Ionescu, Crina-Maria; Svobodová Vařeková, Radka; Prehn, Jochen H. M.; Huber, Heinrich J.; Koča, Jaroslav
2012-01-01
The pro-apoptotic proteins Bax and Bak are essential for executing programmed cell death (apoptosis), yet the mechanism of their activation is not properly understood at the structural level. For the first time in cell death research, we calculated intra-protein charge transfer in order to study the structural alterations and their functional consequences during Bax activation. Using an electronegativity equalization model, we investigated the changes in the Bax charge profile upon activation by a functional peptide of its natural activator protein, Bim. We found that charge reorganizations upon activator binding mediate the exposure of the functional sites of Bax, rendering Bax active. The affinity of the Bax C-domain for its binding groove is decreased due to the Arg94-mediated abrogation of the Ser184-Asp98 interaction. We further identified a network of charge reorganizations that confirms previous speculations of allosteric sensing, whereby the activation information is conveyed from the activation site, through the hydrophobic core of Bax, to the well-distanced functional sites of Bax. The network was mediated by a hub of three residues on helix 5 of the hydrophobic core of Bax. Sequence and structural alignment revealed that this hub was conserved in the Bak amino acid sequence, and in the 3D structure of folded Bak. Our results suggest that allostery mediated by charge transfer is responsible for the activation of both Bax and Bak, and that this might be a prototypical mechanism for a fast activation of proteins during signal transduction. Our method can be applied to any protein or protein complex in order to map the progress of allosteric changes through the proteins' structure. PMID:22719244
Shankar, Sharmila; Srivastava, Rakesh K
2007-06-01
Curcumin, an active ingredient of turmeric (Curcuma longa), inhibits proliferation and induces apoptosis in cancer cells, but the sequence of events leading to cell death is poorly defined. The objective of this study was to examine the molecular mechanisms by which multidomain pro-apoptotic Bcl-2 family members Bax and Bak regulate curcumin-induced apoptosis using mouse embryonic fibroblasts (MEFs) deficient in Bax, Bak or both genes. Curcumin treatment resulted an increase in the protein levels of both Bax and Bak, and mitochondrial translocation and activation of Bax in MEFs to trigger drop in mitochondrial membrane potential, cytosolic release of apoptogenic molecules [cytochrome c and second mitochondria-derived activator of caspases (Smac)/direct inhibitor of apoptosis protein-binding protein with low isoelectric point], activation of caspase-9 and caspase-3 and ultimately apoptosis. Furthermore, MEFs derived from Bax and Bak double-knockout (DKO) mice exhibited even greater protection against curcumin-induced release of cytochrome c and Smac, activation of caspase-3 and caspase-9 and induction of apoptosis compared with wild-type MEFs or single-knockout Bax(-/-) or Bak(-/-) MEFs. Interestingly, curcumin treatment also caused an increase in the protein level of apoptosis protease-activating factor-1 in wild-type MEFs. Smac N7 peptide enhanced curcumin-induced apoptosis, whereas Smac siRNA inhibited the effects of curcumin on apoptosis. Mature form of Smac sensitized Bax and Bak DKO MEFs to undergo apoptosis by acting downstream of mitochondria. The present study demonstrates the role of Bax and Bak as a critical regulator of curcumin-induced apoptosis and over-expression of Smac as interventional approaches to deal with Bax- and/or Bak-deficient chemoresistant cancers for curcumin-based therapy.
Hydrogen peroxide-induced Akt phosphorylation regulates Bax activation.
Sadidi, Mahdieh; Lentz, Stephen I; Feldman, Eva L
2009-05-01
Reactive oxygen species such as hydrogen peroxide (H(2)O(2)) are involved in many cellular processes that positively and negatively regulate cell fate. H(2)O(2), acting as an intracellular messenger, activates phosphatidylinositol-3 kinase (PI3K) and its downstream target Akt, and promotes cell survival. The aim of the current study was to understand the mechanism by which PI3K/Akt signaling promotes survival in SH-SY5Y neuroblastoma cells. We demonstrate that PI3K/Akt mediates phosphorylation of the pro-apoptotic Bcl-2 family member Bax. This phosphorylation suppresses apoptosis and promotes cell survival. Increased survival in the presence of H(2)O(2) was blocked by LY294002, an inhibitor of PI3K activation. LY294002 prevented Bax phosphorylation and resulted in Bax translocation to the mitochondria, cytochrome c release, caspase-3 activation, and cell death. Collectively, these findings reveal a mechanism by which H(2)O(2)-induced activation of PI3K/Akt influences post-translational modification of Bax and inactivates a key component of the cell death machinery.
Dejean, Laurent M.; Martinez-Caballero, Sonia; Guo, Liang; Hughes, Cynthia; Teijido, Oscar; Ducret, Thomas; Ichas, François; Korsmeyer, Stanley J.; Antonsson, Bruno; Jonas, Elizabeth A.; Kinnally, Kathleen W.
2005-01-01
Bcl-2 family proteins regulate apoptosis, in part, by controlling formation of the mitochondrial apoptosis-induced channel (MAC), which is a putative cytochrome c release channel induced early in the intrinsic apoptotic pathway. This channel activity was never observed in Bcl-2–overexpressing cells. Furthermore, MAC appears when Bax translocates to mitochondria and cytochrome c is released in cells dying by intrinsic apoptosis. Bax is a component of MAC of staurosporine-treated HeLa cells because MAC activity is immunodepleted by Bax antibodies. MAC is preferentially associated with oligomeric, not monomeric, Bax. The single channel behavior of recombinant oligomeric Bax and MAC is similar. Both channel activities are modified by cytochrome c, consistent with entrance of this protein into the pore. The mean conductance of patches of mitochondria isolated after green fluorescent protein-Bax translocation is significantly higher than those from untreated cells, consistent with onset of MAC activity. In contrast, the mean conductance of patches of mitochondria indicates MAC activity is present in apoptotic cells deficient in Bax but absent in apoptotic cells deficient in both Bax and Bak. These findings indicate Bax is a component of MAC in staurosporine-treated HeLa cells and suggest Bax and Bak are functionally redundant as components of MAC. PMID:15772159
Molecular Mechanism by which Retinoids Prevent Breast Cancer Development
2005-06-01
activated receptor ( PPAR ), liver X receptor (LXR), farnesoid X receptor (FXR) and pregnane X receptor (PXR) suggesting its involvement in several signaling...essential co-activators required for the gene activation. Different and inappropriate sub- 5 localization of the receptor may also explain the...XL act as anti-apoptotic regulators, while Bax and Bak act as pro-apoptotic regulators. Over-expressed Bax is transported to the mitochondria where it
Hyperactivity and depression-like traits in Bax KO mice
Krahe, Thomas E.; Medina, Alexandre E.; Lantz, Crystal L.; Filgueiras, Cláudio C.
2018-01-01
The Bax gene is a member of the Bcl-2 gene family and its pro-apoptotic Bcl-associated X (Bax) protein is believed to be crucial in regulating apoptosis during neuronal development as well as following injury. With the advent of mouse genomics, mice lacking the pro-apoptotic Bax gene (Bax KO) have been extensively used to study how cell death helps to determine synaptic circuitry formation during neurodevelopment and disease. Surprisingly, in spite of its wide use and the association of programmed neuronal death with motor dysfunctions and depression, the effects of Bax deletion on mice spontaneous locomotor activity and depression-like traits are unknown. Here we examine the behavioral characteristics of Bax KO male mice using classical paradigms to evaluate spontaneous locomotor activity and depressive-like responses. In the open field, Bax KO animals exhibited greater locomotor activity than their control littermates. In the forced swimming test, Bax KO mice displayed greater immobility times, a behavior despair state, when compared to controls. Collectively, our findings corroborate the notion that a fine balance between cell survival and death early during development is critical for normal brain function later in life. Furthermore, it points out the importance of considering depressive-like and hyperactivity behavioral phenotypes when conducting neurodevelopmental and other studies using the Bax KO strain. PMID:26363094
Bax Activates Endophilin B1 Oligomerization and Lipid Membrane Vesiculation*
Rostovtseva, Tatiana K.; Boukari, Hacène; Antignani, Antonella; Shiu, Brian; Banerjee, Soojay; Neutzner, Albert; Youle, Richard J.
2009-01-01
Endophilins participate in membrane scission events that occur during endocytosis and intracellular organelle biogenesis through the combined activity of an N-terminal BAR domain that interacts with membranes and a C-terminal SH3 domain that mediates protein binding. Endophilin B1 (Endo B1) was identified to bind Bax, a Bcl-2 family member that promotes apoptosis, through yeast two-hybrid protein screens. Although Endo B1 does not bind Bax in healthy cells, during apoptosis, Endo B1 interacts transiently with Bax and promotes cytochrome c release from mitochondria. To explore the molecular mechanism of action of Endo B1, we have analyzed its interaction with Bax in cell-free systems. Purified recombinant Endo B1 in solution displays a Stokes radius indicating a tetrameric quarternary structure. However, when incubated with purified Bax, it assembles into oligomers more than 4-fold greater in molecular weight. Although Endo B1 oligomerization is induced by Bax, Bax does not stably associate with the high molecular weight Endo B1 complex. Endo B1 oligomerization requires its C-terminal Src homology 3 domain and is not induced by Bcl-xL. Endo B1 combined with Bax reduces the size and changes the morphology of giant unilamellar vesicles by inducing massive vesiculation of liposomes. This activity of purified Bax protein to induce cell-free assembly of Endo B1 may reflect its activity in cells that regulates apoptosis and/or mitochondrial fusion. PMID:19805544
Regulation of apoptosis by somatostatin and substance P in peritoneal macrophages.
Kang, B N; Jeong, K S; Park, S J; Kim, S J; Kim, T H; Kim, H J; Ryu, S Y
2001-09-15
Recent studies have shown that somatostatin (SOM) inhibits interleukin 6 (IL-6) and interferon gamma (IFNgamma) production by lymphocytes and peritoneal macrophages, whereas substance P (SP) enhances these cytokines production. To define the mechanism of the cytokine production enhancements and inhibitions by SOM and SP, we examined the expression of apoptosis modulator, p53, Bcl-2, Bax, inducible nitric oxide synthase (iNOS), Fas, caspase-8 and nitric oxide (NO) in thioglycolate-elicited peritoneal macrophages. SOM caused up-regulation of p53, Bcl-2, Fas and caspase-8 activities, and down-regulation of iNOS expression and NO production. On the other hand, SP slightly induces p53 and highly induces Bcl-2, iNOS expression and NO production. These data suggest that apoptosis by SOM may occur by a Bax- and NO-independent p53 accumulation, and through Fas and caspase-8 activation pathways, and that the inducible expression of Bcl-2 and NO production by SP may contribute to prevent the signals of apoptosis by Bax, and via Fas and caspase-8 activation.
Garcia, I; Crowther, A J; Gama, V; Miller, C R; Miller, C Ryan; Deshmukh, M; Gershon, T R
2013-05-02
Neurogenesis requires negative regulation through differentiation of progenitors or their programmed cell death (PCD). Growth regulation is particularly important in the postnatal cerebellum, where excessive progenitor proliferation promotes medulloblastoma, the most common malignant brain tumor in children. We present evidence that PCD operates alongside differentiation to regulate cerebellar granule neuron progenitors (CGNPs) and to prevent medulloblastoma. Here, we show that genetic deletion of pro-apoptotic Bax disrupts regulation of cerebellar neurogenesis and promotes medulloblastoma formation. In Bax(-/-) mice, the period of neurogenesis was extended into the third week of postnatal life, and ectopic neurons and progenitors collected in the molecular layer of the cerebellum and adjacent tectum. Importantly, genetic deletion of Bax in medulloblastoma-prone ND2:SmoA1 transgenic mice greatly accelerated tumorigenesis. Bax-deficient medulloblastomas exhibited strikingly distinct pathology, with reduced apoptosis, increased neural differentiation and tectal migration. Comparing Bax(+/+) and Bax(-/-) medulloblastomas, we were able to identify upregulation of Bcl-2 and nuclear exclusion of p27 as tumorigenic changes that are required to mitigate the tumor suppressive effect of Bax. Studies on human tumors confirmed the importance of modulating Bax in medulloblastoma pathogenesis. Our results demonstrate that Bax-dependent apoptosis regulates postnatal cerebellar neurogenesis, suppresses medulloblastoma formation and imposes selective pressure on tumors that form. Functional resistance to Bax-mediated apoptosis, required for medulloblastoma tumorigenesis, may be a tumor-specific vulnerability to be exploited for therapeutic benefit.
Weber, Arnim; Paschen, Stefan A; Heger, Klaus; Wilfling, Florian; Frankenberg, Tobias; Bauerschmitt, Heike; Seiffert, Barbara M; Kirschnek, Susanne; Wagner, Hermann; Häcker, Georg
2007-05-21
Release of apoptogenic proteins such as cytochrome c from mitochondria is regulated by pro- and anti-apoptotic Bcl-2 family proteins, with pro-apoptotic BH3-only proteins activating Bax and Bak. Current models assume that apoptosis induction occurs via the binding and inactivation of anti-apoptotic Bcl-2 proteins by BH3-only proteins or by direct binding to Bax. Here, we analyze apoptosis induction by the BH3-only protein Bim(S). Regulated expression of Bim(S) in epithelial cells was followed by its rapid mitochondrial translocation and mitochondrial membrane insertion in the absence of detectable binding to anti-apoptotic Bcl-2 proteins. This caused mitochondrial recruitment and activation of Bax and apoptosis. Mutational analysis of Bim(S) showed that mitochondrial targeting, but not binding to Bcl-2 or Mcl-1, was required for apoptosis induction. In yeast, Bim(S) enhanced the killing activity of Bax in the absence of anti-apoptotic Bcl-2 proteins. Thus, cell death induction by a BH3-only protein can occur through a process that is independent of anti-apoptotic Bcl-2 proteins but requires mitochondrial targeting.
Juhásová, Barbora; Mentel, Marek; Bhatia-Kiššová, Ingrid; Zeman, Igor; Kolarov, Jordan; Forte, Michael; Polčic, Peter
2011-09-02
Proteins of the Bcl-2 family regulate programmed cell death in mammals by promoting the release of cytochrome c from mitochondria in response to various proapoptotic stimuli. The mechanism by which BH3-only members of the family activate multidomain proapoptotic proteins Bax and Bak to form a pore in mitochondrial membranes remains under dispute. We report that cell death promoting activity of BH3-only protein Bim can be reconstituted in yeast when both Bax and antiapoptotic protein Bcl-X(L) are present, suggesting that Bim likely activates Bax indirectly by inhibiting antiapoptotic proteins. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Etxebarria, Aitor; Landeta, Olatz; Antonsson, Bruno; Basañez, Gorka
2008-12-01
Small-molecule drugs that induce apoptosis in tumor cells by activation of the BCL-2-regulated mitochondrial outer membrane permeabilization (MOMP) pathway hold promise for rational anticancer therapies. Accumulating evidence indicates that the natural product gossypol and its derivatives can kill tumor cells by targeting antiapoptotic BCL-2 family members in such a manner as to trigger MOMP. However, due to the inherent complexity of the cellular apoptotic network, the precise mechanisms by which interactions between gossypol and individual BCL-2 family members lead to MOMP remain poorly understood. Here, we used simplified systems bearing physiological relevance to examine the impact of gossypol on the function of MCL-1, a key determinant for survival of various human malignancies that has become a highly attractive target for anticancer drug design. First, using a reconstituted liposomal system that recapitulates basic aspects of the BCL-2-regulated MOMP pathway, we demonstrate that MCL-1 inhibits BAX permeabilizing function via a "dual-interaction" mechanism, while submicromolar concentrations of gossypol reverse MCL-1-mediated inhibition of functional BAX activation. Solution-based studies showed that gossypol competes with BAX/BID BH3 ligands for binding to MCL-1 hydrophobic groove, thereby providing with a mechanistic explanation for how gossypol restores BAX permeabilizing function in the presence of MCL-1. By contrast, no evidence was found indicating that gossypol transforms MCL-1 into a BAX-like pore-forming molecule. Altogether, our findings validate MCL-1 as a direct target of gossypol, and highlight that making this antiapoptotic protein unable to inhibit BAX-driven MOMP may represent one important mechanism by which gossypol exerts its cytotoxic effect in selected cancer cells.
In vitro anti-inflammatory and anti-cancer activities of Cuscuta reflexa Roxb.
Suresh, V; Sruthi, V; Padmaja, B; Asha, V V
2011-04-12
To determine anti-inflammatory and anti-cancer activities of Cuscuta reflexa in cell lines (in vitro). Anti-inflammatory activity of the water extract was analysed in vitro using lipopolysaccharide (LPS) induced inflammatory reactions in murine macrophage cell line RAW264.7. The expression of COX-2 and TNF-α genes involved in inflammation was analysed by SQ RT-PCR. EMSA was conducted to analyse the influence of the extract on NF-κB signalling. Anti-cancer activity was analysed on Hep3B cells by MTT assay, DAPI staining, annexin V staining and SQ-RT PCR analysis of BAX, Bcl-2, p53 and survivin. The extract down regulated LPS induced over expression of TNF-α and COX-2 in RAW264.7 cells; blocked NF-κB binding to its motifs and induced apoptosis in Hep3B cells as evidenced from MTT, DAPI staining and annexin V staining assays. The extract up regulated pro-apoptotic factors BAX and p53, and down regulated anti-apoptotic factors Bcl-2 and survivin. The study showed that Cuscuta reflexa inhibits LPS induced inflammatory responses in RAW264.7 cells through interplay of TNF-α, COX-2 and NF-κB signalling. It induced apoptosis in Hep3B cells through the up regulation of p53, BAX and down regulation of Bcl-2 and survivin. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Lei; Wu, Shengnan; Xing, Da
2011-03-01
Glycogen synthase kinase-3β (GSK-3β) is a critical activator of cell apoptosis induced by a diverse array of insults. However, the effects of GSK-3β on the human lung adenocarcinoma cell (ASTC-a-1) apoptosis induced by high fluence low-power laser irradiation (HF-LPLI) are not clear. Here, we showed that GSK-3β was constantly translocated from cytoplasm to nucleus and activated during HF-LPLI-induced cell apoptosis. In addition, we found that co-overexpression of YFP-GSK-3β and CFP-Bax in ASTC-a-1 cells accelerated both Bax translocations to mitochondria and cell apoptosis, compared to the cells expressed CFP-Bax only under HF-LPLI treatment, indicating that GSK-3β facilitated ASTC-a-1 cells apoptosis through acceleration mitochondrial translocation of Bax. Our results demonstrate that GSK-3β exerts some of its pro-apoptotic effects in ASTC-a-1 cells by regulating the mitochondrial localization of Bax, a key component of the intrinsic apoptotic cascade.
Simonishvili, Sopio; Jain, Mohit Raja; Li, Hong; Levison, Steven W.; Wood, Teresa L.
2013-01-01
OPC (oligodendrocyte progenitor cell) death contributes significantly to the pathology and functional deficits following hypoxic-ischemic injury in the immature brain and to deficits resulting from demyelinating diseases, trauma and degenerative disorders in the adult CNS. Glutamate toxicity is a major cause of oligodendroglial death in diverse CNS disorders, and previous studies have demonstrated that AMPA/kainate receptors require the pro-apoptotic protein Bax in OPCs undergoing apoptosis. The goal of the present study was to define the pro-apoptotic and anti-apoptotic effectors that regulate Bax in healthy OPCs and after exposure to excess glutamate in vitro and following H–I (hypoxia–ischemia) in the immature rat brain. We show that Bax associates with a truncated form of Bid, a BH3-only domain protein, subsequent to glutamate treatment. Furthermore, glutamate exposure reduces Bax association with the anti-apoptotic Bcl family member, Bcl-xL. Cell fractionation studies demonstrated that both Bax and Bid translocate from the cytoplasm to mitochondria during the early stages of cell death consistent with a role for Bid as an activator, whereas Bcl-xL, which normally complexes with both Bax and Bid, disassociates from these complexes when OPCs are exposed to excess glutamate. Bax remained unactivated in the presence of insulin-like growth factor-1, and the Bcl-xL complexes were protected. Our data similarly demonstrate loss of Bcl-xL–Bax association in white matter following H–I and implicate active Bad in Bax-mediated OPC death. To identify other Bax-binding partners, we used proteomics and identified cofilin as a Bax-associated protein in OPCs. Cofilin and Bax associated in healthy OPCs, whereas the Bax–cofilin association was disrupted during glutamate-induced OPC apoptosis. PMID:24195677
Huang, Hao; Chen, Yang-Mei; Zhu, Fei; Tang, Shi-Ting; Xiao, Ji-Dong; Li, Lv-Li; Lin, Xin-Jing
2015-01-01
This study was aimed to examine whether the Na+/K+ adenosine triphosphatase (Na+/K+-ATPase) activity in ischemic penumbra is associated with the pathogenesis of ischemia/reperfusion-induced brain injury. An experimental model of cerebral ischemia/reperfusion was made by transient middle cerebral artery occlusion (tMCAO) in rats and the changes of Na+/K+-ATPase activity in the ischemic penumbra was examined by Enzyme Assay Kit. Extensive infarction was observed in the frontal and parietal cortical and subcortical areas at 6 h, 24 h, 48 h, 3 d and 7 d after tMCAO. Enzyme Assay analyses revealed the activity of Na+/K+-ATPase was decreased in the ischemic penumbra of model rats after focal cerebral ischemia/reperfusion compared with sham-operated rats, and reduced to its minimum at 48 h, while the infarct volume was enlarged gradually. In addition, accompanied by increased brain water content, apoptosis-related bcl-2 and Bax proteins, apoptotic index and neurologic deficits Longa scores, but fluctuated the ratio of bcl-2/Bax. Correlation analysis showed that the infarct volume, apoptotic index, neurologic deficits Longa scores and brain water content were negatively related with Na+/K+-ATPase activity, while the ratio of bcl-2/Bax was positively related with Na+/K+-ATPase activity. Our results suggest that down-regulated Na+/K+-ATPase activity in ischemic penumbra might be involved in the pathogenesis of cerebral ischemia/reperfusion injury presumably through the imbalance ratio of bcl-2/Bax and neuronal apoptosis, and identify novel target for neuroprotective therapeutic intervention in cerebral ischemic disease. PMID:26722460
Luo, Yang; Fu, Changfeng; Wang, Zhenyu; Zhang, Zhuo; Wang, Hongxia; Liu, Yi
2015-11-01
Mangiferin has antioxidant, antiviral, apoptosis regulating, anti‑inflammatory, antitumor and antidiabetic effects, which can also inhibit osteoclast formation and bone resorption. However, whether mangiferin ameliorates the neurological pain of spinal cord injury (SCI) in ratS remains to be elucidated. The present study investigated the therapeutic effects of mangiferin on neurological function, the water content of spinal cord, oxidative stress, the expression of inflammatory cytokines and the protein expression of Bcl‑2/Bax in a SCI rat model. In the present study, the Basso, Beattie and Bresnahan scores, and the water content of the spinal cord were used to analyze the therapeutic effects of mangiferin on neurological pain in the SCI rat. The concentrations of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and the serum levels of glutathione peroxidase (GSH‑PX), nuclear factor‑κB p65 unit, tumor necrosis factor‑α, interleukin (IL)‑1β, IL‑6 and caspase‑3/9 were detected using commercial kits. The expression levels of Bcl‑2 and Bax were measured using western blot analysis. The results demonstrated that administrating mangiferin began to ameliorate neurological function and the water content of the spinal cord in the SCI rat. The mangiferin‑treated group were found to have lower oxidative stress activity and lower expression levels of inflammatory cytokines, compared with the SCI rat. In addition, mangiferin significantly reduced the protein expression of Bax and promoted the protein expression of Bcl-2 in the SCI rat model. Finally, mangiferin markedly suppressed the expression of caspase‑3/9, indicating that the protective action of mangiferin may be associated with anti‑apoptosis activation. In conclusion, mangiferin attenuated contusive SCI in the rats through regulating oxidative stress, inflammation and the Bcl‑2 and Bax pathway.
MK-STYX, a Catalytically Inactive Phosphatase Regulating Mitochondrially Dependent Apoptosis ▿
Niemi, Natalie M.; Lanning, Nathan J.; Klomp, Jeff A.; Tait, Stephen W.; Xu, Yong; Dykema, Karl J.; Murphy, Leon O.; Gaither, L. Alex; Xu, H. Eric; Furge, Kyle A.; Green, Douglas R.; MacKeigan, Jeffrey P.
2011-01-01
Evasion of apoptosis is a significant problem affecting an array of cancers. In order to identify novel regulators of apoptosis, we performed an RNA interference (RNAi) screen against all kinases and phosphatases in the human genome. We identified MK-STYX (STYXL1), a catalytically inactive phosphatase with homology to the mitogen-activated protein kinase (MAPK) phosphatases. Despite this homology, MK-STYX knockdown does not significantly regulate MAPK signaling in response to growth factors or apoptotic stimuli. Rather, RNAi-mediated knockdown of MK-STYX inhibits cells from undergoing apoptosis induced by cellular stressors activating mitochondrion-dependent apoptosis. This MK-STYX phenotype mimics the loss of Bax and Bak, two potent guardians of mitochondrial apoptotic potential. Similar to loss of both Bax and Bak, cells without MK-STYX expression are unable to release cytochrome c. Proapoptotic members of the BCL-2 family (Bax, Bid, and Bim) are unable to trigger cytochrome c release in MK-STYX-depleted cells, placing the apoptotic deficiency at the level of mitochondrial outer membrane permeabilization (MOMP). MK-STYX was found to localize to the mitochondria but is neither released from the mitochondria upon apoptotic stress nor proximal to the machinery currently known to control MOMP, indicating that MK-STYX regulates MOMP using a distinct mechanism. PMID:21262771
Kuzmina, U Sh; Zainullina, L F; Sadovnikov, S V; Vakhitov, V A; Vakhitova, Yu V
2018-06-19
To determine the role of NMDA receptors in the functional regulation of immunocompetent cells, comparative assay was carried out for genes expressed in the mononuclears in peripheral blood of healthy persons under normal conditions and after blockade of these receptors. The genes, whose expression changed in response to blockade of NMDA receptors in mononuclears, encode the products involved in regulation of the major functions of immune cells, such as proliferation (IL4, VCAM1, and CDKN2A), apoptosis (BAX, MYC, CDKN2A, HSPB1, and CADD45A), activation (IL4R, IL4, VCAM1, and CDKN2A), and differentiation (IL4, VCAM1, and BAX).
Choi, Sunga; Singh, Shivendra V
2005-03-01
Sulforaphane, a constituent of many edible cruciferous vegetables, including broccoli, effectively suppresses proliferation of cancer cells in culture and in vivo by causing apoptosis induction, but the sequence of events leading to cell death is poorly defined. Here, we show that multidomain proapoptotic Bcl-2 family members Bax and Bak play a critical role in apoptosis induction by sulforaphane. This conclusion is based on the following observations: (a) sulforaphane treatment caused a dose- and time-dependent increase in the protein levels of both Bax and Bak and conformational change and mitochondrial translocation of Bax in SV40-transformed mouse embryonic fibroblasts (MEF) derived from wild-type mice to trigger cytosolic release of apoptogenic molecules (cytochrome c and Smac/DIABLO), activation of caspase-9 and caspase-3, and ultimately cell death; (b) MEFs derived from Bax or Bak knockout mice resisted cell death by sulforaphane, and (c) MEFs derived from Bax and Bak double knockout mice exhibited even greater protection against sulforaphane-induced cytochrome c release, caspase activation, and apoptosis compared with wild-type or single knockout cells. Interestingly, sulforaphane treatment also caused a dose- and time-dependent increase in the protein level of Apaf-1 in wild-type, Bax-/-, and Bak-/- MEFs but not in double knockout, suggesting that Bax and Bak might regulate sulforaphane-mediated induction of Apaf-1 protein. A marked decline in the protein level of X-linked inhibitor of apoptosis on treatment with sulforaphane was also observed. Thus, it is reasonable to postulate that sulforaphane-induced apoptosis is amplified by a decrease in X-linked inhibitor of apoptosis level, which functions to block cell death by inhibiting activities of caspases. In conclusion, the results of the present study indicate that Bax and Bak proteins play a critical role in initiation of cell death by sulforaphane.
Differential expression of Bcl-2 and Bax during gastric ischemia-reperfusion of rats
Qiao, Wei-Li; Wang, Guang-Ming; Shi, Yue; Wu, Jin-Xia; Qi, You-Jian; Zhang, Jian-Fu; Sun, Hong; Yan, Chang-Dong
2011-01-01
AIM: To investigate expression of Bcl-2 and Bax in gastric ischemia-reperfusion (GI-R) and involvement of extracellular signal-regulated kinase (ERK) 1/2 activation. METHODS: The GI-R model was established by ligature of the celiac artery for 30 min and reperfusion in Sprague-Dawley rats. Rats were assigned to groups in accordance with their evaluation period: control, 0, 0.5, 1, 3, 6, 24, 48, and 72 h. Expression and distribution of Bcl-2 and Bax proteins were analyzed by immunohistochemistry and western blotting in gastric tissue samples after sacrifice. RESULTS: Compared with controls, the percentage of positive cells and protein levels of Bcl-2 decreased in the early phases of reperfusion, reached its minimum at 1 h (P < 0.05); it then increased, reaching its peak at 24 h of reperfusion (P < 0.05). The pattern of Bax expression was opposite to that of Bcl-2. Bax expression increased after reperfusion, with its peak at 1 h of reperfusion (P < 0.05), and then it decreased gradually to a minimum at 24 h after reperfusion (P < 0.05). On the other hand, inhibition of activation of ERK1/2 induced by PD98059, a specific upstream MEK inhibitor, had significant effects on Bcl-2 and Bax in GI-R. Compared with GI-R treatment only at 3 h of reperfusion, PD98059 reduced the number of Bcl-2 positive cells (0.58% of R3h group, P < 0.05) and Bcl-2 protein level (74% of R3h group, P < 0.05) but increased the number of Bax-positive cells (1.33-fold vs R3h group, P < 0.05) and Bax protein level (1.35-fold of R3h group, P < 0.05). CONCLUSION: These results indicated that the Bcl-2 and Bax played a pivotal role in the gastric mucosal I-R injury and repair by activation of ERK1/2. PMID:21483632
Xiang, Jun; Wang, Zhe; Liu, Qianqian; Li, Xia; Sun, Jianguo; Fung, Kwok-Pui; Liu, Feiyan
2017-03-01
3,5-Dimethyl- 7 H-furo[3,2-g]chromen-7-one (DMFC) is a coumarin derivative with anti-cancer activity against human hepatoma cells, but the mechanisms underlying DMFC function in cancer suppression is unknown. In this study, we aimed at elucidating the molecular mechanisms underlying DMFC anti-cancer activity and determining whether DMFC is effective in suppression of drug-resistant human hepatocellular carcinoma. We show here that DMFC effectively suppresses both the parent and the multidrug-resistant hepatoma cell growth in vitro and DMFC suppresses hepatoma cell growth at least in part through inducing tumor cell apoptosis. In the molecular level, we observed that DMFC treatment decreases Bcl-2 level by a post-transcriptional mechanism and activates Bim transcription to increase Bim mRNA and protein level in hepatoma cells. Furthermore, co-immunoprecipitation studies revealed that DMFC-induced Bim interrupts interactions between Bcl-2 and Bax and between Mcl-1 and Bak, resulting in dissociation of Bax from Bcl-2 and Bak from Mcl-1 and subsequent activation of both Bax and Bak. Activation of Bax and Bak leads to mitochondrial outer membrane permeabilization and cytochrome c release. Consistent with its potent apoptosis-inducing activity, DMFC exhibited potent activity against the multidrug-resistant hepatoma xenograft growth in vivo. Therefore, we determine that DMFC suppresses hepatoma growth through decreasing Bcl-2 and increasing Bim to induce tumor cell apoptosis and hold great promise for further development as a therapeutic agent to treat chemoresistant hepatoma.
Long term effects of neonatal hypoglycaemia on pancreatic function.
Anju, T R; Paulose, C S
2015-02-01
Low blood glucose in neonates predisposes to long term pancreatic damage. We focused on evaluating long term consequences of neonatal hypoglycaemia in pancreatic functions. Pancreatic function was analysed by measuring DNA/protein synthesis, glucose/ATP uptake in vitro. Gene expression of Pdx1, NeuroD1, Pax4, Bax, caspase 3, Beclin1 were done. Muscarinic receptors were analysed by radio receptor assay. Overall pancreatic efficiency was reduced in one-month-old rats exposed to neonatal hypoglycaemia as indicated by decreased DNA/protein synthesis and glucose/ATP uptake in vitro. Both Pdx1 and Neuro D1 expression were significantly down-regulated whereas Pax4 was up-regulated. Up-regulated Bax, caspase 3 and beclin1 along with reduced muscarinic receptors accounts for activation of cell death pathways. The study revealed a drastic reduction in pancreatic functions along with activation of apoptotic factors in one month old rats exposed to neonatal hypoglycaemia.
Distinct regions of the interleukin-7 receptor regulate different Bcl2 family members.
Jiang, Qiong; Li, Wen Qing; Hofmeister, Robert R; Young, Howard A; Hodge, David R; Keller, Jonathan R; Khaled, Annette R; Durum, Scott K
2004-07-01
The antiapoptotic function of the interleukin-7 (IL-7) receptor is related to regulation of three members of the Bcl2 family: synthesis of Bcl2, phosphorylation of Bad, and cytosolic retention of Bax. Here we show that, in an IL-7-dependent murine T-cell line, different regions of the IL-7 receptor initiate the signal transduction pathways that regulate these proteins. Both Box1 and Y449 are required to signal Bcl2 synthesis and Bax cytosolic retention. This suggests a sequential model in which Jak1, which binds to Box1, is first activated and then phosphorylates Y449, leading to Bcl2 and Bax regulation, accounting for approximately 90% of the survival function. Phosphorylation of Bad required Box1 but not Y449, suggesting that Jak1 also initiates an additional signaling cascade that accounts for approximately 10% of the survival function. Stat5 was activated from the Y449 site but only partially accounted for the survival signal. Proliferation required both Y449 and Box1. Thymocyte development in vivo showed that deletion of Y449 eliminated 90% of alphabeta T-cell development and completely eliminated gammadelta T-cell development, whereas deleting Box 1 completely eliminated both alphabeta and gammadelta T-cell development. Thus the IL-7 receptor controls at least two distinct pathways, in addition to Stat5, that are required for cell survival.
Vitexins, nature-derived lignan compounds, induce apoptosis and suppress tumor growth
Zhou, YingJun; Liu, Yiliang Ellie; Cao, JianGuo; Zeng, GuangYao; Shen, Cui; Li, YanLan; Zhou, MeiChen; Chen, Yiding; Pu, Weiping; Potters, Louis; Shi, Eric Y.
2009-01-01
Purpose Lignans such as secoisolariciresinol diglucoside (SDG) in flaxseed, are metabolizes to bioactive mammalian lignans of END and ENL. Because mammalian lignans have chemical structural similarity to the natural estrogen, they are thought to behave like selective estrogen receptor modulators (SERM) and therefore have anticancer effect against hormone-related cancers. We isolated a series of lignan compounds, named as Vitexins, from the seed of Chinese herb Vitex Negundo. Experimental Design We purified several Vitexin lignan compounds. Cytotoxic and antitumor effects were analyzed in cancer cells and in tumor xenograft models. In vivo metabolism of Vitexins was determined in rat. Results Contrasts to the classical lignans, Vitexins were not metabolized to END and ENL. A mixture of Vitexins EVn-50 and purified Vitexin compound VB1 have cytotoxic effect on breast, prostate, and ovarian cancer cells and induces apoptosis with cleavage in PARP protein, up-regulation of Bax, and down-regulation of Bcl-2. This induction of apoptosis seems to be mediated by activation of caspases because inhibition of caspases activity significantly reduced induced apoptosis. We demonstrated a broad antitumor activity of EVn-50 on seven tumor xenograft models including breast, prostate, liver, and cervical cancers. Consistent with in vitro data, EVn-50 treatment induced apoptosis, down-regulated of Bcl-2, and up-regulated Bax in tumor xenografts. Conclusion Vitexin is a class of nature lignan compounds, whose action and anticancer effect is mediated by the mechanisms different from the classical lignans. Vitexin induced antitumor effect and cytotoxic activity is exerted through proapoptotic process, which is mediated by a decreased Bcl-2/Bax ratio and activation of caspases. PMID:19671865
Wang, Yi-Lu; Liu, Miao; Shang, Man; Wang, Yao; Zhang, Qi; Wang, Shao-Xun; Wei, Su; Zhang, Kun-Wei; Liu, Chao; Wu, Yan-Na; Song, Jun-Qiu; Liu, Yan-Xia
2016-02-08
To investigate the effects of circulating microvesicles (MVs) derived from ischemic preconditioning (IPC) on myocardial ischemia/reperfusion (I/R) injury in rats and explore the underlying mechanism. To establish the IPC model, the rats were subjected to brief cycles of left anterior descending (LAD) coronary occlusion and reperfusion. The blood was drawn from abdominal aorta once the operation was finished. IPC-MVs were isolated by ultracentrifugation from the peripheral blood and characterized by flow cytometry. The myocardial I/R model of rats was established in vivo. Rats were injected via the femoral vein with IPC-MVs at 7 mg/kg. Morphological changes of myocardium were observed microscopically after HE staining. Apoptosis of myocardial cells was detected with TUNEL assay. Myocardial infarct size was detected by TTC staining. Moreover, activity of plasma lactate dehydrogenase (LDH) was tested by colorimetry. The activity of caspase 3 in myocardium was assayed with spectrophotometry. Expression levels of Bcl-2 and Bax protein were examined with Western blot. The concentration of IPC-MVs, which was detected by flow cytometry, was 4380±745 cells/ μ l. Compared with I/R group, IPC-MVs alleviated the damage of tissues in I/R injured rats significantly. The myocardial infarct size and the cardiomyocyte apoptotic index were obviously decreased after IPC-MVs treatment ( P <0.01, respectively). The activity of plasma LDH was significantly decreased in IPC-MVs treated rats ( P <0.01). Moreover, the activity of caspase 3 was markedly decreased after IPC-MVs treatment ( P <0.01). In addition, the expression of Bcl-2 was increased ( P <0.01), the expression of Bax was decreased ( P <0.01), the ratio of Bcl-2/Bax was significantly increased after IPC-MVs treatment ( P <0.01). IPC-MVs protected myocardial against I/R injury by up-regulating the expression of Bcl-2 protein, down-regulating the expression of Bax protein, increasing the ratio of Bcl-2/Bax and decreasing cleavage of caspase 3.
Kim, Tae Woo; Moon, Younghye; Kim, Kyungjin; Lee, Jeong Eun; Koh, Hyun Chul; Rhyu, Im Joo; Kim, Hyun; Sun, Woong
2011-01-01
Parkinson's disease (PD) is a common, late-onset movement disorder with selective degeneration of dopaminergic (DA) neurons in the substantia nigra (SN). Although the neurotoxin 6-hydroxydopamine (6-OHDA) has been used to induce progressive degeneration of DA neurons in various animal models of PD, the precise molecular pathway and the impact of anti-apoptotic treatment on this neurodegeneration are less understood. Following a striatal injection of 6-OHDA, we observed atrophy and progressive death of DA neurons in wild-type mice. These degenerating DA neurons never exhibited signs of apoptosis (i.e., caspase-3 activation and cytoplasmic release of cytochrome C), but rather show nuclear translocation of apoptosis-inducing factor (AIF), a hallmark of regulated necrosis. However, mice with genetic deletion of the proapoptotic gene Bax (Bax-KO) exhibited a complete absence of 6-OHDA-induced DA neuron death and nuclear translocation of AIF, indicating that 6-OHDA-induced DA neuronal death is mediated by Bax-dependent AIF activation. On the other hand, DA neurons that survived in Bax-KO mice exhibited marked neuronal atrophy, without significant improvement of PD-related behavioral deficits. These findings suggest that anti-apoptotic therapy may not be sufficient for PD treatment, and the prevention of Bax-independent neuronal atrophy may be an important therapeutic target. PMID:22043283
Bcl-xL stimulates Bax relocation to mitochondria and primes cells to ABT-737.
Renault, Thibaud T; Teijido, Oscar; Missire, Florent; Ganesan, Yogesh Tengarai; Velours, Gisèle; Arokium, Hubert; Beaumatin, Florian; Llanos, Raul; Athané, Axel; Camougrand, Nadine; Priault, Muriel; Antonsson, Bruno; Dejean, Laurent M; Manon, Stéphen
2015-07-01
Bax cytosol-to-mitochondria translocation is a central event of the intrinsic pathway of apoptosis. Bcl-xL is an important regulator of this event and was recently shown to promote the retrotranslocation of mitochondrial Bax to the cytosol. The present study identifies a new aspect of the regulation of Bax localization by Bcl-xL: in addition to its role in Bax inhibition and retrotranslocation, we found that, like with Bcl-2, an increase of Bcl-xL expression levels led to an increase of Bax mitochondrial content. This finding was substantiated both in pro-lymphocytic FL5.12 cells and a yeast reporting system. Bcl-xL-dependent increase of mitochondrial Bax is counterbalanced by retrotranslocation, as we observed that Bcl-xLΔC, which is unable to promote Bax retrotranslocation, was more efficient than the full-length protein in stimulating Bax relocation to mitochondria. Interestingly, cells overexpressing Bcl-xL were more sensitive to apoptosis upon treatment with the BH3-mimetic ABT-737, suggesting that despite its role in Bax inhibition, Bcl-xL also primes mitochondria to permeabilization and cytochrome c release. Copyright © 2015 Elsevier Ltd. All rights reserved.
PUMA promotes Bax translocation in FOXO3a-dependent pathway during STS-induced apoptosis
NASA Astrophysics Data System (ADS)
Zhang, Yingjie; Chen, Qun
2009-08-01
PUMA (p53 up-regulated modulator of apoptosis, also called Bbc3) was first identified as a BH3-only Bcl-2 family protein that is transcriptionally up-regulated by p53 and activated upon p53-dependent apoptotic stimuli, such as treatment with DNA-damaging drugs or UV irradiation. Recently studies have been shown that Puma is also up-regulated in response to certain p53-independent apoptotic stimuli, such as growth factor deprivation or treatment with glucocorticoids or STS (staurosporine). However, the molecular mechanisms of PUMA up-regulation and how PUMA functions in response to p53-independent apoptotic stimuli remain poorly understood. In this study, based on real-time single cell analysis, flow cytometry and western blotting technique, we investigated the function of PUMA in living human lung adenocarcinoma cells (ASTC-a-1) after STS treatment. Our results show that FOXO3a was activated by STS stimulation and then translocated from cytosol to nucleus. The expression of PUMA was up-regulated via a FOXO3a-dependent manner after STS treatment, while p53 had little function in this process. Moreover, cell apoptosis and Bax translocation induced by STS were not blocked by Pifithrin-α (p53 inhibitor), which suggested that p53 was not involved in this signaling pathway. Taken together, these results indicate that PUMA promoted Bax translocation in a FOXO3a-dependment pathway during STS-induced apoptosis, while p53 was dispensable in this process.
Ectromelia virus encodes an anti-apoptotic protein that regulates cell death.
Mehta, Ninad; Taylor, John; Quilty, Douglas; Barry, Michele
2015-01-15
Apoptosis serves as a powerful defense against damaged or pathogen-infected cells. Since apoptosis is an effective defense against viral infection, many viruses including poxviruses, encode proteins to prevent or delay apoptosis. Here we show that ectromelia virus, the causative agent of mousepox encodes an anti-apoptotic protein EVM025. Here we demonstrate that expression of functional EVM025 is crucial to prevent apoptosis triggered by virus infection and staurosporine. We demonstrate that the expression of EVM025 prevents the conformational activation of the pro-apoptotic proteins Bak and Bax, allowing the maintenance of mitochondrial membrane integrity upon infection with ECTV. Additionally, EVM025 interacted with intracellular Bak. We were able to demonstrate that EVM025 ability to inhibit Bax activation is a function of its ability to inhibit the activity of an upstream BH3 only protein Bim. Collectively, our data indicates that EVM025 inhibits apoptosis by sequestering Bak and inhibiting the activity of Bak and Bax. Copyright © 2014 Elsevier Inc. All rights reserved.
Zhang, Li-Min; Zhao, Xiao-Chun; Sun, Wen-Bo; Li, Rui; Jiang, Xiao-Jing
2015-10-15
Temporal post-conditioning helps provide neuroprotection against brain injury secondary to ischemia-reperfusion and is considered an effective intervention, but the exact mechanism of sevoflurane post-conditioning is unclear. The essential axis involves activator Bid, Bim, Puma (BH3s), Bax, and Bak; activates the mitochondrial death program; and might be involved in a cell death signal. Extracellular signal-related kinases 1/2 (Erk1/2) play a pivotal role in cell growth and proliferation. We hypothesized that sevoflurane post-conditioning might inhibit Bid, Bim, Puma, Bax, and Bak expression and is activated by phosphor-Erk1/2 to decrease neuronal death. To test this hypothesis, we exposed primary cortical neuron cultures to oxygen-glucose deprivation for 1h, along with resuscitation for 24h (OGD/R). MTT assays, propidium iodide uptake (PI), JC-1 fluorescence, and Western blot indicated the following: decreased cell viability (P<0.05); increased cell death (P<0.05); decreased mitochondrial membrane potential (P<0.05); and decreased Bid, Bim, Puma, Bax, and Bak expression with OGD/R exposure. Inhibition of Erk1/2 phosphorylation could attenuate sevoflurane post-conditioning that mediated an increase in neuronal viability and mitochondrial membrane potential, as well as a decrease in cell death and Bid, Bim, Puma, Bax, and Bak expression after OGD/R treatment. The results demonstrated that sevoflurane post-conditioning caused a marked decrease in cortical neuronal death secondary to OGD/R exposure through the downregulation of the mitochondrial apoptosis axis involving Bid, Bim, Puma, Bax, and Bak that was mediated by the phosphorylation/activation of Erk1/2. Copyright © 2015 Elsevier B.V. All rights reserved.
Lee, Hwa-Young; Lee, Geum-Hwa; Marahatta, Anu; Lin, Shun-Mei; Lee, Mi-Rin; Jang, Kyu Yun; Kim, Kyung Min; Lee, Hee Jae; Lee, Jae-Won; Bagalkot, Tarique Rajasaheb; Chung, Young-Chul; Lee, Yong-Chul; Kim, Hyung-Ryong; Chae, Han-Jung
2013-01-01
The anti-apoptotic protein Bax inhibitor-1 (BI-1) is a regulator of apoptosis linked to endoplasmic reticulum (ER) stress. It has been hypothesized that BI-1 protects against neuron degenerative diseases. In this study, BI-1−/− mice showed increased vulnerability to chronic mild stress accompanied by alterations in the size and morphology of the hippocampi, enhanced ROS accumulation and an ER stress response compared with BI-1+/+ mice. BI-1−/− mice exposed to chronic mild stress showed significant activation of monoamine oxidase A (MAO-A), but not MAO-B, compared with BI-1+/+ mice. To examine the involvement of BI-1 in the Ca2+-sensitive MAO activity, thapsigargin-induced Ca2+ release and MAO activity were analyzed in neuronal cells overexpressing BI-1. The in vitro study showed that BI-1 regulates Ca2+ release and related MAO-A activity. This study indicates an endogenous protective role of BI-1 under conditions of chronic mild stress that is primarily mediated through Ca2+-associated MAO-A regulation. PMID:24292328
Apoptogenic effects of β-sitosterol glucoside from Castanopsis indica leaves.
Dolai, Narayan; Kumar, Ashish; Islam, Aminul; Haldar, Pallab K
2016-01-01
β-Sitosterol glucoside (BSSG) is a natural biologically active substance isolated from the Castanopsis indica leaves. This study explored the apoptogenic mechanistic studies of BSSG against Ehrlich's ascites carcinoma (EAC) treated mice through morphological study, comet assay, flow cytometry (FACS) and Western blotting assay method. AO/EB staining and FACS analysis showed that BSSG possessed apoptosis induction activities on EAC cells. Dose dependent induction of DNA damage was observed after BSSG treatment. Increase the expression of apoptotic protein p53 and p21 in EAC, multiple downstream factors contributing to apoptosis pathway. The increase of caspase-9 and caspase-3 activities revealed that caspase was a key mediator of the apoptotic pathway induced by BSSG, and up-regulation of Bax and down-regulation of anti-apoptotic protein Bcl-2 resulted in the decrease of Bcl-2/Bax ratio. Owing to the combination of significant antitumour activity by inducing apoptosis, BSSG holds the promise of being an interesting chemo-preventive agent active in cancer therapy.
Wang, Rong; Zhang, Hai; Wang, Yuanyuan; Song, Fuxing; Yuan, Yongfang
2017-06-01
Quercetin, a natural flavonoid, has been used as a nutritional supplement for its anti-inflammatory and antioxidative properties. Quercetin was reported to exhibit a wide range of pharmacological properties, including its effect on anti-hepatic fibrosis. However, the anti-fibrotic mechanisms of quercetin have not been well-characterized to date. This study aimed to investigate the protective effects of quercetin on carbon tetrachloride (CCl 4 )-induced liver fibrosis in rats and to clarify its anti-hepatofibrotic mechanisms. We demonstrated that quercetin exhibited in-vivo hepatoprotective and anti-fibrogenic effects against CCl 4 -induced liver injury by improving the pathological manifestations, thereby reducing the activities of serum total bilirubin (TBIL), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and decreasing the serum levels of hyaluronic acid (HA), laminin (LN), type IV collagen (IV-C) and procollagen III peptide (PIIIP). Furthermore, treatment with quercetin 5-15mg/kg inhibited the activation of NF-κB in a dose-dependent manner via inhibition of IкBα degradation and decreased the expression of p38 MAPK by inhibiting its phosphorylation. Additionally, in a dose-dependent manner, quercetin down-regulated Bax, up-regulated Bcl-2, and subsequently inhibited caspase-3 activation. Moreover, quercetin regulated inflammation factors and hepatic stellate cells (HSCs)-activation markers, such as TNF-α, IL-6, IL-1β, Cox-2, TGF-β, α-SMA, Colla1, Colla2, TIMP-1, MMP-1, and desmin. Taken together, quercetin prevented the progression of liver fibrosis in SD rats. The anti-fibrotic mechanisms of quercetin might be associated with its ability to regulate NF-кB/IкBα, p38 MAPK anti-inflammation signaling pathways to inhibit inflammation, and regulate Bcl-2/Bax anti-apoptosis signaling pathway to prevent liver cell apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Dai, Haiming; Ding, Husheng; Meng, X. Wei; Peterson, Kevin L.; Schneider, Paula A.; Karp, Judith E.; Kaufmann, Scott H.
2015-01-01
Mitochondrial outer membrane permeabilization (MOMP), a key step in the intrinsic apoptotic pathway, is incompletely understood. Current models emphasize the role of BH3-only BCL2 family members in BAX and BAK activation. Here we demonstrate concentration-dependent BAK autoactivation under cell-free conditions and provide evidence that this autoactivation plays a key role in regulating the intrinsic apoptotic pathway in intact cells. In particular, we show that up to 80% of BAK (but not BAX) in lymphohematopoietic cell lines is oligomerized and bound to anti-apoptotic BCL2 family members in the absence of exogenous death stimuli. The extent of this constitutive BAK oligomerization is diminished by BAK knockdown and unaffected by BIM or PUMA down-regulation. Further analysis indicates that sensitivity of cells to BH3 mimetics reflects the identity of the anti-apoptotic proteins to which BAK is constitutively bound, with extensive BCLXL•BAK complexes predicting navitoclax sensitivity, and extensive MCL1•BAK complexes predicting A1210477 sensitivity. Moreover, high BAK expression correlates with sensitivity of clinical acute myelogenous leukemia to chemotherapy, whereas low BAK levels correlate with resistance and relapse. Collectively, these results inform current understanding of MOMP and provide new insight into the ability of BH3 mimetics to induce apoptosis without directly activating BAX or BAK. PMID:26494789
Wallgren, Marcus; Lidman, Martin; Pedersen, Anders; Brännström, Kristoffer; Karlsson, B Göran; Gröbner, Gerhard
2013-01-01
The anti-apoptotic B-cell CLL/lymphoma-2 (Bcl-2) protein and its counterpart, the pro-apoptotic Bcl-2-associated X protein (Bax), are key players in the regulation of the mitochondrial pathway of apoptosis. However, how they interact at the mitochondrial outer membrane (MOM) and there determine whether the cell will live or be sentenced to death remains unknown. Competing models have been presented that describe how Bcl-2 inhibits the cell-killing activity of Bax, which is common in treatment-resistant tumors where Bcl-2 is overexpressed. Some studies suggest that Bcl-2 binds directly to and sequesters Bax, while others suggest an indirect process whereby Bcl-2 blocks BH3-only proteins and prevents them from activating Bax. Here we present the results of a biophysical study in which we investigated the putative interaction of solubilized full-length human Bcl-2 with Bax and the scope for incorporating the former into a native-like lipid environment. Far-UV circular dichroism (CD) spectroscopy was used to detect direct Bcl-2-Bax-interactions in the presence of polyoxyethylene-(23)-lauryl-ether (Brij-35) detergent at a level below its critical micelle concentration (CMC). Additional surface plasmon resonance (SPR) measurements confirmed this observation and revealed a high affinity between the Bax and Bcl-2 proteins. Upon formation of this protein-protein complex, Bax also prevented the binding of antimycin A2 (a known inhibitory ligand of Bcl-2) to the Bcl-2 protein, as fluorescence spectroscopy experiments showed. In addition, Bcl-2 was able to form mixed micelles with Triton X-100 solubilized neutral phospholipids in the presence of high concentrations of Brij-35 (above its CMC). Following detergent removal, the integral membrane protein was found to have been fully reconstituted into a native-like membrane environment, as confirmed by ultracentrifugation and subsequent SDS-PAGE experiments.
Senft, D; Weber, A; Saathoff, F; Berking, C; Heppt, M V; Kammerbauer, C; Rothenfusser, S; Kellner, S; Kurgyis, Z; Besch, R; Häcker, G
2015-11-26
Mitochondrial apoptosis is controlled by proteins of the B-cell lymphoma 2 (Bcl-2) family. Pro-apoptotic members of this family, known as BH3-only proteins, initiate activation of the effectors Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak), which is counteracted by anti-apoptotic family members. How the interactions of Bcl-2 proteins regulate cell death is still not entirely clear. Here, we show that in the absence of extrinsic apoptotic stimuli Bak activates without detectable contribution from BH3-only proteins, and cell survival depends on anti-apoptotic Bcl-2 molecules. All anti-apoptotic Bcl-2 proteins were targeted via RNA interference alone or in combinations of two in primary human fibroblasts. Simultaneous targeting of B-cell lymphoma-extra large and myeloid cell leukemia sequence 1 led to apoptosis in several cell types. Apoptosis depended on Bak whereas Bax was dispensable. Activator BH3-only proteins were not required for apoptosis induction as apoptosis was unaltered in the absence of all BH3-only proteins known to activate Bax or Bak directly, Bcl-2-interacting mediator of cell death, BH3-interacting domain death agonist and p53-upregulated modulator of apoptosis. These findings argue for auto-activation of Bak in the absence of anti-apoptotic Bcl-2 proteins and provide evidence of profound differences in the activation of Bax and Bak.
Verma, Sharad; Singh, Amit; Mishra, Abha
2015-01-01
Apoptosis (programmed cell death) is a process by which cells died after completing physiological function or after a severe genetic damage. Apoptosis is mainly regulated by the Bcl-2 family of proteins. Anti apoptotic protein Bcl-2 prevents the Bax activation/oligomerization to form heterodimer which is responsible for release of the cytochrome c from mitochondria to the cytosol in response to death signal. Quercetin and taxifolin (natural polyphenols) efficiently bound to hydrophobic groove of Bcl-2 and altered the structure by inducing conformational changes. Taxifolin was found more efficient when compared to quercetin in terms of interaction energy and collapse of hydrophobic groove. Taxifolin and quercetin were found to dissociate the Bcl-2-Bax complex during 12 ns MD simulation. The effect of taxifolin and quercetin was, further validated by the MD simulation of ligand-unbound Bcl-2-Bax which showed stability during the simulation. Obatoclax (an inhibitor of Bcl-2) had no significant dissociation effect on Bcl-2-Bax during simulation which favored the previous experimental results and disruption effect of taxifolin and quercetin.
Chen, Ying-Jung; Liu, Wen-Hsin; Kao, Pei-Hsiu; Wang, Jeh-Jeng; Chang, Long-Sen
2010-06-15
CMS-9, a phospholipase A(2) (PLA(2)) isolated from Naja nigricollis venom, induced apoptosis of human leukemia K562 cells, characterized by mitochondrial depolarization, modulation of Bcl-2 family members, cytochrome c release and activation of caspases 9 and 3. Moreover, an increase in intracellular Ca2+ concentration and the production of reactive oxygen species (ROS) was noted. Pretreatment with BAPTA-AM (Ca2+ chelator) and N-acetylcysteine (NAC, ROS scavenger) proved that Ca2+ was an upstream event in inducing ROS generation. Upon exposure to CMS-9, activation of p38 MAPK and JNK was observed in K562 cells. BAPTA-AM or NAC abrogated CMS-9-elicited p38 MAPK and JNK activation, and rescued viability of CMS-9-treated K562 cells. SB202190 (p38 MAPK inhibitor) and SP600125 (JNK inhibitor) suppressed CMS-9-induced dissipation of mitochondrial membrane potential, Bcl-2 down-regulation, Bax up-regulation and increased mitochondrial translocation of Bax. Inactivation of PLA(2) activity reduced drastically the cytotoxicity of CMS-9, and a combination of lysophosphatidylcholine and stearic acid mimicked the cytotoxic effects of CMS-9. Taken together, our data suggest that CMS-9-induced apoptosis of K562 cells is catalytic activity-dependent and is mediated through mitochondria-mediated death pathway triggered by Ca2+/ROS-evoked p38 MAPK and JNK activation. 2010 Elsevier Ltd. All rights reserved.
Li, Qiangxiang; Chen, Jing; Li, Yajia; Chen, Ting; Zou, Jing; Wang, Hua
2017-01-01
Abstract Background: The aim of the study was to observe the effect of polysaccharide of dendrobium candidum (PDC) and high glucose on proliferation, apoptosis of human corneal epithelial cells (HCEC). Methods: The MTT method was used to screen and take the optimal high-glucose concentration, treatment time, and PDC concentration using HCEC and divide it into 4 groups: control group (C), high glucose group (HG), PDC group, and HG + PDC group. We observed and compared the effect of the 4 groups on HCEC proliferation by MTT, apoptosis by Annexin V-FITC/PI double fluorescent staining and flow cytometry (FCM), and expression of bax mRNA and bcl-2 mRNA by RT-qPCR. Results: Compared with the control group, proliferative activity of HCEC cells was reduced; the cells apoptosis ratio was increased; the expression of bax mRNA was increased, and the expression of bcl-2 mRNA was reduced in the HG group. Proliferative activity of HCEC cells in the PDC group was increased, and the expression of bcl-2 mRNA was increased but that of bax mRNA was decreased. Proliferative activity of HCEC cells in the HG + PDC group was increased, but it could not restore to the normal level; the expression of bax mRNA was significantly decreased but the expression of bcl-2 mRNA was significantly increased. Conclusions: Our results demonstrate that high glucose can inhibit proliferative activity and induce apoptosis of HCEC. PDC can improve the proliferative activity of HCEC cells under the high glucose environment and reduce the apoptosis of cells by regulating the expression of bax and bcl-2. PDC play a very important role on protecting and repairing of corneal epithelial cells damage in high glucose. PMID:28796073
Ponce-Cusi, Richard; Calaf, Gloria M
2016-02-01
Globally, breast cancer in women is the leading cause of cancer death. This fact has generated an interest to obtain insight into breast tumorigenesis and also to develop drugs to control the disease. Ras is a proto-oncogene that is activated as a response to extracellular signals. As a member of the Ras GTPase superfamily, Rho-A is an oncogenic and a critical component of signaling pathways leading to downstream gene regulation. In chemotherapy, apoptosis is the predominant mechanism by which cancer cells die. However, even when the apoptotic machinery remains intact, survival signaling may antagonize the cell death by signals. The aim of this study was to evaluate 5-fluorouracil (5-FU) in cells transformed by low doses of ionizing α-particle radiation, in breast cancer cell lines on these genes, as well as apoptotic activity. We used two cell lines from an in vitro experimental breast cancer model. The MCF-10F and Tumor2 cell lines. MCF-10F was exposed to low doses of high linear energy transfer (LET) α-particles radiation (150 keV/µm). Tumor2, is a malignant and tumorigenic cell line obtained from Alpha5 (60cGy+E/60cGy+E) injected into the nude mice. Results indicated that 5-FU decreased H-ras, Rho-A, p53, Stat1 and increased Bax gene expression in Tumor2 and decreased Rac1, Rho-A, NF-κB and increased Bax and caspase-3 protein expression in Tumor2. 5-FU decreased H-ras, Bcl-xL and NF-κB and increased Bax gene expression. 5-FU decreased Rac1, Rho-A protein expression and increased Bax and caspase-3 protein expression in MDA-MB-231. Flow cytometry indicated 21.5% of cell death in the control MCF-10F and 80% in Tumor2 cell lines. It can be concluded that 5-FU may exert apoptotic activity in breast cancer cells transformed by low doses of ionizing α-particles in vitro regulating genes of Ras family and related to apoptosis such as Bax, Bcl-xL and NF-κB expression.
Live-cell imaging to measure BAX recruitment kinetics to mitochondria during apoptosis
Maes, Margaret E.; Schlamp, Cassandra L.
2017-01-01
The pro-apoptotic BCL2 gene family member, BAX, plays a pivotal role in the intrinsic apoptotic pathway. Under cellular stress, BAX recruitment to the mitochondria occurs when activated BAX forms dimers, then oligomers, to initiate mitochondria outer membrane permeabilization (MOMP), a process critical for apoptotic progression. The activation and recruitment of BAX to form oligomers has been studied for two decades using fusion proteins with a fluorescent reporter attached in-frame to the BAX N-terminus. We applied high-speed live cell imaging to monitor the recruitment of BAX fusion proteins in dying cells. Data from time-lapse imaging was validated against the activity of endogenous BAX in cells, and analyzed using sigmoid mathematical functions to obtain detail of the kinetic parameters of the recruitment process at individual mitochondrial foci. BAX fusion proteins behave like endogenous BAX during apoptosis. Kinetic studies show that fusion protein recruitment is also minimally affected in cells lacking endogenous BAK or BAX genes, but that the kinetics are moderately, but significantly, different with different fluorescent tags in the fusion constructs. In experiments testing BAX recruitment in 3 different cell lines, our results show that regardless of cell type, once activated, BAX recruitment initiates simultaneously within a cell, but exhibits varying rates of recruitment at individual mitochondrial foci. Very early during BAX recruitment, pro-apoptotic molecules are released in the process of MOMP, but different molecules are released at different times and rates relative to the time of BAX recruitment initiation. These results provide a method for BAX kinetic analysis in living cells and yield greater detail of multiple characteristics of BAX-induced MOMP in living cells that were initially observed in cell free studies. PMID:28880942
Live-cell imaging to measure BAX recruitment kinetics to mitochondria during apoptosis.
Maes, Margaret E; Schlamp, Cassandra L; Nickells, Robert W
2017-01-01
The pro-apoptotic BCL2 gene family member, BAX, plays a pivotal role in the intrinsic apoptotic pathway. Under cellular stress, BAX recruitment to the mitochondria occurs when activated BAX forms dimers, then oligomers, to initiate mitochondria outer membrane permeabilization (MOMP), a process critical for apoptotic progression. The activation and recruitment of BAX to form oligomers has been studied for two decades using fusion proteins with a fluorescent reporter attached in-frame to the BAX N-terminus. We applied high-speed live cell imaging to monitor the recruitment of BAX fusion proteins in dying cells. Data from time-lapse imaging was validated against the activity of endogenous BAX in cells, and analyzed using sigmoid mathematical functions to obtain detail of the kinetic parameters of the recruitment process at individual mitochondrial foci. BAX fusion proteins behave like endogenous BAX during apoptosis. Kinetic studies show that fusion protein recruitment is also minimally affected in cells lacking endogenous BAK or BAX genes, but that the kinetics are moderately, but significantly, different with different fluorescent tags in the fusion constructs. In experiments testing BAX recruitment in 3 different cell lines, our results show that regardless of cell type, once activated, BAX recruitment initiates simultaneously within a cell, but exhibits varying rates of recruitment at individual mitochondrial foci. Very early during BAX recruitment, pro-apoptotic molecules are released in the process of MOMP, but different molecules are released at different times and rates relative to the time of BAX recruitment initiation. These results provide a method for BAX kinetic analysis in living cells and yield greater detail of multiple characteristics of BAX-induced MOMP in living cells that were initially observed in cell free studies.
Song, Shanshan; Jacobson, Krista N.; McDermott, Kimberly M.; Reddy, Sekhar P.; Cress, Anne E.; Tang, Haiyang; Dudek, Steven M.; Black, Stephen M.; Garcia, Joe G. N.; Makino, Ayako
2015-01-01
Adenosine triphosphate (ATP) is a ubiquitous extracellular messenger elevated in the tumor microenvironment. ATP regulates cell functions by acting on purinergic receptors (P2X and P2Y) and activating a series of intracellular signaling pathways. We examined ATP-induced Ca2+ signaling and its effects on antiapoptotic (Bcl-2) and proapoptotic (Bax) proteins in normal human airway epithelial cells and lung cancer cells. Lung cancer cells exhibited two phases (transient and plateau phases) of increase in cytosolic [Ca2+] ([Ca2+]cyt) caused by ATP, while only the transient phase was observed in normal cells. Removal of extracellular Ca2+ eliminated the plateau phase increase of [Ca2+]cyt in lung cancer cells, indicating that the plateau phase of [Ca2+]cyt increase is due to Ca2+ influx. The distribution of P2X (P2X1-7) and P2Y (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11) receptors was different between lung cancer cells and normal cells. Proapoptotic P2X7 was nearly undetectable in lung cancer cells, which may explain why lung cancer cells showed decreased cytotoxicity when treated with high concentration of ATP. The Bcl-2/Bax ratio was increased in lung cancer cells following treatment with ATP; however, the antiapoptotic protein Bcl-2 demonstrated more sensitivity to ATP than proapoptotic protein Bax. Decreasing extracellular Ca2+ or chelating intracellular Ca2+ with BAPTA-AM significantly inhibited ATP-induced increase in Bcl-2/Bax ratio, indicating that a rise in [Ca2+]cyt through Ca2+ influx is the critical mediator for ATP-mediated increase in Bcl-2/Bax ratio. Therefore, despite high ATP levels in the tumor microenvironment, which would induce cell apoptosis in normal cells, the decreased P2X7 and elevated Bcl-2/Bax ratio in lung cancer cells may enable tumor cells to survive. Increasing the Bcl-2/Bax ratio by exposure to high extracellular ATP may, therefore, be an important selective pressure promoting transformation and cancer progression. PMID:26491047
Dai, Haiming; Ding, Husheng; Meng, X Wei; Peterson, Kevin L; Schneider, Paula A; Karp, Judith E; Kaufmann, Scott H
2015-10-15
Mitochondrial outer membrane permeabilization (MOMP), a key step in the intrinsic apoptotic pathway, is incompletely understood. Current models emphasize the role of BH3-only BCL2 family members in BAX and BAK activation. Here we demonstrate concentration-dependent BAK autoactivation under cell-free conditions and provide evidence that this autoactivation plays a key role in regulating the intrinsic apoptotic pathway in intact cells. In particular, we show that up to 80% of BAK (but not BAX) in lymphohematopoietic cell lines is oligomerized and bound to anti-apoptotic BCL2 family members in the absence of exogenous death stimuli. The extent of this constitutive BAK oligomerization is diminished by BAK knockdown and unaffected by BIM or PUMA down-regulation. Further analysis indicates that sensitivity of cells to BH3 mimetics reflects the identity of the anti-apoptotic proteins to which BAK is constitutively bound, with extensive BCLXL•BAK complexes predicting navitoclax sensitivity, and extensive MCL1•BAK complexes predicting A1210477 sensitivity. Moreover, high BAK expression correlates with sensitivity of clinical acute myelogenous leukemia to chemotherapy, whereas low BAK levels correlate with resistance and relapse. Collectively, these results inform current understanding of MOMP and provide new insight into the ability of BH3 mimetics to induce apoptosis without directly activating BAX or BAK. © 2015 Dai et al.; Published by Cold Spring Harbor Laboratory Press.
Bax/Bak activation in the absence of Bid, Bim, Puma, and p53
Zhang, J; Huang, K; O'Neill, K L; Pang, X; Luo, X
2016-01-01
How BH3-only proteins activate Bax/Bak, the two gateway proteins of the mitochondria-dependent apoptotic pathway, remains incompletely understood. Although all pro-apoptotic BH3-only proteins are known to bind/neutralize the anti-apoptotic Bcl-2 proteins, the three most potent ones, Bid (tBid), Bim, and Puma, possess an additional activity of directly activating Bax/Bak in vitro. This latter activity has been proposed to be responsible for triggering Bax/Bak activation following apoptotic stimulation. To test this hypothesis, we generated Bid−/−Bim−/−Puma−/− (TKO), TKO/Bax−/−/Bak−/− (PentaKO), and PentaKO/Mcl-1−/− (HexaKO) HCT116 cells through gene editing. Surprisingly, although the TKO cells were resistant to several apoptotic stimuli, robust apoptosis was induced upon the simultaneous inactivation of Bcl-xL and Mcl-1, two anti-apoptotic Bcl-2 proteins known to suppress Bax/Bak activation and activity. Importantly, such apoptotic activity was completely abolished in the PentaKO cells. In addition, ABT-737, a BH3 mimetic that inhibits Bcl-xL/Bcl-w/Bcl-2, induced Bax activation in HexaKO cells reconstituted with endogenous level of GFP-Bax. Further, by generating TKO/p53−/− (QKO) cells, we demonstrated that p53, a tumor suppressor postulated to directly activate Bax, is not required for Bid/Bim/Puma-independent Bax/Bak activation. Together, these results strongly suggest that the direct activation activities of Bid (tBid), Bim, Puma, and p53 are not essential for activating Bax/Bak once the anti-apoptotic Bcl-2 proteins are neutralized. PMID:27310874
Xu, Guogang; Vogel, Kristine S; McMahan, C Alex; Herbert, Damon C; Walter, Christi A
2010-12-01
During the first wave of spermatogenesis, and in response to ionizing radiation, elevated mutant frequencies are reduced to a low level by unidentified mechanisms. Apoptosis is occurring in the same time frame that the mutant frequency declines. We examined the role of apoptosis in regulating mutant frequency during spermatogenesis. Apoptosis and mutant frequencies were determined in spermatogenic cells obtained from Bax-null or Trp53-null mice. The results showed that spermatogenic lineage apoptosis was markedly decreased in Bax-null mice and was accompanied by a significantly increased spontaneous mutant frequency in seminiferous tubule cells compared to that of wild-type mice. Apoptosis profiles in the seminiferous tubules for Trp53-null were similar to control mice. Spontaneous mutant frequencies in pachytene spermatocytes and in round spermatids from Trp53-null mice were not significantly different from those of wild-type mice. However, epididymal spermatozoa from Trp53-null mice displayed a greater spontaneous mutant frequency compared to that from wild-type mice. A greater proportion of spontaneous transversions and a greater proportion of insertions/deletions 15 days after ionizing radiation were observed in Trp53-null mice compared to wild-type mice. Base excision repair activity in mixed germ cell nuclear extracts prepared from Trp53-null mice was significantly lower than that for wild-type controls. These data indicate that BAX-mediated apoptosis plays a significant role in regulating spontaneous mutagenesis in seminiferous tubule cells obtained from neonatal mice, whereas tumor suppressor TRP53 plays a significant role in regulating spontaneous mutagenesis between postmeiotic round spermatid and epididymal spermatozoon stages of spermiogenesis.
Schelman, William R; Andres, Robert D; Sipe, Kimberly J; Kang, Evan; Weyhenmeyer, James A
2004-09-28
Excessive stimulation of the NMDA receptor by glutamate induces cell death and has been implicated in the development of several neurodegenerative diseases. While apoptosis plays a role in glutamate-mediated toxicity, the mechanisms underlying this process have yet to be completely determined. Recent evidence has shown that exposure to excitatory amino acids regulates the expression of the antiapoptotic protein, Bcl-2, and the proapoptotic protein, Bax, in neurons. Since it has been suggested that the ratio of Bax to Bcl-2 is an important determinant of neuronal survival, the reciprocal regulation of these Bcl-2 family proteins may play a role in the neurotoxicity mediated by glutamate. Here, we have used a differentiable neuronal cell line, N1E-115, to investigate the molecular properties of glutamate-induced cell death. Annexin V staining was used to determine apoptotic cell death between 0 and 5 days differentiation with DMSO/low serum. Immunoblot analysis was used to determine whether the expression of Bcl-2 or Bax was modulated during the differentiation process. Bcl-2 protein levels were increased during maturation while Bax expression remained unchanged. Maximum Bcl-2 expression was observed following 5 days of differentiation. Examination of Bcl-2 and Bax following glutamate treatment revealed that the expression of these proteins was inversely regulated. Exposure to glutamate (0.001-10 mM) for 20+/-2 h resulted in a dose-dependent decrease in cell survival (as measured by MTT analysis) that was maximal at 10 mM. These results further support the role of apoptosis in glutamate-mediated cell death. Furthermore, a significant decrease in Bcl-2 levels was observed at 1 mM and 10 mM glutamate (32.1%+/-4.8 and 33.7+/-12.8%, respectively) while a significant upregulation of Bax expression (88.2+/-17.9%) was observed at 10 mM glutamate. Interestingly, Bcl-2 and Bax levels in cells treated with glutamate from 12-24 h were not significantly different from those of control. Taken together, these findings provide additional evidence for the reciprocal regulation of Bcl-2 and Bax expression by glutamate and suggest that neuronal excitotoxicity may, in part, result from the inverse regulation of these proteins.
Shi, Yao; Jiang, Hong; Yang, Xiaobo
2017-06-01
The aim of the present study was to investigate the protective effect of the selective peroxisome proliferator-activated receptor δ (PPARδ) agonist GW501516 (GW) on lipopolysaccharide (LPS)‑induced apoptosis in the rat cardiomyoblast cell line H9c2, and to investigate the possible underlying mechanisms. Cell viability was estimated using the MTT assay. Apoptosis was estimated by flow cytometry using Annexin V‑fluorescein isothiocyanate/propidium iodide staining and caspase‑3 activity assay. The protein level of heme oxygenase‑1 (HO‑1), cleaved caspase‑3 (CC3), apoptosis regulator Bcl‑2 (bcl‑2), apoptosis regulator BAX (bax) and nuclear factor‑κB (NF‑κB) p65 was measured by western blot analysis. The results demonstrated that pretreatment with GW inhibited the LPS‑induced increase in the rate of apoptosis. Pretreatment with GW also increased the bcl‑2/bax ratio, and decreased CC3 protein expression as well as caspase‑3 activity, in LPS‑stimulated H9c2 cells. Further studies demonstrated that GW inhibited LPS‑induced NF‑κB nuclear translocation in a dose‑dependent manner. In addition, GW induced HO‑1 protein expression in a dose‑dependent manner. ZnPP‑IX, an inhibitor of HO‑1, reversed the inhibitory effect of GW on LPS‑induced NF‑κB activation, leading to the attenuation of PPARδ‑mediated apoptosis resistance. In conclusion, these results suggest that PPARδ activation exerts an anti‑apoptotic effect in LPS‑stimulated H9c2 cardiomyoblasts, potentially through heme oxygenase‑1‑mediated suppression of NF‑κB activation. PPARδ appears to be a promising therapeutic target for the treatment of sepsis‑associated cardiac dysfunction.
Lyu, Mi-Ae; Cheung, Lawrence H; Hittelman, Walter N; Liu, Yuying; Marks, John W; Cho, Min-Jeong; Rosenblum, Michael G
2012-09-28
We generated a fusion protein Bax(345)/BLyS containing the truncated form of Bax (Bax(345)) at the N-terminus followed by a 218 linker to the B lymphocyte stimulator (BLyS). Bax(345)/BLyS was cytotoxic to a panel of diffuse large B cell lymphoma and mantle cell lymphoma lines expressing the BLyS receptors. Specific delivery of Bax(345)/BLyS to malignant B cells drove cells into apoptosis by mitochondrial dysfunction and treatment of cells with Bax(345)/BLyS induced down-regulation of Mcl-1, X-IAP, and survivin. Bax(345)/BLyS represents a new class of targeted therapeutic agents with a unique mechanism of action and may have therapeutic potential for malignant B cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Lin, Chao; Zhao, Xin-yu; Li, Lei; Liu, Huan-yi; Cao, Kang; Wan, Yang; Liu, Xin-yu; Nie, Chun-lai; Liu, Lei; Tong, Ai-ping; Deng, Hong-xin; Li, Jiong; Yuan, Zhu; Wei, Yu-quan
2012-01-01
Ovarian cancer is the most common cause of death from gynecologic malignancy. Deregulation of p53 and/or p73-associated apoptotic pathways contribute to the platinum-based resistance in ovarian cancer. NOXA, a pro-apoptotic BH3-only protein, is identified as a transcription target of p53 and/or p73. In this study, we found that genetic variants of Bcl-2 proteins exist among cisplatin-sensitive and -resistant ovarian cancer cells, and the responses of NOXA and Bax to cisplatin are regulated mainly by p53. We further evaluated the effect of NOXA on cisplatin. NOXA induced apoptosis and sensitized A2780s and SKOV3 cells to cisplatin in vitro and in vivo. The effects were mediated by elevated Bax expression, enhanced caspase activation, release of Cyt C and Smac into the cytosol. Furthermore, gene silencing of Bax or Smac significantly attenuated NOXA and/or cisplatin-induced apoptosis in chemosensitive A2780s cells, whereas overexpression of Bax or addition of Smac-N7 peptide significantly increased NOXA and/or cisplatin-induced apoptosis in chemoresistant SKOV3 cells. To our knowledge, these data suggest a new mechanism by which NOXA chemosensitized ovarian cancer cells to cisplatin by inducing alterations in the Bax/Smac axis. Taken together, our findings show that NOXA is potentially useful as a chemosensitizer in ovarian cancer therapy. PMID:22590594
Hu, Wei; Xiao, ZengMing
2015-01-01
Phytoestrogens are known to prevent tumor progression by inhibiting proliferation and inducing apoptosis in cancer cells. Formononetin is one of the main components of red clover plants, and is considered as a typical phytoestrogen. This study investigates formononetin induction of apoptosis of human osteosarcoma cell line U2OS by regulating Bcl-2 and Bax expression in vitro and in vivo. U2OS cells were treated with different concentrations of formononetin and the proliferation of the cells was measured using an MTT assay. Cell apoptosis was examined by flow cytometry. The levels of miR-375, Bax and Bcl-2 protein expression in treated cells were determined by Western blot and RT-PCR. The antitumor activity of formononetin was also evaluated in vivo in nude mice bearing orthotopic tumor implants. High concentrations of formononetin significantly suppress the proliferation of U2OS cells and induce cell apoptosis. Moreover, compared to control group the expression of Bcl-2 and miR-375 decreases with formononetin in the U2OS cells, while Bax increases. Formononetin has inhibitory effects on the proliferation of U2SO cells, both in vitro and in vivo. This antitumor effect is directly correlated with formononetin concentration. © 2015 The Author(s) Published by S. Karger AG, Basel.
N-terminal acetylation modulates Bax targeting to mitochondria.
Alves, Sara; Neiri, Leire; Chaves, Susana Rodrigues; Vieira, Selma; Trindade, Dário; Manon, Stephen; Dominguez, Veronica; Pintado, Belen; Jonckheere, Veronique; Van Damme, Petra; Silva, Rui Duarte; Aldabe, Rafael; Côrte-Real, Manuela
2018-02-01
The pro-apoptotic Bax protein is the main effector of mitochondrial permeabilization during apoptosis. Bax is controlled at several levels, including post-translational modifications such as phosphorylation and S-palmitoylation. However, little is known about the contribution of other protein modifications to Bax activity. Here, we used heterologous expression of human Bax in yeast to study the involvement of N-terminal acetylation by yNaa20p (yNatB) on Bax function. We found that human Bax is N-terminal (Nt-)acetylated by yNaa20p and that Nt-acetylation of Bax is essential to maintain Bax in an inactive conformation in the cytosol of yeast and Mouse Embryonic Fibroblast (MEF) cells. Bax accumulates in the mitochondria of yeast naa20Δ and Naa25 -/- MEF cells, but does not promote cytochrome c release, suggesting that an additional step is required for full activation of Bax. Altogether, our results show that Bax N-terminal acetylation by NatB is involved in its mitochondrial targeting. Copyright © 2017 Elsevier Ltd. All rights reserved.
The in vitro study of apoptosis in NB4 cell induced by citral.
Xia, Hailong; Liang, Wei; Song, Qin; Chen, Xiaowen; Chen, Xin; Hong, Jian
2013-01-01
Citral, 3,7-dimethyl-2,6-octadienal, is a key component of the essential oils extracted from several lemon-scented herbal plants. Besides its antifungal activity, the anticancer effect of citral was studied in recent years. In this study, we investigated the effect of citral on the acute promyelocytic leukemia cell line NB4. Citral treatment had an antiproliferative effect in NB4 cells via the induction of apoptosis assessed by morphology, proliferation assay, DNA electrophoresis, Annexin V-FITC/PI staining and caspase-3 activation. And citral induced apoptosis of NB4 cells in a dose- and time-dependent manner. In addition, citral treatment induced decreased mitochondrial membrane potential, indicating that citral induced apoptosis via the mitochondrial pathway. Bax up-regulation and Bcl-2 down-regulation on mRNA level and NF-κB down-regulation on protein level was found in this study, suggesting that Bcl-2, Bax and NF-κB may be involved in the mechanism of the apoptotic effect of citral on NB4 cells. These data suggest that citral has a potential therapeutic effect on leukemia.
Ma, H; Ma, J X; Xue, P; Gao, Y; Li, Y K
2015-02-01
The insulin receptor substrate 1 (IRS1) promotes bone formation via osteoblast proliferation mediated by PI3K/Akt signaling. A reduction in NFκB activity in osteoblasts results in an increase in bone formation. The NFκB signaling pathway leads to increased expression of BAX, which contributes to osteoblast apoptosis. The purpose of this study was to investigate the expression of recombinant plasmid enhanced green fluorescent protein-N1 (pEGFP-N1) that transferred IRS1 gene into osteoblasts in vitro and evaluate the effects of IRS1 overexpression on NFκBp65 and on BAX. Osteoblasts were transfected with pEGFP-N1 or pEGFP-N1 encoding wild-type IRS1 (pEGFP-N1-IRS1). Cell cycle analysis was performed using flow cytometry. The expression levels of NFκBp65 and BAX were measured by Western blotting. Our results revealed that overexpression of IRS1 stimulated osteoblast proliferation, as evidenced by an increase in the number of cells in the S phase compared to controls. IRS1 overexpression in osteoblasts activated the PI3K/Akt pathway, and inhibited expression of NFκBp65 and BAX. When osteoblasts transfected with pEGFP-N1-IRS1 were exposed to a PI3K inhibitor (LY294002), the effects of IRS1 overexpression were reversed. On the basis of our study, it seems that osteoblasts proliferated upon IRS1 overexpression due to inhibition of the NFκB pathway and downregulation of BAX through PI3K/Akt signaling. © Georg Thieme Verlag KG Stuttgart · New York.
WNT signaling controls expression of pro-apoptotic BOK and BAX in intestinal cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeilstra, Jurrit; Joosten, Sander P.J.; Wensveen, Felix M.
Research highlights: {yields} Intestinal adenomas initiated by aberrant activation of the WNT pathway displayed an increased sensitivity to apoptosis. {yields} Expression profiling of apoptosis-related genes in Apc{sup Min/+} mice revealed the differential expression of pro-apoptotic Bok and Bax. {yields} APC-mutant adenomatous crypts in FAP patients showed strongly increased BAX immunoreactivity. {yields} Blocking of {beta}-catenin/TCF-4-mediated signaling in colon cancer cells reduced the expression of BOK and BAX. -- Abstract: In a majority of cases, colorectal cancer is initiated by aberrant activation of the WNT signaling pathway. Mutation of the genes encoding the WNT signaling components adenomatous polyposis coli or {beta}-catenin causesmore » constitutively active {beta}-catenin/TCF-mediated transcription, driving the transformation of intestinal crypts to cancer precursor lesions, called dysplastic aberrant crypt foci. Deregulated apoptosis is a hallmark of adenomatous colon tissue. However, the contribution of WNT signaling to this process is not fully understood. We addressed this role by analyzing the rate of epithelial apoptosis in aberrant crypts and adenomas of the Apc{sup Min/+} mouse model. In comparison with normal crypts and adenomas, aberrant crypts displayed a dramatically increased rate of apoptotic cell death. Expression profiling of apoptosis-related genes along the crypt-villus axis and in Apc mutant adenomas revealed increased expression of two pro-apoptotic Bcl-2 family members in intestinal adenomas, Bok and Bax. Analysis of the colon of familial adenomatous polyposis (FAP) patients along the crypt-to-surface axis, and of dysplastic crypts, corroborated this expression pattern. Disruption of {beta}-catenin/TCF-4-mediated signaling in the colorectal cancer cell line Ls174T significantly decreased BOK and BAX expression, confirming WNT-dependent regulation in intestinal epithelial cells. Our results suggest a feedback mechanism by which uncontrolled epithelial cell proliferation in the stem cell compartment can be counterbalanced by an increased propensity to undergo cell death.« less
Activation of the proapoptotic Bcl-2 protein Bax by a small molecule induces tumor cell apoptosis.
Zhao, Guoping; Zhu, Yanglong; Eno, Colins O; Liu, Yanlong; Deleeuw, Lynn; Burlison, Joseph A; Chaires, Jonathan B; Trent, John O; Li, Chi
2014-04-01
The proapoptotic Bcl-2 protein Bax by itself is sufficient to initiate apoptosis in almost all apoptotic paradigms. Thus, compounds that can facilitate disruptive Bax insertion into mitochondrial membranes have potential as cancer therapeutics. In our study, we have identified small-molecule compounds predicted to associate with the Bax hydrophobic groove by a virtual-screen approach. Among these, one lead compound (compound 106) promotes Bax-dependent but not Bak-dependent apoptosis. Importantly, this compound alters Bax protein stability in vitro and promotes the insertion of Bax into mitochondria, leading to Bax-dependent permeabilization of the mitochondrial outer membrane. Furthermore, as a single agent, compound 106 inhibits the growth of transplanted tumors, probably by inducing apoptosis in tumors. Our study has revealed a compound that activates Bax and induces Bax-dependent apoptosis, which may lead to the development of new therapeutic agents for cancer.
Activation of the Proapoptotic Bcl-2 Protein Bax by a Small Molecule Induces Tumor Cell Apoptosis
Zhao, Guoping; Zhu, Yanglong; Eno, Colins O.; Liu, Yanlong; DeLeeuw, Lynn; Burlison, Joseph A.; Chaires, Jonathan B.; Trent, John O.
2014-01-01
The proapoptotic Bcl-2 protein Bax by itself is sufficient to initiate apoptosis in almost all apoptotic paradigms. Thus, compounds that can facilitate disruptive Bax insertion into mitochondrial membranes have potential as cancer therapeutics. In our study, we have identified small-molecule compounds predicted to associate with the Bax hydrophobic groove by a virtual-screen approach. Among these, one lead compound (compound 106) promotes Bax-dependent but not Bak-dependent apoptosis. Importantly, this compound alters Bax protein stability in vitro and promotes the insertion of Bax into mitochondria, leading to Bax-dependent permeabilization of the mitochondrial outer membrane. Furthermore, as a single agent, compound 106 inhibits the growth of transplanted tumors, probably by inducing apoptosis in tumors. Our study has revealed a compound that activates Bax and induces Bax-dependent apoptosis, which may lead to the development of new therapeutic agents for cancer. PMID:24421393
Mitochondrial Ceramide-Rich Macrodomains Functionalize Bax upon Irradiation
Lee, Hyunmi; Rotolo, Jimmy A.; Mesicek, Judith; Penate-Medina, Tuula; Rimner, Andreas; Liao, Wen-Chieh; Yin, Xianglei; Ragupathi, Govind; Ehleiter, Desiree; Gulbins, Erich; Zhai, Dayong; Reed, John C.; Haimovitz-Friedman, Adriana; Fuks, Zvi; Kolesnick, Richard
2011-01-01
Background Evidence indicates that Bax functions as a “lipidic” pore to regulate mitochondrial outer membrane permeabilization (MOMP), the apoptosis commitment step, through unknown membrane elements. Here we show mitochondrial ceramide elevation facilitates MOMP-mediated cytochrome c release in HeLa cells by generating a previously-unrecognized mitochondrial ceramide-rich macrodomain (MCRM), which we visualize and isolate, into which Bax integrates. Methodology/Principal Findings MCRMs, virtually non-existent in resting cells, form upon irradiation coupled to ceramide synthase-mediated ceramide elevation, optimizing Bax insertion/oligomerization and MOMP. MCRMs are detected by confocal microscopy in intact HeLa cells and isolated biophysically as a light membrane fraction from HeLa cell lysates. Inhibiting ceramide generation using a well-defined natural ceramide synthase inhibitor, Fumonisin B1, prevented radiation-induced Bax insertion, oligomerization and MOMP. MCRM deconstruction using purified mouse hepatic mitochondria revealed ceramide alone is non-apoptogenic. Rather Bax integrates into MCRMs, oligomerizing therein, conferring 1–2 log enhanced cytochrome c release. Consistent with this mechanism, MCRM Bax isolates as high molecular weight “pore-forming” oligomers, while non-MCRM membrane contains exclusively MOMP-incompatible monomeric Bax. Conclusions/Significance Our recent studies in the C. elegans germline indicate that mitochondrial ceramide generation is obligate for radiation-induced apoptosis, although a mechanism for ceramide action was not delineated. Here we demonstrate that ceramide, generated in the mitochondrial outer membrane of mammalian cells upon irradiation, forms a platform into which Bax inserts, oligomerizes and functionalizes as a pore. We posit conceptualization of ceramide as a membrane-based stress calibrator, driving membrane macrodomain organization, which in mitochondria regulates intensity of Bax-induced MOMP, and is pharmacologically tractable in vitro and in vivo. PMID:21695182
Liu, Li; Li, Chang-jun; Lu, Yun; Zong, Xian-gang; Luo, Chao; Sun, Jun; Guo, Lian-jun
2015-01-01
GABA receptors play an important role in ischemic brain injury. Studies have indicated that autophagy is closely related to neurodegenerative diseases. However, during chronic cerebral hypoperfusion, the changes of autophagy in the hippocampal CA1 area, the correlation between GABA receptors and autophagy, and their influences on hippocampal neuronal apoptosis have not been well established. Here, we found that chronic cerebral hypoperfusion resulted in rat hippocampal atrophy, neuronal apoptosis, enhancement and redistribution of autophagy, down-regulation of Bcl-2/Bax ratio, elevation of cleaved caspase-3 levels, reduction of surface expression of GABAA receptor α1 subunit and an increase in surface and mitochondrial expression of connexin 43 (CX43) and CX36. Chronic administration of GABAB receptors agonist baclofen significantly alleviated neuronal damage. Meanwhile, baclofen could up-regulate the ratio of Bcl-2/Bax and increase the activation of Akt, GSK-3β and ERK which suppressed cytodestructive autophagy. The study also provided evidence that baclofen could attenuate the decrease in surface expression of GABAA receptor α1 subunit, and down-regulate surface and mitochondrial expression of CX43 and CX36, which might enhance protective autophagy. The current findings suggested that, under chronic cerebral hypoperfusion, the effects of GABAB receptors activation on autophagy regulation could reverse neuronal damage. PMID:26412641
Conformational Heterogeneity of Bax Helix 9 Dimer for Apoptotic Pore Formation
NASA Astrophysics Data System (ADS)
Liao, Chenyi; Zhang, Zhi; Kale, Justin; Andrews, David W.; Lin, Jialing; Li, Jianing
2016-07-01
Helix α9 of Bax protein can dimerize in the mitochondrial outer membrane (MOM) and lead to apoptotic pores. However, it remains unclear how different conformations of the dimer contribute to the pore formation on the molecular level. Thus we have investigated various conformational states of the α9 dimer in a MOM model — using computer simulations supplemented with site-specific mutagenesis and crosslinking of the α9 helices. Our data not only confirmed the critical membrane environment for the α9 stability and dimerization, but also revealed the distinct lipid-binding preference of the dimer in different conformational states. In our proposed pathway, a crucial iso-parallel dimer that mediates the conformational transition was discovered computationally and validated experimentally. The corroborating evidence from simulations and experiments suggests that, helix α9 assists Bax activation via the dimer heterogeneity and interactions with specific MOM lipids, which eventually facilitate proteolipidic pore formation in apoptosis regulation.
Jiang, Li-hua; Yuan, Xiao-lin; Yang, Nian-yun; Ren, Li; Zhao, Feng-ming; Luo, Ban-xin; Bian, Yao-yao; Xu, Jian-ya; Lu, Da-xiang; Zheng, Yuan-yuan; Zhang, Chuan-juan; Diao, Yuan-ming; Xia, Bao-mei; Chen, Gang
2015-08-01
We previously reported that daucosterol (a sterolin) up-regulates the expression of insulin-like growth factor I (IGF1)(1) protein in neural stem cells. In this study, we investigated the effects of daucosterol on the survival of cultured cortical neurons after neurons were subjected to oxygen and glucose deprivation and simulated reperfusion (OGD/R)(2), and determined the corresponding molecular mechanism. The results showed that post-treatment of daucosterol significantly reduced neuronal loss, as well as apoptotic rate and caspase-3 activity, displaying the neuroprotective activity. We also found that daucosterol increased the expression level of IGF1 protein, diminished the down-regulation of p-AKT(3) and p-GSK-3β(4), thus activating the AKT(5) signal pathway. Additionally, it diminished the down-regulation of the anti-apoptotic proteins Mcl-1(6) and Bcl-2(7), and decreased the expression level of the pro-apoptotic protein Bax(8), thus raising the ratio of Bcl-2/Bax. The neuroprotective effect of daucosterol was inhibited in the presence of picropodophyllin (PPP)(9), the inhibitor of insulin-like growth factor I receptors (IGF1R)(10). Our study provided information about daucosterol as an efficient and inexpensive neuroprotectants, to which the IGF1-like activity of daucosterol contributes. Daucosterol could be potentially developed as a medicine for ischemic stroke treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ohta, K; Iwai, K; Kasahara, Y; Taniguchi, N; Krajewski, S; Reed, J C; Miyawaki, T
1995-11-01
The ability of Bcl-2 to inhibit apoptotic cell death is well established. Several homologues of the bcl-2 gene, such as bax, bcl-x or mcl-1, have recently been identified. Like Bcl-2, both Bcl-XL and Mcl-1 appear to function as repressors of apoptotic cell death, whereas Bax facilitates it, indicating possible interactions among them in the control of cellular survival. To investigate the in vivo role of expression of bcl-2 gene family products, immunoblot analysis using corresponding specific antisera was performed for peripheral blood cells and some lymphoid tissues in humans. We demonstrated that all Bcl-2 family proteins were expressed at various levels in hematolymphoid cell subpopulations isolated from peripheral blood, tonsil, spleen and thymus. Lymphoid expression of Bcl-2 family proteins tended to increase following activation, but declined with time in culture. Loss of Bcl-2 in cultured lymphoid cells was especially marked. Sole expression of Bax, but not other members of the Bcl-2 family, was observed on neutrophils, seemingly reflecting their shortest life-span among blood leukocytes. The results support the notion that a balance of expression of Bcl-2 family proteins may regulate the life and death of hematolymphoid cells at different stages of cell differentiation and activation.
HCV upregulates Bim through the ROS/JNK signalling pathway, leading to Bax-mediated apoptosis.
Deng, Lin; Chen, Ming; Tanaka, Motofumi; Ku, Yonson; Itoh, Tomoo; Shoji, Ikuo; Hotta, Hak
2015-09-01
We previously reported that hepatitis C virus (HCV) infection induces Bax-triggered, mitochondrion-mediated apoptosis by using the HCV J6/JFH1 strain and Huh-7.5 cells. However, it was still unclear how HCV-induced Bax activation. In this study, we showed that the HCV-induced activation and mitochondrial accumulation of Bax were significantly attenuated by treatment with a general antioxidant, N-acetyl cysteine (NAC), or a specific c-Jun N-terminal kinase (JNK) inhibitor, SP600125, with the result suggesting that the reactive oxygen species (ROS)/JNK signalling pathway is upstream of Bax activation in HCV-induced apoptosis. We also demonstrated that HCV infection transcriptionally activated the gene for the pro-apoptotic protein Bim and the protein expression of three major splice variants of Bim (BimEL, BimL and BimS). The HCV-induced increase in the Bim mRNA and protein levels was significantly counteracted by treatment with NAC or SP600125, suggesting that the ROS/JNK signalling pathway is involved in Bim upregulation. Moreover, HCV infection led to a marked accumulation of Bim on the mitochondria to facilitate its interaction with Bax. On the other hand, downregulation of Bim by siRNA (small interfering RNA) significantly prevented HCV-mediated activation of Bax and caspase 3. Taken together, these observations suggest that HCV-induced ROS/JNK signalling transcriptionally activates Bim expression, which leads to Bax activation and apoptosis induction.
