Science.gov

Sample records for activated brain areas

  1. Individual Human Brain Areas Can Be Identified from Their Characteristic Spectral Activation Fingerprints

    PubMed Central

    Keitel, Anne; Gross, Joachim

    2016-01-01

    The human brain can be parcellated into diverse anatomical areas. We investigated whether rhythmic brain activity in these areas is characteristic and can be used for automatic classification. To this end, resting-state MEG data of 22 healthy adults was analysed. Power spectra of 1-s long data segments for atlas-defined brain areas were clustered into spectral profiles (“fingerprints”), using k-means and Gaussian mixture (GM) modelling. We demonstrate that individual areas can be identified from these spectral profiles with high accuracy. Our results suggest that each brain area engages in different spectral modes that are characteristic for individual areas. Clustering of brain areas according to similarity of spectral profiles reveals well-known brain networks. Furthermore, we demonstrate task-specific modulations of auditory spectral profiles during auditory processing. These findings have important implications for the classification of regional spectral activity and allow for novel approaches in neuroimaging and neurostimulation in health and disease. PMID:27355236

  2. Individual Human Brain Areas Can Be Identified from Their Characteristic Spectral Activation Fingerprints.

    PubMed

    Keitel, Anne; Gross, Joachim

    2016-06-01

    The human brain can be parcellated into diverse anatomical areas. We investigated whether rhythmic brain activity in these areas is characteristic and can be used for automatic classification. To this end, resting-state MEG data of 22 healthy adults was analysed. Power spectra of 1-s long data segments for atlas-defined brain areas were clustered into spectral profiles ("fingerprints"), using k-means and Gaussian mixture (GM) modelling. We demonstrate that individual areas can be identified from these spectral profiles with high accuracy. Our results suggest that each brain area engages in different spectral modes that are characteristic for individual areas. Clustering of brain areas according to similarity of spectral profiles reveals well-known brain networks. Furthermore, we demonstrate task-specific modulations of auditory spectral profiles during auditory processing. These findings have important implications for the classification of regional spectral activity and allow for novel approaches in neuroimaging and neurostimulation in health and disease. PMID:27355236

  3. Brain areas activated by uncertain reward-based decision-making in healthy volunteers.

    PubMed

    Guo, Zongjun; Chen, Juan; Liu, Shien; Li, Yuhuan; Sun, Bo; Gao, Zhenbo

    2013-12-15

    Reward-based decision-making has been found to activate several brain areas, including the ventrolateral prefrontal lobe, orbitofrontal cortex, anterior cingulate cortex, ventral striatum, and mesolimbic dopaminergic system. In this study, we observed brain areas activated under three degrees of uncertainty in a reward-based decision-making task (certain, risky, and ambiguous). The tasks were presented using a brain function audiovisual stimulation system. We conducted brain scans of 15 healthy volunteers using a 3.0T magnetic resonance scanner. We used SPM8 to analyze the location and intensity of activation during the reward-based decision-making task, with respect to the three conditions. We found that the orbitofrontal cortex was activated in the certain reward condition, while the prefrontal cortex, precentral gyrus, occipital visual cortex, inferior parietal lobe, cerebellar posterior lobe, middle temporal gyrus, inferior temporal gyrus, limbic lobe, and midbrain were activated during the 'risk' condition. The prefrontal cortex, temporal pole, inferior temporal gyrus, occipital visual cortex, and cerebellar posterior lobe were activated during ambiguous decision-making. The ventrolateral prefrontal lobe, frontal pole of the prefrontal lobe, orbitofrontal cortex, precentral gyrus, inferior temporal gyrus, fusiform gyrus, supramarginal gyrus, inferior parietal lobule, and cerebellar posterior lobe exhibited greater activation in the 'risk' than in the 'certain' condition (P < 0.05). The frontal pole and dorsolateral region of the prefrontal lobe, as well as the cerebellar posterior lobe, showed significantly greater activation in the 'ambiguous' condition compared to the 'risk' condition (P < 0.05). The prefrontal lobe, occipital lobe, parietal lobe, temporal lobe, limbic lobe, midbrain, and posterior lobe of the cerebellum were activated during decision-making about uncertain rewards. Thus, we observed different levels and regions of activation for different

  4. Decreased Activation of Subcortical Brain Areas in the Motor Fatigue State: An fMRI Study.

    PubMed

    Hou, Li J; Song, Zheng; Pan, Zhu J; Cheng, Jia L; Yu, Yong; Wang, Jun

    2016-01-01

    One aspect of motor fatigue is the exercise-induced reduction of neural activity to voluntarily drive the muscle or muscle group. Functional magnetic resonance imaging provides access to investigate the neural activation on the whole brain level and studies observed changes of activation intensity after exercise-induced motor fatigue in the sensorimotor cortex. However, in human, little evidence exists to demonstrate the role of subcortical brain regions in motor fatigue, which is contradict to abundant researches in rodent indicating that during simple movement, the activity of the basal ganglia is modulated by the state of motor fatigue. Thus, in present study, we explored the effect of motor fatigue on subcortical areas in human. A series of fMRI data were collected from 11 healthy subjects while they were executing simple motor tasks in two conditions: before and under the motor fatigue state. The results showed that in both conditions, movements evoked activation volumes in the sensorimotor areas, SMA, cerebellum, thalamus, and basal ganglia. Of primary importance are the results that the intensity and size of activation volumes in the subcortical areas (i.e., thalamus and basal ganglia areas) are significantly decreased during the motor fatigue state, implying that motor fatigue disturbs the motor control processing in a way that both sensorimotor areas and subcortical brain areas are less active. Further study is needed to clarify how subcortical areas contribute to the overall decreased activity of CNS during motor fatigue state.

  5. Decreased Activation of Subcortical Brain Areas in the Motor Fatigue State: An fMRI Study

    PubMed Central

    Hou, Li J.; Song, Zheng; Pan, Zhu J.; Cheng, Jia L.; Yu, Yong; Wang, Jun

    2016-01-01

    One aspect of motor fatigue is the exercise-induced reduction of neural activity to voluntarily drive the muscle or muscle group. Functional magnetic resonance imaging provides access to investigate the neural activation on the whole brain level and studies observed changes of activation intensity after exercise-induced motor fatigue in the sensorimotor cortex. However, in human, little evidence exists to demonstrate the role of subcortical brain regions in motor fatigue, which is contradict to abundant researches in rodent indicating that during simple movement, the activity of the basal ganglia is modulated by the state of motor fatigue. Thus, in present study, we explored the effect of motor fatigue on subcortical areas in human. A series of fMRI data were collected from 11 healthy subjects while they were executing simple motor tasks in two conditions: before and under the motor fatigue state. The results showed that in both conditions, movements evoked activation volumes in the sensorimotor areas, SMA, cerebellum, thalamus, and basal ganglia. Of primary importance are the results that the intensity and size of activation volumes in the subcortical areas (i.e., thalamus and basal ganglia areas) are significantly decreased during the motor fatigue state, implying that motor fatigue disturbs the motor control processing in a way that both sensorimotor areas and subcortical brain areas are less active. Further study is needed to clarify how subcortical areas contribute to the overall decreased activity of CNS during motor fatigue state. PMID:27536264

  6. Decreased Activation of Subcortical Brain Areas in the Motor Fatigue State: An fMRI Study.

    PubMed

    Hou, Li J; Song, Zheng; Pan, Zhu J; Cheng, Jia L; Yu, Yong; Wang, Jun

    2016-01-01

    One aspect of motor fatigue is the exercise-induced reduction of neural activity to voluntarily drive the muscle or muscle group. Functional magnetic resonance imaging provides access to investigate the neural activation on the whole brain level and studies observed changes of activation intensity after exercise-induced motor fatigue in the sensorimotor cortex. However, in human, little evidence exists to demonstrate the role of subcortical brain regions in motor fatigue, which is contradict to abundant researches in rodent indicating that during simple movement, the activity of the basal ganglia is modulated by the state of motor fatigue. Thus, in present study, we explored the effect of motor fatigue on subcortical areas in human. A series of fMRI data were collected from 11 healthy subjects while they were executing simple motor tasks in two conditions: before and under the motor fatigue state. The results showed that in both conditions, movements evoked activation volumes in the sensorimotor areas, SMA, cerebellum, thalamus, and basal ganglia. Of primary importance are the results that the intensity and size of activation volumes in the subcortical areas (i.e., thalamus and basal ganglia areas) are significantly decreased during the motor fatigue state, implying that motor fatigue disturbs the motor control processing in a way that both sensorimotor areas and subcortical brain areas are less active. Further study is needed to clarify how subcortical areas contribute to the overall decreased activity of CNS during motor fatigue state. PMID:27536264

  7. Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study.

    PubMed

    Popescu, Mihai; Otsuka, Asuka; Ioannides, Andreas A

    2004-04-01

    There are formidable problems in studying how 'real' music engages the brain over wide ranges of temporal scales extending from milliseconds to a lifetime. In this work, we recorded the magnetoencephalographic signal while subjects listened to music as it unfolded over long periods of time (seconds), and we developed and applied methods to correlate the time course of the regional brain activations with the dynamic aspects of the musical sound. We showed that frontal areas generally respond with slow time constants to the music, reflecting their more integrative mode; motor-related areas showed transient-mode responses to fine temporal scale structures of the sound. The study combined novel analysis techniques designed to capture and quantify fine temporal sequencing from the authentic musical piece (characterized by a clearly defined rhythm and melodic structure) with the extraction of relevant features from the dynamics of the regional brain activations. The results demonstrated that activity in motor-related structures, specifically in lateral premotor areas, supplementary motor areas, and somatomotor areas, correlated with measures of rhythmicity derived from the music. These correlations showed distinct laterality depending on how the musical performance deviated from the strict tempo of the music score, that is, depending on the musical expression.

  8. Interspecies activity correlations reveal functional correspondence between monkey and human brain areas.

    PubMed

    Mantini, Dante; Hasson, Uri; Betti, Viviana; Perrucci, Mauro G; Romani, Gian Luca; Corbetta, Maurizio; Orban, Guy A; Vanduffel, Wim

    2012-02-05

    Evolution-driven functional changes in the primate brain are typically assessed by aligning monkey and human activation maps using cortical surface expansion models. These models use putative homologous areas as registration landmarks, assuming they are functionally correspondent. For cases in which functional changes have occurred in an area, this assumption prohibits to reveal whether other areas may have assumed lost functions. Here we describe a method to examine functional correspondences across species. Without making spatial assumptions, we assessed similarities in sensory-driven functional magnetic resonance imaging responses between monkey (Macaca mulatta) and human brain areas by temporal correlation. Using natural vision data, we revealed regions for which functional processing has shifted to topologically divergent locations during evolution. We conclude that substantial evolution-driven functional reorganizations have occurred, not always consistent with cortical expansion processes. This framework for evaluating changes in functional architecture is crucial to building more accurate evolutionary models.

  9. Brain stimulation used as biofeedback in neuronal activation of the temporal lobe area in autistic children.

    PubMed

    Silva, Vernon Furtado da; Calomeni, Mauricio Rocha; Nunes, Rodolfo Alkmim Moreira; Pimentel, Carlos Elias; Martins, Gabriela Paes; Oliveira, Patrícia da Cruz Araruna; Silva, Patrícia Bagno; Silva, Alair Pedro Ribeiro de Souza E

    2016-08-01

    This study focused upon the functional capacity of mirror neurons in autistic children. 30 individuals, 10 carriers of the autistic syndrome (GCA), 10 with intellectual impairments (GDI), and 10 non-autistics (GCN) had registered eletroencephalogram from the brain area theoretically related to mirror neurons. Data collection procedure occurred prior to brain stimulation and after the stimulation session. During the second session, participants had to alternately process figures evoking neutral, happy, and/or sorrowful feelings. Results proved that, for all groups, the stimulation process in fact produced additional activation in the neural area under study. The level of activation was related to the format of emotional stimuli and the likelihood of boosting such stimuli. Since the increase of activation occurred in a model similar to the one observed for the control group, we may suggest that the difficulty people with autism have at expressing emotions is not due to nonexistence of mirror neurons. PMID:27556374

  10. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans.

    PubMed

    van Bloemendaal, Liselotte; IJzerman, Richard G; Ten Kulve, Jennifer S; Barkhof, Frederik; Konrad, Robert J; Drent, Madeleine L; Veltman, Dick J; Diamant, Michaela

    2014-12-01

    Gut-derived hormones, such as GLP-1, have been proposed to relay information to the brain to regulate appetite. GLP-1 receptor agonists, currently used for the treatment of type 2 diabetes (T2DM), improve glycemic control and stimulate satiety, leading to decreases in food intake and body weight. We hypothesized that food intake reduction after GLP-1 receptor activation is mediated through appetite- and reward-related brain areas. Obese T2DM patients and normoglycemic obese and lean individuals (n = 48) were studied in a randomized, crossover, placebo-controlled trial. Using functional MRI, we determined the acute effects of intravenous administration of the GLP-1 receptor agonist exenatide, with or without prior GLP-1 receptor blockade using exendin 9-39, on brain responses to food pictures during a somatostatin pancreatic-pituitary clamp. Obese T2DM patients and normoglycemic obese versus lean subjects showed increased brain responses to food pictures in appetite- and reward-related brain regions (insula and amygdala). Exenatide versus placebo decreased food intake and food-related brain responses in T2DM patients and obese subjects (in insula, amygdala, putamen, and orbitofrontal cortex). These effects were largely blocked by prior GLP-1 receptor blockade using exendin 9-39. Our findings provide novel insights into the mechanisms by which GLP-1 regulates food intake and how GLP-1 receptor agonists cause weight loss. PMID:25071023

  11. Monocrotaline: Histological Damage and Oxidant Activity in Brain Areas of Mice

    PubMed Central

    Honório Junior, José Eduardo Ribeiro; Vasconcelos, Germana Silva; Rodrigues, Francisca Taciana Sousa; Sena Filho, José Guedes; Barbosa-Filho, José Maria; Aguiar, Carlos Clayton Torres; Leal, Luzia Kalyne Almeida Moreira; Soares, Pedro Marcos Gomes; Woods, David John; Fonteles, Marta Maria de França; Vasconcelos, Silvânia Maria Mendes

    2012-01-01

    This work was designed to study MCT effect in histopathological analysis of hippocampus (HC) and parahippocampal cortex (PHC) and in oxidative stress (OS) parameters in brain areas such as hippocampus (HC), prefrontal cortex (PFC), and striatum (ST). Swiss mice (25–30 g) were administered a single i.p. dose of MCT (5, 50, or 100 mg/kg) or 4% Tween 80 in saline (control group). After 30 minutes, the animals were sacrificed by decapitation and the brain areas (HC, PHC, PFC, or ST) were removed for histopathological analysis or dissected and homogenized for measurement of OS parameters (lipid peroxidation, nitrite, and catalase) by spectrophotometry. Histological evaluation of brain structures of rats treated with MCT (50 and 100 mg/kg) revealed lesions in the hippocampus and parahippocampal cortex compared to control. Lipid peroxidation was evident in all brain areas after administration of MCT. Nitrite/nitrate content decreased in all doses administered in HC, PFC, and ST. Catalase activity was increased in the MCT group only in HC. In conclusion, monocrotaline caused cell lesions in the hippocampus and parahippocampal cortex regions and produced oxidative stress in the HC, PFC, and ST in mice. These findings may contribute to the neurological effects associated with this compound. PMID:23251721

  12. Neuronal Heterotopias Affect the Activities of Distant Brain Areas and Lead to Behavioral Deficits.

    PubMed

    Ishii, Kazuhiro; Kubo, Ken-ichiro; Endo, Toshihiro; Yoshida, Keitaro; Benner, Seico; Ito, Yukiko; Aizawa, Hidenori; Aramaki, Michihiko; Yamanaka, Akihiro; Tanaka, Kohichi; Takata, Norio; Tanaka, Kenji F; Mimura, Masaru; Tohyama, Chiharu; Kakeyama, Masaki; Nakajima, Kazunori

