Science.gov

Sample records for activate wnt signaling

  1. Notum deacylates Wnt proteins to suppress signalling activity.

    PubMed

    Kakugawa, Satoshi; Langton, Paul F; Zebisch, Matthias; Howell, Steven A; Chang, Tao-Hsin; Liu, Yan; Feizi, Ten; Bineva, Ganka; O'Reilly, Nicola; Snijders, Ambrosius P; Jones, E Yvonne; Vincent, Jean-Paul

    2015-03-12

    Signalling by Wnt proteins is finely balanced to ensure normal development and tissue homeostasis while avoiding diseases such as cancer. This is achieved in part by Notum, a highly conserved secreted feedback antagonist. Notum has been thought to act as a phospholipase, shedding glypicans and associated Wnt proteins from the cell surface. However, this view fails to explain specificity, as glypicans bind many extracellular ligands. Here we provide genetic evidence in Drosophila that Notum requires glypicans to suppress Wnt signalling, but does not cleave their glycophosphatidylinositol anchor. Structural analyses reveal glycosaminoglycan binding sites on Notum, which probably help Notum to co-localize with Wnt proteins. They also identify, at the active site of human and Drosophila Notum, a large hydrophobic pocket that accommodates palmitoleate. Kinetic and mass spectrometric analyses of human proteins show that Notum is a carboxylesterase that removes an essential palmitoleate moiety from Wnt proteins and thus constitutes the first known extracellular protein deacylase. PMID:25731175

  2. Activation of the Canonical Wnt Signaling Pathway Induces Cementum Regeneration.

    PubMed

    Han, Pingping; Ivanovski, Saso; Crawford, Ross; Xiao, Yin

    2015-07-01

    Canonical Wnt signaling is important in tooth development but it is unclear whether it can induce cementogenesis and promote the regeneration of periodontal tissues lost because of disease. Therefore, the aim of this study is to investigate the influence of canonical Wnt signaling enhancers on human periodontal ligament cell (hPDLCs) cementogenic differentiation in vitro and cementum repair in a rat periodontal defect model. Canonical Wnt signaling was induced by (1) local injection of lithium chloride; (2) local injection of sclerostin antibody; and (3) local injection of a lentiviral construct overexpressing β-catenin. The results showed that the local activation of canonical Wnt signaling resulted in significant new cellular cementum deposition and the formation of well-organized periodontal ligament fibers, which was absent in the control group. In vitro experiments using hPDLCs showed that the Wnt signaling pathway activators significantly increased mineralization, alkaline phosphatase (ALP) activity, and gene and protein expression of the bone and cementum markers osteocalcin (OCN), osteopontin (OPN), cementum protein 1 (CEMP1), and cementum attachment protein (CAP). Our results show that the activation of the canonical Wnt signaling pathway can induce in vivo cementum regeneration and in vitro cementogenic differentiation of hPDLCs.

  3. Retinoic acid suppresses the canonical Wnt signaling pathway in embryonic stem cells and activates the noncanonical Wnt signaling pathway

    PubMed Central

    Osei-Sarfo, Kwame; Gudas, Lorraine J.

    2014-01-01

    Embryonic stem cells (ESCs) have both the ability to self-renew and to differentiate into various cell lineages. Retinoic acid (RA), a metabolite of Vitamin A, has a critical function in initiating lineage differentiation of ESCs through binding to the retinoic acid receptors (RARs). Additionally, the Wnt signaling pathway plays a role in pluripotency and differentiation, depending on the activation status of the canonical and noncanonical pathways. The activation of the canonical Wnt signaling pathway, which requires the nuclear accumulation of β-catenin and its interaction with Tcf1/Lef at Wnt response elements, is involved in ESC stemness maintenance. The noncanonical Wnt signaling pathway, through actions of Tcf3, can antagonize the canonical pathway. We show that RA activates the noncanonical Wnt signaling pathway, while concomitantly inhibiting the canonical pathway. RA increases the expression of ligands and receptors of the noncanonical Wnt pathway (Wnt 5a, 7a, Fzd2 and Fzd6), downstream signaling, and Tcf3 expression. RA reduces the phosphorylated β-catenin level by 4-fold, though total β-catenin levels don't change. We show that RA signaling increases the dissociation of Tcf1 and the association of Tcf3 at promoters of genes that regulate stemness (e.g. NR5A2,Lrh-1) or differentiation (eg. Cyr61, Zic5). Knockdown of Tcf3 increases Lrh-1 transcript levels in mESCs and prevents the RA-associated, ∼4-fold increase in Zic5, indicating that RA requires Tcf3 to effect changes in Zic5 levels. We demonstrate a novel role for RA in altering the activation of these two Wnt signaling pathways and show that Tcf3 mediates some actions of RA during differentiation. PMID:24648413

  4. Molecular hydrogen suppresses activated Wnt/β-catenin signaling.

    PubMed

    Lin, Yingni; Ohkawara, Bisei; Ito, Mikako; Misawa, Nobuaki; Miyamoto, Kentaro; Takegami, Yasuhiko; Masuda, Akio; Toyokuni, Shinya; Ohno, Kinji

    2016-01-01

    Molecular hydrogen (H2) is effective for many diseases. However, molecular bases of H2 have not been fully elucidated. Cumulative evidence indicates that H2 acts as a gaseous signal modulator. We found that H2 suppresses activated Wnt/β-catenin signaling by promoting phosphorylation and degradation οf β-catenin. Either complete inhibition of GSK3 or mutations at CK1- and GSK3-phosphorylation sites of β-catenin abolished the suppressive effect of H2. H2 did not increase GSK3-mediated phosphorylation of glycogen synthase, indicating that H2 has no direct effect on GSK3 itself. Knock-down of adenomatous polyposis coli (APC) or Axin1, which form the β-catenin degradation complex, minimized the suppressive effect of H2 on β-catenin accumulation. Accordingly, the effect of H2 requires CK1/GSK3-phosphorylation sites of β-catenin, as well as the β-catenin degradation complex comprised of CK1, GSK3, APC, and Axin1. We additionally found that H2 reduces the activation of Wnt/β-catenin signaling in human osteoarthritis chondrocytes. Oral intake of H2 water tended to ameliorate cartilage degradation in a surgery-induced rat osteoarthritis model through attenuating β-catenin accumulation. We first demonstrate that H2 suppresses abnormally activated Wnt/β-catenin signaling, which accounts for the protective roles of H2 in a fraction of diseases. PMID:27558955

  5. Molecular hydrogen suppresses activated Wnt/β-catenin signaling

    PubMed Central

    Lin, Yingni; Ohkawara, Bisei; Ito, Mikako; Misawa, Nobuaki; Miyamoto, Kentaro; Takegami, Yasuhiko; Masuda, Akio; Toyokuni, Shinya; Ohno, Kinji

    2016-01-01

    Molecular hydrogen (H2) is effective for many diseases. However, molecular bases of H2 have not been fully elucidated. Cumulative evidence indicates that H2 acts as a gaseous signal modulator. We found that H2 suppresses activated Wnt/β-catenin signaling by promoting phosphorylation and degradation οf β-catenin. Either complete inhibition of GSK3 or mutations at CK1- and GSK3-phosphorylation sites of β-catenin abolished the suppressive effect of H2. H2 did not increase GSK3-mediated phosphorylation of glycogen synthase, indicating that H2 has no direct effect on GSK3 itself. Knock-down of adenomatous polyposis coli (APC) or Axin1, which form the β-catenin degradation complex, minimized the suppressive effect of H2 on β-catenin accumulation. Accordingly, the effect of H2 requires CK1/GSK3-phosphorylation sites of β-catenin, as well as the β-catenin degradation complex comprised of CK1, GSK3, APC, and Axin1. We additionally found that H2 reduces the activation of Wnt/β-catenin signaling in human osteoarthritis chondrocytes. Oral intake of H2 water tended to ameliorate cartilage degradation in a surgery-induced rat osteoarthritis model through attenuating β-catenin accumulation. We first demonstrate that H2 suppresses abnormally activated Wnt/β-catenin signaling, which accounts for the protective roles of H2 in a fraction of diseases. PMID:27558955

  6. Wnt signaling in osteosarcoma.

    PubMed

    Lin, Carol H; Ji, Tao; Chen, Cheng-Fong; Hoang, Bang H

    2014-01-01

    Osteosarcoma (OS) is the most common primary bone malignancy diagnosed in children and adolescents with a high propensity for local invasion and distant metastasis. Despite current multidisciplinary treatments, there has not been a drastic change in overall prognosis within the last two decades. With current treatments, 60-70 % of patients with localized disease survive. Given a propensity of Wnt signaling to control multiple cellular processes, including proliferation, cell fate determination, and differentiation, it is a critical pathway in OS disease progression. At the same time, this pathway is extremely complex with vast arrays of cross-talk. Even though decades of research have linked the role of Wnt to tumorigenesis, there are still outstanding areas that remain poorly understood and even controversial. The canonical Wnt pathway functions to regulate the levels of the transcriptional co-activator β-catenin, which ultimately controls key developmental gene expressions. Given the central role of this mediator, inhibition of Wnt/β-catenin signaling has been investigated as a potential strategy for cancer control. In OS, several secreted protein families modulate the Wnt/β-catenin signaling, including secreted Frizzled-related proteins (sFRPs), Wnt inhibitory protein (WIF), Dickkopf proteins (DKK-1,2,3), sclerostin, and small molecules. This chapter focuses on our current understanding of Wnt/β-catenin signaling in OS, based on recent in vitro and in vivo data. Wnt activates noncanonical signaling pathways as well that are independent of β-catenin which will be discussed. In addition, stem cells and their association with Wnt/β-catenin are important factors to consider. Ultimately, the multiple canonical and noncanonical Wnt/β-catenin agonists and antagonists need to be further explored for potential targeted therapies.

  7. Wnt signaling potentiates nevogenesis

    PubMed Central

    Pawlikowski, Jeff S.; McBryan, Tony; van Tuyn, John; Drotar, Mark E.; Hewitt, Rachael N.; Maier, Andrea B.; King, Ayala; Blyth, Karen; Wu, Hong; Adams, Peter D.

    2013-01-01

    Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway (senescence-associated secretory phenotype). Cellular senescence is also a tumor suppressor mechanism, to which both proliferation arrest and senescence-associated secretory phenotype are thought to contribute. The melanocytes within benign human nevi are a paradigm for tumor-suppressive senescent cells in a premalignant neoplasm. Here a comparison of proliferating and senescent melanocytes and melanoma cell lines by RNA sequencing emphasizes the importance of senescence-associated proliferation arrest in suppression of transformation. Previous studies showed that activation of the Wnt signaling pathway can delay or bypass senescence. Consistent with this, we present evidence that repression of Wnt signaling contributes to melanocyte senescence in vitro. Surprisingly, Wnt signaling is active in many senescent human melanocytes in nevi, and this is linked to histological indicators of higher proliferative and malignant potential. In a mouse, activated Wnt signaling delays senescence-associated proliferation arrest to expand the population of senescent oncogene-expressing melanocytes. These results suggest that Wnt signaling can potentiate nevogenesis in vivo by delaying senescence. Further, we suggest that activated Wnt signaling in human nevi undermines senescence-mediated tumor suppression and enhances the probability of malignancy. PMID:24043806

  8. CD44 functions in Wnt signaling by regulating LRP6 localization and activation

    PubMed Central

    Schmitt, M; Metzger, M; Gradl, D; Davidson, G; Orian-Rousseau, V

    2015-01-01

    Wnt reception at the membrane is complex and not fully understood. CD44 is a major Wnt target gene in the intestine and is essential for Wnt-induced tumor progression in colorectal cancer. Here we show that CD44 acts as a positive regulator of the Wnt receptor complex. Downregulation of CD44 expression decreases, whereas CD44 overexpression increases Wnt activity in a concentration-dependent manner. Epistasis experiments place CD44 function at the level of the Wnt receptor LRP6. Mechanistically, CD44 physically associates with LRP6 upon Wnt treatment and modulates LRP6 membrane localization. Moreover, CD44 regulates Wnt signaling in the developing brain of Xenopus laevis embryos as shown by a decreased expression of Wnt targets tcf-4 and en-2 in CD44 morphants. PMID:25301071

  9. Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development

    PubMed Central

    van Amerongen, Renée; Fuerer, Christophe; Mizutani, Makiko; Nusse, Roel

    2012-01-01

    Embryonic development is controlled by a small set of signal transduction pathways, with vastly different phenotypic outcomes depending on the time and place of their recruitment. How the same molecular machinery can elicit such specific and distinct responses, remains one of the outstanding questions in developmental biology. Part of the answer may lie in the high inherent genetic complexity of these signaling cascades, as observed for the Wnt-pathway. The mammalian genome encodes multiple Wnt proteins and receptors, each of which show dynamic and tightly controlled expression patterns in the embryo. Yet how these components interact in the context of the whole organism remains unknown. Here we report the generation of a novel, inducible transgenic mouse model that allows spatiotemporal control over the expression of Wnt5a, a protein implicated in many developmental processes and multiple Wnt-signaling responses. We show that ectopic Wnt5a expression from E10.5 onwards results in a variety of developmental defects, including loss of hair follicles and reduced bone formation in the skull. Moreover, we find that Wnt5a can have dual signaling activities during mouse embryonic development. Specifically, Wnt5a is capable of both inducing and repressing β-catenin/TCF signaling in vivo, depending on the time and site of expression and the receptors expressed by receiving cells. These experiments show for the first time that a single mammalian Wnt protein can have multiple signaling activities in vivo, thereby furthering our understanding of how signaling specificity is achieved in a complex developmental context. PMID:22771246

  10. Activation of Wnt/ß-catenin signaling in ESC promotes rostral forebrain differentiation in vitro.

    PubMed

    Takata, Nozomu; Sakakura, Eriko; Sasai, Yoshiki

    2016-03-01

    Wnt/ß-catenin signaling is crucial for maintenance of pluripotent state of embryonic stem cell (ESC). However, it is unclear how Wnt/ß-catenin signaling affects the differentiation ability of ESC, especially with regard to rostral forebrain cells. Here, using Rax, rostral forebrain marker, and Wnt/ß-catenin reporter lines, we report ratio of Rax(+) and Wnt responding tissue (Wnt(+)) patterns, which were affected by seeding number of ESC in three-dimensional culture system. Surprisingly, we found ß-catenin level and localization are heterogeneous in ESC colony by immunostaining and time-laps imaging of ß-catenin-mEGFP signals. Moreover, activation of Wnt signaling in ESC promoted expression level and nuclear localization of ß-catenin, and mRNA levels of Wnt antagonists, axin2 and dkk1, leading to upregulating Wnt/ß-catenin reporter in ESC state and Rax expression at differentiation culture day 7. Together, our results suggest that activation of Wnt signaling in ESC promotes the differentiation efficacy of rostral forebrain cells. Wnt-priming culture method may provide a useful tool for applications in the areas of basic science and molecular therapeutics for regenerative medicine.

  11. Context-dependent activation of Wnt signaling by tumor suppressor RUNX3 in gastric cancer cells.

    PubMed

    Ju, Xiaoli; Ishikawa, Tomo-O; Naka, Kazuhito; Ito, Kosei; Ito, Yoshiaki; Oshima, Masanobu

    2014-04-01

    RUNX3 is a tumor suppressor for a variety of cancers. RUNX3 suppresses the canonical Wnt signaling pathway by binding to the TCF4/β-catenin complex, resulting in the inhibition of binding of the complex to the Wnt target gene promoter. Here, we confirmed that RUNX3 suppressed Wnt signaling activity in several gastric cancer cell lines; however, we found that RUNX3 increased the Wnt signaling activity in KatoIII and SNU668 gastric cancer cells. Notably, RUNX3 expression increased the ratio of the Wnt signaling-high population in the KatoIII cells. although the maximum Wnt activation level of individual cells was similar to that in the control. As found previously, RUNX3 also binds to TCF4 and β-catenin in KatoIII cells, suggesting that these molecules form a ternary complex. Moreover, the ChIP analyses revealed that TCF4, β-catenin and RUNX3 bind the promoter region of the Wnt target genes, Axin2 and c-Myc, and the occupancy of TCF4 and β-catenin in these promoter regions is increased by the RUNX3 expression. These results suggest that RUNX3 stabilizes the TCF4/β-catenin complex on the Wnt target gene promoter in KatoIII cells, leading to activation of Wnt signaling. Although RUNX3 increased the Wnt signaling activity, its expression resulted in suppression of tumorigenesis of KatoIII cells, indicating that RUNX3 plays a tumor-suppressing role in KatoIII cells through a Wnt-independent mechanism. These results indicate that RUNX3 can either suppress or activate the Wnt signaling pathway through its binding to the TCF4/β-catenin complex by cell context-dependent mechanisms. PMID:24447505

  12. Context-dependent activation of Wnt signaling by tumor suppressor RUNX3 in gastric cancer cells

    PubMed Central

    Ju, Xiaoli; Ishikawa, Tomo-o; Naka, Kazuhito; Ito, Kosei; Ito, Yoshiaki; Oshima, Masanobu

    2014-01-01

    RUNX3 is a tumor suppressor for a variety of cancers. RUNX3 suppresses the canonical Wnt signaling pathway by binding to the TCF4/β-catenin complex, resulting in the inhibition of binding of the complex to the Wnt target gene promoter. Here, we confirmed that RUNX3 suppressed Wnt signaling activity in several gastric cancer cell lines; however, we found that RUNX3 increased the Wnt signaling activity in KatoIII and SNU668 gastric cancer cells. Notably, RUNX3 expression increased the ratio of the Wnt signaling-high population in the KatoIII cells. although the maximum Wnt activation level of individual cells was similar to that in the control. As found previously, RUNX3 also binds to TCF4 and β-catenin in KatoIII cells, suggesting that these molecules form a ternary complex. Moreover, the ChIP analyses revealed that TCF4, β-catenin and RUNX3 bind the promoter region of the Wnt target genes, Axin2 and c-Myc, and the occupancy of TCF4 and β-catenin in these promoter regions is increased by the RUNX3 expression. These results suggest that RUNX3 stabilizes the TCF4/β-catenin complex on the Wnt target gene promoter in KatoIII cells, leading to activation of Wnt signaling. Although RUNX3 increased the Wnt signaling activity, its expression resulted in suppression of tumorigenesis of KatoIII cells, indicating that RUNX3 plays a tumor-suppressing role in KatoIII cells through a Wnt-independent mechanism. These results indicate that RUNX3 can either suppress or activate the Wnt signaling pathway through its binding to the TCF4/β-catenin complex by cell context-dependent mechanisms. PMID:24447505

  13. Wnt Signaling and Injury Repair

    PubMed Central

    Whyte, Jemima L.; Smith, Andrew A.; Helms, Jill A.

    2012-01-01

    Wnt signaling is activated by wounding and participates in every subsequent stage of the healing process from the control of inflammation and programmed cell death, to the mobilization of stem cell reservoirs within the wound site. In this review we summarize recent data elucidating the roles that the Wnt pathway plays in the injury repair process. These data provide a foundation for potential Wnt-based therapeutic strategies aimed at stimulating tissue regeneration. PMID:22723493

  14. TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling.

    PubMed

    He, Xiaoqing; Wang, Hai; Jin, Tao; Xu, Yongqing; Mei, Liangbin; Yang, Jun

    2016-01-01

    Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity.

  15. Integration of telencephalic Wnt and hedgehog signaling center activities by Foxg1.

    PubMed

    Danesin, Catherine; Peres, João N; Johansson, Marie; Snowden, Victoria; Cording, Amy; Papalopulu, Nancy; Houart, Corinne

    2009-04-01

    The forebrain is patterned along the dorsoventral (DV) axis by Sonic Hedgehog (Shh). However, previous studies have suggested the presence of an Shh-independent mechanism. Our study identifies Wnt/beta-catenin-activated from the telencephalic roof-as an Shh-independent pathway that is essential for telencephalic pallial (dorsal) specification during neurulation. We demonstrate that the transcription factor Foxg1 coordinates the activity of two signaling centers: Foxg1 is a key downstream effector of the Shh pathway during induction of subpallial (ventral) identity, and it inhibits Wnt/beta-catenin signaling through direct transcriptional repression of Wnt ligands. This inhibition restricts the dorsal Wnt signaling center to the roof plate and consequently limits pallial identities. Concomitantly to these roles, Foxg1 controls the formation of the compartment boundary between telencephalon and basal diencephalon. Altogether, these findings identify a key direct target of Foxg1, and uncover a simple molecular mechanism by which Foxg1 integrates two opposing signaling centers.

  16. Activation of Wnt3a signaling promotes myogenic differentiation of mesenchymal stem cells in mdx mice

    PubMed Central

    Shang, Yan-chang; Wang, Shu-hui; Xiong, Fu; Peng, Fu-ning; Liu, Zhen-shan; Geng, Jia; Zhang, Cheng

    2016-01-01

    Aim: Duchenne muscular dystrophy (DMD) is an X-linked genetic muscular disorder with no effective treatment at present. Mesenchymal stem cell (MSC) transplantation has been used to treat DMD, but the efficiency is low. Our previous studies show that activation of Wnt3a signaling promotes myogenic differentiation of MSCs in vitro. Here we report an effective MSC transplantation therapy in mdx mice by activation of Wnt3a signaling. Methods: MSCs were isolated from mouse bone marrow, and pretreated with Wnt3a-conditioned medium (Wnt3a-CM), then transplanted into mdx mice. The recipient mice were euthanized at 4, 8, 12, 16 weeks after the transplantation, and muscle pathological changes were examined. The expression of dystrophin in muscle was detected using immunofluorescence staining, RT-PCR and Western blotting. Results: Sixteen weeks later, transplantation of Wnt3a-pretreated MSCs in mdx mice improved the characteristics of dystrophic muscles evidenced by significant reductions in centrally nucleated myofibers, the variability range of cross-sectional area (CSA) and the connective tissue area of myofibers. Furthermore, transplantation of Wnt3a-pretreated MSCs in mdx mice gradually and markedly increased the expression of dystrophin in muscle, and improved the efficiency of myogenic differentiation. Conclusion: Transplantation of Wnt3a-pretreated MSCs in mdx mice results in long-term amelioration of the dystrophic phenotype and restores dystrophin expression in muscle. The results suggest that Wnt3a may be a promising candidate for the treatment of DMD. PMID:27133298

  17. Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction.

    PubMed

    Davidson, Gary; Wu, Wei; Shen, Jinlong; Bilic, Josipa; Fenger, Ursula; Stannek, Peter; Glinka, Andrei; Niehrs, Christof

    2005-12-01

    Signalling by Wnt proteins (Wingless in Drosophila) has diverse roles during embryonic development and in adults, and is implicated in human diseases, including cancer. LDL-receptor-related proteins 5 and 6 (LRP5 and LRP6; Arrow in Drosophila) are key receptors required for transmission of Wnt/beta-catenin signalling in metazoa. Although the role of these receptors in Wnt signalling is well established, their coupling with the cytoplasmic signalling apparatus remains poorly defined. Using a protein modification screen for regulators of LRP6, we describe the identification of Xenopus Casein kinase 1 gamma (CK1gamma), a membrane-bound member of the CK1 family. Gain-of-function and loss-of-function experiments show that CK1gamma is both necessary and sufficient to transduce LRP6 signalling in vertebrates and Drosophila cells. In Xenopus embryos, CK1gamma is required during anterio-posterior patterning to promote posteriorizing Wnt/beta-catenin signalling. CK1gamma is associated with LRP6, which has multiple, modular CK1 phosphorylation sites. Wnt treatment induces the rapid CK1gamma-mediated phosphorylation of these sites within LRP6, which, in turn, promotes the recruitment of the scaffold protein Axin. Our results reveal an evolutionarily conserved mechanism that couples Wnt receptor activation to the cytoplasmic signal transduction apparatus. PMID:16341016

  18. Dishevelled attenuates the repelling activity of Wnt signaling during neurite outgrowth in Caenorhabditis elegans

    PubMed Central

    Zheng, Chaogu; Diaz-Cuadros, Margarete; Chalfie, Martin

    2015-01-01

    Wnt proteins regulate axonal outgrowth along the anterior–posterior axis, but the intracellular mechanisms that modulate the strength of Wnt signaling in axon guidance are largely unknown. Using the Caenorhabditis elegans mechanosensory PLM neurons, we found that posteriorly enriched LIN-44/Wnt acts as a repellent to promote anteriorly directed neurite outgrowth through the LIN-17/Frizzled receptor, instead of controlling neuronal polarity as previously thought. Dishevelled (Dsh) proteins DSH-1 and MIG-5 redundantly mediate the repulsive activity of the Wnt signals to induce anterior outgrowth, whereas DSH-1 also provides feedback inhibition to attenuate the signaling to allow posterior outgrowth against the Wnt gradient. This inhibitory function of DSH-1, which requires its dishevelled, Egl-10, and pleckstrin (DEP) domain, acts by promoting LIN-17 phosphorylation and is antagonized by planar cell polarity signaling components Van Gogh (VANG-1) and Prickle (PRKL-1). Our results suggest that Dsh proteins both respond to Wnt signals to shape neuronal projections and moderate its activity to fine-tune neuronal morphology. PMID:26460008

  19. Dishevelled attenuates the repelling activity of Wnt signaling during neurite outgrowth in Caenorhabditis elegans.

    PubMed

    Zheng, Chaogu; Diaz-Cuadros, Margarete; Chalfie, Martin

    2015-10-27

    Wnt proteins regulate axonal outgrowth along the anterior-posterior axis, but the intracellular mechanisms that modulate the strength of Wnt signaling in axon guidance are largely unknown. Using the Caenorhabditis elegans mechanosensory PLM neurons, we found that posteriorly enriched LIN-44/Wnt acts as a repellent to promote anteriorly directed neurite outgrowth through the LIN-17/Frizzled receptor, instead of controlling neuronal polarity as previously thought. Dishevelled (Dsh) proteins DSH-1 and MIG-5 redundantly mediate the repulsive activity of the Wnt signals to induce anterior outgrowth, whereas DSH-1 also provides feedback inhibition to attenuate the signaling to allow posterior outgrowth against the Wnt gradient. This inhibitory function of DSH-1, which requires its dishevelled, Egl-10, and pleckstrin (DEP) domain, acts by promoting LIN-17 phosphorylation and is antagonized by planar cell polarity signaling components Van Gogh (VANG-1) and Prickle (PRKL-1). Our results suggest that Dsh proteins both respond to Wnt signals to shape neuronal projections and moderate its activity to fine-tune neuronal morphology.

  20. Wnt signaling and osteoporosis.

    PubMed

    Manolagas, Stavros C

    2014-07-01

    Major advances in understanding basic bone biology and the cellular and molecular mechanisms responsible for the development of osteoporosis, over the last 20 years, have dramatically altered the management of this disease. The purpose of this mini-review is to highlight the seminal role of Wnt signaling in bone homeostasis and disease and the emergence of novel osteoporosis therapies by targeting Wnt signaling with drugs.

  1. Wnt Signaling During Fracture Repair

    PubMed Central

    Secreto, Frank J.; Hoeppner, Luke H.; Westendorf, Jennifer J.

    2010-01-01

    Bone is one of the few tissues in the body with the capacity to regenerate and repair itself. In most cases, fractures are completely repaired in a relatively short period of time; however, in a small percentage of cases, healing never occurs and non-union is the result. Fracture repair and bone regeneration require the localized re-activation of signaling cascades that are crucial for skeletal development. The Wnt/β-catenin signaling pathway is one such developmental pathway whose role in bone formation and regeneration has been recently appreciated. During the last decade, much has learned about how Wnt pathways regulate bone mass. Small molecules and biologics aimed at this pathway are now being tested as potential new anabolic agents. Here we review recent data demonstrating that Wnt pathways are active during fracture repair and that increasing the activities of Wnt pathway components accelerates bone regeneration. PMID:19631031

  2. Wnt Signaling Inhibits Osteoclast Differentiation by Activating Canonical and Noncanonical cAMP/PKA Pathways

    PubMed Central

    Weivoda, Megan M; Ruan, Ming; Hachfeld, Christine M; Pederson, Larry; Howe, Alan; Davey, Rachel A; Zajac, Jeffrey D; Kobayashi, Yasuhiro; Williams, Bart O; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2016-01-01

    Although there has been extensive characterization of the Wnt signaling pathway in the osteoblast lineage, the effects of Wnt proteins on the osteoclast lineage are less well studied. We found that osteoclast lineage cells express canonical Wnt receptors. Wnt3a reduced osteoclast formation when applied to early bone-marrow macrophage (BMM) osteoclast differentiation cultures, whereas late addition did not suppress osteoclast formation. Early Wnt3a treatment inactivated the crucial transcription factor NFATc1 in osteoclast progenitors. Wnt3a led to the accumulation of nuclear β-catenin, confirming activation of canonical Wnt signaling. Reducing low-density lipoprotein receptor-related proteins (Lrp) 5 and Lrp6 protein expression prevented Wnt3a-induced inactivation of NFATc1; however, deletion of β-catenin did not block Wnt3a inactivation of NFATc1, suggesting that this effect was mediated by a noncanonical pathway. Wnt3a rapidly activated the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway and pharmacological stimulation of cAMP/PKA signaling suppressed osteoclast differentiation; Wnt3a-induced NFATc1 phosphorylation was blocked by inhibiting interactions between PKA and A-kinase anchoring proteins (AKAPs). These data indicate that Wnt3a directly suppresses osteoclast differentiation through both canonical (β-catenin) and noncanonical (cAMP/PKA) pathways in osteoclast precursors. In vivo reduction of Lrp5 and Lrp6 expressions in the early osteoclast lineage via Rank promoter Cre recombination reduced trabecular bone mass, whereas disruption of Lrp5/6 expression in late osteoclast precursors via cathepsin K (Ctsk) promoter Cre recombination did not alter the skeletal phenotype. Surprisingly, reduction of Lrp5/6 in the early osteoclast lineage decreased osteoclast numbers, as well as osteoblast numbers. Published studies have previously noted that β-catenin signaling is required for osteoclast progenitor proliferation. Our in vivo data

  3. CTNNB1 Signaling in Sertoli Cells Downregulates Spermatogonial Stem Cell Activity via WNT4

    PubMed Central

    Boyer, Alexandre; Yeh, Jonathan R.; Zhang, Xiangfan; Paquet, Marilène; Gaudin, Aurore; Nagano, Makoto C.; Boerboom, Derek

    2012-01-01

    Constitutive activation of the WNT signaling effector CTNNB1 (β-catenin) in the Sertoli cells of the Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ mouse model results in progressive germ cell loss and sterility. In this study, we sought to determine if this phenotype could be due to a loss of spermatogonial stem cell (SSC) activity. Reciprocal SSC transplants between Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ and wild-type mice showed that SSC activity is lost in Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ testes over time, whereas the mutant testes could not support colonization by wild-type SSCs. Microarray analyses performed on cultured Sertoli cells showed that CTNNB1 induces the expression of genes associated with the female sex determination pathway, which was also found to occur in Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ testes. One CTNNB1 target gene encoded the secreted signaling molecule WNT4. We therefore tested the effects of WNT4 on SSC-enriched germ cell cultures, and found that WNT4 induced cell death and reduced SSC activity without affecting cell cycle. Conversely, conditional inactivation of Wnt4 in the Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ model rescued spermatogenesis and male fertility, indicating that WNT4 is the major effector downstream of CTNNB1 responsible for germ cell loss. Furthermore, WNT4 was found to signal via the CTNNB1 pathway in Sertoli cells, suggesting a self-reinforcing positive feedback loop. Collectively, these data indicate for the first time that ectopic activation of a signaling cascade in the stem cell niche depletes SSC activity through a paracrine factor. These findings may provide insight into the pathogenesis of male infertility, as well as embryonic gonadal development. PMID:22253774

  4. Wnt Signaling in Cancer Stem Cell Biology.

    PubMed

    de Sousa E Melo, Felipe; Vermeulen, Louis

    2016-06-27

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer.

  5. Wnt Signaling in Cancer Stem Cell Biology

    PubMed Central

    de Sousa e Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer. PMID:27355964

  6. Activation of the wnt/β-Catenin Signaling Pathway in Polymyositis, Dermatomyositis and Duchenne Muscular Dystrophy

    PubMed Central

    Liu, Fuchen; Liang, Zonglai; Xu, Jingwen; Li, Wei; Zhao, Dandan; Zhao, Yuying

    2016-01-01

    Background and Purpose The wnt/β-catenin signaling pathway plays a critical role in embryonic development and adult-tissue homeostasis. Recent investigations implicate the importance of wnt/β-catenin signaling in normal wound healing and its sustained activation being associated with fibrogenesis. We investigated the immunolocalization and activation of wnt/β-catenin in polymyositis (PM), dermatomyositis (DM), and Duchenne muscular dystrophy (DMD). Methods Immunofluorescence staining and Western blot analysis of β-catenin were performed in muscle specimens from 6 PM, 8 DM, and 6 DMD subjects. The β-catenin/Tcf4 DNA-binding activity in muscle was studied using an electrophoretic mobility shift assay (EMSA), and serum wnt/β-catenin/Tcf transcriptional activity was measured using a luciferase reporter gene assay. Results Immunoreactivity for β-catenin was found in the cytoplasm and nuclei of muscle fibers in PM, DM, and DMD. The protein level of β-catenin was elevated, and EMSA analysis confirmed the activation of wnt/β-catenin signaling. The transcriptional activities of β-catenin/Tcf in the circulation were increased in patients with PM, DM, and DMD, especially in those with interstitial lung disease, and these transcriptional activities decreased when PM or DM patients exhibited obvious clinical improvements. Conclusions Our findings indicate that wnt/β-catenin signaling is activated in PM, DM, and DMD. Its activation in muscle tissue and the circulation may play a role in modulating muscle regeneration and be at least partly involved in the process of muscle and pulmonary fibrosis. PMID:27165423

  7. Wnt5a Signaling in Cancer

    PubMed Central

    Asem, Marwa S.; Buechler, Steven; Wates, Rebecca Burkhalter; Miller, Daniel L.; Stack, M. Sharon

    2016-01-01

    Wnt5a is involved in activating several non-canonical WNT signaling pathways, through binding to different members of the Frizzled- and Ror-family receptors. Wnt5a signaling is critical for regulating normal developmental processes, including proliferation, differentiation, migration, adhesion and polarity. However, the aberrant activation or inhibition of Wnt5a signaling is emerging as an important event in cancer progression, exerting both oncogenic and tumor suppressive effects. Recent studies show the involvement of Wnt5a in regulating cancer cell invasion, metastasis, metabolism and inflammation. In this article, we review findings regarding the molecular mechanisms and roles of Wnt5a signaling in various cancer types, and highlight Wnt5a in ovarian cancer. PMID:27571105

  8. Wnt5a Signaling in Cancer.

    PubMed

    Asem, Marwa S; Buechler, Steven; Wates, Rebecca Burkhalter; Miller, Daniel L; Stack, M Sharon

    2016-01-01

    Wnt5a is involved in activating several non-canonical WNT signaling pathways, through binding to different members of the Frizzled- and Ror-family receptors. Wnt5a signaling is critical for regulating normal developmental processes, including proliferation, differentiation, migration, adhesion and polarity. However, the aberrant activation or inhibition of Wnt5a signaling is emerging as an important event in cancer progression, exerting both oncogenic and tumor suppressive effects. Recent studies show the involvement of Wnt5a in regulating cancer cell invasion, metastasis, metabolism and inflammation. In this article, we review findings regarding the molecular mechanisms and roles of Wnt5a signaling in various cancer types, and highlight Wnt5a in ovarian cancer. PMID:27571105

  9. The pan-PI3K inhibitor GDC-0941 activates canonical WNT signaling to confer resistance in TNBC cells: resistance reversal with WNT inhibitor.

    PubMed

    Tzeng, Huey-En; Yang, Lixin; Chen, Kemin; Wang, Yafan; Liu, Yun-Ru; Pan, Shiow-Lin; Gaur, Shikha; Hu, Shuya; Yen, Yun

    2015-05-10

    The pan-PI3K inhibitors are one treatment option for triple-negative breast cancer (TNBC). However, this treatment is ineffective for unknown reasons. Here, we report that aberrant expression of wingless-type MMTV integration site family (WNT) and activated WNT signals, which crosstalk with the PI3K-AKT-mTOR signaling pathway through GSK3β, plays the most critical role in resistance to pan-PI3K inhibitors in TNBC cells. GDC-0941 is a pan-PI3K inhibitor that activates the WNT/beta-catenin pathway in TNBC cells through stimulation of WNT secretion. GDC-0941-triggered WNT/beta-catenin pathway activation was observed in MDA-MB-231 and HCC1937 cells, which are TNBC cell lines showing aberrant WNT/beta-catenin activation, and not in SKBR3 and MCF7 cells. This observation is further investigated in vivo. GDC-0941 exhibited minimal tumor inhibition in MDA-MB-231 cells, but it significantly suppressed tumor growth in HER-positive SK-BR3 cells. In vivo mechanism study revealed the activation of WNT/beta-catenin pathway by GDC-0941. A synergistic effect was observed when combined treatment with GDC-0941 and the WNT inhibitor LGK974 at low concentrations in MDA-MB-231 cells. These findings indicated that WNT pathway activation conferred resistance in TNBC cells treated with GDC-0941. This resistance may be further circumvented through combined treatment with pan-PI3K and WNT inhibitors. Future clinical trials of these two inhibitors are warranted.

  10. The pan-PI3K inhibitor GDC-0941 activates canonical WNT signaling to confer resistance in TNBC cells: resistance reversal with WNT inhibitor

    PubMed Central

    Tzeng, Huey-En; Yang, Lixin; Chen, Kemin; Wang, Yafan; Liu, Yun-Ru; Pan, Shiow-Lin; Gaur, Shikha; Hu, Shuya; Yen, Yun

    2015-01-01

    The pan-PI3K inhibitors are one treatment option for triple-negative breast cancer (TNBC). However, this treatment is ineffective for unknown reasons. Here, we report that aberrant expression of wingless-type MMTV integration site family (WNT) and activated WNT signals, which crosstalk with the PI3K-AKT-mTOR signaling pathway through GSK3β, plays the most critical role in resistance to pan-PI3K inhibitors in TNBC cells. GDC-0941 is a pan-PI3K inhibitor that activates the WNT/beta-catenin pathway in TNBC cells through stimulation of WNT secretion. GDC-0941-triggered WNT/beta-catenin pathway activation was observed in MDA-MB-231 and HCC1937 cells, which are TNBC cell lines showing aberrant WNT/beta-catenin activation, and not in SKBR3 and MCF7 cells. This observation is further investigated in vivo. GDC-0941 exhibited minimal tumor inhibition in MDA-MB-231 cells, but it significantly suppressed tumor growth in HER-positive SK-BR3 cells. In vivo mechanism study revealed the activation of WNT/beta-catenin pathway by GDC-0941. A synergistic effect was observed when combined treatment with GDC-0941 and the WNT inhibitor LGK974 at low concentrations in MDA-MB-231 cells. These findings indicated that WNT pathway activation conferred resistance in TNBC cells treated with GDC-0941. This resistance may be further circumvented through combined treatment with pan-PI3K and WNT inhibitors. Future clinical trials of these two inhibitors are warranted. PMID:25857298

  11. Epigenetic Activation of Wnt/β-Catenin Signaling in NAFLD-Associated Hepatocarcinogenesis.

    PubMed

    Tian, Yuan; Mok, Myth T S; Yang, Pengyuan; Cheng, Alfred S L

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD), characterized by fat accumulation in liver, is closely associated with central obesity, over-nutrition and other features of metabolic syndrome, which elevate the risk of developing hepatocellular carcinoma (HCC). The Wnt/β-catenin signaling pathway plays a significant role in the physiology and pathology of liver. Up to half of HCC patients have activation of Wnt/β-catenin signaling. However, the mutation frequencies of CTNNB1 (encoding β-catenin protein) or other antagonists targeting Wnt/β-catenin signaling are low in HCC patients, suggesting that genetic mutations are not the major factor driving abnormal β-catenin activities in HCC. Emerging evidence has demonstrated that obesity-induced metabolic pathways can deregulate chromatin modifiers such as histone deacetylase 8 to trigger undesired global epigenetic changes, thereby modifying gene expression program which contributes to oncogenic signaling. This review focuses on the aberrant epigenetic activation of Wnt/β-catenin in the development of NAFLD-associated HCC. A deeper understanding of the molecular mechanisms underlying such deregulation may shed light on the identification of novel druggable epigenetic targets for the prevention and/or treatment of HCC in obese and diabetic patients. PMID:27556491

  12. Epigenetic Activation of Wnt/β-Catenin Signaling in NAFLD-Associated Hepatocarcinogenesis

    PubMed Central

    Tian, Yuan; Mok, Myth T.S.; Yang, Pengyuan; Cheng, Alfred S.L.

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD), characterized by fat accumulation in liver, is closely associated with central obesity, over-nutrition and other features of metabolic syndrome, which elevate the risk of developing hepatocellular carcinoma (HCC). The Wnt/β-catenin signaling pathway plays a significant role in the physiology and pathology of liver. Up to half of HCC patients have activation of Wnt/β-catenin signaling. However, the mutation frequencies of CTNNB1 (encoding β-catenin protein) or other antagonists targeting Wnt/β-catenin signaling are low in HCC patients, suggesting that genetic mutations are not the major factor driving abnormal β-catenin activities in HCC. Emerging evidence has demonstrated that obesity-induced metabolic pathways can deregulate chromatin modifiers such as histone deacetylase 8 to trigger undesired global epigenetic changes, thereby modifying gene expression program which contributes to oncogenic signaling. This review focuses on the aberrant epigenetic activation of Wnt/β-catenin in the development of NAFLD-associated HCC. A deeper understanding of the molecular mechanisms underlying such deregulation may shed light on the identification of novel druggable epigenetic targets for the prevention and/or treatment of HCC in obese and diabetic patients. PMID:27556491

  13. Adipogenesis and WNT signalling.

    PubMed

    Christodoulides, Constantinos; Lagathu, Claire; Sethi, Jaswinder K; Vidal-Puig, Antonio

    2009-01-01

    An inability of adipose tissue to expand consequent to exhausted capacity to recruit new adipocytes might underlie the association between obesity and insulin resistance. Adipocytes arise from mesenchymal precursors whose commitment and differentiation along the adipocytic lineage is tightly regulated. These regulatory factors mediate cross-talk between adipose cells, ensuring that adipocyte growth and differentiation are coupled to energy storage demands. The WNT family of autocrine and paracrine growth factors regulates adult tissue maintenance and remodelling and, consequently, is well suited to mediate adipose cell communication. Indeed, several recent reports, summarized in this review, implicate WNT signalling in regulating adipogenesis. Manipulating the WNT pathway to alter adipose cellular makeup, therefore, constitutes an attractive drug-development target to combat obesity-associated metabolic complications.

  14. Activated Wnt signaling induces myofibroblast differentiation of mesenchymal stem cells, contributing to pulmonary fibrosis.

    PubMed

    Sun, Zhaorui; Wang, Cong; Shi, Chaowen; Sun, Fangfang; Xu, Xiaomeng; Qian, Weiping; Nie, Shinan; Han, Xiaodong

    2014-05-01

    Acute lung injury may lead to fibrogenesis. However, no treatment is currently available. This study was conducted to determine the effects of bone marrow-derived mesenchymal stem cells (MSCs) in a model of HCl-induced acute lung injury in Sprague-Dawley (SD) rats. Stromal cell-derived factor (SDF)-1 and its receptor CXC chemokine receptor (CXCR)4 have been shown to participate in mobilizing MSCs. Adenovirus carrying the CXCR4 gene was used to transfect MSCs in order to increase the engraftment numbers of MSCs at injured sites. Histological examination data demonstrated that the engraftment of MSCs did not attenuate lung injury and pulmonary fibrosis. The results showed that engraftment of MSCs almost differentiated into myofibroblasts, but rarely differentiated into lung epithelial cells. Additionally, it was demonstrated that activated canonical Wnt/β-catenin signaling in injured lung tissue regulated the myofibroblast differentiation of MSCs in vivo. The in vitro study results demonstrated that activation of the Wnt/β-catenin signaling stimulated MSCs to express myofibroblast markers; however, this process was attenuated by Wnt antagonist DKK1. Therefore, the results demonstrated that the aberrant activation of Wnt signaling induces the myofibroblast differentiation of engrafted MSCs, thus contributing to pulmonary fibrosis following lung injury. PMID:24573542

  15. R26-WntVis reporter mice showing graded response to Wnt signal levels.

    PubMed

    Takemoto, Tatsuya; Abe, Takaya; Kiyonari, Hiroshi; Nakao, Kazuki; Furuta, Yasuhide; Suzuki, Hitomi; Takada, Shinji; Fujimori, Toshihiko; Kondoh, Hisato

    2016-06-01

    The canonical Wnt signaling pathway plays a major role in the regulation of embryogenesis and organogenesis, where signal strength-dependent cellular responses are of particular importance. To assess Wnt signal levels in individual cells, and to circumvent the integration site-dependent bias shown in previous Wnt reporter lines, we constructed a new Wnt signal reporter mouse line R26-WntVis. Heptameric TCF/LEF1 binding sequences were combined with a viral minimal promoter to confer a graded response to the reporter depending on Wnt signal strengths. The histone H2B-EGFP fusion protein was chosen as the fluorescent reporter to facilitate single-cell resolution analyses. This WntVis reporter gene was then inserted into the ROSA26 locus in an orientation opposite to that of the endogenous gene. The R26-WntVis allele was introduced into Wnt3a(-/-) and Wnt3a(vt/-) mutant mouse embryos and compared with wild-type embryos to assess its performance. The R26-WntVis reporter was activated in known Wnt-dependent tissues and responded in a graded fashion to signal intensity. This analysis also indicated that the major Wnt activity early in embryogenesis switched from Wnt3 to Wnt3a around E7.5. The R26-WntVis mouse line will be widely useful for the study of Wnt signal-dependent processes.

  16. R26-WntVis reporter mice showing graded response to Wnt signal levels.

    PubMed

    Takemoto, Tatsuya; Abe, Takaya; Kiyonari, Hiroshi; Nakao, Kazuki; Furuta, Yasuhide; Suzuki, Hitomi; Takada, Shinji; Fujimori, Toshihiko; Kondoh, Hisato

    2016-06-01

    The canonical Wnt signaling pathway plays a major role in the regulation of embryogenesis and organogenesis, where signal strength-dependent cellular responses are of particular importance. To assess Wnt signal levels in individual cells, and to circumvent the integration site-dependent bias shown in previous Wnt reporter lines, we constructed a new Wnt signal reporter mouse line R26-WntVis. Heptameric TCF/LEF1 binding sequences were combined with a viral minimal promoter to confer a graded response to the reporter depending on Wnt signal strengths. The histone H2B-EGFP fusion protein was chosen as the fluorescent reporter to facilitate single-cell resolution analyses. This WntVis reporter gene was then inserted into the ROSA26 locus in an orientation opposite to that of the endogenous gene. The R26-WntVis allele was introduced into Wnt3a(-/-) and Wnt3a(vt/-) mutant mouse embryos and compared with wild-type embryos to assess its performance. The R26-WntVis reporter was activated in known Wnt-dependent tissues and responded in a graded fashion to signal intensity. This analysis also indicated that the major Wnt activity early in embryogenesis switched from Wnt3 to Wnt3a around E7.5. The R26-WntVis mouse line will be widely useful for the study of Wnt signal-dependent processes. PMID:27030109

  17. Potential Function of Exogenous Vimentin on the Activation of Wnt Signaling Pathway in Cancer Cells

    PubMed Central

    Satelli, Arun; Hu, Jiemiao; Xia, Xueqing; Li, Shulin

    2016-01-01

    Cancer cell signaling, growth, morphology, proliferation and tumorigenic potential are largely depending on the signaling molecules present naturally in the tumor microenvironment and the identification of key molecules that drive the tumor progression is critical for the development of new modalities for the prevention of tumor progression. High concentrations of vimentin in the blood of cancer patients have been reported, however the function of blood circulating vimentin remains unknown. Here, we investigated the functional role of exogenously supplemented vimentin on colon cancer cells and examined the Wnt Signaling activation and cancer cell invasion. Vimentin when supplemented to the cancer cells remained bound to the surface of the cancer cells. Furthermore, bound vimentin activates Wnt signaling pathway as detectable by increased β-catenin accumulation in the nucleus with concomitant activation of β-catenin-dependent transcription of Wnt signaling downstream targets. Functionally, there was an increase in the rate of cellular invasion in these cancer cells upon binding with vimentin. Our results thus suggest that free vimentin in the tumor microenvironment acts as a positive regulator of the β-catenin signaling pathway, thus providing a basis for cancer invasive properties.

  18. Potential Function of Exogenous Vimentin on the Activation of Wnt Signaling Pathway in Cancer Cells

    PubMed Central

    Satelli, Arun; Hu, Jiemiao; Xia, Xueqing; Li, Shulin

    2016-01-01

    Cancer cell signaling, growth, morphology, proliferation and tumorigenic potential are largely depending on the signaling molecules present naturally in the tumor microenvironment and the identification of key molecules that drive the tumor progression is critical for the development of new modalities for the prevention of tumor progression. High concentrations of vimentin in the blood of cancer patients have been reported, however the function of blood circulating vimentin remains unknown. Here, we investigated the functional role of exogenously supplemented vimentin on colon cancer cells and examined the Wnt Signaling activation and cancer cell invasion. Vimentin when supplemented to the cancer cells remained bound to the surface of the cancer cells. Furthermore, bound vimentin activates Wnt signaling pathway as detectable by increased β-catenin accumulation in the nucleus with concomitant activation of β-catenin-dependent transcription of Wnt signaling downstream targets. Functionally, there was an increase in the rate of cellular invasion in these cancer cells upon binding with vimentin. Our results thus suggest that free vimentin in the tumor microenvironment acts as a positive regulator of the β-catenin signaling pathway, thus providing a basis for cancer invasive properties. PMID:27698922

  19. Ras-activated Dsor1 promotes Wnt signaling in Drosophila development.

    PubMed

    Hall, Eric T; Verheyen, Esther M

    2015-12-15

    Wnt/Wingless (Wg) and Ras-MAPK signaling both play fundamental roles in growth and cell fate determination, and when dysregulated, can lead to tumorigenesis. Several conflicting modes of interaction between Ras-MAPK and Wnt signaling have been identified in specific cellular contexts, causing synergistic or antagonistic effects on target genes. We find novel evidence that the Drosophila homolog of the dual specificity kinases MEK1/2 (also known as MAP2K1/2), Downstream of Raf1 (Dsor1), is required for Wnt signaling. Knockdown of Dsor1 results in loss of Wg target gene expression, as well as reductions in stabilized Armadillo (Arm; Drosophila β-catenin). We identify a close physical interaction between Dsor1 and Arm, and find that catalytically inactive Dsor1 causes a reduction in active Arm. These results suggest that Dsor1 normally counteracts the Axin-mediated destruction of Arm. We find that Ras-Dsor1 activity is independent of upstream activation by EGFR, and instead it appears to be activated by the insulin-like growth factor receptor to promote Wg signaling. Taken together, our results suggest that there is a new crosstalk pathway between insulin and Wg signaling that is mediated by Dsor1. PMID:26542023

  20. Wnt/β-catenin signaling pathway activation is required for proliferation of chicken primordial germ cells in vitro

    PubMed Central

    Lee, Hyung Chul; Lim, Sumi; Han, Jae Yong

    2016-01-01

    Here, we investigated the role of the Wnt/β-catenin signaling pathway in chicken primordial germ cells (PGCs) in vitro. We confirmed the expression of Wnt signaling pathway-related genes and the localization of β-catenin in the nucleus, revealing that this pathway is potentially activated in chicken PGCs. Then, using the single-cell pick-up assay, we examined the proliferative capacity of cultured PGCs in response to Wnt ligands, a β-catenin-mediated Wnt signaling activator (6-bromoindirubin-3′-oxime [BIO]) or inhibitor (JW74), in the presence or absence of basic fibroblast growth factor (bFGF). WNT1, WNT3A, and BIO promoted the proliferation of chicken PGCs similarly to bFGF, whereas JW74 inhibited this proliferation. Meanwhile, such treatments in combination with bFGF did not show a synergistic effect. bFGF treatment could not rescue PGC proliferation in the presence of JW74. In addition, we confirmed the translocation of β-catenin into the nucleus by the addition of bFGF after JW74 treatment. These results indicate that there is signaling crosstalk between FGF and Wnt, and that β-catenin acts on PGC proliferation downstream of bFGF. In conclusion, our study suggests that Wnt signaling enhances the proliferation of chicken PGCs via the stabilization of β-catenin and activation of its downstream genes. PMID:27687983

  1. Daple is a novel non-receptor GEF required for trimeric G protein activation in Wnt signaling

    PubMed Central

    Aznar, Nicolas; Midde, Krishna K; Dunkel, Ying; Lopez-Sanchez, Inmaculada; Pavlova, Yelena; Marivin, Arthur; Barbazán, Jorge; Murray, Fiona; Nitsche, Ulrich; Janssen, Klaus-Peter; Willert, Karl; Goel, Ajay; Abal, Miguel; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2015-01-01

    Wnt signaling is essential for tissue homeostasis and its dysregulation causes cancer. Wnt ligands trigger signaling by activating Frizzled receptors (FZDRs), which belong to the G-protein coupled receptor superfamily. However, the mechanisms of G protein activation in Wnt signaling remain controversial. In this study, we demonstrate that FZDRs activate G proteins and trigger non-canonical Wnt signaling via the Dishevelled-binding protein, Daple. Daple contains a Gα-binding and activating (GBA) motif, which activates Gαi proteins and an adjacent domain that directly binds FZDRs, thereby linking Wnt stimulation to G protein activation. This triggers non-canonical Wnt responses, that is, suppresses the β-catenin/TCF/LEF pathway and tumorigenesis, but enhances PI3K-Akt and Rac1 signals and tumor cell invasiveness. In colorectal cancers, Daple is suppressed during adenoma-to-carcinoma transformation and expressed later in metastasized tumor cells. Thus, Daple activates Gαi and enhances non-canonical Wnt signaling by FZDRs, and its dysregulation can impact both tumor initiation and progression to metastasis. DOI: http://dx.doi.org/10.7554/eLife.07091.001 PMID:26126266

  2. Daple is a novel non-receptor GEF required for trimeric G protein activation in Wnt signaling.

    PubMed

    Aznar, Nicolas; Midde, Krishna K; Dunkel, Ying; Lopez-Sanchez, Inmaculada; Pavlova, Yelena; Marivin, Arthur; Barbazán, Jorge; Murray, Fiona; Nitsche, Ulrich; Janssen, Klaus-Peter; Willert, Karl; Goel, Ajay; Abal, Miguel; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2015-01-01

    Wnt signaling is essential for tissue homeostasis and its dysregulation causes cancer. Wnt ligands trigger signaling by activating Frizzled receptors (FZDRs), which belong to the G-protein coupled receptor superfamily. However, the mechanisms of G protein activation in Wnt signaling remain controversial. In this study, we demonstrate that FZDRs activate G proteins and trigger non-canonical Wnt signaling via the Dishevelled-binding protein, Daple. Daple contains a Gα-binding and activating (GBA) motif, which activates Gαi proteins and an adjacent domain that directly binds FZDRs, thereby linking Wnt stimulation to G protein activation. This triggers non-canonical Wnt responses, that is, suppresses the β-catenin/TCF/LEF pathway and tumorigenesis, but enhances PI3K-Akt and Rac1 signals and tumor cell invasiveness. In colorectal cancers, Daple is suppressed during adenoma-to-carcinoma transformation and expressed later in metastasized tumor cells. Thus, Daple activates Gαi and enhances non-canonical Wnt signaling by FZDRs, and its dysregulation can impact both tumor initiation and progression to metastasis. PMID:26126266

  3. Wnt signaling in cardiovascular physiology.

    PubMed

    Marinou, K; Christodoulides, C; Antoniades, C; Koutsilieris, M

    2012-12-01

    Wnt signaling pathways play a key role in cardiac development, angiogenesis, and cardiac hypertrophy; emerging evidence suggests that they are also involved in the pathophysiology of atherosclerosis. Specifically, an important role for Wnts has been described in the regulation of endothelial inflammation, vascular calcification, and mesenchymal stem cell differentiation. Wnt signaling also induces monocyte adhesion to endothelial cells and is crucial for the regulation of vascular smooth-muscle cell (VSMC) behavior. We discuss how the Wnt pathways are implicated in vascular biology and outline the role of Wnt signaling in atherosclerosis. Dissecting Wnt pathways involved in atherogenesis and cardiovascular disease may provide crucial insights into novel mechanisms with therapeutic potential for atherosclerosis.

  4. Wnt signaling activation in adipose progenitors promotes insulin-independent muscle glucose uptake

    PubMed Central

    Zeve, Daniel; Seo, Jin; Suh, Jae Myoung; Stenesen, Drew; Tang, Wei; Berglund, Eric D.; Wan, Yihong; Williams, Linda J.; Lim, Ajin; Martinez, Myrna J.; McKay, Renée M.; Millay, Douglas P.; Olson, Eric N.; Graff, Jonathan M.

    2012-01-01

    SUMMARY Adipose tissues provide circulating nutrients and hormones. We present in vivo mouse studies highlighting roles for Wnt signals in both aspects of metabolism. β-catenin activation in PPARγ–expressing fat progenitors (PBCA) decreased fat mass and induced fibrotic replacement of subcutaneous fat specifically. In spite of lipodystrophy, PBCA mice did not develop the expected diabetes and hepatosteatosis, but rather exhibited improved glucose metabolism and normal insulin sensitivity. Glucose uptake was increased in muscle independently of insulin, associated with cell surface translocation of glucose transporters and AMPK activation. Ex vivo assays showed these effects were likely secondary to blood-borne signals since PBCA sera or conditioned media from PBCA fat progenitors enhanced glucose uptake and activated AMPK in muscle cultures. Thus, adipose progenitor Wnt activation dissociates lipodystrophy from dysfunctional metabolism and highlights a fat-muscle endocrine axis, which may represent a potential therapy to lower blood glucose and improve metabolism. PMID:22482731

  5. Wnt signaling activation in adipose progenitors promotes insulin-independent muscle glucose uptake.

    PubMed

    Zeve, Daniel; Seo, Jin; Suh, Jae Myoung; Stenesen, Drew; Tang, Wei; Berglund, Eric D; Wan, Yihong; Williams, Linda J; Lim, Ajin; Martinez, Myrna J; McKay, Renée M; Millay, Douglas P; Olson, Eric N; Graff, Jonathan M

    2012-04-01

    Adipose tissues provide circulating nutrients and hormones. We present in vivo mouse studies highlighting roles for Wnt signals in both aspects of metabolism. β-catenin activation in PPARγ-expressing fat progenitors (PBCA) decreased fat mass and induced fibrotic replacement of subcutaneous fat specifically. In spite of lipodystrophy, PBCA mice did not develop the expected diabetes and hepatosteatosis, but rather exhibited improved glucose metabolism and normal insulin sensitivity. Glucose uptake was increased in muscle independently of insulin, associated with cell-surface translocation of glucose transporters and AMPK activation. Ex vivo assays showed these effects were likely secondary to blood-borne signals since PBCA sera or conditioned media from PBCA fat progenitors enhanced glucose uptake and activated AMPK in muscle cultures. Thus, adipose progenitor Wnt activation dissociates lipodystrophy from dysfunctional metabolism and highlights a fat-muscle endocrine axis, which may represent a potential therapy to lower blood glucose and improve metabolism.

  6. Loss of Pancreas upon Activated Wnt Signaling Is Concomitant with Emergence of Gastrointestinal Identity

    PubMed Central

    Herrero-Martin, Griselda; Puri, Sapna; Taketo, Makoto Mark; Rojas, Anabel; Hebrok, Matthias; Cano, David A.

    2016-01-01

    Organ formation is achieved through the complex interplay between signaling pathways and transcriptional cascades. The canonical Wnt signaling pathway plays multiple roles during embryonic development including patterning, proliferation and differentiation in distinct tissues. Previous studies have established the importance of this pathway at multiple stages of pancreas formation as well as in postnatal organ function and homeostasis. In mice, gain-of-function experiments have demonstrated that activation of the canonical Wnt pathway results in pancreatic hypoplasia, a phenomenon whose underlying mechanisms remains to be elucidated. Here, we show that ectopic activation of epithelial canonical Wnt signaling causes aberrant induction of gastric and intestinal markers both in the pancreatic epithelium and mesenchyme, leading to the development of gut-like features. Furthermore, we provide evidence that β -catenin-induced impairment of pancreas formation depends on Hedgehog signaling. Together, our data emphasize the developmental plasticity of pancreatic progenitors and further underscore the key role of precise regulation of signaling pathways to maintain appropriate organ boundaries. PMID:27736991

  7. Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK.

    PubMed

    Chang, Jia; Sonoyama, Wataru; Wang, Zhuo; Jin, Qiming; Zhang, Chengfei; Krebsbach, Paul H; Giannobile, William; Shi, Songtao; Wang, Cun-Yu

    2007-10-19

    Mesenchymal stem cells (MSCs) are multipotent cells that can be differentiated into osteoblasts and provide an excellent cell source for bone regeneration and repair. Recently, the canonical Wnt/beta-catenin signaling pathway has been found to play a critical role in skeletal development and osteogenesis, implying that Wnts can be utilized to improve de novo bone formation mediated by MSCs. However, it is unknown whether noncanonical Wnt signaling regulates osteogenic differentiation. Here, we find that Wnt-4 enhanced in vitro osteogenic differentiation of MSCs isolated from human adult craniofacial tissues and promoted bone formation in vivo. Whereas Wnt-4 did not stabilize beta-catenin, it activated p38 MAPK in a novel noncanonical signaling pathway. The activation of p38 was dependent on Axin and was required for the enhancement of MSC differentiation by Wnt-4. Moreover, using two different models of craniofacial bone injury, we found that MSCs genetically engineered to express Wnt-4 enhanced osteogenesis and improved the repair of craniofacial defects in vivo. Taken together, our results reveal that noncanonical Wnt signaling could also play a role in osteogenic differentiation. Wnt-4 may have a potential use in improving bone regeneration and repair of craniofacial defects.

  8. Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells

    PubMed Central

    Wang, Ronghua; Sun, Qian; Wang, Peng; Liu, Man; Xiong, Si; Luo, Jing; Huang, Hai; Du, Qiang; Geller, David A.; Cheng, Bin

    2016-01-01

    Human hepatocellular carcinoma (HCC) is driven and maintained by liver cancer stem cells (LCSCs) that display stem cell properties. These LCSCs are promoted by the intersecting of Notch and Wnt/β-Catenin signaling pathways. In this study, we demonstrate that LCSCs with markers CD90, CD24, CD13, and CD133 possess stem properties of self-renewal and tumorigenicity in NOD/SCID mice. The increased expression of these markers was correlated with advanced disease stage, larger tumors, and worse overall survival in 61 HCC cases. We also found that both Notch and Wnt/β-catenin signaling pathways played important roles in increasing the stem-ness characteristics of LCSCs. Our data suggested that Notch1 was downstream of Wnt/β-catenin. The active form of Notch1 intracellular domain (NICD) expression depended on Wnt/β-catenin pathway activation. Moreover, Notch1 negatively contributed to Wnt/β-catenin signaling modulation. Knock down of Notch1 with lentivirus N1ShRNA up-regulated the active form of β-catenin. Ectopic expression of NICD with LV-Notch1 in LCSCs attenuated β-catenin/TCF dependent luciferase activity significantly. In addition, there was a non-proteasome mediated feedback loop between Notch1 and Wnt/β-catenin signaling in LCSCs. The central role of Notch and the Wnt/β-catenin signaling pathway in LCSCs may provide an attractive therapeutic strategy against HCC. PMID:26735577

  9. Activity-dependent Wnt 7 dendritic targeting in hippocampal neurons: plasticity- and tagging-related retrograde signaling mechanism?

    PubMed

    Tabatadze, Nino; McGonigal, Rhona; Neve, Rachel L; Routtenberg, Aryeh

    2014-04-01

    Wnt proteins have emerged as transmembrane signaling molecules that regulate learning and memory as well as synaptic plasticity at central synapses (Inestrosa and Arenas (2010) Nat Rev Neurosci 11:77-86; Maguschak and Ressler (2011) J Neurosci 31:13057-13067; Tabatadze et al. (2012) Hippocampus 22: 1228-1241; Fortress et al. (2013) J Neurosci 33:12619-12626). For example, there is both a training-selective and Wnt isoform-specific increase in Wnt 7 levels in hippocampus seven days after spatial learning in rats (Tabatadze et al. (2012) Hippocampus 22: 1228-1241). Despite growing interest in Wnt signaling pathways in the adult brain, intracellular distribution and release of Wnt molecules from synaptic compartments as well as their influence on synaptic strength and connectivity remain less well understood. As a first step in such an analysis, we show here that Wnt 7 levels in primary hippocampal cells are elevated by potassium or glutamate activation in a time-dependent manner. Subsequent Wnt 7 elevation in dendrites suggests selective somato-dendritic trafficking followed by transport from dendrites to their spines. Wnt 7 elevation is also TTX-reversible, establishing that its elevation is indeed an activity-dependent process. A second stimulation given 6 h after the first significantly reduces Wnt 7 levels in dendrites 3 h later as compared to non-stimulated controls suggesting activity-dependent Wnt 7 release from dendrites and spines. In a related experiment designed to mimic the release of Wnt 7, exogenous recombinant Wnt 7 increased the number of active zones in presynaptic terminals as indexed by bassoon. This suggests the formation of new presynaptic release sites and/or presynaptic terminals. Wnt signaling inhibitor sFRP-1 completely blocked this Wnt 7-induced elevation of bassoon cluster number and cluster area. We suggest that Wnt 7 is a plasticity-related protein involved in the regulation of presynaptic plasticity via a retrograde signaling mechanism

  10. Matrix Rigidity Activates Wnt Signaling through Down-regulation of Dickkopf-1 Protein*

    PubMed Central

    Barbolina, Maria V.; Liu, Yiuying; Gurler, Hilal; Kim, Mijung; Kajdacsy-Balla, Andre A.; Rooper, Lisa; Shepard, Jaclyn; Weiss, Michael; Shea, Lonnie D.; Penzes, Peter; Ravosa, Matthew J.; Stack, M. Sharon

    2013-01-01

    Cells respond to changes in the physical properties of the extracellular matrix with altered behavior and gene expression, highlighting the important role of the microenvironment in the regulation of cell function. In the current study, culture of epithelial ovarian cancer cells on three-dimensional collagen I gels led to a dramatic down-regulation of the Wnt signaling inhibitor dickkopf-1 with a concomitant increase in nuclear β-catenin and enhanced β-catenin/Tcf/Lef transcriptional activity. Increased three-dimensional collagen gel invasion was accompanied by transcriptional up-regulation of the membrane-tethered collagenase membrane type 1 matrix metalloproteinase, and an inverse relationship between dickkopf-1 and membrane type 1 matrix metalloproteinase was observed in human epithelial ovarian cancer specimens. Similar results were obtained in other tissue-invasive cells such as vascular endothelial cells, suggesting a novel mechanism for functional coupling of matrix adhesion with Wnt signaling. PMID:23152495

  11. Activated WNT signaling in postnatal SOX2-positive dental stem cells can drive odontoma formation

    PubMed Central

    Xavier, Guilherme M.; Patist, Amanda L.; Healy, Chris; Pagrut, Ankita; Carreno, Gabriela; Sharpe, Paul T.; Pedro Martinez-Barbera, Juan; Thavaraj, Selvam; Cobourne, Martyn T.; Andoniadou, Cynthia L.

    2015-01-01

    In common with most mammals, humans form only two dentitions during their lifetime. Occasionally, supernumerary teeth develop in addition to the normal complement. Odontoma represent a small group of malformations containing calcified dental tissues of both epithelial and mesenchymal origin, with varying levels of organization, including tooth-like structures. The specific cell type responsible for the induction of odontoma, which retains the capacity to re-initiate de novo tooth development in postnatal tissues, is not known. Here we demonstrate that aberrant activation of WNT signaling by expression of a non-degradable form of β-catenin specifically in SOX2-positive postnatal dental epithelial stem cells is sufficient to generate odontoma containing multiple tooth-like structures complete with all dental tissue layers. Genetic lineage-tracing confirms that odontoma form in a similar manner to normal teeth, derived from both the mutation-sustaining epithelial stem cells and adjacent mesenchymal tissues. Activation of the WNT pathway in embryonic SOX2-positive progenitors results in ectopic expression of secreted signals that promote odontogenesis throughout the oral cavity. Significantly, the inductive potential of epithelial dental stem cells is retained in postnatal tissues, and up-regulation of WNT signaling specifically in these cells is sufficient to promote generation and growth of ectopic malformations faithfully resembling human odontoma. PMID:26411543

  12. Activated WNT signaling in postnatal SOX2-positive dental stem cells can drive odontoma formation.

    PubMed

    Xavier, Guilherme M; Patist, Amanda L; Healy, Chris; Pagrut, Ankita; Carreno, Gabriela; Sharpe, Paul T; Martinez-Barbera, Juan Pedro; Thavaraj, Selvam; Cobourne, Martyn T; Andoniadou, Cynthia L

    2015-09-28

    In common with most mammals, humans form only two dentitions during their lifetime. Occasionally, supernumerary teeth develop in addition to the normal complement. Odontoma represent a small group of malformations containing calcified dental tissues of both epithelial and mesenchymal origin, with varying levels of organization, including tooth-like structures. The specific cell type responsible for the induction of odontoma, which retains the capacity to re-initiate de novo tooth development in postnatal tissues, is not known. Here we demonstrate that aberrant activation of WNT signaling by expression of a non-degradable form of β-catenin specifically in SOX2-positive postnatal dental epithelial stem cells is sufficient to generate odontoma containing multiple tooth-like structures complete with all dental tissue layers. Genetic lineage-tracing confirms that odontoma form in a similar manner to normal teeth, derived from both the mutation-sustaining epithelial stem cells and adjacent mesenchymal tissues. Activation of the WNT pathway in embryonic SOX2-positive progenitors results in ectopic expression of secreted signals that promote odontogenesis throughout the oral cavity. Significantly, the inductive potential of epithelial dental stem cells is retained in postnatal tissues, and up-regulation of WNT signaling specifically in these cells is sufficient to promote generation and growth of ectopic malformations faithfully resembling human odontoma.

  13. CTHRC1 promotes human colorectal cancer cell proliferation and invasiveness by activating Wnt/PCP signaling

    PubMed Central

    Yang, Xiao-Mei; You, Hai-Yan; Li, Qing; Ma, Hong; Wang, Ya-Hui; Zhang, Yan-Li; Zhu, Lei; Nie, Hui-Zhen; Qin, Wen-Xin; Zhang, Zhi-Gang; Li, Jun

    2015-01-01

    Collagen triple helix repeats containing 1 (CTHRC1) participates in vascular remodeling, bone formation, and developmental morphogenesis. Recently, CTHRC1 has been found up-regulated in many solid tumors and contributes to tumorigenesis, but its role in the progression of human colorectal cancer (CRC), remains unclear. In this study, CTHRC1 expression in human CRC cell lines was evaluated by quantitative real-time PCR and immunoblot analyses. The role of CTHRC1 in CRC cell proliferation and extracellular matrix invasion in vitro was analyzed by gene over-expression and recombinant protein. Reporter luciferase assay was used to reveal key relevant signaling pathways involved in CRC cells. The results show that CTHRC1 is secreted both by colorectal epithelia cells and stromal fibroblasts. Recombinant CTHRC1 promotes CRC cell migration and invasion dose-dependently. CTHRC1 overexpression promotes CRC cell migration, invasion and proliferation in vitro. Wnt/PCP signaling but not Wnt/catenin signaling was activates by CTHRC1 in CRC cells. Together, CTHRC1 promotes CRC cell proliferation, migration and invasion in vitro, which is possibly mediated by activating Wnt/PCP pathway. PMID:26722469

  14. Aberrant Wnt Signaling in Leukemia.

    PubMed

    Staal, Frank J T; Famili, Farbod; Garcia Perez, Laura; Pike-Overzet, Karin

    2016-01-01

    The Wnt signaling pathway is essential in the development and homeostasis of blood and immune cells, but its exact role is still controversial and is the subject of intense research. The malignant counterpart of normal hematopoietic cells, leukemic (stem) cells, have hijacked the Wnt pathway for their self-renewal and proliferation. Here we review the multiple ways dysregulated Wnt signaling can contribute to leukemogenesis, both cell autonomously as well as by changes in the microenvironment. PMID:27571104

  15. Aberrant Wnt Signaling in Leukemia

    PubMed Central

    Staal, Frank J. T.; Famili, Farbod; Garcia Perez, Laura; Pike-Overzet, Karin

    2016-01-01

    The Wnt signaling pathway is essential in the development and homeostasis of blood and immune cells, but its exact role is still controversial and is the subject of intense research. The malignant counterpart of normal hematopoietic cells, leukemic (stem) cells, have hijacked the Wnt pathway for their self-renewal and proliferation. Here we review the multiple ways dysregulated Wnt signaling can contribute to leukemogenesis, both cell autonomously as well as by changes in the microenvironment. PMID:27571104

  16. Wnt Signaling Activates Shh Signaling in Early Postnatal Intervertebral Discs, and Re-Activates Shh Signaling in Old Discs in the Mouse

    PubMed Central

    Sinner, Debora; Wylie, Christopher C.; Dahia, Chitra Lekha

    2014-01-01

    Intervertebral discs (IVDs) are strong fibrocartilaginous joints that connect adjacent vertebrae of the spine. As discs age they become prone to failure, with neurological consequences that are often severe. Surgical repair of discs treats the result of the disease, which affects as many as one in seven people, rather than its cause. An ideal solution would be to repair degenerating discs using the mechanisms of their normal differentiation. However, these mechanisms are poorly understood. Using the mouse as a model, we previously showed that Shh signaling produced by nucleus pulposus cells activates the expression of differentiation markers, and cell proliferation, in the postnatal IVD. In the present study, we show that canonical Wnt signaling is required for the expression of Shh signaling targets in the IVD. We also show that Shh and canonical Wnt signaling pathways are down-regulated in adult IVDs. Furthermore, this down-regulation is reversible, since re-activation of the Wnt or Shh pathways in older discs can re-activate molecular markers of the IVD that are lost with age. These data suggest that biological treatments targeting Wnt and Shh signaling pathways may be feasible as a therapeutic for degenerative disc disease. PMID:24892825

  17. Membrane Bound GSK-3 Activates Wnt Signaling through Disheveled and Arrow

    PubMed Central

    Mannava, Anirudh G.; Tolwinski, Nicholas S.

    2015-01-01

    Wnt ligands and their downstream pathway components coordinate many developmental and cellular processes. In adults, they regulate tissue homeostasis through regulation of stem cells. Mechanistically, signal transduction through this pathway is complicated by pathway components having both positive and negative roles in signal propagation. Here we examine the positive role of GSK-3/Zw3 in promoting signal transduction at the plasma membrane. We find that targeting GSK-3 to the plasma membrane activates signaling in Drosophila embryos. This activation requires the presence of the co-receptor Arrow-LRP5/6 and the pathway activating protein Disheveled. Our results provide genetic evidence for evolutionarily conserved, separable roles for GSK-3 at the membrane and in the cytosol, and are consistent with a model where the complex cycles from cytosol to membrane in order to promote signaling at the membrane and to prevent it in the cytosol. PMID:25848770

  18. Berberine acts as a natural inhibitor of Wnt/β-catenin signaling--identification of more active 13-arylalkyl derivatives.

    PubMed

    Albring, Kai Frederik; Weidemüller, Julia; Mittag, Sonnhild; Weiske, Jörg; Friedrich, Karlheinz; Geroni, M Cristina; Lombardi, Paolo; Huber, Otmar

    2013-01-01

    Aberrant activation of the canonical Wnt/β-catenin signaling pathway has been reported for numerous tumors of different origins. In most cases, mutations in components of the Wnt signaling pathway or in β-catenin itself were detected which ultimately induce a genetic program that promotes cell proliferation and attenuates apoptosis. Thus, targeting of Wnt/β-catenin signaling is of specific therapeutic interest. Herein, we investigated the plant-derived isoquinoline alkaloid berberine, which has been reported to have anticancer activity, and synthetic 13-arylalkyl derivatives thereof for their effects on Wnt/β-catenin signaling. Berberine did not show major effects on viability of HEK-293 embryonic kidney and HCT116 colon carcinoma cells and was not toxic in concentrations up to 20 µM. Berberine inhibited β-catenin transcriptional activity and attenuated anchorage-independent growth. As a result of berberine treatment, cellular levels of active β-catenin were reduced concomitant with an increase in the expression of E-cadherin. However, in unstimulated cells, the effects on β-catenin levels were low. A screen of synthetic 13-arylalkyl berberine derivatives identified compounds exhibiting activities superior to those of the naturally occurring parent substance with more than 100-fold lower EC50 values for Wnt-repression. Thus, berberine and its synthetic derivatives represent potential therapeutic agents to inhibit Wnt/β-catenin signaling in tumorigenesis.

  19. Glucose induced activation of canonical Wnt signaling pathway in hepatocellular carcinoma is regulated by DKK4

    PubMed Central

    Chouhan, Surbhi; Singh, Snahlata; Athavale, Dipti; Ramteke, Pranay; Pandey, Vimal; Joseph, Jomon; Mohan, Rajashekar; Shetty, Praveen Kumar; Bhat, Manoj Kumar

    2016-01-01

    Elevated glycemic index, an important feature of diabetes is implicated in an increased risk of hepatocellular carcinoma (HCC). However, the underlying molecular mechanisms of this association are relatively less explored. Present study investigates the effect of hyperglycemia over HCC proliferation. We observed that high glucose culture condition (HG) specifically activates canonical Wnt signaling in HCC cells, which is mediated by suppression of DKK4 (a Wnt antagonist) expression and enhanced β-catenin level. Functional assays demonstrated that a normoglycemic culture condition (NG) maintains constitutive expression of DKK4, which controls HCC proliferation rate by suppressing canonical Wnt signaling pathway. HG diminishes DKK4 expression leading to loss of check at G0/G1/S phases of the cell cycle thereby enhancing HCC proliferation, in a β-catenin dependent manner. Interestingly, in NOD/SCID mice supplemented with high glucose, HepG2 xenografted tumors grew rapidly in which elevated levels of β-catenin, c-Myc and decreased levels of DKK4 were detected. Knockdown of DKK4 by shRNA promotes proliferation of HCC cells in NG, which is suppressed by treating cells exogenously with recombinant DKK4 protein. Our in vitro and in vivo results indicate an important functional role of DKK4 in glucose facilitated HCC proliferation. PMID:27272409

  20. Glucose induced activation of canonical Wnt signaling pathway in hepatocellular carcinoma is regulated by DKK4.

    PubMed

    Chouhan, Surbhi; Singh, Snahlata; Athavale, Dipti; Ramteke, Pranay; Pandey, Vimal; Joseph, Jomon; Mohan, Rajashekar; Shetty, Praveen Kumar; Bhat, Manoj Kumar

    2016-06-08

    Elevated glycemic index, an important feature of diabetes is implicated in an increased risk of hepatocellular carcinoma (HCC). However, the underlying molecular mechanisms of this association are relatively less explored. Present study investigates the effect of hyperglycemia over HCC proliferation. We observed that high glucose culture condition (HG) specifically activates canonical Wnt signaling in HCC cells, which is mediated by suppression of DKK4 (a Wnt antagonist) expression and enhanced β-catenin level. Functional assays demonstrated that a normoglycemic culture condition (NG) maintains constitutive expression of DKK4, which controls HCC proliferation rate by suppressing canonical Wnt signaling pathway. HG diminishes DKK4 expression leading to loss of check at G0/G1/S phases of the cell cycle thereby enhancing HCC proliferation, in a β-catenin dependent manner. Interestingly, in NOD/SCID mice supplemented with high glucose, HepG2 xenografted tumors grew rapidly in which elevated levels of β-catenin, c-Myc and decreased levels of DKK4 were detected. Knockdown of DKK4 by shRNA promotes proliferation of HCC cells in NG, which is suppressed by treating cells exogenously with recombinant DKK4 protein. Our in vitro and in vivo results indicate an important functional role of DKK4 in glucose facilitated HCC proliferation.

  1. Wnt signaling inhibits CTL memory programming.

    PubMed

    Xiao, Zhengguo; Sun, Zhifeng; Smyth, Kendra; Li, Lei

    2013-12-01

    Induction of functional CTLs is one of the major goals for vaccine development and cancer therapy. Inflammatory cytokines are critical for memory CTL generation. Wnt signaling is important for CTL priming and memory formation, but its role in cytokine-driven memory CTL programming is unclear. We found that wnt signaling inhibited IL-12-driven CTL activation and memory programming. This impaired memory CTL programming was attributed to up-regulation of eomes and down-regulation of T-bet. Wnt signaling suppressed the mTOR pathway during CTL activation, which was different to its effects on other cell types. Interestingly, the impaired memory CTL programming by wnt was partially rescued by mTOR inhibitor rapamycin. In conclusion, we found that crosstalk between wnt and the IL-12 signaling inhibits T-bet and mTOR pathways and impairs memory programming which can be recovered in part by rapamycin. In addition, direct inhibition of wnt signaling during CTL activation does not affect CTL memory programming. Therefore, wnt signaling may serve as a new tool for CTL manipulation in autoimmune diseases and immune therapy for certain cancers.

  2. MiR-328 promotes glioma cell invasion via SFRP1-dependent Wnt-signaling activation.

    PubMed

    Delic, Sabit; Lottmann, Nadine; Stelzl, Anja; Liesenberg, Franziska; Wolter, Marietta; Götze, Silke; Zapatka, Marc; Shiio, Yuzuru; Sabel, Michael C; Felsberg, Jörg; Reifenberger, Guido; Riemenschneider, Markus J

    2014-01-01

    Background Diffusely infiltrative growth of human astrocytic gliomas is one of the major obstacles to successful tumor therapy. Thorough insights into the molecules and pathways signaling glioma cell invasion thus appear of major relevance for the development of targeted and individualized therapies. By miRNA expression profiling of microdissected human tumor biopsy specimens we identified miR-328 as one of the main miRNAs upregulated in invading glioma cells in vivo and further investigated its role in glioma pathogenesis. Methods We employed miRNA mimics and inhibitors to functionally characterize miR-328, 3' untranslated region luciferase assays, and T-cell factor/lymphoid enhancer factor reporter assays to pinpoint miR-328 targets and signaling pathways, and analyzed miR-328 expression in a large panel of gliomas. Results First, we corroborated the invasion-promoting role of miR-328 in A172 and TP365MG glioma cells. Secreted Frizzled-related protein 1 (SFRP1), an inhibitor of Wnt signaling, was then pinpointed as a direct miR-328 target. SFRP1 expression is of prognostic relevance in gliomas with reduced expression, being associated with significantly lower overall patient survival in both the Repository of Molecular Brain Neoplasia Data (REMBRANDT) and The Cancer Genome Atlas. Of note, miR-328 regulated both SFRP1 protein expression levels and Wnt signaling pathway activity. Finally, in human glioma tissues miR-328 appeared to account for the downregulation of SFRP1 preferentially in lower-grade astrocytic gliomas and was inversely related to SFRP1 promoter hypermethylation. Conclusion Taken together, we report on a novel molecular miR-328-dependent mechanism that via SFRP1 inhibition and Wnt activation contributes to the infiltrative glioma phenotype at already early stages of glioma progression, with unfavorable prognostic implications for the final outcome of the disease. PMID:24305703

  3. Activation and Inhibition of The Wnt3A Signaling Pathway in Buffalo (Bubalus bubalis) Embryonic Stem Cells: Effects of WNT3A, Bio and Dkk1

    PubMed Central

    Zandi, Mohammad; Shah, Syed Mohamad; Muzaffar, Musharifa; Kumar Singh, Manoj; Palta, Prabhat; Kumar Singla, Suresh; Sham Manik, Radhey; Chauhan, Manmohan Singh

    2015-01-01

    Background This research studies the effects of activation and inhibition of Wnt3A signaling pathway in buffalo (Bubalus bubalis) embryonic stem (ES) cell-like cells. Materials and Methods To carry on this experimental study, the effects of activation and inhibition of Wnt3A signaling in buffalo ES cell-like cells were examined using Bio (0.5 mM) combined with WNT3A (200 ng/ml), as an activator, and Dickkopf-1 (Dkk1, 250 ng/ml), as an inhibitor, of the pathway. ES cells were cultured up to three weeks in ES cell medium without fibroblast growth factor-2 (FGF-2) and leukemia inhibitory factor (LIF), but in the presence of Bio, WNT3A, Bio+WNT3A and Dkk1. The effects of these supplements were measured on the mean area of ES cell colonies and on the expression levels of a number of important genes related to pluripotency (Oct4, Nanog, Sox2 and c-Myc) and the Wnt pathway (β-catenin). ES cell colonies cultured in ES cell medium that contained optimized quantities of LIF and FGF-2 were used as the control. Data were collected for week-1 and week-3 treated cultures. In addition, WNT3A-transfected ES cells were compared with the respective mock-transfected colonies, either alone or in combination with Dkk1 for expression of β-catenin and the pluripotency-related genes. Data were analyzed by ANOVA, and statistical significance was accepted at P<0.05. Results Among various examined concentrations of Bio (0.5-5 mM), the optimum effect was observed at the 0.5 mM dose as indicated by colony area and expressions of pluripotency-related genes at both weeks-1 and -3 culture periods. At this concentration,the expressions of Nanog, Oct3/4, Sox2, c-Myc and β-catenin genes were nonsignificantly higher compared to the controls. Expressions of these genes were highest in the Bio+WNT3A treated group, followed by the WNT3A and Bio-supplemented groups, and lowest in the Dkk1-treated group. The WNT-transfected colonies showed higher expressions compared to both mock and Dkk1-treated mock

  4. Epsin is required for Dishevelled stability and Wnt signaling activation in colon cancer development

    PubMed Central

    Chang, Baojun; Tessneer, Kandice L.; McManus, John; Liu, Xiaolei; Hahn, Scott; Pasula, Satish; Wu, Hao; Song, Hoogeun; Chen, Yiyuan; Cai, Xiaofeng; Dong, Yunzhou; Brophy, Megan L.; Rahman, Ruby; Ma, Jian-Xing; Xia, Lijun; Chen, Hong

    2015-01-01

    Uncontrolled canonical Wnt signaling supports colon epithelial tumor expansion and malignant transformation. Understanding the regulatory mechanisms involved is crucial for elucidating the pathogenesis of and will provide new therapeutic targets for colon cancer. Epsins are ubiquitin-binding adaptor proteins upregulated in several human cancers; however, epsins’ involvement in colon cancer is unknown. Here we show that loss of intestinal epithelial epsins protects against colon cancer by significantly reducing the stability of the crucial Wnt signaling effector, dishevelled (Dvl2), and impairing Wnt signaling. Consistently, epsins and Dvl2 are correspondingly upregulated in colon cancer. Mechanistically, epsin binds Dvl2 via its epsin N-terminal homology domain and ubiquitin-interacting motifs and prohibits Dvl2 polyubiquitination and degradation. Our findings reveal an unconventional role for epsins in stabilizing Dvl2 and potentiating Wnt signaling in colon cancer cells to ensure robust colon cancer progression. Epsins’ pro-carcinogenic role suggests they are potential therapeutic targets to combat colon cancer. PMID:25871009

  5. Wnt/β-catenin signaling via Axin2 is required for myogenesis and, together with YAP/Taz and Tead1, active in IIa/IIx muscle fibers.

    PubMed

    Huraskin, Danyil; Eiber, Nane; Reichel, Martin; Zidek, Laura M; Kravic, Bojana; Bernkopf, Dominic; von Maltzahn, Julia; Behrens, Jürgen; Hashemolhosseini, Said

    2016-09-01

    Canonical Wnt/β-catenin signaling plays an important role in myogenic differentiation, but its physiological role in muscle fibers remains elusive. Here, we studied activation of Wnt/β-catenin signaling in adult muscle fibers and muscle stem cells in an Axin2 reporter mouse. Axin2 is a negative regulator and a target of Wnt/β-catenin signaling. In adult muscle fibers, Wnt/β-catenin signaling is only detectable in a subset of fast fibers that have a significantly smaller diameter than other fast fibers. In the same fibers, immunofluorescence staining for YAP/Taz and Tead1 was detected. Wnt/β-catenin signaling was absent in quiescent and activated satellite cells. Upon injury, Wnt/β-catenin signaling was detected in muscle fibers with centrally located nuclei. During differentiation of myoblasts expression of Axin2, but not of Axin1, increased together with Tead1 target gene expression. Furthermore, absence of Axin1 and Axin2 interfered with myoblast proliferation and myotube formation, respectively. Treatment with the canonical Wnt3a ligand also inhibited myotube formation. Wnt3a activated TOPflash and Tead1 reporter activity, whereas neither reporter was activated in the presence of Dkk1, an inhibitor of canonical Wnt signaling. We propose that Axin2-dependent Wnt/β-catenin signaling is involved in myotube formation and, together with YAP/Taz/Tead1, associated with reduced muscle fiber diameter of a subset of fast fibers. PMID:27578179

  6. Nkd1 Functions as a Passive Antagonist of Wnt Signaling

    PubMed Central

    Angonin, Diane; Van Raay, Terence J.

    2013-01-01

    Wnt signaling is involved in many aspects of development and in the homeostasis of stem cells. Its importance is underscored by the fact that misregulation of Wnt signaling has been implicated in numerous diseases, especially colorectal cancer. However, how Wnt signaling regulates itself is not well understood. There are several Wnt negative feedback regulators, which are active antagonists of Wnt signaling, but one feedback regulator, Nkd1, has reduced activity compared to other antagonists, yet is still a negative feedback regulator. Here we describe our efforts to understand the role of Nkd1 using Wnt signaling compromised zebrafish mutant lines. In several of these lines, Nkd1 function was not any more active than it was in wild type embryos. However, we found that Nkd1’s ability to antagonize canonical Wnt/β-catenin signaling was enhanced in the Wnt/Planar Cell Polarity mutants silberblick (slb/wnt11) and trilobite (tri/vangl2). While slb and tri mutants do not display alterations in canonical Wnt signaling, we found that they are hypersensitive to it. Overexpression of the canonical Wnt/β-catenin ligand Wnt8a in slb or tri mutants resulted in dorsalized embryos, with tri mutants being much more sensitive to Wnt8a than slb mutants. Furthermore, the hyperdorsalization caused by Wnt8a in tri could be rescued by Nkd1. These results suggest that Nkd1 functions as a passive antagonist of Wnt signaling, functioning only when homeostatic levels of Wnt signaling have been breached or when Wnt signaling becomes destabilized. PMID:24009776

  7. Acute Inhibition of MEK Suppresses Congenital Melanocytic Nevus Syndrome in a Murine Model Driven by Activated NRAS and Wnt Signaling.

    PubMed

    Pawlikowski, Jeffrey S; Brock, Claire; Chen, Sheau-Chiann; Al-Olabi, Lara; Nixon, Colin; McGregor, Fiona; Paine, Simon; Chanudet, Estelle; Lambie, Wendy; Holmes, William M; Mullin, James M; Richmond, Ann; Wu, Hong; Blyth, Karen; King, Ayala; Kinsler, Veronica A; Adams, Peter D

    2015-08-01

    Congenital melanocytic nevus (CMN) syndrome is the association of pigmented melanocytic nevi with extra-cutaneous features, classically melanotic cells within the central nervous system, most frequently caused by a mutation of NRAS codon 61. This condition is currently untreatable and carries a significant risk of melanoma within the skin, brain, or leptomeninges. We have previously proposed a key role for Wnt signaling in the formation of melanocytic nevi, suggesting that activated Wnt signaling may be synergistic with activated NRAS in the pathogenesis of CMN syndrome. Some familial pre-disposition suggests a germ-line contribution to CMN syndrome, as does variability of neurological phenotypes in individuals with similar cutaneous phenotypes. Accordingly, we performed exome sequencing of germ-line DNA from patients with CMN to reveal rare or undescribed Wnt-signaling alterations. A murine model harboring activated NRAS(Q61K) and Wnt signaling in melanocytes exhibited striking features of CMN syndrome, in particular neurological involvement. In the first model of treatment for this condition, these congenital, and previously assumed permanent, features were profoundly suppressed by acute post-natal treatment with a MEK inhibitor. These data suggest that activated NRAS and aberrant Wnt signaling conspire to drive CMN syndrome. Post-natal MEK inhibition is a potential candidate therapy for patients with this debilitating condition.

  8. Dact2 represses PITX2 transcriptional activation and cell proliferation through Wnt/beta-catenin signaling during odontogenesis.

    PubMed

    Li, Xiao; Florez, Sergio; Wang, Jianbo; Cao, Huojun; Amendt, Brad A

    2013-01-01

    Dact proteins belong to the Dapper/Frodo protein family and function as cytoplasmic attenuators in Wnt and TGFβ signaling. Previous studies show that Dact1 is a potent Wnt signaling inhibitor by promoting degradation of β-catenin. We report a new mechanism for Dact2 function as an inhibitor of the canonical Wnt signaling pathway by interacting with PITX2. PITX2 is a downstream transcription factor in Wnt/β-catenin signaling, and PITX2 synergizes with Lef-1 to activate downstream genes. Immunohistochemistry verified the expression of Dact2 in the tooth epithelium, which correlated with Pitx2 epithelial expression. Dact2 loss of function and PITX2 gain of function studies reveal a feedback mechanism for controlling Dact2 expression. Pitx2 endogenously activates Dact2 expression and Dact2 feeds back to repress Pitx2 transcriptional activity. A Topflash reporter system was employed showing PITX2 activation of Wnt signaling, which is attenuated by Dact2. Transient transfections demonstrate the inhibitory effect of Dact2 on critical dental epithelial differentiation factors during tooth development. Dact2 significantly inhibits PITX2 activation of the Dlx2 and amelogenin promoters. Multiple lines of evidence conclude the inhibition is achieved by the physical interaction between Dact2 and Pitx2 proteins. The loss of function of Dact2 also reveals increased cell proliferation due to up-regulated Wnt downstream genes, cyclinD1 and cyclinD2. In summary, we have identified a novel role for Dact2 as an inhibitor of the canonical Wnt pathway in embryonic tooth development through its regulation of cell proliferation and differentiation.

  9. HIF-1α inhibits Wnt signaling pathway by activating Sost expression in osteoblasts.

    PubMed

    Chen, Dafu; Li, Yang; Zhou, Zhiyu; Wu, Chengai; Xing, Yonggang; Zou, Xuenong; Tian, Wei; Zhang, Chi

    2013-01-01

    The nature of the cellular and molecular mechanisms for the transition of avascular cartilage replacement with bone during endochondral ossification remains poorly understood. One of the driving forces is hypoxia. As a master regulator of hypoxia, hypoxia-inducible factor-1α (HIF-1α) has been reported to couple angiogenesis to osteogenesis. Our recent study has demonstrated that osteoblast growth is inhibited under hypoxia and that HIF-1α cooperates with Osterix (Osx) to inhibit Wnt pathway. However, molecular mechanisms for inhibitory effects of HIF-1α on Wnt pathway are not well understood. In this study, our quantitative RT-PCR results revealed that the expression of a Wnt antagonist Sclerostin (Sost) was upregulated in osteoblasts during hypoxia while HIF-1α was upregulated. Treatment of desferrioxamine (DFO), a HIF-1α activator, led to further increase of Sost expression, suggesting that HIF-1α may activate Sost expression. The regulation of Sost gene expression by HIF-1α was then investigated. We performed loss-of-function experiments to examine Sost expression by using siRNA approach against HIF-1α, and found that the inhibition of HIF-1α by siRNA in osteoblasts led to the decrease of Sost expression. To address transcriptional regulation of Sost gene by HIF-1α, transient transfection assay was performed and showed that HIF-1α activated Sost-1 kb promoter reporter activity in a dose-dependent manner. To narrow down the minimal region of Sost promoter activated by HIF-1α, we generated a series of deletion mutants of Sost constructs. It was demonstrated that Sost-260 was the minimal region of Sost promoter for HIF-1α activation and that Sost-106 construct, which lack hypoxia response element, abolished HIF-1α-mediated Sost reporter activation. Gel shift assay showed that HIF-1 bound to the promoter sequence of Sost directly. These findings support our hypothesis that HIF-1α activates Sost expression. This study provides a novel molecular

  10. MicroRNA-1229 overexpression promotes cell proliferation and tumorigenicity and activates Wnt/β-catenin signaling in breast cancer

    PubMed Central

    Zhang, Wenhui; Zhu, Jinrong; Wu, Geyan; Cao, Lixue; Song, Junwei; Wu, Shu; Song, Libing; Li, Jun

    2016-01-01

    Constitutive activation of the Wnt/β-catenin pathway promotes malignant proliferation and it is inversely correlated with the prognosis of patients with breast cancer. However, mutations in key regulators, such as APC, Axin and β-catenin, contribute to aberrant activation of the Wnt/β-catenin signaling pathway in various cancers, but rarely found in breast cancer, suggesting that other mechanisms might be involved in the activation of Wnt/β-catenin signaling in breast cancer. In the present study, we found that miR-1229 expression was markedly upregulated in breast cancer and associated with poor survival. Overexpressing miR-1229 promoted while inhibiting miR-1229 reduced, proliferation of breast cancer cell proliferation in vitro and tumor growth in vivo. Furthermore, we found that overexpression of miR-1229 activated the Wnt/β-catenin signaling pathway in breast cancer by directly targeting the multiple important negative regulators of Wnt/β-catenin signaling, including adenomatous polyposis coli (APC), glycogen synthase kinase-3β (GSK-3β), and inhibitor of β-catenin and T cell factor (ICAT). Taken together, our results suggest that miR-1229 plays an important role in promotion breast cancer progression and may represent a novel therapeutic target in breast cancer. PMID:26992223

  11. METABOLISM Wnt Signaling Regulates Hepatic Metabolism

    PubMed Central

    Liu, Hongjun; Fergusson, Maria M.; Wu, J. Julie; Rovira, Ilsa I.; Liu, Jie; Gavrilova, Oksana; Lu, Teng; Bao, Jianjun; Han, Donghe; Sack, Michael N.; Finkel, Toren

    2011-01-01

    The contribution of the Wnt pathway has been extensively characterized in embryogenesis, differentiation, and stem cell biology but not in mammalian metabolism. Here, using in vivo gain- and loss-of-function models, we demonstrate an important role for Wnt signaling in hepatic metabolism. In particular, β-Catenin, the downstream mediator of canonical Wnt signaling, altered serum glucose concentrations and regulated hepatic glucose production. β-catenin also modulated hepatic insulin signaling. Furthermore, β-catenin interacted with the transcription factor FoxO1 in livers from mice under starved conditions. The interaction of FoxO1 with β-catenin regulated the transcriptional activation of the genes encoding glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), the two rate-limiting enzymes in hepatic gluconeogenesis. Moreover, starvation induced the hepatic expression of mRNAs encoding different Wnt isoforms. In addition, nutrient deprivation appeared to favor the association of β-catenin with FoxO family members, rather than with members of the T cell factor of transcriptional activators. Notably, in a model of diet-induced obesity, hepatic deletion of β-catenin improved overall metabolic homeostasis. These observations implicate Wnt signaling in the modulation of hepatic metabolism and raise the possibility that Wnt signaling may play a similar role in the metabolic regulation of other tissues. PMID:21285411

  12. LGR5 Activates Noncanonical Wnt Signaling and Inhibits Aldosterone Production in the Human Adrenal

    PubMed Central

    Shaikh, Lalarukh Haris; Zhou, Junhua; Teo, Ada E. D.; Garg, Sumedha; Neogi, Sudeshna Guha; Figg, Nichola; Yeo, Giles S.; Yu, Haixiang; Maguire, Janet J.; Zhao, Wanfeng; Bennett, Martin R.; Azizan, Elena A. B.; Davenport, Anthony P.; McKenzie, Grahame

    2015-01-01

    Context: Aldosterone synthesis and cellularity in the human adrenal zona glomerulosa (ZG) is sparse and patchy, presumably due to salt excess. The frequency of somatic mutations causing aldosterone-producing adenomas (APAs) may be a consequence of protection from cell loss by constitutive aldosterone production. Objective: The objective of the study was to delineate a process in human ZG, which may regulate both aldosterone production and cell turnover. Design: This study included a comparison of 20 pairs of ZG and zona fasciculata transcriptomes from adrenals adjacent to an APA (n = 13) or a pheochromocytoma (n = 7). Interventions: Interventions included an overexpression of the top ZG gene (LGR5) or stimulation by its ligand (R-spondin-3). Main Outcome Measures: A transcriptome profile of ZG and zona fasciculata and aldosterone production, cell kinetic measurements, and Wnt signaling activity of LGR5 transfected or R-spondin-3-stimulated cells were measured. Results: LGR5 was the top gene up-regulated in ZG (25-fold). The gene for its cognate ligand R-spondin-3, RSPO3, was 5-fold up-regulated. In total, 18 genes associated with the Wnt pathway were greater than 2-fold up-regulated. ZG selectivity of LGR5, and its absence in most APAs, were confirmed by quantitative PCR and immunohistochemistry. Both R-spondin-3 stimulation and LGR5 transfection of human adrenal cells suppressed aldosterone production. There was reduced proliferation and increased apoptosis of transfected cells, and the noncanonical activator protein-1/Jun pathway was stimulated more than the canonical Wnt pathway (3-fold vs 1.3-fold). ZG of adrenal sections stained positive for apoptosis markers. Conclusion: LGR5 is the most selectively expressed gene in human ZG and reduces aldosterone production and cell number. Such conditions may favor cells whose somatic mutation reverses aldosterone inhibition and cell loss. PMID:25915569

  13. PLD1 regulates Xenopus convergent extension movements by mediating Frizzled7 endocytosis for Wnt/PCP signal activation.

    PubMed

    Lee, Hyeyoon; Lee, Seung Joon; Kim, Gun-Hwa; Yeo, Inchul; Han, Jin-Kwan

    2016-03-01

    Phospholipase D (PLD) is involved in the regulation of receptor-associated signaling, cell movement, cell adhesion and endocytosis. However, its physiological role in vertebrate development remains poorly understood. In this study, we show that PLD1 is required for the convergent extension (CE) movements during Xenopus gastrulation by activating Wnt/PCP signaling. Xenopus PLD1 protein is specifically enriched in the dorsal region of Xenopus gastrula embryo and loss or gain-of-function of PLD1 induce defects in gastrulation and CE movements. These defective phenotypes are due to impaired regulation of Wnt/PCP signaling pathway. Biochemical and imaging analysis using Xenopus tissues reveal that PLD1 is required for Fz7 receptor endocytosis upon Wnt11 stimulation. Moreover, we show that Fz7 endocytosis depends on dynamin and regulation of GAP activity of dynamin by PLD1 via its PX domain is crucial for this process. Taken together, our results suggest that PLD1 acts as a new positive mediator of Wnt/PCP signaling by promoting Wnt11-induced Fz7 endocytosis for precise regulation of Xenopus CE movements.

  14. Chemotherapy induces stemness in osteosarcoma cells through activation of Wnt/β-catenin signaling.

    PubMed

    Martins-Neves, Sara R; Paiva-Oliveira, Daniela I; Wijers-Koster, Pauline M; Abrunhosa, Antero J; Fontes-Ribeiro, Carlos; Bovée, Judith V M G; Cleton-Jansen, Anne-Marie; Gomes, Célia M F

    2016-01-28

    Development of resistance represents a major drawback in osteosarcoma treatment, despite improvements in overall survival. Treatment failure and tumor progression have been attributed to pre-existing drug-resistant clones commonly assigned to a cancer stem-like phenotype. Evidence suggests that non stem-like cells, when submitted to certain microenvironmental stimuli, can acquire a stemness phenotype thereby strengthening their capacity to handle with stressful conditions. Here, using osteosarcoma cell lines and a mouse xenograft model, we show that exposure to conventional chemotherapeutics induces a phenotypic cell transition toward a stem-like phenotype. This associates with activation of Wnt/β-catenin signaling, up-regulation of pluripotency factors and detoxification systems (ABC transporters and Aldefluor activity) that ultimately leads to chemotherapy failure. Wnt/β-catenin inhibition combined with doxorubicin, in the MNNG-HOS cells, prevented the up-regulation of factors linked to transition into a stem-like state and can be envisaged as a way to overcome adaptive resistance. Finally, the analysis of the public R2 database, containing microarray data information from diverse osteosarcoma tissues, revealed a correlation between expression of stemness markers and a worse response to chemotherapy, which provides evidence for drug-induced phenotypic stem cell state transitions in osteosarcoma. PMID:26577806

  15. AEG-1 activates Wnt/PCP signaling to promote metastasis in tongue squamous cell carcinoma

    PubMed Central

    Chen, Shan; Lei, Yiyan; Lin, Millicent; Wang, Liantang; Feng, Chongjin; Ke, Zunfu

    2016-01-01

    Despite advances in therapy, survival among patients with locally advanced squamous cell carcinoma of tongue (TSCC) and cervical lymph node metastasis remains dismal. Here, we estimated the functional effect of AEG-1 on TSCC metastasis and explored the molecular mechanism by which AEG-1 stimulates epithelial-mesenchymal transition (EMT). We initially found that AEG-1 mRNA levels were much higher in metastatic TSCC than in non-metastatic TSCC and that AEG-1 expression strongly correlates with EMT status. Receiver operating characteristic analysis showed that the combined AEG-1 and EMT statuses are predictive of the survival rate among TSCC patients. In addition, AEG-1 knockdown inhibited EMT in cultured TSCC cell lines and in a xenograft-mouse model. Recombinant AEG-1 activated Wnt/PCP-Rho signaling, and its stimulatory effects on TSCC cell invasiveness and EMT were reversed by an anti-Wnt5a neutralizing antibody or by inhibition of Rac1 or ROCK. These results highlight the critical stimulatory effect of AEG-1 on cancer cell invasiveness and EMT and indicate that AEG-1 may be a useful prognostic biomarker for TSCC patients. PMID:26689985

  16. The HMG-box transcription factor SoxNeuro acts with Tcf to control Wg/Wnt signaling activity.

    PubMed

    Chao, Anna T; Jones, Whitney M; Bejsovec, Amy

    2007-03-01

    Wnt signaling specifies cell fates in many tissues during vertebrate and invertebrate embryogenesis. To understand better how Wnt signaling is regulated during development, we have performed genetic screens to isolate mutations that suppress or enhance mutations in the fly Wnt homolog, wingless (wg). We find that loss-of-function mutations in the neural determinant SoxNeuro (also known as Sox-neuro, SoxN) partially suppress wg mutant pattern defects. SoxN encodes a HMG-box-containing protein related to the vertebrate Sox1, Sox2 and Sox3 proteins, which have been implicated in patterning events in the early mouse embryo. In Drosophila, SoxN has previously been shown to specify neural progenitors in the embryonic central nervous system. Here, we show that SoxN negatively regulates Wg pathway activity in the embryonic epidermis. Loss of SoxN function hyperactivates the Wg pathway, whereas its overexpression represses pathway activity. Epistasis analysis with other components of the Wg pathway places SoxN at the level of the transcription factor Pan (also known as Lef, Tcf) in regulating target gene expression. In human cell culture assays, SoxN represses Tcf-responsive reporter expression, indicating that the fly gene product can interact with mammalian Wnt pathway components. In both flies and in human cells, SoxN repression is potentiated by adding ectopic Tcf, suggesting that SoxN interacts with the repressor form of Tcf to influence Wg/Wnt target gene transcription. PMID:17267442

  17. Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes

    SciTech Connect

    Kim, Mi-Bo; Song, Youngwoo; Kim, Changhee; Hwang, Jae-Kwan

    2014-03-07

    Highlights: • Kirenol inhibits the adipogenic transcription factors and lipogenic enzymes. • Kirenol stimulates the Wnt/β-catenin signaling pathway components. • Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway. - Abstract: Kirenol, a natural diterpenoid compound, has been reported to possess anti-oxidant, anti-inflammatory, anti-allergic, and anti-arthritic activities; however, its anti-adipogenic effect remains to be studied. The present study evaluated the effect of kirenol on anti-adipogenesis through the activation of the Wnt/β-catenin signaling pathway. Kirenol prevented intracellular lipid accumulation by down-regulating key adipogenesis transcription factors [peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), and sterol regulatory element binding protein-1c (SREBP-1c)] and lipid biosynthesis-related enzymes [fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC)], as well as adipocytokines (adiponectin and leptin). Kirenol effectively activated the Wnt/β-catenin signaling pathway, in which kirenol up-regulated the expression of low density lipoprotein receptor related protein 6 (LRP6), disheveled 2 (DVL2), β-catenin, and cyclin D1 (CCND1), while it inactivated glycogen synthase kinase 3β (GSK3β) by increasing its phosphorylation. Kirenol down-regulated the expression levels of PPARγ and C/EBPα, which were up-regulated by siRNA knockdown of β-catenin. Overall, kirenol is capable of inhibiting the differentiation and lipogenesis of 3T3-L1 adipocytes through the activation of the Wnt/β-catenin signaling pathway, suggesting its potential as natural anti-obesity agent.

  18. USP6 oncogene promotes Wnt signaling by deubiquitylating Frizzleds.

    PubMed

    Madan, Babita; Walker, Matthew P; Young, Robert; Quick, Laura; Orgel, Kelly A; Ryan, Meagan; Gupta, Priti; Henrich, Ian C; Ferrer, Marc; Marine, Shane; Roberts, Brian S; Arthur, William T; Berndt, Jason D; Oliveira, Andre M; Moon, Randall T; Virshup, David M; Chou, Margaret M; Major, Michael B

    2016-05-24

    The Wnt signaling pathways play pivotal roles in carcinogenesis. Modulation of the cell-surface abundance of Wnt receptors is emerging as an important mechanism for regulating sensitivity to Wnt ligands. Endocytosis and degradation of the Wnt receptors Frizzled (Fzd) and lipoprotein-related protein 6 (LRP6) are regulated by the E3 ubiquitin ligases zinc and ring finger 3 (ZNRF3) and ring finger protein 43 (RNF43), which are disrupted in cancer. In a genome-wide small interfering RNA screen, we identified the deubiquitylase ubiquitin-specific protease 6 (USP6) as a potent activator of Wnt signaling. USP6 enhances Wnt signaling by deubiquitylating Fzds, thereby increasing their cell-surface abundance. Chromosomal translocations in nodular fasciitis result in USP6 overexpression, leading to transcriptional activation of the Wnt/β-catenin pathway. Inhibition of Wnt signaling using Dickkopf-1 (DKK1) or a Porcupine (PORCN) inhibitor significantly decreased the growth of USP6-driven xenograft tumors, indicating that Wnt signaling is a key target of USP6 during tumorigenesis. Our study defines an additional route to ectopic Wnt pathway activation in human disease, and identifies a potential approach to modulate Wnt signaling for therapeutic benefit. PMID:27162353

  19. Epsin is required for Dishevelled stability and Wnt signalling activation in colon cancer development.

    PubMed

    Chang, Baojun; Tessneer, Kandice L; McManus, John; Liu, Xiaolei; Hahn, Scott; Pasula, Satish; Wu, Hao; Song, Hoogeun; Chen, Yiyuan; Cai, Xiaofeng; Dong, Yunzhou; Brophy, Megan L; Rahman, Ruby; Ma, Jian-Xing; Xia, Lijun; Chen, Hong

    2015-03-16

    Uncontrolled canonical Wnt signalling supports colon epithelial tumour expansion and malignant transformation. Understanding the regulatory mechanisms involved is crucial for elucidating the pathogenesis of and will provide new therapeutic targets for colon cancer. Epsins are ubiquitin-binding adaptor proteins upregulated in several human cancers; however, the involvement of epsins in colon cancer is unknown. Here we show that loss of intestinal epithelial epsins protects against colon cancer by significantly reducing the stability of the crucial Wnt signalling effector, dishevelled (Dvl2), and impairing Wnt signalling. Consistently, epsins and Dvl2 are correspondingly upregulated in colon cancer. Mechanistically, epsin binds Dvl2 via its epsin N-terminal homology domain and ubiquitin-interacting motifs and prohibits Dvl2 polyubiquitination and degradation. Our findings reveal an unconventional role for epsins in stabilizing Dvl2 and potentiating Wnt signalling in colon cancer cells to ensure robust colon cancer progression. The pro-carcinogenic role of Epsins suggests that they are potential therapeutic targets to combat colon cancer.

  20. A WNT/beta-catenin signaling activator, R-spondin, plays positive regulatory roles during skeletal myogenesis.

    PubMed

    Han, Xiang Hua; Jin, Yong-Ri; Seto, Marianne; Yoon, Jeong Kyo

    2011-03-25

    R-spondins (RSPOs) are a recently characterized family of secreted proteins that activate WNT/β-catenin signaling. In this study, we investigated the potential roles of the RSPO proteins during myogenic differentiation. Overexpression of the Rspo1 gene or administration of recombinant RSPO2 protein enhanced mRNA and protein expression of a basic helix-loop-helix (bHLH) class myogenic determination factor, MYF5, in both C2C12 myoblasts and primary satellite cells, whereas MYOD or PAX7 expression was not affected. RSPOs also promoted myogenic differentiation and induced hypertrophic myotube formation in C2C12 cells. In addition, Rspo2 and Rspo3 gene knockdown by RNA interference significantly compromised MYF5 expression, myogenic differentiation, and myotube formation. Furthermore, Myf5 expression was reduced in the developing limbs of mouse embryos lacking the Rspo2 gene. Finally, we demonstrated that blocking of WNT/β-catenin signaling by DKK1 or a dominant-negative form of TCF4 reversed MYF5 expression, myogenic differentiation, and hypertrophic myotube formation induced by RSPO2, indicating that RSPO2 exerts its activity through the WNT/β-catenin signaling pathway. Our results provide strong evidence that RSPOs are key positive regulators of skeletal myogenesis acting through the WNT/β-catenin signaling pathway.

  1. Downregulation of miR-432 activates Wnt/β-catenin signaling and promotes human hepatocellular carcinoma proliferation

    PubMed Central

    Xu, Chi; Zeng, Xian-Cheng; Zhang, Tong; Li, Yang; Wang, Guo-Ying

    2015-01-01

    Sustained cell growth and proliferation, one of the hallmarks of cancer, is considered to responsible for cancer-related deaths by disorganizing the balance of growth promotion and growth limitation. Aberrant activation of the Wnt/β-catenin signaling pathway leads to cell proliferation, growth and survival, and promotes the development of various human tumors, including hepatocellular carcinoma. Elucidating the molecular mechanism of this abnormality in hepatocellular carcinoma carcinogenesis may improve diagnostic and therapeutic strategies for this malignancy. Herein, we report that the expression of miR-432 was markedly downregulated in hepatocellular carcinoma cell lines and tissues, and upregulation of miR-432 inhibited, whereas downregulation of miR-432 enhanced the proliferation and tumorigenicity of hepatocellular carcinoma cells both in vitro and in vivo. Furthermore, miR-432 directly targeted and suppressed multiple regulators of the Wnt/β-catenin signaling cascade, including LRP6, TRIM29 and Pygo2, which subsequently deactivated Wnt/β-catenin signaling pathway. Finally, miR-432 expression was inversely correlated with three targets in clinical hepatocellular carcinoma samples. These results demonstrated that miR-432 functions as a tumor-suppressive miRNA by suppressing Wnt/β-catenin signaling activation and may represent a therapeutic target for hepatocellular carcinoma. PMID:25797263

  2. Mesenchymal Stem Cell Therapy Alleviates Interstitial Cystitis by Activating Wnt Signaling Pathway

    PubMed Central

    Song, Miho; Lim, Jisun; Yu, Hwan Yeul; Park, Junsoo; Chun, Ji-Youn; Jeong, Jaeho; Heo, Jinbeom; Kang, Hyunsook; Kim, YongHwan; Cho, Yong Mee; Kim, Seong Who; Oh, Wonil; Choi, Soo Jin; Jang, Sung-Wuk; Park, Sanghyeok

    2015-01-01

    Interstitial cystitis (IC) is a syndrome characterized by urinary urgency, frequency, pelvic pain, and nocturia in the absence of bacterial infection or identifiable pathology. IC is a devastating disease that certainly decreases quality of life. However, the causes of IC remain unknown and no effective treatments or cures have been developed. This study evaluated the therapeutic potency of using human umbilical cord-blood-derived mesenchymal stem cells (UCB-MSCs) to treat IC in a rat model and to investigate its responsible molecular mechanism. IC was induced in 10-week-old female Sprague–Dawley rats via the instillation of 0.1 M HCl or phosphate-buffered saline (PBS; sham). After 1 week, human UCB-MSC (IC+MSC) or PBS (IC) was directly injected into the submucosal layer of the bladder. A single injection of human UCB-MSCs significantly attenuated the irregular and decreased voiding interval in the IC group. Accordingly, denudation of the epithelium and increased inflammatory responses, mast cell infiltration, neurofilament production, and angiogenesis observed in the IC bladders were prevented in the IC+MSC group. The injected UCB-MSCs successfully engrafted to the stromal and epithelial tissues and activated Wnt signaling cascade. Interference with Wnt and epidermal growth factor receptor activity by small molecules abrogated the benefits of MSC therapy. This is the first report that provides an experimental evidence of the therapeutic effects and molecular mechanisms of MSC therapy to IC using an orthodox rat animal model. Our findings not only provide the basis for clinical trials of MSC therapy to IC but also advance our understanding of IC pathophysiology. PMID:25745847

  3. Canonical Wnt signaling in the oligodendroglial lineage--puzzles remain.

    PubMed

    Guo, Fuzheng; Lang, Jordan; Sohn, Jiho; Hammond, Elizabeth; Chang, Marcello; Pleasure, David

    2015-10-01

    The straightforward concept that accentuated Wnt signaling via the Wnt-receptor-β-catenin-TCF/LEF cascade (also termed canonical Wnt signaling or Wnt/β-catenin signaling) delays or blocks oligodendrocyte differentiation is very appealing. According to this concept, canonical Wnt signaling is responsible for remyelination failure in multiple sclerosis and for persistent hypomyelination in periventricular leukomalacia. This has given rise to the hope that pharmacologically inhibiting this signaling will be of therapeutic potential in these disabling neurological disorders. But current studies suggest that Wnt/β-catenin signaling plays distinct roles in oligodendrogenesis, oligodendrocyte differentiation, and myelination in a context-dependent manner (central nervous system regions, developmental stages), and that Wnt/β-catenin signaling interplays with, and is subjected to regulation by, other central nervous system factors and signaling pathways. On this basis, we propose the more nuanced concept that endogenous Wnt/β-catenin activity is delicately and temporally regulated to ensure the seamless development of oligodendroglial lineage cells in different contexts. In this review, we discuss the role Wnt/β-catenin signaling in oligodendrocyte development, focusing on the interpretation of disparate results, and highlighting areas where important questions remain to be answered about oligodendroglial lineage Wnt/β-catenin signaling. PMID:25782433

  4. Aberrant regulation of Wnt signaling in hepatocellular carcinoma

    PubMed Central

    Liu, Li-Juan; Xie, Shui-Xiang; Chen, Ya-Tang; Xue, Jing-Ling; Zhang, Chuan-Jie; Zhu, Fan

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Several signaling pathways, including the wingless/int-1 (Wnt) signaling pathway, have been shown to be commonly activated in HCC. The Wnt signaling pathway can be triggered via both catenin β1 (CTNNB1)-dependent (also known as “canonical”) and CTNNB1-independent (often referred to as “non-canonical”) pathways. Specifically, the canonical Wnt pathway is one of those most frequently reported in HCC. Aberrant regulation from three complexes (the cell-surface receptor complex, the cytoplasmic destruction complex and the nuclear CTNNB1/T-cell-specific transcription factor/lymphoid enhancer binding factor transcriptional complex) are all involved in HCC. Although the non-canonical Wnt pathway is rarely reported, two main non-canonical pathways, Wnt/planar cell polarity pathway and Wnt/Ca2+ pathway, participate in the regulation of hepatocarcinogenesis. Interestingly, the canonical Wnt pathway is antagonized by non-canonical Wnt signaling in HCC. Moreover, other signaling cascades have also been demonstrated to regulate the Wnt pathway through crosstalk in HCC pathogenesis. This review provides a perspective on the emerging evidence that the aberrant regulation of Wnt signaling is a critical mechanism for the development of HCC. Furthermore, crosstalk between different signaling pathways might be conducive to the development of novel molecular targets of HCC. PMID:27672271

  5. Aberrant regulation of Wnt signaling in hepatocellular carcinoma.

    PubMed

    Liu, Li-Juan; Xie, Shui-Xiang; Chen, Ya-Tang; Xue, Jing-Ling; Zhang, Chuan-Jie; Zhu, Fan

    2016-09-01

    Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Several signaling pathways, including the wingless/int-1 (Wnt) signaling pathway, have been shown to be commonly activated in HCC. The Wnt signaling pathway can be triggered via both catenin β1 (CTNNB1)-dependent (also known as "canonical") and CTNNB1-independent (often referred to as "non-canonical") pathways. Specifically, the canonical Wnt pathway is one of those most frequently reported in HCC. Aberrant regulation from three complexes (the cell-surface receptor complex, the cytoplasmic destruction complex and the nuclear CTNNB1/T-cell-specific transcription factor/lymphoid enhancer binding factor transcriptional complex) are all involved in HCC. Although the non-canonical Wnt pathway is rarely reported, two main non-canonical pathways, Wnt/planar cell polarity pathway and Wnt/Ca(2+) pathway, participate in the regulation of hepatocarcinogenesis. Interestingly, the canonical Wnt pathway is antagonized by non-canonical Wnt signaling in HCC. Moreover, other signaling cascades have also been demonstrated to regulate the Wnt pathway through crosstalk in HCC pathogenesis. This review provides a perspective on the emerging evidence that the aberrant regulation of Wnt signaling is a critical mechanism for the development of HCC. Furthermore, crosstalk between different signaling pathways might be conducive to the development of novel molecular targets of HCC. PMID:27672271

  6. Aberrant regulation of Wnt signaling in hepatocellular carcinoma

    PubMed Central

    Liu, Li-Juan; Xie, Shui-Xiang; Chen, Ya-Tang; Xue, Jing-Ling; Zhang, Chuan-Jie; Zhu, Fan

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Several signaling pathways, including the wingless/int-1 (Wnt) signaling pathway, have been shown to be commonly activated in HCC. The Wnt signaling pathway can be triggered via both catenin β1 (CTNNB1)-dependent (also known as “canonical”) and CTNNB1-independent (often referred to as “non-canonical”) pathways. Specifically, the canonical Wnt pathway is one of those most frequently reported in HCC. Aberrant regulation from three complexes (the cell-surface receptor complex, the cytoplasmic destruction complex and the nuclear CTNNB1/T-cell-specific transcription factor/lymphoid enhancer binding factor transcriptional complex) are all involved in HCC. Although the non-canonical Wnt pathway is rarely reported, two main non-canonical pathways, Wnt/planar cell polarity pathway and Wnt/Ca2+ pathway, participate in the regulation of hepatocarcinogenesis. Interestingly, the canonical Wnt pathway is antagonized by non-canonical Wnt signaling in HCC. Moreover, other signaling cascades have also been demonstrated to regulate the Wnt pathway through crosstalk in HCC pathogenesis. This review provides a perspective on the emerging evidence that the aberrant regulation of Wnt signaling is a critical mechanism for the development of HCC. Furthermore, crosstalk between different signaling pathways might be conducive to the development of novel molecular targets of HCC.

  7. Canonical Wnt activity regulates trunk neural crest delamination linking BMP/noggin signaling with G1/S transition.

    PubMed

    Burstyn-Cohen, Tal; Stanleigh, Jonathan; Sela-Donenfeld, Dalit; Kalcheim, Chaya

    2004-11-01

    Delamination of premigratory neural crest cells depends on a balance between BMP/noggin and on successful G1/S transition. Here, we report that BMP regulates G1/S transition and consequent crest delamination through canonical Wnt signaling. Noggin overexpression inhibits G1/S transition and blocking G1/S abrogates BMP-induced delamination; moreover, transcription of Wnt1 is stimulated by BMP and by the developing somites, which concomitantly inhibit noggin production. Interfering with beta-catenin and LEF/TCF inhibits G1/S transition, neural crest delamination and transcription of various BMP-dependent genes, which include Cad6B, Pax3 and Msx1, but not that of Slug, Sox9 or FoxD3. Hence, we propose that developing somites inhibit noggin transcription in the dorsal tube, resulting in activation of BMP and consequent Wnt1 production. Canonical Wnt signaling in turn stimulates G1/S transition and generation of neural crest cell motility independently of its proposed role in earlier neural crest specification. PMID:15456730

  8. Regulation of Wnt/β-Catenin Signaling by Protein Kinases

    PubMed Central

    Verheyen, Esther M.; Gottardi, Cara J.

    2011-01-01

    The Wnt/β-catenin signaling pathway plays essential roles during development and adult tissue homeostasis. Inappropriate activation of the pathway can result in a variety of malignancies. Protein kinases have emerged as key regulators at multiple steps of the Wnt pathway. In this review, we present a synthesis covering the latest information on how Wnt signaling is regulated by diverse protein kinases. PMID:19623618

  9. Wnt-Signaling-Mediated Antiosteoporotic Activity of Porcine Placenta Hydrolysates in Ovariectomized Rats

    PubMed Central

    Ko, Byoung-Seob; Kim, Da Sol; Kang, Suna; Lee, Na Ra; Ryuk, Jin Ah; Park, Sunmin

    2012-01-01

    Anti-osteoporotic effects of two types of porcine placenta hydrolysates (PPH) were evaluated in ovariectomized (OVX) rats orally administered PPH without (WPPH) or with (NPPH) ovarian hormones (1 g/kg bw/day). PPH groups were compared with OVX rats with estrogen replacement (0.1 mg/kg bw conjugated estrogen; EST), or dextrose (placebo; OVX-control) All rats received high-fat/calcium-deficient diets for 12 weeks. NPPH contained less estrogen and progesterone, but more essential amino acids, whereas the opposite was true for WPPH. NPPH decreased body weight and peri-uterine fat pads, and maintained uterus weight. NPPH rats had higher femur and lumbar spine bone mass density compared to controls; but less than those of EST rats. Serum phosphorus and urinary calcium and phosphorus levels were reduced in NPPH rats compared to OVX-controls. Serum bone-specific alkaline phosphatase, osteocalcin, and bone turnover marker levels were reduced NPPH rats compared to OVX-controls. WPPH produced results similar to those of NPPH, but less significant. Both NPPH and estrogen upregulated low-density lipoprotein receptor-related protein 5 and β-catenin in OVX rats, while the expression of dickkopf-related protein 1 was suppressed. In conclusion, NPPH exerted anti-osteoporotic effects by activating osteogenesis and stimulating Wnt signaling, possibly mediated by the various amino acids and not ovarian hormones. PMID:23258987

  10. Wnt signaling in skin organogenesis

    PubMed Central

    2008-01-01

    While serving as the interface between an organism and its environment, the skin also can elaborate a wide range of skin appendages to service specific purposes in a region-specific fashion. As in other organs, Wnt signaling plays a key role in regulating the proliferation, differentiation and motility of skin cells during their morphogenesis. Here I will review some of the recent work that has been done on skin organogenesis. I will cover dermis formation, the development of skin appendages, cycling of appendages in the adult, stem cell regulation, patterning, orientation, regional specificity and modulation by sex hormone nuclear receptors. I will also cover their roles in wound healing, hair regeneration and skin related diseases. It appears that Wnt signaling plays essential but distinct roles in different hierarchical levels of morphogenesis and organogenesis. Many of these areas have not yet been fully explored but are certainly promising areas of future research. PMID:19279724

  11. Inhibition of p300 histone acetyltransferase activity in palate mesenchyme cells attenuates Wnt signaling via aberrant E-cadherin expression.

    PubMed

    Warner, Dennis R; Smith, Scott C; Smolenkova, Irina A; Pisano, M Michele; Greene, Robert M

    2016-03-01

    p300 is a multifunctional transcriptional coactivator that interacts with numerous transcription factors and exhibits protein/histone acetyltransferase activity. Loss of p300 function in humans and in mice leads to craniofacial defects. In this study, we demonstrated that inhibition of p300 histone acetyltransferase activity with the compound, C646, altered the expression of several genes, including Cdh1 (E-cadherin) in mouse maxillary mesenchyme cells, which are the cells that give rise to the secondary palate. The increased expression of plasma membrane-bound E-cadherin was associated with reduced cytosolic β-catenin, that led to attenuated signaling through the canonical Wnt pathway. Furthermore, C646 reduced both cell proliferation and the migratory ability of these cells. These results suggest that p300 histone acetyltransferase activity is critical for Wnt-dependent palate mesenchymal cell proliferation and migration, both processes that play a significant role in morphogenesis of the palate.

  12. Organized emergence of multiple-generations of teeth in snakes is dysregulated by activation of Wnt/beta-catenin signalling.

    PubMed

    Gaete, Marcia; Tucker, Abigail S

    2013-01-01

    In contrast to mammals, most reptiles constantly regenerate their teeth. In the snake, the epithelial dental lamina ends in a successional lamina, which proliferates and elongates forming multiple tooth generations, all linked by a permanent dental lamina. To investigate the mechanisms used to control the initiation of new tooth germs in an ordered sequential pattern we utilized the polyphodont (multiple-generation) corn snake (Pantherophis guttatus). We observed that the dental lamina expressed the transcription factor Sox2, a multipotent stem cell marker, whereas the successional lamina cells expressed the transcription factor Lef1, a Wnt/β-catenin pathway target gene. Activation of the Wnt/β-catenin pathway in culture increased the number of developing tooth germs, in comparison to control untreated cultures. These additional tooth germs budded off from ectopic positions along the dental lamina, rather than in an ordered sequence from the successional lamina. Wnt/β-catenin activation enhanced cell proliferation, particularly in normally non-odontogenic regions of the dental lamina, which widely expressed Lef1, restricting the Sox2 domain. This suggests an expansion of the successional lamina at the expense of the dental lamina. Activation of the Wnt/β-catenin pathway in cultured snake dental organs, therefore, led to changes in proliferation and to the molecular pattern of the dental lamina, resulting in loss of the organised emergence of tooth germs. These results suggest that epithelial compartments are critical for the arrangement of organs that develop in sequence, and highlight the role of Wnt/β-catenin signalling in such processes.

  13. Organized Emergence of Multiple-Generations of Teeth in Snakes Is Dysregulated by Activation of Wnt/Beta-Catenin Signalling

    PubMed Central

    Gaete, Marcia; Tucker, Abigail S.

    2013-01-01

    In contrast to mammals, most reptiles constantly regenerate their teeth. In the snake, the epithelial dental lamina ends in a successional lamina, which proliferates and elongates forming multiple tooth generations, all linked by a permanent dental lamina. To investigate the mechanisms used to control the initiation of new tooth germs in an ordered sequential pattern we utilized the polyphodont (multiple-generation) corn snake (Pantherophis guttatus). We observed that the dental lamina expressed the transcription factor Sox2, a multipotent stem cell marker, whereas the successional lamina cells expressed the transcription factor Lef1, a Wnt/β-catenin pathway target gene. Activation of the Wnt/β-catenin pathway in culture increased the number of developing tooth germs, in comparison to control untreated cultures. These additional tooth germs budded off from ectopic positions along the dental lamina, rather than in an ordered sequence from the successional lamina. Wnt/β-catenin activation enhanced cell proliferation, particularly in normally non-odontogenic regions of the dental lamina, which widely expressed Lef1, restricting the Sox2 domain. This suggests an expansion of the successional lamina at the expense of the dental lamina. Activation of the Wnt/β-catenin pathway in cultured snake dental organs, therefore, led to changes in proliferation and to the molecular pattern of the dental lamina, resulting in loss of the organised emergence of tooth germs. These results suggest that epithelial compartments are critical for the arrangement of organs that develop in sequence, and highlight the role of Wnt/β-catenin signalling in such processes. PMID:24019968

  14. Nucleoporin 62-Like Protein Activates Canonical Wnt Signaling through Facilitating the Nuclear Import of β-Catenin in Zebrafish

    PubMed Central

    Yang, Xiaojie; Gu, Qilin; Lin, Li; Li, Shaoyang; Zhong, Shan

    2015-01-01

    Nucleoporin p62 (Nup62) localizes in the central channel of nuclear pore complexes (NPCs) and regulates nuclear pore permeability and nucleocytoplasmic transport. However, the developmental roles of Nup62 in vertebrates remain largely unclear. Zebrafish Nup62-like protein (Nup62l) is a homolog of mammalian Nup62. The nup62l gene is maternally expressed, but its transcripts are ubiquitously distributed during early embryogenesis and enriched in the head, pharynx, and intestine of developing embryos. Activation of the Wnt/β-catenin pathway positively modulates nup62l transcription, while Bmp signaling acts downstream of Wnt/β-catenin signaling to negatively regulate nup62l expression. Overexpression of nup62l dorsalized embryos and enhanced gastrula convergence and extension (CE) movements. In contrast, knockdown of Nup62l led to ventralized embryos, an impediment to CE movements, and defects in specification of midline organ progenitors. Mechanistically, Nup62l acts as an activator of Wnt/β-catenin signaling through interaction with and facilitation of nuclear import of β-catenin-1/2 in zebrafish. Thus, Nup62l regulates dorsoventral patterning, gastrula CE movements, and proper specification of midline organ precursors through mediating the nuclear import of β-catenins in zebrafish. PMID:25605329

  15. Slit2/Robo1 signaling promotes intestinal tumorigenesis through Src-mediated activation of the Wnt/β-catenin pathway.

    PubMed

    Zhang, Qian-Qian; Zhou, Da-Lei; Lei, Yan; Zheng, Li; Chen, Sheng-Xia; Gou, Hong-Ju; Gu, Qu-Liang; He, Xiao-Dong; Lan, Tian; Qi, Cui-Ling; Li, Jiang-Chao; Ding, Yan-Qing; Qiao, Liang; Wang, Li-Jing

    2015-02-20

    Slit2 is often overexpressed in cancers. Slit2 is a secreted protein that binds to Roundabout (Robo) receptors to regulate cell growth and migration. Here, we employed several complementary mouse models of intestinal cancers, including the Slit2 transgenic mice, the ApcMin/+ spontaneous intestinal adenoma mouse model, and the DMH/DSS-induced colorectal carcinoma model to clarify function of Slit2/Robo1 signaling in intestinal tumorigenesis. We showed that Slit2 and Robo1 are overexpressed in intestinal tumors and may contribute to tumor generation. The Slit2/Robo1 signaling can induce precancerous lesions of the intestine and tumor progression. Ectopic expression of Slit2 activated Slit2/Robo1 signaling and promoted tumorigenesis and tumor growth. This was mediated in part through activation of the Src signaling, which then down-regulated E-cadherin, thereby activating Wnt/β-catenin signaling. Thus, Slit2/Robo1 signaling is oncogenic in intestinal tumorigenesis.

  16. The small molecule indirubin-3′-oxime activates Wnt/β-catenin signaling and inhibits adipocyte differentiation and obesity

    PubMed Central

    Choi, O M; Cho, Y-H; Choi, S; Lee, S-H; Seo, S H; Kim, H-Y; Han, G; Min, D S; Park, T; Choi, K Y

    2014-01-01

    Objectives: Activation of the Wnt/β-catenin signaling pathway inhibits adipogenesis by maintaining preadipocytes in an undifferentiated state. We investigated the effect of indirubin-3′-oxime (I3O), which was screened as an activator of the Wnt/β-catenin signaling, on inhibiting the preadipocyte differentiation in vitro and in vivo. Methods: 3T3L1 preadipocytes were differentiated with 0, 4 or 20 μM of I3O. The I3O effect on adipocyte differentiation was observed by Oil-red-O staining. Activation of Wnt/β-catenin signaling in I3O-treated 3T3L1 cells was shown using immunocytochemical and immunoblotting analyses for β-catenin. The regulation of adipogenic markers was analyzed via real-time reverse transcription-PCR (RT-PCR) and immunoblotting analyses. For the in vivo study, mice were divided into five different dietary groups: chow diet, high-fat diet (HFD), HFD supplemented with I3O at 5, 25 and 100 mg kg−1. After 8 weeks, adipose and liver tissues were excised from the mice and subject to morphometry, real-time RT-PCR, immunoblotting and histological or immunohistochemical analyses. In addition, adipokine and insulin concentrations in serum of the mice were accessed by enzyme-linked immunosorbent assay. Results: Using a cell-based approach to screen a library of pharmacologically active small molecules, we identified I3O as a Wnt/β-catenin pathway activator. I3O inhibited the differentiation of 3T3-L1 cells into mature adipocytes and decreased the expression of adipocyte markers, CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor γ, at both mRNA and protein levels. In vivo, I3O inhibited the development of obesity in HFD-fed mice by attenuating HFD-induced body weight gain and visceral fat accumulation without showing any significant toxicity. Factors associated with metabolic disorders such as hyperlipidemia and hyperglycemia were also improved by treatment of I3O. Conclusion: Activation of the Wnt

  17. Chromomycins A2 and A3 from marine actinomycetes with TRAIL resistance-overcoming and Wnt signal inhibitory activities.

    PubMed

    Toume, Kazufumi; Tsukahara, Kentaro; Ito, Hanako; Arai, Midori A; Ishibashi, Masami

    2014-06-01

    A biological screening study of an actinomycetes strain assembly was conducted using a cell-based cytotoxicity assay. The CKK1019 strain was isolated from a sea sand sample. Cytotoxicity-guided fractionation of the CKK1019 strain culture broth, which exhibited cytotoxicity, led to the isolation of chromomycins A2 (1) and A3 (2). 1 and 2 showed potent cytotoxicity against the human gastric adenocarcinoma (AGS) cell line (IC50 1; 1.7 and 2; 22.1 nM), as well as strong inhibitory effects against TCF/β-catenin transcription (IC50 1; 1.8 and 2; 15.9 nM). 2 showed the ability to overcome tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) resistance. To the best of our knowledge, the effects of chromomycins A2 (1) and A3 (2) on TRAIL resistance-overcoming activity, and on the Wnt signaling pathway, have not been reported previously. Thus, 1 and 2 warrant potential drug lead studies in relation to TRAIL-resistant and Wnt signal-related diseases and offer potentially useful chemical probes for investigating TRAIL resistance and the Wnt signaling pathway. PMID:24905484

  18. H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA

    PubMed Central

    Liang, Wei-Cheng; Fu, Wei-Ming; Wang, Yu-Bing; Sun, Yu-Xin; Xu, Liang-Liang; Wong, Cheuk-Wa; Chan, Kai-Ming; Li, Gang; Waye, Mary Miu-Yee; Zhang, Jin-Fang

    2016-01-01

    Bone homeostasis is tightly orchestrated and maintained by the balance between osteoblasts and osteoclasts. Recent studies have greatly expanded our understanding of the molecular mechanisms of cellular differentiation. However, the functional roles of non-coding RNAs particularly lncRNAs in remodeling bone architecture remain elusive. In our study, lncRNA H19 was found to be upregulated during osteogenesis in hMSCs. Stable expression of H19 significantly accelerated in vivo and in vitro osteoblast differentiation. Meanwhile, by using bioinformatic investigations and RIP assays combined with luciferase reporter assays, we demonstrated that H19 functioned as an miRNA sponge for miR-141 and miR-22, both of which were negative regulators of osteogenesis and Wnt/β-catenin pathway. Further investigations revealed that H19 antagonized the functions of these two miRNAs and led to de-repression of their shared target gene β-catenin, which eventually activated Wnt/β-catenin pathway and hence potentiated osteogenesis. In addition, we also identified a novel regulatory feedback loop between H19 and its encoded miR-675-5p. And miR-675-5p was found to directly target H19 and counteracted osteoblast differentiation. To sum up, these observations indicate that the lncRNA H19 modulates Wnt/β-catenin pathway by acting as a competing endogenous RNA, which may shed light on the functional role of lncRNAs in coordinating osteogenesis. PMID:26853553

  19. Wnt-signalling and the metabolic syndrome.

    PubMed

    Schinner, S

    2009-02-01

    The Wnt-signalling pathway plays a well-established role in embryogenesis and tumourigenesis. However, recent data puts Wnt-signalling in the context of metabolic disease. In vitro and in vivo data characterised the role of Wnt-signalling molecules in the regulation of adipocyte differentiation (adipogenesis). Furthermore, Wnts play a pivotal role in regulating pancreatic beta-cell function and mass. In addition, studies found polymorphisms within the gene encoding TCF7L2, a Wnt-regulated transcription factor, to contribute an increased risk to develop type 2 diabetes mellitus in humans. This review will summarise recent aspects of Wnt-signalling in these pathophysiologic events and discuss the contributions of dysregulation in Wnt-signalling to features of the metabolic syndrome. PMID:19214925

  20. Wnt signaling in development and disease

    PubMed Central

    Freese, Jennifer L.; Pino, Darya; Pleasure, Samuel J.

    2009-01-01

    The Wnt signaling pathway is one of the central morphogenic signaling pathways regulating early vertebrate development. In recent years it’s become clear that the Wnt pathway also regulates many aspects of nervous system development from the patterning stage through the regulation of neural plasticity. In this review, we first present an overview of the components of the Wnt-signaling pathway and then go on to discuss the literature describing the multitude of roles of Wnts in nervous system. In the latter portion of the review we turn to the ways that defects in Wnt signaling lead to neurologic disease. PMID:19765659

  1. Non-canonical WNT signalling in the lung.

    PubMed

    Li, Changgong; Bellusci, Saverio; Borok, Zea; Minoo, Parviz

    2015-11-01

    The role of WNT signalling in metazoan organogenesis has been a topic of widespread interest. In the lung, while the role of canonical WNT signalling has been examined in some detail by multiple studies, the non-canonical WNT signalling has received limited attention. Reliable evidence shows that this important signalling mechanism constitutes a major regulatory pathway in lung development. In addition, accumulating evidence has also shown that the non-canonical WNT pathway is critical for maintaining lung homeostasis and that aberrant activation of this pathway may underlie several debilitating lung diseases. Functional analyses have further revealed that the non-canonical WNT pathway regulates multiple cellular activities in the lung that are dependent on the specific cellular context. In most cell types, non-canonical WNT signalling regulates canonical WNT activity, which is also critical for many aspects of lung biology. This review will summarize what is currently known about the role of non-canonical WNT signalling in lung development, homeostasis and pathogenesis of disease.

  2. Active Wnt proteins are secreted on exosomes.

    PubMed

    Gross, Julia Christina; Chaudhary, Varun; Bartscherer, Kerstin; Boutros, Michael

    2012-10-01

    Wnt signalling has important roles during development and in many diseases. As morphogens, hydrophobic Wnt proteins exert their function over a distance to induce patterning and cell differentiation decisions. Recent studies have identified several factors that are required for the secretion of Wnt proteins; however, how Wnts travel in the extracellular space remains a largely unresolved question. Here we show that Wnts are secreted on exosomes both during Drosophila development and in human cells. We demonstrate that exosomes carry Wnts on their surface to induce Wnt signalling activity in target cells. Together with the cargo receptor Evi/WIs, Wnts are transported through endosomal compartments onto exosomes, a process that requires the R-SNARE Ykt6. Our study demonstrates an evolutionarily conserved functional role of extracellular vesicular transport of Wnt proteins.

  3. Tissue factor induces VEGF expression via activation of the Wnt/β-catenin signaling pathway in ARPE-19 cells

    PubMed Central

    Wang, Ying; Sang, Aimin; Zhu, Manhui; Zhang, Guowei; Guan, Huaijin; Ji, Min

    2016-01-01

    , indicating the importance of the Wnt/β-catenin signaling pathway in the process of TF-induced VEGF expression and angiogenesis. Conclusions Involvement of the activation of the Wnt/β-catenin signaling pathway is an important mediator for TF-induced VEGF production during the process of angiogenesis. Thus, our findings may ascertain the molecular regulation of TF in neovessel formation and show significant therapeutic implications. PMID:27499609

  4. Wnt pathway activation by ADP-ribosylation.

    PubMed

    Yang, Eungi; Tacchelly-Benites, Ofelia; Wang, Zhenghan; Randall, Michael P; Tian, Ai; Benchabane, Hassina; Freemantle, Sarah; Pikielny, Claudio; Tolwinski, Nicholas S; Lee, Ethan; Ahmed, Yashi

    2016-01-01

    Wnt/β-catenin signalling directs fundamental processes during metazoan development and can be aberrantly activated in cancer. Wnt stimulation induces the recruitment of the scaffold protein Axin from an inhibitory destruction complex to a stimulatory signalosome. Here we analyse the early effects of Wnt on Axin and find that the ADP-ribose polymerase Tankyrase (Tnks)--known to target Axin for proteolysis-regulates Axin's rapid transition following Wnt stimulation. We demonstrate that the pool of ADP-ribosylated Axin, which is degraded under basal conditions, increases immediately following Wnt stimulation in both Drosophila and human cells. ADP-ribosylation of Axin enhances its interaction with the Wnt co-receptor LRP6, an essential step in signalosome assembly. We suggest that in addition to controlling Axin levels, Tnks-dependent ADP-ribosylation promotes the reprogramming of Axin following Wnt stimulation; and propose that Tnks inhibition blocks Wnt signalling not only by increasing destruction complex activity, but also by impeding signalosome assembly. PMID:27138857

  5. Wnt pathway activation by ADP-ribosylation

    PubMed Central

    Yang, Eungi; Tacchelly-Benites, Ofelia; Wang, Zhenghan; Randall, Michael P.; Tian, Ai; Benchabane, Hassina; Freemantle, Sarah; Pikielny, Claudio; Tolwinski, Nicholas S.; Lee, Ethan; Ahmed, Yashi

    2016-01-01

    Wnt/β-catenin signalling directs fundamental processes during metazoan development and can be aberrantly activated in cancer. Wnt stimulation induces the recruitment of the scaffold protein Axin from an inhibitory destruction complex to a stimulatory signalosome. Here we analyse the early effects of Wnt on Axin and find that the ADP-ribose polymerase Tankyrase (Tnks)—known to target Axin for proteolysis—regulates Axin's rapid transition following Wnt stimulation. We demonstrate that the pool of ADP-ribosylated Axin, which is degraded under basal conditions, increases immediately following Wnt stimulation in both Drosophila and human cells. ADP-ribosylation of Axin enhances its interaction with the Wnt co-receptor LRP6, an essential step in signalosome assembly. We suggest that in addition to controlling Axin levels, Tnks-dependent ADP-ribosylation promotes the reprogramming of Axin following Wnt stimulation; and propose that Tnks inhibition blocks Wnt signalling not only by increasing destruction complex activity, but also by impeding signalosome assembly. PMID:27138857

  6. Wnt signaling in heart valve development and osteogenic gene induction

    PubMed Central

    Alfieri, Christina M.; Cheek, Jonathan; Chakraborty, Santanu; Yutzey, Katherine E.

    2009-01-01

    Wnt signaling mediated by beta-catenin has been implicated in early endocardial cushion development, but its roles in later stages of heart valve maturation and homeostasis have not been identified. Multiple Wnt ligands and pathway genes are differentially expressed during heart valve development. At E12.5, Wnt2 is expressed in cushion mesenchyme, whereas Wnt4 and Wnt9b are predominant in overlying endothelial cells. At E17.5, both Wnt3a and Wnt7b are expressed in the remodeling atrioventricular (AV) and semilunar valves. In addition, the TOPGAL Wnt reporter transgene is active throughout the developing AV and semilunar valves at E16.5, with more localized expression in the stratified valve leaflets after birth. In chicken embryo aortic valves, genes characteristic of osteogenic cell lineages including periostin, osteonectin, and Id2 are expressed specifically in the collagen-rich fibrosa layer at E14. Treatment of E14 aortic valve interstitial cells (VIC) in culture with osteogenic media results in increased expression of multiple genes associated with bone formation. Treatment of VIC with Wnt3a leads to nuclear localization of beta-catenin and induction of periostin and matrix gla-protein, but does not induce genes associated with later stages of osteogenesis. Together, these studies provide evidence for Wnt signaling as a regulator of endocardial cushion maturation as well as valve leaflet stratification, homeostasis and pathogenesis. PMID:19961844

  7. Notch signaling represses hypoxia-inducible factor-1α-induced activation of Wnt/β-catenin signaling in osteoblasts under cobalt-mimicked hypoxia

    PubMed Central

    LI, CHEN-TIAN; LIU, JIAN-XIU; YU, BO; LIU, RUI; DONG, CHAO; LI, SONG-JIAN

    2016-01-01

    The modification of Wnt and Notch signaling pathways by hypoxia, and its association with osteoblast proliferation and apoptosis remain to be fully elucidated. To investigate Wnt-Notch crosstalk, and its role in hypoxia-induced osteoblast proliferation and apoptosis regulation, the present study investigated the effects of cobalt-mimicked hypoxia on the mouse pre-osteoblast-like cell line, MC3T3-E1, when the Notch signals were repressed using a γ-secretase inhibitor DAPT. The data showed that the cobalt-mimicked hypoxia suppressed cell proliferation under normal conditions, but increased cell proliferation under conditions of Notch repression, in a concentration-dependent manner. The results of western blot and reverse transcription-quantitative polymerase chain reaction analyses showed that the cobalt treatment increased the levels of activated β-catenin protein and the expression levels of the target genes, axis inhibition protein 2 and myelocytomatosis oncogene, under DAPT-induced Notch repression. However, no significant changes were found in the expression levels of the Notch intracellular domain protein or the Notch target gene, hes1. In a β-catenin gene-knockdown experiment, the proliferation of the MC3T3-E1 cells under hypoxia were decreased by DAPT treatment, and knockdown of the expression of hypoxia-inducible factor-1α (HIF-1α) suppressed the cobalt-induced increase in Wnt target gene levels. No significant difference in cell proliferation rate was found following DAPT treatment when the expression of HIF-1α was knocked down. The results of the present study showed the opposing effects of Wnt and Notch signaling under cobalt-mimicked hypoxia, which were partially regulated by HIF-1α, The results also showed that osteoblast proliferation was dependent on Wnt-Notch signal crosstalk. PMID:27220406

  8. Wnt signaling in amygdala-dependent learning and memory

    PubMed Central

    Maguschak, Kimberly A.; Ressler, Kerry J.

    2011-01-01

    In addition to its role in cellular development and proliferation, there are emerging in vitro data implicating the Wnt/β-catenin pathway in synaptic plasticity. Yet in vivo studies have not examined if Wnt activity is required for learning and memory. In the amygdala during fear memory formation, we found that many Wnt-signaling genes were dynamically regulated, with an immediate decrease, followed by an eventual normalization during memory consolidation. This rapid decrease in Wnt mRNA was confirmed with individual quantitative PCR and in situ hybridization. We then manipulated Wnt signaling with a specific peptide antagonist (Dkk-1) or agonist (Wnt1) injected stereotaxically into the adult amygdala during fear learning. We found that neither manipulation had an effect on locomotion, anxiety, fear acquisition or fear expression. However, both Wnt modulators prevented long-term fear memory consolidation without affecting short-term memory. Dkk-1 and Wnt infusions had destabilizing, but opposite, effects on the requisite β-catenin/cadherin dynamic interactions that occur during consolidation. These data suggest that dynamic modulation of Wnt/β-catenin signaling during consolidation is critical for the structural basis of long-term memory formation. PMID:21917789

  9. Medicarpin, a Natural Pterocarpan, Heals Cortical Bone Defect by Activation of Notch and Wnt Canonical Signaling Pathways

    PubMed Central

    Gupta, Chandra Prakash; Kureel, Jyoti; Mansoori, Mohd Nizam; Shukla, Priyanka; John, Aijaz A.; Singh, Kavita; Purohit, Dipak; Awasthi, Pallavi; Singh, Divya; Goel, Atul

    2015-01-01

    We evaluated the bone regeneration and healing effect of Medicarpin (med) in cortical bone defect model that heals by intramembranous ossification. For the study, female Sprague–Dawley rats were ovariectomized and rendered osteopenic. A drill hole injury was generated in mid femoral bones of all the animals. Med treatment was commenced the day after and continued for 15 days. PTH was taken as a reference standard. Fifteen days post-treatment, animals were sacrificed. Bones were collected for histomorphometry studies at the injury site by micro-computed tomography (μCT) and confocal microscopy. RNA and protein was harvested from newly generated bone. For immunohistochemistry, 5μm sections of decalcified femur bone adjoining the drill hole site were cut. By μCT analysis and calcein labeling of newly generated bone it was found that med promotes bone healing and new bone formation at the injury site and was comparable to PTH in many aspects. Med treatment led to increase in the Runx-2 and osteocalcin signals indicating expansion of osteoprogenitors at the injury site as evaluated by qPCR and immunohistochemical localization. It was observed that med promoted bone regeneration by activating canonical Wnt and notch signaling pathway. This was evident by increased transcript and protein levels of Wnt and notch signaling components in the defect region. Finally, we confirmed that med treatment leads to elevated bone healing in pre-osteoblasts by co localization of beta catenin with osteoblast marker alkaline phosphatase. In conclusion, med treatment promotes new bone regeneration and healing at the injury site by activating Wnt/canonical and notch signaling pathways. This study also forms a strong case for evaluation of med in delayed union and non-union fracture cases. PMID:26657206

  10. Ricinine: a pyridone alkaloid from Ricinus communis that activates the Wnt signaling pathway through casein kinase 1α.

    PubMed

    Ohishi, Kensuke; Toume, Kazufumi; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Mizoguchi, Takamasa; Itoh, Motoyuki; Ishibashi, Masami

    2014-09-01

    Wnt signaling plays important roles in proliferation, differentiation, development of cells, and various diseases. Activity-guided fractionation of the MeOH extract of the Ricinus communis stem led to the isolation of four compounds (1-4). The TCF/β-catenin transcription activities of 1 and 3 were 2.2 and 2.5 fold higher at 20 and 30μM, respectively. Cells treated with ricinine (1) had higher β-catenin and lower of p-β-catenin (ser 33, 37, 45, Thr 41) protein levels, whereas glycogen synthase kinase 3β (GSK3β) and casein kinase 1α (CK1α) protein levels remained unchanged. Cells treated with pyrvinium, an activator of CK1α, had lower β-catenin levels. However, the combined treatment of pyrvinium and 1 led to higher β-catenin levels than those in cells treated with pyrvinium alone, which suggested that 1 inhibited CK1α activity. Furthermore, 1 increased β-catenin protein levels in zebrafish embryos. These results indicated that 1 activated the Wnt signaling pathway by inhibiting CK1α.

  11. Ricinine: a pyridone alkaloid from Ricinus communis that activates the Wnt signaling pathway through casein kinase 1α.

    PubMed

    Ohishi, Kensuke; Toume, Kazufumi; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Mizoguchi, Takamasa; Itoh, Motoyuki; Ishibashi, Masami

    2014-09-01

    Wnt signaling plays important roles in proliferation, differentiation, development of cells, and various diseases. Activity-guided fractionation of the MeOH extract of the Ricinus communis stem led to the isolation of four compounds (1-4). The TCF/β-catenin transcription activities of 1 and 3 were 2.2 and 2.5 fold higher at 20 and 30μM, respectively. Cells treated with ricinine (1) had higher β-catenin and lower of p-β-catenin (ser 33, 37, 45, Thr 41) protein levels, whereas glycogen synthase kinase 3β (GSK3β) and casein kinase 1α (CK1α) protein levels remained unchanged. Cells treated with pyrvinium, an activator of CK1α, had lower β-catenin levels. However, the combined treatment of pyrvinium and 1 led to higher β-catenin levels than those in cells treated with pyrvinium alone, which suggested that 1 inhibited CK1α activity. Furthermore, 1 increased β-catenin protein levels in zebrafish embryos. These results indicated that 1 activated the Wnt signaling pathway by inhibiting CK1α. PMID:25124862

  12. [Mechanical stress and Wnt signal].

    PubMed

    Sakai, Akinori

    2013-06-01

    Osteocytes sense mechanical stress and specifically express sclerostin. Sclerostin suppresses osteoblastic function by inhibiting Wnt/β-catenin pathway. The disruption of Sost gene encoding sclerostin causes resistance to the reduction of bone volume and bone formation after skeletal unloading. Transgenic mice with high expression of Sost gene show no increase in bone formation after skeletal loading. Sost gene is essential for alteration of bone formation after mechanical stress. In humans, high degree of physical activity is associated with low concentration of serum sclerostin, while immobilization is associated with high concentration of serum sclerostin. Concentration of serum sclerostin well correlates with bone turnover markers.

  13. Wnt Signaling in Renal Cell Carcinoma

    PubMed Central

    Xu, Qi; Krause, Mirja; Samoylenko, Anatoly; Vainio, Seppo

    2016-01-01

    Renal cell carcinoma (RCC) accounts for 90% of all kidney cancers. Due to poor diagnosis, high resistance to the systemic therapies and the fact that most RCC cases occur sporadically, current research switched its focus on studying the molecular mechanisms underlying RCC. The aim is the discovery of new effective and less toxic anti-cancer drugs and novel diagnostic markers. Besides the PI3K/Akt/mTOR, HGF/Met and VHL/hypoxia cellular signaling pathways, the involvement of the Wnt/β-catenin pathway in RCC is commonly studied. Wnt signaling and its targeted genes are known to actively participate in different biological processes during embryonic development and renal cancer. Recently, studies have shown that targeting this pathway by alternating/inhibiting its intracellular signal transduction can reduce cancer cells viability and inhibit their growth. The targets and drugs identified show promising potential to serve as novel RCC therapeutics and prognostic markers. This review aims to summarize the current status quo regarding recent research on RCC focusing on the involvement of the Wnt/β-catenin pathway and how its understanding could facilitate the identification of potential therapeutic targets, new drugs and diagnostic biomarkers. PMID:27322325

  14. Opisthorchis viverrini infection activates the PI3K/ AKT/PTEN and Wnt/β-catenin signaling pathways in a Cholangiocarcinogenesis model.

    PubMed

    Yothaisong, Supak; Thanee, Malinee; Namwat, Nisana; Yongvanit, Puangrat; Boonmars, Thidarut; Puapairoj, Anucha; Loilome, Watcharin

    2014-01-01

    Opisthorchis viverrini (Ov) infection is the major etiological factor for cholangiocarcinoma (CCA), especially in northeast Thailand. We have previously reported significant involvement of PI3K/AKT/PTEN and Wnt/β- catenin in human CCA tissues. The present study, therefore, examined the expression and activation of PI3K/ AKT/PTEN and Wnt/β-catenin signaling components during Ov-induced cholangiocarcinogenesis in a hamster animal model. Hamsters were divided into two groups; non-treated and Ov plus NDMA treated. The results of immunohistochemical staining showed an upregulation of PI3K/AKT signaling as determined by elevated expression of the p85α-regulatory and p110α-catalytic subunits of PI3K as well as increased expression and activation of AKT during cholangiocarcinogenesis. Interestingly, the staining intensity of activated AKT (p-AKT) increased in the apical regions of the bile ducts and strong staining was detected where the liver fluke resides. Moreover, PTEN, a negative regulator of PI3K/AKT, was suppressed by decreased expression and increased phosphorylation during cholangiocarcinogenesis. We also detected upregulation of Wnt/β-catenin signaling as determined by increased positive staining of Wnt3, Wnt3a, Wnt5a, Wnt7b and β-catenin, corresponded with the period of cholangiocarcinogenesis. Furthermore, nuclear staining of β-catenin was observed in CCA tissues. Our results suggest the liver fluke infection causes chronic inflammatory conditions which lead to upregulation of the PI3K/AKT and Wnt/β-catenin signaling pathways which may drive CCA carcinogenesis. These results provide useful information for drug development, prevention and treatment of CCA. PMID:25556493

  15. Functional Consequences of Wnt-induced Dishevelled 2 Phosphorylation in Canonical and Noncanonical Wnt Signaling*

    PubMed Central

    González-Sancho, José M.; Greer, Yoshimi Endo; Abrahams, Cristina L.; Takigawa, Yutaka; Baljinnyam, Bolormaa; Lee, Kyung Ho; Lee, Kyung S.; Rubin, Jeffrey S.; Brown, Anthony M. C.

    2013-01-01

    Dishevelled (Dvl) proteins are intracellular effectors of Wnt signaling that have essential roles in both canonical and noncanonical Wnt pathways. It has long been known that Wnts stimulate Dvl phosphorylation, but relatively little is known about its functional significance. We have previously reported that both Wnt3a and Wnt5a induce Dvl2 phosphorylation that is associated with an electrophoretic mobility shift and loss of recognition by monoclonal antibody 10B5. In the present study, we mapped the 10B5 epitope to a 16-amino acid segment of human Dvl2 (residues 594–609) that contains four Ser/Thr residues. Alanine substitution of these residues (P4m) eliminated the mobility shift induced by either Wnt3a or Wnt5a. The Dvl2 P4m mutant showed a modest increase in canonical Wnt/β-catenin signaling activity relative to wild type. Consistent with this finding, Dvl2 4Pm preferentially localized to cytoplasmic puncta. In contrast to wild-type Dvl2, however, the P4m mutant was unable to rescue Wnt3a-dependent neurite outgrowth in TC-32 cells following suppression of endogenous Dvl2/3. Earlier work has implicated casein kinase 1δ/ϵ as responsible for the Dvl mobility shift, and a CK1δ in vitro kinase assay confirmed that Ser594, Thr595, and Ser597 of Dvl2 are CK1 targets. Alanine substitution of these three residues was sufficient to abrogate the Wnt-dependent mobility shift. Thus, we have identified a cluster of Ser/Thr residues in the C-terminal domain of Dvl2 that are Wnt-induced phosphorylation (WIP) sites. Our results indicate that phosphorylation at the WIP sites reduces Dvl accumulation in puncta and attenuates β-catenin signaling, whereas it enables noncanonical signaling that is required for neurite outgrowth. PMID:23396967

  16. Dysregulation of Wnt/β-catenin Signaling in Gastrointestinal Cancers

    PubMed Central

    White, Bryan D.; Chien, Andy J.; Dawson, David W.

    2012-01-01

    Aberrant Wnt/β-catenin signaling is widely implicated in numerous malignancies, including cancers of the gastrointestinal (GI) tract. Dysregulation of signaling is traditionally attributed to mutations in Axin, APC (adenomatous polyposis coli), and β-catenin that lead to constitutive hyperactivation of the pathway. However, Wnt/β-catenin signaling is also modulated through various other mechanisms in cancer, including crosstalk with other altered signaling pathways. A more complex view of Wnt/β-catenin signaling and its role in GI cancers is now emerging as divergent phenotypic outcomes are found to be dictated by temporospatial context and relative levels of pathway activation. This review summarizes the dysregulation of Wnt/β-catenin signaling in colorectal carcinoma, hepatocellular carcinoma, and pancreatic ductal adenocarcinoma, with particular emphasis on the latter two. We conclude by addressing some of the major challenges faced in attempting to target the pathway in the clinic. PMID:22155636

  17. Epigenome-Guided Analysis of the Transcriptome of Plaque Macrophages during Atherosclerosis Regression Reveals Activation of the Wnt Signaling Pathway

    PubMed Central

    Menon, Prashanthi; Podolsky, Irina; Feig, Jonathan E.; Aderem, Alan; Fisher, Edward A.; Gold, Elizabeth S.

    2014-01-01

    We report the first systems biology investigation of regulators controlling arterial plaque macrophage transcriptional changes in response to lipid lowering in vivo in two distinct mouse models of atherosclerosis regression. Transcriptome measurements from plaque macrophages from the Reversa mouse were integrated with measurements from an aortic transplant-based mouse model of plaque regression. Functional relevance of the genes detected as differentially expressed in plaque macrophages in response to lipid lowering in vivo was assessed through analysis of gene functional annotations, overlap with in vitro foam cell studies, and overlap of associated eQTLs with human atherosclerosis/CAD risk SNPs. To identify transcription factors that control plaque macrophage responses to lipid lowering in vivo, we used an integrative strategy – leveraging macrophage epigenomic measurements – to detect enrichment of transcription factor binding sites upstream of genes that are differentially expressed in plaque macrophages during regression. The integrated analysis uncovered eight transcription factor binding site elements that were statistically overrepresented within the 5′ regulatory regions of genes that were upregulated in plaque macrophages in the Reversa model under maximal regression conditions and within the 5′ regulatory regions of genes that were upregulated in the aortic transplant model during regression. Of these, the TCF/LEF binding site was present in promoters of upregulated genes related to cell motility, suggesting that the canonical Wnt signaling pathway may be activated in plaque macrophages during regression. We validated this network-based prediction by demonstrating that β-catenin expression is higher in regressing (vs. control group) plaques in both regression models, and we further demonstrated that stimulation of canonical Wnt signaling increases macrophage migration in vitro. These results suggest involvement of canonical Wnt signaling in

  18. A New Fluorescence-Based Reporter Gene Vector as a Tool for Analyzing and Fishing Cells with Activated Wnt Signaling Pathway

    PubMed Central

    Reischmann, Patricia; Müller, Oliver

    2013-01-01

    The dysregulated Wnt pathway is a major cause for the activation of cell proliferation and reduced differentiation in tumor cells. Therefore the Wnt signaling pathway is the on-top target in searching for new anticancer drugs or therapeutic strategies. Although the key players of the pathway are known, no specific anti-Wnt drug entered a clinical trial by now. Several screening approaches for potential compounds have been performed with a reporter gene assay using multiple T-cell factor/lymphoid enhancer factor (TCF/LEF) binding motifs as promoters which control luciferase or β-galactosidase as reporter genes. In our work, we designed a reporter gene construct which anchors the enhanced green fluorescent protein (eGFP) to the plasma membrane. HEK 293T cells, which were stably transfected with this construct, express eGFP on the outer membrane after activation with either LiCl or WNT3A protein. Thus, cells with activated Wnt pathway could be identified and fished out of a heterogeneous cell pool by the use of magnetic-labeled anti-GFP antibodies. In summary, we present a new tool to easily detect, quantify, and sort cells with activated Wnt signaling pathway in a simple, fast, and cost-effective way. PMID:24066239

  19. A new fluorescence-based reporter gene vector as a tool for analyzing and fishing cells with activated wnt signaling pathway.

    PubMed

    Apfel, Johanna; Reischmann, Patricia; Müller, Oliver

    2013-01-01

    The dysregulated Wnt pathway is a major cause for the activation of cell proliferation and reduced differentiation in tumor cells. Therefore the Wnt signaling pathway is the on-top target in searching for new anticancer drugs or therapeutic strategies. Although the key players of the pathway are known, no specific anti-Wnt drug entered a clinical trial by now. Several screening approaches for potential compounds have been performed with a reporter gene assay using multiple T-cell factor/lymphoid enhancer factor (TCF/LEF) binding motifs as promoters which control luciferase or β -galactosidase as reporter genes. In our work, we designed a reporter gene construct which anchors the enhanced green fluorescent protein (eGFP) to the plasma membrane. HEK 293T cells, which were stably transfected with this construct, express eGFP on the outer membrane after activation with either LiCl or WNT3A protein. Thus, cells with activated Wnt pathway could be identified and fished out of a heterogeneous cell pool by the use of magnetic-labeled anti-GFP antibodies. In summary, we present a new tool to easily detect, quantify, and sort cells with activated Wnt signaling pathway in a simple, fast, and cost-effective way.

  20. Alcohol consumption promotes diethylnitrosamine-induced hepatocarcinogenesis in male mice through activation of the Wnt/β-catenin signaling pathway

    PubMed Central

    Mercer, Kelly E.; Hennings, Leah; Sharma, Neha; Lai, Keith; Cleves, Mario A.; Wynne, Rebecca A.; Badger, Thomas M.; Ronis, Martin J.J.

    2014-01-01

    Although alcohol effects within the liver have been extensively studied, the complex mechanisms by which alcohol causes liver cancer are not well understood. It has been suggested that ethanol (EtOH) metabolism promotes tumor growth by increasing hepatocyte proliferation. In this study, we developed a mouse model of tumor promotion by chronic EtOH consumption in which EtOH feeding began 46 days post-injection of the chemical carcinogen diethylnitrosamine (DEN) and continued for 16 weeks. With a final EtOH concentration of 28% of total calories, we observed a significant increase in the total number of preneoplastic foci and liver tumors per mouse in the EtOH+DEN group compared to corresponding pair-fed (PF)+DEN and chow+DEN control groups. We also observed a 4-fold increase in hepatocyte proliferation (p<0.05) and increased cytoplasmic staining of active-β-catenin in non-tumor liver sections from EtOH+DEN mice compared to PF+DEN controls. In a rat model of alcohol-induced liver disease, we found increased hepatocyte proliferation (p<0.05); depletion of retinol and retinoic acid stores (p<0.05); increased expression of cytosolic and nuclear expression of β-catenin (p<0.05) and phosphorylated-glycogen synthase kinase 3 β (p-GSK3β, p<0.05; significant up-regulation in Wnt7a mRNA expression; and increased expression of several β-catenin targets, including, glutamine synthetase (GS), cyclin D1, Wnt1 inducible signaling pathway protein (WISP1), and matrix metalloproteinase-7 (MMP7), p<0.05. These data suggest that chronic EtOH consumption activates the Wnt/β-catenin signaling pathways to increase hepatocyte proliferation, thus promoting tumorigenesis following an initiating insult to the liver. PMID:24778325

  1. Neuroprotective Role of Novel Triazine Derivatives by Activating Wnt/β Catenin Signaling Pathway in Rodent Models of Alzheimer's Disease.

    PubMed

    Sinha, Anshuman; Tamboli, Riyaj S; Seth, Brashket; Kanhed, Ashish M; Tiwari, Shashi Kant; Agarwal, Swati; Nair, Saumya; Giridhar, Rajani; Chaturvedi, Rajnish Kumar; Yadav, Mange Ram

    2015-08-01

    It has been reported in the literature that cholinesterase inhibitors provide protection in Alzheimer's disease (AD). Recent reports have implicated triazine derivatives as cholinesterase inhibitors. These findings led us to investigate anti-cholinestrase property of some novel triazine derivatives synthesized in this laboratory. In vitro cholinesterase inhibition assay was performed using Ellman method. The potent compounds screened out from in vitro assay were further evaluated using scopolamine-induced amnesic mice model. Further, in vitro reactive oxygen species (ROS) scavenging and anti-apoptotic property of the potent compounds were demonstrated against Aβ1-42-induced neurotoxicity in rat hippocampal cells. Their neuroprotective role was assessed using Aβ1-42-induced Alzheimer's-like phenotype in rats. Further, the role of compounds on the activation of the Wnt/β-catenin pathway was studied. The results showed that the chosen compounds are having protective effect in Alzheimer's-like condition; the ex vivo results advocated their anti-cholinestrase and anti-oxidant activities. Treatment with TRZ-15 and TRZ-20 showed neuroprotective ability of the compounds as evidenced from the improved cognitive ability in the animals, and decrease in Aβ1-42 burden and cytochrome c and cleaved caspase-3 levels in the brain. This study also demonstrates positive involvement of the novel triazine derivatives in the Wnt/β-catenin pathway. Immunoblot and immunofluorescence data suggested that ratio of pGSK3/GSK3 and β-catenin got dramatically improved after treatment with TRZ-15 and TRZ-20. TRZ-15 and TRZ-20 showed neuroprotection in scopolamine-induced amnesic mice and Aβ1-42-induced Alzheimer's rat model and also activate the Wnt/β-catenin signaling pathway. These findings conclude that TRZ-15 and TRZ-20 could be a therapeutic approach to treat AD.

  2. Wnt signaling in bone and muscle.

    PubMed

    Rudnicki, Michael A; Williams, Bart O

    2015-11-01

    Wnt signaling plays key roles in many aspects of development. In this review, we will briefly describe the components of signaling pathways induced by Wnt ligands and then describe the current state of research as this applies to aspects of development and disease as it relates to skeletal muscle and bone. We will conclude with a discussion of the parallels and differences in Wnt signaling in these two contexts and how these pathways are being (or could potentially be) targeted for therapeutic treatment of musculoskeletal diseases. This article is part of a Special Issue entitled "Muscle Bone Interactions".

  3. The role of the Wnt canonical signaling in neurodegenerative diseases.

    PubMed

    Libro, Rosaliana; Bramanti, Placido; Mazzon, Emanuela

    2016-08-01

    The Wnt/β-catenin or Wnt canonical pathway controls multiple biological processes throughout development and adult life. Growing evidences have suggested that deregulation of the Wnt canonical pathway could be involved in the pathogenesis of neurodegenerative diseases. The Wnt canonical signaling is a pathway tightly regulated, which activation results in the inhibition of the Glycogen Synthase Kinase 3β (GSK-3β) function and in increased β-catenin activity, that migrates into the nucleus, activating the transcription of the Wnt target genes. Conversely, when the Wnt canonical pathway is turned off, increased levels of GSK-3β promote β-catenin degradation. Hence, GSK-3β could be considered as a key regulator of the Wnt canonical pathway. Of note, GSK-3β has also been involved in the modulation of inflammation and apoptosis, determining the delicate balance between immune tolerance/inflammation and neuronal survival/neurodegeneration. In this review, we have summarized the current acknowledgements about the role of the Wnt canonical pathway in the pathogenesis of some neurodegenerative diseases including Alzheimer's disease, cerebral ischemia, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis, with particular regard to the main in vitro and in vivo studies in this field, by reviewing 85 research articles about. PMID:27370940

  4. The role of the Wnt canonical signaling in neurodegenerative diseases.

    PubMed

    Libro, Rosaliana; Bramanti, Placido; Mazzon, Emanuela

    2016-08-01

    The Wnt/β-catenin or Wnt canonical pathway controls multiple biological processes throughout development and adult life. Growing evidences have suggested that deregulation of the Wnt canonical pathway could be involved in the pathogenesis of neurodegenerative diseases. The Wnt canonical signaling is a pathway tightly regulated, which activation results in the inhibition of the Glycogen Synthase Kinase 3β (GSK-3β) function and in increased β-catenin activity, that migrates into the nucleus, activating the transcription of the Wnt target genes. Conversely, when the Wnt canonical pathway is turned off, increased levels of GSK-3β promote β-catenin degradation. Hence, GSK-3β could be considered as a key regulator of the Wnt canonical pathway. Of note, GSK-3β has also been involved in the modulation of inflammation and apoptosis, determining the delicate balance between immune tolerance/inflammation and neuronal survival/neurodegeneration. In this review, we have summarized the current acknowledgements about the role of the Wnt canonical pathway in the pathogenesis of some neurodegenerative diseases including Alzheimer's disease, cerebral ischemia, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis, with particular regard to the main in vitro and in vivo studies in this field, by reviewing 85 research articles about.

  5. Activation of the Wnt/{beta}-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    SciTech Connect

    Chen, Yanchun; Guan, Yingjun; Liu, Huancai; Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei; Wang, Xin

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. Black-Right-Pointing-Pointer {beta}-catenin translocated from the cell membrane to the nucleus in the ALS mice. Black-Right-Pointing-Pointer Wnt3a, {beta}-catenin and Cyclin D1 co-localized for astrocytes were all increased. Black-Right-Pointing-Pointer BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. Black-Right-Pointing-Pointer BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, {beta}-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/{beta}-catenin signaling pathway. We determined the expression of Wnt3a, {beta}-catenin, and Cyclin D1 in the adult spinal cord of SOD1{sup G93A} ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, {beta}-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, {beta}-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, {beta}-catenin or Cyclin D1 in mature GFAP{sup +} astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that

  6. CTHRC1 Acts as a Prognostic Factor and Promotes Invasiveness of Gastrointestinal Stromal Tumors by Activating Wnt/PCP-Rho Signaling1

    PubMed Central

    Ma, Ming-Ze; Zhuang, Chun; Yang, Xiao-Mei; Zhang, Zi-Zhen; Ma, Hong; Zhang, Wen-Ming; You, Haiyan; Qin, Wenxin; Gu, Jianren; Yang, Shengli; Cao, Hui; Zhang, Zhi-Gang

    2014-01-01

    Gastrointestinal stromal tumors (GISTs) are the major gastrointestinal mesenchymal tumors with a variable malignancy ranging from a curable disorder to highly malignant sarcomas. Metastasis and recurrence are the main causes of death in GIST patients. To further explore the mechanism of metastasis and to more accurately estimate the recurrence risk of GISTs after surgery, the clinical significance and functional role of collagen triple helix repeat containing-1 (CTHRC1) in GIST were investigated. We found that CTHRC1 expression was gradually elevated as the risk grade of NIH classification increased, and was closely correlated with disease-free survival and overall survival in 412 GIST patients. In vitro experiments showed that recombinant CTHRC1 protein promoted the migration and invasion capacities of primary GIST cells. A luciferase reporter assay and pull down assay demonstrated that recombinant CTHRC1 protein activated noncanonical Wnt/PCP-Rho signaling but inhibited canonical Wnt signaling. The pro-motility effect of CTHRC1 on GIST cells was reversed by using a Wnt5a neutralizing antibody and inhibitors of Rac1 or ROCK. Taken together, these data indicate that CTHRC1 may serve as a new predictor of recurrence risk and prognosis in post-operative GIST patients and may play an important role in facilitating GIST progression. Furthermore, CTHRC1 promotes GIST cell migration and invasion by activating Wnt/PCP-Rho signaling, suggesting that the CTHRC1-Wnt/PCP-Rho axis may be a new therapeutic target for interventions against GIST invasion and metastasis. PMID:24726140

  7. Calcitonin gene-related peptide promotes the expression of osteoblastic genes and activates the WNT signal transduction pathway in bone marrow stromal stem cells

    PubMed Central

    ZHOU, RI; YUAN, ZHI; LIU, JIERONG; LIU, JIAN

    2016-01-01

    Calcitonin gene-related peptide (CGRP) is known to induce osteoblastic differentiation and alkaline phosphatase activity in bone marrow stromal stem cells (BMSCs). However, it has remained elusive whether this effect is mediated by CGRP receptors directly or whether other signaling pathways are involved. The present study assessed the possible involvement of the Wnt/β-catenin signaling pathway in the activation of CGRP signaling during the differentiation of BMSCs. First, the differentiation of BMSCs was induced in vitro and the expression of CGRP receptors was examined by western blot analysis. The effects of exogenous CGRP and LiCl, a stimulator of the Wnt/β-catenin signaling pathway, on the osteoblastic differentiation of BMSCs were assessed; furthermore, the expression of mRNA and proteins involved in the Wnt/β-catenin signaling pathway was assessed using quantitative PCR and western blot analyses. The results revealed that CGRP receptors were expressed throughout the differentiation of BMSCs, at days 7 and 14. Incubation with CGRP and LiCl led to the upregulation of the expression of osteoblastic genes associated with the Wnt/β-catenin pathway, including the mRNA of c-myc, cyclin D1, Lef1, Tcf7 and β-catenin as well as β-catenin protein. However, the upregulation of these genes and β-catenin protein was inhibited by CGRP receptor antagonist or secreted frizzled-related protein, an antagonist of the Wnt/β-catenin pathway. The results of the present study therefore suggested that the Wnt/β-catenin signaling pathway may be involved in CGRP- and LiCl-promoted osteoblastic differentiation of BMSCs. PMID:27082317

  8. ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signalling.

    PubMed

    Chakrabarti, Rumela; Wei, Yong; Hwang, Julie; Hang, Xiang; Andres Blanco, Mario; Choudhury, Abrar; Tiede, Benjamin; Romano, Rose-Anne; DeCoste, Christina; Mercatali, Laura; Ibrahim, Toni; Amadori, Dino; Kannan, Nagarajan; Eaves, Connie J; Sinha, Satrajit; Kang, Yibin

    2014-10-01

    Emerging evidence suggests that cancer is populated and maintained by tumour-initiating cells (TICs) with stem-like properties similar to those of adult tissue stem cells. Despite recent advances, the molecular regulatory mechanisms that may be shared between normal and malignant stem cells remain poorly understood. Here we show that the ΔNp63 isoform of the Trp63 transcription factor promotes normal mammary stem cell (MaSC) activity by increasing the expression of the Wnt receptor Fzd7, thereby enhancing Wnt signalling. Importantly, Fzd7-dependent enhancement of Wnt signalling by ΔNp63 also governs tumour-initiating activity of the basal subtype of breast cancer. These findings establish ΔNp63 as a key regulator of stem cells in both normal and malignant mammary tissues and provide direct evidence that breast cancer TICs and normal MaSCs share common regulatory mechanisms.

  9. LIG4 mediates Wnt signalling-induced radioresistance

    PubMed Central

    Jun, Sohee; Jung, Youn-Sang; Suh, Han Na; Wang, Wenqi; Kim, Moon Jong; Oh, Young Sun; Lien, Esther M.; Shen, Xi; Matsumoto, Yoshihisa; McCrea, Pierre D.; Li, Lei; Chen, Junjie; Park, Jae-Il

    2016-01-01

    Despite the implication of Wnt signalling in radioresistance, the underlying mechanisms are unknown. Here we find that high Wnt signalling is associated with radioresistance in colorectal cancer (CRC) cells and intestinal stem cells (ISCs). We find that LIG4, a DNA ligase in DNA double-strand break repair, is a direct target of β-catenin. Wnt signalling enhances non-homologous end-joining repair in CRC, which is mediated by LIG4 transactivated by β-catenin. During radiation-induced intestinal regeneration, LIG4 mainly expressed in the crypts is conditionally upregulated in ISCs, accompanied by Wnt/β-catenin signalling activation. Importantly, among the DNA repair genes, LIG4 is highly upregulated in human CRC cells, in correlation with β-catenin hyperactivation. Furthermore, blocking LIG4 sensitizes CRC cells to radiation. Our results reveal the molecular mechanism of Wnt signalling-induced radioresistance in CRC and ISCs, and further unveils the unexpected convergence between Wnt signalling and DNA repair pathways in tumorigenesis and tissue regeneration. PMID:27009971

  10. LIG4 mediates Wnt signalling-induced radioresistance.

    PubMed

    Jun, Sohee; Jung, Youn-Sang; Suh, Han Na; Wang, Wenqi; Kim, Moon Jong; Oh, Young Sun; Lien, Esther M; Shen, Xi; Matsumoto, Yoshihisa; McCrea, Pierre D; Li, Lei; Chen, Junjie; Park, Jae-Il

    2016-01-01

    Despite the implication of Wnt signalling in radioresistance, the underlying mechanisms are unknown. Here we find that high Wnt signalling is associated with radioresistance in colorectal cancer (CRC) cells and intestinal stem cells (ISCs). We find that LIG4, a DNA ligase in DNA double-strand break repair, is a direct target of β-catenin. Wnt signalling enhances non-homologous end-joining repair in CRC, which is mediated by LIG4 transactivated by β-catenin. During radiation-induced intestinal regeneration, LIG4 mainly expressed in the crypts is conditionally upregulated in ISCs, accompanied by Wnt/β-catenin signalling activation. Importantly, among the DNA repair genes, LIG4 is highly upregulated in human CRC cells, in correlation with β-catenin hyperactivation. Furthermore, blocking LIG4 sensitizes CRC cells to radiation. Our results reveal the molecular mechanism of Wnt signalling-induced radioresistance in CRC and ISCs, and further unveils the unexpected convergence between Wnt signalling and DNA repair pathways in tumorigenesis and tissue regeneration. PMID:27009971

  11. Monitoring Wnt/β-Catenin Signaling in Skin.

    PubMed

    Ku, Amy T; Miao, Qi; Nguyen, Hoang

    2016-01-01

    Wnt signaling through β-catenin plays a crucial role in skin development and homeostasis. Disruption or hyperactivation of this pathway results in skin defects and diseases (Lim and Nusse, Cold Spring Harb Perspect Biol 5(2), 2013). Monitoring Wnt signaling in skin under normal and abnormal conditions is therefore critical to understand the role of this pathway in development and homeostasis.In this chapter, we provide methods to detect Wnt/β-catenin (canonical) signaling in the skin. We present a comprehensive list of Wnt reporter mice and detail the processing of skin tissue to detect reporter genes. From this list, we focus on the three most recent lines that, according to reports, are the most sensitive in skin. Additionally, we describe a protocol to detect nuclear β-catenin, a hallmark of active Wnt signaling, although this technique should be used with caution due to its limited sensitivity. The techniques outlined below will be useful for detecting active Wnt signaling in skin. PMID:27590159

  12. A novel function for Wnt signaling modulating neuronal firing activity and the temporal structure of spontaneous oscillation in the entorhinal-hippocampal circuit.

    PubMed

    Oliva, Carolina A; Inestrosa, Nibaldo C

    2015-07-01

    During early and late postnatal developments, the establishment of functional neuronal connectivity depends on molecules like Wnt that help the recently formed synapses to establish and consolidate their new cellular interactions. However, unlike other molecules, whether Wnt can modulate the firing properties of cells is unknown. Here, for the first time we explore the physiological effect of the canonical and non-canonical Wnt pathways on a circuit that is currently generating oscillatory activity, the entorhinal cortex-hippocampal circuit. Our results indicate that Wnt pathways have strong influence in the circuital and cellular properties depending on the Wnt protein isoforms, concentration, and type of neuronal circuit. Antibodies against canonical and non-canonical ligands, as well as WASP-1 and sFRP-2, demonstrate that constitutive release of Wnts contributes to the maintenance of the network and intrinsic properties of the circuit. Furthermore, we found that the excess of Wnt3a or the permanent intracellular activation of the pathway with BIO-6 accelerates the period of the oscillation by disrupting the oscillatory units (Up states) in short units, presumably by affecting the synaptic mechanisms that couples neurons into the oscillatory cycle, but without affecting the spike generation. Instead, low doses of Wnt5a increase the period of the oscillation in EC by incorporating new cells into the network activity, probably modifying firing activity in other places of the circuit. Moreover, we found that Wnt signaling operates under different principles in the hippocampus. Using pyrvinium pamoate, a Wnt/β-catenin dependent pathway inhibitor, we demonstrated that this pathway is essential to keep the firing activity in the circuit CA3, and in less degree of CA1 circuit. However, CA1 circuit possesses homeostatic mechanisms to up-regulate the firing activity when it has been suppressed in CA3, and to down-modulate the cellular excitability when exacerbated

  13. A novel function for Wnt signaling modulating neuronal firing activity and the temporal structure of spontaneous oscillation in the entorhinal-hippocampal circuit.

    PubMed

    Oliva, Carolina A; Inestrosa, Nibaldo C

    2015-07-01

    During early and late postnatal developments, the establishment of functional neuronal connectivity depends on molecules like Wnt that help the recently formed synapses to establish and consolidate their new cellular interactions. However, unlike other molecules, whether Wnt can modulate the firing properties of cells is unknown. Here, for the first time we explore the physiological effect of the canonical and non-canonical Wnt pathways on a circuit that is currently generating oscillatory activity, the entorhinal cortex-hippocampal circuit. Our results indicate that Wnt pathways have strong influence in the circuital and cellular properties depending on the Wnt protein isoforms, concentration, and type of neuronal circuit. Antibodies against canonical and non-canonical ligands, as well as WASP-1 and sFRP-2, demonstrate that constitutive release of Wnts contributes to the maintenance of the network and intrinsic properties of the circuit. Furthermore, we found that the excess of Wnt3a or the permanent intracellular activation of the pathway with BIO-6 accelerates the period of the oscillation by disrupting the oscillatory units (Up states) in short units, presumably by affecting the synaptic mechanisms that couples neurons into the oscillatory cycle, but without affecting the spike generation. Instead, low doses of Wnt5a increase the period of the oscillation in EC by incorporating new cells into the network activity, probably modifying firing activity in other places of the circuit. Moreover, we found that Wnt signaling operates under different principles in the hippocampus. Using pyrvinium pamoate, a Wnt/β-catenin dependent pathway inhibitor, we demonstrated that this pathway is essential to keep the firing activity in the circuit CA3, and in less degree of CA1 circuit. However, CA1 circuit possesses homeostatic mechanisms to up-regulate the firing activity when it has been suppressed in CA3, and to down-modulate the cellular excitability when exacerbated

  14. Activation of the Transcription Factor GLI1 by WNT Signaling Underlies the Role of SULFATASE 2 as a Regulator of Tissue Regeneration*

    PubMed Central

    Nakamura, Ikuo; Fernandez-Barrena, Maite G.; Ortiz-Ruiz, Maria C.; Almada, Luciana L.; Hu, Chunling; Elsawa, Sherine F.; Mills, Lisa D.; Romecin, Paola A.; Gulaid, Kadra H.; Moser, Catherine D.; Han, Jing-Jing; Vrabel, Anne; Hanse, Eric A.; Akogyeram, Nicholas A.; Albrecht, Jeffrey H.; Monga, Satdarshan P. S.; Sanderson, Schuyler O.; Prieto, Jesus; Roberts, Lewis R.; Fernandez-Zapico, Martin E.

    2013-01-01

    Tissue regeneration requires the activation of a set of specific growth signaling pathways. The identity of these cascades and their biological roles are known; however, the molecular mechanisms regulating the interplay between these pathways remain poorly understood. Here, we define a new role for SULFATASE 2 (SULF2) in regulating tissue regeneration and define the WNT-GLI1 axis as a novel downstream effector for this sulfatase in a liver model of tissue regeneration. SULF2 is a heparan sulfate 6-O-endosulfatase, which releases growth factors from extracellular storage sites turning active multiple signaling pathways. We demonstrate that SULF2-KO mice display delayed regeneration after partial hepatectomy (PH). Mechanistic analysis of the SULF2-KO phenotype showed a decrease in WNT signaling pathway activity in vivo. In isolated hepatocytes, SULF2 deficiency blocked WNT-induced β-CATENIN nuclear translocation, TCF activation, and proliferation. Furthermore, we identified the transcription factor GLI1 as a novel target of the SULF2-WNT cascade. WNT induces GLI1 expression in a SULF2- and β-CATENIN-dependent manner. GLI1-KO mice phenocopied the SULF2-KO, showing delayed regeneration and decreased hepatocyte proliferation. Moreover, we identified CYCLIN D1, a key mediator of cell growth during tissue regeneration, as a GLI1 transcriptional target. GLI1 binds to the cyclin d1 promoter and regulates its activity and expression. Finally, restoring GLI1 expression in the liver of SULF2-KO mice after PH rescues CYCLIN D1 expression and hepatocyte proliferation to wild-type levels. Thus, together these findings define a novel pathway in which SULF2 regulates tissue regeneration in part via the activation of a novel WNT-GLI1-CYCLIN D1 pathway. PMID:23740243

  15. Targeted Overexpression of TGF-α in the Corneal Epithelium of Adult Transgenic Mice Induces Changes in Anterior Segment Morphology and Activates Noncanonical Wnt Signaling

    PubMed Central

    Yuan, Yong; Yeh, Lung-Kun; Liu, Hongshan; Yamanaka, Osamu; Hardie, William D.; Kao, Winston W.-Y.; Liu, Chia-Yang

    2013-01-01

    Purpose. Transforming growth factor-alpha (TGF-α) transduces its signal through the epidermal growth factor receptor and is essential for corneal epithelial homeostasis. Previous studies have demonstrated that overexpression of TGF-α in the developing eye leads to anterior segment dysgenesis. However, the underlying mechanisms remain unclear. Here we examined the effects of TGF-α overexpression on adult ocular surface homeostasis. Methods. Binary Tet-On transgenic Krt12rtTA/tet-O-TGF-α mice were subjected to doxycycline (Dox) induction to overexpress TGF-α in the corneal epithelium. Intraocular pressure (IOP) was measured by noninvasive tonometry. The enucleated eyes of the experimental mice were subjected to histopathology, immunohistochemistry, and biochemistry examination. Results. Histologic and immunofluorescent examination showed that double-transgenic mice overexpressing TGF-α manifested peripheral anterior synechiae. Elevation of IOP, activation of glial cells, and loss of retinal ganglion cells were also observed. Quantitative real-time PCR revealed that the expressions of genes (RXRα, PITX2, and FOXC1) related to anterior segment dysgenesis were downregulated. Canonical Wnt signaling was suppressed, whereas noncanonical Wnt ligands (Wnt4 and Wnt5a) were upregulated. Increased myosin light chain phosphorylation suggested that noncanonical Wnt signaling is activated in affected eyes. Conclusions. Overexpression of TGF-α in the corneal epithelium induces changes in anterior segment morphology. Corneal endothelial abnormalities are associated with the activation of the noncanonical Wnt and RhoA/ROCK signaling axis, indicating a potential application of RhoA/ROCK inhibitors as a therapeutic strategy for certain types of secondary angle-closure glaucoma. PMID:23412089

  16. Diet-induced obesity elevates colonic TNF-alpha in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inflammation associated with obesity may play a role in colorectal carcinogenesis, but the underlying mechanism remains unclear. This study investigated whether the Wnt pathway, an intracellular signaling cascade that plays a critical role in colorectal carcinogenesis, is activated by obesity-induce...

  17. The Wnt3a/β-catenin target gene Mesogenin1 controls the segmentation clock by activating a Notch signaling program

    PubMed Central

    Chalamalasetty, Ravindra B.; Dunty, William C.; Biris, Kristin K.; Ajima, Rieko; Iacovino, Michelina; Beisaw, Arica; Feigenbaum, Lionel; Chapman, Deborah L.; Yoon, Jeong Kyo; Kyba, Michael; Yamaguchi, Terry P.

    2013-01-01

    Summary Segmentation is an organizing principle of body plans. The segmentation clock, a molecular oscillator best illustrated by the cyclic expression of Notch signaling genes, controls the periodic cleavage of somites from unsegmented presomitic mesoderm (PSM) during vertebrate segmentation. Wnt3a controls the spatiotemporal expression of cyclic Notch genes, however the underlying mechanisms remain obscure. Transcriptional profiling of Wnt3a−/− embryos led to the identification of the bHLH transcription factor, Mesogenin1 (Msgn1), as a direct target gene of Wnt3a. To identify Msgn1 targets, we performed genome-wide studies of Msgn1 activity in embryonic stem cells. Here we show that Msgn1 is a major transcriptional activator of a Notch signaling program, synergizing with Notch to trigger clock gene expression. Msgn1 also indirectly regulates cyclic genes in the Fgf and Wnt pathways. Thus, Msgn1 is a central component of a transcriptional cascade that translates a spatial Wnt3a gradient into a temporal pattern of clock gene expression. PMID:21750544

  18. Both Canonical and Non-Canonical Wnt Signaling Independently Promote Stem Cell Growth in Mammospheres

    PubMed Central

    Many, Alexander M.; Brown, Anthony M. C.

    2014-01-01

    The characterization of mammary stem cells, and signals that regulate their behavior, is of central importance in understanding developmental changes in the mammary gland and possibly for targeting stem-like cells in breast cancer. The canonical Wnt/β-catenin pathway is a signaling mechanism associated with maintenance of self-renewing stem cells in many tissues, including mammary epithelium, and can be oncogenic when deregulated. Wnt1 and Wnt3a are examples of ligands that activate the canonical pathway. Other Wnt ligands, such as Wnt5a, typically signal via non-canonical, β-catenin-independent, pathways that in some cases can antagonize canonical signaling. Since the role of non-canonical Wnt signaling in stem cell regulation is not well characterized, we set out to investigate this using mammosphere formation assays that reflect and quantify stem cell properties. Ex vivo mammosphere cultures were established from both wild-type and Wnt1 transgenic mice and were analyzed in response to manipulation of both canonical and non-canonical Wnt signaling. An increased level of mammosphere formation was observed in cultures derived from MMTV-Wnt1 versus wild-type animals, and this was blocked by treatment with Dkk1, a selective inhibitor of canonical Wnt signaling. Consistent with this, we found that a single dose of recombinant Wnt3a was sufficient to increase mammosphere formation in wild-type cultures. Surprisingly, we found that Wnt5a also increased mammosphere formation in these assays. We confirmed that this was not caused by an increase in canonical Wnt/β-catenin signaling but was instead mediated by non-canonical Wnt signals requiring the receptor tyrosine kinase Ror2 and activity of the Jun N-terminal kinase, JNK. We conclude that both canonical and non-canonical Wnt signals have positive effects promoting stem cell activity in mammosphere assays and that they do so via independent signaling mechanisms. PMID:25019931

  19. The Use of Chick Embryos to Study Wnt Activity Gradients.

    PubMed

    Galli, Lisa M; Barnes, Tiffany; Burrus, Laura W

    2016-01-01

    The chick spinal cord provides a valuable model for assessing Wnt signaling activity. Loss or gain of function constructs that are transfected by electroporation can be directed to a single side of the spinal cord, thus leaving the contralateral side as an internal control. Here, we describe a method for measuring Wnt signaling via the use of BAT-Gal, a β-catenin dependent Wnt reporter. PMID:27590153

  20. A bi-modal function of Wnt signalling directs an FGF activity gradient to spatially regulate neuronal differentiation in the midbrain.

    PubMed

    Dyer, Carlene; Blanc, Eric; Hanisch, Anja; Roehl, Henry; Otto, Georg W; Yu, Tian; Basson, M A; Knight, Robert

    2014-01-01

    FGFs and Wnts are important morphogens during midbrain development, but their importance and potential interactions during neurogenesis are poorly understood. We have employed a combination of genetic and pharmacological manipulations in zebrafish to show that during neurogenesis FGF activity occurs as a gradient along the anterior-posterior axis of the dorsal midbrain and directs spatially dynamic expression of the Hairy gene her5. As FGF activity diminishes during development, Her5 is lost and differentiation of neuronal progenitors occurs in an anterior-posterior manner. We generated mathematical models to explain how Wnt and FGFs direct the spatial differentiation of neurons in the midbrain through Wnt regulation of FGF signalling. These models suggested that a negative-feedback loop controlled by Wnt is crucial for regulating FGF activity. We tested Sprouty genes as mediators of this regulatory loop using conditional mouse knockouts and pharmacological manipulations in zebrafish. These reveal that Sprouty genes direct the positioning of early midbrain neurons and are Wnt responsive in the midbrain. We propose a model in which Wnt regulates FGF activity at the isthmus by driving both FGF and Sprouty gene expression. This controls a dynamic, posteriorly retracting expression of her5 that directs neuronal differentiation in a precise spatiotemporal manner in the midbrain.

  1. Conformational change of Dishevelled plays a key regulatory role in the Wnt signaling pathways

    PubMed Central

    Lee, Ho-Jin; Shi, De-Li; Zheng, Jie J

    2015-01-01

    The intracellular signaling molecule Dishevelled (Dvl) mediates canonical and non-canonical Wnt signaling via its PDZ domain. Different pathways diverge at this point by a mechanism that remains unclear. Here we show that the peptide-binding pocket of the Dvl PDZ domain can be occupied by Dvl's own highly conserved C-terminus, inducing a closed conformation. In Xenopus, Wnt-regulated convergent extension (CE) is readily affected by Dvl mutants unable to form the closed conformation than by wild-type Dvl. We also demonstrate that while Dvl cooperates with other Wnt pathway elements to activate canonical Wnt signaling, the open conformation of Dvl more effectively activates Jun N-terminal kinase (JNK). These results suggest that together with other players in the Wnt signaling pathway, the conformational change of Dvl regulates Wnt stimulated JNK activity in the non-canonical Wnt signaling. DOI: http://dx.doi.org/10.7554/eLife.08142.001 PMID:26297804

  2. Canonical wnt signaling is required for commissural axon guidance

    PubMed Central

    Avilés, Evelyn C.

    2015-01-01

    ABSTRACT Morphogens have been identified as guidance cues for postcrossing commissural axons in the spinal cord. Shh has a dual effect on postcrossing commissural axons: a direct repellent effect mediated by Hhip as a receptor, and an indirect effect by shaping a Wnt activity gradient. Wnts were shown to be attractants for postcrossing commissural axons in both chicken and mouse embryos. In mouse, the effects of Wnts on axon guidance were concluded to depend on the planar cell polarity (PCP) pathway. Canonical Wnt signaling was excluded based on the absence of axon guidance defects in mice lacking Lrp6 which is an obligatory coreceptor for Fzd in canonical Wnt signaling. In the loss‐of‐function studies reported here, we confirmed a role for the PCP pathway in postcrossing commissural axon guidance also in the chicken embryo. However, taking advantage of the precise temporal control of gene silencing provided by in ovo RNAi, we demonstrate that canonical Wnt signaling is also required for proper guidance of postcrossing commissural axons in the developing spinal cord. Thus, axon guidance does not seem to depend on any one of the classical Wnt signaling pathways but rather involve a network of Wnt receptors and downstream components. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 190–208, 2016 PMID:26014644

  3. Different Wnt signals act through the Frizzled and RYK receptors during Drosophila salivary gland migration.

    PubMed

    Harris, Katherine E; Beckendorf, Steven K

    2007-06-01

    Guided cell migration is necessary for the proper function and development of many tissues, one of which is the Drosophila embryonic salivary gland. Here we show that two distinct Wnt signaling pathways regulate salivary gland migration. Early in migration, the salivary gland responds to a WNT4-Frizzled signal for proper positioning within the embryo. Disruption of this signal, through mutations in Wnt4, frizzled or frizzled 2, results in misguided salivary glands that curve ventrally. Furthermore, disruption of downstream components of the canonical Wnt pathway, such as dishevelled or Tcf, also results in ventrally curved salivary glands. Analysis of a second Wnt signal, which acts through the atypical Wnt receptor Derailed, indicates a requirement for Wnt5 signaling late in salivary gland migration. WNT5 is expressed in the central nervous system and acts as a repulsive signal, needed to keep the migrating salivary gland on course. The receptor for WNT5, Derailed, is expressed in the actively migrating tip of the salivary glands. In embryos mutant for derailed or Wnt5, salivary gland migration is disrupted; the tip of the gland migrates abnormally toward the central nervous system. Our results suggest that both the Wnt4-frizzled pathway and a separate Wnt5-derailed pathway are needed for proper salivary gland migration. PMID:17507403

  4. Mechanotransduction activates canonical Wnt/β-catenin signaling to promote lymphatic vascular patterning and the development of lymphatic and lymphovenous valves.

    PubMed

    Cha, Boksik; Geng, Xin; Mahamud, Md Riaj; Fu, Jianxin; Mukherjee, Anish; Kim, Yeunhee; Jho, Eek-Hoon; Kim, Tae Hoon; Kahn, Mark L; Xia, Lijun; Dixon, J Brandon; Chen, Hong; Srinivasan, R Sathish

    2016-06-15

    Lymphatic vasculature regulates fluid homeostasis by returning interstitial fluid to blood circulation. Lymphatic endothelial cells (LECs) are the building blocks of the entire lymphatic vasculature. LECs originate as a homogeneous population of cells predominantly from the embryonic veins and undergo stepwise morphogenesis to become the lymphatic capillaries, collecting vessels or valves. The molecular mechanisms underlying the morphogenesis of the lymphatic vasculature remain to be fully understood. Here we show that canonical Wnt/β-catenin signaling is necessary for lymphatic vascular morphogenesis. Lymphatic vascular-specific ablation of β-catenin in mice prevents the formation of lymphatic and lymphovenous valves. Additionally, lymphatic vessel patterning is defective in these mice, with abnormal recruitment of mural cells. We found that oscillatory shear stress (OSS), which promotes lymphatic vessel maturation, triggers Wnt/β-catenin signaling in LECs. In turn, Wnt/β-catenin signaling controls the expression of several molecules, including the lymphedema-associated transcription factor FOXC2. Importantly, FOXC2 completely rescues the lymphatic vessel patterning defects in mice lacking β-catenin. Thus, our work reveals that mechanical stimulation is a critical regulator of lymphatic vascular development via activation of Wnt/β-catenin signaling and, in turn, FOXC2.

  5. Mechanotransduction activates canonical Wnt/β-catenin signaling to promote lymphatic vascular patterning and the development of lymphatic and lymphovenous valves

    PubMed Central

    Cha, Boksik; Geng, Xin; Mahamud, Md. Riaj; Fu, Jianxin; Mukherjee, Anish; Kim, Yeunhee; Jho, Eek-hoon; Kim, Tae Hoon; Kahn, Mark L.; Xia, Lijun; Dixon, J. Brandon; Chen, Hong; Srinivasan, R. Sathish

    2016-01-01

    Lymphatic vasculature regulates fluid homeostasis by returning interstitial fluid to blood circulation. Lymphatic endothelial cells (LECs) are the building blocks of the entire lymphatic vasculature. LECs originate as a homogeneous population of cells predominantly from the embryonic veins and undergo stepwise morphogenesis to become the lymphatic capillaries, collecting vessels or valves. The molecular mechanisms underlying the morphogenesis of the lymphatic vasculature remain to be fully understood. Here we show that canonical Wnt/β-catenin signaling is necessary for lymphatic vascular morphogenesis. Lymphatic vascular-specific ablation of β-catenin in mice prevents the formation of lymphatic and lymphovenous valves. Additionally, lymphatic vessel patterning is defective in these mice, with abnormal recruitment of mural cells. We found that oscillatory shear stress (OSS), which promotes lymphatic vessel maturation, triggers Wnt/β-catenin signaling in LECs. In turn, Wnt/β-catenin signaling controls the expression of several molecules, including the lymphedema-associated transcription factor FOXC2. Importantly, FOXC2 completely rescues the lymphatic vessel patterning defects in mice lacking β-catenin. Thus, our work reveals that mechanical stimulation is a critical regulator of lymphatic vascular development via activation of Wnt/β-catenin signaling and, in turn, FOXC2. PMID:27313318

  6. WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited

    PubMed Central

    Boulter, Luke; Guest, Rachel V.; Kendall, Timothy J.; Wilson, David H.; Wojtacha, Davina; Robson, Andrew J.; Ridgway, Rachel A.; Samuel, Kay; Van Rooijen, Nico; Barry, Simon T.; Wigmore, Stephen J.; Sansom, Owen J.; Forbes, Stuart J.

    2015-01-01

    Cholangiocarcinoma (CC) is typically diagnosed at an advanced stage and is refractory to surgical intervention and chemotherapy. Despite a global increase in the incidence of CC, little progress has been made toward the development of treatments for this cancer. Here we utilized human tissue; CC cell xenografts; a p53-deficient transgenic mouse model; and a non-transgenic, chemically induced rat model of CC that accurately reflects both the inflammatory and regenerative background associated with human CC pathology. Using these systems, we determined that the WNT pathway is highly activated in CCs and that inflammatory macrophages are required to establish this WNT-high state in vivo. Moreover, depletion of macrophages or inhibition of WNT signaling with one of two small molecule WNT inhibitors in mouse and rat CC models markedly reduced CC proliferation and increased apoptosis, resulting in tumor regression. Together, these results demonstrate that enhanced WNT signaling is a characteristic of CC and suggest that targeting WNT signaling pathways has potential as a therapeutic strategy for CC. PMID:25689248

  7. Wnt signaling in adult intestinal stem cells and cancer.

    PubMed

    Krausova, Michaela; Korinek, Vladimir

    2014-03-01

    Signaling initiated by secreted glycoproteins of the Wnt family regulates many aspects of embryonic development and it is involved in homeostasis of adult tissues. In the gastrointestinal (GI) tract the Wnt pathway maintains the self-renewal capacity of epithelial stem cells. The stem cell attributes are conferred by mutual interactions of the stem cell with its local microenvironment, the stem cell niche. The niche ensures that the threshold of Wnt signaling in the stem cell is kept in physiological range. In addition, the Wnt pathway involves various feedback loops that balance the opposing processes of cell proliferation and differentiation. Today, we have compelling evidence that mutations causing aberrant activation of the Wnt pathway promote expansion of undifferentiated progenitors and lead to cancer. The review summarizes recent advances in characterization of adult epithelial stem cells in the gut. We mainly focus on discoveries related to molecular mechanisms regulating the output of the Wnt pathway. Moreover, we present novel experimental approaches utilized to investigate the epithelial cell signaling circuitry in vivo and in vitro. Pivotal aspects of tissue homeostasis are often deduced from studies of tumor cells; therefore, we also discuss some latest results gleaned from the deep genome sequencing studies of human carcinomas of the colon and rectum. PMID:24308963

  8. Stearoyl CoA desaturase is required to produce active, lipid-modified Wnt proteins.

    PubMed

    Rios-Esteves, Jessica; Resh, Marilyn D

    2013-09-26

    Wnt proteins contain palmitoleic acid, an unusual lipid modification. Production of an active Wnt signal requires the acyltransferase Porcupine and depends on the attachment of palmitoleic acid to Wnt. The source of this monounsaturated fatty acid has not been identified, and it is not known how Porcupine recognizes its substrate and whether desaturation occurs before or after fatty acid transfer to Wnt. Here, we show that stearoyl desaturase (SCD) generates a monounsaturated fatty acid substrate that is then transferred by Porcupine to Wnt. Treatment of cells with SCD inhibitors blocked incorporation of palmitate analogs into Wnt3a and Wnt5a and reduced Wnt secretion as well as autocrine and paracrine Wnt signaling. The SCD inhibitor effects were rescued by exogenous addition of monounsaturated fatty acids. We propose that SCD is a key molecular player responsible for Wnt biogenesis and processing and that SCD inhibition provides an alternative mechanism for blocking Wnt pathway activation.

  9. Stearoyl CoA desaturase is required to produce active, lipid-modified Wnt proteins

    PubMed Central

    Rios-Esteves, Jessica; Resh, Marilyn D.

    2013-01-01

    Summary Wnt proteins contain an unusual lipid modification, palmitoleic acid. Production of an active Wnt signal requires the acyltransferase Porcupine and depends on attachment of palmitoleic acid to Wnt. The source of this monounsaturated fatty acid has not been identified, and it is not known how Porcupine recognizes its substrate and whether desaturation occurs before or after fatty acid transfer to Wnt. Here we show that stearoyl desaturase (SCD) generates a monounsaturated fatty acid substrate which is then transferred by Porcupine to Wnt. Treatment of cells with SCD inhibitors blocked incorporation of palmitate analogs into Wnt3a and Wnt5a, and reduced Wnt secretion as well as autocrine and paracrine Wnt signaling. The SCD inhibitor effects were rescued by exogenous addition of monounsaturated fatty acids. We propose that SCD is a key molecular player responsible for Wnt biogenesis and processing and that SCD inhibition provides an alternative mechanism for blocking Wnt pathway activation. PMID:24055053

  10. Stearoyl CoA desaturase is required to produce active, lipid-modified Wnt proteins.

    PubMed

    Rios-Esteves, Jessica; Resh, Marilyn D

    2013-09-26

    Wnt proteins contain palmitoleic acid, an unusual lipid modification. Production of an active Wnt signal requires the acyltransferase Porcupine and depends on the attachment of palmitoleic acid to Wnt. The source of this monounsaturated fatty acid has not been identified, and it is not known how Porcupine recognizes its substrate and whether desaturation occurs before or after fatty acid transfer to Wnt. Here, we show that stearoyl desaturase (SCD) generates a monounsaturated fatty acid substrate that is then transferred by Porcupine to Wnt. Treatment of cells with SCD inhibitors blocked incorporation of palmitate analogs into Wnt3a and Wnt5a and reduced Wnt secretion as well as autocrine and paracrine Wnt signaling. The SCD inhibitor effects were rescued by exogenous addition of monounsaturated fatty acids. We propose that SCD is a key molecular player responsible for Wnt biogenesis and processing and that SCD inhibition provides an alternative mechanism for blocking Wnt pathway activation. PMID:24055053

  11. MiR-1207 overexpression promotes cancer stem cell-like traits in ovarian cancer by activating the Wnt/β-catenin signaling pathway.

    PubMed

    Wu, Geyan; Liu, Aibin; Zhu, Jinrong; Lei, Fangyong; Wu, Shu; Zhang, Xin; Ye, Liping; Cao, Lixue; He, Shanyang

    2015-10-01

    Wnt/β-catenin signaling pathway is strictly controlled by multiple negative regulators. However, how tumor cells override the negative regulatory effects to maintain constitutive activation of Wnt/β-catenin signaling, which is commonly observed in various cancers, remains puzzling. In current study, we reported that overexpression of miR-1207 in ovarian cancer activated Wnt/β-catenin signaling by directly targeting and suppressing secreted Frizzled-related protein 1 (SFRP1), AXIN2 and inhibitor of β-catenin and TCF-4 (ICAT), which are vital negative regulators of the Wnt/β-catenin pathway. We found that the expression of miR-1207 was ubiquitously upregulated in both ovarian cancer tissues and cells, which inversely correlated with patient overall survival. Furthermore, overexpression of miR-1207 enhanced, while silencing miR-1207 reduced, stem cell-like traits of ovarian cancer cells in vitro and in vivo, including tumor sphere formation capability and proportion of SP+ and CD133+ cells. Importantly, upregulating miR-1207 promoted, while silencing miR-1207 inhibited, the tumorigenicity of ovarian cancer cells. Hence, our results suggest that miR-1207 plays a vital role in promoting the cancer stem cell-like phenotype in ovarian cancer and might represent a potential target for anti-ovarian cancer therapy.

  12. [Wnt signalling pathway and cervical cancer].

    PubMed

    Ramos-Solano, Moisés; Álvarez-Zavala, Monserrat; García-Castro, Beatriz; Jave-Suárez, Luis Felipe; Aguilar-Lemarroy, Adriana

    2015-01-01

    Cervical cancer (CC) is a pathology that arises in the cervical epithelium, whose major cause of risk is human papillomavirus (HPV) infection. Due to the fact that HPV infection per se is not enough to generate a carcinogenic process, it has been proposed that alterations in the Wnt signaling pathway are involved in cervical carcinogenesis. The Wnt family consists of 13 receptors and 19 ligands, and it is highly conserved phylogenetically due to its contribution in different biological processes, such as embryogenesis and tissue regeneration. Additionally, this signaling pathway modulates various cellular functions, for instance: cell proliferation, differentiation, migration and cell polarity. This paper describes the Wnt signaling pathways and alterations that have been found in members of this family in different cancer types and, especially, in CC.

  13. Characterization of Wnt/β-catenin signaling in rhabdomyosarcoma.

    PubMed

    Annavarapu, Srinivas R; Cialfi, Samantha; Dominici, Carlo; Kokai, George K; Uccini, Stefania; Ceccarelli, Simona; McDowell, Heather P; Helliwell, Timothy R

    2013-10-01

    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and accounts for about 5% of all malignant paediatric tumours. β-Catenin, a multifunctional nuclear transcription factor in the canonical Wnt signaling pathway, is active in myogenesis and embryonal somite patterning. Dysregulation of Wnt signaling facilitates tumour invasion and metastasis. This study characterizes Wnt/β-catenin signaling and functional activity in paediatric embryonal and alveolar RMS. Immunohistochemical assessment of paraffin-embedded tissues from 44 RMS showed β-catenin expression in 26 cases with cytoplasmic/membranous expression in 9/14 cases of alveolar RMS, and 15/30 cases of embryonal RMS, whereas nuclear expression was only seen in 2 cases of embryonal RMS. The potential functional significance of β-catenin expression was tested in four RMS cell lines, two derived from embryonal (RD and RD18) RMS and two from alveolar (Rh4 and Rh30) RMS. Western blot analysis demonstrated the expression of Wnt-associated proteins including β-catenin, glycogen synthase kinase-3β, disheveled, axin-1, naked, LRP-6 and cadherins in all cell lines. Cell fractionation and immunofluorescence studies of the cell lines (after stimulation by human recombinant Wnt3a) showed reduced phosphorylation of β-catenin, stabilization of the active cytosolic form and nuclear translocation of β-catenin. Reporter gene assay demonstrated a T-cell factor/lymphoid-enhancing factor-mediated transactivation in these cells. In response to human recombinant Wnt3a, the alveolar RMS cells showed a significant decrease in proliferation rate and induction of myogenic differentiation (myogenin, MyoD1 and myf5). These data indicate that the central regulatory components of canonical Wnt/β-catenin signaling are expressed and that this pathway is functionally active in a significant subset of RMS tumours and might represent a novel therapeutic target.

  14. Characterization of Wnt/β-catenin signaling in rhabdomyosarcoma.

    PubMed

    Annavarapu, Srinivas R; Cialfi, Samantha; Dominici, Carlo; Kokai, George K; Uccini, Stefania; Ceccarelli, Simona; McDowell, Heather P; Helliwell, Timothy R

    2013-10-01

    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and accounts for about 5% of all malignant paediatric tumours. β-Catenin, a multifunctional nuclear transcription factor in the canonical Wnt signaling pathway, is active in myogenesis and embryonal somite patterning. Dysregulation of Wnt signaling facilitates tumour invasion and metastasis. This study characterizes Wnt/β-catenin signaling and functional activity in paediatric embryonal and alveolar RMS. Immunohistochemical assessment of paraffin-embedded tissues from 44 RMS showed β-catenin expression in 26 cases with cytoplasmic/membranous expression in 9/14 cases of alveolar RMS, and 15/30 cases of embryonal RMS, whereas nuclear expression was only seen in 2 cases of embryonal RMS. The potential functional significance of β-catenin expression was tested in four RMS cell lines, two derived from embryonal (RD and RD18) RMS and two from alveolar (Rh4 and Rh30) RMS. Western blot analysis demonstrated the expression of Wnt-associated proteins including β-catenin, glycogen synthase kinase-3β, disheveled, axin-1, naked, LRP-6 and cadherins in all cell lines. Cell fractionation and immunofluorescence studies of the cell lines (after stimulation by human recombinant Wnt3a) showed reduced phosphorylation of β-catenin, stabilization of the active cytosolic form and nuclear translocation of β-catenin. Reporter gene assay demonstrated a T-cell factor/lymphoid-enhancing factor-mediated transactivation in these cells. In response to human recombinant Wnt3a, the alveolar RMS cells showed a significant decrease in proliferation rate and induction of myogenic differentiation (myogenin, MyoD1 and myf5). These data indicate that the central regulatory components of canonical Wnt/β-catenin signaling are expressed and that this pathway is functionally active in a significant subset of RMS tumours and might represent a novel therapeutic target. PMID:23999248

  15. Differential Regulation of Disheveled in a Novel Vegetal Cortical Domain in Sea Urchin Eggs and Embryos: Implications for the Localized Activation of Canonical Wnt Signaling

    PubMed Central

    Peng, ChiehFu Jeff; Wikramanayake, Athula H.

    2013-01-01

    Pattern formation along the animal-vegetal (AV) axis in sea urchin embryos is initiated when canonical Wnt (cWnt) signaling is activated in vegetal blastomeres. The mechanisms that restrict cWnt signaling to vegetal blastomeres are not well understood, but there is increasing evidence that the egg’s vegetal cortex plays a critical role in this process by mediating localized “activation” of Disheveled (Dsh). To investigate how Dsh activity is regulated along the AV axis, sea urchin-specific Dsh antibodies were used to examine expression, subcellular localization, and post-translational modification of Dsh during development. Dsh is broadly expressed during early sea urchin development, but immunolocalization studies revealed that this protein is enriched in a punctate pattern in a novel vegetal cortical domain (VCD) in the egg. Vegetal blastomeres inherit this VCD during embryogenesis, and at the 60-cell stage Dsh puncta are seen in all cells that display nuclear β-catenin. Analysis of Dsh post-translational modification using two-dimensional Western blot analysis revealed that compared to Dsh pools in the bulk cytoplasm, this protein is differentially modified in the VCD and in the 16-cell stage micromeres that partially inherit this domain. Dsh localization to the VCD is not directly affected by disruption of microfilaments and microtubules, but unexpectedly, microfilament disruption led to degradation of all the Dsh pools in unfertilized eggs over a period of incubation suggesting that microfilament integrity is required for maintaining Dsh stability. These results demonstrate that a pool of differentially modified Dsh in the VCD is selectively inherited by the vegetal blastomeres that activate cWnt signaling in early embryos, and suggests that this domain functions as a scaffold for localized Dsh activation. Localized cWnt activation regulates AV axis patterning in many metazoan embryos. Hence, it is possible that the VCD is an evolutionarily conserved

  16. Wnt signaling regulates multipolar-to-bipolar transition of migrating neurons in the cerebral cortex.

    PubMed

    Boitard, Michael; Bocchi, Riccardo; Egervari, Kristof; Petrenko, Volodymyr; Viale, Beatrice; Gremaud, Stéphane; Zgraggen, Eloisa; Salmon, Patrick; Kiss, Jozsef Z

    2015-03-01

    The precise timing of pyramidal cell migration from the ventricular germinal zone to the cortical plate is essential for establishing cortical layers, and migration errors can lead to neurodevelopmental disorders underlying psychiatric and neurological diseases. Here, we report that Wnt canonical as well as non-canonical signaling is active in pyramidal precursors during radial migration. We demonstrate using constitutive and conditional genetic strategies that transient downregulation of canonical Wnt/β-catenin signaling during the multipolar stage plays a critical role in polarizing and orienting cells for radial migration. In addition, we show that reduced canonical Wnt signaling is triggered cell autonomously by time-dependent expression of Wnt5A and activation of non-canonical signaling. We identify ephrin-B1 as a canonical Wnt-signaling-regulated target in control of the multipolar-to-bipolar switch. These findings highlight the critical role of Wnt signaling activity in neuronal positioning during cortical development. PMID:25732825

  17. Wnt signaling regulates multipolar-to-bipolar transition of migrating neurons in the cerebral cortex.

    PubMed

    Boitard, Michael; Bocchi, Riccardo; Egervari, Kristof; Petrenko, Volodymyr; Viale, Beatrice; Gremaud, Stéphane; Zgraggen, Eloisa; Salmon, Patrick; Kiss, Jozsef Z

    2015-03-01

    The precise timing of pyramidal cell migration from the ventricular germinal zone to the cortical plate is essential for establishing cortical layers, and migration errors can lead to neurodevelopmental disorders underlying psychiatric and neurological diseases. Here, we report that Wnt canonical as well as non-canonical signaling is active in pyramidal precursors during radial migration. We demonstrate using constitutive and conditional genetic strategies that transient downregulation of canonical Wnt/β-catenin signaling during the multipolar stage plays a critical role in polarizing and orienting cells for radial migration. In addition, we show that reduced canonical Wnt signaling is triggered cell autonomously by time-dependent expression of Wnt5A and activation of non-canonical signaling. We identify ephrin-B1 as a canonical Wnt-signaling-regulated target in control of the multipolar-to-bipolar switch. These findings highlight the critical role of Wnt signaling activity in neuronal positioning during cortical development.

  18. Wnt/beta-Catenin Signaling and Small Molecule Inhibitors

    PubMed Central

    Voronkov, Andrey; Krauss, Stefan

    2012-01-01

    Wnt/β-catenin signaling is a branch of a functional network that dates back to the first metazoans and it is involved in a broad range of biological systems including stem cells, embryonic development and adult organs. Deregulation of components involved in Wnt/β-catenin signaling has been implicated in a wide spectrum of diseases including a number of cancers and degenerative diseases. The key mediator of Wnt signaling, β-catenin, serves several cellular functions. It functions in a dynamic mode at multiple cellular locations, including the plasma membrane, where β-catenin contributes to the stabilization of intercellular adhesive complexes, the cytoplasm where β-catenin levels are regulated and the nucleus where β-catenin is involved in transcriptional regulation and chromatin interactions. Central effectors of β-catenin levels are a family of cysteine-rich secreted glycoproteins, known as Wnt morphogens. Through the LRP5/6-Frizzled receptor complex, Wnts regulate the location and activity of the destruction complex and consequently intracellular β- catenin levels. However, β-catenin levels and their effects on transcriptional programs are also influenced by multiple other factors including hypoxia, inflammation, hepatocyte growth factor-mediated signaling, and the cell adhesion molecule E-cadherin. The broad implications of Wnt/β-catenin signaling in development, in the adult body and in disease render the pathway a prime target for pharmacological research and development. The intricate regulation of β-catenin at its various locations provides alternative points for therapeutic interventions. PMID:23016862

  19. Wnt Signaling in Neuromuscular Junction Development

    PubMed Central

    Koles, Kate

    2012-01-01

    Wnt proteins are best known for their profound roles in cell patterning, because they are required for the embryonic development of all animal species studied to date. Besides regulating cell fate, Wnt proteins are gaining increasing recognition for their roles in nervous system development and function. New studies indicate that multiple positive and negative Wnt signaling pathways take place simultaneously during the formation of vertebrate and invertebrate neuromuscular junctions. Although some Wnts are essential for the formation of NMJs, others appear to play a more modulatory role as part of multiple signaling pathways. Here we review the most recent findings regarding the function of Wnts at the NMJ from both vertebrate and invertebrate model systems. PMID:22510459

  20. Wnt signaling in bone formation and its therapeutic potential for bone diseases

    PubMed Central

    Kim, Jeong Hwan; Liu, Xing; Wang, Jinhua; Chen, Xiang; Zhang, Hongyu; Kim, Stephanie H.; Cui, Jing; Li, Ruidong; Zhang, Wenwen; Kong, Yuhan; Zhang, Jiye; Shui, Wei; Lamplot, Joseph; Rogers, Mary Rose; Zhao, Chen; Wang, Ning; Rajan, Prashant; Tomal, Justin; Statz, Joseph; Wu, Ningning; Luu, Hue H.; Haydon, Rex C.

    2013-01-01

    The Wnt signaling pathway plays an important role not only in embryonic development but also in the maintenance and differentiation of the stem cells in adulthood. In particular, Wnt signaling has been shown as an important regulatory pathway in the osteogenic differentiation of mesenchymal stem cells. Induction of the Wnt signaling pathway promotes bone formation while inactivation of the pathway leads to osteopenic states. Our current understanding of Wnt signaling in osteogenesis elucidates the molecular mechanisms of classic osteogenic pathologies. Activating and inactivating aberrations of the canonical Wnt signaling pathway in osteogenesis results in sclerosteosis and osteoporosis respectively. Recent studies have sought to target the Wnt signaling pathway to treat osteogenic disorders. Potential therapeutic approaches attempt to stimulate the Wnt signaling pathway by upregulating the intracellular mediators of the Wnt signaling cascade and inhibiting the endogenous antagonists of the pathway. Antibodies against endogenous antagonists, such as sclerostin and dickkopf-1, have demonstrated promising results in promoting bone formation and fracture healing. Lithium, an inhibitor of glycogen synthase kinase 3β, has also been reported to stimulate osteogenesis by stabilizing β catenin. Although manipulating the Wnt signaling pathway has abundant therapeutic potential, it requires cautious approach due to risks of tumorigenesis. The present review discusses the role of the Wnt signaling pathway in osteogenesis and examines its targeted therapeutic potential. PMID:23514963

  1. A rare human syndrome provides genetic evidence that WNT signaling is required for reprogramming of fibroblasts to induced pluripotent stem cells

    PubMed Central

    Ross, Jason; Busch, Julia; Mintz, Ellen; Ng, Damian; Stanley, Alexandra; Brafman, David; Sutton, V. Reid; Van den Veyver, Ignatia; Willert, Karl

    2015-01-01

    SUMMARY WNT signaling promotes the reprogramming of somatic cells to an induced pluripotent state. We provide genetic evidence that WNT signaling is a requisite step during the induction of pluripotency. Fibroblasts from individuals with Focal Dermal Hypoplasia (FDH), a rare genetic syndrome caused by mutations in the essential WNT processing enzyme PORCN, fail to reprogram using standard methods. This blockade in reprogramming is overcome by ectopic WNT signaling and by PORCN overexpression, thus demonstrating that WNT signaling is essential for reprogramming. The rescue of reprogramming is critically dependent on the level of WNT signaling: steady baseline activation of the WNT pathway yields karyotypically normal iPS cells, whereas daily stimulation with Wnt3a produces FDH-iPS cells with severely abnormal karyotypes. Therefore, although WNT signaling is required for cellular reprogramming, inappropriate activation of WNT signaling induces chromosomal instability, highlighting the precarious nature of ectopic WNT activation, and its tight relationship with oncogenic transformation. PMID:25464842

  2. Parallel states of pathological Wnt signaling in neonatal brain injury and colon cancer.

    PubMed

    Fancy, Stephen P J; Harrington, Emily P; Baranzini, Sergio E; Silbereis, John C; Shiow, Lawrence R; Yuen, Tracy J; Huang, Eric J; Lomvardas, Stavros; Rowitch, David H

    2014-04-01

    In colon cancer, mutation of the Wnt repressor APC (encoding adenomatous polyposis coli) leads to a state of aberrant and unrestricted high-activity signaling. However, the relevance of high Wnt tone in non-genetic human disease is unknown. Here we demonstrate that distinct functional states of Wnt activity determine oligodendrocyte precursor cell (OPC) differentiation and myelination. Mouse OPCs with genetic Wnt dysregulation (high tone) express multiple genes in common with colon cancer, including Lef1, Sp5, Ets2, Rnf43 and Dusp4. Surprisingly, we found that OPCs in lesions of hypoxic human neonatal white matter injury upregulated markers of high Wnt activity and lacked expression of APC. We also found that lack of Wnt repressor tone promoted permanent white matter injury after mild hypoxic insult. These findings suggest a state of pathological high-activity Wnt signaling in human disease tissues that lack predisposing genetic mutation.

  3. Wnt and the Wnt signaling pathway in bone development and disease

    PubMed Central

    Wang, Yiping; Li, Yi-Ping; Paulson, Christie; Shao, Jian-Zhong; Zhang, Xiaoling; Wu, Mengrui; Chen, Wei

    2014-01-01

    Wnt signaling affects both bone modeling, which occurs during development, and bone remodeling, which is a lifelong process involving tissue renewal. Wnt signals are especially known to affect the differentiation of osteoblasts. In this review, we summarize recent advances in understanding the mechanisms of Wnt signaling, which is divided into two major branches: the canonical pathway and the noncanonical pathway. The canonical pathway is also called the Wnt/β-catenin pathway. There are two major noncanonical pathways: the Wnt-planar cell polarity pathway (Wnt-PCP pathway) and the Wnt-calcium pathway (Wnt-Ca2+ pathway). This review also discusses how Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists affect both the bone modeling and bone remodeling processes. We also review the role of Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists in bone as demonstrated in mouse models. Disrupted Wnt signaling is linked to several bone diseases, including osteoporosis, van Buchem disease, and sclerosteosis. Studying the mechanism of Wnt signaling and its interactions with other signaling pathways in bone will provide potential therapeutic targets to treat these bone diseases. PMID:24389191

  4. Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts

    SciTech Connect

    Ohnaka, Keizo . E-mail: oonaka@geriat.med.kyushu-u.ac.jp; Tanabe, Mizuho; Kawate, Hisaya; Nawata, Hajime; Takayanagi, Ryoichi

    2005-04-01

    To explore the mechanism of glucocorticoid-induced osteoporosis, we investigated the effect of glucocorticoid on canonical Wnt signaling that emerged as a novel key pathway for promoting bone formation. Wnt3a increased the T-cell factor (Tcf)/lymphoid enhancer factor (Lef)-dependent transcriptional activity in primary cultured human osteoblasts. Dexamethasone suppressed this transcriptional activity in a dose-dependent manner, while 1,25-dihydroxyvitamin D3 increased this transcriptional activity. LiCl, an inhibitor of glycogen synthase kinase-3{beta}, also enhanced the Tcf/Lef-dependent transcriptional activity, which was, however, not inhibited by dexamethasone. The addition of anti-dickkopf-1 antibody partially restored the transcriptional activity suppressed by dexamethasone. Dexamethasone decreased the cytosolic amount of {beta}-catenin accumulated by Wnt3a and also inhibited the nuclear translocation of {beta}-catenin induced by Wnt3a. These data suggest that glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts, partially through the enhancement of the dickkopf-1 production.

  5. Stimulation of Wnt/beta-Catenin Signaling Pathway with Wnt Agonist Reduces Organ Injury after Hemorrhagic Shock

    PubMed Central

    Kuncewitch, Michael; Yang, Weng-Lang; Jacob, Asha; Khader, Adam; Giangola, Matthew; Nicastro, Jeffrey; Coppa, Gene F.; Wang, Ping

    2014-01-01

    Background Hemorrhagic shock is a leading cause of morbidity and mortality in surgery and trauma patients. Despite a large number of preclinical trials conducted to develop therapeutic strategies against hemorrhagic shock, there is still an unmet need exist for effective therapy for hemorrhage victims. Wnt/β-catenin signaling controls developmental processes and cellular regeneration owing to its central role in cell survival and proliferation. We therefore hypothesized that the activation of Wnt signaling reduces systemic injury caused by hemorrhagic shock. Methods Adult male Sprague-Dawley rats underwent hemorrhagic shock by controlled bleeding of the femoral artery to maintain a mean arterial pressure (MAP) of 30 mmHg for 90 min, followed by resuscitation with crystalloid equal to two times the shed blood volume. After resuscitation, animals were infused with Wnt agonist (5 mg/kg) or Vehicle (20% DMSO in saline). Blood and tissue samples were collected 6 h after resuscitation for analysis. Results Hemorrhagic shock increased serum levels of AST, lactate, and LDH. Treatment with Wnt agonist significantly reduced these levels by 40%, 36%, and 77%, respectively. Wnt agonist also decreased BUN and creatinine by 34% and 56%, respectively. Treatment reduced lung myeloperoxidase activity and IL-6 mRNA by 55% and 68% respectively and, significantly improved lung histology. Wnt agonist treatment increased Bcl-2 protein to Sham values and decreased cleaved caspase-3 by 46% indicating attenuation of hemorrhage-induced apoptosis in the lungs. Hemorrhage resulted in significant reductions of β-catenin protein levels in the lungs as well as down-regulation of a Wnt target gene, Cyclin-D1, while Wnt agonist treatment preserved these levels. Conclusions The administration of Wnt agonist attenuated hemorrhage-induced organ injury, inflammation and apoptosis. This was correlated with preservation of the Wnt signaling pathway. Thus, Wnt/β-catenin activation could be protective

  6. Determination of the catalytic activity of LEOPARD syndrome-associated SHP2 mutants toward parafibromin, a bona fide SHP2 substrate involved in Wnt signaling.

    PubMed

    Noda, Saori; Takahashi, Atsushi; Hayashi, Takeru; Tanuma, Sei-ichi; Hatakeyama, Masanori

    2016-01-22

    SHP2, encoded by the PTPN11 gene, is a protein tyrosine phosphatase that plays a key role in the proliferation of cells via RAS-ERK activation. SHP2 also promotes Wnt signaling by dephosphorylating parafibromin. Germline missense mutations of PTPN11 are found in more than half of patients with Noonan syndrome (NS) and LEOPARD syndrome (LS), both of which are congenital developmental disorders with multiple common symptoms. However, whereas NS-associated PTPN11 mutations give rise to gain-of-function SHP2 mutants, LS-associated SHP2 mutants are reportedly loss-of-function mutants. To determine the phosphatase activity of LS-associated SHP2 more appropriately, we performed an in vitro phosphatase assay using tyrosine-phosphorylated parafibromin, a biologically relevant substrate of SHP2 and the positive regulator of Wnt signaling that is activated through SHP2-mediated dephosphorylation. We found that LS-associated SHP2 mutants (Y279C, T468M, Q506P, and Q510E) exhibited a substantially reduced phosphatase activity toward parafibromin when compared with wild-type SHP2. Furthermore, each of the LS-associated mutants displayed a differential degree of decrease in phosphatase activity. Deviation of the SHP2 catalytic activity from a certain range, either too strong or too weak, may therefore lead to similar clinical outcomes in NS and LS, possibly through an imbalanced Wnt signal caused by inadequate dephosphorylation of parafibromin.

  7. Activation of Wnt/β-catenin signaling in a subpopulation of murine prostate luminal epithelial cells induces high grade prostate intraepithelial neoplasia

    PubMed Central

    Valkenburg, Kenneth C.; Yu, Xiuping; De Marzo, Angelo M.; Spiering, Tyler; Matusik, Robert J.; Williams, Bart O.

    2014-01-01

    Background Wnt/β-catenin signaling is important for prostate development and cancer in humans. Activation of this pathway in differentiated luminal cells of mice induces high-grade prostate intraepithelial neoplasia (HGPIN). Though the cell of origin of prostate cancer has yet to be conclusively identified, a castration-resistant Nkx3.1-expressing cell (CARN) may act as a cell of origin for prostate cancer. Methods To activate Wnt/β-catenin signaling in CARNs, we crossed mice carrying tamoxifen-inducible Nkx3.1-driven Cre to mice containing loxP sites in order to either conditionally knock out adenomatous polyposis coli (Apc) or constitutively activate β-catenin directly. We then castrated and hormonally regenerated these mice to target the CARN population. Results Loss of Apc in hormonally normal mice induced HGPIN; however, after one or more rounds of castration and hormonal regeneration, Apc-null CARNs disappeared. Alternatively, when β-catenin was constitutively activated under the same conditions, HGPIN was apparent. Conclusion Activation of Wnt/β-catenin signaling via Apc deletion is sufficient to produce HGPIN in hormonally normal mice. Loss of Apc may destabilize the CARN population under regeneration conditions. When β-catenin is constitutively activated, HGPIN occurs in hormonally regenerated mice. A second genetic hit is likely required to cause progression to carcinoma and metastasis. PMID:25175604

  8. Endodermal Wnt signaling is required for tracheal cartilage formation

    PubMed Central

    Snowball, John; Ambalavanan, Manoj; Whitsett, Jeffrey; Sinner, Debora

    2015-01-01

    Tracheobronchomalacia is a common congenital defect in which the walls of the trachea and bronchi lack of adequate cartilage required for support of the airways. Deletion of Wls, a cargo receptor mediating Wnt ligand secretion, in the embryonic endoderm using ShhCre mice inhibited formation of tracheal-bronchial cartilaginous rings. The normal dorsal-ventral patterning of tracheal mesenchyme was lost. Smooth muscle cells, identified by Acta2 staining, were aberrantly located in ventral mesenchyme of the trachea, normally the region of Sox9 expression in cartilage progenitors. Wnt/β-catenin activity, indicated by Axin2 LacZ reporter, was decreased in tracheal mesenchyme of Wlsf/f;ShhCre/+ embryos. Proliferation of chondroblasts was decreased and reciprocally, proliferation of smooth muscle cells was increased in Wlsf/f;ShhCre/+ tracheal tissue. Expression of Tbx4, Tbx5, Msx1 and Msx2, known to mediate cartilage and muscle patterning, were decreased in tracheal mesenchyme of Wlsf/f;ShhCre/+ embryos. Ex vivo studies demonstrated that Wnt7b and Wnt5a, expressed by the epithelium of developing trachea, and active Wnt/β-catenin signaling are required for tracheal chondrogenesis before formation of mesenchymal condensations. In conclusion, Wnt ligands produced by the tracheal epithelium pattern the tracheal mesenchyme via modulation of gene expression and cell proliferation required for proper tracheal cartilage and smooth muscle differentiation. PMID:26093309

  9. Molecular Role of RNF43 in Canonical and Noncanonical Wnt Signaling

    PubMed Central

    Tsukiyama, Tadasuke; Fukui, Akimasa; Terai, Sayuri; Fujioka, Yoichiro; Shinada, Keisuke; Takahashi, Hidehisa; Yamaguchi, Terry P.; Ohba, Yusuke

    2015-01-01

    Wnt signaling pathways are tightly regulated by ubiquitination, and dysregulation of these pathways promotes tumorigenesis. It has been reported that the ubiquitin ligase RNF43 plays an important role in frizzled-dependent regulation of the Wnt/β-catenin pathway. Here, we show that RNF43 suppresses both Wnt/β-catenin signaling and noncanonical Wnt signaling by distinct mechanisms. The suppression of Wnt/β-catenin signaling requires interaction between the extracellular protease-associated (PA) domain and the cysteine-rich domain (CRD) of frizzled and the intracellular RING finger domain of RNF43. In contrast, these N-terminal domains of RNF43 are not required for inhibition of noncanonical Wnt signaling, but interaction between the C-terminal cytoplasmic region of RNF43 and the PDZ domain of dishevelled is essential for this suppression. We further show the mechanism by which missense mutations in the extracellular portion of RNF43 identified in patients with tumors activate Wnt/β-catenin signaling. Missense mutations of RNF43 change their localization from the endosome to the endoplasmic reticulum (ER), resulting in the failure of frizzled-dependent suppression of Wnt/β-catenin signaling. However, these mutants retain the ability to suppress noncanonical Wnt signaling, probably due to interaction with dishevelled. RNF43 is also one of the potential target genes of Wnt/β-catenin signaling. Our results reveal the molecular role of RNF43 and provide an insight into tumorigenesis. PMID:25825523

  10. PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour development.

    PubMed

    Drelon, Coralie; Berthon, Annabel; Sahut-Barnola, Isabelle; Mathieu, Mickaël; Dumontet, Typhanie; Rodriguez, Stéphanie; Batisse-Lignier, Marie; Tabbal, Houda; Tauveron, Igor; Lefrançois-Martinez, Anne-Marie; Pointud, Jean-Christophe; Gomez-Sanchez, Celso E; Vainio, Seppo; Shan, Jingdong; Sacco, Sonia; Schedl, Andreas; Stratakis, Constantine A; Martinez, Antoine; Val, Pierre

    2016-01-01

    Adrenal cortex physiology relies on functional zonation, essential for production of aldosterone by outer zona glomerulosa (ZG) and glucocorticoids by inner zona fasciculata (ZF). The cortex undergoes constant cell renewal, involving recruitment of subcapsular progenitors to ZG fate and subsequent lineage conversion to ZF identity. Here we show that WNT4 is an important driver of WNT pathway activation and subsequent ZG differentiation and demonstrate that PKA activation prevents ZG differentiation through WNT4 repression and WNT pathway inhibition. This suggests that PKA activation in ZF is a key driver of WNT inhibition and lineage conversion. Furthermore, we provide evidence that constitutive PKA activation inhibits, whereas partial inactivation of PKA catalytic activity stimulates β-catenin-induced tumorigenesis. Together, both lower PKA activity and higher WNT pathway activity lead to poorer prognosis in adrenocortical carcinoma (ACC) patients. These observations suggest that PKA acts as a tumour suppressor in the adrenal cortex, through repression of WNT signalling. PMID:27624192

  11. PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour development

    PubMed Central

    Drelon, Coralie; Berthon, Annabel; Sahut-Barnola, Isabelle; Mathieu, Mickaël; Dumontet, Typhanie; Rodriguez, Stéphanie; Batisse-Lignier, Marie; Tabbal, Houda; Tauveron, Igor; Lefrançois-Martinez, Anne-Marie; Pointud, Jean-Christophe; Gomez-Sanchez, Celso E.; Vainio, Seppo; Shan, Jingdong; Sacco, Sonia; Schedl, Andreas; Stratakis, Constantine A.; Martinez, Antoine; Val, Pierre

    2016-01-01

    Adrenal cortex physiology relies on functional zonation, essential for production of aldosterone by outer zona glomerulosa (ZG) and glucocorticoids by inner zona fasciculata (ZF). The cortex undergoes constant cell renewal, involving recruitment of subcapsular progenitors to ZG fate and subsequent lineage conversion to ZF identity. Here we show that WNT4 is an important driver of WNT pathway activation and subsequent ZG differentiation and demonstrate that PKA activation prevents ZG differentiation through WNT4 repression and WNT pathway inhibition. This suggests that PKA activation in ZF is a key driver of WNT inhibition and lineage conversion. Furthermore, we provide evidence that constitutive PKA activation inhibits, whereas partial inactivation of PKA catalytic activity stimulates β-catenin-induced tumorigenesis. Together, both lower PKA activity and higher WNT pathway activity lead to poorer prognosis in adrenocortical carcinoma (ACC) patients. These observations suggest that PKA acts as a tumour suppressor in the adrenal cortex, through repression of WNT signalling. PMID:27624192

  12. Canonical Wnt signaling transiently stimulates proliferation and enhances neurogenesis in neonatal neural progenitor cultures

    SciTech Connect

    Hirsch, Cordula; Campano, Louise M.; Woehrle, Simon; Hecht, Andreas . E-mail: andreas.hecht@mol-med.uni-freiburg.de

    2007-02-01

    Canonical Wnt signaling triggers the formation of heterodimeric transcription factor complexes consisting of {beta}-catenin and T cell factors, and thereby controls the execution of specific genetic programs. During the expansion and neurogenic phases of embryonic neural development canonical Wnt signaling initially controls proliferation of neural progenitor cells, and later neuronal differentiation. Whether Wnt growth factors affect neural progenitor cells postnatally is not known. Therefore, we have analyzed the impact of Wnt signaling on neural progenitors isolated from cerebral cortices of newborn mice. Expression profiling of pathway components revealed that these cells are fully equipped to respond to Wnt signals. However, Wnt pathway activation affected only a subset of neonatal progenitors and elicited a limited increase in proliferation and neuronal differentiation in distinct subsets of cells. Moreover, Wnt pathway activation only transiently stimulated S-phase entry but did not support long-term proliferation of progenitor cultures. The dampened nature of the Wnt response correlates with the predominant expression of inhibitory pathway components and the rapid actuation of negative feedback mechanisms. Interestingly, in differentiating cell cultures activation of canonical Wnt signaling reduced Hes1 and Hes5 expression suggesting that during postnatal neural development, Wnt/{beta}-catenin signaling enhances neurogenesis from progenitor cells by interfering with Notch pathway activity.

  13. Canonical WNT signaling pathway and human AREG.

    PubMed

    Katoh, Yuriko; Katoh, Masaru

    2006-06-01

    AREG (Amphiregulin), BTC (beta-cellulin), EGF, EPGN (Epigen), EREG (Epiregulin), HBEGF, NRG1, NRG2, NRG3, NRG4 and TGFA (TGFalpha) constitute EGF family ligands for ERBB family receptors. Cetuximab (Erbitux), Pertuzumab (Omnitarg) and Trastuzumab (Herceptin) are anti-cancer drugs targeted to EGF family ligands, while Gefitinib (Iressa), Erlotinib (Tarceva) and Lapatinib (GW572016) are anti-cancer drugs targeted to ERBB family receptors. AREG and TGFA are biomarkers for Gefitinib non-responders. The TCF/LEF binding sites within the promoter region of human EGF family members were searched for by using bioinformatics and human intelligence (Humint). Because three TCF/LEF-binding sites were identified within the 5'-promoter region of human AREG gene, comparative genomics analyses on AREG orthologs were further performed. The EPGN-EREG-AREG-BTC cluster at human chromosome 4q13.3 was linked to the PPBP-CXCL segmental duplicons. AREG was the paralog of HBEGF at human chromosome 5q31.2. Chimpanzee AREG gene, consisting of six exons, was located within NW_105918.1 genome sequence. Chimpanzee AREG was a type I transmembrane protein showing 98.0% and 71.4% total amino-acid identity with human AREG and mouse Areg, respectively. Three TCF/LEF-binding sites within human AREG promoter were conserved in chimpanzee AREG promoter, but not in rodent Areg promoters. Primate AREG promoters were significantly divergent from rodent Areg promoters. AREG mRNA was expressed in a variety of human tumors, such as colorectal cancer, liver cancer, gastric cancer, breast cancer, prostate cancer, esophageal cancer and myeloma. Because human AREG was characterized as potent target gene of WNT/beta-catenin signaling pathway, WNT signaling activation could lead to Gefitinib resistance through AREG upregulation. AREG is a target of systems medicine in the field of oncology. PMID:16685431

  14. Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms

    PubMed Central

    Novellasdemunt, Laura; Antas, Pedro

    2015-01-01

    The evolutionarily conserved Wnt signaling pathway plays essential roles during embryonic development and tissue homeostasis. Notably, comprehensive genetic studies in Drosophila and mice in the past decades have demonstrated the crucial role of Wnt signaling in intestinal stem cell maintenance by regulating proliferation, differentiation, and cell-fate decisions. Wnt signaling has also been implicated in a variety of cancers and other diseases. Loss of the Wnt pathway negative regulator adenomatous polyposis coli (APC) is the hallmark of human colorectal cancers (CRC). Recent advances in high-throughput sequencing further reveal many novel recurrent Wnt pathway mutations in addition to the well-characterized APC and β-catenin mutations in CRC. Despite attractive strategies to develop drugs for Wnt signaling, major hurdles in therapeutic intervention of the pathway persist. Here we discuss the Wnt-activating mechanisms in CRC and review the current advances and challenges in drug discovery. PMID:26289750

  15. Pax3 regulates morphogenetic cell behavior in vitro coincident with activation of a PCP/non-canonical Wnt-signaling cascade.

    PubMed

    Wiggan, O'Neil; Hamel, Paul A

    2002-02-01

    Mutations to Pax3 and other Pax family genes in both mice and humans result in numerous tissue-specific morphological defects. Little is known, however, about the cellular and molecular mechanisms by which Pax genes regulate morphogenesis. We previously showed that Pax3 induces cell aggregation and a mesenchymal-to-epithelial transition in Saos-2 cells. We show here that Pax3-induced aggregates arise through the formation of distinct structures involving cell rearrangements and cell behaviors resembling those that occur during gastrulation and neurulation known as convergent extension. During these Pax3-induced processes, Dishevelled and Frizzled are localized to the actin cytoskeleton and both proteins coimmunoprecipitate focal adhesion components from detergent-insoluble cell fractions. We show further that these Pax3-induced cell movements are associated with activation of a Wnt-signaling cascade, resulting in induction and activation of c-Jun-N-terminal kinase/stress activated protein kinase (JNK/SAPK). All of these Wnt-signaling factors exhibit altered subcellular distribution in Pax3-expressing cells. In particular, we show the localization of JNK/SAPK to both the nucleus and to cytoplasmic multi-vesicular structures. These data show that Pax3 regulates morphogenetic cell behavior and that regulation of a conserved, planar cell polarity/noncanonical Wnt-signaling cascade entailing JNK activation is a function of Pax3 activity.

  16. Wnt/β-Catenin Signaling Regulates Proliferation of Human Cornea Epithelial Stem/Progenitor Cells

    PubMed Central

    Nakatsu, Martin N.; Ding, Zhenhua; Ng, Madelena Y.; Truong, Thuy T.; Yu, Fei

    2011-01-01

    Purpose. To investigate the expression and role of the Wnt signaling pathway in human limbal stem cells (LSCs). Methods. Total RNA was isolated from the human limbus and central cornea. Limbal or cornea-specific transcripts were identified through quantitative real-time PCR. Protein expression of Wnt molecules was confirmed by immunohistochemistry on human ocular tissue. Activation of Wnt signaling using lithium chloride was achieved in vitro and its effects on LSC differentiation and proliferation were evaluated. Results. Expression of Wnt2, Wnt6, Wnt11, Wnt16b, and four Wnt inhibitors were specific to the limbal region, whereas Wnt3, Wnt7a, Wnt7b, and Wnt10a were upregulated in the central cornea. Nuclear localization of β-catenin was observed in a very small subset of basal epithelial cells only at the limbus. Activation of Wnt/β-catenin signaling increased the proliferation and colony-forming efficiency of primary human LSCs. The stem cell phenotype was maintained, as shown by higher expression levels of putative corneal epithelial stem cell markers, ATP-binding cassette family G2 and ΔNp63α, and low expression levels of mature cornea epithelial cell marker, cytokeratin 12. Conclusions. These findings demonstrate for the first time that Wnt signaling is present in the ocular surface epithelium and plays an important role in the regulation of LSC proliferation. Modulation of Wnt signaling could be of clinical application to increase the efficiency of ex vivo expansion of corneal epithelial stem/progenitor cells for transplantation. PMID:21357396

  17. AMP-activated protein kinase (AMPK) cross-talks with canonical Wnt signaling via phosphorylation of {beta}-catenin at Ser 552

    SciTech Connect

    Zhao, Junxing; Yue, Wanfu; Zhu, Mei J.; Sreejayan, Nair; Du, Min

    2010-04-23

    AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism; its activity is regulated by a plethora of physiological conditions, exercises and many anti-diabetic drugs. Recent studies show that AMPK involves in cell differentiation but the underlying mechanism remains undefined. Wingless Int-1 (Wnt)/{beta}-catenin signaling pathway regulates the differentiation of mesenchymal stem cells through enhancing {beta}-catenin/T-cell transcription factor 1 (TCF) mediated transcription. The objective of this study was to determine whether AMPK cross-talks with Wnt/{beta}-catenin signaling through phosphorylation of {beta}-catenin. C3H10T1/2 mesenchymal cells were used. Chemical inhibition of AMPK and the expression of a dominant negative AMPK decreased phosphorylation of {beta}-catenin at Ser 552. The {beta}-catenin/TCF mediated transcription was correlated with AMPK activity. In vitro, pure AMPK phosphorylated {beta}-catenin at Ser 552 and the mutation of Ser 552 to Ala prevented such phosphorylation, which was further confirmed using [{gamma}-{sup 32}P]ATP autoradiography. In conclusion, AMPK phosphorylates {beta}-catenin at Ser 552, which stabilizes {beta}-catenin, enhances {beta}-catenin/TCF mediated transcription, expanding AMPK from regulation of energy metabolism to cell differentiation and development via cross-talking with the Wnt/{beta}-catenin signaling pathway.

  18. The polycystin complex mediates Wnt/Ca(2+) signalling.

    PubMed

    Kim, Seokho; Nie, Hongguang; Nesin, Vasyl; Tran, Uyen; Outeda, Patricia; Bai, Chang-Xi; Keeling, Jacob; Maskey, Dipak; Watnick, Terry; Wessely, Oliver; Tsiokas, Leonidas

    2016-07-01

    WNT ligands induce Ca(2+) signalling on target cells. PKD1 (polycystin 1) is considered an orphan, atypical G-protein-coupled receptor complexed with TRPP2 (polycystin 2 or PKD2), a Ca(2+)-permeable ion channel. Inactivating mutations in their genes cause autosomal dominant polycystic kidney disease (ADPKD), one of the most common genetic diseases. Here, we show that WNTs bind to the extracellular domain of PKD1 and induce whole-cell currents and Ca(2+) influx dependent on TRPP2. Pathogenic PKD1 or PKD2 mutations that abrogate complex formation, compromise cell surface expression of PKD1, or reduce TRPP2 channel activity suppress activation by WNTs. Pkd2(-/-) fibroblasts lack WNT-induced Ca(2+) currents and are unable to polarize during directed cell migration. In Xenopus embryos, pkd1, Dishevelled 2 (dvl2) and wnt9a act within the same pathway to preserve normal tubulogenesis. These data define PKD1 as a WNT (co)receptor and implicate defective WNT/Ca(2+) signalling as one of the causes of ADPKD. PMID:27214281

  19. Downregulation of adenomatous polyposis coli by microRNA-663 promotes odontogenic differentiation through activation of Wnt/beta-catenin signaling

    SciTech Connect

    Kim, Jae-Sung; Park, Min-Gyeong; Lee, Seul Ah; Park, Sun-Young; Kim, Heung-Joong; Yu, Sun-Kyoung; Kim, Chun Sung; Kim, Su-Gwan; Oh, Ji-Su; You, Jae-Seek; Kim, Jin-Soo; Seo, Yo-Seob; Chun, Hong Sung; Park, Joo-Cheol; Kim, Do Kyung

    2014-04-18

    Highlights: • miR-663 is significantly up-regulated during MDPC-23 odontoblastic cell differentiation. • miR-663 accelerates mineralization in MDPC-23 odontoblastic cells without cell proliferation. • miR-663 promotes odontoblastic cell differentiation by targeting APC and activating Wnt/β-catenin signaling in MDPC-23 cells. - Abstract: MicroRNAs (miRNAs) regulate cell differentiation by inhibiting mRNA translation or by inducing its degradation. However, the role of miRNAs in odontogenic differentiation is largely unknown. In this present study, we observed that the expression of miR-663 increased significantly during differentiation of MDPC-23 cells to odontoblasts. Furthermore, up-regulation of miR-663 expression promoted odontogenic differentiation and accelerated mineralization without proliferation in MDPC-23 cells. In addition, target gene prediction for miR-663 revealed that the mRNA of the adenomatous polyposis coli (APC) gene, which is associated with the Wnt/β-catenin signaling pathway, has a miR-663 binding site in its 3′-untranslated region (3′UTR). Furthermore, APC expressional was suppressed significantly by miR-663, and this down-regulation of APC expression triggered activation of Wnt/β-catenin signaling through accumulation of β-catenin in the nucleus. Taken together, these findings suggest that miR-663 promotes differentiation of MDPC-23 cells to odontoblasts by targeting APC-mediated activation of Wnt/β-catenin signaling. Therefore, miR-663 can be considered a critical regulator of odontoblast differentiation and can be utilized for developing miRNA-based therapeutic agents.

  20. C-mannosylation of R-spondin3 regulates its secretion and activity of Wnt/β-catenin signaling in cells.

    PubMed

    Fujiwara, Miho; Kato, Shintaro; Niwa, Yuki; Suzuki, Takehiro; Tsuchiya, Miyu; Sasazawa, Yukiko; Dohmae, Naoshi; Simizu, Siro

    2016-08-01

    R-spondin3 (Rspo3) is a secreted protein, which acts as an agonist of canonical Wnt/β-catenin signaling that plays an important role in embryonic development and homeostasis. In this study, we focused on C-mannosylation, a unique type of glycosylation, of human Rspo3. Rspo3 has two putative C-mannosylation sites at Trp(153) and Trp(156) ; however, it had been unclear whether these sites are C-mannosylated or not. We demonstrated that Rspo3 was C-mannosylated at both Trp(153) and Trp(156) by mass spectrometry. Using C-mannosylation-defective Rspo3 mutant-overexpressing cell lines, we found that C-mannosylation of Rspo3 promotes its secretion and activates Wnt/β-catenin signaling.

  1. Frizzleds and WNT/β-catenin signaling--The black box of ligand-receptor selectivity, complex stoichiometry and activation kinetics.

    PubMed

    Schulte, Gunnar

    2015-09-15

    The lipoglycoproteins of the mammalian WNT family induce β-catenin-dependent signaling through interaction with members of the Class Frizzled receptors and LDL receptor-related protein 5/6 (LRP5/6) albeit with unknown selectivity. The 10 mammalian Frizzleds (FZDs) are seven transmembrane (7TM) spanning receptors and have recently been classified as G protein-coupled receptors (GPCRs). This review summarizes the current knowledge about WNT/FZD selectivity and functional selectivity, the role of co-receptors for signal specification, the formation of receptor complexes as well as the kinetics and mechanisms of signal initiation with focus on WNT/β-catenin signaling. In order to exploit the true therapeutic potential of WNT/FZD signaling to treat human disease, it is clear that substantial progress in the understanding of receptor complex formation and signal specification has to precede a mechanism-based drug design targeting WNT receptors. PMID:26003275

  2. The vacuolar-ATPase inhibitor bafilomycin and mutant VPS35 inhibit canonical Wnt signaling.

    PubMed

    George, Ana; Leahy, Hannah; Zhou, Jianhua; Morin, Peter J

    2007-04-01

    Endosomal acidification and transport are essential functions in signal transduction. Recent data suggest that Wnt signaling requires intact endosomal transport machinery but the effects of endosomal acidification on Wnt signal transduction have not been evaluated. Here we report that bafilomycin, a specific inhibitor of the vacuolar proton ATPase that blocks endosomal acidification, inhibits canonical Wnt signal transduction initiated by Wnt ligand and partially inhibits signaling initiated by disheveled. Bafilomycin does not affect Tcf promoter activation by beta-catenin. These data indicate that endosomal acidification is necessary for Wnt signaling. To identify interactions between endosomal transport proteins and Wnt receptors, we performed a GST fusion protein pulldown experiment and identified a possible indirect interaction between the LRP6 intracellular domain and vacuolar protein sorting protein 35 (VPS35). We show that an N-terminal deletion mutant of VPS35 reduces canonical Wnt signaling in HEK-293 cells expressing exogenous Wnt-1. These data suggest that endosomal V-type ATPase activity and retromer trafficking proteins are functionally important in Wnt signal transduction. PMID:17239604

  3. Controlled levels of canonical Wnt signaling are required for neural crest migration.

    PubMed

    Maj, Ewa; Künneke, Lutz; Loresch, Elisabeth; Grund, Anita; Melchert, Juliane; Pieler, Tomas; Aspelmeier, Timo; Borchers, Annette

    2016-09-01

    Canonical Wnt signaling plays a dominant role in the development of the neural crest (NC), a highly migratory cell population that generates a vast array of cell types. Canonical Wnt signaling is required for NC induction as well as differentiation, however its role in NC migration remains largely unknown. Analyzing nuclear localization of β-catenin as readout for canonical Wnt activity, we detect nuclear β-catenin in premigratory but not migratory Xenopus NC cells suggesting that canonical Wnt activity has to decrease to basal levels to enable NC migration. To define a possible function of canonical Wnt signaling in Xenopus NC migration, canonical Wnt signaling was modulated at different time points after NC induction. This was accomplished using either chemical modulators affecting β-catenin stability or inducible glucocorticoid fusion constructs of Lef/Tcf transcription factors. In vivo analysis of NC migration by whole mount in situ hybridization demonstrates that ectopic activation of canonical Wnt signaling inhibits cranial NC migration. Further, NC transplantation experiments confirm that this effect is tissue-autonomous. In addition, live-cell imaging in combination with biophysical data analysis of explanted NC cells confirms the in vivo findings and demonstrates that modulation of canonical Wnt signaling affects the ability of NC cells to perform single cell migration. Thus, our data support the hypothesis that canonical Wnt signaling needs to be tightly controlled to enable migration of NC cells. PMID:27341758

  4. Controlled levels of canonical Wnt signaling are required for neural crest migration.

    PubMed

    Maj, Ewa; Künneke, Lutz; Loresch, Elisabeth; Grund, Anita; Melchert, Juliane; Pieler, Tomas; Aspelmeier, Timo; Borchers, Annette

    2016-09-01

    Canonical Wnt signaling plays a dominant role in the development of the neural crest (NC), a highly migratory cell population that generates a vast array of cell types. Canonical Wnt signaling is required for NC induction as well as differentiation, however its role in NC migration remains largely unknown. Analyzing nuclear localization of β-catenin as readout for canonical Wnt activity, we detect nuclear β-catenin in premigratory but not migratory Xenopus NC cells suggesting that canonical Wnt activity has to decrease to basal levels to enable NC migration. To define a possible function of canonical Wnt signaling in Xenopus NC migration, canonical Wnt signaling was modulated at different time points after NC induction. This was accomplished using either chemical modulators affecting β-catenin stability or inducible glucocorticoid fusion constructs of Lef/Tcf transcription factors. In vivo analysis of NC migration by whole mount in situ hybridization demonstrates that ectopic activation of canonical Wnt signaling inhibits cranial NC migration. Further, NC transplantation experiments confirm that this effect is tissue-autonomous. In addition, live-cell imaging in combination with biophysical data analysis of explanted NC cells confirms the in vivo findings and demonstrates that modulation of canonical Wnt signaling affects the ability of NC cells to perform single cell migration. Thus, our data support the hypothesis that canonical Wnt signaling needs to be tightly controlled to enable migration of NC cells.

  5. Simvastatin inhibits neural cell apoptosis and promotes locomotor recovery via activation of Wnt/β-catenin signaling pathway after spinal cord injury.

    PubMed

    Gao, Kai; Shen, Zhaoliang; Yuan, Yajiang; Han, Donghe; Song, Changwei; Guo, Yue; Mei, Xifan

    2016-07-01

    Statins exhibit neuroprotective effects after spinal cord injury (SCI). However, the molecular mechanism underlying these effects remains unknown. This study demonstrates that the hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin (Simv) exhibits neuroprotective effects on neuronal apoptosis and supports functional recovery in a rat SCI model by activating the Wnt/β-catenin signaling pathway. In specific, Simv administration after SCI significantly up-regulated the expression of low density lipoprotein receptor-related protein 6 phosphorylation and β-catenin protein, increased the mRNA expression of lymphoid enhancer factor-1 and T-cell factor-1, and suppressed the expression of β-catenin phosphorylation in the spinal cord neurons. Simv enhanced motor neuronal survival in the spinal cord anterior horn and decreased the lesion of spinal cord tissues after SCI. Simv administration after SCI also evidently reduced the expression levels of Bax, active caspase-3, and active caspase-9 in the spinal cord neurons and the proportion of transferase UTP nick end labeling (TUNEL)-positive neuron cells, but increased the expression level of Bcl-2 in the spinal cord neurons. However, the anti-apoptotic effects of Simv were reduced in cultured spinal cord nerve cells when the Wnt/β-catenin signaling pathway was suppressed in the lipopolysaccharide-induced model. Furthermore, the Basso, Beattie, and Bresnahan scores indicated that Simv treatment significantly improved the locomotor functions of rats after SCI. This study is the first to report that Simv exerts neuroprotective effects by reducing neuronal apoptosis, and promoting functional and pathological recovery after SCI by activating the Wnt/β-catenin signaling pathway. We verified the neuroprotective properties associated with simvastatin following spinal cord injury (SCI). Simvastatin reduced neuronal apoptosis, improved the functional and pathological recovery via activating Wnt/β-catenin signal pathway

  6. N-glycosylation of R-spondin1 at Asn137 negatively regulates its secretion and Wnt/β-catenin signaling-enhancing activity

    PubMed Central

    TSUCHIYA, MIYU; NIWA, YUKI; SIMIZU, SIRO

    2016-01-01

    N-glycosylation is a post-translational protein modification with a wide variety of functions. It has been predicted that R-spondin1 (RSPO1) is N-glycosylated, although this remains unknown. The present study identified that RSPO1 was N-glycosylated at Asn137, and that N-glycosylation of RSPO1 negatively influenced its secretion and enhancing effect on Wnt/β-catenin signaling. In vitro treatment with peptide-N-glycosidase F increased the electrophoretic mobility of RSPO1. Furthermore, treatment of wild-type (wt) RSPO1-overexpressing HT1080 cells with tunicamycin (TM), which inhibits N-glycosylation, resulted in a significant reduction in the molecular weight of RSPO1. However, TM treatment had no effect in the RSPO1 mutant whereby the Asn137 residue was replaced by Gln (N137Q). These results demonstrated for the first time that RSPO1 is N-glycosylated at Asn137. RSPO1 is a secreted protein that has Wnt/β-catenin signaling-enhancing activity and is expected to have therapeutic applications. The role of N-glycosylation in RSPO1 was evaluated by conducting comparative experiments with wt and N137Q RSPO1, which revealed that the N137Q mutant increased the secretion and Wnt/β-catenin signaling-enhancing effect of RSPO1, compared with wt RSPO1. These results suggest that N-glycosylation of RSPO1 has a negative influence on its secretion and Wnt/β-catenin signaling-enhancing effect. PMID:27123103

  7. The balance of TCF7L2 variants with differential activities in Wnt-signaling is regulated by lithium in a GSK3{beta}-independent manner

    SciTech Connect

    Struewing, Ian; Boyechko, Tania; Barnett, Corey; Beildeck, Marcy; Byers, Stephen W.; Mao, Catherine D.

    2010-08-20

    Research highlights: {yields} Identification of a novel effect of lithium on the expression of TCF7L2 RNA isoforms and protein variants. {yields} The extent of lithium-induced TCF7L2 form switch mirrors cell responsiveness to Wnt/{beta}-catenin signaling. {yields} Demonstration that lithium has dual GSK3{beta}-dependent and -independent effects on TCF7L2 expression. {yields} Demonstration that TCF7L2 expression is repressed by the transcriptionally active TCF7L2E form. {yields} Evidence for a lithium-induced de-repression mechanism of TCF7L2 expression via TCF7L2 variant switch. -- Abstract: TCF7L2 transcription factor is a downstream effector of the canonical Wnt/{beta}-catenin signaling, which controls cell fate and homeostasis. However, the complexity of TCF7L2 expression with numerous mRNA isoforms coding for proteins with distinct N- and C-termini allows variability in TCF7L2 functions and regulations. Here, we show that although TCF7L2 mRNA isoforms distinguish fetal, immortalized and adult differentiated endothelial cells (EC), they cannot explain the lack of significant {beta}-catenin/TCF7 activities in ECs. Lithium, a Wnt-signaling activator, increases TCF7L2 mRNA levels and induces an RNA isoform switch favoring the expression of TCF7L2-short forms lacking the C-termini domains. Although the latter occurs in different cell types, its extent depends on the overall increase of TCF7L2 transcription, which correlates with cell responsiveness to Wnt/{beta}-catenin signaling. While GSK3{beta} down-regulation increases TCF7L2 expression, there is no concomitant change in TCF7L2 mRNA isoforms, which demonstrate the dual effects of lithium on TCF7L2 expression via a GSK3{beta}-dependent up-regulation and a GSK3{beta}-independent modulation of RNA splicing. TCF7L2E-long forms display a repressor activity on TCF7L2-promoter reporters and lithium induces a decrease of the endogenous TCF7L2 forms bound to native TCF7L2-promoter chromatin at two novel distal TCF7

  8. Wnt signaling orients the proximal-distal axis of chick kidney nephrons.

    PubMed

    Schneider, Jenny; Arraf, Alaa A; Grinstein, Mor; Yelin, Ronit; Schultheiss, Thomas M

    2015-08-01

    The nephron is the fundamental structural and functional unit of the kidney. Each mature nephron is patterned along a proximal-distal axis, with blood filtered at the proximal end and urine emerging from the distal end. In order to filter the blood and produce urine, specialized structures are formed at specific proximal-distal locations along the nephron, including the glomerulus at the proximal end, the tubule in the middle and the collecting duct at the distal end. The developmental processes that specify these different nephron segments are not fully understood. Wnt ligands, which are expressed in the nephric duct and later in the nascent nephron itself, are well-characterized inducers of nephrons, and are both required and sufficient for initiation of nephron formation from nephrogenic mesenchyme. Here, we present evidence that Wnt signaling also patterns the proximal-distal nephron axis. Using the chick mesonephros as a model system, a Wnt ligand was ectopically expressed in the coelomic lining, thereby introducing a source of Wnt signaling that is at right angles to the endogenous Wnt signal of the nephric duct. Under these conditions, the nephron axis was re-oriented, such that the glomerulus was always located at a position farthest from the Wnt sources. This re-orientation occurred within hours of exposure to ectopic Wnt signaling, and was accompanied initially by a repression of the early glomerular podocyte markers Wt1 and Pod1, followed by their re-emergence at a position distant from the Wnt signals. Activation of the Wnt signaling pathway in mesonephric explant cultures resulted in strong and specific repression of early and late glomerular markers. Finally, cytoplasmic β-catenin, indicative of active canonical Wnt signaling, was found to be enriched in the distal as compared with the proximal region of the forming nephron. Together, these data indicate that Wnt signaling patterns the proximal-distal axis of the nephron, with glomeruli

  9. Rack1 is required for Vangl2 membrane localization and planar cell polarity signaling while attenuating canonical Wnt activity

    PubMed Central

    Li, Shuangding; Esterberg, Robert; Lachance, Veronik; Ren, Dongdong; Radde-Gallwitz, Kristen; Chi, Fanglu; Parent, Jean-Luc; Fritz, Andreas; Chen, Ping

    2011-01-01

    The vertebrate planar cell polarity (PCP) pathway shares molecular components with the β-catenin–mediated canonical Wnt pathway but acts through membrane complexes containing Vang or Frizzled to orient neighboring cells coordinately. The molecular interactions underlying the action of Vang in PCP signaling and specification, however, are yet to be delineated. Here, we report the identification of Rack1 as an interacting protein of a vertebrate Vang protein, Vangl2. We demonstrate that Rack1 is required in zebrafish for PCP-regulated processes, including oriented cell division, cellular polarization, and convergent extension during gastrulation. We further show that the knockdown of Rack1 affects membrane localization of Vangl2 and that the Vangl2-interacting domain of Rack1 has a dominant-negative effect on Vangl2 localization and gastrulation. Moreover, Rack1 antagonizes canonical Wnt signaling. Together, our data suggest that Rack1 regulates the localization of an essential PCP protein and acts as a molecular switch to promote PCP signaling. PMID:21262816

  10. Gpr177-mediated Wnt Signaling Is Required for Secondary Palate Development.

    PubMed

    Liu, Y; Wang, M; Zhao, W; Yuan, X; Yang, X; Li, Y; Qiu, M; Zhu, X-J; Zhang, Z

    2015-07-01

    Cleft palate represents one of the major congenital birth defects in humans. Despite the essential roles of ectodermal canonical Wnt and mesenchymal Wnt signaling in the secondary palate development, the function of mesenchymal canonical Wnt activity in secondary palate development remains elusive. Here we show that Gpr177, a highly conserved transmembrane protein essential for Wnt trafficking, is required for secondary palate development. Gpr177 is expressed in both epithelium and mesenchyme of palatal shelves during mouse development. Wnt1(Cre)-mediated deletion of Gpr177 in craniofacial neural crest cells leads to a complete cleft secondary palate, which is formed mainly due to aberrant cell proliferation and increased cell death in palatal shelves. By BATGAL staining, we reveal an intense canonical Wnt activity in the anterior palate mesenchyme of E12.5 wild-type embryos but not in Gpr177(Wnt1-Cre) embryos, suggesting that mesenchymal canonical Wnt signaling activated by Gpr177-mediated mesenchymal Wnts is critical for secondary palate development. Moreover, phosphorylation of JNK and c-Jun is impaired in the Gpr177(Wnt1-Cre) palate and is restored by implantation of Wnt5a-soaked beads in the in vitro palate explants, suggesting that Gpr177 probably regulates palate development via the Wnt5a-mediated noncanonical Wnt pathway in which c-Jun and JNK are involved. Importantly, certain cellular processes and the altered gene expression in palates lacking Gpr177 are distinct from that of the Wnt5a mutant, further demonstrating involvement of other mesenchymal Wnts in the process of palate development. Together, these results suggest that mesenchymal Gpr177 is required for secondary palate development by regulating and integrating mesenchymal canonical and noncanonical Wnt signals.

  11. Intervertebral Disc Development Is Regulated by Wnt/β-catenin Signaling

    PubMed Central

    Kondo, Naoki; Yuasa, Takahito; Shimono, Kengo; Tung, Weien; Okabe, Takahiro; Yasuhara, Rika; Pacifici, Maurizio; Zhang, Yejia; Iwamoto, Masahiro; Enomoto-Iwamoto, Motomi

    2010-01-01

    Study Design Histological analysis of intervertebral disc (IVD) in three types of transgenic mice. Objectives To investigate the role of Wnt/β-catenin signaling in regulation of IVD development and organization. Summary of Background Data β-catenin dependent Wnt signaling is one of the central regulators in cartilage development during limb skeletal formation. Little is known, however, about the physiological relevance of this signaling pathway to IVD development and organization. Methods Temporal-spatial distribution of Wnt/β-catenin signaling activity was examined in IVD using Wnt/β-catenin reporter (TOPGAL) mice. The structural changes in the mouse IVD components such as the nucleus pulposus (NP), endplate (EP), annulus fibrosus (AF), and the growth plate (GP) of the vertebral body were analyzed following transient activation of Wnt/β-catenin signaling or deletion of β-catenin in the mice. Results Activity of Wnt/β-catenin signaling was high in EP, AF and GP in the embryonic stages and decreased at the postnatal stage; it was undetectable in the embryonic NP but up-regulated after birth. The transient activation of Wnt/β-catenin signaling caused severe deterioration of the GP and the AF, whereas deficiency of β-catenin accelerated bone formation in between EP and GP. Conclusion The findings in this study suggest that proper regulation of Wnt/β-catenin signaling is required for development and organization of IVD. PMID:21270710

  12. Inhibitory mechanisms of two Uncaria tomentosa extracts affecting the Wnt-signaling pathway.

    PubMed

    Gurrola-Díaz, Carmen Magdalena; García-López, Pedro Macedonio; Gulewicz, Krzysztof; Pilarski, Radoslaw; Dihlmann, Susanne

    2011-06-15

    Uncaria tomentosa ("uña de gato"; "cat's claw"), a woody vine native to the Amazon rainforest, is commonly used in South American traditional medicine to treat a broad spectrum of diseases. Although recent studies have reported anti-inflammatory and anti-proliferative properties of different alkaloids extracted from this plant, the underlying molecular mechanisms of these effects have not been elucidated yet. Our study investigates the inhibitory mechanisms of Uncaria tomentosa extracts on the Wnt-signaling pathway, a central regulator of development and tissue homoeostasis. A modified cell-based luciferase assay for screening inhibitors of the Wnt-pathway was used for analysis. Three cancer cell lines displaying different levels of aberrant Wnt-signaling activity were transfected with Wnt-signaling responsive Tcf-reporter plasmids and treated with increasing concentrations of two Uncaria tomentosa bark extracts. Wnt-signaling activity was assessed by luciferase activity and by expression of Wnt-responsive target genes. We show that both, an aqueous and an alkaloid-enriched extract specifically inhibit Wnt-signaling activity in HeLa, HCT116 and SW480 cancer cells resulting in reduced expression of the Wnt-target gene: c-Myc. The alkaloid-enriched extract (B/S(rt)) was found to be more effective than the aqueous extract (B/W(37)). The strongest effect was observed in SW480 cells, displaying the highest endogenous Wnt-signaling activity. Downregulation of Wnt-signaling by a dominant negative-TCF-4 variant in non-cancer cells rendered the cells insensitive towards treatment with B/S(rt). B/Srt was less toxic in non-cancer cells than in cancer cells. Our data suggest that the broad spectrum of pharmacological action of Uncaria tomentosa involves inhibition of the Wnt-signaling pathway, downstream of beta-Catenin activity.

  13. Inhibitory mechanisms of two Uncaria tomentosa extracts affecting the Wnt-signaling pathway.

    PubMed

    Gurrola-Díaz, Carmen Magdalena; García-López, Pedro Macedonio; Gulewicz, Krzysztof; Pilarski, Radoslaw; Dihlmann, Susanne

    2011-06-15

    Uncaria tomentosa ("uña de gato"; "cat's claw"), a woody vine native to the Amazon rainforest, is commonly used in South American traditional medicine to treat a broad spectrum of diseases. Although recent studies have reported anti-inflammatory and anti-proliferative properties of different alkaloids extracted from this plant, the underlying molecular mechanisms of these effects have not been elucidated yet. Our study investigates the inhibitory mechanisms of Uncaria tomentosa extracts on the Wnt-signaling pathway, a central regulator of development and tissue homoeostasis. A modified cell-based luciferase assay for screening inhibitors of the Wnt-pathway was used for analysis. Three cancer cell lines displaying different levels of aberrant Wnt-signaling activity were transfected with Wnt-signaling responsive Tcf-reporter plasmids and treated with increasing concentrations of two Uncaria tomentosa bark extracts. Wnt-signaling activity was assessed by luciferase activity and by expression of Wnt-responsive target genes. We show that both, an aqueous and an alkaloid-enriched extract specifically inhibit Wnt-signaling activity in HeLa, HCT116 and SW480 cancer cells resulting in reduced expression of the Wnt-target gene: c-Myc. The alkaloid-enriched extract (B/S(rt)) was found to be more effective than the aqueous extract (B/W(37)). The strongest effect was observed in SW480 cells, displaying the highest endogenous Wnt-signaling activity. Downregulation of Wnt-signaling by a dominant negative-TCF-4 variant in non-cancer cells rendered the cells insensitive towards treatment with B/S(rt). B/Srt was less toxic in non-cancer cells than in cancer cells. Our data suggest that the broad spectrum of pharmacological action of Uncaria tomentosa involves inhibition of the Wnt-signaling pathway, downstream of beta-Catenin activity. PMID:21156346

  14. Activation of canonical Wnt/β-catenin signaling inhibits H2O2-induced decreases in proliferation and differentiation of human periodontal ligament fibroblasts.

    PubMed

    Kook, Sung-Ho; Lee, Daewoo; Cho, Eui-Sic; Heo, Jung Sun; Poudel, Sher Bahadur; Ahn, Yu-Hyeon; Hwang, Jae-Won; Ji, Hyeok; Kim, Jong-Ghee; Lee, Jeong-Chae

    2016-01-01

    Human periodontal ligament fibroblasts (hPLFs) are exposed to oxidative stress during periodontal inflammation and dental treatments. It is hypothesized that hydrogen peroxide (H2O2)-mediated oxidative stress decreases survival and osteogenic differentiation of hPLFs, whereas these decreases are prevented by activation of the Wnt pathway. However, there has been a lack of reports that define the exact roles of canonical Wnt/β-catenin signaling in H2O2-exposed hPLFs. Treatment with H2O2 reduced viability and proliferation in hPLFs in a dose- and time-dependent manner and led to mitochondria-mediated apoptosis. Pretreatment with lithium chloride (LiCl) or Wnt1 inhibited the oxidative damage that occurred in H2O2-exposed hPLFs. However, knockout of β-catenin or treatment with DKK1 facilitated the H2O2-induced decreases in viability, mitochondrial membrane potential, and Bcl-2 induction. Osteoblastic differentiation of hPLFs was also inhibited by combined treatment with 100 μM H2O2, as evidenced by the decreases in alkaline phosphatase (ALP) activity and mineralization. H2O2-mediated inhibition of osteoblast differentiation in hPLFs was significantly attenuated in the presence of 500 ng/ml Wnt1 or 20 mM LiCl. In particular, H2O2 stimulated the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) at protein and mRNA levels in hPLFs, whereas the induction was almost completely suppressed in the presence of Wnt1 or LiCl. Furthermore, siRNA-mediated silencing of Nrf2 blocked H2O2-induced decreases in ALP activity and mineralization of hPLFs with the concomitant restoration of runt-related transcription factor 2 and osteocalcin mRNA expression and ALP activity. Collectively, these results suggest that activation of the Wnt/β-catenin pathway improves proliferation and mineralization in H2O2-exposed hPLFs by downregulating Nrf2.

  15. Andrographolide activates the canonical Wnt signalling pathway by a mechanism that implicates the non-ATP competitive inhibition of GSK-3β: autoregulation of GSK-3β in vivo.

    PubMed

    Tapia-Rojas, Cheril; Schüller, Andreas; Lindsay, Carolina B; Ureta, Roxana C; Mejías-Reyes, Cristóbal; Hancke, Juan; Melo, Francisco; Inestrosa, Nibaldo C

    2015-03-01

    Wnt/β-catenin signalling is an important pathway that regulates multiple biological processes, including cell adhesion and determination of cell fate during animal development; in the adult nervous system it regulates the structure and function of synapses. Wnt-signalling dysfunction is associated with several neurodegenerative diseases such as schizophrenia and Alzheimer's disease. The use of natural compounds is an interesting strategy in the search for drugs with the therapeutic potential to activate this signalling pathway. In the present study, we report that andrographolide (ANDRO), a component of Andrographis paniculata, is a potent activator of Wnt signalling. Our results indicate that ANDRO activates this pathway, inducing the transcription of Wnt target genes by a mechanism that bypasses Wnt ligand binding to its receptor. In vitro kinase assays demonstrate that ANDRO inhibits glycogen synthase kinase (GSK)-3β by a non-ATP-competitive, substrate-competitive mode of action. In silico analyses suggest that ANDRO interacts with the substrate-binding site of GSK-3β. Finally, we demonstrated that the increase seen in the levels of GSK-3β phosphorylated at Ser⁹ is the result of an autoregulatory mechanism of the kinase in vivo, although not through activation of protein phosphatase type 1. Our results suggest that ANDRO could be used as a potential therapeutic drug for disorders caused by Wnt-signalling dysfunction such as neurodegenerative diseases.

  16. Activation status of Wnt/ß-catenin signaling in normal and neoplastic breast tissues: relationship to HER2/neu expression in human and mouse.

    PubMed

    Khalil, Sara; Tan, Grace A; Giri, Dilip D; Zhou, Xi Kathy; Howe, Louise R

    2012-01-01

    Wnt/ß-catenin signaling is strongly implicated in neoplasia, but the role of this pathway in human breast cancer has been controversial. Here, we examined Wnt/ß-catenin pathway activation as a function of breast cancer progression, and tested for a relationship with HER2/neu expression, using a human tissue microarray comprising benign breast tissues, ductal carcinoma in situ (DCIS), and invasive carcinomas. Cores were scored for membranous ß-catenin, a key functional component of adherens junctions, and for nucleocytoplasmic ß-catenin, a hallmark of Wnt/ß-catenin pathway activation. Only 82% of benign samples exhibited membrane-associated ß-catenin, indicating a finite frequency of false-negative staining. The frequency of membrane positivity was similar in DCIS samples, but was significantly reduced in carcinomas (45%, P<0.001), consistent with loss of adherens junctions during acquisition of invasiveness. Negative membrane status in cancers correlated with higher grade (P = 0.04) and estrogen receptor-negative status (P = 0.03), both indices of poor prognosis. Unexpectedly, a substantial frequency of nucleocytoplasmic ß-catenin was observed in benign breast tissues (36%), similar to that in carcinomas (35%). Positive-staining basal nuclei observed in benign breast may identify putative stem cells. An increased frequency of nucleocytoplasmic ß-catenin was observed in DCIS tumors (56%), suggesting that pathway activation may be an early event in human breast neoplasia. A correlation was observed between HER2/neu expression and nucleocytoplasmic ß-catenin in node-positive carcinomas (P = 0.02). Furthermore, cytoplasmic ß-catenin was detected in HER2/neu-induced mouse mammary tumors. The Axin2(NLSlacZ) mouse strain, a previously validated reporter of mammary Wnt/ß-catenin signaling, was utilized to define in vivo transcriptional consequences of HER2/neu-induced ß-catenin accumulation. Discrete hyperplastic foci observed in mammary glands from

  17. Beta-catenin versus the other armadillo catenins: assessing our current view of canonical Wnt signaling.

    PubMed

    Miller, Rachel K; Hong, Ji Yeon; Muñoz, William A; McCrea, Pierre D

    2013-01-01

    The prevailing view of canonical Wnt signaling emphasizes the role of beta-catenin acting downstream of Wnt activation to regulate transcriptional activity. However, emerging evidence indicates that other armadillo catenins in vertebrates, such as members of the p120 subfamily, convey parallel signals to the nucleus downstream of canonical Wnt pathway activation. Their study is thus needed to appreciate the networked mechanisms of canonical Wnt pathway transduction, especially as they may assist in generating the diversity of Wnt effects observed in development and disease. In this chapter, we outline evidence of direct canonical Wnt effects on p120 subfamily members in vertebrates and speculate upon these catenins' roles in conjunction with or aside from beta-catenin. PMID:23481204

  18. Icariin attenuates titanium-particle inhibition of bone formation by activating the Wnt/β-catenin signaling pathway in vivo and in vitro

    PubMed Central

    Wang, Junhua; Tao, Yunxia; Ping, Zichuan; Zhang, Wen; Hu, Xuanyang; Wang, Yijun; Wang, Liangliang; Shi, Jiawei; Wu, Xiexing; Yang, Huilin; Xu, Yaozeng; Geng, Dechun

    2016-01-01

    Wear-debris-induced periprosthetic osteolysis (PIO) is a common clinical condition following total joint arthroplasty, which can cause implant instability and failure. The host response to wear debris promotes bone resorption and impairs bone formation. We previously demonstrated that icariin suppressed wear-debris-induced osteoclastogenesis and attenuated particle-induced osteolysis in vivo. Whether icariin promotes bone formation in a wear-debris-induced osteolytic site remains unclear. Here, we demonstrated that icariin significantly attenuated titanium-particle inhibition of osteogenic differentiation of mesenchymal stem cells (MSCs). Additionally, icariin increased bone mass and decreased bone loss in titanium-particle-induced osteolytic sites. Mechanistically, icariin inhibited decreased β-catenin stability induced by titanium particles in vivo and in vitro. To confirm icariin mediated its bone-protective effects via the Wnt/β-catenin signaling pathway, we demonstrated that ICG-001, a selective Wnt/β-catenin inhibitor, attenuated the effects of icariin on MSC mineralization in vitro and bone formation in vivo. Therefore, icariin could induce osteogenic differentiation of MSCs and promote new bone formation at a titanium-particle-induced osteolytic site via activation of the Wnt/β-catenin signaling pathway. These results further support the protective effects of icariin on particle-induced bone loss and provide novel mechanistic insights into the recognized bone-anabolic effects of icariin and an evidence-based rationale for its use in PIO treatment. PMID:27029606

  19. Lens regeneration from the cornea requires suppression of Wnt/β-catenin signaling.

    PubMed

    Hamilton, Paul W; Sun, Yu; Henry, Jonathan J

    2016-04-01

    The frog, Xenopus laevis, possesses a high capacity to regenerate various larval tissues, including the lens, which is capable of complete regeneration from the cornea epithelium. However, the molecular signaling mechanisms of cornea-lens regeneration are not fully understood. Previous work has implicated the involvement of the Wnt signaling pathway, but molecular studies have been very limited. Iris-derived lens regeneration in the newt (Wolffian lens regeneration) has shown a necessity for active Wnt signaling in order to regenerate a new lens. Here we provide evidence that the Wnt signaling pathway plays a different role in the context of cornea-lens regeneration in Xenopus. We examined the expression of frizzled receptors and wnt ligands in the frog cornea epithelium. Numerous frizzled receptors (fzd1, fzd2, fzd3, fzd4, fzd6, fzd7, fzd8, and fzd10) and wnt ligands (wnt2b.a, wnt3a, wnt4, wnt5a, wnt5b, wnt6, wnt7b, wnt10a, wnt11, and wnt11b) are expressed in the cornea epithelium, demonstrating that this tissue is transcribing many of the ligands and receptors of the Wnt signaling pathway. When compared to flank epithelium, which is lens regeneration incompetent, only wnt11 and wnt11b are different (present only in the cornea epithelium), identifying them as potential regulators of cornea-lens regeneration. To detect changes in canonical Wnt/β-catenin signaling occurring within the cornea epithelium, axin2 expression was measured over the course of regeneration. axin2 is a well-established reporter of active Wnt/β-catenin signaling, and its expression shows a significant decrease at 24 h post-lentectomy. This decrease recovers to normal endogenous levels by 48 h. To test whether this signaling decrease was necessary for lens regeneration to occur, regenerating eyes were treated with either 6-bromoindirubin-3'-oxime (BIO) or 1-azakenpaullone - both activators of Wnt signaling - resulting in a significant reduction in the percentage of cases with successful

  20. Three-dimensional culture of sebaceous gland cells revealing the role of prostaglandin E{sub 2}-induced activation of canonical Wnt signaling

    SciTech Connect

    Yoshida, Go J. Saya, Hideyuki

    2013-09-06

    Highlights: •Three-dimensional culture generates “semi-vivo” sebaceous glands. •Xenograft model failed to mimic the biology of sebaceous glands in vivo. •Proinflammatory cytokine PGE{sub 2} enhances Wnt signal activity in the organoids. •PGE{sub 2} influences on the mitochondrial and lipid metabolism in the organoids. •Considering 3R agenda, “semi-vivo” sebaceous glands are useful for research. -- Abstract: Background: Prostaglandin E{sub 2} (PGE{sub 2}) is a proinflammatory mediator and activates the canonical Wnt–β-catenin signaling pathway in hematopoietic stem cells. The SZ95 cell line was established from human sebaceous gland cells and is studied as a model system for these cells. Given that 2D culture of SZ95 cells does not recapitulate the organization of sebaceous glands in situ, we developed a 3D culture system for these cells and examined the effects of PGE{sub 2} on cell morphology and function. Results: SZ95 cells maintained in 3D culture formed organoids that mimicked the organization of sebaceous glands in situ, including the establishment of a basement membrane. Organoids exposed to PGE{sub 2} were larger and adopted a more complex organization compared with control organoids. PGE{sub 2} activated the canonical Wnt signaling pathway as well as increased cell viability and proliferation, mitochondrial metabolism, and lipid synthesis in the organoids. Conclusions: Culture of SZ95 cells in 3D culture system recapitulates the structure and susceptibility to PGE{sub 2} of sebaceous glands in situ and should prove useful for studies of the response of these glands to inflammation and other environmental stressors. Our results also implicate PGE{sub 2}-induced activation of canonical Wnt signaling pathway in regulation of the morphology,proliferation, and function of “semi-vivo” sebaceous glands.

  1. Wnt-dependent beta-catenin signaling is activated after unilateral ureteral obstruction, and recombinant secreted frizzled-related protein 4 alters the progression of renal fibrosis.

    PubMed

    Surendran, Kameswaran; Schiavi, Susan; Hruska, Keith A

    2005-08-01

    beta-Catenin functions as a transducer of Wnt signals to the nucleus, where it interacts with the T cell factor (TCF) family of DNA binding proteins to regulate gene expression. On the basis of the genes regulated by beta-catenin and TCF in various biologic settings, two predicted functions of beta-catenin/TCF-dependent transcription are to mediate the loss of epithelial polarity and to promote fibroblast activities, such as the increased synthesis of fibronectin during chronic renal disease. These predictions were tested by determination of the expression and function of an inhibitor of Wnt signaling, secreted frizzled-related protein 4 (sFRP4), during renal tubular epithelial injury initiated by unilateral ureteral obstruction (UUO). Despite increased sFRP4 gene expression in perivascular regions of injured kidneys, total sFRP4 protein levels decreased after injury. The decreased sFRP4 protein levels after UUO accompanied increased Wnt-dependent beta-catenin signaling in tubular epithelial and interstitial cells, along with increased expression of markers of fibrosis. Administration of recombinant sFRP4 protein caused a reduction in tubular epithelial beta-catenin signaling and suppressed the progression of renal fibrosis, as evidenced by a partial maintenance of E-cadherin mRNA expression and a reduction in the amount of fibronectin and alpha-smooth muscle actin proteins. Furthermore, recombinant sFRP4 reduced the number of myofibroblasts, a central mediator of fibrosis. It is concluded that beta-catenin signaling is activated in tubular epithelial and interstitial cells after renal injury, and recombinant sFRP4 can interfere with epithelial de-differentiation and with fibroblast differentiation and function during progression of renal fibrosis.

  2. Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling

    SciTech Connect

    Marschall, Zofia von; Fisher, Larry W.

    2010-09-24

    Research highlights: {yields} sFRP2 enhances the Wnt3a-induced {beta}-catenin stabilization and its nuclear translocation. {yields} sFRP2 enhances LRP6 phosphorylation and Wnt3a/{beta}-catenin transcriptional reporter activity. {yields} Dickkopf-1 (DKK1) fully antagonizes both Wnt3a/sFRP2-induced LRP6 phosphorylation and transcriptional activity. {yields} sFRP2 enhances expression of genes known to be regulated by Wnt3a signaling. -- Abstract: Secreted Frizzled-related proteins (sFRP) are involved in embryonic development as well as pathological conditions including bone and myocardial disorders and cancer. Because of their sequence homology with the Wnt-binding domain of Frizzled, they have generally been considered antagonists of canonical Wnt signaling. However, additional activities of various sFRPs including both synergism and mimicry of Wnt signaling as well as functions other than modulation of Wnt signaling have been reported. Using human embryonic kidney cells (HEK293A), we found that sFRP2 enhanced Wnt3a-dependent phosphorylation of LRP6 as well as both cytosolic {beta}-catenin levels and its nuclear translocation. While addition of recombinant sFRP2 had no activity by itself, Top/Fop luciferase reporter assays showed a dose-dependent increase of Wnt3a-mediated transcriptional activity. sFRP2 enhancement of Wnt3a signaling was abolished by treatment with the Wnt antagonist, Dickkopf-1 (DKK1). Wnt-signaling pathway qPCR arrays showed that sFRP2 enhanced the Wnt3a-mediated transcriptional up-regulation of several genes regulated by Wnt3a including its antagonists, DKK1, and Naked cuticle-1 homolog (NKD1). These results support sFRP2's role as an enhancer of Wnt/{beta}-catenin signaling, a result with biological impact for both normal development and diverse pathologies such as tumorigenesis.

  3. Noncanonical Wnt signaling promotes osteoclast differentiation and is facilitated by the human immunodeficiency virus protease inhibitor ritonavir

    SciTech Connect

    Santiago, Francisco; Oguma, Junya; Brown, Anthony M.C.; Laurence, Jeffrey

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer First demonstration of direct role for noncanonical Wnt in osteoclast differentiation. Black-Right-Pointing-Pointer Demonstration of Ryk as a Wnt5a/b receptor in inhibition of canonical Wnt signaling. Black-Right-Pointing-Pointer Modulation of noncanonical Wnt signaling by a clinically important drug, ritonavir. Black-Right-Pointing-Pointer Establishes a mechanism for an important clinical problem: HIV-associated bone loss. -- Abstract: Wnt proteins that signal via the canonical Wnt/{beta}-catenin pathway directly regulate osteoblast differentiation. In contrast, most studies of Wnt-related effects on osteoclasts involve indirect changes. While investigating bone mineral density loss in the setting of human immunodeficiency virus (HIV) infection and its treatment with the protease inhibitor ritonavir (RTV), we observed that RTV decreased nuclear localization of {beta}-catenin, critical to canonical Wnt signaling, in primary human and murine osteoclast precursors. This occurred in parallel with upregulation of Wnt5a and Wnt5b transcripts. These Wnts typically stimulate noncanonical Wnt signaling, and this can antagonize the canonical Wnt pathway in many cell types, dependent upon Wnt receptor usage. We now document RTV-mediated upregulation of Wnt5a/b protein in osteoclast precursors. Recombinant Wnt5b and retrovirus-mediated expression of Wnt5a enhanced osteoclast differentiation from human and murine monocytic precursors, processes facilitated by RTV. In contrast, canonical Wnt signaling mediated by Wnt3a suppressed osteoclastogenesis. Both RTV and Wnt5b inhibited canonical, {beta}-catenin/T cell factor-based Wnt reporter activation in osteoclast precursors. RTV- and Wnt5-induced osteoclast differentiation were dependent upon the receptor-like tyrosine kinase Ryk, suggesting that Ryk may act as a Wnt5a/b receptor in this context. This is the first demonstration of a direct role for Wnt signaling pathways and Ryk in

  4. IGF-1R inhibition in mammary epithelia promotes canonical Wnt signaling and Wnt1-driven tumors

    PubMed Central

    Rota, Lauren M.; Albanito, Lidia; Shin, Marcus E.; Goyeneche, Corey L.; Shushanov, Sain; Gallagher, Emily J.; LeRoith, Derek; Lazzarino, Deborah A.; Wood, Teresa L.

    2014-01-01

    Triple-negative breast cancers (TNBC) are an aggressive disease subtype which unlike other subtypes lack an effective targeted therapy. Inhibitors of the insullin-like growth factor receptor (IGF-1R) have been considered for use in treating TNBC. Here we provide genetic evidence that IGF-1R inhibition promotes development of Wnt1-mediated murine mammary tumors that offer a model of TNBC. We found that in a double transgenic mouse model carrying activated Wnt-1 and mutant IGF-1R, a reduction in IGF-1R signaling reduced tumor latency and promoted more aggressive phenotypes. These tumors displayed a squamal cell phenotype with increased expression of keratins 5/6 and β-catenin. Notably, cell lineage analyses revealed an increase in basal (CD29hi/CD24+) and luminal (CD24+/CD61+/CD29lo) progenitor cell populations, along with increased Nanog expression and decreased Elf5 expression. In these doubly transgenic mice, lung metastases developed with characteristics of the primary tumors, unlike MMTV-Wnt1 mice. Mechanistic investigations showed that pharmacological inhibition of the IGF-1R in vitro was sufficient to increase the tumorsphere-forming efficiency of MMTV-Wnt1 tumor cells. Tumors from doubly transgenic mice also exhibited an increase in the expression ratio of the IGF-II-sensitive, A isoform of the insulin receptor vs the IR-B isoform, which in vitro resulted in enhanced expression of β-catenin. Overall, our results revealed that in Wnt-driven tumors an attenuation of IGF-1R signaling accelerates tumorigenesis and promotes more aggressive phenotypes, with potential implications for understanding TNBC pathobiology and treatment. PMID:25092896

  5. RNA-binding protein HuR promotes growth of small intestinal mucosa by activating the Wnt signaling pathway.

    PubMed

    Liu, Lan; Christodoulou-Vafeiadou, Eleni; Rao, Jaladanki N; Zou, Tongtong; Xiao, Lan; Chung, Hee Kyoung; Yang, Hong; Gorospe, Myriam; Kontoyiannis, Dimitris; Wang, Jian-Ying

    2014-11-01

    Inhibition of growth of the intestinal epithelium, a rapidly self-renewing tissue, is commonly found in various critical disorders. The RNA-binding protein HuR is highly expressed in the gut mucosa and modulates the stability and translation of target mRNAs, but its exact biological function in the intestinal epithelium remains unclear. Here, we investigated the role of HuR in intestinal homeostasis using a genetic model and further defined its target mRNAs. Targeted deletion of HuR in intestinal epithelial cells caused significant mucosal atrophy in the small intestine, as indicated by decreased cell proliferation within the crypts and subsequent shrinkages of crypts and villi. In addition, the HuR-deficient intestinal epithelium also displayed decreased regenerative potential of crypt progenitors after exposure to irradiation. HuR deficiency decreased expression of the Wnt coreceptor LDL receptor-related protein 6 (LRP6) in the mucosal tissues. At the molecular level, HuR was found to bind the Lrp6 mRNA via its 3'-untranslated region and enhanced LRP6 expression by stabilizing Lrp6 mRNA and stimulating its translation. These results indicate that HuR is essential for normal mucosal growth in the small intestine by altering Wnt signals through up-regulation of LRP6 expression and highlight a novel role of HuR deficiency in the pathogenesis of intestinal mucosal atrophy under pathological conditions.

  6. Tyrosine-based signal mediates LRP6 receptor endocytosis and desensitization of Wnt/β-catenin pathway signaling.

    PubMed

    Liu, Chia-Chen; Kanekiyo, Takahisa; Roth, Barbara; Bu, Guojun

    2014-10-01

    Wnt/β-catenin signaling orchestrates a number of critical events including cell growth, differentiation, and cell survival during development. Misregulation of this pathway leads to various human diseases, specifically cancers. Endocytosis and phosphorylation of the LDL receptor-related protein 6 (LRP6), an essential co-receptor for Wnt/β-catenin signaling, play a vital role in mediating Wnt/β-catenin signal transduction. However, its regulatory mechanism is not fully understood. In this study, we define the mechanisms by which LRP6 endocytic trafficking regulates Wnt/β-catenin signaling activation. We show that LRP6 mutant with defective tyrosine-based signal in its cytoplasmic tail has an increased cell surface distribution and decreased endocytosis rate. These changes in LRP6 endocytosis coincide with an increased distribution to caveolae, increased phosphorylation, and enhanced Wnt/β-catenin signaling. We further demonstrate that treatment of Wnt3a ligands or blocking the clathrin-mediated endocytosis of LRP6 leads to a redistribution of wild-type receptor to lipid rafts. The LRP6 tyrosine mutant also exhibited an increase in signaling activation in response to Wnt3a stimulation when compared with wild-type LRP6, and this activation is suppressed when caveolae-mediated endocytosis is blocked. Our results reveal molecular mechanisms by which LRP6 endocytosis routes regulate its phosphorylation and the strength of Wnt/β-catenin signaling, and have implications on how this pathway can be modulated in human diseases.

  7. JS-K, a glutathione/glutathione S-transferase-activated nitric oxide releasing prodrug inhibits androgen receptor and WNT-signaling in prostate cancer cells

    PubMed Central

    2012-01-01

    Background Nitric oxide (NO) and its oxidative reaction products have been repeatedly shown to block steroid receptor function via nitrosation of zinc finger structures in the DNA-binding domain (DBD). In consequence NO-donors could be of special interest for the treatment of deregulated androgen receptor(AR)-signaling in castration resistant prostate cancer (CRPC). Methods Prostate cancer (PCa) cells were treated with JS-K, a diazeniumdiolate derivate capable of generating large amounts of intracellular NO following activation by glutathione S-transferase. Generation of NO was determined indirectly by the detection of nitrate in tissue culture medium or by immunodetection of nitrotyrosine in the cytoplasm. Effects of JS-K on intracellular AR-levels were determined by western blotting. AR-dimerization was analyzed by mammalian two hybrid assay, nuclear translocation of the AR was visualized in PCa cells transfected with a green fluorescent AR-Eos fusion protein using fluorescence microscopy. Modulation of AR- and WNT-signalling by JS-K was investigated using reporter gene assays. Tumor cell proliferation following JS-K treatment was measured by MTT-Assay. Results The NO-releasing compound JS-K was shown to inhibit AR-mediated reporter gene activity in 22Rv1 CRPC cells. Inhibition of AR signaling was neither due to an inhibition of nuclear import nor to a reduction in AR-dimerization. In contrast to previously tested NO-donors, JS-K was able to reduce the intracellular concentration of functional AR. This could be attributed to the generation of extremely high intracellular levels of the free radical NO as demonstrated indirectly by high levels of nitrotyrosine in JS-K treated cells. Moreover, JS-K diminished WNT-signaling in AR-positive 22Rv1 cells. In line with these observations, castration resistant 22Rv1 cells were found to be more susceptible to the growth inhibitory effects of JS-K than the androgen dependent LNCaP which do not exhibit an active WNT-signaling

  8. Wnt signaling in testis development: Unnecessary or essential?

    PubMed

    Dong, Wei-Lai; Tan, Fu-Qing; Yang, Wan-Xi

    2015-07-10

    Testis development is a fundamental process in sexual development and reproduction. It is under the regulation of multiple factors. Wnt signaling pathway is a classical pathway, which plays an essential role during early development. From a traditional view, Wnt signaling serves as a key regulator of female reproductive system. However, its role in testis development is relatively controversial. This paper reviews Wnt signaling's part in the major events during testis development, including primordial germ cell specification, proliferation and migration, testis determination, spermatogenesis and somatic cell regulation, and summarizes Wnt signaling's impact on testis-related disorders. We evaluate the outcomes of current studies in the field and suggest future research directions.

  9. Network modeling of TGFβ signaling in hepatocellular carcinoma epithelial-to-mesenchymal transition reveals joint Sonic hedgehog and Wnt pathway activation

    PubMed Central

    Steinway, Steven Nathaniel; Zañudo, Jorge Gomez Tejeda; Ding, Wei; Rountree, Carl Bart; Feith, David J.; Loughran, Thomas P.; Albert, Reka

    2014-01-01

    Epithelial-to-mesenchymal transition (EMT) is a developmental process hijacked by cancer cells to leave the primary tumor site, invade surrounding tissue, and establish distant metastases. A hallmark of EMT is the loss of E-cadherin expression, and one major signal for the induction of EMT is transforming growth factor beta (TGFβ, which is dysregulated in up to 40% of hepatocellular carcinoma (HCC). We have constructed an EMT network of 70 nodes and 135 edges by integrating the signaling pathways involved in developmental EMT and known dysregulations in invasive HCC. We then used discrete dynamic modeling to understand the dynamics of the EMT network driven by TGFβ. Our network model recapitulates known dysregulations during the induction of EMT and predicts the activation of the Wnt and Sonic hedgehog (SHH) signaling pathways during this process. We show, across multiple murine (P2E and P2M) and human HCC cell lines (Huh7, PLC/PRF/5, HLE, and HLF), that the TGFβ signaling axis is a conserved driver of mesenchymal phenotype HCC and confirm that Wnt and SHH signaling are induced in these cell lines. Furthermore, we identify by network analysis eight regulatory feedback motifs that stabilize the EMT process and show that these motifs involve cross-talk among multiple major pathways. Our model will be useful in identifying potential therapeutic targets for the suppression of EMT, invasion and metastasis in HCC. PMID:25189528

  10. Estrogen-related receptor α regulates osteoblast differentiation via Wnt/β-catenin signaling.

    PubMed

    Auld, Kathryn L; Berasi, Stephen P; Liu, Yan; Cain, Michael; Zhang, Ying; Huard, Christine; Fukayama, Shoichi; Zhang, Jing; Choe, Sung; Zhong, Wenyan; Bhat, Bheem M; Bhat, Ramesh A; Brown, Eugene L; Martinez, Robert V

    2012-04-01

    Based on its homology to the estrogen receptor and its roles in osteoblast and chondrocyte differentiation, the orphan nuclear receptor estrogen-related receptor α (ERRα (ESRRA)) is an intriguing therapeutic target for osteoporosis and other bone diseases. The objective of this study was to better characterize the molecular mechanisms by which ERRα modulates osteoblastogenesis. Experiments from multiple systems demonstrated that ERRα modulates Wnt signaling, a crucial pathway for proper regulation of bone development. This was validated using a Wnt-luciferase reporter, where ERRα showed co-activator-dependent (peroxisome proliferator-activated receptor gamma co-activator 1α, PGC-1α) stimulatory effects. Interestingly, knockdown of ERRα expression also enhanced WNT signaling. In combination, these data indicated that ERRα could serve to either activate or repress Wnt signaling depending on the presence or absence of its co-activator PGC-1α. The observed Wnt pathway modulation was cell intrinsic and did not alter β-catenin nuclear translocation but was dependent on DNA binding of ERRα. We also found that expression of active ERRα correlated with Wnt pathway effects on osteoblastic differentiation in two cell types, consistent with a role for ERRα in modulating the Wnt pathway. In conclusion, this work identifies ERRα, in conjunction with co-activators such as PGC-1α, as a new regulator of the Wnt-signaling pathway during osteoblast differentiation, through a cell-intrinsic mechanism not affecting β-catenin nuclear translocation.

  11. MicroRNA-142-3p Negatively Regulates Canonical Wnt Signaling Pathway

    PubMed Central

    Hu, Tanyu; Phiwpan, Krung; Guo, Jitao; Zhang, Wei; Guo, Jie; Zhang, Zhongmei; Zou, Mangge; Zhang, Xuejie; Zhang, Jianhua

    2016-01-01

    Wnt/β-catenin signaling pathway plays essential roles in mammalian development and tissue homeostasis. MicroRNAs (miRNAs) are a class of regulators involved in modulating this pathway. In this study, we screened miRNAs regulating Wnt/β-catenin signaling by using a TopFlash based luciferase reporter. Surprisingly, we found that miR-142 inhibited Wnt/β-catenin signaling, which was inconsistent with a recent study showing that miR-142-3p targeted Adenomatous Polyposis Coli (APC) to upregulate Wnt/β-catenin signaling. Due to the discordance, we elaborated experiments by using extensive mutagenesis, which demonstrated that the stem-loop structure was important for miR-142 to efficiently suppress Wnt/β-catenin signaling. Moreover, the inhibitory effect of miR-142 relies on miR-142-3p rather than miR-142-5p. Further, we found that miR-142-3p directly modulated translation of Ctnnb1 mRNA (encoding β-catenin) through binding to its 3’ untranslated region (3’ UTR). Finally, miR-142 was able to repress cell cycle progression by inhibiting active Wnt/β-catenin signaling. Thus, our findings highlight the inhibitory role of miR-142-3p in Wnt/β-catenin signaling, which help to understand the complex regulation of Wnt/β-catenin signaling. PMID:27348426

  12. Axud1 integrates Wnt signaling and transcriptional inputs to drive neural crest formation

    PubMed Central

    Simões-Costa, Marcos; Stone, Michael; Bronner, Marianne E.

    2015-01-01

    Summary Neural crest cells are induced at the neural plate border by the combined action of transcription factors and signaling molecules. Here, we show that Axud1, a downstream effector of Wnt signaling, represents a critical missing link that integrates signaling and transcriptional cues to mediate neural crest formation. Axud1 is a transcription factor expressed in neural crest progenitors in a Wnt1/β-catenin dependent manner. Axud1 loss leads to downregulation of multiple genes involved in neural crest specification, similar to the effects of Wnt1 knockdown. Importantly, Axud1 is sufficient to rescue neural crest formation after disruption of Wnt signaling. Furthermore, it physically interacts with neural plate border genes Pax7 and Msx1 in vivo to directly activate transcription of stem cell factor FoxD3, initiating the neural crest program. Thus, Axud1 integrates Wnt signaling with transcriptional inputs to endow the neural crest with its unique molecular signature. PMID:26256212

  13. The role of WNT signaling in adult ovarian folliculogenesis

    PubMed Central

    Hernandez Gifford, J. A.

    2015-01-01

    Wingless-type mouse mammary tumor virus integration site (WNT) signaling molecules are locally secreted glycoproteins that play a role in a number of physiological and pathological developmental processes. Components of the WNT signaling pathway have been demonstrated to impact reproductive functions including embryonic development of the sex organs, and regulation of follicle maturation controlling steroidogenesis in the postnatal ovary. Emerging evidence underscores the complexity of WNT signaling molecules in regulation of dynamic changes that occur in the ovary during the reproductive cycle. While disruption in the WNT signaling cascade has been recognized to have deleterious consequences to normal sexual development, more recent studies are beginning to highlight the importance of these molecules in adult ovarian function related to follicle development, corpus luteum formation, steroid production and fertility. Hormonal regulation of WNT genes and expression of members of the WNT signaling network, including WNT ligands, frizzled receptors and downstream signaling components that are expressed in the postnatal ovary at distinct stages of the estrous cycle, suggest a crucial role in normal ovarian function. Similarly, FSH stimulation of T cell factor-dependent gene expression requires input from β-catenin, a lynchpin molecule in canonical WNT signaling, further indicating β-catenin participation in regulation of follicle maturation. This review will focus on the multiple functions of WNT signaling in folliculogenesis in the adult ovary. PMID:26130815

  14. Construction and Experimental Validation of a Petri Net Model of Wnt/β-Catenin Signaling.

    PubMed

    Jacobsen, Annika; Heijmans, Nika; Verkaar, Folkert; Smit, Martine J; Heringa, Jaap; van Amerongen, Renée; Feenstra, K Anton

    2016-01-01

    The Wnt/β-catenin signaling pathway is important for multiple developmental processes and tissue maintenance in adults. Consequently, deregulated signaling is involved in a range of human diseases including cancer and developmental defects. A better understanding of the intricate regulatory mechanism and effect of physiological (active) and pathophysiological (hyperactive) WNT signaling is important for predicting treatment response and developing novel therapies. The constitutively expressed CTNNB1 (commonly and hereafter referred to as β-catenin) is degraded by a destruction complex, composed of amongst others AXIN1 and GSK3. The destruction complex is inhibited during active WNT signaling, leading to β-catenin stabilization and induction of β-catenin/TCF target genes. In this study we investigated the mechanism and effect of β-catenin stabilization during active and hyperactive WNT signaling in a combined in silico and in vitro approach. We constructed a Petri net model of Wnt/β-catenin signaling including main players from the plasma membrane (WNT ligands and receptors), cytoplasmic effectors and the downstream negative feedback target gene AXIN2. We validated that our model can be used to simulate both active (WNT stimulation) and hyperactive (GSK3 inhibition) signaling by comparing our simulation and experimental data. We used this experimentally validated model to get further insights into the effect of the negative feedback regulator AXIN2 upon WNT stimulation and observed an attenuated β-catenin stabilization. We furthermore simulated the effect of APC inactivating mutations, yielding a stabilization of β-catenin levels comparable to the Wnt-pathway activities observed in colorectal and breast cancer. Our model can be used for further investigation and viable predictions of the role of Wnt/β-catenin signaling in oncogenesis and development. PMID:27218469

  15. Construction and Experimental Validation of a Petri Net Model of Wnt/β-Catenin Signaling

    PubMed Central

    Heijmans, Nika; Verkaar, Folkert; Smit, Martine J.; Heringa, Jaap

    2016-01-01

    The Wnt/β-catenin signaling pathway is important for multiple developmental processes and tissue maintenance in adults. Consequently, deregulated signaling is involved in a range of human diseases including cancer and developmental defects. A better understanding of the intricate regulatory mechanism and effect of physiological (active) and pathophysiological (hyperactive) WNT signaling is important for predicting treatment response and developing novel therapies. The constitutively expressed CTNNB1 (commonly and hereafter referred to as β-catenin) is degraded by a destruction complex, composed of amongst others AXIN1 and GSK3. The destruction complex is inhibited during active WNT signaling, leading to β-catenin stabilization and induction of β-catenin/TCF target genes. In this study we investigated the mechanism and effect of β-catenin stabilization during active and hyperactive WNT signaling in a combined in silico and in vitro approach. We constructed a Petri net model of Wnt/β-catenin signaling including main players from the plasma membrane (WNT ligands and receptors), cytoplasmic effectors and the downstream negative feedback target gene AXIN2. We validated that our model can be used to simulate both active (WNT stimulation) and hyperactive (GSK3 inhibition) signaling by comparing our simulation and experimental data. We used this experimentally validated model to get further insights into the effect of the negative feedback regulator AXIN2 upon WNT stimulation and observed an attenuated β-catenin stabilization. We furthermore simulated the effect of APC inactivating mutations, yielding a stabilization of β-catenin levels comparable to the Wnt-pathway activities observed in colorectal and breast cancer. Our model can be used for further investigation and viable predictions of the role of Wnt/β-catenin signaling in oncogenesis and development. PMID:27218469

  16. TCDD inhibition of canonical Wnt signaling disrupts prostatic bud formation in mouse urogenital sinus.

    PubMed

    Branam, Amanda M; Davis, Nicole M; Moore, Robert W; Schneider, Andrew J; Vezina, Chad M; Peterson, Richard E

    2013-05-01

    In mice, in utero exposure to 2,3,7,8-tetrachlorodibenzo-p- dioxin (TCDD) reduces the number of dorsolateral prostatic buds resulting in a smaller dorsolateral prostate and prevents formation of ventral buds culminating in ventral prostate agenesis. The genes and signaling pathways affected by TCDD that are responsible for disrupting prostate development are largely unknown. Here we show that treatment of urogenital sinus (UGS) organ cultures with known inhibitors of canonical Wnt signaling also inhibits prostatic bud formation. In support of the hypothesis that TCDD decreases canonical Wnt signaling, we identify inhibitory effects of TCDD on multiple components of the canonical Wnt signaling pathway in the UGS that temporally coincide with the inhibitory effect of TCDD on prostatic bud formation: (1) expression of R-spondins (Rspo2 and Rspo3) that promote canonical Wnt signaling is reduced; (2) expression of Lef1, Tcf1, and Wif1, established canonical Wnt target genes, is decreased; (3) expression of Lgr5, a RSPO receptor that activates canonical Wnt signaling, is reduced; and (4) expression of Dickkopfs (Dkks), inhibitors of canonical Wnt signaling, is not increased by TCDD. Thus, the TCDD-induced reduction in canonical Wnt signaling is associated with a decrease in activators (Rspo2 and Rspo3) rather than an increase in inhibitors (Dkk1 and Dkk2) of the pathway. This study focuses on determining whether treatment of TCDD-exposed UGS organ cultures with RSPO2 and/or RSPO3 is capable of rescuing the inhibitory effects of TCDD on canonical Wnt signaling and prostatic bud formation. We discovered that each RSPO alone or in combination partially rescues TCDD inhibition of both canonical Wnt signaling and prostatic bud formation.

  17. Canonical Wnt signaling protects hippocampal neurons from Aβ oligomers: role of non-canonical Wnt-5a/Ca2+ in mitochondrial dynamics

    PubMed Central

    Silva-Alvarez, Carmen; Arrázola, Macarena S.; Godoy, Juan A.; Ordenes, Daniela; Inestrosa, Nibaldo C.

    2013-01-01

    Alzheimer's disease (AD) is the most common type of age-related dementia. The disease is characterized by a progressive loss of cognitive abilities, severe neurodegeneration, synaptic loss and mitochondrial dysfunction. The Wnt signaling pathway participates in the development of the central nervous system and growing evidence indicates that Wnts also regulate the function of the adult nervous system. We report here, that indirect activation of canonical Wnt/β-catenin signaling using Bromoindirubin-30-Oxime (6-BIO), an inhibitor of glycogen synthase kinase-3β, protects hippocampal neurons from amyloid-β (Aβ) oligomers with the concomitant blockade of neuronal apoptosis. More importantly, activation with Wnt-5a, a non-canonical Wnt ligand, results in the modulation of mitochondrial dynamics, preventing the changes induced by Aβ oligomers (Aβo) in mitochondrial fission-fusion dynamics and modulates Bcl-2 increases induced by oligomers. The canonical Wnt-3a ligand neither the secreted Frizzled-Related Protein (sFRP), a Wnt scavenger, did not prevent these effects. In contrast, some of the Aβ oligomer effects were blocked by Ryanodine. We conclude that canonical Wnt/β-catenin signaling controls neuronal survival, and that non-canonical Wnt/Ca2+signaling modulates mitochondrial dysfunction. Since mitochondrial dysfunction is present in neurodegenerative diseases, the therapeutic possibilities of the activation of Wnt signaling are evident. PMID:23805073

  18. Targeting the WNT Signaling Pathway in Cancer Therapeutics.

    PubMed

    Tai, David; Wells, Keith; Arcaroli, John; Vanderbilt, Chad; Aisner, Dara L; Messersmith, Wells A; Lieu, Christopher H

    2015-10-01

    The WNT signaling cascade is integral in numerous biological processes including embryonic development, cell cycle regulation, inflammation, and cancer. Hyperactivation of WNT signaling secondary to alterations to varying nodes of the pathway have been identified in multiple tumor types. These alterations converge into increased tumorigenicity, sustained proliferation, and enhanced metastatic potential. This review seeks to evaluate the evidence supporting the WNT pathway in cancer, the therapeutic strategies in modulating this pathway, and potential challenges in drug development.

  19. HPV16 E6 and E6AP differentially cooperate to stimulate or augment Wnt signaling

    SciTech Connect

    Sominsky, Sophia; Kuslansky, Yael; Shapiro, Beny; Jackman, Anna; Haupt, Ygal; Rosin-Arbesfeld, Rina; Sherman, Levana

    2014-11-15

    The present study investigated the roles of E6 and E6AP in the Wnt pathway. We showed that E6 levels are markedly reduced in cells in which Wnt signaling is activated. Coexpression of wild-type or mutant E6AP (C820A) in Wnt-activated cells stabilized E6 and enhanced Wnt/β-catenin/TCF transcription. Expression of E6AP alone in nonstimulated cells elevated β-catenin level, promoted its nuclear accumulation, and activated β-catenin/TCF transcription. A knockdown of E6AP lowered β-catenin levels. Coexpression with E6 intensified the activities of E6AP. Further experiments proved that E6AP/E6 stabilize β-catenin by protecting it from proteasomal degradation. This function was dependent on the catalytic activity of E6AP, the kinase activity of GSK3β and the susceptibility of β-catenin to GSK3β phosphorylation. Thus, this study identified E6AP as a novel regulator of the Wnt signaling pathway, capable of cooperating with E6 in stimulating or augmenting Wnt/β-catenin signaling, thereby possibly contributing to HPV carcinogenesis. - Highlights: • The roles of E6 and E6AP in the Wnt pathway were investigated. • E6AP stabilizes E6 and enhances E6 activity in augmentation of Wnt signaling. • E6AP cooperates with E6 to stabilize β-catenin and stimulate Wnt/β-catenin signaling. • E6AP and E6 act through different mechanisms to augment or stimulate Wnt signaling.

  20. How targets select activation or repression in response to Wnt.

    PubMed

    Murgan, Sabrina; Bertrand, Vincent

    2015-01-01

    In metazoans, the Wnt signaling pathway plays a key role in the regulation of binary decisions during development. During this process different sets of target genes are activated in cells where the Wnt pathway is active (classic target genes) versus cells where the pathway is inactive (opposite target genes). While the mechanism of transcriptional activation is well understood for classic target genes, how opposite target genes are activated in the absence of Wnt remains poorly characterized. Here we discuss how the key transcriptional mediator of the Wnt pathway, the TCF family member POP-1, regulates opposite target genes during C. elegans development. We examine recent findings suggesting that the direction of the transcriptional output (activation or repression) can be determined by the way TCF is recruited and physically interacts with its target gene. PMID:27123368

  1. The non-canonical BMP and Wnt/β-catenin signaling pathways orchestrate early tooth development.

    PubMed

    Yuan, Guohua; Yang, Guobin; Zheng, Yuqian; Zhu, Xiaojing; Chen, Zhi; Zhang, Zunyi; Chen, YiPing

    2015-01-01

    BMP and Wnt signaling pathways play a crucial role in organogenesis, including tooth development. Despite extensive studies, the exact functions, as well as if and how these two pathways act coordinately in regulating early tooth development, remain elusive. In this study, we dissected regulatory functions of BMP and Wnt pathways in early tooth development using a transgenic noggin (Nog) overexpression model (K14Cre;pNog). It exhibits early arrested tooth development, accompanied by reduced cell proliferation and loss of odontogenic fate marker Pitx2 expression in the dental epithelium. We demonstrated that overexpression of Nog disrupted BMP non-canonical activity, which led to a dramatic reduction of cell proliferation rate but did not affect Pitx2 expression. We further identified a novel function of Nog by inhibiting Wnt/β-catenin signaling, causing loss of Pitx2 expression. Co-immunoprecipitation and TOPflash assays revealed direct binding of Nog to Wnts to functionally prevent Wnt/β-catenin signaling. In situ PLA and immunohistochemistry on Nog mutants confirmed in vivo interaction between endogenous Nog and Wnts and modulation of Wnt signaling by Nog in tooth germs. Genetic rescue experiments presented evidence that both BMP and Wnt signaling pathways contribute to cell proliferation regulation in the dental epithelium, with Wnt signaling also controlling the odontogenic fate. Reactivation of both BMP and Wnt signaling pathways, but not of only one of them, rescued tooth developmental defects in K14Cre;pNog mice, in which Wnt signaling can be substituted by transgenic activation of Pitx2. Our results reveal the orchestration of non-canonical BMP and Wnt/β-catenin signaling pathways in the regulation of early tooth development.

  2. RHOA inactivation enhances Wnt signaling and promotes colorectal cancer

    PubMed Central

    Rodrigues, Paulo; Macaya, Irati; Bazzocco, Sarah; Mazzolini, Rocco; Andretta, Elena; Dopeso, Higinio; Mateo-Lozano, Silvia; Bilić, Josipa; Cartón-García, Fernando; Nieto, Rocio; Suárez-López, Lucia; Afonso, Elsa; Landolfi, Stefania; Hernandez-Losa, Javier; Kobayashi, Kazuto; Cajal, Santiago Ramón y; Tabernero, Josep; Tebbutt, Niall C.; Mariadason, John M.; Schwartz, Simo; Arango, Diego

    2014-01-01

    Activation of the small GTPase RHOA has strong oncogenic effects in many tumor types, although its role in colorectal cancer remains unclear. Here we show that RHOA inactivation contributes to colorectal cancer progression/metastasis, largely through the activation of Wnt/β-catenin signaling. RhoA inactivation in the murine intestine accelerates the tumorigenic process and in human colon cancer cells leads to the redistribution of β-catenin from the membrane to the nucleus and enhanced Wnt/β-catenin signaling, resulting in increased proliferation, invasion and de-differentiation. In mice, RHOA inactivation contributes to colon cancer metastasis and reduced RHOA levels were observed at metastatic sites compared to primary human colon tumors. Therefore, we have identified a new mechanism of activation of Wnt/β-catenin signaling and characterized the role of RHOA as a novel tumor suppressor in colorectal cancer. These results constitute a shift from the current paradigm and demonstrate that RHO GTPases can suppress tumor progression and metastasis. PMID:25413277

  3. Wnt some lose some: transcriptional governance of stem cells by Wnt/β-catenin signaling

    PubMed Central

    Lien, Wen-Hui; Fuchs, Elaine

    2014-01-01

    In mammals, Wnt/β-catenin signaling features prominently in stem cells and cancers, but how and for what purposes have been matters of much debate. In this review, we summarize our current knowledge of Wnt/β-catenin signaling and its downstream transcriptional regulators in normal and malignant stem cells. We centered this review largely on three types of stem cells—embryonic stem cells, hair follicle stem cells, and intestinal epithelial stem cells—in which the roles of Wnt/β-catenin have been extensively studied. Using these models, we unravel how many controversial issues surrounding Wnt signaling have been resolved by dissecting the diversity of its downstream circuitry and effectors, often leading to opposite outcomes of Wnt/β-catenin-mediated regulation and differences rooted in stage- and context-dependent effects. PMID:25030692

  4. Fluorescence-based gene reporter plasmid to track canonical Wnt signaling in ENS inflammation.

    PubMed

    Di Liddo, Rosa; Bertalot, Thomas; Schuster, Anne; Schrenk, Sandra; Müller, Oliver; Apfel, Johanna; Reischmann, Patricia; Rajendran, Senthilkumar; Sfriso, Riccardo; Gasparella, Marco; Parnigotto, Pier Paolo; Conconi, Maria Teresa; Schäfer, Karl Herbert

    2016-03-15

    In several gut inflammatory or cancer diseases, cell-cell interactions are compromised, and an increased cytoplasmic expression of β-catenin is observed. Over the last decade, numerous studies provided compelling experimental evidence that the loss of cadherin-mediated cell adhesion can promote β-catenin release and signaling without any specific activation of the canonical Wnt pathway. In the present work, we took advantage of the ability of lipofectamine-like reagent to cause a synchronous dissociation of adherent junctions in cells isolated from the rat enteric nervous system (ENS) for obtaining an in vitro model of deregulated β-catenin signaling. Under these experimental conditions, a green fluorescent protein Wnt reporter plasmid called ΔTop_EGFP3a was successfully tested to screen β-catenin stabilization at resting and primed conditions with exogenous Wnt3a or lipopolysaccharide (LPS). ΔTop_EGFP3a provided a reliable and strong fluorescent signal that was easily measurable and at the same time highly sensitive to modulations of Wnt signaling following Wnt3a and LPS stimulation. The reporter gene was useful to demonstrate that Wnt3a exerts a protective activity in the ENS from overstimulated Wnt signaling by promoting a downregulation of the total β-catenin level. Based on this evidence, the use of ΔTop_EGFP3a reporter plasmid could represent a more reliable tool for the investigation of Wnt and cross-talking pathways in ENS inflammation. PMID:26767983

  5. The Wnt pathway: a key network in cell signalling dysregulated by viruses.

    PubMed

    van Zuylen, Wendy J; Rawlinson, William D; Ford, Caroline E

    2016-09-01

    Viruses are obligate parasites dependent on host cells for survival. Viral infection of a cell activates a panel of pattern recognition receptors that mediate antiviral host responses to inhibit viral replication and dissemination. Viruses have evolved mechanisms to evade and subvert this antiviral host response, including encoding proteins that hijack, mimic and/or manipulate cellular processes such as the cell cycle, DNA damage repair, cellular metabolism and the host immune response. Currently, there is an increasing interest whether viral modulation of these cellular processes, including the cell cycle, contributes to cancer development. One cellular pathway related to cell cycle signalling is the Wnt pathway. This review focuses on the modulation of this pathway by human viruses, known to cause (or associated with) cancer development. The main mechanisms where viruses interact with the Wnt pathway appear to be through (i) epigenetic modification of Wnt genes; (ii) cellular or viral miRNAs targeting Wnt genes; (iii) altering specific Wnt pathway members, often leading to (iv) nuclear translocation of β-catenin and activation of Wnt signalling. Given that diverse viruses affect this signalling pathway, modulating Wnt signalling could be a generalised critical process for the initiation or maintenance of viral pathogenesis, with resultant dysregulation contributing to virus-induced cancers. Further study of this virus-host interaction may identify options for targeted therapy against Wnt signalling molecules as a means to reduce virus-induced pathogenesis and the downstream consequences of infection. Copyright © 2016 John Wiley & Sons, Ltd.

  6. The Wnt pathway: a key network in cell signalling dysregulated by viruses.

    PubMed

    van Zuylen, Wendy J; Rawlinson, William D; Ford, Caroline E

    2016-09-01

    Viruses are obligate parasites dependent on host cells for survival. Viral infection of a cell activates a panel of pattern recognition receptors that mediate antiviral host responses to inhibit viral replication and dissemination. Viruses have evolved mechanisms to evade and subvert this antiviral host response, including encoding proteins that hijack, mimic and/or manipulate cellular processes such as the cell cycle, DNA damage repair, cellular metabolism and the host immune response. Currently, there is an increasing interest whether viral modulation of these cellular processes, including the cell cycle, contributes to cancer development. One cellular pathway related to cell cycle signalling is the Wnt pathway. This review focuses on the modulation of this pathway by human viruses, known to cause (or associated with) cancer development. The main mechanisms where viruses interact with the Wnt pathway appear to be through (i) epigenetic modification of Wnt genes; (ii) cellular or viral miRNAs targeting Wnt genes; (iii) altering specific Wnt pathway members, often leading to (iv) nuclear translocation of β-catenin and activation of Wnt signalling. Given that diverse viruses affect this signalling pathway, modulating Wnt signalling could be a generalised critical process for the initiation or maintenance of viral pathogenesis, with resultant dysregulation contributing to virus-induced cancers. Further study of this virus-host interaction may identify options for targeted therapy against Wnt signalling molecules as a means to reduce virus-induced pathogenesis and the downstream consequences of infection. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27273590

  7. Fluorescence-based gene reporter plasmid to track canonical Wnt signaling in ENS inflammation.

    PubMed

    Di Liddo, Rosa; Bertalot, Thomas; Schuster, Anne; Schrenk, Sandra; Müller, Oliver; Apfel, Johanna; Reischmann, Patricia; Rajendran, Senthilkumar; Sfriso, Riccardo; Gasparella, Marco; Parnigotto, Pier Paolo; Conconi, Maria Teresa; Schäfer, Karl Herbert

    2016-03-15

    In several gut inflammatory or cancer diseases, cell-cell interactions are compromised, and an increased cytoplasmic expression of β-catenin is observed. Over the last decade, numerous studies provided compelling experimental evidence that the loss of cadherin-mediated cell adhesion can promote β-catenin release and signaling without any specific activation of the canonical Wnt pathway. In the present work, we took advantage of the ability of lipofectamine-like reagent to cause a synchronous dissociation of adherent junctions in cells isolated from the rat enteric nervous system (ENS) for obtaining an in vitro model of deregulated β-catenin signaling. Under these experimental conditions, a green fluorescent protein Wnt reporter plasmid called ΔTop_EGFP3a was successfully tested to screen β-catenin stabilization at resting and primed conditions with exogenous Wnt3a or lipopolysaccharide (LPS). ΔTop_EGFP3a provided a reliable and strong fluorescent signal that was easily measurable and at the same time highly sensitive to modulations of Wnt signaling following Wnt3a and LPS stimulation. The reporter gene was useful to demonstrate that Wnt3a exerts a protective activity in the ENS from overstimulated Wnt signaling by promoting a downregulation of the total β-catenin level. Based on this evidence, the use of ΔTop_EGFP3a reporter plasmid could represent a more reliable tool for the investigation of Wnt and cross-talking pathways in ENS inflammation.

  8. Wnt signaling and colon tumorigenesis - A view from the periphery

    SciTech Connect

    Burgess, Antony W.; Faux, Maree C.; Layton, Meredith J.; Ramsay, Robert G.

    2011-11-15

    In this brief overview we discuss the association between Wnt signaling and colon cell biology and tumorigenesis. Our current understanding of the role of Apc in the {beta}-catenin destruction complex is compared with potential roles for Apc in cell adhesion and migration. The requirement for phosphorylation in the proteasomal-mediated degradation of {beta}-catenin is contrasted with roles for phospho-{beta}-catenin in the activation of transcription, cell adhesion and migration. The synergy between Myb and {beta}-catenin regulation of transcription in crypt stem cells during Wnt signaling is discussed. Finally, potential effects of growth factor regulatory systems, Apc or truncated-Apc on crypt morphogenesis, stem cell localization and crypt fission are considered.

  9. Wnt signalling suppresses voltage-dependent Na⁺ channel expression in postnatal rat cardiomyocytes.

    PubMed

    Liang, Wenbin; Cho, Hee Cheol; Marbán, Eduardo

    2015-03-01

    Wnt signalling plays crucial roles in heart development, but is normally suppressed postnatally. In arrhythmogenic conditions, such as cardiac hypertrophy and heart failure, Wnt signalling is reactivated. To explore the potential role of Wnt signalling in arrhythmogenic electrical remodelling, we examined voltage-dependent ion channels in cardiomyocytes. Treatment of neonatal rat ventricular myocytes with either recombinant Wnt3a protein or CHIR-99021 (CHIR, a glycogen synthase kinase-3β inhibitor) caused a dose-dependent increase in Wnt target gene expression (Axin2 and Lef1), indicating activation of the Wnt/β-catenin pathway. Cardiac Na(+) current (INa) density was reduced by Wnt3a (-20 ± 4 vs. control -59 ± 7 pA pF(-1) , at -30 mV) or CHIR (-22 ± 5 pA pF(-1) ), without changes in steady-state activation, inactivation or repriming kinetics. Wnt3a and CHIR also produced dose-dependent reductions in the mRNA level of Scn5a (the cardiac Na(+) channel α subunit gene), as well as a 56% reduction (by Wnt3a) in the Nav 1.5 protein level. Consistent with INa reduction, action potentials in Wnt3a-treated neonatal rat ventricular myocytes had a lower upstroke amplitude (91 ± 3 vs. control 137 ± 2 mV) and decreased maximum upstroke velocity (70 ± 10 vs. control 163 ± 15 V s(-1)). In contrast, inward rectifier K(+) current and L-type Ca(2+) channels were not affected by Wnt3a treatment. Taken together, our data indicate that the Wnt/β-catenin pathway suppresses INa in postnatal cardiomyocytes and may contribute to ion channel remodelling in heart disease.

  10. Synaptic Wnt/GSK3β Signaling Hub in Autism

    PubMed Central

    Caracci, Mario O.; Ávila, Miguel E.; De Ferrari, Giancarlo V.

    2016-01-01

    Hundreds of genes have been associated with autism spectrum disorders (ASDs) and the interaction of weak and de novo variants derive from distinct autistic phenotypes thus making up the “spectrum.” The convergence of these variants in networks of genes associated with synaptic function warrants the study of cell signaling pathways involved in the regulation of the synapse. The Wnt/β-catenin signaling pathway plays a central role in the development and regulation of the central nervous system and several genes belonging to the cascade have been genetically associated with ASDs. In the present paper, we review basic information regarding the role of Wnt/β-catenin signaling in excitatory/inhibitory balance (E/I balance) through the regulation of pre- and postsynaptic compartments. Furthermore, we integrate information supporting the role of the glycogen synthase kinase 3β (GSK3β) in the onset/development of ASDs through direct modulation of Wnt/β-catenin signaling. Finally, given GSK3β activity as key modulator of synaptic plasticity, we explore the potential of this kinase as a therapeutic target for ASD. PMID:26881141

  11. Emerging Role and Therapeutic Implication of Wnt Signaling Pathways in Autoimmune Diseases

    PubMed Central

    Shi, Juan; Chi, Shuhong; Xue, Jing; Yang, Jiali; Li, Feng; Liu, Xiaoming

    2016-01-01

    The Wnt signaling pathway plays a key role in many biological aspects, such as cellular proliferation, tissue regeneration, embryonic development, and other systemic effects. Under a physiological condition, it is tightly controlled at different layers and arrays, and a dysregulated activation of this signaling has been implicated into the pathogenesis of various human disorders, including autoimmune diseases. Despite the fact that therapeutic interventions are available for ameliorating disease manifestations, there is no curative therapy currently available for autoimmune disorders. Increasing lines of evidence have suggested a crucial role of Wnt signaling during the pathogenesis of many autoimmune diseases; in addition, some of microRNAs (miRNAs), a class of small, noncoding RNA molecules capable of transcriptionally regulating gene expression, have also recently been demonstrated to possess both physiological and pathological roles in autoimmune diseases by regulating the Wnt signaling pathway. This review summarizes currently our understanding of the pathogenic roles of Wnt signaling in several major autoimmune disorders and miRNAs, those targeting Wnt signaling in autoimmune diseases, with a focus on the implication of the Wnt signaling as potential biomarkers and therapeutic targets in immune diseases, as well as miRNA-mediated regulation of Wnt signaling activation in the development of autoimmune diseases. PMID:27110577

  12. Real-Time Analysis of Endogenous Wnt Signalling in 3D Mesenchymal Stromal Cells.

    PubMed

    Saleh, Fatima; Carstairs, Alice; Etheridge, S Leah; Genever, Paul

    2016-01-01

    Wnt signalling has been implicated in the regulation of stem cell self-renewal and differentiation; however, the majority of in vitro studies are carried out using monolayer 2D culture techniques. Here, we used mesenchymal stromal cell (MSC) EGFP reporter lines responsive to Wnt pathway activation in a 3D spheroid culture system to mimic better the in vivo environment. Endogenous Wnt signalling was then investigated under basal conditions and when MSCs were induced to undergo osteogenic and adipogenic differentiation. Interestingly, endogenous Wnt signalling was only active during 3D differentiation whereas 2D cultures showed no EGFP expression throughout an extended differentiation time-course. Furthermore, exogenous Wnt signalling in 3D adipogenic conditions inhibited differentiation compared to unstimulated controls. In addition, suppressing Wnt signalling by Dkk-1 restored and facilitated adipogenic differentiation in MSC spheroids. Our findings indicate that endogenous Wnt signalling is active and can be tracked in 3D MSC cultures where it may act as a molecular switch in adipogenesis. The identification of the signalling pathways that regulate MSCs in a 3D in vivo-like environment will advance our understanding of the molecular mechanisms that control MSC fate. PMID:27668000

  13. Real-Time Analysis of Endogenous Wnt Signalling in 3D Mesenchymal Stromal Cells

    PubMed Central

    Saleh, Fatima; Etheridge, S. Leah

    2016-01-01

    Wnt signalling has been implicated in the regulation of stem cell self-renewal and differentiation; however, the majority of in vitro studies are carried out using monolayer 2D culture techniques. Here, we used mesenchymal stromal cell (MSC) EGFP reporter lines responsive to Wnt pathway activation in a 3D spheroid culture system to mimic better the in vivo environment. Endogenous Wnt signalling was then investigated under basal conditions and when MSCs were induced to undergo osteogenic and adipogenic differentiation. Interestingly, endogenous Wnt signalling was only active during 3D differentiation whereas 2D cultures showed no EGFP expression throughout an extended differentiation time-course. Furthermore, exogenous Wnt signalling in 3D adipogenic conditions inhibited differentiation compared to unstimulated controls. In addition, suppressing Wnt signalling by Dkk-1 restored and facilitated adipogenic differentiation in MSC spheroids. Our findings indicate that endogenous Wnt signalling is active and can be tracked in 3D MSC cultures where it may act as a molecular switch in adipogenesis. The identification of the signalling pathways that regulate MSCs in a 3D in vivo-like environment will advance our understanding of the molecular mechanisms that control MSC fate. PMID:27668000

  14. Real-Time Analysis of Endogenous Wnt Signalling in 3D Mesenchymal Stromal Cells

    PubMed Central

    Saleh, Fatima; Etheridge, S. Leah

    2016-01-01

    Wnt signalling has been implicated in the regulation of stem cell self-renewal and differentiation; however, the majority of in vitro studies are carried out using monolayer 2D culture techniques. Here, we used mesenchymal stromal cell (MSC) EGFP reporter lines responsive to Wnt pathway activation in a 3D spheroid culture system to mimic better the in vivo environment. Endogenous Wnt signalling was then investigated under basal conditions and when MSCs were induced to undergo osteogenic and adipogenic differentiation. Interestingly, endogenous Wnt signalling was only active during 3D differentiation whereas 2D cultures showed no EGFP expression throughout an extended differentiation time-course. Furthermore, exogenous Wnt signalling in 3D adipogenic conditions inhibited differentiation compared to unstimulated controls. In addition, suppressing Wnt signalling by Dkk-1 restored and facilitated adipogenic differentiation in MSC spheroids. Our findings indicate that endogenous Wnt signalling is active and can be tracked in 3D MSC cultures where it may act as a molecular switch in adipogenesis. The identification of the signalling pathways that regulate MSCs in a 3D in vivo-like environment will advance our understanding of the molecular mechanisms that control MSC fate.

  15. Wnt Signaling in Cartilage Development and Diseases: Lessons from Animal Studies

    PubMed Central

    Usami, Yu; Gunawardena, Aruni T.; Iwamoto, Masahiro; Enomoto-Iwamoto, Motomi

    2016-01-01

    Cartilage not only plays essential roles in skeletal development and growth during pre-and post-natal stages but also serves to provide smooth movement of skeletons throughout life. Thus dysfunction of cartilage causes a variety of skeletal disorders. Results from animal studies reveal that β-catenin-dependent canonical and independent non-canonical Wnt signaling pathways have multiple roles in regulation of cartilage development, growth and maintenance. β-catenin-dependent signaling is required for progression of endochondral ossification and growth of axial and appendicular skeletons while excessive activation of this signaling can cause severe inhibition of initial cartilage formation and growth plate organization and function in mice. In contrast, non-canonical Wnt signaling is important in columnar organization of growth plate chondrocytes. Manipulation of Wnt signaling causes or ameliorates articular cartilage degeneration in rodent osteoarthritis models. Human genetic studies indicate that Wnt/β-catenin signaling is a risk factor for osteoarthritis. Accumulative findings from analysis of expression of Wnt signaling molecules and in vivo and in vitro functional experiments suggest that Wnt signaling is a therapeutic target for osteoarthritis. The target tissues of Wnt signaling may be not only articular cartilage but also synovium and subchondral bone. PMID:26641070

  16. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control.

    PubMed

    Clevers, Hans; Loh, Kyle M; Nusse, Roel

    2014-10-01

    Stem cells fuel tissue development, renewal, and regeneration, and these activities are controlled by the local stem cell microenvironment, the "niche." Wnt signals emanating from the niche can act as self-renewal factors for stem cells in multiple mammalian tissues. Wnt proteins are lipid-modified, which constrains them to act as short-range cellular signals. The locality of Wnt signaling dictates that stem cells exiting the Wnt signaling domain differentiate, spatially delimiting the niche in certain tissues. In some instances, stem cells may act as or generate their own niche, enabling the self-organization of patterned tissues. In this Review, we discuss the various ways by which Wnt operates in stem cell control and, in doing so, identify an integral program for tissue renewal and regeneration.

  17. Design, Synthesis, and Structural Optimization of Lycorine-Derived Phenanthridine Derivatives as Wnt/β-Catenin Signaling Pathway Agonists.

    PubMed

    Chen, Duo-Zhi; Jing, Chen-Xu; Cai, Jie-Yun; Wu, Ji-Bo; Wang, Sheng; Yin, Jun-Lin; Li, Xiao-Nian; Li, Lin; Hao, Xiao-Jiang

    2016-01-22

    Lycorine is a benzylphenethylamine-type alkaloid member of the Amaryllidaceae family. A lycorine derivative, HLY78, was previously identified as a new Wnt/β-catenin signaling pathway agonist that targets the DAX domain of axin. Herein, the structural optimization of HLY78 and analyses of the structure-activity relationships of lycorine-derived phenanthridine derivatives as agonists of the Wnt/β-catenin signaling pathway are presented. This research suggests that triazole groups are important pharmacophores for Wnt activation; triazole groups at C-8 and C-9 of phenanthridine compounds markedly enhanced Wnt activation. A C-11-C-12 single bond is also important for Wnt activation. On the basis of these findings, two Wnt agonists were designed and synthesized. The results for these agonists indicated that the combination of a 4-ethyldihydrophenanthridine skeleton and a triazole substituent improves Wnt activation. These compounds may be useful in further pharmacological or biological studies. PMID:26714198

  18. Silica Nanoparticles Target a Wnt Signal Transducer for Degradation and Impair Embryonic Development in Zebrafish

    PubMed Central

    Yi, Hongyang; Wang, Zhuyao; Li, Xiaojiao; Yin, Min; Wang, Lihua; Aldalbahi, Ali; El-Sayed, Nahed Nasser; Wang, Hui; Chen, Nan; Fan, Chunhai; Song, Haiyun

    2016-01-01

    Many types of biocompatible nanomaterials have proven of low cytotoxicity and hold great promise for various applications in nanomedicine. Whereas they generally do not cause apparent organ toxicity or tissue damage in adult animals, it is yet to determine their biological consequences in more general contexts. In this study, we investigate how silica nanoparticles (NPs) affect cellular activities and functions under several physiological or pathological conditions. Although silica NPs are generally regarded as “inert” nanocarriers and widely employed in biomedical studies, we find that they actively affect Wnt signaling in various types of cell lines, diminishing its anti-adipogenic effect in preadipocytes and pro-invasive effect in breast cancer cells, and more significantly, impair Wnt-regulated embryonic development in Zebrafish. We further demonstrate that intracellular silica NPs block Wnt signal transduction in a way resembling signaling molecules. Specifically, silica NPs target the Dvl protein, a key component of Wnt signaling cascade, for lysosomal degradation. As Wnt signaling play significant roles in embryonic development and adipogenesis, the observed physiological effects beyond toxicity imply potential risk of obesity, or developmental defects in somitogenesis and osteogenesis upon exposure to silica NPs. In addition, given the clinical implications of Wnt signaling in tumorigenesis and cancer metastasis, our work also establishes for the first time a molecular link between nanomaterials and the Wnt signaling pathway, which opens new door for novel applications of unmodified silica NPs in targeted therapy for cancers and other critical illness. PMID:27570552

  19. Silica Nanoparticles Target a Wnt Signal Transducer for Degradation and Impair Embryonic Development in Zebrafish.

    PubMed

    Yi, Hongyang; Wang, Zhuyao; Li, Xiaojiao; Yin, Min; Wang, Lihua; Aldalbahi, Ali; El-Sayed, Nahed Nasser; Wang, Hui; Chen, Nan; Fan, Chunhai; Song, Haiyun

    2016-01-01

    Many types of biocompatible nanomaterials have proven of low cytotoxicity and hold great promise for various applications in nanomedicine. Whereas they generally do not cause apparent organ toxicity or tissue damage in adult animals, it is yet to determine their biological consequences in more general contexts. In this study, we investigate how silica nanoparticles (NPs) affect cellular activities and functions under several physiological or pathological conditions. Although silica NPs are generally regarded as "inert" nanocarriers and widely employed in biomedical studies, we find that they actively affect Wnt signaling in various types of cell lines, diminishing its anti-adipogenic effect in preadipocytes and pro-invasive effect in breast cancer cells, and more significantly, impair Wnt-regulated embryonic development in Zebrafish. We further demonstrate that intracellular silica NPs block Wnt signal transduction in a way resembling signaling molecules. Specifically, silica NPs target the Dvl protein, a key component of Wnt signaling cascade, for lysosomal degradation. As Wnt signaling play significant roles in embryonic development and adipogenesis, the observed physiological effects beyond toxicity imply potential risk of obesity, or developmental defects in somitogenesis and osteogenesis upon exposure to silica NPs. In addition, given the clinical implications of Wnt signaling in tumorigenesis and cancer metastasis, our work also establishes for the first time a molecular link between nanomaterials and the Wnt signaling pathway, which opens new door for novel applications of unmodified silica NPs in targeted therapy for cancers and other critical illness. PMID:27570552

  20. Monitoring Wnt Signaling in Zebrafish Using Fluorescent Biosensors.

    PubMed

    Facchinello, Nicola; Schiavone, Marco; Vettori, Andrea; Argenton, Francesco; Tiso, Natascia

    2016-01-01

    In this chapter, we are presenting methods to monitor and quantify in vivo canonical Wnt signaling activities at single-cell resolution in zebrafish. Our technology is based on artificial enhancers, obtained by polymerization of TCF binding elements, cloned upstream to ubiquitous or tissue-specific promoters. The different promoter/enhancer combinations are used to drive fluorescent protein reporter constructs integrated in the zebrafish germline by microinjection of fertilized zebrafish eggs. Fish with a single integration site are selected by Mendelian analysis of fluorescent carriers, and heterozygous offspring are used to monitor and quantify canonical Wnt activities. Open source public domain software such as ImageJ/Fiji is used to calculate the integrated densities in the region of interest and compare the effect of experimental conditions on control and treated animals. PMID:27590154

  1. Interleukin 6/Wnt interactions in rheumatoid arthritis: interleukin 6 inhibits Wnt signaling in synovial fibroblasts and osteoblasts

    PubMed Central

    Malysheva, Khrystyna; de Rooij, Karien; Löwik, Clemens W. G. M.; Baeten, Dominique L.; Rose-John, Stefan; Stoika, Rostyslav; Korchynskyi, Olexandr

    2016-01-01

    Aim To evaluate the impact of previously unrecognized negative interaction between the Wnt and interleukin (IL) 6 signaling pathways in skeletal tissues as a possible major mechanism leading to age- and inflammation-related destruction of bone and joints. Methods Luciferase reporter assays were performed to monitor Wnt pathway activation upon IL-6 and tumor necrosis factor-α (TNFα) treatment. Functional contribution of IL-6 and TNFα interaction to inhibition of bone formation was evaluated in vitro using small hairpin RNAs (shRNA) in mouse mesenchymal precursor cells (MPC) of C2C12 and KS483 lines induced to differentiate into osteoblasts by bone morphogenetic proteins (BMP). Results IL-6 inhibited the activation of Wnt signaling in primary human synoviocytes, and, together with TNFα and Dickkopf-1, inhibited the activation of Wnt response. ShRNA-mediated knockdown of IL-6 mRNA significantly increased early BMP2/7-induced osteogenesis and rescued it from the negative effect of TNFα in C2C12 cells, as well as intensified bone matrix mineralization in KS483 cells. Conclusion IL-6 is an important mediator in the inhibition of osteoblast differentiation by TNFα, and knockdown of IL-6 partially rescues osteogenesis from the negative control of inflammation. The anti-osteoblastic effects of IL-6 are most likely mediated by its negative interaction with Wnt signaling pathway. PMID:27106351

  2. Wnt signaling in liver fibrosis: progress, challenges and potential directions.

    PubMed

    Miao, Cheng-gui; Yang, Ying-ying; He, Xu; Huang, Cheng; Huang, Yan; Zhang, Lei; Lv, Xiong-Wen; Jin, Yong; Li, Jun

    2013-12-01

    Liver fibrosis is a common wound-healing response to chronic liver injuries, including alcoholic or drug toxicity, persistent viral infection, and genetic factors. Myofibroblastic transdifferentiation (MTD) is the pivotal event during liver fibrogenesis, and research in the past few years has identified key mediators and molecular mechanisms responsible for MTD of hepatic stellate cells (HSCs). HSCs are undifferentiated cells which play an important role in liver regeneration. Recent evidence demonstrates that HSCs derive from mesoderm and at least in part via septum transversum and mesothelium, and HSCs express markers for different cell types which derive from multipotent mesenchymal progenitors. There is a regulatory commonality between differentiation of adipocytes and that of HSC, and the shift from adipogenic to myogenic or neuronal phenotype characterizes HSC MTD. Central of this shift is a loss of expression of the master adipogenic regulator peroxisome proliferator activated receptor γ (PPARγ). Restored expression of PPARγ and/or other adipogenic transcription genes can reverse myofibroblastic HSCs to differentiated cells. Vertebrate Wnt and Drosophila wingless are homologous genes, and their translated proteins have been shown to participate in the regulation of cell proliferation, cell polarity, cell differentiation, and other biological roles. More recently, Wnt signaling is implicated in human fibrosing diseases, such as pulmonary fibrosis, renal fibrosis, and liver fibrosis. Blocking the canonical Wnt signal pathway with the co-receptor antagonist Dickkopf-1 (DKK1) abrogates these epigenetic repressions and restores the gene PPARγ expression and HSC differentiation. The identified morphogen mediated epigenetic regulation of PPARγ and HSC differentiation also serves as novel therapeutic targets for liver fibrosis and liver regeneration. In conclusion, the Wnt signaling promotes liver fibrosis by enhancing HSC activation and survival, and we herein

  3. Wnt/β-catenin signaling in dermal condensates is required for hair follicle formation

    PubMed Central

    Tsai, Su-Yi; Sennett, Rachel; Rezza, Amélie; Clavel, Carlos; Grisanti, Laura; Zemla, Roland; Najam, Sara; Rendl, Michael

    2014-01-01

    Broad dermal Wnt signaling is required for patterned induction of hair follicle placodes and subsequent Wnt signaling in placode stem cells is essential for induction of dermal condensates, cell clusters of precursors for the hair follicle dermal papilla (DP). Progression of hair follicle formation then requires coordinated signal exchange between dermal condensates and placode stem cells. However, it remains unknown whether continued Wnt signaling in DP precursor cells plays a role in this process, largely due to the long-standing inability to specifically target dermal condensates for gene ablation. Here we use the Tbx18Cre knockin mouse line to ablate the Wnt-responsive transcription factor β-catenin specifically in these cells at E14.5 during the first wave of guard hair follicle formation. In the absence of β-catenin, canonical Wnt signaling is effectively abolished in these cells. Sox2+ dermal condensates initiate normally, however by E16.5 guard hair follicle numbers are strongly reduced and by E18.5 most whiskers and guard hair follicles are absent, suggesting that active Wnt signaling in dermal condensates is important for hair follicle formation to proceed after induction. To explore the molecular mechanisms by which Wnt signaling in dermal condensates regulates hair follicle formation, we analyze genome-wide the gene expression changes in embryonic β-catenin null DP precursor cells. We find altered expression of several signaling pathway genes, including Fgfs and Activin, both previously implicated in hair follicle formation. In summary, these data reveal a functional role of Wnt signaling in DP precursors for embryonic hair follicle formation and identify Fgf and Activin signaling as potential effectors of Wnt signaling-regulated events. PMID:24309208

  4. Wnt/β-catenin signaling in dermal condensates is required for hair follicle formation.

    PubMed

    Tsai, Su-Yi; Sennett, Rachel; Rezza, Amélie; Clavel, Carlos; Grisanti, Laura; Zemla, Roland; Najam, Sara; Rendl, Michael

    2014-01-15

    Broad dermal Wnt signaling is required for patterned induction of hair follicle placodes and subsequent Wnt signaling in placode stem cells is essential for induction of dermal condensates, cell clusters of precursors for the hair follicle dermal papilla (DP). Progression of hair follicle formation then requires coordinated signal exchange between dermal condensates and placode stem cells. However, it remains unknown whether continued Wnt signaling in DP precursor cells plays a role in this process, largely due to the long-standing inability to specifically target dermal condensates for gene ablation. Here we use the Tbx18(Cre) knockin mouse line to ablate the Wnt-responsive transcription factor β-catenin specifically in these cells at E14.5 during the first wave of guard hair follicle formation. In the absence of β-catenin, canonical Wnt signaling is effectively abolished in these cells. Sox2(+) dermal condensates initiate normally; however by E16.5 guard hair follicle numbers are strongly reduced and by E18.5 most whiskers and guard hair follicles are absent, suggesting that active Wnt signaling in dermal condensates is important for hair follicle formation to proceed after induction. To explore the molecular mechanisms by which Wnt signaling in dermal condensates regulates hair follicle formation, we analyze genome-wide the gene expression changes in embryonic β-catenin null DP precursor cells. We find altered expression of several signaling pathway genes, including Fgfs and Activin, both previously implicated in hair follicle formation. In summary, these data reveal a functional role of Wnt signaling in DP precursors for embryonic hair follicle formation and identify Fgf and Activin signaling as potential effectors of Wnt signaling-regulated events.

  5. Epidermal Wnt/β-catenin signaling regulates adipocyte differentiation via secretion of adipogenic factors

    PubMed Central

    Donati, Giacomo; Proserpio, Valentina; Lichtenberger, Beate Maria; Natsuga, Ken; Sinclair, Rodney; Fujiwara, Hironobu; Watt, Fiona M.

    2014-01-01

    It has long been recognized that the hair follicle growth cycle and oscillation in the thickness of the underlying adipocyte layer are synchronized. Although factors secreted by adipocytes are known to regulate the hair growth cycle, it is unclear whether the epidermis can regulate adipogenesis. We show that inhibition of epidermal Wnt/β-catenin signaling reduced adipocyte differentiation in developing and adult mouse dermis. Conversely, ectopic activation of epidermal Wnt signaling promoted adipocyte differentiation and hair growth. When the Wnt pathway was activated in the embryonic epidermis, there was a dramatic and premature increase in adipocytes in the absence of hair follicle formation, demonstrating that Wnt activation, rather than mature hair follicles, is required for adipocyte generation. Epidermal and dermal gene expression profiling identified keratinocyte-derived adipogenic factors that are induced by β-catenin activation. Wnt/β-catenin signaling-dependent secreted factors from keratinocytes promoted adipocyte differentiation in vitro, and we identified ligands for the bone morphogenetic protein and insulin pathways as proadipogenic factors. Our results indicate epidermal Wnt/β-catenin as a critical initiator of a signaling cascade that induces adipogenesis and highlight the role of epidermal Wnt signaling in synchronizing adipocyte differentiation with the hair growth cycle. PMID:24706781

  6. Brg1 loss attenuates aberrant wnt-signalling and prevents wnt-dependent tumourigenesis in the murine small intestine.

    PubMed

    Holik, Aliaksei Z; Young, Madeleine; Krzystyniak, Joanna; Williams, Geraint T; Metzger, Daniel; Shorning, Boris Y; Clarke, Alan R

    2014-07-01

    Tumourigenesis within the intestine is potently driven by deregulation of the Wnt pathway, a process epigenetically regulated by the chromatin remodelling factor Brg1. We aimed to investigate this interdependency in an in vivo setting and assess the viability of Brg1 as a potential therapeutic target. Using a range of transgenic approaches, we deleted Brg1 in the context of Wnt-activated murine small intestinal epithelium. Pan-epithelial loss of Brg1 using VillinCreERT2 and AhCreERT transgenes attenuated expression of Wnt target genes, including a subset of stem cell-specific genes and suppressed Wnt-driven tumourigenesis improving animal survival. A similar increase in survival was observed when Wnt activation and Brg1 loss were restricted to the Lgr5 expressing intestinal stem cell population. We propose a mechanism whereby Brg1 function is required for aberrant Wnt signalling and ultimately for the maintenance of the tumour initiating cell compartment, such that loss of Brg1 in an Apc-deficient context suppresses adenoma formation. Our results highlight potential therapeutic value of targeting Brg1 and serve as a proof of concept that targeting the cells of origin of cancer may be of therapeutic relevance. PMID:25010414

  7. Brg1 Loss Attenuates Aberrant Wnt-Signalling and Prevents Wnt-Dependent Tumourigenesis in the Murine Small Intestine

    PubMed Central

    Holik, Aliaksei Z.; Young, Madeleine; Krzystyniak, Joanna; Williams, Geraint T.; Metzger, Daniel; Shorning, Boris Y.; Clarke, Alan R.

    2014-01-01

    Tumourigenesis within the intestine is potently driven by deregulation of the Wnt pathway, a process epigenetically regulated by the chromatin remodelling factor Brg1. We aimed to investigate this interdependency in an in vivo setting and assess the viability of Brg1 as a potential therapeutic target. Using a range of transgenic approaches, we deleted Brg1 in the context of Wnt-activated murine small intestinal epithelium. Pan-epithelial loss of Brg1 using VillinCreERT2 and AhCreERT transgenes attenuated expression of Wnt target genes, including a subset of stem cell-specific genes and suppressed Wnt-driven tumourigenesis improving animal survival. A similar increase in survival was observed when Wnt activation and Brg1 loss were restricted to the Lgr5 expressing intestinal stem cell population. We propose a mechanism whereby Brg1 function is required for aberrant Wnt signalling and ultimately for the maintenance of the tumour initiating cell compartment, such that loss of Brg1 in an Apc-deficient context suppresses adenoma formation. Our results highlight potential therapeutic value of targeting Brg1 and serve as a proof of concept that targeting the cells of origin of cancer may be of therapeutic relevance. PMID:25010414

  8. Human urine-derived stem cells can be induced into osteogenic lineage by silicate bioceramics via activation of the Wnt/β-catenin signaling pathway.

    PubMed

    Guan, Junjie; Zhang, Jieyuan; Guo, Shangchun; Zhu, Hongyi; Zhu, Zhenzhong; Li, Haiyan; Wang, Yang; Zhang, Changqing; Chang, Jiang

    2015-07-01

    Human urine-derived stem cells (USCs) have great application potential for cytotherapy as they can be obtained by non-invasive and simple methods. Silicate bioceramics, including calcium silicate (CS), can stimulate osteogenic differentiation of stem cells. However, the effects of silicate bioceramics on osteogenic differentiation of USCs have not been reported. In this study, at first, we investigated the effects of CS ion extracts on proliferation and osteogenic differentiation of USCs, as well as the related mechanism. CS particles were incorporated into poly (lactic-co-glycolic acid) (PLGA) to obtain PLGA/CS composite scaffolds. USCs were then seeded onto these scaffolds, which were subsequently transplanted into nude mice to analyze the osteogenic differentiation of USCs and mineralization of extracellular matrix formed by USCs in vivo. The results showed that CS ion extracts significantly enhanced cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, and expression of certain osteoblast-related genes and proteins. In addition, cardamonin, a Wnt/β-catenin signaling inhibitor, reduced the stimulatory effects of CS ion extracts on osteogenic differentiation of USCs, indicating that the observed osteogenic differentiation of USCs induced by CS ion extracts involves Wnt/β-catenin signaling pathway. Furthermore, histological analysis showed that PLGA/CS composite scaffolds significantly enhanced the osteogenic differentiation of USCs in vivo. Taken together, these results suggest the therapeutic potential of combining USCs and PLGA/CS scaffolds in bone tissue regeneration.

  9. Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    McMurray, R. J.; Wann, A. K. T.; Thompson, C. L.; Connelly, J. T.; Knight, M. M.

    2013-12-01

    The primary cilium regulates cellular signalling including influencing wnt sensitivity by sequestering β-catenin within the ciliary compartment. Topographic regulation of intracellular actin-myosin tension can control stem cell fate of which wnt is an important mediator. We hypothesized that topography influences mesenchymal stem cell (MSC) wnt signaling through the regulation of primary cilia structure and function. MSCs cultured on grooves expressed elongated primary cilia, through reduced actin organization. siRNA inhibition of anterograde intraflagellar transport (IFT88) reduced cilia length and increased active nuclear β-catenin. Conversely, increased primary cilia assembly in MSCs cultured on the grooves was associated with decreased levels of nuclear active β-catenin, axin-2 induction and proliferation, in response to wnt3a. This negative regulation, on grooved topography, was reversed by siRNA to IFT88. This indicates that subtle regulation of IFT and associated cilia structure, tunes the wnt response controlling stem cell differentiation.

  10. Wnt5a Suppresses β-catenin Signaling during Hair Follicle Regeneration

    PubMed Central

    Xing, Yizhan; Ma, Xiaogen; Guo, Haiying; Deng, Fang; Yang, Jin; Li, Yuhong

    2016-01-01

    Hair follicles display periodic growth. Wnt signaling is a critical regulator for hair follicle regeneration. Previously, we reported that Wnt5a inhibits the telogen-to-anagen transition of hair follicles, but the mechanism by which this process occurs has not yet been reported. Here, we determined the expression patterns of Wnt signaling pathway molecules by quantitative reverse transcription polymerase chain reaction, western blot, and immunohistochemistry and found that β-catenin signaling was suppressed by Wnt5a. We then compared the phenotypes and expression patterns following β-catenin knockdown and Wnt5a overexpression during hair follicle regeneration induced by hair depilation and observed similar patterns. In addition, we performed a rescue experiment in the JB6 cell line and found that the inhibitory effect of Wnt5a on cell proliferation could be rescued by the addition of Wnt3a. Our data reveal that Wnt5a suppresses the activation of β-catenin signaling during hair follicle regeneration. PMID:27499692

  11. Self-association of the APC tumor suppressor is required for the assembly, stability, and activity of the Wnt signaling destruction complex

    PubMed Central

    Kunttas-Tatli, Ezgi; Roberts, David M.; McCartney, Brooke M.

    2014-01-01

    The tumor suppressor adenomatous polyposis coli (APC) is an essential negative regulator of Wnt signaling through its activity in the destruction complex with Axin, GSK3β, and CK1 that targets β-catenin/Armadillo (β-cat/Arm) for proteosomal degradation. The destruction complex forms macromolecular particles we termed the destructosome. Whereas APC functions in the complex through its ability to bind both β-cat and Axin, we hypothesize that APC proteins play an additional role in destructosome assembly through self-association. Here we show that a novel N-terminal coil, the APC self-association domain (ASAD), found in vertebrate and invertebrate APCs, directly mediates self-association of Drosophila APC2 and plays an essential role in the assembly and stability of the destructosome that regulates β-cat degradation in Drosophila and human cells. Consistent with this, removal of the ASAD from the Drosophila embryo results in β-cat/Arm accumulation and aberrant Wnt pathway activation. These results suggest that APC proteins are required not only for the activity of the destructosome, but also for the assembly and stability of this macromolecular machine. PMID:25208568

  12. beta-Galactosidase enzyme fragment complementation for the measurement of Wnt/beta-catenin signaling.

    PubMed

    Verkaar, Folkert; Blankesteijn, W Matthijs; Smits, Jos F M; Zaman, Guido J R

    2010-04-01

    Wnt/beta-catenin signaling is an important regulator of cell polarity, proliferation, and stem cell maintenance during development and adulthood. Wnt proteins induce the nuclear accumulation of beta-catenin, which regulates the expression of Wnt-responsive genes through association with TCF/LEF transcription factors. Aberrant Wnt/beta-catenin signaling has been implicated in a plethora of pathologies and, most notably, underlies initiation and expansion of several cancers. Here, we apply enzyme fragment complementation to measure the nuclear accumulation of beta-catenin. beta-Catenin was tagged with a peptide fragment of beta-galactosidase and transfected into cells expressing a corresponding deletion mutant of the enzyme exclusively in the nucleus. Stimulation of the cells with recombinant Wnt-3a restored beta-galactosidase activity in a dose-dependent manner with nanomolar potency. Using the assay, we confirmed that Wnt-5a represses beta-catenin-driven reporter gene activity downstream of nuclear entry of beta-catenin. In addition, we tested a library of >2000 synthetic chemical compounds for their ability to induce beta-catenin nuclear accumulation. The immunosuppressive protein kinase C inhibitor sotrastaurin (AEB-071) was identified as an activator of Wnt/beta-catenin signaling at micromolar concentrations. It was confirmed that the compound stabilizes endogenous beta-catenin protein and can induce TCF/LEF-dependent gene transcription. Subsequent biochemical profiling of >200 kinases revealed both isoforms of glycogen synthase kinase 3, as previously unappreciated targets of sotrastaurin. We show that the beta-catenin nuclear accumulation assay contributes to our knowledge of molecular interactions within the Wnt/beta-catenin pathway and can be used to find new therapeutics targeting Wnt/beta-catenin signaling.-Verkaar, F., Blankesteijn, W. M., Smits, J. F. M., Zaman, G. J. R. beta-Galactosidase enzyme fragment complementation for the measurement of Wnt

  13. Role of Wnt and Notch signaling in regulating hair cell regeneration in the cochlea.

    PubMed

    Waqas, Muhammad; Zhang, Shasha; He, Zuhong; Tang, Mingliang; Chai, Renjie

    2016-09-01

    Sensory hair cells in the inner ear are responsible for sound recognition. Damage to hair cells in adult mammals causes permanent hearing impairment because these cells cannot regenerate. By contrast, newborn mammals possess limited regenerative capacity because of the active participation of various signaling pathways, including Wnt and Notch signaling. The Wnt and Notch pathways are highly sophisticated and conserved signaling pathways that control multiple cellular events necessary for the formation of sensory hair cells. Both signaling pathways allow resident supporting cells to regenerate hair cells in the neonatal cochlea. In this regard, Wnt and Notch signaling has gained increased research attention in hair cell regeneration. This review presents the current understanding of the Wnt and Notch signaling pathways in the auditory portion of the inner ear and discusses the possibilities of controlling these pathways with the hair cell fate determiner Atoh1 to regulate hair cell regeneration in the mammalian cochlea.

  14. Role of Wnt and Notch signaling in regulating hair cell regeneration in the cochlea.

    PubMed

    Waqas, Muhammad; Zhang, Shasha; He, Zuhong; Tang, Mingliang; Chai, Renjie

    2016-09-01

    Sensory hair cells in the inner ear are responsible for sound recognition. Damage to hair cells in adult mammals causes permanent hearing impairment because these cells cannot regenerate. By contrast, newborn mammals possess limited regenerative capacity because of the active participation of various signaling pathways, including Wnt and Notch signaling. The Wnt and Notch pathways are highly sophisticated and conserved signaling pathways that control multiple cellular events necessary for the formation of sensory hair cells. Both signaling pathways allow resident supporting cells to regenerate hair cells in the neonatal cochlea. In this regard, Wnt and Notch signaling has gained increased research attention in hair cell regeneration. This review presents the current understanding of the Wnt and Notch signaling pathways in the auditory portion of the inner ear and discusses the possibilities of controlling these pathways with the hair cell fate determiner Atoh1 to regulate hair cell regeneration in the mammalian cochlea. PMID:27527363

  15. Curcumin Rescues Diabetic Renal Fibrosis by Targeting Superoxide-Mediated Wnt Signaling Pathways.

    PubMed

    Ho, Cheng; Hsu, Yung-Chien; Lei, Chen-Chou; Mau, Shu-Ching; Shih, Ya-Hsueh; Lin, Chun-Liang

    2016-03-01

    The purposes of this study were to investigate whether curcumin can weaken diabetic nephropathy by modulating both oxidative stress and renal injury from Wnt signaling mediation. Wnt5a/β-catenin depression and induction of superoxide synthesis are associated with high glucose (HG) induced transforming growth factor (TGF)-β1 and fibronectin expression in mesangial cells. Curcumin resumes HG depression of Wnt/β-catenin signaling and alleviates HG induction of superoxide, TGF-β1 and fibronectin expression in renal mesangial cell. Exogenous curcumin alleviated urinary total proteinuria and serum superoxide level in diabetic rats. Based on laser-captured microdissection for quantitative real-time polymerase chain reaction, it was found that diabetes significantly increased TGF-β1 and fibronectin expression in line with depressed Wnt5a expression. Curcumin treatment reduced the TGF-β1 and fibronectin activation and the inhibiting effect of diabetes on Wnt5a/β-catenin expression in renal glomeruli. Immunohistochemistry showed that curcumin treatment significantly reduced 8-hydroxy-2'-deoxyguanosine, TGF-β1 and fibronectin, and was in line with the restoration of the suppressed Wnt5a expression immunoreactivities in glomeruli of diabetic rats. Curcumin alleviated extracellular matrix accumulation in diabetic nephropathy by not only preventing the diabetes-mediated superoxide synthesis but also resuming downregulation of Wnt/β-catenin signaling. These findings suggest that regulation of Wnt activity by curcumin is a feasible alternative strategy to rescue diabetic renal injury.

  16. Curcumin Rescues Diabetic Renal Fibrosis by Targeting Superoxide-Mediated Wnt Signaling Pathways.

    PubMed

    Ho, Cheng; Hsu, Yung-Chien; Lei, Chen-Chou; Mau, Shu-Ching; Shih, Ya-Hsueh; Lin, Chun-Liang

    2016-03-01

    The purposes of this study were to investigate whether curcumin can weaken diabetic nephropathy by modulating both oxidative stress and renal injury from Wnt signaling mediation. Wnt5a/β-catenin depression and induction of superoxide synthesis are associated with high glucose (HG) induced transforming growth factor (TGF)-β1 and fibronectin expression in mesangial cells. Curcumin resumes HG depression of Wnt/β-catenin signaling and alleviates HG induction of superoxide, TGF-β1 and fibronectin expression in renal mesangial cell. Exogenous curcumin alleviated urinary total proteinuria and serum superoxide level in diabetic rats. Based on laser-captured microdissection for quantitative real-time polymerase chain reaction, it was found that diabetes significantly increased TGF-β1 and fibronectin expression in line with depressed Wnt5a expression. Curcumin treatment reduced the TGF-β1 and fibronectin activation and the inhibiting effect of diabetes on Wnt5a/β-catenin expression in renal glomeruli. Immunohistochemistry showed that curcumin treatment significantly reduced 8-hydroxy-2'-deoxyguanosine, TGF-β1 and fibronectin, and was in line with the restoration of the suppressed Wnt5a expression immunoreactivities in glomeruli of diabetic rats. Curcumin alleviated extracellular matrix accumulation in diabetic nephropathy by not only preventing the diabetes-mediated superoxide synthesis but also resuming downregulation of Wnt/β-catenin signaling. These findings suggest that regulation of Wnt activity by curcumin is a feasible alternative strategy to rescue diabetic renal injury. PMID:26992258

  17. Wnt signaling induces gene expression of factors associated with bone destruction in lung and breast cancer.

    PubMed

    Johnson, Rachelle W; Merkel, Alyssa R; Page, Jonathan M; Ruppender, Nazanin S; Guelcher, Scott A; Sterling, Julie A

    2014-12-01

    Parathyroid hormone-related protein (PTHrP) is an important regulator of bone destruction in bone metastatic tumors. Transforming growth factor-beta (TGF-β) stimulates PTHrP production in part through the transcription factor Gli2, which is regulated independent of the Hedgehog signaling pathway in osteolytic cancer cells. However, inhibition of TGF-β in vivo does not fully inhibit tumor growth in bone or tumor-induced bone destruction, suggesting other pathways are involved. While Wnt signaling regulates Gli2 in development, the role of Wnt signaling in bone metastasis is unknown. Therefore, we investigated whether Wnt signaling regulates Gli2 expression in tumor cells that induce bone destruction. We report here that Wnt activation by β-catenin/T cell factor 4 (TCF4) over-expression or lithium chloride (LiCl) treatment increased Gli2 and PTHrP expression in osteolytic cancer cells. This was mediated through the TCF and Smad binding sites within the Gli2 promoter as determined by promoter mutation studies, suggesting cross-talk between TGF-β and Wnt signaling. Culture of tumor cells on substrates with bone-like rigidity increased Gli2 and PTHrP production, enhanced autocrine Wnt activity and led to an increase in the TCF/Wnt signaling reporter (TOPFlash), enriched β-catenin nuclear accumulation, and elevated Wnt-related genes by PCR-array. Stromal cells serve as an additional paracrine source of Wnt ligands and enhanced Gli2 and PTHrP mRNA levels in MDA-MB-231 and RWGT2 cells in vitro and promoted tumor-induced bone destruction in vivo in a β-catenin/Wnt3a-dependent mechanism. These data indicate that a combination of matrix rigidity and stromal-secreted factors stimulate Gli2 and PTHrP through Wnt signaling in osteolytic breast cancer cells, and there is significant cross-talk between the Wnt and TGF-β signaling pathways. This suggests that the Wnt signaling pathway may be a potential therapeutic target for inhibiting tumor cell response to the bone

  18. Rnf25/AO7 positively regulates wnt signaling via disrupting Nkd1-Axin inhibitory complex independent of its ubiquitin ligase activity

    PubMed Central

    Zhang, Ting-Ting; Zhao, Liang; Liu, Luhong; Liu, Jing-Crystal; Guo, Fengjin; Cheng, Zhi; Huang, Huizhe

    2016-01-01

    Wnt signaling components have been shown to control key events in embryogenesis and to maintain tissue homeostasis in the adult. Nkd1/2 and Axin1/2 protein families are required for feedback regulation of Wnt signaling. The mechanisms by which Nkd1 and Nkd2 exhibit significant differences in signal transduction remain incompletely understood. Here we report that Rnf25/AO7, a previously identified E3 ubiquitin ligase for Nkd2, physically interacts with Nkd1 and Axin in an E3 ligase-independent manner to strengthen Wnt signalling. To determine the biological role of Rnf25 in vivo, we found that the renal mesenchymal cell, in which rnf25 was knocked-down, also exhibited more epithelial characters than MOCK control. Meanwhile, the transcriptional level of rnf25 was elevated in three separate tumor tissues more than that in paracarcinomatous tissue. Depletion of Rnf25 in zebrafish embryos attenuated transcriptions of maternal and zygotic Wnt target genes. Our results indicated that Rnf25 might serve as a molecular device, controlling the different antagonizing functions against canonical Wnt signaling between Nkd1 and Nkd2 cooperated with Axin. PMID:27007149

  19. Postsynaptic Assembly: A Role for Wnt Signaling

    PubMed Central

    Stamatakou, Eleanna; Salinas, Patricia C

    2014-01-01

    Synapse formation requires the coordinated formation of the presynaptic terminal, containing the machinery for neurotransmitter release, and the postsynaptic side that possesses the machinery for neurotransmitter reception. For coordinated pre- and postsynaptic assembly signals across the synapse are required. Wnt secreted proteins are well-known synaptogenic factors that promote the recruitment of presynaptic components in diverse organisms. However, recent studies demonstrate that Wnts act directly onto the postsynaptic side at both central and peripheral synapses to promote postsynaptic development and synaptic strength. This review focuses on the role of Wnts in postsynaptic development at central synapses and the neuromuscular junction. © 2013 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 74: 818–827, 2014 PMID:24105999

  20. Ehrlichia chaffeensis Exploits Canonical and Noncanonical Host Wnt Signaling Pathways To Stimulate Phagocytosis and Promote Intracellular Survival

    PubMed Central

    Luo, Tian; Dunphy, Paige S.; Lina, Taslima T.

    2015-01-01

    Ehrlichia chaffeensis invades and survives in phagocytes by modulating host cell processes and evading innate defenses, but the mechanisms are not fully defined. Recently we have determined that E. chaffeensis tandem repeat proteins (TRPs) are type 1 secreted effectors involved in functionally diverse interactions with host targets, including components of the evolutionarily conserved Wnt signaling pathways. In this study, we demonstrated that induction of host canonical and noncanonical Wnt pathways by E. chaffeensis TRP effectors stimulates phagocytosis and promotes intracellular survival. After E. chaffeensis infection, canonical and noncanonical Wnt signalings were significantly stimulated during early stages of infection (1 to 3 h) which coincided with dephosphorylation and nuclear translocation of β-catenin, a major canonical Wnt signal transducer, and NFATC1, a noncanonical Wnt transcription factor. In total, the expression of ∼44% of Wnt signaling target genes was altered during infection. Knockdown of TRP120-interacting Wnt pathway components/regulators and other critical components, such as Wnt5a ligand, Frizzled 5 receptor, β-catenin, nuclear factor of activated T cells (NFAT), and major signaling molecules, resulted in significant reductions in the ehrlichial load. Moreover, small-molecule inhibitors specific for components of canonical and noncanonical (Ca2+ and planar cell polarity [PCP]) Wnt pathways, including IWP-2, which blocks Wnt secretion, significantly decreased ehrlichial infection. TRPs directly activated Wnt signaling, as TRP-coated microspheres triggered phagocytosis which was blocked by Wnt pathway inhibitors, demonstrating a key role of TRP activation of Wnt pathways to induce ehrlichial phagocytosis. These novel findings reveal that E. chaffeensis exploits canonical and noncanonical Wnt pathways through TRP effectors to facilitate host cell entry and promote intracellular survival. PMID:26712203

  1. Spatial and temporal aspects of Wnt signaling and planar cell polarity during vertebrate embryonic development

    PubMed Central

    Sokol, Sergei Y.

    2015-01-01

    Wnt signaling pathways act at multiple locations and developmental stages to specify cell fate and polarity in vertebrate embryos. A long-standing question is how the same molecular machinery can be reused to produce different outcomes. The canonical Wnt/β-catenin branch modulates target gene transcription to specify cell fates along the dorsoventral and anteroposterior embryonic axes. By contrast, the Wnt/planar cell polarity (PCP) branch is responsible for cell polarization along main body axes, which coordinates morphogenetic cell behaviors during gastrulation and neurulation. Whereas both cell fate and cell polarity are modulated by spatially- and temporally-restricted Wnt activity, the downstream signaling mechanisms are very diverse. This review highlights recent progress in the understanding of Wnt-dependent molecular events leading to the establishment of PCP and linking it to early morphogenetic processes. PMID:25986055

  2. Wnt signaling-mediated redox regulation maintains the germ line stem cell differentiation niche

    PubMed Central

    Wang, Su; Gao, Yuan; Song, Xiaoqing; Ma, Xing; Zhu, Xiujuan; Mao, Ying; Yang, Zhihao; Ni, Jianquan; Li, Hua; Malanowski, Kathryn E; Anoja, Perera; Park, Jungeun; Haug, Jeff; Xie, Ting

    2015-01-01

    Adult stem cells continuously undergo self-renewal and generate differentiated cells. In the Drosophila ovary, two separate niches control germ line stem cell (GSC) self-renewal and differentiation processes. Compared to the self-renewing niche, relatively little is known about the maintenance and function of the differentiation niche. In this study, we show that the cellular redox state regulated by Wnt signaling is critical for the maintenance and function of the differentiation niche to promote GSC progeny differentiation. Defective Wnt signaling causes the loss of the differentiation niche and the upregulated BMP signaling in differentiated GSC progeny, thereby disrupting germ cell differentiation. Mechanistically, Wnt signaling controls the expression of multiple glutathione-S-transferase family genes and the cellular redox state. Finally, Wnt2 and Wnt4 function redundantly to maintain active Wnt signaling in the differentiation niche. Therefore, this study has revealed a novel strategy for Wnt signaling in regulating the cellular redox state and maintaining the differentiation niche. DOI: http://dx.doi.org/10.7554/eLife.08174.001 PMID:26452202

  3. Wnt/{beta}-catenin signaling changes C2C12 myoblast proliferation and differentiation by inducing Id3 expression

    SciTech Connect

    Zhang, Long; Shi, Songting; Zhang, Juan; Zhou, Fangfang; Dijke, Peter ten

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer Expression of Id3 but not Id1 is induced by Wnt3a stimulation in C2C12 cells. Black-Right-Pointing-Pointer Wnt3a induces Id3 expression via canonical Wnt/{beta}-catenin pathway. Black-Right-Pointing-Pointer Wnt3a-induced Id3 expression does not depend on BMP signaling activation. Black-Right-Pointing-Pointer Induction of Id3 expression is critical determinant in Wnt3a-induced cell proliferation and differentiation. -- Abstract: Canonical Wnt signaling plays important roles in regulating cell proliferation and differentiation. In this study, we report that inhibitor of differentiation (Id)3 is a Wnt-inducible gene in mouse C2C12 myoblasts. Wnt3a induced Id3 expression in a {beta}-catenin-dependent manner. Bone morphogenetic protein (BMP) also potently induced Id3 expression. However, Wnt-induced Id3 expression occurred independent of the BMP/Smad pathway. Functional studies showed that Id3 depletion in C2C12 cells impaired Wnt3a-induced cell proliferation and alkaline phosphatase activity, an early marker of osteoblast cells. Id3 depletion elevated myogenin induction during myogenic differentiation and partially impaired Wnt3a suppressed myogenin expression in C2C12 cells. These results suggest that Id3 is an important Wnt/{beta}-catenin induced gene in myoblast cell fate determination.

  4. NUMB is a break of WNT-Notch signaling cycle.

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2006-09-01

    Notch, FGF and WNT signaling pathways cross-talk during embryogenesis, tissue regeneration and carcinogenesis. Notch-ligand binding to Notch receptors leads to the cleavage of Notch receptors and the following nuclear translocation of Notch intracellular domain (NICD) to induce transcriptional activation of Notch target genes. Notch signaling inhibitors, NUMB and NUMB-like (NUMBL), are docking proteins with PTB domain. We searched for the TCF/LEF-binding site within the promoter region of NUMB and NUMBL genes. Because two TCF/LEF-binding sites were identified within human NUMB promoter based on bioinformatics and human intelligence (Humint), comparative integromics analyses on NUMB orthologs were further performed. Chimpanzee NUBM gene, consisting of 13 exons, was identified within NW_115880.1 genome sequence. XM_510045.1 was not the correct coding sequence for chimpanzee NUMB. Chimpanzee NUMB gene was found to encode a 651-amino-acid protein showing 99.5, 93.9 and 82.6% total-amino-acid identity with human NUMB, mouse Numb and chicken numb, respectively. Human NUMB mRNA was expressed in placenta, ES cells, neural tissues, trachea, testis, uterus, thymus, coronary artery as well as in a variety of tumors, such as cervical cancer, tong tumor, brain tumor, colorectal and breast cancer. Although distal TCF/LEF-binding site within human NUMB promoter was conserved only among primate NUMB orthologs, proximal TCF/LEF-binding site was conserved among primate and rodent NUMB orthologs. NUMB, JAG1, FGF18, FGF20 and SPRY4 are potent targets of the canonical WNT signaling pathway in progenitor cells. NUMB inhibits Notch signaling in progenitor cells to induce differentiation, while JAG1 activates Notch signaling in stem cells to maintain self-renewal potential. Because Notch signaling inhibitor NUMB was identified as the safe apparatus for the WNT - Notch signaling cycle, epigenetic silencing, deletion and loss-of-function mutation of NUMB gene could lead to carcinogenesis

  5. Canonical Wnt signalling regulates epithelial patterning by modulating levels of laminins in zebrafish appendages

    PubMed Central

    Nagendran, Monica; Arora, Prateek; Gori, Payal; Mulay, Aditya; Ray, Shinjini; Jacob, Tressa; Sonawane, Mahendra

    2015-01-01

    The patterning and morphogenesis of body appendages – such as limbs and fins – is orchestrated by the activities of several developmental pathways. Wnt signalling is essential for the induction of limbs. However, it is unclear whether a canonical Wnt signalling gradient exists and regulates the patterning of epithelium in vertebrate appendages. Using an evolutionarily old appendage – the median fin in zebrafish – as a model, we show that the fin epithelium exhibits graded changes in cellular morphology along the proximo-distal axis. This epithelial pattern is strictly correlated with the gradient of canonical Wnt signalling activity. By combining genetic analyses with cellular imaging, we show that canonical Wnt signalling regulates epithelial cell morphology by modulating the levels of laminins, which are extracellular matrix components. We have unravelled a hitherto unknown mechanism involved in epithelial patterning, which is also conserved in the pectoral fins – evolutionarily recent appendages that are homologous to tetrapod limbs. PMID:25519245

  6. Ilexonin A Promotes Neuronal Proliferation and Regeneration via Activation of the Canonical Wnt Signaling Pathway after Cerebral Ischemia Reperfusion in Rats

    PubMed Central

    Zhang, Bi-Qin; Zheng, Guan-Yi; Han, Yu; Chen, Xiao-Dong; Jiang, Qiong

    2016-01-01

    Aims. Ilexonin A (IA), a component of the Chinese medicine Ilex pubescens, has been shown to be neuroprotective during ischemic injury. However, the specific mechanism underlying this neuroprotective effect remains unclear. Methods. In this study, we employed a combination of immunofluorescence staining, western blotting, RT-PCR, and behavioral tests, to investigate the molecular mechanisms involved in IA regulation of neuronal proliferation and regeneration after cerebral ischemia and reperfusion in rodents. Results. Increases in β-catenin protein and LEF1 mRNA and decreases in GSK3β protein and Axin mRNA observed in IA-treated compared to control rodents implicated the canonical Wnt pathway as a key signaling mechanism activated by IA treatment. Furthermore, rodents in the IA treatment group showed less neurologic impairment and a corresponding increase in the number of Brdu/nestin and Brdu/NeuN double positive neurons in the parenchymal ischemia tissue following middle cerebral artery occlusion compared to matched controls. Conclusion. Altogether, our data indicate that IA can significantly diminish neurological deficits associated with cerebral ischemia reperfusion in rats as a result of increased neuronal survival via modulation of the canonical Wnt pathway. PMID:27057202

  7. Chronic hypoxia induces the activation of the Wnt/β-catenin signaling pathway and stimulates hippocampal neurogenesis in wild-type and APPswe-PS1ΔE9 transgenic mice in vivo

    PubMed Central

    Varela-Nallar, Lorena; Rojas-Abalos, Macarena; Abbott, Ana C.; Moya, Esteban A.; Iturriaga, Rodrigo; Inestrosa, Nibaldo C.

    2014-01-01

    Hypoxia modulates proliferation and differentiation of cultured embryonic and adult stem cells, an effect that includes β-catenin, a key component of the canonical Wnt signaling pathway. Here we studied the effect of mild hypoxia on the activity of the Wnt/β-catenin signaling pathway in the hippocampus of adult mice in vivo. The hypoxia-inducible transcription factor-1α (HIF-1α) was analyzed as a molecular control of the physiological hypoxic response. Exposure to chronic hypoxia (10% oxygen for 6–72 h) stimulated the activation of the Wnt/β-catenin signaling pathway. Because the Wnt/β-catenin pathway is a positive modulator of adult neurogenesis, we evaluated whether chronic hypoxia was able to stimulate neurogenesis in the subgranular zone (SGZ) of the hippocampal dentate gyrus. Results indicate that hypoxia increased cell proliferation and neurogenesis in adult wild-type mice as determined by Ki67 staining, Bromodeoxyuridine (BrdU) incorporation and double labeling with doublecortin (DCX). Chronic hypoxia also induced neurogenesis in a double transgenic APPswe-PS1ΔE9 mouse model of Alzheimer’s disease (AD), which shows decreased levels of neurogenesis in the SGZ. Our results show for the first time that exposure to hypoxia in vivo can induce the activation of the Wnt/β-catenin signaling cascade in the hippocampus, suggesting that mild hypoxia may have a therapeutic value in neurodegenerative disorders associated with altered Wnt signaling in the brain and also in pathological conditions in which hippocampal neurogenesis is impaired. PMID:24574965

  8. Update on Wnt signaling in bone cell biology and bone disease

    PubMed Central

    Monroe, David G.; McGee-Lawrence, Meghan E.; Oursler, Merry Jo; Westendorf, Jennifer J.

    2012-01-01

    For more than a decade, Wnt signaling pathways have been the focus of intense research activity in bone biology laboratories because of their importance in skeletal development, bone mass maintenance, and therapeutic potential for regenerative medicine. It is evident that even subtle alterations in the intensity, amplitude, location, and duration of Wnt signaling pathways affects skeletal development, as well as bone remodeling, regeneration, and repair during a lifespan. Here we review recent advances and discrepancies in how Wnt/Lrp5 signaling regulates osteoblasts and osteocytes, introduce new players in Wnt signaling pathways that have important roles in bone development, discuss emerging areas such as the role of Wnt signaling in osteoclastogenesis, and summarize progress made in translating basic studies to clinical therapeutics and diagnostics centered around inhibiting Wnt pathway antagonists, such as sclerostin, Dkk1 and Sfrp1. Emphasis is placed on the plethora of genetic studies in mouse models and genome wide association studies that reveal the requirement for and crucial roles of Wnt pathway components during skeletal development and disease. PMID:22079544

  9. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    SciTech Connect

    Nemoto, Eiji; Ebe, Yukari; Kanaya, Sousuke; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. Black-Right-Pointing-Pointer Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. Black-Right-Pointing-Pointer Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. Black-Right-Pointing-Pointer Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through {beta}-catenin-dependent canonical and {beta}-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent

  10. CYP1B1 Enhances Cell Proliferation and Metastasis through Induction of EMT and Activation of Wnt/β-Catenin Signaling via Sp1 Upregulation.

    PubMed

    Kwon, Yeo-Jung; Baek, Hyoung-Seok; Ye, Dong-Jin; Shin, Sangyun; Kim, Donghak; Chun, Young-Jin

    2016-01-01

    Cytochrome P450 1B1 (CYP1B1) is a major E2 hydroxylase involved in the metabolism of potential carcinogens. CYP1B1 expression has been reported to be higher in tumors compared to normal tissues, especially in hormone-related cancers including breast, ovary, and prostate tumors. To explore the role of CYP1B1 in cancer progression, we investigated the action of CYP1B1 in cells with increased CYP1B1 via the inducer 7,12-dimethylbenz[α]anthracene (DMBA) or an overexpression vector, in addition to decreased CYP1B1 via the inhibitor tetramethoxystilbene (TMS) or siRNA knockdown. We observed that CYP1B1 promoted cell proliferation, migration, and invasion in MCF-7 and MCF-10A cells. To understand its molecular mechanism, we measured key oncogenic proteins including β-catenin, c-Myc, ZEB2, and matrix metalloproteinases following CYP1B1 modulation. CYP1B1 induced epithelial-mesenchymal transition (EMT) and activated Wnt/β-catenin signaling via upregulation of CTNNB1, ZEB2, SNAI1, and TWIST1. Sp1, a transcription factor involved in cell growth and metastasis, was positively regulated by CYP1B1, and suppression of Sp1 expression by siRNA or DNA binding activity using mithramycin A blocked oncogenic transformation by CYP1B1. Therefore, we suggest that Sp1 acts as a key mediator for CYP1B1 action. Treatment with 4-hydroxyestradiol (4-OHE2), a major metabolite generated by CYP1B1, showed similar effects as CYP1B1 overexpression, indicating that CYP1B1 activity mediated various oncogenic events in cells. In conclusion, our data suggests that CYP1B1 promotes cell proliferation and metastasis by inducing EMT and Wnt/β-catenin signaling via Sp1 induction. PMID:26981862

  11. CYP1B1 Enhances Cell Proliferation and Metastasis through Induction of EMT and Activation of Wnt/β-Catenin Signaling via Sp1 Upregulation

    PubMed Central

    Kwon, Yeo-Jung; Baek, Hyoung-Seok; Ye, Dong-Jin; Shin, Sangyun; Kim, Donghak; Chun, Young-Jin

    2016-01-01

    Cytochrome P450 1B1 (CYP1B1) is a major E2 hydroxylase involved in the metabolism of potential carcinogens. CYP1B1 expression has been reported to be higher in tumors compared to normal tissues, especially in hormone-related cancers including breast, ovary, and prostate tumors. To explore the role of CYP1B1 in cancer progression, we investigated the action of CYP1B1 in cells with increased CYP1B1 via the inducer 7,12-dimethylbenz[α]anthracene (DMBA) or an overexpression vector, in addition to decreased CYP1B1 via the inhibitor tetramethoxystilbene (TMS) or siRNA knockdown. We observed that CYP1B1 promoted cell proliferation, migration, and invasion in MCF-7 and MCF-10A cells. To understand its molecular mechanism, we measured key oncogenic proteins including β-catenin, c-Myc, ZEB2, and matrix metalloproteinases following CYP1B1 modulation. CYP1B1 induced epithelial-mesenchymal transition (EMT) and activated Wnt/β-catenin signaling via upregulation of CTNNB1, ZEB2, SNAI1, and TWIST1. Sp1, a transcription factor involved in cell growth and metastasis, was positively regulated by CYP1B1, and suppression of Sp1 expression by siRNA or DNA binding activity using mithramycin A blocked oncogenic transformation by CYP1B1. Therefore, we suggest that Sp1 acts as a key mediator for CYP1B1 action. Treatment with 4-hydroxyestradiol (4-OHE2), a major metabolite generated by CYP1B1, showed similar effects as CYP1B1 overexpression, indicating that CYP1B1 activity mediated various oncogenic events in cells. In conclusion, our data suggests that CYP1B1 promotes cell proliferation and metastasis by inducing EMT and Wnt/β-catenin signaling via Sp1 induction. PMID:26981862

  12. R-spondin 3 regulates dorsoventral and anteroposterior patterning by antagonizing Wnt/β-catenin signaling in zebrafish embryos.

    PubMed

    Rong, Xiaozhi; Chen, Chen; Zhou, Pin; Zhou, Yumei; Li, Yun; Lu, Ling; Liu, Yunzhang; Zhou, Jianfeng; Duan, Cunming

    2014-01-01

    The Wnt/β-catenin or canonical Wnt signaling pathway plays fundamental roles in early development and in maintaining adult tissue homeostasis. R-spondin 3 (Rspo3) is a secreted protein that has been implicated in activating the Wnt/β-catenin signaling in amphibians and mammals. Here we report that zebrafish Rspo3 plays a negative role in regulating the zygotic Wnt/β-catenin signaling. Zebrafish Rspo3 has a unique domain structure. It contains a third furin-like (FU3) domain. This FU3 is present in other four ray-finned fish species studied but not in elephant shark. In zebrafish, rspo3 mRNA is maternally deposited and has a ubiquitous expression in early embryonic stages. After 12 hpf, its expression becomes tissue-specific. Forced expression of rspo3 promotes dorsoanterior patterning and increases the expression of dorsal and anterior marker genes. Knockdown of rspo3 increases ventral-posterior development and stimulates ventral and posterior marker genes expression. Forced expression of rspo3 abolishes exogenous Wnt3a action and reduces the endogenous Wnt signaling activity. Knockdown of rspo3 results in increased Wnt/β-catenin signaling activity. Further analyses indicate that Rspo3 does not promote maternal Wnt signaling. Human RSPO3 has similar action when tested in zebrafish embryos. These results suggest that Rspo3 regulates dorsoventral and anteroposterior patterning by negatively regulating the zygotic Wnt/β-catenin signaling in zebrafish embryos.

  13. Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance.

    PubMed

    Wickström, Malin; Dyberg, Cecilia; Milosevic, Jelena; Einvik, Christer; Calero, Raul; Sveinbjörnsson, Baldur; Sandén, Emma; Darabi, Anna; Siesjö, Peter; Kool, Marcel; Kogner, Per; Baryawno, Ninib; Johnsen, John Inge

    2015-01-01

    The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is commonly overexpressed in cancers and is implicated in the development of chemoresistance. The use of drugs inhibiting MGMT has been hindered by their haematologic toxicity and inefficiency. As a different strategy to inhibit MGMT we investigated cellular regulators of MGMT expression in multiple cancers. Here we show a significant correlation between Wnt signalling and MGMT expression in cancers with different origin and confirm the findings by bioinformatic analysis and immunofluorescence. We demonstrate Wnt-dependent MGMT gene expression and cellular co-localization between active β-catenin and MGMT. Pharmacological or genetic inhibition of Wnt activity downregulates MGMT expression and restores chemosensitivity of DNA-alkylating drugs in mouse models. These findings have potential therapeutic implications for chemoresistant cancers, especially of brain tumours where the use of temozolomide is frequently used in treatment. PMID:26603103

  14. Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance.

    PubMed

    Wickström, Malin; Dyberg, Cecilia; Milosevic, Jelena; Einvik, Christer; Calero, Raul; Sveinbjörnsson, Baldur; Sandén, Emma; Darabi, Anna; Siesjö, Peter; Kool, Marcel; Kogner, Per; Baryawno, Ninib; Johnsen, John Inge

    2015-01-01

    The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is commonly overexpressed in cancers and is implicated in the development of chemoresistance. The use of drugs inhibiting MGMT has been hindered by their haematologic toxicity and inefficiency. As a different strategy to inhibit MGMT we investigated cellular regulators of MGMT expression in multiple cancers. Here we show a significant correlation between Wnt signalling and MGMT expression in cancers with different origin and confirm the findings by bioinformatic analysis and immunofluorescence. We demonstrate Wnt-dependent MGMT gene expression and cellular co-localization between active β-catenin and MGMT. Pharmacological or genetic inhibition of Wnt activity downregulates MGMT expression and restores chemosensitivity of DNA-alkylating drugs in mouse models. These findings have potential therapeutic implications for chemoresistant cancers, especially of brain tumours where the use of temozolomide is frequently used in treatment.

  15. Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance

    PubMed Central

    Wickström, Malin; Dyberg, Cecilia; Milosevic, Jelena; Einvik, Christer; Calero, Raul; Sveinbjörnsson, Baldur; Sandén, Emma; Darabi, Anna; Siesjö, Peter; Kool, Marcel; Kogner, Per; Baryawno, Ninib; Johnsen, John Inge

    2015-01-01

    The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is commonly overexpressed in cancers and is implicated in the development of chemoresistance. The use of drugs inhibiting MGMT has been hindered by their haematologic toxicity and inefficiency. As a different strategy to inhibit MGMT we investigated cellular regulators of MGMT expression in multiple cancers. Here we show a significant correlation between Wnt signalling and MGMT expression in cancers with different origin and confirm the findings by bioinformatic analysis and immunofluorescence. We demonstrate Wnt-dependent MGMT gene expression and cellular co-localization between active β-catenin and MGMT. Pharmacological or genetic inhibition of Wnt activity downregulates MGMT expression and restores chemosensitivity of DNA-alkylating drugs in mouse models. These findings have potential therapeutic implications for chemoresistant cancers, especially of brain tumours where the use of temozolomide is frequently used in treatment. PMID:26603103

  16. WNT5A inhibits hepatocyte proliferation and concludes β-catenin signaling in liver regeneration.

    PubMed

    Yang, Jing; Cusimano, Antonella; Monga, Jappmann K; Preziosi, Morgan E; Pullara, Filippo; Calero, Guillermo; Lang, Richard; Yamaguchi, Terry P; Nejak-Bowen, Kari N; Monga, Satdarshan P

    2015-08-01

    Activation of Wnt/β-catenin signaling during liver regeneration (LR) after partial hepatectomy (PH) is observed in several species. However, how this pathway is turned off when hepatocyte proliferation is no longer required is unknown. We assessed LR in liver-specific knockouts of Wntless (Wls-LKO), a protein required for Wnt secretion from a cell. When subjected to PH, Wls-LKO showed prolongation of hepatocyte proliferation for up to 4 days compared with littermate controls. This coincided with increased β-catenin-T-cell factor 4 interaction and cyclin-D1 expression. Wls-LKO showed decreased expression and secretion of inhibitory Wnt5a during LR. Wnt5a expression increased between 24 and 48 hours, and Frizzled-2 between 24 and 72 hours, after PH in normal mice. Treatment of primary mouse hepatocytes and liver tumor cells with Wnt5a led to a notable decrease in β-catenin-T-cell factor activity, cyclin-D1 expression, and cell proliferation. Intriguingly, Wnt5a-LKO did not display any prolongation of LR because of compensation by other cells. In addition, Wnt5a-LKO hepatocytes failed to respond to exogenous Wnt5a treatment in culture because of a compensatory decrease in Frizzled-2 expression. In conclusion, we demonstrate Wnt5a to be, by default, a negative regulator of β-catenin signaling and hepatocyte proliferation, both in vitro and in vivo. We also provide evidence that the Wnt5a/Frizzled-2 axis suppresses β-catenin signaling in hepatocytes in an autocrine manner, thereby contributing to timely conclusion of the LR process.

  17. Integration of Bmp and Wnt signaling by Hopx specifies commitment of cardiomyoblasts

    PubMed Central

    Jain, Rajan; Li, Deqiang; Gupta, Mudit; Manderfield, Lauren J.; Ifkovits, Jamie L.; Wang, Qiaohong; Liu, Feiyan; Liu, Ying; Poleshko, Andrey; Padmanabhan, Arun; Raum, Jeffrey C.; Li, Li; Morrisey, Edward E.; Lu, Min Min; Won, Kyoung-Jae; Epstein, Jonathan A.

    2016-01-01

    Cardiac progenitor cells are multipotent and give rise to cardiac endothelium, smooth muscle, and cardiomyocytes. Here, we define and characterize the cardiomyoblast intermediate that is committed to the cardiomyocyte fate, and we characterize the niche signals that regulate commitment. Cardiomyoblasts express Hopx, which functions to coordinate local Bmp signals to inhibit the Wnt pathway, thus promoting cardiomyogenesis. Hopx integrates Bmp and Wnt signaling by physically interacting with activated Smads and repressing Wnt genes. The identification of the committed cardiomyoblast that retains proliferative potential will inform cardiac regenerative therapeutics. In addition, Bmp signals characterize adult stem cell niches in other tissues where Hopx-mediated inhibition of Wnt is likely to contribute to stem cell quiescence and to explain the role of Hopx as a tumor suppressor. PMID:26113728

  18. Our evolving view of Wnt signaling in C. elegans

    PubMed Central

    Robertson, Scott M.; Lin, Rueyling

    2012-01-01

    In this commentary, we discuss how our recent paper by Yang et al. contributes a new wrinkle to the already somewhat curious Wnt signaling pathway in C. elegans. We begin with a historical perspective on the Wnt pathway in the worm, followed by a summary of the key salient point from Yang et al., 2011, namely demonstration of mutually inhibitory binding of a β-catenin SYS-1 to the N-terminus and another β-catenin WRM-1 to the C-terminus of the TCF protein POP-1, and a plausible structural explanation for these differential binding specificities. The mutually inhibitory binding creates one population of POP-1 that is bound by WRM-1, phosphorylated by the NLK kinase and exported from the nucleus, and another bound by coactivator SYS-1 that remains in the nucleus. We speculate on the evolutionary history of the four β-catenins in C. elegans and suggest a possible link between multiple β-catenin gene duplications and the requirement to reduce nuclear POP-1 levels to activate Wnt target genes. PMID:24058829

  19. Wnt-pathway activation in two molecular classes of hepatocellular carcinoma and experimental modulation by sorafenib

    PubMed Central

    Lachenmayer, Anja; Alsinet, Clara; Savic, Radoslav; Cabellos, Laia; Toffanin, Sara; Hoshida, Yujin; Villanueva, Augusto; Minguez, Beatriz; Newell, Philippa; Tsai, Hung-Wen; Barretina, Jordi; Thung, Swan; Ward, Stephen C.; Bruix, Jordi; Mazzaferro, Vincenzo; Schwartz, Myron; Friedman, Scott L.; Llovet, Josep M.

    2012-01-01

    Purpose Hepatocellular carcinoma (HCC) is a heterogeneous cancer with active Wnt-signaling. Underlying biological mechanisms remain unclear and no drug targeting this pathway has been approved to date. We aimed to characterize Wnt-pathway aberrations in HCC patients, and to investigate sorafenib as a potential Wnt modulator in experimental models of liver cancer. Experimental Design The Wnt-pathway was assessed using mRNA (642 HCCs and 21 liver cancer cell lines) and miRNA expression data (89 HCCs), immunohistochemistry (108 HCCs) and CTNNB1-mutation data (91 HCCs). Effects of sorafenib on Wnt-signaling were evaluated in four liver cancer cell lines with active Wnt signaling and a tumor xenograft model. Results Evidence for Wnt activation was observed for 315 (49.1%) cases, and was further classified as CTNNB1-class [138 cases (21.5%)] or Wnt-TGFβ-class [177 cases (27.6%)]. CTNNB1-class was characterized by up-regulation of liver-specific Wnt-targets, nuclear β-catenin and glutamine-synthetase immunostaining, and enrichment of CTNNB1-mutation-signature, while Wnt-TGFβ-class was characterized by dysregulation of classical Wnt-targets and the absence of nuclear β-catenin. Sorafenib decreased Wnt-signaling and β-catenin protein in HepG2 (CTNNB1-class), SNU387 (Wnt-TGFβ-class), SNU398 (CTNNB1-mutation) and Huh7 (Lithium-chloride-pathway activation) cell lines. Additionally, sorafenib attenuated expression of liver-related Wnt-targets GLUL, LGR5, and TBX3. The suppressive effect on CTNNB1-class-specific Wnt-pathway activation was validated in vivo using HepG2 xenografts in nude mice, accompanied by decreased tumor volume and increased survival of treated animals. Conclusions Distinct dysregulation of Wnt-pathway constituents characterize two different Wnt-related molecular classes (CTNNB1 and Wnt-TGFβ), accounting for half of all HCC patients. Sorafenib modulates β-catenin/Wnt-signaling in experimental models that harbor the CTNNB1-class-signature. PMID:22811581

  20. AP1- and NF-kappaB-binding sites conserved among mammalian WNT10B orthologs elucidate the TNFalpha-WNT10B signaling loop implicated in carcinogenesis and adipogenesis.

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2007-04-01

    WNT signals are context-dependently transduced to canonical and non-canonical signaling cascades. We cloned and characterized wild-type human WNT10B, while another group cloned aberrant human WNT10B with Gly60Asp amino-acid substitution. Proto-oncogene WNT10B is expressed in gastric cancer, pancreatic cancer, breast cancer, esophageal cancer, and cervical cancer. Because WNT10B blocks adipocyte differentiation, coding SNP of WNT10B gene is associated with familial obesity. In 2001, we reported WNT10B upregulation by TNFalpha. Here, comparative integromics analyses on WNT10B orthologs were performed to elucidate the transcriptional mechanism of WNT10B. Chimpanzee WNT10B and cow Wnt10b genes were identified within NW_001223159.1 and AC150975.2 genome sequences, respectively, by using bioinformatics (Techint) and human intelligence (Humint). Chimpanzee WNT10B and cow Wnt10b showed 98.7% and 95.1% total-amino-acid identity with human WNT10B, respectively. N-terminal signal peptide, 24 Cys residues, two Asn-linked glycosylation sites, and Gly60 of human WNT10B were conserved among mammalian WNT10B orthologs. Transcription start site of human WNT10B gene was 106-bp upstream of NM_003394.2 RefSeq 5'-end. Number of GC di-nucleotide repeats just down-stream of WNT10B transcription start site varied among primates and human population. Comparative genomics analyses revealed that double AP1-binding sites in the 5'-flanking promoter region and NF-kappaB-binding site in intron 3 were conserved among human, chimpanzee, cow, mouse, and rat WNT10B orthologs. Because TNFalpha signaling through TNFR1 and TRADD/RIP/TRAF2 complex activates JUN kinase (JNK) and IkappaB kinase (IKK) signaling cascades, conserved AP1- and NF-kappaB-binding sites explain the mechanism of TNFalpha-induced WNT10B upregulation. TNFalpha-WNT10B signaling loop is the negative feedback mechanism of adipogenesis to prevent obesity and metabolic syndrome. On the other hand, TNFalpha-WNT10B signaling loop is

  1. Gene Expression Profiling of Peri-Implant Healing of PLGA-Li+ Implants Suggests an Activated Wnt Signaling Pathway In Vivo

    PubMed Central

    Thorfve, Anna; Bergstrand, Anna; Ekström, Karin; Lindahl, Anders; Thomsen, Peter; Larsson, Anette; Tengvall, Pentti

    2014-01-01

    Bone development and regeneration is associated with the Wnt signaling pathway that, according to literature, can be modulated by lithium ions (Li+). The aim of this study was to evaluate the gene expression profile during peri-implant healing of poly(lactic-co-glycolic acid) (PLGA) implants with incorporated Li+, while PLGA without Li+ was used as control, and a special attention was then paid to the Wnt signaling pathway. The implants were inserted in rat tibia for 7 or 28 days and the gene expression profile was investigated using a genome-wide microarray analysis. The results were verified by qPCR and immunohistochemistry. Histomorphometry was used to evaluate the possible effect of Li+ on bone regeneration. The microarray analysis revealed a large number of significantly differentially regulated genes over time within the two implant groups. The Wnt signaling pathway was significantly affected by Li+, with approximately 34% of all Wnt-related markers regulated over time, compared to 22% for non-Li+ containing (control; Ctrl) implants. Functional cluster analysis indicated skeletal system morphogenesis, cartilage development and condensation as related to Li+. The downstream Wnt target gene, FOSL1, and the extracellular protein-encoding gene, ASPN, were significantly upregulated by Li+ compared with Ctrl. The presence of β-catenin, FOSL1 and ASPN positive cells was confirmed around implants of both groups. Interestingly, a significantly reduced bone area was observed over time around both implant groups. The presence of periostin and calcitonin receptor-positive cells was observed at both time points. This study is to the best of the authors' knowledge the first report evaluating the effect of a local release of Li+ from PLGA at the fracture site. The present study shows that during the current time frame and with the present dose of Li+ in PLGA implants, Li+ is not an enhancer of early bone growth, although it affects the Wnt signaling pathway. PMID:25047349

  2. Pyruvate kinase, muscle isoform 2 promotes proliferation and insulin secretion of pancreatic β-cells via activating Wnt/CTNNB1 signaling

    PubMed Central

    Wang, Suijun; Yang, Zhen; Gao, Ying; Li, Quanzhong; Su, Yong; Wang, Yanfang; Zhang, Yun; Man, Hua; Liu, Hongxia

    2015-01-01

    Failure of pancreatic β-cells is closely associated with type 2 diabetes mellitus (T2DM), an intractable disease affecting numerous patients. Pyruvate kinase, muscle isoform 2 (PKM2) is a potential modulator of insulin secretion in β-cells. This study aims at revealing roles and possible mechanisms of PKM2 in pancreatic β-cells. Mouse pancreatic β-cell line NIT-1 was used for high glucose treatment and PKM2 overexpression by its specific expression vector. Cell proliferation by Thiazolyl blue assay, cell apoptosis by annexin V-fluorescein isothiocyanate/prodium iodide staining and insulin secretion assay by ELISA were performed in each group. The mRNA and protein levels of related factors were analyzed by real-time quantitative PCR and western blot. Results showed that Pkm2 was inhibited under high glucose conditions compared to the untreated cells (P < 0.01). Its overexpression significantly suppressed NIT-1 cell apoptosis (P < 0.01), and induced cell proliferation (P < 0.05) and insulin secretion (P < 0.05). Related factors showed consistent mRNA expression changes. Protein levels of β-catenin (CTNNB1), insulin receptor substrate 1 (IRS1) and IRS2 were all promoted by PKM2 overexpression (P < 0.01), indicating the activated Wnt/CTNNB1 signaling. These results indicated the inductive roles of PKM2 in pancreatic β-cell NIT-1, including promoting cell proliferation and insulin secretion, and inhibiting cell apoptosis, which might be achieved via activating the Wnt/CTNNB1 signaling and downstream factors. This study offers basic information on the role and mechanism of PKM2 in pancreatic β-cells, and lays the foundation for using PKM2 as a potential therapeutic target in T2DM. PMID:26823761

  3. Genetic variants of the Wnt signaling pathway as predictors of aggressive disease and reclassification in men with early stage prostate cancer on active surveillance.

    PubMed

    Shu, Xiang; Ye, Yuanqing; Gu, Jian; He, Yonggang; Davis, John W; Thompson, Timothy C; Logothetis, Christopher J; Kim, Jeri; Wu, Xifeng

    2016-10-01

    Little is known about the genetic predictors of prostate cancer aggressiveness and reclassification in men with localized prostate cancer undergoing active surveillance. The Wnt signaling pathway is important for prostate cancer development and progression. Identifying genetic variants associated with prostate cancer aggressiveness and reclassification may have a potential role in the management of localized patients. In this study, we used a three-phase design. In phases I and II prostate cancer patient cohort, 578 single nucleotide polymorphisms (SNPs) from 45 genes of the Wnt signaling pathway were analyzed in 1762 localized prostate cancer patients. Twelve SNPs from four regions were significantly associated with aggressive disease, among which, three linked SNPs in CSNK1A1 at 5q32 (represented by rs752822) may differentiate GS 4+3 from GS 3+4 patients (OR = 1.44, 95% CI = 1.12-1.87, P = 4.76×10(-3)). In phase III active surveillance (AS) cohort, genotyping of rs752822 (candidate from phases I and II) and previously identified rs2735839 were determined in 494 GS ≤7 patients. We found a significant association between rs2735839 and prostate cancer reclassification in the AS cohort (AG + AA versus GG, HR = 1.59, 95% CI = 1.11-2.28, P = 0.012) and a suggestive association of rs752822. Jointly, rs752822 and rs2735839 showed good potentials in risk-stratifying GS 7 patients and predicting disease reclassification (OR = 2.71, 95% CI = 1.62-4.51, P = 1×10(-4) in phase II; HR = 1.89, 95% CI = 1.13-3.18, P = 0.016 in phase III). In summary, rs752822 and rs2735839 may assist in risk-stratifying GS 7 patients and predict prostate cancer reclassification. The significant associations were independent from GS, T stage and PSA levels at baseline. PMID:27515962

  4. Genetic variants of the Wnt signaling pathway as predictors of aggressive disease and reclassification in men with early stage prostate cancer on active surveillance.

    PubMed

    Shu, Xiang; Ye, Yuanqing; Gu, Jian; He, Yonggang; Davis, John W; Thompson, Timothy C; Logothetis, Christopher J; Kim, Jeri; Wu, Xifeng

    2016-10-01

    Little is known about the genetic predictors of prostate cancer aggressiveness and reclassification in men with localized prostate cancer undergoing active surveillance. The Wnt signaling pathway is important for prostate cancer development and progression. Identifying genetic variants associated with prostate cancer aggressiveness and reclassification may have a potential role in the management of localized patients. In this study, we used a three-phase design. In phases I and II prostate cancer patient cohort, 578 single nucleotide polymorphisms (SNPs) from 45 genes of the Wnt signaling pathway were analyzed in 1762 localized prostate cancer patients. Twelve SNPs from four regions were significantly associated with aggressive disease, among which, three linked SNPs in CSNK1A1 at 5q32 (represented by rs752822) may differentiate GS 4+3 from GS 3+4 patients (OR = 1.44, 95% CI = 1.12-1.87, P = 4.76×10(-3)). In phase III active surveillance (AS) cohort, genotyping of rs752822 (candidate from phases I and II) and previously identified rs2735839 were determined in 494 GS ≤7 patients. We found a significant association between rs2735839 and prostate cancer reclassification in the AS cohort (AG + AA versus GG, HR = 1.59, 95% CI = 1.11-2.28, P = 0.012) and a suggestive association of rs752822. Jointly, rs752822 and rs2735839 showed good potentials in risk-stratifying GS 7 patients and predicting disease reclassification (OR = 2.71, 95% CI = 1.62-4.51, P = 1×10(-4) in phase II; HR = 1.89, 95% CI = 1.13-3.18, P = 0.016 in phase III). In summary, rs752822 and rs2735839 may assist in risk-stratifying GS 7 patients and predict prostate cancer reclassification. The significant associations were independent from GS, T stage and PSA levels at baseline.

  5. FOXP1 Potentiates Wnt/β-catenin Signaling in Diffuse Large B-cell Lymphoma

    PubMed Central

    Walker, Matthew P.; Stopford, Charles M.; Cederlund, Maria; Fang, Fang; Jahn, Christopher; Rabinowitz, Alex D.; Goldfarb, Dennis; Graham, David M.; Yan, Feng; Deal, Allison M.; Fedoriw, Yuri; Richards, Kristy L.; Davis, Ian J.; Weidinger, Gilbert; Damania, Blossom; Major, Michael B.

    2015-01-01

    The transcription factor FOXP1 is a master regulator of stem and progenitor cell biology. In diffuse large B-cell lymphoma (DLBCL), copy number amplifications and chromosomal translocations result in overexpression of FOXP1. Increased FOXP1 protein abundance in DLBCL predicts poor prognosis and resistance to therapy. To connect gene overexpression with phenotype, we developed a genome-wide mass spectrometry-coupled gain-of-function genetic screen, revealing that FOXP1 potentiates β-catenin-dependent Wnt signal transduction. Gain-of-function and loss-of-function studies in cell models and zebrafish confirmed that FOXP1 was a general and conserved co-activator of Wnt signaling. In a Wnt-dependent fashion, FOXP1 co-complexed with β-catenin, TCF7L2, and the acetyltransferase CBP, and bound the promoters of Wnt target genes. FOXP1 promoted the acetylation of β-catenin by CBP, and acetylation was required for FOXP1-potentiation of β-catenin-dependent transcription. In DLBCL, we found that FOXP1 promoted sensitivity to Wnt pathway inhibitors and knockdown of FOXP1 or Wnt signaling slowed xenograft tumor growth. These data connect FOXP1 overexpression with β-catenin-dependent signal transduction, and provide a new molecular rationale for Wnt-directed therapy in DLBCL. PMID:25650440

  6. Increased NF-κB Activity and Decreased Wnt/β-Catenin Signaling Mediate Reduced Osteoblast Differentiation and Function in ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Mice*

    PubMed Central

    Le Henaff, Carole; Mansouri, Rafik; Modrowski, Dominique; Zarka, Mylène; Geoffroy, Valérie; Marty, Caroline; Tarantino, Nadine; Laplantine, Emmanuel; Marie, Pierre J.

    2015-01-01

    The prevalent human ΔF508 mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is associated with reduced bone formation and bone loss in mice. The molecular mechanisms by which the ΔF508-CFTR mutation causes alterations in bone formation are poorly known. In this study, we analyzed the osteoblast phenotype in ΔF508-CFTR mice and characterized the signaling mechanisms underlying this phenotype. Ex vivo studies showed that the ΔF508-CFTR mutation negatively impacted the differentiation of bone marrow stromal cells into osteoblasts and the activity of osteoblasts, demonstrating that the ΔF508-CFTR mutation alters both osteoblast differentiation and function. Treatment with a CFTR corrector rescued the abnormal collagen gene expression in ΔF508-CFTR osteoblasts. Mechanistic analysis revealed that NF-κB signaling and transcriptional activity were increased in mutant osteoblasts. Functional studies showed that the activation of NF-κB transcriptional activity in mutant osteoblasts resulted in increased β-catenin phosphorylation, reduced osteoblast β-catenin expression, and altered expression of Wnt/β-catenin target genes. Pharmacological inhibition of NF-κB activity or activation of canonical Wnt signaling rescued Wnt target gene expression and corrected osteoblast differentiation and function in bone marrow stromal cells and osteoblasts from ΔF508-CFTR mice. Overall, the results show that the ΔF508-CFTR mutation impairs osteoblast differentiation and function as a result of overactive NF-κB and reduced Wnt/β-catenin signaling. Moreover, the data indicate that pharmacological inhibition of NF-κB or activation of Wnt/β-catenin signaling can rescue the abnormal osteoblast differentiation and function induced by the prevalent ΔF508-CFTR mutation, suggesting novel therapeutic strategies to correct the osteoblast dysfunctions in cystic fibrosis. PMID:26060255

  7. Wnt signaling and gastrointestinal tumorigenesis in mouse models.

    PubMed

    Taketo, M M

    2006-12-01

    The canonical Wnt signaling plays important roles in embryonic development and tumorigenesis. For the latter, induced mutations in mice have greatly contributed to our understanding of the molecular mechanisms of cancer initiation and progression. Here, I will review recent reports on gastrointestinal cancer model mice, with an emphasis on the roles of the Wnt signal pathway. They include: mouse models for familial adenomatous polyposis; modifying factors that affect mouse intestinal polyposis, including the genes that help cancer progression; Wnt target genes that affect mouse intestinal polyposis; and a mouse model of gastric cancer that mimics Helicobacter pyroli infection. PMID:17143296

  8. Rspo3 binds syndecan 4 and induces Wnt/PCP signaling via clathrin-mediated endocytosis to promote morphogenesis.

    PubMed

    Ohkawara, Bisei; Glinka, Andrei; Niehrs, Christof

    2011-03-15

    The R-Spondin (Rspo) family of secreted Wnt modulators is involved in development and disease and holds therapeutic promise as stem cell growth factors. Despite growing biological importance, their mechanism of action is poorly understood. Here, we show that Rspo3 binds syndecan 4 (Sdc4) and that together they activate Wnt/PCP signaling. In Xenopus embryos, Sdc4 and Rspo3 are essential for two Wnt/PCP-driven processes-gastrulation movements and head cartilage morphogenesis. Rspo3/PCP signaling during gastrulation requires Wnt5a and is transduced via Fz7, Dvl, and JNK. Rspo3 functions by inducing Sdc4-dependent, clathrin-mediated endocytosis. We show that this internalization is essential for PCP signal transduction, suggesting that endocytosis of Wnt-receptor complexes is a key mechanism by which R-spondins promote Wnt signaling.

  9. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells

    SciTech Connect

    Zhou, Haibin; Shang, Linshan; Li, Xi; Zhang, Xiyu; Gao, Guimin; Guo, Chenhong; Chen, Bingxi; Liu, Qiji; Gong, Yaoqin; Shao, Changshun

    2009-10-15

    Resveratrol has been shown to possess many health-benefiting effects, including the promotion of bone formation. In this report we investigated the mechanism by which resveratrol promotes osteoblastic differentiation from pluripotent mesenchymal cells. Since Wnt signaling is well documented to induce osteoblastogenesis and bone formation, we characterized the factors involved in Wnt signaling in response to resveratrol treatment. Resveratrol treatment of mesenchymal cells led to an increase in stabilization and nuclear accumulation of {beta}-catenin dose-dependently and time-dependently. As a consequence of the increased nuclear accumulation of {beta}-catenin, the ability to activate transcription of {beta}-catenin-TCF/LEF target genes that are required for osteoblastic differentiation was upregulated. However, resveratrol did not affect the initial step of the Wnt signaling pathway, as resveratrol was as effective in upregulating the activity of {beta}-catenin in cells in which Lrp5 was knocked down as in control cells. In addition, while conditioned medium enriched in Wnt signaling antagonist Dkk1 was able to inhibit Wnt3a-induced {beta}-catenin upregulation, this inhibitory effect can be abolished in resveratrol-treated cells. Furthermore, we showed that the level of glycogen synthase kinase 3{beta} (GSK-3{beta}), which phosphorylates and destabilizes {beta}-catenin, was reduced in response to resveratrol treatment. The phosphorylation of GSK-3{beta} requires extracellular signal-regulated kinase (ERK)1/2. Together, our data indicate that resveratrol promotes osteoblastogenesis and bone formation by augmenting Wnt signaling.

  10. Retinoic Acid Ameliorates Pancreatic Fibrosis and Inhibits the Activation of Pancreatic Stellate Cells in Mice with Experimental Chronic Pancreatitis via Suppressing the Wnt/β-Catenin Signaling Pathway

    PubMed Central

    Yin, Guojian; Fan, Yuting; Wu, Deqing; Qiu, Lei; Yu, Ge; Xing, Miao; Hu, Guoyong; Wang, Xingpeng; Wan, Rong

    2015-01-01

    Pancreatic fibrosis, a prominent feature of chronic pancreatitis (CP), induces persistent and permanent damage in the pancreas. Pancreatic stellate cells (PSCs) provide a major source of extracellular matrix (ECM) deposition during pancreatic injury, and persistent activation of PSCs plays a vital role in the progression of pancreatic fibrosis. Retinoic acid (RA), a retinoid, has a broad range of biological functions, including regulation of cell differentiation and proliferation, attenuating progressive fibrosis of multiple organs. In the present study, we investigated the effects of RA on fibrosis in experimental CP and cultured PSCs. CP was induced in mice by repetitive cerulein injection in vivo, and mouse PSCs were isolated and activated in vitro. Suppression of pancreatic fibrosis upon administration of RA was confirmed based on reduction of histological damage, α-smooth muscle actin (α-SMA) expression and mRNA levels of β-catenin, platelet-derived growth factor (PDGF)-Rβ transforming growth factor (TGF)-βRII and collagen 1α1 in vivo. Wnt 2 and β-catenin protein levels were markedly down-regulated, while Axin 2 expression level was up-regulated in the presence of RA, both in vivo and in vitro. Nuclear translation of β-catenin was significantly decreased following RA treatment, compared with cerulein-induced CP in mice and activated PSCs. Furthermore, RA induced significant PSC apoptosis, inhibited proliferation, suppressed TCF/LEF-dependent transcriptional activity and ECM production of PSC via down-regulation of TGFβRII, PDGFRβ and collagen 1α1 in vitro. These results indicate a critical role of the Wnt/β-catenin signaling pathway in RA-induced effects on CP and PSC regulation and support the potential of RA as a suppressor of pancreatic fibrosis in mice. PMID:26556479

  11. Retinoic Acid Ameliorates Pancreatic Fibrosis and Inhibits the Activation of Pancreatic Stellate Cells in Mice with Experimental Chronic Pancreatitis via Suppressing the Wnt/β-Catenin Signaling Pathway.

    PubMed

    Xiao, Wenqin; Jiang, Weiliang; Shen, Jie; Yin, Guojian; Fan, Yuting; Wu, Deqing; Qiu, Lei; Yu, Ge; Xing, Miao; Hu, Guoyong; Wang, Xingpeng; Wan, Rong

    2015-01-01

    Pancreatic fibrosis, a prominent feature of chronic pancreatitis (CP), induces persistent and permanent damage in the pancreas. Pancreatic stellate cells (PSCs) provide a major source of extracellular matrix (ECM) deposition during pancreatic injury, and persistent activation of PSCs plays a vital role in the progression of pancreatic fibrosis. Retinoic acid (RA), a retinoid, has a broad range of biological functions, including regulation of cell differentiation and proliferation, attenuating progressive fibrosis of multiple organs. In the present study, we investigated the effects of RA on fibrosis in experimental CP and cultured PSCs. CP was induced in mice by repetitive cerulein injection in vivo, and mouse PSCs were isolated and activated in vitro. Suppression of pancreatic fibrosis upon administration of RA was confirmed based on reduction of histological damage, α-smooth muscle actin (α-SMA) expression and mRNA levels of β-catenin, platelet-derived growth factor (PDGF)-Rβ transforming growth factor (TGF)-βRII and collagen 1α1 in vivo. Wnt 2 and β-catenin protein levels were markedly down-regulated, while Axin 2 expression level was up-regulated in the presence of RA, both in vivo and in vitro. Nuclear translation of β-catenin was significantly decreased following RA treatment, compared with cerulein-induced CP in mice and activated PSCs. Furthermore, RA induced significant PSC apoptosis, inhibited proliferation, suppressed TCF/LEF-dependent transcriptional activity and ECM production of PSC via down-regulation of TGFβRII, PDGFRβ and collagen 1α1 in vitro. These results indicate a critical role of the Wnt/β-catenin signaling pathway in RA-induced effects on CP and PSC regulation and support the potential of RA as a suppressor of pancreatic fibrosis in mice. PMID:26556479

  12. Over-expression of TRIM37 promotes cell migration and metastasis in hepatocellular carcinoma by activating Wnt/β-catenin signaling

    SciTech Connect

    Jiang, Jianxin; Yu, Chao; Chen, Meiyuan; Tian, She; Sun, Chengyi

    2015-09-04

    Hepatocellular carcinoma (HCC) is the most common cancer in the world especially in East Asia and Africa. Advanced stage, metastasis and frequent relapse are responsible for the poor prognosis of HCC. However, the precise mechanisms underlying HCC remained unclear. So it is urgent to identify the pathological processes and relevant molecules of HCC. TRIM37 is an E3 ligase and has been observed deregulated expression in various tumors. Recent studies of TRIM37 have implicated that TRIM37 played critical roles in cell proliferation and other processes. In the present study, we demonstrated that TRIM37 expression was notably up-regulated in HCC samples and was associated with advanced stage and tumor volume, which all indicating the poor outcomes. We also found that TRIM37 could serve as an independent prognostic factor of HCC. During the course of in vitro and in vivo work, we showed that TRIM37 promoted HCC cells migration and metastasis by inducing EMT. Furthermore, we revealed that the effect of TRIM37 mediated EMT in HCC cells was achieved by the activation of Wnt/β-catenin signaling. These finding may provide insight into the understanding of TRIM37 as a novel critical factor of HCC and a candidate target for HCC treatment. - Highlights: • Highly expression of TRIM37 is found in HCC samples compared with nontumorous samples. • TRIM37 expression is correlated with advanced HCC stages and could be an independent prognostic factor. • TRIM37 promotes cell proliferation and metastasis. • We report an E3 ligase TRIM37 affects Wnt/β-catenin signaling.

  13. The WNT-less wonder: WNT-independent β-catenin signaling.

    PubMed

    Aktary, Zackie; Bertrand, Juliette U; Larue, Lionel

    2016-09-01

    β-catenin is known as an Armadillo protein that regulates gene expression following WNT pathway activation. However, WNT-independent pathways also activate β-catenin. During the establishment of the melanocyte lineage, β-catenin plays an important role. In the context of physiopathology, β-catenin is activated genetically or transiently in various cancers, including melanoma, where it can be found in the nucleus of tumors. In this review, we discuss alternative pathways that activate β-catenin independent of WNTs and highlight what is known regarding these pathways in melanoma. We also discuss the role of β-catenin as a transcriptional regulator in various cell types, with emphasis on the different transcription factors it associates with independent of WNT induction. Finally, the role of WNT-independent β-catenin in melanocyte development and melanomagenesis is also discussed. PMID:27311806

  14. Wnt-5a/Frizzled9 Receptor Signaling through the Gαo-Gβγ Complex Regulates Dendritic Spine Formation.

    PubMed

    Ramírez, Valerie T; Ramos-Fernández, Eva; Henríquez, Juan Pablo; Lorenzo, Alfredo; Inestrosa, Nibaldo C

    2016-09-01

    Wnt ligands play crucial roles in the development and regulation of synapse structure and function. Specifically, Wnt-5a acts as a secreted growth factor that regulates dendritic spine formation in rodent hippocampal neurons, resulting in postsynaptic development that promotes the clustering of the PSD-95 (postsynaptic density protein 95). Here, we focused on the early events occurring after the interaction between Wnt-5a and its Frizzled receptor at the neuronal cell surface. Additionally, we studied the role of heterotrimeric G proteins in Wnt-5a-dependent synaptic development. We report that FZD9 (Frizzled9), a Wnt receptor related to Williams syndrome, is localized in the postsynaptic region, where it interacts with Wnt-5a. Functionally, FZD9 is required for the Wnt-5a-mediated increase in dendritic spine density. FZD9 forms a precoupled complex with Gαo under basal conditions that dissociates after Wnt-5a stimulation. Accordingly, we found that G protein inhibition abrogates the Wnt-5a-dependent pathway in hippocampal neurons. In particular, the activation of Gαo appears to be a key factor controlling the Wnt-5a-induced dendritic spine density. In addition, we found that Gβγ is required for the Wnt-5a-mediated increase in cytosolic calcium levels and spinogenesis. Our findings reveal that FZD9 and heterotrimeric G proteins regulate Wnt-5a signaling and dendritic spines in cultured hippocampal neurons.

  15. Wnt-5a/Frizzled9 Receptor Signaling through the Gαo-Gβγ Complex Regulates Dendritic Spine Formation.

    PubMed

    Ramírez, Valerie T; Ramos-Fernández, Eva; Henríquez, Juan Pablo; Lorenzo, Alfredo; Inestrosa, Nibaldo C

    2016-09-01

    Wnt ligands play crucial roles in the development and regulation of synapse structure and function. Specifically, Wnt-5a acts as a secreted growth factor that regulates dendritic spine formation in rodent hippocampal neurons, resulting in postsynaptic development that promotes the clustering of the PSD-95 (postsynaptic density protein 95). Here, we focused on the early events occurring after the interaction between Wnt-5a and its Frizzled receptor at the neuronal cell surface. Additionally, we studied the role of heterotrimeric G proteins in Wnt-5a-dependent synaptic development. We report that FZD9 (Frizzled9), a Wnt receptor related to Williams syndrome, is localized in the postsynaptic region, where it interacts with Wnt-5a. Functionally, FZD9 is required for the Wnt-5a-mediated increase in dendritic spine density. FZD9 forms a precoupled complex with Gαo under basal conditions that dissociates after Wnt-5a stimulation. Accordingly, we found that G protein inhibition abrogates the Wnt-5a-dependent pathway in hippocampal neurons. In particular, the activation of Gαo appears to be a key factor controlling the Wnt-5a-induced dendritic spine density. In addition, we found that Gβγ is required for the Wnt-5a-mediated increase in cytosolic calcium levels and spinogenesis. Our findings reveal that FZD9 and heterotrimeric G proteins regulate Wnt-5a signaling and dendritic spines in cultured hippocampal neurons. PMID:27402827

  16. Role of Wnt Signaling in Central Nervous System Injury.

    PubMed

    Lambert, Catherine; Cisternas, Pedro; Inestrosa, Nibaldo C

    2016-05-01

    The central nervous system (CNS) is highly sensitive to external mechanical damage, presenting a limited capacity for regeneration explained in part by its inability to restore either damaged neurons or the synaptic network. The CNS may suffer different types of external injuries affecting its function and/or structure, including stroke, spinal cord injury, and traumatic brain injury. These pathologies critically affect the quality of life of a large number of patients worldwide and are often fatal because available therapeutics are ineffective and produce limited results. Common effects of the mentioned pathologies involves the triggering of several cellular and metabolic responses against injury, including infiltration of blood cells, inflammation, glial activation, and neuronal death. Although some of the underlying molecular mechanisms of those responses have been elucidated, the mechanisms driving these processes are poorly understood in the context of CNS injury. In the last few years, it has been suggested that the activation of the Wnt signaling pathway could be important in the regenerative response after CNS injury, activating diverse protective mechanisms including the stimulation of neurogenesis, blood brain structure consolidation and the recovery of cognitive brain functions. Because Wnt signaling is involved in several physiological processes, the putative positive role of its activation after injury could be the basis for novel therapeutic approaches to CNS injury.

  17. Role of Wnt Signaling in Central Nervous System Injury.

    PubMed

    Lambert, Catherine; Cisternas, Pedro; Inestrosa, Nibaldo C

    2016-05-01

    The central nervous system (CNS) is highly sensitive to external mechanical damage, presenting a limited capacity for regeneration explained in part by its inability to restore either damaged neurons or the synaptic network. The CNS may suffer different types of external injuries affecting its function and/or structure, including stroke, spinal cord injury, and traumatic brain injury. These pathologies critically affect the quality of life of a large number of patients worldwide and are often fatal because available therapeutics are ineffective and produce limited results. Common effects of the mentioned pathologies involves the triggering of several cellular and metabolic responses against injury, including infiltration of blood cells, inflammation, glial activation, and neuronal death. Although some of the underlying molecular mechanisms of those responses have been elucidated, the mechanisms driving these processes are poorly understood in the context of CNS injury. In the last few years, it has been suggested that the activation of the Wnt signaling pathway could be important in the regenerative response after CNS injury, activating diverse protective mechanisms including the stimulation of neurogenesis, blood brain structure consolidation and the recovery of cognitive brain functions. Because Wnt signaling is involved in several physiological processes, the putative positive role of its activation after injury could be the basis for novel therapeutic approaches to CNS injury. PMID:25976365

  18. Chromatin-Remodeling-Factor ARID1B Represses Wnt/β-Catenin Signaling

    PubMed Central

    Vasileiou, Georgia; Ekici, Arif B.; Uebe, Steffen; Zweier, Christiane; Hoyer, Juliane; Engels, Hartmut; Behrens, Jürgen; Reis, André; Hadjihannas, Michel V.

    2015-01-01

    The link of chromatin remodeling to both neurodevelopment and cancer has recently been highlighted by the identification of mutations affecting BAF chromatin-remodeling components, such as ARID1B, in individuals with intellectual disability and cancer. However, the underlying molecular mechanism(s) remains unknown. Here, we show that ARID1B is a repressor of Wnt/β-catenin signaling. Through whole-transcriptome analysis, we find that in individuals with intellectual disability and ARID1B loss-of-function mutations, Wnt/β-catenin target genes are upregulated. Using cellular models of low and high Wnt/β-catenin activity, we demonstrate that knockdown of ARID1B activates Wnt/β-catenin target genes and Wnt/β-catenin-dependent transcriptional reporters in a β-catenin-dependent manner. Reciprocally, forced expression of ARID1B inhibits Wnt/β-catenin signaling downstream of the β-catenin destruction complex. Both endogenous and exogenous ARID1B associate with β-catenin and repress Wnt/β-catenin-mediated transcription through the BAF core subunit BRG1. Accordingly, mutations in ARID1B leading to partial or complete deletion of its BRG1-binding domain, as is often observed in intellectual disability and cancers, compromise association with β-catenin, and the resultant ARID1B mutant proteins fail to suppress Wnt/β-catenin signaling. Finally, knockdown of ARID1B in mouse neuroblastoma cells leads to neurite outgrowth through β-catenin. The data suggest that aberrations in chromatin-remodeling factors, such as ARID1B, might contribute to neurodevelopmental abnormalities and cancer through deregulation of developmental and oncogenic pathways, such as the Wnt/β-catenin signaling pathway. PMID:26340334

  19. The emerging role of Wnt/PCP signaling in organ formation.

    PubMed

    Dale, Rodney M; Sisson, Barbara E; Topczewski, Jacek

    2009-03-01

    Over the last two decades zebrafish has been an excellent model organism to study vertebrate development. Mutant analysis combined with gene knockdown and other manipulations revealed an essential role of Wnt signaling, independent of beta-catenin, during development. Especially well characterized is the function of Wnt/planar cell polarity (PCP) signaling in the regulation of gastrulation movements and neurulation, described in other reviews within this special issue. Here, we set out to highlight some of the new and exciting research that is being carried out in zebrafish to elucidate the role that Wnt/PCP signaling plays in the formation of specific organs, including the lateral line, craniofacial development, and regeneration. We also summarized the emerging connection of the Wnt/PCP pathway with primary cilia function, an essential organelle in several organ activities.

  20. EdnrB Governs Regenerative Response of Melanocyte Stem Cells by Crosstalk with Wnt Signaling.

    PubMed

    Takeo, Makoto; Lee, Wendy; Rabbani, Piul; Sun, Qi; Hu, Hai; Lim, Chae Ho; Manga, Prashiela; Ito, Mayumi

    2016-05-10

    Delineating the crosstalk between distinct signaling pathways is key to understanding the diverse and dynamic responses of adult stem cells during tissue regeneration. Here, we demonstrate that the Edn/EdnrB signaling pathway can interact with other signaling pathways to elicit distinct stem cell functions during tissue regeneration. EdnrB signaling promotes proliferation and differentiation of melanocyte stem cells (McSCs), dramatically enhancing the regeneration of hair and epidermal melanocytes. This effect is dependent upon active Wnt signaling that is initiated by Wnt ligand secretion from the hair follicle epithelial niche. Further, this Wnt-dependent EdnrB signaling can rescue the defects in melanocyte regeneration caused by Mc1R loss. This suggests that targeting Edn/EdnrB signaling in McSCs can be a therapeutic approach to promote photoprotective-melanocyte regeneration, which may be useful for those with increased risk of skin cancers due to Mc1R variants. PMID:27134165

  1. EdnrB Governs Regenerative Response of Melanocyte Stem Cells by Crosstalk with Wnt Signaling.

    PubMed

    Takeo, Makoto; Lee, Wendy; Rabbani, Piul; Sun, Qi; Hu, Hai; Lim, Chae Ho; Manga, Prashiela; Ito, Mayumi

    2016-05-10

    Delineating the crosstalk between distinct signaling pathways is key to understanding the diverse and dynamic responses of adult stem cells during tissue regeneration. Here, we demonstrate that the Edn/EdnrB signaling pathway can interact with other signaling pathways to elicit distinct stem cell functions during tissue regeneration. EdnrB signaling promotes proliferation and differentiation of melanocyte stem cells (McSCs), dramatically enhancing the regeneration of hair and epidermal melanocytes. This effect is dependent upon active Wnt signaling that is initiated by Wnt ligand secretion from the hair follicle epithelial niche. Further, this Wnt-dependent EdnrB signaling can rescue the defects in melanocyte regeneration caused by Mc1R loss. This suggests that targeting Edn/EdnrB signaling in McSCs can be a therapeutic approach to promote photoprotective-melanocyte regeneration, which may be useful for those with increased risk of skin cancers due to Mc1R variants.

  2. Negative feedback regulation of Wnt signaling via N-linked fucosylation in zebrafish.

    PubMed

    Feng, Lei; Jiang, Hao; Wu, Peng; Marlow, Florence L

    2014-11-15

    L-fucose, a monosaccharide widely distributed in eukaryotes and certain bacteria, is a determinant of many functional glycans that play central roles in numerous biological processes. The molecular mechanism, however, by which fucosylation mediates these processes remains largely elusive. To study how changes in fucosylation impact embryonic development, we up-regulated N-linked fucosylation via over-expression of a key GDP-Fucose transporter, Slc35c1, in zebrafish. We show that Slc35c1 overexpression causes elevated N-linked fucosylation and disrupts embryonic patterning in a transporter activity dependent manner. We demonstrate that patterning defects associated with enhanced N-linked fucosylation are due to diminished canonical Wnt signaling. Chimeric analyses demonstrate that elevated Slc35c1 expression in receiving cells decreases the signaling range of Wnt8a during zebrafish embryogenesis. Moreover, we provide biochemical evidence that this decrease is associated with reduced Wnt8 ligand and elevated Lrp6 coreceptor, which we show are both substrates for N-linked fucosylation in zebrafish embryos. Strikingly, slc35c1 expression is regulated by canonical Wnt signaling. These results suggest that Wnt limits its own signaling activity in part via up-regulation of a transporter, slc35c1 that promotes terminal fucosylation and thereby limits Wnt activity.

  3. Merlin, a regulator of Hippo signaling, regulates Wnt/β-catenin signaling

    PubMed Central

    Kim, Soyoung; Jho, Eek-hoon

    2016-01-01

    Merlin, encoded by the NF2 gene, is a tumor suppressor that exerts its function via inhibiting mitogenic receptors at the plasma membrane. Although multiple mutations in Merlin have been identified in Neurofibromatosis type II (NF2) disease, its molecular mechanism is not fully understood. Here, we show that Merlin interacts with LRP6 and inhibits LRP6 phosphorylation, a critical step for the initiation of Wnt signaling. We found that treatment of Wnt3a caused phosphorylation of Merlin by PAK1, leading to detachment of Merlin from LRP6 and allowing the initiation of Wnt/β-catenin signaling. A higher level of β-catenin was found in tissues from NF2 patients. Enhanced proliferation and migration caused by knockdown of Merlin in glioblastoma cells were inhibited by suppression of β-catenin. Conclusively, these results suggest that sustained Wnt/β-catenin signaling activity induced by abrogation of Merlin-mediated inhibition of LRP6 phosphorylation might be a cause of NF2 disease. [BMB Reports 2016; 49(7): 357-358] PMID:27345717

  4. FGF signaling inhibitor, SPRY4, is evolutionarily conserved target of WNT signaling pathway in progenitor cells.

    PubMed

    Katoh, Yuriko; Katoh, Masaru

    2006-03-01

    WNT, FGF and Hedgehog signaling pathways network together during embryogenesis, tissue regeneration, and carcinogenesis. FGF16, FGF18, and FGF20 genes are targets of WNT-mediated TCF/LEF-beta-catenin-BCL9/BCL9L-PYGO transcriptional complex. SPROUTY (SPRY) and SPRED family genes encode inhibitors for receptor tyrosine kinase signaling cascades, such as those of FGF receptor family members and EGF receptor family members. Here, transcriptional regulation of SPRY1, SPRY2, SPRY3, SPRY4, SPRED1, SPRED2, and SPRED3 genes by WNT/beta-catenin signaling cascade was investigated by using bioinformatics and human intelligence (humint). Because double TCF/LEF-binding sites were identified within the 5'-promoter region of human SPRY4 gene, comparative genomics analyses on SPRY4 orthologs were further performed. SPRY4-FGF1 locus at human chromosome 5q31.3 and FGF2-NUDT6-SPATA5-SPRY1 locus at human chromosome 4q27-q28.1 were paralogous regions within the human genome. Chimpanzee SPRY4 gene was identified within NW_107083.1 genome sequence. Human, chimpanzee, rat and mouse SPRY4 orthologs, consisting of three exons, were well conserved. SPRY4 gene was identified as the evolutionarily conserved target of WNT/beta-catenin signaling pathway based on the conservation of double TCF/LEF-binding sites within 5'-promoter region of mammalian SPRY4 orthologs. Human SPRY4 mRNA was expressed in embryonic stem (ES) cells, brain, pancreatic islet, colon cancer, head and neck tumor, melanoma, and pancreatic cancer. WNT signaling activation in progenitor cells leads to the growth regulation of progenitor cells themselves through SPRY4 induction, and also to the growth stimulation of proliferating cells through FGF secretion. Epigenetic silencing and loss-of-function mutations of SPRY4 gene in progenitor cells could lead to carcinogenesis. SPRY4 is the pharmacogenomics target in the fields of oncology and regenerative medicine. PMID:16465403

  5. GEC-derived SFRP5 inhibits Wnt5a-induced macrophage chemotaxis and activation.

    PubMed

    Zhao, Chenghai; Bu, Xianmin; Wang, Wei; Ma, Tingxian; Ma, Haiying

    2014-01-01

    Aberrant macrophage infiltration and activation has been implicated in gastric inflammation and carcinogenesis. Overexpression of Wnt5a and downregulation of SFRP5, a Wnt5a antagonist, were both observed in gastric cancers recently. This study attempted to explore whether Wnt5a/SFRP5 axis was involved in macrophage chemotaxis and activation. It was found that both Wnt5a transfection and recombinant Wnt5a (rWnt5a) treatment upregulated CCL2 expression in macrophages, involving JNK and NFκB signals. Conditioned medium from Wnt5a-treated macrophages promoted macrophage chemotaxis mainly dependent on CCL2. SFRP5 from gastric epithelial cells (GECs) inhibited Wnt5a-induced CCL2 expression and macrophage chemotaxis. In addition, Wnt5a treatment stimulated macrophages to produce inflammatory cytokines and COX-2/PGE2, which was also suppressed by SFRP5 from GECs. These results demonstrate that Wnt5a induces macrophage chemotaxis and activation, which can be blocked by GEC-derived SFRP5, suggesting that Wnt5a overproduction and SFRP5 deficiency in gastric mucosa may together play an important role in gastric inflammation and carcinogenesis.

  6. Maintaining embryonic stem cell pluripotency with Wnt signaling.

    PubMed

    Sokol, Sergei Y

    2011-10-01

    Wnt signaling pathways control lineage specification in vertebrate embryos and regulate pluripotency in embryonic stem (ES) cells, but how the balance between progenitor self-renewal and differentiation is achieved during axis specification and tissue patterning remains highly controversial. The context- and stage-specific effects of the different Wnt pathways produce complex and sometimes opposite outcomes that help to generate embryonic cell diversity. Although the results of recent studies of the Wnt/β-catenin pathway in ES cells appear to be surprising and controversial, they converge on the same conserved mechanism that leads to the inactivation of TCF3-mediated repression. PMID:21903672

  7. Wnt5a-mediated non-canonical Wnt signalling regulates human endothelial cell proliferation and migration

    SciTech Connect

    Cheng Chingwen Yeh Juching; Fan Taiping; Smith, Stephen K.; Charnock-Jones, D. Stephen

    2008-01-11

    Cell to cell interaction is one of the key processes effecting angiogenesis and endothelial cell function. Wnt signalling is mediated through cell-cell interaction and is involved in many developmental processes and cellular functions. In this study, we investigated the possible function of Wnt5a and the non-canonical Wnt pathway in human endothelial cells. We found that Wnt5a-mediated non-canonical Wnt signalling regulated endothelial cell proliferation. Blocking this pathway using antibody, siRNA or a down-stream inhibitor led to suppression of endothelial cell proliferation, migration, and monolayer wound closure. We also found that the mRNA level of Wnt5a is up-regulated when endothelial cells are treated with a cocktail of inflammatory cytokines. Our findings suggest non-canonical Wnt signalling plays a role in regulating endothelial cell growth and possibly in angiogenesis.

  8. Canonical Wnt/β-catenin Signaling Drives Human Schwann Cell Transformation, Progression, and Tumor Maintenance

    PubMed Central

    Watson, Adrienne L.; Rahrmann, Eric P.; Moriarity, Branden S.; Choi, Kwangmin; Conboy, Caitlin B.; Greeley, Andrew D.; Halfond, Amanda L.; Anderson, Leah K.; Wahl, Brian R.; Keng, Vincent W.; Rizzardi, Anthony E.; Forster, Colleen L.; Collins, Margaret H.; Sarver, Aaron L.; Wallace, Margaret R.; Schmechel, Stephen C.; Ratner, Nancy; Largaespada, David A.

    2013-01-01

    Genetic changes required for the formation and progression of human Schwann cell tumors remain elusive. Using a Sleeping Beauty forward genetic screen, we identified several genes involved in canonical Wnt signaling as potential drivers of benign neurofibromas and malignant peripheral nerve sheath tumors (MPNSTs). In human neurofibromas and MPNSTs, activation of Wnt signaling increased with tumor grade and was associated with down-regulation of β-catenin destruction complex members or overexpression of a ligand that potentiates Wnt signaling, R-spondin 2 (RSPO2). Induction of Wnt signaling was sufficient to induce transformed properties to immortalized human Schwann cells, and down-regulation of this pathway was sufficient to reduce the tumorigenic phenotype of human MPNST cell lines. Small molecule inhibition of Wnt signaling effectively reduced viability of MPNST cell lines, and synergistically induced apoptosis when combined with an mTOR inhibitor, RAD-001, suggesting that Wnt inhibition represents a novel target for therapeutic intervention in Schwann cell tumors. PMID:23535903

  9. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation.

    PubMed

    Glass, Donald A; Bialek, Peter; Ahn, Jong Deok; Starbuck, Michael; Patel, Millan S; Clevers, Hans; Taketo, Mark M; Long, Fanxin; McMahon, Andrew P; Lang, Richard A; Karsenty, Gerard

    2005-05-01

    Inactivation of beta-catenin in mesenchymal progenitors prevents osteoblast differentiation; inactivation of Lrp5, a gene encoding a likely Wnt coreceptor, results in low bone mass (osteopenia) by decreasing bone formation. These observations indicate that Wnt signaling controls osteoblast differentiation and suggest that it may regulate bone formation in differentiated osteoblasts. Here, we study later events and find that stabilization of beta-catenin in differentiated osteoblasts results in high bone mass, while its deletion from differentiated osteoblasts leads to osteopenia. Surprisingly, histological analysis showed that these mutations primarily affect bone resorption rather than bone formation. Cellular and molecular studies showed that beta-catenin together with TCF proteins regulates osteoblast expression of Osteoprotegerin, a major inhibitor of osteoclast differentiation. These findings demonstrate that beta-catenin, and presumably Wnt signaling, promote the ability of differentiated osteoblasts to inhibit osteoclast differentiation; thus, they broaden our knowledge of the functions Wnt proteins have at various stages of skeletogenesis. PMID:15866165

  10. MAP3K1 functionally interacts with Axin1 in the canonical Wnt signalling pathway.

    PubMed

    Sue Ng, Ser; Mahmoudi, Tokameh; Li, Vivian S W; Hatzis, Pantelis; Boersema, Paul J; Mohammed, Shabaz; Heck, Albert J; Clevers, Hans

    2010-01-01

    A central point of regulation in the Wnt/beta-catenin signalling pathway is the formation of the beta-catenin destruction complex. Axin1, an essential negative regulator of Wnt signalling, serves as a scaffold within this complex and is critical for rapid turnover of beta-catenin. To examine the mechanism by which Wnt signalling disables the destruction complex, we used an immunoprecipitation-coupled proteomics approach to identify novel endogenous binding partners of Axin1. We found mitogen-activated protein kinase kinase kinase 1 (MAP3K1) as an Axin1 interactor in Ls174T colorectal cancer (CRC) cells. Importantly, confirmation of this interaction in HEK293T cells indicated that the Axin1-MAP3K1 interaction is induced and modulated by Wnt stimulation. siRNA depletion of MAP3K1 specifically abrogated TCF/LEF-driven transcription and Wnt3A-driven endogenous gene expression in both HEK293T as well as DLD-1 CRC. Expression of ubiquitin ligase mutants of MAP3K1 abrogated TCF/LEF transcription, whereas kinase mutants had no effect in TCF-driven activity, highlighting the essential role of the MAP3K1 E3 ubiquitin ligase activity in regulation of the Wnt/beta-catenin pathway. These results suggest that MAP3K1, previously reported as an Axin1 inter-actor in c-Jun NH(2)-terminal kinase pathway, is also involved in the canonical Wnt signalling pathway and positively regulates expression of Wnt target genes. PMID:20128690

  11. Effect of Wnt-1 inducible signaling pathway protein-2 (WISP-2/CCN5), a downstream protein of Wnt signaling, on adipocyte differentiation

    SciTech Connect

    Inadera, Hidekuni Shimomura, Akiko; Tachibana, Shinjiro

    2009-02-20

    Wnt signaling negatively regulates adipocyte differentiation, and ectopic expression of Wnt-1 in 3T3-L1 cells induces several downstream molecules of Wnt signaling, including Wnt-1 inducible signaling pathway protein (WISP)-2. In this study, we examined the role of WISP-2 in the process of adipocyte differentiation using an in vitro cell culture system. In the differentiation of 3T3-L1 cells, WISP-2 expression was observed in growing cells and declined thereafter. In the mitotic clonal expansion phase of adipocyte differentiation, WISP-2 expression was transiently down-regulated concurrently with up-regulation of CCAAT/enhancer-binding protein {delta} expression. Treatment of 3T3-L1 cells in the differentiation medium with lithium, an activator of Wnt signaling, inhibited the differentiation process with concomitant induction of WISP-2. Treatment of differentiated cells with lithium induced de-differentiation as evidenced by profound reduction of peroxisome proliferator-activator receptor {gamma} expression and concomitant induction of WISP-2. However, de-differentiation of differentiated cells induced by tumor necrosis factor-{alpha} did not induce WISP-2 expression. To directly examine the effect of WISP-2 on adipocyte differentiation, 3T3-L1 cells were infected with a retrovirus carrying WISP-2. Although forced expression of WISP-2 inhibited preadipocyte proliferation, it had no effect on adipocyte differentiation. Thus, although WISP-2 is a downstream protein of Wnt signaling, the role of WISP-2 on adipocyte differentiation may be marginal, at least in this in vitro culture model.

  12. Effect of Wnt-1 inducible signaling pathway protein-2 (WISP-2/CCN5), a downstream protein of Wnt signaling, on adipocyte differentiation.

    PubMed

    Inadera, Hidekuni; Shimomura, Akiko; Tachibana, Shinjiro

    2009-02-20

    Wnt signaling negatively regulates adipocyte differentiation, and ectopic expression of Wnt-1 in 3T3-L1 cells induces several downstream molecules of Wnt signaling, including Wnt-1 inducible signaling pathway protein (WISP)-2. In this study, we examined the role of WISP-2 in the process of adipocyte differentiation using an in vitro cell culture system. In the differentiation of 3T3-L1 cells, WISP-2 expression was observed in growing cells and declined thereafter. In the mitotic clonal expansion phase of adipocyte differentiation, WISP-2 expression was transiently down-regulated concurrently with up-regulation of CCAAT/enhancer-binding protein delta expression. Treatment of 3T3-L1 cells in the differentiation medium with lithium, an activator of Wnt signaling, inhibited the differentiation process with concomitant induction of WISP-2. Treatment of differentiated cells with lithium induced de-differentiation as evidenced by profound reduction of peroxisome proliferator-activator receptor gamma expression and concomitant induction of WISP-2. However, de-differentiation of differentiated cells induced by tumor necrosis factor-alpha did not induce WISP-2 expression. To directly examine the effect of WISP-2 on adipocyte differentiation, 3T3-L1 cells were infected with a retrovirus carrying WISP-2. Although forced expression of WISP-2 inhibited preadipocyte proliferation, it had no effect on adipocyte differentiation. Thus, although WISP-2 is a downstream protein of Wnt signaling, the role of WISP-2 on adipocyte differentiation may be marginal, at least in this in vitro culture model.

  13. Hmga2 is required for canonical WNT signaling during lung development

    PubMed Central

    2014-01-01

    Background The high-mobility-group (HMG) proteins are the most abundant non-histone chromatin-associated proteins. HMG proteins are present at high levels in various undifferentiated tissues during embryonic development and their levels are strongly reduced in the corresponding adult tissues, where they have been implicated in maintaining and activating stem/progenitor cells. Here we deciphered the role of the high-mobility-group AT-hook protein 2 (HMGA2) during lung development by analyzing the lung of Hmga2-deficient mice (Hmga2 −/− ). Results We found that Hmga2 is expressed in the mouse embryonic lung at the distal airways. Analysis of Hmga2 −/− mice showed that Hmga2 is required for proper cell proliferation and distal epithelium differentiation during embryonic lung development. Hmga2 knockout led to enhanced canonical WNT signaling due to an increased expression of secreted WNT glycoproteins Wnt2b, Wnt7b and Wnt11 as well as a reduction of the WNT signaling antagonizing proteins GATA-binding protein 6 and frizzled homolog 2. Analysis of siRNA-mediated loss-of-function experiments in embryonic lung explant culture confirmed the role of Hmga2 as a key regulator of distal lung epithelium differentiation and supported the causal involvement of enhanced canonical WNT signaling in mediating the effect of Hmga2-loss-of-fuction. Finally, we found that HMGA2 directly regulates Gata6 and thereby modulates Fzd2 expression. Conclusions Our results support that Hmga2 regulates canonical WNT signaling at different points of the pathway. Increased expression of the secreted WNT glycoproteins might explain a paracrine effect by which Hmga2-knockout enhanced cell proliferation in the mesenchyme of the developing lung. In addition, HMGA2-mediated direct regulation of Gata6 is crucial for fine-tuning the activity of WNT signaling in the airway epithelium. Our results are the starting point for future studies investigating the relevance of Hmga2-mediated regulation of

  14. Wnt5a Signals through DVL1 to Repress Ribosomal DNA Transcription by RNA Polymerase I.

    PubMed

    Dass, Randall A; Sarshad, Aishe A; Carson, Brittany B; Feenstra, Jennifer M; Kaur, Amanpreet; Obrdlik, Ales; Parks, Matthew M; Prakash, Varsha; Love, Damon K; Pietras, Kristian; Serra, Rosa; Blanchard, Scott C; Percipalle, Piergiorgio; Brown, Anthony M C; Vincent, C Theresa

    2016-08-01

    Ribosome biogenesis is essential for cell growth and proliferation and is commonly elevated in cancer. Accordingly, numerous oncogene and tumor suppressor signaling pathways target rRNA synthesis. In breast cancer, non-canonical Wnt signaling by Wnt5a has been reported to antagonize tumor growth. Here, we show that Wnt5a rapidly represses rDNA gene transcription in breast cancer cells and generates a chromatin state with reduced transcription of rDNA by RNA polymerase I (Pol I). These effects were specifically dependent on Dishevelled1 (DVL1), which accumulates in nucleolar organizer regions (NORs) and binds to rDNA regions of the chromosome. Upon DVL1 binding, the Pol I transcription activator and deacetylase Sirtuin 7 (SIRT7) releases from rDNA loci, concomitant with disassembly of Pol I transcription machinery at the rDNA promoter. These findings reveal that Wnt5a signals through DVL1 to suppress rRNA transcription. This provides a novel mechanism for how Wnt5a exerts tumor suppressive effects and why disruption of Wnt5a signaling enhances mammary tumor growth in vivo. PMID:27500936

  15. Wnt5a Signals through DVL1 to Repress Ribosomal DNA Transcription by RNA Polymerase I

    PubMed Central

    Dass, Randall A.; Sarshad, Aishe A.; Feenstra, Jennifer M.; Kaur, Amanpreet; Pietras, Kristian; Serra, Rosa; Blanchard, Scott C.; Percipalle, Piergiorgio; Brown, Anthony M. C.; Vincent, C. Theresa

    2016-01-01

    Ribosome biogenesis is essential for cell growth and proliferation and is commonly elevated in cancer. Accordingly, numerous oncogene and tumor suppressor signaling pathways target rRNA synthesis. In breast cancer, non-canonical Wnt signaling by Wnt5a has been reported to antagonize tumor growth. Here, we show that Wnt5a rapidly represses rDNA gene transcription in breast cancer cells and generates a chromatin state with reduced transcription of rDNA by RNA polymerase I (Pol I). These effects were specifically dependent on Dishevelled1 (DVL1), which accumulates in nucleolar organizer regions (NORs) and binds to rDNA regions of the chromosome. Upon DVL1 binding, the Pol I transcription activator and deacetylase Sirtuin 7 (SIRT7) releases from rDNA loci, concomitant with disassembly of Pol I transcription machinery at the rDNA promoter. These findings reveal that Wnt5a signals through DVL1 to suppress rRNA transcription. This provides a novel mechanism for how Wnt5a exerts tumor suppressive effects and why disruption of Wnt5a signaling enhances mammary tumor growth in vivo. PMID:27500936

  16. Ptk7 and Mcc, Unfancied Components in Non-Canonical Wnt Signaling and Cancer.

    PubMed

    Dunn, Norris Ray; Tolwinski, Nicholas S

    2016-01-01

    Human development uses a remarkably small number of signal transduction pathways to organize vastly complicated tissues. These pathways are commonly associated with disease in adults if activated inappropriately. One such signaling pathway, Wnt, solves the too few pathways conundrum by having many alternate pathways within the Wnt network. The main or "canonical" Wnt pathway has been studied in great detail, and among its numerous downstream components, several have been identified as drug targets that have led to cancer treatments currently in clinical trials. In contrast, the non-canonical Wnt pathways are less well characterized, and few if any possible drug targets exist to tackle cancers caused by dysregulation of these Wnt offshoots. In this review, we focus on two molecules-Protein Tyrosine Kinase 7 (Ptk7) and Mutated in Colorectal Cancer (Mcc)-that do not fit perfectly into the non-canonical pathways described to date and whose roles in cancer are ill defined. We will summarize work from our laboratories as well as many others revealing unexpected links between these two proteins and Wnt signaling both in cancer progression and during vertebrate and invertebrate embryonic development. We propose that future studies focused on delineating the signaling machinery downstream of Ptk7 and Mcc will provide new, hitherto unanticipated drug targets to combat cancer metastasis. PMID:27438854

  17. Ptk7 and Mcc, Unfancied Components in Non-Canonical Wnt Signaling and Cancer

    PubMed Central

    Dunn, Norris Ray; Tolwinski, Nicholas S.

    2016-01-01

    Human development uses a remarkably small number of signal transduction pathways to organize vastly complicated tissues. These pathways are commonly associated with disease in adults if activated inappropriately. One such signaling pathway, Wnt, solves the too few pathways conundrum by having many alternate pathways within the Wnt network. The main or “canonical” Wnt pathway has been studied in great detail, and among its numerous downstream components, several have been identified as drug targets that have led to cancer treatments currently in clinical trials. In contrast, the non-canonical Wnt pathways are less well characterized, and few if any possible drug targets exist to tackle cancers caused by dysregulation of these Wnt offshoots. In this review, we focus on two molecules—Protein Tyrosine Kinase 7 (Ptk7) and Mutated in Colorectal Cancer (Mcc)—that do not fit perfectly into the non-canonical pathways described to date and whose roles in cancer are ill defined. We will summarize work from our laboratories as well as many others revealing unexpected links between these two proteins and Wnt signaling both in cancer progression and during vertebrate and invertebrate embryonic development. We propose that future studies focused on delineating the signaling machinery downstream of Ptk7 and Mcc will provide new, hitherto unanticipated drug targets to combat cancer metastasis. PMID:27438854

  18. Different Requirement for Wnt/β-Catenin Signaling in Limb Regeneration of Larval and Adult Xenopus

    PubMed Central

    Yokoyama, Hitoshi; Maruoka, Tamae; Ochi, Haruki; Aruga, Akio; Ohgo, Shiro; Ogino, Hajime; Tamura, Koji

    2011-01-01

    Background In limb regeneration of amphibians, the early steps leading to blastema formation are critical for the success of regeneration, and the initiation of regeneration in an adult limb requires the presence of nerves. Xenopus laevis tadpoles can completely regenerate an amputated limb at the early limb bud stage, and the metamorphosed young adult also regenerates a limb by a nerve-dependent process that results in a spike-like structure. Blockage of Wnt/β-catenin signaling inhibits the initiation of tadpole limb regeneration, but it remains unclear whether limb regeneration in young adults also requires Wnt/β-catenin signaling. Methodology/Principal Findings We expressed heat-shock-inducible (hs) Dkk1, a Wnt antagonist, in transgenic Xenopus to block Wnt/β-catenin signaling during forelimb regeneration in young adults. hsDkk1 did not inhibit limb regeneration in any of the young adult frogs, though it suppressed Wnt-dependent expression of genes (fgf-8 and cyclin D1). When nerve supply to the limbs was partially removed, however, hsDkk1 expression blocked limb regeneration in young adult frogs. Conversely, activation of Wnt/β-catenin signaling by a GSK-3 inhibitor rescued failure of limb-spike regeneration in young adult frogs after total removal of nerve supply. Conclusions/Significance In contrast to its essential role in tadpole limb regeneration, our results suggest that Wnt/β-catenin signaling is not absolutely essential for limb regeneration in young adults. The different requirement for Wnt/β-catenin signaling in tadpoles and young adults appears to be due to the projection of nerve axons into the limb field. Our observations suggest that nerve-derived signals and Wnt/β-catenin signaling have redundant roles in the initiation of limb regeneration. Our results demonstrate for the first time the different mechanisms of limb regeneration initiation in limb buds (tadpoles) and developed limbs (young adults) with reference to nerve-derived signals

  19. Calotropin: a cardenolide from calotropis gigantea that inhibits Wnt signaling by increasing casein kinase 1α in colon cancer cells.

    PubMed

    Park, Hyun Young; Toume, Kazufumi; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Ishibashi, Masami

    2014-04-14

    Wnt signaling plays key roles in embryonic development and various human diseases. Activity-guided testing to isolate Wnt signaling inhibitors from the methanol extract of Calotropis gigantea (Asclepiadaceae) exudutes identified six Wnt inhibitory cardenolides (1-6), of which 1, 3, 5, and 6 exhibited potent TCF/β-catenin inhibitory activities (IC50 0.7-3.6 nM). Calotropin (1) inhibited Wnt signaling by decreasing both nuclear and cytosolic β-catenin in a dose-dependent manner, and promoted degradation of β-catenin by increasing the phosphorylation of β-catenin at Ser45 through casein kinase 1α (CK1α). Moreover, 1 significantly increased CK1α protein and mRNA levels. The results suggest that 1 inhibits the Wnt signaling pathway by increasing CK1α protein levels. To the best of our knowledge, calotropin is the first small molecule to increase CK1α levels.

  20. Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance

    PubMed Central

    Mohammed, Maryam K.; Shao, Connie; Wang, Jing; Wei, Qiang; Wang, Xin; Collier, Zachary; Tang, Shengli; Liu, Hao; Zhang, Fugui; Huang, Jiayi; Guo, Dan; Lu, Minpeng; Liu, Feng; Liu, Jianxiang; Ma, Chao; Shi, Lewis L.; Athiviraham, Aravind; He, Tong-Chuan; Lee, Michael J.

    2016-01-01

    Wnt signaling transduces evolutionarily conserved pathways which play important roles in initiating and regulating a diverse range of cellular activities, including cell proliferation, calcium homeostasis, and cell polarity. The role of Wnt signaling in control of cell proliferation and stem cell self-renewal is primarily carried out through the canonical pathway, which is the best characterized among the multiple Wnt signaling branches. The past 10 years has seen a rapid expansion in our understanding of the complexity of this pathway, as many new components of Wnt signaling have been identified and linked to signaling regulation, stem cell functions, and adult tissue homeostasis. Additionally, a substantial body of evidence links Wnt signaling to tumorigenesis of many cancer types and implicates it in the development of cancer drug resistance. Thus, a better understanding of the mechanisms by which dysregulation of Wnt signaling precedes the development and progression of human cancer may hasten the development of pathway inhibitors to augment current therapy. This review summarizes and synthesizes our current knowledge of the canonical Wnt pathway in development and disease. We begin with an overview of the components of the canonical Wnt signaling pathway and delve into the role this pathway has been shown to play in stemness, tumorigenesis, and cancer drug resistance. Ultimately, we hope to present an organized collection of evidence implicating Wnt signaling in tumorigenesis and chemoresistance to facilitate the pursuit of Wnt pathway modulators that may improve outcomes of cancers in which Wnt signaling contributes to aggressive disease and/or treatment resistance. PMID:27077077

  1. Wnt signalling tunes neurotransmitter release by directly targeting Synaptotagmin-1

    PubMed Central

    Ciani, Lorenza; Marzo, Aude; Boyle, Kieran; Stamatakou, Eleanna; Lopes, Douglas M.; Anane, Derek; McLeod, Faye; Rosso, Silvana B.; Gibb, Alasdair; Salinas, Patricia C.

    2015-01-01

    The functional assembly of the synaptic release machinery is well understood; however, how signalling factors modulate this process remains unknown. Recent studies suggest that Wnts play a role in presynaptic function. To examine the mechanisms involved, we investigated the interaction of release machinery proteins with Dishevelled-1 (Dvl1), a scaffold protein that determines the cellular locale of Wnt action. Here we show that Dvl1 directly interacts with Synaptotagmin-1 (Syt-1) and indirectly with the SNARE proteins SNAP25 and Syntaxin (Stx-1). Importantly, the interaction of Dvl1 with Syt-1, which is regulated by Wnts, modulates neurotransmitter release. Moreover, presynaptic terminals from Wnt signalling-deficient mice exhibit reduced release probability and are unable to sustain high-frequency release. Consistently, the readily releasable pool size and formation of SNARE complexes are reduced. Our studies demonstrate that Wnt signalling tunes neurotransmitter release and identify Syt-1 as a target for modulation by secreted signalling proteins. PMID:26400647

  2. Therapeutic targets in the Wnt signaling pathway: Feasibility of targeting TNIK in colorectal cancer.

    PubMed

    Masuda, Mari; Sawa, Masaaki; Yamada, Tesshi

    2015-12-01

    The genetic and epigenetic alterations occurring during the course of multistage colorectal carcinogenesis have been extensively studied in the last few decades. One of the most notable findings is that the great majority of colorectal cancers (>80%) have mutations in the adenomatous polyposis coli (APC) tumor suppressor gene. Loss of functional APC protein results in activation of canonical Wnt/β-catanin signaling and initiates intestinal carcinogenesis. Mutational inactivation of APC is the first genetic event, but colorectal cancer cells retain their dependency on constitutive Wnt signal activation even after accumulation of other genetic events. Accordingly, pharmacological blocking of Wnt signaling has been considered an attractive therapeutic approach for colorectal cancer. Several therapeutics targeting various molecular components of the Wnt signaling pathway, including porcupine, frizzled receptors and co-receptor, tankyrases, and cAMP response element binding protein (CREB)-binding protein (CBP), have been developed, and some of those are currently being evaluated in early-phase clinical trials. Traf2- and Nck-interacting protein kinase (TNIK) has been identified as a regulatory component of the T-cell factor-4 and β-catenin transcriptional complex independently by two research groups. TNIK regulates Wnt signaling in the most downstream part of the pathway, and its inhibition is expected to block the signal even in colorectal cancer cells with APC gene mutation. Here we discuss some of the TNIK inhibitors under preclinical development. PMID:26542362

  3. Wnt Signaling in Cell Motility and Invasion: Drawing Parallels between Development and Cancer

    PubMed Central

    Sedgwick, Alanna E.; D’Souza-Schorey, Crislyn

    2016-01-01

    The importance of canonical and non-canonical Wnt signal transduction cascades in embryonic development and tissue homeostasis is well recognized. The aberrant activation of these pathways in the adult leads to abnormal cellular behaviors, and tumor progression is frequently a consequence. Here we discuss recent findings and analogies between Wnt signaling in developmental processes and tumor progression, with a particular focus on cell motility and matrix invasion and highlight the roles of the ARF (ADP-Ribosylation Factor) and Rho-family small GTP-binding proteins. Wnt-regulated signal transduction from cell surface receptors, signaling endosomes and/or extracellular vesicles has the potential to profoundly influence cell movement, matrix degradation and paracrine signaling in both development and disease. PMID:27589803

  4. Wnt Signaling in Cell Motility and Invasion: Drawing Parallels between Development and Cancer.

    PubMed

    Sedgwick, Alanna E; D'Souza-Schorey, Crislyn

    2016-01-01

    The importance of canonical and non-canonical Wnt signal transduction cascades in embryonic development and tissue homeostasis is well recognized. The aberrant activation of these pathways in the adult leads to abnormal cellular behaviors, and tumor progression is frequently a consequence. Here we discuss recent findings and analogies between Wnt signaling in developmental processes and tumor progression, with a particular focus on cell motility and matrix invasion and highlight the roles of the ARF (ADP-Ribosylation Factor) and Rho-family small GTP-binding proteins. Wnt-regulated signal transduction from cell surface receptors, signaling endosomes and/or extracellular vesicles has the potential to profoundly influence cell movement, matrix degradation and paracrine signaling in both development and disease. PMID:27589803

  5. Wnt-signalling pathways and microRNAs network in carcinogenesis: experimental and bioinformatics approaches.

    PubMed

    Onyido, Emenike K; Sweeney, Eloise; Nateri, Abdolrahman Shams

    2016-01-01

    Over the past few years, microRNAs (miRNAs) have not only emerged as integral regulators of gene expression at the post-transcriptional level but also respond to signalling molecules to affect cell function(s). miRNAs crosstalk with a variety of the key cellular signalling networks such as Wnt, transforming growth factor-β and Notch, control stem cell activity in maintaining tissue homeostasis, while if dysregulated contributes to the initiation and progression of cancer. Herein, we overview the molecular mechanism(s) underlying the crosstalk between Wnt-signalling components (canonical and non-canonical) and miRNAs, as well as changes in the miRNA/Wnt-signalling components observed in the different forms of cancer. Furthermore, the fundamental understanding of miRNA-mediated regulation of Wnt-signalling pathway and vice versa has been significantly improved by high-throughput genomics and bioinformatics technologies. Whilst, these approaches have identified a number of specific miRNA(s) that function as oncogenes or tumour suppressors, additional analyses will be necessary to fully unravel the links among conserved cellular signalling pathways and miRNAs and their potential associated components in cancer, thereby creating therapeutic avenues against tumours. Hence, we also discuss the current challenges associated with Wnt-signalling/miRNAs complex and the analysis using the biomedical experimental and bioinformatics approaches. PMID:27590724

  6. RANK Signaling Amplifies WNT-Responsive Mammary Progenitors through R-SPONDIN1

    PubMed Central

    Joshi, Purna A.; Waterhouse, Paul D.; Kannan, Nagarajan; Narala, Swami; Fang, Hui; Di Grappa, Marco A.; Jackson, Hartland W.; Penninger, Josef M.; Eaves, Connie; Khokha, Rama

    2015-01-01

    Summary Systemic and local signals must be integrated by mammary stem and progenitor cells to regulate their cyclic growth and turnover in the adult gland. Here, we show RANK-positive luminal progenitors exhibiting WNT pathway activation are selectively expanded in the human breast during the progesterone-high menstrual phase. To investigate underlying mechanisms, we examined mouse models and found that loss of RANK prevents the proliferation of hormone receptor-negative luminal mammary progenitors and basal cells, an accompanying loss of WNT activation, and, hence, a suppression of lobuloalveologenesis. We also show that R-spondin1 is depleted in RANK-null progenitors, and that its exogenous administration rescues key aspects of RANK deficiency by reinstating a WNT response and mammary cell expansion. Our findings point to a novel role of RANK in dictating WNT responsiveness to mediate hormone-induced changes in the growth dynamics of adult mammary cells. PMID:26095608

  7. Interactions between SOX factors and Wnt/beta-catenin signaling in development and disease.

    PubMed

    Kormish, Jay D; Sinner, Débora; Zorn, Aaron M

    2010-01-01

    The SOX family of transcription factors have emerged as modulators of canonical Wnt/beta-catenin signaling in diverse development and disease contexts. There are over 20 SOX proteins encoded in the vertebrate genome and recent evidence suggests that many of these can physically interact with beta-catenin and modulate the transcription of Wnt-target genes. The precise mechanisms by which SOX proteins regulate beta-catenin/TCF activity are still being resolved and there is evidence to support a number of models including: protein-protein interactions, the binding of SOX factors to Wnt-target gene promoters, the recruitment of co-repressors or co-activators, modulation of protein stability, and nuclear translocation. In some contexts, Wnt signaling also regulates SOX expression resulting in feedback regulatory loops that fine-tune cellular responses to beta-catenin/TCF activity. In this review, we summarize the examples of Sox-Wnt interactions and examine the underlying mechanisms of this potentially widespread and underappreciated mode of Wnt-regulation. PMID:19655378

  8. Analysis of Wnt signaling β-catenin spatial dynamics in HEK293T cells

    PubMed Central

    2014-01-01

    Background Wnt/β-catenin signaling is involved in different stages of mammalian development and implicated in various cancers (e.g. colorectal cancer). Recent experimental and computational studies have revealed characteristics of the pathway, however a cell-specific spatial perspective is lacking. In this study, a novel 3D confocal quantitation protocol is developed to acquire spatial (two cellular compartments: nucleus and cytosol-membrane) and temporal quantitative data on target protein (e.g. β-catenin) concentrations in Human Epithelial Kidney cells (HEK293T) during perturbation (with either cycloheximide or Wnt3A). Computational models of the Wnt pathway are constructed and interrogated based on this data. Results A single compartment Wnt pathway model is compared with a simple β-catenin two compartment model to investigate Wnt3A signaling in HEK293T cells. When protein synthesis is inhibited, β-catenin decreases at the same rate in both cellular compartments, suggesting diffusional transport is fast compared to β-catenin degradation in the cytosol. With Wnt3A stimulation, the total amount of β-catenin rises throughout the cell, however the increase is initially (~first hour) faster in the nuclear compartment. While both models were able to reproduce the whole cell changes in β-catenin, only the compartment model reproduced the Wnt3A induced changes in β-catenin distribution and it was also the best fit for the data obtained when active transport was included alongside passive diffusion transport. Conclusions This integrated 3D quantitation imaging protocol and computational modeling approach allowed cell-specific compartment models of the signaling pathways to be constructed and analyzed. The Wnt models constructed in this study are the first for HEK293T and have suggested potential roles of inter-compartment transport to the dynamics of signaling. PMID:24712863

  9. Wnt5a-Ror2 signaling in mesenchymal stem cells promotes proliferation of gastric cancer cells by activating CXCL16-CXCR6 axis.

    PubMed

    Takiguchi, Gosuke; Nishita, Michiru; Kurita, Kana; Kakeji, Yoshihiro; Minami, Yasuhiro

    2016-03-01

    Wnt5a-Ror2 signaling has been shown to play important roles in promoting aggressiveness of various cancer cells in a cell-autonomous manner. However, little is known about its function in cancer-associated stromal cells, including mesenchymal stem cells (MSCs). Thus, we examined the role of Wnt5a-Ror2 signaling in bone marrow-derived MSCs in regulating proliferation of undifferentiated gastric cancer cells. Coculture of a gastric cancer cell line, MKN45, with MSCs either directly or indirectly promotes proliferation of MKN45 cells, and suppressed expression of Ror2 in MSCs prior to coculture inhibits enhanced proliferation of MKN45 cells. In addition, conditioned media from MSCs, treated with control siRNA, but not siRNAs against Ror2, can enhance proliferation of MKN45 cells. Interestingly, it was found that expression of CXCL16 in MSCs is augmented by Wnt5a-Ror2 signaling, and that recombinant chemokine (C-X-C motif) ligand (CXCL)16 protein can enhance proliferation of MKN45 cells in the absence of MSCs. In fact, suppressed expression of CXCL16 in MSCs or an addition of a neutralizing antibody against CXCL16 fails to promote proliferation of MKN45 cells in either direct or indirect coculture with MSCs. Importantly, we show that MKN45 cells express chemokine (C-X-C motif) receptor (CXCR)6, a receptor for CXCL16, and that suppressed expression of CXCR6 in MKN45 cells results in a failure of its enhanced proliferation in either direct or indirect coculture with MSCs. These findings indicate that Wnt5a-Ror2 signaling enhances expression of CXCL16 in MSCs and, as a result, enhanced secretion of CXCL16 from MSCs might act on CXCR6 expressed on MKN45, leading to the promotion of its proliferation. PMID:26708384

  10. Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells

    SciTech Connect

    Kordes, Claus Sawitza, Iris; Haeussinger, Dieter

    2008-02-29

    It is well known that hepatic stellate cells (HSC) develop into cells, which are thought to contribute to liver fibrogenesis. Recent data suggest that HSC are progenitor cells with the capacity to differentiate into cells of endothelial and hepatocyte lineages. The present study shows that {beta}-catenin-dependent canonical Wnt signaling is active in freshly isolated HSC of rats. Mimicking of the canonical Wnt pathway in cultured HSC by TWS119, an inhibitor of the glycogen synthase kinase 3{beta}, led to reduced {beta}-catenin phosphorylation, induced nuclear translocation of {beta}-catenin, elevated glutamine synthetase production, impeded synthesis of {alpha}-smooth muscle actin and Wnt5a, but promoted the expression of glial fibrillary acidic protein, Wnt10b, and paired-like homeodomain transcription factor 2c. In addition, canonical Wnt signaling lowered DNA synthesis and hindered HSC from entering the cell cycle. The findings demonstrate that {beta}-catenin-dependent Wnt signaling maintains the quiescent state of HSC and, similar to stem and progenitor cells, influences their developmental fate.

  11. Paracrine WNT5A Signaling Inhibits Expansion of Tumor-Initiating Cells.

    PubMed

    Borcherding, Nicholas; Kusner, David; Kolb, Ryan; Xie, Qing; Li, Wei; Yuan, Fang; Velez, Gabriel; Askeland, Ryan; Weigel, Ronald J; Zhang, Weizhou

    2015-05-15

    It is not well understood how paracrine communication between basal and luminal cell populations in the mammary gland affects tumorigenesis. During ErbB2-induced mammary tumorigenesis, enriched mammary stem cells that represent a subpopulation of basal cells exhibit enhanced tumorigenic capacity compared with the corresponding luminal progenitors. Transcript profiling of tumors derived from basal and luminal tumor-initiating cells (TIC) revealed preferential loss of the noncanonical Wnt ligand WNT5A in basal TIC-derived tumors. Heterozygous loss of WNT5A was correlated with shorter survival of breast cancer patients. In a mouse model of ErbB2-induced breast cancer, Wnt5a heterozygosity promoted tumor multiplicity and pulmonary metastasis. As a TGFβ substrate, luminal cell-produced WNT5A induced a feed-forward loop to activate SMAD2 in a RYK and TGFβR1-dependent manner to limit the expansion of basal TIC in a paracrine fashion, a potential explanation for the suppressive effect of WNT5A in mammary tumorigenesis. Our results identify the WNT5A/RYK module as a spatial regulator of the TGFβ-SMAD signaling pathway in the context of mammary gland development and carcinogenesis, offering a new perspective on tumor suppression provided by basal-luminal cross-talk in normal mammary tissue.

  12. Paracrine WNT5A signaling inhibits expansion of tumor-initiating cells

    PubMed Central

    Borcherding, Nicholas; Kusner, David; Kolb, Ryan; Xie, Qing; Li, Wei; Yuan, Fang; Velez, Gabriel; Askeland, Ryan; Weigel, Ronald J.; Zhang, Weizhou

    2015-01-01

    It is not well understood how paracrine communication between basal and luminal cell populations in the mammary gland affects tumorigenesis. During ErbB2-induced mammary tumorigenesis, enriched mammary stem cells that represent a subpopulation of basal cells exhibit enhanced tumorigenic capacity compared to the corresponding luminal progenitors. Transcript profiling of tumors derived from basal and luminal tumor-initiating cells (TIC) revealed preferential loss of the noncanonical Wnt ligand WNT5A in basal TIC-derived tumors. Heterozygous loss of WNT5A was correlated with shorter survival of breast cancer patients. In a mouse model of ErbB2-induced breast cancer, Wnt5a heterozygosity promoted tumor multiplicity and pulmonary metastasis. As a TGFβ substrate, luminal cell-produced WNT5A induced a feed-forward loop to activate SMAD2 in a RYK and TGFβR1-dependent manner to limit the expansion of basal TIC in a paracrine fashion, a potential explanation for the suppressive effect of WNT5A in mammary tumorigenesis. Our results identify the WNT5A/RYK module as a spatial regulator of TGFβ/SMAD signaling pathway in the context of mammary gland development and carcinogenesis, offering a new perspective on tumor suppression provided by basal-luminal crosstalk in normal mammary tissue. PMID:25769722

  13. Cross-platform expression profiling demonstrates that SV40 small tumor antigen activates Notch, Hedgehog, and Wnt signaling in human cells

    PubMed Central

    Ali-Seyed, Mohamed; Laycock, Noelani; Karanam, Suresh; Xiao, Wenming; Blair, Eric T; Moreno, Carlos S

    2006-01-01

    Background We previously analyzed human embryonic kidney (HEK) cell lines for the effects that simian virus 40 (SV40) small tumor antigen (ST) has on gene expression using Affymetrix U133 GeneChips. To cross-validate and extend our initial findings, we sought to compare the expression profiles of these cell lines using an alternative microarray platform. METHODS: We have analyzed matched cell lines with and without expression of SV40 ST using an Applied Biosystems (AB) microarray platform that uses single 60-mer oligonucleotides and single-color quantitative chemiluminescence for detection. RESULTS: While we were able to previously identify only 456 genes affected by ST with the Affymetrix platform, we identified 1927 individual genes with the AB platform. Additional technical replicates increased the number of identified genes to 3478 genes and confirmed the changes in 278 (61%) of our original set of 456 genes. Among the 3200 genes newly identified as affected by SV40 ST, we confirmed 20 by QRTPCR including several components of the Wnt, Notch, and Hedgehog signaling pathways, consistent with SV40 ST activation of these developmental pathways. While inhibitors of Notch activation had no effect on cell survival, cyclopamine had a potent killing effect on cells expressing SV40 ST. CONCLUSIONS: These data show that SV40 ST expression alters cell survival pathways to sensitize cells to the killing effect of Hedgehog pathway inhibitors. PMID:16522205

  14. Wnt signalling: a moving picture emerges from van gogh.

    PubMed

    Heisenberg, Carl-Philipp; Tada, Masazumi

    2002-02-19

    Recent studies on vertebrate homologues of the van gogh/strabismus (vang/stbm) gene, a key player in planar cell polarity signalling in Drosophila, show that vang/stbm is involved in patterning and morphogenesis during vertebrate gastrulation where it modulates two distinct Wnt signals.

  15. Intersection of AHR and Wnt Signaling in Development, Health, and Disease

    PubMed Central

    Schneider, Andrew J.; Branam, Amanda M.; Peterson, Richard E.

    2014-01-01

    The AHR (aryl hydrocarbon receptor) and Wnt (wingless-related MMTV integration site) signaling pathways have been conserved throughout evolution. Appropriately regulated signaling through each pathway is necessary for normal development and health, while dysregulation can lead to developmental defects and disease. Though both pathways have been vigorously studied, there is relatively little research exploring the possibility of crosstalk between these pathways. In this review, we provide a brief background on (1) the roles of both AHR and Wnt signaling in development and disease, and (2) the molecular mechanisms that characterize activation of each pathway. We also discuss the need for careful and complete experimental evaluation of each pathway and describe existing research that explores the intersection of AHR and Wnt signaling. Lastly, to illustrate in detail the intersection of AHR and Wnt signaling, we summarize our recent findings which show that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced disruption of Wnt signaling impairs fetal prostate development. PMID:25286307

  16. Control of Wnt Receptor Turnover by R-spondin-ZNRF3/RNF43 Signaling Module and Its Dysregulation in Cancer.

    PubMed

    Hao, Huai-Xiang; Jiang, Xiaomo; Cong, Feng

    2016-01-01

    Aberrant activation of the Wnt/β-catenin pathway is frequently found in various cancers, often through mutations of downstream components. Inhibiting β-catenin signaling in tumors with downstream pathway mutations remains challenging, due to a lack of favorable targets. On the other hand, targeting upstream components of the Wnt pathway is rather straightforward. However, it is difficult to identify tumors addicted to autocrine or paracrine Wnt signaling. Discovery of the R-spondin-ZNRF3/RNF43 signaling module and its genetic alterations in cancers represents a breakthrough in this area. Membrane E3 ligase ZNRF3 and RNF43 are critical negative feedback regulators of the Wnt pathway, which function through promoting ubiquitination and degradation of Wnt receptors. R-spondin proteins (RSPO1-4) serve as natural antagonists of ZNRF3/RNF43. To maintain strong and sustained Wnt/β-catenin signaling, cancers need to overcome ZNRF3/RNF43-mediated feedback inhibition. Indeed, mutations of RNF43/ZNRF3 and recurrent translocations of RSPO2/RSPO3 have recently been identified in various cancers. Significantly, genetic alterations in RNF43/ZNRF3/RSPO2/RSPO3 have shown promise as predictive biomarkers in pre-clinical models for the efficacy of upstream Wnt inhibitors. In this review, we will discuss the biology of the R-spondin-ZNRF3/RNF43 signaling module, cancer-associated alterations of this signaling module, and their value as biomarkers to identify Wnt-addicted tumors.

  17. Control of Wnt Receptor Turnover by R-spondin-ZNRF3/RNF43 Signaling Module and Its Dysregulation in Cancer

    PubMed Central

    Hao, Huai-Xiang; Jiang, Xiaomo; Cong, Feng

    2016-01-01

    Aberrant activation of the Wnt/β-catenin pathway is frequently found in various cancers, often through mutations of downstream components. Inhibiting β-catenin signaling in tumors with downstream pathway mutations remains challenging, due to a lack of favorable targets. On the other hand, targeting upstream components of the Wnt pathway is rather straightforward. However, it is difficult to identify tumors addicted to autocrine or paracrine Wnt signaling. Discovery of the R-spondin-ZNRF3/RNF43 signaling module and its genetic alterations in cancers represents a breakthrough in this area. Membrane E3 ligase ZNRF3 and RNF43 are critical negative feedback regulators of the Wnt pathway, which function through promoting ubiquitination and degradation of Wnt receptors. R-spondin proteins (RSPO1-4) serve as natural antagonists of ZNRF3/RNF43. To maintain strong and sustained Wnt/β-catenin signaling, cancers need to overcome ZNRF3/RNF43-mediated feedback inhibition. Indeed, mutations of RNF43/ZNRF3 and recurrent translocations of RSPO2/RSPO3 have recently been identified in various cancers. Significantly, genetic alterations in RNF43/ZNRF3/RSPO2/RSPO3 have shown promise as predictive biomarkers in pre-clinical models for the efficacy of upstream Wnt inhibitors. In this review, we will discuss the biology of the R-spondin-ZNRF3/RNF43 signaling module, cancer-associated alterations of this signaling module, and their value as biomarkers to identify Wnt-addicted tumors. PMID:27338477

  18. A divergent canonical WNT-signaling pathway regulates microtubule dynamics

    PubMed Central

    Ciani, Lorenza; Krylova, Olga; Smalley, Matthew J.; Dale, Trevor C.; Salinas, Patricia C.

    2004-01-01

    Dishevelled (DVL) is associated with axonal microtubules and regulates microtubule stability through the inhibition of the serine/threonine kinase, glycogen synthase kinase 3β (GSK-3β). In the canonical WNT pathway, the negative regulator Axin forms a complex with β-catenin and GSK-3β, resulting in β-catenin degradation. Inhibition of GSK-3β by DVL increases β-catenin stability and TCF transcriptional activation. Here, we show that Axin associates with microtubules and unexpectedly stabilizes microtubules through DVL. In turn, DVL stabilizes microtubules by inhibiting GSK-3β through a transcription- and β-catenin–independent pathway. More importantly, axonal microtubules are stabilized after DVL localizes to axons. Increased microtubule stability is correlated with a decrease in GSK-3β–mediated phosphorylation of MAP-1B. We propose a model in which Axin, through DVL, stabilizes microtubules by inhibiting a pool of GSK-3β, resulting in local changes in the phosphorylation of cellular targets. Our data indicate a bifurcation in the so-called canonical WNT-signaling pathway to regulate microtubule stability. PMID:14734535

  19. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    SciTech Connect

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu; Boyer, Arthur; Liu, Fei

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  20. Vitamin D Is a Multilevel Repressor of Wnt/β-Catenin Signaling in Cancer Cells

    PubMed Central

    Larriba, María Jesús; González-Sancho, José Manuel; Barbáchano, Antonio; Niell, Núria; Ferrer-Mayorga, Gemma; Muñoz, Alberto

    2013-01-01

    The Wnt/β-catenin signaling pathway is abnormally activated in most colorectal cancers and in a proportion of other neoplasias. This activation initiates or contributes to carcinogenesis by regulating the expression of a large number of genes in tumor cells. The active vitamin D metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) inhibits Wnt/β-catenin signaling by several mechanisms at different points along the pathway. Additionally, paracrine actions of 1,25(OH)2D3 on stromal cells may also repress this pathway in neighbouring tumor cells. Here we review the molecular basis for the various mechanisms by which 1,25(OH)2D3 antagonizes Wnt/β-catenin signaling, preferentially in human colon carcinoma cells, and the consequences of this inhibition for the phenotype and proliferation rate. The effect of the vitamin D system on Wnt/β-catenin signaling and tumor growth in animal models will also be commented in detail. Finally, we revise existing data on the relation between vitamin D receptor expression and vitamin D status and the expression of Wnt/β-catenin pathway genes and targets in cancer patients. PMID:24202444

  1. Wingless/Wnt signaling in Drosophila: the pattern and the pathway

    PubMed Central

    Bejsovec, Amy

    2014-01-01

    Summary Wnt signaling generates pattern in all embryos, from flies and worms to humans, and promotes the undifferentiated, proliferative state critical for stem cells in adult tissues. Inappropriate Wnt pathway activation is the major cause of colorectal cancers, a leading cause of cancer death. Although this pathway has been studied extensively for years, large gaps remain in our understanding of how it switches on and off, and how its activation changes cellular behaviors. Much of what is known about the pathway comes from genetic studies in Drosophila, where a single Wnt molecule, encoded by wingless (wg), directs an array of cell fate decisions similar to those made by the combined activities of all 19 Wnt family members in vertebrates. Although Wg specifies fate in many tissues, including the brain, limbs and major organs, the fly embryonic epidermis has proven to be a very powerful system for dissecting pathway activity. It is a simple, accessible tissue, with a pattern that is highly sensitive to small changes in Wg pathway activity. This review discusses what we have learned about Wnt signaling from studying mutations that disrupt epidermal pattern in the fly embryo, highlights recent advances and controversies in the field, and sets these issues in the context of questions that remain about how this essential signaling pathway functions. PMID:24038436

  2. Wnt signaling is required for long-term memory formation

    PubMed Central

    Tan, Ying; Yu, Dinghui; Busto, Germain U.; Wilson, Curtis; Davis, Ronald L.

    2013-01-01

    SUMMARY Wnt signaling regulates synaptic plasticity and neurogenesis in the adult nervous system, suggesting a potential role in behavioral processes. Here, we probed the requirement for Wnt signaling during olfactory memory formation in Drosophila using an inducible RNA interference approach. Interfering with β-catenin expression in the adult mushroom body neurons specifically impaired long-term memory without altering short-term memory. The impairment was reversible, rescued with expression of a wild-type β-catenin transgene, and correlated with a disruption of a cellular long-term memory trace. Inhibition of wingless, a Wnt ligand, and arrow, a Wnt co-receptor, also impaired long-term memory. Wingless expression in wild type flies was transiently elevated in the brain after long-term memory conditioning. Thus, inhibiting three key components of the Wnt signaling pathway in the adult mushroom bodies impairs long-term memory, collectively indicating that this pathway mechanistically underlies this specific form of memory. PMID:24035392

  3. Skeletal metastasis: treatments, mouse models, and the Wnt signaling

    PubMed Central

    Valkenburg, Kenneth C.; Steensma, Matthew R.; Williams, Bart O.; Zhong, Zhendong

    2013-01-01

    Skeletal metastases result in significant morbidity and mortality. This is particularly true of cancers with a strong predilection for the bone, such as breast, prostate, and lung cancers. There is currently no reliable cure for skeletal metastasis, and palliative therapy options are limited. The Wnt signaling pathway has been found to play an integral role in the process of skeletal metastasis and may be an important clinical target. Several experimental models of skeletal metastasis have been used to find new biomarkers and test new treatments. In this review, we discuss pathologic process of bone metastasis, the roles of the Wnt signaling, and the available experimental models and treatments. PMID:23327798

  4. β-Catenin, a Transcription Factor Activated by Canonical Wnt Signaling, Is Expressed in Sensory Neurons of Calves Latently Infected with Bovine Herpesvirus 1

    PubMed Central

    Liu, Yilin; Hancock, Morgan; Workman, Aspen; Doster, Alan

    2016-01-01

    ABSTRACT Like many Alphaherpesvirinae subfamily members, bovine herpesvirus 1 (BoHV-1) expresses an abundant transcript in latently infected sensory neurons, the latency-related (LR)-RNA. LR-RNA encodes a protein (ORF2) that inhibits apoptosis, interacts with Notch family members, interferes with Notch-mediated transcription, and stimulates neurite formation in cells expressing Notch. An LR mutant virus containing stop codons at the amino terminus of ORF2 does not reactivate from latency or replicate efficiently in certain tissues, indicating that LR gene products are important. In this study, β-catenin, a transcription factor activated by the canonical Wnt signaling pathway, was frequently detected in ORF2-positive trigeminal ganglionic neurons of latently infected, but not mock-infected, calves. Conversely, the lytic cycle regulatory protein (BoHV-1 infected cell protein 0, or bICP0) was not frequently detected in β-catenin-positive neurons in latently infected calves. During dexamethasone-induced reactivation from latency, mRNA expression levels of two Wnt antagonists, Dickkopf-1 (DKK-1) and secreted Frizzled-related protein 2 (SFRP2), were induced in bovine trigeminal ganglia (TG), which correlated with reduced β-catenin protein expression in TG neurons 6 h after dexamethasone treatment. ORF2 and a coactivator of β-catenin, mastermind-like protein 1 (MAML1), stabilized β-catenin protein levels and stimulated β-catenin-dependent transcription in mouse neuroblastoma cells more effectively than MAML1 or ORF2 alone. Neuroblastoma cells expressing ORF2, MAML1, and β-catenin were highly resistant to cell death following serum withdrawal, whereas most cells transfected with only one of these genes died. The Wnt signaling pathway interferes with neurodegeneration but promotes neuronal differentiation, suggesting that stabilization of β-catenin expression by ORF2 promotes neuronal survival and differentiation. IMPORTANCE Bovine herpesvirus 1 (BoHV-1) is an

  5. Cerasoidine, a Bis-aporphine Alkaloid Isolated from Polyalthia cerasoides during Screening for Wnt Signal Inhibitors.

    PubMed

    Shono, Takumi; Ishikawa, Naoki; Toume, Kazufumi; Arai, Midori A; Masu, Hyuma; Koyano, Takashi; Kowithayakorn, Thaworn; Ishibashi, Masami

    2016-08-26

    A new bis-aporphine alkaloid, cerasoidine (1), was isolated from the root extract of Polyalthia cerasoides together with the known bis-aporphine bidebiline E (2) during screening for compounds with Wnt signal inhibitory activities. The structure of cerasoidine (1) was established by X-ray analysis and shown by chiral HPLC analyses and electronic circular dichroism to be a 57:43 mixture of R(-)- and S(+)-atropisomers. Bidebiline E (2) exhibited inhibition of transcriptional activity of TCF/β-catenin with an IC50 value of 20.2 μM and was also found to inhibit Wnt signaling by decreasing nuclear β-catenin. PMID:27490091

  6. Functional Differences of Very-Low-Density Lipoprotein Receptor Splice Variants in Regulating Wnt Signaling

    PubMed Central

    Chen, Qian; Takahashi, Yusuke; Oka, Kazuhiro

    2016-01-01

    The very-low-density lipoprotein receptor (VLDLR) negatively regulates Wnt signaling. VLDLR has two major alternative splice variants, VLDLRI and VLDLRII, but their biological significance and distinction are unknown. Here we found that most tissues expressed both VLDLRI and VLDLRII, while the retina expressed only VLDLRII. The shed soluble VLDLR extracellular domain (sVLDLR-N) was detected in the conditioned medium of retinal pigment epithelial cells, interphotoreceptor matrix, and mouse plasma, indicating that ectodomain shedding of VLDLR occurs endogenously. VLDLRII displayed a higher ectodomain shedding rate and a more potent inhibitory effect on Wnt signaling than VLDLRI in vitro and in vivo. O-glycosylation, which is present in VLDLRI but not VLDLRII, determined the differential ectodomain shedding rates. Moreover, the release of sVLDLR-N was inhibited by a metalloproteinase inhibitor, TAPI-1, while it was promoted by phorbol 12-myristate 13-acetate (PMA). In addition, sVLDLR-N shedding was suppressed under hypoxia. Further, plasma levels of sVLDLR-N were reduced in both type 1 and type 2 diabetic mouse models. We concluded that VLDLRI and VLDLRII had differential roles in regulating Wnt signaling and that decreased plasma levels of sVLDLR-N may contribute to Wnt signaling activation in diabetic complications. Our study reveals a novel mechanism for intercellular regulation of Wnt signaling through VLDLR ectodomain shedding. PMID:27528615

  7. BAMBI Promotes C2C12 Myogenic Differentiation by Enhancing Wnt/β-Catenin Signaling

    PubMed Central

    Zhang, Qiangling; Shi, Xin-E; Song, Chengchuang; Sun, Shiduo; Yang, Gongshe; Li, Xiao

    2015-01-01

    Bone morphogenic protein and activin membrane-bound inhibitor (BAMBI) is regarded as an essential regulator of cell proliferation and differentiation that represses transforming growth factor-β and enhances Wnt/β-catenin signaling in various cell types. However, its role in skeletal muscle remains largely unknown. In the current study, we found that the expression level of BAMBI peaked in the early differentiation phase of the C2C12 rodent myoblast cell line. Knockdown of BAMBI via siRNA inhibited C2C12 differentiation, indicated by repressed MyoD, MyoG, and MyHC expression as well as reductions in the differentiation and fusion indices. BAMBI knockdown reduced the activity of Wnt/β-catenin signaling, as characterized by the decreased nuclear translocation of β-catenin and the lowered transcription of Axin2, which is a well-documented target gene of the Wnt/β-catenin signaling pathway. Furthermore, treatment with LiCl, an activator of Wnt/β-catenin signaling, rescued the reduction in C2C12 differentiation caused by BAMBI siRNA. Taken together, our data suggest that BAMBI is required for normal C2C12 differentiation, and that its role in myogenesis is mediated by the Wnt/β-catenin pathway. PMID:26247931

  8. FOXP1 potentiates Wnt/β-catenin signaling in diffuse large B cell lymphoma.

    PubMed

    Walker, Matthew P; Stopford, Charles M; Cederlund, Maria; Fang, Fang; Jahn, Christopher; Rabinowitz, Alex D; Goldfarb, Dennis; Graham, David M; Yan, Feng; Deal, Allison M; Fedoriw, Yuri; Richards, Kristy L; Davis, Ian J; Weidinger, Gilbert; Damania, Blossom; Major, Michael B

    2015-02-03

    The transcription factor FOXP1 (forkhead box protein P1) is a master regulator of stem and progenitor cell biology. In diffuse large B cell lymphoma (DLBCL), copy number amplifications and chromosomal translocations result in overexpression of FOXP1. Increased abundance of FOXP1 in DLBCL is a predictor of poor prognosis and resistance to therapy. We developed a genome-wide, mass spectrometry-coupled, gain-of-function genetic screen, which revealed that FOXP1 potentiates β-catenin-dependent, Wnt-dependent gene expression. Gain- and loss-of-function studies in cell models and zebrafish confirmed that FOXP1 was a general and conserved enhancer of Wnt signaling. In a Wnt-dependent fashion, FOXP1 formed a complex with β-catenin, TCF7L2 (transcription factor 7-like 2), and the acetyltransferase CBP [CREB (adenosine 3',5'-monophosphate response element-binding protein)-binding protein], and this complex bound the promoters of Wnt target genes. FOXP1 promoted the acetylation of β-catenin by CBP, and acetylation was required for FOXP1-mediated potentiation of β-catenin-dependent transcription. In DLBCL, we found that FOXP1 promoted sensitivity to Wnt pathway inhibitors, and knockdown of FOXP1 or blocking β-catenin transcriptional activity slowed xenograft tumor growth. These data connect excessive FOXP1 with β-catenin-dependent signal transduction and provide a molecular rationale for Wnt-directed therapy in DLBCL.

  9. Endoglin integrates BMP and Wnt signalling to induce haematopoiesis through JDP2

    PubMed Central

    Baik, June; Magli, Alessandro; Tahara, Naoyuki; Swanson, Scott A.; Koyano-Nakagawa, Naoko; Borges, Luciene; Stewart, Ron; Garry, Daniel J.; Kawakami, Yasuhiko; Thomson, James A.; Perlingeiro, Rita C. R.

    2016-01-01

    Mechanisms of haematopoietic and cardiac patterning remain poorly understood. Here we show that the BMP and Wnt signalling pathways are integrated in an endoglin (Eng)-dependent manner in cardiac and haematopoietic lineage specification. Eng is expressed in early mesoderm and marks both haematopoietic and cardiac progenitors. In the absence of Eng, yolk sacs inappropriately express the cardiac marker, Nkx2.5. Conversely, high levels of Eng in vitro and in vivo increase haematopoiesis and inhibit cardiogenesis. Levels of Eng determine the activation of both BMP and Wnt pathways, which are integrated downstream of Eng by phosphorylation of Smad1 by Gsk3. By interrogating Eng-dependent Wnt-mediated transcriptional changes, we identify Jdp2 as a key Eng-dependent Wnt target, sufficient to establish haematopoietic fate in early mesoderm when BMP and Wnt crosstalk is disturbed. These studies provide mechanistic insight into the integration of BMP and Wnt signalling in the establishment of haematopoietic and cardiac progenitors during embryogenesis. PMID:27713415

  10. The Wnt/beta-catenin pathway is activated during advanced arterial aging in humans.

    PubMed

    Marchand, Alexandre; Atassi, Fabrice; Gaaya, Amira; Leprince, Pascal; Le Feuvre, Claude; Soubrier, Florent; Lompré, Anne-Marie; Nadaud, Sophie

    2011-04-01

    Aging is the main risk factor for cardiovascular diseases, but the associated molecular mechanisms are poorly understood. The Wnt signaling pathway was shown to be induced during aging in muscle and in the skin, but the regulation and role of Wnt signaling in the aged vessel have not yet been addressed. While screening for age-related changes in gene expression in the intima/media of human mammary arteries, we observed that the expression of frizzled 4 (Fzd4), a Wnt receptor, and of several targets of the Wnt/β-catenin/TCF signaling pathway [Wnt-inducible secreted protein 1 (WISP1), versican, osteopontin (SPP1), insulin-like growth factor binding protein 2 (IGFBP-2), and p21] were modified with age, suggesting an activation of the Wnt/β-catenin pathway. In contrast, we did not observe any regulation of forkhead transcription factor (FoxO) target genes. Beta-catenin-activating phosphorylation at position Ser675 was increased in aging mammary arteries, confirming the activation of this pathway. We confirmed in vitro that Wnt3a or Wnt1 treatment of human vascular smooth muscle cells (VSMCs) induced β-catenin phosphorylation at Ser675 and WISP1, SPP1, and IGFBP-2 expression. In vitro, Wnt treatment induced proliferation and cyclin D1 expression in VSMC from young (6 weeks old) rats but not in cells from older rats (8 months old), even though low-density lipoprotein receptor-related protein 6 and β-catenin phosphorylation, and β-catenin nuclear translocation demonstrated β-catenin activation in both cell types. Beta-catenin silencing demonstrated that Wnt induction of cyclin D1 expression is β-catenin dependent. Altogether, our data show that the Wnt/β-catenin/TCF pathway is activated in aging human mammary artery cells, but fails to induce the proliferation of aging vascular cells. PMID:21108734

  11. How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario

    PubMed Central

    Arrázola, Macarena S.; Silva-Alvarez, Carmen; Inestrosa, Nibaldo C.

    2015-01-01

    Alzheimer’s disease (AD) is the most common neurodegenerative disorder and is characterized by progressive memory loss and cognitive decline. One of the hallmarks of AD is the overproduction of amyloid-beta aggregates that range from the toxic soluble oligomer (Aβo) form to extracellular accumulations in the brain. Growing evidence indicates that mitochondrial dysfunction is a common feature of neurodegenerative diseases and is observed at an early stage in the pathogenesis of AD. Reports indicate that mitochondrial structure and function are affected by Aβo and can trigger neuronal cell death. Mitochondria are highly dynamic organelles, and the balance between their fusion and fission processes is essential for neuronal function. Interestingly, in AD, the process known as “mitochondrial dynamics” is also impaired by Aβo. On the other hand, the activation of the Wnt signaling pathway has an essential role in synaptic maintenance and neuronal functions, and its deregulation has also been implicated in AD. We have demonstrated that canonical Wnt signaling, through the Wnt3a ligand, prevents the permeabilization of mitochondrial membranes through the inhibition of the mitochondrial permeability transition pore (mPTP), induced by Aβo. In addition, we showed that non-canonical Wnt signaling, through the Wnt5a ligand, protects mitochondria from fission-fusion alterations in AD. These results suggest new approaches by which different Wnt signaling pathways protect neurons in AD, and support the idea that mitochondria have become potential therapeutic targets for the treatment of neurodegenerative disorders. Here we discuss the neuroprotective role of the canonical and non-canonical Wnt signaling pathways in AD and their differential modulation of mitochondrial processes, associated with mitochondrial dysfunction and neurodegeneration. PMID:25999816

  12. How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario.

    PubMed

    Arrázola, Macarena S; Silva-Alvarez, Carmen; Inestrosa, Nibaldo C

    2015-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder and is characterized by progressive memory loss and cognitive decline. One of the hallmarks of AD is the overproduction of amyloid-beta aggregates that range from the toxic soluble oligomer (Aβo) form to extracellular accumulations in the brain. Growing evidence indicates that mitochondrial dysfunction is a common feature of neurodegenerative diseases and is observed at an early stage in the pathogenesis of AD. Reports indicate that mitochondrial structure and function are affected by Aβo and can trigger neuronal cell death. Mitochondria are highly dynamic organelles, and the balance between their fusion and fission processes is essential for neuronal function. Interestingly, in AD, the process known as "mitochondrial dynamics" is also impaired by Aβo. On the other hand, the activation of the Wnt signaling pathway has an essential role in synaptic maintenance and neuronal functions, and its deregulation has also been implicated in AD. We have demonstrated that canonical Wnt signaling, through the Wnt3a ligand, prevents the permeabilization of mitochondrial membranes through the inhibition of the mitochondrial permeability transition pore (mPTP), induced by Aβo. In addition, we showed that non-canonical Wnt signaling, through the Wnt5a ligand, protects mitochondria from fission-fusion alterations in AD. These results suggest new approaches by which different Wnt signaling pathways protect neurons in AD, and support the idea that mitochondria have become potential therapeutic targets for the treatment of neurodegenerative disorders. Here we discuss the neuroprotective role of the canonical and non-canonical Wnt signaling pathways in AD and their differential modulation of mitochondrial processes, associated with mitochondrial dysfunction and neurodegeneration.

  13. How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario.

    PubMed

    Arrázola, Macarena S; Silva-Alvarez, Carmen; Inestrosa, Nibaldo C

    2015-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder and is characterized by progressive memory loss and cognitive decline. One of the hallmarks of AD is the overproduction of amyloid-beta aggregates that range from the toxic soluble oligomer (Aβo) form to extracellular accumulations in the brain. Growing evidence indicates that mitochondrial dysfunction is a common feature of neurodegenerative diseases and is observed at an early stage in the pathogenesis of AD. Reports indicate that mitochondrial structure and function are affected by Aβo and can trigger neuronal cell death. Mitochondria are highly dynamic organelles, and the balance between their fusion and fission processes is essential for neuronal function. Interestingly, in AD, the process known as "mitochondrial dynamics" is also impaired by Aβo. On the other hand, the activation of the Wnt signaling pathway has an essential role in synaptic maintenance and neuronal functions, and its deregulation has also been implicated in AD. We have demonstrated that canonical Wnt signaling, through the Wnt3a ligand, prevents the permeabilization of mitochondrial membranes through the inhibition of the mitochondrial permeability transition pore (mPTP), induced by Aβo. In addition, we showed that non-canonical Wnt signaling, through the Wnt5a ligand, protects mitochondria from fission-fusion alterations in AD. These results suggest new approaches by which different Wnt signaling pathways protect neurons in AD, and support the idea that mitochondria have become potential therapeutic targets for the treatment of neurodegenerative disorders. Here we discuss the neuroprotective role of the canonical and non-canonical Wnt signaling pathways in AD and their differential modulation of mitochondrial processes, associated with mitochondrial dysfunction and neurodegeneration. PMID:25999816

  14. Biphasic modulation of Wnt signaling supports efficient foregut endoderm formation from human pluripotent stem cells.

    PubMed

    Hoepfner, Jeannine; Kleinsorge, Mandy; Papp, Oliver; Ackermann, Mania; Alfken, Susanne; Rinas, Ursula; Solodenko, Wladimir; Kirschning, Andreas; Sgodda, Malte; Cantz, Tobias

    2016-05-01

    Pluripotent stem cells (embryonic stem cells and induced pluripotent stem cells) are of great promise in regenerative medicine, including molecular studies of disease mechanisms, if the affected cell type can be authentically generated during in vitro differentiation. Most existing protocols aim to mimic embryonic development steps by the supplementation of specific cytokines and small molecules, but the involved signaling pathways need further exploration. In this study, we investigated enhanced initial activation of Wnt signaling for definitive endoderm formation and subsequent rapid shutdown of Wnt signaling for proper foregut endoderm specification using 3 μM CHIR99021 and 0.5 μg/mL of secreted frizzled-related protein 5 (sFRP-5) for biphasic modulation of the Wnt pathway. The definitive endoderm and foregut endoderm differentiation capabilities of Wnt pathway-modulated cells were determined based on the expression levels of the endodermal transcription factors SOX17 and FOXA2 and those of the transcription activator GATA4 and the α-fetoprotein (AFP) gene, respectively. Furthermore, the resulting biphasic Wnt pathway modulation was investigated at the protein level by analyzing phosphorylation of glycogen synthase kinase 3 beta (GSK3β) and β-catenin. Finally, Wnt target gene expression was determined using an improved lentiviral reporter construct that enabled robust T-cell transcription factor 4 (TCF4)/lymphoid enhancer-binding factor 1 (LEF1)-mediated luciferase expression in differentiating pluripotent stem cells. In conclusion, we demonstrated robust, homogeneous, and efficient derivation of foregut endodermal cells by inducing a biphasic modulation of the Wnt signaling pathway. PMID:26861571

  15. Wnt/Ryk signaling contributes to neuropathic pain by regulating sensory neuron excitability and spinal synaptic plasticity in rats.

    PubMed

    Liu, Su; Liu, Yue-Peng; Huang, Zhi-Jiang; Zhang, Yan-Kai; Song, Angela A; Ma, Ping-Chuan; Song, Xue-Jun

    2015-12-01

    Treating neuropathic pain continues to be a major clinical challenge and underlying mechanisms of neuropathic pain remain elusive. We have recently demonstrated that Wnt signaling, which is important in developmental processes of the nervous systems, plays critical roles in the development of neuropathic pain through the β-catenin-dependent pathway in the spinal cord and the β-catenin-independent pathway in primary sensory neurons after nerve injury. Here, we report that Wnt signaling may contribute to neuropathic pain through the atypical Wnt/Ryk signaling pathway in rats. Sciatic nerve injury causes a rapid-onset and long-lasting expression of Wnt3a, Wnt5b, and Ryk receptors in primary sensory neurons, and dorsal horn neurons and astrocytes. Spinal blocking of the Wnt/Ryk receptor signaling inhibits the induction and persistence of neuropathic pain without affecting normal pain sensitivity and locomotor activity. Blocking activation of the Ryk receptor with anti-Ryk antibody, in vivo or in vitro, greatly suppresses nerve injury-induced increased intracellular Ca and hyperexcitability of the sensory neurons, and also the enhanced plasticity of synapses between afferent C-fibers and the dorsal horn neurons, and activation of the NR2B receptor and the subsequent Ca-dependent signals CaMKII, Src, ERK, PKCγ, and CREB in sensory neurons and the spinal cord. These findings indicate a critical mechanism underlying the pathogenesis of neuropathic pain and suggest that targeting the Wnt/Ryk signaling may be an effective approach for treating neuropathic pain.

  16. Role of Wnt Signaling in the Control of Adult Hippocampal Functioning in Health and Disease: Therapeutic Implications

    PubMed Central

    Ortiz-Matamoros, Abril; Salcedo-Tello, Pamela; Avila-Muñoz, Evangelina; Zepeda, Angélica; Arias, Clorinda

    2013-01-01

    It is well recognized the role of the Wnt pathway in many developmental processes such as neuronal maturation, migration, neuronal connectivity and synaptic formation. Growing evidence is also demonstrating its function in the mature brain where is associated with modulation of axonal remodeling, dendrite outgrowth, synaptic activity, neurogenesis and behavioral plasticity. Proteins involved in Wnt signaling have been found expressed in the adult hippocampus suggesting that Wnt pathway plays a role in the hippocampal function through life. Indeed, Wnt ligands act locally to regulate neurogenesis, neuronal cell shape and pre- and postsynaptic assembly, events that are thought to underlie changes in synaptic function associated with long-term potentiation and with cognitive tasks such as learning and memory. Recent data have demonstrated the increased expression of the Wnt antagonist Dickkopf-1 (DKK1) in brains of Alzheimer´s disease (AD) patients suggesting that dysfunction of Wnt signaling could also contribute to AD pathology. We review here evidence of Wnt-associated molecules expression linked to physiological and pathological hippocampal functioning in the adult brain. The basic aspects of Wnt related mechanisms underlying hippocampal plasticity as well as evidence of how hippocampal dysfunction may rely on Wnt dysregulation is analyzed. This information would provide some clues about the possible therapeutic targets for developing treatments for neurodegenerative diseases associated with aberrant brain plasticity. PMID:24403870

  17. The endothelial transcription factor ERG promotes vascular stability and growth through Wnt/β-catenin signaling.

    PubMed

    Birdsey, Graeme M; Shah, Aarti V; Dufton, Neil; Reynolds, Louise E; Osuna Almagro, Lourdes; Yang, Youwen; Aspalter, Irene M; Khan, Samia T; Mason, Justin C; Dejana, Elisabetta; Göttgens, Berthold; Hodivala-Dilke, Kairbaan; Gerhardt, Holger; Adams, Ralf H; Randi, Anna M

    2015-01-12

    Blood vessel stability is essential for embryonic development; in the adult, many diseases are associated with loss of vascular integrity. The ETS transcription factor ERG drives expression of VE-cadherin and controls junctional integrity. We show that constitutive endothelial deletion of ERG (Erg(cEC-KO)) in mice causes embryonic lethality with vascular defects. Inducible endothelial deletion of ERG (Erg(iEC-KO)) results in defective physiological and pathological angiogenesis in the postnatal retina and tumors, with decreased vascular stability. ERG controls the Wnt/β-catenin pathway by promoting β-catenin stability, through signals mediated by VE-cadherin and the Wnt receptor Frizzled-4. Wnt signaling is decreased in ERG-deficient endothelial cells; activation of Wnt signaling with lithium chloride, which stabilizes β-catenin levels, corrects vascular defects in Erg(cEC-KO) embryos. Finally, overexpression of ERG in vivo reduces permeability and increases stability of VEGF-induced blood vessels. These data demonstrate that ERG is an essential regulator of angiogenesis and vascular stability through Wnt signaling. PMID:25584796

  18. Systemic chromosome instability in Shugoshin-1 mice resulted in compromised glutathione pathway, activation of Wnt signaling and defects in immune system in the lung.

    PubMed

    Yamada, H Y; Kumar, G; Zhang, Y; Rubin, E; Lightfoot, S; Dai, W; Rao, C V

    2016-01-01

    Mitotic error-mediated chromosome instability (CIN) can lead to aneuploidy, chromothripsis, DNA damage and/or whole chromosome gain/loss. CIN may prompt rapid accumulation of mutations and genomic alterations. Thus, CIN can promote carcinogenesis. This CIN process results from a mutation in certain genes or environmental challenge such as smoking, and is highly prevalent in various cancers, including lung cancer. A better understanding of the effects of CIN on carcinogenesis will lead to novel methods for cancer prevention and treatment. Previously Shugoshin-1 (Sgo1(-/+)) mice, a transgenic mouse model of CIN, showed mild proneness to spontaneous lung and liver cancers. In this study, adoptive (T/B-cell based) immunity-deficient RAG1(-/-) Sgo1(-/+) double mutant mice developed lung adenocarcinomas more aggressively than did Sgo1(-/+) or RAG1(-/-) mice, suggesting immune system involvement in CIN-mediated lung carcinogenesis. To identify molecular causes of the lung adenocarcinoma, we used systems biology approach, comparative RNAseq, to RAG1(-/-) and RAG1(-/-) Sgo1(-/+). The comparative RNAseq data and follow-up analyses in the lungs of naive Sgo1(-/+) mice demonstrate that, (i) glutathione is depleted, making the tissue vulnerable to oxidative stress, (ii) spontaneous DNA damage is increased, (iii) oncogenic Wnt signaling is activated, (iv) both major branches of the immune system are weakened through misregulations in signal mediators such as CD80 and calreticulin and (v) the actin cytoskeleton is misregulated. Overall, the results show multi-faceted roles of CIN in lung carcinoma development in Sgo1(-/+) mice. Our model presents various effects of CIN and will help to identify potential targets to prevent CIN-driven carcinogenesis in the lung. PMID:27526110

  19. Systemic chromosome instability in Shugoshin-1 mice resulted in compromised glutathione pathway, activation of Wnt signaling and defects in immune system in the lung

    PubMed Central

    Yamada, H Y; Kumar, G; Zhang, Y; Rubin, E; Lightfoot, S; Dai, W; Rao, C V

    2016-01-01

    Mitotic error-mediated chromosome instability (CIN) can lead to aneuploidy, chromothripsis, DNA damage and/or whole chromosome gain/loss. CIN may prompt rapid accumulation of mutations and genomic alterations. Thus, CIN can promote carcinogenesis. This CIN process results from a mutation in certain genes or environmental challenge such as smoking, and is highly prevalent in various cancers, including lung cancer. A better understanding of the effects of CIN on carcinogenesis will lead to novel methods for cancer prevention and treatment. Previously Shugoshin-1 (Sgo1−/+) mice, a transgenic mouse model of CIN, showed mild proneness to spontaneous lung and liver cancers. In this study, adoptive (T/B-cell based) immunity-deficient RAG1−/− Sgo1−/+ double mutant mice developed lung adenocarcinomas more aggressively than did Sgo1−/+ or RAG1−/− mice, suggesting immune system involvement in CIN-mediated lung carcinogenesis. To identify molecular causes of the lung adenocarcinoma, we used systems biology approach, comparative RNAseq, to RAG1−/− and RAG1−/− Sgo1−/+. The comparative RNAseq data and follow-up analyses in the lungs of naive Sgo1−/+ mice demonstrate that, (i) glutathione is depleted, making the tissue vulnerable to oxidative stress, (ii) spontaneous DNA damage is increased, (iii) oncogenic Wnt signaling is activated, (iv) both major branches of the immune system are weakened through misregulations in signal mediators such as CD80 and calreticulin and (v) the actin cytoskeleton is misregulated. Overall, the results show multi-faceted roles of CIN in lung carcinoma development in Sgo1−/+ mice. Our model presents various effects of CIN and will help to identify potential targets to prevent CIN-driven carcinogenesis in the lung. PMID:27526110

  20. Identification of Wnt/β-catenin signaling pathway in dermal papilla cells of human scalp hair follicles: TCF4 regulates the proliferation and secretory activity of dermal papilla cell.

    PubMed

    Xiong, Ya; Liu, Yi; Song, Zhiqiang; Hao, Fei; Yang, Xichuan

    2014-01-01

    It is clear that the dermal papilla cell (DPC), which is located at the bottom of the hair follicle, is a special mesenchymal component, and it plays a leading role in regulating hair follicle development and periodic regeneration. Recent studies showed that the Wnt signaling pathway through β-catenin (canonical Wnt signaling pathway) is an essential component in maintaining the hair-inducing activity of the dermal papilla and growth of hair papilla cells. However, the intrinsic pathways and regulating mechanism are largely unknown. In the previous work, we constructed a cDNA subtractive library of DPC and first found that the TCF4 gene, as a key factor of Wnt signaling pathway, was expressed as the upregulated gene of the hair follicle in low-passage DPC. This study was to explore the role of TCF4 in regulating the proliferation and secretory activity of DPC. We constructed a pcDNA3.0-TCF4 expression vector and transfected it into DPC to achieve stable expression by bangosome 2000. Furthermore, we used the method of chemosynthesis to synthesize three pairs of TCF4 siRNA and transfected them into DPC. Meanwhile, we compared the transfection group and non-transfection group. We first proposed that there was expression difference in TCF4 in DPC under different biological condition. This study may have a high impact on the molecular mechanism of follicular lesions and provide a new vision for the treatment of clinic diseases.

  1. Distinct phases of Wnt/β-catenin signaling direct cardiomyocyte formation in zebrafish

    PubMed Central

    Dohn, Tracy E.; Waxman, Joshua S.

    2011-01-01

    Normal heart formation requires reiterative phases of canonical Wnt/β-catenin (Wnt) signaling. Understanding the mechanisms by which Wnt signaling directs cardiomyocyte (CM) formation in vivo is critical to being able to precisely direct differentiated CMs from stem cells in vitro. Here, we investigate the roles of Wnt signaling in zebrafish CM formation using heat-shock inducible transgenes that increase and decrease Wnt signaling. We find that there are three phases during which CM formation is sensitive to modulation of Wnt signaling through the first 24 hours of development. In addition to the previously recognized roles for Wnt signaling during mesoderm specification and in the pre-cardiac mesoderm, we find a previously unrecognized role during CM differentiation where Wnt signaling is necessary and sufficient to promote the differentiation of additional atrial cells. We also extend the previous studies of the roles of Wnt signaling during mesoderm specification and in pre-cardiac mesoderm. Importantly, in pre-cardiac mesoderm we define a new mechanism where Wnt signaling is sufficient to prevent CM differentiation, in contrast to a proposed role in inhibiting cardiac progenitor (CP) specification. The inability of the CPs to differentiate appears to lead to cell death through a p53/Caspase-3 independent mechanism. Together with a report for an even later role for Wnt signaling in restricting proliferation of differentiated ventricular CMs, our results indicate that during the first 3 days of development in zebrafish there are four distinct phases during which CMs are sensitive to Wnt signaling. PMID:22094017

  2. Upregulation of lncRNA HNF1A-AS1 promotes cell proliferation and metastasis in osteosarcoma through activation of the Wnt/β-catenin signaling pathway

    PubMed Central

    Zhao, Hongxing; Hou, Wengen; Tao, Jingang; Zhao, Yilei; Wan, Guang; Ma, Chao; Xu, Haibin

    2016-01-01

    HNF1A-antisense 1 (HNF1A-AS1), a long non-coding RNA (lncRNA), is associated with metastasis and is an independent prognostic factor for lung cancer. Recent studies demonstrated that HNF1A-AS1 play important roles in cacinogenesis. However, the exact effects and molecular mechanisms of HNF1A-AS1 in osteosarcoma (OS) progression is still unclear. In the present study, we found that HNF1A-AS1 was markedly up-regulated in OS tissues compared to their adjacent non-tumor tissues. HNF1A-AS1 expression levels were positively associated with the clinical stage, distant metastasis, and reduced overall survival of OS patients. In addition, knockdown HNF1A-AS1 expression inhibited cell proliferation, metastasis and influences the activity of the Wnt/β-catenin pathway in OS cells. Wnt/β-catenin pathway activator (LiCl) rescued the anticancer effect of knockdown HNF1A-AS1 expression in OS cells. In conclusion, our study demonstrated that HNF1A-AS1 promoted the progression of OS via regulating the activity of the Wnt/β-catenin pathway, indicating that HNF1A-AS1 might be a potential target for the treatment of OS. PMID:27648140

  3. Upregulation of lncRNA HNF1A-AS1 promotes cell proliferation and metastasis in osteosarcoma through activation of the Wnt/β-catenin signaling pathway.

    PubMed

    Zhao, Hongxing; Hou, Wengen; Tao, Jingang; Zhao, Yilei; Wan, Guang; Ma, Chao; Xu, Haibin

    2016-01-01

    HNF1A-antisense 1 (HNF1A-AS1), a long non-coding RNA (lncRNA), is associated with metastasis and is an independent prognostic factor for lung cancer. Recent studies demonstrated that HNF1A-AS1 play important roles in cacinogenesis. However, the exact effects and molecular mechanisms of HNF1A-AS1 in osteosarcoma (OS) progression is still unclear. In the present study, we found that HNF1A-AS1 was markedly up-regulated in OS tissues compared to their adjacent non-tumor tissues. HNF1A-AS1 expression levels were positively associated with the clinical stage, distant metastasis, and reduced overall survival of OS patients. In addition, knockdown HNF1A-AS1 expression inhibited cell proliferation, metastasis and influences the activity of the Wnt/β-catenin pathway in OS cells. Wnt/β-catenin pathway activator (LiCl) rescued the anticancer effect of knockdown HNF1A-AS1 expression in OS cells. In conclusion, our study demonstrated that HNF1A-AS1 promoted the progression of OS via regulating the activity of the Wnt/β-catenin pathway, indicating that HNF1A-AS1 might be a potential target for the treatment of OS. PMID:27648140

  4. Wnt/ß-catenin signalling and the dynamics of fate decisions in early mouse embryos and embryonic stem (ES) cells.

    PubMed

    Muñoz-Descalzo, Silvia; Hadjantonakis, Anna-Katerina; Arias, Alfonso Martinez

    2015-12-01

    Wnt/ß-catenin signalling is a widespread cell signalling pathway with multiple roles during vertebrate development. In mouse embryonic stem (mES) cells, there is a dual role for ß-catenin: it promotes differentiation when activated as part of the Wnt/ß-catenin signalling pathway, and promotes stable pluripotency independently of signalling. Although mES cells resemble the preimplantation epiblast progenitors, the first requirement for Wnt/ß-catenin signalling during mouse development has been reported at implantation [1,2]. The relationship between ß-catenin and pluripotency and that of mES cells with epiblast progenitors suggests that ß-catenin might have a functional role during preimplantation development. Here we summarize the expression and function of Wnt/ß-catenin signalling elements during the early stages of mouse development and consider the reasons why the requirement in ES cells do not reflect the embryo.

  5. Primary cilia integrate hedgehog and Wnt signaling during tooth development.

    PubMed

    Liu, B; Chen, S; Cheng, D; Jing, W; Helms, J A

    2014-05-01

    Many ciliopathies have clinical features that include tooth malformations but how these defects come about is not clear. Here we show that genetic deletion of the motor protein Kif3a in dental mesenchyme results in an arrest in odontogenesis. Incisors are completely missing, and molars are enlarged in Wnt1(Cre+)Kif3a(fl/fl) embryos. Although amelogenesis and dentinogenesis initiate in the molar tooth bud, both processes terminate prematurely. We demonstrate that loss of Kif3a in dental mesenchyme results in loss of Hedgehog signaling and gain of Wnt signaling in this same tissue. The defective dental mesenchyme then aberrantly signals to the dental epithelia, which prompts an up-regulation in the Hedgehog and Wnt responses in the epithelia and leads to multiple attempts at invagination and an expanded enamel organ. Thus, the primary cilium integrates Hedgehog and Wnt signaling between dental epithelia and mesenchyme, and this cilia-dependent integration is required for proper tooth development.

  6. Wnt Signaling Inhibits Adrenal Steroidogenesis by Cell-Autonomous and Non–Cell-Autonomous Mechanisms

    PubMed Central

    Walczak, Elisabeth M.; Kuick, Rork; Finco, Isabella; Bohin, Natacha; Hrycaj, Steven M.; Wellik, Deneen M.

    2014-01-01

    Wnt/β-catenin (βcat) signaling is critical for adrenal homeostasis. To elucidate how Wnt/βcat signaling elicits homeostatic maintenance of the adrenal cortex, we characterized the identity of the adrenocortical Wnt-responsive population. We find that Wnt-responsive cells consist of sonic hedgehog (Shh)-producing adrenocortical progenitors and differentiated, steroidogenic cells of the zona glomerulosa, but not the zona fasciculata and rarely cells that are actively proliferating. To determine potential direct inhibitory effects of βcat signaling on zona fasciculata-associated steroidogenesis, we used the mouse ATCL7 adrenocortical cell line that serves as a model system of glucocorticoid-producing fasciculata cells. Stimulation of βcat signaling caused decreased corticosterone release consistent with the observed reduced transcription of steroidogenic genes Cyp11a1, Cyp11b1, Star, and Mc2r. Decreased steroidogenic gene expression was correlated with diminished steroidogenic factor 1 (Sf1; Nr5a1) expression and occupancy on steroidogenic promoters. Additionally, βcat signaling suppressed the ability of Sf1 to transactivate steroidogenic promoters independent of changes in Sf1 expression level. To investigate Sf1-independent effects of βcat on steroidogenesis, we used Affymetrix gene expression profiling of Wnt-responsive cells in vivo and in vitro. One candidate gene identified, Ccdc80, encodes a secreted protein with unknown signaling mechanisms. We report that Ccdc80 is a novel βcat-regulated gene in adrenocortical cells. Treatment of adrenocortical cells with media containing secreted Ccdc80 partially phenocopies βcat-induced suppression of steroidogenesis, albeit through an Sf1-independent mechanism. This study reveals multiple mechanisms of βcat-mediated suppression of steroidogenesis and suggests that Wnt/βcat signaling may regulate adrenal homeostasis by inhibiting fasciculata differentiation and promoting the undifferentiated state of progenitor

  7. Reengineering autologous bone grafts with the stem cell activator WNT3A.

    PubMed

    Jing, Wei; Smith, Andrew A; Liu, Bo; Li, Jingtao; Hunter, Daniel J; Dhamdhere, Girija; Salmon, Benjamin; Jiang, Jie; Cheng, Du; Johnson, Chelsey A; Chen, Serafine; Lee, Katherine; Singh, Gurpreet; Helms, Jill A

    2015-04-01

    Autologous bone grafting represents the standard of care for treating bone defects but this biomaterial is unreliable in older patients. The efficacy of an autograft can be traced back to multipotent stem cells residing within the bone graft. Aging attenuates the viability and function of these stem cells, leading to inconsistent rates of bony union. We show that age-related changes in autograft efficacy are caused by a loss in endogenous Wnt signaling. Blocking this endogenous Wnt signal using Dkk1 abrogates autograft efficacy whereas providing a Wnt signal in the form of liposome-reconstituted WNT3A protein (L-WNT3A) restores bone forming potential to autografts from aged animals. The bioengineered autograft exhibits significantly better survival in the hosting site. Mesenchymal and skeletal stem cell populations in the autograft are activated by L-WNT3A and mitotic activity and osteogenic differentiation are significantly enhanced. In a spinal fusion model, aged autografts treated with L-WNT3A demonstrate superior bone forming capacity compared to the standard of care. Thus, a brief incubation in L-WNT3A reliably improves autologous bone grafting efficacy, which has the potential to significantly improve patient care in the elderly.

  8. Reengineering autologous bone grafts with the stem cell activator WNT3A.

    PubMed

    Jing, Wei; Smith, Andrew A; Liu, Bo; Li, Jingtao; Hunter, Daniel J; Dhamdhere, Girija; Salmon, Benjamin; Jiang, Jie; Cheng, Du; Johnson, Chelsey A; Chen, Serafine; Lee, Katherine; Singh, Gurpreet; Helms, Jill A

    2015-04-01

    Autologous bone grafting represents the standard of care for treating bone defects but this biomaterial is unreliable in older patients. The efficacy of an autograft can be traced back to multipotent stem cells residing within the bone graft. Aging attenuates the viability and function of these stem cells, leading to inconsistent rates of bony union. We show that age-related changes in autograft efficacy are caused by a loss in endogenous Wnt signaling. Blocking this endogenous Wnt signal using Dkk1 abrogates autograft efficacy whereas providing a Wnt signal in the form of liposome-reconstituted WNT3A protein (L-WNT3A) restores bone forming potential to autografts from aged animals. The bioengineered autograft exhibits significantly better survival in the hosting site. Mesenchymal and skeletal stem cell populations in the autograft are activated by L-WNT3A and mitotic activity and osteogenic differentiation are significantly enhanced. In a spinal fusion model, aged autografts treated with L-WNT3A demonstrate superior bone forming capacity compared to the standard of care. Thus, a brief incubation in L-WNT3A reliably improves autologous bone grafting efficacy, which has the potential to significantly improve patient care in the elderly. PMID:25682158

  9. Overexpression of HSPA1A enhances the osteogenic differentiation of bone marrow mesenchymal stem cells via activation of the Wnt/β-catenin signaling pathway

    PubMed Central

    Zhang, Wei; Xue, Deting; Yin, Houfa; Wang, Shengdong; Li, Chao; Chen, Erman; Hu, Dongcai; Tao, Yiqing; Yu, Jiawei; Zheng, Qiang; Gao, Xiang; Pan, Zhijun

    2016-01-01

    HSPA1A, which encodes cognate heat shock protein 70, plays important roles in various cellular metabolic pathways. To investigate its effects on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), its expression level was compared between undifferentiated and differentiated BMSCs. Rat HSPA1A overexpression in BMSCs increased osteoblast-specific gene expression, alkaline phosphatase activity, and mineral deposition in vitro. Moreover, it upregulated β-catenin and downregulated DKK1 and SOST. The enhanced osteogenesis due to HSPA1A overexpression was partly rescued by a Wnt/β-catenin inhibitor. Additionally, using a rat tibial fracture model, a sheet of HSPA1A-overexpressing BMSCs improved bone fracture healing, as determined by imaging and histological analysis. Taken together, these findings suggest that HSPA1A overexpression enhances osteogenic differentiation of BMSCs, partly through Wnt/β-catenin. PMID:27279016

  10. Wnt Signaling as a Therapeutic Target for Bone Diseases

    PubMed Central

    Hoeppner, Luke H.; Secreto, Frank J.; Westendorf, Jennifer J.

    2010-01-01

    Background There is a need to develop new bone anabolic agents because current bone regeneration regimens have limitations. The Wingless-type MMTV integration site (Wnt) pathway has emerged as a crucial regulator of bone formation and regeneration. Objective Toreview the molecular basis for Wnt pathway modulation and discuss potential strategies that target it and improve bone mass. Methods Data in peer-reviewed reports and meeting abstracts are discussed. Results/Conclusions Neutralizing inhibitors of Wnt signaling have emerged as promising and feasible strategies. Small molecule inhibitors of GSK3β increase bone mass, lower adiposity and reduce fracture risk. Neutralizing antibodies to Dickkopf 1, secreted Frizzled-related protein 1 and sclerostin produce similar outcomes in animal models. These drugs are exciting breakthroughs, but they are not without risks. The challenges include tissue-specific targeting and consequently, long-term safety. PMID:19335070

  11. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    SciTech Connect

    Yin, Xinhua; Wang, Xiaoyuan; Hu, Xiongke; Chen, Yong; Zeng, Kefeng; Zhang, Hongqi

    2015-07-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.

  12. Novel TCF-binding sites specify transcriptional repression by Wnt signalling

    PubMed Central

    Blauwkamp, Timothy A; Chang, Mikyung V; Cadigan, Ken M

    2008-01-01

    Both transcriptional activation and repression have essential functions in maintaining proper spatial and temporal control of gene expression. Although Wnt signalling is often associated with gene activation, we have identified several directly repressed targets of Wnt signalling in Drosophila. Here, we explore how individual Wnt target genes are specified for signal-induced activation or repression. Similar to activation, repression required binding of Armadillo (Arm) to the N terminus of TCF. However, TCF/Arm mediated repression by binding to DNA motifs that are markedly different from typical TCF-binding sites. Conversion of the novel motifs to standard TCF-binding sites reversed the mode of regulation, resulting in Wnt-mediated activation instead of repression. A mutant form of Arm defective in activation was still functional for repression, indicating that distinct domains of the protein are required for each activity. This study suggests that the sequence of TCF-binding sites allosterically regulates the TCF/Arm complex to effect either transcriptional activation or repression. PMID:18418383

  13. Novel TCF-binding sites specify transcriptional repression by Wnt signalling.

    PubMed

    Blauwkamp, Timothy A; Chang, Mikyung V; Cadigan, Ken M

    2008-05-21

    Both transcriptional activation and repression have essential functions in maintaining proper spatial and temporal control of gene expression. Although Wnt signalling is often associated with gene activation, we have identified several directly repressed targets of Wnt signalling in Drosophila. Here, we explore how individual Wnt target genes are specified for signal-induced activation or repression. Similar to activation, repression required binding of Armadillo (Arm) to the N terminus of TCF. However, TCF/Arm mediated repression by binding to DNA motifs that are markedly different from typical TCF-binding sites. Conversion of the novel motifs to standard TCF-binding sites reversed the mode of regulation, resulting in Wnt-mediated activation instead of repression. A mutant form of Arm defective in activation was still functional for repression, indicating that distinct domains of the protein are required for each activity. This study suggests that the sequence of TCF-binding sites allosterically regulates the TCF/Arm complex to effect either transcriptional activation or repression. PMID:18418383

  14. A review of crosstalk between MAPK and Wnt signals and its impact on cartilage regeneration

    PubMed Central

    Zhang, Ying; Pizzute, Tyler; Pei, Ming

    2014-01-01

    Chondrogenesis is a developmental process that is controlled and coordinated by many growth and differentiation factors as well as environmental factors that initiate or suppress cellular signaling pathways and transcription of specific genes in a temporal-spatial manner. As key signaling molecules in regulating cell proliferation, homeostasis, and development, both mitogen-activated protein kinases (MAPK) and the Wnt family participate in morphogenesis and tissue patterning and play important roles in skeletal development, especially chondrogenesis. Recent findings suggest that both signals are also actively involved in arthritis and related diseases. Despite the fact that the crosstalk between MAPK and Wnt signaling has been implicated to play a significant role in cancer, few studies have summarized this interaction and crosstalk in regulating chondrogenesis. In this review, we focus on MAPK and Wnt signaling in reference to their relationships in different types of cells and particularly how this crosstalk might influence chondrogenesis and cartilage development. We also discuss how the interactions between MAPK and Wnt signaling might relate to cartilage related diseases such as osteoarthritis and explore the potential therapeutic targets for disease treatments. PMID:25312291

  15. Wnt3a Promotes the Vasculogenic Mimicry Formation of Colon Cancer via Wnt/β-Catenin Signaling.

    PubMed

    Qi, Lisha; Song, Wangzhao; Liu, Zhiyong; Zhao, Xiulan; Cao, Wenfeng; Sun, Baocun

    2015-08-10

    Our previous study provided evidence that non-canonical Wnt signaling is involved in regulating vasculogenic mimicry (VM) formation. However, the functions of canonical Wnt signaling in VM formation have not yet been explored. In this study, we found the presence of VM was related to colon cancer histological differentiation (p < 0.001), the clinical stage (p < 0.001), and presence of metastasis and recurrence (p < 0.001). VM-positive colon cancer samples showed increased Wnt3a expression (p < 0.001) and β-catenin nuclear expression (p < 0.001) compared with the VM-negative samples. In vitro, over-regulated Wnt3a expression in HT29 colon cancer cells promoted the capacity to form tube-like structures in the three-dimensional (3-D) culture together with increased expression of endothelial phenotype-associated proteins such as VEGFR2 and VE-cadherin. The mouse xenograft model showed that Wnt3a-overexpressing cells grew into larger tumor masses and formed more VM than the control cells. In addition, the Wnt/β-catenin signaling antagonist Dickkopf-1(Dkk1) can reverse the capacity to form tube-like structures and can decrease the expressions of VEGFR2 and VE-cadherin in Wnt3a-overexpressing cells. Taken together, our results suggest that Wnt/β-catenin signaling is involved in VM formation in colon cancer and might contribute to the development of more accurate treatment modalities aimed at VM.

  16. Tumor Endothelial Marker 8 Amplifies Canonical Wnt Signaling in Blood Vessels

    PubMed Central

    Verma, Kiran; Gu, Jingsheng; Werner, Erica

    2011-01-01

    Tumor Endothelial Marker 8/Anthrax Toxin Receptor 1 (TEM8/ANTXR1) expression is induced in the vascular compartment of multiple tumors and therefore, is a candidate molecule to target tumor therapies. This cell surface molecule mediates anthrax toxin internalization, however, its physiological function in blood vessels remains largely unknown. We identified the chicken chorioallantoic membrane (CAM) as a model system to study the endogenous function of TEM8 in blood vessels as we found that TEM8 expression was induced transiently between day 10 and 12 of embryonic development, when the vascular tree is undergoing final development and growth. We used the cell-binding component of anthrax toxin, Protective Antigen (PA), to engage endogenous TEM8 receptors and evaluate the effects of PA-TEM8 complexes on vascular development. PA applied at the time of highest TEM8 expression reduced vascular density and disrupted hierarchical branching as revealed by quantitative morphometric analysis of the vascular tree after 48h. PA-dependent reduced branching phenotype was partially mimicked by Wnt3a application and ameliorated by the Wnt antagonist, Dikkopf-1. These results implicate TEM8 expression in endothelial cells in regulating the canonical Wnt signaling pathway at this day of CAM development. Consistent with this model, PA increased beta catenin levels acutely in CAM blood vessels in vivo and in TEM8 transfected primary human endothelial cells in vitro. TEM8 expression in Hek293 cells, which neither express endogenous PA-binding receptors nor Wnt ligands, stabilized beta catenin levels and amplified beta catenin-dependent transcriptional activity induced by Wnt3a. This agonistic function is supported by findings in the CAM, where the increase in TEM8 expression from day 10 to day 12 and PA application correlated with Axin 2 induction, a universal reporter gene for canonical Wnt signaling. We postulate that the developmentally controlled expression of TEM8 modulates

  17. Canonical Wnt Signaling is Required for Ophthalmic Trigeminal Placode Cell Fate Determination and Maintenance

    PubMed Central

    Lassiter, Rhonda N.T.; Dude, Carolynn; Reynolds, Stephanie B.; Winters, Nichelle I.; Baker, Clare V.H.; Stark, Michael R.

    2014-01-01

    Cranial placodes are ectodermal regions that contribute extensively to the vertebrate peripheral sensory nervous system. The development of the ophthalmic trigeminal (opV) placode, which gives rise only to sensory neurons of the ophthalmic lobe of the trigeminal ganglion, is a useful model of sensory neuron development. While key differentiation processes have been characterized at the tissue and cellular levels, the signaling pathways governing opV placode development have not. Here, we tested in chick whether the canonical Wnt signaling pathway regulates opV placode development. By introducing a Wnt reporter into embryonic chick head ectoderm, we show that the canonical pathway is active in Pax3+ opV placode cells as, or shortly after, they are induced to express Pax3. Blocking the canonical Wnt pathway resulted in the failure of targeted cells to adopt or maintain an opV fate, as assayed by the expression of various markers including Pax3, FGFR4, Eya2, and the neuronal differentiation markers Islet1, neurofilament and NeuN, although, surprisingly, it led to upregulation of Neurogenin2, both in the opV placode and elsewhere in the ectoderm. Activating the canonical Wnt signaling pathway, however, was not sufficient to induce Pax3, the earliest specific marker of the opV placode. We conclude that canonical Wnt signaling is necessary for normal opV placode development, and propose that other molecular cues are required in addition to Wnt signaling to promote cells toward an opV placode fate. PMID:17604017

  18. Maternal Wnt/STOP signaling promotes cell division during early Xenopus embryogenesis

    PubMed Central

    Huang, Ya-Lin; Anvarian, Zeinab; Döderlein, Gabriele; Acebron, Sergio P.; Niehrs, Christof

    2015-01-01

    During Xenopus development, Wnt signaling is thought to function first after midblastula transition to regulate axial patterning via β-catenin–mediated transcription. Here, we report that Wnt/glycogen synthase kinase 3 (GSK3) signaling functions posttranscriptionally already in mature oocytes via Wnt/stabilization of proteins (STOP) signaling. Wnt signaling is induced in oocytes after their entry into meiotic metaphase II and declines again upon exit into interphase. Wnt signaling inhibits Gsk3 and thereby protects proteins from polyubiquitination and degradation in mature oocytes. In a protein array screen, we identify a cluster of mitotic effector proteins that are polyubiquitinated in a Gsk3-dependent manner in Xenopus. Consequently inhibition of maternal Wnt/STOP signaling, but not β-catenin signaling, leads to early cleavage arrest after fertilization. The results support a novel role for Wnt signaling in cell cycle progression independent of β-catenin. PMID:25901317

  19. Overexpression of Wnt-1 in thyrocytes enhances cellular growth but suppresses transcription of the thyroperoxidase gene via different signaling mechanisms.

    PubMed

    Kim, Won Bae; Lewis, Christopher J; McCall, Kelly D; Malgor, Ramiro; Kohn, Aimee D; Moon, Randall T; Kohn, Leonard D

    2007-04-01

    Wnt binding to cell surface receptors can activate a 'canonical' pathway that increases cellular beta-catenin or a 'noncanonical' Ca(++) pathway which can increase protein kinase C (PKC) activity. Although components of both Wnt/beta-catenin-signaling pathways exist in thyrocytes, their biological role is largely unknown. In evaluating the biological role of Wnt signaling in differentiated FRTL-5 thyroid cells, we showed that TSH increased canonical Wnt-1 but, surprisingly, decreased the active form of beta-catenin. Transient overexpression of Wnt-1 or beta-catenin in FRTL-5 cells increased active beta-catenin (ABC), decreased thyroperoxidase (TPO) mRNA, and suppressed TPO-promoter activity. The target of beta-catenin suppressive action was a consensus T cell factor/lymphoid enhancing factor (TCF/LEF)-binding site 5'-A/T A/T CAAAG-3', -137 to -129 bp on the rat TPO promoter. beta-Catenin overexpression significantly increased complex formation between beta-catenin/TCF-1 and an oligonucleotide containing the TCF/LEF sequence, suggesting that the beta-catenin/TCF-1 complex acts as a transcriptional repressor of the TPO gene. Stable over-expression of Wnt-1 in FRTL-5 cells significantly increased the growth rate without increasing beta-catenin levels. Increased growth was blunted by a PKC inhibitor, staurosporin. Wnt-1 overexpression increased serine phosphorylation, without affecting tyrosine phosphorylation, of signal transducers and activators of transcription 3 (STAT3) protein. In addition, these final results suggest that TSH-induced increase in Wnt-1 levels in thyrocytes contributes to enhanced cellular growth via a PKC pathway that increases STAT3 serine phosphorylation and activation, whereas TSH-induced decrease in activation of beta-catenin simultaneously relieves transcriptional suppression of TPO. We hypothesize that Wnt signaling contributes to the ability of TSH to simultaneously increase cell growth and functional, thyroid-specific, gene expression

  20. A Wnt5a signaling pathway in the pathogenesis of HIV-1 gp120-induced pain.

    PubMed

    Yuan, Su-Bo; Ji, Guangchen; Li, Bei; Andersson, Tommy; Neugebauer, Volker; Tang, Shao-Jun

    2015-07-01

    Pathological pain is one of the most common neurological complications in patients with HIV-1/AIDS. However, the pathogenic process is unclear. Our recent studies show that Wnt5a is upregulated in the spinal cord dorsal horn (SDH) of the patients with HIV who develop pain and that HIV-1 gp120, a potential causal factor of the HIV-associated pain, rapidly upregulates Wnt5a in the mouse SDH. Using a mouse model, we show here that a specific Wnt5a antagonist, Box-5, attenuated gp120-induced mechanical allodynia. Conversely, a Wnt5a agonist, Foxy5, facilitated the allodynia. To elucidate the molecular mechanism by which Wnt5a regulates gp120-induced allodynia, we tested the role of the JNK/TNF-α pathway. We observed that the JNK-specific inhibitor SP600125 blocked either gp120- or Foxy5-induced allodynia. Similarly, the TNF-α-specific antagonist Enbrel also reversed either gp120- or Foxy5-induced allodynia. These data suggest that JNK and TNF-α mediate the biological effects of Wnt5a in regulating gp120-induced allodynia. To investigate the cellular mechanism, we performed extracellular single-unit recording from SDH neurons in anesthetized mice. Both Box-5 and SP600125 negated gp120-induced potentiation of SDH neuron spiking evoked by mechanical stimulation of the hind paw. Furthermore, while Foxy5 potentiated spike frequency of SDH neurons, either SP600125 or Enbrel blocked the potentiation. The data indicate that Wnt5a potentiates the activity of SDH neurons through the JNK-TNF-α pathway. Collectively, our findings suggest that Wnt5a regulates the pathogenesis of gp120-induced pain, likely by sensitizing pain-processing SDH neurons through JNK/TNF-α signaling.

  1. miR-218 Directs a Wnt Signaling Circuit to Promote Differentiation of Osteoblasts and Osteomimicry of Metastatic Cancer Cells*

    PubMed Central

    Hassan, Mohammad Q.; Maeda, Yukiko; Taipaleenmaki, Hanna; Zhang, Weibing; Jafferji, Mohammad; Gordon, Jonathan A. R.; Li, Zhaoyong; Croce, Carlo M.; van Wijnen, Andre J.; Stein, Janet L.; Stein, Gary S.; Lian, Jane B.

    2012-01-01

    MicroRNAs (miRNAs) negatively and post-transcriptionally regulate expression of multiple target genes to support anabolic pathways for bone formation. Here, we show that miR-218 is induced during osteoblast differentiation and has potent osteogenic properties. miR-218 promotes commitment and differentiation of bone marrow stromal cells by activating a positive Wnt signaling loop. In a feed forward mechanism, miR-218 stimulates the Wnt pathway by down-regulating three Wnt signaling inhibitors during the process of osteogenesis: Sclerostin (SOST), Dickkopf2 (DKK2), and secreted frizzled-related protein2 (SFRP2). In turn, miR-218 expression is up-regulated in response to stimulated Wnt signaling and functionally drives Wnt-related transcription and osteoblast differentiation, thereby creating a positive feedback loop. Furthermore, in metastatic breast cancer cells but not in normal mammary epithelial cells, miR-218 enhances Wnt activity and abnormal expression of osteoblastic genes (osteomimicry) that contribute to homing and growth of cells metastatic to bone. Thus, miR-218/Wnt signaling circuit amplifies both the osteoblast phenotype and osteomimicry-related tumor activity. PMID:23060446

  2. Identifying domains of EFHC1 involved in ciliary localization, ciliogenesis, and the regulation of Wnt signaling.

    PubMed

    Zhao, Ying; Shi, Jianli; Winey, Mark; Klymkowsky, Michael W

    2016-03-15

    EFHC1 encodes a ciliary protein that has been linked to Juvenile Myoclonic Epilepsy. In ectodermal explants, derived from Xenopus laevis embryos, the morpholino-mediated down-regulation of EFHC1b inhibited multiciliated cell formation. In those ciliated cells that did form, axoneme but not basal body formation was inhibited. EFHC1b morphant embryos displayed defects in central nervous system (CNS) and neural crest patterning that were rescued by a EFHC1b-GFP chimera. EFHC1b-GFP localized to ciliary axonemes in epidermal, gastrocoele roof plate, and neural tube cells. In X. laevis there is a link between Wnt signaling and multiciliated cell formation. While down-regulation of EFHC1b led to a ~2-fold increase in the activity of the β-catenin/Wnt-responsive TOPFLASH reporter, EFHC1b-GFP did not inhibit β-catenin activation of TOPFLASH. Wnt8a RNA levels were increased in EFHC1b morphant ectodermal explants and intact embryos, analyzed prior to the on-set of ciliogenesis. Rescue of the EFHC1b MO's ciliary axonemal phenotypes required the entire protein; in contrast, the EFHC1b morpholino's Wnt8a, CNS, and neural crest phenotypes were rescued by a truncated form of EFHC1b. The EFHC1b morpholino's Wnt8a phenotype was also rescued by the injection of RNAs encoding secreted Wnt inhibitors, suggesting that these phenotypes are due to effects on Wnt signaling, rather than the loss of cilia, an observation of potential relevance to understanding EFHC1's role in human neural development.

  3. Paracrine WNT5A signaling in healthy and neoplastic mammary tissue.

    PubMed

    Kusner, David; Borcherding, Nicholas; Zhang, Weizhou

    2016-01-01

    Paracrine signaling between mammary epithelial cells has long been appreciated. Recently, we found that Wnt5a, a novel noncanonical Wnt ligand of luminal origin, counteracts canonical Wnt signaling in basal mammary epithelial cells through a paracrine pathway, inhibits the expansion of Erbb2-induced tumor-initiating cells, and suppresses tumor incidence and metastasis. PMID:27308558

  4. Triptonide Effectively Inhibits Wnt/β-Catenin Signaling via C-terminal Transactivation Domain of β-catenin.

    PubMed

    Chinison, Jessica; Aguilar, Jose S; Avalos, Alan; Huang, Ying; Wang, Zhijun; Cameron, D Joshua; Hao, Jijun

    2016-01-01

    Abnormal activation of canonical Wnt/β-catenin signaling is implicated in many diseases including cancer. As a result, therapeutic agents that disrupt this signaling pathway have been highly sought after. Triptonide is a key bioactive small molecule identified in a traditional Chinese medicine named Tripterygium wilfordii Hook F., and it has a broad spectrum of biological functions. Here we show that triptonide can effectively inhibit canonical Wnt/β-catenin signaling by targeting the downstream C-terminal transcription domain of β-catenin or a nuclear component associated with β-catenin. In addition, triptonide treatment robustly rescued the zebrafish "eyeless" phenotype induced by GSK-3β antagonist 6-bromoindirubin-30-oxime (BIO) for Wnt signaling activation during embryonic gastrulation. Finally, triptonide effectively induced apoptosis of Wnt-dependent cancer cells, supporting the therapeutic potential of triptonide. PMID:27596363

  5. Triptonide Effectively Inhibits Wnt/β-Catenin Signaling via C-terminal Transactivation Domain of β-catenin

    PubMed Central

    Chinison, Jessica; Aguilar, Jose S.; Avalos, Alan; Huang, Ying; Wang, Zhijun; Cameron, D. Joshua; Hao, Jijun

    2016-01-01

    Abnormal activation of canonical Wnt/β-catenin signaling is implicated in many diseases including cancer. As a result, therapeutic agents that disrupt this signaling pathway have been highly sought after. Triptonide is a key bioactive small molecule identified in a traditional Chinese medicine named Tripterygium wilfordii Hook F., and it has a broad spectrum of biological functions. Here we show that triptonide can effectively inhibit canonical Wnt/β-catenin signaling by targeting the downstream C-terminal transcription domain of β-catenin or a nuclear component associated with β-catenin. In addition, triptonide treatment robustly rescued the zebrafish “eyeless” phenotype induced by GSK-3β antagonist 6-bromoindirubin-30-oxime (BIO) for Wnt signaling activation during embryonic gastrulation. Finally, triptonide effectively induced apoptosis of Wnt-dependent cancer cells, supporting the therapeutic potential of triptonide. PMID:27596363

  6. Wnt signaling pathway improves central inhibitory synaptic transmission in a mouse model of Duchenne muscular dystrophy.

    PubMed

    Fuenzalida, Marco; Espinoza, Claudia; Pérez, Miguel Ángel; Tapia-Rojas, Cheril; Cuitino, Loreto; Brandan, Enrique; Inestrosa, Nibaldo C

    2016-02-01

    The dystrophin-associated glycoprotein complex (DGC) that connects the cytoskeleton, plasma membrane and the extracellular matrix has been related to the maintenance and stabilization of channels and synaptic receptors, which are both essential for synaptogenesis and synaptic transmission. The dystrophin-deficient (mdx) mouse model of Duchenne muscular dystrophy (DMD) exhibits a significant reduction in hippocampal GABA efficacy, which may underlie the altered synaptic function and abnormal hippocampal long-term plasticity exhibited by mdx mice. Emerging studies have implicated Wnt signaling in the modulation of synaptic efficacy, neuronal plasticity and cognitive function. We report here that the activation of the non-canonical Wnt-5a pathway and Andrographolide, improves hippocampal mdx GABAergic efficacy by increasing the number of inhibitory synapses and GABA(A) receptors or GABA release. These results indicate that Wnt signaling modulates GABA synaptic efficacy and could be a promising novel target for DMD cognitive therapy. PMID:26626079

  7. Thymine DNA Glycosylase Is a Positive Regulator of Wnt Signaling in Colorectal Cancer*

    PubMed Central

    Xu, Xuehe; Yu, Tianxin; Shi, Jiandang; Chen, Xi; Zhang, Wen; Lin, Ting; Liu, Zhihong; Wang, Yadong; Zeng, Zheng; Wang, Chi; Li, Mingsong; Liu, Chunming

    2014-01-01

    Wnt signaling plays an important role in colorectal cancer (CRC). Although the mechanisms of β-catenin degradation have been well studied, the mechanism by which β-catenin activates transcription is still not fully understood. While screening a panel of DNA demethylases, we found that thymine DNA glycosylase (TDG) up-regulated Wnt signaling. TDG interacts with the transcription factor TCF4 and coactivator CREB-binding protein/p300 in the Wnt pathway. Knocking down TDG by shRNAs inhibited the proliferation of CRC cells in vitro and in vivo. In CRC patients, TDG levels were significantly higher in tumor tissues than in the adjacent normal tissues. These results suggest that TDG warrants consideration as a potential biomarker for CRC and as a target for CRC treatment. PMID:24532795

  8. HOXA5 Counteracts Stem Cell Traits by Inhibiting Wnt Signaling in Colorectal Cancer.

    PubMed

    Ordóñez-Morán, Paloma; Dafflon, Caroline; Imajo, Masamichi; Nishida, Eisuke; Huelsken, Joerg

    2015-12-14

    Hierarchical organization of tissues relies on stem cells, which either self-renew or produce committed progenitors predestined for lineage differentiation. Here we identify HOXA5 as an important repressor of intestinal stem cell fate in vivo and identify a reciprocal feedback between HOXA5 and Wnt signaling. HOXA5 is suppressed by the Wnt pathway to maintain stemness and becomes active only outside the intestinal crypt where it inhibits Wnt signaling to enforce differentiation. In colon cancer, HOXA5 is downregulated, and its re-expression induces loss of the cancer stem cell phenotype, preventing tumor progression and metastasis. Tumor regression by HOXA5 induction can be triggered by retinoids, which represent tangible means to treat colon cancer by eliminating cancer stem cells. PMID:26678341

  9. The Drosophila Homologue of the Amyloid Precursor Protein Is a Conserved Modulator of Wnt PCP Signaling

    PubMed Central

    Soldano, Alessia; Okray, Zeynep; Janovska, Pavlina; Tmejová, Kateřina; Reynaud, Elodie; Claeys, Annelies; Yan, Jiekun; Atak, Zeynep Kalender; De Strooper, Bart; Dura, Jean-Maurice; Bryja, Vítězslav; Hassan, Bassem A.

    2013-01-01

    Wnt Planar Cell Polarity (PCP) signaling is a universal regulator of polarity in epithelial cells, but it regulates axon outgrowth in neurons, suggesting the existence of axonal modulators of Wnt-PCP activity. The Amyloid precursor proteins (APPs) are intensely investigated because of their link to Alzheimer's disease (AD). APP's in vivo function in the brain and the mechanisms underlying it remain unclear and controversial. Drosophila possesses a single APP homologue called APP Like, or APPL. APPL is expressed in all neurons throughout development, but has no established function in neuronal development. We therefore investigated the role of Drosophila APPL during brain development. We find that APPL is involved in the development of the Mushroom Body αβ neurons and, in particular, is required cell-autonomously for the β-axons and non-cell autonomously for the α-axons growth. Moreover, we find that APPL is a modulator of the Wnt-PCP pathway required for axonal outgrowth, but not cell polarity. Molecularly, both human APP and fly APPL form complexes with PCP receptors, thus suggesting that APPs are part of the membrane protein complex upstream of PCP signaling. Moreover, we show that APPL regulates PCP pathway activation by modulating the phosphorylation of the Wnt adaptor protein Dishevelled (Dsh) by Abelson kinase (Abl). Taken together our data suggest that APPL is the first example of a modulator of the Wnt-PCP pathway specifically required for axon outgrowth. PMID:23690751

  10. Wnt/β-catenin signaling suppresses DUX4 expression and prevents apoptosis of FSHD muscle cells

    PubMed Central

    Block, Gregory J.; Narayanan, Divya; Amell, Amanda M.; Petek, Lisa M.; Davidson, Kathryn C.; Bird, Thomas D.; Tawil, Rabi; Moon, Randall T.; Miller, Daniel G.

    2013-01-01

    Facioscapulohumeral muscular dystrophy is a dominantly inherited myopathy associated with chromatin relaxation of the D4Z4 macrosatellite array on chromosome 4. DUX4 is encoded within each unit of the D4Z4 array where it is normally transcriptionally silenced and packaged as constitutive heterochromatin. Truncation of the array to less than 11 D4Z4 units (FSHD1) or mutations in SMCHD1 (FSHD2) results in chromatin relaxation and a small percentage of cultured myoblasts from these individuals exhibit infrequent bursts of DUX4 expression. There are no cellular or animal models to determine the trigger of the DUX4 producing transcriptional bursts and there has been a failure to date to detect the protein in significant numbers of cells from FSHD-affected individuals. Here, we demonstrate for the first time that myotubes generated from FSHD patients express sufficient amounts of DUX4 to undergo DUX4-dependent apoptosis. We show that activation of the Wnt/β-catenin signaling pathway suppresses DUX4 transcription in FSHD1 and FSHD2 myotubes and can rescue DUX4-mediated myotube apoptosis. In addition, reduction of mRNA transcripts from Wnt pathway genes β-catenin, Wnt3A and Wnt9B results in DUX4 activation. We propose that Wnt/β-catenin signaling is important for transcriptional repression of DUX4 and identify a novel group of therapeutic targets for the treatment of FSHD. PMID:23821646

  11. Quantitative and kinetic profile of Wnt/β-catenin signaling components during human neural progenitor cell differentiation.

    PubMed

    Mazemondet, Orianne; Hubner, Rayk; Frahm, Jana; Koczan, Dirk; Bader, Benjamin M; Weiss, Dieter G; Uhrmacher, Adelinde M; Frech, Moritz J; Rolfs, Arndt; Luo, Jiankai

    2011-12-01

    ReNcell VM is an immortalized human neural progenitor cell line with the ability to differentiate in vitro into astrocytes and neurons, in which the Wnt/β-catenin pathway is known to be involved. However, little is known about kinetic changes of this pathway in human neural progenitor cell differentiation. In the present study, we provide a quantitative profile of Wnt/β-catenin pathway dynamics showing its spatio-temporal regulation during ReNcell VM cell differentiation. We show first that T-cell factor dependent transcription can be activated by stabilized β-catenin. Furthermore, endogenous Wnt ligands, pathway receptors and signaling molecules are temporally controlled, demonstrating changes related to differentiation stages. During the first three hours of differentiation the signaling molecules LRP6, Dvl2 and β-catenin are spatio-temporally regulated between distinct cellular compartments. From 24 h onward, components of the Wnt/β-catenin pathway are strongly activated and regulated as shown by mRNA up-regulation of Wnt ligands (Wnt5a and Wnt7a), receptors including Frizzled-2, -3, -6, -7, and -9, and co-receptors, and target genes including Axin2. This detailed temporal profile of the Wnt/β-catenin pathway is a first step to understand, control and to orientate, in vitro, human neural progenitor cell differentiation. PMID:21805133

  12. Jade-1 inhibits Wnt signalling by ubiquitylating beta-catenin and mediates Wnt pathway inhibition by pVHL.

    PubMed

    Chitalia, Vipul C; Foy, Rebecca L; Bachschmid, Markus M; Zeng, Liling; Panchenko, Maria V; Zhou, Mina I; Bharti, Ajit; Seldin, David C; Lecker, Stewart H; Dominguez, Isabel; Cohen, Herbert T

    2008-10-01

    The von Hippel-Lindau protein pVHL suppresses renal tumorigenesis in part by promoting the degradation of hypoxia-inducible HIF-alpha transcription factors; additional mechanisms have been proposed. pVHL also stabilizes the plant homeodomain protein Jade-1, which is a candidate renal tumour suppressor that may correlate with renal cancer risk. Here we show that Jade-1 binds the oncoprotein beta-catenin in Wnt-responsive fashion. Moreover, Jade-1 destabilizes wild-type beta-catenin but not a cancer-causing form of beta-catenin. Whereas the well-established beta-catenin E3 ubiquitin ligase component beta-TrCP ubiquitylates only phosphorylated beta-catenin, Jade-1 ubiquitylates both phosphorylated and non-phosphorylated beta-catenin and therefore regulates canonical Wnt signalling in both Wnt-off and Wnt-on phases. Thus, the different characteristics of beta-TrCP and Jade-1 may ensure optimal Wnt pathway regulation. Furthermore, pVHL downregulates beta-catenin in a Jade-1-dependent manner and inhibits Wnt signalling, supporting a role for Jade-1 and Wnt signalling in renal tumorigenesis. The pVHL tumour suppressor and the Wnt tumorigenesis pathway are therefore directly linked through Jade-1.

  13. Wnt3a regulates proliferation and migration of HUVEC via canonical and non-canonical Wnt signaling pathways

    SciTech Connect

    Samarzija, Ivana; Sini, Patrizia; Schlange, Thomas; MacDonald, Gwen; Hynes, Nancy E.

    2009-08-28

    Untangling the signaling pathways involved in endothelial cell biology is of central interest for the development of antiangiogenesis based therapies. Here we report that Wnt3a induces the proliferation and migration of HUVECs, but does not affect their survival. Wnt3a-induced proliferation was VEGFR signaling independent, but reduced upon CamKII inhibition. In a search for the downstream mediators of Wnt3a's effects on HUVEC biology, we found that Wnt3a treatment leads to phosphorylation of DVL3 and stabilization of {beta}-catenin. Moreover, under the same conditions we observed an upregulation in c-MYC, TIE-2 and GJA1 mRNA transcripts. Although treatment of HUVECs with Wnt5a induced DVL3 phosphorylation, we did not observe any of the other effects seen upon Wnt3a stimulation. Taken together, our data indicate that Wnt3a induces canonical and non-canonical Wnt signaling in HUVECs, and stimulates their proliferation and migration.

  14. Submandibular parasympathetic gangliogenesis requires Sprouty-dependent Wnt signals from epithelial progenitors

    PubMed Central

    Knosp, Wendy M.; Knox, Sarah M.; Lombaert, Isabelle M.A.; Haddox, Candace L.; Patel, Vaishali N.; Hoffman, Matthew P.

    2015-01-01

    Parasympathetic innervation is critical for submandibular gland (SMG) development and regeneration. Parasympathetic ganglia (PSG) are derived from Schwann cell precursors that migrate along nerves, differentiate into neurons, and coalesce within their target tissue to form ganglia. However, signals that initiate gangliogenesis after the precursors differentiate into neurons are unknown. We found deleting negative regulators of FGF signaling, Sprouty1 and Sprouty2 (Spry1/2DKO), resulted in a striking loss of gangliogenesis, innervation and keratin 5-positive (K5+) epithelial progenitors in the SMG. Here we identify Wnts produced by K5+ progenitors in the SMG as key mediators of gangliogenesis. Wnt signaling increases survival and proliferation of PSG neurons and inhibiting Wnt signaling disrupts gangliogenesis and organ innervation. Activating Wnt signaling and reducing FGF gene dosage rescues gangliogenesis and innervation in both the Spry1/2DKO SMG and pancreas. Thus K5+ progenitors produce Wnt signals to establish the PSG-epithelial communication required for organ innervation and progenitor cell maintenance. PMID:25805134

  15. Wnt signaling in cancer stem cells and colon cancer metastasis

    PubMed Central

    Ben-Ze'ev, Avri

    2016-01-01

    Overactivation of Wnt signaling is a hallmark of colorectal cancer (CRC). The Wnt pathway is a key regulator of both the early and the later, more invasive, stages of CRC development. In the normal intestine and colon, Wnt signaling controls the homeostasis of intestinal stem cells (ISCs) that fuel, via proliferation, upward movement of progeny cells from the crypt bottom toward the villus and differentiation into all cell types that constitute the intestine. Studies in recent years suggested that cancer stem cells (CSCs), similar to ISCs of the crypts, consist of a small subpopulation of the tumor and are responsible for the initiation and progression of the disease. Although various ISC signature genes were also identified as CRC markers and some of these genes were even demonstrated to have a direct functional role in CRC development, the origin of CSCs and their contribution to cancer progression is still debated. Here, we describe studies supporting a relationship between Wnt-regulated CSCs and the progression of CRC. PMID:27134739

  16. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling.

    PubMed

    Glinka, Andrei; Dolde, Christine; Kirsch, Nadine; Huang, Ya-Lin; Kazanskaya, Olga; Ingelfinger, Dierk; Boutros, Michael; Cruciat, Cristina-Maria; Niehrs, Christof

    2011-10-01

    R-spondins are secreted Wnt signalling agonists, which regulate embryonic patterning and stem cell proliferation, but whose mechanism of action is poorly understood. Here we show that R-spondins bind to the orphan G-protein-coupled receptors LGR4 and LGR5 by their Furin domains. Gain- and loss-of-function experiments in mammalian cells and Xenopus embryos indicate that LGR4 and LGR5 promote R-spondin-mediated Wnt/β-catenin and Wnt/PCP signalling. R-spondin-triggered β-catenin signalling requires Clathrin, while Wnt3a-mediated β-catenin signalling requires Caveolin-mediated endocytosis, suggesting that internalization has a mechanistic role in R-spondin signalling.

  17. Matrix metalloproteinase-10 regulates stemness of ovarian cancer stem-like cells by activation of canonical Wnt signaling and can be a target of chemotherapy-resistant ovarian cancer

    PubMed Central

    Mariya, Tasuku; Hirohashi, Yoshihiko; Torigoe, Toshihiko; Tabuchi, Yuta; Asano, Takuya; Saijo, Hiroshi; Kuroda, Takafumi; Yasuda, Kazuyo; Mizuuchi, Masahito; Saito, Tsuyoshi; Sato, Noriyuki

    2016-01-01

    Epithelial ovarian cancer (EOC) is one of the most lethal cancers in females. Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) have been reported to be origin of primary and recurrent cancers and to be resistant to several treatments. In this study, we identified matrix metalloproteinase-10 (MMP10) is expressed in CSCs/CICs of EOC. An immunohistochemical study revealed that a high expression level of MMP10 is a marker for poor prognosis and platinum resistance in multivariate analysis. MMP10 gene overexpression experiments and MMP10 gene knockdown experiments using siRNAs revealed that MMP10 has a role in the maintenance of CSCs/CICs in EOC and resistance to platinum reagent. Furthermore, MMP10 activate canonical Wnt signaling by inhibiting noncanonical Wnt signaling ligand Wnt5a. Therefore, MMP10 is a novel marker for CSCs/CICs in EOC and that targeting MMP10 is a novel promising approach for chemotherapy-resistant CSCs/CICs in EOC. PMID:27072580

  18. WNT antagonist, DKK2, is a Notch signaling target in intestinal stem cells: augmentation of a negative regulation system for canonical WNT signaling pathway by the Notch-DKK2 signaling loop in primates.

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2007-01-01

    Notch and WNT signaling pathways are key components of the stem cell signaling network. Canonical WNT signaling to intestinal progenitor cells leads to transcriptional activation of the JAG1 gene, encoding Serrate-type Notch ligand. JAG1 then binds to the Notch receptor on adjacent stem cells to induce Notch receptor proteolyses for the release of Notch intracellular domain (NICD). NICD is associated with CSL/RBPSUH and Mastermind (MAML1, MAML2, or MAML3) to activate Notch target genes, such as HES1 and HES5. Although WNT-dependent Notch signaling activation in intestinal stem cells is clarified, the effects of Notch signaling activation on WNT signaling in progenitor cells remain unclear. We searched for Notch-response element (NRE) in the promoter region of genes encoding secreted WNT signaling inhibitors, including DKK1, DKK2, DKK3, DKK4, SFRP1, SFRP2, SFRP3, SFRP4, SFRP5 and WIF1. Double NREs were identified within human DKK2 promoter by bioinformatics and human intelligence (Humint). The human DKK2 gene was characterized as Notch signaling target in intestinal stem cells. Because DKK2 is a key player in the stem cell signaling network, the DKK2 gene at human chromosome 4q25 is a candidate tumor suppressor gene inactivated due to epigenetic silencing and/or deletion. The chimpanzee DKK2 gene was identified within the NW_105990.1 genome sequence, while the cow Dkk2 gene was identified within the AC156664.2 and AC158038.2 genome sequences. Chimpanzee DKK2 and cow Dkk2 showed 98.5% and 95.8% total-amino-acid identity with human DKK2, respectively. Double NREs in human DKK2 promoter were conserved in chimpanzee DKK2 promoter, partially in rat Dkk2 promoter, but not in cow and mouse Dkk2 promoters. The Notch-DKK2 signaling loop, created or potentiated in primates, was complementary to WNT-DKK1 and BMP-IHH-SFRP1 signaling loops for negative regulation of canonical WNT signaling pathway. Together, these facts indicate that DKK2 promoter evolution resulted in the

  19. Genome-wide network analysis of Wnt signaling in three pediatric cancers

    NASA Astrophysics Data System (ADS)

    Bao, Ju; Lee, Ho-Jin; Zheng, Jie J.

    2013-10-01

    Genomic structural alteration is common in pediatric cancers, and analysis of data generated by the Pediatric Cancer Genome Project reveals such tumor-related alterations in many Wnt signaling-associated genes. Most pediatric cancers are thought to arise within developing tissues that undergo substantial expansion during early organ formation, growth and maturation, and Wnt signaling plays an important role in this development. We examined three pediatric tumors--medullobastoma, early T-cell precursor acute lymphoblastic leukemia, and retinoblastoma--that show multiple genomic structural variations within Wnt signaling pathways. We mathematically modeled this pathway to investigate the effects of cancer-related structural variations on Wnt signaling. Surprisingly, we found that an outcome measure of canonical Wnt signaling was consistently similar in matched cancer cells and normal cells, even in the context of different cancers, different mutations, and different Wnt-related genes. Our results suggest that the cancer cells maintain a normal level of Wnt signaling by developing multiple mutations.

  20. Roles of Wnt/{beta}-catenin signaling in epithelial differentiation of mesenchymal stem cells

    SciTech Connect

    Wang, Yajing; Sun, Zhaorui; Qiu, Xuefeng; Li, Yan; Qin, Jizheng; Han, Xiaodong

    2009-12-25

    Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into epithelial lineage, but the precise mechanisms controlling this process are unclear. Our aim is to explore the roles of Wnt/{beta}-catenin in the epithelial differentiation of MSCs. Using indirect co-culture of rat MSCs with rat airway epithelial cells (RTE), MSCs expressed several airway epithelial markers (cytokeratin 18, tight junction protein occudin, cystic fibrosis transmembrance regulator). The protein levels of some important members in Wnt/{beta}-catenin signaling were determined, suggested down-regulation of Wnt/{beta}-catenin with epithelial differentiation of MSCs. Furthermore, Wnt3{alpha} can inhibit the epithelial differentiation of MSCs. A loss of {beta}-catenin induced by Dickkopf-1 can enhance MSCs differentiation into epithelial cells. Lithium chloride transiently activated {beta}-catenin expression and subsequently decreased {beta}-catenin level and at last inhibited MSCs to differentiate into airway epithelium. Taken together, our study indicated that RTE cells can trigger epithelial differentiation of MSCs. Blocking Wnt/{beta}-catenin signaling may promote MSCs to differentiate towards airway epithelial cells.

  1. Wnt signaling and hepatocarcinogenesis: molecular targets for the development of innovative anticancer drugs.

    PubMed

    Pez, Floriane; Lopez, Anaïs; Kim, Miran; Wands, Jack R; Caron de Fromentel, Claude; Merle, Philippe

    2013-11-01

    Hepatocellular carcinoma (HCC) is one of the most common causes of cancer death worldwide. HCC can be cured by radical therapies if early diagnosis is done while the tumor has remained of small size. Unfortunately, diagnosis is commonly late when the tumor has grown and spread. Thus, palliative approaches are usually applied such as transarterial intrahepatic chemoembolization and sorafenib, an anti-angiogenic agent and MAP kinase inhibitor. This latter is the only targeted therapy that has shown significant, although moderate, efficiency in some individuals with advanced HCC. This highlights the need to develop other targeted therapies, and to this goal, to identify more and more pathways as potential targets. The Wnt pathway is a key component of a physiological process involved in embryonic development and tissue homeostasis. Activation of this pathway occurs when a Wnt ligand binds to a Frizzled (FZD) receptor at the cell membrane. Two different Wnt signaling cascades have been identified, called non-canonical and canonical pathways, the latter involving the β-catenin protein. Deregulation of the Wnt pathway is an early event in hepatocarcinogenesis and has been associated with an aggressive HCC phenotype, since it is implicated both in cell survival, proliferation, migration and invasion. Thus, component proteins identified in this pathway are potential candidates of pharmacological intervention. This review focuses on the characteristics and functions of the molecular targets of the Wnt signaling cascade and how they may be manipulated to achieve anti-tumor effects. PMID:23835194

  2. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: Implications in targeted cancer therapies

    PubMed Central

    Yang, Ke; Wang, Xin; Zhang, Hongmei; Wang, Zhongliang; Nan, Guoxin; Li, Yasha; Zhang, Fugui; Mohammed, Maryam K.; Haydon, Rex C.; Luu, Hue H.; Bi, Yang; He, Tong-Chuan

    2015-01-01

    The canonical WNT/β-catenin signaling pathway governs a myriad of biological processes underlying development and maintenance of adult tissue homeostasis, including regulation of stem cell self-renewal, cell proliferation, differentiation, and apoptosis. WNTs are secreted lipid-modified glycoproteins that act as short-range ligands to activate receptor-mediated signaling pathways. The hallmark of the canonical pathway is the activation of β-catenin mediated transcriptional activity. Canonical WNTs control the β-catenin dynamics as the cytoplasmic level of β-catenin is tightly regulated via phosphorylation by the ‘destruction complex’, consisting of glycogen synthase kinase 3β (GSK3β), casein kinase 1α (CK1α), the scaffold protein AXIN, and the tumor suppressor adenomatous polyposis coli (APC). Aberrant regulation of this signaling cascade is associated with varieties of human diseases, especially cancers. Over the past decade, significant progress has been made in understanding the mechanisms of canonical WNT signaling. In this review, we focus on the current understanding of WNT signaling at the extracellular, cytoplasmic membrane, and intracellular/nuclear levels, including the emerging knowledge of crosstalk with other pathways. Recent progresses in developing novel WNT pathway-targeted therapies will also be reviewed. Thus, this review is intended to serve as a refresher of the current understanding about the physiologic and pathogenic roles of WNT/β-catenin signaling pathway, and to outline potential therapeutic opportunities by targeting the canonical WNT pathway. PMID:26618721

  3. Wnt Pathway Activation Predicts Increased Risk of Tumor Recurrence in Patients with Stage I Non-Small Cell Lung Cancer

    PubMed Central

    Shapiro, Mark; Akiri, Gal; Chin, Cynthia; Wisnivesky, Juan P.; Beasley, Mary B.; Weiser, Todd S.; Swanson, Scott J.; Aaronson, Stuart A.

    2012-01-01

    Objective To determine the prevalence of Wnt pathway activation in patients with stage I NSCLC and its influence on lung cancer recurrence. Background Despite resection, the 5 year recurrence with localized stage I non-small cell lung cancer (NSCLC) is 18.4–24%. Aberrant Wnt signaling activation plays an important role in a wide variety of tumor types. However, there is not much known about the role Wnt pathway plays in patients with stage I lung cancer Methods Tumor and normal lung tissues from 55 patients following resection for stage I NSCLC were subjected to glutathione-S-transferase (GST) E-cadherin pull-down and immunoblot analysis to assess levels of uncomplexed β-catenin, a reliable measure of Wnt signaling activation. The β-catenin gene was also screened for oncogenic mutations in tumors with activated Wnt signaling. Cancer recurrence rates were correlated in a blinded manner in patients with Wnt pathway positive and negative tumors. Results Tumors in twenty patients (36.4%) scored as Wnt positive with only one exhibiting a β-catenin oncogenic mutation. Patients with Wnt positive tumors experienced a significantly higher rate of overall cancer recurrence than those with Wnt negative tumors (30.0% vs. 5.7%, p=0.02), with 25.0% exhibiting distal tumor recurrence compared to 2.9% in the Wnt negative group (p=0.02). Conclusions Wnt pathway activation was present in a substantial fraction of Stage I NSCLCs, which was rarely due to mutations. Moreover, Wnt pathway activation was associated with a significantly higher rate of tumor recurrence. These findings suggest that Wnt activation reflects a more aggressive tumor phenotype and identifies patients who may benefit from more aggressive therapy in addition to resection. PMID:23011390

  4. IL-1β-induced, matrix metalloproteinase-3-regulated proliferation of embryonic stem cell-derived odontoblastic cells is mediated by the Wnt5 signaling pathway

    SciTech Connect

    Ozeki, Nobuaki; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio

    2014-10-15

    We previously established a method for differentiating induced pluripotent stem cells and embryonic stem (ES) cells into α2 integrin-positive odontoblast-like cells. We also reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation and suppresses apoptosis in these cells, suggesting that MMP-3 plays a potentially unique physiological role in the regeneration of odontoblast-like cells. Here, we examined whether up-regulation of MMP-3 activity by IL-1β was mediated by Wnt signaling and led to increased proliferation of odontoblast-like cells. IL-1β increased mRNA and protein levels of Wnt5a, Wnt5b and the Wnt receptor Lrp5. Exogenous Wnt5a and Wnt5b were found to increase MMP-3 mRNA, protein and activity, and interestingly the rate of proliferation in these cells. Treatment with siRNAs against Wnt5a, Wnt5b and Lrp5 suppressed the IL-1β-induced increase in MMP-3 expression and suppressed cell proliferation, an effect rescued by application of exogenous Wnt5. These results demonstrate the sequential involvement of Wnt5, Lrp5 and MMP-3 in effecting IL-1β-induced proliferation of ES cell-derived odontoblast-like cells. - Highlights: • IL-1β induces Wnt5, Lrp5/Fzd9 and MMP-3 in ES cell-derived odontoblast-like cells. • IL-1β-induced Wnt5 expression results in increased cell proliferation. • Exogenous Wnt5 increases MMP-3 activity and cell proliferation. • Exogenous Wnt5 rescues IL-1β-driven proliferation with anti-Wnt5 siRNA suppression. • IL-1β-induced cell proliferation involves Wnt5, Lrp5, and MMP-3 sequentially.

  5. Distinct modes of inhibition by sclerostin on bone morphogenetic protein and Wnt signaling pathways.

    PubMed

    Krause, Carola; Korchynskyi, Olexandr; de Rooij, Karien; Weidauer, Stella E; de Gorter, David J J; van Bezooijen, Rutger L; Hatsell, Sarah; Economides, Aris N; Mueller, Thomas D; Löwik, Clemens W G M; ten Dijke, Peter

    2010-12-31

    Sclerostin is expressed by osteocytes and has catabolic effects on bone. It has been shown to antagonize bone morphogenetic protein (BMP) and/or Wnt activity, although at present the underlying mechanisms are unclear. Consistent with previous findings, Sclerostin opposed direct Wnt3a-induced but not direct BMP7-induced responses when both ligand and antagonist were provided exogenously to cells. However, we found that when both proteins are expressed in the same cell, sclerostin can antagonize BMP signaling directly by inhibiting BMP7 secretion. Sclerostin interacts with both the BMP7 mature domain and pro-domain, leading to intracellular retention and proteasomal degradation of BMP7. Analysis of sclerostin knock-out mice revealed an inhibitory action of sclerostin on Wnt signaling in both osteoblasts and osteocytes in cortical and cancellous bones. BMP7 signaling was predominantly inhibited by sclerostin in osteocytes of the calcaneus and the cortical bone of the tibia. Our results suggest that sclerostin exerts its potent bone catabolic effects by antagonizing Wnt signaling in a paracrine and autocrine manner and antagonizing BMP signaling selectively in the osteocytes that synthesize simultaneously both sclerostin and BMP7 proteins.

  6. Capsaicin inhibits the Wnt/β-catenin signaling pathway by down-regulating PP2A.

    PubMed

    Park, Dong-Seok; Yoon, Gang-Ho; Lee, Hyun-Shik; Choi, Sun-Cheol

    2016-09-01

    Xenopus embryo serves as an ideal model for teratogenesis assays to examine the effects of any substances on the cellular processes critical for early development and adult tissue homeostasis. In our chemical library screening with frog embryo, capsaicin was found to repress the Wnt/β-catenin signaling. Depending on the stages at which embryos became exposed to capsaicin, it could disrupt formation of dorsal or posterior body axis of embryo, which is associated with inhibition of maternal or zygotic Wnt signal in early development. In agreement with these phenotypes, capsaicin suppressed the expression of Wnt target genes such as Siamois and Chordin in the organizer region of embryo and in Wnt signals-stimulated tissue explants. In addition, the cellular level of β-catenin, a key component of Wnt pathway, was down-regulated in capsaicin-treated embryonic cells. Unlike wild-type β-catenin, its non-phosphorylatable mutant in which serine and threonine residues phosphorylated by GSK3 are substituted with alanine was not destabilized by capsaicin, indicative of the effect of this chemical on the phosphorylation status of β-catenin. In support of this, capsaicin up-regulated the level of GSK3- or CK1-phosphorylated β-catenin, concomitantly lowering that of its de-phosphorylated version. Notably, capsaicin augmented the phosphorylation of a phosphatase, PP2A at tyrosine 307, suggesting its repression of the enzymatic activity of the phosphatase. Furthermore, capsaicin still enhanced β-catenin phosphorylation in cells treated with a GSK3 inhibitor, LiCl but not in those treated with a phosphatase inhibitor, okadaic acid. Together, these results indicate that capsaicin inhibits the patterning of the dorso-ventral and anterior-posterior body axes of embryo by repressing PP2A and thereby down-regulating the Wnt/β-catenin signaling. PMID:27318088

  7. HEF1, a Novel Target of Wnt Signaling, Promotes Colonic Cell Migration and Cancer Progression

    PubMed Central

    Li, Yingchun; Bavarva, Jasmin H.; Wang, Zemin; Guo, Jianhui; Qian, Chiping; Thibodeau, Stephen N.; Golemis, Erica A.; Liu, Wanguo

    2011-01-01

    Misregulation of the canonical Wnt/β-catenin pathway and aberrant activation of Wnt signaling target genes are common in colorectal cancer and contribute to cancer progression. Altered expression of HEF1 (Human Enhancer of Filamentation 1, also known as NEDD9 or Cas-L) has been implicated in progression of melanoma, breast, and colorectal cancer. However, the regulation of HEF1 and the role of HEF1 in colorectal cancer tumorigenesis are not fully understood. We here identify HEF1 as a novel Wnt signaling target. The expression of HEF1 was up-regulated by Wnt3a, β-catenin, and Dvl2 in a dose-dependent fashion, and was suppressed following β-catenin down-regulation by shRNA. In addition, elevated HEF1 mRNA and protein levels were observed in colorectal cancer cell lines and primary tumor tissues, as well as in the colon and adenoma polyps of Apcmin/+ mice. Moreover, HEF1 levels in human colorectal tumor tissues increased with the tumor grade. Chromatin immunoprecipitation (ChIP) assays and HEF1 promoter analyses revealed three functional TCF-binding sites in the promoter of HEF1 responsible for HEF1 induction by Wnt signaling. Ectopic expression of HEF1 increased cell proliferation and colony formation, while down-regulation of HEF1 in SW480 cells by shRNA had the opposite effects and inhibited the xenograft tumor growth. Furthermore, overexpression of HEF1 in SW480 cells promoted cell migration and invasion. Together, our results determined a novel role of HEF1 as a mediator of the canonical Wnt/β-catenin signaling pathway for cell proliferation, migration, and tumorigenesis, as well as an important player in colorectal tumorigenesis and progression. HEF1 may represent an attractive candidate for drug targeting in colorectal cancer. PMID:21317929

  8. Reconstitution of the Cytoplasmic Regulation of the Wnt Signaling Pathway Using Xenopus Egg Extracts.

    PubMed

    Hyde, Annastasia Simone; Hang, Brian I; Lee, Ethan

    2016-01-01

    The regulation of β-catenin turnover is the central mechanism governing activation of the Wnt signaling pathway. All components of the pathway are present in the early embryo of Xenopus laevis, and Xenopus egg extracts have been used to recapitulate complex biological reactions such as microtubule dynamics, DNA replication, chromatin assembly, and phases of the cell cycle. Herein, we describe a biochemical method for analyzing β-catenin degradation using radiolabeled and luciferase-fusion proteins in Xenopus egg extracts. We show that in such a biochemical system, cytoplasmic β-catenin degradation is regulated by soluble components of the Wnt pathway as well as small molecules. PMID:27590156

  9. Agonistic and Antagonistic Roles for TNIK and MINK in Non-Canonical and Canonical Wnt Signalling

    PubMed Central

    Mikryukov, Alexander; Moss, Tom

    2012-01-01

    Wnt signalling is a key regulatory factor in animal development and homeostasis and plays an important role in the establishment and progression of cancer. Wnt signals are predominantly transduced via the Frizzled family of serpentine receptors to two distinct pathways, the canonical ß-catenin pathway and a non-canonical pathway controlling planar cell polarity and convergent extension. Interference between these pathways is an important determinant of cellular and phenotypic responses, but is poorly understood. Here we show that TNIK (Traf2 and Nck-interacting kinase) and MINK (Misshapen/NIKs-related kinase) MAP4K signalling kinases are integral components of both canonical and non-canonical pathways in Xenopus. xTNIK and xMINK interact and are proteolytically cleaved in vivo to generate Kinase domain fragments that are active in signal transduction, and Citron-NIK-Homology (CNH) Domain fragments that are suppressive. The catalytic activity of the Kinase domain fragments of both xTNIK and xMINK mediate non-canonical signalling. However, while the Kinase domain fragments of xTNIK also mediate canonical signalling, the analogous fragments derived from xMINK strongly antagonize this signalling. Our data suggest that the proteolytic cleavage of xTNIK and xMINK determines their respective activities and is an important factor in controlling the balance between canonical and non-canonical Wnt signalling in vivo. PMID:22984420

  10. LGR5 regulates pro-survival MEK/ERK and proliferative Wnt/β-catenin signalling in neuroblastoma

    PubMed Central

    Melegh, Zsombor; Greenhough, Alexander; Malik, Sally; Szemes, Marianna; Park, Ji Hyun; Kaidi, Abderrahmane; Zhou, Li; Catchpoole, Daniel; Morgan, Rhys; Bates, David O.; Gabb, Peter J.; Malik, Karim

    2015-01-01

    LGR5 is a marker of normal and cancer stem cells in various tissues where it functions as a receptor for R-spondins and increases canonical Wnt signalling amplitude. Here we report that LGR5 is also highly expressed in a subset of high grade neuroblastomas. Neuroblastoma is a clinically heterogenous paediatric cancer comprising a high proportion of poor prognosis cases (~40%) which are frequently lethal. Unlike many cancers, Wnt pathway mutations are not apparent in neuroblastoma, although previous microarray analyses have implicated deregulated Wnt signalling in high-risk neuroblastoma. We demonstrate that LGR5 facilitates high Wnt signalling in neuroblastoma cell lines treated with Wnt3a and R-spondins, with SK-N-BE(2)-C, SK-N-NAS and SH-SY5Y cell-lines all displaying strong Wnt induction. These lines represent MYCN-amplified, NRAS and ALK mutant neuroblastoma subtypes respectively. Wnt3a/R-Spondin treatment also promoted nuclear translocation of β-catenin, increased proliferation and activation of Wnt target genes. Strikingly, short-interfering RNA mediated knockdown of LGR5 induces dramatic Wnt-independent apoptosis in all three cell-lines, accompanied by greatly diminished phosphorylation of mitogen/extracellular signal-regulated kinases (MEK1/2) and extracellular signal-regulated kinases (ERK1/2), and an increase of BimEL, an apoptosis facilitator downstream of ERK. Akt signalling is also decreased by a Rictor dependent, PDK1-independent mechanism. LGR5 expression is cell cycle regulated and LGR5 depletion triggers G1 cell-cycle arrest, increased p27 and decreased phosphorylated retinoblastoma protein. Our study therefore characterises new cancer-associated pathways regulated by LGR5, and suggest that targeting of LGR5 may be of therapeutic benefit for neuroblastomas with diverse etiologies, as well as other cancers expressing high LGR5. PMID:26517508

  11. Fluoride promotes osteoblastic differentiation through canonical Wnt/β-catenin signaling pathway.

    PubMed

    Pan, Leilei; Shi, Xiaoguang; Liu, Shuang; Guo, Xiaoying; Zhao, Ming; Cai, Ruoxin; Sun, Guifan

    2014-02-10

    Although fluoride is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. Our earlier studies highlighted a probable role of canonical Wnt pathway in bone formation of chronic fluoride-exposed rats, but the mechanism remains unclear. The current study determined the involvement of Wnt/β-catenin signaling in fluoride-induced osteoblastic differentiation. Using primary rat osteoblasts, we demonstrated that fluoride significantly promoted osteoblasts proliferation and alkaline phosphate (ALP) expression as well as the mRNA expression levels of bone differentiation markers, including type I collagen (COL1A1), ALP and osteonectin. We further found fluoride induced phosphorylations at serine 473 of Akt and serine 9 of glycogen synthase kinase-3β (GSK3β), which resulted in GSK-3β inhibition and subsequently the nuclear accumulation of the β-catenin, as shown by Western blot and immunofluorescence analysis. Moreover, fluoride also induced the expression of Wnt-targeted gene runt-related transcription factor 2 (Runx2). Importantly, the positive effect of fluoride on ALP activity and mRNA expressions of COL1A1, ALP, osteonection and Runx2 was abolished by DKK-1, a blocker of the Wnt/β-catenin receptor. Taken together, these findings suggest that fluoride promotes osteoblastic differentiation through Akt- and GSK-3β-dependent activation of Wnt/β-catenin signaling pathway in primary rat osteoblasts. Our findings provide novel insights into the mechanisms of action of fluoride in osteoblastogenesis.

  12. Fluoride promotes osteoblastic differentiation through canonical Wnt/β-catenin signaling pathway.

    PubMed

    Pan, Leilei; Shi, Xiaoguang; Liu, Shuang; Guo, Xiaoying; Zhao, Ming; Cai, Ruoxin; Sun, Guifan

    2014-02-10

    Although fluoride is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. Our earlier studies highlighted a probable role of canonical Wnt pathway in bone formation of chronic fluoride-exposed rats, but the mechanism remains unclear. The current study determined the involvement of Wnt/β-catenin signaling in fluoride-induced osteoblastic differentiation. Using primary rat osteoblasts, we demonstrated that fluoride significantly promoted osteoblasts proliferation and alkaline phosphate (ALP) expression as well as the mRNA expression levels of bone differentiation markers, including type I collagen (COL1A1), ALP and osteonectin. We further found fluoride induced phosphorylations at serine 473 of Akt and serine 9 of glycogen synthase kinase-3β (GSK3β), which resulted in GSK-3β inhibition and subsequently the nuclear accumulation of the β-catenin, as shown by Western blot and immunofluorescence analysis. Moreover, fluoride also induced the expression of Wnt-targeted gene runt-related transcription factor 2 (Runx2). Importantly, the positive effect of fluoride on ALP activity and mRNA expressions of COL1A1, ALP, osteonection and Runx2 was abolished by DKK-1, a blocker of the Wnt/β-catenin receptor. Taken together, these findings suggest that fluoride promotes osteoblastic differentiation through Akt- and GSK-3β-dependent activation of Wnt/β-catenin signaling pathway in primary rat osteoblasts. Our findings provide novel insights into the mechanisms of action of fluoride in osteoblastogenesis. PMID:24300170

  13. Ligand-independent canonical Wnt activity in canine mammary tumor cell lines associated with aberrant LEF1 expression.

    PubMed

    Gracanin, Ana; Timmermans-Sprang, Elpetra P M; van Wolferen, Monique E; Rao, Nagesha A S; Grizelj, Juraj; Vince, Silvijo; Hellmen, Eva; Mol, Jan A

    2014-01-01

    Pet dogs very frequently develop spontaneous mammary tumors and have been suggested as a good model organism for breast cancer research. In order to obtain an insight into underlying signaling mechanisms during canine mammary tumorigenesis, in this study we assessed the incidence and the mechanism of canonical Wnt activation in a panel of 12 canine mammary tumor cell lines. We show that a subset of canine mammary cell lines exhibit a moderate canonical Wnt activity that is dependent on Wnt ligands, similar to what has been described in human breast cancer cell lines. In addition, three of the tested canine mammary cell lines have a high canonical Wnt activity that is not responsive to inhibitors of Wnt ligand secretion. Tumor cell lines with highly active canonical Wnt signaling often carry mutations in key members of the Wnt signaling cascade. These cell lines, however, carry no mutations in the coding regions of intracellular Wnt pathway components (APC, β-catenin, GSK3β, CK1α and Axin1) and have a functional β-catenin destruction complex. Interestingly, however, the cell lines with high canonical Wnt activity specifically overexpress LEF1 mRNA and the knock-down of LEF1 significantly inhibits TCF-reporter activity. In addition, LEF1 is overexpressed in a subset of canine mammary carcinomas, implicating LEF1 in ligand-independent activation of canonical Wnt signaling in canine mammary tumors. We conclude that canonical Wnt activation may be a frequent event in canine mammary tumors both through Wnt ligand-dependent and novel ligand-independent mechanisms.

  14. Ligand-Independent Canonical Wnt Activity in Canine Mammary Tumor Cell Lines Associated with Aberrant LEF1 Expression

    PubMed Central

    van Wolferen, Monique E.; Rao, Nagesha A. S.; Grizelj, Juraj; Vince, Silvijo; Hellmen, Eva; Mol, Jan A.

    2014-01-01

    Pet dogs very frequently develop spontaneous mammary tumors and have been suggested as a good model organism for breast cancer research. In order to obtain an insight into underlying signaling mechanisms during canine mammary tumorigenesis, in this study we assessed the incidence and the mechanism of canonical Wnt activation in a panel of 12 canine mammary tumor cell lines. We show that a subset of canine mammary cell lines exhibit a moderate canonical Wnt activity that is dependent on Wnt ligands, similar to what has been described in human breast cancer cell lines. In addition, three of the tested canine mammary cell lines have a high canonical Wnt activity that is not responsive to inhibitors of Wnt ligand secretion. Tumor cell lines with highly active canonical Wnt signaling often carry mutations in key members of the Wnt signaling cascade. These cell lines, however, carry no mutations in the coding regions of intracellular Wnt pathway components (APC, β-catenin, GSK3β, CK1α and Axin1) and have a functional β-catenin destruction complex. Interestingly, however, the cell lines with high canonical Wnt activity specifically overexpress LEF1 mRNA and the knock-down of LEF1 significantly inhibits TCF-reporter activity. In addition, LEF1 is overexpressed in a subset of canine mammary carcinomas, implicating LEF1 in ligand-independent activation of canonical Wnt signaling in canine mammary tumors. We conclude that canonical Wnt activation may be a frequent event in canine mammary tumors both through Wnt ligand-dependent and novel ligand–independent mechanisms. PMID:24887235

  15. Ligand-independent canonical Wnt activity in canine mammary tumor cell lines associated with aberrant LEF1 expression.

    PubMed

    Gracanin, Ana; Timmermans-Sprang, Elpetra P M; van Wolferen, Monique E; Rao, Nagesha A S; Grizelj, Juraj; Vince, Silvijo; Hellmen, Eva; Mol, Jan A

    2014-01-01

    Pet dogs very frequently develop spontaneous mammary tumors and have been suggested as a good model organism for breast cancer research. In order to obtain an insight into underlying signaling mechanisms during canine mammary tumorigenesis, in this study we assessed the incidence and the mechanism of canonical Wnt activation in a panel of 12 canine mammary tumor cell lines. We show that a subset of canine mammary cell lines exhibit a moderate canonical Wnt activity that is dependent on Wnt ligands, similar to what has been described in human breast cancer cell lines. In addition, three of the tested canine mammary cell lines have a high canonical Wnt activity that is not responsive to inhibitors of Wnt ligand secretion. Tumor cell lines with highly active canonical Wnt signaling often carry mutations in key members of the Wnt signaling cascade. These cell lines, however, carry no mutations in the coding regions of intracellular Wnt pathway components (APC, β-catenin, GSK3β, CK1α and Axin1) and have a functional β-catenin destruction complex. Interestingly, however, the cell lines with high canonical Wnt activity specifically overexpress LEF1 mRNA and the knock-down of LEF1 significantly inhibits TCF-reporter activity. In addition, LEF1 is overexpressed in a subset of canine mammary carcinomas, implicating LEF1 in ligand-independent activation of canonical Wnt signaling in canine mammary tumors. We conclude that canonical Wnt activation may be a frequent event in canine mammary tumors both through Wnt ligand-dependent and novel ligand-independent mechanisms. PMID:24887235

  16. Wnt/β-catenin signaling in kidney injury and repair: a double-edged sword

    PubMed Central

    Zhou, Dong; Tan, Roderick J.; Fu, Haiyan; Liu, Youhua

    2015-01-01

    The Wnt/β-catenin signaling cascade is an evolutionarily conserved, highly complex pathway that is known to be involved in kidney injury and repair after a wide variety of insults. While the kidney displays an impressive ability to repair and recover after injury, these repair mechanisms can be overwhelmed, leading to maladaptive responses and eventual development of chronic kidney disease (CKD). Emerging evidence demonstrates that Wnt/β-catenin signaling possesses dual roles in promoting repair/regeneration or facilitating progression to CKD after acute kidney injury (AKI), depending on the magnitude and duration of its activation. In this review, we summarize the expression, intracellular modification, and secretion of Wnt family proteins and their regulation in a variety of kidney diseases. We also explore our current understanding of the potential mechanisms by which transient Wnt/β-catenin activation positively regulates adaptive responses of the kidney after AKI, and discuss how sustained activation of this signaling triggers maladaptive responses and causes destructive outcomes. A better understanding of these mechanisms may offer important opportunities for designing targeted therapy to promote adaptive kidney repair/recovery and prevent progression to CKD in patients. PMID:26692289

  17. Blockade of Wnt/β-catenin signaling suppresses breast cancer metastasis by inhibiting CSC-like phenotype.

    PubMed

    Jang, Gyu-Beom; Kim, Ji-Young; Cho, Sung-Dae; Park, Ki-Soo; Jung, Ji-Youn; Lee, Hwa-Yong; Hong, In-Sun; Nam, Jeong-Seok

    2015-01-01

    The identification of cancer stem cells (CSCs) represents an important milestone in the understanding of chemodrug resistance and cancer recurrence. More specifically, some studies have suggested that potential metastasis-initiating cells (MICs) might be present within small CSC populations. The targeting and eradication of these cells represents a potential strategy for significantly improving clinical outcomes. A number of studies have suggested that dysregulation of Wnt/β-catenin signaling occurs in human breast cancer. Consistent with these findings, our previous data have shown that the relative level of Wnt/β-catenin signaling activity in breast cancer stem cells (BCSCs) is significantly higher than that in bulk cancer cells. These results suggest that BCSCs could be sensitive to therapeutic approaches targeting Wnt/β-catenin signaling pathway. In this context, abnormal Wnt/β-catenin signaling activity may be an important clinical feature of breast cancer and a predictor of poor survival. We therefore hypothesized that Wnt/β-catenin signaling might regulate self-renewal and CSC migration, thereby enabling metastasis and systemic tumor dissemination in breast cancer. Here, we investigated the effects of inhibiting Wnt/β-catenin signaling on cancer cell migratory potential by examining the expression of CSC-related genes, and we examined how this pathway links metastatic potential with tumor formation in vitro and in vivo. PMID:26202299

  18. A truncated Wnt7a retains full biological activity in skeletal muscle

    NASA Astrophysics Data System (ADS)

    von Maltzahn, Julia; Zinoviev, Radoslav; Chang, Natasha C.; Bentzinger, C. Florian; Rudnicki, Michael A.

    2013-11-01

    Wnt signaling has essential roles during embryonic development and tissue homoeostasis. Wnt proteins are post-translationally modified and the attachment of a palmitate moiety at two conserved residues is believed to be a prerequisite for the secretion and function of Wnt proteins. Here we demonstrate that a mammalian Wnt protein can be fully functional without palmitoylation. We generate a truncated Wnt7a variant, consisting of the C-terminal 137 amino acids lacking the conserved palmitoylation sites and show that it retains full biological activity in skeletal muscle. This includes binding to and signaling through its receptor Fzd7 to stimulate symmetric expansion of satellite stem cells by activating the planar-cell polarity pathway and inducing myofibre hypertrophy by signaling through the AKT/mTOR pathway. Furthermore, this truncated Wnt7a shows enhanced secretion and dispersion compared with the full-length protein. Together, these findings open important new avenues for the development of Wnt7a as a treatment for muscle-wasting diseases and have broad implications for the therapeutic use of Wnts as biologics.

  19. CREB-binding protein, p300, butyrate, and Wnt signaling in colorectal cancer.

    PubMed

    Bordonaro, Michael; Lazarova, Darina L

    2015-07-21

    This paper reviews the distinctive roles played by the transcriptional coactivators CREB-binding protein (CBP) and p300 in Wnt/β-catenin signaling and cell physiology in colorectal cancer (CRC). Specifically, we focus on the effects of CBP- and p300-mediated Wnt activity on (1) neoplastic progression; (2) the activities of butyrate, a breakdown product of dietary fiber, on cell signaling and colonic cell physiology; (3) the development of resistance to histone deacetylase inhibitors (HDACis), including butyrate and synthetic HDACis, in colonic cells; and (4) the physiology and number of cancer stem cells. Mutations of the Wnt/β-catenin signaling pathway initiate the majority of CRC cases, and we have shown that hyperactivation of this pathway by butyrate and other HDACis promotes CRC cell apoptosis. This activity by butyrate may in part explain the preventive action of fiber against CRC. However, individuals with a high-fiber diet may still develop neoplasia; therefore, resistance to the chemopreventive action of butyrate likely contributes to CRC. CBP or p300 may modify the ability of butyrate to influence colonic cell physiology since the two transcriptional coactivators affect Wnt signaling, and likely, its hyperactivation by butyrate. Also, CBP and p300 likely affect colonic tumorigenesis, as well as stem cell pluripotency. Improvement of CRC prevention and therapy requires a better understanding of the alterations in Wnt signaling and gene expression that underlie neoplastic progression, stem cell fate, and the development of resistance to butyrate and clinically relevant HDACis. Detailed knowledge of how CBP- and p300 modulate colonic cell physiology may lead to new approaches for anti-CRC prevention and therapeutics, particularly with respect to combinatorial therapy of CBP/p300 inhibitors with HDACis.

  20. WNT signaling controls expression of pro-apoptotic BOK and BAX in intestinal cancer

    SciTech Connect

    Zeilstra, Jurrit; Joosten, Sander P.J.; Wensveen, Felix M.; Dessing, Mark C.; Schuetze, Denise M.; Eldering, Eric; Spaargaren, Marcel; Pals, Steven T.

    2011-03-04

    Research highlights: {yields} Intestinal adenomas initiated by aberrant activation of the WNT pathway displayed an increased sensitivity to apoptosis. {yields} Expression profiling of apoptosis-related genes in Apc{sup Min/+} mice revealed the differential expression of pro-apoptotic Bok and Bax. {yields} APC-mutant adenomatous crypts in FAP patients showed strongly increased BAX immunoreactivity. {yields} Blocking of {beta}-catenin/TCF-4-mediated signaling in colon cancer cells reduced the expression of BOK and BAX. -- Abstract: In a majority of cases, colorectal cancer is initiated by aberrant activation of the WNT signaling pathway. Mutation of the genes encoding the WNT signaling components adenomatous polyposis coli or {beta}-catenin causes constitutively active {beta}-catenin/TCF-mediated transcription, driving the transformation of intestinal crypts to cancer precursor lesions, called dysplastic aberrant crypt foci. Deregulated apoptosis is a hallmark of adenomatous colon tissue. However, the contribution of WNT signaling to this process is not fully understood. We addressed this role by analyzing the rate of epithelial apoptosis in aberrant crypts and adenomas of the Apc{sup Min/+} mouse model. In comparison with normal crypts and adenomas, aberrant crypts displayed a dramatically increased rate of apoptotic cell death. Expression profiling of apoptosis-related genes along the crypt-villus axis and in Apc mutant adenomas revealed increased expression of two pro-apoptotic Bcl-2 family members in intestinal adenomas, Bok and Bax. Analysis of the colon of familial adenomatous polyposis (FAP) patients along the crypt-to-surface axis, and of dysplastic crypts, corroborated this expression pattern. Disruption of {beta}-catenin/TCF-4-mediated signaling in the colorectal cancer cell line Ls174T significantly decreased BOK and BAX expression, confirming WNT-dependent regulation in intestinal epithelial cells. Our results suggest a feedback mechanism by which

  1. CELLULAR MECHANISMS OF BONE REGENERATION: ROLE OF WNT-1 IN BONE-MUSCLE INTERACTION DURING PHYSICAL ACTIVITY39.

    PubMed

    Colaianni, G; Cuscito, C; Mongelli, T; Pignataro, P; Tamma, R; Oranger, A; Colucci, S; Grano, M

    2015-01-01

    Wnt1 is one of the several glycoproteins activating Wnt signaling, critical for normal skeletal development and bone homeostasis. Wnt1 was previously believed to solely regulate central nervous system development, in particular in midbrain and cerebellum. However, remarkable findings have recently shown that several patients affected by severe form of Osteogenesis Imperfecta (OI) display a Wnt1 mutation thereby revealing a possible role of Wnt1 in bone metabolism. Here, we show that recombinant Wnt1 (r-Wnt1) strongly increases differentiation of bone marrow stromal cells into mature osteoblasts, as demonstrated by the enhanced number of cells positively stained for alkaline phosphatase, one of the osteoblastic marker genes, whose mRNA levels are also significantly up-regulated. Furthermore, other osteogenic master genes such as Collagen I and Osteopontin are also enhanced when bone marrow precursors were differentiated toward osteoblastic phenotype in the presence of r-Wnt1. Intriguingly, by in vivo and in vitro findings, we report that in the bone marrow of mice subjected to physical activity there is a high endogenous Wnt1 synthesis compared to mice kept in resting conditions. Moreover, conditioned medium collected from ex vivo myoblasts, harvested from exercised mice, up-regulates Wnt1 expression in osteoblast cell cultures obtained from control mice. Overall our findings support the role of Wnt1 in regulating bone metabolism and suggest that this molecule could be one of the mediators through which physical activity may exert beneficial effect on bone. PMID:26652489

  2. Dosage-dependent hedgehog signals integrated with Wnt/β-catenin signaling regulate external genitalia formation as an appendicular program

    PubMed Central

    Miyagawa, Shinichi; Moon, Anne; Haraguchi, Ryuma; Inoue, Chie; Harada, Masayo; Nakahara, Chiaki; Suzuki, Kentaro; Matsumaru, Daisuke; Kaneko, Takehito; Matsuo, Isao; Yang, Lei; Taketo, Makoto M.; Iguchi, Taisen; Evans, Sylvia M.; Yamada, Gen

    2009-01-01

    Embryonic appendicular structures, such as the limb buds and the developing external genitalia, are suitable models with which to analyze the reciprocal interactions of growth factors in the regulation of outgrowth. Although several studies have evaluated the individual functions of different growth factors in appendicular growth, the coordinated function and integration of input from multiple signaling cascades is poorly understood. We demonstrate that a novel signaling cascade governs formation of the embryonic external genitalia [genital tubercle (GT)]. We show that the dosage of Shh signal is tightly associated with subsequent levels of Wnt/β-catenin activity and the extent of external genitalia outgrowth. In Shh-null mouse embryos, both expression of Wnt ligands and Wnt/β-catenin signaling activity are downregulated. β-catenin gain-of-function mutation rescues defective GT outgrowth and Fgf8 expression in Shh-null embryos. These data indicate that Wnt/β-catenin signaling in the distal urethral epithelium acts downstream of Shh signaling during GT outgrowth. The current data also suggest that Wnt/β-catenin regulates Fgf8 expression via Lef/Tcf binding sites in a 3′ conserved enhancer. Fgf8 induces phosphorylation of Erk1/2 and cell proliferation in the GT mesenchyme in vitro, yet Fgf4/8 compound-mutant phenotypes indicate dispensable functions of Fgf4/8 and the possibility of redundancy among multiple Fgfs in GT development. Our results provide new insights into the integration of growth factor signaling in the appendicular developmental programs that regulate external genitalia development. PMID:19906864

  3. Acceleration of bone regeneration by local application of lithium: Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression of osteoclastogenesis.

    PubMed

    Arioka, Masaki; Takahashi-Yanaga, Fumi; Sasaki, Masanori; Yoshihara, Tatsuya; Morimoto, Sachio; Hirata, Masato; Mori, Yoshihide; Sasaguri, Toshiyuki

    2014-08-15

    Inhibition of glycogen synthase kinase (GSK)-3 and the consequent activation of the Wnt/β-catenin signaling pathway have been reported to increase bone volume. To develop a novel pharmacotherapy for injured bone, we investigated whether GSK-3 inhibitor was effective in promoting bone formation. In in vitro experiments, we examined the effects of GSK-3 inhibitors LiCl and SB216763 on osteoblastogenesis of mesenchymal progenitor C3H10T1/2 cells and osteoclastogenesis of osteoclast precursor RAW-D cells. Both inhibitors promoted osteoblast differentiation, assessed by alkaline phosphatase activity and calcium deposition, stimulating the Wnt/β-catenin signaling pathway and thereby inducing Runx2. On the other hand, the GSK-3 inhibitors suppressed osteoclast differentiation, assessed by tartrate-resistant acid phosphatase staining and number of nuclei in the cells, reducing NFATc1 expression independently of the Wnt/β-catenin signaling pathway. In subsequently performed in vivo studies, we examined the effect of locally administered Li2CO3 on the recovery from a partial defect made on the rat tibia. Computerized tomography and bone histomorphometry showed that Li2CO3 accelerated bone regeneration in defect lesion with increased lamellar bone ratio compared with the controls. These results suggested that local application of lithium (or other GSK-3 inhibitors) might effectively facilitate recovery from bone injury by promoting osteoblastogenesis and inhibiting osteoclastogenesis.

  4. Acceleration of bone regeneration by local application of lithium: Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression of osteoclastogenesis.

    PubMed

    Arioka, Masaki; Takahashi-Yanaga, Fumi; Sasaki, Masanori; Yoshihara, Tatsuya; Morimoto, Sachio; Hirata, Masato; Mori, Yoshihide; Sasaguri, Toshiyuki

    2014-08-15

    Inhibition of glycogen synthase kinase (GSK)-3 and the consequent activation of the Wnt/β-catenin signaling pathway have been reported to increase bone volume. To develop a novel pharmacotherapy for injured bone, we investigated whether GSK-3 inhibitor was effective in promoting bone formation. In in vitro experiments, we examined the effects of GSK-3 inhibitors LiCl and SB216763 on osteoblastogenesis of mesenchymal progenitor C3H10T1/2 cells and osteoclastogenesis of osteoclast precursor RAW-D cells. Both inhibitors promoted osteoblast differentiation, assessed by alkaline phosphatase activity and calcium deposition, stimulating the Wnt/β-catenin signaling pathway and thereby inducing Runx2. On the other hand, the GSK-3 inhibitors suppressed osteoclast differentiation, assessed by tartrate-resistant acid phosphatase staining and number of nuclei in the cells, reducing NFATc1 expression independently of the Wnt/β-catenin signaling pathway. In subsequently performed in vivo studies, we examined the effect of locally administered Li2CO3 on the recovery from a partial defect made on the rat tibia. Computerized tomography and bone histomorphometry showed that Li2CO3 accelerated bone regeneration in defect lesion with increased lamellar bone ratio compared with the controls. These results suggested that local application of lithium (or other GSK-3 inhibitors) might effectively facilitate recovery from bone injury by promoting osteoblastogenesis and inhibiting osteoclastogenesis. PMID:24955980

  5. Developmental Drift and the Role of Wnt Signaling in Aging

    PubMed Central

    Gruber, Jan; Yee, Zhuangli; Tolwinski, Nicholas S.

    2016-01-01

    Population aging is a public health problem affecting the majority of the developed world. As populations age, the incidence of degenerative diseases increases exponentially, leading to large increases in public spending on healthcare. Here we summarize recent findings on the developmental drift theory of aging, and the links that have been established between aging and the Wnt signaling pathways. We focus on insights derived from model organisms connecting the evolutionary basis of aging and the link to developm