Bhattacharjee, M; Acharya, S; Ghosh, A; Sarkar, P; Chatterjee, S; Kumar, P; Chaudhuri, S
2008-12-01
The specific apoptotic role of T11TS has been well established in glioma animal models. T11TS specifically induces the glioma cells to die an apoptotic death via immune cross-talk with the two intracranial immune competent cells-microglia and the brain-infiltrating lymphocytes. To unearth the molecular cascades operative within the glioma cells and to some extent in the two interacting immunocytes, we had initiated studies where preliminary findings not only had indicated the involvement of death receptors but had also hinted to the involvement of other apoptotic regulators. Hence, to identify the molecular pathway of apoptosis involving other apoptotic regulators in the three cell types, the cells were studied for the intrinsic apoptotic death regulators that were engaged to maintain the mitochondrial membrane integrity. The proteins that were selected could be divided into three broad classes-the Bcl-2 family of proteins-Bid, Bax and Bcl-2; the guardian of the genome p53 and the proteins downstream of mitochondria-Apaf-1, cytochrome c, caspase-9 and caspase-3. Activated Bid as well as maximal p53 expression was observed in the first dose of T11TS thus dually activating the pro-apoptotic Bax in the first and second dose in the glioma cells. Concurrently, the pro-survival protein Bcl-2's expression level was very much down-regulated in the same two doses favoring the internal microenvironment to proceed for apoptosis. High expression of cytochrome c and Apaf-1 and the presence of active caspase-9 and active caspase-3 in all the T11TS-treated tumor-bearing groups further adjudicated apoptosis of the glioma cells with clear involvement of mitochondrial death pathway in the T11TS-treated animals. Even though expression of the apoptotic regulators remained more or less the same indicating the involvement of mitochondria in the two interacting immunocytes, the intensity of expression of these proteins was much lower than the tumor cells. The present work focuses on the mechanistic approach of how T11TS mediates apoptosis and hence is the first approach of its kind in the field of immunology where the immunotherapeutic molecule's mode of action has been worked out.
Espada, Lilia; Meo-Evoli, Nathalie; Sancho, Patricia; Real, Sebastian; Fabregat, Isabel; Ambrosio, Santiago; Tauler, Albert
2012-01-01
In this study we demonstrate that accumulation of reactive oxygen species (ROS) is essential for E2F1 mediated apoptosis in ER-E2F1 PC12 pheochromocytoma, and SH-SY5Y and SK-N-JD neuroblastoma stable cell lines. In these cells, the ER-E2F1 fusion protein is expressed in the cytosol; the addition of 4-hydroxytamoxifen (OHT) induces its translocation to the nucleus and activation of E2F1target genes. Previously we demonstrated that, in ER-E2F1 PC12 cells, OHT treatment induced apoptosis through activation of caspase-3. Here we show that caspase-8 activity did not change upon treatment with OHT. Moreover, over-expression of Bcl-xL arrested OHT-induced apoptosis; by contrast, over-expression of c-FLIP, did not have any effect on OHT-induced apoptosis. OHT addition induces BimL expression, its translocation to mitochondria and activation of Bax, which is paralleled by diminished mitochondrial enrichment of Bcl-xL. Treatment with a Bax-inhibitory peptide reduced OHT-induced apoptosis. These results point out the essential role of mitochondria on the apoptotic process driven by E2F1. ROS accumulation followed E2F1 induction and treatment with the antioxidant N-acetylcysteine, inhibited E2F1-induced Bax translocation to mitochondria and subsequent apoptosis. The role of ROS in mediating OHT-induced apoptosis was also studied in two neuroblastoma cell lines, SH-SY5Y and SK-N-JD. In SH-SY5Y cells, activation of E2F1 by the addition of OHT induced ROS production and apoptosis, whereas over-expression of E2F1 in SK-N-JD cells failed to induce either response. Transcriptional profiling revealed that many of the genes responsible for scavenging ROS were down-regulated following E2F1-induction in SH-SY5Y, but not in SK-N-JD cells. Finally, inhibition of GSK3β blocked ROS production, Bax activation and the down regulation of ROS scavenging genes. These findings provide an explanation for the apparent contradictory role of E2F1 as an apoptotic agent versus a cell cycle activator. PMID:23251571
Characterization of Bc1-2, Bc1-xL, and Bax Pore Formation and Their Role in Apoptosis Regulation
2002-01-01
Bcl-2, Bcl-xL, and Bax Pore Formation and Their Role in Apoptosis Regulation PRINCIPAL INVESTIGATOR: Frank Stenner -Liewen, Ph.D. Sharon Schendel, Ph.D...AUTHOR(S) Frank Stenner -Liewen, Ph.D. Sharon Schendel, Ph.D. John C. Reed, M.D., Ph.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Qin, Guiqi; Zhao, ChuBiao; Zhang, Lili; Liu, Hongyu; Quan, Yingyao; Chai, Liuying; Wu, Shengnan; Wang, Xiaoping; Chen, Tongsheng
2015-08-01
This report is designed to dissect the detail molecular mechanism by which dihydroartemisinin (DHA), a derivative of artemisinin, induces apoptosis in human hepatocellular carcinoma (HCC) cells. DHA induced a loss of the mitochondrial transmemberane potential (ΔΨm), release of cytochrome c, activation of caspases, and externalization of phosphatidylserine indicative of apoptosis induction. Compared with the modest inhibitory effects of silencing Bax, silencing Bak largely prevented DHA-induced ΔΨm collapse and apoptosis though DHA induced a commensurable activation of Bax and Bak, demonstrating a key role of the Bak-mediated intrinsic apoptosis pathway. DHA did not induce Bid cleavage and translocation from cytoplasm to mitochondria and had little effects on the expressions of Puma and Noxa, but did increase Bim and Bak expressions and decrease Mcl-1 expression. Furthermore, the cytotoxicity of DHA was remarkably reduced by silencing Bim, and modestly but significantly reduced by silencing Puma or Noxa. Silencing Bim or Noxa preferentially reduced DHA-induced Bak activation, while silencing Puma preferentially reduced DHA-induced Bax activation, demonstrating that Bim and to a lesser extent Noxa act as upstream mediators to trigger the Bak-mediated intrinsic apoptosis pathway. In addition, silencing Mcl-1 enhanced DHA-induced Bak activation and apoptosis. Taken together, our data demonstrate a crucial role of Bim in preferentially regulating the Bak/Mcl-1 rheostat to mediate DHA-induced apoptosis in HCC cells.
Leskov, Konstantin S; Araki, Shinako; Lavik, John-Paul; Gomez, Jose A; Gama, Vivian; Gonos, Efstathios S; Trougakos, Ioannis P; Matsuyama, Shigemi; Boothman, David A
2011-11-18
Expression of the clusterin (CLU) gene results in the synthesis of a conventional secretory isoform set (pre- and mature secretory clusterin proteins, psCLU/sCLU), as well as another set of intracellular isoforms, appearing in the cytoplasm (pre-nuclear CLU, pnCLU) and in the nucleus as an ∼55-kDa mature nuclear clusterin (nCLU) form. These two isoform sets have opposing cell functions: pro-survival and pro-death, respectively. Although much is known about the regulation and function of sCLU as a pro-survival factor, the regulation and function of endogenous nCLU in cell death are relatively unexplored. Here, we show that depletion of endogenous nCLU protein using siRNA specific to its truncated mRNA increased clonogenic survival of ionizing radiation (IR)-exposed cells. nCLU-mediated apoptosis was Bax-dependent, and lethality correlated with accumulation of mature nCLU protein. nCLU accumulation was regulated by CRM1 because binding between CRM1 and nCLU proteins was significantly diminished by leptomycin B (LMB), and nuclear levels of nCLU protein were significantly enhanced by LMB and IR co-treatment. Moreover, LMB treatment significantly enhanced IR-induced nCLU-mediated cell death responses. Importantly, bax(-/-) and bax(-/-)/bak(-/-) double knock-out cells were resistant to nCLU-mediated cell death, whereas bak(-/-) or wild-type bax(+/+)/bak(+/+) cells were hypersensitive. The regulation of nCLU by CRM1 nuclear export/import may explain recent clinical results showing that highly malignant tumors have lost the ability to accumulate nCLU levels, thereby avoiding growth inhibition and cell death.
GPER-independent inhibition of adrenocortical cancer growth by G-1 involves ROS/Egr-1/BAX pathway.
Casaburi, Ivan; Avena, Paola; De Luca, Arianna; Sirianni, Rosa; Rago, Vittoria; Chimento, Adele; Trotta, Francesca; Campana, Carmela; Rainey, William E; Pezzi, Vincenzo
2017-12-29
We previously demonstrated that treatment of the H295R adrenocortical cancer cell line with the non-steroidal, high-affinity GPER (G protein-coupled estrogen receptor 1) agonist G-1 reduced tumor growth in vitro and in vivo through a GPER independent action. Moreover, we observed that G-1 treatment induces cell-cycle arrest and apoptosis following a sustained ERK1/2 activation. However, the precise mechanisms causing these effects were not clarified. Starting from our preliminary published results, we performed a microarray study that clearly evidenced a strong and significative up-regulation of EGR-1 gene in H295R cells treated for 24h with micromolar concentration of G-1. The microarray findings were confirmed by RT-PCR and Western-blot analysis as well as by immunofluorescence that revealed a strong nuclear staining for EGR-1 after G-1 treatment. EGR-1 is a point of convergence of many intracellular signaling cascades that control tumor cell growth and proliferation as well as others that relate to cell death machinery. Here we found that the increased Egr-1 expression was a consequence of G-1-mediated ROS-dependent ERK activation that were promptly reversed by the presence of the antioxidant n-acetyl-cysteine. Finally, we observed that silencing EGR-1 gene expression reversed the main effects induced by G-1 in ACC cells, including upregulation of the negative regulator of cell cycle, p21 Waf1/Cip1 and the positive regulator of mitochondrial apoptotic pathway, BAX, as well as the cell growth inhibition. The identified ROS/MAPK/Egr-1/BAX pathway as a potential off-target effect of the G-1 could be useful in implementing the pharmacological approach for ACC therapy.
Ghanem, Mohamed M.; Battelli, Lori A.; Mercer, Robert R.; Scabilloni, James F.; Kashon, Michael L.; Ma, Jane Y.C.; Nath, Joginder; Hubbs, Ann F.
2006-01-01
Background Miners inhaling respirable coal dust (CD) frequently develop coal workers’ pneumoconiosis, a dust-associated pneumoconiosis characterized by lung inflammation and variable fibrosis. Many coal miners are also exposed to polycyclic aromatic hydrocarbon (PAH) components of diesel engine exhaust and cigarette smoke, which may contribute to lung disease in these workers. Recently, apoptosis was reported to play a critical role in the development of another pneumoconiosis of miners, silicosis. In addition, CD was reported to suppress cytochrome P450 1A1 (CYP1A1) induction by PAHs. Methods We investigated the hypothesis that apoptosis plays a critical role in lung injury and down-regulation of CYP1A1 induction in mixed exposures to CD and PAHs. We exposed rats intratracheally to 0.0, 2.5, 10.0, 20.0, or 40.0 mg/rat CD and, 11 days later, to intraperitoneal β-naphthoflavone (BNF), a PAH. In another group of rats exposed to CD and BNF, caspase activity was inhibited by injection of the pan-caspase inhibitor Q-VD-OPH [quinoline-Val-Asp (OMe)-CH2-OPH]. Results In rats exposed to BNF, CD exposure increased alveolar expression of the proapoptotic mediator Bax but decreased CYP1A1 induction relative to BNF exposure alone. Pan-caspase inhibition decreased CD-associated Bax expression and apoptosis but did not restore CYP1A1 activity. Further, CD-induced lung inflammation and alveolar epithelial cell hypertrophy and hyperplasia were not suppressed by caspase inhibition. Conclusions Combined BNF and CD exposure increased Bax expression and apoptosis in the lung, but Bax and apoptosis were not the major determinants of early lung injury in this model. PMID:16966090
Sex differences in MDMA-induced toxicity in Sprague-Dawley rats
Asl, Sara Soleimani; Mehdizadeh, Mehdi; Shahraki, Soudabeh Hamedi; Artimani, Tayebeh; Joghataei, Mohammad Taghi
2015-01-01
Summary Recent evidence demonstrates that female subjects show exaggerated responses to 3,4-methylenedioxymethamphetamine (MDMA) compared with males. The aim of our study was to evaluate sex differences and the role of endogenous gonadal hormones on the effects of MDMA. Fifty-six intact and gonadectomized male and female Sprague-Dawley rats were randomly assigned to either MDMA (5 mg/kg) or saline treatment. Learning and memory were assessed using the Morris water maze (MWM). The expression of Bax and Bcl-2 in the hippocampus was detected by Western blotting. Behavioral analysis showed that MDMA led to memory impairment in both male and female rats. The female rats showed more sensitivity to impairment than the males, as assessed using all the memory parameters in the MWM. Ovariectomy attenuated the MDMA-induced memory impairment. By contrast, orchiectomized rats showed more impairment than MDMA-treated intact male rats. Bcl-2 and Bax were down-regulated and up-regulated in MDMA-treated male and female rats, respectively. MDMA treatment in the orchiectomized rats led to up-regulation of Bax and down-regulation of Bcl-2. Ovariectomy attenuated the MDMA-induced up-regulation of Bax and caused more expression of Bcl-2 compared with what was observed in the MDMA-treated intact female rats. In summary, female rats showed exaggerated responses to the effects of MDMA and this may be explained by endogenous gonadal hormones. PMID:26415786
Dynamic interaction between 14-3-3zeta and bax during TNF-α-induced apoptosis in living cells
NASA Astrophysics Data System (ADS)
Gao, Xuejuan; Xing, Da; Chen, Tongsheng
2006-09-01
Bax, a proapoptotic member of the Bcl-2 family, localizes largely in the cytoplasm but redistributes to mitochondria and undergoes oligomerization to induce the release of apoptogenic factors such as cytochrome c in response to apoptotic stimuli. Cytoplasmic protein 14-3-3zeta binds to Bax and, upon apoptotic stimulation, releases Bax by a caspase-independent mechanism. However, the direct interaction of the cytoplasmic 14-3-3zeta and Bax in living cells has not been observed. In present study, to monitor the dynamic interaction between 14-3-3zeta and Bax in living cells in real time during apoptosis induced by tumor necrosis factor (TNF-α), DsRed-14-3-3zeta plasmid is constructed. By cotransfecting DsRed- 14-3-3zeta and GFP-Bax plasmids into human lung adenocarcinoma cells (ASTC-a-1), we observe the dynamic interaction between Bax and 14-3-3zeta using fluorescence resonance energy transfer (FRET) technique on laser scanning confocal microscope. The results show that 14-3-3zeta remains in the cytoplasm but GFP-Bax translocates to mitochondria completely after TNF-α stimulation. These results reveal that 14-3-3zeta binds directly to Bax in healthy cells, and that 14-3-3zeta negatively regulates Bax translocation to mitochondria during TNF-α-induced apoptosis.
Mi, Yuling; Tu, Longlong; Wang, Huimin; Zeng, Weidong; Zhang, Caiqiao
2013-10-01
The beneficial effects of quercetin on reproductive damage elicited by 4-nitrophenol (PNP) were studied in adult male mice. A six-week treatment of weekly intraperitoneal injections of PNP (50 mg/kg) resulted in severe damage to the seminiferous tubules, a remarkable increase in both hydroxyl radical and malondiadehyde production, and notably decreased glutathione peroxidase and superoxide dismutase activities. Moreover, PNP treatment induced germ cell apoptosis, inhibited Bcl-xl expression, and then activated Bax expression and the caspase-3 enzyme. Exposure to PNP also increased XBP-1 and HO-1 mRNAs levels. However, simultaneous supplementation with quercetin (75 mg/kg) attenuated the toxicity induced by PNP through renewal of the antioxidant enzyme's status, alleviating apoptosis by regulating the expressions of Bax and Bcl-xl, XBP-1 and HO-1mRNAs, and the regulation of caspase-3 activity. Taken together, these findings indicated that the antioxidant quercetin displays a potential preventive effect on PNP-induced oxidative damage in mouse testes and may represent an efficient supplement to attenuate reproductive toxicity from environmental toxicants in order to ensure reproductive health and sperm production. Copyright © 2013 Wiley Periodicals, Inc.
Bax Inhibitor-1 down-regulation in the progression of chronic liver diseases
2010-01-01
Background Bax inhibitor-1 (BI-1) is an evolutionary conserved endoplasmic reticulum protein that, when overexpressed in mammalian cells, suppresses the apoptosis induced by Bax, a pro-apoptotic member of the Bcl-2 family. The aims of this study were: (1) to clarify the role of intrinsic anti- and pro-apoptotic mediators, evaluating Bax and BI-1 mRNA and protein expressions in liver tissues from patients with different degrees of liver damage; (2) to determine whether HCV and HBV infections modulate said expression. Methods We examined 62 patients: 39 with chronic hepatitis (CH) (31 HCV-related and 8 HBV-related); 7 with cirrhosis (6 HCV-related and 1 HBV-related); 13 with hepatocellular carcinoma (HCC) [7 in viral cirrhosis (6 HCV- and 1 HBV-related), 6 in non-viral cirrhosis]; and 3 controls. Bax and BI-1 mRNAs were quantified by real-time PCR, and BI-1 protein expression by Western blot. Results CH tissues expressed significantly higher BI-1 mRNA levels than cirrhotic tissues surrounding HCC (P < 0.0001) or HCC (P < 0.0001). Significantly higher Bax transcripts were observed in HCV-genotype-1-related than in HCV-genotype-3-related CH (P = 0.033). A positive correlation emerged between BI-1 and Bax transcripts in CH tissues, even when HCV-related CH and HCV-genotype-1-related CH were considered alone (P = 0.0007, P = 0.0005 and P = 0.0017, respectively). Conclusions BI-1 expression is down-regulated as liver damage progresses. The high BI-1 mRNAs levels observed in early liver disease may protect virus-infected cells against apoptosis, while their progressive downregulation may facilitate hepatocellular carcinogenesis. HCV genotype seems to have a relevant role in Bax transcript expression. PMID:20359348
Chura-Chambi, Rosa Maria; Arcuri, Helen Andrade; Lino, Felipe; Versati, Natan; Palma, Mario Sergio; Favaro, Denize C; Morganti, Ligia
2017-05-01
Endostatin (ES) is an antiangiogenic protein that exhibits antitumor activity in animal models. However, the activity observed in animals was not observed in human clinical trials. ES-BAX is a fusion protein composed of two functional domains: ES, which presents specificity and is internalized by activated endothelial cells and the proapoptotic BH3 domain of the protein BAX, a peptide inductor of cellular death when internalized. We have previously shown (Chura-Chambi et al., Cell Death Dis, 5, e1371, 2014) that ES-BAX presents improved antitumor activity in relation to wild-type ES. Secondary and tertiary structures of ES-BAX are similar to ES, as indicated by homology-modeling studies and molecular dynamics simulations. Tryptophan intrinsic fluorescence and circular dichroism spectroscopy corroborate these data. 15 N HSQC NMR indicates that ES-BAX is structured, but some ES residues have suffered chemical shift perturbations, suggesting that the BH3 peptide interacts with some parts of the ES protein. ES and ES-BAX present similar stability to thermal denaturation. The production of stable hybrid proteins can be a new approach to the development of therapeutic agents presenting specificity for tumoral endothelium and improved antitumor effect. © 2016 International Union of Biochemistry and Molecular Biology, Inc.
Darling, Nicola J; Balmanno, Kathryn; Cook, Simon J
2017-01-01
Disruption of protein folding in the endoplasmic reticulum (ER) causes ER stress. Activation of the unfolded protein response (UPR) acts to restore protein homeostasis or, if ER stress is severe or persistent, drive apoptosis, which is thought to proceed through the cell intrinsic, mitochondrial pathway. Indeed, cells that lack the key executioner proteins BAX and BAK are protected from ER stress-induced apoptosis. Here we show that chronic ER stress causes the progressive inhibition of the extracellular signal-regulated kinase (ERK1/2) signalling pathway. This is causally related to ER stress since reactivation of ERK1/2 can protect cells from ER stress-induced apoptosis whilst ERK1/2 pathway inhibition sensitises cells to ER stress. Furthermore, cancer cell lines harbouring constitutively active BRAFV600E are addicted to ERK1/2 signalling for protection against ER stress-induced cell death. ERK1/2 signalling normally represses the pro-death proteins BIM, BMF and PUMA and it has been proposed that ER stress induces BIM-dependent cell death. We found no evidence that ER stress increased the expression of these proteins; furthermore, BIM was not required for ER stress-induced death. Rather, ER stress caused the PERK-dependent inhibition of cap-dependent mRNA translation and the progressive loss of pro-survival proteins including BCL2, BCLXL and MCL1. Despite these observations, neither ERK1/2 activation nor loss of BAX/BAK could confer long-term clonogenic survival to cells exposed to ER stress. Thus, ER stress induces cell death by at least two biochemically and genetically distinct pathways: a classical BAX/BAK-dependent apoptotic response that can be inhibited by ERK1/2 signalling and an alternative ERK1/2- and BAX/BAK-independent cell death pathway.
Cheng, Chin-Yi; Tang, Nou-Ying; Kao, Shung-Te; Hsieh, Ching-Liang
2016-01-01
This study aimed to evaluate the effects of ferulic acid (FA) administered at various time points before or after 30 min of middle cerebral artery occlusion (MCAo) followed by 7 d of reperfusion and to examine the involvement of mitogen-activated protein kinase (MAPK) signaling pathways in the cortical penumbra. FA was intravenously administered to rats at a dose of 100 mg/kg 24 h before ischemia (B-FA), 2 h before ischemia (P-FA), immediately after ischemic insult (I-FA), 2 h after reperfusion (R-FA), or 24 h after reperfusion (D-FA). Our study results indicated that P-FA, I-FA, and R-FA effectively reduced cerebral infarct areas and neurological deficits. P-FA, I-FA, and R-FA significantly downregulated glial fibrillary acidic protein (GFAP), mitochondrial Bax, cytochrome c, and cleaved caspase-3 expression, and effectively restored the phospho-p38 MAPK (p-p38 MAPK)/p38 MAPK ratio, phospho-90 kDa ribosomal S6 kinase (p-p90RSK) expression, phospho-Bad (p-Bad) expression, the phospho-cAMP response element-binding protein (p-CREB)/CREB ratio, the cytosolic and mitochondrial Bcl-2/Bax ratios, and the cytosolic Bcl-xL/Bax ratio in the cortical penumbra 7 d after reperfusion. SB203580, a specific inhibitor of p38 MAPK, administered 30 min prior to ischemia abrogated the downregulating effects of I-FA on cerebral infarction, and mitochondrial Bax and cleaved caspase-3 expression, and the upregulating effects of I-FA on the p-p38 MAPK/p38 MAPK ratio, p-p90RSK expression, p-Bad expression, and the p-CREB/CREB, and cytosolic and mitochondrial Bcl-2/Bax ratios. Our study results thus indicate that P-FA, I-FA, and R-FA effectively suppress reactive astrocytosis and exert neuroprotective effects against cerebral infarction by activating p38 MAPK signaling. The regulating effects of P-FA, I-FA, and R-FA on Bax-induced apoptosis result from activation of the p38 MAPK/p90RSK/CREB/Bcl-2 signaling pathway, and eventually contribute to inhibition of the cytochrome c-mediated caspase-3-dependent apoptotic pathway in the cortical penumbra 7 d after reperfusion.
Cheng, Chin-Yi; Tang, Nou-Ying; Kao, Shung-Te; Hsieh, Ching-Liang
2016-01-01
Objectives This study aimed to evaluate the effects of ferulic acid (FA) administered at various time points before or after 30 min of middle cerebral artery occlusion (MCAo) followed by 7 d of reperfusion and to examine the involvement of mitogen-activated protein kinase (MAPK) signaling pathways in the cortical penumbra. Methods FA was intravenously administered to rats at a dose of 100 mg/kg 24 h before ischemia (B-FA), 2 h before ischemia (P-FA), immediately after ischemic insult (I-FA), 2 h after reperfusion (R-FA), or 24 h after reperfusion (D-FA). Results Our study results indicated that P-FA, I-FA, and R-FA effectively reduced cerebral infarct areas and neurological deficits. P-FA, I-FA, and R-FA significantly downregulated glial fibrillary acidic protein (GFAP), mitochondrial Bax, cytochrome c, and cleaved caspase-3 expression, and effectively restored the phospho-p38 MAPK (p-p38 MAPK)/p38 MAPK ratio, phospho-90 kDa ribosomal S6 kinase (p-p90RSK) expression, phospho-Bad (p-Bad) expression, the phospho-cAMP response element-binding protein (p-CREB)/CREB ratio, the cytosolic and mitochondrial Bcl-2/Bax ratios, and the cytosolic Bcl-xL/Bax ratio in the cortical penumbra 7 d after reperfusion. SB203580, a specific inhibitor of p38 MAPK, administered 30 min prior to ischemia abrogated the downregulating effects of I-FA on cerebral infarction, and mitochondrial Bax and cleaved caspase-3 expression, and the upregulating effects of I-FA on the p-p38 MAPK/p38 MAPK ratio, p-p90RSK expression, p-Bad expression, and the p-CREB/CREB, and cytosolic and mitochondrial Bcl-2/Bax ratios. Conclusions Our study results thus indicate that P-FA, I-FA, and R-FA effectively suppress reactive astrocytosis and exert neuroprotective effects against cerebral infarction by activating p38 MAPK signaling. The regulating effects of P-FA, I-FA, and R-FA on Bax-induced apoptosis result from activation of the p38 MAPK/p90RSK/CREB/Bcl-2 signaling pathway, and eventually contribute to inhibition of the cytochrome c-mediated caspase-3-dependent apoptotic pathway in the cortical penumbra 7 d after reperfusion. PMID:27187745
Bcl-2/Bax protein ratio predicts 5-fluorouracil sensitivity independently of p53 status
Mirjolet, J-F; Barberi-Heyob, M; Didelot, C; Peyrat, J-P; Abecassis, J; Millon, R; Merlin, J-L
2000-01-01
p53 tumour-suppressor gene is involved in cell growth control, arrest and apoptosis. Nevertheless cell cycle arrest and apoptosis induction can be observed in p53-defective cells after exposure to DNA-damaging agents such as 5-fluorouracil (5-FU) suggesting the importance of alternative pathways via p53-independent mechanisms. In order to establish relationship between p53 status, cell cycle arrest, Bcl-2/Bax regulation and 5-FU sensitivity, we examined p53 mRNA and protein expression and p53 protein functionality in wild-type (wt) and mutant (mt) p53 cell lines. p53 mRNA and p53 protein expression were determined before and after exposure to equitoxic 5-FU concentration in six human carcinoma cell lines differing in p53 status and displaying marked differences in 5-FU sensitivity, with IC 50 values ranging from 0.2–22.6 mM. 5-FU induced a rise in p53 mRNA expression in mt p53 cell lines and in human papilloma virus positive wt p53 cell line, whereas significant decrease in p53 mRNA expression was found in wt p53 cell line. Whatever p53 status, 5-FU altered p53 transcriptional and translational regulation leading to up-regulation of p53 protein. In relation with p53 functionality, but independently of p53 mutational status, after exposure to 5-FU equitoxic concentration, all cell lines were able to arrest in G1. No relationship was evidenced between G1 accumulation ability and 5-FU sensitivity. Moreover, after 5-FU exposure, Bax and Bcl-2 proteins regulation was under p53 protein control and a statistically significant relationship (r= 0.880,P= 0.0097) was observed between Bcl-2/Bax ratio and 5-FU sensitivity. In conclusion, whatever p53 status, Bcl-2 or Bax induction and Bcl-2/Bax protein ratio were correlated to 5-FU sensitivity. © 2000 Cancer Research Campaign PMID:11044365
Spanos, S; Rice, S; Karagiannis, P; Taylor, D; Becker, D L; Winston, R M L; Hardy, K
2002-09-01
It has been observed that apoptosis occurs in human blastocysts. In other types of cell, the characteristic morphological changes seen in apoptotic cells are executed by caspases, which are regulated by the BCL-2 family of proteins. This study investigated whether these components of the apoptotic cascade are present throughout human preimplantation development. Developing and arrested two pronucleate embryos at all stages were incubated with a fluorescently tagged caspase inhibitor that binds only to active caspases, fixed, counterstained with 4,6-diamidino-2-phenylindole (DAPI) to assess nuclear morphology and examined using confocal microscopy. Active caspases were detected only after compaction, at the morula and blastocyst stages, and were frequently associated with apoptotic nuclei. Occasional labelling was seen in arrested embryos. Expression of proapoptotic BAX and BAD and anti-apoptotic BCL-2 was examined in single embryos using RT-PCR and immunohistochemistry. BAX and BCL-2 mRNAs were expressed throughout development, whereas BAD mRNA was expressed mainly after compaction. Simultaneous expression of BAX and BCL-2 proteins within individual embryos was confirmed using immunohistochemistry. The onset of caspase activity and BAD expression after compaction correlates with the previously reported appearance of apoptotic nuclei. As in other types of cell, human embryos express common molecular components of the apoptotic cascade, although apoptosis appears to be suppressed before compaction and differentiation.
Manaharan, Thamilvaani; Thirugnanasampandan, Ramaraj; Jayakumar, Rajarajeswaran; Kanthimathi, M. S.; Ramya, Gunasekar; Ramnath, Madhusudhanan Gogul
2016-01-01
Background: Essential oil of Ocimum sanctum Linn. exhibited various pharmacological activities including antifungal and antimicrobial activities. In this study, we analyzed the anticancer and apoptosis mechanisms of Ocimum sanctum essential oil (OSEO). Objective: To trigger the apoptosis mechanism in human breast cancer cells using OSEO. Materials and Methods: OSEO was extracted using hydrodistillation of the leaves. Cell proliferation was determined using different concentrations of OSEO. Apoptosis studies were carried out in human breast cancer cells using propidium iodide (PI) and Hoechst staining. Results: We found that OSEO inhibited proliferation (IC50 = 170 μg/ml) of Michigan cancer foundation-7 (MCF-7) cells in a dose-dependent manner. The OSEO also induced apoptosis as evidenced by the increasing number of PI-stained apoptotic nucleic of MCF-7 cells. Flow cytometry analysis revealed that treatment with OSEO (50–500 μg/ml) increased the apoptotic cells population (16–84%) dose dependently compared to the control. OSEO has the ability to up-regulate the apoptotic genes p53 and Bid and as well as elevates the ratio of Bax/Bcl-2. Conclusion: Our findings indicate that OSEO has the ability as proapoptotic inducer and it could be developed as an anticancer agent. SUMMARY OSEO inhibited proliferation of MCF-7 cells with an IC50 of 170 μg/mLOSEO at 500 μg/mL increased the population of apoptotic cells by 84%OSEO up-regulated the expression of apoptotic genes and as well increased the Bax/Bcl2 ratio. Abbreviations used: BAX: BAX BCL2-associated X protein; BCL2: B-cell CLL/lymphoma 2; BID: BH3 Interacting domain death agonist; OSEO: Ocimum sanctum essential oil; DMSO: Dimethyl sulfoxide; DMEM: Dulbecco's modified Eagle medium; MCF-7: Michigan cancer foundation-7; RT-PCR: Real Time Polymerase Chain Reaction. PMID:27563220
Ma, Yunlong; Zhu, Bin; Yong, Lei; Song, Chunyu; Liu, Xiao; Yu, Huilei; Wang, Peng; Liu, Zhongjun; Liu, Xiaoguang
2016-11-23
Our previous study has reported the anti-tumor effect of oleandrin on osteosarcoma (OS) cells. In the current study, we mainly explored its potential regulation on intrinsic and extrinsic apoptotic pathway in OS cells. Cells apoptosis, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were detected using fluorescence staining and flow cytometry. Caspase-3 activity was detected using a commercial kit. The levels of cytoplasmic cytochrome c, mitochondrial cytochrome c, bcl-2, bax, caspase-9, Fas, FasL, caspase-8 and caspase-3 were detected by Western blotting. z-VAD-fmk was applied to block both intrinsic and extrinsic apoptosis pathways, and cells apoptosis was also tested. Furthermore, we used z-LEHD-fmk and Fas blocking antibody to inhibit intrinsic and extrinsic pathways, separately, and the selectivity of oleandrin on these pathways was explored. Results showed that oleandrin induced the apoptosis of OS cells, which was accompanied by an increase in ROS and a decrease in MMP. Furthermore, cytochrome c level was reduced in mitochondria but elevated in the cytoplasm. Caspase-3 activity was enhanced by oleandrin in a concentration- and time-dependent manner. Oleandrin also down-regulated the expression of bcl-2, but up-regulated bax, caspase-9, Fas, FasL, caspase-8 and caspase-3. In addition, the suppression of both apoptotic pathways by z-VAD-fmk greatly reverted the oleandrin-induced apoptosis. Moreover, the suppression of one pathway by a corresponding inhibitor did not affect the regulation of oleandrin on another pathway. Taken together, we concluded that oleandrin induced apoptosis of OS cells via activating both intrinsic and extrinsic apoptotic pathways.
Neuspiel, Margaret; Zunino, Rodolfo; Gangaraju, Sandhya; Rippstein, Peter; McBride, Heidi
2005-07-01
Mitochondrial fusion in higher eukaryotes requires at least two essential GTPases, Mitofusin 1 and Mitofusin 2 (Mfn2). We have created an activated mutant of Mfn2, which shows increased rates of nucleotide exchange and decreased rates of hydrolysis relative to wild type Mfn2. Mitochondrial fusion is stimulated dramatically within heterokaryons expressing this mutant, demonstrating that hydrolysis is not requisite for the fusion event, and supporting a role for Mfn2 as a signaling GTPase. Although steady-state mitochondrial fusion required the conserved intermembrane space tryptophan residue, this requirement was overcome within the context of the hydrolysis-deficient mutant. Furthermore, the punctate localization of Mfn2 is lost in the dominant active mutants, indicating that these sites are functionally controlled by changes in the nucleotide state of Mfn2. Upon staurosporine-stimulated cell death, activated Bax is recruited to the Mfn2-containing puncta; however, Bax activation and cytochrome c release are inhibited in the presence of the dominant active mutants of Mfn2. The dominant active form of Mfn2 also protected the mitochondria against free radical-induced permeability transition. In contrast to staurosporine-induced outer membrane permeability transition, pore opening induced through the introduction of free radicals was dependent upon the conserved intermembrane space residue. This is the first evidence that Mfn2 is a signaling GTPase regulating mitochondrial fusion and that the nucleotide-dependent activation of Mfn2 concomitantly protects the organelle from permeability transition. The data provide new insights into the critical relationship between mitochondrial membrane dynamics and programmed cell death.
Elhinnawi, Manar A; Mohareb, Rafat M; Rady, Hanaa M; Khalil, Wagdy K B; Abd Elhalim, Mervat M; Elmegeed, Gamal A
2018-06-10
A series of pregnenolone derivatives were synthesized and assessed for anti-cancer activity against hepatocellular carcinoma cell line (HepG2). The synthesized hetero-steroids (compounds 3, 4, 5, 6, 7, 8a and 8b) were evaluated for their cytotoxic activities using MTT (3-(4,5-Dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide) assay. Apoptotic activity was assessed using dual acridine orange/ethidium bromide staining method and DNA fragmentation assay. Pro-apoptotic genes (Bax and Bak) and anti-apoptotic genes (Bcl-2 and Bcl-xL) were analyzed using quantitative real time PCR. The results revealed that compounds 4 and 6 displayed cytotoxic activity (IC 50s , 36.97 ± 2.18 and 18.46 ± 0.64 µM, respectively), while compounds 5 and 7 exhibited weak cytotoxic activity (IC 50s , 93.87 ± 8.30 µM and 93.48 ± 4.14 µM, respectively). All synthesized heterocyclic pregnenolone derivatives induced apoptosis through DNA fragmentation. Compounds 4 and 6 increased early and late apoptotic cell percentages while compounds 3, 5, 7 and 8b increased either early or late apoptotic cell percentage. Moreover, compounds 3, 6 and 8b up-regulated the expression level of Bak gene. On the other hand, compounds 4, 5, 7 and 8a down-regulated the Bcl-2 expression level, besides, compounds 5, 7 and 8a down-regulated the Bcl-xL expression level. Compounds 5, 7, 8a and 8b increased the Bak/Bcl-xL ratio, besides, compound 8a raised the Bax/Bcl-xL ratio whereas compound 5 elevated Bax/Bcl-2 and Bak/Bcl-2 ratios. The present work introduced novel pro-apoptotic pregnenolone derivatives that acted against HepG2 cells through DNA fragmentation, apoptotic morphological changes and were able to increase the pro-apoptotic/anti-apoptotic ratios of Bcl-2 family genes. This study particularly revealed that the cytotoxic compound 4 is the most promising pro-apoptotic compound among other synthesized derivatives where it induced apoptosis (late and early) through the down-regulation of Bcl-2 gene expression level. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chimento, A; Sirianni, R; Zolea, F; Bois, C; Delalande, C; Andò, S; Maggiolini, M; Aquila, S; Carreau, S; Pezzi, V
2011-10-01
Spermatogenesis is a precisely controlled and timed process, comprising mitotic divisions of spermatogonia, meiotic divisions of spermatocytes, maturation and differentiation of haploid spermatids giving rise to spermatozoa. It is well known that the maintenance of spermatogenesis is controlled by gonadotrophins and testosterone, the effects of which are modulated by a complex network of locally produced factors, including oestrogens. However, it remains uncertain whether oestrogens are able to activate rapid signalling pathways directly in male germ cells. Classically, oestrogens act by binding to oestrogen receptors (ESRs) 1 and 2. Recently, it has been demonstrated that rapid oestrogen action can also be mediated by the G-protein-coupled oestrogen receptor 1 (Gper). The aim of the present study was to investigate ESRs and Gper expression in primary cultures of adult rat round spermatids (RS) and define if oestradiol (E2) is able to activate, through these receptors, pathways involved in the regulation of genes controlling rat RS apoptosis and/or maturation. In this study, we demonstrated that rat RS express ESR1, ESR2 and Gper. Short-time treatment of RS with E2, the selective Gper agonist G1 and the selective ESR1 and ERβ agonists, 4,4',4"-(4-propyl-[1H]pyrazole-1,3,5-triyl) trisphenol (PPT) and 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), respectively, determined activation of Extra-cellular signal-regulated kinase (ERK1/2) through the involvement of epidermal growth factor receptor transactivation. In addition, we investigated the effects of ESRs and Gper pathway activation on factors involved in RS maturation. Expression of cyclin B1 mRNA was downregulated by E2, G1 and PPT, but not by DPN. A concomitant and inverse regulation of the pro-apoptotic factor Bax mRNA expression was observed in the same conditions, with DPN being the only one determining an increase in this factor expression. Collectively, these data demonstrate that E2 activates, through ESRs and Gper, pathways involved in the regulation of genes controlling rat RS apoptosis and differentiation such as cyclin B1 and Bax. © 2010 The Authors. International Journal of Andrology © 2011 European Academy of Andrology.
Zhang, Mingzhen; Zheng, Jie; Nussinov, Ruth; Ma, Buyong
2016-09-15
Dysfunction of Bax, a pro-apoptotic regulator of cellular metabolism is implicated in neurodegenerative diseases and cancer. We have constructed the first atomistic models of the Bax oligomeric pore consisting with experimental residue-residue distances. The models are stable, capturing well double electron-electron resonance (DEER) spectroscopy measurements and provide structural details in line with the DEER data. Comparison with the latest experimental results revealed that our models agree well with both Bax and Bak pores, pointed to a converged structural arrangement for Bax and Bak pore formation. Using multi-scale molecular dynamics simulations, we probed mutational effects on Bax transformation from monomer → dimer → membrane pore formation at atomic resolution. We observe that two cancer-related mutations, G40E and S118I, allosterically destabilize the monomer and stabilize an off-pathway swapped dimer, preventing productive pore formation. This observation suggests a mechanism whereby the mutations may work mainly by over-stabilizing the monomer → dimer transformation toward an unproductive off-pathway swapped-dimer state. Our observations point to misfolded Bax states, shedding light on the molecular mechanism of Bax mutation-elicited cancer. Most importantly, the structure of the Bax pore facilitates future study of releases cytochrome C in atomic detail.
NASA Astrophysics Data System (ADS)
Zhang, Mingzhen; Zheng, Jie; Nussinov, Ruth; Ma, Buyong
2016-09-01
Dysfunction of Bax, a pro-apoptotic regulator of cellular metabolism is implicated in neurodegenerative diseases and cancer. We have constructed the first atomistic models of the Bax oligomeric pore consisting with experimental residue-residue distances. The models are stable, capturing well double electron-electron resonance (DEER) spectroscopy measurements and provide structural details in line with the DEER data. Comparison with the latest experimental results revealed that our models agree well with both Bax and Bak pores, pointed to a converged structural arrangement for Bax and Bak pore formation. Using multi-scale molecular dynamics simulations, we probed mutational effects on Bax transformation from monomer → dimer → membrane pore formation at atomic resolution. We observe that two cancer-related mutations, G40E and S118I, allosterically destabilize the monomer and stabilize an off-pathway swapped dimer, preventing productive pore formation. This observation suggests a mechanism whereby the mutations may work mainly by over-stabilizing the monomer → dimer transformation toward an unproductive off-pathway swapped-dimer state. Our observations point to misfolded Bax states, shedding light on the molecular mechanism of Bax mutation-elicited cancer. Most importantly, the structure of the Bax pore facilitates future study of releases cytochrome C in atomic detail.
Ariffin, Azhar; Abdulla, Mahmood A.; Abdullah, Zanariah
2016-01-01
A series of new 2-(ethylthio)benzohydrazone derivatives (1–6) were prepared and characterised by IR, 1H NMR, and 13C NMR spectroscopy and mass spectrometry. The newly prepared compounds were screened for their in vitro antioxidant activities using free radical scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Among them, most powerful antioxidant, compound 1 has been selected in order to illustrate anti-ulcer effect on ethanol-induced gastric mucosal lesions in rats. Four groups of Sprague Dawley rats were respectively treated with 10% Tween 20 as ulcer control group, 20 mg/kg omeprazole as reference group, 50 mg/kg and 100 mg/kg compound 1 as experimental animals. Macroscopically, ulcer control group showed extensive hemorrhagic lesions of gastric mucosa compared with omeprazole or compound 1. Rats pre-treated with compound 1 showed increased in gastric pH and gastric mucus. Histologically, ulcer control group showed severe damage to gastric mucosa with edema and leucocytes infiltration of submucosal layer. In immunohistochemical analysis, rats which were pre-treated with compound 1 showed up-regulation of HSP70 and down-regulation of Bax proteins. In conclusion, the gastroprotective effect of compound 1 may be due to its antioxidant activity, and/or due to up-regulation of HSP70 and down-regulation of Bax protein in stained tissue section. PMID:27272221
Expression of Bcl-2 and Bax in extrahepatic biliary tract carcinoma and dysplasia
Li, Sheng-Mian; Yao, Shu-Kun; Yamamura, Nobuyoshi; Nakamura, Toshitsugu
2003-01-01
AIM: To compare the difference of expression of Bcl-2 and Bax in extrahepatic biliary tract carcinoma and dysplasia, and to analyze the role of Bcl-2 and Bax proteins in the progression from dysplasia to carcinoma and to evaluate the correlation of Bcl-2/Bax protein expression with the biological behaviors. METHODS: Expressions of Bcl-2 and Bax were examined immunohistochemically in 27 cases of extrahepatic biliary tract carcinomas (bile duct carcinoma: n = 21, carcinoma of ampulla of Vater: n = 6), and 10 cases of atypical dysplasia. Five cases of normal biliary epithelial tissues were used as controls. A semiquantitative scoring system was used to assess the Bcl-2 and Bax reactivity. RESULTS: The expression of Bcl-2 was observed in 10 out of 27 (37.0%) invasive carcinomas, 1 out of 10 dysplasias, none out of 5 normal epithelial tissues. Bax expression rate was 74.1% (20/27) in invasive carcinoma, 30% (3/10) in dysplasia, and 40% (2/5) in normal biliary epithelium. Bcl-2 and Bax activities were more intense in carcinoma than in dysplasia, with no significant difference in Bcl-2 expression (P = 0.110), and significant difference in Bax expression (P = 0.038). Level of Bax expression was higher in invasive carcinoma than in dysplasia and normal tissue (P = 0.012). Bcl-2 expression was correlated to Bax expression (P = 0.0059). However, Bcl-2/Bax expression had no correlation with histological subtype, grade of differentiation, or level of invasion. CONCLUSION: Increased Bcl-2/Bax expression from dysplasia to invasive tumors supports the view that this is the usual route for the development of extrahepatic biliary tract carcinoma. Bcl-2/Bax may be involved, at least in part, in the apoptotic activity in extrahepatic biliary carcinoma. PMID:14606101
2011-01-01
Background Oxymatrine, an isolated extract from traditional Chinese herb Sophora Flavescens Ait, has been traditionally used for therapy of anti-hepatitis B virus, anti-inflammation and anti-anaphylaxis. The present study was to investigate the anti-cancer effect of oxymatrine on human pancreatic cancer PANC-1 cells, and its possible molecular mechanism. Methods The effect of oxymatrine on the viability and apoptosis was examined by methyl thiazolyl tetrazolium and flow cytometry analysis. The expression of Bax, Bcl-2, Bcl-x (L/S), Bid, Bad, HIAP-1, HIAP-2, XIAP, NAIP, Livin and Survivin genes was accessed by RT-PCR. The levels of cytochrome c and caspase 3 protein were assessed by Western blotting. Results Oxymatrine inhibited cell viability and induced apoptosis of PANC-1 cells in a time- and dose-dependent manner. This was accompanied by down-regulated expression of Livin and Survivin genes while the Bax/Bcl-2 ratio was upregulated. Furthermore, oxymatrine treatment led to the release of cytochrome c and activation of caspase-3 proteins. Conclusion Oxymatrine can induce apoptotic cell death of human pancreatic cancer, which might be attributed to the regulation of Bcl-2 and IAP families, release of mitochondrial cytochrome c and activation of caspase-3. PMID:21714853
Liu, Xiao-Jia; Li, Yun-Qian; Chen, Qiu-Yue; Xiao, Sheng-Jun; Zeng, Si-En
2014-01-01
Prostate cancer is one of the most prevalent malignant cancers in men. The isoflavone formononetin is a main active component of red clover plants. In the present study, we assessed the effect of formononetin on human prostate cancer DU-145 cells in vitro, and elucidated possible mechanisms. DU-145 cells were treated with different concentrations of formononetin and cell proliferation was assessed by MTT assay, cell apoptosis by Hoechst 33258 and flow cytometry, and protein levels of RASD1, Bcl-2 and Bax by Western blotting. The results showed that formononetin inhibited the proliferation of DU-145 cells in a dose-dependent manner. DU-145 cells treated with different concentrations of formononetin displayed obvious morphological changes of apoptosis under fluorescence microscopy. In addition, formononetin increased the proportion of early apoptotic DU-145 cells, down-regulated the protein levels of Bcl-2 and up-regulated those of RASD1 and Bax. The level of RASD1 reached its maximum at 48 h post-treatment, and rapidly decreased thereafter. Together, we present evidence that formononetin triggered cell apoptosis through the mitochondrial apoptotic pathway by up-regulating RASD1.
Manoochehri, Mehdi; Karbasi, Ashraf; Bandehpour, Mojgan; Kazemi, Bahram
2014-04-01
Carcinogenesis and resistance to chemotherapy could be as results of expression variations in apoptosis regulating genes. Changes in the expression of apoptosis interfering genes may contribute to colorectal carcinogenesis and resistance to 5-Flourouracil (5-FU) during treatment schedule period. The present study aimed to evaluate the expression of pro-apoptotic and anti-apoptotic genes in colorectal cancer tumor tissues, normal adjacent tissues, and tumor colorectal cancer cell line during acquiring resistance to 5-FU in HT-29 based on Bolus treatment protocol. The normal and tumor tissues were obtained from hospital after surgery and total RNA was extracted for expression analysis. The HT-29 colorectal cancer cell line was cultured and exposed with 5-FU in three stages based on Bolus protocol. The MTT assay and Real Time PCR were carried out to determine the sensitivity to the drug and expression of desired genes, respectively. The obtained data showed that Proapoptotic genes, BAX and BID, were down-regulated in resistant derivate cells compared to wild type HT-29 cells. On the other hand Antiapoptotic genes, CIAP1 and XIAP, showed upregulation in resistant cells compared to wild type ones. Furthermore, BAX and FAS genes showed down-regulation in tumor samples in comparison to normal adjacent tissues. In conclusion, the results of our study suggest that BAX down-regulation could contribute as an important factor during both colorectal carcinogenesis and cell resistance to 5-FU.
Zhang, Yuqin; Li, Huang; Huang, Mingqing; Huang, Mei; Chu, Kedan; Xu, Wei; Zhang, Shengnan; Que, Jinhua; Chen, Lidian
2015-01-01
Paeoniflorin (PF) is a principal bioactive component, which exhibits many pharmacological effects, including protection against ischemic injury. This paper aimed to investigate the protective effect of PF both in vivo and in vitro. Middle cerebral artery occlusion (MCAO) was performed on male Sprague-Dawley (SD) rat for 2 h, and different doses of PF or vehicle were administered 2 h after reperfusion. Rats were sacrificed after 7 days treatment of PF/vehicle. PF treatment for 7 days ameliorated MCAO-induced neurological deficit and decreased the infarct area. Further study demonstrated that PF inhibited the over-activation of astrocytes and apoptosis of neurons, and PF promoted up-regulation of neuronal specific marker neuron-specific nuclear (NeuN) and microtubule-associated protein 2 (MAP-2) in brain. Moreover, NMDA-induced neuron apoptosis was employed. The in vitro study revealed that PF treatment protected against NMDA-induced cell apoptosis and neuronal loss via up-regulation of neuronal specific marker NeuN, MAP-2 and Bcl-2 and the down-regulation Bax. Taken together, the present study demonstrates that PF produces its protective effect by inhibiting the over-activation of astrocytes, apoptosis of neurons and up-regulation of neuronal specific marker NeuN, MAP-2, and B-cell lymphoma-2 (Bcl-2), and down-regulation Bax. Our study reveals that PF may be a potential neuroprotective agent for stroke and can provide basic data for clinical use.
[Effect of Magnolol on Proliferation and Apoptosis of HL-60 Cells and Its Molecular Mechanism].
Fang, Ke; Yuan, Xiao-Fen; Liao, Qiong; Zhang, Zhi-Yong; Song, Guan-Hua; Guo, Qiang; Ren, Xia; Jiang, Guo-Sheng
2016-04-01
To investigate the effect of magnolol on proliferation and apoptosis of HL-60 cells and its mechanism. MTT assay was used to measure the proliferation of HL-60 cells after treatment with different concentration of magnolol (5, 10, 20, 40, 80 and 160 µg/ml). The morphological changes of HL-60 cells were examined by light microscopy, and DAPI staining was performed to observe the nuclear morphology of HL-60 cells. The early cell apoptosis was detected by flow cytometry with Annexin V-FITC/PI double-staining. RT-PCR was carried out to examine the mRNA expression of BAX and BCL-2. Western blot was performed to detect the protein expression of caspase family. The magnolol inhibited HL-60 cell proliferation, and the inhibitory rate of cell proliferation increased significantly in a dose- and time- dependent manner (P < 0.05). HL-60 cells became small, even apoptotic bodies appeared after treatment with magnolol. In addition, nuclear condensation or fragmentation could be observed, which is the typical morphological features of apoptosis. When HL-60 cells were treated with 40 µg/ml of magnolol for 24 h, the ratio of early apoptotic cells reached to (11.7 ± 2.4) %, which was significant different from control (1.4 ± 1.1) % (P < 0.05). RT-PCR results showed that treatment of HL-60 cells with magnolol up-regulated the expression of BAX, whereas down-regulated the expression of BCL-2. Western blot results showed that the cleavages of caspase-3, -8 and -9 were significantly enhanced by magnolol. The magnolol can significantly inhibit the proliferation of HL-60 cells and induce the apoptosis of HL-60 cells, which may occur through up-regulation of BAX, down-regulation of BCL-2 and the activation of caspases.
Taraxasterol suppresses the growth of human liver cancer by upregulating Hint1 expression.
Bao, Tianhao; Ke, Yang; Wang, Yifan; Wang, Weiwei; Li, Yuehua; Wang, Yan; Kui, Xiang; Zhou, Qixin; Zhou, Han; Zhang, Cheng; Zhou, Dongming; Wang, Lin; Xiao, Chunjie
2018-07-01
Taraxasterol has potent anti-inflammatory and anti-tumor activity. However, the effect and potential mechanisms of Taraxasterol on the growth of human liver cancer have not been clarified. Histidine triad nucleotide-binding protein 1 (Hint1) is a tumor suppressor and its downregulated expression is associated with the development of cancer. Here, we report that Taraxasterol treatment significantly suppressed cell proliferation and induced cell cycle arrest at G0/G1 phase and apoptosis in liver cancer cells, but not in non-tumor hepatocytes. Furthermore, Taraxasterol upregulated Hint1 and Bax, but downregulated Bcl2 and cyclin D1 expression, accompanied by promoting the demethylation in the Hint1 promoter region in liver cancer cells. The effects of Taraxasterol were abrogated by Hint1 silencing and partially mitigated by Bax silencing, Bcl2 or cyclin D1 over-expression in HepG2 cells. Moreover, oral administration with Taraxasterol did not affect body weight, urinary protein levels, and the heart, liver, and kidney morphology in BALB/c mice but effectively inhibited the growth of implanted SK-Hep1 tumor in vivo. Collectively, we demonstrate that Taraxasterol inhibits the growth of liver cancer at least partially by enhancing Hint1 expression to regulate Bax, Bcl2, and cyclin D1 expression. Taraxasterol may be a drug candidate for the treatment of human liver cancer. Taraxasterol inhibits growth and induces apoptosis in human liver cancer cells. Taraxasterol enhances Hint1 expression by promoting demethylation in Hint1 promoter. Taraxasterol increases Hint1 levels to regulate Bax, Bcl2, and cyclinD1 expression. The effects of Taraxasterol are abrogated by Hint1 silencing in liver cancer cells. Taraxasterol inhibits the growth of subcutaneously implanted liver cancers in mice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siu, W.P.; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan
2008-03-15
Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (> 500 {mu}M) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 {mu}M) fully inhibited diclofenac-induced cell injury, suggesting thatmore » mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca{sup 2+} chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca{sup 2+}-Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury.« less
Wang, YongQi; Xie, Jinkun; Zhang, Xuelin; Gu, Honggang
2017-01-01
Objective To explore the effects and mechanism of Jinhong Tablet on intestinal mucosal barrier function and SIRS in rats with acute biliary infection. Methods 36 SD male rats were divided into three groups: sham operation (control), acute biliary infection (ABI) model, and Jinhong Tablet (Jinhong) group. Jinhong group were force-fed with Jinhong Tablet, while the other two groups received oral saline. At days 3 and 5, morphological changes of intestinal mucosa were assessed. Serum diamine oxidase (DAO), D-lactate, and endotoxin levels were measured. And the genes bcl-2 and bax in intestinal tissues were tested by real-time PCR and Western blotting. Results Intestinal damage was significantly less severe in Jinhong group compared with ABI group, as indicated by Chiu's scoring, TUNEL analysis, and serum DAO, D-lactic acid, and endotoxin levels. Additionally, the expression of bax mRNA and protein was decreased and the ratio of bcl-2/bax mRNA and protein was increased compared with ABI group. Conclusion Jinhong Tablet had a positive intervention on acute biliary infection through improving inflammation and intestinal mucosal barrier, inhibiting excessive apoptosis of intestinal epithelial cells via bax and bcl-2 gene, and protein regulation. PMID:29234407
Gao, Fu; Chen, Song; Sun, Mingjuan; Mitchel, Ronald E.J.; Li, Bailong; Chu, Zhiyong; Cai, Jianming; Liu, Cong
2015-01-01
It has been reported dysregulation of certain microRNAs (miRNAs / miRs) is involved in tumorigenesis. However, the miRNAs associated with radiocarcinogenesis remain undefined. In this study, we validated the upregulation of miR-467a in radiation-induced mouse thymic lymphoma tissues. Then, we investigated whether miR-467a functions as an oncogenic miRNA in thymic lymphoma cells. For this purpose, we assessed the biological effect of miR-467a on thymic lymphoma cells. Using miRNA microarray, we found four miRNAs (miR-467a, miR-762, miR-455 and miR-714) were among the most upregulated (>4-fold) miRNAs in tumor tissues. Bioinformatics prediction suggests miR-467a may potentially regulate apoptosis pathway via targeting Fas and Bax. Consistently, in miR-467a-transfected cells, both proliferation and colony formation ability were significantly increased with decrease of apoptosis rate, while, in miR-467a-knockdown cells, proliferation was suppressed with increase of apoptosis rate, indicating that miR-467a may be involved in the regulation of apoptosis. Furthermore, miR-467a-knockdown resulted in smaller tumors and better prognosis in an in vivo tumor-transplanted model. To explain the mechanism of apoptosis suppression by miR-467a, we explore the expression of candidate target genes (Fas and Bax) in miR-467a-transfected relative to negative control transfected cells using flow cytometry and immunoblotting. Fas and Bax were commonly downregulated in miR-467a-transfected EL4 and NIH3T3 cells, and all of the genes harbored miR-467a target sequences in the 3'UTR of their mRNA. Fas and Bax were actually downregulated in radiation-induced thymic lymphoma tissues, and therefore both were identified as possible targets of miR-467a in thymic lymphoma. To ascertain whether downregulation of Fas and / or Bax is involved in apoptosis suppression by miR-467a, we transfected vectors expressing Fas and Bax into miR-467a-upregulated EL4 cells. Then we found that both Fas- and Bax-overexpression decreased cell viability with increase of apoptosis rate, indicating that downregulation of Fas and Bax may be at least partly responsible for apoptosis suppression by miR-467a. These data suggest that miR-467a may have oncogenic functions in radiation-induced thymic lymphoma cells and that its increased expression may confer a growth advantage on tumor cells via aberrant expression of Fas and Bax. PMID:25552935
BAX channel activity mediates lysosomal disruption linked to Parkinson disease.
Bové, Jordi; Martínez-Vicente, Marta; Dehay, Benjamin; Perier, Celine; Recasens, Ariadna; Bombrun, Agnes; Antonsson, Bruno; Vila, Miquel
2014-05-01
Lysosomal disruption is increasingly regarded as a major pathogenic event in Parkinson disease (PD). A reduced number of intraneuronal lysosomes, decreased levels of lysosomal-associated proteins and accumulation of undegraded autophagosomes (AP) are observed in PD-derived samples, including fibroblasts, induced pluripotent stem cell-derived dopaminergic neurons, and post-mortem brain tissue. Mechanistic studies in toxic and genetic rodent PD models attribute PD-related lysosomal breakdown to abnormal lysosomal membrane permeabilization (LMP). However, the molecular mechanisms underlying PD-linked LMP and subsequent lysosomal defects remain virtually unknown, thereby precluding their potential therapeutic targeting. Here we show that the pro-apoptotic protein BAX (BCL2-associated X protein), which permeabilizes mitochondrial membranes in PD models and is activated in PD patients, translocates and internalizes into lysosomal membranes early following treatment with the parkinsonian neurotoxin MPTP, both in vitro and in vivo, within a time-frame correlating with LMP, lysosomal disruption, and autophagosome accumulation and preceding mitochondrial permeabilization and dopaminergic neurodegeneration. Supporting a direct permeabilizing effect of BAX on lysosomal membranes, recombinant BAX is able to induce LMP in purified mouse brain lysosomes and the latter can be prevented by pharmacological blockade of BAX channel activity. Furthermore, pharmacological BAX channel inhibition is able to prevent LMP, restore lysosomal levels, reverse AP accumulation, and attenuate mitochondrial permeabilization and overall nigrostriatal degeneration caused by MPTP, both in vitro and in vivo. Overall, our results reveal that PD-linked lysosomal impairment relies on BAX-induced LMP, and point to small molecules able to block BAX channel activity as potentially beneficial to attenuate both lysosomal defects and neurodegeneration occurring in PD.
NASA Astrophysics Data System (ADS)
Lu, Ying-ying; Chen, Tong-sheng; Qu, Jun-Le
2009-02-01
Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, isolated from the traditional Chinese herb Artemisia annua, has been shown to possess promising anticancer activities and induce cancer cell death through apoptotic pathways. However, the molecular mechanisms are not well understood. This study was investigated in human lung adenocarconoma ASTC-a-1 cell line and aimed to determine whether the apoptotic process was mediated by Bax activation and translocation during DHA-induced apoptosis. In this study, DHA induced a time-dependent apoptotic cell death, which was assayed by Cell Counting Kit (CCK-8) and Hoechst 33258 staining. Detection of Bax aggregation and translocation to mitochondria was observed in living cells which were co-transfected with GFP-Bax and Dsred-mito plasmid using confocal fluorescence microscope technique. Overall, these results demonstrated that Bax activation and translocation to mitochondria occurred during DHA-induced apoptosis.
Ruiz-Ruiz, Carmen; López-Rivas, Abelardo
2002-01-01
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL/APO-2L) induces apoptosis in a variety of tumour cells upon binding to death receptors TRAIL-R1 and TRAIL-R2. Here we describe the sensitization by interferon (IFN)-gamma to TRAIL-induced apoptosis in the breast tumour cell lines MCF-7 and MDA-MB231. IFN-gamma promoted TRAIL-mediated activation of caspase-8, Bcl-2 interacting domain death agonist (Bid) degradation, Bcl-2-associated X protein (Bax) translocation to mitochondria, cytochrome c release to the cytosol and activation of caspase-9 in these cell lines. No changes in the expression of TRAIL receptors were observed upon IFN-gamma treatment. Overexpression of Bcl-2 in MCF-7 cells completely inhibited IFN-gamma-induced sensitization to TRAIL-mediated cell death. Interestingly, TRAIL-induced apoptosis was also clearly enhanced by IFN-gamma in caspase-3-overexpressing MCF-7 cells, in the absence of Bax translocation to mitochondria and cytochrome c release to the cytosol. In summary, our results suggest that IFN-gamma facilitates TRAIL-induced activation of mitochondria-regulated as well as mitochondria-independent apoptotic pathways in breast tumour cells. PMID:11936954
Liang, Kun; Ye, Yu; Wang, Yong; Zhang, Jianfeng; Li, Chaoqian
2014-09-15
Isoflavone formononetin is a typical phytoestrogen isolated from Chinese medical herb red clover. It has been reported that estrogens have neuroprotective properties, and dietary intake of phytoestrogens could reduce stroke injury in cerebral ischemia/reperfusion (I/R) animal models. In the present research, we sought to investigate the molecular mechanisms underlying the neuroprotective effects of formononetin on I/R rats. Male Sprague-Dawley rats were subjected to a 2 h period of right middle cerebral artery occlusion (MCAO) followed by 24 h of reperfusion. Then neurological deficits and brain edema were evaluated. To provide insight into the functions of phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK (mitogen-activated protein kinase) signaling pathway in formononetin-induced neuroprotection, the expression of ER-α, Bax, Bcl-2, p-Akt (phosphorylated protein kinase B), and p-ERK1/2 (phosphorylated extracellular signal-regulated kinases 1/2) was determined by qPCR or Western blot assay. Consequently, we found that formononetin has significantly reduced the infarcted volume and the brain water content, and improved the neurological deficit. Formononetin also exhibited an upregulation in ER-α and p-Akt, a downregulation in the ratio of Bax/Bcl-2. However, formononetin had little effect on p-ERK1/2 proteins expression. Taken together, formononetin has shown neuroprotective effects in cerebral I/R rats, and the molecular mechanisms may correlate with the downregulation of the Bax/Bcl-2 ratio and the activation of PI3K/Akt signaling pathway. Copyright © 2014 Elsevier B.V. All rights reserved.
Ma, Yunlong; Zhu, Bin; Yong, Lei; Song, Chunyu; Liu, Xiao; Yu, Huilei; Wang, Peng; Liu, Zhongjun; Liu, Xiaoguang
2016-01-01
Our previous study has reported the anti-tumor effect of oleandrin on osteosarcoma (OS) cells. In the current study, we mainly explored its potential regulation on intrinsic and extrinsic apoptotic pathway in OS cells. Cells apoptosis, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were detected using fluorescence staining and flow cytometry. Caspase-3 activity was detected using a commercial kit. The levels of cytoplasmic cytochrome c, mitochondrial cytochrome c, bcl-2, bax, caspase-9, Fas, FasL, caspase-8 and caspase-3 were detected by Western blotting. z-VAD-fmk was applied to block both intrinsic and extrinsic apoptosis pathways, and cells apoptosis was also tested. Furthermore, we used z-LEHD-fmk and Fas blocking antibody to inhibit intrinsic and extrinsic pathways, separately, and the selectivity of oleandrin on these pathways was explored. Results showed that oleandrin induced the apoptosis of OS cells, which was accompanied by an increase in ROS and a decrease in MMP. Furthermore, cytochrome c level was reduced in mitochondria but elevated in the cytoplasm. Caspase-3 activity was enhanced by oleandrin in a concentration- and time-dependent manner. Oleandrin also down-regulated the expression of bcl-2, but up-regulated bax, caspase-9, Fas, FasL, caspase-8 and caspase-3. In addition, the suppression of both apoptotic pathways by z-VAD-fmk greatly reverted the oleandrin-induced apoptosis. Moreover, the suppression of one pathway by a corresponding inhibitor did not affect the regulation of oleandrin on another pathway. Taken together, we concluded that oleandrin induced apoptosis of OS cells via activating both intrinsic and extrinsic apoptotic pathways. PMID:27886059
Maity, Pallab; Bindu, Samik; Choubey, Vinay; Alam, Athar; Mitra, Kalyan; Goyal, Manish; Dey, Sumanta; Guha, Mithu; Pal, Chinmay; Bandyopadhyay, Uday
2008-05-23
We have investigated the mechanism of antiapoptotic and cell renewal effects of lansoprazole, a proton pump inhibitor, to protect and heal gastric mucosal injury in vivo induced by indomethacin, a non-steroidal anti-inflammatory drug (NSAID). Lansoprazole prevents indomethacin-induced gastric damage by blocking activation of mitochondrial and Fas pathways of apoptosis. Lansoprazole prevents indomethacin-induced up-regulation of proapoptotic Bax and Bak and down-regulation of antiapoptotic Bcl-2 and Bcl(xL) to maintain the normal proapoptotic/antiapoptotic ratio and thereby arrests indomethacin-induced mitochondrial translocation of Bax and collapse of mitochondrial membrane potential followed by cytochrome c release and caspase-9 activation. Lansoprazole also inhibits indomethacin-induced Fas-mediated mucosal cell death by down-regulating Fas or FasL expression and inhibiting caspase-8 activation. Lansoprazole favors mucosal cell renewal simultaneously by stimulating gene expression of prosurvival proliferating cell nuclear antigen, survivin, epidermal growth factor, and basic fibroblast growth factor. The up-regulation of Flt-1 further indicates that lansoprazole activates vascular epidermal growth factor-mediated controlled angiogenesis to repair gastric mucosa. Lansoprazole also stimulates the healing of already formed ulcers induced by indomethacin. Time course study of healing indicates that it switches off the mitochondrial death pathway completely but not the Fas pathway. However, lansoprazole heals mucosal lesions almost completely after overcoming the persisting Fas pathway, probably by favoring the prosurvival genes expression. This study thus provides the detailed mechanism of antiapoptotic and prosurvival effects of lansoprazole for offering gastroprotection against indomethacin-induced gastropathy.
McGinnis, K M; Gnegy, M E; Wang, K K
1999-05-01
Changes at the mitochondria are an early, required step in apoptosis in various cell types. We used western blot analysis to demonstrate that the proapoptotic protein Bax translocated from the cytosolic to the mitochondrial fraction in SH-SY5Y human neuroblastoma cells undergoing staurosporine- or EGTA-mediated apoptosis. Levels of mitochondrial Bax increased 15 min after staurosporine treatment. In EGTA-treated cells, increased levels of mitochondrial Bax were seen at 4 h, consistent with a slower onset of apoptosis in EGTA versus staurosporine treatments. We also demonstrate the concomitant translocation of cytochrome c from the mitochondrial to the cytosolic fractions. We correlated these translocations with changes in caspase-3-like activity. An increase in caspase-3-like activity was evident 2 h after staurosporine treatment. Inhibition of the mitochondrial permeability transition had no effect on Bax translocation or caspase-3-like activity in staurosporine-treated SH-SY5Y cells. In primary cultures of cerebellar granule neurons undergoing low K(+)-mediated apoptosis, Bax translocation to the mitochondrial fraction was evident at 3 h. Cytochrome c release into the cytosol was not significant until 8 h after treatment. These data support a model of apoptosis in which Bax acts directly at the mitochondria to allow the release of cytochrome c.
Liu, Yun-Qi; Liu, Yi-Fang; Ma, Xue-Mei; Xiao, Yi-Ding; Wang, You-Bin; Zhang, Ming-Zi; Cheng, Ai-Xin; Wang, Ting-Ting; Li, Jia-La; Zhao, Peng-Xiang; Xie, Fei; Zhang, Xin
2015-07-01
Many pathways have been reported involving the effect of hydrogen-rich saline on protecting skin flap partial necrosis induced by the inflammation of ischemia/reperfusion injury. This study focused on the influence of hydrogen-rich saline treatment on apoptosis pathway of ASK-1/JNK and Bcl-2/Bax radio in I/R injury of skin flaps. Adult male Sprague-Dawley rats were divided into three groups. Group 1 was sham surgery group, Group 2 and 3 were ischemia/reperfusion surgery treated with physiological saline and hydrogen-rich saline respectively. Blood perfusion of flap was measured by Laser doppler flowmeters. Hematoxylin and eosin staining was used to observe morphological changes. Early apoptosis in skin flap was observed through TUNEL staining and presented as the percentage of TUNEL-positive cells of total cells. pASK-1, pJNK, Bcl-2 and Bax were examined by immunodetection. In addition Bcl-2, Bax and caspase-3 were detected by qPCR. Caspase-3 activity was also measured. Compared to the Group 2, tissues from the group 3 were observed with a high expression of Bcl-2 and a low expression of pASK-1, pJNK, and Bax, a larger survival area and a high level of blood perfusion. Hydrogen-rich saline ameliorated inflammatory infiltration and decreased cell apoptosis. The results indicate that hydrogen-rich saline could ameliorate ischemia/reperfusion injury and improve flap survival rate by inhibiting the apoptosis factor and, at the same time, promoting the expression of anti-apoptosis factor. Copyright © 2015. Published by Elsevier Ltd.
Gao, Jing; Gao, Jin; Qian, Lan; Wang, Xia; Wu, Mingyuan; Zhang, Yang; Ye, Hao; Zhu, Shunying; Yu, Yan; Han, Wei
2014-08-01
Chemotherapy-induced mucositis (CIM) is a major does limiting side-effect of chemoagents such as 5-fluorouracil (5-FU). Molecules involved in this disease process are still not fully understood. We proposed that the homeostatically regulated genes during CIM may participate in the disease. A cluster of such genes were previously identified by expression gene-array from the mouse jejunum in 5-FU-induced mucositis model. Here, we report that CXCL4 is such a homeostatically regulated gene and serves as a new target for the antibody treatment of CIM. CXCL4 and its receptor CXCR3 were confirmed at both the gene and protein levels to be homeostatically regulated during 5-FU-induced mucositis. Using of CXCL4 neutralizing monoclonal antibody (CXCL4mab) decreased the incidence, severity, and duration of the chemotherapy-induced diarrhea, the major symptom of CIM, in a 5-FU mouse CIM model. Mechanistically, CXCL4mab reduced the apoptosis of the crypt epithelia by suppression of the 5-FU-induced expression of p53 and Bax through its receptor CXCR3. The downstream signaling pathway of CXCL4 in activation of the epithelial apoptosis was identified in an intestinal epithelial cell line (IEC-6). CXCL4 activated the phosphorylation of p38 MAPK, which mediated the stimulated expression of p53 and Bax, and resulted in the ultimate activation of Caspase-8, -9, and -3. Taken together, activation of CXCL4 expression by 5-FU in mice participates in 5-FU-induced intestinal mucositis through upregulation of p53 via activation of p38-MAPK, and CXCL4mab is potentially beneficial in preventing CIM in the intestinal tract.
Gao, Jing; Gao, Jin; Qian, Lan; Wang, Xia; Wu, Mingyuan; Zhang, Yang; Ye, Hao; Zhu, Shunying; Yu, Yan; Han, Wei
2014-01-01
Chemotherapy-induced mucositis (CIM) is a major does limiting side-effect of chemoagents such as 5-fluorouracil (5-FU). Molecules involved in this disease process are still not fully understood. We proposed that the homeostatically regulated genes during CIM may participate in the disease. A cluster of such genes were previously identified by expression gene-array from the mouse jejunum in 5-FU-induced mucositis model. Here, we report that CXCL4 is such a homeostatically regulated gene and serves as a new target for the antibody treatment of CIM. CXCL4 and its receptor CXCR3 were confirmed at both the gene and protein levels to be homeostatically regulated during 5-FU-induced mucositis. Using of CXCL4 neutralizing monoclonal antibody (CXCL4mab) decreased the incidence, severity, and duration of the chemotherapy-induced diarrhea, the major symptom of CIM, in a 5-FU mouse CIM model. Mechanistically, CXCL4mab reduced the apoptosis of the crypt epithelia by suppression of the 5-FU-induced expression of p53 and Bax through its receptor CXCR3. The downstream signaling pathway of CXCL4 in activation of the epithelial apoptosis was identified in an intestinal epithelial cell line (IEC-6). CXCL4 activated the phosphorylation of p38 MAPK, which mediated the stimulated expression of p53 and Bax, and resulted in the ultimate activation of Caspase-8, -9, and -3. Taken together, activation of CXCL4 expression by 5-FU in mice participates in 5-FU-induced intestinal mucositis through upregulation of p53 via activation of p38-MAPK, and CXCL4mab is potentially beneficial in preventing CIM in the intestinal tract. PMID:24800927
Bax regulates neuronal Ca2+ homeostasis.
D'Orsi, Beatrice; Kilbride, Seán M; Chen, Gang; Perez Alvarez, Sergio; Bonner, Helena P; Pfeiffer, Shona; Plesnila, Nikolaus; Engel, Tobias; Henshall, David C; Düssmann, Heiko; Prehn, Jochen H M
2015-01-28
Excessive Ca(2+) entry during glutamate receptor overactivation ("excitotoxicity") induces acute or delayed neuronal death. We report here that deficiency in bax exerted broad neuroprotection against excitotoxic injury and oxygen/glucose deprivation in mouse neocortical neuron cultures and reduced infarct size, necrotic injury, and cerebral edema formation after middle cerebral artery occlusion in mice. Neuronal Ca(2+) and mitochondrial membrane potential (Δψm) analysis during excitotoxic injury revealed that bax-deficient neurons showed significantly reduced Ca(2+) transients during the NMDA excitation period and did not exhibit the deregulation of Δψm that was observed in their wild-type (WT) counterparts. Reintroduction of bax or a bax mutant incapable of proapoptotic oligomerization equally restored neuronal Ca(2+) dynamics during NMDA excitation, suggesting that Bax controlled Ca(2+) signaling independently of its role in apoptosis execution. Quantitative confocal imaging of intracellular ATP or mitochondrial Ca(2+) levels using FRET-based sensors indicated that the effects of bax deficiency on Ca(2+) handling were not due to enhanced cellular bioenergetics or increased Ca(2+) uptake into mitochondria. We also observed that mitochondria isolated from WT or bax-deficient cells similarly underwent Ca(2+)-induced permeability transition. However, when Ca(2+) uptake into the sarco/endoplasmic reticulum was blocked with the Ca(2+)-ATPase inhibitor thapsigargin, bax-deficient neurons showed strongly elevated cytosolic Ca(2+) levels during NMDA excitation, suggesting that the ability of Bax to support dynamic ER Ca(2+) handling is critical for cell death signaling during periods of neuronal overexcitation. Copyright © 2015 the authors 0270-6474/15/351706-17$15.00/0.
Role of Bax in death of uninfected retinal cells during murine cytomegalovirus retinitis.
Mo, Juan; Marshall, Brendan; Covar, Jason; Zhang, Nancy Y; Smith, Sylvia B; Atherton, Sally S; Zhang, Ming
2014-10-08
Extensive death of uninfected bystander neuronal cells is an important component of the pathogenesis of cytomegalovirus retinitis. Our previous results have shown that caspase 3-dependent and -independent pathways are involved in death of uninfected bystander cells during murine cytomegalovirus (MCMV) retinitis and also that Bcl-2, an important inhibitor of apoptosis via the Bax-mediated mitochondrial pathway, is downregulated during this process. The purpose of this study was to determine whether Bax-mediated mitochondrial damage has a significant role in the death of uninfected retinal cells. BALB/c mice, Bax(-/-) mice, or Bax(+/+) mice were immunosuppressed with methylprednisolone and infected with 5 × 10(3) plaque-forming units (PFU) of the K181 strain of MCMV via the supraciliary route. Injected eyes were analyzed by plaque assay, electron microscopy, hematoxylin and eosin (H&E) staining, TUNEL assay, Western blot (for caspase 3, caspase 12, Bax, receptor interacting protein-1 [RIP1] and receptor interacting protein-3 [RIP3]), as well as immunohistochemical staining for MCMV early antigen and cleaved caspase 3. Significantly more Bax was detected in mitochondrial fractions of MCMV-infected eyes than in mitochondrial fractions of mock-infected control eyes. Furthermore, the level of cleaved caspase 3 was significantly lower in MCMV-infected Bax(-/-) eyes than in MCMV-infected Bax(+/+) eyes. However, more caspase 3-independent cell death of uninfected bystander retinal cells and more cleaved RIP1 were observed in Bax(-/-) than in Bax(+/+) eyes. During MCMV retinitis, Bax is activated and has an important role in death of uninfected bystander retinal cells by caspase 3-dependent apoptosis. Although the exact mechanism remains to be deciphered, active Bax might also prevent death of some types of uninfected retinal cells by a caspase 3-independent pathway. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
He, Zhi; Hu, Min; Zha, Yun-hong; Li, Zi-cheng; Zhao, Bo; Yu, Ling-ling; Yu, Min; Qian, Ying
2014-05-01
Our previous work has demonstrated that piracetam inhibited the decrease in amino acid content induced by chronic hypoperfusion, ameliorated the dysfunction of learning and memory in a hypoperfusion rat model, down-regulated P53, and BAX protein, facilitated the synaptic plasticity, and may be helpful in the treatment of vascular dementia. To explore the precise mechanism, the present study further evaluated effects of piracetam on Oxygen and glucose deprivation (OGD)-induced neuronal damage in rat primary cortical cells. The addition of piracetam to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and lactate dehydrogenase release experiments. Piracetam also lowered the levels of malondialdehyde, nitrogen monoxidum, and xanthine oxidase which was increased in the OGD cells, and enhanced the activities of superoxide dismutase and glutathione peroxidase, which were decreased in the OGD cells. We also demonstrated that piracetam could decrease glutamate and aspartate release when cortical cells were subjected to OGD. Furthermore, Western blot study demonstrated that piracetam attenuated the increased expression of P53 and BAX protein in OGD cells. These observations demonstrated that piracetam reduced OGD-induced neuronal damage by inhibiting the oxidative stress and decreasing excitatory amino acids release and lowering P53/Bax protein expression in OGD cells.
Zheng, P; Liu, J; Mai, S; Yuan, Y; Wang, Y; Dai, G
2015-05-01
The present study was designed to investigate the cardioprotective effects of betaine on acute myocardial ischemia induced experimentally in rats focusing on regulation of signal transducer and activator of transcription 3 (STAT3) and apoptotic pathways as the potential mechanism underlying the drug effect. Male Sprague Dawley rats were treated with betaine (100, 200, and 400 mg/kg) orally for 40 days. Acute myocardial ischemic injury was induced in rats by subcutaneous injection of isoproterenol (85 mg/kg), for two consecutive days. Serum cardiac marker enzyme, histopathological variables and expression of protein levels were analyzed. Oral administration of betaine (200 and 400 mg/kg) significantly reduced the level of cardiac marker enzyme in the serum and prevented left ventricular remodeling. Western blot analysis showed that isoproterenol-induced phosphorylation of STAT3 was maintained or further enhanced by betaine treatment in myocardium. Furthermore, betaine (200 and 400 mg/kg) treatment increased the ventricular expression of Bcl-2 and reduced the level of Bax, therefore causing a significant increase in the ratio of Bcl-2/Bax. The protective role of betaine on myocardial damage was further confirmed by histopathological examination. In summary, our results showed that betaine pretreatment attenuated isoproterenol-induced acute myocardial ischemia via the regulation of STAT3 and apoptotic pathways. © The Author(s) 2014.
Steele, Andrew J; Prentice, Archibald G; Hoffbrand, A Victor; Yogashangary, Birunthini C; Hart, Stephen M; Lowdell, Mark W; Samuel, Edward R; North, Janet M; Nacheva, Elisabeth P; Chanalaris, Anastasios; Kottaridis, Panagiotis; Cwynarski, Kate; Wickremasinghe, R Gitendra
2009-08-06
We studied the actions of 2-phenylacetylenesulfonamide (PAS) on B-chronic lymphocytic leukemia (CLL) cells. PAS (5-20 microM) initiated apoptosis within 24 hours, with maximal death at 48 hours asassessed by morphology, cleavage of poly(ADP-ribose) polymerase (PARP), caspase 3 activation, and annexin V staining. PAS treatment induced Bax proapoptotic conformational change, Bax movement from the cytosol to the mitochondria, and cytochrome c release, indicating that PAS induced apoptosis via the mitochondrial pathway. PAS induced approximately 3-fold up-regulation of proapoptotic Noxa protein and mRNA levels. In addition, Noxa was found unexpectedly to be bound to Bcl-2 in PAS-treated cells. PAS treatment of CLL cells failed to up-regulate p53, suggesting that PAS induced apoptosis independently of p53. Furthermore, PAS induced apoptosis in CLL isolates with p53 gene deletion in more than 97% of cells. Normal B lymphocytes were as sensitive to PAS-induced Noxa up-regulation and apoptosis as were CLL cells. However, both T lymphocytes and bone marrow hematopoietic progenitor cells were relatively resistant to PAS. Our data suggest that PAS may represent a novel class of drug that induces apoptosis in CLL cells independently of p53 status by a mechanism involving Noxa up-regulation.
Myostatin induces mitochondrial metabolic alteration and typical apoptosis in cancer cells
Liu, Y; Cheng, H; Zhou, Y; Zhu, Y; Bian, R; Chen, Y; Li, C; Ma, Q; Zheng, Q; Zhang, Y; Jin, H; Wang, X; Chen, Q; Zhu, D
2013-01-01
Myostatin, a member of the transforming growth factor-β superfamily, regulates the glucose metabolism of muscle cells, while dysregulated myostatin activity is associated with a number of metabolic disorders, including muscle cachexia, obesity and type II diabetes. We observed that myostatin induced significant mitochondrial metabolic alterations and prolonged exposure of myostatin induced mitochondria-dependent apoptosis in cancer cells addicted to glycolysis. To address the underlying mechanism, we found that the protein levels of Hexokinase II (HKII) and voltage-dependent anion channel 1 (VDAC1), two key regulators of glucose metabolisms as well as metabolic stress-induced apoptosis, were negatively correlated. In particular, VDAC1 was dramatically upregulated in cells that are sensitive to myostatin treatment whereas HKII was downregulated and dissociated from mitochondria. Myostatin promoted the translocation of Bax from cytosol to mitochondria, and knockdown of VDAC1 inhibited myostatin-induced Bax translocation and apoptosis. These apoptotic changes can be partially rescued by repletion of ATP, or by ectopic expression of HKII, suggesting that perturbation of mitochondrial metabolism is causally linked with subsequent apoptosis. Our findings reveal novel function of myostatin in regulating mitochondrial metabolism and apoptosis in cancer cells. PMID:23412387
Liu, Jiabao; Wu, Peng; Wang, Yunle; Du, Yingqiang; A, Nan; Liu, Shuiyuan; Zhang, Yiming; Zhou, Ningtian; Xu, Zhihui; Yang, Zhijian
2016-01-01
Cell death in MI is the most critical determinant of subsequent left ventricular remodeling and heart failure. Besides apoptosis, autophagy and necroptosis have been recently found to be another two regulated cell death styles. HGF has been reported to have a protective role in MI, but its impact on the three death styles remains unclear. Thus, our study was performed to investigate the distribution of autophagy, apoptosis and necroptosis in cardiac tissues after MI and explore the role and mechanism of Ad-HGF on cardiac remodeling by regulating the three death styles. We firstly showed the distribution of autophagy, apoptosis and necroptosis differs in temporal and spatial context after MI using immunofluorescence. Notably, Ad-HGF treatment improves the cardiac remodeling of SD rats following MI by preserving the heart function, reducing the scar size and aggresomes. Further mechanism study reveals Ad-HGF promotes autophagy and necroptosis and inhibits apoptosis in vivo and in vitro . Co-immunoprecipitation assays showed Ad-HGF treatment significantly decreased the binding of Bcl-2 to Beclin1 but enhanced Bcl-2 binding to Bax in H9c2 cells under hypoxia. Moreover, HGF-induced sequestration of Bax by Bcl-2 allows Bax to become inactive, thereby inhibiting apoptosis. In addition, Ad-HGF markedly increased the formation of Beclin1-Vps34-Atg14L complex, which accounted for promoting autophagy. Both the western blot and activity assay showed Ad-HGF significantly decreased the caspase 8 protein and activity levels, which obligated the cell to undergo necroptosis under hypoxia and block apoptosis. Thus, our findings offer new evidence and strategies for the treatment of MI and post-MI cardiac remodeling.
Shi, Xiao-Ke; Bian, Xiao-Bo; Huang, Tao; Wen, Bo; Zhao, Ling; Mu, Huai-Xue; Fatima, Sarwat; Fan, Bao-Min; Bian, Zhao-Xiang; Huang, Lin-Fang; Lin, Cheng-Yuan
2017-01-01
Recent studies indicate that mitochondrial pathways of apoptosis are potential chemotherapeutic target for the treatment of esophageal cancer. Azoxystrobin (AZOX), a methoxyacrylate derived from the naturally occurring strobilurins, is a known fungicide acting as a ubiquinol oxidation (Qo) inhibitor of mitochondrial respiratory complex III. In this study, the effects of AZOX on human esophageal squamous cell carcinoma KYSE-150 cells were examined and the underlying mechanisms were investigated. AZOX exhibited inhibitory effects on the proliferation of KYSE-150 cells with inhibitory concentration 50% (IC 50 ) of 2.42 μg/ml by 48 h treatment. Flow cytometry assessment revealed that the inhibitory effect of AZOX on KYSE-150 cell proliferation occurred with cell cycle arrest at S phase and increased cell apoptosis in time-dependent and dose-dependent manners. Cleaved poly ADP ribose polymerase (PARP), caspase-3 and caspase-9 were increased significantly by AZOX. It is worth noted that the Bcl-2/Bax ratios were decreased because of the down-regulated Bcl-2 and up-regulated Bax expression level. Meanwhile, the cytochrome c release was increased by AZOX in KYSE-150 cells. AZOX-induced cytochrome c expression and caspase-3 activation was significantly blocked by Bax Channel Blocker. Intragastric administration of AZOX effectively decreased the tumor size generated by subcutaneous inoculation of KYSE-150 cells in nude mice. Consistently, decreased Bcl-2 expression, increased cytochrome c and PARP level, and activated caspase-3 and caspase-9 were observed in the tumor samples. These results indicate that AZOX can effectively induce esophageal cancer cell apoptosis through the mitochondrial pathways of apoptosis, suggesting AZOX or its derivatives may be developed as potential chemotherapeutic agents for the treatment of esophageal cancer.
Shi, Xiao-ke; Bian, Xiao-bo; Huang, Tao; Wen, Bo; Zhao, Ling; Mu, Huai-xue; Fatima, Sarwat; Fan, Bao-min; Bian, Zhao-xiang; Huang, Lin-fang; Lin, Cheng-yuan
2017-01-01
Recent studies indicate that mitochondrial pathways of apoptosis are potential chemotherapeutic target for the treatment of esophageal cancer. Azoxystrobin (AZOX), a methoxyacrylate derived from the naturally occurring strobilurins, is a known fungicide acting as a ubiquinol oxidation (Qo) inhibitor of mitochondrial respiratory complex III. In this study, the effects of AZOX on human esophageal squamous cell carcinoma KYSE-150 cells were examined and the underlying mechanisms were investigated. AZOX exhibited inhibitory effects on the proliferation of KYSE-150 cells with inhibitory concentration 50% (IC50) of 2.42 μg/ml by 48 h treatment. Flow cytometry assessment revealed that the inhibitory effect of AZOX on KYSE-150 cell proliferation occurred with cell cycle arrest at S phase and increased cell apoptosis in time-dependent and dose-dependent manners. Cleaved poly ADP ribose polymerase (PARP), caspase-3 and caspase-9 were increased significantly by AZOX. It is worth noted that the Bcl-2/Bax ratios were decreased because of the down-regulated Bcl-2 and up-regulated Bax expression level. Meanwhile, the cytochrome c release was increased by AZOX in KYSE-150 cells. AZOX-induced cytochrome c expression and caspase-3 activation was significantly blocked by Bax Channel Blocker. Intragastric administration of AZOX effectively decreased the tumor size generated by subcutaneous inoculation of KYSE-150 cells in nude mice. Consistently, decreased Bcl-2 expression, increased cytochrome c and PARP level, and activated caspase-3 and caspase-9 were observed in the tumor samples. These results indicate that AZOX can effectively induce esophageal cancer cell apoptosis through the mitochondrial pathways of apoptosis, suggesting AZOX or its derivatives may be developed as potential chemotherapeutic agents for the treatment of esophageal cancer. PMID:28567017
Liu, Jiabao; Wu, Peng; Wang, Yunle; Du, Yingqiang; A, Nan; Liu, Shuiyuan; Zhang, Yiming; Zhou, Ningtian; Xu, Zhihui; Yang, Zhijian
2016-01-01
Cell death in MI is the most critical determinant of subsequent left ventricular remodeling and heart failure. Besides apoptosis, autophagy and necroptosis have been recently found to be another two regulated cell death styles. HGF has been reported to have a protective role in MI, but its impact on the three death styles remains unclear. Thus, our study was performed to investigate the distribution of autophagy, apoptosis and necroptosis in cardiac tissues after MI and explore the role and mechanism of Ad-HGF on cardiac remodeling by regulating the three death styles. We firstly showed the distribution of autophagy, apoptosis and necroptosis differs in temporal and spatial context after MI using immunofluorescence. Notably, Ad-HGF treatment improves the cardiac remodeling of SD rats following MI by preserving the heart function, reducing the scar size and aggresomes. Further mechanism study reveals Ad-HGF promotes autophagy and necroptosis and inhibits apoptosis in vivo and in vitro. Co-immunoprecipitation assays showed Ad-HGF treatment significantly decreased the binding of Bcl-2 to Beclin1 but enhanced Bcl-2 binding to Bax in H9c2 cells under hypoxia. Moreover, HGF-induced sequestration of Bax by Bcl-2 allows Bax to become inactive, thereby inhibiting apoptosis. In addition, Ad-HGF markedly increased the formation of Beclin1-Vps34-Atg14L complex, which accounted for promoting autophagy. Both the western blot and activity assay showed Ad-HGF significantly decreased the caspase 8 protein and activity levels, which obligated the cell to undergo necroptosis under hypoxia and block apoptosis. Thus, our findings offer new evidence and strategies for the treatment of MI and post-MI cardiac remodeling. PMID:27904666
Yu, Albert Cheung Hoi; Yung, Hon Wa; Hui, Michael Hung Kit; Lau, Lok Ting; Chen, Xiao Qian; Collins, Richard A
2003-10-15
An in vitro ischemia model was established and the effect of the metabolic inhibitors cycloheximide (CHX) and actinomycin D (ActD) on apoptosis in astrocytes under ischemia studied. CHX decreased by 75% the number of cells dying after 6 hr of ischemia compared with control cultures. TdT-mediated dUTP nick end labelling (TUNEL) staining of comparable cultures was reduced by 40%. ActD decreased cell death by 60% compared with controls. The number of TUNEL-positive cells was reduced by 38%. The nuclear shrinkage in TUNEL-positive astrocytes in control cultures did not occur in ActD-treated astrocytes, indicating that nuclear shrinkage and DNA fragmentation during apoptosis are two unrelated processes. Expression of bcl-2 (alpha and beta), bax, and Ice in astrocytes under similar ischemic conditions, as measured by quantitative reverse transcription-polymerase chain reaction, indicated that ischemia down-regulated bcl-2 (alpha and beta) and bax. Ice was initially down-regulated from 0 to 4 hr, before returning to control levels after 8 hr of ischemia. ActD decreased the expression of these genes. CHX reduced the expression of bcl-2 (alpha and beta) but increased bax and Ice expression. It is hypothesized that the balance of proapoptotic (Bad, Bax) and antiapoptotic (Bcl-2, Bcl-Xl) proteins determines apoptosis. The data suggest that the ratio of Bcl-2/Bad in astrocytes following ActD and CHX treatment does not decrease as much in untreated cells during ischemia. Our data indicate that it is the ratio of Bcl-2 family members that plays a critical role in determining ischemia-induced apoptosis. It is also important to note that ischemia-induced apoptosis involves the regulation of RNA and protein synthesis. Copyright 2003 Wiley-Liss, Inc.
Zhou, Yan; Liu, Shi-Qing; Yu, Ling; He, Bin; Wu, Shi-Hao; Zhao, Qi; Xia, Shao-Qiang; Mei, Hong-Jun
2015-09-01
Chondrocyte apoptosis is an important mechanism involved in osteoarthritis (OA). Berberine (BBR), a plant alkaloid derived from Chinese medicine, is characterized by multiple pharmacological effects, such as anti-inflammatory and anti-apoptotic activities. This study aimed to evaluate the chondroprotective effect and underlying mechanisms of BBR on sodium nitroprusside (SNP)-stimulated chondrocyte apoptosis and surgically-induced rat OA model. The in vitro results revealed that BBR suppressed SNP-stimulated chondrocyte apoptosis as well as cytoskeletal remodeling, down-regulated expressions of inducible nitric oxide synthase (iNOS) and caspase-3, and up-regulated Bcl-2/Bax ratio and Type II collagen (Col II) at protein levels, which were accompanied by increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and decreased phosphorylation of p38 mitogen-activated protein kinase (MAPK). Furthermore, the anti-apoptotic effect of BBR was blocked by AMPK inhibitor Compound C (CC) and adenosine-9-β-D-arabino-furanoside (Ara A), and enhanced by p38 MAPK inhibitor SB203580. In vivo experiment suggested that BBR ameliorated cartilage degeneration and exhibited an anti-apoptotic effect on articular cartilage in a rat OA model, as demonstrated by histological analyses, TUNEL assay and immunohistochemical analyses of caspase-3, Bcl-2 and Bax expressions. These findings suggest that BBR suppresses SNP-stimulated chondrocyte apoptosis and ameliorates cartilage degeneration via activating AMPK signaling and suppressing p38 MAPK activity.
A brewing understanding of the regulation of Bax function by Bcl-xL and Bcl-2.
Renault, Thibaud T; Dejean, Laurent M; Manon, Stéphen
2017-01-01
Bcl-2 family members form a network of protein-protein interactions that regulate apoptosis through permeabilization of the mitochondrial outer membrane. Deciphering this intricate network requires streamlined experimental models, including the heterologous expression in yeast. This approach had previously enabled researchers to identify domains and residues that underlie the conformational changes driving the translocation, the insertion and the oligomerization of the pro-apoptotic protein Bax at the level of the mitochondrial outer membrane. Recent studies that combine experiments in yeast and in mammalian cells have shown the unexpected effect of the anti-apoptotic protein Bcl-xL on the priming of Bax. As demonstrated with the BH3-mimetic molecule ABT-737, this property of Bcl-xL, and of Bcl-2, is crucial to elaborate about how apoptosis could be reactivated in tumoral cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Fu, Yujie; Kadioglu, Onat; Wiench, Benjamin; Wei, Zuofu; Gao, Chang; Luo, Meng; Gu, Chengbo; Zu, Yuangang; Efferth, Thomas
2015-04-15
The low abundant cajanin stilbene acid (CSA) from Pigeon Pea (Cajanus cajan) has been shown to kill estrogen receptor α positive cancer cells in vitro and in vivo. Downstream effects such as cell cycle and apoptosis-related mechanisms have not been analyzed yet. We analyzed the activity of CSA by means of flow cytometry (cell cycle distribution, mitochondrial membrane potential, MMP), confocal laser scanning microscopy (MMP), DNA fragmentation assay (apoptosis), Western blotting (Bax and Bcl-2 expression, caspase-3 activation) as well as mRNA microarray hybridization and Ingenuity pathway analysis. CSA induced G2/M arrest and apoptosis in a concentration-dependent manner from 8.88 to 14.79 µM. The MMP broke down, Bax was upregulated, Bcl-2 downregulated and caspase-3 activated. Microarray profiling revealed that CSA affected BRCA-related DNA damage response and cell cycle-regulated chromosomal replication pathways. CSA inhibited breast cancer cells by DNA damage and cell cycle-related signaling pathways leading to cell cycle arrest and apoptosis. Copyright © 2015 Elsevier GmbH. All rights reserved.
Iriyama, Takayuki; Kamei, Yoshimasa; Kozuma, Shiro; Taketani, Yuji
2009-02-13
Glutamate-induced excitotoxicity has been implicated in the pathogenesis of various neurological damages and disorders. In the brain damage of immature animals such as neonatal hypoxic-ischemic brain injury, the excitotoxicity appears to be more intimately involved through apoptosis. Bax, a member of the Bcl-2 family proteins, plays a key role in the promotion of apoptosis by translocation from the cytosol to the mitochondria and the release of apoptogenic factors such as cytochrome c. Recently, Bax-inhibiting peptide (BIP), a novel membrane-permeable peptide which can bind Bax in the cytosol and inhibit its translocation to the mitochondria, was developed. To investigate the possibility of a new neuroprotection strategy targeting Bax translocation in glutamate-induced neuronal cell death, cerebellar granule neurons (CGNs) were exposed to glutamate with or without BIP. Pretreatment of CGNs with BIP elicited a dose-dependent reduction of glutamate-induced neuronal cell death as measured by MTT assay. BIP significantly suppressed both the number of TUNEL-positive cells and the increase in caspases 3 and 9 activities induced by glutamate. In addition, immunoblotting after subcellular fractionation revealed that BIP prevented the glutamate-induced Bax translocation to the mitochondria and the release of cytochrome c from the mitochondria. These results suggest that agents capable of inhibiting Bax activity such as BIP might lead to new drugs for glutamate-related diseases in the future.
The novel tumor suppressor p33ING2 enhances UVB-induced apoptosis in human melanoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, M.Y.; Ng, Kin Cheung P.; Li Gang
The roles of p33ING2 as a tumor suppressor candidate have been shown through regulation of gene transcription, induction of cell cycle arrest, and apoptosis. As p33ING2 shares 58.9% homology with p33ING1b, we hypothesized that p33ING2 shares functional similarities with p33ING1b. We previously found that p33ING1b cooperates with p53 to enhance UVB-induced apoptosis. Here, we report that overexpression of p33ING2 enhanced apoptosis in UVB-irradiated and non-irradiated melanoma MMRU cells. We demonstrate that enhancement of apoptosis by p33ING2 requires the presence of functional p53. Furthermore, we found that overexpression of p33ING2 significantly downregulated the expression of Bcl-2 after UVB irradiation, resulting inmore » an increased Bax/Bcl-2 ratio. Moreover, we found that p33ING2 promoted Bax translocation to mitochondria, altered the mitochondrial membrane potential, and induced cytochrome c release and thus the activation of caspases 9 and 3. In addition, we showed that under non-stress conditions p33ING2 upregulates Fas expression and activates caspase 8. Taken together, we demonstrate that p33ING2 cooperates with p53 to regulate apoptosis via activation of both the mitochondrial/intrinsic and death-receptor/extrinsic apoptotic pathways.« less
Zhang, Youen; Li, Hua; Zhao, Gang; Sun, Aijun; Zong, Nobel C.; Li, Zhaofeng; Zhu, Hongming; Zou, Yunzeng; Yang, Xiangdong; Ge, Junbo
2014-01-01
Hydrogen sulfide, an endogenous signaling molecule, plays an important role in the physiology and pathophysiology of the cardiovascular system. Using a mouse model of myocardial infarction, we investigated the anti-inflammatory and anti-apoptotic effects of the H2S donor sodium hydrosulfide (NaHS). The results demonstrated that the administration of NaHS improved survival, preserved left ventricular function, limited infarct size, and improved H2S levels in cardiac tissue to attenuate the recruitment of CD11b+Gr-1+ myeloid cells and to regulate the Bax/Bcl-2 pathway. Furthermore, the cardioprotective effects of NaHS were enhanced by inhibiting the migration of CD11b+Gr-1+ myeloid cells from the spleen into the blood and by attenuating post-infarction inflammation. These observations suggest that the novel mechanism underlying the cardioprotective function of H2S is secondary to a combination of attenuation the recruitment of CD11b+Gr-1+ myeloid cells and regulation of the Bax/Bcl-2 apoptotic signaling. PMID:24758901
Emodin alleviates jejunum injury in rats with sepsis by inhibiting inflammation response.
Chen, Yi-Kun; Xu, Ying-Kun; Zhang, Hao; Yin, Jiang-Tao; Fan, Xin; Liu, Da-Dong; Fu, Hai-Yan; Wan, Bing
2016-12-01
Emodin is an anthraquinone derived from Chinese herb that exerts anti-inflammation effects. This study aimed to investigate whether emodin provides the protection for jejunum injury by inhibiting inflammation. We established a model of sepsis caused by cecal ligation and puncture. Forty-eight male Wistar rats were divided into four groups (n=12). Jejunum injury was assessed by pathological examination. The activity of pJAK1/pSTAT3 and protein levels of Bcl-2 and Bax were detected by Western blot analysis. Inflammatory factors IL-6, TNF-α and procalcitonin were detected by ELISA. Apoptosis was detected by TUNEL. We found that emodin alleviated jejunum damage and apoptosis induced by sepsis and decreased the levels of IL-6, TNF-α and procalcitonin in septic rats. Furthermore, we observed that emodin increased the levels of pJAK1 and of pSTAT3, which were decreased in rats with sepsis. In addition, emodin enhanced the expression of Bcl-2 which was downregulated by sepsis and decreased the expression of Bax which was upregulated by sepsis. In conclusion, these results indicate that emodin suppresses inflammatory response induced by sepsis. Emodin activates JAK1/STAT3 signaling pathway and regulates Bcl-2 and Bax expression to protect the jejunum in rats with sepsis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Solá, Susana; Castro, Rui E; Laires, Pedro A; Steer, Clifford J; Rodrigues, Cecília MP
2003-01-01
Tauroursodeoxycholic acid (TUDCA), an endogenous bile acid, modulates cell death by interrupting classic pathways of apoptosis. Amyloid-β (Aβ) peptide has been implicated in the pathogenesis of Alzheimer’s disease, where a significant loss of neuronal cells is thought to occur by apoptosis. In this study, we explored the cell death pathway and signaling mechanisms involved in Aβ-induced toxicity and further investigated the anti-apoptotic effect(s) of TUDCA. Our data show significant induction of apoptosis in isolated cortical neurons incubated with Aβ peptide. Apoptosis was associated with translocation of pro-apoptotic Bax to the mitochondria, followed by cytochrome c release, caspase activation, and DNA and nuclear fragmentation. In addition, there was almost immediate but weak activation of the serine/threonine protein kinase Akt. Inhibition of the phosphatidylinositide 3′-OH kinase (PI3K) pathway with wortmannin did not markedly affect Aβ-induced cell death, suggesting that this signaling pathway is not crucial for Aβ-mediated toxicity. Notably, co-incubation with TUDCA significantly modulated each of the Aβ-induced apoptotic events. Moreover, wortmannin decreased TUDCA protection against Aβ-induced apoptosis, reduced Akt phosphorylation, and increased Bax translocation to mitochondria. Together, these findings indicate that Aβ-induced apoptosis of cortical neurons proceeds through a Bax mitochondrial pathway. Further, the PI3K signaling cascade plays a role in regulating the anti-apoptotic effects of TUDCA. PMID:15208744
Hippe, Diana; Weber, Arnim; Zhou, Liying; Chang, Donald C; Häcker, Georg; Lüder, Carsten G K
2009-10-01
In order to accomplish their life style, intracellular pathogens, including the apicomplexan Toxoplasma gondii, subvert the innate apoptotic response of infected host cells. However, the precise mechanisms of parasite interference with the mitochondrial apoptotic pathway remain unknown. Here, we used the conditional expression of the BH3-only protein Bim(S) to pinpoint the interaction of T. gondii with the intrinsic pathway of apoptosis. Infection of epithelial cells with T. gondii dose-dependently abrogated Bim(S)-triggered release of cytochrome c from host-cell mitochondria into the cytosol, induction of activity of caspases 3, 7 and 9, and chromatin condensation. Furthermore, inhibition of apoptosis in parasite-infected lymphocytes counteracted death of Toxoplasma-infected host cells. Although total cellular levels and mitochondrial targeting of Bim(S) was not altered by the infection, the activation of pro-apoptotic effector proteins Bax and Bak was strongly impaired. Inhibition of Bax and Bak activation by T. gondii was seen with regard to their conformational changes, the cytosol-to-mitochondria targeting and the oligomerization of Bax but not their cellular protein levels. Blockade of Bax and Bak activation was not mediated by the upregulation of anti-apoptotic Bcl-2-like proteins following infection. Further, the BH3-mimetic ABT-737 failed to overcome the Toxoplasma-imposed inhibition of Bim(S)-triggered apoptosis. These results indicate that T. gondii targets activation of pro-apoptotic Bax and Bak to inhibit the apoptogenic function of mitochondria and to increase host-cell viability.
Zhang, Q-G; Han, D; Xu, J; Lv, Q; Wang, R; Yin, X-H; Xu, T-L; Zhang, G-Y
2006-12-01
Activation of Akt/protein kinase B has been recently reported to play an important role in ischemic tolerance. We here demonstrate that the decreased protein expression and phosphorylation of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) underlie the increased Akt-Ser-473 phosphorylation in the hippocampal CA1 subfield in ischemic preconditioning (IPC). Co-immunoprecipitation analysis reveals that Akt physically interacts with Rac1, a small Rho family GTPase required for mixed lineage kinase 3 (MLK3) autophosphorylation, and both this interaction and Rac1-Ser-71 phosphorylation induced by Akt are promoted in preconditioned rats. In addition, we show that Akt activation results in the disassembly of the plenty of SH3s (POSH)-MLK3-Rac1 signaling complex and down-regulation of the activation of MLK3/c-Jun N-terminal kinase (JNK) pathway. Akt activation results in decreased serine phosphorylation of 14-3-3, a cytoplasmic anchor of Bax, and prevents ischemia-induced mitochondrial translocation of Bax, release of cytochrome c, and activation of caspase-3. The expression of Fas ligand is also decreased in the CA1 region. Akt activation protects against apoptotic neuronal death as shown in TUNEL staining following IPC. Intracerebral infusion of LY294002 before IPC reverses the increase in Akt phosphorylation and the decrease in JNK signaling activation, as well as the neuroprotective action of IPC. Our results suggest that activation of pro-apoptotic MLK3/JNK3 cascade can be suppressed through activating anti-apoptotic phosphoinositide 3-kinase/Akt pathway induced by a sublethal ischemic insult, which provides a functional link between Akt and the JNK family of stress-activated kinases in ischemic tolerance.
Jia, Songbai; Shi, Jingming; Chen, Xuan; Tang, Luosheng
2012-07-01
To explore the apoptosis-inducing effect of ultraviolet(UV) radiation on human lens epithelial cells (HLEC), with particular focus on changes in Bcl-2 or Bax expression as possible mechanisms. All experimental groups were exposed to the same UV light source. HLEC were divided into 6 groups according to duration of UV radiation : 0 min group (control group), 5 min group, 10 min group,15 min group, and 30 min group. Analysis on apoptosis of HLEC was performed by flow cytometry analysis (FCA, Annexin V + PI staining). Changes of Bax and Bcl-2 expression in HLEC were detected by hybridization in situ. Apoptosis in HLEC increased with UV exposure time. The expression level of Bax mRNA was increased with the increase of UV exposure time, whereas the expression level of Bcl-2 mRNA decreased with the increase of UV exposure time. The proportion of apoptotic cells was negatively correlated with ratio of Bcl-2/Bax (r=-0.874, P<0.05). UA radiation can induce apoptosis of HLEC in vitro. Bcl-2 and Bax genes may play an important role in regulating this apoptotic process.
Eichmann, Ruth; Dechert, Cornelia; Kogel, Karl-Heinz; Hückelhoven, Ralph
2006-11-01
SUMMARY BAX Inhibitor-1 (BI-1) is a conserved cell death suppressor protein. In barley, BI-1 (HvBI-1) expression is induced upon powdery mildew infection and when over-expressed in epidermal cells of barley, HvBI-1 induces susceptibility to the biotrophic fungal pathogen Blumeria graminis. We co-expressed mammalian pro-apoptotic BAX together with HvBI-1, and the mammalian BAX antagonist BCL-X(L) in barley epidermal cells. BAX expression led to cessation of cytoplasmic streaming and collapse of the cytoplasm while co-expression of HvBI-1 and BCL-X(L) partially or completely, respectively, rescued cells from BAX lethality. When B. graminis was attacking epidermal cells, a green fluorescent protein fusion of HvBI-1 accumulated at the site of attempted penetration and was also present around haustoria. Over-expression of HvBI-1 in epidermal cells weakened a cell-wall-associated local hydrogen peroxide burst in a resistant mlo-mutant genotype and supported haustoria accommodation in race-specifically resistant MLA12-barley. HvBI-1 is a cell death regulator protein of barley with the potential to suppress host defence reactions.
Sun, Dongdong; Li, Shuang; Wu, Hao; Zhang, Mingming; Zhang, Xiaotian; Wei, Liping; Qin, Xing; Gao, Erhe
2015-06-01
Oncostatin M (OSM) exhibits many unique biological activities by activating Oβ receptor. However, its role in myocardial I/R injury in diabetic mice remains unknown. The involvement of OSM was assessed in diabetic mice which underwent myocardial I/R injury by OSM treatment or genetic deficiency of OSM receptor Oβ. Its mechanism on cardiomyocyte apoptosis, mitochondrial biogenesis and insulin sensitivity were further studied. OSM alleviated cardiac I/R injury by inhibiting cardiomyocyte apoptosis through inhibition of inositol pyrophosphate 7 (IP7) production, thus activating PI3K/Akt/BAD pathway, decreasing Bax expression while up-regulating Bcl-2 expression and decreasing the ratio of Bax to Bcl-2 in db/db mice. OSM enhanced mitochondrial biogenesis and mitochondrial function in db/db mice subjected to cardiac I/R injury. On the contrary, OSM receptor Oβ knockout exacerbated cardiac I/R injury, increased IP7 production, enhanced cardiomyocyte apoptosis, impaired mitochondrial biogenesis, glucose homoeostasis and insulin sensitivity in cardiac I/R injured diabetic mice. Inhibition of IP7 production by TNP (IP6K inhibitor) exerted similar effects of OSM. The mechanism of OSM on cardiac I/R injury in diabetic mice is partly associated with IP7/Akt and adenine mononucleotide protein kinase/PGC-1α pathway. OSM protects against cardiac I/R Injury by regulating apoptosis, insulin sensitivity and mitochondrial biogenesis in diabetic mice through inhibition of IP7 production. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Activation of miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced cardiotoxicity.
Zhu, Jie-Ning; Fu, Yong-Heng; Hu, Zhi-Qin; Li, Wen-Yu; Tang, Chun-Mei; Fei, Hong-Wen; Yang, Hui; Lin, Qiu-Xiong; Gou, De-Ming; Wu, Shu-Lin; Shan, Zhi-Xin
2017-09-19
The molecular mechanisms underlying anthracyclines-induced cardiotoxicity have not been well elucidated. MiRNAs were revealed dysregulated in the myocardium and plasma of rats received Dox treatment. MicroRNA-34a-5p (miR-34a-5p) was verified increased in the myocardium and plasma of Dox-treated rats, but was reversed in rats received Dox plus DEX treatments. Human miR-34a-5p was also observed increased in the plasma of patients with diffuse large B-cell lymphoma after 9- and 16-week epirubicin therapy. Up-regulation of miR-34a-5p was observed in Dox-induced rat cardiomyocyte H9c2 cells. MiR-34a-5p could augment Bax expression, but inhibited Bcl-2 expression, along with the increases of the activated caspase-3 and mitochondrial potentials in H9C2 cells. MiR-34a-5p was verified to modulate Sirt1 expression post-transcriptionally. In parallel to Sirt1 siRNA, miR-34a-5p could enhance p66shc expression, accompanied by increases of Bax and the activated caspase-3 and a decrease of Bcl-2 in H9c2 cells. Moreover, enforced expression of Sirt1 alleviated Dox-induced apoptosis of H9c2 cells, with suppressing levels of p66shc, Bax, the activated caspase-3 and miR-34a-5p, and enhancing Bcl-2 expression. Therefore, miR-34a-5p enhances cardiomyocyte apoptosis by targeting Sirt1, activation of miR-34a-5p/Sirt1/p66shc pathway contributes to Dox-induced cardiotoxicity, and blockage of this pathway represents a potential cardioprotective effect against anthracyclines.
In vitro anticancer activity of methyl caffeate isolated from Solanum torvum Swartz. fruit.
Balachandran, C; Emi, N; Arun, Y; Yamamoto, Y; Ahilan, B; Sangeetha, B; Duraipandiyan, V; Inaguma, Yoko; Okamoto, Akinao; Ignacimuthu, S; Al-Dhabi, N A; Perumal, P T
2015-12-05
The present study was undertaken to investigate the anticancer activity of methyl caffeate isolated from Solanum torvum Swartz. fruit and to explore the molecular mechanisms of action in MCF-7 cells. Cytotoxic properties of hexane, ethyl acetate and methanol extracts were carried out against MCF-7 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Ethyl acetate extract showed good cytototoxic activities compared to hexane and methanol extracts. Methyl caffeate was isolated from the ethyl acetate extract using column chromatography. Cytotoxic properties of methyl caffeate was investigated against MCF-7, A549, COLO320, HepG-2 and Vero cells. The compound showed potent cytotoxic properties against MCF-7 cells compared to A549, COLO320 and HepG-2 cells. Methyl caffeate significantly reduced cell proliferation and increased formation of fragmented DNA and apoptotic body in MCF-7 cells. Bcl-2, Bax, Bid, p53, caspase-3, PARP and cytochrome c release were detected by western blot analysis. The activities of caspases-3 and PARP gradually increased after the addition of isolated compound. Bcl-2 protein was down regulated; Bid and Bax were up regulated after the treatment with methyl caffeate. Molecular docking studies showed that the compound bound stably to the active sites of poly (ADP-ribose) polymerase-1 (PARP1), B cell CLL/lymphoma-2 (BCL-2), E3 ubiquitin-protein ligase (MDM2) and tubulin. The results strongly suggested that methyl caffeate induced apoptosis in MCF-7 cells via caspase activation through cytochrome c release from mitochondria. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Song, Chun-Li; Liu, Bin; Wang, Jin-Peng; Zhang, Bei-Lin; Zhang, Ji-Chang; Zhao, Li-Yan; Shi, Yong-Feng; Li, Yang-Xue; Wang, Guan; Diao, Hong-Ying; Li, Qian; Xue, Xin; Wu, Jun-Duo; Liu, Jia; Yu, Yun-Peng; Cai, Dan; Liu, Zhi-Xian
2015-11-01
This study aimed to investigate the effect of microRNA-30b (miR-30b) in rat myocardial ischemic-reperfusion (I/R) injury model. We randomly divided Sprague-Dawley (SD) rats (n = 80) into five groups: 1) control group; 2) miR-30b group; 3) sham-operated group; 4) I/R group, and 5) I/R+miR-30b group. Real-time quantitative polymerase chain reaction, immunohistochemical staining and Western blot analysis were conducted. TUNEL assay was employed for testing cardiomyocyte apoptosis. Our results showed that miR-30b levels were down-regulated in I/R group and I/R + miR-30b group compared with sham-operated group (both P < 0.05). However, miR-30b level in I/R + miR-30b group was higher than I/R group (P < 0.05). Markedly, the apoptotic rate in I/R group showed highest in I/R group (P < 0.05). Additionally, the results illustrated that protein levels of Bcl-2, Bax, and caspase-3 were at higher levels in ischemic regions in I/R group, comparing to sham-operated group (all P < 0.05), while Bcl-2/Bax was reduced (P < 0.05). Bcl-2 level and Bcl-2/Bax were obviously increased in I/R + miR-30b group by comparison with I/R group, and expression levels of Bax and caspase-3 were down-regulated (all P < 0.05). We also found that in I/R + miR-30b group, KRAS level was apparently lower and p-AKT level was higher by comparing with I/R group (both P < 0.05). Our study indicated that miR-30b overexpression had anti-apoptotic effect on early phase of rat myocardial ischemia injury model through targeting KRAS and activating the Ras/Akt pathway. © 2015 Wiley Periodicals, Inc.
TMBIM-mediated Ca 2+ homeostasis and cell death
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qun
Ca 2+ is a ubiquitous intracellular messenger that regulates numerous physiological activities in humans, animals, plants, and bacteria. Cytosolic Ca 2+ is kept at a low level, but subcellular organelles such as the endoplasmic reticulum (ER) and Golgi Apparatus maintain high-concentration Ca 2+ stores. Under resting conditions, store Ca 2+ homeostasis is dynamically regulated to equilibrate between active Ca 2+ uptake and passive Ca 2+ leak processes. The evolutionarily conserved Transmembrane BAX Inhibitor-1 Motif-containing (TMBIM) proteins mediate Ca 2+ homeostasis and cell death. This review focuses on recent advances in functional and structural analysis of TMBIM proteins in regulation ofmore » the two related functions. The roles of TMBIM proteins in pathogen infection and cancer are also discussed with prospects for treatment.« less
TMBIM-mediated Ca 2+ homeostasis and cell death
Liu, Qun
2017-01-05
Ca 2+ is a ubiquitous intracellular messenger that regulates numerous physiological activities in humans, animals, plants, and bacteria. Cytosolic Ca 2+ is kept at a low level, but subcellular organelles such as the endoplasmic reticulum (ER) and Golgi Apparatus maintain high-concentration Ca 2+ stores. Under resting conditions, store Ca 2+ homeostasis is dynamically regulated to equilibrate between active Ca 2+ uptake and passive Ca 2+ leak processes. The evolutionarily conserved Transmembrane BAX Inhibitor-1 Motif-containing (TMBIM) proteins mediate Ca 2+ homeostasis and cell death. This review focuses on recent advances in functional and structural analysis of TMBIM proteins in regulation ofmore » the two related functions. The roles of TMBIM proteins in pathogen infection and cancer are also discussed with prospects for treatment.« less
Lipocalin-2 Induces Cardiomyocyte Apoptosis by Increasing Intracellular Iron Accumulation*
Xu, Guoxiong; Ahn, JinHee; Chang, SoYoung; Eguchi, Megumi; Ogier, Arnaud; Han, SungJun; Park, YoungSam; Shim, ChiYoung; Jang, YangSoo; Yang, Bo; Xu, Aimin; Wang, Yu; Sweeney, Gary
2012-01-01
Our objective was to determine whether lipocalin-2 (Lcn2) regulates cardiomyocyte apoptosis, the mechanisms involved, and the functional significance. Emerging evidence suggests that Lcn2 is a proinflammatory adipokine associated with insulin resistance and obesity-related complications, such as heart failure. Here, we used both primary neonatal rat cardiomyocytes and H9c2 cells and demonstrated for the first time that Lcn2 directly induced cardiomyocyte apoptosis, an important component of cardiac remodeling leading to heart failure. This was shown by detection of DNA fragmentation using TUNEL assay, phosphatidylserine exposure using flow cytometry to detect annexin V-positive cells, caspase-3 activity using enzymatic assay and immunofluorescence, and Western blotting for the detection of cleaved caspase-3. We also observed that Lcn2 caused translocation of the proapoptotic protein Bax to mitochondria and disruption of mitochondrial membrane potential. Using transient transfection of GFP-Bax, we confirmed that Lcn2 induced co-localization of Bax with MitoTracker® dye. Importantly, we used the fluorescent probe Phen Green SK to demonstrate an increase in intracellular iron in response to Lcn2, and depleting intracellular iron using an iron chelator prevented Lcn2-induced cardiomyocyte apoptosis. Administration of recombinant Lcn2 to mice for 14 days increased cardiomyocyte apoptosis as well as an acute inflammatory response with compensatory changes in cardiac functional parameters. In conclusion, Lcn2-induced cardiomyocyte apoptosis is of physiological significance and occurs via a mechanism involving elevated intracellular iron levels and Bax translocation. PMID:22117066
Lu, Chunwei; Cai, Dingfang; Ma, Jun
2018-05-08
We have previously shown that pachymic acid (PA) inhibited tumorigenesis of gastric cancer (GC) cells. However, the exact mechanism underlying the radiation response of GC was still elusive. To evaluate the effects of PA treatment on radiation response of GC cell lines both in vitro and in vivo, a colony formation assay and xenograft mouse model were employed. Changes in Bax and HIF1[Formula: see text] expressions were assessed in GC cells following PA treatment. Luciferase reporter and chromatin immune-precipitation assays were carried out to investigate the regulation of Bax through HIF1[Formula: see text]. Stable HIF1[Formula: see text] knockdown was introduced into GC cells to further study the mechanism underlying PA-enhanced response to radiation both in vitro and in vivo. PA greatly enhanced the sensitivity of GC cells to radiation in vitro and in vivo, upregulated Bax expression and inhibited hypoxia. Bax expression was under hypoxia inhibition, and PA increased Bax expression through repressing HIF1[Formula: see text]. Stable HIF1[Formula: see text] overexpression in GC cells abolished the sensitizing effect of PA on GC cells to radiation both in vitro and in vivo. PA functions as a radiation sensitizing compound in GC. PA treatment induces the expression of pro-apoptotic factor Bax by inhibiting hypoxia/HIF1[Formula: see text], supporting the therapeutic potential of PA in radiation therapy against GC.
Hsu, Yuan-Man; Yin, Mei-Chin
2016-06-01
Effects of eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic acid (DHA, 22:6) upon fatty acid composition, oxidative and inflammatory factors and aging proteins in brain of d-galactose (DG) treated aging mice were examined. Each fatty acid at 7 mg/kg BW/week was supplied for 8 weeks. Brain aging was induced by DG treatment (100 mg/kg body weight) via daily subcutaneous injection for 8 weeks. DG, EPA and DHA treatments changed brain fatty acid composition. DG down-regulated brain Bcl-2 expression and up-regulated Bax expression. Compared with DG groups, EPA and DHA further enhanced Bax expression. DG decreased glutathione content, increased reactive oxygen species (ROS) and oxidized glutathione (GSSG) production, the intake of EPA or DHA caused greater ROS and GSSG formation. DG treatments up-regulated the protein expression of p47(phox) and gp91(phox), and the intake of EPA or DHA led to greater p47(phox) and gp91(phox) expression. DG increased brain prostaglandin E2 (PGE2) levels, and cyclooxygenase (COX)-2 expression and activity, the intake of EPA or DHA reduced brain COX-2 activity and PGE2 formation. DG enhanced brain p53, p16 and p21 expression. EPA and DHA intake led to greater p21 expression, and EPA only caused greater p53 and p16 expression. These findings suggest that these two PUFAs have toxic effects toward aging brain.
[Harringtonine induces apoptosis in NB4 cells through down-regulation of Mcl-1].
Wu, Chunxiao; Shen, Hongqiang; Xia, Dajing
2013-07-01
To investigate the growth inhibition effect, cytotoxicity and apoptotic induction of harringtonine (HT) in human acute promyelocytic leukemia (APL) NB4 cells,and the related mechanism. NB4 cells were treated with HT. Total cell numbers were counted by hemocytometer, and cell viabilities were determined by trypan blue exclusion. Apoptotic cells were determined by fluorescence microscopy and FACS after staining with AO and EB or PI, respectively. The cleavage of PARP and the activation of Bax and the expression of anti-apoptotic proteins were determined by Western Blot. siRNA was used to silence the expression of target genes. Primary cells were isolated following Ficoll-Hypaque density gradient centrifugation method. HT inhibited cell growth and induced apoptosis of NB4 cells in a dose- and time-dependent manner. Apoptosis induced by HT was correlated with the down-regulation of Mcl-1 and the cleavage of PARP, while HT did not affect the protein level of Bax and Bak or change the protein level of Bcl-2. The silence of Bcl-XL sensitized HT-induced apoptosis in NB4 cells.Apoptosis induced by HT in primarily cultured APL cells was also correlated with the down-regulation of Mcl-1. HT inhibits cell growth and induces apoptosis in NB4 cells and primarily cultured APL cells, which may be associated with down-regulation of Mcl-1.
Sun, Yi; Fu, Amina; Xu, Wu; Chao, Jyh-Rong; Moshiach, Simon; Morris, Stephan W
2015-12-01
Myeloid leukemia factor 1 (MLF1) was involved in t(3;5) chromosomal rearrangement and aberrantly expressed in myelodysplastic syndromes/acute myeloid leukemia patients. Ex vivo experiments showed that the lymphocytes from the Mlf1-deficient mice were more resistant to apoptotic stimulations than the wild-type cells. Furthermore, the ectopically expressed MLF1 induced apoptosis in the cell models. These findings revealed that MLF1 was required for the cells to respond to the apoptotic stimulations. Ex vivo experiments also demonstrated that cytokine withdrawal significantly up-regulated Mlf1's expression and promoted its association with B cell lymphoma-extra large (Bcl-XL) in the lymphocytes, at the same time reduced the association of Bax with Bcl-XL The same effects were also observed in the cells that over-expressed MLF1. However, these effects were observed in Mlf1 null lymphocytes as well as the cells over-expressing Bcl-XL. In addition, MLF1's proapoptosis could be completely prevented by co-expression of Bcl-XL and significantly attenuated in Bax/Bak double null cells. These data, taken together, strongly suggested that in response to the stresses, up-regulated Mlf1 promoted its association with Bcl-XL and reduced the available Bcl-XL for associating with Bax, which resulted in releasing Bax from the Bcl-XL and apoptosis in turn. Lastly, we showed that MLF1 was negatively regulated by 14-3-3 and revealed that 14-3-3 bound to MLF1 and physically blocked MLF1's Bcl-2 homology domain 3 (BH3) as well as Bcl-XL from associating with MLF1. Our findings suggested that ectopically expressed MLF1 could be responsible for the pathological apoptosis in early myelodysplastic syndrome (MDS) patients.
Li, Fengbo; Sun, Xiaolei; Ma, Jianxiong; Ma, Xinlong; Zhao, Bin; Zhang, Yang; Tian, Peng; Li, Yanjun; Han, Zhe
2014-09-26
Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness, bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats. Copyright © 2014 Elsevier Inc. All rights reserved.
Dolai, Narayan; Islam, Aminul; Haldar, Pallab Kanti
2016-01-01
The purpose of this investigation was to evaluate the antiproliferative and apoptogenic mechanistic studies of methanol extract of Anthocephalus cadamba (MEAC) on Dalton’s lymphoma ascites (DLA) cells treated mice. Determination of antiproliferative activity was performed by using different DLA cells (2×106 cells, i.p.) inoculated mice groups (n = 12). Groups were treated for 14 consecutive days with MEAC at the doses of 200 and 400 mg/Kg b.w. respectively. The mechanism of antiproliferation activity of MEAC was investigated through morphological studies by acridine orange (AO)/ethidium bromide (EB) double staining method. Comet assay was estimated to check the DNA damage induced apoptosis property. Furthermore, flow cytometry (FACS) was used to quantitatively detect the apoptotic rate by double labeling techniques using Annexin-V FITC/propidium iodide staining analysis and apoptotic proteins expression done by western blotting assay method. MEAC exhibited significant (p<0.01) decrease the tumor volume, viable cell count, tumor weight and elevated the life span of DLA tumor bearing mice. Analysis of AO/EB staining and flow cytometry showed that MEAC possessed apoptosis induced antitumor activity on DLA cells in a dose dependant manner. Dose dependent induction of DNA damage on DLA cells were observed after MEAC treatment, which was evident from the appearance of comet tail length. Pro-apoptotic gene, Bax was up-regulated and down-regulation of the Bcl-2/Bax ratio, suggesting that Bcl-2 family involved in the control of apoptosis. Experimental results revealed that MEAC possess potent antitumor activity via induction of cancer cell apoptosis mechanism. PMID:27980586
Chimento, Adele; Sirianni, Rosa; Casaburi, Ivan; Ruggiero, Carmen; Maggiolini, Marcello; Andò, Sebastiano; Pezzi, Vincenzo
2012-05-15
In mammals, spontaneous apoptosis is observed particularly in differentiating spermatogonia and in spermatocytes. 17β-Estradiol (E2) in primary rat pachytene spermatocytes (PS) binds estrogen receptor α (ESR1) and GPER to activate EGFR/ERK/c-Jun pathway leading to up regulation of proapoptotic factor bax. Aim of this study was to clarify the effector pathway(s) controlling spermatocytes apoptosis using as model GC-2 cells, an immortalized mouse pachytene spermatocyte-derived cell line, which reproduces primary cells responses to E2. In fact, in GC-2 cells we observed that ESR1 and GPER activation caused rapid ERK and c-Jun phosphorylation, bax up-regulation, events associated with apoptosis. We further investigated the apoptotic mechanism demonstrating that E2, as well as ESR1 and GPER specific agonists, induced sustained ERK, c-Jun and p38 phosphorylation, Cytochrome c release, caspase 3 and endogenous substrate Poly (ADP-ribose) polymerase (PARP) activation and increased expression of cell cycle inhibitor p21. When ESR1 or GPER expression was silenced, E2 was still able to decrease cell proliferation, only the concomitant silencing abolished E2 effect. These results indicate that GC-2 cells are a valid cell model to study E2-dependent apoptosis in spermatocytes and show that E2, activating both ESR1 and GPER, is able to induce an ERK1/2, c-Jun and p38-dependent mitochondrion apoptotic pathway in this cell type. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Zhou, Fen; Huang, Xin; Pan, Yun; Cao, Di; Liu, Chuan; Liu, Yiyi; Chen, Aijun
2018-05-15
The skin is the outermost protective barrier between the internal and external environment in humans. Chronic exposure to ultraviolet (UV) radiation is a major cause of photoaging. Evidence suggests that resveratrol suppresses UVB-induced photoaging. In this study, we aimed to investigate the protective effects of resveratrol against UVB-induced photoaging in HaCaT cells and to determine the underlying mechanisms. Apoptosis of normal or HSP27-overexpressing HaCaT cells in the presence of UVB was analyzed by flow cytometry. The mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Resveratrol inhibited UVB-induced apoptosis by upregulating the expression of HSP27, reducing the production of proapoptotic proteins such as p65, Bax, and cleaved caspase-3, and promoting the expression of anti-apoptotic protein Bcl-2. However, UVB irradiation on HaCaT cells pretreated with resveratrol led to the upregulation of Bax, downregulation of Bcl-2, and promotion of p65 and caspase-3 activation after silencing of HSP27 gene. These findings suggest that the inhibition of HSP27 expression can partially reverse the anti-apoptotic effect of resveratrol and confirm that resveratrol can regulate HSP27 and thus control p65 and caspase-3 activation. In summary, resveratrol plays a role in photoprotection by upregulating HSP27 expression, increasing Bcl-2/Bax ratio, and inhibiting caspase-3 activity and p65 expression. Copyright © 2018 Elsevier Inc. All rights reserved.
NiO nanoparticles induce apoptosis through repressing SIRT1 in human bronchial epithelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Wei-Xia; He, Min-Di; Mao, Lin
2015-07-15
With application of nano-sized nickel-containing particles (Nano-Ni) expanding, the health concerns about their adverse effects on the pulmonary system are increasing. However, the mechanisms for the pulmonary toxicity of these materials remain unclear. In the present study, we focused on the impacts of NiO nanoparticles (NiONPs) on sirtuin1 (SIRT1), a NAD-dependent deacetylase, and investigated whether SIRT1 was involved in NiONPs-induced apoptosis. Although the NiONPs tended to agglomerate in fluid medium, they still entered into the human bronchial epithelial cells (BEAS-2B) and released Ni{sup 2+} inside the cells. NiONPs at doses of 5, 10, and 20 μg/cm{sup 2} inhibited the cellmore » viability. NiONPs' produced cytotoxicity was demonstrated through an apoptotic process, indicated by increased numbers of Annexin V positive cells and caspase-3 activation. The expression of SIRT1 was markedly down-regulated by the NiONPs, accompanied by the hyperacetylation of p53 (tumor protein 53) and overexpression of Bax (Bcl-2-associated X protein). However, overexpression of SIRT1 through resveratrol treatment or transfection clearly attenuated the NiONPs-induced apoptosis and activation of p53 and Bax. Our results suggest that the repression of SIRT1 may underlie the NiONPs-induced apoptosis via p53 hyperacetylation and subsequent Bax activation. Because SIRT1 participates in multiple biologic processes by deacetylation of dozens of substrates, this knowledge of the impact of NiONPs on SIRT1 may lead to an improved understanding of the toxic mechanisms of Nano-Ni and provide a molecular target to antagonize Nano-Ni toxicity. - Highlights: • NiONPs were taken up by BEAS-2B cells and released Ni{sup 2+}. • NiONPs produced cytotoxicity was demonstrated through an apoptotic process. • NiONPs repressed SIRT1 expression and activated p53 and Bax. • Overexpression of SIRT1 attenuated NiONPs-induced apoptosis via deacetylation p53.« less
De Silva, Deepa S.; Wilson, Richard M.; Hutchinson, Christoph; Ip, Peter C.; Garcia, Anthony G.; Lancel, Steve; Ito, Masa; Pimentel, David R.; Sam, Flora
2009-01-01
Aldosterone induces extracellular signal-regulated kinase (ERK)-dependent cardiac remodeling. Fenofibrate improves cardiac remodeling in adult rat ventricular myocytes (ARVM) partly via inhibition of aldosterone-induced ERK1/2 phosphorylation and inhibition of matrix metalloproteinases. We sought to determine whether aldosterone caused apoptosis in cultured ARVM and whether fenofibrate ameliorated the apoptosis. Aldosterone (1 μM) induced apoptosis by increasing terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive nuclei in ARVM. Spironolactone (100 nM), an aldosterone receptor antagonist, but not RU-486, a glucocorticoid receptor, inhibited aldosterone-mediated apoptosis, indicating that the mineralocorticoid receptor (MR) plays a role. SP-600125 (3 μM)—a selective inhibitor of c-Jun NH2-terminal kinase (JNK)—inhibited aldosterone-induced apoptosis in ARVM. Although aldosterone increased the expression of both stress-activated protein kinases, pretreatment with fenofibrate (10 μM) decreased aldosterone-mediated apoptosis by inhibiting only JNK phosphorylation and the aldosterone-induced increases in Bax, p53, and cleaved caspase-3 and decreases in Bcl-2 protein expression in ARVM. In vivo studies demonstrated that chronic fenofibrate (100 mg·kg body wt−1·day−1) inhibited myocardial Bax and increased Bcl-2 expression in aldosterone-induced cardiac hypertrophy. Similarly, eplerenone, a selective MR inhibitor, used in chronic pressure-overload ascending aortic constriction inhibited myocardial Bax expression but had no effect on Bcl-2 expression. Therefore, involvement of JNK MAPK-dependent mitochondrial death pathway mediates ARVM aldosterone-induced apoptosis and is inhibited by fenofibrate, a peroxisome proliferator-activated receptor (PPAR)α ligand. Fenofibrate mediates beneficial effects in cardiac remodeling by inhibiting programmed cell death and the stress-activated kinases. PMID:19395558
Booth, Laurence; Roberts, Jane L; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Poklepovic, Andrew; Dent, Paul
2018-03-04
The irreversible ERBB1/2/4 inhibitor, neratinib, down-regulates the expression of ERBB1/2/4 as well as the levels of MCL-1 and BCL-XL. Venetoclax (ABT199) is a BCL-2 inhibitor. At physiologic concentrations neratinib interacted in a synergistic fashion with venetoclax to kill HER2 + and TNBC mammary carcinoma cells. This was associated with the drug-combination: reducing the expression and phosphorylation of ERBB1/2/3; in an eIF2α-dependent fashion reducing the expression of MCL-1 and BCL-XL and increasing the expression of Beclin1 and ATG5; and increasing the activity of the ATM-AMPKα-ULK1 S317 pathway which was causal in the formation of toxic autophagosomes. Although knock down of BAX or BAK reduced drug combination lethality, knock down of BAX and BAK did not prevent the drug combination from increasing autophagosome and autolysosome formation. Knock down of ATM, AMPKα, Beclin1 or over-expression of activated mTOR prevented the induction of autophagy and in parallel suppressed tumor cell killing. Knock down of ATM, AMPKα, Beclin1 or cathepsin B prevented the drug-induced activation of BAX and BAK whereas knock down of BID was only partially inhibitory. A 3-day transient exposure of established estrogen-independent HER2 + BT474 mammary tumors to neratinib or venetoclax did not significantly alter tumor growth whereas exposure to [neratinib + venetoclax] caused a significant 7-day suppression of growth by day 19. The drug combination neither altered animal body mass nor behavior. We conclude that venetoclax enhances neratinib lethality by facilitating toxic BH3 domain protein activation via autophagy which enhances the efficacy of neratinib to promote greater levels of cell killing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Wei-Jie; Wang, Sheng; Hu, Zhuang, E-mail: zhuanghu475000@sina.com
Angelica sinensis polysaccharide (ASP) is purified from the fresh roots of Angelica sinensis (AS). This traditional Chinese medicine has been used for thousands of years for treating gynecological diseases and used in functional foods for the prevention and treatment of various diseases, such as inflammation and cancer. The antitumor activity of ASP is related to its biological activities, because it suppresses a variety of pro-proliferative or anti-apoptotic factors that are dramatically expressed in cancer cells of given types. In this study, we show that angelica sinensis polysaccharide induced apoptosis in breast cancer cells of T47D over-expressing the Cyclic AMP responsemore » element binding protein (CREB), inducing apoptosis-related signaling pathway activity. The result also found that ASP caused cell death was linked to caspase activity, accompanied by the loss of mitochondrial membrane potential, cytochrome c release, and Bax translocation from the cytosol to the mitochondria. We found that ASP significantly affected the poly-ADP-ribose polymerase (PARP), Bcl-2 Associated X Protein (Bax), Bcl-2, Bcl-xL and apoptotic protease activating facter-1 (Apaf1) protein expression in a dose- and time-dependent manner. DAPI staining and Flow cytometry were used to analyze apoptosis. The nude mice xenograft model was used to evaluate the antitumor effect of ASP in vivo. ASP has profound antitumor effect on T47D cells, probably by inducing apoptosis through CREB signaling pathway. Thus, these results suggest that ASP would be a promising therapeutic agent for breast cancer. - Highlights: • CREB and Caspase-3 signaling pathways are involved in the ASP induced breast cancer cells apoptosis. • ROCK1/Mlc signaling pathway plays a critical role in this ASP-mediated apoptosis. • Angelica sinensis polysaccharide (ASP) affected the PARP, Bax, Bcl-2, Bcl-xL and Apaf1 protein expression. • The activation of CREB and ROCK1 promotes caspase-3 activation and apoptosis induced by ASP.« less
Ho, Cheong-Yip; Kim, Chi-Fai; Leung, Kwok-Nam; Fung, Kwok-Pui; Tse, Tak-Fu; Chan, Helen; Lau, Clara Bik-San
2006-09-01
Coriolus versicolor (CV), also called Yunzhi, has been demonstrated to exert anti-tumor effects on various types of cancer cells. Our previous studies have demonstrated that a standardized aqueous ethanol extract prepared from CV inhibited the proliferation of human leukemia cells via induction of apoptosis. The present study aimed to evaluate the underlying mechanisms of apoptosis through modulation of Bax, Bcl-2 and cytochrome c protein expressions in a human pro-myelocytic leukemia (HL-60) cell line, as well as the potential of the CV extract as anti-leukemia agent using the athymic mouse xenograft model. Our results demonstrated that the CV extract dose-dependently suppressed the proliferation of HL-60 cells (IC50 = 150.6 microg/ml), with increased nucleosome production from apoptotic cells. Expression of pro-apoptotic protein Bax was significantly up-regulated in HL-60 cells treated with the CV extract, especially after 16 and 24 h. Meanwhile, expression of anti-apoptotic protein Bcl-2 was concomitantly down-regulated, as reflected by the increased Bax/Bcl-2 ratio. The CV extract markedly, but transiently, promoted the release of cytochrome c from mitochondria to cytosol after 24-h incubation. In vivo studies in the athymic nude mouse xenograft model also confirmed the growth-inhibitory activity of the CV extract on human leukemia cells. In conclusion, the CV extract attenuated the human leukemia cell proliferation in vivo, and in vitro possibly by inducing apoptosis through the mitochondrial pathway. The CV extract is likely to be valuable for the treatment of some forms of human leukemia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hongling; Huang, Yong; Du, Qian
Highlights: • PPV reduces PK-15 cells viability by inducing apoptosis. • PPV infection induces apoptosis through mitochondria-mediated pathway. • PPV infection activates p53 to regulate the mitochondria apoptotic signaling. - Abstract: Porcine parvovirus (PPV) infection has been reported to induce the cytopathic effects (CPE) in some special host cells and contribute the occurrence of porcine parvovirus disease, but the molecular mechanisms underlying PPV-induced CPE are not clear. In this study, we investigated the morphological and molecular changes of porcine kidney cell line (PK-15 cells) infected with PPV. The results showed that PPV infection inhibited the viability of PK-15 cells inmore » a time and concentration dependent manner. PPV infection induced typical apoptotic features including chromatin condensation, apoptotic body formation, nuclear fragmentation, and Annexin V-binding activity. Further studies showed that Bax was increased and translocated to mitochondria, whereas Bcl-2 was decreased in PPV-infected cells, which caused mitochondrial outer-membrane permeabilization, resulting in the release of mitochondrial cytochrome c, followed by caspase-9 and caspase-3 activation. However, the expression of Fas and Fas ligand (FasL) did not appear significant changes in the process of PPV-induced apoptosis. Moreover, PPV infection activated p53 signaling, which was involved in the activation of apoptotic signaling induced by PPV infection via regulation of Bax and Bcl-2. Taken together, our results demonstrated that PPV infection induced apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated apoptosis pathway. This study may contribute to shed light on the molecular pathogenesis of PPV infection.« less
Role of Bax in Death of Uninfected Retinal Cells During Murine Cytomegalovirus Retinitis
Mo, Juan; Marshall, Brendan; Covar, Jason; Zhang, Nancy Y.; Smith, Sylvia B.; Atherton, Sally S.; Zhang, Ming
2014-01-01
Purpose. Extensive death of uninfected bystander neuronal cells is an important component of the pathogenesis of cytomegalovirus retinitis. Our previous results have shown that caspase 3–dependent and –independent pathways are involved in death of uninfected bystander cells during murine cytomegalovirus (MCMV) retinitis and also that Bcl-2, an important inhibitor of apoptosis via the Bax-mediated mitochondrial pathway, is downregulated during this process. The purpose of this study was to determine whether Bax-mediated mitochondrial damage has a significant role in the death of uninfected retinal cells. Methods. BALB/c mice, Bax−/− mice, or Bax+/+ mice were immunosuppressed with methylprednisolone and infected with 5 × 103 plaque-forming units (PFU) of the K181 strain of MCMV via the supraciliary route. Injected eyes were analyzed by plaque assay, electron microscopy, hematoxylin and eosin (H&E) staining, TUNEL assay, Western blot (for caspase 3, caspase 12, Bax, receptor interacting protein-1 [RIP1] and receptor interacting protein-3 [RIP3]), as well as immunohistochemical staining for MCMV early antigen and cleaved caspase 3. Results. Significantly more Bax was detected in mitochondrial fractions of MCMV-infected eyes than in mitochondrial fractions of mock-infected control eyes. Furthermore, the level of cleaved caspase 3 was significantly lower in MCMV-infected Bax−/− eyes than in MCMV-infected Bax+/+ eyes. However, more caspase 3–independent cell death of uninfected bystander retinal cells and more cleaved RIP1 were observed in Bax−/− than in Bax+/+ eyes. Conclusions. During MCMV retinitis, Bax is activated and has an important role in death of uninfected bystander retinal cells by caspase 3–dependent apoptosis. Although the exact mechanism remains to be deciphered, active Bax might also prevent death of some types of uninfected retinal cells by a caspase 3–independent pathway. PMID:25298417
The effect of N-nitrosodimethylamine (NDMA) on Bax and Mcl-1 expression in human neutrophils.
Jablonski, Jakub; Jablonska, Ewa; Leonik, Agnieszka
2011-12-01
In the present study we examined a role of pro-apoptotic Bax and anti-apoptotic Mcl-1 proteins, participating in the regulation of intrinsic apoptosis pathway in human neutrophils (PMNs) exposed to N-nitrosodimethylamine (NDMA), the environmental xenobiotic. For the purpose comparison, the same studies were conducted in autologous peripheral blood mononuclear cells (PBMCs). The production of cytochrome c by PMNs was also determined. A deficit of anti-apoptotic Mcl-1 and overexpression of the pro-apoptotic protein Bax suggest that the apoptosis process in human neutrophils exposed to NDMA is dependent on changes in the expression of these proteins. PMNs were more sensitive to NDMA than PBMCs.
Effect of curcumin on Bcl-2 and Bax expression in nude mice prostate cancer.
Yang, Jiayi; Ning, Jianping; Peng, Linlin; He, Dan
2015-01-01
Prostate cancer is a common malignant tumor in urinary system. Curcumin has curative effect on many kinds of cancers and can inhibit prostate cancer (PC)-3 cells proliferation. This study aimed to explore the curcumin induced prostate cancer cell apoptosis and apoptosis related proteins Bcl-2 and Bax expression. PC-3 cells were injected subcutaneously to the nude mice to establish the tumor model. The nude mice were randomly divided into group C (normal saline), group B (6% polyethylene glycol and 6% anhydrous ethanol), group H, M, L (100 mg/kg, 50 mg/kg, and 25 mg/kg curcumin). The tumor volume was measured every 6 days to draw the tumor growth curve. The mice were killed at the 30(th) day after injection to weight the tumor. TUNEL assay was applied to determine cell apoptosis. Immunohistochemistry was used to detect Bcl-2 and Bax expression. The tumor volume and weight in group H, M, L were significantly lower than the control group (C, B) (P<0.05), and the inhibitory rate increased following the curcumin dose increase. Compared with the control group, Bcl-2 expression in group H, M, L gradually decreased, while Bax protein expression increased (P<0.05). The cell apoptosis rate showed no statistical difference between group B and C, while it increased in curcumin group H, M, and L (P<0.05). Curcumin could inhibit PC-3 growth, decrease tumor volume, reduce tumor weight, and induce cell apoptosis under the skin of nude mice by up-regulating Bax and down-regulating Bcl-2.
Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kheradmand, Arash, E-mail: arashkheradmand@yahoo.com; Dezfoulian, Omid; Alirezaei, Masoud
Highlights: Black-Right-Pointing-Pointer Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. Black-Right-Pointing-Pointer Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. Black-Right-Pointing-Pointer Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. Black-Right-Pointing-Pointer Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivomore » quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P < 0.01) in the ghrelin-treated group on day 10, while despite of 30% increment in the Bax level of spermatocytes in the treated rats on day 30, however, it was not statistically significant. During the experimental period, only a few spermatogonia represented Bax expression and the changes of Bax immunolabling cells were negligible upon ghrelin treatment. Likewise, there were immunostaining cells against Bcl-2 in each germ cell neither in the control nor in the treated animals. In fact, ghrelin balanced Bax/Bcl-2 ratio toward at increase of Bax level in the spermatocytes and therefore may stimulate apoptosis in these germ cells. In contrast, ghrelin administration significantly suppressed proliferation-associated peptide PCNA in the spermatocytes as well as spermatogonia (P < 0.05). Whereas, caspase-3 activity did not show any marked alteration during the experiment in both groups (P > 0.05). Upstream of Bax substance parallel to down-regulation of PCNA demonstrate that ghrelin may prevent massive accumulation of germ cells during normal spermatogenesis. These observations also indicate that ghrelin may be considered as a modulator of spermatogenesis in normal adult rats and could be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors.« less
Cheng, Chang-Hong; Yang, Fang-Fang; Liao, Shao-An; Miao, Yu-Tao; Ye, Chao-Xia; Wang, An-Li; Tan, Jia-Wen; Chen, Xiao-Yan
2015-10-01
Water temperature is an important environmental factor in aquaculture farming that affects the survival and growth of organisms. The change in culture water temperature may not only modify various chemical and biological processes but also affect the status of fish populations. In previous studies, high temperature induced apoptosis and oxidative stress. However, the precise mechanism and the pathways that are activated in fish are still unclear. In the present study, we investigated the effects of high temperature (34°C) on the induction of apoptosis and oxidative stress in pufferfish (Takifugu obscurus) blood cells. The data showed that high temperature exposure increased oxygen species (ROS), cytoplasmic free-Ca(2+) concentration and cell apoptosis. To test the apoptotic pathway, the expression pattern of some key apoptotic related genes including P53, Bax, caspase 9 and caspase 3 were examined. The results showed that acute high temperature stress induced up-regulation of these genes, suggesting that the p53-Bax pathway and the caspase-dependent apoptotic pathway could be involved in apoptosis induced by high temperature stress. Furthermore, the gene expression of antioxidant enzymes (Cu/Zn-SOD, Mn-SOD, CAT, GPx, and GR) and heat shock proteins (HSP90 and HSP70) in the blood cells were induced by high temperature stress. Taken together, our results showed that high temperature-induced oxidative stress may cause pufferfish blood cells apoptosis, and cooperatively activated p53-Bax and caspase-dependent apoptotic pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Bcl-2 apoptotic switch in cancer development and therapy
Adams, JM; Cory, S
2009-01-01
Impaired apoptosis is both critical in cancer development and a major barrier to effective treatment. In response to diverse intracellular damage signals, including those evoked by cancer therapy, the cell’s decision to undergo apoptosis is determined by interactions between three factions of the Bcl-2 protein family. The damage signals are transduced by the diverse ‘BH3-only’ proteins, distinguished by the BH3 domain used to engage their pro-survival relatives: Bcl-2, Bcl-xL, Bcl-w, Mcl-1 and A1. This interaction ablates pro-survival function and allows activation of Bax and Bak, which commit the cell to apoptosis by permeabilizing the outer membrane of the mitochondrion. Certain BH3-only proteins (e.g. Bim, Puma) can engage all the pro-survival proteins, but others (e.g. Bad, Noxa) engage only subsets. Activation of Bax and Bak appears to require that the BH3-only proteins engage the multiple pro-survival proteins guarding Bax and Bak, rather than binding to the latter. The balance between the pro-survival proteins and their BH3 ligands regulates tissue homeostasis, and either overexpression of a pro-survival family member or loss of a proapoptotic relative can be oncogenic. Better understanding of the Bcl-2 family is clarifying its role in cancer development, revealing how conventional therapy works and stimulating the search for ‘BH3 mimetics’ as a novel class of anticancer drugs. PMID:17322918
Wilfling, F; Weber, A; Potthoff, S; Vögtle, F-N; Meisinger, C; Paschen, S A; Häcker, G
2012-08-01
During mitochondrial apoptosis, pro-apoptotic BH3-only proteins cause the translocation of cytosolic Bcl-2-associated X protein (Bax) to the outer mitochondrial membrane (OMM) where it is activated to release cytochrome c from the mitochondrial intermembrane space, but the mechanism is under dispute. We show that most BH3-only proteins are mitochondrial proteins that are imported into the OMM via a C-terminal tail-anchor domain in isolated yeast mitochondria, independently of binding to anti-apoptotic Bcl-2 proteins. This C-terminal domain acted as a classical mitochondrial targeting signal and was sufficient to direct green fluorescent protein to mitochondria in human cells. When expressed in mouse fibroblasts, these BH3-only proteins localised to mitochondria and were inserted in the OMM. The BH3-only proteins Bcl-2-interacting mediator of cell death (Bim), tBid and p53-upregulated modulator of apoptosis sensitised isolated mitochondria from Bax/Bcl-2 homologous antagonist/killer-deficient fibroblasts to cytochrome c-release by recombinant, extramitochondrial Bax. For Bim, this activity is shown to require the C-terminal-targeting signal and to be independent of binding capacity to and presence of anti-apoptotic Bcl-2 proteins. Bim further enhanced Bax-dependent killing in yeast. A model is proposed where OMM-tail-anchored BH3-only proteins permit passive 'recruitment' and catalysis-like activation of extra-mitochondrial Bax. The recognition of C-terminal membrane-insertion of BH3-only proteins will permit the development of a more detailed concept of the initiation of mitochondrial apoptosis.
Curcumin induces Apaf-1-dependent, p21-mediated caspase activation and apoptosis
Zhang, Honghao; Jones, Anthony; Verone, Alissa; Pitarresi, Jason; Jandhyam, Sirisha; Prabhu, Varun; Black, Jennifer D
2011-01-01
Previous studies have demonstrated that curcumin induces mitochondria-mediated apoptosis. However, understanding of the molecular mechanisms underlying curcumin-induced cell death remains limited. In this study, we demonstrate that curcumin treatment of cancer cells caused dose- and time-dependent caspase 3 activation, which is required for apoptosis as confirmed using the pan-caspase inhibitor, z-VAD. Knockdown experiments and knockout cells excluded a role for caspase 8 in curcumin-induced caspase 3 activation. In contrast, Apaf-1 deficiency or silencing inhibited the activity of caspase 3, pointing to a requisite role of Apaf-1 in curcumin-induced apoptotic cell death. Curcumin treatment led to Apaf-1 upregulation, both at the protein and mRNA levels. Cytochrome c release from mitochondria to the cytosol in curcumin-treated cells was associated with upregulation of pro-apoptotic proteins, such as Bax, Bak, Bid and Bim. Cross-linking experiments demonstrated Bax oligomerization during curcumin-induced apoptosis, suggesting that induced expression of Bax, Bid and Bim causes Bax channel formation on the mitochondrial membrane. The release of cytochrome c was unaltered in p53-deficient cells, whereas absence of p21 blocked cytochrome c release, caspase activation and apoptosis. Importantly, p21 deficiency resulted in reduced expression of Apaf-1 during curcumin treatment, indicating a requirement for p21 in Apaf-1-dependent caspase activation and apoptosis. Together, our findings identify Apaf-1, Bax and p21 as novel potential targets for curcumin or curcumin-based anticancer agents. PMID:22101335
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Shumin; Hospital Affiliated to Shandong Traditional Chinese Medicine University, Jinan 250011; Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021
Highlights: Black-Right-Pointing-Pointer Diosgenin induces apoptosis in IGF-1-treated thyrocytes through two caspase pathways. Black-Right-Pointing-Pointer Diosgenin inhibits FLIP and activates caspase-8 in FAS related-pathway. Black-Right-Pointing-Pointer Diosgenin increases ROS, regulates the ratio of Bax/Bcl-2 in mitochondrial pathway. -- Abstract: Insulin-like growth factor-1 (IGF-1) is a growth factor of the thyroid that has been shown in our previous study to possess proliferative and antiapoptotic effects in FRTL-5 cell lines through the upregulation of cyclin D and Fas-associated death domain-like interleukin-1-converting enzyme (FLICE)-inhibitory protein (FLIP). Diosgenin, a natural steroid sapogenin from plants, has been shown to induce apoptosis in many cell lines, with the exceptionmore » of thyroid cells. In this report, we investigated the apoptotic effect and mechanism of diosgenin in IGF-1-stimulated primary human thyrocytes. Primary human thyrocytes were preincubated with or without IGF-1 for 24 h and subsequently exposed to varying concentrations of diosgenin for different times. We found that diosgenin induced apoptosis in human thyrocytes pretreated with IGF-1 in a dose-dependent manner through the activation of caspase cascades. Moreover, diosgenin inhibited FLIP and activated caspase-8 in the FAS-related apoptotic pathway. Diosgenin increased the production of ROS, regulated the balance of Bax and Bcl-2 and cleaved caspase-9 in the mitochondrial apoptotic pathway. These results indicate that diosgenin induces apoptosis in IGF-1-stimulated primary human thyrocytes through two caspase-dependent pathways.« less
Inonotus obliquus extract induces apoptosis in the human colorectal carcinoma's HCT-116 cell line.
Tsai, Cheng-Chih; Li, Yu-Sheng; Lin, Pei-Pei
2017-12-01
Because of irregular dietary habits and lifestyle in Taiwan, the incidence and mortality rate of colorectal cancer have been increasing rapidly these years. This study investigated the inhibitory activity against the proliferation of human colorectal cancer HCT-116 cells by Inonotus obliquus extracts obtained from submerged fermentation. Cell viability was measured by the reduction of MTT and cell membrane integrity was determined by lactic dehydrogenase (LDH) release. The mRNA expression of proapoptosis and antiapoptosis mediators was assayed by real-time PCR, and the levels of p53 and NF-κB p65 were assessed using Western blot analysis. Furthermore, the influences of I. obliquus extracts to HCT-116 cells were evaluated by caspase-3 activity. The results can be summarized as, for the mitochondrial apoptotic pathway, quantitative RT-PCR data showed up-regulation of proapoptotic genes (Bax, bad, and caspase-3) and increased Bax/bcl-2 ratio by I. obliquus extracts. Moreover, treating with 20 mg/mL I. obliquus extracts augmented caspase-3 activity in HCT-116 cells. Induction of cell cycle G0/G1 phase arrest: I. obliquus extracts up-regulated the mRNA expression of proapoptotic genes (p53, p21WAF1/CIP1) and down-regulated antiapoptotic gene (CyclinD1), while extracts of I. obliquus mycelia increased the expressions of p53 protein in HCT-116 cells. I. obliquus extracts decreased the expression of NF-κB p65 protein and COX-2 gene in HCT-116 cells. Taking together, I. obliquus extracts may be used as a potentially novel food material for health care to improve the treatment of colorectal cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
BAD: undertaker by night, candyman by day.
Danial, N N
2008-12-01
The BH3-only pro-apoptotic proteins are upstream sensors of cellular damage that selectively respond to specific, proximal death and survival signals. Genetic models and biochemical studies indicate that these molecules are latent killers until activated through transcriptional or post-translational mechanisms in a tissue-restricted and signal-specific manner. The large number of BH3-only proteins, their unique subcellular localization, protein-interaction network and diverse modes of activation suggest specialization of their damage-sensing function, ensuring that the core apoptotic machinery is poised to receive input from a wide range of cellular stress signals. The apoptotic response initiated by the activation of BH3-only proteins ultimately culminates in allosteric activation of pro-apoptotic BAX and BAK, the gateway proteins to the mitochondrial pathway of apoptosis. From activation of BH3-only proteins to oligomerization of BAX and BAK and mitochondrial outer membrane permeabilization, an intricate network of interactions between the pro- and anti-apoptotic members of the BCL-2 family orchestrates the decision to undergo apoptosis. Beyond regulation of apoptosis, multiple BCL-2 proteins have recently emerged as active components of select homeostatic pathways carrying other cellular functions. This review focuses on BAD, which was the first BH3-only protein linked to proximal survival signals through phosphorylation by survival kinases. In addition to findings that delineated the physiological role of BAD in apoptosis and its dynamic regulation by phosphorylation, studies pointing to new roles for this protein in other physiological pathways, such as glucose metabolism, are highlighted. By executing its 'day' and 'night' jobs in metabolism and apoptosis, respectively, BAD helps coordinate mitochondrial fuel metabolism and the apoptotic machinery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Jing; Du, Yi-Fang; Xiao, Zhi-Yi
KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the inhibitory activity test on Hep G{sub 2} growth. We found that KYKZL-1 inhibited the growth of Hep G{sub 2} cells via inducing apoptosis. Further studies showed that KYKZL-1 activated caspase-3 through cytochrome c release from mitochondria and down regulation of Bcl-2/Bax ratio and reduced the high level of COX-2 and 5-LOX. As shown in its anti-inflammatory effect, KYKZL-1 also exhibited inhibitory effect on the PGE{sub 2} and LTB{sub 4} production in Hep G{sub 2} cells. Accordingly, exogenous addition of PGE{sub 2} or LTB{sub 4} reversed the decreasesmore » in cell viability. In addition, KYKZL-1 caused cell cycle arrest at the S–G{sub 2} checkpoint via the activation of p21{sup CIP1} protein and down-regulation of cyclin A expression. These data indicate that the growth inhibitory effect of KYKZL-1 is associated with inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest. Combined with our previous findings, KYKZL-1 exhibiting COX/5-LOX inhibition may be a promising potential agent not only for inflammation control but also for cancer prevention/therapy with an enhanced gastric safety profile. - Highlights: • KYKZL-1 is designed to exhibit COX/5-LOX dual inhibition. • KYKZL-1 resulted in apoptosis of Hep G{sub 2} cells. • KYKZL-1 activated caspase-3 through cytochrome c and bcl-2/bax ratio. • KYKZL-1 caused cell cycle arrest via modulation of p21{sup CIP1} and cyclin A level.« less
Yamagata, Kazuo; Izawa, Yuri; Onodera, Daiki; Tagami, Motoki
2018-04-01
Previous studies indicated that chlorogenic acid, a compound present in many fruits and vegetables, has anti-cancer activities. We report that chlorogenic acid regulates the expression of apoptosis-related genes and self-renewal-related stem cell markers in cancer cells. The lung cancer cell line A549 was cultured with or without chlorogenic acid. The presence of chlorogenic acid decreased cell proliferation as measured by MTT activity. Polymerase chain reaction (PCR) showed that treatment of cells with chlorogenic acid reduced the expression of BCL2 but increased that of both BAX and CASP3. Chlorogenic acid enhanced annexin V expression as measured using fluorescently labeled annexin V. Chlorogenic acid also induced p38 MAPK and JNK gene expression. Meanwhile, several agents, including SB203580 (p38 MAP kinase inhibitor), N-acetylcysteine (antioxidant inhibitor), dipyridamole (phosphodiesterase inhibitor), and apocynin (NADPH-oxidase inhibitor) blocked chlorogenic acid-induced BAX gene expression. Chlorogenic acid reduced gene expression levels of stem cell-associated markers NANOG, POU5F1, and SOX2. Together these results indicate that chlorogenic acid affects the expression of apoptosis-related genes that are part of oxidative stress and p38 MAP-dependent pathways, as well as genes encoding stem cell markers. In conclusion, chlorogenic acid may contribute to the polyphenolic anti-cancer effect associated with consumption of vegetables and fruits.
Jin, Linhua; Tabe, Yoko; Kojima, Kensuke; Shikami, Masato; Benito, Julina; Ruvolo, Vivian; Wang, Rui-Yu; McQueen, Teresa; Ciurea, Stefan O; Miida, Takashi; Andreeff, Michael; Konopleva, Marina
2013-12-01
Both phosphatidylinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin signaling and antiapoptotic Bcl-2 family members are critical for survival of acute myeloid leukemia (AML) cells. Here, we demonstrate the antileukemic effects of simultaneous inhibition of PI3K by the selective class I PI3K inhibitor GDC-0941 and of Bcl-2 family members by the BH3 mimetic ABT-737 in the context of the bone marrow microenvironment, where hypoxia and interactions with bone marrow stromal cells promote AML cell survival and chemoresistance. The combination of GDC-0941 and ABT-737 profoundly downregulated antiapoptotic Mcl-1 expression levels, activated BAX, and induced mitochondrial apoptosis in AML cells co-cultured with bone marrow stromal cells under hypoxic conditions. Hypoxia caused degradation of Mcl-1 and rendered Mcl-1-overexpressing OCI-AML3 cells sensitive to ABT-737. Our findings suggest that pharmacologic PI3K inhibition by GDC-0941 enhances ABT-737-induced leukemia cell death even under the protective conditions afforded by the bone marrow microenvironment. Combined blockade of PI3K and Bcl-2 pathways down-regulates anti-apoptotic Mcl-1 expression PI3K and Bcl-2 induced Mcl-1 down-regulation activates BAX PI3K and Bcl-2 blockage induces apoptosis in AML under hypoxic BM microenvironment.
Anand, T; Pandareesh, M D; Bhat, Pratiksha V; Venkataramana, M
2014-10-01
Nitric oxide is a highly reactive free radical gas that reacts with a wide range of bio-molecules to produce reactive nitrogen species and exerts nitrative stress. Bacopa monniera is a traditional folk and ayurvedic medicine known to alleviate a variety of disorders. Aim of the present study is to evaluate the protective propensity of Bacopa monniera extract (BME) through its oxido-nitrosative and anti-apoptotic mechanism to attenuate sodium nitroprusside (SNP)-induced apoptosis in a human embryonic lung epithelial cell line (L132). Our results elucidate that pre-treatment of L132 cells with BME ameliorates the mitochondrial and plasma membrane damage induced by SNP as evidenced by MTT and LDH leakage assays. BME pre-treatment inhibited NO generation by down-regulating inducible nitric oxide synthase expression. BME exhibited potent antioxidant activity by up-regulating the antioxidant enzymes. SNP-induced damage to cellular, nuclear and mitochondrial integrity was also restored by BME, which was confirmed by ROS estimation, comet assay and mitochondrial membrane potential assays respectively. BME pre-treatment efficiently attenuated the SNP-induced apoptotic biomarkers such as Bax, cytochrome-c and caspase-3, which orchestrate the proteolytic damage of the cell. By considering all these findings, we report that BME protects L132 cells against SNP-induced toxicity via its free radical scavenging and anti-apoptotic mechanism.
Folic acid inhibits homocysteine-induced cell apoptosis in human umbilical vein endothelial cells.
Cui, Shanshan; Li, Wen; Wang, Pengyan; Lv, Xin; Gao, Yuxia; Huang, Guowei
2017-12-18
Homocysteine may be responsible for vascular endothelial cell injury, which occurs early in the pathology of cardiovascular disease. Homocysteine metabolism requires enzymatic interaction with vitamins such as folic acid, vitamin B12, and vitamin B6. We hypothesized that folic acid alleviated homocysteine-induced vascular injury by regulating the metabolic pathway of apoptosis. Human umbilical vein endothelial cells were incubated for 48 h with folic acid at the concentrations of 0-1000 nmol/L, in combination with either 1000 μmol/L homocysteine or vehicle for the first 24 h. We then assessed cell viability and apoptosis by methyl thiazolyl tetrazolium assay and flow cytometry, respectively. To further investigate how folic acid influenced cell apoptosis, we also analyzed the activities of caspase-3/7 and the mRNA and protein expressions of BCL2, BAX, TP53, CASP3, and CASP8 in human umbilical vein endothelial cells. We showed that folic acid increased cell viability and decreased apoptosis in a dose-dependent manner, and that this effect was mediated by decreased caspase-3/7 activity, upregulated BCL2/BAX ratio, and downregulated TP53, CASP3, and CASP8 expressions. Thus, we conclude that folic acid inhibits cell apoptosis and ameliorates homocysteine toxicity by regulating the expression of apoptosis-related genes in human umbilical vein endothelial cells.
Wu, Chuntao; Zhang, Jinji; Liu, Tienan; Jiao, Guimei; Li, Changzai; Hu, Baoshan
2016-06-01
Objective To investigate the anti-tumor effects of astaxanthin on A549 lung cancer cells and the related mechanisms. Methods A549 cells were cultured with various concentrations of astaxanthin (20, 40, 60, 80, 100 μmol/L), and DMSO at the same concentrations served as vehicle controls. The viability of A549 cells was detected by CCK-8 assay; cell cycle and apoptosis were observed by flow cytometry; and the expressions of B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), signal transducers and activators of transcription 3 (STAT3), and Janus kinase 1 (JAK1) were evaluated by Western blotting. Results CCK-8 assay showed that astaxanthin decreased the proliferation of A549 cells in a dose-dependent manner. Flow cytometry showed that astaxanthin increased the number of cells in the G0/G1 phase and induced apoptosis in A549 cells. Western blotting showed that astaxanthin up-regulated the expression of Bax and down-regulated the expressions of Bcl-2, STAT3 and JAK1. Conclusion Astaxanthin functions as a potent inhibitor of A549 lung cancer cell growth by targeting JAK1/STAT3 signaling pathway.
Liu, Qing-Shan; Deng, Ran; Li, Shuran; Li, Xu; Li, Keqin; Kebaituli, Gulibanumu; Li, Xueli; Liu, Rui
2017-08-01
An oxygen-glucose deprivation and reoxygenation model in primary cultured rat cortical neurons was developed for this study to investigate the effects of ellagic acid (EA), a low-molecular-weight polyphenol, on neuron cells and their function, and to evaluate whether EA can be safely utilized by humans as a functional food or therapeutic agent. Administration of EA significantly decreased the volume of cerebrum infarction and the neurological deficit scores of the rats; EA treatment also increased the number of Bcl-2-positive cells and the ratio of Bcl-2-positive to Bax-positive neurons in the semidarkness zone near the brain ischemic focus in the photothrombotic cerebral ischemia model. Treatment of EA resulted in increased neuron viability, cell nuclear integrity, and the ratio of Bcl-2/Bax expression in the primary cultured neuron model; EA treatment also lead to a decrease in the number of apoptotic cells. Our results therefore suggest a specific mechanism for the beneficial effects of EA, providing new insights into how it provides neuroprotection. To the best of our knowledge, these results represent new insights on the mechanisms of the brain cell protective activity of EA. Thus, EA may be used in functional foods or medicines to help treat nerve dysfunction, neurodegenerative disease, and aging.
Lee, Sun-Young; Ko, Kyoung-Won; Kang, Won-Kyung; Choe, Yun-Jeong; Kim, Yoon-Hyoung; Kim, In-Kyung; Kim, Jin
2010-01-01
3-Deazaadenosine (DZA), a potent inhibitor of S-adenosylhomocysteine hydrolase, was previously proposed to induce intrinsic apoptosis in human leukemic cells. In the present study, we analyzed the mechanism underlying the DZA-induced intrinsic apoptotic pathway. DZA activated typical caspase-dependent apoptosis in HL-60 cells, as demonstrated by an accumulation of hypo-diploidic cells, the processing of multiple procaspases and an inhibitory effect of z-VAD-Fmk on this cell death. During DZA-induced apoptosis, cytochrome c (cyt c) was released into the cytosol. This was neither prevented by z-VAD-Fmk and nor was it associated with the dissipation of mitochondrial membrane potential (ΔΨm). Prior to the release of cyt c, BAX was translocated from the cytosol to mitochondria and underwent oligomerization. Finally, the overexpression of BCL-XL protected HL-60 cells from apoptosis by blocking both the cyt c release and BAX oligomerization. Collectively, these findings suggest that DZA may activate intrinsic apoptosis by stimulating BAX activation and thereby the release of cyt c. PMID:21311682
Kou, Dong-Quan; Jiang, Yan-Ling; Qin, Jia-Hua; Huang, Yin-Hui
2017-08-01
Silent information regulator 1 (SIRT1), a histone deacetylase, plays a protective role in ischemic brain injury. Previous studies have shown that magnolol has a beneficial effect on ischemic stroke; however, the role of SIRT1 in the protective effect of magnolol against cerebral ischemia has not been investigated. We used a middle cerebral artery occlusion model of stroke in rats. Before stroke induction, the rats received intraperitoneal injections of magnolol with or without the SIRT1 inhibitor, EX527. Brain water content, neurological score, and infarct volume were measured. Moreover, the levels of the proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were measured. Western blot analysis was performed to detect Ac-FOXO1, SIRT1, bax, and Bcl-2 expression. Magnolol exerted a beneficial effect on cerebral ischemia, as indicated by reduced brain edema, decreased infarct volume, and improved neurological score. Magnolol had an anti-inflammatory effect mediated by a decrease in the expression of IL-1β and TNF-α in the brain tissue. Additionally, magnolol down-regulated bax and Ac-FOXO1 expression and up-regulated Bcl-2 and SIRT1 expression. This effect of magnolol was abolished by EX527 treatment. In conclusion, our data clearly indicate that magnolol modulates brain injury caused by ischemic stroke by inhibiting inflammatory cytokines and apoptosis through SIRT1 activation. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
He, Yixin; Du, Min; Gao, Yan; Liu, Hongshuai; Wang, Hongwei; Wu, Xiaojun; Wang, Zhengtao
2013-01-01
Multiple sclerosis (MS) is a chronic autoimmune neuroinflammatory disease found mostly in young adults in the western world. Oxidative stress induced neuronal apoptosis plays an important role in the pathogenesis of MS. In current study, astragaloside IV (ASI), a natural saponin molecule isolated from Astragalus membranceus, given at 20 mg/kg daily attenuated the severity of experimental autoimmune encephalomyelitis (EAE) in mice significantly. Further studies disclosed that ASI treatment inhibited the increase of ROS and pro-inflammatory cytokine levels, down-regulation of SOD and GSH-Px activities, and elevation of iNOS, p53 and phosphorylated tau in central nervous system (CNS) as well as the leakage of BBB of EAE mice. Meanwhile, the decreased ratio of Bcl-2/Bax was reversed by ASI. Moreover, ASI regulated T-cell differentiation and infiltration into CNS. In neuroblast SH-SY5Y cells, ASI dose-dependently reduced cellular ROS level and phosphorylation of tau in response to hydrogen peroxide challenge by modulation of Bcl-2/Bax ratio. ASI also inhibited activation of microglia both in vivo and in vitro. iNOS up-regulation induced by IFNγ stimulation was abolished by ASI dose-dependently in BV-2 cells. In summary, ASI prevented the severity of EAE progression possibly by counterbalancing oxidative stress and its effects via reduction of cellular ROS level, enhancement of antioxidant defense system, increase of anti-apoptotic and anti-inflammatory pathways, as well as modulation of T-cell differentiation and infiltration into CNS. The study suggested ASI may be effective for clinical therapy/prevention of MS.
Baines, Christopher P; Molkentin, Jeffery D
2009-06-01
Overexpression of the adenine nucleotide translocase (ANT) has been shown to be cytotoxic in several cell types. Although ANT was originally proposed to be a critical component of the mitochondrial permeability transition (MPT) pore, recent data have suggested that this may not be the case. We therefore hypothesized that the cytotoxic actions of ANT are through an alternative mechanism, independent of the MPT pore. Infection of cultured neonatal cardiomyocytes with an ANT1-encoding adenovirus induced a gene dosage-dependent increase in cell death. However, ANT1 overexpression failed to induce MPT, and neither pharmacological nor genetic inhibition of the MPT pore was able to prevent ANT1-induced cell death. These data suggested that ANT1-induced death progressed through an MPT pore-independent pathway. Somewhat surprisingly, we observed that protein levels of Bax, a pro-apoptotic Bcl protein, were consistently elevated in ANT1-infected cardiomyocytes. Membranes isolated from ANT1-infected myocytes exhibited significantly increased amounts of membrane-inserted Bax, and immunocytochemistry revealed increased Bax activation in ANT1-infected myocytes. Co-expression with the Bax antagonist Bcl2 was able to greatly reduce the degree of ANT1-induced cell death. Furthermore, Bax/Bak-deficient fibroblasts were resistant to the cytotoxic effects of ANT1 overexpression. Interestingly, ANT1 overexpression was also associated with enhanced production of reactive oxygen species (ROS), and the antioxidant MnTBAP was able to significantly attenuate both the ANT1-induced upregulation of Bax and cell death. Taken together, these data indicate that ANT mediates cell death, not through the MPT pore, but rather via a ROS-dependent upregulation and activation of Bax.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fengbo; Graduate School of Tianjin Medical University, No. 22, Qixiangtai Street, Heping District, Tianjin 300070; Sun, Xiaolei
Highlights: • Naringin possesses many pharmacological activities, promotes the proliferation of osteoblast. • Undecalcified histological obtain dynamic parameters of callus formation and remodeling. • Naringin regulate osteoclast apoptosis by mitochondrial pathway. - Abstract: Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness,more » bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats.« less
The expression patterns of pro-apoptotic and anti-apoptotic factors in human fetal and adult ovary.
Poljicanin, Ana; Vukusic Pusic, Tanja; Vukojevic, Katarina; Caric, Ana; Vilovic, Katarina; Tomic, Snjezana; Soljic, Violeta; Saraga-Babic, Mirna
2013-07-01
The influence of pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins on the cell death (caspase-3, TUNEL) of different ovarian cell lineages was immunohistochemically analyzed in six fetal and five adult human ovaries in order to disclose possible mechanisms of cell number control. Mild to moderate expression of Bcl-2 characterized ovarian surface epithelium, follicular cells and oocytes of 15 and 22 week human ovaries, while expression of Bax and caspase-3 gradually increased in all ovarian cell populations, except caspase-3 in the ovarian surface epithelium. Different levels of Bax and Bcl-2 proteins co-expression characterized fetal ovarian cells, while TUNEL and caspase-3 co-expression was found only in some of them. In adult ovaries, Bcl-2 was moderately and Bax strongly expressed in the surface ovarian epithelium and stroma. Bcl-2 and Bax expression in granulosa and theca interna cells varied depending on the stage of follicular atresia. Caspase-3 apoptotic cells characterized granulosa cells of adult atretic follicles. Our results indicate that intracellular levels of Bcl-2 and Bax protein might regulate the final destiny of developing germ cells. Caspase-3 dependent apoptosis seems to be the most important, but not the only cell death pathway in ovaries. In adult ovaries, caspase-dependent cell death characterized granulosa cells, but not the germ cells. Copyright © 2012 Elsevier GmbH. All rights reserved.
AL Shabanah, Othman A; Alotaibi, Moureq rashed; Al Rejaie, Salim S; Alhoshani, Ali R; Almutairi, Mashal M; Alshammari, Musaad A; Hafez, Mohamed M
2016-11-01
Objective: Breast cancer is global female health problem worldwide. Most of the currently used agents for breast cancer treatment have toxic side-effects. Ginseng root, an oriental medicine, has many health benefits and may exhibit direct anti-cancer properties. This study was performed to assess the effects of ginseng on breast cancer cell lines. Materials and Methods: Cytotoxicity of ginseng extract was measured by MTT assay after exposure of MDA-MB-231, MCF-10A and MCF-7 breast cancer cells to concentrations of 0.25, 0.5, 1, 1.5, 2 and 2.5 mg/well. Expression levels of p21WAF, p16INK4A, Bcl-2, Bax and P53 genes were analyzed by quantitative real time PCR. Results: The treatment resulted in inhibition of cell proliferation in a dose-and time-dependent manner. p53, p21WAF1and p16INK4A expression levels were up-regulated in ginseng treated MDA-MB-231 and MCF-7 cancer cells compared to untreated controls and in MCF-10A cells. The expression levels of Bcl2 in the MDA-MB-231 and MCF-7 cells were down-regulated. In contrast, that of Bax was significantly up-regulated. Conclusion: The results of this study revealed that ginseng may inhibit breast cancer cell growth by activation of the apoptotic pathway. Creative Commons Attribution License
Gao, Dakuan; Huang, Tao; Jiang, Xiaofan; Hu, Shijie; Zhang, Lei; Fei, Zhou
2014-06-01
It was recently shown that resveratrol exerts neuroprotective effects against cerebral ischemia in mice. The aim of the present study was to further confirm these effects in in vitro primary cortical neuron cultures with transient oxygen-glucose deprivation (OGD), and to investigate whether these effects are due to the inhibition of matrix metalloproteinase-9 (MMP-9) and of cell apoptosis. Neuronal primary cultures of cerebral cortex were prepared from BALB/c mice embryos (13-15 days). Cells from 14- to 16-day cultures were subjected to OGD for 3 h, followed by 21 h of reoxygenation to simulate transient ischemia. Different doses of resveratrol were added into the culture medium during the simulation of transient ischemia. The effect of the extracellular signal-regulated kinase (ERK) inhibitor U0126 was studied by adding U0126 (5 µg/µl, 4 µl) into the culture medium during transient ischemia; as a control, we used treatment of cells with 50 µM of resveratrol. Cell viability was investigated using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) reduction assay. Cell apoptosis was assessed by flow cytometry. The effects of resveratrol on the expression of MMP-9 were analyzed by western blotting and reverse transcription-polymerase chain reaction (RT-PCR), while the levels of ERK, phosphorylated (p)-ERK, cleaved caspase-3, Bax and Bcl-2 were measured by western blotting. The results of the MTT assay showed that cell viability is significantly reduced by transient OGD. OGD induced cell apoptosis, the expression of Bax and the activation of caspase-3 and ERK, inhibited the expression of Bcl-2 and increased the expression of MMP-9, while these effects were reversed by treatment with resveratrol. The therapeutic efficacy of resveratrol was shown to be dose-dependent, with the most suitable dose range determined at 50-100 µM. Treatment with U0126 inhibited MMP-9 and Bax expression and caspase-3 activation, while it further promoted the expression of the anti-apoptotic molecule Bcl-2, suggesting that resveratrol inhibits MMP-9 expression and cell apoptosis by attenuating the activation of ERK1/2. In conclusion, OGD can induce apoptosis through canonical apoptotic signals and by regulating the expression of MMP-9; the anti-apoptotic activity of resveratrol and its inhibitory effect on MMP-9 expression contribute in the reduced activation of ERK.
Calpains are downstream effectors of bax-dependent excitotoxic apoptosis.
D'Orsi, Beatrice; Bonner, Helena; Tuffy, Liam P; Düssmann, Heiko; Woods, Ina; Courtney, Michael J; Ward, Manus W; Prehn, Jochen H M
2012-02-01
Excitotoxicity resulting from excessive Ca(2+) influx through glutamate receptors contributes to neuronal injury after stroke, trauma, and seizures. Increased cytosolic Ca(2+) levels activate a family of calcium-dependent proteases with papain-like activity, the calpains. Here we investigated the role of calpain activation during NMDA-induced excitotoxic injury in embryonic (E16-E18) murine cortical neurons that (1) underwent excitotoxic necrosis, characterized by immediate deregulation of Ca(2+) homeostasis, a persistent depolarization of mitochondrial membrane potential (Δψ(m)), and insensitivity to bax-gene deletion, (2) underwent excitotoxic apoptosis, characterized by recovery of NMDA-induced cytosolic Ca(2+) increases, sensitivity to bax gene deletion, and delayed Δψ(m) depolarization and Ca(2+) deregulation, or (3) that were tolerant to excitotoxic injury. Interestingly, treatment with the calpain inhibitor calpeptin, overexpression of the endogenous calpain inhibitor calpastatin, or gene silencing of calpain protected neurons against excitotoxic apoptosis but did not influence excitotoxic necrosis. Calpeptin failed to exert a protective effect in bax-deficient neurons but protected bid-deficient neurons similarly to wild-type cells. To identify when calpains became activated during excitotoxic apoptosis, we monitored calpain activation dynamics by time-lapse fluorescence microscopy using a calpain-sensitive Förster resonance energy transfer probe. We observed a delayed calpain activation that occurred downstream of mitochondrial engagement and directly preceded neuronal death. In contrast, we could not detect significant calpain activity during excitotoxic necrosis or in neurons that were tolerant to excitotoxic injury. Oxygen/glucose deprivation-induced injury in organotypic hippocampal slice cultures confirmed that calpains were specifically activated during bax-dependent apoptosis and in this setting function as downstream cell-death executioners.
Liu, Yingmei; Lu, Xiaodan; Nguyen, Sinh; Olson, Jean L.; Webb, Heather K.
2013-01-01
Soluble epoxide hydrolase (sEH) catalyzes the conversion of epoxyeicosatrienoic acids into less active eicosanoids, and inhibitors of sEH have anti-inflammatory and antiapoptotic properties. Based on previous observations that sEH inhibition attenuates cisplatin-induced nephrotoxicity by modulating nuclear factor-κB signaling, we hypothesized that this strategy would also attenuate cisplatin-induced renal apoptosis. Inhibition of sEH with AR9273 [1-adamantan-1-yl-3-(1-methylsulfonyl-piperidin-4-yl-urea)] reduced cisplatin-induced apoptosis through mechanisms involving mitochondrial apoptotic pathways and by reducing reactive oxygen species. Renal mitochondrial Bax induction following cisplatin treatment was significantly decreased by treatment of mice with AR9273 and these antiapoptotic effects involved p38 mitogen-activated protein kinase signaling. Similar mechanisms contributed to reduced apoptosis in Ephx2−/− mice treated with cisplatin. Moreover, in pig kidney proximal tubule cells, cisplatin-induced mitochondrial trafficking of Bax and cytochrome c, caspase-3 activation, and oxidative stress are significantly attenuated in the presence of epoxyeicosatrienoic acids (EETs). Collectively, these in vivo and in vitro studies demonstrate a role for EETs in limiting cisplatin-induced renal apoptosis. Inhibition of sEH represents a novel therapeutic strategy for protection against cisplatin-induced renal damage. PMID:24092818
Xi, Hong-Jie; Zhang, Tian-Hua; Tao, Tao; Song, Chun-Yu; Lu, Shu-Jun; Cui, Xiao-Guang; Yue, Zi-Yong
2011-09-02
Propofol is an intravenous anesthetic with neuroprotective effects against cerebral ischemia-reperfusion (I/R) injury. Few studies regarding the neuroprotective and neurobehavioral effects of propofol have been conducted, and the underlying mechanisms are still unclear. Because I/R may result in neuronal apoptosis, the apoptosis regulatory genes B-cell leukemia-2 (Bcl-2) and Bcl-2-associated X protein (Bax) may be involved in the neuroprotective process. In this study, 120 Wistar rats were randomly divided into three groups (sham, I/R-induced, and propofol-treated). Cerebral ischemia was induced by clamping the bilateral common carotid arteries for 10min. Propofol (1.0mg/kg/min) was administered intravenously for 1h before the induction of ischemia. Neuronal damage was evaluated by neurobehavioral scores and histological examination of the brain sections at the level of the dorsal hippocampus at 6h, 24h, 48h, 72h, 4days, 5days, 6days, and 7days after I/R. The apoptotic rate of hippocampal neurons was detected by flow cytometry. The expression of Bcl-2 and Bax was evaluated using immunohistochemical and Western blot methods. The results of this study showed that neurobehavioral scores were higher in propofol-treated rats compared with I/R-induced rats with no propofol treatment. Moreover, the hippocampal expression of Bcl-2 was significantly higher, while the expression of Bax was significantly lower in propofol-treated rats compared with I/R-induced rats at 24h after ischemia. Hence, this study suggests that the neuroprotective effects of propofol against neuronal apoptosis may be a consequence of the regulation of Bcl-2 and Bax. Copyright © 2011 Elsevier B.V. All rights reserved.
Valladares, Denisse; Almarza, Gonzalo; Contreras, Ariel; Pavez, Mario; Buvinic, Sonja; Jaimovich, Enrique; Casas, Mariana
2013-01-01
ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies. PMID:24282497
Valladares, Denisse; Almarza, Gonzalo; Contreras, Ariel; Pavez, Mario; Buvinic, Sonja; Jaimovich, Enrique; Casas, Mariana
2013-01-01
ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies.
Weber, Alfred; Engelmaier, Andrea; Mohr, Gabriele; Haindl, Sonja; Schwarz, Hans Peter; Turecek, Peter L
2017-01-05
BAX 855 (ADYNOVATE) is a PEGylated recombinant factor VIII (rFVIII) that showed prolonged circulatory half-life compared to unmodified rFVIII in hemophilic patients. Here, the development and validation of a novel assay is described that selectively measures the activity of BAX 855 as cofactor for the serine protease factor IX, which actives factor X. This method type, termed modification-dependent activity assay, is based on PEG-specific capture of BAX 855 by an anti-PEG IgG preparation, followed by a chromogenic FVIII activity assay. The assay principle enabled sensitive measurement of the FVIII cofactor activity of BAX 855 down to the pM-range without interference by non-PEGylated FVIII. The selectivity of the capture step, shown by competition studies to primarily target the terminal methoxy group of PEG, also allowed assessment of the intactness of the attached PEG chains. Altogether, the modification-dependent activity not only enriches, but complements the group of methods to selectively, accurately, and precisely measure a PEGylated drug in complex biological matrices. In contrast to all other methods described so far, it allows measurement of the biological activity of the PEGylated protein. Data obtained demonstrate that this new method principle can be extended to protein modifications other than PEGylation and to a variety of functional activity assays. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhu, Lin; Hao, Jun; Cheng, Meijuan; Zhang, Cuihong; Huo, Chunxiu; Liu, Yaping; Du, Wei; Zhang, Xianghong
2018-06-15
Schwann cell apoptosis is one of the characteristics of diabetic peripheral neuropathy (DPN). The mammalian target of rapamycin (mTOR) is a multifunctional signaling pathway that regulates cell apoptosis in various types of tissues and cells. To investigate whether the mTOR pathway is involved in cell apoptosis in the Schwann cells of DPN, diabetic mice and rat Schwann cells (RSC96) were chosen to detect phospho-mTOR (Ser 2448), phospho-S6K1 (Thr 389), phospho-4EBP1 (Thr 37/46), Bcl-2, Bax and cleaved caspase-3 by diverse pathological and biological techniques. The results showed that phospho-mTOR (Ser 2448) was decreased in the sciatic nerves of diabetic mice, concomitant with decreased Bcl-2, increased Bax, cleaved caspase-3 and cell apoptosis. In addition, high glucose treatment for 72 h caused a 35.95% decrease in the phospho-mTOR (Ser 2448)/mTOR ratio, a 65.50% decrease in the phospho-S6K1 (Thr 389)/S6K1 ratio, a 3.67-fold increase in the Bax/Bcl-2 ratio and a 1.47-fold increase in the cleaved caspase-3/caspase-3 ratio. Furthermore, mTORC1 inhibition, rather than mTORC2 inhibition, resulted in mitochondrial controlled apoptosis in RSC96 cells by silencing RAPTOR or RICTOR. Again, suppression of the mTORC1 pathway by a chemical inhibitor led to mitochondrial controlled apoptosis in cultured RSC96 cells in vitro. By contrast, activation of the mTORC1 pathway with MHY1485 prevented decreased phospho-S6K1 (Thr 389) levels caused by high glucose and cell apoptosis. Additionally, constitutive activation of S6K1 avoided high glucose-induced cell apoptosis in RSC96 cells. In summary, our findings suggest that activating mTORC1/S6K1 signaling in Schwann cells may be a promising strategy for the prevention and treatment of DPN. Copyright © 2018 Elsevier Inc. All rights reserved.
Rosas-Trigueros, Jorge Luis; Correa-Basurto, José; Guadalupe Benítez-Cardoza, Claudia; Zamorano-Carrillo, Absalom
2011-01-01
Bax is a member of the Bcl-2 protein family that participates in mitochondrion-mediated apoptosis. In the early stages of the apoptotic pathway, this protein migrates from the cytosol to the outer mitochondrial membrane, where it is inserted and usually oligomerizes, making cytochrome c-compatible pores. Although several cellular and structural studies have been reported, a description of the stability of Bax at the molecular level remains elusive. This article reports molecular dynamics simulations of monomeric Bax at 300, 400, and 500 K, focusing on the most relevant structural changes and relating them to biological experimental results. Bax gradually loses its α-helices when it is submitted to high temperatures, yet it maintains its globular conformation. The resistance of Bax to adopt an extended conformation could be due to several interactions that were found to be responsible for maintaining the structural stability of this protein. Among these interactions, we found salt bridges, hydrophobic interactions, and hydrogen bonds. Remarkably, salt bridges were the most relevant to prevent the elongation of the structure. In addition, the analysis of our results suggests which conformational movements are implicated in the activation/oligomerization of Bax. This atomistic description might have important implications for understanding the functionality and stability of Bax in vitro as well as within the cellular environment. PMID:21936009
Zaman, Farasat; Chrysis, Dionisios; Huntjens, Kirsten; Fadeel, Bengt; Sävendahl, Lars
2012-01-01
Dexamethasone (Dexa) is a widely used glucocorticoid to treat inflammatory diseases; however, a multitude of undesired effects have been reported to arise from this treatment including osteoporosis, obesity, and in children decreased longitudinal bone growth. We and others have previously shown that glucocorticoids induce apoptosis in growth plate chondrocytes. Here, we hypothesized that Bax, a pro-apoptotic member of the Bcl-2 family, plays a key role in Dexa-induced chondrocyte apoptosis and bone growth impairment. Indeed, experiments in the human HCS-2/8 chondrocytic cell line demonstrated that silencing of Bax expression using small-interfering (si) RNA efficiently blocked Dexa-induced apoptosis. Furthermore, ablation of Bax in female mice protected against Dexa-induced bone growth impairment. Finally, Bax activation by Dexa was confirmed in human growth plate cartilage specimens cultured ex vivo. Our findings could therefore open the door for new therapeutic approaches to prevent glucocorticoid-induced bone growth impairment through specific targeting of Bax.
Ilkow, Carolina S; Goping, Ing Swie; Hobman, Tom C
2011-02-01
Apoptosis is an important mechanism by which virus-infected cells are eliminated from the host. Accordingly, many viruses have evolved strategies to prevent or delay apoptosis in order to provide a window of opportunity in which virus replication, assembly and egress can take place. Interfering with apoptosis may also be important for establishment and/or maintenance of persistent infections. Whereas large DNA viruses have the luxury of encoding accessory proteins whose primary function is to undermine programmed cell death pathways, it is generally thought that most RNA viruses do not encode these types of proteins. Here we report that the multifunctional capsid protein of Rubella virus is a potent inhibitor of apoptosis. The main mechanism of action was specific for Bax as capsid bound Bax and prevented Bax-induced apoptosis but did not bind Bak nor inhibit Bak-induced apoptosis. Intriguingly, interaction with capsid protein resulted in activation of Bax in the absence of apoptotic stimuli, however, release of cytochrome c from mitochondria and concomitant activation of caspase 3 did not occur. Accordingly, we propose that binding of capsid to Bax induces the formation of hetero-oligomers that are incompetent for pore formation. Importantly, data from reverse genetic studies are consistent with a scenario in which the anti-apoptotic activity of capsid protein is important for virus replication. If so, this would be among the first demonstrations showing that blocking apoptosis is important for replication of an RNA virus. Finally, it is tempting to speculate that other slowly replicating RNA viruses employ similar mechanisms to avoid killing infected cells.