    2015-09-01

    Neuronal heterotopia refers to brain malformations resulting from deficits of neuronal migration. Individuals with heterotopias show a high incidence of neurological deficits, such as epilepsy. More recently, it has come to be recognized that focal heterotopias may also show a range of psychiatric problems, including cognitive and behavioral impairments. However, because focal heterotopias are not always located in the brain areas responsible for the symptoms, the causal relationship between the symptoms and heterotopias remains elusive. In this study, we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited spatial working memory deficit and low competitive dominance behavior, which have been shown to be closely associated with the activity of the medial prefrontal cortex (mPFC) in rodents. Analysis of the mPFC activity revealed that the immediate-early gene expression was decreased and the local field potentials of the mPFC were altered in the mice with heterotopias compared with the control mice. Moreover, activation of these ectopic and overlying sister neurons using the DREADD (designer receptor exclusively activated by designer drug) system improved the working memory deficits. These findings suggest that cortical regions containing focal heterotopias can affect distant brain regions and give rise to behavioral abnormalities. Significance statement: Recent studies reported that patients with heterotopias have a variety of clinical symptoms, such as cognitive disturbance, psychiatric symptoms, and autistic behavior. However, the causal relationship between the symptoms and heterotopias remains elusive. Here we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited behavioral deficits that have been shown to be associated with the mPFC activity in rodents. The existence of heterotopias indeed altered the neural activities of the mPFC, and

  13. Neuronal Heterotopias Affect the Activities of Distant Brain Areas and Lead to Behavioral Deficits.

    PubMed

    Ishii, Kazuhiro; Kubo, Ken-ichiro; Endo, Toshihiro; Yoshida, Keitaro; Benner, Seico; Ito, Yukiko; Aizawa, Hidenori; Aramaki, Michihiko; Yamanaka, Akihiro; Tanaka, Kohichi; Takata, Norio; Tanaka, Kenji F; Mimura, Masaru; Tohyama, Chiharu; Kakeyama, Masaki; Nakajima, Kazunori

    2015-09-01

    Neuronal heterotopia refers to brain malformations resulting from deficits of neuronal migration. Individuals with heterotopias show a high incidence of neurological deficits, such as epilepsy. More recently, it has come to be recognized that focal heterotopias may also show a range of psychiatric problems, including cognitive and behavioral impairments. However, because focal heterotopias are not always located in the brain areas responsible for the symptoms, the causal relationship between the symptoms and heterotopias remains elusive. In this study, we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited spatial working memory deficit and low competitive dominance behavior, which have been shown to be closely associated with the activity of the medial prefrontal cortex (mPFC) in rodents. Analysis of the mPFC activity revealed that the immediate-early gene expression was decreased and the local field potentials of the mPFC were altered in the mice with heterotopias compared with the control mice. Moreover, activation of these ectopic and overlying sister neurons using the DREADD (designer receptor exclusively activated by designer drug) system improved the working memory deficits. These findings suggest that cortical regions containing focal heterotopias can affect distant brain regions and give rise to behavioral abnormalities. Significance statement: Recent studies reported that patients with heterotopias have a variety of clinical symptoms, such as cognitive disturbance, psychiatric symptoms, and autistic behavior. However, the causal relationship between the symptoms and heterotopias remains elusive. Here we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited behavioral deficits that have been shown to be associated with the mPFC activity in rodents. The existence of heterotopias indeed altered the neural activities of the mPFC, and

  14. Reading a suspenseful literary text activates brain areas related to social cognition and predictive inference.

    PubMed

    Lehne, Moritz; Engel, Philipp; Rohrmeier, Martin; Menninghaus, Winfried; Jacobs, Arthur M; Koelsch, Stefan

    2015-01-01

    Stories can elicit powerful emotions. A key emotional response to narrative plots (e.g., novels, movies, etc.) is suspense. Suspense appears to build on basic aspects of human cognition such as processes of expectation, anticipation, and prediction. However, the neural processes underlying emotional experiences of suspense have not been previously investigated. We acquired functional magnetic resonance imaging (fMRI) data while participants read a suspenseful literary text (E.T.A. Hoffmann's "The Sandman") subdivided into short text passages. Individual ratings of experienced suspense obtained after each text passage were found to be related to activation in the medial frontal cortex, bilateral frontal regions (along the inferior frontal sulcus), lateral premotor cortex, as well as posterior temporal and temporo-parietal areas. The results indicate that the emotional experience of suspense depends on brain areas associated with social cognition and predictive inference.

  15. Reading a Suspenseful Literary Text Activates Brain Areas Related to Social Cognition and Predictive Inference

    PubMed Central

    Lehne, Moritz; Engel, Philipp; Rohrmeier, Martin; Menninghaus, Winfried; Jacobs, Arthur M.; Koelsch, Stefan

    2015-01-01

    Stories can elicit powerful emotions. A key emotional response to narrative plots (e.g., novels, movies, etc.) is suspense. Suspense appears to build on basic aspects of human cognition such as processes of expectation, anticipation, and prediction. However, the neural processes underlying emotional experiences of suspense have not been previously investigated. We acquired functional magnetic resonance imaging (fMRI) data while participants read a suspenseful literary text (E.T.A. Hoffmann's “The Sandman”) subdivided into short text passages. Individual ratings of experienced suspense obtained after each text passage were found to be related to activation in the medial frontal cortex, bilateral frontal regions (along the inferior frontal sulcus), lateral premotor cortex, as well as posterior temporal and temporo-parietal areas. The results indicate that the emotional experience of suspense depends on brain areas associated with social cognition and predictive inference. PMID:25946306

  16. Combining Functional Neuroimaging with Off-Line Brain Stimulation: Modulation of Task-Related Activity in Language Areas

    ERIC Educational Resources Information Center

    Andoh, Jamila; Paus, Tomas

    2011-01-01

    Repetitive TMS (rTMS) provides a noninvasive tool for modulating neural activity in the human brain. In healthy participants, rTMS applied over the language-related areas in the left hemisphere, including the left posterior temporal area of Wernicke (LTMP) and inferior frontal area of Broca, have been shown to affect performance on word…

  17. Changes of acetylcholinesterase activity in different rat brain areas following intoxication with nerve agents: biochemical and histochemical study.

    PubMed

    Bajgar, Jiri; Hajek, Petr; Slizova, Dasa; Krs, Otakar; Fusek, Josef; Kuca, Kamil; Jun, Daniel; Bartosova, Lucie; Blaha, Vaclav

    2007-01-01

    Acetylcholinesterase activity in defined brain regions was determined using biochemical and histochemical methods 30 min after treating rats with sarin, soman or VX (0.5 x LD(50)). Enzyme inhibition was high in the pontomedullar area and frontal cortex, but was low in the basal ganglia. Histochemical and biochemical results correlated well. Determination of the activity in defined brain structures was a more sensitive parameter than determination in whole brain homogenate where the activity was a "mean" of the activities in different structures. The pontomedullar area controls respiration, so that the special sensitivity of acetylcholinesterase to inhibition by nerve agents in this area is important for understanding the mechanism of death caused by nerve agents. Thus, acetylcholinesterase activity is the main parameter investigated in studies searching for target sites following nerve agent poisoning.

  18. Serotonergic changes in specific areas of rat brain associated with activity--stress gastric lesions.

    PubMed

    Hellhammer, D H; Hingtgen, J N; Wade, S E; Shea, P A; Aprison, M H

    1983-05-01

    To study serotonergic involvement in the development of gastric lesions following activity wheel stress, three groups of rats (gastric lesions, no gastric lesions, and home--cage controls) were killed following exposure to the experimental procedures. The brains were dissected into eight specific areas and subjected to analyses for serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) using high performance liquid chromatography with EC detection. Lower levels of 5-HT were found in the midbrain, cortex, and hippocampus of rats with gastric lesions compared to either the no lesion group, subjected to shorter periods of activity--stress, or the home--cage control group. Levels of 5-HT and 5-HIAA were elevated in the pons/medulla oblongata of both the lesion and the no lesion groups compared to the home--cage controls. Corticosterone levels in blood were also significantly elevated in the lesion group. These data on serotonin changes in the CNS suggest a possible role for this neurotransmitter in stress-induced gastric pathology. PMID:6191350

  19. Fat/carbohydrate ratio but not energy density determines snack food intake and activates brain reward areas

    PubMed Central

    Hoch, Tobias; Kreitz, Silke; Gaffling, Simone; Pischetsrieder, Monika; Hess, Andreas

    2015-01-01

    The snack food potato chips induces food intake in ad libitum fed rats, which is associated with modulation of the brain reward system and other circuits. Here, we show that food intake in satiated rats is triggered by an optimal fat/carbohydrate ratio. Like potato chips, an isocaloric fat/carbohydrate mixture influenced whole brain activity pattern of rats, affecting circuits related e.g. to reward/addiction, but the number of modulated areas and the extent of modulation was lower compared to the snack food itself. PMID:25973686

  20. Fat/carbohydrate ratio but not energy density determines snack food intake and activates brain reward areas.

    PubMed

    Hoch, Tobias; Kreitz, Silke; Gaffling, Simone; Pischetsrieder, Monika; Hess, Andreas

    2015-05-14

    The snack food potato chips induces food intake in ad libitum fed rats, which is associated with modulation of the brain reward system and other circuits. Here, we show that food intake in satiated rats is triggered by an optimal fat/carbohydrate ratio. Like potato chips, an isocaloric fat/carbohydrate mixture influenced whole brain activity pattern of rats, affecting circuits related e.g. to reward/addiction, but the number of modulated areas and the extent of modulation was lower compared to the snack food itself.

  1. Fat/carbohydrate ratio but not energy density determines snack food intake and activates brain reward areas.

    PubMed

    Hoch, Tobias; Kreitz, Silke; Gaffling, Simone; Pischetsrieder, Monika; Hess, Andreas

    2015-01-01

    The snack food potato chips induces food intake in ad libitum fed rats, which is associated with modulation of the brain reward system and other circuits. Here, we show that food intake in satiated rats is triggered by an optimal fat/carbohydrate ratio. Like potato chips, an isocaloric fat/carbohydrate mixture influenced whole brain activity pattern of rats, affecting circuits related e.g. to reward/addiction, but the number of modulated areas and the extent of modulation was lower compared to the snack food itself. PMID:25973686

  2. Interaction of brain areas of visual and vestibular simultaneous activity with fMRI.

    PubMed

    Della-Justina, Hellen M; Gamba, Humberto R; Lukasova, Katerina; Nucci-da-Silva, Mariana P; Winkler, Anderson M; Amaro, Edson

    2015-01-01

    Static body equilibrium is an essential requisite for human daily life. It is known that visual and vestibular systems must work together to support equilibrium. However, the relationship between these two systems is not fully understood. In this work, we present the results of a study which identify the interaction of brain areas that are involved with concurrent visual and vestibular inputs. The visual and the vestibular systems were individually and simultaneously stimulated, using flickering checkerboard (without movement stimulus) and galvanic current, during experiments of functional magnetic resonance imaging. Twenty-four right-handed and non-symptomatic subjects participated in this study. Single visual stimulation shows positive blood-oxygen-level-dependent (BOLD) responses (PBR) in the primary and associative visual cortices. Single vestibular stimulation shows PBR in the parieto-insular vestibular cortex, inferior parietal lobe, superior temporal gyrus, precentral gyrus and lobules V and VI of the cerebellar hemisphere. Simultaneous stimulation shows PBR in the middle and inferior frontal gyri and in the precentral gyrus. Vestibular- and somatosensory-related areas show negative BOLD responses (NBR) during simultaneous stimulation. NBR areas were also observed in the calcarine gyrus, lingual gyrus, cuneus and precuneus during simultaneous and single visual stimulations. For static visual and galvanic vestibular simultaneous stimulation, the reciprocal inhibitory visual-vestibular interaction pattern is observed in our results. The experimental results revealed interactions in frontal areas during concurrent visual-vestibular stimuli, which are affected by intermodal association areas in occipital, parietal, and temporal lobes.

  3. Interaction of brain areas of visual and vestibular simultaneous activity with fMRI.

    PubMed

    Della-Justina, Hellen M; Gamba, Humberto R; Lukasova, Katerina; Nucci-da-Silva, Mariana P; Winkler, Anderson M; Amaro, Edson

    2015-01-01

    Static body equilibrium is an essential requisite for human daily life. It is known that visual and vestibular systems must work together to support equilibrium. However, the relationship between these two systems is not fully understood. In this work, we present the results of a study which identify the interaction of brain areas that are involved with concurrent visual and vestibular inputs. The visual and the vestibular systems were individually and simultaneously stimulated, using flickering checkerboard (without movement stimulus) and galvanic current, during experiments of functional magnetic resonance imaging. Twenty-four right-handed and non-symptomatic subjects participated in this study. Single visual stimulation shows positive blood-oxygen-level-dependent (BOLD) responses (PBR) in the primary and associative visual cortices. Single vestibular stimulation shows PBR in the parieto-insular vestibular cortex, inferior parietal lobe, superior temporal gyrus, precentral gyrus and lobules V and VI of the cerebellar hemisphere. Simultaneous stimulation shows PBR in the middle and inferior frontal gyri and in the precentral gyrus. Vestibular- and somatosensory-related areas show negative BOLD responses (NBR) during simultaneous stimulation. NBR areas were also observed in the calcarine gyrus, lingual gyrus, cuneus and precuneus during simultaneous and single visual stimulations. For static visual and galvanic vestibular simultaneous stimulation, the reciprocal inhibitory visual-vestibular interaction pattern is observed in our results. The experimental results revealed interactions in frontal areas during concurrent visual-vestibular stimuli, which are affected by intermodal association areas in occipital, parietal, and temporal lobes. PMID:25300959

  4. Effect of Acute Emotional Stress on Proteomic Profile of Selected Brain Areas and Lysosomal Proteolysis in Rats with Different Behavioral Activity.

    PubMed

    Sharanova, N E; Kirbaeva, N V; Toropygin, I Yu; Khryapova, E V; Koplik, E V; Soto, C Kh; Pertsov, S S; Vasiliev, A V

    2016-07-01

    We compared proteome profiles of selected brain areas (cortex, amygdala, hippocampus, and reticular formation) and measured cathepsins B and D activity in liver lysosomal fraction in rats with different behavioral activity under conditions of emotional stress. In passive rats, the expression of some proteins in various brain regions was changed and baseline cathepsin B activity was higher than in active animals. Taken together, the results attest to differences in the adaptive response formation in rats, depending on behavioral features. PMID:27502534

  5. Activation Changes in Zebra Finch (Taeniopygia guttata) Brain Areas Evoked by Alterations of the Earth Magnetic Field

    PubMed Central

    Keary, Nina; Bischof, Hans-Joachim

    2012-01-01

    Many animals are able to perceive the earth magnetic field and to use it for orientation and navigation within the environment. The mechanisms underlying the perception and processing of magnetic field information within the brain have been thoroughly studied, especially in birds, but are still obscure. Three hypotheses are currently discussed, dealing with ferromagnetic particles in the beak of birds, with the same sort of particles within the lagena organs, or describing magnetically influenced radical-pair processes within retinal photopigments. Each hypothesis is related to a well-known sensory organ and claims parallel processing of magnetic field information with somatosensory, vestibular and visual input, respectively. Changes in activation within nuclei of the respective sensory systems have been shown previously. Most of these previous experiments employed intensity enhanced magnetic stimuli or lesions. We here exposed unrestrained zebra finches to either a stationary or a rotating magnetic field of the local intensity and inclination. C-Fos was used as an activity marker to examine whether the two treatments led to differences in fourteen brain areas including nuclei of the somatosensory, vestibular and visual system. An ANOVA revealed an overall effect of treatment, indicating that the magnetic field change was perceived by the birds. While the differences were too small to be significant in most areas, a significant enhancement of activation by the rotating stimulus was found in a hippocampal subdivision. Part of the hyperpallium showed a strong, nearly significant, increase. Our results are compatible with previous studies demonstrating an involvement of at least three different sensory systems in earth magnetic field perception and suggest that these systems, probably less elaborated, may also be found in nonmigrating birds. PMID:22679515

  6. Combining functional neuroimaging with off-line brain stimulation: modulation of task-related activity in language areas.

    PubMed

    Andoh, Jamila; Paus, Tomás

    2011-02-01

    Repetitive TMS (rTMS) provides a noninvasive tool for modulating neural activity in the human brain. In healthy participants, rTMS applied over the language-related areas in the left hemisphere, including the left posterior temporal area of Wernicke (LTMP) and inferior frontal area of Broca, have been shown to affect performance on word recognition tasks. To investigate the neural substrate of these behavioral effects, off-line rTMS was combined with fMRI acquired during the performance of a word recognition task. Twenty right-handed healthy men underwent fMRI scans before and after a session of 10-Hz rTMS applied outside the magnetic resonance scanner. Functional magnetic resonance images were acquired during the performance of a word recognition task that used English or foreign-language words. rTMS was applied over the LTMP in one group of 10 participants (LTMP group), whereas the homologue region in the right hemisphere was stimulated in another group of 10 participants (RTMP group). Changes in task-related fMRI response (English minus foreign languages) and task performances (response time and accuracy) were measured in both groups and compared between pre-rTMS and post-rTMS. Our results showed that rTMS increased task-related fMRI response in the homologue areas contralateral to the stimulated sites. We also found an effect of rTMS on response time for the LTMP group only. These findings provide insights into changes in neural activity in cortical regions connected to the stimulated site and are consistent with a hypothesis raised in a previous review about the role of the homologue areas in the contralateral hemisphere for preserving behavior after neural interference.

  7. The Brain Activity in Brodmann Area 17: A Potential Bio-Marker to Predict Patient Responses to Antiepileptic Drugs

    PubMed Central

    Xu, Xin; Fang, Weidong; Zeng, Kebin; Yang, Mingming; Li, Chenyu; Wang, Shasha; Li, Minghui; Wang, Xuefeng

    2015-01-01

    In this study, we aimed to predict newly diagnosed patient responses to antiepileptic drugs (AEDs) using resting-state functional magnetic resonance imaging tools to explore changes in spontaneous brain activity. We recruited 21 newly diagnosed epileptic patients, 8 drug-resistant (DR) patients, 11 well-healed (WH) patients, and 13 healthy controls. After a 12-month follow-up, 11 newly diagnosed epileptic patients who showed a poor response to AEDs were placed into the seizures uncontrolled (SUC) group, while 10 patients were enrolled in the seizure-controlled (SC) group. By calculating the amplitude of fractional low-frequency fluctuations (fALFF) of blood oxygen level-dependent signals to measure brain activity during rest, we found that the SUC patients showed increased activity in the bilateral occipital lobe, particularly in the cuneus and lingual gyrus compared with the SC group and healthy controls. Interestingly, DR patients also showed increased activity in the identical cuneus and lingual gyrus regions, which comprise Brodmann’s area 17 (BA17), compared with the SUC patients; however, these abnormalities were not observed in SC and WH patients. The receiver operating characteristic (ROC) curves indicated that the fALFF value of BA17 could differentiate SUC patients from SC patients and healthy controls with sufficient sensitivity and specificity prior to the administration of medication. Functional connectivity analysis was subsequently performed to evaluate the difference in connectivity between BA17 and other brain regions in the SUC, SC and control groups. Regions nearby the cuneus and lingual gyrus were found positive connectivity increased changes or positive connectivity changes with BA17 in the SUC patients, while remarkably negative connectivity increased changes or positive connectivity decreased changes were found in the SC patients. Additionally, default mode network (DMN) regions showed negative connectivity increased changes or negative

  8. Motor imagery of hand actions: Decoding the content of motor imagery from brain activity in frontal and parietal motor areas

    PubMed Central

    Pilgramm, Sebastian; de Haas, Benjamin; Helm, Fabian; Zentgraf, Karen; Stark, Rudolf; Munzert, Jörn

    2015-01-01

    Abstract How motor maps are organized while imagining actions is an intensely debated issue. It is particularly unclear whether motor imagery relies on action‐specific representations in premotor and posterior parietal cortices. This study tackled this issue by attempting to decode the content of motor imagery from spatial patterns of Blood Oxygen Level Dependent (BOLD) signals recorded in the frontoparietal motor imagery network. During fMRI‐scanning, 20 right‐handed volunteers worked on three experimental conditions and one baseline condition. In the experimental conditions, they had to imagine three different types of right‐hand actions: an aiming movement, an extension–flexion movement, and a squeezing movement. The identity of imagined actions was decoded from the spatial patterns of BOLD signals they evoked in premotor and posterior parietal cortices using multivoxel pattern analysis. Results showed that the content of motor imagery (i.e., the action type) could be decoded significantly above chance level from the spatial patterns of BOLD signals in both frontal (PMC, M1) and parietal areas (SPL, IPL, IPS). An exploratory searchlight analysis revealed significant clusters motor‐ and motor‐associated cortices, as well as in visual cortices. Hence, the data provide evidence that patterns of activity within premotor and posterior parietal cortex vary systematically with the specific type of hand action being imagined. Hum Brain Mapp 37:81–93, 2016. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26452176

  9. Does somatosensory discrimination activate different brain areas in children with unilateral cerebral palsy compared to typically developing children? An fMRI study.

    PubMed

    Van de Winckel, Ann; Verheyden, Geert; Wenderoth, Nici; Peeters, Ron; Sunaert, Stefan; Van Hecke, Wim; De Cock, Paul; Desloovere, Kaat; Eyssen, Maria; Feys, Hilde

    2013-05-01

    Aside from motor impairment, many children with unilateral cerebral palsy (CP) experience altered tactile, proprioceptive, and kinesthetic awareness. Sensory deficits are addressed in rehabilitation programs, which include somatosensory discrimination exercises. In contrast to adult stroke patients, data on brain activation, occurring during somatosensory discrimination exercises, are lacking in CP children. Therefore, this study investigated brain activation with functional magnetic resonance imaging (fMRI) during passively guided somatosensory discrimination exercises in 18 typically developing children (TD) (age, M=14 ± 1.92 years; 11 girls) and 16 CP children (age, M=15 ± 2.54 years; 8 girls). The demographic variables between both groups were not statistically different. An fMRI compatible robot guided the right index finger and performed pairs of unfamiliar geometric shapes in the air, which were judged on their equality. The control condition comprised discrimination of music fragments. Both groups exhibited significant activation (FDR, p<.05) in frontoparietal, temporal, cerebellar areas, and insula, similar to studies in adults. The frontal areas encompassed ventral premotor areas, left postcentral gyrus, and precentral gyrus; additional supplementary motor area (SMA proper) activation in TD; as well as dorsal premotor, and parietal operculum recruitment in CP. On uncorrected level, p<.001, TD children revealed more left frontal lobe, and right cerebellum activation, compared to CP children. Conversely, CP children activated the left dorsal cingulate gyrus to a greater extent than TD children. These data provide incentives to investigate the effect of somatosensory discrimination during rehabilitation in CP, on clinical outcome and brain plasticity.

  10. Mechanisms of acute uremic encephalopathy: early activation of Fos and Fra-2 gene products in different nuclei/areas of the rat brain.

    PubMed

    Heidland, August; Sebekova, Katarina; Klassen, André; Palkovits, Miklós

    2010-09-01

    High levels of various uremic toxins such as guanidino compounds and advanced glycation endproducts, as well as an excess of parathyroid hormones, are involved in the pathogenesis of acute uremic encephalopathy. Moreover, distant effects of the damaged kidney with enhanced production of inflammatory mediators are implicated. Data on the pump activity of an abnormal Na-K-ATPase and inhibition of the organic anion transporter system in the brain have been published previously. Recently, the effect of an experimentally induced acute renal failure (ARF) on the neuronal cell activation of Fos and Fra-2 in the rat brain was investigated by immunohistochemistry. ARF was induced by using the following 3 rat models: bilateral nephrectomy, bilateral ureter ligation, and uranyl acetate injection with corresponding controls. The Fos and the Fra-2 immunoreactive neurons of the brain were determined in a total of 120 brain areas over a period of 3 days post bilateral nephrectomy and bilateral ureter ligation and 12 days after uranyl acetate. An activation response was observed in 73 of 120 areas of the brain. The responses were classified into 4 groups: (1) biogenic amines (noradrenaline, adrenaline, histamine, and 5-hydroxytryptamine), (2) stress-sensitive forebrain areas, (3) neuronal cell groups involved in the regulation of water and electrolyte homeostasis, and (4) central autonomic cell groups. In the uranyl acetate-induced ARF, activation of Fos and Fra-2 immunoreactivity took place at the earliest time-point (3 hours) which persisted even after improvement of ARF. This suggests the involvement of the toxic effects of uranium as a result of its accumulation in the brain.

  11. Does somatosensory discrimination activate different brain areas in children with unilateral cerebral palsy compared to typically developing children? An fMRI study.

    PubMed

    Van de Winckel, Ann; Verheyden, Geert; Wenderoth, Nici; Peeters, Ron; Sunaert, Stefan; Van Hecke, Wim; De Cock, Paul; Desloovere, Kaat; Eyssen, Maria; Feys, Hilde

    2013-05-01

    Aside from motor impairment, many children with unilateral cerebral palsy (CP) experience altered tactile, proprioceptive, and kinesthetic awareness. Sensory deficits are addressed in rehabilitation programs, which include somatosensory discrimination exercises. In contrast to adult stroke patients, data on brain activation, occurring during somatosensory discrimination exercises, are lacking in CP children. Therefore, this study investigated brain activation with functional magnetic resonance imaging (fMRI) during passively guided somatosensory discrimination exercises in 18 typically developing children (TD) (age, M=14 ± 1.92 years; 11 girls) and 16 CP children (age, M=15 ± 2.54 years; 8 girls). The demographic variables between both groups were not statistically different. An fMRI compatible robot guided the right index finger and performed pairs of unfamiliar geometric shapes in the air, which were judged on their equality. The control condition comprised discrimination of music fragments. Both groups exhibited significant activation (FDR, p<.05) in frontoparietal, temporal, cerebellar areas, and insula, similar to studies in adults. The frontal areas encompassed ventral premotor areas, left postcentral gyrus, and precentral gyrus; additional supplementary motor area (SMA proper) activation in TD; as well as dorsal premotor, and parietal operculum recruitment in CP. On uncorrected level, p<.001, TD children revealed more left frontal lobe, and right cerebellum activation, compared to CP children. Conversely, CP children activated the left dorsal cingulate gyrus to a greater extent than TD children. These data provide incentives to investigate the effect of somatosensory discrimination during rehabilitation in CP, on clinical outcome and brain plasticity. PMID:23500165

  12. Activities That Build the Young Child's Brain.

    ERIC Educational Resources Information Center

    Gellens, Suzanne R.

    This book presents 350 classroom-tested activities for use with children to create an environment that will stimulate young children's brains. Designed to be used by families, classroom teachers, family childcare providers, or others caring for young children, the book includes information on current brain research and describes interest areas in…

  13. Convergence of human brain mapping tools: neuronavigated TMS parameters and fMRI activity in the hand motor area.

    PubMed

    Sarfeld, Anna-Sophia; Diekhoff, Svenja; Wang, Ling E; Liuzzi, Gianpiero; Uludağ, Kamil; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2012-05-01

    Functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) are well-established tools for investigating the human motor system in-vivo. We here studied the relationship between movement-related fMRI signal changes in the primary motor cortex (M1) and electrophysiological properties of the hand motor area assessed with neuronavigated TMS in 17 healthy subjects. The voxel showing the highest task-related BOLD response in the left hand motor area during right hand movements was identified for each individual subject. This fMRI peak voxel in M1 served as spatial target for coil positioning during neuronavigated TMS. We performed correlation analyses between TMS parameters, BOLD signal estimates and effective connectivity parameters of M1 assessed with dynamic causal modeling (DCM). The results showed a negative correlation between the movement-related BOLD signal in left M1 and resting as well as active motor threshold (MT) obtained for left M1. The DCM analysis revealed that higher excitability of left M1 was associated with a stronger coupling between left supplementary motor area (SMA) and M1. Furthermore, BOLD activity in left M1 correlated with ipsilateral silent period (ISP), i.e. the stronger the task-related BOLD response in left M1, the higher interhemispheric inhibition effects targeting right M1. DCM analyses revealed a positive correlation between the coupling of left SMA with left M1 and the duration of ISP. The data show that TMS parameters assessed for the hand area of M1 do not only reflect the intrinsic properties at the stimulation site but also interactions with remote areas in the human motor system.

  14. Understanding the brain by controlling neural activity

    PubMed Central

    Krug, Kristine; Salzman, C. Daniel; Waddell, Scott

    2015-01-01

    Causal methods to interrogate brain function have been employed since the advent of modern neuroscience in the nineteenth century. Initially, randomly placed electrodes and stimulation of parts of the living brain were used to localize specific functions to these areas. Recent technical developments have rejuvenated this approach by providing more precise tools to dissect the neural circuits underlying behaviour, perception and cognition. Carefully controlled behavioural experiments have been combined with electrical devices, targeted genetically encoded tools and neurochemical approaches to manipulate information processing in the brain. The ability to control brain activity in these ways not only deepens our understanding of brain function but also provides new avenues for clinical intervention, particularly in conditions where brain processing has gone awry. PMID:26240417

  15. Motor imagery of hand actions: Decoding the content of motor imagery from brain activity in frontal and parietal motor areas.

    PubMed

    Pilgramm, Sebastian; de Haas, Benjamin; Helm, Fabian; Zentgraf, Karen; Stark, Rudolf; Munzert, Jörn; Krüger, Britta

    2016-01-01

    How motor maps are organized while imagining actions is an intensely debated issue. It is particularly unclear whether motor imagery relies on action-specific representations in premotor and posterior parietal cortices. This study tackled this issue by attempting to decode the content of motor imagery from spatial patterns of Blood Oxygen Level Dependent (BOLD) signals recorded in the frontoparietal motor imagery network. During fMRI-scanning, 20 right-handed volunteers worked on three experimental conditions and one baseline condition. In the experimental conditions, they had to imagine three different types of right-hand actions: an aiming movement, an extension-flexion movement, and a squeezing movement. The identity of imagined actions was decoded from the spatial patterns of BOLD signals they evoked in premotor and posterior parietal cortices using multivoxel pattern analysis. Results showed that the content of motor imagery (i.e., the action type) could be decoded significantly above chance level from the spatial patterns of BOLD signals in both frontal (PMC, M1) and parietal areas (SPL, IPL, IPS). An exploratory searchlight analysis revealed significant clusters motor- and motor-associated cortices, as well as in visual cortices. Hence, the data provide evidence that patterns of activity within premotor and posterior parietal cortex vary systematically with the specific type of hand action being imagined. PMID:26452176

  16. Parental brain: cerebral areas activated by infant cries and faces. A comparison between different populations of parents and not

    PubMed Central

    Piallini, Giulia; De Palo, Francesca; Simonelli, Alessandra

    2015-01-01

    Literature about parenting traditionally focused on caring behaviors and parental representations. Nowadays, an innovative line of research, interested in evaluating the neural areas and hormones implicated in the nurturing and caregiving responses, has developed. The only way to permit a newborn to survive and grow up is to respond to his needs and in order to succeed it is necessary, first of all, that the adults around him understand what his needs are. That is why adults’ capacity of taking care of infants cannot disregard from some biological mechanisms, which allow them to be more responsive to the progeny and to infants in general. Many researches have proved that exist specific neural basis activating in response to infant evolutionary stimuli, such as infant cries and infant emotional facial expression. There is a sort of innate predisposition in human adults to respond to infants’ signals, in order to satisfy their need and allow them to survive and become young adults capable of taking care of themselves. This article focuses on research that has investigated, in the last decade, the neural circuits underlying parental behavioral responses. Moreover, the paper compares the results of those studies that investigated the neural responses to infant stimuli under different conditions: familiar versus unknown children, parents versus non-parents and normative versus clinical samples (depression, addiction, adolescence, and PTSD). PMID:26539154

  17. Using Brain Electrical Activity Mapping to Diagnose Learning Disabilities.

    ERIC Educational Resources Information Center

    Torello, Michael, W.; Duffy, Frank H.

    1985-01-01

    Cognitive neuroscience assumes that measurement of brain electrical activity should relate to cognition. Brain Electrical Activity Mapping (BEAM), a non-invasive technique, is used to record changes in activity from one brain area to another and is 80 to 90 percent successful in classifying subjects as dyslexic or normal. (MT)

  18. Brain Activities and Educational Technology

    ERIC Educational Resources Information Center

    Riza, Emel

    2002-01-01

    There are close relationships between brain activities and educational technology. Brain is very important and so complicated part in our bodies. From long time scientists pay attention to that part and did many experiments, but they just reached little information like a drop in the sea. However from time to time they gave us some light to…

  19. Surface visualization of electromagnetic brain activity.

    PubMed

    Badea, Alexandra; Kostopoulos, George K; Ioannides, Andreas A

    2003-08-15

    Advances in hardware and software have made possible the reconstruction of brain activity from non-invasive electrophysiological measurements over a large part of the brain. The appreciation of the information content in the data is enhanced when relevant anatomical detail is also available for visualization. Different neuroscientific questions give rise to different requirements for optimal superposition of structure and function. Most available software deal with scalar measures of activity, especially hemodynamic changes. In contrast, the electrophysiological observables are generated by electrical activity, which depends on the synchrony of neuronal assemblies and the geometry of the local cortical surface. We describe methods for segmentation and visualization of spatio-temporal brain activity, which allow the interplay of geometry and scalar as well as vector properties of the current density directly in the representations. The utility of these methods is demonstrated through displays of tomographic reconstructions of early sensory processing in the somatosensory and visual modality extracted from magnetoencephalography (MEG) data. The activation course characteristic to a specific area could be observed as current density or statistical maps independently and/or contrasted to the activity in other areas or the whole brain. MEG and functional magnetic resonance imaging (fMRI) activations were simultaneously visualized. Integrating and visualizing complementary functional data into a single environment helps evaluating analysis and understanding structure/function relationships in normal and diseased brain.

  20. Brain Gym. Simple Activities for Whole Brain Learning.

    ERIC Educational Resources Information Center

    Dennison, Paul E.; Dennison, Gail E.

    This booklet contains simple movements and activities that are used with students in Educational Kinesiology to enhance their experience of whole brain learning. Whole brain learning through movement repatterning and Brain Gym activities enable students to access those parts of the brain previously unavailable to them. These movements of body and…

  1. Low message sensation health promotion videos are better remembered and activate areas of the brain associated with memory encoding.

    PubMed

    Seelig, David; Wang, An-Li; Jagannathan, Kanchana; Jaganathan, Kanchana; Loughead, James W; Blady, Shira J; Childress, Anna Rose; Romer, Daniel; Langleben, Daniel D

    2014-01-01

    Greater sensory stimulation in advertising has been postulated to facilitate attention and persuasion. For this reason, video ads promoting health behaviors are often designed to be high in "message sensation value" (MSV), a standardized measure of sensory intensity of the audiovisual and content features of an ad. However, our previous functional Magnetic Resonance Imaging (fMRI) study showed that low MSV ads were better remembered and produced more prefrontal and temporal and less occipital cortex activation, suggesting that high MSV may divert cognitive resources from processing ad content. The present study aimed to determine whether these findings from anti-smoking ads generalize to other public health topics, such as safe sex. Thirty-nine healthy adults viewed high- and low MSV ads promoting safer sex through condom use, during an fMRI session. Recognition memory of the ads was tested immediately and 3 weeks after the session. We found that low MSV condom ads were better remembered than the high MSV ads at both time points and replicated the fMRI patterns previously reported for the anti-smoking ads. Occipital and superior temporal activation was negatively related to the attitudes favoring condom use (see Condom Attitudes Scale, Methods and Materials section). Psychophysiological interaction (PPI) analysis of the relation between occipital and fronto-temporal (middle temporal and inferior frontal gyri) cortices revealed weaker negative interactions between occipital and fronto-temporal cortices during viewing of the low MSV that high MSV ads. These findings confirm that the low MSV video health messages are better remembered than the high MSV messages and that this effect generalizes across public health domains. The greater engagement of the prefrontal and fronto-temporal cortices by low MSV ads and the greater occipital activation by high MSV ads suggest that that the "attention-grabbing" high MSV format could impede the learning and retention of public

  2. Low Message Sensation Health Promotion Videos Are Better Remembered and Activate Areas of the Brain Associated with Memory Encoding

    PubMed Central

    Jaganathan, Kanchana; Loughead, James W.; Blady, Shira J.; Childress, Anna Rose; Romer, Daniel; Langleben, Daniel D.

    2014-01-01

    Greater sensory stimulation in advertising has been postulated to facilitate attention and persuasion. For this reason, video ads promoting health behaviors are often designed to be high in “message sensation value” (MSV), a standardized measure of sensory intensity of the audiovisual and content features of an ad. However, our previous functional Magnetic Resonance Imaging (fMRI) study showed that low MSV ads were better remembered and produced more prefrontal and temporal and less occipital cortex activation, suggesting that high MSV may divert cognitive resources from processing ad content. The present study aimed to determine whether these findings from anti-smoking ads generalize to other public health topics, such as safe sex. Thirty-nine healthy adults viewed high- and low MSV ads promoting safer sex through condom use, during an fMRI session. Recognition memory of the ads was tested immediately and 3 weeks after the session. We found that low MSV condom ads were better remembered than the high MSV ads at both time points and replicated the fMRI patterns previously reported for the anti-smoking ads. Occipital and superior temporal activation was negatively related to the attitudes favoring condom use (see Condom Attitudes Scale, Methods and Materials section). Psychophysiological interaction (PPI) analysis of the relation between occipital and fronto-temporal (middle temporal and inferior frontal gyri) cortices revealed weaker negative interactions between occipital and fronto-temporal cortices during viewing of the low MSV that high MSV ads. These findings confirm that the low MSV video health messages are better remembered than the high MSV messages and that this effect generalizes across public health domains. The greater engagement of the prefrontal and fronto-temporal cortices by low MSV ads and the greater occipital activation by high MSV ads suggest that that the “attention-grabbing” high MSV format could impede the learning and retention of

  3. Fueling and imaging brain activation.

    PubMed

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron-astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  4. Fueling and imaging brain activation

    PubMed Central

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  5. How Localized are Language Brain Areas? A Review of Brodmann Areas Involvement in Oral Language.

    PubMed

    Ardila, Alfredo; Bernal, Byron; Rosselli, Monica

    2016-02-01

    The interest in understanding how language is "localized" in the brain has existed for centuries. Departing from seven meta-analytic studies of functional magnetic resonance imaging activity during the performance of different language activities, it is proposed here that there are two different language networks in the brain: first, a language reception/understanding system, including a "core Wernicke's area" involved in word recognition (BA21, BA22, BA41, and BA42), and a fringe or peripheral area ("extended Wernicke's area:" BA20, BA37, BA38, BA39, and BA40) involved in language associations (associating words with other information); second, a language production system ("Broca's complex:" BA44, BA45, and also BA46, BA47, partially BA6-mainly its mesial supplementary motor area-and extending toward the basal ganglia and the thalamus). This paper additionally proposes that the insula (BA13) plays a certain coordinating role in interconnecting these two brain language systems. PMID:26663825

  6. Nanotools for Neuroscience and Brain Activity Mapping

    PubMed Central

    Alivisatos, A. Paul; Andrews, Anne M.; Boyden, Edward S.; Chun, Miyoung; Church, George M.; Deisseroth, Karl; Donoghue, John P.; Fraser, Scott E.; Lippincott-Schwartz, Jennifer; Looger, Loren L.; Masmanidis, Sotiris; McEuen, Paul L.; Nurmikko, Arto V.; Park, Hongkun; Peterka, Darcy S.; Reid, Clay; Roukes, Michael L.; Scherer, Axel; Schnitzer, Mark; Sejnowski, Terrence J.; Shepard, Kenneth L.; Tsao, Doris; Turrigiano, Gina; Weiss, Paul S.; Xu, Chris; Yuste, Rafael; Zhuang, Xiaowei

    2013-01-01

    Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function. PMID:23514423

  7. Brain areas in abyssal demersal fishes.

    PubMed

    Wagner, H J

    2001-06-01

    Four areas of the brain which receive primary projections from chemical senses ([1] olfactory bulb, [2] gustatory area including facial and vagal lobes), the eye ([3] optic tectum), and mechanosensory, and-hair-cell based systems i.e. the lateral line, vestibular and auditory systems ([4] trigeminal and octavolateral regions) have been studied and relative size differences used to make deductions on the sensory preferences of 35 fish species living on or near the bottom of the deep sea. Furthermore the relative volumes of the telencephalon and the corpus cerebelli were determined. Two evaluation modes were applied: (1) the relative mean of each system was calculated and species with above-average areas identified; (2) a cluster analysis established multivariate correlations among the sensory systems. The diversity of sensory brain areas in this population of fish suggests that the benthic and epibenthic environment of the abyss presents a rich sensory environment. Vision seems to be the single most important sense suggesting the presence of relevant bioluminescent stimuli. However, in combination the chemical senses, smell and taste, surpass the visual system; most prominent among them is olfaction. The trigeminal/octavolateral area indicating the role of lateral line input and possibly audition is also well represented, but only in association with other sensory modalities. A large volume telencephalon was often observed in combination with a prominent olfactory system, whereas cerebella of unusually large sizes occurred in species with above-average visual, hair-cell based, but also olfactory systems, confirming their role as multimodal sensorimotor coordination centers. In several species the predictions derived from the volumetric brain analyses were confirmed by earlier observations of stomach content and data obtained by baited cameras. PMID:11713385

  8. A dual-route perspective on brain activation in response to visual words: evidence for a length by lexicality interaction in the visual word form area (VWFA).

    PubMed

    Schurz, Matthias; Sturm, Denise; Richlan, Fabio; Kronbichler, Martin; Ladurner, Gunther; Wimmer, Heinz

    2010-02-01

    Based on our previous work, we expected the Visual Word Form Area (VWFA) in the left ventral visual pathway to be engaged by both whole-word recognition and by serial sublexical coding of letter strings. To examine this double function, a phonological lexical decision task (i.e., "Does xxx sound like an existing word?") presented short and long letter strings of words, pseudohomophones, and pseudowords (e.g., Taxi, Taksi and Tazi). Main findings were that the length effect for words was limited to occipital regions and absent in the VWFA. In contrast, a marked length effect for pseudowords was found throughout the ventral visual pathway including the VWFA, as well as in regions presumably engaged by visual attention and silent-articulatory processes. The length by lexicality interaction on brain activation corresponds to well-established behavioral findings of a length by lexicality interaction on naming latencies and speaks for the engagement of the VWFA by both lexical and sublexical processes. PMID:19896538

  9. Does Somatosensory Discrimination Activate Different Brain Areas in Children with Unilateral Cerebral Palsy Compared to Typically Developing Children? An fMRI Study

    ERIC Educational Resources Information Center

    Van de Winckel, Ann; Verheyden, Geert; Wenderoth, Nici; Peeters, Ron; Sunaert, Stefan; Van Hecke, Wim; De Cock, Paul; Desloovere, Kaat; Eyssen, Maria; Feys, Hilde

    2013-01-01

    Aside from motor impairment, many children with unilateral cerebral palsy (CP) experience altered tactile, proprioceptive, and kinesthetic awareness. Sensory deficits are addressed in rehabilitation programs, which include somatosensory discrimination exercises. In contrast to adult stroke patients, data on brain activation, occurring during…

  10. Whole-brain activity mapping onto a zebrafish brain atlas

    PubMed Central

    Randlett, Owen; Wee, Caroline L.; Naumann, Eva A.; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E.; Portugues, Ruben; Lacoste, Alix M.B.; Riegler, Clemens; Engert, Florian; Schier, Alexander F.

    2015-01-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open source atlas containing molecular labels and anatomical region definitions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated-Extracellular signal-regulated kinase (ERK/MAPK) as a readout of neural activity, we have developed a system to create and contextualize whole brain maps of stimulus- and behavior-dependent neural activity. This MAP-Mapping (Mitogen Activated Protein kinase – Mapping) assay is technically simple, fast, inexpensive, and data analysis is completely automated. Since MAP-Mapping is performed on fish that are freely swimming, it is applicable to nearly any stimulus or behavior. We demonstrate the utility of our high-throughput approach using hunting/feeding, pharmacological, visual and noxious stimuli. The resultant maps outline hundreds of areas associated with behaviors. PMID:26778924

  11. Whole-brain activity mapping onto a zebrafish brain atlas.

    PubMed

    Randlett, Owen; Wee, Caroline L; Naumann, Eva A; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E; Portugues, Ruben; Lacoste, Alix M B; Riegler, Clemens; Engert, Florian; Schier, Alexander F

    2015-11-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signal–regulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors. PMID:26778924

  12. Heritability of working memory brain activation.

    PubMed

    Blokland, Gabriëlla A M; McMahon, Katie L; Thompson, Paul M; Martin, Nicholas G; de Zubicaray, Greig I; Wright, Margaret J

    2011-07-27

    Although key to understanding individual variation in task-related brain activation, the genetic contribution to these individual differences remains largely unknown. Here we report voxel-by-voxel genetic model fitting in a large sample of 319 healthy, young adult, human identical and fraternal twins (mean ± SD age, 23.6 ± 1.8 years) who performed an n-back working memory task during functional magnetic resonance imaging (fMRI) at a high magnetic field (4 tesla). Patterns of task-related brain response (BOLD signal difference of 2-back minus 0-back) were significantly heritable, with the highest estimates (40-65%) in the inferior, middle, and superior frontal gyri, left supplementary motor area, precentral and postcentral gyri, middle cingulate cortex, superior medial gyrus, angular gyrus, superior parietal lobule, including precuneus, and superior occipital gyri. Furthermore, high test-retest reliability for a subsample of 40 twins indicates that nongenetic variance in the fMRI brain response is largely due to unique environmental influences rather than measurement error. Individual variations in activation of the working memory network are therefore significantly influenced by genetic factors. By establishing the heritability of cognitive brain function in a large sample that affords good statistical power, and using voxel-by-voxel analyses, this study provides the necessary evidence for task-related brain activation to be considered as an endophenotype for psychiatric or neurological disorders, and represents a substantial new contribution to the field of neuroimaging genetics. These genetic brain maps should facilitate discovery of gene variants influencing cognitive brain function through genome-wide association studies, potentially opening up new avenues in the treatment of brain disorders. PMID:21795540

  13. Abnormal activity of the MAPK- and cAMP-associated signaling pathways in frontal cortical areas in postmortem brain in schizophrenia.

    PubMed

    Funk, Adam J; McCullumsmith, Robert E; Haroutunian, Vahram; Meador-Woodruff, James H

    2012-03-01

    Recent evidence suggests that schizophrenia may result from alterations of integration of signaling mediated by multiple neurotransmitter systems. Abnormalities of associated intracellular signaling pathways may contribute to the pathophysiology of schizophrenia. Proteins and phospho-proteins comprising mitogen activated protein kinase (MAPK) and 3'-5'-cyclic adenosine monophosphate (cAMP)-associated signaling pathways may be abnormally expressed in the anterior cingulate (ACC) and dorsolateral prefrontal cortex (DLPFC) in schizophrenia. Using western blot analysis we examined proteins of the MAPK- and cAMP-associated pathways in these two brain regions. Postmortem samples were used from a well-characterized collection of elderly patients with schizophrenia (ACC=36, DLPFC=35) and a comparison (ACC=33, DLPFC=31) group. Near-infrared intensity of IR-dye labeled secondary antisera bound to targeted proteins of the MAPK- and cAMP-associated signaling pathways was measured using LiCor Odyssey imaging system. We found decreased expression of Rap2, JNK1, JNK2, PSD-95, and decreased phosphorylation of JNK1/2 at T183/Y185 and PSD-95 at S295 in the ACC in schizophrenia. In the DLPFC, we found increased expression of Rack1, Fyn, Cdk5, and increased phosphorylation of PSD-95 at S295 and NR2B at Y1336. MAPK- and cAMP-associated molecules constitute ubiquitous intracellular signaling pathways that integrate extracellular stimuli, modify receptor expression and function, and regulate cell survival and neuroplasticity. These data suggest abnormal activity of the MAPK- and cAMP-associated pathways in frontal cortical areas in schizophrenia. These alterations may underlie the hypothesized hypoglutamatergic function in this illness. Together with previous findings, these data suggest that abnormalities of intracellular signaling pathways may contribute to the pathophysiology of schizophrenia. PMID:22048463

  14. Brain Activation During Singing: "Clef de Sol Activation" Is the "Concert" of the Human Brain.

    PubMed

    Mavridis, Ioannis N; Pyrgelis, Efstratios-Stylianos

    2016-03-01

    Humans are the most complex singers in nature, and the human voice is thought by many to be the most beautiful musical instrument. Aside from spoken language, singing represents a second mode of acoustic communication in humans. The purpose of this review article is to explore the functional anatomy of the "singing" brain. Methodologically, the existing literature regarding activation of the human brain during singing was carefully reviewed, with emphasis on the anatomic localization of such activation. Relevant human studies are mainly neuroimaging studies, namely functional magnetic resonance imaging and positron emission tomography studies. Singing necessitates activation of several cortical, subcortical, cerebellar, and brainstem areas, served and coordinated by multiple neural networks. Functionally vital cortical areas of the frontal, parietal, and temporal lobes bilaterally participate in the brain's activation process during singing, confirming the latter's role in human communication. Perisylvian cortical activity of the right hemisphere seems to be the most crucial component of this activation. This also explains why aphasic patients due to left hemispheric lesions are able to sing but not speak the same words. The term clef de sol activation is proposed for this crucial perisylvian cortical activation due to the clef de sol shape of the topographical distribution of these cortical areas around the sylvian fissure. Further research is needed to explore the connectivity and sequence of how the human brain activates to sing.

  15. Brain Activation During Singing: "Clef de Sol Activation" Is the "Concert" of the Human Brain.

    PubMed

    Mavridis, Ioannis N; Pyrgelis, Efstratios-Stylianos

    2016-03-01

    Humans are the most complex singers in nature, and the human voice is thought by many to be the most beautiful musical instrument. Aside from spoken language, singing represents a second mode of acoustic communication in humans. The purpose of this review article is to explore the functional anatomy of the "singing" brain. Methodologically, the existing literature regarding activation of the human brain during singing was carefully reviewed, with emphasis on the anatomic localization of such activation. Relevant human studies are mainly neuroimaging studies, namely functional magnetic resonance imaging and positron emission tomography studies. Singing necessitates activation of several cortical, subcortical, cerebellar, and brainstem areas, served and coordinated by multiple neural networks. Functionally vital cortical areas of the frontal, parietal, and temporal lobes bilaterally participate in the brain's activation process during singing, confirming the latter's role in human communication. Perisylvian cortical activity of the right hemisphere seems to be the most crucial component of this activation. This also explains why aphasic patients due to left hemispheric lesions are able to sing but not speak the same words. The term clef de sol activation is proposed for this crucial perisylvian cortical activation due to the clef de sol shape of the topographical distribution of these cortical areas around the sylvian fissure. Further research is needed to explore the connectivity and sequence of how the human brain activates to sing. PMID:26966964

  16. Physical activity and brain plasticity in late adulthood.

    PubMed

    Erickson, Kirk I; Gildengers, Ariel G; Butters, Meryl A

    2013-03-01

    The human brain shrinks with advancing age, but recent research suggests that it is also capable of remarkable plasticity, even in late life. In this review we summarize the research linking greater amounts of physical activity to less cortical atrophy, better brain function, and enhanced cognitive function, and argue that physical activity takes advantage of the brain's natural capacity for plasticity. Further, although the effects of physical activity on the brain are relatively widespread, there is also some specificity, such that prefrontal and hippocampal areas appear to be more influenced than other areas of the brain. The specificity of these effects, we argue, provides a biological basis for understanding the capacity for physical activity to influence neurocognitive and neuropsychiatric disorders such as depression. We conclude that physical activity is a promising intervention that can influence the endogenous pharmacology of the brain to enhance cognitive and emotional function in late adulthood.

  17. Effects of feather pecking phenotype (severe feather peckers, victims and non-peckers) on serotonergic and dopaminergic activity in four brain areas of laying hens (Gallus gallus domesticus).

    PubMed

    Kops, Marjolein S; de Haas, Elske N; Rodenburg, T Bas; Ellen, Esther D; Korte-Bouws, Gerdien A H; Olivier, Berend; Güntürkün, O; Bolhuis, J Elizabeth; Korte, S Mechiel

    2013-08-15

    Severe feather pecking (SFP) in laying hens is a detrimental behavior causing loss of feathers, skin damage and cannibalism. Previously, we have associated changes in frontal brain serotonin (5-HT) turnover and dopamine (DA) turnover with alterations in feather pecking behavior in young pullets (28-60 days). Here, brain monoamine levels were measured in adult laying hens; focusing on four brain areas that are involved in emotional behavior or are part of the basal ganglia-thalamopallial circuit, which is involved in obsessive compulsive disorders. Three behavioral phenotypes were studied: Severe Feather Peckers (SFPs), Victims of SFP, and Non-Peckers (NPs). Hens (33 weeks old) were sacrificed after a 5-min manual restraint test. SFPs had higher 5-HIAA levels and a higher serotonin turnover (5-HIAA/5-HT) in the dorsal thalamus than NPs, with intermediate levels in victims. NPs had higher 5-HT levels in the medial striatum than victims, with levels of SFPs in between. 5-HT turnover levels did not differ between phenotypes in medial striatum, arcopallium and hippocampus. DA turnover levels were not affected by feather pecking phenotype. These findings indicate that serotonergic neurotransmission in the dorsal thalamus and striatum of adult laying hens depends on differences in behavioral feather pecking phenotype, with, compared to non-pecking hens, changes in both SFP and their victims. Further identification of different SFP phenotypes is needed to elucidate the role of brain monoamines in SFP.

  18. Lesion Analysis of the Brain Areas Involved in Language Comprehension

    ERIC Educational Resources Information Center

    Dronkers, Nina F.; Wilkins, David P.; Van Valin, Robert D., Jr.; Redfern, Brenda B.; Jaeger, Jeri J.

    2004-01-01

    The cortical regions of the brain traditionally associated with the comprehension of language are Wernicke's area and Broca's area. However, recent evidence suggests that other brain regions might also be involved in this complex process. This paper describes the opportunity to evaluate a large number of brain-injured patients to determine which…

  19. Deep brain stimulation affects conditioned and unconditioned anxiety in different brain areas.

    PubMed

    van Dijk, A; Klanker, M; van Oorschot, N; Post, R; Hamelink, R; Feenstra, M G P; Denys, D

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) has proven to be an effective treatment for therapy refractory obsessive-compulsive disorder. Clinical observations show that anxiety symptoms decrease rapidly following DBS. As in clinical studies different regions are targeted, it is of principal interest to understand which brain area is responsible for the anxiolytic effect and whether high-frequency stimulation of different areas differentially affect unconditioned (innate) and conditioned (learned) anxiety. In this study, we examined the effect of stimulation in five brain areas in rats (NAc core and shell, bed nucleus of the stria terminalis (BNST), internal capsule (IC) and the ventral medial caudate nucleus (CAU)). The elevated plus maze was used to test the effect of stimulation on unconditioned anxiety, the Vogel conflict test for conditioned anxiety, and an activity test for general locomotor behaviour. We found different anxiolytic effects of stimulation in the five target areas. Stimulation of the CAU decreased both conditioned and unconditioned anxiety, while stimulation of the IC uniquely reduced conditioned anxiety. Remarkably, neither the accumbens nor the BNST stimulation affected conditioned or unconditioned anxiety. Locomotor activity increased with NAc core stimulation but decreased with the BNST. These findings suggest that (1) DBS may have a differential effect on unconditioned and conditioned anxiety depending on the stimulation area, and that (2) stimulation of the IC exclusively reduces conditioned anxiety. This suggests that the anxiolytic effects of DBS seen in OCD patients may not be induced by stimulation of the NAc, but rather by the IC. PMID:23900312

  20. Right Brain Activities to Improve Analytical Thinking.

    ERIC Educational Resources Information Center

    Lynch, Marion E.

    Schools tend to have a built-in bias toward left brain activities (tasks that are linear and sequential in nature), so the introduction of right brain activities (functions related to music, rhythm, images, color, imagination, daydreaming, dimensions) brings a balance into the classroom and helps those students who may be right brain oriented. To…

  1. Decoding patterns of human brain activity.

    PubMed

    Tong, Frank; Pratte, Michael S

    2012-01-01

    Considerable information about mental states can be decoded from noninvasive measures of human brain activity. Analyses of brain activity patterns can reveal what a person is seeing, perceiving, attending to, or remembering. Moreover, multidimensional models can be used to investigate how the brain encodes complex visual scenes or abstract semantic information. Such feats of "brain reading" or "mind reading," though impressive, raise important conceptual, methodological, and ethical issues. What does successful decoding reveal about the cognitive functions performed by a brain region? How should brain signals be spatially selected and mathematically combined to ensure that decoding reflects inherent computations of the brain rather than those performed by the decoder? We highlight recent advances and describe how multivoxel pattern analysis can provide a window into mind-brain relationships with unprecedented specificity, when carefully applied. However, as brain-reading technology advances, issues of neuroethics and mental privacy will be important to consider.

  2. Tapping polyrhythms in music activates language areas.

    PubMed

    Vuust, Peter; Wallentin, Mikkel; Mouridsen, Kim; Ostergaard, Leif; Roepstorff, Andreas

    2011-05-01

    Music is experienced and understood on the basis of foreground/background relationships and tension created between actual music and the underlying meter. Polyrhythms create tension between a counter meter and the main meter. Previously, we have shown that Brodmann area 47 (BA47), a brain area associated with processing of language, is activated bilaterally when musicians tap the main meter in a polymetric context emphasizing a counter meter, suggesting that processing of metric elements in music relies on brain areas also involved in language processing. In that study, the tension was created entirely by changes in the stimulus while participants were tapping the main meter. Here we find left-hemispheric BA47 activation in response to a self-produced counter meter on top of a main meter provided by an ecological music excerpt. This data indicates that the activation is linked to polyrhythmic tension, regardless of whether it arises from the stimulus or the task.

  3. Intrinsic Brain Activity in Altered States of Consciousness

    PubMed Central

    Boly, M.; Phillips, C.; Tshibanda, L.; Vanhaudenhuyse, A.; Schabus, M.; Dang-Vu, T.T.; Moonen, G.; Hustinx, R.; Maquet, P.; Laureys, S.

    2010-01-01

    Spontaneous brain activity has recently received increasing interest in the neuroimaging community. However, the value of resting-state studies to a better understanding of brain–behavior relationships has been challenged. That altered states of consciousness are a privileged way to study the relationships between spontaneous brain activity and behavior is proposed, and common resting-state brain activity features observed in various states of altered consciousness are reviewed. Early positron emission tomography studies showed that states of extremely low or high brain activity are often associated with unconsciousness. However, this relationship is not absolute, and the precise link between global brain metabolism and awareness remains yet difficult to assert. In contrast, voxel-based analyses identified a systematic impairment of associative frontoparieto–cingulate areas in altered states of consciousness, such as sleep, anesthesia, coma, vegetative state, epileptic loss of consciousness, and somnambulism. In parallel, recent functional magnetic resonance imaging studies have identified structured patterns of slow neuronal oscillations in the resting human brain. Similar coherent blood oxygen level–dependent (BOLD) systemwide patterns can also be found, in particular in the default-mode network, in several states of unconsciousness, such as coma, anesthesia, and slow-wave sleep. The latter results suggest that slow coherent spontaneous BOLD fluctuations cannot be exclusively a reflection of conscious mental activity, but may reflect default brain connectivity shaping brain areas of most likely interactions in a way that transcends levels of consciousness, and whose functional significance remains largely in the dark. PMID:18591474

  4. Night-vision brain area in migratory songbirds.

    PubMed

    Mouritsen, Henrik; Feenders, Gesa; Liedvogel, Miriam; Wada, Kazuhiro; Jarvis, Erich D

    2005-06-01

    Twice each year, millions of night-migratory songbirds migrate thousands of kilometers. To find their way, they must process and integrate spatiotemporal information from a variety of cues including the Earth's magnetic field and the night-time starry sky. By using sensory-driven gene expression, we discovered that night-migratory songbirds possess a tight cluster of brain regions highly active only during night vision. This cluster, here named "cluster N," is located at the dorsal surface of the brain and is adjacent to a known visual pathway. In contrast, neuronal activation of cluster N was not increased in nonmigratory birds during the night, and it disappeared in migrants when both eyes were covered. We suggest that in night-migratory songbirds cluster N is involved in enhanced night vision, and that it could be integrating vision-mediated magnetic and/or star compass information for night-time navigation. Our findings thus represent an anatomical and functional demonstration of a specific night-vision brain area. PMID:15928090

  5. Association between impaired brain activity and volume at the sub-region of Broca's area in ultra-high risk and first-episode schizophrenia: A multi-modal neuroimaging study.

    PubMed

    Iwashiro, Norichika; Koike, Shinsuke; Satomura, Yoshihiro; Suga, Motomu; Nagai, Tatsuya; Natsubori, Tatsunobu; Tada, Mariko; Gonoi, Wataru; Takizawa, Ryu; Kunimatsu, Akira; Yamasue, Hidenori; Kasai, Kiyoto

    2016-04-01

    Recent studies have suggested that functional abnormalities in Broca's area, which is important in language production (speech and thoughts before speech), play an important role in the pathophysiology of schizophrenia. While multi-modal approaches have proved useful in revealing the specific pathophysiology of psychosis, the association of functional abnormalities with gray matter volume (GMV) here in subjects with an ultra-high risk (UHR) of schizophrenia, those with first-episode schizophrenia (FES), and healthy controls has yet to be clarified. Therefore, the relationship between cortical activity measured using functional near-infrared spectroscopy (fNIRS) during a verbal fluency task, and GMV in the Broca's area assessed using a manual tracing in magnetic resonance imaging (MRI), which considers individual structural variation, was examined for 57 subjects (23 UHR/18 FES/16 controls). The UHR and FES group showed significantly reduced brain activity compared to control group in the left pars triangularis (PT) (P=.036, .003, respectively). Furthermore in the FES group, the reduced brain activity significantly positively correlated with the volume in the left PT (B=0.29, P=.027), while significant negative association was evident for all subjects (B=-0.18, P=.010). This correlation remained significant after adjusting for antipsychotics dosage, and voxel-wise analysis could not detect any significant correlation between impaired cortical activity and volume. The significant relationship between neural activity and GMV in the left PT may reflect a specific pathophysiology related to the onset of schizophrenia. PMID:26873807

  6. Explosively activated egress area

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Bailey, J. W. (Inventor)

    1983-01-01

    A lightweight, add on structure which employs linear shaped pyrotechnic charges to smoothly cut an airframe along an egress area periphery is provided. It compromises reaction surfaces attached to the exterior surface of the airframe's skin and is designed to restrict the skin deflection. That portion of the airframe within the egress area periphery is jettisoned. Retention surfaces and sealing walls are attached to the interior surface of the airframe's skin and are designed to shield the interior of the aircraft during detonation of the pyrotechnic charges.

  7. The restless brain: how intrinsic activity organizes brain function

    PubMed Central

    Raichle, Marcus E.

    2015-01-01

    Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease. PMID:25823869

  8. The restless brain: how intrinsic activity organizes brain function.

    PubMed

    Raichle, Marcus E

    2015-05-19

    Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease.

  9. Brain activation associated with active and passive lower limb stepping

    PubMed Central

    Jaeger, Lukas; Marchal-Crespo, Laura; Wolf, Peter; Riener, Robert; Michels, Lars; Kollias, Spyros

    2014-01-01

    Reports about standardized and repeatable experimental procedures investigating supraspinal activation in patients with gait disorders are scarce in current neuro-imaging literature. Well-designed and executed tasks are important to gain insight into the effects of gait-rehabilitation on sensorimotor centers of the brain. The present study aims to demonstrate the feasibility of a novel imaging paradigm, combining the magnetic resonance (MR)-compatible stepping robot (MARCOS) with sparse sampling functional magnetic resonance imaging (fMRI) to measure task-related BOLD signal changes and to delineate the supraspinal contribution specific to active and passive stepping. Twenty-four healthy participants underwent fMRI during active and passive, periodic, bilateral, multi-joint, lower limb flexion and extension akin to human gait. Active and passive stepping engaged several cortical and subcortical areas of the sensorimotor network, with higher relative activation of those areas during active movement. Our results indicate that the combination of MARCOS and sparse sampling fMRI is feasible for the detection of lower limb motor related supraspinal activation. Activation of the anterior cingulate and medial frontal areas suggests motor response inhibition during passive movement in healthy participants. Our results are of relevance for understanding the neural mechanisms underlying gait in the healthy. PMID:25389396

  10. [Brain, psyche and physical activity].

    PubMed

    Hollmann, W; Strüder, H K

    2000-11-01

    Modern technical and biochemical methods allow investigation of hemodynamic and metabolic responses of the human brain during muscular work. Following a general introduction to the topic results from selected studies on endogenous opioid peptides, pain sensitivity and psyche, regional cerebral blood flow and cerebral glucose metabolism, amino acid transport across the blood-brain barrier, impact of physical work on the serotonergic system, influence of oxygen partial pressure on neurotransmitters and hormones during exercise, role of the brain as performance limiting factor as well as age-related changes in cerebral blood flow and hypothalamo-pituitary-adrenal/-gonadal axis function will be presented. PMID:11149280

  11. Scientists Zero in On Brain Area Linked to 'Parkinson's Gait'

    MedlinePlus

    ... Scientists Zero in on Brain Area Linked to 'Parkinson's Gait' Discovery could lead to new treatments for ... play a role in walking difficulties that afflict Parkinson's disease patients, new research suggests. The prefrontal cortex ...

  12. Recording of brain activity across spatial scales.

    PubMed

    Lewis, C M; Bosman, C A; Fries, P

    2015-06-01

    Brain activity reveals exquisite coordination across spatial scales, from local microcircuits to brain-wide networks. Understanding how the brain represents, transforms and communicates information requires simultaneous recordings from distributed nodes of whole brain networks with single-cell resolution. Realizing multi-site recordings from communicating populations is hampered by the need to isolate clusters of interacting cells, often on a day-to-day basis. Chronic implantation of multi-electrode arrays allows long-term tracking of activity. Lithography on thin films provides a means to produce arrays of variable resolution, a high degree of flexibility, and minimal tissue displacement. Sequential application of surface arrays to monitor activity across brain-wide networks and subsequent implantation of laminar arrays to target specific populations enables continual refinement of spatial scale while maintaining coverage. PMID:25544724

  13. Using Proton Magnetic Resonance Imaging and Spectroscopy to Understand Brain "Activation"

    ERIC Educational Resources Information Center

    Baslow, Morris H.; Guilfoyle, David N.

    2007-01-01

    Upon stimulation, areas of the brain associated with specific cognitive processing tasks may undergo observable physiological changes, and measures of such changes have been used to create brain maps for visualization of stimulated areas in task-related brain "activation" studies. These perturbations usually continue throughout the period of the…

  14. Phosphorylation and actin activation of brain myosin.

    PubMed Central

    Barylko, B; Sobieszek, A

    1983-01-01

    A method is described for obtaining brain myosin that shows significant actin activation, after phosphorylation with chicken gizzard myosin light chain kinase. Myosin with this activity could be obtained only via the initial purification of brain actomyosin. The latter complex, isolated by a method similar to that used for smooth muscle, contained actin, myosin, tropomyosin of the non-muscle type and another actin-binding protein of approximately 100,000 daltons. From the presence of a specific myosin light chain kinase and phosphatase in brain tissue it is suggested that the regulation of actin-myosin interaction operates via phosphorylation and dephosphorylation of myosin. Images Fig. 1. Fig. 3. PMID:11894951

  15. Broca's Area: A Problem in Language-Brain Relationships

    ERIC Educational Resources Information Center

    Whitaker, H. A.; Selnes, O. A.

    1975-01-01

    How significantly is Broca's Area related to speech? It is considered here to be definitely a component in the language mechanism of the brain. It is also stated that this area is unique to people and that it has no unitary function, yet it is specialized for certain expressive (motor) functions. (SCC)

  16. Area V5—a microcosm of the visual brain

    PubMed Central

    Zeki, Semir

    2015-01-01

    Area V5 of the visual brain, first identified anatomically in 1969 as a separate visual area, is critical for the perception of visual motion. As one of the most intensively studied parts of the visual brain, it has yielded many insights into how the visual brain operates. Among these are: the diversity of signals that determine the functional capacities of a visual area; the relationship between single cell activity in a specialized visual area and perception of, and preference for, attributes of a visual stimulus; the multiple asynchronous inputs into, and outputs from, an area as well as the multiple operations that it undertakes asynchronously; the relationship between activity at given, specialized, areas of the visual brain and conscious awareness; and the mechanisms used to “bind” signals from one area with those from another, with a different specialization, to give us our unitary perception of the visual world. Hence V5 is, in a sense, a microcosm of the visual world and its study gives important insights into how the whole visual brain is organized—anatomically, functionally and perceptually. PMID:25883556

  17. Prefrontal Brain Activity Predicts Temporally Extended Decision-Making Behavior

    ERIC Educational Resources Information Center

    Yarkoni, Tal; Braver, Todd S.; Gray, Jeremy R.; Green, Leonard

    2005-01-01

    Although functional neuroimaging studies of human decision-making processes are increasingly common, most of the research in this area has relied on passive tasks that generate little individual variability. Relatively little attention has been paid to the ability of brain activity to predict overt behavior. Using functional magnetic resonance…

  18. A Brain Area for Visual Numerals

    PubMed Central

    Shum, Jennifer; Hermes, Dora; Foster, Brett L.; Dastjerdi, Mohammad; Rangarajan, Vinitha; Winawer, Jonathan; Miller, Kai J.; Parvizi, Josef

    2014-01-01

    Is there a distinct area within the human visual system that has a preferential response to numerals, as there is for faces, words, or scenes? We addressed this question using intracranial electrophysiological recordings and observed a significantly higher response in the high-frequency broadband range (high γ, 65–150 Hz) to visually presented numerals, compared with morphologically similar (i.e., letters and false fonts) or semantically and phonologically similar stimuli (i.e., number words and non-number words). Anatomically, this preferential response was consistently localized in the inferior temporal gyrus and anterior to the temporo-occipital incisure. This region lies within or close to the fMRI signal-dropout zone produced by the nearby auditory canal and venous sinus artifacts, an observation that may account for negative findings in previous fMRI studies of preferential response to numerals. Because visual numerals are culturally dependent symbols that are only learned through education, our novel finding of anatomically localized preferential response to such symbols provides a new example of acquired category-specific responses in the human visual system. PMID:23595729

  19. Preservation of mitochondrial functional integrity in mitochondria isolated from small cryopreserved mouse brain areas.

    PubMed

    Valenti, Daniela; de Bari, Lidia; De Filippis, Bianca; Ricceri, Laura; Vacca, Rosa Anna

    2014-01-01

    Studies of mitochondrial bioenergetics in brain pathophysiology are often precluded by the need to isolate mitochondria immediately after tissue dissection from a large number of brain biopsies for comparative studies. Here we present a procedure of cryopreservation of small brain areas from which mitochondrial enriched fractions (crude mitochondria) with high oxidative phosphorylation efficiency can be isolated. Small mouse brain areas were frozen and stored in a solution containing glycerol as cryoprotectant. Crude mitochondria were isolated by differential centrifugation from both cryopreserved and freshly explanted brain samples and were compared with respect to their ability to generate membrane potential and produce ATP. Intactness of outer and inner mitochondrial membranes was verified by polarographic ascorbate and cytochrome c tests and spectrophotometric assay of citrate synthase activity. Preservation of structural integrity and oxidative phosphorylation efficiency was successfully obtained in crude mitochondria isolated from different areas of cryopreserved mouse brain samples. Long-term cryopreservation of small brain areas from which intact and phosphorylating mitochondria can be isolated for the study of mitochondrial bioenergetics will significantly expand the study of mitochondrial defects in neurological pathologies, allowing large comparative studies and favoring interlaboratory and interdisciplinary analyses.

  20. Effects of motor fatigue on human brain activity, an fMRI study.

    PubMed

    van Duinen, Hiske; Renken, Remco; Maurits, Natasha; Zijdewind, Inge

    2007-05-01

    The main purpose of this study was to investigate effects of motor fatigue on brain activation in humans, using fMRI. First, we assessed brain activation that correlated with muscle activity during brief contractions at different force levels (force modulation). Second, a similar analysis was done for sustained contractions inducing motor fatigue. Third, we studied changes in brain activation due to motor fatigue over time. And fourth, we investigated cross-over effects of fatigue by comparing brain activation before and after the fatiguing condition during simple and high-order motor tasks (reaction time tasks). Several motor areas in the brain showed increased activity with increased muscle activity, both during force modulation and motor fatigue. Interestingly, the cerebellum showed a smaller increase in activation, during compensatory activation due to fatigue, while additional activation was found in the pre-supplementary motor area and in a frontal area. During motor fatigue, there was a decrease in force production, an increase in force variability, and an increase in muscle activity. Brain areas comparable with the aforementioned areas also showed stronger activation over time. After fatigue, reaction time task performance remained the same (compared to before fatigue), while increased activation in orbitofrontal areas was found. Furthermore, there was a reduction in subjects' maximal voluntary contraction force, accompanied by a decrease in activation of the supplementary motor area (SMA). These results suggest that especially the activity in the SMA and frontal areas is affected by motor fatigue.

  1. Functional MRI-based identification of brain areas involved in motor imagery for implantable brain-computer interfaces.

    PubMed

    Hermes, D; Vansteensel, M J; Albers, A M; Bleichner, M G; Benedictus, M R; Mendez Orellana, C; Aarnoutse, E J; Ramsey, N F

    2011-04-01

    For the development of minimally invasive brain-computer interfaces (BCIs), it is important to accurately localize the area of implantation. Using fMRI, we investigated which brain areas are involved in motor imagery. Twelve healthy subjects performed a motor execution and imagery task during separate fMRI and EEG measurements. fMRI results showed that during imagery, premotor and parietal areas were most robustly activated in individual subjects, but surprisingly, no activation was found in the primary motor cortex. EEG results showed that spectral power decreases in contralateral sensorimotor rhythms (8-24 Hz) during both movement and imagery. To further verify the involvement of the motor imagery areas found with fMRI, one epilepsy patient performed the same task during both fMRI and ECoG recordings. Significant ECoG low (8-24 Hz) and high (65-95 Hz) frequency power changes were observed selectively on premotor cortex and these co-localized with fMRI. During a subsequent BCI task, excellent performance (91%) was obtained based on ECoG power changes from the localized premotor area. These results indicate that other areas than the primary motor area may be more reliably activated during motor imagery. Specifically, the premotor cortex may be a better area to implant an invasive BCI.

  2. Functional MRI-based identification of brain areas involved in motor imagery for implantable brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Hermes, D.; Vansteensel, M. J.; Albers, A. M.; Bleichner, M. G.; Benedictus, M. R.; Mendez Orellana, C.; Aarnoutse, E. J.; Ramsey, N. F.

    2011-04-01

    For the development of minimally invasive brain-computer interfaces (BCIs), it is important to accurately localize the area of implantation. Using fMRI, we investigated which brain areas are involved in motor imagery. Twelve healthy subjects performed a motor execution and imagery task during separate fMRI and EEG measurements. fMRI results showed that during imagery, premotor and parietal areas were most robustly activated in individual subjects, but surprisingly, no activation was found in the primary motor cortex. EEG results showed that spectral power decreases in contralateral sensorimotor rhythms (8-24 Hz) during both movement and imagery. To further verify the involvement of the motor imagery areas found with fMRI, one epilepsy patient performed the same task during both fMRI and ECoG recordings. Significant ECoG low (8-24 Hz) and high (65-95 Hz) frequency power changes were observed selectively on premotor cortex and these co-localized with fMRI. During a subsequent BCI task, excellent performance (91%) was obtained based on ECoG power changes from the localized premotor area. These results indicate that other areas than the primary motor area may be more reliably activated during motor imagery. Specifically, the premotor cortex may be a better area to implant an invasive BCI.

  3. Thinking Patterns, Brain Activity and Strategy Choice

    NASA Astrophysics Data System (ADS)

    Nishimura, Kazuo; Okada, Akira; Inagawa, Michiyo; Tobinaga, Yoshikazu

    2012-03-01

    In this study we analyzed the relationship between thinking patterns, behavior and associated brain activity. Subjects completed a self-report assessing whether they could voluntarily stop thinking or not, and were then divided into two groups: those with the ability to stop thinking and those without. We measured subjects' brain activity using magnetoencephalography while giving them a series of tasks intended to encourage or discourage spontaneous thinking. Our findings revealed differences between the two groups in terms of which portions of the brain were active during the two types of task. A second questionnaire confirmed a relationship between the ability to stop thinking and strategy choices in a dilemma game. We found that subjects without the ability to stop thinking had a tendency to choose cooperative behavior.

  4. Synchronous brain activity across individuals underlies shared psychological perspectives

    PubMed Central

    Lahnakoski, Juha M.; Glerean, Enrico; Jääskeläinen, Iiro P.; Hyönä, Jukka; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri

    2014-01-01

    For successful communication, we need to understand the external world consistently with others. This task requires sufficiently similar cognitive schemas or psychological perspectives that act as filters to guide the selection, interpretation and storage of sensory information, perceptual objects and events. Here we show that when individuals adopt a similar psychological perspective during natural viewing, their brain activity becomes synchronized in specific brain regions. We measured brain activity with functional magnetic resonance imaging (fMRI) from 33 healthy participants who viewed a 10-min movie twice, assuming once a ‘social’ (detective) and once a ‘non-social’ (interior decorator) perspective to the movie events. Pearson's correlation coefficient was used to derive multisubject voxelwise similarity measures (inter-subject correlations; ISCs) of functional MRI data. We used k-nearest-neighbor and support vector machine classifiers as well as a Mantel test on the ISC matrices to reveal brain areas wherein ISC predicted the participants' current perspective. ISC was stronger in several brain regions—most robustly in the parahippocampal gyrus, posterior parietal cortex and lateral occipital cortex—when the participants viewed the movie with similar rather than different perspectives. Synchronization was not explained by differences in visual sampling of the movies, as estimated by eye gaze. We propose that synchronous brain activity across individuals adopting similar psychological perspectives could be an important neural mechanism supporting shared understanding of the environment. PMID:24936687

  5. Synchronous brain activity across individuals underlies shared psychological perspectives.

    PubMed

    Lahnakoski, Juha M; Glerean, Enrico; Jääskeläinen, Iiro P; Hyönä, Jukka; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri

    2014-10-15

    For successful communication, we need to understand the external world consistently with others. This task requires sufficiently similar cognitive schemas or psychological perspectives that act as filters to guide the selection, interpretation and storage of sensory information, perceptual objects and events. Here we show that when individuals adopt a similar psychological perspective during natural viewing, their brain activity becomes synchronized in specific brain regions. We measured brain activity with functional magnetic resonance imaging (fMRI) from 33 healthy participants who viewed a 10-min movie twice, assuming once a 'social' (detective) and once a 'non-social' (interior decorator) perspective to the movie events. Pearson's correlation coefficient was used to derive multisubject voxelwise similarity measures (inter-subject correlations; ISCs) of functional MRI data. We used k-nearest-neighbor and support vector machine classifiers as well as a Mantel test on the ISC matrices to reveal brain areas wherein ISC predicted the participants' current perspective. ISC was stronger in several brain regions--most robustly in the parahippocampal gyrus, posterior parietal cortex and lateral occipital cortex--when the participants viewed the movie with similar rather than different perspectives. Synchronization was not explained by differences in visual sampling of the movies, as estimated by eye gaze. We propose that synchronous brain activity across individuals adopting similar psychological perspectives could be an important neural mechanism supporting shared understanding of the environment.

  6. Fluctuations in Neuronal Activity: Clues to Brain Function

    NASA Astrophysics Data System (ADS)

    Pérez Velazquez, José L.; Guevara, Ramón; Belkas, Jason; Wennberg, Richard; Senjanoviè, Goran; García Dominguez, Luis

    2005-08-01

    Recordings from neuronal preparations, either in vitro or in the intact brain, are characterized by fluctuations, what is commonly considered as "noise". Due to the current recording and analysis methods, it is not feasible to separate what we term noise, from the "meaningful" neuronal activity. We propose that fluctuations serve to maintain brain activity in an optimal state for cognitive processing, not allowing it to fall into long-term periodic behaviour. We have studied fluctuations in magnetoencephalographic (MEG) recordings from normal subjects and epileptic patients, in electroencephalographic (EEG) recordings from children with impact injury, as well as in intracerebral electrophysiological recordings in freely moving rats. Specifically, we have determined phase locking patterns between brain areas from these recordings, which display fluctuations at different scales. We submit the idea that the variability in phase synchronization affords a more complete search of all possible phase differences in a hypothetical phase-locking state space that contributes to brain information processing. In brain pathologies, like epileptiform activity here studied, different levels of fluctuations in phase synchrony may favour the generation of stable synchronized states that characterize epileptic seizures. While the border between noise and high-dimensional dynamics is fuzzy, the scrutiny of neuronal fluctuations at different levels will provide important insights to the unravelling of the relation between brain and behaviour.

  7. Molecular mapping of brain areas involved in parrot vocal communication.

    PubMed

    Jarvis, E D; Mello, C V

    2000-03-27

    Auditory and vocal regulation of gene expression occurs in separate discrete regions of the songbird brain. Here we demonstrate that regulated gene expression also occurs during vocal communication in a parrot, belonging to an order whose ability to learn vocalizations is thought to have evolved independently of songbirds. Adult male budgerigars (Melopsittacus undulatus) were stimulated to vocalize with playbacks of conspecific vocalizations (warbles), and their brains were analyzed for expression of the transcriptional regulator ZENK. The results showed that there was distinct separation of brain areas that had hearing- or vocalizing-induced ZENK expression. Hearing warbles resulted in ZENK induction in large parts of the caudal medial forebrain and in 1 midbrain region, with a pattern highly reminiscent of that observed in songbirds. Vocalizing resulted in ZENK induction in nine brain structures, seven restricted to the lateral and anterior telencephalon, one in the thalamus, and one in the midbrain, with a pattern partially reminiscent of that observed in songbirds. Five of the telencephalic structures had been previously described as part of the budgerigar vocal control pathway. However, functional boundaries defined by the gene expression patterns for some of these structures were much larger and different in shape than previously reported anatomical boundaries. Our results provide the first functional demonstration of brain areas involved in vocalizing and auditory processing of conspecific sounds in budgerigars. They also indicate that, whether or not vocal learning evolved independently, some of the gene regulatory mechanisms that accompany learned vocal communication are similar in songbirds and parrots.

  8. Prolonged repeated acupuncture stimulation induces habituation effects in pain-related brain areas: an FMRI study.

    PubMed

    Li, Chuanfu; Yang, Jun; Park, Kyungmo; Wu, Hongli; Hu, Sheng; Zhang, Wei; Bu, Junjie; Xu, Chunsheng; Qiu, Bensheng; Zhang, Xiaochu

    2014-01-01

    Most previous studies of brain responses to acupuncture were designed to investigate the acupuncture instant effect while the cumulative effect that should be more important in clinical practice has seldom been discussed. In this study, the neural basis of the acupuncture cumulative effect was analyzed. For this experiment, forty healthy volunteers were recruited, in which more than 40 minutes of repeated acupuncture stimulation was implemented at acupoint Zhusanli (ST36). Three runs of acupuncture fMRI datasets were acquired, with each run consisting of two blocks of acupuncture stimulation. Besides general linear model (GLM) analysis, the cumulative effects of acupuncture were analyzed with analysis of covariance (ANCOVA) to find the association between the brain response and the cumulative duration of acupuncture stimulation in each stimulation block. The experimental results showed that the brain response in the initial stage was the strongest although the brain response to acupuncture was time-variant. In particular, the brain areas that were activated in the first block and the brain areas that demonstrated cumulative effects in the course of repeated acupuncture stimulation overlapped in the pain-related areas, including the bilateral middle cingulate cortex, the bilateral paracentral lobule, the SII, and the right thalamus. Furthermore, the cumulative effects demonstrated bimodal characteristics, i.e. the brain response was positive at the beginning, and became negative at the end. It was suggested that the cumulative effect of repeated acupuncture stimulation was consistent with the characteristic of habituation effects. This finding may explain the neurophysiologic mechanism underlying acupuncture analgesia.

  9. Working memory training: improving intelligence--changing brain activity.

    PubMed

    Jaušovec, Norbert; Jaušovec, Ksenija

    2012-07-01

    The main objectives of the study were: to investigate whether training on working memory (WM) could improve fluid intelligence, and to investigate the effects WM training had on neuroelectric (electroencephalography - EEG) and hemodynamic (near-infrared spectroscopy - NIRS) patterns of brain activity. In a parallel group experimental design, respondents of the working memory group after 30 h of training significantly increased performance on all tests of fluid intelligence. By contrast, respondents of the active control group (participating in a 30-h communication training course) showed no improvements in performance. The influence of WM training on patterns of neuroelectric brain activity was most pronounced in the theta and alpha bands. Theta and lower-1 alpha band synchronization was accompanied by increased lower-2 and upper alpha desynchronization. The hemodynamic patterns of brain activity after the training changed from higher right hemispheric activation to a balanced activity of both frontal areas. The neuroelectric as well as hemodynamic patterns of brain activity suggest that the training influenced WM maintenance functions as well as processes directed by the central executive. The changes in upper alpha band desynchronization could further indicate that processes related to long term memory were also influenced.

  10. Relation between muscle and brain activity during isometric contractions of the first dorsal interosseus muscle.

    PubMed

    van Duinen, Hiske; Renken, Remco; Maurits, Natasha M; Zijdewind, Inge

    2008-03-01

    We studied the relationship between muscle activity (electromyography, EMG), force, and brain activity during isometric contractions of the index finger, on a group and individual level. Ten subjects contracted their right or left index finger at 5, 15, 30, 50, and 70% of their maximal force. Subjects received visual feedback of the produced force. We focused our analysis on brain activation that correlated with EMG. Brain activity of specific anatomical areas (region-of-interest analysis, ROI) was quantified and correlated with EMG activity. Furthermore, we tried to distinguish between brain areas in which activity was modulated by the amount of EMG and areas that were active during the task but in which the activity was not modulated. Therefore, we used two regressors simultaneously: (1) the produced EMG and (2) the task (a categorical regressor). As expected, activity in the motor areas (contralateral sensorimotor cortex, premotor areas, and ipsilateral cerebellum) strongly correlated with the amount of EMG. In contrast, activity in frontal and parietal areas (inferior part of the right precentral sulcus, ipsilateral supramarginal gyrus, bilateral inferior parietal lobule, bilateral putamen, and insular cortex) correlated with activation per se, independently of the amount of EMG. Activity in these areas was equal during contractions of the right or left index finger. We suppose that these areas are more involved in higher order motor processes during the preparatory phase or monitoring feedback mechanisms. Furthermore, our ROI analysis showed that muscle and brain activity strongly correlate in traditional motor areas, both at group and at subject level.

  11. Electromagnetic imaging of dynamic brain activity

    SciTech Connect

    Mosher, J.; Leahy, R. . Dept. of Electrical Engineering); Lewis, P.; Lewine, J.; George, J. ); Singh, M. . Dept. of Radiology)

    1991-01-01

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  12. Electromagnetic imaging of dynamic brain activity

    SciTech Connect

    Mosher, J.; Leahy, R.; Lewis, P.; Lewine, J.; George, J.; Singh, M.

    1991-12-31

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  13. Complex networks in brain electrical activity

    NASA Astrophysics Data System (ADS)

    Ray, C.; Ruffini, G.; Marco-Pallarés, J.; Fuentemilla, L.; Grau, C.

    2007-08-01

    This letter reports a method to extract a functional network of the human brain from electroencephalogram measurements. A network analysis was performed on the resultant network and the statistics of the cluster coefficient, node degree, path length, and physical distance of the links, were studied. Even given the low electrode count of the experimental data the method was able to extract networks with network parameters that clearly depend on the type of stimulus presented to the subject. This type of analysis opens a door to studying the cerebral networks underlying brain electrical activity, and links the fields of complex networks and cognitive neuroscience.

  14. Competitive brain activity in visual attention.

    PubMed

    Duncan, J; Humphreys, G; Ward, R

    1997-04-01

    Visual attention can be considered from the perspective of distributed brain activity engendered by visual input. We propose that visual objects compete for representation in multiple brain systems, sensory and motor, cortical and subcortical. Competition is integrated, however, such that multiple systems converge, working on the different properties and action implications of a selected object. Top-down priming biases competition towards objects relevant to current behaviour. Recent single-unit studies have shown widespread suppression of ignored-object representations in extrastriate cortex, and patterns of spatial and nonspatial priming by task relevance. Human and monkey lesion studies have demonstrated the strong integration tendency of different spatial and nonspatial systems, also revealed in recent studies of normal behaviour. In many cases, no unitary brain system may be responsible for unitary cognitive events such as attention. Such events may emerge as distinct systems converge to work on common cognitive problems.

  15. Face processing in different brain areas, and critical band masking.

    PubMed

    Rolls, Edmund T

    2008-09-01

    Neurophysiological evidence is described showing that some neurons in the macaque inferior temporal visual cortex have responses that are invariant with respect to the position, size, view, and spatial frequency of faces and objects, and that these neurons show rapid processing and rapid learning. Critical band spatial frequency masking is shown to be a property of these face-selective neurons and of the human visual perception of faces. Which face or object is present is encoded using a distributed representation in which each neuron conveys independent information in its firing rate, with little information evident in the relative time of firing of different neurons. This ensemble encoding has the advantages of maximizing the information in the representation useful for discrimination between stimuli using a simple weighted sum of the neuronal firing by the receiving neurons, generalization, and graceful degradation. These invariant representations are ideally suited to provide the inputs to brain regions such as the orbitofrontal cortex and amygdala that learn the reinforcement associations of an individual's face, for then the learning, and the appropriate social and emotional responses generalize to other views of the same face. A theory is described of how such invariant representations may be produced by self-organizing learning in a hierarchically organized set of visual cortical areas with convergent connectivity. The theory utilizes either temporal or spatial continuity with an associative synaptic modification rule. Another population of neurons in the cortex in the superior temporal sulcus encodes other aspects of faces such as face expression, eye-gaze, face view, and whether the head is moving. These neurons thus provide important additional inputs to parts of the brain such as the orbitofrontal cortex and amygdala that are involved in social communication and emotional behaviour. Outputs of these systems reach the amygdala, in which face

  16. Testosterone affects language areas of the adult human brain

    PubMed Central

    Hahn, Andreas; Kranz, Georg S.; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.

    2016-01-01

    Abstract Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high‐dose hormone application in adult female‐to‐male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel‐based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting‐state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone‐dependent neuroplastic adaptations in adulthood within language‐specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738–1748, 2016. © 2016 Wiley Periodicals, Inc. PMID:26876303

  17. Brain activation during a social attribution task in adolescents with moderate to severe traumatic brain injury.

    PubMed

    Scheibel, Randall S; Newsome, Mary R; Wilde, Elisabeth A; McClelland, Michelle M; Hanten, Gerri; Krawczyk, Daniel C; Cook, Lori G; Chu, Zili D; Vásquez, Ana C; Yallampalli, Ragini; Lin, Xiaodi; Hunter, Jill V; Levin, Harvey S

    2011-01-01

    The ability to make accurate judgments about the mental states of others, sometimes referred to as theory of mind (ToM), is often impaired following traumatic brain injury (TBI), and this deficit may contribute to problems with interpersonal relationships. The present study used an animated social attribution task (SAT) with functional magnetic resonance imaging (fMRI) to examine structures mediating ToM in adolescents with moderate to severe TBI. The study design also included a comparison group of matched, typically developing (TD) adolescents. The TD group exhibited activation within a number of areas that are thought to be relevant to ToM, including the medial prefrontal and anterior cingulate cortex, fusiform gyrus, and posterior temporal and parietal areas. The TBI subjects had significant activation within many of these same areas, but their activation was generally more intense and excluded the medial prefrontal cortex. Exploratory regression analyses indicated a negative relation between ToM-related activation and measures of white matter integrity derived from diffusion tensor imaging, while there was also a positive relation between activation and lesion volume. These findings are consistent with alterations in the level and pattern of brain activation that may be due to the combined influence of diffuse axonal injury and focal lesions.

  18. Towards a fourth spatial dimension of brain activity.

    PubMed

    Tozzi, Arturo; Peters, James F

    2016-06-01

    Current advances in neurosciences deal with the functional architecture of the central nervous system, paving the way for general theories that improve our understanding of brain activity. From topology, a strong concept comes into play in understanding brain functions, namely, the 4D space of a "hypersphere's torus", undetectable by observers living in a 3D world. The torus may be compared with a video game with biplanes in aerial combat: when a biplane flies off one edge of gaming display, it does not crash but rather it comes back from the opposite edge of the screen. Our thoughts exhibit similar behaviour, i.e. the unique ability to connect past, present and future events in a single, coherent picture as if we were allowed to watch the three screens of past-present-future "glued" together in a mental kaleidoscope. Here we hypothesize that brain functions are embedded in a imperceptible fourth spatial dimension and propose a method to empirically assess its presence. Neuroimaging fMRI series can be evaluated, looking for the topological hallmark of the presence of a fourth dimension. Indeed, there is a typical feature which reveal the existence of a functional hypersphere: the simultaneous activation of areas opposite each other on the 3D cortical surface. Our suggestion-substantiated by recent findings-that brain activity takes place on a closed, donut-like trajectory helps to solve long-standing mysteries concerning our psychological activities, such as mind-wandering, memory retrieval, consciousness and dreaming state. PMID:27275375

  19. Early life stress affects limited regional brain activity in depression.

    PubMed

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-05-03

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients.

  20. Towards a fourth spatial dimension of brain activity.

    PubMed

    Tozzi, Arturo; Peters, James F

    2016-06-01

    Current advances in neurosciences deal with the functional architecture of the central nervous system, paving the way for general theories that improve our understanding of brain activity. From topology, a strong concept comes into play in understanding brain functions, namely, the 4D space of a "hypersphere's torus", undetectable by observers living in a 3D world. The torus may be compared with a video game with biplanes in aerial combat: when a biplane flies off one edge of gaming display, it does not crash but rather it comes back from the opposite edge of the screen. Our thoughts exhibit similar behaviour, i.e. the unique ability to connect past, present and future events in a single, coherent picture as if we were allowed to watch the three screens of past-present-future "glued" together in a mental kaleidoscope. Here we hypothesize that brain functions are embedded in a imperceptible fourth spatial dimension and propose a method to empirically assess its presence. Neuroimaging fMRI series can be evaluated, looking for the topological hallmark of the presence of a fourth dimension. Indeed, there is a typical feature which reveal the existence of a functional hypersphere: the simultaneous activation of areas opposite each other on the 3D cortical surface. Our suggestion-substantiated by recent findings-that brain activity takes place on a closed, donut-like trajectory helps to solve long-standing mysteries concerning our psychological activities, such as mind-wandering, memory retrieval, consciousness and dreaming state.

  1. Early life stress affects limited regional brain activity in depression

    PubMed Central

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients. PMID:27138376

  2. Physical activity, air pollution and the brain.

    PubMed

    Bos, Inge; De Boever, Patrick; Int Panis, Luc; Meeusen, Romain

    2014-11-01

    This review introduces an emerging research field that is focused on studying the effect of exposure to air pollution during exercise on cognition, with specific attention to the impact on concentrations of brain-derived neurotrophic factor (BDNF) and inflammatory markers. It has been repeatedly demonstrated that regular physical activity enhances cognition, and evidence suggests that BDNF, a neurotrophin, plays a key role in the mechanism. Today, however, air pollution is an environmental problem worldwide and the high traffic density, especially in urban environments and cities, is a major cause of this problem. During exercise, the intake of air pollution increases considerably due to an increased ventilation rate and particle deposition fraction. Recently, air pollution exposure has been linked to adverse effects on the brain such as cognitive decline and neuropathology. Inflammation and oxidative stress seem to play an important role in inducing these health effects. We believe that there is a need to investigate whether the well-known benefits of regular physical activity on the brain also apply when physical activity is performed in polluted air. We also report our findings about exercising in an environment with ambient levels of air pollutants. Based on the latter results, we hypothesize that traffic-related air pollution exposure during exercise may inhibit the positive effect of exercise on cognition. PMID:25119155

  3. Physical activity, air pollution and the brain.

    PubMed

    Bos, Inge; De Boever, Patrick; Int Panis, Luc; Meeusen, Romain

    2014-11-01

    This review introduces an emerging research field that is focused on studying the effect of exposure to air pollution during exercise on cognition, with specific attention to the impact on concentrations of brain-derived neurotrophic factor (BDNF) and inflammatory markers. It has been repeatedly demonstrated that regular physical activity enhances cognition, and evidence suggests that BDNF, a neurotrophin, plays a key role in the mechanism. Today, however, air pollution is an environmental problem worldwide and the high traffic density, especially in urban environments and cities, is a major cause of this problem. During exercise, the intake of air pollution increases considerably due to an increased ventilation rate and particle deposition fraction. Recently, air pollution exposure has been linked to adverse effects on the brain such as cognitive decline and neuropathology. Inflammation and oxidative stress seem to play an important role in inducing these health effects. We believe that there is a need to investigate whether the well-known benefits of regular physical activity on the brain also apply when physical activity is performed in polluted air. We also report our findings about exercising in an environment with ambient levels of air pollutants. Based on the latter results, we hypothesize that traffic-related air pollution exposure during exercise may inhibit the positive effect of exercise on cognition.

  4. A Novel Human Body Area Network for Brain Diseases Analysis.

    PubMed

    Lin, Kai; Xu, Tianlang

    2016-10-01

    Development of wireless sensor and mobile communication technology provide an unprecedented opportunity for realizing smart and interactive healthcare systems. Designing such systems aims to remotely monitor the health and diagnose the diseases for users. In this paper, we design a novel human body area network for brain diseases analysis, which is named BABDA. Considering the brain is one of the most complex organs in the human body, the BABDA system provides four function modules to ensure the high quality of the analysis result, which includes initial data collection, data correction, data transmission and comprehensive data analysis. The performance evaluation conducted in a realistic environment with several criteria shows the availability and practicability of the BABDA system. PMID:27526187

  5. A Novel Human Body Area Network for Brain Diseases Analysis.

    PubMed

    Lin, Kai; Xu, Tianlang

    2016-10-01

    Development of wireless sensor and mobile communication technology provide an unprecedented opportunity for realizing smart and interactive healthcare systems. Designing such systems aims to remotely monitor the health and diagnose the diseases for users. In this paper, we design a novel human body area network for brain diseases analysis, which is named BABDA. Considering the brain is one of the most complex organs in the human body, the BABDA system provides four function modules to ensure the high quality of the analysis result, which includes initial data collection, data correction, data transmission and comprehensive data analysis. The performance evaluation conducted in a realistic environment with several criteria shows the availability and practicability of the BABDA system.

  6. Differential brain activation according to chronic social reward frustration.

    PubMed

    Siegrist, Johannes; Menrath, Ingo; Stöcker, Tony; Klein, Martina; Kellermann, Thilo; Shah, N Jon; Zilles, Karl; Schneider, Frank

    2005-11-28

    Neural correlates of reward frustration are increasingly studied in humans. In line with prediction error theory, omission of an expected reward is associated with relative decreases of cerebral activation in dopaminergic brain areas. We investigated whether a history of chronic work-related reward frustration influences this reward-dependent activation pattern by means of functional magnetic resonance imaging. Solving arithmetic tasks was followed by either monetary reward or omission of reward. Hyperactivations in the medial prefrontal, anterior cingulate and dorsolateral prefrontal cortex were observed in a group of healthy adults with high susceptibility to reward frustration as compared with a group with low susceptibility. Findings indicate a compromised ability of adapting brain activation among those suffering form chronic social reward frustration.

  7. Brain and behavioural evidence for rest-activity cycles in Octopus vulgaris.

    PubMed

    Brown, Euan R; Piscopo, Stefania; De Stefano, Rosanna; Giuditta, Antonio

    2006-09-25

    Octopus vulgaris maintained under a 12/12h light/dark cycle exhibit a pronounced nocturnal activity pattern. Animals deprived of rest during the light period show a marked 'rebound' in activity in the following 24h. 'Active' octopuses attack faster than 'quiet' animals and brain activity recorded electrically intensifies during 'quiet' behaviour. Thus, in Octopus as in vertebrates, brain areas involved in memory or 'higher' processes exhibit 'off-line' activity during rest periods.

  8. Imaging brain activity in conscious monkeys following oral MDMA ("ecstasy").

    PubMed

    Brevard, Mathew E; Meyer, Jerrold S; Harder, Josie A; Ferris, Craig F

    2006-07-01

    Recreational use of 3,4-methylenedioxymethamphetamine (MDMA;"ecstasy") poses worldwide potential health problems. Clinical studies show that repeated exposure to low oral doses of MDMA has toxic effects on the brain, altering cognitive and psychosocial behavior. Functional magnetic resonance imaging in conscious marmoset monkeys was used to evaluate the sensitivity of the brain to an oral dose of MDMA (1 mg/kg). Following MDMA administration, the midbrain raphe nuclei and substantia nigra, major sources of serotonin and dopamine, were activated as were the hippocampus, hypothalamus and amygdala. The corticostriatal circuit of dorsal thalamus, sensorimotor cortex and basal ganglia showed a robust, coherent activation pattern. Two key reward areas, the nucleus accumbens and prefrontal cortex, and most other cortical regions showed little activation. The visual cortex, however, showed intense activation without applied visual stimuli. These data identify brain areas and functional circuits sensitive to a recreational dose of MDMA, some of which may be vulnerable to long-term intermittent exposure to this drug.

  9. Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations.

    PubMed

    Arsalidou, Marie; Taylor, Margot J

    2011-02-01

    Most of us use numbers daily for counting, estimating quantities or formal mathematics, yet despite their importance our understanding of the brain correlates of these processes is still evolving. A neurofunctional model of mental arithmetic, proposed more than a decade ago, stimulated a substantial body of research in this area. Using quantitative meta-analyses of fMRI studies we identified brain regions concordant among studies that used number and calculation tasks. These tasks elicited activity in a set of common regions such as the inferior parietal lobule; however, the regions in which they differed were most notable, such as distinct areas of prefrontal cortices for specific arithmetic operations. Given the current knowledge, we propose an updated topographical brain atlas of mental arithmetic with improved interpretative power. PMID:20946958

  10. Developmental changes in brain activation and functional connectivity during response inhibition in the early childhood brain.

    PubMed

    Mehnert, Jan; Akhrif, Atae; Telkemeyer, Silke; Rossi, Sonja; Schmitz, Christoph H; Steinbrink, Jens; Wartenburger, Isabell; Obrig, Hellmuth; Neufang, Susanne

    2013-11-01

    Response inhibition is an attention function which develops relatively early during childhood. Behavioral data suggest that by the age of 3, children master the basic task requirements for the assessment of response inhibition but performance improves substantially until the age of 7. The neuronal mechanisms underlying these developmental processes, however, are not well understood. In this study, we examined brain activation patterns and behavioral performance of children aged between 4 and 6 years compared to adults by applying a go/no-go paradigm during near-infrared spectroscopy (NIRS) brain imaging. We furthermore applied task-independent functional connectivity measures to the imaging data to identify maturation of intrinsic neural functional networks. We found a significant group×condition related interaction in terms of inhibition-related reduced right fronto-parietal activation in children compared to adults. In contrast, motor-related activation did not differ between age groups. Functional connectivity analysis revealed that in the children's group, short-range coherence within frontal areas was stronger, and long-range coherence between frontal and parietal areas was weaker, compared to adults. Our findings show that in children aged from 4 to 6 years fronto-parietal brain maturation plays a crucial part in the cognitive development of response inhibition. PMID:23265620

  11. Human brain activity with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Luo, Qingming; Chance, Britton

    1999-09-01

    Human brain activity was studied with a real time functional Near-InfraRed Imager (fNIRI). The imager has 16 measurement channels and covers 4 cm by 9 cm detection area. Brain activities in occipital, motor and prefrontal area were studied with the fNIRI. In prefrontal stimulation, language cognition, analogies, forming memory for new associations, emotional thinking, and mental arithmetic were carried out. Experimental results measured with fNIRI are demonstrated in this paper. It was shown that fNIRI technique is able to reveal the occipital activity during visual stimulation, and co-register well with results of fMRI in the motor cortex activity during finger tapping. In the studies of the effects of left prefrontal lobe on forming memory for new associations, it is shown that left prefrontal lobe activated more under deep conditions than that under shallow encoding, especially the dorsal part. In the studies of emotional thinking, it was shown that the responses were different between positive- negative emotional thinking and negative-positive emotional thinking. In mental arithmetic studies, higher activation was found in the first task than in the second, regardless of the difficulty, and higher activation was measured in subtraction of 17 than in subtraction of 3.

  12. Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex.

    PubMed

    Mars, Rogier B; Sallet, Jérôme; Neubert, Franz-Xaver; Rushworth, Matthew F S

    2013-06-25

    The human ability to infer the thoughts and beliefs of others, often referred to as "theory of mind," as well as the predisposition to even consider others, are associated with activity in the temporoparietal junction (TPJ) area. Unlike the case of most human brain areas, we have little sense of whether or how TPJ is related to brain areas in other nonhuman primates. It is not possible to address this question by looking for similar task-related activations in nonhuman primates because there is no evidence that nonhuman primates engage in theory-of-mind tasks in the same manner as humans. Here, instead, we explore the relationship by searching for areas in the macaque brain that interact with other macaque brain regions in the same manner as human TPJ interacts with other human brain regions. In other words, we look for brain regions with similar positions within a distributed neural circuit in the two species. We exploited the fact that human TPJ has a unique functional connectivity profile with cortical areas with known homologs in the macaque. For each voxel in the macaque temporal and parietal cortex we evaluated the similarity of its functional connectivity profile to that of human TPJ. We found that areas in the middle part of the superior temporal cortex, often associated with the processing of faces and other social stimuli, have the most similar connectivity profile. These results suggest that macaque face processing areas and human mentalizing areas might have a similar precursor.

  13. Delayed and disorganised brain activation detected with magnetoencephalography after mild traumatic brain injury

    PubMed Central

    da Costa, Leodante; Robertson, Amanda; Bethune, Allison; MacDonald, Matt J; Shek, Pang N; Taylor, Margot J; Pang, Elizabeth W

    2015-01-01

    Background Awareness to neurocognitive issues after mild traumatic brain injury (mTBI) is increasing, but currently no imaging markers are available for mTBI. Advanced structural imaging recently showed microstructural tissue changes and axonal injury, mild but likely sufficient to lead to functional deficits. Magnetoencephalography (MEG) has high temporal and spatial resolution, combining structural and electrophysiological information, and can be used to examine brain activation patterns of regions involved with specific tasks. Methods 16 adults with mTBI and 16 matched controls were submitted to neuropsychological testing (Wechsler Abbreviated Scale of Intelligence (WASI); Conners; Alcohol Use Disorders Identification Test (AUDIT); Generalised Anxiety Disorder Seven-item Scale (GAD-7); Patient Health Questionnaire (PHQ-9); Symptom Checklist and Symptom Severity Score (SCAT2)) and MEG while tested for mental flexibility (Intra-Extra Dimensional set-shifting tasks). Three-dimensional maps were generated using synthetic aperture magnetometry beamforming analyses to identify differences in regional activation and activation times. Reaction times and accuracy between groups were compared using 2×2 mixed analysis of variance. Findings While accuracy was similar, patients with mTBI reaction time was delayed and sequence of activation of brain regions disorganised, with involvement of extra regions such as the occipital lobes, not used by controls. Examination of activation time showed significant delays in the right insula and left posterior parietal cortex in patients with mTBI. Conclusions Patients with mTBI showed significant delays in the activation of important areas involved in executive function. Also, more regions of the brain are involved in an apparent compensatory effort. Our study suggests that MEG can detect subtle neural changes associated with cognitive dysfunction and thus, may eventually be useful for capturing and tracking the onset and course of

  14. Brain activity during stepping: a novel MRI-compatible device.

    PubMed

    Hollnagel, Christoph; Brügger, Mike; