abundance of Escherichia coli and the prevalence of pathogenic E. coli virulence genes in water from wells, boreholes and a river in a South African peri-urban community. Monthly samples were collected between August 2015 and November 2016. In all, 144 water samples were analysed for E. coli using the Colilert 18 system. Virulence genes (eagg, eaeA, stx1, stx2, flichH7, ST, ipaH, ibeA) were investigated using real-time polymerase chain reaction. Mean E. coli counts ranged between 0 and 443.1 Most Probable Number (MPN)/100 mL of water sample. Overall, 99.3% of samples were positive for at least one virulence gene studied, with flicH7 being the most detected gene (81/140; 57.6%) and the stx2 gene the least detected gene (8/140; 5.7%). Both intestinal and extraintestinal pathogenic E. coli genes were detected. The detection of virulence genes in these water sources suggests the presence of potentially pathogenic E. coli strains and is a public health concern.

  10. Bacteraemia with Campylobacter jejuni: no association with the virulence genes iam, cdtB, capA or virB.

    PubMed

    Nielsen, H; Persson, S; Olsen, K E P; Ejlertsen, T; Kristensen, B; Schønheyder, H C

    2010-03-01

    The role of bacterial genes in the determination of the clinical spectrum of Campylobacter jejuni infection is unclear. We compared clinical isolates from invasive blood-stream infection with stool isolates from gastroenteritis and found no association of the putative virulence genes iam, capA, virB and cdtB with clinical presentation.

  11. Surface-Associated Lipoproteins Link Enterococcus faecalis Virulence to Colitogenic Activity in IL-10-Deficient Mice Independent of Their Expression Levels.

    PubMed

    Ocvirk, Soeren; Sava, Irina G; Lengfelder, Isabella; Lagkouvardos, Ilias; Steck, Natalie; Roh, Jung H; Tchaptchet, Sandrine; Bao, Yinyin; Hansen, Jonathan J; Huebner, Johannes; Carroll, Ian M; Murray, Barbara E; Sartor, R Balfour; Haller, Dirk

    2015-06-01

    The commensal Enterococcus faecalis is among the most common causes of nosocomial infections. Recent findings regarding increased abundance of enterococci in the intestinal microbiota of patients with inflammatory bowel diseases and induction of colitis in IL-10-deficient (IL-10-/-) mice put a new perspective on the contribution of E. faecalis to chronic intestinal inflammation. Based on the expression of virulence-related genes in the inflammatory milieu of IL-10-/- mice using RNA-sequencing analysis, we characterized the colitogenic role of two bacterial structures that substantially impact on E. faecalis virulence by different mechanisms: the enterococcal polysaccharide antigen and cell surface-associated lipoproteins. Germ-free wild type and IL-10-/- mice were monoassociated with E. faecalis wild type OG1RF or the respective isogenic mutants for 16 weeks. Intestinal tissue and mesenteric lymph nodes (MLN) were collected to characterize tissue pathology, loss of intestinal barrier function, bacterial adhesion to intestinal epithelium and immune cell activation. Bone marrow-derived dendritic cells (BMDC) were stimulated with bacterial lysates and E. faecalis virulence was additionally investigated in three invertebrate models. Colitogenic activity of wild type E. faecalis (OG1RF score: 7.2±1.2) in monoassociated IL-10-/- mice was partially impaired in E. faecalis lacking enterococcal polysaccharide antigen (ΔepaB score: 4.7±2.3; p<0.05) and was almost completely abrogated in E. faecalis deficient for lipoproteins (Δlgt score: 2.3±2.3; p<0.0001). Consistently both E. faecalis mutants showed significantly impaired virulence in Galleria mellonella and Caenorhabditis elegans. Loss of E-cadherin in the epithelium was shown for all bacterial strains in inflamed IL-10-/- but not wild type mice. Inactivation of epaB in E. faecalis reduced microcolony and biofilm formation in vitro, altered bacterial adhesion to intestinal epithelium of germ-free Manduca sexta larvae

  12. Surface-Associated Lipoproteins Link Enterococcus faecalis Virulence to Colitogenic Activity in IL-10-Deficient Mice Independent of Their Expression Levels

    PubMed Central

    Lengfelder, Isabella; Lagkouvardos, Ilias; Steck, Natalie; Roh, Jung H.; Tchaptchet, Sandrine; Bao, Yinyin; Hansen, Jonathan J.; Huebner, Johannes; Carroll, Ian M.; Murray, Barbara E.; Sartor, R. Balfour; Haller, Dirk

    2015-01-01

    The commensal Enterococcus faecalis is among the most common causes of nosocomial infections. Recent findings regarding increased abundance of enterococci in the intestinal microbiota of patients with inflammatory bowel diseases and induction of colitis in IL-10-deficient (IL-10-/-) mice put a new perspective on the contribution of E. faecalis to chronic intestinal inflammation. Based on the expression of virulence-related genes in the inflammatory milieu of IL-10-/- mice using RNA-sequencing analysis, we characterized the colitogenic role of two bacterial structures that substantially impact on E. faecalis virulence by different mechanisms: the enterococcal polysaccharide antigen and cell surface-associated lipoproteins. Germ-free wild type and IL-10-/- mice were monoassociated with E. faecalis wild type OG1RF or the respective isogenic mutants for 16 weeks. Intestinal tissue and mesenteric lymph nodes (MLN) were collected to characterize tissue pathology, loss of intestinal barrier function, bacterial adhesion to intestinal epithelium and immune cell activation. Bone marrow-derived dendritic cells (BMDC) were stimulated with bacterial lysates and E. faecalis virulence was additionally investigated in three invertebrate models. Colitogenic activity of wild type E. faecalis (OG1RF score: 7.2±1.2) in monoassociated IL-10-/- mice was partially impaired in E. faecalis lacking enterococcal polysaccharide antigen (ΔepaB score: 4.7±2.3; p<0.05) and was almost completely abrogated in E. faecalis deficient for lipoproteins (Δlgt score: 2.3±2.3; p<0.0001). Consistently both E. faecalis mutants showed significantly impaired virulence in Galleria mellonella and Caenorhabditis elegans. Loss of E-cadherin in the epithelium was shown for all bacterial strains in inflamed IL-10-/- but not wild type mice. Inactivation of epaB in E. faecalis reduced microcolony and biofilm formation in vitro, altered bacterial adhesion to intestinal epithelium of germ-free Manduca sexta larvae

  13. Effect Of Spaceflight On Microbial Gene Expression And Virulence: Preliminary Results From Microbe Payload Flown On-Board STS-115

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; HonerzuBentrup, K,; Schurr, M. J.; Buchanan, K.; Morici, L.; Hammond, T.; Allen, P.; Baker, C.; Ott, C. M.; Nelman-Gonzalez M.; Schurr, J. R.; Pierson, D. L.; Stodieck, L.; Hing, S.; Hammond, T.; Allen, P.; Baker, C.; Parra, M.; Dumars, P.; Stefanyshyn-Piper, H. M.; Nickerson, C. A.

    2007-01-01

    Human presence in space, whether permanent or temporary, is accompanied by the presence of microbes. However, the extent of microbial changes in response to spaceflight conditions and the corresponding changes to infectious disease risk is unclear. Previous studies have indicated that spaceflight weakens the immune system in humans and animals. In addition, preflight and in-flight monitoring of the International Space Station (ISS) and other spacecraft indicates the presence of opportunistic pathogens and the potential of obligate pathogens. Altered antibiotic resistance of microbes in flight has also been shown. As astronauts and cosmonauts live for longer periods in a closed environment, especially one using recycled water and air, there is an increased risk to crewmembers of infectious disease events occurring in-flight. Therefore, understanding how the space environment affects microorganisms and their disease potential is critically important for spaceflight missions and requires further study. The goal of this flight experiment, operationally called MICROBE, is to utilize three model microbial pathogens, Salmonella typhimurium, Pseudomonas aeruginosa, and Candida albicans to examine the global effects of spaceflight on microbial gene expression and virulence attributes. Specifically, the aims are (1) to perform microarray-mediated gene expression profiling of S. typhimurium, P. aeruginosa, and C. albicans, in response to spaceflight in comparison to ground controls and (2) to determine the effect of spaceflight on the virulence potential of these microorganisms immediately following their return from spaceflight using murine models. The model microorganisms were selected as they have been isolated from preflight or in-flight monitoring, represent different degrees of pathogenic behavior, are well characterized, and have sequenced genomes with available microarrays. In particular, extensive studies of S. typhimurium by the Principal Investigator, Dr. Nickerson

  14. Cnm is a major virulence factor of invasive Streptococcus mutans and part of a conserved three-gene locus.

    PubMed

    Avilés-Reyes, A; Miller, J H; Simpson-Haidaris, P J; Lemos, J A; Abranches, J

    2014-02-01

    Cnm, a collagen- and laminin-binding protein present in a subset of Streptococcus mutans strains, mediates binding to extracellular matrices (ECM), intracellular invasion and virulence in the Galleria mellonella model. Antibodies raised against Cnm were used to confirm expression and the cell surface localization of Cnm in the highly invasive OMZ175 strain. Sequence analysis identified two additional genes (cnaB and cbpA) encoding putative surface proteins immediately upstream of cnm. Inactivation of cnaB and cbpA in OMZ175, individually or in combination, did not decrease the ability of this highly invasive and virulent strain to bind to different ECM proteins, invade human coronary artery endothelial cells (HCAEC), or kill G. mellonella. Similarly, expression of cnaB and cbpA in the cnm(-) strain UA159 revealed that these genes did not enhance Cnm-related phenotypes. However, integration of cnm in the chromosome of UA159 significantly increased its ability to bind to collagen and laminin, invade HCAEC, and kill G. mellonella. Moreover, the presence of antibodies against Cnm nearly abolished the ability of OMZ175 to bind to collagen and laminin and invade HCAEC, and significantly protected G. mellonella against OMZ175 infection. We concluded that neither CnaB nor CbpA is necessary for the expression of Cnm-related traits. We also provided definitive evidence that Cnm is an important virulence factor and a suitable target for the development of novel preventive and therapeutic strategies to combat invasive S. mutans strains.

  15. Decreased in vivo virulence and altered gene expression by a Brucella melitensis light-sensing histidine kinase mutant.

    PubMed

    Gourley, Christopher R; Petersen, Erik; Harms, Jerome; Splitter, Gary

    2015-03-01

    Brucella species utilize diverse virulence factors. Previously, Brucella abortus light-sensing histidine kinase was identified as important for cellular infection. Here, we demonstrate that a Brucella melitensis LOV-HK (BM-LOV-HK) mutant strain has strikingly different gene expression than wild type. General stress response genes including the alternative sigma factor rpoE1 and its anti-anti-sigma factor phyR were downregulated, while flagellar, quorum sensing (QS), and type IV secretion system genes were upregulated in the ΔBM-LOV-HK strain vs. wild type. Contextually, expression results agree with other studies of transcriptional regulators involving ΔrpoE1, ΔphyR, ΔvjbR, and ΔblxR (ΔbabR) Brucella strains. Additionally, deletion of BM-LOV-HK decreases virulence in mice. During C57BL/6 mouse infection, the ΔBM-LOV-HK strain had 2 logs less CFUs in the spleen 3 days postinfection, but similar levels 6 days post infection compared to wild type. Infection of IRF-1(-/-) mice more specifically define ΔBM-LOV-HK strain attenuation with fewer bacteria in spleens and significantly increased survival of mutant vs. wild-type infected IRF-1(-/-) mice. Upregulation of flagella, QS, and VirB genes, along with downregulation of rpoE1 and related sigma factor, rpoH2 (BMEI0280) suggest that BM-LOV-HK modulates both QS and general stress response regulatory components to control Brucella gene expression on a global level.

  16. Macrophage cell death and transcriptional response are actively triggered by the fungal virulence factor Cbp1 during H. capsulatum infection

    PubMed Central

    English, Bevin C.; Murray, Davina Hocking; Lee, Young Nam; Coady, Alison; Sil, Anita

    2016-01-01

    Summary Microbial pathogens induce or inhibit death of host cells during infection, with significant consequences for virulence and disease progression. Death of an infected host cell can either facilitate release and dissemination of intracellular pathogens or promote pathogen clearance. Histoplasma capsulatum is an intracellular fungal pathogen that replicates robustly within macrophages and triggers macrophage lysis by unknown means. To identify H. capsulatum effectors of macrophage lysis, we performed a genetic screen and discovered three mutants that grew to wild-type levels within macrophages but failed to elicit host-cell death. Each mutant was defective in production of the previously identified secreted protein Cbp1 (calcium-binding protein 1), whose role in intracellular growth had not been fully investigated. We found that Cbp1 was dispensable for high levels of intracellular growth, but required to elicit a unique transcriptional signature in macrophages, including genes whose induction was previously associated with endoplasmic reticulum stress and host-cell death. Additionally Cbp1 was required for activation of cell-death caspases-3/7, and macrophage death during H. capsulatum infection was dependent on the pro-apoptotic proteins Bax and Bak. Taken together, these findings strongly suggest that the ability of Cbp1 to actively program host-cell death is an essential step in H. capsulatum pathogenesis. PMID:26288377

  17. Macrophage cell death and transcriptional response are actively triggered by the fungal virulence factor Cbp1 during H. capsulatum infection.

    PubMed

    Isaac, Dervla T; Berkes, Charlotte A; English, Bevin C; Hocking Murray, Davina; Lee, Young Nam; Coady, Alison; Sil, Anita

    2015-12-01

    Microbial pathogens induce or inhibit death of host cells during infection, with significant consequences for virulence and disease progression. Death of an infected host cell can either facilitate release and dissemination of intracellular pathogens or promote pathogen clearance. Histoplasma capsulatum is an intracellular fungal pathogen that replicates robustly within macrophages and triggers macrophage lysis by unknown means. To identify H. capsulatum effectors of macrophage lysis, we performed a genetic screen and discovered three mutants that grew to wild-type levels within macrophages but failed to elicit host-cell death. Each mutant was defective in production of the previously identified secreted protein Cbp1 (calcium-binding protein 1), whose role in intracellular growth had not been fully investigated. We found that Cbp1 was dispensable for high levels of intracellular growth but required to elicit a unique transcriptional signature in macrophages, including genes whose induction was previously associated with endoplasmic reticulum stress and host-cell death. Additionally, Cbp1 was required for activation of cell-death caspases-3/7, and macrophage death during H. capsulatum infection was dependent on the pro-apoptotic proteins Bax and Bak. Taken together, these findings strongly suggest that the ability of Cbp1 to actively program host-cell death is an essential step in H. capsulatum pathogenesis.

  18. Disruption of the Gene Encoding Endo-β-1, 4-Xylanase Affects the Growth and Virulence of Sclerotinia sclerotiorum

    PubMed Central

    Yu, Yang; Xiao, Jifen; Du, Jiao; Yang, Yuheng; Bi, Chaowei; Qing, Ling

    2016-01-01

    Sclerotinia sclerotiorum (Lib.) de Bary is a devastating fungal pathogen with worldwide distribution. S. sclerotiorum is a necrotrophic fungus that secretes many cell wall-degrading enzymes (CWDEs) that destroy plant’s cell-wall components. Functional analyses of the genes that encode CWDEs will help explain the mechanisms of growth and pathogenicity of S. sclerotiorum. Here, we isolated and characterized a gene SsXyl1 that encoded an endo-β-1, 4-xylanase in S. sclerotiorum. The SsXyl1 expression showed a slight increase during the development and germination stages of sclerotia and a dramatic increase during infection. The expression of SsXyl1 was induced by xylan. The SsXyl1 deletion strains produce aberrant sclerotia that could not germinate to form apothecia. The SsXyl1 deletion strains also lost virulence to the hosts. This study demonstrates the important roles of endo-β-1, 4-xylanase in the growth and virulence of S. sclerotiorum. PMID:27891117

  19. Phylogenetic grouping, epidemiological typing, analysis of virulence genes, and antimicrobial susceptibility of Escherichia coli isolated from healthy broilers in Japan

    PubMed Central

    2014-01-01

    Background The aim of our study was to investigate the possible etiology of avian colibacillosis by examining Escherichia coli isolates from fecal samples of healthy broilers. Findings Seventy-eight E. coli isolates from fecal samples of healthy broilers in Japan were subjected to analysis of phylogenetic background, virulence-associated gene profiling, multi-locus sequence typing (MLST), and antimicrobial resistance profiling. Phylogenetic analysis demonstrated that 35 of the 78 isolates belonged to group A, 28 to group B1, one to group B2, and 14 to group D. Virulence-associated genes iutA, iss, cvaC, tsh, iroN, ompT, and hlyF were found in 23 isolates (29.5%), 16 isolates (20.5%), nine isolates (11.5%), five isolates (6.4%), 19 isolates (24.4%), 23 isolates (29.5%), and 22 isolates (28.2%) respectively. Although the genetic diversity of group D isolates was revealed by MLST, the group D isolates harbored iutA (10 isolates, 71.4%), iss (6 isolates, 42.9%), cvaC (5 isolates, 35.7%), tsh (3 isolates, 21.4%), hlyF (9 isolates, 64.3%), iroN (7 isolates, 50.0%), and ompT (9 isolates, 64.3%). Conclusions Our results indicated that E. coli isolates inhabiting the intestines of healthy broilers pose a potential risk of causing avian colibacillosis. PMID:25061511

  20. The Developmentally Regulated alb1 Gene of Aspergillus fumigatus: Its Role in Modulation of Conidial Morphology and Virulence

    PubMed Central

    Tsai, Huei-Fung; Chang, Yun C.; Washburn, Ronald G.; Wheeler, Michael H.; Kwon-Chung, K. J.

    1998-01-01

    Aspergillus fumigatus, an important opportunistic pathogen which commonly affects neutropenic patients, produces conidia with a bluish-green color. We identified a gene, alb1, which is required for conidial pigmentation. The alb1 gene encodes a putative polyketide synthase, and disruption of alb1 resulted in an albino conidial phenotype. Expression of alb1 is developmentally regulated, and the 7-kb transcript is detected only during the conidiation stage. The alb1 mutation was found to block 1,3,6,8-tetrahydroxynaphthalene production, indicating that alb1 is involved in dihydroxynaphthalene-melanin biosynthesis. Scanning electron microscopy studies showed that the alb1 disruptant exhibited a smooth conidial surface, whereas complementation of the alb1 deletion restored the echinulate wild-type surface. Disruption of alb1 resulted in a significant increase in C3 binding on conidial surfaces, and the conidia of the alb1 disruptant were ingested by human neutrophils at a higher rate than were those of the wild type. The alb1-complemented strain producing bluish-green conidia exhibited inefficient C3 binding and neutrophil-mediated phagocytosis quantitatively similar to those of the wild type. Importantly, the alb1 disruptant had a statistically significant loss of virulence compared to the wild-type and alb1-complemented strains in a murine model. These results suggest that disruption of alb1 causes pleiotropic effects on conidial morphology and fungal virulence. PMID:9620950

  1. In vitro antimicrobial activity of gallium maltolate against virulent Rhodococcus equi.

    PubMed

    Coleman, Michelle; Kuskie, Kyle; Liu, Mei; Chaffin, Keith; Libal, Melissa; Giguère, Steeve; Bernstein, Lawrence; Cohen, Noah

    2010-11-20

    The objective of this study was to determine the in vitro antimicrobial activity of gallium maltolate (GaM) against Rhodococcus equi. A total of 98 virulent bacterial isolates from equine clinical cases were examined, of which 19 isolates were known to be resistant to macrolides and rifampin. Isolates were cultured with various concentrations of GaM and minimal inhibitory concentration (MIC) values were determined after 24 and 48 h. Both the MIC(50) and the MIC(90) after 24h of growth were 558 ng/mL (8 μM) and after 48 h of growth were 2230 ng/mL (32 μM). There were no apparent differences between MICs of macrolide-resistant and macrolide-susceptible isolates.

  2. Helicobacter pylori virulence genes and host genetic polymorphisms as risk factors for peptic ulcer disease.

    PubMed

    Miftahussurur, Muhammad; Yamaoka, Yoshio

    2015-01-01

    Helicobacter pylori infection plays an important role in the pathogenesis of peptic ulcer disease (PUD). Several factors have been proposed as possible H. pylori virulence determinants; for example, bacterial adhesins and gastric inflammation factors are associated with an increased risk of PUD. However, differences in bacterial virulence factors alone cannot explain the opposite ends of the PUD disease spectrum, that is duodenal and gastric ulcers; presumably, both bacterial and host factors contribute to the differential response. Carriers of the high-producer alleles of the pro-inflammatory cytokines IL-1B, IL-6, IL-8, IL-10, and TNF-α who also carry low-producer allele of anti-inflammatory cytokines have severe gastric mucosal inflammation, whereas carriers of the alternative alleles have mild inflammation. Recent reports have suggested that the PSCA and CYP2C19 ultra-rapid metabolizer genotypes are also associated with PUD.

  3. Helicobacter pylori virulence genes and host genetic polymorphisms as risk factors for peptic ulcer disease

    PubMed Central

    Yamaoka, Yoshio; Miftahussurur, Muhammad

    2017-01-01

    Helicobacter pylori infection plays an important role in the pathogenesis of peptic ulcer disease (PUD). Several factors have been proposed as possible H. pylori virulence determinants; for example, bacterial adhesins and gastric inflammation factors are associated with an increased risk of PUD. However, differences in bacterial virulence factors alone cannot explain the opposite ends of the PUD disease spectrum, i.e., duodenal and gastric ulcers; presumably, both bacterial and host factors contribute to the differential response. Carriers of the high-producer alleles of the pro-inflammatory cytokines interleukin (IL)-1B, IL-6, IL-8, IL-10, and tumor necrosis factor-α who also carry low-producer allele carriers of anti-inflammatory cytokines have severe gastric mucosal inflammation, whereas carriers of the alternative alleles have mild inflammation. Recent reports have suggested that the PSCA and CYP2C19 ultra-rapid metabolizer genotypes are also associated with PUD. PMID:26470920

  4. Genome sequencing reveals widespread virulence gene exchange among human Neisseria species.

    PubMed

    Marri, Pradeep Reddy; Paniscus, Mary; Weyand, Nathan J; Rendón, María A; Calton, Christine M; Hernández, Diana R; Higashi, Dustin L; Sodergren, Erica; Weinstock, George M; Rounsley, Steven D; So, Magdalene

    2010-07-28

    Commensal bacteria comprise a large part of the microbial world, playing important roles in human development, health and disease. However, little is known about the genomic content of commensals or how related they are to their pathogenic counterparts. The genus Neisseria, containing both commensal and pathogenic species, provides an excellent opportunity to study these issues. We undertook a comprehensive sequencing and analysis of human commensal and pathogenic Neisseria genomes. Commensals have an extensive repertoire of virulence alleles, a large fraction of which has been exchanged among Neisseria species. Commensals also have the genetic capacity to donate DNA to, and take up DNA from, other Neisseria. Our findings strongly suggest that commensal Neisseria serve as reservoirs of virulence alleles, and that they engage extensively in genetic exchange.

  5. Genome Sequencing Reveals Widespread Virulence Gene Exchange among Human Neisseria Species

    PubMed Central

    Marri, Pradeep Reddy; Paniscus, Mary; Hernández, Diana R.; Higashi, Dustin L.; Sodergren, Erica; Weinstock, George M.; Rounsley, Steven D.; So, Magdalene

    2010-01-01

    Commensal bacteria comprise a large part of the microbial world, playing important roles in human development, health and disease. However, little is known about the genomic content of commensals or how related they are to their pathogenic counterparts. The genus Neisseria, containing both commensal and pathogenic species, provides an excellent opportunity to study these issues. We undertook a comprehensive sequencing and analysis of human commensal and pathogenic Neisseria genomes. Commensals have an extensive repertoire of virulence alleles, a large fraction of which has been exchanged among Neisseria species. Commensals also have the genetic capacity to donate DNA to, and take up DNA from, other Neisseria. Our findings strongly suggest that commensal Neisseria serve as reservoirs of virulence alleles, and that they engage extensively in genetic exchange. PMID:20676376

  6. Relationship between eae and stx virulence genes and Escherichia coli in an agricultural watershed: implications for irrigation water standards and leafy green commodities.

    PubMed

    Shelton, Daniel R; Karns, Jeffrey S; Coppock, Cary; Patel, Jitu; Sharma, Manan; Pachepsky, Yakov A

    2011-01-01

    The California Leafy Greens Marketing Agreement (LGMA) was adopted in an effort to minimize the risk of contamination of leafy greens with enteric pathogens from a variety of sources, including ground and surface irrigation waters. The LGMA contains standards similar to those established for recreational waters, based on Escherichia coli concentrations. However, no correlation between E. coli and any specific waterborne pathogen(s) has been reported. We conducted this monitoring study in an agricultural watershed to (i) evaluate spatial and temporal fluctuations in E. coli populations and virulence genes associated with pathogenic E. coli and (ii) investigate whether a relationship could be established between E. coli and virulence genes. The virulence genes targeted for analysis were the eae and stx genes, encoding for intimin and Shiga-like toxins, respectively; they were detected with PCR methods. E. coli concentrations and eae and stx prevalence varied both spatially and temporally. In general, both were higher in agricultural than in forested areas and were higher in the summer and fall seasons than in winter. The eae and stx genes were prevalent throughout the watershed. However, in the absence of actual isolates, no conclusions could be drawn regarding the prevalence of specific pathogenic E. coli. No correlation was observed between E. coli concentrations and virulence genes; lower E. coli concentrations were not necessarily associated with decreased prevalence of eae and stx genes. These results suggest that the LGMA standards might not adequately address the issue of waterborne contamination, and that alternative criteria might be required.

  7. Characterization of Antimicrobial Susceptibility and Its Association with Virulence Genes Related to Adherence, Invasion, and Cytotoxicity in Campylobacter jejuni and Campylobacter coli Isolates from Animals, Meat, and Humans.

    PubMed

    Lapierre, Lisette; Gatica, María A; Riquelme, Víctor; Vergara, Constanza; Yañez, José Manuel; San Martín, Betty; Sáenz, Leonardo; Vidal, Maricel; Martínez, María Cristina; Araya, Pamela; Flores, Roberto; Duery, Oscar; Vidal, Roberto

    2016-07-01

    The aim of this research was to statistically analyze the association between antimicrobial susceptibility/resistance to erythromycine, gentamicin, ciprofloxacin, and tetracycline and 11 virulence genes associated with adherence, invasion, and cytotoxicity in 528 isolates of Campylobacter coli and Campylobacter jejuni obtained from retail meat and fecal samples from food-producing animals and human patients. A high percentage of Campylobacter strains were resistant to antimicrobials, specifically ciprofloxacin and tetracycline. Moreover, we observed a wide distribution of virulence genes within the analyzed strains. C. jejuni strains were more susceptible to antimicrobials, and showed greater number of virulence genes than C. coli strains. Genes related to invasion capability, such as racR, ciaB, and pldA, were associated with antimicrobial-susceptible strains in both species. The genes cdtA and dnaJ, a citotoxin unit and an adherence-related gene, respectively, were associated with antimicrobial-resistant strains in both species. In conclusion, Campylobacter strains show a statistically significant association between antimicrobial susceptibility and the presence of virulence genes.

  8. PrfA regulation offsets the cost of L isteria virulence outside the host

    PubMed Central

    Vasanthakrishnan, Radhakrishnan B.; de las Heras, Aitor; Scortti, Mariela; Deshayes, Caroline; Colegrave, Nick

    2015-01-01

    Summary Virulence traits are essential for pathogen fitness, but whether they affect microbial performance in the environment, where they are not needed, remains experimentally unconfirmed. We investigated this question with the facultative pathogen L isteria monocytogenes and its PrfA virulence regulon. PrfA‐regulated genes are activated intracellularly (PrfA ‘ON’) but shut down outside the host (PrfA ‘OFF’). Using a mutant PrfA regulator locked ON (PrfA*) and thus causing PrfA‐controlled genes to be constitutively activated, we show that virulence gene expression significantly impairs the listerial growth rate (μ) and maximum growth (A) in rich medium. Deletion analysis of the PrfA regulon and complementation of a L. monocytogenes mutant lacking all PrfA‐regulated genes with PrfA* indicated that the growth reduction was specifically due to the unneeded virulence determinants and not to pleiotropic regulatory effects of PrfA ON. No PrfA*‐associated fitness disadvantage was observed in infected eukaryotic cells, where PrfA‐regulated virulence gene expression is critical for survival. Microcosm experiments demonstrated that the constitutively virulent state strongly impaired L . monocytogenes performance in soil, the natural habitat of these bacteria. Our findings provide empirical proof that virulence carries a significant cost to the pathogen. They also experimentally substantiate the assumed, although not proven, key role of virulence gene regulation systems in suppressing the cost of bacterial virulence outside the host. PMID:26178789

  9. Detection of virulence, antibiotic resistance and toxin (VAT) genes in Campylobacter species using newly developed multiplex PCR assays.

    PubMed

    Laprade, Natacha; Cloutier, Michel; Lapen, David R; Topp, Edward; Wilkes, Graham; Villemur, Richard; Khan, Izhar U H

    2016-05-01

    Campylobacter species are one of the leading causes of bacterial gastroenteritis in humans worldwide. This twofold study was sought to: i) develop and optimize four single-tube multiplex PCR (mPCR) assays for the detection of six virulence (ciaB, dnaJ, flaA, flaB, pldA and racR), three toxin (cdtA, cdtB and cdtC) and one antibiotic resistance tet(O) genes in thermophilic Campylobacter spp. and ii) apply and evaluate the developed mPCR assays by testing 470 previously identified C. jejuni, C. coli and C. lari isolates from agricultural water. In each mPCR assay, a combination of two or three sets of primer pairs for virulence, antibiotic resistance and toxin (VAT) genes was used and optimized. Assay 1 was developed for the detection of dnaJ, racR and cdtC genes with expected amplification sizes of 720, 584 and 182bp. Assay 2 generated PCR amplicons for tet(O) and cdtA genes of 559 and 370bp. Assay 3 amplified cdtB ciaB, and pldA genes with PCR amplicon sizes of 620, 527 and 385bp. Assay 4 was optimized for flaA and flaB genes that generated PCR amplicons of 855 and 260bp. The primer pairs and optimized PCR protocols did not show interference and/or cross-amplification with each other and generated the expected size of amplification products for each target VAT gene for the C. jejuni ATCC 33291 reference strain. Overall, all ten target VAT genes were detected at a variable frequency in tested isolates of thermophilic Campylobacter spp. where cdtC, flaB, ciaB, cdtB, cdtA and pldA were commonly detected compared to the flaA, racR, dnaJ and tet(O) genes which were detected with less frequency. The developed mPCR assays are simple, rapid, reliable and sensitive tools for simultaneously assessing potential pathogenicity and antibiotic resistance profiling in thermophilic Campylobacter spp. The mPCR assays will be useful in diagnostic and analytical settings for routine screening of VAT characteristics of Campylobacter spp. as well as being applicable in epidemiological

  10. Pilus gene pool variation and the virulence of Corynebacterium diphtheriae clinical isolates during infection of a nematode.

    PubMed

    Broadway, Melissa M; Rogers, Elizabeth A; Chang, Chungyu; Huang, I-Hsiu; Dwivedi, Prabhat; Yildirim, Suleyman; Schmitt, Michael P; Das, Asis; Ton-That, Hung

    2013-08-01

    Toxigenic Corynebacterium diphtheriae strains cause diphtheria in humans. The toxigenic C. diphtheriae isolate NCTC13129 produces three distinct heterotrimeric pili that contain SpaA, SpaD, and SpaH, making up the shaft structure. The SpaA pili are known to mediate bacterial adherence to pharyngeal epithelial cells. However, to date little is known about the expression of different pili in various clinical isolates and their importance in bacterial pathogenesis. Here, we characterized a large collection of C. diphtheriae clinical isolates for their pilin gene pool by PCR and for the expression of the respective pilins by immunoblotting with antibodies against Spa pilins. Consistent with the role of a virulence factor, the SpaA-type pili were found to be prevalent among the isolates, and most significantly, corynebacterial adherence to pharyngeal epithelial cells was strictly correlated with isolates that were positive for the SpaA pili. By comparison, the isolates were heterogeneous for the presence of SpaD- and SpaH-type pili. Importantly, using Caenorhabditis elegans as a model host for infection, we show here that strain NCTC13129 rapidly killed the nematodes, the phenotype similar to isolates that were positive for toxin and all pilus types. In contrast, isogenic mutants of NCTC13129 lacking SpaA-type pili or devoid of toxin and SpaA pili exhibited delayed killing of nematodes with similar kinetics. Consistently, nontoxigenic or toxigenic isolates that lack one, two, or all three pilus types were also attenuated in virulence. This work signifies the important role of pili in corynebacterial pathogenesis and provides a simple host model to identify additional virulence factors.

  11. Distribution of virulence genes and genotyping of CTX-M-15-producing Klebsiella pneumoniae isolated from patients with community-acquired urinary tract infection (CA-UTI).

    PubMed

    Ranjbar, Reza; Memariani, Hamed; Sorouri, Rahim; Memariani, Mojtaba

    2016-11-01

    Klebsiella pneumoniae is one of the most important agents of community-acquired urinary tract infection (CA-UTI). In addition to extended-spectrum β-lactamases (ESBLs), a number of virulence factors have been shown to play an important role in the pathogenesis of K. pneumoniae, including capsule, siderophores, and adhesins. Little is known about the genetic diversity and virulence content of the CTX-M-15-producing K. pneumoniae isolated from CA-UTI in Iran. A total of 152 K. pneumoniae isolates were collected from CA-UTI patients in Tehran from September 2015 through April 2016. Out of 152 isolates, 40 (26.3%) carried blaCTX-M-15. PCR was performed for detection of virulence genes in CTX-M-15-producing isolates. Furthermore, all of these isolates were subjected to multiple-locus variable-number of tandem repeat (VNTR) analysis (MLVA). Using MLVA method, 36 types were identified. CTX-M-15-producing K. pneumoniae isolates were grouped into 5 clonal complexes (CCs). Of these isolates, mrkD was the most prevalent virulence gene (95%), followed by kpn (60%), rmpA (37.5%), irp (35%), and magA (2.5%). No correlation between MLVA types or CCs and virulence genes or antibiotic resistance patterns was observed. Overall, it is thought that CTX-M-15-producing K. pneumoniae strains isolated from CA-UTI have arisen from different clones.

  12. Dynamics of Vibrio with virulence genes detected in Pacific harbor seals (Phoca vitulina richardii) off California: implications for marine mammal health.

    PubMed

    Hughes, Stephanie N; Greig, Denise J; Miller, Woutrina A; Byrne, Barbara A; Gulland, Frances M D; Harvey, James T

    2013-05-01

    Given their coastal site fidelity and opportunistic foraging behavior, harbor seals (Phoca vitulina) may serve as sentinels for coastal ecosystem health. Seals using urbanized coastal habitat can acquire enteric bacteria, including Vibrio that may affect their health. To understand Vibrio dynamics in seals, demographic and environmental factors were tested for predicting potentially virulent Vibrio in free-ranging and stranded Pacific harbor seals (Phoca vitulina richardii) off California. Vibrio prevalence did not vary with season and was greater in free-ranging seals (29 %, n = 319) compared with stranded seals (17 %, n = 189). Of the factors tested, location, turbidity, and/or salinity best predicted Vibrio prevalence in free-ranging seals. The relationship of environmental factors with Vibrio prevalence differed by location and may be related to oceanographic or terrestrial contributions to water quality. Vibrio parahaemolyticus, Vibrio alginolyticus, and Vibrio cholerae were observed in seals, with V. cholerae found almost exclusively in stranded pups and yearlings. Additionally, virulence genes (trh and tdh) were detected in V. parahaemolyticus isolates. Vibrio cholerae isolates lacked targeted virulence genes, but were hemolytic. Three out of four stranded pups with V. parahaemolyticus (trh+ and/or tdh+) died in rehabilitation, but the role of Vibrio in causing mortality is unclear, and Vibrio expression of virulence genes should be investigated. Considering that humans share the environment and food resources with seals, potentially virulent Vibrio observed in seals also may be of concern to human health.

  13. Region between the canine distemper virus M and F genes modulates virulence by controlling fusion protein expression.

    PubMed

    Anderson, Danielle E; von Messling, Veronika

    2008-11-01

    Morbilliviruses, including measles and canine distemper virus (CDV), are nonsegmented, negative-stranded RNA viruses that cause severe diseases in humans and animals. The transcriptional units in their genomes are separated by untranslated regions (UTRs), which contain essential transcription and translation signals. Due to its increased length, the region between the matrix (M) protein and fusion (F) protein open reading frames is of particular interest. In measles virus, the entire F 5' region is untranslated, while several start codons are found in most other morbilliviruses, resulting in a long F protein signal peptide (Fsp). To characterize the role of this region in morbillivirus pathogenesis, we constructed recombinant CDVs, in which either the M-F UTR was replaced with that between the nucleocapsid (N) and phosphoprotein (P) genes, or 106 Fsp residues were deleted. The Fsp deletion alone had no effect in vitro and in vivo. In contrast, substitution of the UTR was associated with a slight increase in F gene and protein expression. Animals infected with this virus either recovered completely or experienced prolonged disease and death due to neuroinvasion. The combination of both changes resulted in a virus with strongly increased F gene and protein expression and complete attenuation. Taken together, our results provide evidence that the region between the morbillivirus M and F genes modulates virulence through transcriptional control of the F gene expression.

  14. Differential expression of pathogenicity- and virulence-related genes of Xanthomonas axonopodis pv. citri under copper stress.

    PubMed

    Palmieri, Ana Carolina Basílio; do Amaral, Alexandre Morais; Homem, Rafael Augusto; Machado, Marcos Antonio

    2010-04-01

    In this study, we used real-time quantitative PCR (RT-qPCR) to evaluate the expression of 32 genes of Xanthomonas axonopodis pv. citri related to pathogenicity and virulence that are also involved in copper detoxification. Nearly all of the genes were up-regulated, including copA and copB. Two genes homologous to members of the type II secretion system (xcsH and xcsC) and two involved in the degradation of plant cell wall components (pglA and pel) were the most expressed in response to an elevated copper concentration. The type II secretion system (xcs operon) and a few homologues of proteins putatively secreted by this system showed enhanced expression when the bacteria were exposed to a high concentration of copper sulfate. The enhanced expression of the genes of secretion II system during copper stress suggests that this pathway may have an important role in the adaptative response of X. axonopodis pv. citri to toxic compounds. These findings highlight the potential role of these genes in attenuating the toxicity of certain metals and could represent an important means of bacterial resistance against chemicals used to control diseases.

  15. Effect of high-fructose corn syrup on Streptococcus mutans virulence gene expression and on tooth demineralization.

    PubMed

    Sun, Minmin; Kang, Qiongyi; Li, Tingting; Huang, Lili; Jiang, Yuntao; Xia, Wenwei

    2014-06-01

    High-fructose corn syrup-55 (HFCS-55) has been widely welcomed in recent years as a substitute for sucrose on the basis of its favourable properties and price. The objective of this study was to determine the influence of HFCS-55 on the expression of Streptococcus mutans UA159 virulence genes and on tooth demineralization. Real-time reverse-transcription PCR (real-time RT-PCR) and microhardness evaluations were performed to examine gene expression and enamel demineralization, respectively, after treatment with HFCS-55 and/or sucrose. Significant up-regulation of glucosyltransferase B (gtfB) by HFCS-55 was found. A mixture of HFCS-55 and sucrose could positively enhance expression of glucan-binding protein (gbp) genes. Regarding acidogenicity, expression of the lactate dehydrogenase (ldh) gene was unaffected by HFCS-55. A notable finding in this study was that 5% HFCS-55 significantly enhanced expression of the intracellular response gene of the two-component VicRK signal transduction system (vicR). Demineralization testing showed that the microhardness of teeth decreased by a greater extent in response to HFCS-55 than in response to sucrose. The results indicate that HFCS-55 can enhance S. mutans biofilm formation indirectly in the presence of sucrose and that HFCS-55 has a more acidogenic potential than does sucrose. Summing up the real-time PCR and demineralization results, HFCS-55 appears to be no less cariogenic than sucrose in vitro - at least, not under the conditions of our experiments.

  16. In vivo virulence of viral haemorrhagic septicaemia virus (VHSV) in rainbow trout Oncorhynchus mykiss correlates inversely with in vitro Mx gene expression.

    PubMed

    Cano, Irene; Collet, Bertrand; Pereira, Clarissa; Paley, Richard; van Aerle, Ronny; Stone, David; Taylor, Nick G H

    2016-05-01

    The in vitro replication of viral haemorrhagic septicaemia virus (VHSV) isolates from each VHSV genotype and the associated cellular host Mx gene expression were analysed. All the isolates were able to infect RTG-2 cells and induce increased Mx gene expression (generic assay detecting isoforms 1 and 3 [Mx1/3]). A trout pathogenic, genotype Ia isolate (J167), showing high replication in RTG-2 cells (by infective titre and N gene expression) induced lower Mx1/3 gene expression than observed in VHSV isolates known to be non-pathogenic to rainbow trout: 96-43/8, 96-43/10 (Ib); 1p49, 1p53 (II); and MI03 (IVb). Paired co-inoculation assays were analysed using equal number of plaque forming units per ml (PFU) of J167 (Ia genotype) with other less pathogenic VHSV genotypes. In these co-inoculations, the Mx1/3 gene expression was significantly lower than for the non-pathogenic isolate alone. Of the three rainbow trout Mx isoforms, J167 did not induce Mx1 up-regulation in RTG-2 or RTgill-W1 cells. Co-inoculating isolates resulted in greater inhibition of Mx in both rainbow trout cell lines studied. Up-regulation of sea bream Mx in SAF-1 cells induced by 96-43/8 was also lower in co-inoculation assays with J167. The RTG-P1 cell line, expressing luciferase under the control of the interferon-induced Mx rainbow trout gene promoter, showed low luciferase activity when inoculated with pathogenic strains: J167, DK-5131 (Ic), NO-A-163/68 (Id), TR-206239-1, TR-22207111 (Ie), 99-292 (IVa), and CA-NB00-01 (IVc). Co-inoculation assays showed a J167-dose dependent inhibition of the luciferase activity. The data suggest that virulent VHSV isolates may interfere in the interferon pathways, potentially determining higher pathogenicity.

  17. CHARACTERIZATION OF VIRULENCE GENES AND ANTIMICROBIAL RESISTANCE OF LUNG PATHOGENIC ESCHERICHIA COLI ISOLATES IN FOREST MUSK DEER (MOSCHUS BEREZOVSKII).

    PubMed

    Luo, Xi; Wang, Peng; Cheng, Jian-guo; Luo, Yan; Dai, Lei; Zhou, Xin; Zou, Li-kou; Li, Bei; Xiao, Jiu-Jin

    2016-06-01

    This study investigated genotypic diversity, 26 virulence genes, and antimicrobial susceptibility of lung pathogenic Escherichia coli (LPEC) isolated from forest musk deer. Associations between virulence factors (VFs) and phylogenetic group, between antimicrobial resistance (AMR) and phylogenetic group, and between AMR and VFs were subsequently assessed. The results showed 30 LPEC isolated were grouped into seven different clusters (A, B, C, D, E, F, and G). The detection rates of crl (90%), kpsMT II (76.67%), mat (76.67%), and ompA (80%) were over 75%. The most frequent types of resistance were to amoxicillin (100%), sulfafurazole (100%), ampicillin (96.67%), and tetracycline (96.67%), with 93.33% (n = 28) of isolates resistant to more than eight types of drugs. There were significant relationships between resistance to cefalotin and the presence of iucD(a) (P < 0.001), papC (P = 0.032), and kpsMT II (P = 0.028); between resistance to chloromycetin and the presence of irp2 (P = 0.004) and vat (P = 0.047); between resistance to nalidixic acid and the presence of crl (P = 0.002) and iucD(a) (P = 0.004); and between resistance to ampicillin/sulbactam and the presence of vat (P = 0.013). These results indicated there could be some association between resistance and VFs, and there is a great need for the prudent use of antimicrobial agents in LPEC.

  18. Random T-DNA mutagenesis identifies a Cu-Zn-superoxide dismutase gene as a virulence factor of Sclerotinia sclerotiorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agrobacterium-mediated transformation (AMT) was used to identify potential virulence factors in Sclerotinia sclerotiorum. Screening AMT transformants identified two mutants showing significantly reduced virulence. The mutants showed similar growth rate, colony morphology, and sclerotial and oxalate ...

  19. The Vaccinia Virus O1 Protein Is Required for Sustained Activation of Extracellular Signal-Regulated Kinase 1/2 and Promotes Viral Virulence

    PubMed Central

    Lukassen, Susanne; Späth, Michaela; Wolferstätter, Michael; Babel, Eveline; Brinkmann, Kay; Wielert, Ursula; Chaplin, Paul; Suter, Mark

    2012-01-01

    Sustained activation of the Raf/MEK/extracellular signal-regulated kinase (ERK) pathway in infected cells has been shown to be crucial for full replication efficiency of orthopoxviruses in cell culture. In infected cells, this pathway is mainly activated by the vaccinia virus growth factor (VGF), an epidermal growth factor (EGF)-like protein. We show here that chorioallantois vaccinia virus Ankara (CVA), but not modified vaccinia virus Ankara (MVA), induced sustained activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in infected human 293 cells, although both viruses direct secretion of functional VGF. A CVA mutant lacking the O1L gene (CVA-ΔO1L) demonstrated that the O1 protein was required for sustained upregulation of the ERK1/2 pathway in 293 cells as well as in other mammalian cell lines. The highly conserved orthopoxvirus O1L gene encodes a predicted 78-kDa protein with a hitherto-unknown function. CVA-ΔO1L showed reduced plaque size and an attenuated cytopathic effect (CPE) in infected cell cultures and reduced virulence and spread from lungs to ovaries in intranasally infected BALB/c mice. Reinsertion of an intact O1L gene into MVA, which in its original form harbors a fragmented O1L open reading frame (ORF), restored ERK1/2 activation in 293 cells but did not increase replication and spread of MVA in human or other mammalian cell lines. Thus, the O1 protein was crucial for sustained ERK1/2 activation in CVA- and MVA-infected human cells, complementing the autocrine function of VGF, and enhanced virulence in vivo. PMID:22171261

  20. Biological variation among african trypanosomes: I. Clonal expression of virulence is not linked to the variant surface glycoprotein or the variant surface glycoprotein gene telomeric expression site.

    PubMed

    Inverso, Jill A; Uphoff, Timothy S; Johnson, Scott C; Paulnock, Donna M; Mansfield, John M

    2010-05-01

    The potential association of variant surface glycoprotein (VSG) gene expression with clonal expression of virulence in African trypanosomes was addressed. Two populations of clonally related trypanosomes, which differ dramatically in virulence for the infected host, but display the same apparent VSG surface coat phenotype, were characterized with respect to the VSG genes expressed as well as the chromosome telomeric expression sites (ES) utilized for VSG gene transcription. The VSG gene sequences expressed by clones LouTat 1 and LouTat 1A of Trypanosoma brucei rhodesiense were identical, and gene expression in both clones occurred precisely by the same gene conversion events (duplication and transposition), which generated an expression-linked copy (ELC) of the VSG gene. The ELC was present on the same genomic restriction fragments in both populations and resided in the telomere of a 330-kb chromosome; a single basic copy of the LouTat 1/1A VSG gene, present in all variants of the LouTat 1 serodeme, was located at an internal site of a 1.5-Mb chromosome. Restriction endonuclease mapping of the ES telomere revealed that the VSG ELC of clones LouTat 1 and 1A resides in the same site. Therefore, these findings provide evidence that the VSG gene ES and, potentially, any cotranscribed ES-associated genes do not play a role in the clonal regulation of virulence because trypanosome clones LouTat 1 and 1A, which differ markedly in their virulence properties, both express identical VSG genes from the same chromosome telomeric ES.

  1. Phosphoenolpyruvate Phosphotransferase System Components Modulate Gene Transcription and Virulence of Borrelia burgdorferi

    PubMed Central

    Odeh, Evelyn; Gao, Lihui; Jacobs, Mary B.; Philipp, Mario T.; Lin, Tao

    2015-01-01

    The phosphoenolpyruvate phosphotransferase system (PEP-PTS) and adenylate cyclase (AC) IV (encoded by BB0723 [cyaB]) are well conserved in different species of Borrelia. However, the functional roles of PEP-PTS and AC in the infectious cycle of Borrelia have not been characterized previously. We examined 12 PEP-PTS transporter component mutants by needle inoculation of mice to assess their ability to cause mouse infection. Transposon mutants with mutations in the EIIBC components (ptsG) (BB0645, thought to be involved in glucose-specific transport) were unable to cause infection in mice, while all other tested PEP-PTS mutants retained infectivity. Infectivity was partially restored in an in trans-complemented strain of the ptsG mutant. While the ptsG mutant survived normally in unfed as well as fed ticks, it was unable to cause infection in mice by tick transmission, suggesting that the function of ptsG is essential to establish infection by either needle inoculation or tick transmission. In Gram-negative organisms, the regulatory effects of the PEP-PTS are mediated by adenylate cyclase and cyclic AMP (cAMP) levels. A recombinant protein encoded by B. burgdorferi BB0723 (a putative cyaB homolog) was shown to have adenylate cyclase activity in vitro; however, mutants with mutations in this gene were fully infectious in the tick-mouse infection cycle, indicating that its function is not required in this process. By transcriptome analysis, we demonstrated that the ptsG gene may directly or indirectly modulate gene expression of Borrelia burgdorferi. Overall, the PEP-PTS glucose transporter PtsG appears to play important roles in the pathogenesis of B. burgdorferi that extend beyond its transport functions. PMID:26712207

  2. Phosphoenolpyruvate Phosphotransferase System Components Modulate Gene Transcription and Virulence of Borrelia burgdorferi.

    PubMed

    Khajanchi, Bijay K; Odeh, Evelyn; Gao, Lihui; Jacobs, Mary B; Philipp, Mario T; Lin, Tao; Norris, Steven J

    2015-12-28

    The phosphoenolpyruvate phosphotransferase system (PEP-PTS) and adenylate cyclase (AC) IV (encoded by BB0723 [cyaB]) are well conserved in different species of Borrelia. However, the functional roles of PEP-PTS and AC in the infectious cycle of Borrelia have not been characterized previously. We examined 12 PEP-PTS transporter component mutants by needle inoculation of mice to assess their ability to cause mouse infection. Transposon mutants with mutations in the EIIBC components (ptsG) (BB0645, thought to be involved in glucose-specific transport) were unable to cause infection in mice, while all other tested PEP-PTS mutants retained infectivity. Infectivity was partially restored in an in trans-complemented strain of the ptsG mutant. While the ptsG mutant survived normally in unfed as well as fed ticks, it was unable to cause infection in mice by tick transmission, suggesting that the function of ptsG is essential to establish infection by either needle inoculation or tick transmission. In Gram-negative organisms, the regulatory effects of the PEP-PTS are mediated by adenylate cyclase and cyclic AMP (cAMP) levels. A recombinant protein encoded by B. burgdorferi BB0723 (a putative cyaB homolog) was shown to have adenylate cyclase activity in vitro; however, mutants with mutations in this gene were fully infectious in the tick-mouse infection cycle, indicating that its function is not required in this process. By transcriptome analysis, we demonstrated that the ptsG gene may directly or indirectly modulate gene expression of Borrelia burgdorferi. Overall, the PEP-PTS glucose transporter PtsG appears to play important roles in the pathogenesis of B. burgdorferi that extend beyond its transport functions.

  3. Distribution of virulence-associated genes and genetic relationships in non-O1/O139 Vibrio cholerae aquatic isolates from China.

    PubMed

    Li, Fengjuan; Du, Pengcheng; Li, Baisheng; Ke, Changwen; Chen, Aiping; Chen, Jie; Zhou, Haijian; Li, Jie; Morris, J Glenn; Kan, Biao; Wang, Duochun

    2014-08-01

    Non-O1/O139 Vibrio cholerae is naturally present in aquatic ecosystems and has been linked with cholera-like diarrhea and local outbreaks. The distribution of virulence-associated genes and genetic relationships among aquatic isolates from China are largely unknown. In this study, 295 aquatic isolates of V. cholerae non-O1/O139 serogroups from different regions in China were investigated. Only one isolate was positive for ctxB and harbored a rare genotype; 10 (3.4%) isolates carried several types of rstR sequences, eight of which carried rare types of toxin-coregulated pili (tcpA). Furthermore, 16 (5.4%) isolates carried incomplete (with partial open reading frames [ORFs]) vibrio seventh pandemic island I (VSP-I) or VSP-II clusters, which were further classified as 11 novel types. PCR-based analyses revealed remarkable variations in the distribution of putative virulence genes, including mshA (95.6%), hlyA (95.3%), rtxC (89.8%), rtxA (82.7%), IS1004 (52.9%), chxA (30.2%), SXT (15.3%), type III secretion system (18.0%), and NAG-ST (3.7%) genes. There was no correlation between the prevalence of putative virulence genes and that of CTX prophage or TCP genes, whereas there were correlations among the putative virulence genes. Further multilocus sequence typing (MLST) placed selected isolates (n = 70) into 69 unique sequence types (STs), which were different from those of the toxigenic O1 and O139 counterparts, and each isolate occupied a different position in the MLST tree. The V. cholerae non-O1/O139 aquatic isolates predominant in China have high genotypic diversity; these strains constitute a reservoir of potential virulence genes, which may contribute to evolution of pathogenic isolates.

  4. Prevalence of the Most Common Virulence-Associated Genes among Brucella Melitensis Isolates from Human Blood Cultures in Hamadan Province, West of Iran

    PubMed Central

    Naseri, Zahra; Alikhani, Mohammad Yousef; Hashemi, Seyed Hamid; Kamarehei, Farideh; Arabestani, Mohammad Reza

    2016-01-01

    Brucellosis is a widespread zoonotic disease causing considerable economic and public health problems. Despite animal vaccination, brucellosis remains endemic in some areas such as Iran, especially in the western Iranian province of Hamadan. We sought to detect some of the most common virulence-associated genes in Brucella isolated from human blood cultures to determine the prevalence of some virulence genes among Brucella isolates. Fifty-seven isolates were studied from patients with a clinical diagnosis of brucellosis who referred to the Infectious Diseases Ward of Sina Hospital in Hamadan Province, Iran, between April 2013 and July 2014. Blood samples were collected for the diagnosis of brucellosis using the BACTEC blood culture system. All of these isolates were confirmed by the bcsp31 Brucella-specific gene. We detected 11 virulence-associated genes of Brucella, namely cβg, virB, znuA, ure, bvfA, omp25, omp31, wbkA, mviN, manA, and manB, which are important for the pathogenesis of this bacterium in the intracellular environment by multiplex PCR. Totally, 149 patients with a clinical diagnosis of brucellosis were enrolled in this study. Fifty-seven (38.3%) patients had positive blood cultures. On biochemical and molecular testing, all of the isolates were Brucella melitensis. Ten of the virulence genes were detected among all of the 57 isolates, but the bvf gene was detected in 53 (93%) isolates. The high prevalence of virulence-associated genes among the Brucella isolates detected in Hamadan Province, Iran, underscores the pathogenicity of this bacterium in this region. PMID:27582592

  5. Prevalence of the Most Common Virulence-Associated Genes among Brucella Melitensis Isolates from Human Blood Cultures in Hamadan Province, West of Iran.

    PubMed

    Naseri, Zahra; Alikhani, Mohammad Yousef; Hashemi, Seyed Hamid; Kamarehei, Farideh; Arabestani, Mohammad Reza

    2016-09-01

    Brucellosis is a widespread zoonotic disease causing considerable economic and public health problems. Despite animal vaccination, brucellosis remains endemic in some areas such as Iran, especially in the western Iranian province of Hamadan. We sought to detect some of the most common virulence-associated genes in Brucella isolated from human blood cultures to determine the prevalence of some virulence genes among Brucella isolates. Fifty-seven isolates were studied from patients with a clinical diagnosis of brucellosis who referred to the Infectious Diseases Ward of Sina Hospital in Hamadan Province, Iran, between April 2013 and July 2014. Blood samples were collected for the diagnosis of brucellosis using the BACTEC blood culture system. All of these isolates were confirmed by the bcsp31 Brucella-specific gene. We detected 11 virulence-associated genes of Brucella, namely cβg, virB, znuA, ure, bvfA, omp25, omp31, wbkA, mviN, manA, and manB, which are important for the pathogenesis of this bacterium in the intracellular environment by multiplex PCR. Totally, 149 patients with a clinical diagnosis of brucellosis were enrolled in this study. Fifty-seven (38.3%) patients had positive blood cultures. On biochemical and molecular testing, all of the isolates were Brucella melitensis. Ten of the virulence genes were detected among all of the 57 isolates, but the bvf gene was detected in 53 (93%) isolates. The high prevalence of virulence-associated genes among the Brucella isolates detected in Hamadan Province, Iran, underscores the pathogenicity of this bacterium in this region.

  6. The virulence regulator Sae of Staphylococcus aureus: promoter activities and response to phagocytosis-related signals.

    PubMed

    Geiger, Tobias; Goerke, Christiane; Mainiero, Markus; Kraus, Dirk; Wolz, Christiane

    2008-05-01

    The two-component system SaeRS of Staphylococcus aureus is closely involved in the regulation of major virulence factors. However, little is known about the signals leading to saeRS activation. A total of four overlapping transcripts (T1 to T4) from three different transcription starting points are expressed in the sae operon. We used a beta-galactosidase reporter assay to characterize the putative promoter regions within the saeRS upstream region. The main transcript T2 is probably generated by endoribonucleolytic processing of the T1 transcript. Only two distinct promoter elements (P1 and P3) could be detected within the saeRS upstream region. The P3 promoter, upstream of saeRS, generates the T3 transcript, includes a cis-acting enhancer element and is repressed by saeRS. The most distal P1 promoter is strongly autoregulated, activated by agr, and repressed by sigma factor B. In strain Newman a mutation within the histidine kinase SaeS leads to a constitutively activated sae system. Evaluation of different external signals revealed that the P1 promoter in strain ISP479R and strain UAMS-1 is inhibited by low pH and high NaCl concentrations but activated by hydrogen peroxide. The most prominent induction of P1 was observed at subinhibitory concentrations of alpha-defensins in various S. aureus strains, with the exception of strain ISP479R and strain COL. P1 was not activated by the antimicrobial peptides LL37 and daptomycin. In summary, the results indicate that the sensor molecule SaeS is activated by alteration within the membrane allowing the pathogen to react to phagocytosis related effector molecules.

  7. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages

    PubMed Central

    1992-01-01

    Tuberculosis remains one of the major infectious causes of morbidity and mortality in the world, yet the mechanisms by which macrophages defend against Mycobacterium tuberculosis have remained obscure. Results from this study show that murine macrophages, activated by interferon gamma, and lipopolysaccharide or tumor necrosis factor alpha, both growth inhibit and kill M. tuberculosis. This antimycobacterial effect, demonstrable both in murine macrophage cell lines and in peritoneal macrophages of BALB/c mice, is independent of the macrophage capacity to generate reactive oxygen intermediates (ROI). Both the ROI-deficient murine macrophage cell line D9, and its ROI-generating, parental line J774.16, expressed comparable antimycobacterial activity upon activation. In addition, the oxygen radical scavengers superoxide dismutase (SOD), catalase, mannitol, and diazabicyclooctane had no effect on the antimycobacterial activity of macrophages. These findings, together with the results showing the relative resistance of M. tuberculosis to enzymatically generated H2O2, suggest that ROI are unlikely to be significantly involved in killing M. tuberculosis. In contrast, the antimycobacterial activity of these macrophages strongly correlates with the induction of the L-arginine- dependent generation of reactive nitrogen intermediates (RNI). The effector molecule(s) that could participate in mediating this antimycobacterial function are toxic RNI, including NO, NO2, and HNO2, as demonstrated by the mycobacteriocidal effect of acidified NO2. The oxygen radical scavenger SOD adventitiously perturbs RNI production, and cannot be used to discriminate between cytocidal mechanisms involving ROI and RNI. Overall, our results provide support for the view that the L-arginine-dependent production of RNI is the principal effector mechanism in activated murine macrophages responsible for killing and growth inhibiting virulent M. tuberculosis. PMID:1552282

  8. Natural selection on coding and noncoding DNA sequences is associated with virulence genes in a plant pathogenic fungus.

    PubMed

    Rech, Gabriel E; Sanz-Martín, José M; Anisimova, Maria; Sukno, Serenella A; Thon, Michael R

    2014-09-04

    Natural selection leaves imprints on DNA, offering the opportunity to identify functionally important regions of the genome. Identifying the genomic regions affected by natural selection within pathogens can aid in the pursuit of effective strategies to control diseases. In this study, we analyzed genome-wide patterns of selection acting on different classes of sequences in a worldwide sample of eight strains of the model plant-pathogenic fungus Colletotrichum graminicola. We found evidence of selective sweeps, balancing selection, and positive selection affecting both protein-coding and noncoding DNA of pathogenicity-related sequences. Genes encoding putative effector proteins and secondary metabolite biosynthetic enzymes show evidence of positive selection acting on the coding sequence, consistent with an Arms Race model of evolution. The 5' untranslated regions (UTRs) of genes coding for effector proteins and genes upregulated during infection show an excess of high-frequency polymorphisms likely the consequence of balancing selection and consistent with the Red Queen hypothesis of evolution acting on these putative regulatory sequences. Based on the findings of this work, we propose that even though adaptive substitutions on coding sequences are important for proteins that interact directly with the host, polymorphisms in the regulatory sequences may confer flexibility of gene expression in the virulence processes of this important plant pathogen.

  9. Transcriptome-Based Identification of Differently Expressed Genes from Xanthomonas oryzae pv. oryzae Strains Exhibiting Different Virulence in Rice Varieties

    PubMed Central

    Noh, Tae-Hwan; Song, Eun-Sung; Kim, Hong-Il; Kang, Mi-Hyung; Park, Young-Jin

    2016-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB) in rice (Oryza sativa L.). In this study, we investigated the genome-wide transcription patterns of two Xoo strains (KACC10331 and HB1009), which showed different virulence patterns against eight rice cultivars, including IRBB21 (carrying Xa21). In total, 743 genes showed a significant change (p-value < 0.001 in t-tests) in their mRNA expression levels in the HB1009 (K3a race) strain compared with the Xoo KACC10331 strain (K1 race). Among them, four remarkably enriched GO terms, DNA binding, transposition, cellular nitrogen compound metabolic process, and cellular macromolecule metabolic process, were identified in the upregulated genes. In addition, the expression of 44 genes was considerably higher (log2 fold changes > 2) in the HB1009 (K3a race) strain than in the Xoo KACC10331 (K1 race) strain. Furthermore, 13 and 12 genes involved in hypersensitive response and pathogenicity (hrp) and two-component regulatory systems (TCSs), respectively, were upregulated in the HB1009 (K3a race) strain compared with the Xoo KACC10331 (K1 race) strain, which we determined using either quantitative real-time PCR analysis or next-generation RNA sequencing. These results will be helpful to improve our understanding of Xoo and to gain a better insight into the Xoo–rice interactions. PMID:26907259

  10. Prevalence of enterococcus species and their virulence genes in fresh water prior to and after storm events.

    PubMed

    Sidhu, J P S; Skelly, E; Hodgers, L; Ahmed, W; Li, Y; Toze, S

    2014-01-01

    Enterococcus spp. isolates (n = 286) collected from six surface water bodies in subtropical Brisbane, Australia, prior to and after storm events, were identified to species level and tested for the presence of seven clinically important virulence genes (VGs). Enterococcus faecalis (48%), Enterococcus faecium (14%), Enterococcus mundtii (13%), and Enterococcus casseliflavus (13%) were frequently detected at all sites. The frequency of E. faecium occurrence increased from 6% in the dry period to 18% after the wet period. The endocarditis antigen (efaA), gelatinase (gelE), collagen-binding protein (ace), and aggregation substance (asa1) were detected in 61%, 43%, 43%, and 23% of Enterococcus isolates, respectively. The chances of occurrence of ace, gelE, efaA, and asa1 genes in E. faecalis were found to be much higher compared to the other Enterococcus spp. The observed odds ratio of occurrence of ace and gelE genes in E. faecalis was much higher at 7.96 and 6.40 times, respectively. The hyl gene was 3.84 times more likely to be detected in E. casseliflavus. The presence of multiple VGs in most of the E. faecalis isolates underscores the importance of E. faecalis as a reservoir of VGs in the fresh water aquatic environment. Consequently, if contaminated surface water is to be used for production of potable and nonpotable water some degree of treatment depending upon intended use such as detention in basins prior to use or chlorination is required.

  11. Antimicrobial activity, antibiotic susceptibility and virulence factors of Lactic Acid Bacteria of aquatic origin intended for use as probiotics in aquaculture

    PubMed Central

    2013-01-01

    Background The microorganisms intended for use as probiotics in aquaculture should exert antimicrobial activity and be regarded as safe not only for the aquatic hosts but also for their surrounding environments and humans. The objective of this work was to investigate the antimicrobial/bacteriocin activity against fish pathogens, the antibiotic susceptibility, and the prevalence of virulence factors and detrimental enzymatic activities in 99 Lactic Acid Bacteria (LAB) (59 enterococci and 40 non-enterococci) isolated from aquatic animals regarded as human food. Results These LAB displayed a broad antimicrobial/bacteriocin activity against the main Gram-positive and Gram-negative fish pathogens. However, particular safety concerns based on antibiotic resistance and virulence factors were identified in the genus Enterococcus (86%) (Enterococcus faecalis, 100%; E. faecium, 79%). Antibiotic resistance was also found in the genera Weissella (60%), Pediococcus (44%), Lactobacillus (33%), but not in leuconostocs and lactococci. Antibiotic resistance genes were found in 7.5% of the non-enterococci, including the genera Pediococcus (12.5%) and Weissella (6.7%). One strain of both Pediococcus pentosaceus and Weissella cibaria carried the erythromycin resistance gene mef(A/E), and another two P. pentosaceus strains harboured lnu(A) conferring resistance to lincosamides. Gelatinase activity was found in E. faecalis and E. faecium (71 and 11%, respectively), while a low number of E. faecalis (5%) and none E. faecium exerted hemolytic activity. None enterococci and non-enterococci showed bile deconjugation and mucin degradation abilities, or other detrimental enzymatic activities. Conclusions To our knowledge, this is the first description of mef(A/E) in the genera Pediococcus and Weissella, and lnu(A) in the genus Pediococcus. The in vitro subtractive screening presented in this work constitutes a valuable strategy for the large-scale preliminary selection of putatively safe LAB

  12. Genotypic analysis of virulence genes and antimicrobial profile of diarrheagenic Escherichia coli isolated from diseased lambs in Iran.

    PubMed

    Ghanbarpour, Reza; Askari, Nasrin; Ghorbanpour, Masoud; Tahamtan, Yahya; Mashayekhi, Khoobyar; Afsharipour, Narjes; Darijani, Nasim

    2017-03-01

    The aim of the present study was to determine the analysis of virulence genes and antimicrobial profile of diarrheagenic Escherichia coli isolated from diseased lambs. Two hundred ninety E. coli isolates were recovered from 300 rectal swabs of diarrheic lambs and were confirmed by biochemical tests. The pathotype determination was done according to the presence of genes including f5, f41, LTI, STI, bfp, ipaH, stx 1 , stx 2 , eae, ehlyA, cnf 1 , cnf 2 , cdIII, cdIV, and f17 by PCR method. Sixty-six isolates (23.72%) possessed the STI gene and categorized into entrotoxigenic E. coli (ETEC). Nine isolates (3.1%) and five isolates (1.72%) were positive for the cnf1 and cnf2 genes which categorized into necrotoxic E. coli (NTEC). Hundred and seventeen isolates (40.34%) harbored stx 1 and/or stx 2 and classified as Shiga toxin-producing E. coli (STEC). Thirteen isolates (4.48%) were assigned to atypical entropathogenic E. coli (aEPEC) and possessed eae gene. Two isolates (0.68%) were positive for ipaH gene and were assigned to entroinvasive E. coli (EIEC). Statistical analysis showed a specific association between eae gene and STEC pathotype (P < 0.0001). The most prevalent resistance was observed against lincomycin (96.5%) and the lowest resistance was against kanamycine (56.02%), respectively. The high prevalence of STEC and ETEC indicates that diarrheic lambs represent an important reservoir for humans. ETEC may play an important role for frequent occurrence of diarrhea in lambs observed in this region. Due to high antibiotic resistance, appropriate control should be implemented in veterinary medicine to curb the development of novel resistant isolates.

  13. MvirDB: Microbial Database of Protein Toxins, Virulence Factors and Antibiotic Resistance Genes for Bio-Defense Applications

    DOE Data Explorer

    Zhou, C. E.; Smith, J.; Lam, M.; Zemla, M. D.; Slezak, T.

    MvirDB is a cenntralized resource (data warehouse) comprising all publicly accessible, organized sequence data for protein toxins, virulence factors, and antibiotic resistance genes. Protein entries in MvirDB are annotated using a high-throughput, fully automated computational annotation system; annotations are updated periodically to ensure that results are derived using current public database and open-source tool releases. Tools provided for using MvirDB include a web-based browser tool and BLAST interfaces. MvirDB serves researchers in the bio-defense and medical fields. (taken from page 3 of PI's paper of same title published in Nucleic Acids Research, 2007, Vol.35, Database Issue (Open Source)

  14. A long-term epigenetic memory switch controls bacterial virulence bimodality.

    PubMed

    Ronin, Irine; Katsowich, Naama; Rosenshine, Ilan; Balaban, Nathalie Q

    2017-02-07

    When pathogens enter the host, sensing of environmental cues activates the expression of virulence genes. Opposite transition of pathogens from activating to non-activating conditions is poorly understood. Interestingly, variability in the expression of virulence genes upon infection enhances colonization. In order to systematically detect the role of phenotypic variability in enteropathogenic E. coli (EPEC), an important human pathogen, both in virulence activating and non-activating conditions, we employed the ScanLag methodology. The analysis revealed a bimodal growth rate. Mathematical modeling combined with experimental analysis showed that this bimodality is mediated by a hysteretic memory-switch that results in the stable co-existence of non-virulent and hyper-virulent subpopulations, even after many generations of growth in non-activating conditions. We identified the per operon as the key component of the hysteretic switch. This unique hysteretic memory switch may result in persistent infection and enhanced host-to-host spreading.

  15. Pandemic serotypes of Vibrio cholerae isolated from ships' ballast tanks and coastal waters: assessment of antibiotic resistance and virulence genes (tcpA and ctxA).

    PubMed

    Dobbs, Fred C; Goodrich, Amanda L; Thomson, Frank K; Hynes, Wayne

    2013-05-01

    There is concern that ships' ballasting operations may disseminate Vibrio cholerae to ports throughout the world. Given evidence that the bacterium is indeed transported by ships, we isolated pandemic serotypes O1 and O139 from ballast tanks and characterized them with respect to antibiotic resistance and virulence genes ctxA and tcpA. We carried out concurrent studies with V. cholerae isolated from coastal waters. Of 284 isolates, 30 were serotype O1 and 59 were serotype O139. These serotypes were overrepresented in ballast tanks relative to the coastal waters sampled. All locations, whether coastal waters or ballast tanks, yielded samples from which serotype O1, O139, or both were isolated. There were three groups among the 62 isolates for which antibiotic characterization was conclusive: those exhibiting β-lactamase activity and resistance to at least one of the 12 antibiotics tested; those negative for β-lactamase but having antibiotic resistance; those negative for β-lactamase and registering no antibiotic resistance. When present, antibiotic resistance in nearly all cases was to ampicillin; resistance to multiple antibiotics was uncommon. PCR assays revealed that none of the isolates contained the ctxA gene and only two isolates, one O139 and one O1, contained the tcpA gene; both isolates originated from ballast water. These results support the bacteriological regulations proposed by the International Maritime Association for discharged ballast water.

  16. The hexA gene of Erwinia carotovora encodes a LysR homologue and regulates motility and the expression of multiple virulence determinants.

    PubMed

    Harris, S J; Shih, Y L; Bentley, S D; Salmond, G P

    1998-05-01

    We have identified a gene important for the regulation of exoenzyme virulence factor synthesis in the plant pathogen Erwinia carotovora ssp. carotovora (Ecc) and virulence and motility in Erwinia carotovora ssp. atroseptica (Eca). This gene, hexA (hyperproduction of exoenzymes), is a close relative of the Erwinia chrysanthemi (Echr) gene pecT and encodes a member of the LysR family of transcriptional regulators. hexA mutants in both Ecc and Eca produce abnormally high levels of the exoenzyme virulence factors pectate lyase, cellulase and protease. In addition, Eca hexA mutants show increased expression of the fliA and fliC genes and hypermotility. Consistent with a role as a global regulator, expression of hexA from even a low-copy plasmid can suppress exoenzyme production in Ecc and Eca and motility in Eca. Production of the quorum-sensing pheromone OHHL in Ecc hexA is higher throughout the growth curve compared with the wild-type strain. Overexpression of Ecc hexA also caused widespread effects in several strains of the opportunistic human pathogen, Serratia. Low-copy hexA expression resulted in repression of exoenzyme, pigment and antibiotic production and repression of the spreading phenotype. Finally, mutations in hexA were shown to increase Ecc or Eca virulence in planta.

  17. Characterization of shiga toxin-producing Escherichia coli recovered from domestic animals to determine stx variants, virulence genes, and cytotoxicity in mammalian cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) can cause foodborne illnesses ranging from diarrhea to severe diseases such as hemorrhagic colitis (HC), and hemolytic uremic syndrome (HUS) in humans. In this study, we determined virulence genes, stx subtypes and we evaluated the cytotoxicity in mammal...

  18. Phylogenetic grouping and distribution of virulence genes in Escherichia coli along the production and supply chain of pork around Hubei, China.

    PubMed

    Khan, Sher Bahadar; Zou, Geng; Cheng, Yu-Ting; Xiao, Ran; Li, Lu; Wu, Bin; Zhou, Rui

    2016-03-31

    Escherichia coli is an important foodborne zoonotic pathogen. A total of 285 strains of E. coli were isolated from the production and supply chain of pork in Hubei, China and characterized. Their phylogroups (A, B1, B2, and D) and virulence genes of public health importance become more and more diverse along the production and supply chain.

  19. A Probe-Based Method for Confirmation of Methicillin-Resistant Staphylococcus Aureus and Detection of Panton-Valentine Leukocidin and TST Virulence Genes

    PubMed Central

    Srinivasan, Ashok; Bankowski, Matthew J.; Seifried, Steven E.; Jinno, Sadao; Perkins, Rosalie; Singh, Seema; Ying, Claire.; Tice, Alan D.; Kim, Wesley; Hayden, Randall T.

    2016-01-01

    Probe-based detection of mecA, lukS/F-PV (Panton-Valentine leukocidin) and tst virulence genes in 435 isolates of Staphylococcus aureus had comparable sensitivity and specificity to end point polymerase chain reaction as a reference standard. PMID:21658873

  20. Detection of Shiga toxin variants, virulence genes and the relationship to cytotoxicity in Shiga toxin-producing Escherichia coli (STEC) from domestic farm animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) can cause foodborne illnesses ranging from diarrhea to life-threating diseases such as hemorrhagic colitis, and hemolytic uremic syndrome in humans. In this study, we determined virulence genes, stx subtypes and we evaluated the cytotoxicity in STEC stra...

  1. The majority of genotypes of the virulence gene inlA are intact among natural watershed isolates of Listeria monocytogenes from the central california coast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Internalin A is an essential virulence gene involved in the uptake of the foodborne pathogen Listeria monocytogenes into host cells. It is intact in clinical strains and often truncated due to Premature Stop Codons (PMSCs) in isolates from processed foods and processing facilities. The genotypes fou...

  2. Molecular characterization of virulence genes of Streptococcus equi subsp. equi and Streptococcus equi subsp. zooepidemicus in equines

    PubMed Central

    Javed, R.; Taku, A. K.; Gangil, Rakhi; Sharma, R. K.

    2016-01-01

    Aim: The aim was to determine the occurrence of streptococci in equines in Jammu (R. S. Pura, Katra), characterization of Streptococci equi subsp. equi and Streptococcus equi subsp. zooepidemicus with respect to their virulence traits and to determine antibiotic sensitivity pattern of virulent Streptococcus isolates. Materials and Methods: A total of 96 samples were collected from both clinically affected animals (exhibiting signs of respiratory tract disease) and apparently healthy animals and were sent to laboratory. The organisms were isolated on Columbia nalidixic acid agar containing 5% sheep blood as well as on sheep blood agar and confirmed by cultural characteristics and biochemical tests. Molecular detection of Streptococcus was done directly from cultures using sodA and seM gene-based polymerase chain reaction (PCR). Antibiogram was performed against five antibiotics such as amoxicillin, penicillin G, streptomycin, rifampicin, and methicillin. Results: During this study, a total 40 streptococcal isolates were obtained out of which 2 isolates were of S. equi subsp. equi, 12 isolates were from S. equi subsp. zooepidemicus. In the PCR-based detection, we revealed amplicons of 235 bp and 679 bp for confirmation of sodA and seM gene, respectively. In antibiogram, two isolates of S. equi subsp. equi were found resistant to penicillin G, and all other isolates were found sensitive to amoxicillin and streptomycin. Conclusion: The majority of streptococcal infections was due to S. equi subsp. Zooepidemicus, and thus was recognized as a potential pathogen of diseases of equines besides S. equi subsp. equi. PMID:27651677

  3. Detecting Staphylococcus aureus Virulence and Resistance Genes: a Comparison of Whole-Genome Sequencing and DNA Microarray Technology.

    PubMed

    Strauß, Lena; Ruffing, Ulla; Abdulla, Salim; Alabi, Abraham; Akulenko, Ruslan; Garrine, Marcelino; Germann, Anja; Grobusch, Martin Peter; Helms, Volkhard; Herrmann, Mathias; Kazimoto, Theckla; Kern, Winfried; Mandomando, Inácio; Peters, Georg; Schaumburg, Frieder; von Müller, Lutz; Mellmann, Alexander

    2016-04-01

    Staphylococcus aureusis a major bacterial pathogen causing a variety of diseases ranging from wound infections to severe bacteremia or intoxications. Besides host factors, the course and severity of disease is also widely dependent on the genotype of the bacterium. Whole-genome sequencing (WGS), followed by bioinformatic sequence analysis, is currently the most extensive genotyping method available. To identify clinically relevant staphylococcal virulence and resistance genes in WGS data, we developed anin silicotyping scheme for the software SeqSphere(+)(Ridom GmbH, Münster, Germany). The implemented target genes (n= 182) correspond to those queried by the IdentibacS. aureusGenotyping DNA microarray (Alere Technologies, Jena, Germany). Thein silicoscheme was evaluated by comparing the typing results of microarray and of WGS for 154 humanS. aureusisolates. A total of 96.8% (n= 27,119) of all typing results were equally identified with microarray and WGS (40.6% present and 56.2% absent). Discrepancies (3.2% in total) were caused by WGS errors (1.7%), microarray hybridization failures (1.3%), wrong prediction of ambiguous microarray results (0.1%), or unknown causes (0.1%). Superior to the microarray, WGS enabled the distinction of allelic variants, which may be essential for the prediction of bacterial virulence and resistance phenotypes. Multilocus sequence typing clonal complexes and staphylococcal cassette chromosomemecelement types inferred from microarray hybridization patterns were equally determined by WGS. In conclusion, WGS may substitute array-based methods due to its universal methodology, open and expandable nature, and rapid parallel analysis capacity for different characteristics in once-generated sequences.

  4. Detecting Staphylococcus aureus Virulence and Resistance Genes: a Comparison of Whole-Genome Sequencing and DNA Microarray Technology

    PubMed Central

    Strauß, Lena; Ruffing, Ulla; Abdulla, Salim; Alabi, Abraham; Akulenko, Ruslan; Garrine, Marcelino; Germann, Anja; Grobusch, Martin Peter; Helms, Volkhard; Herrmann, Mathias; Kazimoto, Theckla; Kern, Winfried; Mandomando, Inácio; Peters, Georg; Schaumburg, Frieder; von Müller, Lutz

    2016-01-01

    Staphylococcus aureus is a major bacterial pathogen causing a variety of diseases ranging from wound infections to severe bacteremia or intoxications. Besides host factors, the course and severity of disease is also widely dependent on the genotype of the bacterium. Whole-genome sequencing (WGS), followed by bioinformatic sequence analysis, is currently the most extensive genotyping method available. To identify clinically relevant staphylococcal virulence and resistance genes in WGS data, we developed an in silico typing scheme for the software SeqSphere+ (Ridom GmbH, Münster, Germany). The implemented target genes (n = 182) correspond to those queried by the Identibac S. aureus Genotyping DNA microarray (Alere Technologies, Jena, Germany). The in silico scheme was evaluated by comparing the typing results of microarray and of WGS for 154 human S. aureus isolates. A total of 96.8% (n = 27,119) of all typing results were equally identified with microarray and WGS (40.6% present and 56.2% absent). Discrepancies (3.2% in total) were caused by WGS errors (1.7%), microarray hybridization failures (1.3%), wrong prediction of ambiguous microarray results (0.1%), or unknown causes (0.1%). Superior to the microarray, WGS enabled the distinction of allelic variants, which may be essential for the prediction of bacterial virulence and resistance phenotypes. Multilocus sequence typing clonal complexes and staphylococcal cassette chromosome mec element types inferred from microarray hybridization patterns were equally determined by WGS. In conclusion, WGS may substitute array-based methods due to its universal methodology, open and expandable nature, and rapid parallel analysis capacity for different characteristics in once-generated sequences. PMID:26818676

  5. Spaceflight Alters Bacterial Gene Expression and Virulence and Reveals Role for Global Regulator Hfq

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Ott, C. M.; zuBentrup, K. Honer; Ramamurthy R.; Quick, L.; Porwollik, S.; Cheng, P.; McClellan, M.; Tsaprailis, G.; Radabaugh, T.; Hunt, A.; Fernandez, D.; Richter, E.; Shah, M.; Kilcoyne, M.; Joshi, L.; Nelman-Gonzalez, M.; Hing, S.; Parra, M.; Dumaras, P.; Norwood, K.; Nickerson, C. A.; Bober, R.; Devich, J.; Ruggles, A.

    2007-01-01

    A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the spaceflight environment has never been accomplished due to significant technological and logistical hurdles. Moreover, the effects of spaceflight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared to identical ground control cultures. Global microarray and proteomic analyses revealed 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground based microgravity culture model. Spaceflight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during spaceflight missions and provide novel therapeutic options on Earth.

  6. A σE-Mediated Temperature Gauge Controls a Switch from LuxR-Mediated Virulence Gene Expression to Thermal Stress Adaptation in Vibrio alginolyticus

    PubMed Central

    Gu, Dan; Guo, Min; Yang, Minjun; Zhang, Yuanxing; Zhou, Xiaohui; Wang, Qiyao

    2016-01-01

    In vibrios, the expression of virulence factors is often controlled by LuxR, the master quorum-sensing regulator. Here, we investigate the interplay between LuxR and σE, an alternative sigma factor, during the control of virulence-related gene expression and adaptations to temperature elevations in the zoonotic pathogen Vibrio alginolyticus. An rpoE null V. alginolyticus mutant was unable to adapt to various stresses and was survival-deficient in fish. In wild type V. alginolyticus, the expression of LuxR-regulated virulence factors increased as the temperature was increased from 22°C to 37°C, but mutants lacking σE did not respond to temperature, indicating that σE is critical for the temperature-dependent upregulation of virulence genes. Further analyses revealed that σE binds directly to -10 and -35 elements in the luxR promoter that drive its transcription. ChIP assays showed that σE binds to the promoter regions of luxR, rpoH and rpoE at high temperatures (e.g., 30°C and 37°C). However, at higher temperatures (42°C) that induce thermal stress, σE binding to the luxR promoter decreased, while its binding to the rpoH and rpoE promoters was unchanged. Thus, the temperature-dependent binding of σE to distinct promoters appears to underlie a σE-controlled switch between the expression of virulence genes and adaptation to thermal stress. This study illustrates how a conserved temperature response mechanism integrates into quorum-sensing circuits to regulate both virulence and stress adaptation. PMID:27253371

  7. Relationship between fluoride concentration and activity against virulence factors and viability of a cariogenic biofilm: in vitro study.

    PubMed

    Pandit, S; Kim, H-J; Song, K-Y; Jeon, J-G

    2013-01-01

    Despite widespread use of various concentrations of fluoride for the prevention of dental caries, the relationship between fluoride concentration and activity against cariogenic biofilms has not been much studied. Herein we investigated the relationship between fluoride concentration and activity against virulence factors and viability of Streptococcus mutans biofilms. S. mutans biofilms were formed on saliva-coated hydroxyapatite discs. The 70-hour-old biofilms were exposed to 0, 1, 3, 10, 30, 100, 300, 1,000 or 2,000 ppm F(-). The changes of virulence factors and viability of the biofilms were analyzed using biochemical methods and laser scanning confocal fluorescence microscopy. At 1-2,000 ppm F(-), the activity of fluoride against acid production, acid tolerance, and extracellular polysaccharide formation of S. mutans biofilms accurately followed a sigmoidal pattern of concentration dependence (R(2) = 0.94-0.99), with EC50 values ranging from 3.07 to 24.7 ppm F(-). Generally, the activity of fluoride against the virulence factors was concentration-dependently augmented in 10-100 ppm F(-) and did not increase further at concentrations higher than 100 ppm F(-). However, fluoride did not alter glucosyltransferase activity and viability of S. mutans biofilm cells in all concentrations tested. These results can provide a basis for the selection of appropriate fluoride concentrations that reduce the physiological ability of cariogenic biofilms.

  8. EsxA membrane-permeabilizing activity plays a key role in mycobacterial cytosolic translocation and virulence: effects of single-residue mutations at glutamine 5

    PubMed Central

    Zhang, Qi; Wang, Decheng; Jiang, Guozhong; Liu, Wei; Deng, Qing; Li, Xiujun; Qian, Wei; Ouellet, Hugues; Sun, Jianjun

    2016-01-01

    EsxA is required for virulence of Mycobacterium tuberculosis (Mtb) and plays an essential role in phagosome rupture and translocation to the cytosol of macrophages. Recent biochemical studies have demonstrated that EsxA is a membrane-permeabilizing protein. However, evidence that link EsxA membrane-permeabilizing activity to Mtb cytosolic translocation and virulence is lacking. Here we found that mutations at glutamine 5 (Q5) could up or down regulate EsxA membrane-permeabilizing activity. The mutation Q5K significantly diminished the membrane-permeabilizing activity, while Q5V enhanced the activity. By taking advantage of the single-residue mutations, we tested the effects of EsxA membrane-permeabilizing activity on mycobacterial virulence and cytosolic translocation using the esxA/esxB knockout strains of Mycobacterium marinum (Mm) and Mtb. Compared to wild type (WT), the Q5K mutant exhibited significantly attenuated virulence, evidenced by intracellular survival and cytotoxicity in mouse macrophages as well as infection of zebra fish embryos. The attenuated virulence of the Q5K mutant was correlated to the impaired cytosolic translocation. On the contrary, the Q5V mutant had a significantly increased cytosolic translocation and showed an overall increased virulence. This study provides convincing evidence that EsxA contributes to mycobacterial virulence with its membrane-permeabilizing activity that is required for cytosolic translocation. PMID:27600772

  9. A functional tonB gene is required for both virulence and competitive fitness in a chinchilla model of Haemophilus influenzae otitis media

    PubMed Central

    2012-01-01

    Background Haemophilus influenzae requires heme for aerobic growth and possesses multiple mechanisms to obtain this essential nutrient. Methods An insertional mutation in tonB was constructed and the impact of the mutation on virulence and fitness in a chinchilla model of otitis media was determined. The tonB insertion mutant strain was significantly impacted in both virulence and fitness as compared to the wildtype strain in this model. Conclusions The tonB gene of H. influenzae is required for the establishment and maintenance of middle ear infection in this chinchilla model of bacterial disease. PMID:22731867

  10. Deletion of the Small RNA Chaperone Protein Hfq down Regulates Genes Related to Virulence and Confers Protection against Wild-Type Brucella Challenge in Mice

    PubMed Central

    Lei, Shuangshuang; Zhong, Zhijun; Ke, Yuehua; Yang, Mingjuan; Xu, Xiaoyang; Ren, Hang; An, Chang; Yuan, Jiuyun; Yu, Jiuxuan; Xu, Jie; Qiu, Yefeng; Shi, Yanchun; Wang, Yufei; Peng, Guangneng; Chen, Zeliang

    2016-01-01

    Brucellosis is one of the most common zoonotic epidemics worldwide. Brucella, the etiological pathogen of brucellosis, has unique virulence characteristics, including the ability to survive within the host cell. Hfq is a bacterial chaperone protein that is involved in the survival of the pathogen under stress conditions. Moreover, hfq affects the expression of a large number of target genes. In the present study, we characterized the expression and regulatory patterns of the target genes of Hfq during brucellosis. The results revealed that hfq expression is highly induced in macrophages at the early infection stage and at the late stage of mouse infection. Several genes related to virulence, including omp25, omp31, vjbR, htrA, gntR, and dnaK, were found to be regulated by hfq during infection in BALB/c mice. Gene expression and cytokine secretion analysis revealed that an hfq-deletion mutant induced different cytokine profiles compared with that induced by 16M. Infection with the hfq-deletion mutant induced protective immune responses against 16M challenge. Together, these results suggest that hfq is induced during infection and its deletion results in significant attenuation which affects the host immune response caused by Brucella infection. By regulating genes related to virulence, hfq promotes the virulence of Brucella. The unique characteristics of the hfq-deletion mutant, including its decreased virulence and the ability to induce protective immune response upon infection, suggest that it represents an attractive candidate for the design of a live attenuated vaccine against Brucella. PMID:26834720

  11. Linoleic acid isomerase gene FgLAI12 affects sensitivity to salicylic acid, mycelial growth and virulence of Fusarium graminearum

    PubMed Central

    Zhang, Ya-Zhou; Wei, Zhen-Zhen; Liu, Cai-Hong; Chen, Qing; Xu, Bin-Jie; Guo, Zhen-Ru; Cao, Yong-Li; Wang, Yan; Han, Ya-Nan; Chen, Chen; Feng, Xiang; Qiao, Yuan-Yuan; Zong, Lu-Juan; Zheng, Ting; Deng, Mei; Jiang, Qian-Tao; Li, Wei; Zheng, You-Liang; Wei, Yu-Ming; Qi, Peng-Fei

    2017-01-01

    Fusarium graminearum is the major causal agent of fusarium head blight in wheat, a serious disease worldwide. Linoleic acid isomerase (LAI) catalyses the transformation of linoleic acid (LA) to conjugated linoleic acid (CLA), which is beneficial for human health. We characterised a cis-12 LAI gene of F. graminearum (FGSG_02668; FgLAI12), which was downregulated by salicylic acid (SA), a plant defence hormone. Disruption of FgLAI12 in F. graminearum resulted in decreased accumulation of cis-9,trans-11 CLA, enhanced sensitivity to SA, and increased accumulation of LA and SA in wheat spikes during infection. In addition, mycelial growth, accumulation of deoxynivalenol, and pathogenicity in wheat spikes were reduced. Re-introduction of a functional FgLAI12 gene into ΔFgLAI12 recovered the wild-type phenotype. Fluorescent microscopic analysis showed that FgLAI12 protein was usually expressed in the septa zone of conidia and the vacuole of hyphae, but was expressed in the cell membrane of hyphae in response to exogenous LA, which may be an element of LA metabolism during infection by F. graminearum. The cis-12 LAI enzyme encoded by FgLAI12 is critical for fungal response to SA, mycelial growth and virulence in wheat. The gene FgLAI12 is potentially valuable for biotechnological synthesis of cis-9,trans-11 CLA. PMID:28387243

  12. IroT/mavN, a new iron-regulated gene involved in Legionella pneumophila virulence against amoebae and macrophages.

    PubMed

    Portier, Emilie; Zheng, Huaixin; Sahr, Tobias; Burnside, Denise M; Mallama, Celeste; Buchrieser, Carmen; Cianciotto, Nicholas P; Héchard, Yann

    2015-04-01

    Legionella pneumophila is a pathogenic bacterium commonly found in water. Eventually, it could be transmitted to humans via inhalation of contaminated aerosols. Iron is known as a key requirement for the growth of L. pneumophila in the environment and within its hosts. Many studies were performed to understand iron utilization by L. pneumophila but no global approaches were conducted. In this study, transcriptomic analyses were performed, comparing gene expression in L. pneumophila in standard versus iron restricted conditions. Among the regulated genes, a newly described one, lpp_2867, was highly induced in iron-restricted conditions. Mutants lacking this gene in L. pneumophila were not affected in siderophore synthesis or utilization. On the contrary, they were defective for growth on iron-depleted solid media and for ferrous iron uptake. A sequence analysis predicts that Lpp_2867 is a membrane protein, suggesting that it is involved in ferrous iron transport. We thus named it IroT, for iron transporter. Infection assays showed that the mutants are highly impaired in intracellular growth within their environmental host Acanthamoeba castellanii and human macrophages. Taken tog