D'Orsi, Beatrice; Engel, Tobias; Pfeiffer, Shona; Nandi, Saheli; Kaufmann, Thomas; Henshall, David C; Prehn, Jochen H M
2016-04-20
Bok (Bcl-2-related ovarian killer) is a Bcl-2 family member that, because of its predicted structural homology to Bax and Bak, has been proposed to be a pro-apoptotic protein. In this study, we demonstrate that Bok is highly expressed in neurons of the mouse brain but that bok was not required for staurosporine-, proteasome inhibition-, or excitotoxicity-induced apoptosis of cultured cortical neurons. On the contrary, we found that bok-deficient neurons were more sensitive to oxygen/glucose deprivation-induced injury in vitro and seizure-induced neuronal injury in vivo Deletion of bok also increased staurosporine-, excitotoxicity-, and oxygen/glucose deprivation-induced cell death in bax-deficient neurons. Single-cell imaging demonstrated that bok-deficient neurons failed to maintain their neuronal Ca(2+)homeostasis in response to an excitotoxic stimulus; this was accompanied by a prolonged deregulation of mitochondrial bioenergetics.bok deficiency led to a specific reduction in neuronal Mcl-1 protein levels, and deregulation of both mitochondrial bioenergetics and Ca(2+)homeostasis was rescued by Mcl-1 overexpression. Detailed analysis of cell death pathways demonstrated the activation of poly ADP-ribose polymerase-dependent cell death in bok-deficient neurons. Collectively, our data demonstrate that Bok acts as a neuroprotective factor rather than a pro-death effector during Ca(2+)- and seizure-induced neuronal injury in vitro and in vivo Bcl-2 proteins are essential regulators of the mitochondrial apoptosis pathway. The Bcl-2 protein Bok is highly expressed in the CNS. Because of its sequence similarity to Bax and Bak, Bok has long been considered part of the pro-apoptotic Bax-like subfamily, but no studies have yet been performed in neurons to test this hypothesis. Our study provides important new insights into the functional role of Bok during neuronal apoptosis and specifically in the setting of Ca(2+)- and seizure-mediated neuronal injury. We show that Bok controls neuronal Ca(2+)homeostasis and bioenergetics and, contrary to previous assumptions, exerts neuroprotective activities in vitro and in vivo Our results demonstrate that Bok cannot be placed unambiguously into the Bax-like Bcl-2 subfamily of pro-apoptotic proteins. Copyright © 2016 the authors 0270-6474/16/364564-15$15.00/0.
Ding, Husheng; McDonald, Jennifer S.; Yun, Seongseok; Schneider, Paula A.; Peterson, Kevin L.; Flatten, Karen S.; Loegering, David A.; Oberg, Ann L.; Riska, Shaun M.; Huang, Shengbing; Sinicrope, Frank A.; Adjei, Alex A.; Karp, Judith E.; Meng, X. Wei; Kaufmann, Scott H.
2014-01-01
Although farnesyltransferase inhibitors have shown promising activity in relapsed lymphoma and sporadic activity in acute myelogenous leukemia, their mechanism of cytotoxicity is incompletely understood, making development of predictive biomarkers difficult. In the present study, we examined the action of tipifarnib in human acute myelogenous leukemia cell lines and clinical samples. In contrast to the Ras/MEK/ERK pathway-mediated Bim upregulation that is responsible for tipifarnib-induced killing of malignant lymphoid cells, inhibition of Rheb-induced mTOR signaling followed by dose-dependent upregulation of Bax and Puma occurred in acute myelogenous leukemia cell lines undergoing tipifarnib-induced apoptosis. Similar Bax and Puma upregulation occurred in serial bone marrow samples harvested from a subset of acute myelogenous leukemia patients during tipifarnib treatment. Expression of FTI-resistant Rheb M184L, like knockdown of Bax or Puma, diminished tipifarnib-induced killing. Further analysis demonstrated that increased Bax and Puma levels reflect protein stabilization rather than increased gene expression. In U937 cells selected for tipifarnib resistance, neither inhibition of signaling downstream of Rheb nor Bax and Puma stabilization occurred. Collectively, these results not only identify a pathway downstream from Rheb that contributes to tipifarnib cytotoxicity in human acute myelogenous leukemia cells, but also demonstrate that FTI-induced killing of lymphoid versus myeloid cells reflects distinct biochemical mechanisms downstream of different farnesylated substrates. (ClinicalTrials.gov identifier NCT00602771) PMID:23996484
He, Bin; Wei, Wen; Liu, Ji; Xu, Yundan; Zhao, Gang
2017-09-01
Curcumin is an anticancer compound that exerts anti-proliferative and apoptotic effects via multiple molecular targets. The purpose of the present study was to investigate the anticancer effects of curcumin in combination with 5-fluorouracil plus cisplatin (FP) on the MGC-803 human gastric cancer cell line. Following treatment with curcumin and/or FP for 24, 48 and 72 h, cell viability, cell cycle progression and the apoptosis rate were evaluated using an MTT assay, flow cytometry and dual acridine orange/ethidium bromide staining, respectively. In addition, colony formation, Transwell migration and caspase-3/caspase-8 activity assays were performed. The expression of the apoptosis regulator B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax) were detected by western blotting analysis. Following treatment with curcumin and/or FP, cell viability, colony formation and cell migration were significantly reduced compared with the untreated control group. The rate of apoptosis, caspase-3/caspase-8 activity and the expression of Bax were significantly increased, whereas Bcl-2 expression was significantly reduced following treatment with curcumin and/or FP, compared with the untreated control group. The efficacy of curcumin combined with low-dose FP was significantly increased, compared with that of curcumin combined with high-dose FP (P<0.05). Therefore, curcumin may enhance the anticancer effects of FP chemotherapy in MGC-803 cells through the promotion of apoptosis via the caspase-3/caspase-8, Bcl-2 and Bax signaling pathways. These results suggest that curcumin may serve as a synergistic drug with chemotherapy regimen FP for the treatment of gastric cancer.
Blum, Roy; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Kloog, Yoel
2006-09-01
The Ras inhibitor farnesylthiosalicylic acid (FTS) has been shown to induce apoptosis in glioblastoma multiforme, but its mechanism of action was unknown. We show that FTS or dominant-negative Ras, by deregulating extracellular signal-regulated kinase and Akt signaling, decreases survivin gene transcripts in U87 glioblastoma multiforme, leading to disappearance of survivin protein and cell death. FTS affected both Ras-controlled regulators of survivin transcription and Ras-regulated survival signals. Thus, Ras inhibition by FTS resulted in release of the survivin "brake" on apoptosis and in activation of the mitochondrial apoptotic pathway: dephosphorylation of Bad, activation of Bax, release of cytochrome c, and caspase activation. FTS-induced apoptosis of U87 cells was strongly attenuated by forced expression of survivin or by caspase inhibitors. These results show that resistance to apoptosis in glioblastoma multiforme can be abolished by a single Ras inhibitor, which targets both survivin, a critical inhibitor of apoptosis, and the intrinsic mitochondrial apoptotic machinery.
Chen, Chao; Liu, Tian Shu; Zhao, Si Cong; Yang, Wen Zheng; Chen, Zong Ping; Yan, Yong
2018-05-01
Efficient apoptosis requires Bcl-2 family-mediated mitochondrial outer membrane permeabilization (MOMP), which releases pro-apoptotic proteins to the cytosol, activating apoptosis and inhibiting X-linked inhibitor of apoptosis protein (XIAP). XIAP is a member of the inhibitors of apoptosis protein family whose expression is elevated in many cancer types and participates in the release of pro-apoptotic proteins. To explore the association between XIAP and the Bcl-2 family, and the influence of XIAP on mitochondria, RNA interference of XIAP was performed in Caki-1 cells and the dynamic change in the levels of related proteins was compared with the original Caki-1 cells upon induction of apoptosis. Upon knockdown of XIAP, the release of cytochrome c (Cyt-c), second mitochondria-derived activator of caspase (Smac) and apoptotic protease activating factor 1 (Apaf-1) from mitochondria proceeded normally, whereas in Caki-1 cells, the release of these pro-apoptotic proteins was significantly prolonged, and incomplete. Downregulation of XIAP through small interfering RNA resulted in an increase of apoptosis and a marked decrease in Bcl-2 and Bcl-xl levels at 3 h. Additionally, the regulation of the level of XIAP protein affected the specific ratios of Bcl-2/Bax and Bcl-xl/Bax, which play decisive roles in cell death. In the present study, it was revealed that XIAP can feed back to mitochondria, delaying Cyt-c and Apaf-1 release. Furthermore, XIAP can limit the release of its inhibitor Smac with the involvement of Bcl-2 family proteins.
Che, Xuanyi; Zhao, Qingxia; Li, Di
2018-03-28
To explore whether thioredoin-2 (Trx-2) is involved in the development of cataract and to study the effect of Trx-2 on hydrogen peroxide (H2O2)-induced injury in human lens epithelial cells. Methods: A total of 10 volunteers (removing the lens due totraumatism) and 30 patients received phacoemulsification (age more than 60 years) were selected. The expression of Trx-2 protein in lens epithelial cells from cataract patients and volunteers were detected by the immunohistochemical streptavidin-peroxidase (SP) method. SRA01/04 cells were cultured and were divided into six groups according to different treatment: a control group, H2O2-treated groups at 20, 50 or 100 μmol/L, a negative control group (transfected with pCMV6 plasmid plus 100 μmol/L H2O2), and a Trx-2 overexpression group (transfected with pCMV6-Trx-2 plasmid plus 100 μmol/L H2O2). Methyl thiazolyltetrazolium (MTT) assay and flow cytometry was performed to measure the cell viability and apoptosis for SRA01/04 cells, respectively. The activities of superoxide dismutase (SOD) and catalase (CAT), the content of glutathione (GSH) and malondialdehyde (MDA) in human lens epithelial cells were measured via chemical chromatometry. Western blot was used to measure the protein levels of Trx-2, B-cell lymphoma 2 protein (Bcl-2), Bcl-2 associated X protein (Bax) and caspase-3. Results: Compared with the volunteers, the expression of Trx-2 was significantly decreased in lens epithelial cells in patients with cataract (P<0.05). Compared with the control group, the expression of Trx-2 protein in the 20, 50 or 100 μmol/L H2O2 groups was decreased (all P<0.05). Compared with the control group, the cell survival rates were decreased in the 100 μmol/L H2O2 group and the negative control group (both P<0.05), along with enhanced apoptotic rates, inhibited cellular SOD activities and CAT activities, reduced GSH contents, augmented MDA contents, down-regulated Trx-2 and Bcl-2 expression and up-regulated Bax and caspase-3 expression (all P<0.05). Compared with the negative control group, the cell survival rate was increased in the Trx-2 overexpression group (P<0.05), along with suppressed apoptosis, increased SOD activities and CAT activities, elevated GSH contents, decreased MDA content, up-regulated Trx-2 and Bcl-2 expression and down-regulated Bax and caspase-3 expression (P<0.05). Conclusion: Trx-2 might be involved in the apoptosis of lens epithelial cells in patients with cataract. The overexpression of Trx-2 obviously attenuated H2O2-induced injury of human lens epithelial cells, which might be associated with the inhibition of H2O2-mediated oxidative stress.
Yang, Qiong; Yang, Kan; Li, Anying; Tan, Wenpeng
2013-05-01
To observe the expression and anti-apoptosis of microRNA-21(miR-21) in rat myocardium during early ischemia-reperfusion injury (I/R). Sprague-Dawley rats were randomly divided into 5 groups: a control group (transfected with rAAV9-ZsGreen by coronary injection), a miR-21group (transfected rAAV9-ZsGreen-premiR- 21 by coronary injection), a sham group (open-chest only), an I/R group (I/R), and an I/ R+miR-21 (I/R after transfected rAAV9-ZsGreen-pre-miR-21 by coronary injection). Realtime PCR was used to assess the expression level of miR-21. Immunohistochemistry and Western blot were used to determine the expression of Bcl-2, Bax, caspase-3 and Bcl-2/Bax. MiR-21 was increased by 4.43 times in the miR-21 group (P<0.001). MiR-21 was downregulated in the ischemia zone after I/R compared with the sham group (P<0.05), but that in the non-ischemia zone was significantly increased compared with the sham group (P<0.01). MiR- 21 expression was decreased in the I/R group compared with that in the sham group at 1 h, 2 h and 6 h after I/R (P<0.05), and it was up-regulated in the I/R+miR-21 group at the same time point compared with the I/R group (P<0.01). The expression of Bcl-2, Bax, and caspase-3 was upregulated and Bcl-2/Bax was decreased in the ischemia zone in the I/R group and I/R+miR-21 group than the sham group(P<0.05). Compared with the I/R group, the expression of Bcl-2 and caspase-3 was down-regulated and Bcl-2/Bax was increased in the ischemia zone in the I/ R+miR-21 group (P<0.05). MiR-21 expression is down-regulated and cell apoptosis is increased in rat myocardium during early ischemia-reperfusion injury. Myocardial cell apoptosis may be alleviated by miR-21 over-expression.
An, Wei-wei; Wang, Min-wei; Tashiro, Shin-ichi; Onodera, Satoshi
2004-01-01
Norcantharidin (NCTD) is the demethylated form of cantharidin, which is the active substance of mylabris. To examine the pathway of NCTD-induced A375-S2 cell death, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-dipheyltetrazolium bromide (MTT) assay, photomicroscopical observation, DNA agarose gel electrophoresis, caspase activity assay and Western blot analysis were carried out. A375-S2 cells treated with NCTD exhibited several typical characteristics of apoptosis. The inhibitory effect of NCTD on human melanoma, A375-S2 cells, was partially reversed by the inhibitors of pan-caspase, caspase-3 and caspase-9. The activities of caspase-3 and -9 were significantly increased after treatment with NCTD at different time. The expression of inhibitor of caspase-activated DNase was decreased in a time-dependent manner, simultaneously, the ratio of Bcl-2/Bax or Bcl-xL/Bax was decreased and the expression ratio of proteins could be reversed by caspase-3 inhibitor. The expression of cytochrome c in cytosol was increased after NCTD treatment and caspase-3 inhibitor had no significant effect on the up-regulation of cytochrom c. These results suggest that NCTD induced A375-S2 cell apoptosis and the activation of caspase and mitochondrial pathway were involved in the process of NCTD-induced A375-S2 cell apoptosis. PMID:15308848
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Li; College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158; Huang, Yong
2014-03-07
Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressedmore » cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.« less
Wu, Jin-Nan; Huang, Jian; Yang, Jia; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi
2008-09-01
Oridonin, a diterpenoid isolated from Rabdosia rubescences, has been reported to have antitumor effects. In this study, the growth-inhibitory activity of oridonin for L929 cells was exerted in a time-and dose-dependent manner. After treatment with oridonin for 24 h, L929 cells underwent both apoptosis and necrosis as measured by an lactate dehydrogenase (LDH) activity-based assay. A rapid generation of reactive oxygen species (ROS) was triggered by oridonin, and subsequently up-regulation of phospho-p53 (ser 15) expression and an increased expression ratio of Bax/Bcl-2 was observed. Furthermore, there was a significant fall in mitochondrial membrane potential (MMP) and increase in caspase-3 activity after exposure to oridonin for 24 h. Surprisingly, the pan-caspase inhibitor z-VAD-fmk and caspase3 inhibitor z-DEVD-fmk rendered L929 cells more sensitive to oridonin, rather than preventing oridonin-induced cell death. Oridonin and z-VAD-fmk co-treatment not only resulted in an even higher ROS production, but also made a more significant reduction in the MMP. Pretreatment of ROS scavenger N-acetylcysteine (NAC) led to a complete inhibition of oridonin-induced cell death, intracellular ROS generation, and MMP collapse. NAC treatment also reversed the potentiation of cell death by the pan-caspase inhibitor z-VAD-fmk. Taken together, these observations showed that oridonin-induced cell death in L929 cells involved intracellular ROS generation, activation of phospho-p53 (ser 15), and up-regulation of the Bax/Bcl-2 ratio; and the augmented cell death by z-VAD-fmk was dependent on an increased ROS production.
Non-apoptotic function of BAD and BAX in long-term depression of synaptic transmission
Jiao, Song; Li, Zheng
2011-01-01
Summary It has recently been found that caspases not only function in apoptosis, but are also crucial for non-apoptotic processes such as NMDA receptor-dependent long-term depression (LTD) of synaptic transmission. It remains unknown, however, how caspases are activated and how neurons escape death in LTD. Here we show that caspase-3 is activated by the BAD-BAX cascade for LTD induction. This cascade is required specifically for NMDA receptor-dependent LTD but not for mGluR-LTD, and its activation is sufficient to induce synaptic depression. In contrast to apoptosis, however, BAD is activated only moderately and transiently and BAX is not translocated to mitochondria, resulting in only modest caspase-3 activation. We further demonstrate that the intensity and duration of caspase-3 activation determin whether it leads to cell death or LTD, thus fine-tuning of caspase-3 activation is critical in distinguishing between these two pathways. PMID:21609830
Jing Yan; Kang Min; Liu Jin; Li Jingyu; Tang Anzhou
2015-04-01
To explore the proliferation inhibition and apoptosis of polysaccharides extracts from polysaccharides extracts from Hedyotic diffusa (PEHD) on Human Nasopharyngeal Carcinoma (NPC)cell line CNE2 cells in vitro. CNE2 cells treated with various concentrations of PEHD were detected by MTT assay at 24 h, 48 h, and 72 h. The apoptotic cells were analyzed by flow cytometry with Annexin V/PI staining. The expression levels of Bax, Bcl-2 and caspase-3 protein were examined by Western blotting method. The growth of CNE2 cells were suppressed after treatment with PEHD (P < 0.05), MTT assay showed that the highest cell inhibition rate reached to 76.5%, the inhibition in the doses from 2 to 6 mg/ml showed dose-and-time-dependent. The percent of apoptosis in 4 and 6 mg/ml PEHD treatment groups for 48 h were 31.32%, 46.28%, respectively, and significantly higher than that in control groups, 4.86% (P < 0.01). After the cells being treated with PEHD for 48 h, the expression of Bax and caspase-3 protein increased, and the expression of Bcl-2 protein decreased gradually. PEHD could inhibited the growth of CNE2 cells and was dose-and-time-dependent, the mechanism may involve induction of cell apoptosis, which was associated with the activation of Bax and caspase-3 protein and the down-regulation of Bcl-2 protein expression.
Baccouche, Sami; Daoud, Jamel; Frikha, Mounir; Mokdad-Gargouri, Raja; Gargouri, Ali; Jlidi, Rachid
2003-12-01
TP53 gene alterations have been associated with sporadic breast cancer. To assess the role of p53 in invasive ductal carcinoma (IDC) of the breast among Tunisian patients, p53 protein status was studied by immuno-histochemical analysis. The p53 protein was expressed in 41 of 70 (58%) tumors. Study of the status of its target gene expression showed that MDM2 was overexpressed in 43 tumors (61%), bcl2 in 29 (41%), and bax in only 9 (12%). Estrogen receptor (ER) was detected in 38 tumor tissues (54%). The accumulated p53 was significantly associated with MDM2-positive, bcl2-negative, and ER-negative tumors (P = 0.024, P = 0.000027, and P = 0.000008, respectively), whereas with bax the correlaton was not significant. Bcl2 immunostaining displayed a positive correlation with ER (P = 0.001). A significantly higher fraction of p53-positive cells was observed in ER-negative SBRII-SBRIII tumors than in ER-positive SBRI-SBRII tumors (P = 0.000066). bcl2-positive tumors were significantly correlated with ER-positive/SBRI-SBRII tumors (P = 0.007), but negatively correlated with p53/bax (P = 0000004). MDM2 immunostaining displayed the same phenotype as p53 in the correlation with bcl2 and ER (P = 0.003), strengthened by significant associations between MDM2-positive/p53-positive and bcl2-negative or ER-negative, respectively (P = 0.00005 and P = 0.000001, respectively). MDM2-positive cells were significantly correlated with the p53-positive/bax-negative phenotype (P = 0.04). These results suggest that p53 accumulated in these tumor tissues is associated with bad prognostic markers (ER-negative, SBRIII) of IDC. MDM2 overexpression might be responsible for the accumulated p53 value in IDC. Regulation of the apoptotic process is involved in IDC; bcl2 is associated with a good prognostic marker (ER-positive and SBRI-II), whereas the regulation of bax is complex and does not necessarily correlate with the overexpression of p53.
Li, Mei-Yi; Zhang, Yan-Bo; Zuo, Huan; Liu, Li-Li; Niu, Jing-Zhong
2012-02-25
The present study was to investigate the effect of Salvia miltiorrhiza Bunge. f. alba (SMA) pharmacological pretreatment on apoptosis of cultured hippocampal neurons from neonate rats under oxygen-glucose deprivation (OGD). Cultured hippocampal neurons were randomly divided into five groups (n = 6): normal plasma group, low dose SMA plasma (2.5%) group, middle dose SMA plasma (5%) group, high dose SMA plasma (10%) group and control group. The hippocampal neurons were cultured and treated with plasma from adult Wistar rats intragastrically administered with saline or aqueous extract of SMA. The apoptosis of neurons was induced by glucose-free Earle's solution containing 1 mmol/L Na2S2O4 and labeled by MTT and Annexin V/PI double staining. Moreover, protein expressions of Bcl-2 and Bax were detected by immunofluorescence. The results showed that few apoptotic cells were observed in control group, whereas the number of apoptotic cells was greatly increased in normal plasma group and low dose SMA plasma group. Both middle and high dose SMA plasma could protect cultured hippocampal neurons from apoptosis induced by OGD (P < 0.05). The protective effect of high dose SMA plasma was stronger than that of middle one (P < 0.05). Compared to control, normal plasma and low dose SMA plasma groups, middle and high dose SMA plasma groups both showed significantly higher levels of Bcl-2 (P < 0.05 or 0.01), whereas expressions of Bax was opposite. There were no significant differences of Bcl-2 and Bax expressions between middle and high dose SMA plasma groups. Number of Bcl-2- and Bax-positive cells had similar tendency. Bcl-2/Bax (number of positive cells) ratio was higher in high dose SMA plasma group than those of all the other groups (P < 0.05 or 0.01). These results suggest that pharmacological pretreatment of blood plasma containing middle and high dose SMA could raise viability and inhibit apoptosis of OGD-injured hippocampal neurons by up-regulating the expression of Bcl-2 and down-regulating the expression of Bax.
Shukla, Sanjeev; Fu, Pingfu; Gupta, Sanjay
2014-01-01
Dysfunction of the apoptotic pathway in prostate cancer cells confers apoptosis resistance towards various therapies. A novel strategy to overcome resistance is to directly target the apoptotic pathway in cancer cells. Apigenin, an anticancer agent, selectively toxic to cancer cells induces cell cycle arrest and apoptosis through mechanisms which are not fully explored. In the present study we provide novel insight into the mechanisms of apoptosis induction by apigenin. Treatment of androgen-refractory human prostate cancer PC-3 and DU145 cells with apigenin resulted in dose-dependent suppression of XIAP, c-IAP1, c-IAP2 and survivin protein levels. Apigenin treatment resulted in significant decrease in cell viability and apoptosis induction with the increase of cytochrome C in time-dependent manner. These effects of apigenin were accompanied by decrease in Bcl-xL and Bcl-2 and increase in the active form of Bax protein. The apigenin-mediated increase in Bax was due to dissociation of Bax from Ku70 which is essential for apoptotic activity of Bax. Apigenin treatment resulted in the inhibition of class I histone deacetylases and HDAC1 protein expression, thereby increasing the acetylation of Ku70 and the dissociation of Bax resulting in apoptosis of cancer cells. Furthermore, apigenin significantly reduced HDAC1 occupancy at the XIAP promoter, suggesting that histone deacetylation might be critical for XIAP downregulation. These results suggest that apigenin targets inhibitor of apoptosis proteins and Ku70–Bax interaction in the induction of apoptosis in prostate cancer cells and in athymic nude mouse xenograft model endorsing its in vivo efficacy. PMID:24563225
Heaton, Marieta Barrow; Paiva, Michael; Kubovic, Stacey; Kotler, Alexandra; Rogozinski, Jonathan; Swanson, Eric; Madorsky, Vladimir; Posados, Michelle
2011-01-01
These studies investigated ethanol effects on upstream cellular elements and interactions which contribute to Bax-related apoptosis in neonatal rat cerebellum at ages of peak ethanol sensitivity (postnatal day 4 [P4]), compared to later ages of relative resistance (P7). Analyses were made of basal levels of the pro-apoptotic c-jun N-termimal kinase (JNK), Bax, and the 14-3-3 anchoring proteins, as well as the responsiveness of these substances to ethanol at P4 versus P7. Dimerization of Bax with 14-3-3 was also investigated at the two ages following ethanol treatment, a process which sequesters Bax in the cytosol, thus inhibiting its mitochondrial translocation and disruption of the mitochondrial membrane potential. Cultured cerebellar granule cells were used to examine the protective potential of JNK inhibition on ethanol-mediated cell death. Basal levels of JNK were significantly higher at P4 than P7, but no differences in the other proteins were found. Activated JNK, and cytosolic and mitochondrially-translocated Bax were increased in P4 but not P7 animals following ethanol exposure, while protective 14-3-3 proteins were increased only at P7. Ethanol treatment resulted in decreases in Bax:14-3-3 heterodimers at P4, but not at P7. Inhibition of JNK activity in vitro provided partial protection against ethanol neurotoxicity. Thus, differential temporal vulnerability to ethanol in this CNS region correlates with differences in both levels of apoptosis-related substances (e.g., JNK), and differential cellular responsiveness, favoring apoptosis at the most sensitive age and survival at the resistant age. The upstream elements contributing to this vulnerability can be targets for future therapeutic strategies. PMID:22169498
[Inhibitory effect of taspine on mouse S180 sarcoma and its mechanism].
Zhang, Yan-Min; He, Lang-Chong; Wang, Hong-Ying
2007-05-01
To study the inhibition effect of taspine on mouse S180 sarcoma and its mechanism. The mouse S180 sarcoma model was established and used to observe the antitumor activity of taspine. The microvessel density and protein expressing of the VEGF, bFGF, Bcl-2 and Bax in the tumor were measured by immunohistochemistry. Taspine showed antitumor activity on the mouse S180 sarcoma in a good dose-dependent manner. The inhibition rates on tumor of taspine at low, middle and high concentrations were 39.08% , 43.99% and 48.60%, respectively. The microvessel density and protein expressing of the VEGF, bFGF, Bcl-2 and Bax in the tumor were decreased compared with the negative control. The ratio of Bax to Bcl-2 was increased. Taspine has antitumor effect on the S180 sarcoma, and the mechanism may be through the way of decreasing the expressing of the VEGF, bFGF, Bcl-2 and Bax and inducing the vascular endothelial cell apoptosis.
Gissel, Matthew; Orfeo, Thomas; Foley, Jonathan H; Butenas, Saulius
2012-01-01
Summary Introduction In hemophilia, thrombin generation is significantly suppressed due to decreased factor (F)X activation. Clinical studies and experiments with transgenic mice have suggested that the severity of hemophilia is substantially reduced by tissue factor pathway inhibitor (TFPI) deficiency. Methods We evaluated the effect of TFPI antagonist aptamer BAX499 (formerly ARC19499) on TFPI function in purified systems and on thrombin generation and clot formation in plasma and blood. Results BAX499 effectively neutralized TFPI inhibition of FXa and FXa dependent inhibition of TF/FVIIa by TFPI. BAX499 did not inhibit FXa or TF/FVIIa when used up to 500 nM. In the synthetic coagulation proteome with TFPI at its mean physiologic concentration, BAX499 at 1 – 10 nM increased thrombin generation triggered with 5 pM relipidated TF in a concentration-dependent manner. In severe hemophilia A or B models using the synthetic coagulation proteome, the addition of BAX499 at 5 nM increased thrombin generation to the levels observed in normal control. Thrombin generation measured in induced hemophilia B plasma required ~100 nM BAX499 to restore thrombin levels to those seen in untreated plasma. In induced hemophilia B whole blood, BAX499 repaired the clotting time but failed to appreciably impact the propagation phase of thrombin generation. Conclusion These data suggest that inhibition of TFPI by BAX499 may have potential for hemophilia treatment but requires further study in blood-based hemophilia systems. PMID:22951415
Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells.
Park, Jae Hyeon; Lee, Jeong Eun; Shin, In Chul; Koh, Hyun Chul
2013-04-01
Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells
Maes, Margaret E.; Schlamp, Cassandra L.; Nickells, Robert W.
2017-01-01
Retinal ganglion cell (RGC) death is the principal consequence of injury to the optic nerve. For several decades, we have understood that the RGC death process was executed by apoptosis, suggesting that there may be ways to therapeutically intervene in this cell death program and provide a more direct treatment to the cells and tissues affected in diseases like glaucoma. A major part of this endeavor has been to elucidate the molecular biological pathways active in RGCs from the point of axonal injury to the point of irreversible cell death. A major component of this process is the complex interaction of members of the BCL2 gene family. Three distinct family members of proteins orchestrate the most critical junction in the apoptotic program of RGCs, culminating in the activation of pro-apoptotic BAX. Once active, BAX causes irreparable damage to mitochondria, while precipitating downstream events that finish off a dying ganglion cell. This review is divided into two major parts. First, we summarize the extent of knowledge of how BCL2 gene family proteins interact to facilitate the activation and function of BAX. This area of investigation has rapidly changed over the last few years and has yielded a dramatically different mechanistic understanding of how the intrinsic apoptotic program is run in mammalian cells. Second, we provided a comprehensive analysis of nearly two decades of investigation of the role of BAX in the process of RGC death, much of which has provided many important insights into the overall pathophysiology of diseases like glaucoma. PMID:28064040
BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells.
Maes, Margaret E; Schlamp, Cassandra L; Nickells, Robert W
2017-03-01
Retinal ganglion cell (RGC) death is the principal consequence of injury to the optic nerve. For several decades, we have understood that the RGC death process was executed by apoptosis, suggesting that there may be ways to therapeutically intervene in this cell death program and provide a more direct treatment to the cells and tissues affected in diseases like glaucoma. A major part of this endeavor has been to elucidate the molecular biological pathways active in RGCs from the point of axonal injury to the point of irreversible cell death. A major component of this process is the complex interaction of members of the BCL2 gene family. Three distinct family members of proteins orchestrate the most critical junction in the apoptotic program of RGCs, culminating in the activation of pro-apoptotic BAX. Once active, BAX causes irreparable damage to mitochondria, while precipitating downstream events that finish off a dying ganglion cell. This review is divided into two major parts. First, we summarize the extent of knowledge of how BCL2 gene family proteins interact to facilitate the activation and function of BAX. This area of investigation has rapidly changed over the last few years and has yielded a dramatically different mechanistic understanding of how the intrinsic apoptotic program is run in mammalian cells. Second, we provided a comprehensive analysis of nearly two decades of investigation of the role of BAX in the process of RGC death, much of which has provided many important insights into the overall pathophysiology of diseases like glaucoma. Copyright © 2017 Elsevier Ltd. All rights reserved.
Geng, Yang; Zhou, Yan; Wu, Sai; Hu, Yabin; Lin, Kai; Wang, Yalin; Zheng, Zhongnan; Wu, Wei
2017-01-01
Previous studies in our laboratory showed that sulforaphane (SFN) induced apoptosis by sustained activation of extracellular regulated protein kinases 1/2 (ERK1/2). However, the underlying mechanisms associated with SFN-induced apoptosis and downstream cascades which are modulated by ERK1/2 were not elucidated. Herein we demonstrated for the first time that alteration of mitochondrial dynamics contributed to SFN-induced apoptosis in human non-small cell lung cancer (NSCLC) cells. Reports showed that protein Bim not only induced apoptosis but also promoted proliferation under certain circumstances. We found that Bim was related to cell growth in NSCLC cells. Pro-survival Bim downregulation was shown to induce apoptosis in response to SFN. Further, Using the ERK1/2 inhibitor, PD98059, we found that SFN upregulated Bax and downregulated Bim through the ERK1/2-dependent signaling pathway. Furthermore, SFN activated ERK1/2 to increase 26S proteasome activity to degrade Bim, while the proteasome inhibitor MG132 reversed this effect. Therefore, SFN phosphorylated ERK1/2 and activated the proteasome system leading to the degradation of Bim, which contributed to apoptosis in NSCLC cells. These findings provided a novel insight into SFN-related therapeutics in cancer treatment.
Singh, Neetu; Sarkar, Jayanta; Sashidhara, Koneni V; Ali, Shakir; Sinha, Sudhir
2014-06-01
Coumarins and chalcones are secondary plant metabolites which have shown an array of pharmacological properties including anti-tumour activity. We have previously reported on the synthesis and anti-proliferative activity of a series of novel coumarin-chalcone hybrids. Now we report on the in vivo efficacy as well as mechanism of action of the most potent molecule of the series, S009-131. Oral administration of this molecule resulted in regression of tumours induced by HeLa cell xenografts in nod SCID mice. The molecule inhibited proliferation of cervical cancer cells (HeLa and C33A) by inducing apoptosis and arresting cell cycle at G2/M phase. Apoptosis was induced through induction of caspase-dependent intrinsic pathway and alterations in the cellular levels of Bcl-2 family proteins. The mitochondrial transmembrane potential got highly depleted in S009-131 treated cells due to an increase in Bax/Bcl-2 ratio and intracellular ROS. The molecule induced release of cytochrome c into the cytosol and activation of initiator caspase-9 and executioner caspases-3/7. Tumour suppressor protein p53 and its transcriptional target PUMA were up regulated, suggesting their role in mediating the cell death. These results suggest that S009-131 is a potent candidate for the chemotherapy of cervical carcinoma.
Shin, Ji-Ae; Ryu, Mi Heon; Kwon, Ki-Han; Choi, BuYoung; Cho, Sung-Dae
2015-07-01
The apoptotic activity of methanol extracts of Impatiens balsamina L. (MEIB) and related mechanisms in human oral squamous cell carcinoma (OSCC) cells have been systematically investigated. The effects of MEIB on human OSCC cell lines were investigated using trypan blue exclusion assay, MTS assay, Western blot, 4'-6-diamidino-2-phenylindole (DAPI) staining, Live/Dead assay, Immunohistochemistry, reverse transcription-polymerase chain reaction, and promoter assay. MEIB decreased cell viability and induced apoptosis in HSC-4 cells. Higher levels of p-Akt expression were observed in OSCC than in normal oral mucosa (NOM), and it correlated with poor survival of the patients. MEIB dephosphorylated p-Akt and decreased Akt expression through proteasome-dependent degradation. LY294002 (PI3K inhibitor) decreased p-Akt and Akt, resulting in enhancing MEIB-induced apoptosis. MEIB down-regulated the expression level of survivin protein at the transcriptional level and YM155 (survivin inhibitor) decreased survivin, which facilitated MEIB-induced apoptosis. MEIB and LY294002 significantly increased Bax, thereby inducing the conformational change, mitochondrial translocation, and oligomerization. In addition, MEIB-induced growth inhibition and apoptosis in OSC-20, another human OSCC cells were mediated by regulating Akt and it downstream targets, survivin and Bax. These results suggest that MEIB may serve as a potential drug candidate for the treatment of human OSCC. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Lihua; Wang, Wensheng; Xiao, Weidong
2012-08-10
Highlights: Black-Right-Pointing-Pointer Ang II-induced apoptosis in intestinal epithelial cell through AT2 receptor. Black-Right-Pointing-Pointer The apoptosis process involves in the Bax/Bcl-2 intrinsic pathway. Black-Right-Pointing-Pointer GATA-6 short hairpin RNA reduced Bax expression, but not Bcl-2. Black-Right-Pointing-Pointer GATA-6 may play a critical role in apoptosis in response to the Ang II challenge. -- Abstract: Angiotensin II (Ang II) has been shown to play an important role in cell apoptosis. However, the mechanisms of Ang-II-induced apoptosis in intestinal epithelial cells are not fully understood. GATA-6 is a zinc finger transcription factor expressed in the colorectal epithelium, which directs cell proliferation, differentiation and apoptosis. Inmore » the present study we investigated the underlying mechanism of which GATA-6 affects Ang-II induced apoptosis in intestinal epithelial cells. The in vitro intestinal epithelial cell apoptosis model was established by co-culturing Caco-2 cells with Ang II. Pretreatment with Angiotensin type 2 (AT2) receptor antagonist, PD123319, significantly reduced the expression of Bax and prevented the Caco-2 cells apoptosis induced by Ang II. In addition, Ang II up-regulated the expression of GATA-6. Interestingly, GATA-6 short hairpin RNA prevented Ang II-induced intestinal epithelial cells apoptosis and reduced the expression of Bax, but not Bcl-2. Taken together, the present study suggests that Angiotensin II promotes apoptosis in intestinal epithelial cells through GATA-6 and the Bax pathway in an AT2 receptor-dependent manner.« less
Csatlós, Éva; Máté, Szabolcs; Laky, Marcella; Rigó, János; Joó, József Gábor
2015-07-01
To describe gene expression patterns of the apoptotic regulatory genes Bcl and Bax in human uterine leiomyoma tissue. To investigate the relationship between alterations of gene expression patterns and several relevant clinical parameters. We obtained samples from 101 cases undergoing surgery for uterine leiomyoma for gene expression analysis of the Bcl-2 and Bax genes. Gene expression was quantified using RT-PCR technique. In the leiomyoma group, the Bcl-2 gene was significantly overexpressed compared with the control group although there was no such difference in the gene expression of Bax. Gene activity of Bcl-2 positively correlated with the tumor number in individual uterine leiomyoma cases. Although there was no significant correlation between the length of the cumulative lactation period before the development of uterine leiomyoma and Bcl-2 gene expression in the leiomyoma tissue, we observed a trend for a shorter cumulative lactation period to be associated with overexpression of the Bcl-2 gene. Overexpression of the antiapoptotic Bcl-2 gene appeared to be a factor in the development of uterine leiomyoma, whereas gene activity of the proapoptotic Bax gene did not seem to play a role in the process.
Galinato, Melissa H.; Orio, Laura; Mandyam, Chitra D.
2014-01-01
Methamphetamine exposure reduces hippocampal long-term potentiation (LTP) and neurogenesis and these alterations partially contribute to hippocampal maladaptive plasticity. The potential mechanisms underlying methamphetamine-induced maladaptive plasticity were identified in the present study. Expression of brain-derived neurotrophic factor (BDNF; a regulator of LTP and neurogenesis), and its receptor tropomyosin-related kinase B (TrkB) were studied in the dorsal and ventral hippocampal tissue lysates in rats that intravenously self-administered methamphetamine in a limited access (1 h/day) or extended access (6 h/day) paradigm for 17 days post baseline sessions. Extended access methamphetamine enhanced expression of BDNF with significant effects observed in the dorsal and ventral hippocampus. Methamphetamine-induced enhancements in BDNF expression were not associated with TrkB receptor activation as indicated by phospho (p)-TrkB-706 levels. Conversely, methamphetamine produced hypophosphorylation of NMDA receptor subunit 2B (GluN2B) at Tyr-1472 in the ventral hippocampus, indicating reduced receptor activation. In addition, methamphetamine enhanced expression of anti-apoptotic protein Bcl-2 and reduced pro-apoptotic protein Bax levels in the ventral hippocampus, suggesting a mechanism for reducing cell death. Analysis of Akt, a pro-survival kinase that suppresses apoptotic pathways and pAkt at Ser-473 demonstrated that extended access methamphetamine reduces Akt expression in the ventral hippocampus. These data reveal that alterations in Bcl-2 and Bax levels by methamphetamine were not associated with enhanced Akt expression. Given that hippocampal function and neurogenesis vary in a subregion-specific fashion, where dorsal hippocampus regulates spatial processing and has higher levels of neurogenesis, whereas ventral hippocampus regulates anxiety-related behaviors, these data suggest that methamphetamine self-administration initiates distinct allostatic changes in hippocampal subregions that may contribute to the altered synaptic activity in the hippocampus, which may underlie enhanced negative affective symptoms and perpetuation of the addiction cycle. PMID:25463524
Zhou, Jia; Feng, Jun-Yi; Wang, Qian; Shang, Jing
2015-07-01
Skin is the largest organ in human body and works as biologically active barrier to provide critical preservation of body homeostasis. The skin is highly innervated by a plenitude of nerve fiber subpopulations, each carrying one or more neuronal mediators. Melanocyte itself also intimately contact with nerve fibers to form 'synaptic-like structure' and its functions may be directly regulated by the mediators contained in terminals of intra-epidermal nerve fibers. Clinical and biochemical studies have suggested that calcitonin gene-related peptide (CGRP) is involved in vitiligo skin. The present study was designed to investigate the effect of CGRP on epidermal melanocytes. After treatment with CGRP ranging from 0 to 500 ng/mL for 48 h, tyrosinase activity and melanogenesis were with little changes compared to treatment with medium only in B16F10 cells. Treatment with 500 ng/mL of CGRP cooperates with substance P (SP) (0.1-10 nM) to decrease tyrosinase activity and decrease melanin biosynthesis in B16F10 cells in a concentration-dependent manner. Furthermore, CGRP (8-37) antagonizes the synergistic effect of CGRP. The effect of CGRP on the cell apoptosis was examined. Treatments with 0-500 ng/mL of CGRP for 24 h, the expression levels of cleaved caspase-3, total caspase-3, cleaved caspase-9 and total caspase-9 were increased in a concentration-dependent manner. And 500 ng/mL of CGRP induced B16F10 cell apoptosis showed by TUNEL assay. In addition, Bax expression was up-regulated and Bcl-2 down-regulated in response to CGRP treatment. Hence, the Bax/Bcl-2 ratio was significantly increased. These in vitro observations indicate the pro-apoptotic impact of CGRP on B16F10 cell. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, H.-J.; Wang, C.-J.; Kuo, H.-C.
2005-03-01
Since hepatocellular carcinoma remains a major challenging clinical problem in many parts of the world including Eastern Asia and Southern Africa, it is imperative to develop more effective chemopreventive and chemotherapy agents. Herein, we present an investigation regarding the anticancer potential of luteolin, a natural flavonoid, and the mechanism of its action in human hepatoma HepG2 cells. Using DNA fragmentation assay and nuclear staining assay, it showed that luteolin induced apoptosis of HepG2 cells. Luteolin induced the cytosolic release of cytochrome c and activated CPP32. We found that Bax and Bak translocated to mitochondria apparently, whereas Fas ligand (FasL) wasmore » unchanged after a treatment with luteolin for 3 h. In addition, it showed that c-Jun NH{sub 2}-terminal kinase (JNK) was activated after the treatment of luteolin for 3-12 h. Further investigation showed that a specific JNK inhibitor, SP600125, reduced the activation of CPP 32, the mitochondrial translocation of Bax, as well as the cytosolic release of cytochrome c that induced by luteolin. Finally, the apoptosis induced by luteolin was suppressed by a pretreatment with SP600125 via evaluating annexin V-FITC binding assay. These data suggest that luteolin induced apoptosis via mechanisms involving mitochondria translocation of Bax/Bak and activation of JNK.« less
Verbeke, C S; Wenthe, U; Bergler, W F; Zentgraf, H
2000-01-01
Infectious mononucleosis (IM), a manifestation of primary infection with EBV, is characterized by a massive expansion of the T cell population. In this study we examined this expanded T cell population regarding its EBV status, its proliferative and apoptotic activity, and its expression of apoptosis-related genes. Whereas previous studies were performed on ex vivo cultures or on peripheral blood, our investigations included in vivo analysis of IM tonsillectomy specimens (14 cases) by in situ hybridization for viral RNA (EBERs) combined with immunohistochemistry (IHC; CD3, CD45RO, CD20, CD79a, Ki-67, Bcl-2, Bax, Fas, FasL) and the TUNEL method. Of the EBER+ cells 50–70% showed expression of the B cell markers CD20/CD79a. The remainder of the EBER+ cells expressed neither B nor T cell antigens. No co-expression of EBERs and T cell antigens was detected in any of the specimens. In accordance with a high rate of apoptosis (up to 2·37%) within the expanded T cell population, Bcl-2 expression was drastically reduced and FasL expression remarkably increased. The levels of Bax and Fas expression showed no or moderate up-regulation. In conclusion, the massive expansion of IM T cells is not caused by EBV infection of these cells but merely represents an intense immune reaction. Through altered expression of Bcl-2/Bax and Fas/FasL, the activated T cells are subject to enhanced apoptosis while residing within the lymphoid tissue, which eventually allows the efficient silencing of this potentially damaging T cell response. PMID:10792379
Thakur, Vijay S; Amin, A.R.M. Ruhul; Paul, Rajib K; Gupta, Kalpana; Hastak, Kedar; Agarwal, Mukesh K; Jackson, Mark W; Wald, David N; Mukhtar, Hasan; Agarwal, Munna L
2010-01-01
The tumor suppressor protein p53 plays a key role in regulation of negative cellular growth in response to EGCG. To further explore the role of p53 signaling and elucidate the molecular mechanism, we employed colon cancer HCT116 cell line and its derivatives in which a specific transcriptional target of p53 is knocked down by homologous recombination. Cells expressing p53 and p21 accumulate in G1 upon treatment with EGCG. In contrast, same cells lacking p21 traverse through the cell cycle and eventually undergo apoptosis as revealed by TUNEL staining. Treatment with EGCG leads to induction of p53, p21 and PUMA in p21 wild-type, and p53 and PUMA in p21−/− cells. Ablation of p53 by RNAi protects p21−/− cells, thus indicating a p53-dependent apoptosis by EGCG. Furthermore, analysis of cells lacking PUMA or Bax with or without p21 but with p53 reveals that all the cells expressing p53 and p21 survived after EGCG treatment. More interestingly, cells lacking both PUMA and p21 survived ECGC treatment whereas those lacking p21 and Bax did not. Taken together, our results present a novel concept wherein p21-dependent growth arrest pre-empts and protects cells from otherwise, in its absence, apoptosis which is mediated by activation of pro-apoptotic protein PUMA. Furthermore, we find that p53-dependent activation of PUMA in response to EGCG directly leads to apoptosis with out requiring Bax as is the case in response to agents that induce DNA damage. p21, thus can be used as a molecular switch for therapeutic intervention of colon cancer. PMID:20444544
Chen, Zongjing; Yang, Yunxiu; Liu, Biao; Wang, Benquan; Sun, Meng; Zhang, Ling; Chen, Bicheng; You, Heyi; Zhou, Mengtao
2015-01-01
Histone deacetylase inhibitors represent a promising class of potential anticancer agents for the treatment of human malignancies. In this study, the effects of trichostatin A (TSA) on apoptosis, metastasis-associated gene expression, and activation of the Notch pathway in human pancreatic cancer cell lines were investigated. After treatment with TSA, cell viability and apoptosis were evaluated using the MTT [3-(4,5-dimethylthia-zol-2-yl)-2,5-diphenyltetrazolium bromide] assay, Hoechst 33258 staining, and flow cytometry. Moreover, RT-PCR and western blot analyses were performed to measure the expression levels of apoptosis-associated genes (Bcl-2, Bax, and caspase-3), metastasis-associated genes (E-cadherin, vimentin, and matrix metalloproteinases), and Notch pathway activation (Notch intracellular domain, NICD). The levels of matrix metalloproteinase 2 and NICD were also semi-quantified by immunoassay. Following treatment with TSA for 24 h, PANC-1, SW1990, and MIATACA-2 cells exhibited cell death. The MTT assay revealed that TSA significantly decreased cell viability in a dose-dependent manner in PANC-1 cells. The Hoechst 33258 staining and flow cytometry results evidenced a significant increase in PANC-1 cell apoptosis following TSA treatment. The expression levels of Bax and caspase-3 were increased significantly, whereas Bcl-2 was down-regulated after TSA treatment. In the PANC-1 cells that survived after TSA treatment, the expression levels of vimentin, E-cadherin, and MMP genes were altered by the promotion of potential metastasis and increased expression of NICD. TSA can induce apoptosis of pancreatic cancer cells. In addition, the up-regulation of metastasis-related genes and the activation of the Notch pathway in the survived PANC-1 cells may be associated with a too-low level of TSA or resistance to TSA.
NASA Astrophysics Data System (ADS)
Khan, Shahanavaj; Ansari, Anees A.; Rolfo, Christian; Coelho, Andreia; Abdulla, Maha; Al-Khayal, Khayal; Ahmad, Rehan
2017-12-01
Cerium oxide nanocrystals (CeO2-NCs) exhibit superoxide dismutase and catalase mimetic activities. Based on these catalytic activities, CeO2-NCs have been suggested to have the potential to treat various diseases. The crystalline size of these materials is an important factor that influences the performance of CeO2-NCs. Previous reports have shown that several metal-based nanocrystals, including CeO2-NCs, can induce cytotoxicity in cancer cells. However, the underlying mechanisms have remained unclear. To characterize the anticancer activities of CeO2-NCs, several assays related to the mechanism of cytotoxicity and induction of apoptosis has been performed. Here, we have carried out a systematic study to characterize CeO2-NCs phase purity (X-ray diffraction), morphology (electron microscopy), and optical features (optical absorption, Raman scattering, and photoluminescence) to better establish their potential as anticancer drugs. Our study revealed anticancer effects of CeO2-NCs in HT29 and SW620 colorectal cancer cell lines with half-maximal inhibitory concentration (IC50) values of 2.26 and 121.18 μg ml-1, respectively. Reductions in cell viability indicated the cytotoxic potential of CeO2-NCs in HT29 cells based on inverted and florescence microscopy assessments. The mechanism of cytotoxicity confirmed by estimating possible changes in the expression levels of Bcl2, BclxL, Bax, PARP, cytochrome c, and β-actin (control) proteins in HT29 cells. Down-regulation of Bcl2 and BclxL and up-regulation of Bax, PARP, and cytochrome c proteins suggested the significant involvement of CeO2-NCs exposure in the induction of apoptosis. Furthermore, biocompatibility assay showed minimum effect of CeO2-NCs on human red blood cells.
Gao, Lin-Lin; Feng, Lei; Yao, Shu-Tong; Jiao, Peng; Qin, Shu-Cun; Zhang, Wei; Zhang, Ya-Bin; Li, Fu-Rong
2011-01-01
Mechanisms of apoptosis in tumor cells is an important field of tumor therapy and cancer molecular biology. Loss of cell cycle control, leading to uncontrolled proliferation, is common in cancer. Therefore, the identification of potent and selective cyclin dependent kinase inhibitors is a priority for anti-cancer drug discovery. There are at least two major apoptotic pathways, initiated by caspase-8 and caspase-9, respectively, which can activate caspase cascades. Apoptosis triggered by activation of the mitochondrial-dependent caspase pathway represents the main programmed cell death mechanism. This is activated by various intracellular stresses that induce permeabilization of the mitochondrial membrane. Anti-tumor effects of celery seed extract (CSE) and related mechanisms regarding apoptosis were here investigated in human gastric cancer BGC-823 cells. CSE was produced by supercritical fluid extraction. Cell viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl-tetrazolium bromide (MTT) assay and apoptosis by flow cytometry using Annexin/PI staining and DAPI staining and a laser scanning confocal microscope (LSCM). Cell cycling was evaluated using PI staining with flow cytometry and expression of cell cycle and apoptosis-related proteins cyclin A, CDK2, bcl-2 and bax was assessed by immunohistochemical staining. CSE had an anti-proliferation effect on human gastric cancer BGC-823 cells in a dose- and time-dependent manner. After treatment, the apoptotic rate significantly increased, with morphological changes typical of apoptosis observed with LSCM by DAPI staining. Cell cycle and apoptosis related proteins, such as cyclin A, CDK2 and bcl-2 were all down-regulated, whereas bax was up-regulated. The molecular determinants of inhibition of cell proliferation as well as apoptosis of CSE may be associated with cycle arrest in the S phase.
Liu, Ling; Huang, Zile; Chen, Jingjing; Wang, Jiangang; Wang, Shuying
2018-04-25
Protein phosphatase 2A (PP2A) is an important enzyme within various signal transduction pathways. The present study was investigated PP2A mediates JS-K-induced apoptosis by affecting Bcl-2 family protein. JS-K showed diverse inhibitory effects in five HCC cell lines, especially HepG2 cells. JS-K caused a dose- and time-dependent reduction in cell viability and increased in levels of LDH release. Meanwhile, JS-K- induced apoptosis was characterized by mitochondrial membrane potential reduction, Hoechst 33342 + /PI + dual staining, release of cytochrome c (Cyt c), and activation of cleaved caspase-9/3. Moreover, JS-K-treatment could lead to the activation of protein phosphatase 2A-C (PP2A-C), decrease of anti-apoptotic Bcl-2 family-protein expression including p-Bcl-2 (Ser70), Bcl-2, Bcl-xL, and Mcl-1 as well as the increase of pro-apoptosis Bcl-2 family-protein including Bim, Bad, Bax, and Bak. Furthermore, JS-K caused a marked increase of intracellular NO levels while pre-treatment with Carboxy-PTIO (a NO scavenger) reduced the cytotoxicity effects and the apoptosis rate. Meanwhile, pre-treatment with Carboxy-PTIO attenuated the JS-K-induced up-regulation of PP2A, Cyt c, and cleaved-caspase-9/3 activation. The silencing PP2A-C by siRNA could abolish the activation of PP2A-C, down-regulation of anti-apoptotic Bcl-2 family-protein (p-Bcl-2, Bcl-2, Bcl-xL, and Mcl-1), increase of pro-apoptosis Bcl-2 family-protein (Bim, Bad, Bax, and Bak) and apoptotic-related protein (Cyt c, cleaved caspase-9/3) that were caused by JS-K in HepG2 cells. In addition, pre-treatment with OA (a PP2A inhibitor) also attenuated the above effects induced by JS-K. In summary, NO release from JS-K induces apoptosis through PP2A activation, which contributed to the regulation of Bcl-2 family proteins. © 2018 Wiley Periodicals, Inc.
Xie, Xiao-Juan; Fan, Dong-Mei; Xi, Kai; Chen, Ya-Wei; Qi, Peng-Wei; Li, Qian-Hui; Fang, Liang; Ma, Li-Gang
2017-06-30
The study aims to explore the effects of miR-135b-5p on myocardial ischemia/reperfusion (I/R) injuries by regulating Janus protein tyrosine kinase 2 (JAK2)/signal transducer and activator of transcription (STAT) signaling pathway by mediating inhalation anesthesia with sevoflurane. A sum of 120 healthy Wistar male mice was assigned into six groups. Left ventricular ejection fraction (LVEF) and left ventricular shortening fraction (LVSF) were detected. Cardiomyocyte apoptosis was determined by terminal dexynucleotidyl transferase mediated dUTP-biotin nick end labeling (TUNEL) assay. MiR-135b-5p expression, mRNA and protein expression of p-STAT3, p-JAK2, STAT3, JAK2, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein B (Bax) were detected by quantitative real-time PCR (qRT-PCR) and Western blotting. Target relationship between miR-135b-5p and JAK2 was confirmed by dual-luciferase reporter assay. The other five groups exhibited increased cardiomyocyte necrosis, apoptosis, miR-135b-5p and Bax expression, mRNA expression of JAK2 and STAT3, and protein expression of p-STAT3 and p-JAK2 compared with the sham group, but showed decreased LVEF, LVFS, and Bcl-2 expression. Compared with the model and AG490 + Sevo groups, the Sevo, inhibitor + Sevo and inhibitor + AG490 + Sevo groups displayed reduced cardiomyocyte necrosis, apoptosis, miR-135b-5p and Bax expression, but displayed elevated mRNA expression of JAK2 and STAT3, protein expression of p-STAT3 and p-JAK2, LVEF, LVFS and Bcl-2 expression. Compared with the Sevo and inhibitor + AG490 + Sevo groups, the AG490 + Sevo group showed decreased LVEF, LVFS, Bcl-2 expression, mRNA expressions of JAK2 and STAT3, and protein expressions of p-STAT3 and p-JAK2, but increased cardiomyocyte necrosis, apoptosis, and Bax expressions. MiR-135b-5p negatively targetted JAK2. Inhibition of miR-135b-5p can protect against myocardial I/R injury by activating JAK2/STAT3 signaling pathway through mediation of inhalation anesthesia with sevoflurane. © 2017 The Author(s).
Apigenin sensitizes colon cancer cells to anti-tumor activity of ABT-263
Shao, Huanjie; Jing, Kai; Mahmoud, Esraa; Huang, Haihong; Fang, Xianjun; Yu, Chunrong
2013-01-01
Apigenin is an edible plant-derived flavonoid that shows modest anti-tumor activities in vitro and in vivo. Apigenin treatment resulted in cell growth arrest and apoptosis in various types of tumors by modulating several signaling pathways. In the present study, we evaluated interactions between apigenin and ABT-263 in colon cancer cells. We observed a synergistic effect between apigenin and ABT-263 on apoptosis of colon cancer cells. ABT-263 alone induced limited cell death while upregulating expression of Mcl-1, a potential mechanism for the acquired resistance to ABT-263. The presence of apigenin antagonized ABT-263-induced Mcl-1 upregulation and dramatically enhanced ABT-263-induced cell death. Meanwhile, apigenin suppressed AKT and ERK activation. Inactivation of either AKT or ERK by lentivirus-transduced shRNA or treatment with specific small molecule inhibitors of these pathways enhanced ABT-263-induced cell death, mirroring the effect of apigenin. Moreover, the combination response was associated with upregulation of Bim and activation of Bax. Downregulation of Bax eliminated the synergistic effect of apigenin and ABT-263 on cell death. Xenograft studies in SCID mice showed that the combined treatment with apigenin and ABT-263 inhibited tumor growth by up to 70% without obvious adverse effects, while either agent only inhibited around 30%. Our results demonstrate a novel strategy to enhance ABT-263 induced anti-tumor activity in human colon cancer cells by apigenin via inhibition of the Mcl-1, AKT and ERK pro-survival regulators. PMID:24126433
Song, Y; Zhong, M; Cai, F-C
2018-01-01
Anti-epileptic drugs (AEDs) are the main methods for treatment of neonatal seizures; however, a few AEDs may cause developing brain damage of neonate. This study aims to investigate effects of oxcarbazepine (OXC) on developing brain damage of neonatal rats. Both of neonatal and adult rats were divided into 6 groups, including Control, OXC 187.5 mg/kg, OXC 281.25 mg/kg, OXC 375 mg/kg group, LEV and PHT group. Body weight and brain weight were evaluated. Hematoxylin and eosin (HE) and Nissl staining were used to observe neurocyte morphology and Nissl bodies, respectively. Apoptosis was examined using TUNEL assay, and caspase 8 activity was evaluated using spectrophotometer method. Cytochrome C-release was evaluated using flow cytometry. Western blot was used to examine Bax and Bcl-2 expression. OXC 375 mg/kg treatment significantly decreased brain weight compared to Control group in neonatal rats (P5 rats) (p<0.05). OXC administration causes histological changes of neurocytes. OXC 281.25 mg/kg or more concentration significantly decreased neurocytes counts and increased TUNEL-staining positive neurocytes compared to Control group (p<0.05). OXC 281.25 mg/kg and OXC 375 mg/kg significantly increased caspase 3 activity compared to Control group in P5 rats (p<0.05). OXC 281.25 mg/kg and OXC 375 mg/kg significantly increased Bax, Bax/Bcl-2 ratio and cytochrome C release in frontal lobes compared to Control group in P5 rats (p<0.05). Oxcarbazepine at a concentration of 281.25 mg/kg or more causes neurocyte apoptosis and developing brain damage by triggering Bax/Bcl-2 signaling pathway mediated caspase 3 activation in neonatal rats.
Preclinical safety and efficacy of a new recombinant FIX drug product for treatment of hemophilia B.
Dietrich, Barbara; Schiviz, Alexandra; Hoellriegl, Werner; Horling, Frank; Benamara, Karima; Rottensteiner, Hanspeter; Turecek, Peter L; Schwarz, Hans Peter; Scheiflinger, Friedrich; Muchitsch, Eva-Maria
2013-11-01
Baxter has developed a new recombinant factor IX (rFIX) drug product (BAX326) for treating patients with hemophilia B, or congenital FIX deficiency. An extensive preclinical program evaluated the pharmacokinetics, efficacy, and safety of BAX326 in different species. The efficacy of BAX326 was tested in three mouse models of primary pharmacodynamics: tail-tip bleeding, carotid occlusion, and thrombelastography. The pharmacokinetics was evaluated after a single intravenous bolus injection in mice, rats, and macaques. Toxicity was assessed in rats and macaques, safety pharmacology in rabbits and macaques, and immunogenicity in mice. BAX326 was shown to be efficacious in all three primary pharmacodynamic studies (P ≤ 0.0076). Hemostatic efficacy was dose related and similar for the three lots tested. Pharmacokinetic results showed that rFIX activity and rFIX antigen concentrations declined in a bi-phasic manner, similar to a previously licensed rFIX product. BAX326 was well tolerated in rabbits and macaques at all dose levels; no thrombogenic events and no adverse clinical, respiratory, or cardiovascular effects occurred. BAX326 was also shown to have a similar immunogenicity profile to the comparator rFIX product in mice. These results demonstrate that BAX326 has a favorable preclinical safety and efficacy profile, predictive of a comparable effect to that of the previously licensed rFIX in humans.
Apoptosis in activated T cells: what are the triggers, and what the signal transducers?
Häcker, Georg; Bauer, Anette; Villunger, Andreas
2006-11-01
At the end of an immune response, apoptosis drastically reduces the numbers of activated T cells. It has been a matter of intense research how this form of apoptosis is regulated and initiated, and a number of proteins have been identified that contribute to this process. The present, widely accepted model assumes that the interplay of pro- and anti -apoptotic Bcl-2 family members determines the onset of activated T cell death, with the BH3-only protein Bim activating pro-apoptotic Bax/Bak. In the search for up-stream signals, factors from other immune cells have been shown to play a role, and the NFkappaB family member Bcl-3 has been implicated as a signalling-intermediate in T cells. Recent work has tested the interrelation of these factors and has suggested that Bcl-3 acts as a regulator of Bim activation, that the induction of apoptosis through Bim can be complemented by its relative Puma, and that the presence of certain cytokines during T cell activation delays the activation of Bim and Puma. Here we discuss these recent insights and provide a view on how the regulation of activated T cell death is achieved and how extrinsic signals may translate into the activation of the apoptotic pathway.
Fan, Xiaorui; Xi, Huaming; Zhang, Zhen; Liang, Yajun; Li, Qinghong; He, Junping
2017-04-01
The aim of this study was to examine whether an elevated ambient temperature (37-40°C) had an effect on the apoptosis of germ cells and the expression of Bcl-2 and Bax in porcine testis. Six boars were used. Three boars were subjected to an elevated ambient temperature (37-40°C, 7days, 3h per day) as a heat stress (HS) group. The other 3 boars were kept in a room temperature house (20-27°C) as a control group. All boars were castrated and the testes were harvested. TUNEL assay was used for the detection of apoptotic cells. Immunohistochemistry, Western blotting and quantitative real-time PCR were used to analyze protein and mRNA levels of Bcl-2 and Bax in response to heat treatment. The results showed that apoptotic signals increased under heat stress conditions compared with the control (P<0.01), and the cell types most affected by heat treatment were spermatocytes and spermatids. In both the control and experimental groups, Bcl-2 was expressed in the cytoplasm and nucleus of spermatogonia, spermatocytes and differentiating spermatids and Bcl-2 preferentially localized close to the seminiferous tubule's luminal surface in late spermatocytes and spermatids. Compared with the control group, the expression levels of Bcl-2 protein and mRNA significantly increased in heat treatment group, while the expression levels of Bax protein and mRNA did not show significant changes between the control and experimental group. Low to moderate Bax immunoreactivity staining was observed in all kinds of germ cells in the control group. Strong staining was observed in spermatogonia, and low to moderate Bax staining was observed in spermatocytes and spermatids. A redistribution of Bax from a cytoplasmic to perinuclear or nuclear localization could be observed in the spermatogonia, spermatocytes and spermatids obtained in the heat treated group. These results showed that elevated ambient temperatures induced germ cell apoptosis. In response to heat stress, the expression of Bcl-2 increased and a redistribution of Bax from a cytoplasmic to a perinuclear or nuclear localization. This indicates that Bcl-2 and Bax may be involved in regulation of germ cell apoptosis induced by heat stress in boars. Copyright © 2016. Published by Elsevier GmbH.
Gu, Zirong; Serradj, Najet; Ueno, Masaki; Liang, Mishi; Li, Jie; Baccei, Mark L.; Martin, John H.; Yoshida, Yutaka
2017-01-01
Early postnatal mammals, including human babies, can perform only basic motor tasks. The acquisition of skilled behaviors occurs later, requiring anatomical changes in neural circuitry to support the development of coordinated activation or suppression of functionally related muscle groups. How this circuit reorganization occurs during postnatal development remains poorly understood. Here we explore the connectivity between corticospinal (CS) neurons in the motor cortex and muscles in mice. Using trans-synaptic viral and electrophysiological assays, we identify the early postnatal reorganization of CS circuitry for antagonistic muscle pairs. We further show that this synaptic rearrangement requires the activity-dependent, non-apoptotic Bax/Bak-caspase signaling cascade. Adult Bax/Bak mutant mice exhibit aberrant co-activation of antagonistic muscle pairs and skilled grasping deficits but normal reaching and retrieval behaviors. Our findings reveal key cellular and molecular mechanisms driving postnatal motor circuit reorganization and the resulting impacts on muscle activation patterns and the execution of skilled movements. PMID:28472660
Essential roles of caspases and their upstream regulators in rotenone-induced apoptosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee Jihjong; Huang, M.-S.; Yang, I-C.
2008-06-20
In the present study, we examined whether caspases and their upstream regulators are involved in rotenone-induced cytotoxicity. Rotenone significantly inhibited the proliferation of oral cancer cell lines in a dose-dependent manner compared to normal oral mucosal fibroblasts. Flow cytometric analysis of DNA content showed that rotenone treatment induced apoptosis following G2/M arrest. Western blotting showed activation of both the caspase-8 and caspase-9 pathways, which differed from previous studies conducted in other cell types. Furthermore, p53 protein and its downstream pro-apoptotic target, Bax, were induced in SAS cells after treatment with rotenone. Rotenone-induced apoptosis was inhibited by antioxidants (glutathione, N-acetylcysteine, andmore » tiron). In conclusion, our results demonstrate significant involvement of caspases and their upstream regulators in rotenone-induced cytotoxicity.« less
Protective effect of histamine H2 receptor antagonist ranitidine against rotenone-induced apoptosis.
Park, Hae Jeong; Kim, Hak Jae; Park, Hyun-Kyung; Chung, Joo-Ho
2009-11-01
Histamine H(2) receptor antagonists have been reported to improve the motor symptoms of Parkinson's disease (PD) patients and to exert neuroprotective effects. In this study, we investigated the protective effects of the H(2) receptor antagonist ranitidine on rotenone-induced apoptosis in human dopaminergic SH-SY5Y cells, focusing on mitogen-activated protein kinases (MAPKs) and caspases (CASPs)-mediated apoptotic events. Ranitidine blocked the rotenone-induced phosphorylation of c-Jun NH(2)-terminal protein kinase (JNK) and P38 MAPK (P38), and promoted the phosphorylation of extracellular signal-regulated protein kinase (ERK). Ranitidine also prevented the down-regulation of B-cell CLL/lymphoma 2 (BCL2) and the up-regulation of BCL2-associated X protein (BAX) by rotenone. Furthermore, ranitidine not only attenuated rotenone-induced cleavages of CASP9, poly(ADP-ribose) polymerase-1 (PARP) and CASP3, but also suppressed CASP3 enzyme activity. These results indicate that ranitidine protects against rotenone-induced apoptosis, inhibiting phosphorylation of JNK and P38, and activation of CASPs in human dopaminergic SH-SY5Y cells.
Wang, Yan-Lei; Jing, You-Ling; Cai, Qing-Yan; Cui, Guo-Jin; Zhang, Yi-Bing; Zhang, Feng-Yu
2012-03-01
To investigate the relationship between apoptosis-related genes and lung injury induced by intestinal ischemia reperfusion and to explore the effects and its possible mechanism of sodium aescinate. Rat model of intestinal I/R injury was established with clamping of the superior mesenteric artery for 60 min and then clamping was relieved for 60 min. Twenty-four SD rats were randomly divided into three groups with eight rats in each: sham group, intestinal ischemia/reperfusion group (I/R group) and sodium aescinate group (SA + I/R group). Lung wet/dry weight ratio, lung coefficient and Superoxide dismutase (SOD), malondialdehyde (MDA) in plasma and lung tissue were measured, as well as the expression levels of Bcl-2 and Bax proteins in lung tissue were examined using immunohistochemical method. Compared with sham group, lung wet/dry weight ratio, lung coefficient and MDA in plasma and lung tissue were significantly increased, and while the activity of SOD in plasma and lung tissue were decreased significantly in I/R group. At the same time, the protein expression level of Bcl-2 and Bax were significantly increased. But Bax protein expression was much greater than that of Bcl-2, the ratio of Bcl-2 to Bax was decreased significantly in I/R group than that in sham group. Compared with I/R group, lung wet/dry weight ratio, lung coefficient and MDA in plasma and lung tissue were significantly decreased, and while the activity of SOD in serum and lung tissue were significantly increased in SA + I/R group. At the same time, Bax protein expression was significantly decreased, both Bcl-2 protein expression and the ratio of Bcl-2 to Bax were significantly increased in SA + I/R group than that in I/R group. Lung injury induced by intestinal ischemia reperfusion is correlated with abnormal expression levels of Bcl-2 and Bax protein which is caused by oxidative injury. Sodium aescinate can protect the lung injury induced by intestinal ischemia/reperfusion (I/R), which may be mediated by inhibiting lipid peroxidation, upregulating Bcl-2 gene protein expression, improving the ratio of Bcl-2/ Bax to inhibit lung apoptosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamagishi, Nobuyuki; Ishihara, Keiichi; Saito, Youhei
2006-10-15
Hsp105 (Hsp105{alpha} and Hsp105{beta}), major heat shock proteins in mammalian cells, belong to a subgroup of the HSP70 family, HSP105/110. Previously, we have shown that Hsp105{alpha} has completely different effects on stress-induced apoptosis depending on cell type. However, the molecular mechanisms by which Hsp105{alpha} regulates stress-induced apoptosis are not fully understood. Here, we established HeLa cells that overexpress either Hsp105{alpha} or Hsp105{beta} by removing doxycycline and examined how Hsp105 modifies staurosporine (STS)-induced apoptosis in HeLa cells. Apoptotic features such as the externalization of phosphatidylserine on the plasma membrane and nuclear morphological changes were induced by the treatment with STS, andmore » the STS-induced apoptosis was suppressed by overexpression of Hsp105{alpha} or Hsp105{beta}. In addition, we found that overexpression of Hsp105{alpha} or Hsp105{beta} suppressed the activation of caspase-3 and caspase-9 by preventing the release of cytochrome c from mitochondria. Furthermore, the translocation of Bax to mitochondria, which results in the release of cytochrome c from the mitochondria, was also suppressed by the overexpression of Hsp105{alpha} or Hsp105{beta}. Thus, it is suggested that Hsp105 suppresses the stress-induced apoptosis at its initial step, the translocation of Bax to mitochondria in HeLa cells.« less
Wang, Xiuling; Wu, Jianming; Yu, Chonglin; Tang, Yong; Liu, Jian; Chen, Haixia; Jin, Bingjin; Mei, Qibing; Cao, Shousong; Qin, Dalian
2017-01-01
Lychee seed is a traditional Chinese medicine and possesses many activities, including hypoglycemia, liver protection, antioxidation, antivirus, and antitumor. However, its effect on neuroprotection is still unclear. The present study investigated the effects of lychee seed saponins (LSS) on neuroprotection and associated mechanisms. We established a rat model of Alzheimer’s disease (AD) by injecting Aβ25–35 into the lateral ventricle of rats and evaluated the effect of LSS on spatial learning and memory ability via the Morris water maze. Neuronal apoptosis was analyzed by hematoxylin and eosin stain and terminal deoxynucleotidyl transferase (Tdt)-mediated dUTP nick-end labeling analysis, and mRNA expression of caspase-3 and protein expressions of Bax and Bcl-2 by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, respectively. The results showed that LSS remarkably improved cognitive function and alleviated neuronal injury by inhibiting apoptosis in the hippocampus of AD rats. Furthermore, the mRNA expression of caspase-3 and the protein expression of Bax were downregulated, while the protein expression of Bcl-2 and the ratio of Bcl-2/Bax were increased by LSS. We demonstrate that LSS significantly improves cognitive function and prevent neuronal injury in the AD rats via regulation of the apoptosis pathway. Therefore, LSS may be developed as a nutritional supplement and sold as a drug for AD prevention and/or treatment. PMID:28165366
Li, Qi; Chen, Xi; Kan, Xiao-Xi; Li, Yu-Jie; Yang, Qing; Wang, Ya-Jie; Chen, Ying; Weng, Xiao-Gang; Cai, Wei-Yan; Huang, He-Fei; Zhu, Xiao-Xin
2016-02-01
To reveal the protective and anti-apoptosis effect of compound Ginkgo biloba granules on oxidative stress injury of human umbilical vein endothelial cells (HUVEC). Negative control group, H2O2 model group and 4 drug pretreatment groups (80, 160, 320, 640 mg• L⁻¹) were established. The cell proliferation, morphological changes in each group after oxidative stress injury was detected by MTT assay and through microscope observation respectively. The content of LDH, MDA, SOD and NO and SOD activity in supernatant were detected to judge the protection effect of the drugs on endothelial cells. The protective effect on HUVEC apoptosis was analyzed by Caspase-3 activity test and Annexin V-FITC/PI staining. Western blot was used to observe the expression of apoptosis-related proteins Bcl-2 and Bax. Results showed that 1 200 μmol• L⁻¹ H2O2 can induce oxidative stress injury in endothelial cells and reduce the cell survival rate; cell proliferation inhibition degree is positively correlated with the effect time of H2O2. Besides, 80, 160, 320 640 mg•L⁻¹ compound Ginkgo biloba granules can protect HUVEC from oxidative stress injury, recover the normal proliferation level of cells, improve their state, prohibit cell apoptosis, and can up-regulate and down-regulate the expression level of Bcl-2 and Bax respectively. In conclusion, compound G. biloba granules can protect HUVEC from the oxidative stress injury induced by H2O2, its mechanism may be correlated with inhibition of the mitochondrial apoptotic pathway in HUVEC. Copyright© by the Chinese Pharmaceutical Association.
Development of Cre-loxP technology in zebrafish to study the regulation of fish reproduction.
Lin, Heng-Ju; Lee, Shu-Hua; Wu, Jen-Leih; Duann, Yeh-Fang; Chen, Jyh-Yih
2013-12-01
One cannot seek permission to market transgenic fish mainly because there is no field test or any basic research on technological developments for evaluating their biosafety. Infertility is a necessary adjunct to exploiting transgenic fish unless completely secure land-locked facilities are available. In this study, we report the generation of a Cre transgenic zebrafish line using a cytomegalovirus promoter. We also produced fish carrying the Bax1 and Bax2 plasmids; these genes were separated by two loxP sites under a zona pellucida C promoter or were driven by an anti-Müllerian hormone promoter. We inserted a red fluorescent protein gene between the two loxP sites. After obtaining transgenic lines with the two transgenic fish crossed with each other (Cre transgenic zebrafish x loxP transgenic zebrafish), the floxed DNA was found to be specifically eliminated from the female or male zebrafish, and apoptosis gene expressions caused ovarian and testicular growth cessation and degeneration. Overexpression of the Bax1 and Bax2 genes caused various expression levels of apoptosis-related genes. Accordingly, this transgenic zebrafish model system provides a method to produce infertile fish and may be useful for application to genetically modified fish.
Hu, Guang-Qiang; Du, Xi; Li, Yong-Jie; Gao, Xiao-Qing; Chen, Bi-Qiong; Yu, Lu
2017-01-01
Nicotiflorin is a flavonoid extracted from Carthamus tinctorius. Previous studies have shown its cerebral protective effect, but the mechanism is undefined. In this study, we aimed to determine whether nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis through the JAK2/STAT3 pathway. The cerebral ischemia/reperfusion injury model was established by middle cerebral artery occlusion/reperfusion. Nicotiflorin (10 mg/kg) was administered by tail vein injection. Cell apoptosis in the ischemic cerebral cortex was examined by hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Bcl-2 and Bax expression levels in ischemic cerebral cortex were examined by immunohistochemial staining. Additionally, p-JAK2, p-STAT3, Bcl-2, Bax, and caspase-3 levels in ischemic cerebral cortex were examined by western blot assay. Nicotiflorin altered the shape and structure of injured neurons, decreased the number of apoptotic cells, down-regulates expression of p-JAK2, p-STAT3, caspase-3, and Bax, decreased Bax immunoredactivity, and increased Bcl-2 protein expression and immunoreactivity. These results suggest that nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis via the JAK2/STAT3 pathway.
2013-01-01
Background Mitrella kentii (M. kentii) (Bl.) Miq, is a tree-climbing liana that belongs to the family Annonaceae. The plant is rich with isoquinoline alkaloids, terpenylated dihydrochalcones and benzoic acids and has been reported to possess anti-inflammatory activity. The purpose of this study is to assess the gastroprotective effects of desmosdumotin C (DES), a new isolated bioactive compound from M. kentii, on gastric ulcer models in rats. Methods DES was isolated from the bark of M. kentii. Experimental rats were orally pretreated with 5, 10 and 20 mg/kg of the isolated compound and were subsequently subjected to absolute ethanol-induced acute gastric ulcer. Gross evaluation, mucus content, gastric acidity and histological gastric lesions were assessed in vivo. The effects of DES on the anti-oxidant system, non-protein sulfhydryl (NP-SH) content, nitric oxide (NO)level, cyclooxygenase-2 (COX-2) enzyme activity, bcl-2-associated X (Bax) protein expression and Helicabacter pylori (H pylori) were also investigated. Results DES pre-treatment at the administered doses significantly attenuated ethanol-induced gastric ulcer; this was observed by decreased gastric ulcer area, reduced or absence of edema and leucocytes infiltration compared to the ulcer control group. It was found that DES maintained glutathione (GSH) level, decreased malondialdehyde (MDA) level, increased NP-SH content and NO level and inhibited COX-2 activity. The compound up regulated heat shock protein-70 (HSP-70) and down regulated Bax protein expression in the ulcerated tissue. DES showed interesting anti-H pylori effects. The efficacy of DES was accomplished safely without any signs of toxicity. Conclusions The current study reveals that DES demonstrated gastroprotective effects which could be attributed to its antioxidant effect, activation of HSP-70 protein, intervention with COX-2 inflammatory pathway and potent anti H pylori effect. PMID:23866830
Sun, Jing; Ling, Zongxin; Wang, Fangyan; Chen, Wenqian; Li, Haixiao; Jin, Jiangtao; Zhang, Huiqing; Pang, Mengqi; Yu, Junjie; Liu, Jiaming
2016-02-02
Probiotics participate actively in the neuropsychiatric disorders. However, their roles on ischemic stroke remain unclear. This study aims to determine whether Clostridium butyricum (C. butyricum) could attenuate cerebral ischemia/reperfusion (I/R) injury and its possible mechanisms. Male ICR mice were intragastrically pretreated with C. butyricum for 2 successive weeks, and then subjected to cerebral I/R injury induced by the bilateral common carotid artery occlusion (BCCAO) for 20min. After 24h of the reperfusion, neurological deficit scores were evaluated. Histopathological changes of the hippocampus neurons were observed using Hematoxylin and eosin (H&E) and TUNEL staining. Malondialdehyde (MDA) contents and superoxide dismutase (SOD) activities in the brain were detected. The expression of Caspase-3, Bax and Bcl-2 were investigated by Western blot and immunohistochemistry analysis. The butyrate contents in the brain were determined. Our results showed that cerebral I/R injury led to neurological deficit, increased levels of Caspase-3 and Bax and decreased Bcl-2/Bax ratio. C. butyricum significantly improved neurological deficit, relieved histopathologic change, decreased MDA contents and increased SOD activities in the I/R injury mice. After C. butyricum pretreatment, the expression of Caspase-3 and Bax were significantly decreased, the Bcl-2/Bax ratio was significantly increased, and butyrate contents in the brain were significantly increased. These findings suggested that C. butyricum is able to exert neuroprotective effects against I/R injury mice through anti-oxidant and anti-apoptotic mechanisms, and reversing decrease of butyrate contents in the brain might be involved in its neuroprotection. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Sedky, Nada K; El Gammal, Zaynab H; Wahba, Amir E; Mosad, Eman; Waly, Zahraa Y; El-Fallal, Amira Ali; Arafa, Reem K; El-Badri, Nagwa
2018-05-01
Despite advances in therapy of breast and ovarian cancers, they still remain among the most imperative causes of cancer death in women. The first can be considered one of the most widespread diseases among females, while the latter is more lethal and needs prompt treatment. Thus, the research field can still benefit from discovery of new compounds that can be of potential use in management of these grave illnesses. We hereby aimed to assess the antitumor activity of the phytosterol α-spinasterol isolated from Ganoderma resinaceum mushroom on human breast cancer cell lines (MCF-7, MDA-MB-231), as well as, on human ovarian cancer cell line (SKOV-3). The anti-tumor activity of α-spinasterol, isolated from the mycelial extract of the Egyptian G. resinaceum, on human breast and ovarian cancer cell lines was evaluated by MTT cell viability assay and AnnexinV/propidium iodide apoptosis assay. The molecular mechanism underlying this effect was assessed by the relative expression of the following markers; tumor suppressor (p53, BRCA1, BRCA2), apoptotic marker (Bax) and cell cycle progression markers (cyclin dependent kinases cdk4/6) using real-time PCR. Cell cycle analysis was performed for the three investigated cancer cell lines to explore the effect on cell cycle progression. Our findings showed that α-spinasterol exhibited a higher antitumor activity on MCF-7 cells relative to SKOV-3 cells, while its lowest antitumor activity was against MDA-MB-231 cells. A significant increase in the expression of p53 and Bax was observed in cells treated with α-spinasterol, while cdk4/6 were significantly down-regulated upon exposure to α-spinasterol. Cell cycle analysis of α-spinasterol treated cells showed a G 0 -G 1 arrest. In conclusion, α-spinasterol isolated from G. resinaceum mushroom exerts a potent inhibitory activity on breast and ovarian cancer cell lines in a time- and dose-dependent manner. This can be reasonified in lights of the compound's ability to increase p53 and Bax expressions, and to lower the expression of cdk4/6. © 2017 Wiley Periodicals, Inc.
N-acetylcysteine ameliorates contrast‑induced kidney injury in rats with unilateral hydronephrosis.
Xia, Qiang; Liu, Chunxiao; Zheng, Xia
2018-02-01
The aim of the present study was to investigate the protective effects of N‑acetylcysteine (NAC) on contrast‑induced acute kidney injury in rats with unilateral hyronephrosis. Eighty‑two male Sprague Dawley rats were randomized to undergo sham operation (n=14) or unilateral ureteral obstruction (UUO) (n=68). After 3 weeks, the UUO animals were randomized to three groups: NAC gastric perfusion, UUO+iohexol+NAC (n=24); normal saline perfusion, UUO+iohexol (n=24); and controls, UUO (n=20). After 3 days, UUO+iohexol+NAC and UUO+iohexol rats were injected with iohexol. One day after contrast, half of the rats were sacrificed to assess the pathological changes to the kidneys, serum creatinine, serum neutrophil gelatinase‑associated lipocalin (NGAL), renal cell apoptosis rate and expression of apoptosis regulators Bcl‑2/Bax. The remaining rats underwent obstruction relief and were analyzed 3 weeks later. Compared with the controls, serum NGAL levels were high in UUO+iohexol rats 1 day following injection and 3 weeks after obstruction relief, but UUO+iohexol+NAC rats exhibited lower serum NGAL levels compared with UUO+iohexol rats (all P<0.05). Following modeling, UUO+iohexol rats exhibited a significantly higher apoptosis rate of renal tubular cells, higher expression of Bax mRNA, and lower ratio of Bcl‑2/Bax (all P<0.05). Three weeks after obstruction relief, UUO+iohexol+NAC rats exhibited a lower apoptosis rate, lower Bax mRNA expression, higher expression of Bcl‑2 mRNA and higher ratio of Bcl‑2/Bax (all P<0.05) compared with day 1 following drug administration. The prophylactic use of NAC reduced the apoptotic rate of renal tubular cells following contrast exposition, which was accompanied by changes in the expression of Bcl‑2/Bax mRNA.
Estradiol increases the Bax/Bcl-2 ratio and induces apoptosis in the anterior pituitary gland.
Zaldivar, Verónica; Magri, María Laura; Zárate, Sandra; Jaita, Gabriela; Eijo, Guadalupe; Radl, Daniela; Ferraris, Jimena; Pisera, Daniel; Seilicovich, Adriana
2009-01-01
Estrogens are recognized as acting as modulators of pituitary cell renewal, sensitizing cells to mitogenic and apoptotic signals, thus participating in anterior pituitary homeostasis during the estrous cycle. The balance of pro- and antiapoptotic proteins of the Bcl-2 family is known to regulate cell survival and apoptosis. In order to understand the mechanisms underlying apoptosis during the estrous cycle, we evaluated the expression of the proapoptotic protein Bax and the antiapoptotic proteins Bcl-2 and Bcl-xL in the anterior pituitary gland in cycling female rats as well as the influence of estradiol on the expression of these proteins in anterior pituitary cells of ovariectomized rats. As determined by Western blot, the expression of Bax was higher in anterior pituitary glands from rats at proestrus than at diestrus I, Bcl-2 protein levels showed no difference and Bcl-xL expression was lower, thus increasing the Bax/Bcl-2 ratio at proestrus. Assessed by annexin V binding and flow cytometry, the percentage of apoptotic anterior pituitary cells was higher in rats at proestrus than at diestrus I. Chronic estrogen treatment in ovariectomized rats enhanced the Bax/Bcl-2 ratio and induced apoptosis. Moreover, incubation of cultured anterior pituitary cells from ovariectomized rats with 17beta-estradiol for 24 h increased the Bax/Bcl-2 ratio, decreased Bcl-xL expression and induced apoptosis. Our results demonstrate that estradiol increases the ratio between proapoptotic and antiapoptotic proteins of the Bcl-2 family. This effect could participate in the sensitizing action of estrogens to proapoptotic stimuli and therefore be involved in the high apoptotic rate observed at proestrus in the anterior pituitary gland.
Solomon, V Raja; Almnayan, Danah; Lee, Hoyun
2017-09-08
Both quinacrine, which contains a 9-aminoacridine scaffold, and thiazolidin-4-one are promising anticancer leads. In an attempt to develop effective and potentially safe anticancer agents, we synthesized 23 novel hybrid compounds by linking the main structural unit of the 9-aminoacridine ring with the thiazolidin-4-one ring system, followed by examination of their anticancer effects against three human breast tumor cell lines and matching non-cancer cells. Most of the hybrid compounds showed good activities, and many of them possessed the preferential killing property against cancer over non-cancer cells. In particular, 3-[3-(6-chloro-2-methoxy-acridin-9-ylamino)-propyl]-2-(2,6-difluoro-phenyl)-thiazolidin-4-one (11; VR118) effectively killed/inhibited proliferation of cancer cells at IC 50 values in the range of 1.2-2.4 μM. Furthermore, unlike quinacrine or cisplatin, compound 11 showed strong selectivity for cancer cell killing, as it could kill cancer cells 7.6-fold (MDA-MB231 vs MCF10A) to 14.7-fold (MCF7 vs MCF10A) more effectively than matching non-cancer cells. Data from flow cytometry, TUNEL and Western blot assays showed that compound 11 kills cancer cells by apoptosis through the down-regulation of Bcl-2 (but not Bcl-X L ) survival protein and up-regulation of Bad and Bax pro-apoptotic proteins. Thus, compound 11 is a highly promising lead for an effective and potentially anticancer therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Johnson, M Cecilia; Torres, Marisa; Alves, Alessandra; Bacallao, Ketty; Fuentes, Ariel; Vega, Margarita; Boric, M Angélica
2005-01-01
Background Endometriosis is a common gynaecological disorder characterized by the presence of endometrial tissue outside of the uterus. The fragments in normal menstruation are composed of necrotic and living cells, which do not survive in ectopic locations because of programmed cell death. The aim of this study was to evaluate if the balance between cell proliferation and apoptosis is changed in eutopic endometrium from women with endometriosis throughout the menstrual cycle by studying bax (pro-apoptotic), c-myc (regulator of cell cycle) and TGF-beta1 (involved in cell differentiation) genes. Methods Eutopic endometrium was obtained from: 30 women with endometriosis (32.8 +/- 5 years) and 34 fertile eumenorrheic women (36 +/- 5.3 years). We analyzed apoptosis (TUNEL: DNA fragmentation); cell proliferation (immunohistochemistry (IHC) for Ki67); c-myc, bax and TGF-beta1 mRNA abundance (RT-PCR) and TGF-beta1 protein (IHC) in endometrial explants. Results Cell proliferation strongly decreased from proliferative to late secretory phases in glands, but not in stroma, in both endometria. Positive staining in glands and stroma from proliferative endometrium with endometriosis was 1.9- and 2.2-fold higher than control endometrium, respectively (p < 0.05). Abundance of c-myc mRNA was 65% higher in proliferative endometrium from endometriosis than normal tissue (p < 0.05). TGF-beta1 (mRNA and protein) augmented during mid secretory phase in normal endometrium, effect not observed in endometrium with endometriosis. In normal endometrium, the percentage of apoptotic epithelial and stromal cells increased more than 30-fold during late secretory phase. In contrast, in endometrium from endometriosis, not only this increase was not observed, besides bax mRNA decreased 63% versus normal endometrium (p < 0.05). At once, in early secretory phase, apoptotic stromal cells increased 10-fold with a concomitant augment of bax mRNA abundance (42%) in endometria from endometriosis (p < 0.05). Conclusion An altered expression of c-myc, TGF-beta1 and bax was observed in eutopic endometrium from endometriosis, suggesting its participation in the regulation of cell survival in this disease. The augmented cell viability in eutopic endometrium from these patients as a consequence of a reduction in cell death by apoptosis, and also an increase in cell proliferation indicates that this condition may facilitate the invasive feature of the endometrium. PMID:16150151
SPATA4 Counteracts Etoposide-Induced Apoptosis via Modulating Bcl-2 Family Proteins in HeLa Cells.
Jiang, Junjun; Li, Liyuan; Xie, Mingchao; Fuji, Ryosuke; Liu, Shangfeng; Yin, Xiaobei; Li, Genlin; Wang, Zhao
2015-01-01
Spermatogenesis associated 4 (SPATA4) is a testis-specific gene first cloned by our laboratory, and plays an important role in maintaining the physiological function of germ cells. Accumulated evidence suggests that SPATA4 might be associated with apoptosis. Here we established HeLa cells that stably expressed SPATA4 to investigate the function of SPATA4 in apoptosis. SPATA4 protected HeLa cells from etoposide-induced apoptosis through the mitochondrial apoptotic pathway, in the way that SPATA4 suppressed decrease of the mitochondrial membrane potential, the release of cytochrome c, and subsequent activation of caspase-9 and -3. We further demonstrated that SPATA4 upregulated anti-apoptotic members of Bcl-2 family proteins, Bcl-2, and downregulated the pro-apoptotic member of Bcl-2 family proteins, Bax. Knockdown of SPATA4 in HeLa/SPATA4 cells could partially rescue expression levels of bcl-2 and bax. In conclusion, SPATA4 protects HeLa cells against etoposide-induced apoptosis through the mitochondrial apoptotic pathway. Our findings provide further evidence that SPATA4 plays a role in regulating apoptosis.
Ye, Y; Hou, R; Chen, J; Mo, L; Zhang, J; Huang, Y; Mo, Z
2012-04-01
Formononetin is a main active component of red clover plants (Trifolium pratense L.), and is considered as a phytoestrogen. Our previous studies demonstrated that formononetin caused cell cycle arrest at the G0/G1 phase by inactivating insulin-like growth factor 1(IGF1)/IGF1R-phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in MCF-7 cells. In the present study, we investigated the molecular mechanisms involved in the effect of formononetin on prostate cancer cells. Our results suggested that higher concentrations of formononetin inhibited the proliferation of prostate cancer cells (LNCaP and PC-3), while the most striking effect was observed in LNCaP cells. We further found that formononetin inactivated extracellular signal-regulated kinase1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signaling pathway in a dose-dependent manner, which resulted in increased the expression levels of BCL2-associated X (Bax) mRNA and protein, and induced apoptosis in LNCaP cells. Thus, we concluded that the induced apoptosis effect of formononetin on human prostate cancer cells was related to ERK1/2 MAPK-Bax pathway. Considering that red clover plants were widely used clinically, our results provided the foundation for future development of different concentrations formononetin for treatment of prostate cancer. © Georg Thieme Verlag KG Stuttgart · New York.
Proapoptotic Bak and Bax guard against fatal systemic and organ-specific autoimmune disease
Mason, Kylie D.; Lin, Ann; Robb, Lorraine; Josefsson, Emma C.; Henley, Katya J.; Gray, Daniel H. D.; Kile, Benjamin T.; Roberts, Andrew W.; Strasser, Andreas; Huang, David C. S.; Waring, Paul; O’Reilly, Lorraine A.
2013-01-01
Dysregulation of the “intrinsic” apoptotic pathway is associated with the development of cancer and autoimmune disease. Bak and Bax are two proapoptotic members of the Bcl-2 protein family with overlapping, essential roles in the intrinsic apoptotic pathway. Their activity is critical for the control of cell survival during lymphocyte development and homeostasis, best demonstrated by defects in thymic T-cell differentiation and peripheral lymphoid homeostasis caused by their combined loss. Because most bak−/−bax−/− mice die perinatally, the roles of Bax and Bak in immunological tolerance and prevention of autoimmune disease remain unclear. We show that mice reconstituted with a Bak/Bax doubly deficient hematopoietic compartment develop a fatal systemic lupus erythematosus-like autoimmune disease characterized by hypergammaglobulinemia, autoantibodies, lymphadenopathy, glomerulonephritis, and vasculitis. Importantly, these mice also develop a multiorgan autoimmune disease with autoantibodies against most solid glandular structures and evidence of glandular atrophy and necrotizing vasculitis. Interestingly, similar albeit less severe pathology was observed in mice containing a hematopoietic compartment deficient for only Bak, a phenotype reminiscent of the disease seen in patients with point mutations in BAK. These studies demonstrate a critical role for Bak and an ancillary role for Bax in safeguarding immunological tolerance and prevention of autoimmune disease. This suggests that direct activators of the intrinsic apoptotic pathway, such as BH3 mimetics, may be useful for treatment of diverse autoimmune diseases. PMID:23349374
Hosseini, Farzaneh Sadat; Falahati-Pour, Soudeh Khanamani; Hajizadeh, Mohammad Reza; Khoshdel, Alireza; Mirzaei, Mohammad Reza; Ahmadirad, Hadis; Behroozi, Reza; Jafari, Nesa; Mahmoodi, Mehdi
2017-08-01
This study investigated the potential of Persian shallot extract as an anticancer agent in HepG2 tumor cell line, an in vitro human hepatoma cancer model system. The inhibitory effect of Persian shallot on the growth of HepG2 cells was measured by MTT assay. To explore the underlying mechanism of cell growth inhibition of Persian shallot, the activity of Persian shallot in inducing apoptosis was investigated through the detection of annexin V signal by flow cytometry and expression of some apoptosis related genes such p21, p53, puma, caspase-8 family-Bcl-2 proteins like bid, bim, bcl-2 and bax were measured by real-time PCR in HepG2 cells. Persian shallot extract inhibited the growth of HepG2 cells in a dose-dependent manner. The IC 50 value (inhibiting cell growth by 50%) was 149 μg/ml. The results of real-time PCR revealed a significant up-regulation of bid, bim, caspase-8, puma, p53, p21 and bax genes and a significant downregulation of bcl-2 gene in HepG2 cells treated with Persian shallot extract significantly. Therefore, this is the first report on an increased expression of bid, bim, caspase-8, puma, p53, p21 and bax genes and down regulation of bcl-2 gene indicating that the Persian shallot extract possibly induced the process of cell death through the intrinsic and extrinsic apoptosis pathways and triggers the programmed cell death in HepG2 tumor cell lines by modulating the expression of pro-/anti-apoptotic genes. Furthermore, we showed that Persian shallot extract increased annexin V signal and expression, resulting in apoptotic cell death of HepG2 cells after 24 h treatment. Therefore, according to the results of this study, the Persian shallot extract could be considered as a potential candidate for production of drug for the prevention or treatment of human hepatoma.
Glioblastoma cells deficient in DNA-dependent protein kinase are resistant to cell death.
Chen, George G; Sin, Fanny L F; Leung, Billy C S; Ng, Ho K; Poon, Wai S
2005-04-01
DNA-dependent protein kinase (DNA-PK), a nuclear serine/threonine kinase, is responsible for the DNA double-strand break repair. Cells lacking or with dysfunctional DNA-PK are often associated with mis-repair, chromosome aberrations, and complex exchanges, all of which are known to contribute to the development of human cancers including glioblastoma. Two human glioblastoma cell lines were used in the experiment, M059J cells lacking the catalytic subunit of DNA-PK, and their isogenic but DNA-PK proficient counterpart, M059K. We found that M059K cells were much more sensitive to staurosporine (STS) treatment than M059J cells, as demonstrated by MTT assay, TUNEL detection, and annexin-V and propidium iodide (PI) staining. A possible mechanism responsible for the different sensitivity in these two cell lines was explored by the examination of Bcl-2, Bax, Bak, and Fas. The cell death stimulus increased anti-apoptotic Bcl-2 and decreased pro-apoptotic Bcl-2 members (Bak and Bax) and Fas in glioblastoma cells deficient in DNA-PK. Activation of DNA-PK is known to promote cell death of human tumor cells via modulation of p53, which can down-regulate the anti-apoptotic Bcl-2 member proteins, induce pro-apoptotic Bcl-2 family members and promote a Bax-Bak interaction. Our experiment also demonstrated that the mode of glioblastoma cell death induced by STS consisted of both apoptosis and necrosis and the percentage of cell death in both modes was similar in glioblastoma cell lines either lacking DNA-PK or containing intact DNA-PK. Taken together, our findings suggest that DNA-PK has a positive role in the regulation of apoptosis in human glioblastomas. The aberrant expression of Bcl-2 family members and Fas was, at least in part, responsible for decreased sensitivity of DNA-PK deficient glioblastoma cells to cell death stimuli. 2004 Wiley-Liss, Inc.
Aboutaleb, Nahid; Shamsaei, Nabi; Rajabi, Hamid; Khaksari, Mehdi; Erfani, Sohaila; Nikbakht, Farnaz; Motamedi, Pezhman; Shahbazi, Ali
2016-01-01
Ischemia leads to loss of neurons by apoptosis in specific brain regions, especially in the hippocampus. The purpose of this study was investigating the effects of exercise preconditioning on expression of Bax, Bcl-2, and caspase-3 proteins in hippocampal CA1 neurons after induction of cerebral ischemia. Male rats weighing 260-300 g were randomly allocated into three groups (sham, exercise, and ischemia). The rats in exercise group were trained to run on a treadmill 5 days a week for 4 weeks. Ischemia was induced by the occlusion of both common carotid arteries (CCAs) for 20 min. Levels of expression of Bax, Bcl-2, and caspase-3 proteins in CA1 area of hippocampus were determined by immunohistochemical staining . The number of active caspase-3-positive neurons in CA1 area were significantly increased in ischemia group, compared to sham-operated group (P<0.001), and exercise preconditioning significantly reduced the ischemia/reperfusion-induced caspase-3 activation, compared to the ischemia group (P<0.05). Also, results indicated a significant increase in Bax/Bcl-2 ratio in ischemia group, compared to sham-operated group (P<0.001). This study indicated that exercise has a neuroprotective effects against cerebral ischemia when used as preconditioning stimuli.
Zhao, Tian-Yong; Zou, Shi-Ping; Knapp, Pamela E.
2007-01-01
The health effects of cell phone radiation exposure are a growing public concern. This study investigated whether expression of genes related to cell death pathways are dysregulated in primary cultured neurons and astrocytes by exposure to a working GSM (Global System for Mobile Communication) cell phone rated at a frequency of 1900 MHz. Primary cultures were exposed to cell phone emissions for 2 hrs. We used array analysis and real-time RT-PCR to show up-regulation of caspase-2, caspase-6 and Asc (apoptosis associated speck-like protein containing a card) gene expression in neurons and astrocytes. Upregulation occurred in both “on” and “stand-by” modes in neurons, but only in “on” mode in astrocytes. Additionally, astrocytes showed up-regulation of the Bax gene. The effects are specific since up-regulation was not seen for other genes associated with apoptosis, such as caspase-9 in either neurons and astrocytes, or Bax in neurons. The results show that even relatively short-term exposure to cell phone radiofrequency emissions can up-regulate elements of apoptotic pathways in cells derived from the brain, and that neurons appear to be more sensitive to this effect than astrocytes. PMID:17187929
Caspase cascade regulated mitochondria mediated apoptosis in monocrotophos exposed PC12 cells.
Kashyap, M P; Singh, A K; Siddiqui, M A; Kumar, V; Tripathi, V K; Khanna, V K; Yadav, S; Jain, S K; Pant, A B
2010-11-15
Monocrotophos (MCP) is a commonly used organophosphorus (OP) pesticide. We studied apoptotic changes in PC12 cells exposed to MCP. A significant induction in reactive oxygen species (ROS), lipid peroxide (LPO), and the ratio of glutathione disulfide (GSSG)/reduced glutathione (GSH) was observed in cells exposed to selected doses of MCP. Following the exposure of PC12 cells to MCP, the levels of protein and mRNA expressions of Caspase-3, Caspase-9, Bax, p53, P(21), Puma, and cytochrome-c were significantly upregulated, whereas the levels of Bcl(2), Bcl(w), and Mcl1 were downregulated. TUNEL assay, DNA laddering, and micronuclei induction show that long-term exposure of PC12 cells to MCP at higher concentration (10(-5) M) decreases the number of apoptotic events due to an increase in the number of necrotic cells. MCP-induced translocation of Bax and cytochrome-c proteins between the cytoplasm and mitochondria confirmed the role of p53 and Puma in mitochondrial membrane permeability. Mitochondria mediated apoptosis induction was confirmed by the increased activity of caspase cascade. We believe that this is the first report showing MCP-induced apoptosis in PC12 cells, which is mitochondria mediated and regulated through the caspase cascade. Our data demonstrates that MCP induced the apoptotic cell death in neuronal cells and identifies the possible cellular and molecular mechanisms of organophosphate pesticide-induced apoptosis in neuronal cells.
Tsubaki, Masanobu; Takeda, Tomoya; Asano, Ryo-Ta; Matsuda, Tomoyuki; Fujimoto, Shin-Ichiro; Itoh, Tatsuki; Imano, Motohiro; Satou, Takao; Nishida, Shozo
2018-02-01
Oral mucositis is a common adverse effect of chemotherapy that limits the required dose of chemotherapeutic agents. Numerous attempts to mitigate chemotherapy-induced oral mucositis have failed to identify an appropriate treatment. Recently, it has been indicated that rebamipide prevents chemoradiotherapy-induced oral mucositis in patients. However, the details of the underlying mechanism involved in the cytoprotective effect of rebamipide remain obscure. In the present study, we investigated the mechanism behind rebamipide cytoprotective effect in the oral mucosa using primary normal human oral keratinocytes (NHOK cells). We found that rebamipide prevented 5-fluorouracil (5-FU)-induced cell death in NHOK cells. In addition, rebamipide increased the levels of phosphorylated Akt and mTOR, enhanced the Bcl-2 and Bcl-xL expressions, and suppressed the expression of Bax and Bim. This is in contrast to 5-FU-induced suppression of Akt and mTOR activation, Bcl-2 and Bcl-xL expressions, and the enhanced expression of Bax and Bim. These findings suggest that rebamipide can potentially be used for the protection of oral mucosa from chemotherapy-induced mucositis. This is the first study that elucidates the specific molecular pathway for the cytoprotective effect of rebamipide. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yao, Ling-Ling; Huang, Xiao-Wei; Wang, Yong-Gang; Cao, Yin-Xiang; Zhang, Cai-Cai; Zhu, Yi-Chun
2010-05-01
Hydrogen sulfide (H(2)S) is an endogenously generated gaseous transmitter, which has recently been suggested to regulate cardiovascular functions. The present study aims to clarify the mechanisms underlying the cardioprotective effects of H(2)S. Signaling elements were examined in cardiomyocytes cultured under hypoxia/reoxygenation conditions and in a rat model of ischemia-reperfusion. In cultured cardiomyocytes, sodium hydrosulfide (NaHS; 10, 30, and 50 mumol/l) showed concentration-dependent inhibitory effects on cardiomyocyte apoptosis induced by hypoxia/reoxygenation. These effects were associated with an increase in phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) (Ser9) and a decrease in Bax translocation, caspase-3 activation, and mitochondrial permeability transition pore (mPTP) opening. Transfection of a phosphorylation-resistant mutant of GSK-3beta at Ser9 attenuated the effects of NaHS in reducing cardiomyocyte apoptosis, Bax translocation, caspase-3 activation, and mPTP opening. In a rat model of ischemia-reperfusion, NaHS administration reduced myocardial infarct size and increased the phosphorylation of GSK-3beta (Ser9) at a dose of 30 mumol/kg. In conclusion, the H(2)S donor prevents cardiomyocyte apoptosis by inducing phosphorylation of GSK-3beta (Ser9) and subsequent inhibition of mPTP opening.
Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jae Hyeon; Hanyang Biomedical Research Institute, Seoul; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul
Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition,more » we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. - Highlights: ► Chlorpyrifos (CPF) is cytotoxic to SH-SY5Y cells ► CPF-induced cytotoxicity is mediated by apoptosis ► CPF induces autophagy in SH-SY5Y cells ► Autophagy regulates CPF-induced apoptosis in SH-SY5Y cells.« less
Singh, R; Upadhyay, G; Kumar, S; Kapoor, A; Kumar, A; Tiwari, M; Godbole, M M
2003-01-01
Thyroid hormone (TH) deficiency results in delayed proliferation and migration of cerebellar granule cells. Although extensive cell loss during the development of the cerebellum under hypothyroid conditions is known, its nature and its mechanism are poorly understood. Bcl-2 family gene expression is known to determine the fate of cells to undergo apoptosis. We evaluated the effect of hypothyroidism on Bcl-2 family gene expression in the developing rat cerebellum. Electrophoresis and Western blotting were used to analyze DNA fragmentation and expression of DNA fragmentation factor (DFF-45), Bcl-2, Bcl-xL and Bax genes respectively. In the hypothyroid condition, extensive DNA fragmentation and enhanced cleavage of DFF-45 were seen throughout development (postnatal day 0 to day 24) and adulthood whereas they were absent in the euthyroid state. The anti-apoptotic genes Bcl-2 and Bcl-xL were down-regulated and the pro-apoptotic gene Bax was expressed at higher levels compared with the euthyroid state. These results suggest that normal levels of TH prevent cerebellar apoptosis to a large extent, whereas hypothyroidism not only increases the extent but also the duration of apoptosis by down-regulating the anti-apoptotic genes and maintaining a high level of the pro-apoptotic gene Bax.
Thankayyan R, Santhosh Kumar; Sithul, Hima; Sreeharshan, Sreeja
2012-01-01
The main aim of the present work was to investigate the potential effect of acetone extract of Ficus religosa leaf (FAE) in multiple apoptosis signalling in human breast cancer cells. FAE treatment significantly induced dose and time dependent, irreversible inhibition of breast cancer cell growth with moderate toxicity to normal breast epithelial cells. This observation was validated using Sulforhodamine B assay. Cell cycle analysis by Flow cytometry showed cell cycle arrest in G1 phase and induction of sub-G0 peak. FAE induced chromatin condensation and displayed an increase in apoptotic population in Annexin V-FITC/PI (Fluorescein isothiocyanate/Propidium iodide) double staining. FAE stimulated the loss of mitochondrial membrane potential in multiple breast cancer cell lines when compared to normal diploid cells. To understand the role of Bax in FAE induced apoptosis, we employed a sensitive cell based platform of MCF-7 cells expressing Bax-EGFP. Bax translocation to mitochondria was accompanied by the disruption of mitochondrial membrane potential and marked elevation in LEHDase activity (Caspase 9). Consistent with this data, FAE induced Caspase activation as evidenced by ratio change in FRET Caspase sensor expressing MCF-7 cell line and cleavage of prominent Caspases and PARP. Interestingly, FAE accelerated cell death in a mitochondrial dependent manner in continuous live cell imaging mode indicating its possible photosensitizing effect. Intracellular generation of reactive oxygen species (ROS) by FAE played a critical role in mediating apoptotic cell death and photosensitizing activity. FAE induced dose and time dependent inhibition of cancer cell growth which was associated with Bax translocation and mitochondria mediated apoptosis with the activation of Caspase 9 dependent Caspase cascade. FAE also possessed strong photosensitizing effect on cancer cell line that was mediated through rapid mitochondrial transmembrane potential loss and partial Caspase activation involving generation of intracellular ROS. PMID:22792212
Ching, Biyun; Chen, Xiu L.; Yong, Jing H. A.; Wilson, Jonathan M.; Hiong, Kum C.; Sim, Eugene W. L.; Wong, Wai P.; Lam, Siew H.; Chew, Shit F.; Ip, Yuen K.
2013-01-01
This study aimed to test the hypothesis that branchial osmoregulatory acclimation involved increased apoptosis and replacement of mitochdonrion-rich cells (MRCs) in the climbing perch, Anabas testudineus, during a progressive acclimation from freshwater to seawater. A significant increase in branchial caspase-3/-7 activity was observed on day 4 (salinity 20), and an extensive TUNEL-positive apoptosis was detected on day 5 (salinity 25), indicating salinity-induced apoptosis had occurred. This was further supported by an up-regulation of branchial mRNA expression of p53, a key regulator of cell cycle arrest and apoptosis, between day 2 (salinity 10) and day 6 (seawater), and an increase in branchial p53 protein abundance on day 6. Seawater acclimation apparently activated both the extrinsic and intrinsic pathways, as reflected by significant increases in branchial caspase-8 and caspase-9 activities. The involvement of the intrinsic pathway was confirmed by the significant increase in branchial mRNA expression of bax between day 4 (salinity 20) and day 6 (seawater). Western blotting results revealed the presence of a freshwater Na+/K+-ATPase (Nka) α-isoform, Nka α1a, and a seawater isoform, Nka α1b, the protein abundance of which decreased and increased, respectively, during seawater acclimation. Immunofluorescence microscopy revealed the presence of two types of MRCs distinctly different in sizes, and confirmed that the reduction in Nka α1a expression, and the prominent increases in expression of Nka α1b, Na+:K+:2Cl− cotransporter 1, and cystic fibrosis transmembrane conductance regulator Cl− channel coincided with the salinity-induced apoptotic event. Since modulation of existing MRCs alone could not have led to extensive salinity-induced apoptosis, it is probable that some, if not all, freshwater-type MRCs could have been removed through increased apoptosis and subsequently replaced by seawater-type MRCs in the gills of A. testudineus during seawater acclimation. PMID:23760020
Wang, Yansheng; Liu, Changqing; Wang, Jianchun; Zhang, Yang; Chen, Linlin
2017-09-01
The aim of this study was to elucidate the effects of iodine-131 on the induction of apoptosis in human cardiac muscle cells and the underlying molecular mechanisms. We found that iodine-131 reduced cell proliferation, induced apoptosis, induced p53, PIDD, t-BID (mitochondria) protein expression, suppressed cytochrome c (mitochondria) protein expression, and increased Bax protein expression, and promoted caspase-2, -3 and -9 expression levels in human cardiac muscle cells. Meanwhile, si-p53 inhibited the effects of iodine-131 on the reduction in cell proliferation and induction of apoptosis in human cardiac muscle cells through regulation of Bax/cytochrome c/caspase-3 and PIDD/caspase‑2/t-BID/cytochrome c/caspase-3 signaling pathway. After si-Bax reduced the effects of iodine-131, it reduced cell proliferation and induced apoptosis in human cardiac muscle cells through the cytochrome c/caspase-3 signaling pathway. However, si-caspase-2 also reduced the effects of iodine-131 on the reduction of cell proliferation and induction of apoptosis in human cardiac muscle cells through the t-BID/cytochrome c/caspase-3 signaling pathway. These findings demonstrated that iodine-131 induces apoptosis in human cardiac muscle cells through the p53/Bax/caspase-3 and PIDD/caspase-2/t-BID/cytochrome c/caspase-3 signaling pathway.
Valdés, Francisco; Pásaro, Eduardo; Díaz, Inmaculada; Centeno, Alberto; López, Eduardo; García-Doval, Sandra; González-Roces, Severino; Alba, Alfonso; Laffon, Blanca
2008-06-01
Studies in rats with bilateral clamping of renal arteries showed transient Bcl-2, Bcl-xL and Bax expression in renal tubular epithelium following ischemia-reperfusion. However, current data on the preferential localization of specific mRNAs or proteins are limited because gene expression was not analysed at segmental level. This study analyses the mRNA expression of Bcl-2, Bcl-xL and Bax in four segments of proximal and distal tubules localized in the renal cortex and outer medulla in rat kidneys with bilateral renal clamping for 30 min and seven reperfusion times versus control animals without clamp. Proximal convoluted tubule (PCT), distal convoluted tubule (DCT), proximal straight tubule (PST) and medullary thick ascending limb (MTAL) were obtained by manual microdissection. RT-PCR was used to analyse mRNA expression at segmental level. Proximal convoluted tubule and MTAL showed early, persistent and balanced up-regulation of Bcl-2, Bcl-xL and Bax, while PST and DCT revealed only Bcl-2 and Bcl-xL, when only Bax was detected in PST. DCT expressed Bcl-xL initially, and persistent Bcl-2 later. These patterns suggest a heterogeneous apoptosis regulatory response in rat renal tubules after ischemia-reperfusion, independently of cortical or medullary location. This heterogeneity of the expression patterns of Bcl-2 genes could explain the different susceptibility to undergo apoptosis, the different threshold to ischemic damage and the different adaptive capacity to injury among these tubular segments.
Regulation of the ovarian oxidative status by leptin during the ovulatory process in rats.
Bilbao, María Guillermina; Di Yorio, María Paula; Galarza, Rocío Alejandra; Varone, Cecilia Laura; Faletti, Alicia Graciela
2015-04-01
Leptin exerts both stimulatory and inhibitory effects on the ovulatory process. In this study, we investigated whether these opposite effects involve changes in the oxidative status in response to different levels of leptin. To this end, we performed both in vivo and in vitro assays using ovaries of immature rats primed with gonadotropins to induce ovulation. Superoxide dismutase (SOD) and catalase (CAT) activity, lipid peroxidation, glutathione (GSH) content, and reactive oxygen species (ROS) were studied as oxidative damage-related parameters. The expression of BCL2, BAX, and caspase 3 were measured by western blot as apoptosis-related biomarkers. The acute treatment with leptin, which inhibits ovulation, decreased SOD activity and increased active caspase 3 expression. No differences were found in CAT activity, lipid peroxidation, or total GSH. In contrast, the daily administration of leptin, which induces ovulation, decreased GSH content, ROS levels, and Bax and active caspase 3 expression, but caused no changes in other parameters. In addition, the daily administration of leptin induced follicular growth, measured by the number of antral follicles in ovarian sections. Using ovarian explant cultures, we found increased BCL2 expression and decreased SOD activity at low and high concentrations of leptin respectively. Thus, leptin can modulate the oxidative status of the ovarian tissue, during the ovulatory process, by acting on different targets according to its circulating levels. At low concentration, leptin seems to play a protective role against the oxidative stress, whereas at high concentrations, this protein seems to be involved in cell death. © 2015 Society for Reproduction and Fertility.
Li, Weishan; Jiang, Binghua; Cao, Xianglin; Xie, Yongjiang; Huang, Ting
2017-01-05
Fluoride is an environmental toxicant and induces dental fluorosis and oxidative stress. Lycopene (LYC) is an effective antioxidant that is reported to attenuate fluoride toxicity. To determine the effects of LYC on sodium fluoride (NaF) -induced teeth and ameloblasts toxicity, rats were treated with NaF (10 mg/kg) and/or LYC (10 mg/kg) by orally administration for 5 weeks; ameloblasts were treated with NaF (5 mM) and/or LYC (2 μM) for 6 h. We found that the concentrations of fluoride, malondialdehyde (MDA) and reactive oxygen species (ROS), gene expressions and activities of Caspase-9 and Caspase-3, and the gene expressions of Bax were significantly decreased, while the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX), the gene expression of Bcl-2 were significantly increased in the LYC + NaF-treated rats group; concentrations of MDA and ROS, gene expressions and activities of Caspase-9 and Caspase-3, and the gene expression of Bax, and ameloblasts apoptosis rate were significantly decreased, while the activities of SOD and GPX, the gene expression of Bcl-2 were significantly increased in the LYC + NaF-treated ameloblasts group. These results suggest that LYC significantly combated NaF-induced ameloblasts apoptosis and dental fluorosis by attenuation oxidative stress and down-regulation Caspase pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Qu, Wei; Kang, Yin-Dong; Zhou, Mei-Sheng; Fu, Li-Li; Hua, Zhen-Hao; Wang, Li-Ming
2010-01-01
To investigate the inhibitory effect of histone deacetylase (HDAC) inhibitors (MS-275 and TSA) on T24 human bladder cancer cells in vitro, and explore the possible mechanism. The MTT assay was employed to evaluate the inhibitory effect of MS-275 and TSA on T24 cell growth. FCM was used to analyze the variation of T24 cell cycle distribution and the apoptotic ratio after T24 cells were treated with MS-275 and TSA. Histone acetylation level was detected by Western blot. mRNA expression of p21 WAF1/CIP1, cyclin A, and cyclin E was measured by FQ-PCR. Dynamic changes of Bcl-2 and bax expression were detected by FCM. MS-275 and TSA inhibited T24 cell growth in a concentration and time-dependent manner. Treatment with 4 μmol/l MS-275 or 0.4 μmol/l TSA blocked cell cycling in the G0/G1 phase and induced a significant increase in cell apoptosis. MS-275 and TSA significantly increased the level of histone acetylation, induced p21CIP1WAF1 mRNA expression, and inhibited cyclin A mRNA expression, though no significant effect was observed on cyclin E. Bcl-2 expression was down-regulated, while bax expression was up-regulated. HDAC inhibitors can block bladder cancer cell cycle in vitro and induce apoptosis. The molecular mechanism may be associated with increased level of histone acetylation, down-regulation of p21WAF1/CIP1 expression, up-regulation of cyclin A expression, and dynamic change of bcl-2 and bax expression. Copyright © 2010 Elsevier Inc. All rights reserved.
Gato, Worlanyo Eric; McGee, Stacey R.; Hales, Dale B.; Means, Jay C.
2014-01-01
Background/Objective: The modulation of the toxic effects of 2-aminoanthracene (2AA) on the liver by apoptosis was investigated. Fisher-344 (F344) rats were exposed to various concentrations of 2AA for 14 and 28 days. The arylamine 2AA is an aromatic hydrocarbon employed in manufacturing chemicals, dyes, inks, and it is also a curing agent in epoxy resins and polyurethanes. 2AA has been detected in tobacco smoke and cooked foods. Methods: Analysis of total messenger ribonucleic acid (mRNA) extracts from liver for apoptosis-related gene expression changes in apoptosis enhancing nuclease (AEN), Bcl2-associated X protein (BAX), CASP3, Jun proto-oncogene (JUN), murine double minute-2 p53 binding protein homolog (MDM2), tumor protein p53 (p53), and GAPDH genes by quantitative real-time polymerase chain reaction (qRT-PCR) was coupled with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and caspase-3 (Casp3) activity assays. Results: Specific apoptosis staining result does not seem to show significant difference between control and treated animals. This may be due to freeze-thaw artifacts observed in the liver samples. However, there appears to be a greater level of apoptosis in medium- and high-dose (MD and HD) 2AA treated animals. Analyses of apoptosis-related genes seem to show AEN and BAX as the main targets in the induction of apoptosis in response to 2AA exposure, though p53, MDM2, and JUN may play supporting roles. Conclusion: Dose-dependent increases in mRNA expression were observed in all genes except Casp3. BAX was very highly expressed in the HD rats belonging to the 2-week exposure group. This trend was not observed in the animals treated for 4 weeks. Instead, AEN was rather very highly expressed in the liver of the MD animals that were treated with 2AA for 28 days. PMID:24748736
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satsoura, D; Kucerka, Norbert; Shivakumar, S
2012-01-01
In response to apoptotic stimuli, the pro-apoptotic protein Bax inserts in the outer mitochondrial membrane, resulting in the formation of pores and the release of several mitochondrial components, and sealing the cell's fate. To study the binding of Bax to membranes, we used an in vitro system consisting of 50 nm diameter liposomes prepared with a lipid composition mimicking that of mitochondrial membranes in which recombinant purified full-length Bax was inserted via activation with purified tBid. We detected the association of the protein with the membrane using fluorescence fluctuation methods, and found that it could well be described by anmore » equilibrium between soluble and membrane-bound Bax and that at a high protein-toliposome ratio the binding seemed to saturate at about 15 Bax proteins per 50 nm diameter liposome. We then obtained structural data for samples in this saturated binding regime using small-angle neutron scattering under different contrast matching conditions. Utilizing a simple model to fit the neutron data, we observed that a significant amount of the protein mass protrudes above the membrane, in contrast to the conjecture that all of the membrane-associated Bax states are umbrella-like. Upon protein binding, we also observed a thinning of the lipid bilayer accompanied by an increase in liposome radius, an effect reminiscent of the action of antimicrobial peptides on membranes.« less
Todorova, Valentina K; Harms, Stacy A; Kaufmann, Yihong; Luo, Shaoke; Luo, Kevin Q; Babb, Kirk; Klimberg, V Suzanne
2004-12-01
Glutamine (GLN) is a non-essential amino acid that is present in nearly every biochemical pathway and is the major intraorgan nitrogen carrier. GLN via glutamate, is one of the precursors for the synthesis of glutathione (GSH), the major endogenous antioxidant in mammalian cells, which protects them from oxidative injury and cell death. Cancer cells have higher GSH levels than the surrounding normal cells, which attributes to a higher rate of cell proliferation and resistance to chemotherapy. Therefore, selective tumor depletion of GSH presents a promising strategy in cancer treatment. Experimental studies have associated decreased GSH levels with inhibition of proliferation and stimulation of apoptosis. Previous results of our laboratory have provided evidence that dietary GLN diminished tumor development in implantable as well as 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer and elevated GSH in the host tissues. In this study we examined the effects of GLN on GSH levels in DMBA-induced mammary tumors and correlated the results with protein and mRNA expression of apoptosis-related proteins Bcl-2, Bax and caspase-3 in tumor cells. The results have shown that GLN supplementation caused a significant decrease in the tumor GSH levels and the ratio GSH/oxidized GSH (GSSG), accompanied by up-regulation of Bax and caspase-3, and down-regulation of Bcl-2. These findings suggest that dietary GLN supplementation suppresses mammary carcinogenesis by activation of apoptosis in tumor cells and this probably is a result of GSH down-regulation.
Bulla, O; Poncet, A; Alberio, L; Asmis, L M; Gähler, A; Graf, L; Nagler, M; Studt, J-D; Tsakiris, D A; Fontana, P
2017-07-01
Measuring factor VIII (FVIII) activity can be challenging when it has been modified, such as when FVIII is pegylated to increase its circulating half-life. Use of a product-specific reference standard may help avoid this issue. Evaluate the impact of using a product-specific reference standard for measuring the FVIII activity of BAX 855 - a pegylated FVIII - in eight of Switzerland's main laboratories. Factor VIII-deficient plasma, spiked with five different concentrations of BAX 855, plus a control FVIII sample, was sent to the participating laboratories. They measured FVIII activity by using either with a one-stage (OSA) or the chromogenic assay (CA) against their local or a product-specific reference standard. When using a local reference standard, there was an overestimation of BAX 855 activity compared to the target concentrations, both with the OSA and CA. The use of a product-specific reference standard reduced this effect: mean recovery ranged from 127.7% to 213.5% using the OSA with local reference standards, compared to 110% to 183.8% with a product-specific reference standard, and from 146.3% to 182.4% using the CA with local reference standards compared to 72.7% to 103.7% with a product-specific reference standard. In this in vitro study, the type of reference standard had a major impact on the measurement of BAX 855 activity. Evaluation was more accurate and precise when using a product-specific reference standard. © 2017 John Wiley & Sons Ltd.
Xu, Qi-Bing; Chen, Xiang-Fan; Feng, Jiao; Miao, Jie-Fei; Liu, Ji; Liu, Feng-Tao; Niu, Bi-Xi; Cai, Jin-Yang; Huang, Chao; Zhang, Yanan; Ling, Yong
2016-01-01
A novel series of hybrids (7a-l, 8a-l) from β-carboline and salicylic acid (SA) were designed and synthesized, and their in vitro biological activities were evaluated. Most of the hybrids displayed potent antiproliferative activity against five cancer cell lines in vitro, showing potencies superior to 5-FU and harmine. In particular, compound 8h selectively inhibited proliferation of liver cancer SMMC-7721 cells but not normal liver LO2 cells, and displayed greater inhibitory selectivity than intermediate 5h and SA. 8h also induced cancer cell apoptosis in an Annexin V-FITC/propidium iodide flow cytometry assay, and triggered the mitochondrial/caspase apoptosis by decreasing mitochondrial membrane potential which was associated with up-regulation of Bax, down-regulation of Bcl-2 and activation levels of the caspase cascade in a concentration-dependent manner. Our findings suggest that the β-carboline/SA hybrids may hold greater promise as therapeutic agents for the intervention of human cancers. PMID:27824091
Luteolin and its inhibitory effect on tumor growth in systemic malignancies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapoor, Shailendra, E-mail: shailendrakapoor@yahoo.com
2013-04-01
Lamy et al have provided interesting data in their recent article in your esteemed journal. Luteolin augments apoptosis in a number of systemic malignancies. Luteolin reduces tumor growth in breast carcinomas. Luteolin mediates this effect by up-regulating the expression of Bax and down-regulating the expression of Bcl-xL. EGFR-induced MAPK activation is also attenuated. As a result there is increased G2/ M phase arrest. These effects have been seen both in vivo as well as in vitro. It also reduces ERα expression and causes inhibition of IGF-1 mediated PI3K–Akt pathway. Luteolin also activates p38 resulting in nuclear translocation of the apoptosis-inducingmore » factor. Simultaneously it also activates ERK. As a result there is increased intra-tumoral apoptosis which is caspase dependent as well as caspase independent. - Highlights: ► Luteolin and tumor growth in breast carcinomas. ► Luteolin and pulmonary cancer. ► Luteolin and colon cancer.« less
Myrtol ameliorates cartilage lesions in an osteoarthritis rat model.
Ying, Binbin; Maimaiti, Abudu Kelimujiang; Song, Donghui; Zhu, Songsong
2015-01-01
The aim of this study is to evaluate the effects of myrtol standardized on cartilage lesions in osteoarthritis (OA) rats. Fifty-six healthy Sprague-Dawley rats were randomly divided into sham group (13 rats) and OA model group (43 rats) with interior meniscus excision. Then serum estradiol (E2) and glycosaminoglycan (GAG) content in cartilage tissue were measured by radioimmunoassay and toluidine blue staining, respectively. After that, the model rats were randomly divided into low dose myrtol (LDM) group, middle dose myrtol (MDM) group and high dose myrtol (HDM) group (10 rats in each group) with treatment of 450 mg/kg, 300 mg/kg and 150 mg/kg myrtol, respectively. Then, Mankin scores were used to evaluate lesion extent of knee joint cartilage. Expression of tumor necrosis factor α (TNF-α), transforming growth factor β1 (TGF-β1), interleukin (IL)-6, Bax and Bcl-2 were investigated using PCR gel electrophoresis method. Mankin cores were lower in sham group and myrtol group than in model group. There were statistically significant differences (P < 0.01) between sham group and model group in expression of TNF-α, TGF-β1, IL-6, Bax and Bcl-2 in the cartilage tissue. Myrtol significantly reduced the expression of TNF-α, IL-6 and Bax, and increased the expression of TGF-β1 and Bcl-2 in myrtol group, comparing with those in model group (P < 0.01). Myrtol could down-regulate the expression of TNF-α, IL-6 and Bax, and up-regulate the expression of TGF-β1 and Bcl-2. Myrtol standardized is a promising drug to ameliorate knee cartilage lesions in the OA rat model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Ruma; Mukherjee, Sutapa; Biswas, Jaydip
Highlights: Black-Right-Pointing-Pointer HSPs (27, 70 and 90) and HSF1 are overexpressed in MCF-7 and MDA-MB-231 cells. Black-Right-Pointing-Pointer Sulphoraphane, a natural isothiocyanate inhibited HSPs and HSF1 expressions. Black-Right-Pointing-Pointer Inhibition of HSPs and HSF1 lead to regulation of apoptotic proteins. Black-Right-Pointing-Pointer Alteration of apoptotic proteins activate of caspases particularly caspase 3 and 9 leading to induction of apoptosis. Black-Right-Pointing-Pointer Alteration of apoptotic proteins induce caspases leading to induction of apoptosis. -- Abstract: Heat shock proteins (HSPs) are involved in protein folding, aggregation, transport and/or stabilization by acting as a molecular chaperone, leading to inhibition of apoptosis by both caspase dependent and/or independentmore » pathways. HSPs are overexpressed in a wide range of human cancers and are implicated in tumor cell proliferation, differentiation, invasion and metastasis. HSPs particularly 27, 70, 90 and the transcription factor heat shock factor1 (HSF1) play key roles in the etiology of breast cancer and can be considered as potential therapeutic target. The present study was designed to investigate the role of sulphoraphane, a natural isothiocyanate on HSPs (27, 70, 90) and HSF1 in two different breast cancer cell lines MCF-7 and MDA-MB-231 cells expressing wild type and mutated p53 respectively, vis-a-vis in normal breast epithelial cell line MCF-12F. It was furthermore investigated whether modulation of HSPs and HSF1 could induce apoptosis in these cells by altering the expressions of p53, p21 and some apoptotic proteins like Bcl-2, Bax, Bid, Bad, Apaf-1 and AIF. Sulphoraphane was found to down-regulate the expressions of HSP70, 90 and HSF1, though the effect on HSP27 was not pronounced. Consequences of HSP inhibition was upregulation of p21 irrespective of p53 status. Bax, Bad, Apaf-1, AIF were upregulated followed by down-regulation of Bcl-2 and this effect was prominent in MCF-7 than in MDA-MB-231. However, very little change in the expression of Bid was observed. Alteration in Bcl-2 Bax ratio resulted in the release of cytochrome c from mitochondria and activation of caspases 3 and 9 which are in agreement with apoptotic index values. Sulphoraphane therefore can be regarded as a potent inducer of apoptosis due to HSP modulation in breast cancer cells.« less
Regulation of ROS in transmissible gastroenteritis virus-activated apoptotic signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Li; College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158; Zhao, Xiaomin
Highlights: •TGEV infection induced ROS accumulation. •ROS accumulation is involved in TGEV-induced mitochondrial integrity impairment. •ROS is associated with p53 activation and apoptosis occurrence in TGEV-infected cells. -- Abstract: Transmissible gastroenteritis virus (TGEV), an enteropathogenic coronavirus, causes severe lethal watery diarrhea and dehydration in piglets. Previous studies indicate that TGEV infection induces cell apoptosis in host cells. In this study, we investigated the roles and regulation of reactive oxygen species (ROS) in TGEV-activated apoptotic signaling. The results showed that TGEV infection induced ROS accumulation, whereas UV-irradiated TGEV did not promote ROS accumulation. In addition, TGEV infection lowered mitochondrial transmembrane potentialmore » in PK-15 cell line, which could be inhibited by ROS scavengers, pyrrolidinedithiocarbamic (PDTC) and N-acetyl-L-cysteine (NAC). Furthermore, the two scavengers significantly inhibited the activation of p38 MAPK and p53 and further blocked apoptosis occurrence through suppressing the TGEV-induced Bcl-2 reduction, Bax redistribution, cytochrome c release and caspase-3 activation. These results suggest that oxidative stress pathway might be a key element in TGEV-induced apoptosis and TGEV pathogenesis.« less
Meessen-Pinard, Mathieu; Le Coupanec, Alain
2016-01-01
ABSTRACT Human coronaviruses (HCoV) are respiratory pathogens with neuroinvasive, neurotropic, and neurovirulent properties, highlighting the importance of studying the potential implication of these viruses in neurological diseases. The OC43 strain (HCoV-OC43) was reported to induce neuronal cell death, which may participate in neuropathogenesis. Here, we show that HCoV-OC43 harboring two point mutations in the spike glycoprotein (rOC/Us183–241) was more neurovirulent than the wild-type HCoV-OC43 (rOC/ATCC) in mice and induced more cell death in murine and human neuronal cells. To evaluate the role of regulated cell death (RCD) in HCoV-OC43-mediated neural pathogenesis, we determined if knockdown of Bax, a key regulator of apoptosis, or RIP1, a key regulator of necroptosis, altered the percentage of neuronal cell death following HCoV-OC43 infection. We found that Bax-dependent apoptosis did not play a significant role in RCD following infection, as inhibition of Bax expression mediated by RNA interference did not confer cellular protection against the cell death process. On the other hand, we demonstrated that RIP1 and MLKL were involved in neuronal cell death, as RIP1 knockdown and chemical inhibition of MLKL significantly increased cell survival after infection. Taken together, these results indicate that RIP1 and MLKL contribute to necroptotic cell death after HCoV-OC43 infection to limit viral replication. However, this RCD could lead to neuronal loss in the mouse CNS and accentuate the neuroinflammation process, reflecting the severity of neuropathogenesis. IMPORTANCE Because they are naturally neuroinvasive and neurotropic, human coronaviruses are suspected to participate in the development of neurological diseases. Given that the strain OC43 is neurovirulent in mice and induces neuronal cell death, we explored the neuronal response to infection by characterizing the activation of RCD. Our results revealed that classical apoptosis associated with the Bax protein does not play a significant role in HCoV-OC43-induced neuronal cell death and that RIP1 and MLKL, two cellular proteins usually associated with necroptosis (an RCD back-up system when apoptosis is not adequately induced), both play a pivotal role in the process. As necroptosis disrupts cellular membranes and allows the release of damage-associated molecular patterns (DAMP) and possibly induces the production of proinflammatory cytokines, it may represent a proinflammatory cell death mechanism that contributes to excessive neuroinflammation and neurodegeneration and eventually to neurological disorders after a coronavirus infection. PMID:27795420
ERK2 phosphorylation of serine 77 regulates Bmf pro-apoptotic activity.
Shao, Y; Aplin, A E
2012-01-19
B-cell lymphoma 2 (Bcl-2) homology 3 (BH3)-only proteins represent a class of pro-apoptotic factors that neutralize pro-survival Bcl-2 proteins, and, in some cases, directly activate Bax. The mechanisms of control and the role of BH3-only proteins, such as Bcl-2 like protein 11 extra large and Bad are well studied. By contrast, relatively little is known about the regulation and role of Bcl-2 modifying factor (Bmf). The B-RAF oncogene is mutated in ∼8% of human tumors. We have previously shown that Bmf is upregulated at the transcript level and is required for apoptosis induced by targeting B-RAF signaling in tumor cells harboring mutant B-RAF. In this study, we show that Bmf is regulated at the post-translational level by mutant B-RAF-MEK-ERK2 signaling. Extracellular signal-regulated kinase (ERK2) directly phosphorylates Bmf on serine 74 and serine 77 residues with serine 77 being the predominant site. In addition, serine 77 phosphorylation reduces Bmf pro-apoptotic activity likely through a mechanism independent of altering Bmf localization to the mitochondria and/or interactions with dynein light chain 2 and the pro-survival proteins, B-cell lymphoma extra large, Bcl-2 and Mcl-1. These data identify a novel mode of regulation in Bmf that modulates its pro-apoptotic activity in mutant B-RAF tumor cells.
Guo, Xingyu; Zhang, Xiaodong; Wang, Tingan; Xian, Shulin; Lu, Yunfei
2016-06-17
Cancer cells are mainly dependent on glycolysis to generate adenosine triphosphate (ATP) and intermediates required for cell growth and proliferation. Thus, inhibition of glycolysis might be of therapeutic value in antitumor treatment. Our previously studies had found that both 3-bromopyruvate (BP) and sodium citrate (SCT) can inhibit tumor growth and proliferation in vitro and in vivo. However, the mechanism involved in the BP and SCT mediated antitumor activity is not entirely clear. In this work, it is demonstrated that BP inhibits the enzyme hexokinase (HK) activity and SCT suppresses the phosphofructokinase (PFK) activity respectively, both the two agents decrease viability, ATP generation and lactate content in the human gastric cancer cell line MGC-803. These effects are directly correlated with blockage of glycolysis. Furthermore, BP and SCT can induce the characteristic manifestations of mitochondria-regulated apoptosis, such as down-regulation of anti-apoptosis proteins Bcl-2 and Survivin, up-regulation of pro-apoptosis protein Bax, activation of caspase-3, as well as leakage of cytochrome c (Cyt-c). In summary, our results provided evidences that BP and SCT inhibit the MGC-803 cells growth and proliferation might be correlated with inhibiting glycolysis and promoting mitochondria-regulated apoptosis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Bax is not involved in the resveratrol-induced apoptosis in human lung adenocarcinoma cells
NASA Astrophysics Data System (ADS)
Zhang, Wei-wei; Wang, Zhi-ping; Chen, Tong-sheng
2010-02-01
Resveratrol (RV) is a natural plant polyphenol widely present in foods such as grapes, wine, and peanuts. Previous studies indicate that RV has an ability to inhibit various stages of carcinogenesis and eliminate preneoplastic cells in vitro and in vivo. However, little is known about the molecular mechanism of RV-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cell. In this report, we analyzed whether Bax translocation from cytoplasm to mitochondria during RV-induced apoptosis in single living cell using onfocal microscopey. Cells were transfected with GFP-Bax plasmid. Cell counting kit (CCK-8) assay was used to assess the inhibition of RV on the cells viability. Apoptotic activity of RV was detected by Hoechst 33258 and propidium iodide (PI) staining. Our results showed that RV induced a dose-dependent apoptosis in which Bax did not translocate to mitochondrias.
Junnarkar, Sameer P; Tapuria, Niteen; Mani, Alireza; Dijk, Sas; Fuller, Barry; Seifalian, Alexander M; Davidson, Brian R
2010-12-01
Liver transplantation and resection surgery involve a period of ischemia and reperfusion to the liver, which initiates an inflammatory cascade resulting in liver and remote organ injury. Bucillamine is a low molecular weight thiol antioxidant that is capable of rapidly entering cells. We hypothesized that bucillamine acts by replenishing glutathione levels, thus reducing neutrophil activation, modulating Bax/Bcl-2 expression, and subsequently, attenuating the effects of warm ischemia-reperfusion injury (IRI) in the liver. The effect of bucillamine was studied in a rat model of liver IRI with 45 min of partial (70%) liver ischemia and 3 h of reperfusion. Liver injury was assessed by measuring serum transaminases (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) and liver histology. Oxidative stress was quantified by measuring F(2) isoprostane and glutathione levels. Leukocyte adhesion was assessed by intravital microscopy, and inflammatory cytokine response was assessed by measuring serum cytokine-induced neutrophil chemoattractant-1 (CINC-1) levels. Bax and Bcl-2 expression was measured by reverse transcription-polymerase chain reaction. The model produced significant liver injury with elevated transaminases and an acute inflammatory response. Bucillamine reduced the liver injury, as indicated by reduced AST (932 ± 200.8 vs 2072.5 ± 511.79, P < 0.05). Bucillamine reduced Bax expression, serum CINC-1 levels, and neutrophil adhesion, and upregulated Bcl-2. However, bucillamine did not affect tissue glutathione levels nor the levels of oxidative stress, as measured by plasma and hepatic F(2) isoprostane levels. Bucillamine reduces warm ischemia-reperfusion in the liver by inhibiting neutrophil activation and modulating Bax/Bcl-2 expression. © 2010 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.
Fiskum, Gary; Starkov, Anatoly; Polster, Brian M; Chinopoulos, Christos
2003-06-01
Mitochondrial dysfunction, due to either environmental or genetic factors, can result in excessive production of reactive oxygen species, triggering the apoptotic death of dopaminergic cells in Parkinson's disease. Mitochondrial free radical production is promoted by the inhibition of electron transport at any point distal to the sites of superoxide production. Neurotoxins that induce parkinsonian neuropathology, such as MPP(+) and rotenone, stimulate superoxide production at complex I of the electron transport chain and also stimulate free radical production at proximal redox sites including mitochondrial matrix dehydrogenases. The oxidative stress caused by elevated mitochondrial production of reactive oxygen species promotes the expression and (or) intracellular distribution of the proapoptotic protein Bax to the mitochondrial outer membrane. Interactions between Bax and BH3 death domain proteins such as tBid result in Bax membrane integration, oligomerization, and permeabilization of the outer membrane to intermembrane proteins such as cytochrome c. Once released into the cytosol, cytochrome c together with other proteins activates the caspase cascade of protease activities that mediate the biochemical and morphological alterations characteristic of apoptosis. In addition, loss of mitochondrial cytochrome c stimulates mitochondrial free radical production, further promoting cell death pathways. Excessive mitochondrial Ca(2+) accumulation can also release cytochrome c and promote superoxide production through a mechanism distinctly different from that of Bax. Ca(2+) activates a mitochondrial inner membrane permeability transition causing osmotic swelling, rupture of the outer membrane, and complete loss of mitochondrial structural and functional integrity. While amphiphilic cations, such as dibucaine and propranolol, inhibit Bax-mediated cytochrome c release, transient receptor potential channel inhibitors inhibit mitochondrial swelling and cytochrome c release induced by the inner membrane permeability transition. These advances in the knowledge of mitochondrial cell death mechanisms and their inhibitors may lead to neuroprotective interventions applicable to Parkinsons's disease.
Vilela, Thais C; Scaini, Giselli; Furlanetto, Camila B; Pasquali, Matheus A B; Santos, João Paulo A; Gelain, Daniel P; Moreira, José Cláudio F; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L
2017-02-01
Maple Syrup Urine Disease (MSUD) is an inborn error of metabolism caused by a deficiency of the branched-chain α-keto acid dehydrogenase complex activity. This blockage leads to accumulation of the branched-chain amino acids leucine, isoleucine and valine, as well as their corresponding α-keto acids and α-hydroxy acids. The affected patients present severe neurological symptoms, such as coma and seizures, as well as edema and cerebral atrophy. Considering that the mechanisms of the neurological symptoms presented by MSUD patients are still poorly understood, in this study, protein levels of apoptotic factors are measured, such as Bcl-2, Bcl-xL, Bax, caspase-3 and -8 in hippocampus and cerebral cortex of rats submitted to acute administration of branched-chain amino acids during their development. The results in this study demonstrated that BCAA acute exposure during the early postnatal period did not significantly change Bcl-2, Bcl-xL, Bax and caspase-8 protein levels. However, the Bax/Bcl-2 ratio and procaspase-3 protein levels were decreased in hippocampus. On the other hand, acute administration of BCAA in 30-day-old rats increase in Bax/Bcl-2 ratio followed by an increased caspase-3 activity in cerebral cortex, whereas BCAA induces apoptosis in hippocampus through activation and cleavage of caspase-3 and -8 without changing the Bax/Bcl-2 ratio. In conclusion, the results suggest that apoptosis could be of pivotal importance in the developmental neurotoxic effects of BCAA. In addition, the current studies also suggest that multiple mechanisms may be involved in BCAA-induced apoptosis in the cerebral cortex and hippocampus.
Bodur, Cagri; Karakas, Bahriye; Timucin, Ahmet Can; Tezil, Tugsan; Basaga, Huveyda
2016-11-01
Most tumors primarily rely on glycolysis rather than mitochondrial respiration for ATP production. This phenomenon, also known as Warburg effect, renders tumors more sensitive to glycolytic disturbances compared to normal cells. 3-bromopyruvate is a potent inhibitor of glycolysis that shows promise as an anticancer drug candidate. Although investigations revealed that 3-BP triggers apoptosis through ATP depletion and subsequent AMPK activation, the underlying molecular mechanisms coupling AMPK to apoptosis are poorly understood. We showed that 3-BP leads to a rapid ATP depletion which was followed by growth inhibition and Bax-dependent apoptosis in HCT116 cells. Apoptosis was accompanied with activation of caspase-9 and -3 while pretreatment with a general caspase inhibitor attenuated cell death. AMPK, p38, JNK, and Akt were phosphorylated immediately upon treatment. Pharmacological inhibition and silencing of AMPK largely inhibited 3-BP-induced apoptosis and reversed phosphorylation of JNK. Transcriptional activity of FoxO3a was dramatically increased subsequent to AMPK-mediated phosphorylation of FoxO3a at Ser413. Cell death analysis of cells transiently transfected with wt or AMPK-phosphorylation-deficient FoxO3 expression plasmids verified the contributory role of AMPK-FoxO3a axis in 3-BP-induced apoptosis. In addition, expression of proapoptotic Bcl-2 proteins Bim and Bax were upregulated in an AMPK-dependent manner. Bim was transcriptionally activated in association with FoxO3a activity, while Bax upregulation was abolished in p53-null cells. Together, these data suggest that AMPK couples 3-BP-induced metabolic disruption to intrinsic apoptosis via modulation of FoxO3a-Bim axis and Bax expression. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Wu, Duan; Zhou, Jianyin; Yin, Zhenyu; Liu, Pingguo; Zhao, Yilin; Liu, Jianming; Wang, Xiaomin
2014-12-02
To explore the effects and underlying mechanisms of ursodeoxycholic acid on human hepatoma cells. HepG2 and SMMC-7721 HCC cell lines were respectively treated with ursodeoxycholic acid. And cell proliferation, apoptosis and the expression of Bax/Bcl-2 gene were detected by methyl thiazolyl tetrazolium (MTT), inverted microscopy, fluorescent microscopy, flow cytometry and Western blot. Ursodeoxycholic acid significantly inhibited the proliferation of human hepatoma cells in a concentration- and time-dependent manner. The half maximal inhibitory concentrations (IC50) of HepG2 and SMMC-7721 were 397.3 and 387.7 µg/ml respectively after a 48-hour treatment of 400 µg /ml ursodeoxycholic acid. And it also induced the apoptosis of HepG2 and SMMC-7721 cells, up-regulated Bax gene and down-regulated Bcl-2 gene. Ursodeoxycholic acid inhibits the proliferation of hepatoma cells and induce apoptosis by mitochondrial-mediated pathway.
Chlorogenic acid attenuates hydrogen peroxide-induced oxidative stress in lens epithelial cells
Song, Jike; Guo, Dadong; Bi, Hongsheng
2018-01-01
Oxidative stress has an important role in the degradation, oxidation, cross-linking and aggregation of lens proteins, and can trigger lens epithelial cell apoptosis. To investigate the protective effect of chlorogenic acid (CGA) against hydrogen peroxide (H2O2)-induced oxidative stress, human lens epithelial cells (hLECs) were exposed to various concentrations of H2O2 in the presence and absence of CGA. Using MTT assay, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and ELISA techniques, cell viability, and protein/mRNA levels of BCL2 apoptosis regulator (Bcl-2) and BCL2 associated X apoptosis regulator (Bax) were investigated. Additionally, the levels of intracellular reactive oxygen species (ROS) and apoptosis within cells were measured using flow cytometry to determine the protective effect of CGA on H2O2-induced oxidative stress. Furthermore, the protective effect of CGA on H2O2-induced apoptosis was also examined using rabbit lenses ex vivo. The results indicated that CGA reduced H2O2-induced cytotoxicity in a dose-dependent manner. Flow cytometry analysis demonstrated that simultaneous exposure of hLECs to H2O2 and CGA significantly decreased apoptosis and the levels of ROS. RT-qPCR analysis revealed a decrease in Bcl-2 and an increase in Bax in hLECs following exposure to H2O2 for 24 h, regardless of CGA presence. Furthermore, ELISA results indicate that CGA increased Bcl-2 expression and decreased Bax expression following treatment with H2O2 for 24 h and the Bax/Bcl-2 ratio was significantly decreased by CGA treatment. Lens organ culture experiments indicated a dose-dependent decrease in H2O2-induced lens opacity following CGA treatment. These results suggest that CGA suppresses hLECs apoptosis and prevents lens opacity induced by H2O2 via Bax/Bcl-2 signaling pathway. CGA may provide effective defenses against oxidative stress and, thus, haσ potential as treatment for a variety of diseases in clinical practice. PMID:29207051
Perfettini, Jean-Luc; Roumier, Thomas; Castedo, Maria; Larochette, Nathanael; Boya, Patricia; Raynal, Brigitte; Lazar, Vladimir; Ciccosanti, Fabiola; Nardacci, Roberta; Penninger, Josef; Piacentini, Mauro; Kroemer, Guido
2004-03-01
The coculture of cells expressing the HIV-1 envelope glycoprotein complex (Env) with cells expressing CD4 results into cell fusion, deregulated mitosis, and subsequent cell death. Here, we show that NF-kappaB, p53, and AP1 are activated in Env-elicited apoptosis. The nuclear factor kappaB (NF-kappaB) super repressor had an antimitotic and antiapoptotic effect and prevented the Env-elicited phosphorylation of p53 on serine 15 and 46, as well as the activation of AP1. Transfection with dominant-negative p53 abolished apoptosis and AP1 activation. Signs of NF-kappaB and p53 activation were also detected in lymph node biopsies from HIV-1-infected individuals. Microarrays revealed that most (85%) of the transcriptional effects of HIV-1 Env were blocked by the p53 inhibitor pifithrin-alpha. Macroarrays led to the identification of several Env-elicited, p53-dependent proapoptotic transcripts, in particular Puma, a proapoptotic "BH3-only" protein from the Bcl-2 family known to activate Bax/Bak. Down modulation of Puma by antisense oligonucleotides, as well as RNA interference of Bax and Bak, prevented Env-induced apoptosis. HIV-1-infected primary lymphoblasts up-regulated Puma in vitro. Moreover, circulating CD4+ lymphocytes from untreated, HIV-1-infected donors contained enhanced amounts of Puma protein, and these elevated Puma levels dropped upon antiretroviral therapy. Altogether, these data indicate that NF-kappaB and p53 cooperate as the dominant proapoptotic transcription factors participating in HIV-1 infection.
Silymarin induces cell cycle arrest and apoptosis in ovarian cancer cells.
Fan, Li; Ma, Yalin; Liu, Ying; Zheng, Dongping; Huang, Guangrong
2014-11-15
The polyphenolic flavonoid silymarin that is the milk thistle extract has been found to possess an anti-cancer effect against various human epithelial cancers. In this study, to explore the regulative effect of silymarin on human ovarian cancer line A2780s and PA-1 cells, 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide assay and flow cytometry were respectively used to determine the inhibitory effect of silymarin on the both cell lines, and to measure their cell cycle progression. Apoptosis induction and mitochondrial membrane potential damage were separately detected by terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling assay and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide staining. Additionally, western blotting was applied to determine cytochrome C release and expression levels of p53, p21, p27, p16, CDK2, Bax, Bcl-2, procaspase-9, procaspase-3, cleaved caspase-9 and caspase-3 proteins. The activity of caspase-9 and caspase-3 was measured using Caspase-Glo-9 and Caspase-Glo-3 assay. The results indicated that silymarin effectively suppressed cell growth in a dose- and time-dependent manner, and arrested cell cycle progression at G1/S phase in A2780s and PA-1 cells via up-regulation of p53, p21, and p27 protein expression, and down-regulation of CDK2 protein expression. Additionally, silymarin treatment for 24h at 50 and 100µg/ml resulted in a reduction of mitochondrial membrane potential and cytochrome C release, and significantly induced apoptosis in A2780s and PA-1 cells by increasing Bax and decreasing Bcl-2 protein expression, and activation of caspase-9 and caspase-3. Therefore, silymarin is a possible potential candidate for the prevention and treatment of ovarian cancer. Copyright © 2014 Elsevier B.V. All rights reserved.
Mollaei, Homa; Safaralizadeh, Reza; Babaei, Esmaeil; Abedini, Mohamad Reza; Hoshyar, Reyhane
2017-10-01
Cervical cancer is the fourth cause of cancer-related mortality among females worldwide. Although current therapies reduce disease symptoms, resistance of tumor cells to chemotherapy agents after a while is a serious problem. Therefore, utilization of novel adjuvant agents to increase efficiency of chemotherapy is essential. In the last two decades, botanicals with effective anticancer activities have been studied. Among them, the anticancer properties of crocin have been more attended. In this study, the molecular mechanism of crocin action was investigated in sensitive human cervical cancer cell line (OV2008) in comparison with the resistant one (C13). A 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay showed that crocin inhibits proliferation of sensitive cells (OV2008) at a time- and dose-dependent manner at 48 and 72h. Also, this inhibitory effect has been shown on resistant cells (C13) at 72h. Hoechst staining and flow cytometry assay also confirmed these results and revealed that antiproliferative effect of crocin might be due to the induction of apoptosis. Moreover, the genetic mechanism of crocin-induced apoptosis was accomplished by studying the relative expressions of P53, Bax, Bcl2 and miR-365, an upstream regulator of the last two ones. Real-time PCR analysis indicated that 1.5 and 3mg/ml crocin led to up-regulation of Bax and P53 and down-regulation of Bcl2 and miR-365 at all time intervals in both two cell lines. However, OV2008 cell line was more sensitive to crocin, and alternation of gene expretion was more obvious in this cell line. In this regard, the present study demonstrated the anti-proliferative and apoptotic activities of crocin against both sensitive and resistant cervical cancer cells that may benefit cervical cancer treatment as an adjuvant agent to decrease chemoresistance and increase the efficiency of therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Direct effect of curcumin on porcine ovarian cell functions.
Kádasi, Attila; Maruniaková, Nora; Štochmaľová, Aneta; Bauer, Miroslav; Grossmann, Roland; Harrath, Abdel Halim; Kolesárová, Adriana; Sirotkin, Alexander V
2017-07-01
Curcuma longa Linn (L.) is a plant widely used in cooking (in curry powder a.o.) and in folk medicine, but its action on reproductive processes and its possible mechanisms of action remain to be investigated. The objective of this study was to examine the direct effects of curcumin, the major Curcuma longa L. molecule, on basic ovarian cell functions such as proliferation, apoptosis, viability and steroidogenesis. Porcine ovarian granulosa cells were cultured with and without curcumin (at doses of 0, 1, 10 and 100μg/ml of medium). Markers of proliferation (accumulation of PCNA) and apoptosis (accumulation of bax) were analyzed by immunocytochemistry. The expression of mRNA for PCNA and bax was detected by RT-PCR. Cell viability was detected by trypan blue exclusion test. Release of steroid hormones (progesterone and testosterone) was measured by enzyme immunoassay (EIA). It was observed that addition of curcumin reduced ovarian cell proliferation (expression of both PCNA and its mRNA), promoted apoptosis (accumulation of both bax and its mRNA), reduced cell viability, and stimulated both progesterone and testosterone release. These observations demonstrate the direct suppressive effect of Curcuma longa L./curcumin on female gonads via multiple mechanisms of action - suppression of ovarian cell proliferation and viability, promotion of their apoptosis (at the level of mRNA transcription and subsequent accumulation of promoters of genes regulating these activities) and release of anti-proliferative and pro-apoptotic progesterone and androgen. The potential anti-gonadal action of curcumin should be taken into account by consumers of Curcuma longa L.-containing products. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Chin-Cheng; Lin, Che-Pin; Lee, Yueh-Lun; Wang, Giueng-Chueng; Cheng, Yuan-Chih; Liu, H Eugene
2010-05-01
Meisoindigo, a derivative of Indigo naturalis, has been used in China for chronic myeloid leukemia. In vitro cell line studies have shown that this agent might induce apoptosis and myeloid differentiation of acute myeloid leukemia (AML). In this study, we explored its mechanisms and potential in AML. NB4, HL-60, and U937 cells and primary AML cells were used to examine its effects and the NOD/SCID animal model was used to evaluate its in vivo activity. Meisoindigo inhibited the growth of leukemic cells by inducing marked apoptosis and moderate cell-cycle arrest at the G(0)/G(1) phase. It down-regulated anti-apoptotic Bcl-2, and up-regulated pro-apoptotic Bak and Bax and cell-cycle related proteins, p21and p27. Furthermore, it induced myeloid differentiation, as demonstrated by morphologic changes, up-regulation of CD11b, and increased nitroblue tetrazolium reduction activity in all cell lines tested. In addition, meisoindigo down-regulated the expression of human telomerase reverse transcriptase and enhanced the cytotoxicity of conventional chemotherapeutic agents, cytarabine and idarubicin. As with the results from cell lines, meisoindigo also induced apoptosis, up-regulated p21 and p27, and down-regulated Bcl-2 in primary AML cells. The in vivo anti-leukemic activity of meisoindigo was also demonstrated by decreased spleen size in a dose-dependent manner. Taking these results together, meisoindigo is a potential agent for AML.
Kumar, Manoj; Liu, Zheng-Ren; Thapa, Laxmi; Wang, Da-Yu; Tian, Rui; Qin, Ren-Yi
2004-08-01
Several studies reported that somatostatin receptor subtypes, especially subtype 2 (SSTR2), exerted their cytostatic and/or cytotoxic effects on various types of tumors. The aim of this study was to investigate the antitumor effect of SSTR2 gene transfer to the pancreatic cancer cell line PC-3 and the mechanisms involved in this effect. The full-length human SSTR2 cDNA was introduced into pancreatic cancer cell line PC-3 by lipofectamine-mediated transfection; positive clones were screened by G418, and stable expression of SSTR2 was detected by the immunohistochemical SABC method and RT-PCR. Athymic mice were separately xenografted with SSTR2-expressing cells (experimental group), vector control, and mock control cells. TUNEL assay was used to determine the apoptotic index (AI) in the tumors of these groups. The immunohistochemical SP method was used to determine expression of apoptosis-regulating genes Bcl-2 and Bax and re-expression of SSTR2 and to assess intratumoral microvessel density (MVD). Moreover, tumor volume and weight were compared among these 3 groups. Restoration of SSTR2 was observed in the experimental group both in vitro and in vivo. The AI was significantly higher in the experimental group (3.39 +/- 0.84%) compared with that in the vector control (0.69 +/- 0.08%) and mock control (0.68 +/- 0.09%) (P < 0.05). MVD was significantly lower in the experimental group (6.30 +/- 1.71) than that in the vector control (12.64 +/- 1.69) and mock control (13.50 +/- 1.86) (P < 0.05). Furthermore, a significant decrease in Bcl-2 and increase in Bax protein expression were detected in the experimental group compared with the vector control and mock control (P < 0.05). A significant negative correlation of protein expression between Bcl-2/Bax ratio and SSTR2 was observed in these tumors (P < 0.05). Tumor volume and weight were significantly decreased in the experimental group compared with the vector control and mock control (P < 0.05) groups. However, no significant differences were observed between the vector control and mock control (P > 0.05). Re-expression of the SSTR2 gene, the expression of which is frequently lost in human pancreatic adenocarcinoma, induces apoptosis, which may be mediated via down-regulation of Bcl-2 and up-regulation of Bax (alteration of Bcl-2/Bax ratio) and inhibits tumor angiogenesis in pancreatic carcinoma, resulting in inhibition of tumor growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Qi; Shen Mi; Ding Mei
2011-04-01
Pyrroloquinoline quinone (PQQ), a cofactor in several enzyme-catalyzed redox reactions, possesses a potential capability of scavenging reactive oxygen species (ROS) and inhibiting cell apoptosis. In this study, we investigated the effects of PQQ on glutamate-induced cell death in primary cultured hippocampal neurons and the possible underlying mechanisms. We found that glutamate-induced apoptosis in cultured hippocampal neurons was significantly attenuated by the ensuing PQQ treatment, which also inhibited the glutamate-induced increase in Ca2+ influx, caspase-3 activity, and ROS production, and reversed the glutamate-induced decrease in Bcl-2/Bax ratio. The examination of signaling pathways revealed that PQQ treatment activated the phosphorylation of Aktmore » and suppressed the glutamate-induced phosphorylation of c-Jun N-terminal protein kinase (JNK). And inhibition of phosphatidylinositol-3-kinase (PI3K)/Akt cascade by LY294002 and wortmannin significantly blocked the protective effects of PQQ, and alleviated the increase in Bcl-2/Bax ratio. Taken together, our results indicated that PQQ could protect primary cultured hippocampal neurons against glutamate-induced cell damage by scavenging ROS, reducing Ca2+ influx, and caspase-3 activity, and suggested that PQQ-activated PI3K/Akt signaling might be responsible for its neuroprotective action through modulation of glutamate-induced imbalance between Bcl-2 and Bax. - Research Highlights: >PQQ attenuated glutamate-induced cell apoptosis of cultured hippocampal neurons. >PQQ inhibited glutamate-induced Ca{sup 2+} influx and caspase-3 activity. >PQQ reduced glutamate-induced increase in ROS production. >PQQ affected phosphorylation of Akt and JNK signalings after glutamate injury. >PI3K/Akt was required for neuroprotection of PQQ by modulating Bcl-2/Bax ratio.« less
Sesamin induces ER stress-mediated apoptosis and activates autophagy in cervical cancer cells.
Dou, Haowen; Yang, Shasha; Hu, Yulai; Xu, Dongyuan; Liu, Lan; Li, Xiangdan
2018-05-01
Sesamin, a major lignan of sesame oil, has demonstrated anticancer properties. However, its anticancer effects on cervical cancer have not been studied. Here, we investigated the effects of sesamin on cervical cancer (HeLa) cell line and explored the underlying mechanisms. HeLa cells were cultured with sesamin. CCK-8 and scratch wound test were applied to detect the proliferation and migration ability, while flow cytometry and TUNEL staining were applied to detect apoptosis. The expression of Bax and Bcl-2 was assessed by Western blotting. Further observe the ultrastructure using transmission electron microscopy (TEM) and detect the expression of caspase-12, GRP78, GADD153, IRE1α, p-IRE1α, JNK, p-JNK, LC3I/II and beclin-1. In addition, HeLa cells were treated with 3-MA (an autophagy inhibitor) and/or sesamin. Then detect the expression of LC3I/II and cell viability. CCK-8 and scratch wound test revealed that sesamin inhibits HeLa cells proliferation and migration, while flow cytometry and TUNEL staining indicated that sesamin induces apoptosis in these cells. In sesamin group, the expression of Bax, caspase-12, GRP78, GADD153, p-IRE1α, p-JNK, LC3I/II and beclin-1 was up-regulated while Bcl-2 was down-regulated compared to control group. Further research revealed that sesamin also induces Hela cells autophagy and inhibition of autophagy increases cell viability of sesamin-treated HeLa cells. Sesamin inhibits proliferation/migration of HeLa cells and induces ER stress-mediated apoptosis through IRE1α/JNK pathway, and that it activates autophagy and autophagic death in these cells, further validate the anticancer effect of sesamin. Copyright © 2018 Elsevier Inc. All rights reserved.
[Effects of blueberry on apoptosis and expression of Bcl-2 and Bax in HSC-T6].
Lu, Shuang; Cheng, Mingliang; Yang, Demeng; Liu, Yang; Guan, Li; Wu, Jun
2015-08-18
To investigate the effects of blueberry on the apoptosis, expression of Bcl-2 and Bax in rat hepatic stellate cell (HSC-T6). 10% blueberry serum at low, middle and high dose, 10% Fu-Fang-Bie-Jia-Ruan-Gan tablet serum and 10% saline serum were prepared by method of serum pharmacology. Subcultured HSC-T6 was divided into saline serum control group, blueberry serum at low, middle, high dose and Fu-Fang-Bie-Jia-Ruan-Gan tablet serum group, and then was respectively incubated at different dose of 10% blueberry serum, 10% Fu-Fang-Bie-Jia-Ruan-Gan tablet serum and 10% saline serum for 72 hours.Apoptosis of HSC-T6 was detected using flow cytometry with annexin V FITC/PI double staining. The expression of Bcl-2 and Bax in HSC-T6 were examined using immunocytochemistry and Western blotting, respectively. There was no significant difference for HSC-T6 Bax protein expression in the low, middle and high dose blueberry serum groups, compared with saline serum control group, respectively.In the high-dose blueberry serum group HSC-T6 early and total apoptosis rate increased significantly compared with the saline serum control group (5.55% ± 0.98% vs 2.53% ± 0.46%, 7.01% ± 1.05% vs 2.96% ± 0.81%, both P<0.05); Bcl-2 protein expression was significantly decreased (A value, 82 ± 35 vs 51 ± 13, P<0.05); Bcl-2/Bax ratio was significantly decreased (0.26 ± 0.02 vs 0.46 ± 0.03, P<0.05); HSC-T6 early and total apoptosis rate, Bcl-2 expression and Bcl-2/Bax ratio in the low and the middle dose blueberry serum group showed no significant difference with the saline serum control group. Blueberry can induce HSC-T6 apoptosis by down-regulating Bcl-2 expression and decreasing the ratio of Bcl-2/Bax in HSC-T6 cells, so it may have potential interference effects on hepatic fibrosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Er-Wen; Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou; Xue, Sheng-Jiang
Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation,more » facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.« less
USDA-ARS?s Scientific Manuscript database
The inositol requiring enzyme (IRE1) is an endoplasmic reticulum (ER) stress sensor and when activated it splices the bZIP60 mRNA producing a truncated transcription factor that upregulates expression of genes involved in the unfolded protein response (UPR). Bax inhibitor 1 (BI-1) is another ER stre...
Jeong, Jae-Kyo; Lee, Ju-Hee; Moon, Ji-Hong; Lee, You-Jin; Park, Sang-Youel
2014-11-01
Activation of β-catenin in neurons regulates mitochondrial function and protects against protein misfolding disorders, including Alzheimer's disease and Huntington's disease. Melatonin, a natural secretory product of the pineal gland, exerts neuroprotective effects through the activation of β-catenin. In this study, melatonin increased β-catenin protein expression and activation in human neuroblastoma cell lines SH-SY5Y cells. Melatonin also inhibited PrP (106-126)-induced neurotoxicity and the inhibition attenuated by treatment of β-catenin inhibitor ICG-001. Activation of β-catenin blocked PrP (106-126)-mediated downregulation of anti-apoptotic protein survivin and Bcl-2. Reduction of mitochondrial membrane potential, translocation of Bax, and cytochrome c release which induced by PrP (106-126) treatment were inhibited by β-catenin activation, which contributed to prevented PrP (106-126)-induced neuronal cell death. In conclusion, β-catenin activation by melatonin prevented PrP (106-126)-induced neuronal cell death through regulating anti-apoptotic proteins and mitochondrial pathways. These results also suggest the therapeutic value of Wnt/β-catenin signaling in prion-related disorders as influenced by melatonin. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zhao, Lixia; He, Feng; Liu, Haiyang; Zhu, Yushan; Tian, Weili; Gao, Ping; He, Hongping; Yue, Wen; Lei, Xiaobo; Ni, Biyun; Wang, Xiaohui; Jin, Haijing; Hao, Xiaojiang; Lin, Jialing; Chen, Quan
2012-01-01
Overwhelming evidence indicates that Bax and Bak are indispensable for mediating cytochrome c release from mitochondria during apoptosis. Here we report a Bax/Bak-independent mechanism of cytochrome c release and apoptosis. We identified a natural diterpenoid compound that induced apoptosis in bax/bak double knock-out murine embryonic fibroblasts and substantially reduced the tumor growth from these cells implanted in mice. Treatment with the compound significantly increased expression of Bim, which migrated to mitochondria, altering the conformation of and forming oligomers with resident Bcl-2 to induce cytochrome c release and caspase activation. Importantly, purified Bim and Bcl-2 proteins cooperated to permeabilize a model mitochondrial outer membrane; this was accompanied by oligomerization of these proteins and deep embedding of Bcl-2 in the membrane. Therefore, the diterpenoid compound induces a structural and functional conversion of Bcl-2 through Bim to permeabilize the mitochondrial outer membrane, thereby inducing apoptosis independently of Bax and Bak. Because Bcl-2 family proteins play important roles in cancer development and relapse, this novel cell death mechanism can be explored for developing more effective anticancer therapeutics. PMID:22065578
Reshi, Latif; Wang, Hua-Ven; Hui, Cho-Fat; Su, Yu-Chin; Hong, Jiann-Ruey
2017-02-01
Although serine/threonine (ST) kinase is known to induce host cell death in GF-1 cells, it remains unclear how ST kinase induces mitochondrial function loss. In the present study, we addressed the issue of mitochondrial function loss by determining whether the Bcl-2 family members Bcl-2 and Bcl-xL can prevent ST kinase-induced cell death activity via interacting with the pro-apoptotic gene Bax. Grouper fin cells (GF-1) carrying EGFP-Bal-xL and EGFP-Bcl-2 fused genes were selected, established in cell culture, and used to examine the involvement of Bcl-2 and Bcl-xL overexpression in protection of GF-1 cells from the effects of the giant sea perch iridovirus (GSIV) ST kinase gene. Using the TUNEL assay, we found that EGFP-Bcl-2 and EGFP-Bcl-xL reduced GSIV ST kinase-induced apoptosis to 20% all at 24 h and 48 h post-transfection (pt). Also, Bcl-2 and Bcl-xL substantially reduced the percentage of cells with GSIV ST kinase-induced loss of mitochondrial membrane potential (Δψps) at 24 and 48 hpt, respectively, and this reduction correlated with a 30% and 50% enhancement of host cell viability at 24 and 48 hpt as compared with vector control. Moreover, analysis of the effect of Bcl-2 and Bcl-xL interaction with Bax targeted to mitochondria during ST kinase expression at 48 hpt found that Bcl-2 and Bcl-xL also interacted with Bax to block cytochrome c release. Finally, Bcl-2 and Bcl-xL overexpression caused blockage of ST kinase function at 48 hpt, which was correlated with preventing caspase-9 and -3 cleavage and activation, thereby blocking downstream death signaling events. Taken together, our results suggest that the ST kinase-induced Bax/mitochondria-mediated cell death pathway can be blocked by the interaction of Bcl-2 and Bcl-xL with Bax to inhibit cytochrome c release during MMP loss. This rescue activity also correlated with inhibition of caspase-9 and -3 activation, thereby enhancing cell viability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pan, Min-Hsiung; Hsieh, Min-Chi; Kuo, Jen-Min; Lai, Ching-Shu; Wu, Hou; Sang, Shengmin; Ho, Chi-Tang
2008-05-01
Ginger, the rhizome of Zingiber officinale, is a traditional medicine with anti-inflammatory and anticarcinogenic properties. This study examined the growth inhibitory effects of the structurally related compounds 6-gingerol and 6-shogaol on human cancer cells. 6-Shogaol [1-(4-hydroxy-3-methoxyphenyl)-4-decen-3-one] inhibits the growth of human cancer cells and induces apoptosis in COLO 205 cells through modulation of mitochondrial functions regulated by reactive oxygen species (ROS). ROS generation occurs in the early stages of 6-shogaol-induced apoptosis, preceding cytochrome c release, caspase activation, and DNA fragmentation. Up-regulation of Bax, Fas, and FasL, as well as down-regulation of Bcl-2 and Bcl-X(L )were observed in 6-shogaol-treated COLO 205 cells. N-acetylcysteine (NAC), but not by other antioxidants, suppress 6-shogaol-induced apoptosis. The growth arrest and DNA damage (GADD)-inducible transcription factor 153 (GADD153) mRNA and protein is markedly induced in a time- and concentration-dependent manner in response to 6-shogaol.
Walter, Robert Fred Henry; Werner, Robert; Ting, Saskia; Vollbrecht, Claudia; Theegarten, Dirk; Christoph, Daniel Christian; Schmid, Kurt Werner; Wohlschlaeger, Jeremias; Mairinger, Fabian Dominik
2015-09-22
Neuroendocrine tumors of the lung comprise typical (TC) and atypical carcinoids (AC), large-cell neuroendocrine cancer (LCNEC) and small-cell lung cancer (SCLC). Cell cycle and apoptosis are key pathways of multicellular homeostasis and deregulation of these pathways is associated with cancerogenesis. Sixty representative FFPE-specimens (16 TC, 13 AC, 16 LCNEC and 15 SCLC) were used for mRNA expression analysis using the NanoString technique. Eight genes related to apoptosis and ten genes regulating key points of cell cycle were investigated. ASCL1, BCL2, CASP8, CCNE1, CDK1, CDK2, CDKN1A and CDKN2A showed lower expression in carcinoids compared to carcinomas. In contrast, CCNE1 and CDK6 showed elevated expression in carcinoids compared to carcinomas. The calculated BCL2/BAX ratio showed increasing values from TC to SCLC. Between SCLC and LCNEC CDK2, CDKN1B, CDKN2A and PNN expression was significantly different with higher expression in SCLC. Carcinoids have increased CDK4/6 and CCND1 expression controlling RB1 phosphorylation via this signaling cascade. CDK2 and CCNE1 were increased in carcinomas showing that these use the opposite way to control RB1. BAX and BCL2 are antagonists in regulating apoptosis. BCL2 expression increased over BAX expression with increasing malignancy of the tumor from TC to SCLC.
Ursodeoxycholic acid induces apoptosis of hepatocellular carcinoma cells in vitro.
Zhu, Lei; Shan, Lu Juan; Liu, Yue Jian; Chen, Dan; Xiao, Xiao Guang; Li, Yan
2014-12-01
Ursodeoxycholic acid (UDCA) is widely used to treat chronic liver diseases, and its cytoprotective effect on normal hepatocytes has been shown. This study aimed to investigate the apoptotic effects of UDCA on hepatocellular carcinoma (HCC) cells and the underlying molecular events in vitro. HCC cells were treated by UDCA at different doses and periods of time to assess cell morphology, viability, apoptosis and gene expression using methyl thiazolyl tetrazolium (MTT), Annexin V/propidium iodide (PI) stain, transferase dUTP nick end labeling (TUNEL), enzyme-linked immunosorbent assay (ELISA), immunocytochemistry and quantitative reverse transcription polymerase chain reaction, respectively. UDCA treatment reduced cell viability but induced HCC cell apoptosis in dose-dependent and time-dependent manners. UDCA arrested HepG2 cells at phase S of the cell cycle. At the gene levels, UDCA downregulated Bcl-2 and second mitochondria-derived activator of caspase (Smac) protein expressions, but upregulated Bax and Livin proteins in HCC cells. At the highest concentration, UDCA inhibited Livin mRNA expression but increased Smac and caspase-3 mRNA expressions as well as the activity of caspase-3 in HCC cells. The induction of HCC cell apoptosis by UDCA was dose-dependent and time-dependent and was mediated by the regulation of Bax to Bcl-2 ratio, the expressions of Smac and Livin, and caspase-3 expression and activity. © 2014 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.
Wang, Ruobing; Sun, Qinglei; Xia, Fangzhou; Chen, Zeli; Wu, Jiangchun; Zhang, Yuelu; Xu, Jiajun; Liu, Lin
2017-06-01
Secondary degeneration is a common event in traumatic central nervous system disorders, which involves neuronal apoptosis and mitochondrial dysfunction. Exogenous methane exerts the therapeutic effects in many organ injury. Our study aims to investigate the potential neuroprotection of methane in a rat model of optic nerve crush (ONC). Adult male Sprague-Dawley rats were subjected to ONC and administrated intraperitoneally with methane-saturated or normal saline (10 ml/kg) once per day for one week after ONC. The retinal ganglion cells (RGCs) density was assessed by hematoxylin and eosin staining and Fluoro-Gold retrogradely labeling. Visual function was evaluated by flash visual evoked potentials (FVEP). The retinal apoptosis was measured by terminal-deoxy-transferase-mediated dUTP nick end labeling (TUNEL) assay and the expression of apoptosis-related factors, such as phosphorylated Bcl-2-associated death promoter (pBAD), phosphorylated glycogen synthase kinase-3β (pGSK-3β), Bcl-2 associated X protein (Bax) and Bcl-2 extra large (Bcl-xL). Retinal mitochondrial function was assessed by the mRNA expressions of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM), the mitochondrial DNA (mtDNA) copy number, citrate synthase activity and ATP content. Methane treatment significantly improved the RGC loss and visual dysfunction following ONC. As expected, methane also remarkably inhibited the retinal neural apoptosis, such as the fewer TUNEL-positive cells in ganglion cell layer, accompanied by the up-regulations of anti-apoptotic factors (pGSK-3β, pBAD, Bcl-xL) and the down-regulation of pro-apoptotic factor (Bax). Furthermore, methane treatment suppressed up-regulations of critical mitochondrial components (PGC-1α, NRF1 and TFAM) mRNA and mtDNA copy number, as well as improved the reduction of functional mitochondria markers, including citrate synthase activity and ATP content, in retinas with ONC. Taken together, methane treatment promotes RGC survival and limits retinal mitochondrial dysfunction against ONC insult. Methane can be a potential neuroprotective agent for traumatic and glaucomatous neurodegeneration. Copyright © 2017. Published by Elsevier Ltd.
Su, Gui-Ping; Dai, Yan; Huang, Lai-Quan; Jiang, Yi-Zhi; Geng, Liang-Quan; Ding, Kai-Yang; Huang, Dong-Ping
2016-06-01
To investigate the distribution of pathogenic bacteria in the patients with hematologic malignancies received hematopoietic stem cell transplantation (HSCT) and its influence on the expression of BCL-2 and BAX proteins. The clinical data of 64 patients with malignant lymphoma (ML) received auto-HSCT from January 2011 to December 2015 in our hospital were analyzed. On basis of post-treansplant infection, the patients were divided into infection group (36 cases) and non-infection group (28 cases). The distribution of pathogenic bacteria in 2 groups was identified, the T lymphocyte subsets of peripheral blood, expression level of apoptotic proteins and C-reaction protein (CRP) in 2 group were detected. Thirty-six strains of pathogenic bacteria were isolated from 36 case of hematological malignancy after HSCT, including 24 strains of Gram-negative bacteria (66.67%) with predominamce of klebsiella pneumoniae (19.44%). The periperal blood CD4+ (t=2.637, P<0.01), CD4+/CD8+ ratio (t=8.223, P<0.01), BCL-2 protein (t=5.852, P<0.05), BCL-2/BAX ratio (t=14.56, P<0.01) in infection group were significantly lower than those in non-infection group, while CD8+ (t=2.285, P=<0.01), CRP (t=39.71, P<0.01), BAX level in infection group were higher than those in non-infection group. The pearson correcation analysis showed that the CD4+/CD8+ ratio in infection group positively correlated with BCL-2/BAX ratio (t=0.341, P<0.05), while serum CRP level in infection group negatively correlated with BCL-2/BAX ratio (t=-0.362, P<0.05). The pathogenic bacteria infecting ML patients after HSCT were mainly Gram-negative bacteria. The post-transplant infection can promote the expression up-regulation of related inflammatory factors and apoptotic proteins. The pathogens may be involved in cell apoptisis that provides a new strategy to treat the hematologic malignancies.
Deb, S; Sun, L; Martin, B; Talens, E; Burris, D; Kaufmann, C; Rich, N; Rhee, P
2000-07-01
We previously demonstrated that the type of resuscitation fluid used in hemorrhagic shock affects apoptosis. Unlike crystalloid, whole blood seems to attenuate programmed cell death. The purpose of this study was to determine whether the acellular components of whole blood (plasma, albumin) attenuated apoptosis and to determine whether this process involved the Bax protein pathway. Rats were hemorrhaged 27.5 mL/kg, kept in hypovolemic shock for 75 minutes, then resuscitated over 1 hour (n = 44). Control animals underwent anesthesia only (sham, n = 7). Treatment animals were bled then randomly assigned to the following resuscitation groups: no resuscitation (n = 6), whole blood (n = 6), plasma (n = 6), 5% human albumin (n = 6), 6% hetastarch (n = 7), and lactated Ringer's solution (LR, n = 6). Hetastarch was used to control for any colloid effect. LR was used as positive control. Immediately after resuscitation, the lung was collected and evaluated for apoptosis by using two methods. TUNEL stain was used to determine general DNA damage, and Bax protein was used to specifically determine intrinsic pathway involvement. LR and hetastarch treatment resulted in significantly increased apoptosis in the lung as determined by both TUNEL and Bax expression (p < 0.05). Plasma infusion resulted in significantly less apoptosis than LR and hetastarch resuscitation. Multiple cell types (epithelium, endothelium, smooth muscle, monocytes) underwent apoptosis in the lung as demonstrated by the TUNEL stain, whereas Bax expression was limited to cells residing in the perivascular and peribronchial spaces. Apoptosis after volume resuscitation of hemorrhagic shock can be affected by the type of resuscitation fluid used. Manufactured fluids such as lactated Ringer's solution and 6% hetastarch resuscitation resulted in the highest degree of lung apoptosis. The plasma component of whole blood resulted in the least apoptosis. The process of apoptosis after hemorrhagic shock resuscitation involves the Bax protein.
Tsukahara, S
2009-03-01
The brain contains several sexually dimorphic nuclei that exhibit sex differences with respect to cell number. It is likely that the control of cell number by apoptotic cell death in the developing brain contributes to creating sex differences in cell number in sexually dimorphic nuclei, although the mechanisms responsible for this have not been determined completely. The milieu of sex steroids in the developing brain affects sexual differentiation in the brain. The preoptic region of rats has two sexually dimorphic nuclei. The sexually dimorphic nucleus of the preoptic area (SDN-POA) has more neurones in males, whereas the anteroventral periventricular nucleus (AVPV) has a higher cell density in females. Sex differences in apoptotic cell number arise in the SDN-POA and AVPV of rats in the early postnatal period, and an inverse correlation exists between sex differences in apoptotic cell number and the number of living cells in the mature period. The SDN-POA of postnatal male rats exhibits a higher expression of anti-apoptotic Bcl-2 and lower expression of pro-apoptotic Bax compared to that in females and, as a potential result, apoptotic cell death via caspase-3 activation more frequently occurs in the SDN-POA of females. The patterns of expression of Bcl-2 and Bax in the SDN-POA of postnatal female rats are changed to male-typical ones by treatment with oestrogen, which is normally synthesised from testicular androgen and affects the developing brain in males. In the AVPV of postnatal rats, apoptotic regulation also differs between the sexes, although Bcl-2 expression is increased and Bax expression and caspase-3 activity are decreased in females. The mechanisms of apoptosis possibly contributing to the creation of sex differences in cell number and the roles of sex steroids in apoptosis are discussed.
Renault, Thibaud T; Elkholi, Rana; Bharti, Archana; Chipuk, Jerry E
2014-09-19
The B cell lymphoma-2 (BCL-2) family is the key mediator of cellular sensitivity to apoptosis during pharmacological interventions for numerous human pathologies, including cancer. There is tremendous interest to understand how the proapoptotic BCL-2 effector members (e.g. BCL-2-associated X protein, BAX) cooperate with the BCL-2 homology domain only (BH3-only) subclass (e.g. BCL-2 interacting mediator of death, BIM; BCL-2 interacting-domain death agonist, BID) to induce mitochondrial outer membrane permeabilization (MOMP) and apoptosis and whether these mechanisms may be pharmacologically exploited to enhance the killing of cancer cells. Indeed, small molecule inhibitors of the anti-apoptotic BCL-2 family members have been designed rationally. However, the success of these "BH3 mimetics" in the clinic has been limited, likely due to an incomplete understanding of how these drugs function in the presence of multiple BCL-2 family members. To increase our mechanistic understanding of how BH3 mimetics cooperate with multiple BCL-2 family members in vitro, we directly compared the activity of several BH3-mimetic compounds (i.e. ABT-263, ABT-737, GX15-070, HA14.1, TW-37) in biochemically defined large unilamellar vesicle model systems that faithfully recapitulate BAX-dependent mitochondrial outer membrane permeabilization. Our investigations revealed that the presence of BAX, BID, and BIM differentially regulated the ability of BH3 mimetics to derepress proapoptotic molecules from anti-apoptotic proteins. Using mitochondria loaded with fluorescent BH3 peptides and cells treated with inducers of cell death, these differences were supported. Together, these data suggest that although the presence of anti-apoptotic BCL-2 proteins primarily dictates cellular sensitivity to BH3 mimetics, additional specificity is conferred by proapoptotic BCL-2 proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Consumption of bee pollen affects rat ovarian functions.
Kolesarova, A; Bakova, Z; Capcarova, M; Galik, B; Juracek, M; Simko, M; Toman, R; Sirotkin, A V
2013-12-01
The aim of this study was to examine possible effects of bee pollen added to the feed mixture (FM) on rat ovarian functions (secretion activity and apoptosis). We evaluated the bee pollen effect on the release of insulin-like growth factor I (IGF-I) and steroid hormones (progesterone and estradiol), as well as on the expression of markers of apoptosis (Bcl-2, Bax and caspase-3) in rat ovarian fragments. Female rats (n = 15) were fed during 90 days by FM without or with rape seed bee pollen in dose either 3 kg/1000 kg FM or 5 kg/1000 kg FM. Fragments of ovaries isolated from rats of each group (totally 72 pieces) were incubated for 24 h. Hormonal secretion into the culture medium was detected by RIA. The markers of apoptosis were evaluated by Western blotting. It was observed that IGF-I release by rat ovarian fragments was significantly (p < 0.05) decreased; on the other hand, progesterone and estradiol secretion was increased after bee pollen treatment at dose 5 kg/1000 kg FM but not at 3 kg/1000 FM. Accumulation of Bcl-2 was increased by bee pollen added at 3 kg/1000 kg FM, but not at higher dose. Accumulation of Bax was increased in ovaries of rats fed by bee pollen at doses either 3 or 5 kg/1000 kg FM, whilst accumulation of caspase-3 increased after feeding with bee pollen at dose 5 kg/1000 kg FM, but not at 3 kg/1000 kg FM. Our results contribute to new insights regarding the effect of bee pollen on both secretion activity (release of growth factor IGF-I and steroid hormones progesterone and estradiol) and apoptosis (anti- and pro-apoptotic markers Bcl-2, Bax and caspase-3). Bee pollen is shown to be a potent regulator of rat ovarian functions. © 2012 Blackwell Verlag GmbH.
2012-01-01
Background Status epilepticus induces subcellular changes that may lead to neuronal cell death in the hippocampus. However, the mechanism of seizure-induced neuronal cell death remains unclear. The mitochondrial uncoupling protein 2 (UCP2) is expressed in selected regions of the brain and is emerged as an endogenous neuroprotective molecule in many neurological disorders. We evaluated the neuroprotective role of UCP2 against seizure-induced hippocampal neuronal cell death under experimental status epilepticus. Methods In Sprague–Dawley rats, kainic acid (KA) was microinjected unilaterally into the hippocampal CA3 subfield to induce prolonged bilateral seizure activity. Oxidized protein level, translocation of Bcl-2, Bax and cytochrome c between cytosol and mitochondria, and expression of peroxisome proliferator-activated receptors γ (PPARγ) and UCP2 were examined in the hippocampal CA3 subfield following KA-induced status epilepticus. The effects of microinjection bilaterally into CA3 area of a PPARγ agonist, rosiglitazone or a PPARγ antagonist, GW9662 on UCP2 expression, induced superoxide anion (O2· -) production, oxidized protein level, mitochondrial respiratory chain enzyme activities, translocation of Bcl-2, Bax and cytochrome c, and DNA fragmentation in bilateral CA3 subfields were examined. Results Increased oxidized proteins and mitochondrial or cytosol translocation of Bax or cytochrome c in the hippocampal CA3 subfield was observed 3–48 h after experimental status epilepticus. Expression of PPARγ and UCP2 increased 12–48 h after KA-induced status epilepticus. Pretreatment with rosiglitazone increased UCP2 expression, reduced protein oxidation, O2· - overproduction and dysfunction of mitochondrial Complex I, hindered the translocation of Bax and cytochrome c, and reduced DNA fragmentation in the CA3 subfield. Pretreatment with GW9662 produced opposite effects. Conclusions Activation of PPARγ upregulated mitochondrial UCP2 expression, which decreased overproduction of reactive oxygen species, improved mitochondrial Complex I dysfunction, inhibited mitochondrial translocation of Bax and prevented cytosolic release of cytochrome c by stabilizing the mitochondrial transmembrane potential, leading to amelioration of apoptotic neuronal cell death in the hippocampus following status epilepticus. PMID:22849356
Li, Feng; Liu, Bei Bei; Cai, Ming; Li, Jing Jing; Lou, Shu-Jie
2018-04-06
Studies have shown high fat diet induced obesity may cause cognition impairment and down-regulation of neuroplasticity-associated proteins, while aerobic exercise could improve that damage. Endoplasmic reticulum stress (ERS) has been reported to play a key role in regulating neuroplasticity-associated proteins expression, folding and post-translational modification in hippocampus of obese rodent models, however, the effects of ERS on neuroplasticity-associated proteins and possible underlying mechanisms in prefrontal cortex are not fully clear. In order to clarify changes of neuroplasticity-associated proteins and ERS in the prefrontal cortex of obese rats, male SD rats were fed on high fat diet for 8 weeks to establish the obese model. Then, 8 weeks of aerobic exercise treadmill intervention was arranged for the obese rats. Results showed that high fat diet induced obesity caused hyperlipidemia, and significantly promoted FATP1 expression in the prefrontal cortex, meanwhile, we found up-regulation of GRP78, p-PERK, p-eIF2α, caspase-12, CHOP, and Bax/Bcl-2, reflecting the activation of ERS and ERS-mediated apoptosis. Moreover, reduced BDNF and SYN was found in obese rats. However, FATP1, GRP78, p-PERK, p-eIF2α, caspase-12, CHOP, and Bax/Bcl-2 expressions were obviously reversed by aerobic exercise intervention. These results suggested that dietary obesity could induce Prefrontal ERS in SD rats and excessive ERS may play a critical role in decreasing the levels of neuroplasticity-associated proteins. Moreover, aerobic exercise could relieve ERS, thus promoted the expression of neuroplasticity-associated proteins. Copyright © 2018. Published by Elsevier Inc.
Li, Jianhua; Bai, Caiyan; Guo, Junxia; Liang, Wanqian; Long, Jingning
2017-07-01
Myocardial ischaemia/reperfusion (I/R) injury may cause the apoptosis of cardiomyocytes as well as mitochondrial dysfunction. The aims of the present study were to investigate whether NADH dehydrogenase 1 alpha subcomplex subunit 4-like 2 (NDUFA4L2) on myocardial ischaemia-reperfusion (I/R) injury and the underlying molecular mechanism. The hypoxia-reperfusion (H/R) model was established in vitro using H9c2 cells to simulate I/R injury. NDUFA4L2 and complex I expression levels were detected using RT-PCR and western blot. The apoptosis of H9c2 cells was evaluated by flow cytometry and the expression of Bax and Bcl-2 was detected by western blot. The mitochondrial function was assessed by ATP concentration, mPTP opening and cytochrome c (cyto C) expression. Our data indicated that NDUFA4L2 expression was significantly down-regulated in myocardial H/R injury. Overexpression of NDUFA4L2 led to a dramatic prevention of H/R-induced apoptosis accompanied by a decrease in the expression of Bax and an increase in the expression of Bcl-2. Meanwhile, augmentation of NDUFA4L2 dramatically prevented mitochondrial dysfunction caused by H/R as reflecting in the increased ATP concentration, delayed mPTP opening, as well as down-regulated cyto C expression. Moreover, complex I activation was heightened and negatively regulated by NDUFA4L2. Silencing complex I conspicuously attenuated cell apoptosis and mitochondrial dysfunction. Taken together, our findings demonstrated that NDUFA4L2 protects against H/R injury by preventing myocardium apoptosis and mitochondrial dysfunction via the complex I, and may be a potential therapeutic approach for attenuating myocardial I/R injury. © 2017 John Wiley & Sons Australia, Ltd.
Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Sang-Min; An, Joo-Hee; Kim, Chul-Hong
2015-08-07
Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screeningmore » techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer. - Highlights: • Identification of new target genes of FOXA2. • Identifications of novel interaction proteins of FOXA2. • Construction of FOXA2-centered transcriptional regulatory network in non-small cell lung cancer.« less
BAX protein expression and clinical outcome in epithelial ovarian cancer.
Tai, Y T; Lee, S; Niloff, E; Weisman, C; Strobel, T; Cannistra, S A
1998-08-01
Expression of the pro-apoptotic protein BAX sensitizes ovarian cancer cell lines to paclitaxel in vitro by enhancing the pathway of programmed cell death. The present study was performed to determine the relationship between BAX expression and clinical outcome in 45 patients with newly diagnosed ovarian cancer. BAX protein expression was analyzed by immunohistochemistry, and its relationship with clinical outcome was determined. Assessment of BAX mRNA transcript levels and mutational analysis of the BAX coding region were also performed. BAX protein was expressed at high levels (defined as > or = 50% of tumor cells positive) in tumor tissue from 60% of newly diagnosed patients. All patients whose tumors expressed high levels of BAX achieved a complete response (CR) to first-line chemotherapy that contained paclitaxel plus a platinum analogue, compared with 57% of patients in the low-BAX group (P = .036). After a median follow-up of 1.9 years, the median disease-free survival (DFS) of patients in the high-BAX group has not been reached, compared with a median DFS of 1.1 years for low-BAX expressors (P = .0061). BAX retained independent prognostic significance in multivariate analysis when corrected for stage and histology. BAX mRNA transcripts were easily detected in samples with low BAX protein expression, and no BAX mutations were identified. The correlation between high BAX levels and improved clinical outcome suggests that an intact apoptotic pathway is an important determinant of chemoresponsiveness in ovarian cancer patients who receive paclitaxel.
Shan, HaiYan; Zhang, Siyang; Li, Xuelian; yu, Kai; Zhao, Xin; Chen, Xinyue; Jin, Bo; Bai, XiaoJuan
2014-01-01
Angiotensin II (Ang II) plays important roles in ageing-related disorders through its type 1 receptor (AT1R). However, the role and underlying mechanisms of AT1R in ageing-related vascular degeneration are not well understood. In this study, 40 ageing rats were randomly divided into two groups: ageing group which received no treatment (ageing control), and valsartan group which took valsartan (selective AT1R blocker) daily for 6 months. 20 young rats were used as adult control. The aorta structure were analysed by histological staining and electron microscopy. Bcl-2/Bax expression in aorta was analysed by immunohistochemical staining, RT-PCR and Western blotting. The expressions of AT1R, AT2R and mitogen-activated protein kinases (MAPKs) were detected. Significant structural degeneration of aorta in the ageing rats was observed, and the degeneration was remarkably ameliorated by long-term administration of valsartan. With ageing, the expression of AT1R was elevated, the ratio of Bcl-2/Bax was decreased and meanwhile, an important subgroup of MAPKs, extracellular signal-regulated kinase (ERK) activity was elevated. However, these changes in ageing rats could be reversed to some extent by valsartan. In vitro experiments observed consistent results as in vivo study. Furthermore, ERK inhibitor could also acquire partial effects as valsartan without affecting AT1R expression. The results indicated that AT1R involved in the ageing-related degeneration of aorta and AT1R-mediated ERK activity was an important mechanism underlying the process. PMID:24548645
Rojas-Rivera, D; Armisén, R; Colombo, A; Martínez, G; Eguiguren, A L; Díaz, A; Kiviluoto, S; Rodríguez, D; Patron, M; Rizzuto, R; Bultynck, G; Concha, M L; Sierralta, J; Stutzin, A; Hetz, C
2012-01-01
Transmembrane BAX inhibitor motif-containing (TMBIM)-6, also known as BAX-inhibitor 1 (BI-1), is an anti-apoptotic protein that belongs to a putative family of highly conserved and poorly characterized genes. Here we report the function of TMBIM3/GRINA in the control of cell death by endoplasmic reticulum (ER) stress. Tmbim3 mRNA levels are strongly upregulated in cellular and animal models of ER stress, controlled by the PERK signaling branch of the unfolded protein response. TMBIM3/GRINA synergies with TMBIM6/BI-1 in the modulation of ER calcium homeostasis and apoptosis, associated with physical interactions with inositol trisphosphate receptors. Loss-of-function studies in D. melanogaster demonstrated that TMBIM3/GRINA and TMBIM6/BI-1 have synergistic activities against ER stress in vivo. Similarly, manipulation of TMBIM3/GRINA levels in zebrafish embryos revealed an essential role in the control of apoptosis during neuronal development and in experimental models of ER stress. These findings suggest the existence of a conserved group of functionally related cell death regulators across species beyond the BCL-2 family of proteins operating at the ER membrane. PMID:22240901
Rojas-Rivera, D; Armisén, R; Colombo, A; Martínez, G; Eguiguren, A L; Díaz, A; Kiviluoto, S; Rodríguez, D; Patron, M; Rizzuto, R; Bultynck, G; Concha, M L; Sierralta, J; Stutzin, A; Hetz, C
2012-06-01
Transmembrane BAX inhibitor motif-containing (TMBIM)-6, also known as BAX-inhibitor 1 (BI-1), is an anti-apoptotic protein that belongs to a putative family of highly conserved and poorly characterized genes. Here we report the function of TMBIM3/GRINA in the control of cell death by endoplasmic reticulum (ER) stress. Tmbim3 mRNA levels are strongly upregulated in cellular and animal models of ER stress, controlled by the PERK signaling branch of the unfolded protein response. TMBIM3/GRINA synergies with TMBIM6/BI-1 in the modulation of ER calcium homeostasis and apoptosis, associated with physical interactions with inositol trisphosphate receptors. Loss-of-function studies in D. melanogaster demonstrated that TMBIM3/GRINA and TMBIM6/BI-1 have synergistic activities against ER stress in vivo. Similarly, manipulation of TMBIM3/GRINA levels in zebrafish embryos revealed an essential role in the control of apoptosis during neuronal development and in experimental models of ER stress. These findings suggest the existence of a conserved group of functionally related cell death regulators across species beyond the BCL-2 family of proteins operating at the ER membrane.
Bao, Lei; Zhou, Su; Zhao, Hui; Zu, Jie; He, Qianqian; Ye, Xinchun; Cui, Guiyun
2015-01-01
17β-estradiol (E2) is a powerful neuroprotective agent in the central nervous system; however, little is known about its effects on intracerebral hemorrhage. This study examined the effects of E2 on thrombin-induced apoptosis in vitro and investigated the potential mechanisms. Primary cultured cortical neurons were treated with E2 or vehicle and then the cells were exposed to thrombin. Neuronal apoptosis was assessed by flow cytometry. The phosphorylated c-Jun-N-terminal kinase (p-JNK), phosphorylated extracellular signal-regulated kinases 1/2 (p-ERK1/2), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax) and caspase-3 were assayed by western blot. Consequently, we found that E2 has significantly reduced the apoptosis in thrombin-treated neurons. E2 also exhibited a downregulation in the ratio of Bax/Bcl-2, caspase-3 and p-JNK. However, E2 had little effect on p-ERK1/2 proteins activation. Taken together, E2 has shown neuroprotective effects on thrombin-induced neuronal apoptosis, and the molecular mechanisms may correlate with the inhibition of the JNK signaling pathway. © 2015 S. Karger AG, Basel.
BAX inhibitor-1 is a Ca2+ channel critically important for immune cell function and survival
Lisak, D; Schacht, T; Gawlitza, A; Albrecht, P; Aktas, O; Koop, B; Gliem, M; Hofstetter, H H; Zanger, K; Bultynck, G; Parys, J B; De Smedt, H; Kindler, T; Adams-Quack, P; Hahn, M; Waisman, A; Reed, J C; Hövelmeyer, N; Methner, A
2016-01-01
The endoplasmic reticulum (ER) serves as the major intracellular Ca2+ store and has a role in the synthesis and folding of proteins. BAX (BCL2-associated X protein) inhibitor-1 (BI-1) is a Ca2+ leak channel also implicated in the response against protein misfolding, thereby connecting the Ca2+ store and protein-folding functions of the ER. We found that BI-1-deficient mice suffer from leukopenia and erythrocytosis, have an increased number of splenic marginal zone B cells and higher abundance and nuclear translocation of NF-κB (nuclear factor-κ light-chain enhancer of activated B cells) proteins, correlating with increased cytosolic and ER Ca2+ levels. When put into culture, purified knockout T cells and even more so B cells die spontaneously. This is preceded by increased activity of the mitochondrial initiator caspase-9 and correlated with a significant surge in mitochondrial Ca2+ levels, suggesting an exhausted mitochondrial Ca2+ buffer capacity as the underlying cause for cell death in vitro. In vivo, T-cell-dependent experimental autoimmune encephalomyelitis and B-cell-dependent antibody production are attenuated, corroborating the ex vivo results. These results suggest that BI-1 has a major role in the functioning of the adaptive immune system by regulating intracellular Ca2+ homeostasis in lymphocytes. PMID:26470731
Raish, Mohammad
2017-04-01
The polysaccharide extract of Momordica charantia has various biological activities; however, its effect on endothelial dysfunction in myocardial infarction remains unclear. To elucidate this, myocardial infarction was induced in rats using isoproterenol (ISP). Pretreatment with M. charantia polysaccharides (MCP; 150 or 300mg/kg) for 25days significantly inhibited increases in heart weight, the heart-weight-to-body-weight ratio, and infarction size, and ameliorated the increased serum levels of aspartate transaminase, creatine kinase, lactate dehydrogenase, total cholesterol, triglycerides, very-low-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. In addition, MCP enhanced the activity of superoxide dismutase, catalase, and non-protein sulfhydryls, and decreased the level of lipid peroxidation. Moreover, MCP pretreatment downregulated the expression of proinflammatory cytokines (tumor necrosis factor alpha, interleukin (IL)-6, and IL-10), inflammatory markers (nitric oxide, myeloperoxidase, and inducible nitric oxide synthase), and apoptotic markers (caspase-3 and BAX), and upregulated Bcl-2 expression. Pretreatment with MCP reduced myonecrosis, edema, and inflammatory cell infiltration, and restored cardiomyocytes architecture. This myocardial protective effect could be related to the enhancement of the antioxidant defense system through the nuclear factor kappa B (NF-kB) pathways, and to anti-apoptosis through regulation of Bax, caspase-3, and Bcl-2. Copyright © 2017 Elsevier B.V. All rights reserved.
Yu, Di; Fan, Changfeng; Zhang, Weiyan; Wen, Zhongyuan; Hu, Liang; Yang, Lei; Feng, Yu; Yin, Ke-Jie; Mo, Xuming
2015-10-15
Nicorandil exerts a protective effect on ischemia-reperfusion (I/R) injury in the brain and kidney through anti-apoptotic mechanisms. However, the mechanism by which nicorandil protects against I/R injury induced by deep hypothermic low flow (DHLF) remains unclear. We used a cerebral I/R model induced by DHLF to determine the neuroprotective effects and possible mechanisms of nicorandil. Hematoxylin-eosin (HE) staining and in situ terminal deoxynucleotidyl transferase UTP nick end labeling (TUNEL) assay were used to detect changes in cell morphology and the number of apoptotic cells in hippocampus, respectively. The apoptotic regulators including Bcl-2, Bax, Akt, and p-Akt (the active, phosphorylated form of Akt) were examined by Western blot (WB). Histopathological findings showed that nicorandil significantly alleviated morphological damage in hippocampal and reduced the number of TUNEL-positive nuclei induced by DHLF. Nicorandil also increased the expression of Bcl-2 and decreased the expression of Bax, while increasing p-Akt level. Consistent with these results, nicorandil-mediated neuroprotection was reduced in the Akt1+/- mutant mice and inhibited by LY294002, a PI3K inhibitor. These findings showed that nicorandil provides a neuroprotective role in DHLF-induced I/R injury by inhibiting apoptosis via activation of the PI3K/Akt1 signaling pathway. Copyright © 2015 Elsevier B.V. All rights reserved.
Farhadi, Farrokh; Jahanpour, Salar; Hazem, Kameliya; Aghbali, Amirala; Baradran, Behzad; Vahid Pakdel, Seyyed Mahdi
2015-01-01
Background and aims. There is no report on the apoptotic impact of Allium sativum L.(Garlic) on the oral squamous cell carcinoma (KB); hence, this study was designed to survey the apoptotic effects of garlic fresh juice (GFJ) on the KB cells. Materials and methods. MTTassay (MicrocultureTetrazolium Assay) was carried out to evaluate the cytotoxicity of GFJ on KB cells. Furthermore, TUNEL(Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling)and DNA fragmentation tests were performed to determine if GFJ is able to induce apoptosis in KB cells. Also a standard kit was used to assess caspase-3 activity in KB cells. Also western blotting was employed to evaluate the effect of GFJ on Bax:Bcl-2 ratio. Results. Significant cytotoxic effects were observed for the minimum used concentration (1μg/mL) as calculated to be 77.97±2.3% for 24 h and 818±3.1% for 36h of incubation (P < 0.001). Furthermore, TUNEL and DNA fragmentation tests corroborated the apoptosis inducing activity of GFJ. Consistently, after treating KB cells with GFJ(1μg/mL), caspase-3 activity and Bax:Bcl-2 ratio were raised by 7.3±0.6 and (P <0.001) folds, respectively. Conclusion. The results of this study advanced that GFJ induces apoptosis in the KB cells through increasing caspase-3 activity and Bax:Bcl2 ratio which could be attributed to its organo-sulfurcomponents. PMID:26889365
Particulate barium tracing of significant mesopelagic carbon remineralisation in the North Atlantic
NASA Astrophysics Data System (ADS)
Lemaitre, Nolwenn; Planquette, Hélène; Planchon, Frédéric; Sarthou, Géraldine; Jacquet, Stéphanie; García-Ibáñez, Maribel I.; Gourain, Arthur; Cheize, Marie; Monin, Laurence; André, Luc; Laha, Priya; Terryn, Herman; Dehairs, Frank
2018-04-01
The remineralisation of sinking particles by prokaryotic heterotrophic activity is important for controlling oceanic carbon sequestration. Here, we report mesopelagic particulate organic carbon (POC) remineralisation fluxes in the North Atlantic along the GEOTRACES-GA01 section (GEOVIDE cruise; May-June 2014) using the particulate biogenic barium (excess barium; Baxs) proxy. Important mesopelagic (100-1000 m) Baxs differences were observed along the transect depending on the intensity of past blooms, the phytoplankton community structure, and the physical forcing, including downwelling. The subpolar province was characterized by the highest mesopelagic Baxs content (up to 727 pmol L-1), which was attributed to an intense bloom averaging 6 mg chl a m-3 between January and June 2014 and by an intense 1500 m deep convection in the central Labrador Sea during the winter preceding the sampling. This downwelling could have promoted a deepening of the prokaryotic heterotrophic activity, increasing the Baxs content. In comparison, the temperate province, characterized by the lowest Baxs content (391 pmol L-1), was sampled during the bloom period and phytoplankton appear to be dominated by small and calcifying species, such as coccolithophorids. The Baxs content, related to oxygen consumption, was converted into a remineralisation flux using an updated relationship, proposed for the first time in the North Atlantic. The estimated fluxes were of the same order of magnitude as other fluxes obtained using independent methods (moored sediment traps, incubations) in the North Atlantic. Interestingly, in the subpolar and subtropical provinces, mesopelagic POC remineralisation fluxes (up to 13 and 4.6 mmol C m-2 d-1, respectively) were equalling and occasionally even exceeding upper-ocean POC export fluxes, deduced using the 234Th method. These results highlight the important impact of the mesopelagic remineralisation on the biological carbon pump of the studied area with a near-zero, deep (> 1000 m) carbon sequestration efficiency in spring 2014.
Mitochondrial shape governs BAX-induced membrane permeabilization and apoptosis.
Renault, Thibaud T; Floros, Konstantinos V; Elkholi, Rana; Corrigan, Kelly-Ann; Kushnareva, Yulia; Wieder, Shira Y; Lindtner, Claudia; Serasinghe, Madhavika N; Asciolla, James J; Buettner, Christoph; Newmeyer, Donald D; Chipuk, Jerry E
2015-01-08
Proapoptotic BCL-2 proteins converge upon the outer mitochondrial membrane (OMM) to promote mitochondrial outer membrane permeabilization (MOMP) and apoptosis. Here we investigated the mechanistic relationship between mitochondrial shape and MOMP and provide evidence that BAX requires a distinct mitochondrial size to induce MOMP. We utilized the terminal unfolded protein response pathway to systematically define proapoptotic BCL-2 protein composition after stress and then directly interrogated their requirement for a productive mitochondrial size. Complementary biochemical, cellular, in vivo, and ex vivo studies reveal that Mfn1, a GTPase involved in mitochondrial fusion, establishes a mitochondrial size that is permissive for proapoptotic BCL-2 family function. Cells with hyperfragmented mitochondria, along with size-restricted OMM model systems, fail to support BAX-dependent membrane association and permeabilization due to an inability to stabilize BAXα9·membrane interactions. This work identifies a mechanistic contribution of mitochondrial size in dictating BAX activation, MOMP, and apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.
BaxΔ2 sensitizes colorectal cancer cells to proteasome inhibitor-induced cell death
Mañas, Adriana; Chen, Wenjing; Nelson, Adam; Yao, Qi; Xiang, Jialing
2018-01-01
Proteasome inhibitors, such as bortezomib and carfilzomib, are FDA approved for the treatment of hemopoietic cancers, but recent studies have shown their great potential for treatment of solid tumors. BaxΔ2, a unique proapoptotic Bax isoform, promotes non-mitochondrial cell death and sensitizes cancer cells to chemotherapy. However, endogenous BaxΔ2 proteins are unstable and susceptible to proteasomal degradation. Here, we screened a panel of proteasome inhibitors in colorectal cancer cells with different Bax statuses. We found that all proteasome inhibitors tested were able to block BaxΔ2 degradation without affecting the level of Baxα or Bcl-2 proteins. Among the inhibitors tested, only bortezomib and carfilzomib were able to induce differential cell death corresponding to the distinct Bax statuses. BaxΔ2-positive cells had a significantly higher level of cell death at low nanomolar concentrations than Baxα-positive or Bax-negative cells. Furthermore, bortezomib-induced cell death in BaxΔ2-positive cells was predominantly dependent on the caspase 8/3 pathway, consistent with our previous studies. These results imply that BaxΔ2 can selectively sensitize cancer cells to proteasome inhibitors, enhancing their potential to treat colon cancer and other solid tumors. PMID:29291406
Bhaskaran, Sreenath Kunnathupara; Kannappan, Poornima
2017-05-01
Azolla microphylla is an important fast-growing aquatic plant trusted for its agronomic, nutritious and therapeutic uses. The present work is undertaken to investigate the protective effect of the ethanolic extract of Azolla microphylla (EAM) against the Isoproterenol (ISO) induced cardiotoxicity in rats. Rats were pre-treated with EAM (250 and 500mg/kg b.w.) for 28 days along with ISO (85mg/kg; s.c.) on the 29th and 30th days. ISO-induced rats displayed significant diminution in cardiac antioxidant enzymes activities, increased lipid peroxidation and alteration in cardiac marker enzymes. The same group also displayed an increase in levels of serum lipid profiles and pro-inflammatory cytokines (IL-6 and IL-8) accompanied with a significant reduction in the anti-inflammatory cytokine levels (IL-10). Moreover, the histopathological investigations in the heart tissue of ISO-induced group exhibited myocardial necrosis and inflammation, which correlated with the increased immunoreactivity for Bax/iNOS, whereas an absence of reactivity for Bcl-2 proteins. However, in EAM pre-treated rats, the activities of antioxidant enzymes, cardiac marker enzymes, membrane-bound ATPases together with the levels of lipid profile, non-enzymatic antioxidants, pro and anti-inflammatory cytokines were maintained at normalcy that was further supported by improving histopathological changes and myocardial architecture. The IHC results of EAM pre-treated rats indicate up-regulated and down-regulated expressions of Bcl-2 and Bax/iNOS proteins, respectively. Thus, the present study reveals that A. microphylla alleviates myocardial damage in ISO-induced cardiac injury and demonstrates cardioprotective potential which could be attributed to its potent antioxidant and free radical scavenging activity. A possible mechanism for the protective effect is the elevated expression of endogenous antioxidant defense enzymes, anti-inflammatory cytokines, degraded lipid peroxidation products and improved energy metabolism of cardiac mitochondria, thus attenuating necrosis of the myocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Reddy, L Vinod Kumar; Sen, Dwaipayan
2017-12-15
Nutritional deprivation and inflammation-rich zones are the major causative reasons for poor survivability of transplanted mesenchymal stem cells (MSCs). Therefore in the present study, we demonstrated the cytoprotective and anti-inflammatory effects of activated delta (δ)-opioid receptor (DOR) with synthetic peptide [D-Ala 2 , D-Leu 5 ]-enkephalin (DADLE) treatment on human MSCs cultured in serum-starved condition. Cell viability was measured using MTT and Annexin V/PI assays. Expressions of pro-apoptotic (Bcl2) and anti-apoptotic genes (Bax/Bad), levels of activated p44/42 MAPK, Akt, PI3-kinase-p110γ and cleaved caspase-3 were determined by qPCR and western blot. Levels of secreted cytokines were measured by ELISA. In comparison to the control, DADLE significantly increased cell survivability under serum deprived condition as confirmed by MTT (71% vs 45%) and Annexin V/PI assays (25.9% vs 3.7%). Significant up-regulation of pro-apoptotic Bcl2 (~2.1 folds), down-regulations of anti-apoptotic Bax/Bad (~2.6/2.7 folds) as well as of cleaved caspase-3, increased expression of PI3kinase subunit p110γ and activation of Akt (Ser473) were observed following DADLE treatment in cells under 'serum deprivation' stress. In addition, DADLE treated hMSCs secreted increased levels of anti-inflammatory cytokines (IL10/IL4/TGF-β) under serum deprived condition. LPS stimulated macrophages showed abated release of pro-inflammatory cytokines (IL1/TNFα/IL6) when grown in hMSC conditioned 'serum deprived' media treated with DADLE. Both the cytoprotective and anti-inflammatory effects of DADLE were inhibited by the DOR specific antagonist naltrindole. The DOR signaling pathway improved cell viability and enhanced anti-inflammatory effect of hMSCs subjected to 'serum deprivation' stress that could have potential therapeutic benefits in reparative medicine. Copyright © 2017 Elsevier Inc. All rights reserved.
Ma, Xiao-Qiong; Chen, Jiang-Hua
2012-01-01
β,β-Dimethylacrylshikonin, one of the active components in the root extracts of Lithospermum erythrorhizon, posses antitumor activity. In this study, we discussed the molecular mechanisms of β,β-dimethylacrylshikonin in the apoptosis of SGC-7901 cells. β,β-Dimethylacrylshikonin reduced the cell viability of SGC-7901 cells in a dose- and time-dependent manner and induced cell apoptosis. β,β-Dimethylacrylshikonin treatment in SGC-7901 cells down-regulated the expression of XIAP, cIAP-2, and Bcl-2 and up-regulated the expression of Bak and Bax and caused the loss of mitochondrial membrane potential and release of cytochrome c. Additionally, β,β-dimethylacrylshikonin treatment led to activation of caspases-9, 8 and 3, and cleavage of poly (ADP-ribose) polymerase (PARP), which was abolished by pretreatment with the pan-caspase inhibitor Z-VAD-FMK. β,β-Dimethylacrylshikonin induced phosphorylation of extracellular signal-regulated kinase (ERK) in SGC-7901 cells. U0126, a specific MEK inhibitor, blocked the ERK activation by β,β-dimethylacrylshikonin and abrogated β,β-dimethylacrylshikonin -induced apoptosis. Our results demonstrated that β,β-dimethylacrylshikonin inhibited growth of gastric cancer SGC-7901 cells by inducing ERK signaling pathway, and provided a clue for preclinical and clinical evaluation of β,β-dimethylacrylshikonin for gastric cancer therapy. PMID:22848597
Wijesinghe, W A J P; Jeon, You Jin; Ramasamy, Perumal; Wahid, Mohd Effendy A; Vairappan, Charles S
2013-08-15
Sea cucumbers have been a dietary delicacy and important ingredient in Asian traditional medicinal over many centuries. In this study, edible sea cucumber Holothuria edulis was evaluated for its in vitro anticancer potential. An aqueous fraction of the edible sea cucumber (ESC-AQ) has been shown to deliver a strong cytotoxic effect against the human HL-60 leukaemia cell line. An induction effect of apoptotic body formation in response to ESC-AQ treatment was confirmed in HL-60 cells stained with Hoechst 33342 and confirmed via flow cytometry analysis. The up regulation of Bax and caspase-3 protein expression was observed while the expression of Bcl-xL protein was down regulated in ESC-AQ treated HL-60 cells. Due to the profound anticancer activity, ESC-AQ appears to be an economically important biomass fraction that can be exploited in numerous industrial applications as a source of functional ingredients. Copyright © 2013 Elsevier Ltd. All rights reserved.
Jin, Shan; Dai, Chao-Liu
2012-05-15
This study aimed to examine the hepatocyte apoptosis in a hepatic blood inflow occlusion rat model without hemi-hepatic arterial control and its association with the expressions of the apoptosis-regulating genes bcl-2 and bax. Wistar rats were equally and randomly assigned to undergo sham operation (control group, n = 8), Pringle's maneuver (group PR, n = 32), hemi-hepatic occlusion (group HH, n = 32), or hemi-hepatic artery-preserved portal occlusion (group HP, n = 32). The hepatic blood inflow was interrupted for 30 min using a microvascular clip in the three experimental groups. The clips were removed to achieve hepatic reperfusion for up to 24 h. Blood samples and liver specimens were collected following reperfusion to perform pathologic examination, serum transferase assay, apoptosis analysis, and determination of bcl-2 and bax mRNA and protein expressions. The reperfusion-related hepatocytic injuries were more severe in the PR group than in the HH and HP groups, both pathologically and biochemically. More reperfused hepatocytes became apoptotic in the PR group than in the HH and HP groups. However, the values of the HH and HP groups were comparable in cellularity, levels of serum transferases, and apoptosis rate following reperfusion. The ratios of bcl-2/bax were reversed, which was more evident in the HH and HP groups than in the PR group. Hemi-hepatic artery-preserved portal occlusion had little effect on hepatocyte apoptosis compared with Pringle's maneuver and caused minor ischemia-reperfusion injury as shown by the reversed bcl-2/bax ratio. Copyright © 2012 Elsevier Inc. All rights reserved.
Azithromycin ameliorates airway remodeling via inhibiting airway epithelium apoptosis.
Liu, Yuanqi; Pu, Yue; Li, Diandian; Zhou, Liming; Wan, Lihong
2017-02-01
Azithromycin can benefit treating allergic airway inflammation and remodeling. In the present study, we hypothesized that azithromycin alleviated airway epithelium injury through inhibiting airway epithelium apoptosis via down regulation of caspase-3 and Bax/Bcl2 ratio in vivo and in vitro. Ovalbumin induced rat asthma model and TGF-β1-induced BEAS-2B cell apoptosis model were established, respectively. In vivo experiments, airway epithelium was stained with hematoxylin and eosin (HE) and periodic acid-Schiff (PAS) to histologically evaluate the airway inflammation and remodeling. Airway epithelium apoptotic index (AI) was further analyzed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), while expression of apoptosis related gene (Bax, Bcl2, Caspase-3) in lungs were measured by qRT-PCR and western blotting, respectively. In vitro experiments, apoptosis were evaluated by Flow cytometry (FCM) and TUNEL. Above apoptosis related gene were also measured by qRT-PCR and western blotting. Compared with the OVA group, azithromycin significantly reduced the inflammation score, peribronchial smooth muscle layer thickness, epithelial thickening and goblet cell metaplasia (P<0.05), and effectively suppressed AI of airway epithelium (P<0.05). Moreover, the increasing mRNA and protein expressions of Caspase-3 and Bax/Bcl-2 ratio in lung tissue were all significantly decreased in azithromycin-treated rats (P<0.05). In vitro, azithromycin significantly suppressed TGF-β1-induced BEAS-2B cells apoptosis (P<0.05) and reversed TGF-β1 elevated Caspase-3 mRNA level and Bax/Bcl-2 ratio (P<0.05). Azithromycin is an attractive treatment option for reducing airway epithelial cell apoptosis by improving the imbalance of Bax/Bcl-2 ratio and inhibiting Caspase-3 level in airway epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.
Interdependence of Bad and Puma during ionizing-radiation-induced apoptosis.
Toruno, Cristhian; Carbonneau, Seth; Stewart, Rodney A; Jette, Cicely
2014-01-01
Ionizing radiation (IR)-induced DNA double-strand breaks trigger an extensive cellular signaling response that involves the coordination of hundreds of proteins to regulate DNA repair, cell cycle arrest and apoptotic pathways. The cellular outcome often depends on the level of DNA damage as well as the particular cell type. Proliferating zebrafish embryonic neurons are highly sensitive to IR-induced apoptosis, and both p53 and its transcriptional target puma are essential mediators of the response. The BH3-only protein Puma has previously been reported to activate mitochondrial apoptosis through direct interaction with the pro-apoptotic Bcl-2 family proteins Bax and Bak, thus constituting the role of an "activator" BH3-only protein. This distinguishes it from BH3-only proteins like Bad that are thought to indirectly promote apoptosis through binding to anti-apoptotic Bcl-2 family members, thereby preventing the sequestration of activator BH3-only proteins and allowing them to directly interact with and activate Bax and Bak. We have shown previously that overexpression of the BH3-only protein Bad in zebrafish embryos supports normal embryonic development but greatly sensitizes developing neurons to IR-induced apoptosis. While Bad has previously been shown to play only a minor role in promoting IR-induced apoptosis of T cells in mice, we demonstrate that Bad is essential for robust IR-induced apoptosis in zebrafish embryonic neural tissue. Moreover, we found that both p53 and Puma are required for Bad-mediated radiosensitization in vivo. Our findings show the existence of a hierarchical interdependence between Bad and Puma whereby Bad functions as an essential sensitizer and Puma as an essential activator of IR-induced mitochondrial apoptosis specifically in embryonic neural tissue.
Park, Eun-Seok; Kang, Jun Chul; Kang, Do-Hyun; Jang, Yong Chang; Yi, Kyu Yang; Chung, Hun-Jong; Park, Jong Seok; Kim, Bokyung; Feng, Zhong-Ping; Shin, Hwa-Sup
2013-04-01
Poly(adenosine 5'-diphosphate ribose) polymerase (PARP) is a nuclear enzyme activated by DNA strand breaks and plays an important role in the tissue injury associated with ischemia and reperfusion. The aim of the present study was to investigate the protective effect of 5-aminoisoquinolinone (5-AIQ), a PARP inhibitor, against oxidative stress-induced apoptosis in H9c2 cardiomyocytes. 5-AIQ pretreatment significantly protected against H2O2-induced cell death, as determined by the XTT assay, cell counting, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and Western blot analysis of apoptosis-related proteins such as caspase-3, Bax, and Bcl-2. Upregulation of antioxidant enzymes such as manganese superoxide dismutase and catalase accompanied the protective effect of 5-AIQ on H2O2-induced cell death. Our data also showed that 5-AIQ pretreatment protected H9c2 cells from H2O2-induced apoptosis by triggering activation of Akt and glycogen synthase kinase-3β (GSK-3β), and that the protective effect of 5-AIQ was diminished by the PI3K inhibitor LY294002 at a concentration that effectively abolished 5-AIQ-induced Akt and GSK-3β activation. In addition, inhibiting the Akt/GSK-3β pathway by LY294002 significantly attenuated the 5-AIQ-mediated decrease in cleaved caspase-3 and Bax activation and H9c2 cell apoptosis induction. Taken together, these results demonstrate that 5-AIQ prevents H2O2-induced apoptosis in H9c2 cells by reducing intracellular reactive oxygen species production, regulating apoptosis-related proteins, and activating the Akt/GSK-3β pathway. Copyright © 2013 Elsevier Inc. All rights reserved.
Park, Yong Joo; Choi, Chang-Ik; Chung, Kyu Hyuck; Kim, Ki Hyun
2016-10-01
Pharbitidis Semen, the seed of Morning glory (Pharbitis nil), is a medicinal agent that has traditionally been used as a purgative in Korea. Pharbilignan C (PLC) is a dihydro[b]-benzofuran-type neolignan from Pharbitidis Semen, which reportedly exhibited the most potent cytotoxicity against human tumor cells. To further study the antiproliferative activity of PLC, its molecular mechanisms of action in two breast adenocarcinoma cells, MCF-7 and MDA-MB 231 cells were investigated. PLC inhibited the proliferation of MDA-MB 231 and MCF-7 cells, in order of sensitivity (IC50 of MDA-MB 231 cells: 7.0±2.0μM). PLC induced apoptosis in MDA-MB 231 cells with down regulation of Bcl-2 and up-regulation of Bax expression. It also decreased mitochondrial membrane potential accompanied with increasing initiator caspase, caspase-9 activation and executioner caspase, caspase-3 activation. This study demonstrates that PLC inhibited proliferation of MDA-MB 231 cells by inducing apoptosis via the mitochondria-mediated intrinsic pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhu, Chao; Yan, Xueting; Yu, Ao; Wang, Yongjian
2017-11-01
Castration-resistant prostate cancer (CRPC) is fatal and there is currently no effective clinical treatment. The antibiotic doxycycline has shown anti-cancer effect in several kinds of solid tumors including prostate cancer. In this study, a combination of doxycycline and doxorubicin was used to investigate the synergistic effect on CRPC cells. MTT assay was employed to determine the viability of cells in two-dimensional (2D) cultures. Apoptosis was determined by Annexin V/propidium iodide (PI) double staining assay. Cell cycle was analyzed by PI staining, and reverse transcription-PCR (RT-PCR) was used to determine the expressions of apoptosis-related genes at mRNA level. Western blot analysis was used to analyze the expressions of Bcl-2, Bax, and Poly (ADP-ribose) polymerase proteins. Cytotoxicity assay and morphological observation of PC3 cells in three-dimensional (3D) cultures were used to determine the effect of combination treatment. Results showed that doxycycline combined with doxorubicin significantly inhibited PC3 cells in both 2D and 3D cultures, enhanced apoptosis, and increased the accumulation of cells in G2/M phase. RT-PCR showed down-regulation of Bcl-2 and up-regulation of Bax mRNA after combination treatment. Meanwhile, western blot analysis showed that combination treatment resulted in down-regulation of Bcl-2 protein and up-regulation of Bax protein, and that PARP cleavage was obviously exhibited after combination treatment. Confocal imaging analysis indicated that doxorubicin penetrated deeply into the core of spheroids when combined with doxycycline. These data indicated that doxycycline in combination with doxorubicin had a synergistic effect on PC3 cells and may provide a potential novel strategy for the treatment of CRPC. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Song, Chun-Li; Liu, Bin; Diao, Hong-Ying; Shi, Yong-Feng; Zhang, Ji-Chang; Li, Yang-Xue; Liu, Ning; Yu, Yun-Peng; Wang, Guan; Wang, Jin-Peng; Li, Qian
2016-06-28
Insulin-like growth factor-1 (IGF-1) is an important regulator of cardiomyocyte homeostasis and cardiac structure, and the prosurvival and antiapoptotic effects of IGF-1 have been investigated. However, the effect of microRNA-320 (miR-320) in ischemia and reperfusion (I/R) by targeting IGF-1 is rarely discussed. We investigated the role of miR-320 in I/R injury. A total of 192 healthy female Wistar rats were divided into eight groups (n = 24). Rat heart I/R model was established. Hemodynamics, infarct size weight (ISW), heart function, and rat cardiomyocyte apoptosis were measured. Hypoxia-reoxygenation (H/R) in rat cardiomyocyte was used to simulate the I/R process. The mRNA levels of miR-320 and IGF-1, and proteins levels of IGF-1, IGF-1R, p-IGF-1R, p-ASK1, p-JNK, p-p38, Bcl-2, Bax and Caspase-3 were measured. In vivo inhibition of miR-320 expression significantly increased IGF-1 and IGF-1R mRNA levels, elevated the absolute values of SBP, DBP, MAP, ± dp/dtmax, LVEF and LVFS, decreased ISW, LVESD and LVEDd and the number of TUNEL positive cells, lowered the levels of p-ASK1, p-JNK, p-p38, Bax and Caspase-3 and increased expression of Bcl-2 compared to the I/R + NC group. Compared to H/R + NC group in vitro, miR-320 inhibition increased IGF-1 mRNA levels, inhibited cardiomyocyte apoptosis, down-regulated p-ASK, p-JNK, p-p38, Bax and Caspase-3 levels, and up-regulated Bcl-2 level. MiR-320 inhibition target elevated IGF-1 mRNA and protein levels, suppress early cardiomyocyte apoptosis of I/R, and inhibited ASK1-JNK/p38 pathway, which provides a new target for clinical study of I/R injury.
Song, Chun-Li; Liu, Bin; Diao, Hong-Ying; Shi, Yong-Feng; Zhang, Ji-Chang; Li, Yang-Xue; Liu, Ning; Yu, Yun-Peng; Wang, Guan; Wang, Jin-Peng; Li, Qian
2016-01-01
Insulin-like growth factor-1 (IGF-1) is an important regulator of cardiomyocyte homeostasis and cardiac structure, and the prosurvival and antiapoptotic effects of IGF-1 have been investigated. However, the effect of microRNA-320 (miR-320) in ischemia and reperfusion (I/R) by targeting IGF-1 is rarely discussed. We investigated the role of miR-320 in I/R injury. A total of 192 healthy female Wistar rats were divided into eight groups (n = 24). Rat heart I/R model was established. Hemodynamics, infarct size weight (ISW), heart function, and rat cardiomyocyte apoptosis were measured. Hypoxia-reoxygenation (H/R) in rat cardiomyocyte was used to simulate the I/R process. The mRNA levels of miR-320 and IGF-1, and proteins levels of IGF-1, IGF-1R, p-IGF-1R, p-ASK1, p-JNK, p-p38, Bcl-2, Bax and Caspase-3 were measured. In vivo inhibition of miR-320 expression significantly increased IGF-1 and IGF-1R mRNA levels, elevated the absolute values of SBP, DBP, MAP, ± dp/dtmax, LVEF and LVFS, decreased ISW, LVESD and LVEDd and the number of TUNEL positive cells, lowered the levels of p-ASK1, p-JNK, p-p38, Bax and Caspase-3 and increased expression of Bcl-2 compared to the I/R + NC group. Compared to H/R + NC group in vitro, miR-320 inhibition increased IGF-1 mRNA levels, inhibited cardiomyocyte apoptosis, down-regulated p-ASK, p-JNK, p-p38, Bax and Caspase-3 levels, and up-regulated Bcl-2 level. MiR-320 inhibition target elevated IGF-1 mRNA and protein levels, suppress early cardiomyocyte apoptosis of I/R, and inhibited ASK1-JNK/p38 pathway, which provides a new target for clinical study of I/R injury. PMID:27175593
Dabili, Sheyda; Fallah, Soudabeh; Aein, Mojdeh; Vatannejad, Akram; Panahi, Ghodratollah; Fadaei, Reza; Moradi, Nariman; Shojaii, Asie
2018-02-20
In this study, the effect of doxorubicin, flavonoid extract of white Morus alba leaf (MFE) and a combination of doxorubicin and flavonoid extract on Bax and Bcl2 levels and caspase 3 activity of cancer A-172 GBM cell line was investigated. Bax/Bcl2 levels of treated A-172 GBM cell line with flavonoid extract of white mulberry leaf were estimated by ELISA methods. Caspase 3 activity of treated A-172 GBM cells was determined by calorimetric assay. The flow cytometry assessment was used to estimate the apoptosis percent of treated A-172 GBM cells. Treatment of A-172 GBM cells with MFE, doxorubicin and a combination of MFE and doxorubicin caused a significant decrease in Bcl2 level and an increase in Bax level. The apoptosis percent of treated cells were also elevated significantly. Present results suggest that concomitant use of herbal medicine and chemotherapy may be an effective alternative method for the treatment of cancers.
Nho, Kyoung Jin; Chun, Jin Mi; Kim, Ho Kyoung
2012-01-01
Dianthus chinensis L. is used to treat various diseases including cancer; however, the molecular mechanism by which the ethanol extract of Dianthus chinensis L. (EDCL) induces apoptosis is unknown. In this study, the apoptotic effects of EDCL were investigated in human HepG2 hepatocellular carcinoma cells. Treatment with EDCL significantly inhibited cell growth in a concentration- and time-dependent manner by inducing apoptosis. This induction was associated with chromatin condensation, activation of caspases, and cleavage of poly (ADP-ribose) polymerase protein. However, apoptosis induced by EDCL was attenuated by caspase inhibitor, indicating an important role for caspases in EDCL responses. Furthermore, EDCL did not alter the expression of bax in HepG2 cells but did selectively downregulate the expression of bcl-2 and bcl-xl, resulting in an increase in the ratio of bax:bcl-2 and bax:bcl-xl. These results support a mechanism whereby EDCL induces apoptosis through the mitochondrial pathway and caspase activation in HepG2 cells. PMID:22645629
Gene miles-apart is required for formation of otic vesicle and hair cells in zebrafish.
Hu, Z-y; Zhang, Q-y; Qin, W; Tong, J-w; Zhao, Q; Han, Y; Meng, J; Zhang, J-p
2013-10-31
Hearing loss is a serious burden to physical and mental health worldwide. Aberrant development and damage of hearing organs are recognized as the causes of hearing loss, the molecular mechanisms underlining these pathological processes remain elusive. Investigation of new molecular mechanisms involved in proliferation, differentiation, migration and maintenance of neuromast primordium and hair cells will contribute to better understanding of hearing loss pathology. This knowledge will enable the development of protective agents and mechanism study of drug ototoxicity. In this study, we demonstrate that the zebrafish gene miles-apart, a homolog of sphingosine-1-phosphate receptor 2 (s1pr2) in mammals, has an important role in the development of otic vesicle, neuromasts and survival of hair cells. Whole-mount in situ hybridization of embryos showed that miles-apart expression occurred mainly in the encephalic region and the somites at 24 h.p.f. (hour post fertilization), in the midbrain/hindbrain boundary, the brainstem and the pre-neuromast of lateral line at 48 h.p.f. in a strict spatiotemporal regulation. Both up- and downregulation of miles-apart led to abnormal otoliths and semicircular canals, excess or few hair cells and neuromasts, and their disarranged depositions in the lateral lines. Miles-apart (Mil) dysregulation also caused abnormal expression of hearing-associated genes, including hmx2, fgf3, fgf8a, foxi1, otop1, pax2.1 and tmieb during zebrafish organogenesis. Moreover, in larvae miles-apart gene knockdown significantly upregulated proapoptotic gene zBax2 and downregulated prosurvival gene zMcl1b; in contrast, the level of zBax2 was decreased and of zMcl1b enhanced by miles-apart overexpression. Collectively, Mil activity is linked to organization and number decision of hair cells within a neuromast, also to deposition of neuromasts and formation of otic vesicle during zebrafish organogenesis. At the larva stage, Mil as an upstream regulator of bcl-2 gene family has a role in protection of hair cells against apoptosis by promoting expression of prosurvival gene zMcl1b and suppressing proapoptotic gene zBax2.
Pezdirc, Marko; Žegura, Bojana; Filipič, Metka
2013-09-01
Heterocyclic aromatic amines (HAAs) are potential human carcinogens formed in well-done meats and fish. The most abundant are 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-Amino-3,4,8-trimethyl-3H-imidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-Amino-3-methyl-3H-imidazo[4,5-f]quinoline (IQ). HAAs exert genotoxic activity after metabolic transformation by CYP1A enzymes, that is well characterized, however the genomic and intervening responses are not well explored. We have examined cellular and genomic responses of human hepatoma HepG2 cells after 24h exposure to HAAs. Comet assay revealed increase in formation of DNA strand breaks by PhIP, MeIQx and IQ but not 4,8-DiMeIQx, whereas increased formation of micronuclei was not observed. The four HAAs up-regulated expression of genes encoding metabolic enzymes CYP1A1, CYP1A2 and UGT1A1 and expression of TP53 and its downstream regulated genes CDKN1A, GADD45α and BAX. Consistent with the up-regulation of CDKN1A and GADD45α the cell-cycle analysis showed arrest in S-phase by PhIP and IQ, and in G1-phase by 4,8-DiMeIQx and MeIQx. The results indicate that upon exposure to HAAs the cells respond with the cell-cycle arrest, which enables cells to repair the damage or eliminate them by apoptosis. However, elevated expression of BCL2 and down-regulation of BAX may indicate that HAAs could suppress apoptosis meaning higher probability of damaged cells to survive and mutate. Copyright © 2013 Elsevier Ltd. All rights reserved.
Raqib, Rubhana; Ekberg, Caroline; Sharkar, Protim; Bardhan, Pradip K; Zychlinsky, Arturo; Sansonetti, Philippe J; Andersson, Jan
2002-06-01
Shigella dysenteriae type 1-induced apoptotic cell death in rectal tissues from patients infected with Shigella dysenteriae type 1 was studied by the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) technique and annexin V staining. Expression of proteins and cytokines participating in the apoptotic process (caspase-1, caspase-3, Fas [CD95], Fas ligand [Fas-L], perforin, granzyme A, Bax, WAF-1, Bcl-2, interleukin-2 [IL-2], IL-18, and granulocyte-macrophage colony-stimulating factor) in tissue in the acute and convalescent stages of dysentery was quantified at the single-cell level by in situ immunostaining. Apoptotic cell death in the lamina propria was markedly up-regulated at the acute stage (P < 0.05), where an increased number of necrotic cells were also seen. Phenotypic analysis of apoptotic cells revealed that 43% of T cells (CD3), 10% of granulocytes (CD15), and 5% of macrophages (CD56) underwent apoptosis. Increased activity of caspase-1 persisted in the rectum up to 1 month after onset. More-extensive expression of Fas, Fas-L, perforin, caspase-3, and IL-18, but not IL-2, at the acute stage than at the convalescent stage was observed. Increased expression of caspase-3 and IL-18 in tissues with severe inflammation compared to expression in those with mild inflammation was evident, implying a possible role in the perpetuation of inflammation. Significantly reduced cell death during convalescence was associated with a significant up-regulation of Bcl-2, Bax, and WAF-1 expression in the rectum compared to that in the acute phase of infection. Thus, induction of apoptosis at the local site in the early phase of S. dysenteriae type 1 infection was associated with a significant up-regulation of Fas/Fas-L and perforin and granzyme A expression and a down-regulation of Bcl-2 and IL-2, which promote cell survival.
Raqib, Rubhana; Ekberg, Caroline; Sharkar, Protim; Bardhan, Pradip K.; Zychlinsky, Arturo; Sansonetti, Philippe J.; Andersson, Jan
2002-01-01
Shigella dysenteriae type 1-induced apoptotic cell death in rectal tissues from patients infected with Shigella dysenteriae type 1 was studied by the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) technique and annexin V staining. Expression of proteins and cytokines participating in the apoptotic process (caspase-1, caspase-3, Fas [CD95], Fas ligand [Fas-L], perforin, granzyme A, Bax, WAF-1, Bcl-2, interleukin-2 [IL-2], IL-18, and granulocyte-macrophage colony-stimulating factor) in tissue in the acute and convalescent stages of dysentery was quantified at the single-cell level by in situ immunostaining. Apoptotic cell death in the lamina propria was markedly up-regulated at the acute stage (P < 0.05), where an increased number of necrotic cells were also seen. Phenotypic analysis of apoptotic cells revealed that 43% of T cells (CD3), 10% of granulocytes (CD15), and 5% of macrophages (CD56) underwent apoptosis. Increased activity of caspase-1 persisted in the rectum up to 1 month after onset. More-extensive expression of Fas, Fas-L, perforin, caspase-3, and IL-18, but not IL-2, at the acute stage than at the convalescent stage was observed. Increased expression of caspase-3 and IL-18 in tissues with severe inflammation compared to expression in those with mild inflammation was evident, implying a possible role in the perpetuation of inflammation. Significantly reduced cell death during convalescence was associated with a significant up-regulation of Bcl-2, Bax, and WAF-1 expression in the rectum compared to that in the acute phase of infection. Thus, induction of apoptosis at the local site in the early phase of S. dysenteriae type 1 infection was associated with a significant up-regulation of Fas/Fas-L and perforin and granzyme A expression and a down-regulation of Bcl-2 and IL-2, which promote cell survival. PMID:12011015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xingyu; Zhang, Xiaodong; Wang, Tingan, E-mail: moonsonlife@yahoo.com
Cancer cells are mainly dependent on glycolysis to generate adenosine triphosphate (ATP) and intermediates required for cell growth and proliferation. Thus, inhibition of glycolysis might be of therapeutic value in antitumor treatment. Our previously studies had found that both 3-bromopyruvate (BP) and sodium citrate (SCT) can inhibit tumor growth and proliferation in vitro and in vivo. However, the mechanism involved in the BP and SCT mediated antitumor activity is not entirely clear. In this work, it is demonstrated that BP inhibits the enzyme hexokinase (HK) activity and SCT suppresses the phosphofructokinase (PFK) activity respectively, both the two agents decrease viability, ATP generationmore » and lactate content in the human gastric cancer cell line MGC-803. These effects are directly correlated with blockage of glycolysis. Furthermore, BP and SCT can induce the characteristic manifestations of mitochondria-regulated apoptosis, such as down-regulation of anti-apoptosis proteins Bcl-2 and Survivin, up-regulation of pro-apoptosis protein Bax, activation of caspase-3, as well as leakage of cytochrome c (Cyt-c). In summary, our results provided evidences that BP and SCT inhibit the MGC-803 cells growth and proliferation might be correlated with inhibiting glycolysis and promoting mitochondria-regulated apoptosis. -- Highlights: •Blockage of glycolysis might be a novel way to anticancer. •Both 3-bromopyruvate and sodium citrate could inhibit glycolysis and regulate mitochondrial pathway in cancer cells. •Both 3-bromopyruvate and sodium citrate would be the novel agents on treatment of gastric cancer.« less
Marcel, V; Fernandes, K; Terrier, O; Lane, D P; Bourdon, J-C
2014-01-01
In addition to the tumor suppressor p53 protein, also termed p53α, the TP53 gene produces p53β and p53γ through alternative splicing of exons 9β and 9γ located within TP53 intron 9. Here we report that both TG003, a specific inhibitor of Cdc2-like kinases (Clk) that regulates the alternative splicing pre-mRNA pathway, and knockdown of SFRS1 increase expression of endogenous p53β and p53γ at mRNA and protein levels. Development of a TP53 intron 9 minigene shows that TG003 treatment and knockdown of SFRS1 promote inclusion of TP53 exons 9β/9γ. In a series of 85 primary breast tumors, a significant association was observed between expression of SFRS1 and α variant, supporting our experimental data. Using siRNA specifically targeting exons 9β/9γ, we demonstrate that cell growth can be driven by modulating p53β and p53γ expression in an opposite manner, depending on the cellular context. In MCF7 cells, p53β and p53γ promote apoptosis, thus inhibiting cell growth. By transient transfection, we show that p53β enhanced p53α transcriptional activity on the p21 and Bax promoters, while p53γ increased p53α transcriptional activity on the Bax promoter only. Moreover, p53β and p53γ co-immunoprecipitate with p53α only in the presence of p53-responsive promoter. Interestingly, although p53β and p53γ promote apoptosis in MCF7 cells, p53β and p53γ maintain cell growth in response to TG003 in a p53α-dependent manner. The dual activities of p53β and p53γ isoforms observed in non-treated and TG003-treated cells may result from the impact of TG003 on both expression and activities of p53 isoforms. Overall, our data suggest that p53β and p53γ regulate cellular response to modulation of alternative splicing pre-mRNA pathway by a small drug inhibitor. The development of novel drugs targeting alternative splicing process could be used as a novel therapeutic approach in human cancers. PMID:24926616
Liu, Jiaxin; Zhou, Shuai; Qian, Xiying; Zhang, Yueting; Zhao, Jianhua
2017-10-01
Objective To investigate the protective effect of lentivirus-mediated BI-1 overexpression on hippocampal neurons in rats with subarachnoid hemorrhage (SAH) and the relationship with endoplasmic reticulum IRE1-JNK signaling pathway. Methods The lentivirus solution of BI-1 over-expression was injected into the brain of rats 24 hours before SAH rat model was established by intravascular puncture method. At 24 hours after modeling, the brain water content and neurological score of the rats were measured. The apoptosis of hippocampal neurons was detected by TUNEL assay. Western blotting was used to detect the expressions of BI-1 protein and endoplasmic reticulum stress (ERS) marker proteins GRP78 and IRE1. ERS in hippocampal neurons of the rats with SAH was intervened by IRE1α-specific inhibitor KIRA6, and then the protein expressions of p-IRE1, p-JNK, Bax, Bcl2 and caspase-3 were detected by Western blotting. Results BI-1 over-expression improved neurobehavioral score, decreased brain water content and hippocampal neuron apoptosis rate, and also down-regulated GRP78 and IRE1 protein levels in the rats with SAH. Both the interference of KIRA6 and the over-expression of BI-1 inhibited the expressions of p-IRE1, p-JNK, Bax and caspase-3, and promoted the expression of anti-apoptotic protein Bcl2. Conclusion Over-expression of BI-1 can inhibit the apoptosis of hippocampal neurons in rats with SAH by inhibiting the activation of ERS-mediated IRE1-JNK signaling pathway, thus ultimately attenuating the early brain injury following SAH.
Wu, Jian; Liu, Shen-lin; Zhang, Xing-xing; Chen, Min; Zou, Xi
2015-09-01
To observe the effect of Jianpi Yangzheng Xiaozheng Recipe (JYXR) on the tumor inhibition rate of subcutaneous transplanted tumor gastric cancer cell line MGC-803 in BALB/c nude mice, and to study its molecular mechanism of apoptosis and autophagy. Gastric cancer cell line MGC-803 was subcutaneously inoculated to nude mice for preparing transplanted gastric cancer models. Totally 32 BALB/c nude mice were randomly divided into 4 groups according to random digit table, i.e., the negative control group, the positive control group, the high dose JYXR group, the low dose JYXR group, 8 in each group. Normal saline was administered to mice in the negative control group by gastrogavage. 5-fluorouracil (5-Fu) at 2. 5 mg/kg was administered to mice in the positive control group by gastrogavage. JYXR at 85 and 43 g/kg was administered to mice in the high dose JYXR group and the low dose JYXR group by gastrogavage, once per day for 10 successive days. The effect of JYXR on the tumor inhibition rate of subcutaneous transplanted tumor was observed. Effects of JYXR on gene expression levels of Bax, Bcl-2, Fas, Cyclin D1, Cyclin D2, and Cyclin D3 in transplanted tumor were observed by real-time PCR. Effects of JYXR on protein expression levels of Procaspase-3, Procaspase-8, Procaspase-9, cleaved-PARP, Beclin-1, and LC3B were detected using Western blot. (1) Compared with the negative control group, the tumor weight was obviously reduced in the rest three groups (P <0. 05). The tumor weight was higher in the high dose JYXR group and the low dose JYXR group than in the positive control group (P <0. 05). (2) Results of RT-PCR indicated that, compared with the negative control group, expression levels of Bax were up-regulated, but expression levels of Bcl-2, Cyclin D1, Cyclin D2, and Cyclin D3 were down-regulated in the positive control group and JYXR groups (P <0. 05). The expression level of Fas was up-regulated in the positive control group and the high dose JYXR group (P <0. 05). Compared with the positive control group, expression levels of Fas, and Bax were all down-regulated, but expression levels of Bcl-2, Cyclin D2, and Cyclin D3 were all up-regulated in the high dose JYXR group and the low dose JYXR group (all P <0. 05). The expression level of Cyclin D1 was down-regulated in the high dose JYXR group, but it was up-regulated in the low dose JYXR group ( both P <0. 05). (3) Results of Western blot showed, compared with the negative control group, expression levels of Procaspase-3, Procaspase-8, and Procaspase-9 were down-regulated, but expression levels of cleaved-PARP, Beclin-1, and LC3B II were up-regulated in the high dose JYXR group and the low dose JYXR group (all P <0.05). Compared with the negative control group, expression levels of Procaspase-3, Procaspase-8, Procaspase-9, and LC3B II were down-regulated, but expression levels of cleaved-PARP, Beclin-1, and LC3B I were up-regulated in the positive control group (all P <0. 05). JYXR showed significant inhibition on subcutaneous transplanted tumor gastric cancer cell line MGC-803 in BALB/c nude mice. Its mechanism might be associated with activating apoptosis and autophagy correlated factors.
Erfani, Sohaila; Khaksari, Mehdi; Oryan, Shahrbanoo; Shamsaei, Nabi; Aboutaleb, Nahid; Nikbakht, Farnaz
2015-05-01
Nicotinamide phosphoribosyl transferase/pre-B cell colony-enhancing factor/visfatin (Nampt/PBEF/visfatin) is an adipocytokine. By synthesizing nicotinamide adenine dinucleotide (NAD(+)), Nampt/PBEF/visfatin functions to maintain an energy supply that has critical roles in cell survival. Cerebral ischemia leads to energy depletion and eventually neuronal death by apoptosis in specific brain regions specially the hippocampus. However, the role of Nampt/PBEF/visfatin in brain and cerebral ischemia remains to be investigated. This study investigated the role of administration Nampt/PBEF/visfatin in hippocampal CA3 area using a transient global cerebral ischemia model. Both common carotid arteries were occluded for 20 min followed by reperfusion. Saline as a vehicle and Nampt/PBEF/visfatin at a dose of 100 ng were injected intracerebroventricularly (ICV) at the time of cerebral reperfusion. To investigate the underlying mechanisms of Nampt/PBEF/visfatin neuroprotection, levels of expression of apoptosis-related proteins (caspase-3 activation, Bax protein levels, and Bcl-2 protein levels) 96 h after ischemia were determined by immunohistochemical staining. The number of active caspase-3-positive neurons in CA3 was significantly increased in the ischemia group, compared with the sham group (P < 0.001), and treatment with Nampt/PBEF/visfatin significantly reduced the ischemia/reperfusion-induced caspase-3 activation, compared to the ischemia group (P < 0.05). Also, results indicated a significant increase in Bax/Bcl-2 ratio in the ischemia group, compared with the sham group (P < 0.01). However, treatment with Nampt/PBEF/visfatin significantly attenuated the ischemia/reperfusion-induced increase in Bax/Bcl-2 ratio, compared with the ischemia group (P < 0.05). This study has indicated that Nampt/PBEF/visfatin entails neuroprotective effects against ischemia injury when used at the time of cerebral reperfusion. These neuroprotective mechanisms of Nampt/PBEF/visfatin occur through decrease the expression ofproapoptotic proteins (cleaved caspase-3 and Bax) and, on the other hand, increase the expression ofantiapoptotic proteins (Bcl-2). Thus, our findings indicate that Nampt/PBEF/visfatin is a new therapeutic target for cerebral ischemia.
The effect of hydroxy safflower yellow A on coronary heart disease through Bcl-2/Bax and PPAR-γ.
Zhou, Dayan; Qu, Zongjie; Wang, Hao; Su, Yong; Wang, Yazhu; Zhang, Weiwei; Wang, Zhe; Xu, Qiang
2018-01-01
The aim of the present study was to investigate the effect of hydroxy safflower yellow A (HSYA) on coronary heart disease through assessing the expression of B-cell lymphoma 2 (Bcl-2)/Bcl-2-like protein 4 (Bax) and peroxisome proliferator-activated receptor (PPAR)-γ. Coronary heart disease was induced in male Bama miniature swines via thoracoscope to serve as an animal model. Coronary heart disease swine were lavaged with 20 or 40 mg/kg HSYA. The mRNA levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-10, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were detected using reverse transcription-quantitative polymerase chain reaction. The protein expression of Bcl-2, Bax, PPAR-γ, phosphorylation of Janus kinase (JAK)2 and phosphorylation of signal transducer and activator of transcription (STAT)3 were detected using western blot analysis. Treatment with HSYA significantly suppressed the mRNA levels of IL-1β (P<0.01), IL-6 (P<0.01), TNF-α (P<0.01), COX-2 (P<0.01) and iNOS (P<0.01), and significantly increased IL-10 mRNA level in the coronary heart disease model (P<0.01). Furthermore, HSYA treatment significantly decreased the Bcl-2/Bax ratio (P<0.01) in the coronary heart disease model group, and enhanced the phosphorylation of JAK2/STAT3 pathway (P<0.01). However, HSYA had no significant effect on the expression of PPAR-γ protein. The results of the present study suggest that HSYA is able to weaken coronary heart disease via inflammation, Bcl-2/Bax and the PPAR-γ signaling pathway.
Walter, Robert Fred Henry; Werner, Robert; Ting, Saskia; Vollbrecht, Claudia; Theegarten, Dirk; Christoph, Daniel Christian; Schmid, Kurt Werner; Wohlschlaeger, Jeremias; Mairinger, Fabian Dominik
2015-01-01
Background Neuroendocrine tumors of the lung comprise typical (TC) and atypical carcinoids (AC), large-cell neuroendocrine cancer (LCNEC) and small-cell lung cancer (SCLC). Cell cycle and apoptosis are key pathways of multicellular homeostasis and deregulation of these pathways is associated with cancerogenesis. Materials and Methods Sixty representative FFPE-specimens (16 TC, 13 AC, 16 LCNEC and 15 SCLC) were used for mRNA expression analysis using the NanoString technique. Eight genes related to apoptosis and ten genes regulating key points of cell cycle were investigated. Results ASCL1, BCL2, CASP8, CCNE1, CDK1, CDK2, CDKN1A and CDKN2A showed lower expression in carcinoids compared to carcinomas. In contrast, CCNE1 and CDK6 showed elevated expression in carcinoids compared to carcinomas. The calculated BCL2/BAX ratio showed increasing values from TC to SCLC. Between SCLC and LCNEC CDK2, CDKN1B, CDKN2A and PNN expression was significantly different with higher expression in SCLC. Conclusion Carcinoids have increased CDK4/6 and CCND1 expression controlling RB1 phosphorylation via this signaling cascade. CDK2 and CCNE1 were increased in carcinomas showing that these use the opposite way to control RB1. BAX and BCL2 are antagonists in regulating apoptosis. BCL2 expression increased over BAX expression with increasing malignancy of the tumor from TC to SCLC. PMID:26008974
Uo, Takuma; Veenstra, Timothy D; Morrison, Richard S
2009-03-04
Pharmacological manipulation of protein acetylation levels by histone deacetylase (HDAC) inhibitors represents a novel therapeutic strategy to treat neurodegeneration as well as cancer. However, the molecular mechanisms that determine how HDAC inhibition exerts a protective effect in neurons as opposed to a cytotoxic action in tumor cells has not been elucidated. We addressed this issue in cultured postnatal mouse cortical neurons whose p53-dependent and p53-independent intrinsic apoptotic programs require the proapoptotic multidomain protein, Bax. Despite promoting nuclear p53 accumulation, Class I/II HDAC inhibitors (HDACIs) protected neurons from p53-dependent cell death induced by camptothecin, etoposide, heterologous p53 expression or the MDM2 inhibitor, nutlin-3a. HDACIs suppressed p53-dependent PUMA expression, a critical signaling intermediate linking p53 to Bax activation, thus preventing postmitochondrial events including cleavage of caspase-9 and caspase-3. In human SH-SY5Y neuroblastoma cells, however, HDACIs were not able to prevent p53-dependent cell death. Moreover, HDACIs also prevented caspase-3 cleavage in postnatal cortical neurons treated with staurosporine, 3-nitropropionic acid and a Bcl-2 inhibitor, all of which require the presence of Bax but not p53 to promote apoptosis. Although these three toxic agents displayed a requirement for Bax, they did not promote PUMA induction. These results demonstrate that HDACIs block Bax-dependent cell death by two distinct mechanisms to prevent neuronal apoptosis, thus identifying for the first time a defined molecular target for their neuroprotective actions.
Uo, Takuma; Veenstra, Timothy D.; Morrison, Richard S.
2009-01-01
Pharmacological manipulation of protein acetylation levels by histone deacetylase (HDAC) inhibitors represents a novel therapeutic strategy to treat neurodegeneration as well as cancer. However, the molecular mechanisms that determine how HDAC inhibition exerts a protective effect in neurons as opposed to a cytotoxic action in tumor cells has not been elucidated. We addressed this issue in cultured postnatal mouse cortical neurons whose p53-dependent and —independent intrinsic apoptotic programs require the pro-apoptotic multidomain protein, Bax. Despite promoting nuclear p53 accumulation, Class I/II HDAC inhibitors (HDACIs) protected neurons from p53-dependent cell death induced by camptothecin, etoposide, heterologous p53 expression or the MDM2 inhibitor, nutlin-3a. HDACIs suppressed p53-dependent PUMA expression, a critical signaling intermediate linking p53 to Bax activation, thus preventing post-mitochondrial events including cleavage of caspase-9 and -3. In human SH-SY5Y neuroblastoma cells, however, HDACIs were not able to prevent p53-dependent cell death. Moreover, HDACIs also prevented caspase-3 cleavage in postnatal cortical neurons treated with staurosporine, 3-nitropropionic acid and a Bcl-2 inhibitor, all of which require the presence of Bax but not p53 to promote apoptosis. Although these three toxic agents displayed a requirement for Bax, they did not promote PUMA induction. These results demonstrate that HDACIs block Bax-dependent cell death by two distinct mechanisms to prevent neuronal apoptosis, thus identifying for the first time a defined molecular target for their neuroprotective actions. PMID:19261878
Zhang, Zhuangwei; Zhang, Huiqin; Chen, Shiyong; Xu, Yan; Yao, Anjun; Liao, Qi; Han, Liyuan; Zou, Zuquan; Zhang, Xiaohong
2017-02-01
The plant flavonol dihydromyricetin (DHM) was reported to induce apoptosis in human hepatocarcinoma HepG2 cells. This study was undertaken to elucidate the underlying molecular mechanism of action of DHM. In the study, DHM down-regulated Akt expression and its phosphorylation at Ser473, up-regulated the levels of mitochondrial proapoptotic proteins Bax and Bad, and inhibited the phosphorylation of Bad at Ser136 and Ser112. It also inhibited the expression of the antiapoptotic protein Bcl-2 and enhanced the cleavage and activation of caspase-3 as well as the degradation of its downstream target poly(ADP-ribose) polymerase. Our results for the first time suggest that DHM-induced apoptosis in HepG2 cells may come about by the inhibition of the Akt/Bad signaling pathway and stimulation of the mitochondrial apoptotic pathway. Dihydromyricetin may be a promising therapeutic medication for hepatocellular carcinoma. Copyright © 2017 Elsevier Inc. All rights reserved.
Catalán, Elena; Jaime-Sánchez, Paula; Aguiló, Nacho; Simon, Markus M.; Froelich, Christopher J.; Pardo, Julián
2015-01-01
Cytotoxic T cells (Tc) use perforin and granzyme B (gzmB) to kill virus-infected cells and cancer cells. Recent evidence suggests that human gzmB primarily induces apoptosis via the intrinsic mitochondrial pathway by either cleaving Bid or activating Bim leading to the activation of Bak/Bax and subsequent generation of active caspase-3. In contrast, mouse gzmB is thought to predominantly induce apoptosis by directly processing pro-caspase-3. However, in certain mouse cell types gzmB-mediated apoptosis mainly occurs via the mitochondrial pathway. To investigate whether Bim is involved under the latter conditions, we have now employed ex vivo virus-immune mouse Tc that selectively kill by using perforin and gzmB (gzmB+Tc) as effector cells and wild type as well as Bim- or Bak/Bax-deficient spontaneously (3T9) or virus-(SV40) transformed mouse embryonic fibroblast cells as targets. We show that gzmB+Tc-mediated apoptosis (phosphatidylserine translocation, mitochondrial depolarization, cytochrome c release, and caspase-3 activation) was severely reduced in 3T9 cells lacking either Bim or both Bak and Bax. This outcome was related to the ability of Tc cells to induce the degradation of Mcl-1 and Bcl-XL, the anti-apoptotic counterparts of Bim. In contrast, gzmB+Tc-mediated apoptosis was not affected in SV40-transformed mouse embryonic fibroblast cells lacking Bak/Bax. The data provide evidence that Bim participates in mouse gzmB+Tc-mediated apoptosis of certain targets by activating the mitochondrial pathway and suggest that the mode of cell death depends on the target cell. Our results suggest that the various molecular events leading to transformation and/or immortalization of cells have an impact on their relative resistance to the multiple gzmB+Tc-induced death pathways. PMID:25605735
Liu, Haohao; Zhang, Shenshen; Liu, Chuanrui; Wu, Jinxia; Wang, Yueqin; Yuan, Le; Du, Xingde; Wang, Rui; Marwa, Phelisters Wegesa; Zhuang, Donggang; Cheng, Xuemin; Zhang, Huizhen
2018-06-09
Microcystin-leucine arginine (MC-LR), a cyclic heptapeptide produced by cyanobacteria, is a strong reproductive toxin. Studies performed in rat Sertoli cells and Chinese hamster ovary cells have demonstrated typical apoptosis after MC-LR exposure. However, little is known on how to protect against the reproductive toxicity induced by MC-LR. The present study aimed to explore the possible molecular mechanism underlying the anti-apoptosis and protective effects of resveratrol (RES) on the co-culture of Sertoli⁻germ cells and rat testes. The results demonstrated that MC-LR treatment inhibited the proliferation of Sertoli⁻germ cells and induced apoptosis. Furthermore, sirtuin 1 (SIRT1) and Bcl-2 were inhibited, while p53 and Ku70 acetylation, Bax expression, and cleaved caspase-3 were upregulated by MC-LR. However, RES pretreatment ameliorated MC-LR-induced apoptosis and SIRT1 inhibition, and downregulated the MC-LR-induced increase in p53 and Ku70 acetylation, Bax expression, and caspase-3 activation. In addition, RES reversed the MC-LR-mediated reduction in Ku70 binding to Bax. The present study indicated that the administration of RES could ameliorate MC-LR-induced Sertoli⁻germ cell apoptosis and protect against reproductive toxicity in rats by stimulating the SIRT1/p53 pathway, suppressing p53 and Ku70 acetylation and enhancing the binding of Ku70 to Bax.
Schramm, Heloísa; Jaramillo, Michael L; Quadros, Thaline de; Zeni, Eliane C; Müller, Yara M R; Ammar, Dib; Nazari, Evelise M
2017-10-01
Our previous studies showed that embryos of the freshwater prawn Macrobrachium olfersii exposed to ultraviolet B (UVB) radiation exhibited DNA damage, excessive ROS production, mitochondrial dysfunction and increased hsp70 expression, which are able, independently or together, to induce apoptosis. Thus, we attempted to elucidate some key apoptosis-related genes (ARG) and apoptosis-related proteins (ARP) and their expression during different stages of embryonic development, as well as to characterize the chronology of ARG expression and ARP contents after UVB radiation insult. We demonstrate that p53, Bax and Caspase3 genes are active in the embryonic cells at early embryonic developmental stages, and that the Bcl2 gene is active from the mid-embryonic stage. After UVB radiation exposure, we found an increase in ARP such as p53 and Bak after 3h of exposure. Moreover, an increase in ARG transcript levels for p53, Bax, Bcl2 and Caspase3 was observed at 6h after UVB exposure. Then, after 12h of UVB radiation exposure, an increase in Caspase3 gene expression and protein was observed, concomitantly with an increased number of apoptotic cells. Our data reveal that ARG and ARP are developmentally regulated in embryonic cells of M. olfersii and that UVB radiation causes apoptosis after 12h of exposure. Overall, we demonstrate that embryonic cells of M. olfersii are able to active the cell machinery against environmental changes, such as increased incidence of UVB radiation in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
Nuclear Interaction between ADR-Induced p65 and p53 Mediates Cardiac Injury in iNOS (−/−) Mice
Cole, Marsha P.; Tangpong, Jitbanjong; Oberley, Terry D.; Chaiswing, Luksana; Kiningham, Kinsley K.; St. Clair, Daret K.
2014-01-01
Adriamycin (ADR) treatment causes an imbalance in the levels of nitric oxide (•NO) and superoxide (O2 •−) production leading to cardiac injury. Previously we demonstrated that mice lacking inducible nitric oxide synthase (iNOS) have increased oxidative stress and mitochondrial injury. The molecular events leading to increased mitochondrial injury in iNOS deficient mice is unknown. ADR in the absence of iNOS preferentially activates a proapoptotic pathway without a concurrent increase in prosurvival pathways. Treatment with ADR leads to an increase in DNA binding activity of nuclear factor kappa B (NFκB) and p53 in wildtype mice. Following ADR treatment, p53, but not NFκB DNA binding activity, as well as the level of Bax, a p53 target gene, was increased in iNOS (−/−) mice. This apoptotic signaling effect in iNOS (−/−) is alleviated by overexpression of manganese superoxide dismutase (MnSOD). Increases in NFκB and p53 in ADR-treated wildtype mice did not lead to increases in target genes such as MnSOD, bcl-xL, or Bax. Moreover, co-immunoprecipitation analysis revealed that p65, a prominent member of the NFκB family, interacts with p53 in the nucleus. These results suggest that NFκB and p53 may counter act one another's actions in ADR-treated wildtype (WT) mice. Further, these results identify a novel mechanism by which oxidative stress may regulate transcription of proapoptotic genes. PMID:24586632
Diphenyl difluoroketone: a curcumin derivative with potent in vivo anticancer activity.
Subramaniam, Dharmalingam; May, Randal; Sureban, Sripathi M; Lee, Katherine B; George, Robert; Kuppusamy, Periannan; Ramanujam, Rama P; Hideg, Kalman; Dieckgraefe, Brian K; Houchen, Courtney W; Anant, Shrikant
2008-03-15
Diphenyl difluoroketone (EF24), a molecule having structural similarity to curcumin, was reported to inhibit proliferation of a variety of cancer cells in vitro. However, the efficacy and in vivo mechanism of action of EF24 in gastrointestinal cancer cells have not been investigated. Here, we assessed the in vivo therapeutic effects of EF24 on colon cancer cells. Using hexosaminidase assay, we determined that EF24 inhibits proliferation of HCT-116 and HT-29 colon and AGS gastric adenocarcinoma cells but not of mouse embryo fibroblasts. Furthermore, the cancer cells showed increased levels of activated caspase-3 and increased Bax to Bcl-2 and Bax to Bcl-xL ratios, suggesting that the cells were undergoing apoptosis. At the same time, cell cycle analysis showed that there was an increased number of cells in the G(2)-M phase. To determine the effects of EF24 in vivo, HCT-116 colon cancer xenografts were established in nude mice and EF24 was given i.p. EF24 significantly suppressed the growth of colon cancer tumor xenografts. Immunostaining for CD31 showed that there was a lower number of microvessels in the EF24-treated animals coupled with decreased cyclooxygenase-2, interleukin-8, and vascular endothelial growth factor mRNA and protein expression. Western blot analyses also showed decreased AKT and extracellular signal-regulated kinase activation in the tumors. Taken together, these data suggest that the novel curcumin-related compound EF24 is a potent antitumor agent that induces caspase-mediated apoptosis during mitosis and has significant therapeutic potential for gastrointestinal cancers.
Kim, Wun-Jae; Lee, Se-Jung; Choi, Young Deuk; Moon, Sung-Kwon
2010-04-01
Decursin, a pyranocoumarin isolated from the Korean Angelica gigas root, has demonstrated anti-cancer properties. In the present study, we found that decursin inhibited cell viability in cultured human urinary bladder cancer 235J cells and colon cancer HCT116 cells. The inhibited proliferation was due to apoptotic induction, because both cells treated with decursin dose-dependently showed a sub-G1 phase accumulation and an increased cytoplasmic DNA-histone complex. Cell death caused by decursin was also associated with the down-regulation of anti-apoptotic factor Bcl-2 and the up-regulation of pro-apoptotic molecules cytochrome c, caspase 3 and Bax. Treatment of both types of cancer cells with decursin resulted in G1-phase cell cycle arrest, as revealed by FACS analyses. In addition, decursin increased protein levels of p21WAF1 with a decrease in cyclins and cyclin dependent kinases (CDKs). Furthermore, decursin induced the activation of extracellular signal-regulated kinases (ERK) in both cancer cell lines, with the notable exceptions of c-Jun N-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase. Finally, pretreatment with ERK-specific inhibitor PD98059 reversed decursin-induced p21WAF1 expression and decursin-inhibited cell growth. Thus, these findings suggest that decursin has potential therapeutic efficacy for the treatment of bladder and colon cancer.
Huang, Yi-Ran; Jin, Ying-Li; Li, Na; Lei, Lin-Dan; Yu, Fei; Li, Yu-Bo; Tao, Lin; Zhang, Qian; Guo, Chang-Qing
2014-04-01
To observe the effect of acupotomy, electroacupuncture (EA) or round-sharp acupuncture needle intervention on the expression of Bcl-2,Bax and Caspase-3 proteins in the rectus femoris in rabbits with knee ostarthritis (KOA), so as to explore their mechanisms underlying improvement of braking-induced joint damage from the cellular apoptosis. Forty-five New Zealand rabbits were equally and randomized into control group, model group, acupotomy (AP) group, EA group and round-sharp acupuncture needle (RSAN) group (n = 9 in each group). The knee-joint injury model was established by fixing the left knee joint in extention position with plaster bandage. EA (2 Hz/100 Hz, 3 mA, 20 min each time) was applied to the left "Yanglingquan" (GB 34)- "Yinlingquan" (SP 9) and left "Neixiyan" (EX-LE 4)- "Waixiyan"(ST 35) for rabbits in the EA group. The EA treatment was given once daily, 3 times a week, 3 weeks in total. For rabbits of the AP group, a needle-knife was held to insert into the front edge of the midpoint, the starting point and the stopping point of the left medial collateral ligamen, lateral collateral ligament and the patellar ligament of the knee to make a loosening manipulation for 5 times in a session of treatment, once a week, 3 times altogether. For rabbits of the RSAN group, a round-sharp needle was performed in the same way to the needle-knife including the stimulation point, the manipulation method and treatment sessions. At the end of the experiment, the left rectus femoris was taken out for detecting the expression of Bcl-2, Bax and Caspase-3 proteins with Western blot. In comparison with the control group, the passive range of motion (PROM) level was significantly decreased 4, 8 and 12 weeks after modeling (P < 0.01), and the expression levels of Bax and Caspase-3 proteins in the rectus femoris were considerably upregulated in the model group (P < 0.05), while the ratio of Bcl-2/Bax was notably down-regulated (P < 0.05) in the model group. Compared with the model group, the PROM level at week 12 after modeling in the AP, EA and RSAN groups were significantly increased (P < 0.01); while Bax and Caspase-3 expression levels in both AP and RSAN groups were considerably downregulated (P < 0.05). No significant differences were found among the five groups in Bcl-2 expression levels (P > 0.05), and between the EA and model groups in Bax and Caspase-3 expression levels and the ratio of Bcl-2/Bax (P > 0.05). AP, RSAN and EA interventions are effective in improving the knee-joint motion range in KOA rabbits, and this effect of both AP and RSAN is closely associated with their actions in lowering the expression of Bax and Caspase-3 proteins of the rectus femoris and in raising ratio of Bcl-2/Bax protein (reducing muscular cellular apoptosis). The mechanism of EA intervention in improving PROM may be different.
Gonzalez, Mariana S; De Brasi, Carlos D; Bianchini, Michele; Gargallo, Patricia; Moiraghi, Beatriz; Bengió, Raquel; Larripa, Irene B
2010-10-15
BCR-ABL fusion gene is implicated in the pathogenesis of chronic myeloid leukemia (CML), encoding the oncoprotein p210(BCR-ABL) with anti-apoptotic activity. The inability to undergo apoptosis is an important mechanism of drug resistance and neoplastic evolution in CML. The gene transcript expression of mitochondrial apoptotic related genes BAX and BCL-XL was evaluated by quantitative Real Time PCR (qPCR) in vitro in K562 cells and in vivo in peripheral blood of 66 CML patients in different stages of the disease: 13 cases at diagnosis, 34 in chronic phase (CP), 10 in accelerated phase (AP) and 9 in blast crisis (BC). Our results in K562 cells showed that all treatments with different tyrosine kinase inhibitors (TKIs) induced a decreased expression of the antiapoptotic oncogene BCL-XL, whereas the proapoptotic gene BAX remains constant with minor modifications. A significantly lower BAX/BCL-XL expression ratio (mean±SEM) than a group of healthy individuals (4.8±0.59) were observed in CML patients at diagnosis (1.28 ± 0.16), in AP (1.14±0.20), in BC (1.16±0.30) and in 18% of cases of patients in CP (2.71±0.40). Most CP cases (82%) showed a significantly increased ratio (10.03±1.30), indicating that the treatment with TKIs efficiently inhibited the expression of BCL-XL by blocking BCR-ABL oncoprotein. The BAX/BCL-XL ratio showed a significant inverse correlation (Spearman P<0.0001) with BCR-ABL/ABL relative expression indicating that low BAX/BCL-XL was associated with disease progression. Accordingly, the follow up of a cohort of eight cases during 6months from diagnosis showed that while the BAX/BCL-XL ratio rapidly increased after treatment in seven cases with good evolution, it decreased in the single case that showed rapid evolution and short survival. Our data suggest that BAX/BCL-XL expression ratio may be a sensitive monitor of disease progression and an early predictor of TKI therapy responsiveness in CML patients. Copyright © 2010 Elsevier Inc. All rights reserved.
Akef, Hassan; Kotb, Nahla; Abo-Elmatty, Dina; Salem, Sayed
2017-01-01
The present study evaluated the effects of Androctonus amoreuxi scorpion venom, Cerastes cerastes snake venom and their mixture on prostate cancer cells (PC3). An MTT assay was used to determine the anti-proliferative effect of the venoms, while quantitative real time PCR was used to evaluate the expression of apoptosis-related genes (Bax and Bcl-2). Furthermore, colorimetric assays were used to measure the levels of malondialdehyde (MDA) and antioxidant enzymes. Our results show that the venoms significantly reduced PC3 cell viability in a dose-dependent manner. On the other hand, these venoms significantly decreased Bcl-2 gene expression. Additionally, C. cerastes venom significantly reduced Bax gene expression, while A. amoreuxi venom and a mixture of A. amoreuxi & C. cerastes venoms did not alter Bax expression. Consequently, these venoms significantly increased the Bax/Bcl-2 ratio and the oxidative stress biomarker MDA. Furthermore, these venoms also increased the activity levels of the antioxidant enzymes, catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase. Overall, the venoms have cytotoxic and anti-proliferative effects on PC3 cells. PMID:28382285
The Cytomegalovirus protein pUL37×1 targets mitochondria to mediate neuroprotection
Hong, Chien Tai; Chau, Kai-Yin; Schapira, Anthony H. V.
2016-01-01
There is substantial evidence that mitochondrial dysfunction plays a significant role in the pathogenesis of Parkinson disease (PD). This contribution probably encompasses defects of oxidative phosphorylation, mitochondrial turnover (mitophagy), mitochondrial derived oxidative stress, and apoptotic signalling. Human cytomegalovirus immediate-early protein pUL37 × 1 induces Bax mitochondrial translocation and inactivation to prevent apoptosis. Over-expressing pUL37 × 1 in neuronal cells protects against staurosporin and 6-hydroxydopamine induced apoptosis and cell death. Protection is not enhanced by bax silencing in pUL37 × 1 over-expressing cells, suggesting a bax-dependent mechanism of action. pUL37 × 1 increases glycolysis and induces mitochondrial hyperpolarization, a bax independent anti-apoptotic action. pUL37 × 1 increases glycolysis through activation of phosphofructokinase by a calcium-dependent pathway. The dual anti-apoptotic mechanism of pUL37 × 1 may be considered a novel neuroprotective strategy in diseases where mitochondrial dysfunction and apoptotic pathways are involved. PMID:27562039
Zhang, Yali; Chen, Yonggang; Sun, Lijun; Liang, Jing; Guo, Zonglou; Xu, Lihong
2014-02-01
Tributyltin (TBT), a highly toxic environmental contaminant, has been shown to induce caspase-3-dependent apoptosis in human amniotic cells through protein phosphatase 2A (PP2A) inhibition and consequent JNK activation. This in vivo study was undertaken to further verify the results derived from our previous in vitro study. Mice were orally dosed with 0, 10, 20, and 60 mg/kg of body weight TBT, and levels of PP2A, reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK), Bax/Bcl-2, and caspase-3 were detected in the mouse livers. Apoptosis was also evaluated using the TUNEL assay. The results showed that PP2A activity was inhibited, ROS levels were elevated, and MAPKs including ERK, JNK, and p38 were activated in mouse livers treated with the highest dose of TBT. Additionally, the ratio of Bax/Bcl-2 was increased, caspase-3 was activated, and apoptosis in mouse livers could be detected in the highest dose group. Therefore, a possible signaling pathway in TBT-induced apoptosis in mouse livers involves PP2A inhibition and ROS elevation serving a pivotal function as upstream activators of MAPKs; activation of MAPKs in turn leads to an increase in the Bax/Bcl-2 ratio, ultimately leading to the activation of caspase-3. The results give a comprehensive and novel description of the mechanism of TBT-induced toxicity. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.
Enzenmüller, Stefanie; Gonzalez, Patrick; Karpel-Massler, Georg; Debatin, Klaus-Michael; Fulda, Simone
2013-02-01
Since phosphatidylinositol-3-kinase (PI3K) inhibitors are primarily cytostatic against glioblastoma, we searched for new drug combinations. Here, we discover that the PI3K inhibitor GDC-0941 acts in concert with the natural compound B10, a glycosylated derivative of betulinic acid, to induce cell death in glioblastoma cells. Importantly, parallel experiments in primary glioblastoma cultures similarly show that GDC-0941 and B10 cooperate to trigger cell death, underscoring the clinical relevance of this finding. Molecular studies revealed that treatment with GDC-0941 stimulates the expression and nuclear translocation of Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis, the lysosomal membrane marker LAMP-1 and the mature form of cathepsin B. Also, GDC-0941 triggers a time-dependent increase of the lysosomal compartment in a TFEB-dependent manner, since knockdown of TFEB significantly reduces this GDC-0941-stimulated lysosomal enhancement. Importantly, GDC-0941 cooperates with B10 to trigger lysosomal membrane permeabilization, leading to increased activation of Bax, loss of mitochondrial membrane potential (MMP), caspase-3 activation and cell death. Addition of the cathepsin B inhibitor CA-074me reduces Bax activation, loss of MMP, caspase-3 activation and cell death upon treatment with GDC-0941/B10. By comparison, knockdown of caspase-3 or the broad-range caspase inhibitor zVAD.fmk inhibits GDC-0941/B10-induced DNA fragmentation, but does not prevent cell death, thus pointing to both caspase-dependent and -independent pathways. By identifying the combination of GDC-0941 and B10 as a new, potent strategy to trigger cell death in glioblastoma cells, our findings have important implications for the development of novel treatment approaches for glioblastoma. Copyright © 2012. Published by Elsevier Ireland Ltd.
Qin, Jiao-Lan; Shen, Wen-Ying; Chen, Zhen-Feng; Zhao, Li-Fang; Qin, Qi-Pin; Yu, Yan-Cheng; Liang, Hong
2017-01-01
Three new oxoaporphine Co(II), Ni(II) and Zn(II) complexes 1–3 have been synthesized and fully characterized. 1–3 have similar mononuclear structures with the metal and ligand ratio of 1:2. 1–3 exhibited higher cytotoxicity than the OD ligand and cisplatin against HepG2, T-24, BEL-7404, MGC80–3 and SK-OV-3/DDP cells, with IC50 value of 0.23−4.31 μM. Interestingly, 0.5 μM 1–3 significantly caused HepG2 arrest at S-phase, which was associated with the up-regulation of p53, p21, p27, Chk1 and Chk2 proteins, and decrease in cyclin A, CDK2, Cdc25A, PCNA proteins. In addition, 1–3 induced HepG2 apoptosis via a caspase-dependent mitochondrion pathway as evidenced by p53 activation, ROS production, Bax up-regulation and Bcl-2 down-regulation, mitochondrial dysfunction, cytochrome c release, caspase activation and PARP cleavage. Furthermore, 3 inhibited tumor growth in HepG2 xenograft model, and displayed more safety profile in vivo than cisplatin. PMID:28436418
Rapamycin promotes podocyte autophagy and ameliorates renal injury in diabetic mice.
Xiao, Tangli; Guan, Xu; Nie, Ling; Wang, Song; Sun, Lei; He, Ting; Huang, Yunjian; Zhang, Jingbo; Yang, Ke; Wang, Junping; Zhao, Jinghong
2014-09-01
The aim was to explore the effects of rapamycin on autophagy and injury of podocytes in streptozocin (STZ)-induced type 1 diabetic mice, and its role in delaying progression of diabetic nephropathy. In this study, male Balb/c mice were divided into three groups: control (n = 12), STZ-induced diabetic (n = 12), and rapamycin-treated diabetic (DM + Rapa) (n = 12), which received intraperitoneal injection of rapamycin (2 mg/kg/48 h) after induction of DM. Levels of urinary albumin (UA), blood urea nitrogen, serum creatinine, and kidney weight/body weight were measured at week 12. Renal pathologic changes, number of podocytes autophagy, and organelles injury were investigated by PAS staining, transmission electron microscopy, and immunofluorescence staining, respectively. Western blot was performed to determine the expression of LC3 (a podocyte autophagy marker), phosphorylated mammalian target of rapamycin, p-p70S6K, bax, and caspase-3 protein. Podocytes count was evaluated by immunofluorescence staining and Wilms tumor 1 immunohistochemistry, and Western blot of nephrin and podocin. The results indicated that rapamycin could reduce the kidney weight/body weight and UA secretion. It could alleviate podocyte foot process fusion, glomerular basement membrane thickening, and matrix accumulation, and increase the number of autophagosomes, and LC3-expressing podocytes. Down-regulation of bax and caspase-3 protein, and up-regulation of nephrin and podocin protein were observed in the glomeruli of diabetic mice after administration of rapamycin. In conclusion, rapamycin can ameliorate renal injury in diabetic mice by increasing the autophagy activity and inhibition of apoptosis of podocytes.
Bazovkina, D V; Tsybko, A S; Filimonova, E A; Ilchibaeva, T V; Naumenko, V S
2016-01-01
Tryptophan hydroxylase 2 (Tph-2) is the key enzyme in serotonin biosynthesis. Serotonin is one of the main neurotransmitters involved in the regulation of various physiological functions and behavior patterns. The influence of chronic ethanol consumption on the expression of the Bdnf, Bax, Bcl-xL, and CASP3 genes was studied in the brain structures of B6-1473C (C/C) and B6-1473G (G/G) mice that had been obtained on the base of the C57BL/6 strain. The strains differed in the genotype for the C1473G single nucleotide polymorphism in the Tph-2 gene and in Tph-2 enzyme activity. It was found that chronic alcohol treatment led to a significant increase in the expression of the Bdnf gene in the midbrain of B6-1473G mice, but not in B6-1473С. Chronic alcohol treatment considerably decreased the expression of the ultimate brain apoptosis effector, caspase 3, in the frontal cortex, but increased it in the hippocampus of B6-1473G mice. At the same time, chronic ethanol administration reduced the level of the antiapoptotic Bcl-xL mRNA in the midbrain of B6-1473C mice. Thus, the C1473G polymorphism in the Tph-2 gene considerably influenced the changes in the expression patterns of genes involved in the regulation of neurogenesis and neural apoptosis induced by chronic ethanol treatment.
Baharara, Javad; Amini, Elaheh
2015-01-01
Anti-cancer potential of marine natural products such as polysaccharides represented therapeutic potential in oncological researches. In this study, total polysaccharide from brittle star [Ophiocoma erinaceus (O. erinaceus)] was extracted and chemopreventive efficacy of Persian Gulf brittle star polysaccharide was investigated in HeLa human cervical cancer cells. To extract polysaccharide, dried brittle stars were ground and extracted mechanically. Then, detection of polysaccharide was performed by phenol sulfuric acid, Ultra Violet (UV)-sulfuric acid method and FTIR. The anti proliferative activity of isolated polysaccharide was examined by MTT assay and evaluation of cell death was done through morphological cell changes; Propodium Iodide staining, fluorescence microscopy and caspase-3, -9 enzymatic measurements. To assess its underlying mechanism, expression of Bax, Bcl-2 was evaluated. The polysaccharide detection methods demonstrated isolation of crude polysaccharide from Persian Gulf brittle star. The results revealed that O. erinaceus polysaccharide suppressed the proliferation of HeLa cells in a dose and time dependent manner. Morphological observation of DAPI and Acridine Orange/Propodium Iodide staining was documented by typical characteristics of apoptotic cell death. Flow cytometry analyses exhibited the accumulation of treated cells in sub-G1 region. Additionally, polysaccharide extracted induced intrinsic apoptosis via up-regulation of caspase-3, caspase-9 and Bax along with down-regulation of Bcl-2 in HeLa cells. Taken together, the apoptosis inducing effect of brittle star polysaccharide via intrinsic pathway confirmed the anti tumor potential of marine polysaccharide. Therefore, these findings proposed new insight into anti cancer properties of brittle star polysaccharide as a promising agent in cervical cancer treatment.
Wu, Shu-Jing; Chang, Shun-Pang; Lin, Doung-Liang; Wang, Shyh-Shyan; Hou, Fwu-Feuu; Ng, Lean-Teik
2009-06-01
Physalis peruviana L. (PP) is a popular folk medicine used for treating cancer, leukemia, hepatitis, rheumatism and other diseases. In this study, our objectives were to examine the total flavonoid and phenol content of different PP extracts (aqueous: HWEPP; ethanolic: EEPP; supercritical carbon dioxide: SCEPP-0, SCEPP-4 and SCEPP-5) and their antiproliferative effects in human lung cancer H661 cells. Among all the extracts tested, results showed that SCEPP-5 possessed the highest total flavonoid (226.19 +/- 4.15 mg/g) and phenol (100.82 +/- 6.25 mg/g) contents. SCEPP-5 also demonstrated the most potent inhibitory effect on H661 cell proliferation. Using DNA ladder and flow cytometry analysis, SCEPP-5 effectively induced H661 cell apoptosis as demonstrated by the accumulation of Sub-G1 peak and fragmentation of DNA. SCEPP-5 not only induced cell cycle arrest at S phase, it also up-regulated the expression of pro-apoptotic protein (Bax) and down-regulated the inhibitor of apoptosis protein (IAP). Furthermore, the apoptotic induction in H661 cells was found to associate with an elevated p53 protein expression, cytochrome c release, caspase-3 activation and PARP cleavage. Taken together, these results conclude that SCEPP-5 induced cell cycle arrest at S phase, and its apoptotic induction could be mediated through the p53-dependent pathway and modification of Bax and XIAP proteins expression. The results have also provided important pharmacological backgrounds for the potential use of PP supercritical fluid extract as products for cancer prevention.
Li, Zhiqiang; Sun, Yang; Wan, Hongxing; Chai, Fang
2017-01-01
Objective To investigate the role of N-myc downstream regulated gene 2 (NDRG2) gene in the proliferation, migration and apoptosis of rectal cancer cells. Methods Human rectal cancer SW480 cells were cultured and transfected with pCDNA3.1-NDRG2 and empty vector (SW480-Ve). SW480 cells were set as a control group. Cell proliferation was detected in SW480 cells, SW480-Ve cells and SW480-NDRG2 cells by MTT assay; cell migration distance in the three groups at 24, 48, 72 hours was tested by wound healing assay; apoptosis rate was determined in the three groups at 48 hours by flow cytometry; the expressions of Bax, caspase-3, Bcl-2 proteins in the three groups were examined by Western blotting. Results After the cells were cultured for 7 days, cell survival rate in SW480-NDRG2 group was significantly lower than that in SW480 cells and SW480-Ve cells; the cell survival rate decreased gradually with the prolongation of the culture time; and it had no significant difference between SW480-Ve group and SW480 group. Cell migration distance in SW480-NDRG2 group was significantly lower than that in SW480-Ve cells and SW480 cells, and it had also no significant difference between SW480-Ve cells and SW480 cells. The apoptosis rate in SW480-NDRG2 group was significantly higher than that in SW480 group and SW480-Ve group, and SW480 cells and SW480-Ve cells had no significant difference in the rate. The expressions of Bax and caspase-3 proteins in SW480-NDRG2 group were significantly higher than those in SW480 cells and SW480-Ve cells; Bcl-2 protein expression was significantly lower in SW480-NDRG2 group than in SW480 cells and SW480-Ve cells; and the expressions of Bax, caspase-3 and Bcl-2 proteins were not significantly different between SW480 cells and SW480-Ve cells. Conclusion Overexpression of NDRG2 can inhibit the proliferation, reduce cell migration, and promote cell apoptosis by regulating the expressions of Bcl-2, Bax and caspase-3 proteins in SW480 cells.
Hou, Xunyao; Jin, Yan; Chen, Jian; Hong, Yan; Luo, Dingzhen; Yin, Qingqing; Liu, Xueping
2017-01-10
Amyloid-β-peptide (Aβ) is considered to be the toxic species in AD and causes cell death in the affected areas of patient's brain. Insulin-like growth factor 1 (IGF-1) has been reported to attenuate Aβ toxicity in neuronal cells. However, the molecular mechanisms involved in the neuroprotective function of IGF-1 remain largely unknown. In the present study, we for the first time demonstrated that IGF-1 protects against Aβ-induced neurotoxicity via inhibition of PUMA expression and Bax activation. We found that IGF-1 could activate Akt, which in turn inhibited Aβ-induced FOXO3a nuclear translocation and thus decreased the binding ability of FOXO3a to PUMA promoter, leading to decreased PUMA expression. In addition, IGF-1 inhibited the translocation of Bax to the mitochondria induced by Aβ. Notably, addition of wortmannin, a specific inhibitor of PI3K, significantly abolished the neuroprotective effect of IGF-1, suggesting that IGF-1 exerts its anti-apoptotic effect depend on PI3K activity. Our findings may provide new insights into molecular mechanisms mediated by IGF-1 in cell survival against Aβ-induced apoptosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Feng, Zhenhua; Zheng, Wenhao; Tang, Qian; Cheng, Liang; Li, Hang; Ni, Wenfei; Pan, Xiaoyun
2017-08-01
Steroid-induced avascular necrosis of the femoral head (SANFH) is a major limitation of long-term or excessive clinical administration of glucocorticoids. Fludarabine, which is a compound used to treat various hematological malignancies, such as chronic lymphocytic leukemia, acts by down-regulating signal transducer and activator of transcription 1 (STAT1) by inhibiting STAT1 phosphorylation in both normal and cancer cells. This study assessed the effects of fludarabine in vitro (primary murine osteoblasts) and in vivo (rat SANFH model). In vitro, pretreatment with fludarabine significantly inhibited Dexamethasone (Dex)-induced apoptosis in osteoblasts, which was examined by TUNEL staining. Treatment with Dex caused a remarkable decrease in the expression of Bcl-2; an increase in cytochrome c release; activation of BAX, caspase-9, and caspase-3; and an obvious enhancement in STAT1 phosphorylation. However, treatment resulted in the up-regulation of caspase-3 expression. Enhanced P-STAT1 activity and up-regulation of caspase-3 expression were also observed in osteoblasts. In vivo, the subchondral trabeculae in fludarabine-treated rats exhibited less bone loss and a lower ratio of empty lacunae. Taken together, our results suggest that STAT1-mediated up-regulation of caspase-3 is involved in osteoblast apoptosis induced by Dex and indicates that fludarabine may serve as a potential agent for the treatment of SANFH.
Traditional Chinese medicine targeting apoptotic mechanisms for esophageal cancer therapy
Zhang, Yu-shuang; Shen, Qiang; Li, Jing
2016-01-01
Esophageal cancer is one of the most common types of cancer in the world, and it demonstrates a distinct geographical distribution pattern in China. In the last decade, inducing apoptosis with traditional Chinese medicine (TCM) has become an active area in both fundamental and clinical research on cancer therapy. In this review, we summarize the molecular mechanisms by which TCM induces apoptosis in esophageal cancer cells. These mechanisms are generally related but not limited to targeting the extrinsic death receptor pathway, the intrinsic mitochondrial pathway, and the endoplasmic reticulum (ER) stress pathway. By using different monomers and composite prescriptions of TCM, it is possible to modulate the ratio of Bcl-2/Bax, regulate the expression of caspase proteases and mitochondrial transmembrane potential, increase the expression of Fas and p53, down-regulate NF-κB pathway and the expression of Chop and survivin, and block cell cycle progression. PMID:26707140
Edaravone Guards Dopamine Neurons in a Rotenone Model for Parkinson's Disease
Chen, Chunnuan; Huang, Jinsha; Zhao, Ying; Zhang, Zhentao; Qiao, Xian; Feng, Yuan; Reesaul, Harrish; Zhang, Yongxue; Sun, Shenggang; Lin, Zhicheng; Wang, Tao
2011-01-01
3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone), an effective free radical scavenger, provides neuroprotection in stroke models and patients. In this study, we investigated its neuroprotective effects in a chronic rotenone rat model for Parkinson's disease. Here we showed that a five-week treatment with edaravone abolished rotenone's activity to induce catalepsy, damage mitochondria and degenerate dopamine neurons in the midbrain of rotenone-treated rats. This abolishment was attributable at least partly to edaravone's inhibition of rotenone-induced reactive oxygen species production or apoptotic promoter Bax expression and its up-regulation of the vesicular monoamine transporter 2 (VMAT2) expression. Collectively, edaravone may provide novel clinical therapeutics for PD. PMID:21677777
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Eun-Seok; Kang, Jun Chul; Kang, Do-Hyun
2013-04-01
Poly(adenosine 5′-diphosphate ribose) polymerase (PARP) is a nuclear enzyme activated by DNA strand breaks and plays an important role in the tissue injury associated with ischemia and reperfusion. The aim of the present study was to investigate the protective effect of 5-aminoisoquinolinone (5-AIQ), a PARP inhibitor, against oxidative stress-induced apoptosis in H9c2 cardiomyocytes. 5-AIQ pretreatment significantly protected against H{sub 2}O{sub 2}-induced cell death, as determined by the XTT assay, cell counting, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and Western blot analysis of apoptosis-related proteins such as caspase-3, Bax, and Bcl-2. Upregulation of antioxidant enzymes such as manganese superoxidemore » dismutase and catalase accompanied the protective effect of 5-AIQ on H{sub 2}O{sub 2}-induced cell death. Our data also showed that 5-AIQ pretreatment protected H9c2 cells from H{sub 2}O{sub 2}-induced apoptosis by triggering activation of Akt and glycogen synthase kinase-3β (GSK-3β), and that the protective effect of 5-AIQ was diminished by the PI3K inhibitor LY294002 at a concentration that effectively abolished 5-AIQ-induced Akt and GSK-3β activation. In addition, inhibiting the Akt/GSK-3β pathway by LY294002 significantly attenuated the 5-AIQ-mediated decrease in cleaved caspase-3 and Bax activation and H9c2 cell apoptosis induction. Taken together, these results demonstrate that 5-AIQ prevents H{sub 2}O{sub 2}-induced apoptosis in H9c2 cells by reducing intracellular reactive oxygen species production, regulating apoptosis-related proteins, and activating the Akt/GSK-3β pathway. - Highlights: ► 5-AIQ, a PARP inhibitor, decreased H{sub 2}O{sub 2}-induced H9c2 cell death and apoptosis. ► 5-AIQ upregulated antioxidant Mn-SOD and catalase, while decreasing ROS production. ► 5-AIQ decreased H{sub 2}O{sub 2}-induced increase in cleaved caspase-3 and Bax and decrease in Bcl2. ► 5-AIQ activated Akt and GSK-3β, the effect being abolished by PI3K inhibitor LY294002. ► LY294002 attenuated 5-AIQ-mediated effects on H9c2 apoptosis and related proteins.« less
Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chunrong; Zheng, Haichong; He, Wanmei
Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activatedmore » the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI. -- Graphical abstract: Ghrelin ameliorates the human alveolar epithelial A549 cells apoptosis induced by lipopolysaccharide partly through activating the PI3K/Akt and ERK pathway. Display Omitted -- Highlights: •It has been observed that LPS insult significantly increased apoptosis in A549 cells. •Both Akt and ERK signaling are critical adapter molecules to mediate the ghrelin-mediated proliferative effect. •Ghrelin may have a therapeutic effect in the prevention of LPS-induced apoptosis.« less
2007-09-05
Mannucci, R., Nicoletti, I., Lanfrancone, L., Giorgio, M., and Pelicci, P. G. (2004). The life span determinant p66Shc localizes to mitochondria where it... mitochondria and promoting the generation of intracellular reactive oxygen species (ROS) [13-15]. p66Shc possesses an additional N-terminal domain, and...PP2A, which in turn could dephosphorylate and ac- tivate Bax [21]. Once activated, Bax could translocate to the mitochondria and perturb the
Li, Tsyregma; Brustovetsky, Tatiana; Antonsson, Bruno; Brustovetsky, Nickolay
2008-11-01
In the present study, we investigated the mechanism of cytochrome c release from isolated brain mitochondria induced by recombinant oligomeric BAX (BAX(oligo)). We found that BAX(oligo) caused a complete release of cytochrome c in a concentration- and time-dependent manner. The release was similar to those induced by alamethicin, which causes maximal mitochondrial swelling and eliminates barrier properties of the OMM. BAX(oligo) also produced large amplitude mitochondrial swelling as judged by light scattering assay and transmission electron microscopy. In addition, BAX(oligo) resulted in a strong mitochondrial depolarization. ATP or a combination of cyclosporin A and ADP, inhibitors of the mPT, suppressed BAX(oligo)-induced mitochondrial swelling and depolarization as well as cytochrome c release but did not influence BAX(oligo) insertion into the OMM. Both BAX(oligo)- and alamethicin-induced cytochrome c releases were accompanied by inhibition of ROS generation, which was assessed by measuring mitochondrial H(2)O(2) release with an Amplex Red assay. The mPT inhibitors antagonized suppression of ROS generation caused by BAX(oligo) but not by alamethicin. Thus, BAX(oligo) resulted in a complete cytochrome c release from isolated brain mitochondria in the mPT-dependent manner without involvement of oxidative stress by the mechanism requiring mitochondrial remodeling and permeabilization of the OMM.
Roles of plant hormones and anti-apoptosis genes during drought stress in rice (Oryza sativa L.).
Ubaidillah, Mohammad; Safitri, Fika Ayu; Jo, Jun-Hyeon; Lee, Sang-Kyu; Hussain, Adil; Mun, Bong-Gyu; Chung, Il Kyung; Yun, Byung-Wook; Kim, Kyung-Min
2016-12-01
We previously identified the rice (Oryza sativa) senescence-associated gene OsSAP which encodes a highly conserved protein involved in anti-apoptotic activity. This novel Bax suppressor-related gene regulates tolerance to multiple stresses in yeast. Here, we show the effects of drought stress on leaf and root tissues of plants over-expressing OsSAP in relation to the levels of phytohormones, abscisic acid (ABA), jasmonic acid (JA), indole-3-carboxylic acid (ICA), gibberellic acid (GA 3 ), and zeatin. Results showed that rice plants over-expressing SAP were tolerant to drought stress compared to wild type and the plants over-expressing AtBI-1, which is a homolog of the human Bax inhibitor-1 in Arabidopsis. ABA and JA levels in OsSAP and AtBI-1 transgenic plants consistently increased up to at least 3 days after drought treatment, whereas lower GA 3 levels were recorded during early drought period. Comparison between control and transgenic plants overexpressing anti-apoptosis genes OsSAP and AtBI-1 resulted in different patterns of hormone levels, indicating that these genes are involved in the plant responses to drought stress and present an opportunity for further study on drought stress tolerance in rice and other plant species.
Parkin overexpression protects retinal ganglion cells against glutamate excitotoxicity.
Hu, Xinxin; Dai, Yi; Sun, Xinghuai
2017-01-01
To investigate the role of parkin in regulating mitochondrial homeostasis of retinal ganglion cells (RGCs) under glutamate excitotoxicity. Rat RGCs were purified from dissociated retinal tissue with a modified two-step panning protocol. Cultured RGCs were transfected with parkin using an adenovirus system. The distribution and morphology of mitochondria in the RGCs were assessed with MitoTracker. The expression and distribution of parkin and optineurin proteins were measured with western blot analysis and immunofluorescence. Cytotoxicity of RGCs was evaluated by measuring lactate dehydrogenase (LDH) activity. Mitochondrial membrane potential was determined with the JC-1 assay. The expression of Bax and Bcl-2 were measured with western blot analysis. In the presence of glutamate-induced excitotoxicity, the number of mitochondria in the axons of the RGCs was predominantly increased, and the mitochondrial membrane potential in RGCs was depolarized. The expression of the parkin and optineurin proteins was upregulated and distributed mostly in the axons of the RGCs. Overexpression of parkin stabilized the mitochondrial membrane potential of RGCs, decreased cytotoxicity and apoptosis, attenuated the expression of Bax, and promoted the expression of optineurin under glutamate excitotoxicity. Overexpression of parkin exerted a significant protective effect on cultured RGCs against glutamate excitotoxicity. Interventions to alter the parkin-mediated mitochondria pathway may be useful in protecting RGCs against excitotoxic RGC damage.
Shen, Sheng; Zhou, Jiexue; Meng, Shandong; Wu, Jiaqing; Ma, Juan; Zhu, Chunli; Deng, Gengguo; Liu, Dong
2017-11-01
The aim of the present study was to investigate the protective effects of ischemic preconditioning on rats with renal ischemia-reperfusion injury and the effects on the expression of Bcl-2 and Bax. Thirty-six SD rats were randomly divided into three groups (n=12) including sham operation (S) group, ischemia-reperfusion group (I/R) group and ischemic preconditioning (IP) group. After anesthesia with intraperitoneal injection of chloral hydrate, bilateral renal pedicles were clipped for 45 min, followed by perfusion for 6 h to establish the I/R model. Both kidneys in rats of S group were separated and exposed for 45 min, but renal pedicles were not clipped. In IP group, bilateral renal pedicles were clipped for 5 min, followed by perfusion for 5 min, this procedure was repeated 3 times. Then bilateral renal pedicles were clipped for 45 min, followed by perfusion for 6 h. Blood samples were collected and rats were sacrificed to collect renal tissue. Levels of serum creatinine (Cr) and blood urea nitrogen (BUN) were measured. Activity of superoxide dismutase (SOD) was measured by xanthine oxidase assay. Degree of renal injury was evaluated by H&E staining. TUNEL kit was used to detect the number of apoptotic cells in renal tissue. Expression levels of Bcl-2 and Bax were detected by semi-quantitative PCR and western blot analysis at mRNA and protein levels, respectively. Results showed that levels of Cr and BUN in I/R and IP groups were significantly higher than those in S group, and levels of Cr and BUN in I/R group were significantly higher than that in IP group (P<0.05). Activity of SOD in I/R group and IP group were significantly lower than those in S group, and activity of SOD in I/R group were significantly lower than those in IP group (P<0.05). H&E staining showed that, compared with S group, renal injury in the I/R and IP groups was more serious than that in the S group, and I/R group was more serious than the IP group (P<0.05). TUNEL apoptosis assay showed that number of apoptotic cells in IP and I/R groups were significantly higher than that in the S group (P<0.01). Semi-quantitative PCR and western blot analysis showed that, compared with the S group, expression levels of Bcl-2 mRNA and protein were significantly decreased, expression levels of Bax mRNA and protein were significantly increased, and the ratio of Bcl-2/Bax was significantly decreased in the IP and I/R groups (P<0.01). Compared with the I/R group, expression level of Bcl-2 was significantly increased, the level of Bax was significantly deceased, and the ratio of Bcl-2/Bax was significantly increased in the IP group (P<0.01). As a result, ischemic preconditioning can protect rats with renal ischemia-reperfusion injury possibly by increasing the expression level of Bcl-2 and decreasing the expression level of Bax.
Zhang, Yanmin; Zhang, Jie; Dai, Bingling; Wang, Nan; He, Langchong
2011-05-01
Taspine was screened and isolated for the first time from Radix et Rhizoma Leonticis. Tas41 is a novel taspine derivative. We investigated the effects of tas41 on proliferation of the Caco-2 cell line using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), a fluorescence-activated cell sorter (FACS), enzyme-linked immunosorbent assay (ELISA), reverse transcription-polymerase chain reaction (RT-PCR) and western blotting (WB). Changes in the cell cycle, apoptosis, activation of caspase-3, caspase-8 and caspase-9, and expressions of vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF) were investigated after Caco-2 cells were treated with tas41. At the same time, expressions of apoptosis protein bcl-2 and bax were determined. Tas41 was found to induce apoptosis in a concentration-dependent manner as confirmed by DNA fragmentation analysis, TUNEL assay and flow cytometry. Protein and mRNA expressions of EGF, VEGF, CDK2, bcl-2 and bax were evaluated by ELISA, WB and RT-PCR. Tas41 had a better anti-proliferative effect than taspine on Caco-2 cells. A DNA ladder and apoptosis was observed, and the increased apoptotic activity by tas41 was accompanied by a decrease in the expression of VEGF protein and mRNA. The activities of caspase-3, caspase-8 and caspase-9 were significantly increased in cells treated with tas41 compared with those in the control group. In addition, protein and mRNA expressions of bcl-2 were decreased, and protein and mRNA expressions of bax were increased. These findings demonstrate that tas41 can inhibit the proliferation of, and induce apoptosis in, Caco-2 cells by activating caspase-3, caspase-8 and caspase-9, downregulating the expressions of VEGF, upregulating the ratio of bax/bcl-2. Copyright © 2011 Elsevier B.V. All rights reserved.
Radin, Daniel; Lippa, Arnold; Patel, Parth; Leonardi, Donna
2016-02-01
Triple-negative breast cancer does not express estrogen receptor-α, progesterone or the HER2 receptor making hormone or antibody therapy ineffective. Cisplatin may initiate p73-dependent apoptosis in p53 mutant cell lines through Fas trimerization and Caspase-8 activation and Bax up regulation and subsequent Caspase-9 activation. The triple-negative breast cancer, MDA-MB-231, overexpresses the protein Lifeguard, which inhibits Fas-mediated apoptosis by inhibiting Caspase-8 activation after Fas trimerization. The relationship between Fas, Lifeguard and cisplatin is investigated by down regulating Lifeguard via shRNA. Results demonstrate that cisplatin's efficacy increases when Lifeguard is down regulated. Lifeguard Knockdown MDA-MB-231 continue to decrease in cell viability from 24 to 48h after cisplatin treatment while no additional decrease in viability is observed in the Wild-Type MDA over the same period. Higher Caspase-8 activity in the Lifeguard knockdown MDA after cisplatin administration could explain the significant decrease in cell viability from 24 to 48h. This cell type is also more sensitive to Fas ligand-mediated reductions in cell viability, confirming Lifeguard's anti-apoptotic function through the Fas receptor. This research suggests that the efficacy of chemotherapy acting through the Fas pathway would increase if Lifeguard were not overexpressed to inhibit Fas-mediated apoptosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Liang, Zengenni; Yi, Youjin; Guo, Yutong; Wang, Rencai; Hu, Qiulong; Xiong, Xingyao
2014-01-01
Ganoderma lucidum polysaccharide (GLP) is a biologically active substance reported to possess anti-tumor ability. Nonetheless, the mechanisms of GLP-stimulated apoptosis are still unclear. This study aims to determine the inhibitory and apoptosis-inducing effects of GLP on HCT-116 cells. We found that GLP reduced cell viability on HCT-116 cells in a time- and dose-dependent manner, which in turn, induced cell apoptosis. The observed apoptosis was characterized by morphological changes, DNA fragmentation, mitochondrial membrane potential decrease, S phase population increase, and caspase-3 and -9 activation. Furthermore, inhibition of c-Jun N-terminal kinase (JNK) by SP600125 led to a dramatic decrease of the GLP-induced apoptosis. Western blot analysis unveiled that GLP up-regulated the expression of Bax/Bcl-2, caspase-3 and poly (ADP-ribose) polymerase (PARP). These results demonstrate that apoptosis stimulated by GLP in human colorectal cancer cells is associated with activation of mitochondrial and mitogen-activated protein kinase (MAPK) pathways. PMID:24857920
Kazi, Aslamuzzaman; Sun, Jiazhi; Doi, Kenichiro; Sung, Shen-Shu; Takahashi, Yoshinori; Yin, Hang; Rodriguez, Johanna M.; Becerril, Jorge; Berndt, Norbert; Hamilton, Andrew D.; Wang, Hong-Gang; Sebti, Saïd M.
2011-01-01
A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-XL, and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-XL and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-XL, Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-XL/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-XL, Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612. PMID:21148306
Kazi, Aslamuzzaman; Sun, Jiazhi; Doi, Kenichiro; Sung, Shen-Shu; Takahashi, Yoshinori; Yin, Hang; Rodriguez, Johanna M; Becerril, Jorge; Berndt, Norbert; Hamilton, Andrew D; Wang, Hong-Gang; Sebti, Saïd M
2011-03-18
A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-X(L), and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-X(L) and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-X(L), Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-X(L)/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-X(L), Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612.
Paraoxon induces apoptosis in EL4 cells via activation of mitochondrial pathways.
Saleh, A M; Vijayasarathy, C; Masoud, L; Kumar, L; Shahin, A; Kambal, A
2003-07-01
The toxicity of organophosphorus compounds, such as paraoxon (POX), is due to their anticholinesterase action. Recently, we have shown that, at noncholinergic doses (1 to 10 nM), POX (the bioactive metabolite of parathion) causes apoptotic cell death in murine EL4 T-lymphocytic leukemia cell line through activation of caspase-3. In this study, by employing caspase-specific inhibitors, we extend our observations to elucidate the sequence of events involved in POX-stimulated apoptosis. Pretreatment of EL4 cells with the caspase-9-specific inhibitor zLEHD-fmk attenuated POX-induced apoptosis in a dose-dependent manner, whereas the caspase-8 inhibitor zIETD-fmk had no effect. Furthermore, the activation of caspase-9, -8, and -3 in response to POX treatment was completely inhibited in the presence of zLEHD-fmk, implicating the involvement of caspase 9-dependent mitochondrial pathways in POX-stimulated apoptosis. Indeed, under both in vitro and in vivo conditions, POX triggered a dose- and time-dependent translocation of cytochrome c from mitochondria into the cytosol, as assessed by Western blot analysis. Investigation of the mechanism of cytochrome c release revealed that POX disrupted mitochondrial transmembrane potential. Neither this effect nor cytchrome c release was dependent on caspase activation, since the general inhibitor of the caspase family zVAD-fmk did not influence both processes. Finally, POX treatment also resulted in a time-dependent up-regulation and translocation of the proapoptotic molecule Bax to mitochondria. Inhibition of this event by zVAD-fmk suggests that the activation and translocation of Bax to mitochondria is subsequent to activation of the caspase cascades. The results indicate that POX induces apoptosis in EL4 cells through a direct effect on mitochondria by disrupting its transmembrane potential, causing the release of cytochrome c into the cytosol and subsequent activation of caspase-9. Inhibition of this specific pathway might provide a useful strategy to minimize organophosphate-induced poisoning.
Key apoptotic pathways for heat-induced programmed germ cell death in the testis.
Hikim, Amiya P Sinha; Lue, Yanhe; Yamamoto, Cindy M; Vera, Yanira; Rodriguez, Susana; Yen, Pauline H; Soeng, Kevin; Wang, Christina; Swerdloff, Ronald S
2003-07-01
Short-term exposure (43 C for 15 min) of the rat testis to mild heat results within 6 h in stage- and cell-specific activation of germ cell apoptosis. Initiation of apoptosis was preceded by a redistribution of Bax from a cytoplasmic to paranuclear localization in heat-susceptible germ cells. Here we show that the relocation of Bax is accompanied by cytosolic translocation of cytochrome c and is associated with activation of the initiator caspase 9 and the executioner caspases 3, 6, and 7 and cleavage of poly(ADP) ribose polymerase. Furthermore, early in apoptosis, a significant amount of Bax also accumulates in endoplasmic reticulum, as assessed by Western blot analyses of fractionated testicular lysates. In additional studies using the FasL-defective gld mice, we have shown that heat-induced germ cell apoptosis is not blocked, thus providing evidence that the Fas signaling system may be dispensable for heat-induced germ cell apoptosis in the testis. Taken together, these results demonstrate that the mitochondria- and possibly also endoplasmic reticulum-dependent pathways are the key apoptotic pathways for heat-induced germ cell death in the testis.
Kim, Dongjoon; Mecham, Robert P; Trackman, Philip C; Roy, Sayon
2017-05-01
To investigate the effect of reducing high glucose (HG)-induced lysyl oxidase (LOX) overexpression and increased activity on retinal endothelial cell apoptosis. Rat retinal endothelial cells (RRECs) were grown in normal (N) or HG (30 mM glucose) medium for 7 days. In parallel, RRECs were grown in HG medium and transfected with LOX small interfering RNA (siRNA), scrambled siRNA as control, or exposed to β-aminopropionitrile (BAPN), a LOX inhibitor. LOX expression, AKT activation, and caspase-3 activity were determined by Western blot (WB) analysis and apoptosis by differential dye staining assay. Moreover, to determine whether diabetes-induced LOX overexpression alters AKT activation and promotes apoptosis, changes in LOX expression, AKT phosphorylation, caspase-3 activation, and Bax expression were assessed in retinas of streptozotocin (STZ)-induced diabetic mice and LOX heterozygous knockout (LOX+/-) mice. WB analysis indicated significant LOX overexpression and reduced AKT activation under HG condition in RRECs. Interestingly, when cells grown in HG were transfected with LOX siRNA or exposed to BAPN, the number of apoptotic cells was significantly decreased concomitant with increased AKT phosphorylation. Diabetic mouse retinas exhibited LOX overexpression, decreased AKT phosphorylation, and increased Bax and caspase-3 activation compared to values in nondiabetic mice. In LOX+/- mice, reduced LOX levels were observed with increased AKT activity, and reduced Bax and caspase-3 activity. Furthermore, decreased levels of LOX in the LOX+/- mice was protective against diabetes-induced apoptosis. Findings from this study indicate that preventing LOX overexpression may be protective against HG-induced apoptosis in retinal vascular cells associated with diabetic retinopathy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guojun
Staphylococcal enterotoxin C2 (SEC2), a member of bacterial superantigen, is one of the most potent known activators of T lymphocytes. With this property, SEC2 has already been used in clinic as a tumor immunotherapy agent in China. To increase the antitumor activity, a SEC2 mutant named ST-4 (GKVTG102-106WWH) with amino acid substitutions in T cell receptor (TCR)-binding domain was generated by site-directed mutagenesis, and the molecular mechanism of the enhanced antitumor activity was investigated. Results showed that ST-4 could activate much more Vβ 8.2 and 8.3 T cells and NK cells compared with SEC2, and exhibited significantly enhanced immunocyte stimulationmore » and antitumor activity in vitro. The synthetic peptide sequencing the residues of mutant TCR-binding domain could competitively inhibit the immunocyte stimulation activity of ST-4. Most importantly, ST-4 up-regulated granzyme B and perforin at both mRNA and protein levels. We also found that expression of proapoptotic proteins cytochrome c, BAX and activation of caspase-3, 9 was up-regulated, and antiapoptotic protein Bcl-xL was down-regulated in the treatment with either ST-4 or SEC2. When granzyme B inhibitor or perforin inhibitor is presented, tumor cell viability was significantly rescued. Taken together, we demonstrate that increased ST-4-TCR recognition contributed to massive T cells and NK cells activation. These activated cells released up-regulated granzyme B and perforin, which induced the enhanced tumor cells apoptosis by mitochondrial apoptotic pathway, and ultimately led to enhanced tumor cell growth inhibition. ST-4 may be a promising candidate for antitumor clinic usage in future. - Highlights: • We obtained a SEC2 mutant ST-4 with enhanced superantigen and antitumor activity. • Increased ST-4-TCR recognition contributed to massive T cells and NK cells activation. • Up-regulated GzmB and PRF1 in T cell by ST-4 induced enhanced tumor cells apoptosis. • Enhanced tumor cell apoptosis induced by ST-4 via mitochondrial apoptotic pathway.« less
Al-Wajeeh, Nahla Saeed; Hajerezaie, Maryam; Noor, Suzita Mohd; Halabi, Mohammed Farouq; Al-Henhena, Nawal; Azizan, Ainnul Hamidah Syahadah; Kamran, Sareh; Hassandarvish, Pouya; Shwter, Abdrabuh N; Karimian, Hamed; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen
2017-01-19
Cibotium barometz is a medical herb used traditionally in the Malaysian peninsula for several ailments, including gastric ulcer. The aim of this study was assessment the anti-ulcer effects of C. barometz hair on ethanol-induced stomach hemorrhagic abrasions in animals. Seven groups of Sprague Dawley (SD) rats were administered 10% Tween 20 in the normal control and ulcer control groups, and omeprazole 20 mg/kg and 62.5, 125, 250, and 500 mg/kg of C. barometz hair extract in the experimental groups. After 60 min, the normal control group of rats was orally administered 10% Tween 20, while absolute ethanol was orally administered to the groups of ulcer control, omeprazole and experimental groups. Stomachs of the rats were examined macroscopically and histologically. Homogenates of stomachs were used to evaluate endogenous antioxidant enzyme activities. Rats pre-fed with plant extract presented a significant decrease in the sore area, increased pH of gastric contents and preserved stomach wall mucus compared to the ulcer group. Histologically, rats pre-fed with C. barometz hair extract showed mild to moderate disruptions of the surface epithelium while animals pre-fed with absolute ethanol showed severe disruptions of the stomach epithelium with edema and leucocyte penetration of the submucosal layer. A Periodic acid Schiff (PAS) staining revealed that each rat pre-treated with the plant extract displayed an intense uptake of stomach epithelial glycoprotein magenta color compared to the ulcer control group. Immunohistochemical analysis revealed that rats pre-fed with the plant extract showed an up-regulation of the heat shock protein 70 (HSP70) and down-regulation of Bax proteins compared to ulcer control rats. Homogenates of the stomach tissue demonstrated significant increases in the endogenous antioxidant enzymatic activity and decreased lipid peroxidation (MDA) in rats pre-treated with C. barometz hair extract compared with the ulcer control rats. In acute toxicity, the liver and kidney revealed no hepatotoxic or nephrotoxic effects histologically. The gastric cytoprotective action of C. barometz hair extract might be attributed to antioxidants, an increase in gastric pH, stomach mucus preservation, increased endogenous antioxidant enzymes, decreased lipid peroxidation, up-regulation of HSP70 and down-regulation of Bax proteins.
Sarkar, Siddik; Rajput, Shashi; Tripathi, Amit Kumar; Mandal, Mahitosh
2013-10-20
The hypoxic environment of tumor region stimulated the up regulation of growth factors responsible for angiogenesis and tumor proliferation. Thus, targeting the tumor vasculature along with the proliferation by dual tyrosine kinase inhibitor may be the efficient way of treating advanced breast cancers, which can be further enhanced by combining with radiotherapy. However, the effectiveness of radiotherapy may be severely compromised by toxicities and tumor resistance due to radiation-induced adaptive response contributing to recurrence and metastases of breast cancer. The rational of using ZD6474 is to evaluate the feasibility and efficacy of combined VEGFR2 and EGFR targeting with concurrent targeted and localized UV-B phototherapy in vitro breast cancer cells with the anticipation to cure skin lesions infiltrated with breast cancer cells. Breast cancer cells were exposed to UV-B and ZD6474 and the cell viability, apoptosis, invasion and motility studies were conducted for the combinatorial effect. Graphs and statistical analyses were performed using Graph Pad Prism 5.0. ZD6474 and UV-B decreased cell viability in breast cancers in combinatorial manner without affecting the normal human mammary epithelial cells. ZD6474 inhibited cyclin E expression and induced p53 expression when combined with UV-B. It activated stress induced mitochondrial pathway by inducing translocation of bax and cytochrome-c. The combination of ZD6474 with UV-B vs. either agent alone also more potently down-regulated the anti-apoptotic bcl-2 protein, up-regulated pro-apoptotic signaling events involving expression of bax, activation of caspase-3 and caspase-7 proteins, and induced poly (ADP-ribose) polymerase resulting in apoptosis. ZD6474 combined with UV-B inhibited invasion of breast cancer cells in vitro as compared to either single agent, indicating a potential involvement of pro-angiogenic growth factors in regulating the altered expression and reorganization of cytoskeletal proteins in combinatorial treated breast cancer cells. Involvement of combination therapy in reducing the expression of matrix metalloprotease was also observed. Collectively, our studies indicate that incorporating an anti-EGFR plus VEGFR strategy (ZD6474) with phototherapy (UV-B), an alternative approach to the ongoing conventional radiotherapy for the treatment of infiltrating metastatic breast cancer cells in the skin and for locally recurrence breast cancer than either approach alone.
Pan, Di; Li, Wei; Miao, Hanchi; Yao, Jing; Li, Zhiyu; Wei, Libin; Zhao, Li; Guo, Qinglong
2014-02-15
In this study, the anticancer effect of LW-214, a newly synthesized flavonoid, against MCF-7 human breast cancer cells and the underlying mechanisms were investigated. LW-214 triggered the mitochondrial apoptotic pathway by increasing Bax/Bcl-2 ratio, loss of mitochondrial membrane potential (ΔΨm) and caspase-9 activation, degradation of poly (ADP-ribose) polymerase (PARP), cytochrome c (Cyt c) release and apoptosis-inducing factor (AIF) transposition. Further research revealed that both the reactive oxygen species (ROS) generation and the apoptosis signal regulating kinase 1 (ASK1) activation by LW-214 were induced by down-regulating the thioredoxin-1 (Trx-1) expression. The ROS elevation and ASK1 activation induced a sustained phosphorylation of c-Jun N-terminal kinase (JNK), while SP600125, as known as JNK inhibitor, almost reversed LW-214-induced apoptosis in MCF-7 cells. Overexpression of Trx-1 in MCF-7 cells attenuated LW-214-mediated apoptosis as well as the JNK activation and reversed the expression of mitochondrial apoptosis-related protein. Accordingly, the in vivo study showed that LW-214 exhibited a potential antitumor effect in BALB/c species mice inoculated MCF-7 tumor with low systemic toxicity, and the mechanism was the same as in vitro study. Taken together, these findings indicated that LW-214 may down-regulated Trx-1 function, causing intracellular ROS generation and releasing the ASK1, and lead to JNK activation, which consequently induced the mitochondrial apoptosis in vitro and in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.
Frank, Daniel O.; Dengjel, Jörn; Wilfling, Florian; Kozjak-Pavlovic, Vera; Häcker, Georg; Weber, Arnim
2015-01-01
The pro-apoptotic Bcl-2-family protein Bim belongs to the BH3-only proteins known as initiators of apoptosis. Recent data show that Bim is constitutively inserted in the outer mitochondrial membrane via a C-terminal transmembrane anchor from where it can activate the effector of cytochrome c-release, Bax. To identify regulators of Bim-activity, we conducted a search for proteins interacting with Bim at mitochondria. We found an interaction of Bim with Tom70, Tom20 and more weakly with Tom40, all components of the Translocase of the Outer Membrane (TOM). In vitro import assays performed on tryptically digested yeast mitochondria showed reduced Bim insertion into the outer mitochondrial membrane (OMM) indicating that protein receptors may be involved in the import process. However, RNAi against components of TOM (Tom40, Tom70, Tom22 or Tom20) by siRNA, individually or in combination, did not consistently change the amount of Bim on HeLa mitochondria, either at steady state or upon de novo-induction. In support of this, the individual or combined knock-downs of TOM receptors also failed to alter the susceptibility of HeLa cells to Bim-induced apoptosis. In isolated yeast mitochondria, lack of Tom70 or the TOM-components Tom20 or Tom22 alone did not affect the import of Bim into the outer mitochondrial membrane. In yeast, expression of Bim can sensitize the cells to Bax-dependent killing. This sensitization was unaffected by the absence of Tom70 or by an experimental reduction in Tom40. Although thus the physiological role of the Bim-TOM-interaction remains unclear, TOM complex components do not seem to be essential for Bim insertion into the OMM. Nevertheless, this association should be noted and considered when the regulation of Bim in other cells and situations is investigated. PMID:25875815
Frank, Daniel O; Dengjel, Jörn; Wilfling, Florian; Kozjak-Pavlovic, Vera; Häcker, Georg; Weber, Arnim
2015-01-01
The pro-apoptotic Bcl-2-family protein Bim belongs to the BH3-only proteins known as initiators of apoptosis. Recent data show that Bim is constitutively inserted in the outer mitochondrial membrane via a C-terminal transmembrane anchor from where it can activate the effector of cytochrome c-release, Bax. To identify regulators of Bim-activity, we conducted a search for proteins interacting with Bim at mitochondria. We found an interaction of Bim with Tom70, Tom20 and more weakly with Tom40, all components of the Translocase of the Outer Membrane (TOM). In vitro import assays performed on tryptically digested yeast mitochondria showed reduced Bim insertion into the outer mitochondrial membrane (OMM) indicating that protein receptors may be involved in the import process. However, RNAi against components of TOM (Tom40, Tom70, Tom22 or Tom20) by siRNA, individually or in combination, did not consistently change the amount of Bim on HeLa mitochondria, either at steady state or upon de novo-induction. In support of this, the individual or combined knock-downs of TOM receptors also failed to alter the susceptibility of HeLa cells to Bim-induced apoptosis. In isolated yeast mitochondria, lack of Tom70 or the TOM-components Tom20 or Tom22 alone did not affect the import of Bim into the outer mitochondrial membrane. In yeast, expression of Bim can sensitize the cells to Bax-dependent killing. This sensitization was unaffected by the absence of Tom70 or by an experimental reduction in Tom40. Although thus the physiological role of the Bim-TOM-interaction remains unclear, TOM complex components do not seem to be essential for Bim insertion into the OMM. Nevertheless, this association should be noted and considered when the regulation of Bim in other cells and situations is investigated.
Osthole induces G2/M arrest and apoptosis in lung cancer A549 cells by modulating PI3K/Akt pathway
2011-01-01
Background To explore the effects of Osthole on the proliferation, cell cycle and apoptosis of human lung cancer A549 cells. Methods Human lung cancer A549 cells were treated with Osthole at different concentrations. Cell proliferation was measured using the MTT assay. Cell cycle was evaluated using DNA flow cytometry analysis. Induction of apoptosis was determined by flow cytometry and fluorescent microscopy. The expressions of Cyclin B1, p-Cdc2, Bcl-2, Bax, t-Akt and p-Akt were evaluated by Western blotting. Results Osthole inhibited the growth of human lung cancer A549 cells by inducing G2/M arrest and apoptosis. Western blotting demonstrated that Osthole down-regulated the expressions of Cyclin B1, p-Cdc2 and Bcl-2 and up-regulated the expressions of Bax in A549 cells. Inhibition of PI3K/Akt signaling pathway was also observed after treating A549 cells with Osthole. Conclusions Our findings suggest that Osthole may have a therapeutic application in the treatment of human lung cancer. PMID:21447176
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios; Lee, Yueh-Lin; Booske, John H.; Morgan, Dane; Turek, Ladislav; Kirshner, Mark; Kowalczyk, Richard; Wilsen, Craig
2009-05-01
Scandate cathodes (BaxScyOz on W) are important thermionic electron emission materials whose emission mechanism remains unclear. Ab initio modeling is used to investigate the surface properties of both scandate and traditional B-type (Ba-O on W) cathodes. We demonstrate that the Ba-O dipole surface structure believed to be present in active B-type cathodes is not thermodynamically stable, suggesting that a nonequilibrium steady state dominates the active cathode's surface structure. We identify a stable, low work function BaxScyOz surface structure, which may be responsible for some scandate cathode properties and demonstrate that multicomponent surface coatings can lower cathode work functions.
Cardioprotective effect of sulphonated formononetin on acute myocardial infarction in rats.
Zhang, Shumin; Tang, Xuexi; Tian, Jingwei; Li, Chunmei; Zhang, Guanbo; Jiang, Wanglin; Zhang, Zunting
2011-06-01
This study was designed to investigate the therapeutic effect of sodium formononetin-3'-sulphonate (Sul-F), a water-soluble derivate of formononetin, on acute myocardial infarction in rats. The results showed that treatment with Sul-F significantly prevented the elevation of ST-segment level, decreased the contents of creatine kinase-MB, lactate dehydrogenase, alanine aminotransferase and cardiac troponin T in serum and reduced the myocardium necrosis scores. The number of apoptosis cardiocytes is well accordance with the up-regulated expression of Bcl-2 and the down-regulated expression of Bax. Meanwhile, Sul-F significantly increased the cardiac mitochondrial ATP content, improved ATP synthase activity, decreased thiobarbituric acid-reactive substances content and attenuated the decrease in superoxide dismutase and glutathione peroxidase activities. These findings indicate that Sul-F has a protective potential against myocardial infarction injury. A possible mechanism for the protective effect is the elevated expression of endogenous antioxidant defence enzymes degraded lipid peroxidation products and improved energy metholism of cardiac mitochondrial, thus attenuating cardiocyte apoptosis. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.
Zhong, Xiao-Ming; Ren, Xue-Cong; Lou, Ye-Liang; Chen, Meng-Jing; Li, Guan-Ze; Gong, Xue-Yuan; Huang, Zhen
2016-11-04
In-vitro cultured calculus bovis (ICCB) is a quality substitute for natural bezoar which is used for the therapeutic purpose of treating encephalopathy. ICCB has been authorized to use on clinic. The aim of the study is to evaluate the effects and the potential mechanisms of in-vitro cultured calculus bovis (ICCB) on learning and memory impairments of hyperlipemia vascular dementia (HVD) rats. The HVD model was established by permanent occlusion of bilateral common carotid arteries based on hyperlipemia rats. Learning and memory abilities were evaluated by morris water maze test and shuttle box test. Ultraviolet-visible spectrophotometry (UV-vis) was employed to determine the SOD, MDA and NO in cerebral tissue, as well as the TG in serum. HE staining and toluidine blue staining were employed to evaluate cone cells damage in hippocampus CA1. An immunohistochemistry was used to measure the Bax and Bcl-2 expressions in cerebral tissue. Compared with control group, the abilities of spatial learning and memory and conditional memory were decreased significantly in HVD group (P<0.01, P<0.05). MDA content in cerebral tissue was remarkably increased while the SOD activity and NO content were both decreased (P<0.01). TG content in serum was increased remarkably (P<0.01). And the cone cells in hippocampus CA1 were damaged obviously. Compared with HVD group, ICCB treatment improved the abilities of learning and memory, elevated the SOD activity (P<0.01, P<0.05), reduced the MDA content (P<0.01) as well as the TG content in serum (P<0.01), increased the NO content (P<0.01), improved the damaged cone cells in hippocampus CA1, increased the number of cones cells (P<0.01), decreased the Bax expression, and increased the Bcl-2 expression (P<0.01). ICCB could improve the abilities of learning and memory in HVD rats. It might be related to anti-oxidative, regulation of Bax and Bcl-2 expressions, and the alleviation of cone cells damage. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Liu, Fang; Jiang, Yi-Jing; Zhao, Hong-Jia; Yao, Li-Qun; Chen, Li-Dian
2015-12-01
Post-stroke cognitive impairment seriously affects the quality of life and functional rehabilitation of patients with stroke. To examine the effects of electroacupuncture (EA) at GV20 and GV24 on cognitive impairment and apoptosis including expression of apoptosis-related genes Bcl-2 and Bax in a rat model of cerebral ischaemia-reperfusion (IR) induced by middle cerebral artery occlusion (MCAO). Thirty-five Sprague-Dawley rats were allocated to a sham operation control group (SC group, n=10) or underwent surgery and MCAO (n=25). Postoperatively the latter group was randomly subdivided into EA or untreated (IR) groups. Cognitive impairment was assessed using the Morris water maze (MWM). Apoptosis was examined by detection of Bcl-2 and Bax expression in the cerebral cortex. The EA group had significantly decreased neurological deficit scores compared to the IR group (p<0.05). In the MWM test, significant differences in escape latency and route were observed between the EA and IR groups (p<0.05). Rats in the EA group performed better in the probe trial than those in the IR group (p<0.05). EA treatment markedly reduced the number of TUNEL-positive cells compared to the IR group (20.13±4.30% vs 38.40±3.38%; p<0.001). Reverse transcription-polymerase chain reaction (RT-PCR) results showed the Bcl-2/Bax ratio was significantly increased in the EA group compared to the IR group (1.61±0.19 vs 0.50±0.05, p<0.01). These findings suggest that EA ameliorates cognitive impairment of rats with IR injury by modulating Bcl-2 and Bax expression. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Wei, Jianghua; Zhu, Yin; Xu, Gang; Yang, Fan; Guan, Zhe; Wang, Mao; Fang, Yonghong
2014-11-01
Oxymatrine, one of the most active components of the ethanol extracts from Sophora flavescens, is known for its potent antitumor activity both in vitro and in vivo. However, the mechanism of its action in mediating the cell apoptosis remains elusive. In this study, we investigated the proliferation inhibitory and apoptotic activities of oxymatrine against human osteosarcoma MG-63 cells. The compound was found to markedly and dose-dependently inhibit the cell proliferation determined by 5-bromo-2-deoxyuridine incorporation. Oxymatrine also induced the cell apoptosis in a dose- and time-dependent manner as showed by the annexin V-FITC/PI double staining and TUNEL assay. Furthermore, a disruption of mitochondrial membrane potential and an up-regulation of cleaved caspases-3, and-9 and downregulation of Bax/Bcl-2 was evidenced in the oxymatrine-treated cells. These proteins have been known to play a pivotal role in the regulation of apoptosis. In conclusion, these observations indicate of the oxymatrine potential as an effective antitumor agent against osteosarcoma. Moreover, the compound appears to exert its anti-tumor action by stimulating the caspase-triggered signaling pathway.
BAX inhibitor-1 regulates autophagy by controlling the IRE1α branch of the unfolded protein response
Castillo, Karen; Rojas-Rivera, Diego; Lisbona, Fernanda; Caballero, Benjamín; Nassif, Melissa; Court, Felipe A; Schuck, Sebastian; Ibar, Consuelo; Walter, Peter; Sierralta, Jimena; Glavic, Alvaro; Hetz, Claudio
2011-01-01
Both autophagy and apoptosis are tightly regulated processes playing a central role in tissue homeostasis. Bax inhibitor 1 (BI-1) is a highly conserved protein with a dual role in apoptosis and endoplasmic reticulum (ER) stress signalling through the regulation of the ER stress sensor inositol requiring kinase 1 α (IRE1α). Here, we describe a novel function of BI-1 in the modulation of autophagy. BI-1-deficient cells presented a faster and stronger induction of autophagy, increasing LC3 flux and autophagosome formation. These effects were associated with enhanced cell survival under nutrient deprivation. Repression of autophagy by BI-1 was dependent on cJun-N terminal kinase (JNK) and IRE1α expression, possibly due to a displacement of TNF-receptor associated factor-2 (TRAF2) from IRE1α. Targeting BI-1 expression in flies altered autophagy fluxes and salivary gland degradation. BI-1 deficiency increased flies survival under fasting conditions. Increased expression of autophagy indicators was observed in the liver and kidney of bi-1-deficient mice. In summary, we identify a novel function of BI-1 in multicellular organisms, and suggest a critical role of BI-1 as a stress integrator that modulates autophagy levels and other interconnected homeostatic processes. PMID:21926971
Castillo, Karen; Rojas-Rivera, Diego; Lisbona, Fernanda; Caballero, Benjamín; Nassif, Melissa; Court, Felipe A; Schuck, Sebastian; Ibar, Consuelo; Walter, Peter; Sierralta, Jimena; Glavic, Alvaro; Hetz, Claudio
2011-09-16
Both autophagy and apoptosis are tightly regulated processes playing a central role in tissue homeostasis. Bax inhibitor 1 (BI-1) is a highly conserved protein with a dual role in apoptosis and endoplasmic reticulum (ER) stress signalling through the regulation of the ER stress sensor inositol requiring kinase 1 α (IRE1α). Here, we describe a novel function of BI-1 in the modulation of autophagy. BI-1-deficient cells presented a faster and stronger induction of autophagy, increasing LC3 flux and autophagosome formation. These effects were associated with enhanced cell survival under nutrient deprivation. Repression of autophagy by BI-1 was dependent on cJun-N terminal kinase (JNK) and IRE1α expression, possibly due to a displacement of TNF-receptor associated factor-2 (TRAF2) from IRE1α. Targeting BI-1 expression in flies altered autophagy fluxes and salivary gland degradation. BI-1 deficiency increased flies survival under fasting conditions. Increased expression of autophagy indicators was observed in the liver and kidney of bi-1-deficient mice. In summary, we identify a novel function of BI-1 in multicellular organisms, and suggest a critical role of BI-1 as a stress integrator that modulates autophagy levels and other interconnected homeostatic processes.
Zhu, Yongxia; Wei, Wei; Ye, Tinghong; Liu, Zhihao; Liu, Li; Luo, Yong; Zhang, Lidan; Gao, Chao; Wang, Ningyu; Yu, Luoting
2016-01-01
Cancer is still a major public health issue worldwide, and new therapeutics with anti-tumor activity are still urgently needed. The anti-tumor activity of TH-39, which shows potent anti-proliferative activity against K562 cells with an IC50 of 0.78 µM, was investigated using immunoblot, co-immunoprecipitation, the MTT assay, and flow cytometry. Mechanistically, TH-39 may disrupt the interaction between Hec1 and Nek2 in K562 cells. Moreover, TH-39 inhibited cell proliferation in a concentration- and time-dependent manner by influencing the morphology of K562 cells and inducing G0/G1 phase arrest. G0/G1 phase arrest was associated with down-regulation of CDK2-cyclin E complex and CDK4/6-cyclin D complex activities. Furthermore, TH-39 also induced cell apoptosis, which was associated with activation of caspase-3, down-regulation of Bcl-2 expression and up-regulation of Bax. TH-39 could also decrease mitochondrial membrane potential (Δψm) and increase reactive oxygen species (ROS) accumulation in K562 cells. The results indicated that TH-39 might induce apoptosis via the ROS-mitochondrial apoptotic pathway. This study highlights the potential therapeutic efficacy of the anti-cancer compound TH-39 in treatment-resistant chronic myeloid leukemia. © 2016 The Author(s) Published by S. Karger AG, Basel.
Cooley-Andrade, Osvaldo; Cheung, Kelvin; Chew, An-Ning; Connor, David Ewan; Parsi, Kurosh
2016-07-01
To investigate the apoptotic effects of detergent sclerosants sodium tetradecylsulphate (STS) and polidocanol (POL) on endothelial cells at sub-lytic concentrations. Human umbilical vein endothelial cells (HUVECs) were isolated and labelled with antibodies to assess for apoptosis and examined with confocal microscopy and flow cytometry. Isolated HUVECs viability was assessed using propidium iodide staining. Early apoptosis was determined by increased phosphatidylserine exposure by lactadherin binding. Caspase 3, 8, 9 and Bax activation as well as inhibitory assays with Pan Caspase (Z-VAD-FMK) and Bax (BI-6C9) were assessed to identify apoptotic pathways. Porimin activation was used to assess cell membrane permeability. Cell lysis reached almost 100 % with STS at 0.3 % and with POL at 0.6 %. Apoptosis was seen with both STS and POL at concentrations ranging from 0.075 to 0.15 %. PS exposure increased with both STS and POL and exhibited a dose-dependent trend. Active Caspase 3, 8 and 9 but not Bax were increased in HUVECs stimulated with low concentrations of both STS and POL. Inhibitory assays demonstrated Caspase 3, 8, 9 inhibition at low concentrations (0.075 to 0.6 %) with both STS and POL. Both agents increased the activation of porimin at all concentrations. Both sclerosants induced endothelial cell (EC) apoptosis at sub-lytic concentrations through a caspase-dependant pathway. Both agents induced EC oncosis.
Meng, Zhu; Song, Mei-Yan; Li, Chuan-Fang; Zhao, Jia-Qi
2017-12-16
Myocardial ischemia-reperfusion (I/R) injury always occur during the recovery of myocardial blood supply with high morbidity and mortality. Although, various therapeutic schedules were applied in clinic, there are real problems that have to be resolved on curative effect. Nod-like receptor protein 3 (NLRP3) inflammasome has moderation effects on cellular damage and inflammatory reaction after I/R injury. Our research aims to investigate a more effective approach to restrain the activation of NLRP3 inflammasome in treating myocardial I/R injury. Results indicated that cell viability, Bax/Bcl-2 expression were affected hardly by sh-NLRP3 transfection in normal cells. However, the decreased cell viability and increased Bax/Bcl-2 expression level caused by I/R were remarkably suppressed through sh-NLRP3 transfection. Besides that, the reduced levels of pro-autophagy proteins (Beclin1, Agt7, LC3II/LC3I) while enhanced level of anti-autophagy protein (p62) and apoptosis-related proteins (Bax/Bcl-2) were significantly repressed via sh-NLRP3 transfection. Nevertheless, the autophagy inhibitor 3 MA could reverse the results. Moreover, in vivo experiment suggested that NLRP3 was up-regulated in wild type (WT) rats with I/R injury. The expansion of infarct size induced by ischemia was tremendously constricted in NLRP3 knockout (KO) rats. NLRP3 silence had nearly no impact on myocardial enzymes (AST, LDH and CK) expressions, inflammatory factors (TNF-α and IL-1β) expressions and cell apoptosis in rats without I/R injury. Nonetheless, the elevated levels of myocardial enzymes, inflammatory factors and cell apoptosis caused by I/R injury were vastly inhibited in NLRP3 KO rats. Furthermore, NLRP3 KO itself would lead to higher level of pro-autophagy proteins (Beclin1, Agt7, LC3II/LC3I) while lower level of anti-autophagy protein (p62) in vivo. The decreased expressions of pro-autophagy proteins while increased expressions of anti-autophagy protein induced by I/R injury were remarkably suppressed by NLRP3 KO. Taken together, our study indicated that shRNA interference of NLRP3 inflammasome attenuated myocardial I/R injury via autophagy activation. These findings demonstrated that NLRP3 KO may a promising therapy in myocardial I/R injury. Copyright © 2017 Elsevier Inc. All rights reserved.
Wong Te Fong, Anne-Christine; Hill, Deborah K.; Orton, Matthew R.; Parkes, Harry G.; Koh, Dow-Mu; Robinson, Simon P.; Leach, Martin O.; Eykyn, Thomas R.; Chung, Yuen-Li
2014-01-01
Autophagy is a highly regulated, energy dependent cellular process where proteins, organelles and cytoplasm are sequestered in autophagosomes and digested to sustain cellular homeostasis. We hypothesized that during autophagy induced in cancer cells by i) starvation through serum and amino acid deprivation or ii) treatment with PI-103, a class I PI3K/mTOR inhibitor, glycolytic metabolism would be affected, reducing flux to lactate, and that this effect may be reversible. We probed metabolism during autophagy in colorectal HT29 and HCT116 Bax knock-out cells using hyperpolarized 13C-magnetic resonance spectroscopy (MRS) and steady-state 1H-MRS. 24 hr PI103-treatment or starvation caused significant reduction in the apparent forward rate constant (kPL) for pyruvate to lactate exchange compared with controls in HT29 (100 μM PI-103: 82%, p = 0.05) and HCT116 Bax-ko cells (10 μM PI-103: 53%, p = 0.05; 20 μM PI-103: 42%, p<0.0001; starvation: 52%, p<0.001), associated with reduced lactate excretion and intracellular lactate in all cases, and unchanged lactate dehydrogenase (LDH) activity and increased NAD+/NADH ratio following PI103 treatment or decreased LDH activity and unchanged NAD+/NADH ratio following starvation. After 48 hr recovery from PI103 treatment, kPL remained below control levels in HT29 cells (74%, p = 0.02), and increased above treated values, but remained below 24 hr vehicle-treated control levels in HCT116 Bax-ko cells (65%, p = 0.004) both were accompanied by sustained reduction in lactate excretion, recovery of NAD+/NADH ratio and intracellular lactate. Following recovery from starvation, kPL was significantly higher than 24 hr vehicle-treated controls (140%, p = 0.05), associated with increased LDH activity and total cellular NAD(H). Changes in kPL and cellular and excreted lactate provided measureable indicators of the major metabolic processes accompanying starvation- and drug-induced autophagy. The changes are reversible, returning towards and exceeding control values on cellular recovery, which potentially identifies resistance. kPL (hyperpolarized 13C-MRS) and lactate (1H-MRS) provide useful biomarkers for the autophagic process, enabling non-invasive monitoring of the Warburg effect. PMID:24667972
Zhang, Chao; Wang, Deng-Feng; Zhang, Zhuang; Han, Dong; Yang, Kan
2017-03-28
Ginkgo bilob a extract (EGb 761) has been widely used clinically to reduce myocardial ischemia reperfusion injury (MIRI). Microvascular endothelial cells (MVECs) may be a proper cellular model in vitro for the effect and mechanism study against MIRI. However, the protective effect of EGb 761 on MVECs resisting hypoxia/reoxygenation (H/R) injury is little reported. In this study, H/R-injured MVECs were treated with EGb 761, and then the cell viability, apoptosis, ROS production, SOD activity, caspase-3 activity, and protein level of ATM, γ-H2AX, p53, and Bax were measured. ATM siRNA was transfected to study the changes of protein in the ATM pathway. EGb 761 presented protective effect on H/R-injured MVECs, with decreasing cell death, apoptosis, and ROS, and elevated SOD activity. Next, EGb 761 could inhibit H/R-induced ATM, γ-H2AX, p53, and Bax in a dose-dependent manner. Moreover, ATM siRNA also could inhibit H/R-induced ATM, γ-H2AX, p53, and Bax. Overall, these findings verify that EGb 761 protects cardiac MVECs from H/R injury, and for the first time, illustrate the influence on the ATM pathway and apoptosis by EGb 761 via dampening ROS.
Sun, Shou-Li; Guo, Li; Ren, Ya-Chao; Wang, Bing; Li, Rong-Hui; Qi, Yu-Shan; Yu, Hui; Chang, Nai-Dan; Li, Ming-Hui; Peng, Hai-Sheng
2014-09-01
To investigate the mechanism of apoptosis in myocardial cells of aging rats induced by D-galactose and to study the effect of the Polysaccharide isolated from the seeds of Cuscuta chinensis Lam (PCCL) on apoptosis of cardiomyocytes and its corresponding machinasim in aging rat model. Fifty male SD rats were randomly divided into 5 groups. Normal control group (NC). D-galactose (100 mg · kg(-1)d(-1) for 56 day) indued aging group (MC), D-galactose plus 100 mg kg(-1) d(-1) PCCL group (ML), D-galactose plus 200 mg kg(-1) d(-1) PCCL group (MM), and D-galactose plus 400 mg kg(-1) d(-1) PCCL group (MH). Same volume of solution (water, or PCCL aqueous solution) was given by gavage for 56 days. Then the hearts were collected and apoptosis parameters were evaluated. Caspase-3 and Cyt c were determined by fluorescence spectrometer, the apoptosis rate was assessed by AnnexinV-FITC method by Flow-Cytometry, [Ca(2+)]i and [Ca(2+)]i overloaded by KCL were observed by laser scanning confocal microscopy (LSCM); Bcl-2 and Bax were examined by immunohistochemistry. The content of Cyt C, [Ca(2+)]i of cardiomyocytes, the activity of Caspase-3, Bax expression level in D-galactose induced aging group were higher than NC (p < 0.05). The ratio of Bcl-2/Bax was decreased in D-galactose induced aging group compared to NC. On the other hand, the content of Cyt C, [Ca(2+)]i of cardiomyocytes, the activity of Caspase-3 and apoptosis rate, as well as Bax expression level in all three PCCL groups were decreased compared to galactose induced group (p < 0.05). Bcl-2/Bax ratio was increased in all PCCL groups compared to galactose induced aging group. PCCL could decrease the apoptosis of cardiomyocytes by the mitochondria apoptosis pathway.
Zhang, Qing-Fang
2017-12-01
The effect of ulinastatin (UTI) on renal tubular epithelial apoptosis and interstitial fibrosis in rats with unilateral ureteral obstruction (UUO) was investigated. A total of 18 male Wistar rats were randomly divided into the following 3 groups: The Sham group (n=6), the UUO group (n=6), and the UTI group (n=6). In the UUO and UTI groups, the left ureter was ligated to establish a UUO model. Starting from day 1 after surgery, an intervention treatment was performed using normal saline (1 ml/kg/d) and UTI (40,000 unit/kg/d). On day 7 after surgery, 6 rats from each group were sacrificed. In the Sham group, the left ureter was only freed, not ligated; after 7 days of abdominal closure, all of the rats were sacrificed. Blood samples were collected prior to sacrificing the animals to measure the blood urea nitrogen (BUN) and serum creatinine (Scr). The incidence of renal interstitial lesions on the obstruction side was observed by hematoxylin and eosin, and Masson staining. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and immunohistochemical detection of apoptosis regulator Bax (Bax), apoptosis regulator Bcl‑2 (Bcl‑2) and caspase‑3 were performed to observe the presence of renal tubular epithelial cell apoptosis. The UTI did not have a significant influence on the mouse BUN and Scr levels in any of the groups (P>0.05). Compared with that in the Sham group, renal tissue injury in the UUO group was significantly aggravated with renal tubular dilation, epithelial cell atrophy, renal interstitial inflammatory cell infiltration and fibrous tissue hyperplasia (P<0.01). Furthermore, the renal tubular epithelial TUNEL+ cell number and Bax and caspase‑3 levels were increased, and the expression of Bcl‑2 was decreased (P<0.01). Following the UTI treatment, the renal interstitial injury at the obstruction side was significantly attenuated (P<0.05), the renal tubular epithelial TUNEL+ cell number, and Bax and caspase‑3 levels significantly decreased, and the expression of Bcl‑2 was restored (P<0.05). UTI inhibited renal tubular epithelial apoptosis and interstitial fibrosis in UUO rats.
Niu, Jing-Zhong; Zhang, Yan-Bo; Li, Mei-Yi; Liu, Li-Li
2011-12-25
The present study was to investigate the effect of cerebrospinal fluid (CSF) from the rats with hypoxic preconditioning (HPC) on apoptosis of cultured hippocampal neurons in neonate rats under oxygen glucose deprivation (OGD). Adult Wistar rats were exposed to 3 h of hypoxia for HPC, and then their CSF was taken out. Cultured hippocampal neurons from the neonate rats were randomly divided into four groups (n = 6): normal control group, OGD group, normal CSF group and HPC CSF group. OGD group received 1.5 h of incubation in glucose-free Earle's solution containing 1 mmol/L Na2S2O4, and normal and HPC CSF groups were subjected to 1 d of corresponding CSF treatments followed by 1.5 h OGD. The apoptosis of neurons was analyzed by confocal laser scanning microscope and flow cytometry using Annexin V/PI double staining. Moreover, protein expressions of Bcl-2 and Bax were detected by immunofluorescence. The results showed that few apoptotic cells were observed in normal control group, whereas the number of apoptotic cells was greatly increased in OGD group. Both normal and HPC CSF could decrease the apoptosis of cultured hippocampal neurons injured by OGD (P < 0.01). Notably, the protective effect of HPC CSF was stronger than that of normal one (P < 0.01). Compared to OGD group, normal and HPC CSF groups both showed significantly higher levels of Bcl-2 (P < 0.01), and Bcl-2 expression level in HPC CSF group was even higher than that in normal CSF group (P < 0.01). Whereas the expressions of Bax in normal and HPC CSF groups were significantly lower than that in OGD group (P < 0.01), and the Bax expression in HPC CSF group was even lower than that in normal CSF group (P < 0.01). These results suggest that CSF from hypoxic-preconditioned rats could degrade apoptotic rate of OGD-injured hippocampal neurons by up-regulating expression of Bcl-2 and down-regulating expression of Bax.
Oxidative stress: a key regulator of leiomyoma cell survival.
Fletcher, Nicole M; Abusamaan, Mohammed S; Memaj, Ira; Saed, Mohammed G; Al-Hendy, Ayman; Diamond, Michael P; Saed, Ghassan M
2017-06-01
To determine the effects of attenuating oxidative stress with the use of dichloroacetate (DCA) on the expression of key redox enzymes myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) as well as on apoptosis. Prospective experimental study. University medical center. Cells established from myometrium and uterine fibroid from the same patients. Cells were exposed to normal (20% O 2 ) or hypoxic (2% O 2 ) conditions for 24 hours with or without DCA (20 μg/mL), a metabolic modulator that shifts anaerobic to aerobic metabolism. Nitrate/nitrite (iNOS activity indicator), iNOS, Bcl-2/Bax ratio, MPO, and caspase-3 activities and levels were determined by means of Greiss assay, real-time reverse-transcription polymerase chain reaction, and ELISA. Data were analyzed with the use of SPSS by means of one-way analysis of variance with Tukey post hoc analysis and independent t tests. MPO, iNOS, and nitrate/nitrite expression were higher in leiomyoma than in myometrial cells, and they were further enhanced by hypoxia in myometrial cells. Treatment with the use of DCA decreased MPO, iNOS, and nitrate/nitrite levels and negated the effect of hypoxia in both types of cells. Leiomyoma cells showed less apoptosis, as indicated by both caspase-3 activity and the Bcl-2/Bax ratio, than myometrial cells. Hypoxia further decreased apoptosis in myometrial cells with no further effect on leiomyoma cells. Treatment with DCA resulted in increased apoptosis in both types of cells, even in the presence of hypoxia. Shifting anaerobic to aerobic metabolism with the use of DCA resulted in an increase in apoptosis in leiomyoma cells and protected myometrial cells from the acquisition of the leiomyoma-like phenotype. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Premachandran, Sudha; Khan, Nazir M; Thakur, Vikas S; Shukla, Jyoti; Poduval, T B
2012-08-01
Ethanol has been used to achieve thymic depletion in myasthenia gravis patients. Ethanol (95%) has also been used widely in the therapy of many tumors including hepatocellular carcinoma. In light of these findings, we delineated the differential immunotoxic behavior and mechanism of lower concentration of ethanol towards murine EL-4 lymphoma and its normal counterpart lymphocytes. EL-4 lymphoma and normal lymphocytes were cultured with ethanol (0%-5%) for 6 h and cytotoxicity was measured by various methods. EL-4 cells treated with ethanol showed concentration-dependent loss of viability at 2%-5% ethanol concentration and exhibit proliferative arrest at preG1 stage. Acridine-orange and ethidium-bromide staining indicated that ethanol induced death in EL-4 cells, by induction of both apoptosis and necrosis which was further supported by findings of DNA-fragmentation and trypan blue dye exclusion test. However, treatment of lymphocytes with similar concentration of ethanol did not show any death-associated parameters. Furthermore, ethanol induced significantly higher ROS generation in EL-4 cells as compared to lymphocytes and caused PARP cleavage and activation of apoptotic proteins like p53 and Bax, in EL-4 cells and not in normal lymphocytes. In addition, ethanol exposure to EL-4 cells led to phosphorylation of p38MAPK, and upregulation of death receptor Fas (CD95). Taken together, these results suggest that ethanol upto a concentration of 5% caused no significant immunotoxicity towards normal lymphocytes and induced cell death in EL-4 cells via phosphorylation of p38MAPK and regulation of p53 leading to further activation of both extrinsic (Fas) and intrinsic (Bax) apoptotic markers.
Lv, Hongdi; Wang, Ling; Shen, Jinchang; Hao, Shaojun; Ming, Aimin; Wang, Xidong; Su, Feng; Zhang, Zhengchen
2015-06-01
Silent information regulator 1 (SIRT1), a histone deacetylase, has been suggested to be effective in ischemic brain diseases. Salvianolic acid B (SalB) is a polyphenolic and one of the active components of Salvia miltiorrhiza Bunge. Previous studies suggested that SalB is protective against ischemic stroke. However, the role of SIRT1 in the protective effect of SalB against cerebral ischemia has not been explored. In this study, the rat brain was subjected to middle cerebral artery occlusion (MCAO). Before this surgery, rats were intraperitoneally administrated SalB with or without EX527, a specific SIRT1 inhibitor. The infarct volume, neurological score and brain water content were assessed. In addition, levels of TNF-α and IL-1β in the brain tissues were detected by commercial ELISA kits. And the expression levels of SIRT, Ac-FOXO1, Bcl-2 and Bax were detected by Western blot. The results suggested that SalB exerted a cerebral-protective effect, as shown by reduced infarct volume, lowered brain edema and increased neurological scores. SalB also exerted anti-inflammatory effects as indicated by the decreased TNF-α and IL-1β levels in the brain tissue. Moreover, SalB upregulated the expression of SIRT1 and Bcl-2 and downregulated the expression of Ac-FOXO1 and Bax. These effects of SalB were abolished by EX527 treatment. In summary, our results demonstrate that SalB treatment attenuates brain injury induced by ischemic stoke via reducing apoptosis and inflammation through the activation of SIRT1 signaling. Copyright © 2015 Elsevier Inc. All rights reserved.
Awasthi, Yashika; Ratn, Arun; Prasad, Rajesh; Kumar, Manoj; Trivedi, Sunil P
2018-07-01
Present study was designed to assess the hexavalent chromium (Cr 6+ ) mediated oxidative stress that induces DNA damage and apoptosis in adult fish, Channa punctatus (35 ± 3.0 g; 14.5 ± 1.0 cm; Actinopterygii). Fishes were maintained in three groups for 15, 30 and 45 d of exposure periods. They were treated with 5% (Group T1) and 10% (Group T2) of 96 h-LC 50 of chromium trioxide (Cr 6+ ). Controls were run for the similar duration. A significant (p < 0.05) increment in the activities of antioxidant enzymes, SOD and CAT in liver tissues of the exposed fish evinces the persistence of oxidative stress. A significant (p < 0.05) increase in induction of micronuclei (MN) coupled with transcriptional responses of target genes related to antioxidant enzymes, DNA damage and apoptosis (sod, cat, gsr, nox-1, p53, bax, bcl-2, apaf-1 and casp3a) establishes the impact of oxidative stress due to in vivo, Cr 6+ accumulation in liver as compared to control (0 mg/L), in a dose and exposure-dependent manner. Initially, the increased level of reactive oxygen species (ROS) in liver coincided with that of enhanced mRNA expression of antioxidant enzymes, sod, cat, gsr and nox-1 but, later, the overproduction of ROS, after 45 d of exposure of Cr 6+ , resulted in a significant (p < 0.05) up-regulation of p53. Our findings also unveil that the up-regulation of bax, apaf-1 and casp3a and down-regulation of bcl-2 are associated with Cr 6+ -induced oxidative stress mediated-apoptosis in liver of test fish. Aforesaid molecular markers can, thus, be efficiently utilized for bio-monitoring of aquatic regimes and conservation of fish biodiversity. Copyright © 2018 Elsevier B.V. All rights reserved.
Jadaun, Pratiksha; Yadav, Dhananjay; Bisen, Prakash Singh
2018-04-01
The current study was undertaken to study the effect of Spirulina platensis (Spirulina) extract on enhanced oxidative stress during high glucose induced cell death in H9c2 cells. H9c2 cultured under high glucose (33 mM) conditions resulted in a noteworthy increase in oxidative stress (free radical species) accompanied by loss of mitochondrial membrane potential, release of cytochrome c, increase in caspase activity and pro-apoptotic protein (Bax). Spirulina extract (1 μg/mL), considerably inhibited increased ROS and RNS levels, reduction in cytochrome c release, raise in mitochondrial membrane potential, decreased the over expression of proapoptotic protein Bax and suppressed the Bax/Bcl2 ratio with induced apoptosis without affecting cell viability. Overall results suggest that Spirulina extract plays preventing role against enhanced oxidative stress during high glucose induced apoptosis in cardiomyoblasts as well as related dysfunction in H9c2 cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Hongxue; Department of Urology, Hospital of Xinjiang Production and Construction Corps, Urumqi 830002; Li, Xuechao
Antisense non-coding RNA in the INK4 locus (ANRIL) is a member of long non-coding RNAs and has been reported to be dysregulated in several human cancers. However, the role of ANRIL in bladder cancer remains unclear. This present study aimed to investigate whether and how ANRIL involved in bladder cancer. Our results showed up-regulation of ANRIL in bladder cancer tissues versus the corresponding adjacent non-tumor tissues. To explore the specific mechanisms, ANRIL was silenced by small interfering RNA or short hairpin RNA transfection in human bladder cancer T24 and EJ cells. Knockdown of ANRIL repressed cell proliferation and increased cellmore » apoptosis, along with decreased expression of Bcl-2 and increased expressions of Bax, cytoplasmic cytochrome c and Smac and cleaved caspase-9, caspase-3 and PARP. However, no change of cleaved caspase-8 level was observed. Furthermore, in vivo experiment confirmed that knockdown of ANRIL inhibited tumorigenic ability of EJ cells in nude mice. Meanwhile, in accordance with in vitro study, knockdown of ANRIL inhibited expression of Bcl-2 and up-regulated expressions of Bax and cleaved caspase-9, but did not affect cleaved caspase-8 level. In conclusion, we first report that ANRIL possibly serves as an oncogene in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic apoptosis pathway. - Highlights: • We first report the role of ANRIL in bladder cancer. • ANRIL is obviously up-regulated in bladder cancer tissues. • ANRIL regulates bladder cancer cell proliferation and cell apoptosis through the intrinsic pathway.« less
Tice, George; Andaloro, Bridget; White, H Kirk; Bolton, Lance; Wang, Siqun; Davis, Eugene; Wallace, Morgan
2009-01-01
In 2006, DuPont Qualicon introduced the BAX system Q7 instrument for use with its assays. To demonstrate the equivalence of the new and old instruments, a validation study was conducted using the BAX system PCR Assay for Salmonella, AOAC Official Method 2003.09, on three food types. The foods were simultaneously analyzed with the BAX system Q7 instrument and either the U.S. Food and Drug Administration Bacteriological Analytical Manual or the U.S. Department of Agriculture-Food Safety and Inspection Service Microbiology Laboratory Guidebook reference method for detecting Salmonella. Comparable performance between the BAX system and the reference methods was observed. Of the 75 paired samples analyzed, 39 samples were positive by both the BAX system and reference methods, and 36 samples were negative by both the BAX system and reference methods, demonstrating 100% correlation. Inclusivity and exclusivity for the BAX system Q7 instrument were also established by testing 50 Salmonella strains and 20 non-Salmonella isolates. All Salmonella strains returned positive results, and all non-Salmonella isolates returned a negative response.
Zhao, Xuesong; Ren, Xin; Zhu, Rong; Luo, Zhouying; Ren, Baixiang
2016-11-01
Zinc oxide nanoparticles (nano-ZnO) are one of the most important nanoparticles in the industry. The objectives of this study were (1) to investigate the effects of nano-ZnO on oxidative damage to DNA and on apoptosis in zebrafish (Danio rerio) embryos, and (2) to identify the underlying molecular mechanism affecting theapoptotic process. In addition to nano-ZnO, we also investigated the toxic effects of the Zn 2+ ion. Zebrafish embryos were exposed to 10, 30, 60, 90, or 120mg/L nano-ZnO for 96h postfertilization. Nano-ZnO (at concentrations between 10 and 120mg/L) significantly reduced the rate of embryo hatching. Embryos/larvae exposed to 120mg/L nano-ZnO had significantly higher heart rates. Increased heart rates could be a physiological mechanism compensating for body hypoxia. Embryos/larvae exposed to nano-ZnO exhibited oxidative stress, due to an excessive generation of reactive oxygen species (ROS). Oxidative stress was evidenced by increased levels of superoxide dismutase, by increased lipid peroxidation, and by increased expression of genes related to the antioxidant defense system (sod1, cat, gpx1a, and pparα), which were altered at different degrees. Upon exposure to nano-ZnO, the percentage of apoptotic cells increased in a dose-dependent manner (0.41% to 4.21%). In addition, altered transcriptional regulation of pro-apoptotic genes (bax, puma, and apaf-1) and anti-apoptotic genes (bcl-2) provided further evidence of the activation of apoptosis. In this study, exposure of zebrafish embryos to nano-ZnO triggered an excessive production of ROS, which was followed by several phenomena: the up-regulation of p53, a reduction in the bcl-2/bax ratio,a reduction in the mitochondrial membrane potential (ψ m ), the release of cytochrome c into the cytosolic fraction, and the activation of caspases 9 and 3. Collectively, our data imply that nano-ZnO induce an excessive production of ROS which then activate the apoptosis pathway mediated by mitochondria and caspases. Copyright © 2016 Elsevier B.V. All rights reserved.
Protective effect of resveratrol against nigrostriatal pathway injury in striatum via JNK pathway.
Li, Dan; Liu, Nan; Zhao, Liang; Tong, Lei; Kawano, Hitoshi; Yan, Hong-Jing; Li, Hong-Peng
2017-01-01
Nigrostriatal pathway injury is one of the traumatic brain injury models that usually lead to neurological dysfunction or neuron necrosis. Resveratrol-induced benefits have recently been demonstrated in several models of neuronal degeneration diseases. However, the protective properties of resveratrol against neurodegeneration have not been explored definitely. Thus, we employ the nigrostriatal pathway injury model to mimic the insults on the brain. Resveratrol decreased the p-ERK expression and increased the p-JNK expression compared to the DMSO group, but not alter the p38 MAPK proteins around the lesion site by Western blot. Prior to the injury, mice were infused with resveratrol intracerebroventricularly with or without JNK-IN-8, a specific c-JNK pathway inhibitor for JNK1, JNK2 and JNK4. The study assessed modified improved neurological function score (mNSS) and beam/walking test, the level of inflammatory cytokines IL-1β, IL-6 and TNF-α, and striatal expression of Bax and Bcl-2 proteins associated with neuronal apoptosis. The results revealed that resveratrol exerted a neuroprotective effect as shown by the improved mNSS and beam latency, anti-inflammatory effects as indicated by the decreased level of IL-1β, TNF-α and IL-6. Furthermore, resveratrol up-regulated the protein expression of p-JNK and Bcl-2, down-regulated the expression of Bax and the number of Fluoro-Jade C (FJC) positive neurons. However, these advantages of resveratrol were abolished by JNK-IN-8 treatment. Overall, we demonstrated that resveratrol treatment attenuates the nigrostriatal pathway injury-induced neuronal apoptosis and inflammation via activation of c-JNK signaling. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, San-Long; Cai, Bing; Cui, Cheng-Bin; Liu, Hong-Wei; Wu, Chun-Fu; Yao, Xin-Sheng
2004-06-01
Diosgenin-3-O-alpha-L-rhamnopyranosyl-(1 --> 4)-beta-D-glucopyranoside (DRG) is a well-known pentacyclic triterpene glycoside newly isolated from the rhizomes of Dioscorea futschauensis R. Kunth (Dioscoreaceae) by our group. In the present work, the inhibitory effect of DRG on the cell proliferation of human cancer cell lines was examined to reveal for the first time that DRG shows stronger anticancer activity than that of the positive control cisplatin. DRG inhibited the proliferation of human cancer cells, A431, A2780, A549, K562, and HCT-15, with IC50 (micromol L(-1)) values of 9.33 +/- 0.22, 18.7 +/- 0.16, 9.98 +/- 0.38, 6.44 +/- 0.10, and 5.86 +/- 0.14 respectively. It was then found, by morphological observation, "DNA ladder" detection and flow cytometric analysis, that DRG exerts its anticancer effect through inducing apoptosis on HCT-15 cells. Furthermore, it has been demonstrated that DRG triggers a mitochondria-controlled apoptotic pathway to induce apoptosis on HCT-15 cells, which involves the reduction of the mitochondrial potential (deltapsim), the release of cytochrome c from mitochondria into the cytosol, and the down-regulation of the ratio of Bcl-2/Bax expression level. The present results reasonably suggest that regulating the balance of Bcl-2/Bax expression level plays a key role in the DRG-induced apoptosis. Such findings provide novel knowledge to elucidate the biological properties of DRG, even though DRG was discovered early in the late 1960s. These results suggest that DRG may be a good candidate as a chemotherapeutic agent to treat human colon carcinoma.
Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells.
Ahamed, Maqusood; Akhtar, Mohd Javed; Siddiqui, Maqsood A; Ahmad, Javed; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; AlSalhi, Mohamad S; Alrokayan, Salman A
2011-05-10
Due to the interesting magnetic and electrical properties with good chemical and thermal stabilities, nickel ferrite nanoparticles are being utilized in many applications including magnetic resonance imaging, drug delivery and hyperthermia. Recent studies have shown that nickel ferrite nanoparticles produce cytotoxicity in mammalian cells. However, there is very limited information concerning the toxicity of nickel ferrite nanoparticles at the cellular and molecular level. The aim of this study was to investigate the cytotoxicity, oxidative stress and apoptosis induction by well-characterized nickel ferrite nanoparticles (size 26 nm) in human lung epithelial (A549) cells. Nickel ferrite nanoparticles induced dose-dependent cytotoxicity in A549 cells demonstrated by MTT, NRU and LDH assays. Nickel ferrite nanoparticles were also found to induce oxidative stress evidenced by generation of reactive oxygen species (ROS) and depletion of antioxidant glutathione (GSH). Further, co-treatment with the antioxidant L-ascorbic acid mitigated the ROS generation and GSH depletion due to nickel ferrite nanoparticles suggesting the potential mechanism of oxidative stress. Quantitative real-time PCR analysis demonstrated that following the exposure of A549 cells to nickel ferrite nanoparticles, the level of mRNA expressions of cell cycle checkpoint protein p53 and apoptotic proteins (bax, caspase-3 and caspase-9) were significantly up-regulated, whereas the expression of anti-apoptotic proteins (survivin and bcl-2) were down-regulated. Moreover, activities of caspase-3 and caspase-9 enzymes were also significantly higher in nickel ferrite nanoparticles exposed cells. To the best of our knowledge this is the first report showing that nickel ferrite nanoparticles induced apoptosis in A549 cells through ROS generation and oxidative stress via p53, survivin, bax/bcl-2 and caspase pathways. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Erdogan, Suat; Doganlar, Oguzhan; Doganlar, Zeynep B; Serttas, Riza; Turkekul, Kader; Dibirdik, Ilker; Bilir, Ayhan
2016-10-01
Cancer stem cells (CSCs) are involved in drug resistance, metastasis and recurrence of cancers. The efficacy of apigenin on cell survival, apoptosis, migration and stemness properties were analyzed in CSCs. Prostate CSCs (CD44(+)) were isolated from human prostate cancer (PCa) PC3 cells using a magnetic-activated cell sorting system. PC3 and CSCs were treated with various concentrations of apigenin, docetaxel and their combinations for 48h. Apigenin dose dependently inhibited CSCs and PC3 cell survival, and this was accompanied with a significant increase of p21 and p27. Apigenin induced apoptosis via an extrinsic caspase-dependent pathway by upregulating the mRNA expressions of caspases-8, -3 and TNF-α, but failed to regulate the intrinsic pathway as determined by the Bax, cytochrome c (Cyt-c) and APAF-1 in CSCs. In contrary to CSCs, apigenin induced intrinsic apoptosis pathway as evidenced by the induction of Bax, Cyt-c and caspase-3 while caspase-8, TNF-α and Bcl-2 levels remained unchanged in PC3 cells. The flavonoid strongly suppressed the migration rate of CSCs compared to untreated cells. Significant downregulation of matrix metallopeptidases-2, -9, Snail and Slug exhibits the ability of apigenin treatment to suppress invasion. The expressions of NF-κB p105/p50, PI3K, Akt and the phosphorylation of pAkt were decreased after apigenin treatment. Moreover, apigenin treatment significantly reduced pluripotency marker Oct3/4 protein expression which might be associated with the down-regulation of PI3K/Akt/NF-κB signaling. Our data indicated that, apigenin could be a useful compound to prevent proliferation and migration of cancer cells as well as CSCs. Copyright © 2016 Elsevier Inc. All rights reserved.
Preeclampsia Is Associated with Alterations in the p53-Pathway in Villous Trophoblast
Sharp, Andrew N.; Heazell, Alexander E. P.; Baczyk, Dora; Dunk, Caroline E.; Lacey, Helen A.; Jones, Carolyn J. P.; Perkins, Jonathan E.; Kingdom, John C. P.; Baker, Philip N.; Crocker, Ian P.
2014-01-01
Background Preeclampsia (PE) is characterized by exaggerated apoptosis of the villous trophoblast of placental villi. Since p53 is a critical regulator of apoptosis we hypothesized that excessive apoptosis in PE is mediated by abnormal expression of proteins participating in the p53 pathway and that modulation of the p53 pathway alters trophoblast apoptosis in vitro. Methods Fresh placental villous tissue was collected from normal pregnancies and pregnancies complicated by PE; Western blotting and real-time PCR were performed on tissue lysate for protein and mRNA expression of p53 and downstream effector proteins, p21, Bax and caspases 3 and 8. To further assess the ability of p53 to modulate apoptosis within trophoblast, BeWo cells and placental villous tissue were exposed to the p53-activator, Nutlin-3, alone or in combination with the p53-inhibitor, Pifithrin-α (PFT- α). Equally, Mdm2 was knocked-down with siRNA. Results Protein expression of p53, p21 and Bax was significantly increased in pregnancies complicated by PE. Conversely, Mdm2 protein levels were significantly depleted in PE; immunohistochemistry showed these changes to be confined to trophoblast. Reduction in the negative feedback of p53 by Mdm2, using siRNA and Nutlin-3, caused an imbalance between p53 and Mdm2 that triggered apoptosis in term villous explants. In the case of Nutlin, this was attenuated by Pifithrin-α. Conclusions These data illustrate the potential for an imbalance in p53 and Mdm2 expression to promote excessive apoptosis in villous trophoblast. The upstream regulation of p53 and Mdm2, with regard to exaggerated apoptosis and autophagy in PE, merits further investigation. PMID:24498154
Preeclampsia is associated with alterations in the p53-pathway in villous trophoblast.
Sharp, Andrew N; Heazell, Alexander E P; Baczyk, Dora; Dunk, Caroline E; Lacey, Helen A; Jones, Carolyn J P; Perkins, Jonathan E; Kingdom, John C P; Baker, Philip N; Crocker, Ian P
2014-01-01
Preeclampsia (PE) is characterized by exaggerated apoptosis of the villous trophoblast of placental villi. Since p53 is a critical regulator of apoptosis we hypothesized that excessive apoptosis in PE is mediated by abnormal expression of proteins participating in the p53 pathway and that modulation of the p53 pathway alters trophoblast apoptosis in vitro. Fresh placental villous tissue was collected from normal pregnancies and pregnancies complicated by PE; Western blotting and real-time PCR were performed on tissue lysate for protein and mRNA expression of p53 and downstream effector proteins, p21, Bax and caspases 3 and 8. To further assess the ability of p53 to modulate apoptosis within trophoblast, BeWo cells and placental villous tissue were exposed to the p53-activator, Nutlin-3, alone or in combination with the p53-inhibitor, Pifithrin-α (PFT-α). Equally, Mdm2 was knocked-down with siRNA. Protein expression of p53, p21 and Bax was significantly increased in pregnancies complicated by PE. Conversely, Mdm2 protein levels were significantly depleted in PE; immunohistochemistry showed these changes to be confined to trophoblast. Reduction in the negative feedback of p53 by Mdm2, using siRNA and Nutlin-3, caused an imbalance between p53 and Mdm2 that triggered apoptosis in term villous explants. In the case of Nutlin, this was attenuated by Pifithrin-α. These data illustrate the potential for an imbalance in p53 and Mdm2 expression to promote excessive apoptosis in villous trophoblast. The upstream regulation of p53 and Mdm2, with regard to exaggerated apoptosis and autophagy in PE, merits further investigation.
Li, Shaojing; Wu, Chuanhong; Zhu, Li; Gao, Jian; Fang, Jing; Li, Defeng; Fu, Meihong; Liang, Rixin; Wang, Lan; Cheng, Ming; Yang, Hongjun
2012-11-09
Ischemic stroke is a devastating disease with a complex pathophysiology. Galangin is a natural flavonoid isolated from the rhizome of Alpina officinarum Hance, which has been widely used as an antioxidant agent. However, its effects against ischemic stroke have not been reported and its related neuroprotective mechanism has not really been explored. In this study, neurological behavior, cerebral infarct volumes and the improvement of the regional cortical blood flow (rCBF) were used to evaluate the therapeutic effect of galangin in rats impaired by middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia. Furthermore, the determination of mitochondrial function and Western blot of apoptosis-related proteins were performed to interpret the neuroprotective mechanism of galangin. The results showed that galangin alleviated the neurologic impairments, reduced cerebral infarct at 24 h after MCAO and exerted a protective effect on the mitochondria with decreased production of mitochondrial reactive oxygen species (ROS). These effects were consistent with improvements in the membrane potential level (Dym), membrane fluidity, and degree of mitochondrial swelling in a dose-dependent manner. Moreover, galangin significantly improved the reduced rCBF after MCAO. Western blot analysis revealed that galangin also inhibited apoptosis in a dose-dependent manner concomitant with the up-regulation of Bcl-2 expression, down-regulation of Bax expression and the Bax/Bcl-2 ratio, a reduction in cytochrome c release from the mitochondria to the cytosol, the reduced expression of activated caspase-3 and the cleavage of poly(ADP-ribose) polymerase (PARP). All these data in this study demonstrated that galangin might have therapeutic potential for ischemic stroke and play its protective role through the improvement in rCBF, mitochondrial protection and inhibiting caspase-dependent mitochondrial cell death pathway for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ruizhao, E-mail: liruizhao1979@126.com; Zhang, Li, E-mail: Zhanglichangde@163.com; Southern Medical University, Guangzhou, Guangdong
Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG),more » or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway, which may present a promising target for therapeutic intervention. - Highlights: ► HG activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. ► Pretreatment with CsA or 11R-VIVIT completely blocked NFAT2 nuclear accumulation. ► The apoptosis effects induced by HG were abrogated by treatment with 11R-VIVIT. ► HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway.« less
Kim, Mun-Ock; Moon, Dong-Oh; Jung, Jin Myung; Lee, Won Sup; Choi, Yung Hyun; Kim, Gi-Young
2011-01-01
Agaricus blazei is widely accepted as a traditional medicinal mushroom, and it has been known to exhibit immunostimulatory and anti-cancer activity. However, the apoptotic mechanism in cancer cells is poorly understood. In this study, we have investigated whether A. blazei extract (ABE) exerts antiproliferative and apoptotic effects in human leukemic THP-1 cells. We observed that ABE-induced apoptosis is associated with the mitochondrial pathway, which is mediated by reactive oxygen species (ROS) generation and prolonged c-Jun N-terminal kinase (JNK) activation. In addition, the ABE treatment resulted in the accumulation of cytochrome c in the cytoplasm, an increase in caspase activity, and an upregulation of Bax and Bad. With those results in mind, we found that ABE decreases constitutive NF-κB activation and NF-κB-regulated gene products such as IAP-1 and -2. We concluded that ABE induces apoptosis with ROS-dependent JNK activation and constitutive activated NF-κB inhibition in THP-1 cells. PMID:19861509
Carter, James R; Keith, James H; Fraser, Tresa S; Dawson, James L; Kucharski, Cheryl A; Horne, Kate M; Higgs, Stephen; Fraser, Malcolm J
2014-06-13
Approximately 100 million confirmed infections and 20,000 deaths are caused by Dengue virus (DENV) outbreaks annually. Global warming and rapid dispersal have resulted in DENV epidemics in formally non-endemic regions. Currently no consistently effective preventive measures for DENV exist, prompting development of transgenic and paratransgenic vector control approaches. Production of transgenic mosquitoes refractory for virus infection and/or transmission is contingent upon defining antiviral genes that have low probability for allowing escape mutations, and are equally effective against multiple serotypes. Previously we demonstrated the effectiveness of an anti-viral group I intron targeting U143 of the DENV genome in mediating trans-splicing and expression of a marker gene with the capsid coding domain. In this report we examine the effectiveness of coupling expression of ΔN Bax to trans-splicing U143 intron activity as a means of suppressing DENV infection of mosquito cells. Targeting the conserved DENV circularization sequence (CS) by U143 intron trans-splicing activity appends a 3' exon RNA encoding ΔN Bax to the capsid coding region of the genomic RNA, resulting in a chimeric protein that induces premature cell death upon infection. TCID50-IFA analyses demonstrate an enhancement of DENV suppression for all DENV serotypes tested over the identical group I intron coupled with the non-apoptotic inducing firefly luciferase as the 3' exon. These cumulative results confirm the increased effectiveness of this αDENV-U143-ΔN Bax group I intron as a sequence specific antiviral that should be useful for suppression of DENV in transgenic mosquitoes. Annexin V staining, caspase 3 assays, and DNA ladder observations confirm DCA-ΔN Bax fusion protein expression induces apoptotic cell death. This report confirms the relative effectiveness of an anti-DENV group I intron coupled to an apoptosis-inducing ΔN Bax 3' exon that trans-splices conserved sequences of the 5' CS region of all DENV serotypes and induces apoptotic cell death upon infection. Our results confirm coupling the targeted ribozyme capabilities of the group I intron with the generation of an apoptosis-inducing transcript increases the effectiveness of infection suppression, improving the prospects of this unique approach as a means of inducing transgenic refractoriness in mosquitoes for all serotypes of this important disease.
Repeated whiskey binges promote liver injury in rats fed a choline-deficient diet.
Nieto, Natalia; Rojkind, Marcos
2007-02-01
Alcoholic liver disease is associated with nutritional deficiency and it may aggravate within the context of fatty liver. We investigated the relationship between alcohol intake (whiskey binge drinking) and a choline-deficient diet (CD) and assessed whether stellate cells could contribute to liver injury in this model. Rats fed the CD diet plus whiskey showed increased liver damage compared to rats fed the CD diet, as demonstrated by H&E staining, elevated transaminases, steatosis, TNF-alpha levels, enhanced CYP2E1 activity, impaired antioxidant defense, elevated lipid peroxidation, and protein carbonyls. The combined treatment triggered an apoptotic response as determined by elevated Bax, caspase-3 activity, cytochrome-c release, and decreased Bcl-2 and Bcl-XL. Stellate cells were activated as increased expression of alpha-Sma was observed over that by the CD diet alone. The combined treatment shifted extracellular matrix remodeling towards a pro-fibrogenic response due to up-regulation of collagen I, TIMP1, and Hsp47 proteins, along with down-regulation of MMP13, MMP2, and MMP9 expression, proteases which degrade collagen I. These events were accompanied by increased phosphorylation of p38, a kinase that elevates collagen I. Repeated alcohol binges in the context of mild steatosis may promote activation of stellate cells and contribute to liver injury.
Downer, Eric J; Gowran, Aoife; Murphy, Aine C; Campbell, Veronica A
2007-06-14
Cannabis is the most commonly used illegal drug of abuse in Western society. Delta(9)-tetrahydrocannabinol, the psychoactive ingredient of marijuana, regulates a variety of neuronal processes including neurotransmitter release and synaptic transmission. An increasing body of evidence suggests that cannabinoids play a key role in the regulation of neuronal viability. In cortical neurons tetrahydrocannabinol has a neurodegenerative effect, the mechanisms of which are poorly understood, but involve the cannabinoid receptor subtype, CB(1). In this study we report that tetrahydrocannabinol (5 muM) evokes a rapid phosphorylation, and thus activation, of the tumour suppressor protein, p53, in a manner involving the cannabinoid CB(1) receptor, and the stress-activated protein kinase, c-jun N-terminal kinase, in cultured cortical neurons. Tetrahydrocannabinol increased expression of the p53-transcriptional target, Bax and promoted Bcl phosphorylation. These events were abolished by the p53 inhibitor, pifithrin-alpha (100 nM). The tetrahydrocannabinol-induced activation of the pro-apoptotic cysteine protease, caspase-3, and DNA fragmentation was also blocked by pifithrin-alpha. A siRNA knockdown of p53 further verified the role of p53 in tetrahydrocannabinol-induced apoptosis. This study demonstrates a novel cannabinoid signalling pathway involving p53 that culminates in neuronal apoptosis.
Zinc Oxide Nanoparticles Demoted MDM2 Expression to Suppress TSLP-Induced Mast Cell Proliferation.
Kim, Min-Ho; Jeong, Hyun-Ja
2016-03-01
Activation of murine double minute 2 (MDM2) through thymic stromal lymphopoietin (TSLP)-induced signal transducers and activators of transcription (STAT6) phosphorylation plays a critical role in proliferation and survival of mast cells. Previously, we reported that zinc oxide nanoparticles (ZnO-NP) effectively decrease the mast cell-mediated allergic inflammatory reactions. Here, we evaluated the effect of ZnO-NP on TSLP-induced proliferation of mast cells. ZnO-NP significantly reduced the number of BrdU-incorporating mast cells increased by TSLP. ZnO-NP decreased the expression of MDM2 through the blockade of STAT6 phosphorylation. TSLP increased the production and mRNA expression of interleukin-13 (a growth factor of mast cells), its increase was significantly decreased by ZnO-NP (10 μg/mL). ZnO-NP induced the down-regulation of Bcl2 (an anti-apoptotic factor) and up-regulation of Bax (an apoptotic factor) through the stabilization of p53 protein. However, ZnO-NP has no effect on caspase-3 activation, cytochrome c release into cytosol, and apoptosis-inducing factor translocation into nucleus in TSLP-stimulated cells. The results of the present study demonstrated that ZnO-NP inhibited the proliferation of mast cells through the regulation of MDM2 and p53 protein levels. These finding suggest that ZnO-NP could be improved mast cell-mediated various diseases.
Zhang, Dongdong; Qi, Junpeng; Liu, Rui; Dai, Bingling; Ma, Weina; Zhan, Yingzhuan; Zhang, Yanmin
2015-01-01
Cancer cell growth is complicated progression which is regulated and controlled by multiple factors including cell cycle, migration and apoptosis. In present study, we report that TADs, a novel derivative of taspine, has an essential role in resisting hepatocellular carcinoma growth (including arrest cell cycle) and migration, and inducing cell apoptosis. Our findings demonstrated that the TADs showed good inhibition on the hepatoma cell growth and migration, and good action on apoptosis induction. Using genome-wide microarray analysis, we found the down-regulated growth and apoptosis factors, and selected down-regulated genes were confirmed by Western blot. Knockdown of a checkpoint c-Myc by siRNA significantly attenuated tumor inhibition and apoptosis effects of TADs. Moreover, our results indicated TADs could simultaneously increase cyclin D1 protein levels and decrease amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins, and also TADs reduced Bcl-2 expression, and upregulated Bad, Bak and Bax activities. In conclusion, these results illustrated that TADs is a key factor in growth and apoptosis signaling inhibitor, has potential in cancer therapy.
BH3-only proteins trigger cytochrome c release, but how?
Häcker, Georg; Weber, Arnim
2007-06-15
The mitochondrial apoptosis pathway has been neatly ordered. Mitochondrial apoptosis is governed by Bcl-2 family proteins, and their respective contributions determine the release of cytochrome c. It is clear that, among the Bcl-2 family, BH3-only proteins are the triggers: activation of BH3-only proteins by apoptotic stimuli initiates the process. BH3-only proteins cause cytochrome c release by activating Bax and/or Bak, and the anti-apoptotic group of Bcl-2-like proteins prevents this. However, it is curiously uncertain how BH3-only proteins activate Bax/Bak. Current models suggest that this is either through direct interaction--although this interaction is not detectable experimentally--or by the neutralisation of Bcl-2-like proteins. Here we discuss the context in which these models are placed and attempt to weigh the evidence.
Kang, Pin-Fang; Wu, Wen-Juan; Tang, Yang; Xuan, Ling; Guan, Su-Dong; Tang, Bi; Zhang, Heng
2016-01-01
The aim of this paper is to observe the change of mitochondrial aldehyde dehydrogenase 2 (ALDH2) when diabetes mellitus (DM) rat heart was subjected to ischemia/reperfusion (I/R) intervention and analyze its underlying mechanisms. DM rat hearts were subjected to 30 min regional ischemia and 120 min reperfusion in vitro and pretreated with ALDH2 activator ethanol (EtOH); cardiomyocyte in high glucose (HG) condition was pretreated with ALDH2 activator Alda-1. In control I/R group, myocardial tissue structure collapse appeared. Compared with control I/R group, left ventricular parameters, SOD activity, the level of Bcl-2/Bax mRNA, ALDH2 mRNA, and protein expressions were decreased and LDH and MDA contents were increased, meanwhile the aggravation of myocardial structure injury in DM I/R group. When DM I/R rats were pretreated with EtOH, left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 expression were increased; LDH, MDA, and myocardial structure injury were attenuated. Compared with DM + EtOH I/R group, cyanamide (ALDH2 nonspecific blocker), atractyloside (mitoPTP opener), and wortmannin (PI3K inhibitor) groups all decreased left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 and increased LDH, MDA, and myocardial injury. When cardiomyocyte was under HG condition, CCK-8 activity and ALDH2 protein expression were decreased. Alda-1 increased CCK-8 and ALDH2. Our findings suggested enhanced ALDH2 expression in diabetic I/R rats played the cardioprotective role, maybe through activating PI3K and inhibiting mitoPTP opening. PMID:27829984
Kang, Pin-Fang; Wu, Wen-Juan; Tang, Yang; Xuan, Ling; Guan, Su-Dong; Tang, Bi; Zhang, Heng; Gao, Qin; Wang, Hong-Ju
2016-01-01
The aim of this paper is to observe the change of mitochondrial aldehyde dehydrogenase 2 (ALDH2) when diabetes mellitus (DM) rat heart was subjected to ischemia/reperfusion (I/R) intervention and analyze its underlying mechanisms. DM rat hearts were subjected to 30 min regional ischemia and 120 min reperfusion in vitro and pretreated with ALDH2 activator ethanol (EtOH); cardiomyocyte in high glucose (HG) condition was pretreated with ALDH2 activator Alda-1. In control I/R group, myocardial tissue structure collapse appeared. Compared with control I/R group, left ventricular parameters, SOD activity, the level of Bcl-2/Bax mRNA, ALDH2 mRNA, and protein expressions were decreased and LDH and MDA contents were increased, meanwhile the aggravation of myocardial structure injury in DM I/R group. When DM I/R rats were pretreated with EtOH, left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 expression were increased; LDH, MDA, and myocardial structure injury were attenuated. Compared with DM + EtOH I/R group, cyanamide (ALDH2 nonspecific blocker), atractyloside (mitoPTP opener), and wortmannin (PI3K inhibitor) groups all decreased left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 and increased LDH, MDA, and myocardial injury. When cardiomyocyte was under HG condition, CCK-8 activity and ALDH2 protein expression were decreased. Alda-1 increased CCK-8 and ALDH2. Our findings suggested enhanced ALDH2 expression in diabetic I/R rats played the cardioprotective role, maybe through activating PI3K and inhibiting mitoPTP opening.
Anti-hepatoma activity of a novel compound glaucocalyxin H in vivo and in vitro.
Hai, Guangfan; Zhang, Chong; Jia, Yanlong; Bai, Suping; Han, Jinfen; Guo, Lanqing; Cui, Taizhen; Niu, Bingxuan; Huang, Feng; Song, Yu
2015-06-01
Glaucocalyxin H (GLH) is a new compound isolated from a traditional Chinese medical herb Isodon japonica var. glaucocalyx which has been used for folk medicine. This study was carried out for the first time to investigate the potential role of GLH in anti-hepatoma activity and underlying mechanisms in it. GLH could inhibit the growth of tumor in mice and induce HepG2 cells to death as assessed by the tumor reduction assay, toxic assay, morphological change, and survival rate assay. Many antitumor drugs originated from plants could inhibit the growth of tumor by inducing cells to apoptosis. The morphological changes of HepG2 cells treated with different concentrations of GLH under fluorescence and electron microscope and apoptotic rates were detected to verify its effect on apoptosis. As shown in the study, GLH could induce HepG2 cells to apoptosis in a dose-dependent manner. Bcl2 and Bax proteins played important roles in apoptosis and the disequilibrium between Bcl2 and Bax might result in apoptosis. The expression of Bax protein was upregulated and Bcl2 protein was downregulated in HepG2 cells treated with GLH assessed by Western blotting, and they were in a dose-dependent manner. Taken together, GLH can inhibit the growth of hepatoma cells in vivo and in vitro by inducing cell apoptosis due to the decreased Bcl2 and increased Bax proteins suggesting that GLH could be a potential candidate as an anti-hepatoma agent for the therapeutic treatment of hepatoma.
Anticancer copper(II) phosphorus dendrimers are potent proapoptotic Bax activators.
Mignani, Serge; El Brahmi, Nabil; Eloy, Laure; Poupon, Joel; Nicolas, Valérie; Steinmetz, Anke; El Kazzouli, Said; Bousmina, Mosto M; Blanchard-Desce, Mireille; Caminade, Anne-Marie; Majoral, Jean-Pierre; Cresteil, Thierry
2017-05-26
A multivalent phosphorus dendrimer 1G 3 and its corresponding Cu-complex, 1G 3 -Cu have been recently identified as agents retaining high antiproliferative potency. This antiproliferative capacity was preserved in cell lines overexpressing the efflux pump ABC B1, whereas cross-resistance was observed in ovarian cancer cell lines resistant to cisplatin. Theoretical 3D models were constructed: the dendrimers appear as irregularly shaped disk-like nano-objects of about 22 Å thickness and 49 Å diameter, which accumulated in cells after penetration by endocytosis. To get insight in their mode of action, cell death pathways have been examined in human cancer cell lines: early apoptosis was followed by secondary necrosis after multivalent phosphorus dendrimers exposure. The multivalent plain phosphorus dendrimer 1G 3 moderately activated caspase-3 activity, in contrast with the multivalent Cu-conjugated phosphorus dendrimer 1G 3 -Cu which strikingly reduced the caspase-3 content and activity. This decrease of caspase activity is not related to the presence of copper, since inorganic copper has no or little effect on caspase-3. Conversely the potent apoptosis activation could be related to a noticeable translocation of Bax to the mitochondria, resulting in the release of AIF into the cytosol, its translocation to the nucleus and a severe DNA fragmentation, without alteration of the cell cycle. The multivalent Cu-conjugated phosphorus dendrimer is more efficient than its non-complexed analog to activate this pathway in close relationship with the higher antiproliferative potency. Therefore, this multivalent Cu-conjugated phosphorus dendrimer 1G 3 -Cu can be considered as a new and promising first-in-class antiproliferative agent with a distinctive mode of action, inducing apoptosis tumor cell death through Bax activation pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Zhang, Zhi-Sheng; Yang, Dong-Yan; Fu, Yan-Bo; Zhang, Lei; Zhao, Qian-Ping; Li, Gang
2015-03-01
Integrin β1 subunit and its downstream molecule integrin-linked kinase and focal adhesion kinase have been confirmed to be essential to cell survival and inhibition of apoptosis and hypoxia/reoxygenation (H/R)-induced injuries in cardiomyocytes. However, it is still unclear whether CrkL [v-crk avian sarcoma virus CT-10 oncogene homolog (Crk)-like], which acts also as a component of the integrin pathway, could also affect H/R-induced injuries in the cardiomyocytes. The rat-derived H9C2 cardiomyocytes were infected with a CrkL small hairpin RNA interference recombinant lentivirus, which knockdowns the endogenous CrkL expression in the cardiomyocytes. Apoptosis, cell proliferation and survival were examined in the H9C2 cardiomyocytes treated with either H/R or not. Results showed that knockdown of CrkL could significantly increase apoptosis and inhibition of the cell proliferation and survival and deteriorate the previously mentioned injuries induced by H/R. In contrast, overexpression of human CrkL could relieve the exacerbation of the previously mentioned injuries induced by CrkL knockdown in the H9C2 cardiomyocytes via regulation of Bax and extracellular signal-regulated kinase1/2 (p-ERK1/2). In conclusion, these results confirmed that knockdown of CrkL could deteriorate H/R-induced apoptosis and cell survival inhibition in rat-derived H9C2 cardiomyocytes via Bax and downregulation of p-ERK1/2. It implies that CrkL could mitigate H/R-induced injuries in the cardiomyocytes. Copyright © 2015 John Wiley & Sons, Ltd.
Zhao, Qipeng; Cheng, Xiuli; Wang, Xiaobo; Wang, Jing; Zhu, Yafei; Ma, Xueqin
2016-11-04
The present study is to investigate the neuroprotective effect of Mu-Xiang-You-Fang (MXYF), a classic Traditional Chinese Medicine used by Chinese minorities to treat stroke, on cerebral ischemia-reperfusion (I/R) injury and the related signaling pathways. Male Sprague-Dawley rats were divided into 6 groups: sham group, I/R group, nimodipine and MXYF (58, 116 and 232mg/kg respectively) groups. Cerebral ischemia model was induced by middle cerebral artery occlusion for 2h followed by reperfusion for 48h. Neurological functional score was evaluated according to the method of Zea longa's score and the infarct area was determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining at 48h after reperfusion. The protein expression of cytochrome c (cyt-c), Bcl-2, Bax, caspase-9, caspase-3 and caspase-7 were analyzed by western blot and the mRNA expression of Caspase-9, Caspase-3 and Caspase-7 were determined by the reverse transcription-polymerase chain reaction. Oral administration of MXYF (116 and 232mg/kg) significantly reduced the neurological functional score and attenuated the cerebral infarct area. Western blot analysis showed that the expression of Bcl-2 is enhanced and Bax expression is inhibited after treatment with MXYF (116 and 232mg/kg), leading to significant increase of the ratio between Bcl-2 and Bax. Furthermore, the protein expression of cyt-c, caspase-9, caspase-3 and caspase-7 was significantly inhibited while the mRNA expression of caspase-9, caspase-3 and caspase-7 but not cyt-c was markedly inhibited in the MXYF (116 and 232mg/kg) treatment groups compared with the I/R group. The above data suggested that MXYF has potential neuroprotective activities by the regulation of apoptotic pathway, MXYF is a promising agent in treatment of stroke. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Yang, Chih-Hao; Yen, Ting-Lin; Hsu, Chia-Yuan; Thomas, Philip-Aloysius; Sheu, Joen-Rong; Jayakumar, Thanasekaran
2017-01-01
A key focus in the field of drug discovery has been motivated by the neuroprotection of natural compounds. Cerebral ischemia is a multifaceted pathological process with a series of mechanisms, and a perspective for the development of neuroprotectants from traditional herbal medicine or natural products is a promising treatment for this disease. Natural compounds with the effects of anti-oxidation, anti-inflammation, anti-apoptosis, and neurofunctional regulation exhibit therapeutic effects on experimental ischemic brain injury. Conferring to the pharmacological mechanisms underlying neuroprotection, a study found that androgapholide, a diterpene lactone compound, exhibits varying degrees of neuroprotective activities in both in vitro and in vivo experimental models of stroke. The neuroprotective mechanisms of andrographolide are suggested as: (I) increasing nuclear factor E2-related factor 2-heme oxygenase (Nrf2-HO-1) expression through p38-mitogen activated protein kinase (MAPK) regulation, (II) inducing cerebral endothelial cells (CEC) apoptosis and caspase-3 activation, (III) down regulating Bax, inducible nitric oxide synthase (iNOS), and (IV) inhibiting hydroxyl radical (OH−) formation, and activating transcription factor NF-κB signaling pathways. Recently, several researchers have also been trying to unveil the principal mechanisms involved in the neuroprotective effects of andrographolide. Therefore, this review aims to summarize an overview on the neuroprotective effects of andrographolide and exemplifies the essential mechanisms involved. This paper can provide information that andrographolide drug discovery may be a promising strategy for the development of a novel class of neuroprotective drug. PMID:28749412
Royston, Kendra J.; Udayakumar, Neha; Lewis, Kayla; Tollefsbol, Trygve O.
2017-01-01
With cancer often classified as a disease that has an important epigenetic component, natural compounds that have the ability to regulate the epigenome become ideal candidates for study. Humans have a complex diet, which illustrates the need to elucidate the mechanisms of interaction between these bioactive compounds in combination. The natural compounds withaferin A (WA), from the Indian winter cherry, and sulforaphane (SFN), from cruciferous vegetables, have numerous anti-cancer effects and some report their ability to regulate epigenetic processes. Our study is the first to investigate the combinatorial effects of low physiologically achievable concentrations of WA and SFN on breast cancer cell proliferation, histone deacetylase1 (HDAC1) and DNA methyltransferases (DNMTs). No adverse effects were observed on control cells at optimal concentrations. There was synergistic inhibition of cellular viability in MCF-7 cells and a greater induction of apoptosis with the combinatorial approach than with either compound administered alone in both MDA-MB-231 and MCF-7 cells. HDAC expression was down-regulated at multiple levels. Lastly, we determined the combined effects of these bioactive compounds on the pro-apoptotic BAX and anti-apoptotic BCL-2 and found decreases in BCL-2 and increases in BAX. Taken together, our findings demonstrate the ability of low concentrations of combinatorial WA and SFN to promote cancer cell death and regulate key epigenetic modifiers in human breast cancer cells. PMID:28534825
Royston, Kendra J; Udayakumar, Neha; Lewis, Kayla; Tollefsbol, Trygve O
2017-05-19
With cancer often classified as a disease that has an important epigenetic component, natural compounds that have the ability to regulate the epigenome become ideal candidates for study. Humans have a complex diet, which illustrates the need to elucidate the mechanisms of interaction between these bioactive compounds in combination. The natural compounds withaferin A (WA), from the Indian winter cherry, and sulforaphane (SFN), from cruciferous vegetables, have numerous anti-cancer effects and some report their ability to regulate epigenetic processes. Our study is the first to investigate the combinatorial effects of low physiologically achievable concentrations of WA and SFN on breast cancer cell proliferation, histone deacetylase1 (HDAC1) and DNA methyltransferases (DNMTs). No adverse effects were observed on control cells at optimal concentrations. There was synergistic inhibition of cellular viability in MCF-7 cells and a greater induction of apoptosis with the combinatorial approach than with either compound administered alone in both MDA-MB-231 and MCF-7 cells. HDAC expression was down-regulated at multiple levels. Lastly, we determined the combined effects of these bioactive compounds on the pro-apoptotic BAX and anti-apoptotic BCL-2 and found decreases in BCL-2 and increases in BAX . Taken together, our findings demonstrate the ability of low concentrations of combinatorial WA and SFN to promote cancer cell death and regulate key epigenetic modifiers in human breast cancer cells.
Yang, Yang; Duan, Weixun; Lin, Yan; Yi, Wei; Liang, Zhenxing; Yan, Juanjuan; Wang, Ning; Deng, Chao; Zhang, Song; Li, Yue; Chen, Wensheng; Yu, Shiqiang; Yi, Dinghua; Jin, Zhenxiao
2013-12-01
Ischemia reperfusion (IR) injury (IRI) is harmful to the cardiovascular system and causes mitochondrial oxidative stress. Silent information regulator 1 (SIRT1), a type of histone deacetylase, contributes to IRI. Curcumin (Cur) is a strong natural antioxidant and is the active component in Curcuma longa; Cur has protective effects against IRI and may regulate the activity of SIRT1. This study was designed to investigate the protective effect of Cur pretreatment on myocardial IRI and to elucidate this potential mechanism. Isolated and in vivo rat hearts and cultured neonatal rat cardiomyocytes were subjected to IR. Prior to this procedure, the hearts or cardiomyocytes were exposed to Cur in the absence or presence of the SIRT1 inhibitor sirtinol or SIRT1 siRNA. Cur conferred a cardioprotective effect, as shown by improved postischemic cardiac function, decreased myocardial infarct size, decreased myocardial apoptotic index, and several biochemical parameters, including the up-regulation of the antiapoptotic protein Bcl2 and the down-regulation of the proapoptotic protein Bax. Sirtinol and SIRT1 siRNA each blocked the Cur-mediated cardioprotection by inhibiting SIRT1 signaling. Cur also resulted in a well-preserved mitochondrial redox potential, significantly elevated mitochondrial superoxide dismutase activity, and decreased formation of mitochondrial hydrogen peroxide and malondialdehyde. These observations indicated that the IR-induced mitochondrial oxidative damage was remarkably attenuated. However, this Cur-elevated mitochondrial function was reversed by sirtinol or SIRT1 siRNA treatment. In summary, our results demonstrate that Cur pretreatment attenuates IRI by reducing IR-induced mitochondrial oxidative damage through the activation of SIRT1 signaling. © 2013 Elsevier Inc. All rights reserved.
Liu, Tiantian; Chen, Xiaoxu; Li, Tianjiao; Li, Xueliang; Lyu, Yinghua; Fan, Xiaoteng; Zhang, Pengfei; Zeng, Wenxian
2017-10-01
Spermatogonial stem cells (SSCs) possess the capacity of self-renewal and differentiation, which are the basis of spermatogenesis. In maintenance of SSC homeostasis, intrinsic/extrinsic factors and various signaling pathways tightly control the fate of SSCs. Methyltransferase SETDB1 (Set domain, bifurcated 1) catalyzes histone H3 lysine 9 (H3K9) trimethylation and represses gene expression. SETDB1 is required for maintaining the survival of spermatogonial stem cells in mice. However, the underlying molecular mechanism remains unclear. In the present study, we found that Setdb1 regulates PTEN/AKT/FOXO1 pathway to inhibit SSC apoptosis. Co-immunoprecipitation and reporter gene assay revealed that SETDB1 interacted and coordinated with AKT to regulate FOXO1 activity and expression of the downstream target genes Bim and Puma. Among the SETDB1-bound genes, the H3K9me3 levels on the promoter regions of Bim and Pten decreased in Setdb1-KD group; in contrast, H3K9me3 status on promoters of Bax and Puma remained unchanged. Therefore, SETDB1 was responsible for regulating the transcription activity of genes in the apoptotic pathway at least in part through modulating H3K9me3. This study replenishes the research on the epigenetic regulation of SSC survival, and provides a new insight for the future study of epigenetic regulation of spermatogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.
Qu, Mei; Shen, Wei
2015-03-01
To investigate the roles of PI3K/Akt signaling in the unfolded protein response (UPR) and non-UPR signaling pathways of endoplasmic reticulum stress and apoptosis in hepatocytes under conditions of saturated fatty acid-induced steatosis. A steatosis model of hepatocytes (L02 cell and HepG2 cell line) was induced by palmitate sodium saturated fatty acids.The hepatocytes were divided into normal control group,experimental group (treated with palmitate sodium) and intervention group (treated with palmitate sodium and LY294002, a PI3K/Akt inhibitor). Cell apoptosis was detected by flow cytometry with Annexin V/PI double-staining.Western blot analysis was used to examine the protein expression of GRP78, PI3K, P-PI3K,Akt, P-Akt, CHOP and Bax.The F test and t-test were used in statistical analyses. Flow cytometry showed that palmitate sodium induced cell apoptosis in steatotic hepatocytes;moreover, a significant increase in cell apoptosis was observed in the palmitate sodium-induced steatotic hepatocytes in the presence of LY294002.For the normal control group, the experimental group and the intervention group, the apoptosis ratios of L02 cells were 4.41 ± 0.78% vs. 6.01 ± 1.49% vs. 19.50 ± 2.53% after 24 hours of treatment,and 12.56 ± 2.78% vs. 29.72 ± 6.39% vs. 44.60 ± 4.17% after 48 hours of treatment in respectively (all P < 0.05),and of HepG2 cells were 11.16 ± 1.15% vs. 17.50 ± 6.83% vs. 30.41 ± 3.62% after 24 hours of treatment, and 22.37 ± 1.24% vs. 33.85 ± 5.79% vs. 48.56 ± 4.21% after 48 hours of treatment (all P < 0.05). Western blot analysis showed that expression of GRP78 was significantly upregulated in the palmitate sodium-induced steatosis hepatocytes, indicating activation of endoplasmic reticulum stress. In addition, the palmitate sodium treatment also activated the PI3K/Akt pathway,induced expression of CHOP and Bax of the UPR and non-UPR signaling pathways respectively. Moreover, Pretreatment with LY294002 inhibited the palmitate sodium induced-phosphorylation of PI3K and Akt, and promoted upregulation of CHOP and Bax induced by palmitate sodium. The PI3K/Akt pathway may be involved in regulation of the UPR and non-UPR signaling pathways of endoplasmic reticulum stress and may promote apoptosis of hepatocytes by enhancing the expression of CHOP and Bax protein in saturated fatty acid-induced steatotic hepatocytes.
Wan, Lanlan; Zhang, Daqi; Zhang, Jinnan; Ren, Liqun
2018-01-01
Melittin is a 26 amino acid residue antimicrobial peptide with known antitumor activity. In the present study, a novel peptide TT-1, derived from melittin and contained only 11 amino acids, was designed, and its antitumor effect was investigated. The present study is aimed to elucidate the effects and relative mechanisms of TT-1 on a human thyroid cancer cell line (TT) in vitro and in vivo. Cell viability assays, Annexin V/propidium iodide assays, western blotting and quantitative reverse transcription polymerase chain reaction were performed. Furthermore, a tumor-xenograft model was established to investigate the apoptotic mechanisms of TT-1 on TT cells. The results obtained indicated that TT-1 was able to suppress the proliferation of TT cells and exhibited low cytotoxicity to normal thyroid cells in vitro. The apoptotic rates of TT cells were also increased following TT-1 treatment. Additionally, TT-1 stimulated caspase-3, caspase-9 and Bax, and inhibited B-cell lymphoma 2 mRNA and protein expression. Finally, it was also demonstrated that TT-1 is able to markedly suppress tumor growth in a TT-bearing nude mouse model. In summary, TT-1 may inhibit the proliferation of TT cells by inducing apoptosis in vitro and in vivo, indicating that TT-1 may be a potential candidate for the treatment of thyroid cancer. PMID:29387245
Flora, Swaran J S; Gautam, Pratibha; Kushwaha, Pramod
2012-01-01
The present study was aimed at investigating chronic exposure to lead and ethanol, individually and in combination with blood oxidative stress leading to possible brain apoptosis in rats. Rats were exposed to lead (0.1% w/v in drinking water) or ethanol (1 and 10%) either individually or in combination for four months. Biochemical variables indicative of oxidative stress (blood and brain) and brain apoptosis were examined. Native polyacrylamide agarose gel electrophoresis was carried out in brain homogenates for glucose-6-phosphate dehydrogenase (G6PD) analysis, whereas western blot analysis was done for the determination of apoptotic markers like Bax, Bcl-2, caspase-3, cytochrome c and p53. The results suggest that most pronounced increase in oxidative stress in red blood cells and brain of animals co-exposed to lead and 10% ethanol compared all the other groups. Decrease in G6PD activity followed the same trend. Upregulation of Bax, cytochrome c, caspase-3, p53 and down-regulation of Bcl-2 suggested apoptosis in the rat brain co-exposed to lead and ethanol (10%) compared with their individual exposures. Significantly high lead accumulation in blood and brain during co-exposure further support synergistic toxicity. The present study thus suggests that higher consumption of ethanol during lead exposure may lead to brain apoptosis, which may be mediated through oxidative stress.
Shi, Shujing; Tang, Anzhou; Yin, Shaolin; Wang, Lisheng; Xie, Mao; Yi, Xiang
2014-11-01
To evaluate the inhibitive effect of matrine modification X on the growth of human nasopharyngeal carcinoma CNE2 cell xenografts in nude mice. Tumor model was established by subcutaneous inoculation of nasopharyngeal carcinoma cell CNE2 into nude mice, which was used to evaluate the antitumor effect of matrine modification X in vivo. The expression levels of Bax, Bcl-2, Caspase3 were detected by real-time PCR and western blot. The growth of xenografts in nude mice was significantly suppressed after application of matrine modification X in a dose-dependent manner. The inhibition rates were 32.55% and 44.89% when treated at medium and high dose respectively. Real-time fluorescence quantitative-PCR and Western Blot results showed that the expression of Bax and Caspase3 increased, while the expression of Bcl-2 decreased in a dose-dependent manner. The change of high dose group was obvious, and the difference was statistically significant (P < 0.05). Matrine modification X could significantly inhibit the growth of human nasopharyngeal carcinoma CNE2 cell xenografts in nude mice, probably by inducing the apoptosis of nasopharyngeal carcinoma cells, and the possible mechanism is related to regulating the expression level of Bax/Bcl-2 and Casepase3.
Golbabapour, Shahram; Gwaram, Nura Suleiman; Al-Obaidi, Mazen M Jamil; Soleimani, A F; Ali, Hapipah Mohd; Abdul Majid, Nazia
2013-01-01
Schiff base complexes have appeared to be promising in the treatment of different diseases and disorders and have drawn a lot of attention to their biological activities. This study was conducted to evaluate the regulatory effect of Schiff base metal derivatives on the expression of heat shock proteins (HSP) 70 and BAX in protection against acute haemorrhagic gastric ulcer in rats. Rats were assigned to 6 groups of 6 rats: the normal control (Tween 20 5% v/v, 5 mL/kg), the positive control (Tween 20 5% v/v, 5 mL/kg), and four Schiff base derivative groups named Schiff_1, Schiff_2, Schiff_3, and Schiff_4 (25 mg/kg). After 1 h, all of the groups received ethanol 95% (5 mL/kg) but the normal control received Tween 20 (Tween 20 5% v/v, 5 mL/kg). The animals were euthanized after 60 min and the stomachs were dissected for histology (H&E), immunohistochemistry, and western blot analysis against HSP70 and BAX proteins. The results showed that the Schiff base metal derivatives enhanced the expression of HSP70 and suppressed the expression of BAX proteins during their gastroprotection against ethanol-induced gastric lesion in rats.
Gwaram, Nura Suleiman; Al-Obaidi, Mazen M. Jamil; Soleimani, A. F.; Ali, Hapipah Mohd; Abdul Majid, Nazia
2013-01-01
Schiff base complexes have appeared to be promising in the treatment of different diseases and disorders and have drawn a lot of attention to their biological activities. This study was conducted to evaluate the regulatory effect of Schiff base metal derivatives on the expression of heat shock proteins (HSP) 70 and BAX in protection against acute haemorrhagic gastric ulcer in rats. Rats were assigned to 6 groups of 6 rats: the normal control (Tween 20 5% v/v, 5 mL/kg), the positive control (Tween 20 5% v/v, 5 mL/kg), and four Schiff base derivative groups named Schiff_1, Schiff_2, Schiff_3, and Schiff_4 (25 mg/kg). After 1 h, all of the groups received ethanol 95% (5 mL/kg) but the normal control received Tween 20 (Tween 20 5% v/v, 5 mL/kg). The animals were euthanized after 60 min and the stomachs were dissected for histology (H&E), immunohistochemistry, and western blot analysis against HSP70 and BAX proteins. The results showed that the Schiff base metal derivatives enhanced the expression of HSP70 and suppressed the expression of BAX proteins during their gastroprotection against ethanol-induced gastric lesion in rats. PMID:24298554
Lin, Cheng-Hui; Wu, Man-Ru; Li, Ching-Hao; Cheng, Hui-Wen; Huang, Shih-Hsuan; Tsai, Chi-Hao; Lin, Fan-Li; Ho, Jau-Der; Kang, Jaw-Jou; Hsiao, George; Cheng, Yu-Wen
2017-05-01
Blue light-induced phototoxicity plays an important role in retinal degeneration and might cause damage as a consequence of smartphone dependency. Here, we investigated the effects of periodic exposure to blue light-emitting diode in a cell model and a rat retinal damage model. Retinal pigment epithelium (RPE) cells were subjected to blue light in vitro and the effects of blue light on activation of key apoptotic pathways were examined by measuring the levels of Bcl-2, Bax, Fas ligand (FasL), Fas-associated protein with death domain (FADD), and caspase-3 protein. Blue light treatment of RPE cells increased Bax, cleaved caspase-3, FasL, and FADD expression, inhibited Bcl-2 and Bcl-xL accumulation, and inhibited Bcl-2/Bax association. A rat model of retinal damage was developed with or without continuous or periodic exposure to blue light for 28 days. In this rat model of retinal damage, periodic blue light exposure caused fundus damage, decreased total retinal thickness, caused atrophy of photoreceptors, and injured neuron transduction in the retina. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Zhao, Da-Long; Zou, Li-Bo; Lin, Sheng; Shi, Jian-Gong; Zhu, Hai-Bo
2007-11-01
Dopamine (DA), as a neurotoxin, can elicit severe Parkinson's disease-like syndrome by elevating intracellular reactive oxygen species (ROS) levels and apoptotic activity. In this study, we examined the effect of esculin, which was extracted from Fraxinus sielboldiana blume, on DA-induced cytotoxicity and the underlying mechanism in human neuroblastoma SH-SY5Y cells. Our results suggest that the protective effects of esculin (10(-7), 10(-6) and 10(-5) M) on DA-induced cytotoxicity may be ascribed to its anti-oxidative properties by reducing ROS level, and its anti-apoptotic effect via protecting mitochondrion membrane potential (DeltaPsim), enhancing superoxide dismutaese (SOD) activity and reduced glutathione (GSH) levels, and regulating P53, Bax and Bcl-2 expression. In addition, esculin inhibited the release of cytochrome c and apoptosis-inducing factor (AIF), and the protein expression of activated caspase 3. These data indicate that esculin may provide a useful therapeutic strategy for the treatment of progressive neurodegenerative diseases such as Parkinson's disease (PD).
Fan, Huijin; Liang, Yan; Jiang, Bing; Li, Xiabing; Xun, Hang; Sun, Jia; He, Wei; Lau, Hay Tong; Ma, Xiaofeng
2016-05-01
High levels of fatty acid synthase (FAS) expression have been found in many tumors, including prostate, breast, and ovarian cancers, and inhibition of FAS has been reported to obstruct tumor growth in vitro and in vivo. Curcumin is one of the major active ingredients of Curcuma longa, which has been proven to inhibit the growth of cancer cells. In the present study, we investigated the potential activity of curcumin as a FAS inhibitor for chemoprevention of breast cancer. As a result, curcumin induced human breast cancer MDA-MB-231 cell apoptosis with the half-inhibitory concentration value of 3.63 ± 0.26 µg/ml, and blocked FAS activity, expression and mRNA level in a dose-dependent manner. Curcumin also regulated B-cell lymphoma 2 (Bcl-2), Bax and p-Akt protein expression in MDA-MB-231 cells. Moreover, FAS knockdown showed similar effect as curcumin. All these results suggested that curcumin may induce cell apoptosis via inhibiting FAS.
Pro-Apoptotic Activity of New Honokiol/Triphenylmethane Analogues in B-Cell Lymphoid Malignancies.
Mędra, Aleksandra; Witkowska, Magdalena; Majchrzak, Agata; Cebula-Obrzut, Barbara; Bonner, Michael Y; Robak, Tadeusz; Arbiser, Jack L; Smolewski, Piotr
2016-07-30
Honokiol and triphenylmethanes are small molecules with anti-tumor properties. Recently, we synthesized new honokiol analogues (HAs) that possess common features of both groups. We assessed the anti-tumor effectiveness of HAs in B-cell leukemia/lymphoma cells, namely in chronic lymphocytic leukemia (CLL) cells ex vivo and in pre-B-cell acute lymphoblastic leukemia (Nalm-6), Burkitt lymphoma (BL; Raji), diffuse large B-cell lymphoma (DLBCL; Toledo) and multiple myeloma (MM; RPMI 8226) cell lines. Four of these compounds appeared to be significantly active against the majority of cells examined, with no significant impact on healthy lymphocytes. These active HAs induced caspase-dependent apoptosis, causing significant deregulation of several apoptosis-regulating proteins. Overall, these compounds downregulated Bcl-2 and XIAP and upregulated Bax, Bak and survivin proteins. In conclusion, some of the HAs are potent tumor-selective inducers of apoptosis in ex vivo CLL and in BL, DLBCL and MM cells in vitro. Further preclinical studies of these agents are recommended.
Faião-Flores, Fernanda; Coelho, Paulo Rogério Pinto; Toledo Arruda-Neto, João Dias; Maria-Engler, Silvya Stuchi; Tiago, Manoela; Capelozzi, Vera Luiza; Giorgi, Ricardo Rodrigues; Maria, Durvanei Augusto
2013-01-01
Boron neutron capture therapy (BNCT) is a binary treatment involving selective accumulation of boron carriers in a tumor followed by irradiation with a thermal or epithermal neutron beam. The neutron capture reaction with a boron-10 nucleus yields high linear energy transfer (LET) particles, alpha and 7Li, with a range of 5 to 9 µm. These particles can only travel very short distances and release their damaging energy directly into the cells containing the boron compound. We aimed to evaluate proliferation, apoptosis and extracellular matrix (ECM) modifications of B16F10 melanoma and normal human melanocytes after BNCT. The amounts of soluble collagen and Hsp47, indicating collagen synthesis in the ECM, as well as the cellular markers of apoptosis, were investigated. BNCT decreased proliferation, altered the ECM by decreasing collagen synthesis and induced apoptosis by regulating Bcl-2/Bax in melanoma. Additionally, BNCT also increased the levels of TNF receptor and the cleaved caspases 3, 7, 8 and 9 in melanoma. These results suggest that multiple pathways related to cell death and cell cycle arrest are involved in the treatment of melanoma by BNCT. PMID:23527236
Fu, Bi-Cheng; Lang, Ji-Lu; Zhang, Dong-Yang; Sun, Lu; Chen, Wei; Liu, Wei; Liu, Kai-Yu; Ma, Chong-Yi; Jiang, Shu-Lin; Li, Ren-Ke; Tian, Hai
2017-09-01
MicroRNA-34a (miR-34a) is expressed in the myocardium and expression is altered after myocardial injury. We investigated the effects of miR-34a on heart function after ischemia-reperfusion (IR) injury. Cardiomyocytes were isolated from neonatal rat hearts and simulated IR injury was induced in vitro. Following IR injury in rats, infarct size was measured and left ventricular (LV) function was evaluated using echocardiography. Protein expression of silent information regulator 1 (SIRT1), acetylated p53 (ac-p53), Bcl-2 and Bax, and miR-34a and SIRT1 gene levels were analyzed. miR-34a overexpression exacerbated myocardial injury by increasing apoptosis and infarct size and decreasing LV function. Suppression of miR-34a attenuated myocardial IR injury. SIRT1 was negatively regulated by miR-34a and the expression of downstream genes, such as ac-p53, Bcl-2, and Bax were altered correspondingly. Increased expression of miR-34a aggravates injury after IR; miR-34a suppression therapy may represent a new line of treatment for myocardial IR injury.
Synthesis of novel ring-contracted artemisinin dimers with potent anticancer activities.
Zhang, Ning; Yu, Zhimei; Yang, Xiaohong; Hu, Ping; He, Yun
2018-04-25
Artemisinin is a potential anticancer agent with an interesting trioxane sesquiterpene structure. In order to improve the biological activity and metabolic stability of artemisinin, a series of novel ring-contracted artemisinin dimers were synthesized. These dimers were evaluated by MTT assay against six cancer cell lines. Most of the dimmers exhibited improved antiproliferative activities over artemisinin. Especially, compound 8b showed the most pronounced anti-cancer activity for PC12 cancer cells with an IC 50 value of 1.56 μM. Thus, PC12 cancer cells were used to further investigate the mechanism of antiproliferation for this series of compounds. Compound 8b arrested cell cycle at G1 phase and induced cell apoptosis via up-regulation of Bad, Bax, caspase-3 and caspase-9 protein expressions while inhibiting the expression of Bcl-xL. The present studies are the first to synthesize the ring-contracted artemisinin as dimers and show that these dimers have potent anti-tumor activities against several cancer cell lines. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Ebermann, Linda; Wika, Sylwia; Klumpe, Inga; Hammer, Elke; Klingel, Karin; Lassner, Dirk; Völker, Uwe; Erben, Ulrike; Zeichhardt, Heinz; Schultheiss, Heinz-Peter; Dörner, Andrea
2012-01-01
Well-established differences in Coxsackievirus B3 (CVB3) elimination in resistant C57BL/6 and permissive A.SW/SnJ mice provide suitable models for studying the significance of the link between mitochondrial respiratory chain (RC), antioxidative stress components and mitochondrion-related apoptosis in the context of myocardial virus elimination. Distinct myocardial CVB3 titer in C57BL/6 (2.5 ± 1.4 × 10(4) plaque-forming units (p.f.u.)/g tissue) and A.SW/SnJ mice (1.4 ± 0.8 × 10(7) p.f.u./g) were associated with differences in the cardiac mitochondrial function 8 days post infection (p.i.). Infected C57BL/6 mouse hearts disclosed increased complex I (CI) and CIII activity, but restricted CII and normal CIV activity of RC. Reduced expression of the antioxidative catalase was accompanied by elevated lipid peroxidation (LPO), indicating oxidative stress. Intrinsic apoptosis was activated demonstrated by elevated levels of Bax, Bcl-2, caspase 3 and DNA degradation. In contrast, all myocardial RC complex activities were restricted in CVB3-infected A.SW/SnJ mice. The antioxidative system provided sufficient protection against oxidative stress shown by an elevated catalase expression and unaltered LPO. Bax and Bcl-2 levels were unchanged in CVB3-infected A.SW/SnJ mice, while caspase 3 was moderately increased but no DNA degradation was detectable. Correlation analyses including data from the two mouse strains revealed that reduced CVB3 titer correlated with increased CI and CIII activity, oxidative stress as well as active apoptosis during acute myocarditis (MC). C57BL/6 mice completely eliminated CVB3 and inflammation and normalized all intracellular parameters, while A.SW/SnJ mice showed permanently restricted CI activity in chronic MC 90 days p.i., at which time the replicating virus was no longer detectable but immunological processes were still active. Consequently, the regulation of energy metabolism appears crucial for an effective virus elimination and may be of prognostic and therapeutic significance for patients with virus-induced MC.
Rouhollahi, Elham; Moghadamtousi, Soheil Zorofchian; Hajiaghaalipour, Fatemeh; Zahedifard, Maryam; Tayeby, Faezeh; Awang, Khalijah; Abdulla, Mahmood Ameen; Mohamed, Zahurin
2015-01-01
Purpose Curcuma purpurascens BI. is a member of Zingiberaceae family. The purpose of this study is to investigate the wound healing properties of hexane extract of C. purpurascens rhizome (HECP) against excisional wound healing in rats. Materials and methods Twenty four rats were randomly divided into 4 groups: A) negative control (blank placebo, acacia gum), B) low dose of HECP, C) high dose of HECP, and D) positive control, with 6 rats in each group. Full-thickness incisions (approximately 2.00 cm) were made on the neck area of each rat. Groups 1–4 were treated two-times a day for 20 days with blank placebo, HECP (100 mg/kg), HECP (200 mg/kg), and intrasite gel as a positive control, respectively. After 20 days, hematoxylin and eosin and Masson’s trichrome stainings were employed to investigate the histopathological alterations. Protein expressions of Bax and Hsp70 were examined in the wound tissues using immunohistochemistry analysis. In addition, levels of enzymatic antioxidants and malondialdehyde representing lipid peroxidation were measured in wound tissue homogenates. Results Macroscopic evaluation of wounds showed conspicuous elevation in wound contraction after topical administration of HECP at both doses. Moreover, histopathological analysis revealed noteworthy reduction in the scar width correlated with the enhanced collagen content and fibroblast cells, accompanied by a reduction of inflammatory cells in the granulation tissues. At the molecular level, HECP facilitates wound-healing process by downregulating Bax and upregulating Hsp70 protein at the wound site. The formation of new blood vessel was observed in Masson’s trichrome staining of wounds treated with HECP (100 and 200 mg/kg). In addition, HECP administration caused a significant surge in enzymatic antioxidant activities and a decline in lipid peroxidation. Conclusion These findings suggested that HECP accelerated wound-healing process in rats via antioxidant activity, angiogenesis effect and anti-inflammatory responses involving Hsp70/Bax. PMID:26604683
Rouhollahi, Elham; Moghadamtousi, Soheil Zorofchian; Hajiaghaalipour, Fatemeh; Zahedifard, Maryam; Tayeby, Faezeh; Awang, Khalijah; Abdulla, Mahmood Ameen; Mohamed, Zahurin
2015-01-01
Curcuma purpurascens BI. is a member of Zingiberaceae family. The purpose of this study is to investigate the wound healing properties of hexane extract of C. purpurascens rhizome (HECP) against excisional wound healing in rats. Twenty four rats were randomly divided into 4 groups: A) negative control (blank placebo, acacia gum), B) low dose of HECP, C) high dose of HECP, and D) positive control, with 6 rats in each group. Full-thickness incisions (approximately 2.00 cm) were made on the neck area of each rat. Groups 1-4 were treated two-times a day for 20 days with blank placebo, HECP (100 mg/kg), HECP (200 mg/kg), and intrasite gel as a positive control, respectively. After 20 days, hematoxylin and eosin and Masson's trichrome stainings were employed to investigate the histopathological alterations. Protein expressions of Bax and Hsp70 were examined in the wound tissues using immunohistochemistry analysis. In addition, levels of enzymatic antioxidants and malondialdehyde representing lipid peroxidation were measured in wound tissue homogenates. Macroscopic evaluation of wounds showed conspicuous elevation in wound contraction after topical administration of HECP at both doses. Moreover, histopathological analysis revealed noteworthy reduction in the scar width correlated with the enhanced collagen content and fibroblast cells, accompanied by a reduction of inflammatory cells in the granulation tissues. At the molecular level, HECP facilitates wound-healing process by downregulating Bax and upregulating Hsp70 protein at the wound site. The formation of new blood vessel was observed in Masson's trichrome staining of wounds treated with HECP (100 and 200 mg/kg). In addition, HECP administration caused a significant surge in enzymatic antioxidant activities and a decline in lipid peroxidation. These findings suggested that HECP accelerated wound-healing process in rats via antioxidant activity, angiogenesis effect and anti-inflammatory responses involving Hsp70/Bax.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Qin; Qin, Liyue; Huang, Fei, E-mail: Fei_H@ho
Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Mitochondrial dysfunction and cell apoptosis are suggested to be actively involved in the pathogenesis of PD. In the present study, the neuroprotective effect of amentoflavone (AF), a naturally occurring biflavonoid from Selaginella tamariscina, was examined in PD models both in vitro and in vivo. On SH-SY5Y cells, AF treatment dose-dependently reduced 1-methyl-4-phenylpyridinium (MPP{sup +})-induced nuclear condensation and loss of cell viability without obvious cytotoxicity. It inhibited the activation of caspase-3 and p21 but increased the Bcl-2/Bax ratio. Further study disclosed that AFmore » enhanced the phosphorylation of PI3K, Akt and ERK1/2 down-regulated by MPP{sup +} in SH-SY5Y cells, the effect of which could be blocked by LY294002, the inhibitor of PI3K. Consistently, AF alleviated the behavioral deterioration in pole and traction tests and rescued the loss of dopaminergic neurons in SNpc and fibers in striatum in methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mice. It also could enhance the activation of PI3K and Akt as well as Bcl-2/Bax ratio in SN. Moreover, AF alleviated gliosis as well as the gene expression levels of IL-1β and iNOS in SN. Collectively, these results suggested that AF protected dopaminergic neurons against MPTP/MPP{sup +}-induced neurotoxicity, which might be mediated through activation of PI3K/Akt and ERK signaling pathways in dopaminergic neurons and attenuation of neuroinflammation. - Highlights: • AF protected dopaminergic neurons against MPTP/MPP{sup +}-induced neurotoxicity. • AF modulated PI3K/Akt and ERK signaling pathways. • AF could alleviate neuroinflammation in SN.« less
Zhao, Zhiming; Li, Chenggang; Xi, Hao; Gao, Yuanxing; Xu, Dabin
2015-10-01
Previous population investigations have suggested that the application of curcumin may be associated with decreased incidence and improved prognosis in certain types of cancer. Forkhead box O1 (FOXO1) has been implicated in the regulation of several biological processes, including stress resistance, metabolism, DNA repair, cell cycle and apoptosis. The aims of the present study were to investigate the effects and molecular mechanisms of curcumin on the induction of anti‑proliferation, cell cycle arrest and apoptosis, by FOXO1, in pancreatic cancer cells. The MTT assay and ELISA‑Brdu assay were used to assess cell proliferation. Reverse transcription‑quantitative polymerase chain reaction and western blot analyses were used to detect the expression of PCNA, Ki‑67, B‑cell lymphoma‑2 (Bcl‑2), B‑cell‑associated X protein (Bax), cyclin D1, p21, p27 and FOXO1. Cell apoptosis was detected using a Cell Death ELISA detection kit. A Caspase‑3/9 Fluorescent Assay kit was used to detect caspase activity. The findings revealed that curcumin significantly decreased cell proliferation, which was associated with increased expression of the p21/CIP1 and p27/KIP1 cyclin‑dependent kinase inhibitors, and inhibited expression of cyclin D1. In addition, curcumin induced apoptosis by decreasing the Bcl‑2/Bax protein ratio and increasing caspase‑9/3 activation in the pancreatic cancer cells. Using siRNA against FOXO1, and Akt inhibitor and activator, the present study confirmed that curcumin induced the expression of FOXO1 by inhibition of phosphoinositide 3‑kinase/Akt signaling, leading to cell cycle arrest and apoptosis. In conclusion, these findings offer support for a mechanism that may underlie the anti‑neoplastic effects of curcumin and justify further investigation to examine the potential roles for activators of FOXO1 in the prevention and treatment of pancreatic cancer.
Jiang, Qianqian; Pan, Yu; Cheng, Yupeng; Li, Huiling; Li, Hui
2016-01-01
Hepatic ischemia-reperfusion (I-R) injury causes acute organ damage or dysfunction, and remains a problem for liver transplantation. In the I-R phase, the generation of reactive oxygen species aggravates the injury. In the current study, a novel selenocysteine-containing 7-mer peptide (H-Arg-Sec-Gly-Arg-Asn-Ala-Gln-OH) was constructed to imitate the active site of an antioxidant enzyme, glutathione peroxidase (GPX). The 7-mer peptide which has a lower molecular weight, and improved water-solubility, higher stability and improved cell membrane permeability compared with other GPX mimics. Its GPX activity reached 13 U/µmol, which was 13 times that of ebselen (a representative GPX mimic). The effect of this GPX mimic on I-R injury of the liver was assessed in rats. The 7-mer peptide significantly inhibited the increase in serum hepatic amino-transferases, tissue malondialdehyde, nitric oxide contents, myeloperoxidase activity and decrease of GPX activity compared with I-R tissue. Following treatment with the 7-mer peptide, the expression of B-cell CLL/lymphoma-2 (Bcl-2) was significantly upregulated at the mRNA and protein level compared with the I-R group, as determined by reverse transcription-polymerase chain reaction and immunohistochemistry, respectively. By contrast, Bcl-2 associated X protein (Bax) was downregulated by the 7-mer peptide compared the I-R group. Histological and ultrastructural changes of the rat liver tissue were also compared among the experimental groups. The results of the current study suggest that the 7-mer peptide protected the liver against hepatic I-R injury via suppression of oxygen-derived free radicals and regulation of Bcl-2 and Bax expression, which are involved in the apoptosis of liver cells. The findings of the present study will further the investigation of the 7-mer peptide as an effective therapeutic agent in hepatic I-R injury. PMID:27431272
Markowitz, Scott D; Mendoza-Paredes, Alberto; Liu, Huiping; Pastuszko, Peter; Schultz, Steven P; Schears, Gregory J; Greeley, William J; Wilson, David F; Pastuszko, Anna
2007-07-01
To determine the effect of pH-stat as compared with alpha-stat management on brain oxygenation, level of striatal extracellular dopamine, phosphorylation, and levels of protein kinase B (Akt) and cyclic adenosine 3', 5'-monophosphate response element-binding protein (CREB), and levels of extracellular signal-regulated kinase (ERK)1/2, Bcl-2, and Bax in a piglet model of deep hypothermic circulatory arrest (DHCA). The piglets were placed on cardiopulmonary bypass (CPB), cooled with pH-stat or alpha-stat to 18 degrees C, subjected to 90 minutes of DHCA, rewarmed, weaned from CPB, and maintained for two hours recovery. The cortical oxygen was measured by: quenching of phosphorescence; dopamine by microdialysis; phosphorylation of CREB (p-CREB), ERK (p-ERK) 1/2, Akt (p-Akt), and level of Bcl-2, Bax by Western blots. Oxygen pressure histograms for the microvasculature of the cortex show substantially higher oxygen levels during cooling and during the oxygen depletion period after cardiac arrest (up to 15 minutes) when using pH-stat compared with alpha-stat management. Significant increases in dopamine occurred at 45 minutes and 60 minutes of DHCA in the alpha-stat and pH-stat groups, respectively. The p-CREB and p-Akt in the pH-stat group were significantly higher than in the alpha-stat group (140 +/- 9%, p < 0.05 and 125 +/- 6%, p < 0.05, respectively). There was no significant difference in p-ERK1/2 and Bax. The Bcl-2 increased in the pH-stat group to 121 +/- 4% (p < 0.05) compared with the alpha-stat group. The ratio Bcl-2:Bax increased in the pH-stat group compared with the alpha-stat group. The increase in p-CREB, p-Akt, Bcl-2, Bcl-2/Bax, and delay in increase of dopamine indicated that pH-stat, in the piglet model, prolongs "safe" time of DHCA and provides some brain protection against ischemic injury.
Del Puerto, H L; Martins, A S; Moro, L; Milsted, A; Alves, F; Braz, G F; Vasconcelos, A C
2010-01-26
Canine distemper is an immunosuppressive disease caused by the canine distemper virus (CDV). Pathogenesis mainly involves the central nervous system and immunosuppression. Dogs naturally infected with CDV develop apoptotic cells in lymphoid tissues and the cerebellum, but this apoptotic mechanism is not well characterized. To better understand this process, we evaluated the expression of Bax, Bcl-2, and caspase-3, -8 and -9, by evaluating mRNA levels in the peripheral blood, lymph nodes and cerebellum of CDV-infected (CDV+) and uninfected (CDV-) dogs by real-time polymerase chain reaction (PCR). Blood samples from 12 CDV+ and 8 CDV- dogs, diagnosed by reverse transcription-PCR, were subjected to hematological analysis and apoptotic gene expression was evaluated using real-time-PCR. Tissues from the cerebellum and lymph nodes of four CDV+ and three CDV-dogs were also subjected to real time-PCR. No significant differences were found between CDV+ and CDV- dogs in the hemotological results or in the expression of caspase-3, -8, -9, Bax, and Bcl-2 in the peripheral blood. However, expression of Bax, caspase-3, -8 and -9 was significantly higher in the cerebellum of CDV+ compared to CDV- dogs. Expression of caspase-3 and -8 was significantly higher in the lymph nodes of CDV+ compared to CDV- dogs. We concluded that infection with CDV induces apoptosis in the cerebellum and lymph nodes in different ways. Lymph node apoptosis apparently occurs via caspase-3 activation, through the caspase-8 pathway, and cerebellum apoptosis apparently occurs via caspase-3 activation, through the caspase-8 and mitochondrial pathways.
Cardioprotection activity and mechanism of Astragalus polysaccharide in vivo and in vitro.
Liu, Debin; Chen, Lei; Zhao, Jianye; Cui, Kang
2018-05-01
Astragalus polysaccharides (ASP) is extracted from Astragalus, and is the main active ingredient of Astragalus membranaceus. The purpose of this study was to investigate the protective effect of ASP on rat cardiomyocytes damage induced by myocardial ischemia and reperfusion injury (MVRI) and isoprenaline(ISO) in vivo and in vitro. The model of cardiomyocytes damage was induced using MVRI in a rat in vivo and also using ISO in cell. After ASP intervention, the protective effect of ASP on cardiomyocytes was evaluated by animal experimental and cell experimental. The results show that ASP can relieve the increase of cell volume in myocardium, reduce the apoptosis of cell in myocardial tissue caused by MVRI in vivo. At the cellular level, ASP can reverse the decrease of cell activity induced by ISO, inhibit the apoptosis, and decrease the levels of intracellular reactive oxygen species. Mechanistically at the molecular level, these effects are elicited via down-regulation of the protein levels of caspase-3 and bax and up-regulation of the protein levels of bcl-2 in both in vivo and in vitro. These results demonstrate that ASP has a protective efficacy in MVRI/ISO-treated cardiomyocytes by inhibiting the apoptosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Topical Treatment of Hair Loss with Formononetin by Modulating Apoptosis.
Kim, Mi Hye; Choi, You Yeon; Lee, Ji Eun; Kim, Kyuseok; Yang, Woong Mo
2016-01-01
Formononetin is one of the main components of red clover plants and its role on hair regrowth against hair loss has not been established yet. In the present study, we assessed the potential effects of formononetin on alopecia, along with impaired hair cycles by induction of apoptosis-regression.Depilated C57BL/6 mice were used for monitoring the hair cycles. Formononetin (1 and 100 µM) was topically treated to the dorsal skin for 14 days. Topical formononetin treatment induced miniaturized hair follicles to recover to normal sizes. Tapering hair shaft began to grow newly, emerging from the hair follicles by formononetin. In addition, formononetin inhibited the activation of caspase-8 and decreased the procaspase-9 expression. As a result of formononetin treatment, anti-apoptotic Bcl-2 was up-regulated, whereas pro-apoptotic Bax and p53 were down-regulated, resulting in a decrease of caspase-3 activation. Formononetin showed the obvious inhibition of apoptosis under terminal deoxynucleotidyl transferase dUTP nick end labeling staining thereafter.Taken together, our findings demonstrate that formononetin exerted the hair regrowth effect on hair loss, in which the underlying mechanisms were associated with Fas/Fas L-induced caspase activation, thus inhibiting apoptosis. Georg Thieme Verlag KG Stuttgart · New York.
Connexin 26 correlates with Bcl-xL and Bax proteins expression in colorectal cancer
Kanczuga-Koda, Luiza; Sulkowski, Stanislaw; Koda, Mariusz; Skrzydlewska, Elzbieta; Sulkowska, Mariola
2005-01-01
AIM: To evaluate of Cx26 in correlation with Bcl-xL and Bax proteins in colorectal cancer. METHODS: Immunohistochemical staining using specific antibodies was performed to evaluate the protein expression of Cx26, Bax and Bcl-xL in 152 colorectal cancer samples and the correlations among studied proteins as well as the relationships between the expression of Cx26, Bax, Bcl-xL and clinicopathological features were analyzed. RESULTS: Both normal epithelial cells and carcinoma cells expressed Cx26, Bax and Bcl-xL, but Cx26 in cancer cells showed aberrant, mainly cytoplasmic staining. Expression of Cx26, Bax and Bcl-xL was observed in 55.9%, 55.5% and 72.4% of evaluated colorectal cancers respectively. We found the positive correlation between Cx26 and Bax expression (r = 0.561, P<0.0001), Cx26 and Bcl-xL (r = 0.409, P<0.0001) as well as between Bax and Bcl-xL (r = 0.486, P<0.0001). Association of Cx26, Bax and Bcl-xL expression with histological G2 grade of tumors was noted (P<0.005, P<0.001 and P<0.002 respectively). CONCLUSION: Cytoplasmic presence of Cx26 and its association with apoptotic markers could indicate a distinct role from physiological functions of Cx26 in cancer cells and it could suggest that connexins might be a target point for modulations of apoptosis with therapeutic implications. PMID:15770735
Mahmoud, Ayman M; Abd El-Twab, Sanaa M; Abdel-Reheim, Eman S
2017-06-01
Beneficial effects of white mulberry against diabetes mellitus have been reported. However, the molecular mechanisms of how white mulberry can attenuate diabetic retinopathy remain poorly understood. Here, the mechanism underlying the protective effect of Morus alba leaves ethanolic extract on oxidative stress, inflammation, apoptosis, and angiogenesis in diabetic retinopathy was investigated. Diabetes was induced by injection of streptozotocin. One week after, M. alba (100 mg/kg) was administrated to the rats daily for 16 weeks. Morus alba extract showed high content of polyphenolics and free radical scavenging activity. Oral M. alba administration significantly attenuated hyperglycemia and weight loss, and decreased sorbitol, fructose, protein kinase C, pro-inflammatory cytokines, and oxidative stress markers in retinas of the diabetic rats. Moreover, M. alba produced marked down-regulation of caspase-3 and Bax, with concomitant up-regulation of Bcl-2 in the diabetic retinas. M. alba also reduced the expression of VEGF in the retina. These results indicate that M. alba has protective effect on diabetic retinopathy with possible mechanisms of inhibiting hyperglycemia-induced oxidative stress, apoptosis, inflammation, polyol pathway activation, and VEGF expression in the retina.
Yu, Yang; Wu, Xiuquan; Pu, Jingnan; Luo, Peng; Ma, Wenke; Wang, Jiu; Wei, Jialiang; Wang, Yuanxin; Fei, Zhou
2018-01-01
Lycium barbarum polysaccharide (LBP) is the main active ingredient of Lycium barbarum, which exhibits several beneficial effects, including neuroprotection, anti-aging and anti-oxidation. However, the mechanism by which LBP protects against cerebral ischemia/reperfusion-induced injury remains obscure. In this study, we found that LBP pretreatment greatly attenuated oxygen glucose deprivation/reperfusion (OGD/R) injury in primary cultured hippocampal neurons. LBP also suppressed OGD/R-induced lactate dehydrogenase (LDH) leakage, and ameliorated oxidative stress. In addition, LBP significantly reduced OGD/R-induced apoptosis and autophagic cell death. LBP caused the down-regulation of cleaved Caspase-3/Caspase-3, LC3II/LC3I and Beclin 1, as well as up-regulation of Bcl-2/Bax and p62. Furthermore, mechanistic studies indicated that LBP pretreatment increased p-Akt and p-mTOR levels after OGD/R. In summary, our results indicated that LBP protects against OGD/R-induced neuronal injury in primary hippocampal neurons by activating the PI3K/Akt/mTOR signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.
Lee, Kang-In; Choi, Han-Gyu; Son, Yeo-Jin; Whang, Jake; Kim, Kwangwook; Jeon, Heat Sal; Park, Hye-Soo; Back, Yong Woo; Choi, Seunga; Kim, Seong-Woo; Choi, Chul Hee; Kim, Hwa-Jung
2016-04-01
Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 induced macrophage apoptosis in a caspase-dependent manner. The loss of mitochondrial transmembrane potential (ΔΨm), mitochondrial translocation of Bax, and release of cytochrome c from mitochondria were observed in macrophages treated with MAV2052. Further, reactive oxygen species (ROS) production was required for the apoptosis induced by MAV2052. In addition, ROS and mitogen-activated protein kinases were involved in MAV2052-mediated TNF-α and IL-6 production. ROS-mediated activation of apoptosis signal-regulating kinase 1 (ASK1)-JNK pathway was a major signaling pathway for MAV2052-induced apoptosis. Moreover, MAV2052 bound to Toll-like receptor (TLR) 4 molecule and MAV2052-induced ROS production, ΔΨm loss, and apoptosis were all significantly reduced in TLR4(-/-) macrophages. Altogether, our results suggest that MAV2052 induces apoptotic cell death through TLR4 dependent ROS production and JNK pathway in murine macrophages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madan, Esha; Prasad, Sahdeo; Roy, Preeti
2008-12-26
Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic phytoalexin present mainly in grapes, red wine and berries, is known to possess strong chemopreventive and anticancer properties. Here, we demonstrated the anti-proliferative and apoptosis-inducing activities of resveratrol in human epidermoid carcinoma A431 cells. Resveratrol has cytotoxic effects through inhibiting cellular proliferation of A431 cells, which leads to the induction of apoptosis, as evident by an increase in the fraction of cells in the sub-G{sub 1} phase of the cell cycle and Annexin-V binding of externalized phosphatidylserine. Results revealed that inhibition of proliferation is associated with regulation of the JAK/STAT pathway, where resveratrol prevents phosphorylation ofmore » JAK, thereby inhibiting STAT1 phosphorylation. Furthermore, resveratrol treatment actively stimulated reactive oxygen species (ROS) and mitochondrial membrane depolarization. Consequently, an imbalance in the Bax/Bcl-2 ratio triggered the caspase cascade and subsequent cleavage of PARP, thereby shifting the balance in favor of apoptosis. These observations indicate that resveratrol treatment inhibits JAK/STAT-mediated gene transcription and induce the mitochondrial cell death pathway.« less
Melatonin prevents acute kidney injury in severely burned rats via the activation of SIRT1.
Bai, Xiao-Zhi; He, Ting; Gao, Jian-Xin; Liu, Yang; Liu, Jia-Qi; Han, Shi-Chao; Li, Yan; Shi, Ji-Hong; Han, Jun-Tao; Tao, Ke; Xie, Song-Tao; Wang, Hong-Tao; Hu, Da-Hai
2016-09-07
Acute kidney injury (AKI) is a common complication after severe burns. Melatonin has been reported to protect against multiple organ injuries by increasing the expression of SIRT1, a silent information regulator that regulates stress responses, inflammation, cellular senescence and apoptosis. This study aimed to investigate the protective effects of melatonin on renal tissues of burned rats and the role of SIRT1 involving the effects. Rat severely burned model was established, with or without the administration of melatonin and SIRT1 inhibitor. The renal function and histological manifestations were determined to evaluate the severity of kidney injury. The levels of acetylated-p53 (Ac-p53), acetylated-p65 (Ac-p65), NF-κB, acetylated-forkhead box O1 (Ac-FoxO1), Bcl-2 and Bax were analyzed to study the underlying mechanisms. Our results suggested that severe burns could induce acute kidney injury, which could be partially reversed by melatonin. Melatonin attenuated oxidative stress, inflammation and apoptosis accompanied by the increased expression of SIRT1. The protective effects of melatonin were abrogated by the inhibition of SIRT1. In conclusion, we demonstrate that melatonin improves severe burn-induced AKI via the activation of SIRT1 signaling.
Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kizhakkayil, Jaleel; Thayyullathil, Faisal; Chathoth, Shahanas
2010-04-09
Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogenmore » synthase kinase 3{beta} (GSK3{beta}), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3{beta}. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.« less
Sanjuán Szklarz, Luiza K; Kozjak-Pavlovic, Vera; Vögtle, F-Nora; Chacinska, Agnieszka; Milenkovic, Dusanka; Vogel, Sandra; Dürr, Mark; Westermann, Benedikt; Guiard, Bernard; Martinou, Jean-Claude; Borner, Christoph; Pfanner, Nikolaus; Meisinger, Chris
2007-04-20
The mitochondrial outer membrane contains protein import machineries, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It has been speculated that TOM or SAM are required for Bax-induced release of intermembrane space (IMS) proteins; however, experimental evidence has been scarce. We used isolated yeast mitochondria as a model system and report that Bax promoted an efficient release of soluble IMS proteins while preproteins were still imported, excluding an unspecific damage of mitochondria. Removal of import receptors by protease treatment did not inhibit the release of IMS proteins by Bax. Yeast mutants of each Tom receptor and the Tom40 channel were not impaired in Bax-induced protein release. We analyzed a large collection of mutants of mitochondrial outer membrane proteins, including SAM, fusion and fission components, but none of these components was required for Bax-induced protein release. The released proteins included complexes up to a size of 230 kDa. We conclude that Bax promotes efficient release of IMS proteins through the outer membrane of yeast mitochondria while the inner membrane remains intact. Inactivation of the known protein import and sorting machineries of the outer membrane does not impair the function of Bax at the mitochondria.
Wallace, F Morgan; DiCosimo, Deana; Farnum, Andrew; Tice, George; Andaloro, Bridget; Davis, Eugene; Burns, Frank R
2011-01-01
In 2010, the BAX System PCR assay for Salmonella was modified to include a hot start functionality designed to keep the reaction enzyme inactive until PCR begins. To validate the assay's Official Methods of Analysis status to include this procedure modification, an evaluation was conducted on four food types that were simultaneously analyzed with the BAX System and either the U.S. Food and Drug Administration's Bacteriological Analytical Manual or the U.S. Department of Agriculture-Food Safety and Inspection Service Microbiology Laboratory Guidebook reference method for detecting Salmonella. Identical performance between the BAX System method and the reference methods was observed. Additionally, lysates were analyzed using both the BAX System Classic and BAX System Q7 instruments with identical results using both platforms for all samples tested. Of the 100 samples analyzed, 34 samples were positive for both the BAX System and reference methods, and 66 samples were negative by both the BAX System and reference methods, demonstrating 100% correlation. No instrument platform variation was observed. Additional inclusivity and exclusivity testing using the modified test kit demonstrated the test kit to be 100% accurate in evaluation of test panels of 352 Salmonella strains and 46 non-Salmonella strains.
Verma, Sharad; Goyal, Sukriti; Tyagi, Chetna; Jamal, Salma; Singh, Aditi; Grover, Abhinav
2016-06-01
The interaction of BAX (BCL-2-associated X protein) with BIM (BCL-2 interacting mediator of cell death) SAHB (stabilized α helix of BCL2) directly initiates BAX-mediated mitochondrial apoptosis. This molecular dynamics study reveals that BIM SAHB forms a stable complex with BAX but it remains in a non-functional conformation. N terminal of BAX folds towards the core which has been reported exposed in the functional monomer. The α1-α2 loop, which has been reported in open conformation in functional BAX, acquires a closed conformation during the simulation. BH3/α2 remains less exposed as compared to initial structure. The hydrophobic residues of BIM accommodates in the rear pocket of BAX during the simulation. A steep decrease in radius of gyration and solvent accessible surface area (SASA) indicates the complex folding to acquire a more stable but inactive conformation. Further the covariance matrix reveals that the backbone atoms' motions favour the inactive conformation of the complex. This is the first report on the non-functional BAX-BIM SAHB complex by molecular dynamics simulation in the best of our knowledge. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chaoyun; He, Yanhao; Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Key Laboratory of Environment and Genes Related to Disease, Ministry of Education, Xi'an, Shaanxi 710061
Intracellular reactive oxygen species (ROS) are derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Angiotensin II (Ang II) can cause endothelial dysfunction by promoting intracellular ROS generation. Safflor yellow B (SYB) effectively inhibits ROS generation by upregulating Bcl-2 expression. In this study, we examined the effects of SYB on Ang II-induced injury to human umbilical vein endothelial cells (HUVECs), and elucidated the roles of NADPH oxidase and Bcl-2. We treated cultured HUVECs with Ang II, SYB, and Bcl-2 siRNA, and determined NADPH oxidase activity and ROS levels. Furthermore, cellular and mitochondrial physiological states were evaluated, and the expression levels ofmore » target proteins were analyzed. Ang II significantly enhanced intracellular ROS levels, caused mitochondrial membrane dysfunction, and decreased cell viability, leading to apoptosis. This was associated with increased expression of AT1R and p22{sup phox}, increased NADPH oxidase activity, and an increased ratio of Bax/Bcl-2, leading to decreases in antioxidant enzyme activities, which were further strengthened after blocking Bcl-2. Compared to Ang II treatment alone, co-treatment with SYB significantly reversed HUVEC injury. Taken together, these results demonstrate that SYB could significantly protect endothelial cells from Ang II-induced cell damage, and that it does so by upregulating Bcl-2 expression and inhibiting ROS generation. - Highlights: • Angiotensin II depresses mitochondria physiological function. • Angiotensin II activates NADPH oxidase via up-regulating expresion of p22{sup phox}. • Bcl-2 plays a pivotal role in improving mitochondria function and regulates ROS level. • Inhibitor of Bcl-2 promotes angiotensin II mediated HUVEC injury. • SYB attenuates angiotensin II mediated HUVEC injury via up regulating Bcl-2 expression.« less
Castilla, Carolina; Congregado, Belén; Chinchón, David; Torrubia, Francisco J; Japón, Miguel A; Sáez, Carmen
2006-10-01
Androgen-sensitive prostate cancer cells turn androgen resistant through complex mechanisms that involve dysregulation of apoptosis. We investigated the role of antiapoptotic Bcl-xL in the progression of prostate cancer as well as the interactions of Bcl-xL with proapoptotic Bax and Bak in androgen-dependent and -independent prostate cancer cells. Immunohistochemical analysis was used to study the expression of Bcl-xL in a series of 139 prostate carcinomas and its association with Gleason grade and time to hormone resistance. Expression of Bcl-xL was more abundant in prostate carcinomas of higher Gleason grades and significantly associated with the onset of hormone-refractory disease. In vivo interactions of Bcl-xL with Bax or Bak in untreated and camptothecin-treated LNCaP and PC3 cells were investigated by means of coimmunoprecipitation. In the absence of any stimuli, Bcl-xL interacts with Bax and Bak in androgen-independent PC3 cells but only with Bak in androgen-dependent LNCaP cells. Interactions of Bcl-xL with Bax and Bak were also evidenced in lysates from high-grade prostate cancer tissues. In LNCaP cells treated with camptothecin, an inhibitor of topoisomerase I, the interaction between Bcl-xL and Bak was absent after 36 h, Bcl-xL decreased gradually and Bak increased coincidentally with the progress of apoptosis. These results support a model in which Bcl-xL would exert an inhibitory effect over Bak via heterodimerization. We propose that these interactions may provide mechanisms for suppressing the activity of proapoptotic Bax and Bak in prostate cancer cells and that Bcl-xL expression contributes to androgen resistance and progression of prostate cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun
Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complexmore » III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD.« less
Martinez, Luis; Thames, Easter; Kim, Jinna; Chaudhuri, Gautam; Singh, Rajan; Pervin, Shehla
2016-07-29
Breast cancer is a complex heterogeneous disease where many distinct subtypes are found. Younger African American (AA) women often present themselves with aggressive form of breast cancer with unique biology which is very difficult to treat. Better understanding the biology of AA breast tumors could lead to development of effective treatment strategies. Our previous studies indicate that AA but not Caucasian (CA) triple negative (TN) breast cancer cells were sensitive to nitrosative stress-induced cell death. In this study, we elucidate possible mechanisms that contribute to nitric oxide (NO)-induced apoptosis in AA TN breast cancer cells. Breast cancer cells were treated with various concentrations of long-acting NO donor, DETA-NONOate and cell viability was determined by trypan blue exclusion assay. Apoptosis was determined by TUNEL and caspase 3 activity as well as changes in mitochondrial membrane potential. Caspase 3 and Bax cleavage, levels of Cu/Zn superoxide dismutase (SOD) and Mn SOD was assessed by immunoblot analysis. Inhibition of Bax cleavage by Calpain inhibitor, and levels of reactive oxygen species (ROS) as well as SOD activity was measured in NO-induced apoptosis. In vitro and in vivo effect of NO treatment on mammary cancer stem cells (MCSCs) was assessed. NO induced mitocondria-mediated apoptosis in all AA but not in CA TN breast cancer cells. We found significant TUNEL-positive cells, cleavage of Bax and caspase-3 activation as well as depolarization mitochondrial membrane potential only in AA TN breast cancer cells exposed to NO. Inhibition of Bax cleavage and quenching of ROS partially inhibited NO-induced apoptosis in AA TN cells. Increase in ROS coincided with reduction in SOD activity in AA TN breast cancer cells. Furthermore, NO treatment of AA TN breast cancer cells dramatically reduced aldehyde dehydrogenase1 (ALDH1) expressing MCSCs and xenograft formation but not in breast cancer cells from CA origin. Ethnic differences in breast tumors dictate a need for tailoring treatment options more suited to the unique biology of the disease.
Yi, Ying-Jie; Jia, Xiu-Hong; Wang, Jian-Yong; Chen, Jie-Ru; Wang, Hong; Li, You-Jie
2018-05-01
Solanine is an alkaloid and is the main extract of the traditional Chinese herb, Solanum nigrum Linn . It has been reported that Solanine has anti-inflammatory and antitumor properties. The present study aimed to investigate the antitumor effect of Solanine in Jurkat cells and demonstrate the molecular mechanism of antitumor activity of Solanine. A Cell Counting Kit-8 assay demonstrated that Solanine inhibited the proliferation of Jurkat cells in a dose-and time-dependent manner. Cell apoptosis was measured by flow cytometry. Flow cytometry revealed that Solanine induced apoptosis in a dose-dependent manner in Jurkat cells. Reverse transcription-quantitative polymerase chain reaction demonstrated that Solanine modulated the mRNA levels of B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax). Additionally, Bcl-2 and Bax expression was measured using western blot analysis. Western blot analysis revealed a significant increase in the expression of Bax and decrease in the expression of Bcl-2. Solanine increased the chemosensitivity of Jurkat cells to Adriamycin. In summary, the present results indicated that the antitumor activity of Solanine was associated with inhibition of cell proliferation, induction of apoptosis and increasing cytotoxicity of Adriamycin. Therefore, Solanine may have potential as a novel agent for the treatment of acute lymphocytic leukemia.
Cervia, Davide; Garcia-Gil, Mercedes; Simonetti, Elisa; Di Giuseppe, Graziano; Guella, Graziano; Bagnoli, Paola; Dini, Fernando
2007-08-01
The metabolite euplotin C (EC), isolated from the marine ciliate Euplotes crassus, is a powerful cytotoxic and pro-apoptotic agent in tumour cell lines. For instance, EC induces the rapid depletion of ryanodine Ca(2+) stores, the release of cytochrome c from the mitochondria, and the activation of caspase-3, leading to apoptosis. The purpose of this study was to gain further insight into the mechanisms of EC-induced apoptosis in rat pheochromocytoma PC12 cells. We found that EC increases Bax/Bcl-2 ratio and that Bax is responsible of the EC-induced dissipation of the mitochondrial membrane potential (Deltapsi(m)). In addition, EC induces the generation of reactive oxygene species (ROS) without involvement of p53. The inhibition of ROS generation prevents, at least in part, the pro-apoptotic effects of EC as well as the effects of EC on Bax, Deltapsi(m) and intracellular free Ca(2+), indicating a cross-talk between different pathways. However, definition of the effector cascade turns out to be more complex than expected and caspase-independent mechanisms, acting in parallel with caspases, should also be considered. Among them, EC increases the expression/activity of calpains downstream of ROS generation, although calpains seem to exert protective effects.
Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok.
D'Orsi, Beatrice; Mateyka, Julia; Prehn, Jochen H M
2017-10-01
Neuronal cell death is often triggered by events that involve intracellular increases in Ca 2+ . Under resting conditions, the intracellular Ca 2+ concentration is tightly controlled by a number of extrusion and sequestering mechanisms involving the plasma membrane, mitochondria, and ER. These mechanisms act to prevent a disruption of neuronal ion homeostasis. As these processes require ATP, excessive Ca 2+ overloading may cause energy depletion, mitochondrial dysfunction, and may eventually lead to Ca 2+ -dependent cell death. Excessive Ca 2+ entry though glutamate receptors (excitotoxicity) has been implicated in several neurologic and chronic neurodegenerative diseases, including ischemic stroke, epilepsy, and Alzheimer's disease. Recent evidence has revealed that excitotoxic cell death is regulated by the B-cell lymphoma-2 (Bcl-2) family of proteins. Bcl-2 proteins, comprising of both pro-apoptotic and anti-apoptotic members, have been shown to not only mediate the intrinsic apoptosis pathway by controlling mitochondrial outer membrane (MOM) integrity, but to also control neuronal Ca 2+ homeostasis and energetics. In this review, the role of Bcl-2 family proteins in the regulation of apoptosis, their expression in the central nervous system and how they control Ca 2+ -dependent neuronal injury are summarized. We review the current knowledge on Bcl-2 family proteins in the regulation of mitochondrial function and bioenergetics, including the fusion and fission machinery, and their role in Ca 2+ homeostasis regulation at the mitochondria and ER. Specifically, we discuss how the 'pro-apoptotic' Bcl-2 family proteins, Bax and Bok, physiologically expressed in the nervous system, regulate such 'non-apoptotic/daytime' functions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zheng, Hui-Zhen; Fu, Xue-Kun; Shang, Jiu-Long; Lu, Rong-Xi; Ou, Yong-Fang; Chen, Chun-Ling
2018-03-05
This study aimed to verify the cytoprotective effect of ginsenoside Rg1 in vivo, and to elucidate the mechanism of Rg1 in the ischemic microenvironment. Male rat bone marrow mesenchymal stem cells (rBMSCs) or rBMSCs treated with Rg1 were injected into ischemic region of the arterial embolism hind limb in female rats. Behavioral and histological data, obtained one-week post injection, showed that rBMSCs with Rg1 could improve the survival rate of BMSCs and enhance the therapeutic effects. rBMSCs treated with hypoxia and serum deprivation for 24h (H/SD-rBMSCs) showed the up-regulated expression of ras homolog family member A (RhoA), Rho associated coiled-coil containing protein kinase 1 (ROCK-1), myosin light chain 2 (MLC-2), Bcl2 associated agonist of cell death (Bad) and Bcl2 associated X, apoptosis regulator (Bax); while the expression of miR-148b-3p, miR-148b-5p and miR-494-3p was down-regulated. H/SD with Rg1 treatment (H/SD+Rg1-rBMSCs) inhibited the expression of ROCK-1, MLC-2, Bad and Bax, increased the expression of Bcl-2, miR-494-3p. After ROCK-1 knockout, the expression of Bad and Bax were downregulated and Bcl-2 upregulated, but Rg1 no longer altered their expression. Mir-494-3p functional study established that miR-494-3 mimic downregulated and miR-494-3 inhibitor upregulated ROCK-1 gene expression, Rg1 did not have the ability to change the ROCK gene expression after loss of function of miR-494-3p. Also, the function loss of mir-494-3p promoted apoptosis; otherwise reduced apoptosis. The anti-apoptotic effect of Rg1 disappeared after mir-494-3p loss or gain function. In conclusion, Ginsenoside Rg1 has shown to have protective effects on ischemic-induced rBMSCs apoptosis through mir-494-3p→ROCK-1→Bcl-2 signaling pathway. Copyright © 2018. Published by Elsevier B.V.
Chen, Wei; Fu, Xiao-Bing; Ge, Shi-Li; Sun, Tong-Zhu; Zhou, Gang; Han, Bing; Du, Yi-Ri; Li, Hai-Hong; Sheng, Zhi-Yong
2005-06-14
To detect the effect of acid fibroblast growth factor (aFGF) on apoptosis and gene expression of bax and bcl-2 gene in rat intestine after ischemia/reperfusion (I/R) injury, and to explore the protective mechanisms of aFGF. One hundred and eight Wistar rats were randomly divided into sham-operated control group (C) (n = 6), intestinal ischemia group (I) (n = 6), aFGF treatment group (A) (n = 48) and intestinal ischemia-reperfusion group (R) (n = 48). In group I, the animals were killed after 45 min of superior mesenteric artery (SMA) occlusion, while in groups R and A, the rats sustained 45 min of SMA occlusion and were then treated with normal saline and aFGF, respectively, sustained 15 min, 30 min, 1, 2, 6, 12, 24, or 48 h of reperfusion, respectively. In group C, SMA was separated, but without occlusion. Apoptosis in intestinal villus was determined with terminal deoxynucleotidyl transferase mediated dUTP-biotin nick-end labeling technique (TUNEL). Intestinal tissue samples were taken not only for detection of bax and bcl-2 gene expression by RT-PCR, but also for detection of bax and bcl-2 protein expression and distribution by immunohistochemical analysis. The rat survival rates in aFGF treated group were higher than group R (P<0.05) and the improvement of intestinal histological structures was observed at 2, 6, and 12 h after the reperfusion in group A compared with group R. The apoptotic rates were (41.17+/-3.49)%, (42.83+/-5.23)% and (53.33+/-6.92)% at 2, 6 and 12 h after reperfusion, respectively in group A, apparently less than those of group R at matched time points (50.67+/-6.95, 54.17+/-7.86, 64.33+/-6.47, respectively) (P<0.05). The bax gene transcription and translation were significantly decreased in group A vs group R, while mRNA and protein contents of Bcl-2 in group A were obviously higher than those in group R during 2-12 h period after reperfusion. The changes in histological structure and the increment of apoptotic rate indicated that the intestinal barrier was damaged after intestinal I/R injury, whilst intravenous aFGF could alleviate apoptosis induced by ischemia and reperfusion in rat intestinal tissues, in which genes of bax and bcl-2 might play important roles.
Photobiomodulation partially rescues visual cortical neurons from cyanide-induced apoptosis.
Liang, H L; Whelan, H T; Eells, J T; Meng, H; Buchmann, E; Lerch-Gaggl, A; Wong-Riley, M
2006-05-12
Near-infrared light via light-emitting diode treatment has documented therapeutic effects on neurons functionally inactivated by tetrodotoxin or methanol intoxication. Light-emitting diode pretreatment also reduced potassium cyanide-induced cell death, but the mode of death via the apoptotic or necrotic pathway was unclear. The current study tested our hypothesis that light-emitting diode rescues neurons from apoptotic cell death. Primary neuronal cultures from postnatal rat visual cortex were pretreated with light-emitting diode for 10 min at a total energy density of 30 J/cm2 before exposing to potassium cyanide for 28 h. With 100 or 300 microM potassium cyanide, neurons died mainly via the apoptotic pathway, as confirmed by electron microscopy, Hoechst 33258, single-stranded DNA, Bax, and active caspase-3. In the presence of caspase inhibitor I, the percentage of apoptotic cells in 300microM potassium cyanide was significantly decreased. Light-emitting diode pretreatment reduced apoptosis from 36% to 17.9% (100 microM potassium cyanide) and from 58.9% to 39.6% (300 microM potassium cyanide), representing a 50.3% and 32.8% reduction, respectively. Light-emitting diode pretreatment significantly decreased the expression of caspase-3 elicited by potassium cyanide. It also reversed the potassium cyanide-induced increased expression of Bax and decreased expression of Bcl-2 to control levels. Moreover, light-emitting diode decreased the intensity of 5-(and -6) chloromethy-2', 7-dichlorodihydrofluorescein diacetate acetyl ester, a marker of reactive oxygen species, in neurons exposed to 300 microM potassium cyanide. These results indicate that light-emitting diode pretreatment partially protects neurons against cyanide-induced caspase-mediated apoptosis, most likely by decreasing reactive oxygen species production, down-regulating pro-apoptotic proteins and activating anti-apoptotic proteins, as well as increasing energy metabolism in neurons as reported previously.
Chandrakanthan, Vashe; Li, Aiqing; Chami, Omar; O'Neill, Christopher
2006-11-21
In the mouse, embryo culture results in a characteristic phenotype of retarded embryo preimplantation development and reduced numbers of cells within embryos. The expression of TRP53 is central to the regulation of the cell's capacity to proliferate and survive. In this study we found that Trp53 mRNA is expressed throughout the preimplantation stage of development. Levels of TRP53 protein expression were low during the cleavage stages and increased at the morula and blastocyst stages in B6 embryos collected from the reproductive tract. Embryos collected at the zygote stage and cultured for 96 h also showed low levels of TRP53 expression at precompaction stages. There were higher levels of TRP53 in cultured morula and the level in cultured blastocysts was clearly increased above blastocysts collected directly from the uterus. Immunolocalization of TRP53 showed that its increased expression in cultured blastocysts corresponded with a marked accumulation of TRP53 within the nuclei of embryonic cells. This pattern of expression was enhanced in embryos produced by in vitro fertilization and subjected to culture. The TRP53 was transcriptionally active since culture also induced increased expression of Bax, yet this did not occur in embryos lacking Trp53 (Trp53-/-). The rate of development of Trp53-/- zygotes to the blastocyst stage was not different to wildtype controls when embryos were cultured in groups of ten but was significantly faster when cultured individually. The results show that zygote culture resulted in the accumulation of transcription activity of TRP53 in the resulting blastocysts. This accounts for the adverse effects of culture of embryos individually, but does not appear to be the sole cause of the retarded preimplantation stage growth phenotype associated with culture in vitro.
Kang, Kyoung Ah; Wang, Zhi Hong; Zhang, Rui; Piao, Mei Jing; Kim, Ki Cheon; Kang, Sam Sik; Kim, Young Woo; Lee, Jongsung; Park, Deokhoon; Hyun, Jin Won
2010-01-01
Recently, we demonstrated that myricetin exhibits cytoprotective effects against H2O2-induced cell damage via its antioxidant properties. In the present study, myricetin was found to inhibit H2O2-induced apoptosis in Chinese hamster lung fibroblast (V79-4) cells, as shown by decreased apoptotic bodies, nuclear fragmentation, sub-G1 cell population, and disruption of mitochondrial membrane potential (Δψm), which are increased in H2O2-treated cells. Western blot data showed that in H2O2-treated cells, myricetin increased the level of Bcl-2, which is an anti-apoptotic factor, and decreased the levels of Bax, active caspase-9 and -3, which are pro-apoptotic factors. And myricetin inhibited release of cytochrome c from mitochondria to cytosol in H2O2-treated cells. Myricetin-induced survival correlated with Akt activity, and the rescue of cells by myricetin treatment against H2O2-induced apoptosis was inhibited by the specific PI3K (phosphoinositol-3-kinase) inhibitor. Myricetin-mediated survival also inhibited the activation of p38 mitogen activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK), which are members of MAPK. Our studies suggest that myricetin prevents oxidative stress-induced apoptosis via regulation of PI3K/Akt and MAPK signaling pathways. PMID:21151442
Liu, Ge; Kuang, Shan; Wu, Shimei; Jin, Weihua; Sun, Chaomin
2016-05-24
Many polysaccharides isolated from plants have exhibited promising antitumor activities. The aim of this study is to investigate the antitumor activity of the novel polysaccharide named SPS from Sargassum integerrimum, elucidate the underlying anticancer mechanism in a human lung cancer cell line A549, and evaluate its anti-angiogenic activity both in vitro and in vivo. The results show that SPS significantly reduces A549 cells viability in a dose- and time-dependent manner via MTT method. Flow cytometry analysis indicates that SPS could induce cell apoptosis, the loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) and G2/M phase cell cycle arrest of A549 cells. Up-regulation of the expressions of P53 and Bax, down-regulation of the expression of Bcl-2, and activation of cleaved caspase-3, caspase-9 and PARP are also detected by western blotting after the treatment of SPS. In addition, SPS inhibits the proliferation, migration and cord formation of human umbilical vein endothelial cells (HUVECs) in vitro, and prevents the vascular development of zebrafish embryos in vivo. Altogether, our data prove the anticancer and anti-angiogenesis properties of SPS, and provide further insights into the potential pharmacological application of SPS as antitumor and anti-angiogenic agent against lung cancer.
Yu, Zhanyang; Li, Zhaoyu; Liu, Ning; Jizhang, Yunneng; McCarthy, Thomas J; Tedford, Clark E; Lo, Eng H; Wang, Xiaoying
2015-06-01
Near infrared radiation (NIR) has been shown to be neuroprotective against neurological diseases including stroke and brain trauma, but the underlying mechanisms remain poorly understood. In the current study we aimed to investigate the hypothesis that NIR may protect neurons by attenuating oxygen-glucose deprivation (OGD)-induced nitric oxide (NO) production and modulating cell survival/death signaling. Primary mouse cortical neurons were subjected to 4 h OGD and NIR was applied at 2 h reoxygenation. OGD significantly increased NO level in primary neurons compared to normal control, which was significantly ameliorated by NIR at 5 and 30 min post-NIR. Neither OGD nor NIR significantly changed neuronal nitric oxide synthase (nNOS) mRNA or total protein levels compared to control groups. However, OGD significantly increased nNOS activity compared to normal control, and this effect was significantly diminished by NIR. Moreover, NIR significantly ameliorated the neuronal death induced by S-Nitroso-N-acetyl-DL-penicillamine (SNAP), a NO donor. Finally, NIR significantly rescued OGD-induced suppression of p-Akt and Bcl-2 expression, and attenuated OGD-induced upregulation of Bax, BAD and caspase-3 activation. These results suggest NIR may protect against OGD at least partially through reducing NO production by down-regulating nNOS activity, and modulating cell survival/death signaling.
Mo, En-Pan; Zhang, Rong-Rong; Xu, Jun; Zhang, Huan; Wang, Xiao-Xiong; Tan, Qiu-Tong; Liu, Fang-Lan; Jiang, Ren-Wang; Cai, Shao-Hui
2016-09-16
Calotropin (M11), an active compound isolated from Asclepias curasavica L., was found to exert strong inhibitory and pro-apoptotic activity specifically against cisplatin-induced resistant non-small cell lung cancer (NSCLC) cells (A549/CDDP). Molecular mechanism study revealed that M11 induced cell cycle arrest at the G2/M phase through down-regulating cyclins, CDK1, CDK2 and up-regulating p53 and p21. Furthermore, M11 accelerated apoptosis through the mitochondrial apoptotic pathway which was accompanied by increase Bax/Bcl-2 ratio, decrease in mitochondrial membrane potential, increase in reactive oxygen species production, activations of caspases 3 and 9 as well as cleavage of poly ADP-ribose polymerase (PARP). The activation and phosphorylation of JNK was also found to be involved in M11-induced apoptosis, and SP610025 (specific JNK inhibitor) partially prevented apoptosis induced by M11. In contrast, all of the effects that M11 induce cell cycle arrest and apoptosis in A549/CDDP cells were not significant in A549 cells. Drugs with higher sensitivity against resistant tumor cells than the parent cells are rather rare. Results of this study supported the potential application of M11 on the non-small lung cancer (NSCLC) with cisplatin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.
Hsieh, Chia-Jung; Kuo, Po-Lin; Hsu, Ying-Chan; Huang, Ya-Fang; Tsai, Eing-Mei; Hsu, Ya-Ling
2014-02-01
This study investigates the anticancer effect of arctigenin (ATG), a natural lignan product of Arctium lappa L., in human breast cancer MDA-MB-231 cells. Results indicate that ATG inhibits MDA-MB-231 cell growth by inducing apoptosis in vitro and in vivo. ATG triggers the mitochondrial caspase-independent pathways, as indicated by changes in Bax/Bcl-2 ratio, resulting in AIF and EndoG nuclear translocation. ATG increased cellular reactive oxygen species (ROS) production by increasing p22(phox)/NADPH oxidase 1 interaction and decreasing glutathione level. ATG clearly increases the activation of p38 MAPK, but not JNK and ERK1/2. Antioxidant EUK-8, a synthetic catalytic superoxide and hydrogen peroxide scavenger, significantly decreases ATG-mediated p38 activation and apoptosis. Blocking p38 with a specific inhibitor suppresses ATG-mediated Bcl-2 downregulation and apoptosis. Moreover, ATG activates ATF-2, a transcription factor activated by p38, and then upregulates histone H3K9 trimethylation in the Bcl-2 gene promoter region, resulting in Bcl-2 downregulation. Taken together, the results demonstrate that ATG induces apoptosis of MDA-MB-231 cells via the ROS/p38 MAPK pathway and epigenetic regulation of Bcl-2 by upregulation of histone H3K9 trimethylation. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Zorofchian Moghadamtousi, Soheil; Rouhollahi, Elham; Karimian, Hamed; Fadaeinasab, Mehran; Firoozinia, Mohammad; Ameen Abdulla, Mahmood; Abdul Kadir, Habsah
2015-01-01
Annona muricata has been used in folk medicine for the treatment of cancer and tumors. This study evaluated the chemopreventive properties of an ethyl acetate extract of A. muricata leaves (EEAML) on azoxymethane-induced colonic aberrant crypt foci (ACF) in rats. Moreover, the cytotoxic compound of EEAML (Annomuricin E) was isolated, and its apoptosis-inducing effect was investigated against HT-29 colon cancer cell line using a bioassay-guided approach. This experiment was performed on five groups of rats: negative control, cancer control, EEAML (250 mg/kg), EEAML (500 mg/kg) and positive control (5-fluorouracil). Methylene blue staining of colorectal specimens showed that application of EEAML at both doses significantly reduced the colonic ACF formation compared with the cancer control group. Immunohistochemistry analysis showed the down-regulation of PCNA and Bcl-2 proteins and the up-regulation of Bax protein after administration of EEAML compared with the cancer control group. In addition, an increase in the levels of enzymatic antioxidants and a decrease in the malondialdehyde level of the colon tissue homogenates were observed, suggesting the suppression of lipid peroxidation. Annomuricin E inhibited the growth of HT-29 cells with an IC50 value of 1.62 ± 0.24 μg/ml after 48 h. The cytotoxic effect of annomuricin E was further substantiated by G1 cell cycle arrest and early apoptosis induction in HT-29 cells. Annomuricin E triggered mitochondria-initiated events, including the dissipation of the mitochondrial membrane potential and the leakage of cytochrome c from the mitochondria. Prior to these events, annomuricin E activated caspase 3/7 and caspase 9. Upstream, annomuricin E induced a time-dependent upregulation of Bax and downregulation of Bcl-2 at the mRNA and protein levels. In conclusion, these findings substantiate the usage of A. muricata leaves in ethnomedicine against cancer and highlight annomuricin E as one of the contributing compounds in the anticancer activity of A. muricata leaves. PMID:25860620
Malina, Halina Z
2011-01-19
The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules in disease development. In the knockout cells, incorrect interactions between proteins were observed without the protein modification by small molecules, indicating the abnormality of the protein network in the transgenic system. The irreversible protein-protein interactions lead to protein aggregation and cell degeneration, which are observed in all aging-associated diseases.
The Tumor Suppressor Gene, RASSF1A, Is Essential for Protection against Inflammation -Induced Injury
Fiteih, Yahya; Law, Jennifer; Volodko, Natalia; Mohamed, Anwar; El-Kadi, Ayman O. S.; Liu, Lei; Odenbach, Jeff; Thiesen, Aducio; Onyskiw, Christina; Ghazaleh, Haya Abu; Park, Jikyoung; Lee, Sean Bong; Yu, Victor C.; Fernandez-Patron, Carlos; Alexander, R. Todd; Wine, Eytan; Baksh, Shairaz
2013-01-01
Ras association domain family protein 1A (RASSF1A) is a tumor suppressor gene silenced in cancer. Here we report that RASSF1A is a novel regulator of intestinal inflammation as Rassf1a+/−, Rassf1a−/− and an intestinal epithelial cell specific knockout mouse (Rassf1a IEC-KO) rapidly became sick following dextran sulphate sodium (DSS) administration, a chemical inducer of colitis. Rassf1a knockout mice displayed clinical symptoms of inflammatory bowel disease including: increased intestinal permeability, enhanced cytokine/chemokine production, elevated nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) activity, elevated colonic cell death and epithelial cell injury. Furthermore, epithelial restitution/repair was inhibited in DSS-treated Rassf1a−/− mice with reduction of several makers of proliferation including Yes associated protein (YAP)-driven proliferation. Surprisingly, tyrosine phosphorylation of YAP was detected which coincided with increased nuclear p73 association, Bax-driven epithelial cell death and p53 accumulation resulting in enhanced apoptosis and poor survival of DSS-treated Rassf1a knockout mice. We can inhibit these events and promote the survival of DSS-treated Rassf1a knockout mice with intraperitoneal injection of the c-Abl and c-Abl related protein tyrosine kinase inhibitor, imatinib/gleevec. However, p53 accumulation was not inhibited by imatinib/gleevec in the Rassf1a−/− background which revealed the importance of p53-dependent cell death during intestinal inflammation. These observations suggest that tyrosine phosphorylation of YAP (to drive p73 association and up-regulation of pro-apoptotic genes such as Bax) and accumulation of p53 are consequences of inflammation-induced injury in DSS-treated Rassf1a−/− mice. Mechanistically, we can detect robust associations of RASSF1A with membrane proximal Toll-like receptor (TLR) components to suggest that RASSF1A may function to interfere and restrict TLR-driven activation of NFκB. Failure to restrict NFκB resulted in the inflammation-induced DNA damage driven tyrosine phosphorylation of YAP, subsequent p53 accumulation and loss of intestinal epithelial homeostasis. PMID:24146755
2011-01-01
Background The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Results Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. Conclusions The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules in disease development. In the knockout cells, incorrect interactions between proteins were observed without the protein modification by small molecules, indicating the abnormality of the protein network in the transgenic system. The irreversible protein-protein interactions lead to protein aggregation and cell degeneration, which are observed in all aging-associated diseases. PMID:21247434
Yu, Yang; Feng, Linjing; Li, Junnan; Lan, Xiaoxin; A, Lixiang; Lv, Xiaoyan; Zhang, Ming; Chen, Li
2017-09-15
The present study was aim to explore aging-dependent changes in hippocampal autophagy and apoptosis in a natural aging rat model from adult to old stages and to discover a suitable age for treating neurodegenerative diseases. Wistar rats at 5, 18 and 24months of age were used to mimic the adulthood, initial old, and old phases, respectively. The learning and cognitive ability of the rats was detected by the Morris water maze test. Morphological changes in the hippocampus were observed. Expressions of apoptosis and autophagy-related proteins were examined by Western blot. The adult group (5months) exhibited high levels of autophagy related p-ULK p-ULK-1/ULK-1 ratio, Beclin-1, LC3II and cell survival, maintaining normal learning and cognitive function and integrated hippocampal morphology. The initial old group (18 months) presented a reduced number of neurons and cognitive deficits, and exhibited high levels of apoptosis related Bax/Bcl-2 ratio, Caspase-3 activation and autophagy related p-ULK p-ULK-1/ULK-1 ratio, Beclin-1, LC3II compared to the adult group. The old group (24 months) exhibited a high level of apoptosis related Bax/Bcl-2 ratio, Caspase-3 activation and a low level of autophagy related p-ULK p-ULK-1/ULK-1 ratio, Beclin-1, LC3II compared to its younger group, as well as significant neuronal death and cognitive deficits. The degree of autophagy was generally consistent with its negative regulator, the PI3K/Akt/mTOR axis, in all groups. Our data suggest that cognitive deficits are first observed in the initial old stage. The levels of autophagy and apoptosis tend to be opposite in the adult and old phases. High levels of autophagy and apoptosis coexist in the initial old stage. Our study indicates that up-regulation of autophagy in the initial old phase to anti-cognitive deficits must be further evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.
Bhui, Kulpreet; Prasad, Sahdeo; George, Jasmine; Shukla, Yogeshwer
2009-09-18
Chemoprevention impels the pursuit for either single targeted or cocktail of multi-targeted agents. Bromelain, potential agent in this regard, is a pharmacologically active compound, present in stems and fruits of pineapple (Ananas cosmosus), endowed with anti-inflammatory, anti-invasive and anti-metastatic properties. Herein, we report the anti tumor-initiating effects of bromelain in 2-stage mouse skin tumorigenesis model. Pre-treatment of bromelain resulted in reduction in cumulative number of tumors (CNT) and average number of tumors per mouse. Preventive effect was also comprehended in terms of reduction in tumor volume up to a tune of approximately 65%. Components of the cell signaling pathways, connecting proteins involved in cell death were targeted. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in Bcl-2. A marked inhibition in cyclooxygenase-2 (Cox-2) expression and inactivation of nuclear factor-kappa B (NF-kappaB) was recorded, as phosphorylation and consequent degradation of I kappa B alpha was blocked by bromelain. Also, bromelain treatment curtailed extracellular signal regulated protein kinase (ERK1/2), p38 mitogen-activated protein kinase (MAPK) and Akt activity. The basis of anti tumor-initiating activity of bromelain was revealed by its time dependent reduction in DNA nick formation and increase in percentage prevention. Thus, modulation of inappropriate cell signaling cascades driven by bromelain is a coherent approach in achieving chemoprevention.
Kanika, Nirmala; Chang, Jinsook; Tong, Yuehong; Tiplitsky, Scott; Lin, Juan; Yohannes, Elizabeth; Tar, Moses; Chance, Mark; Christ, George J.; Melman, Arnold; Davies, Kelvin
2010-01-01
Objectives To investigate the role that oxidative stress plays in the development of diabetic cystopathy. Materials and methods Comparative gene expression in the bladder of non-diabetic and streptozotocin (STZ)-induced 2-month-old diabetic rats was carried out using microarray analysis. Evidence of oxidative stress was investigated in the bladder by analyzing glutathione S-transferase activity, lipid peroxidation, and carbonylation and nitrosylation of proteins. The activity of protein degradation pathways was assessed using western blot analysis. Results Analysis of global gene expression showed that detrusor smooth muscle tissue of STZ-induced diabetes undergoes significant enrichment in targets involved in the production or regulation of reactive oxygen species (P = 1.27 × 10−10). The microarray analysis was confirmed by showing that markers of oxidative stress were all significantly increased in the diabetic bladder. It was hypothesized that the sequelae to oxidative stress would be increased protein damage and apoptosis. This was confirmed by showing that two key proteins involved in protein degradation (Nedd4 and LC3B) were greatly up-regulated in diabetic bladders compared to controls by 12.2 ± 0.76 and 4.4 ± 1.0-fold, respectively, and the apoptosis inducing protein, BAX, was up-regulated by 6.76 ± 0.76-fold. Conclusions Overall, the findings obtained in the present study add to the growing body of evidence showing that diabetic cystopathy is associated with oxidative damage of smooth muscle cells, and results in protein damage and activation of apoptotic pathways that may contribute to a deterioration in bladder function. PMID:21518418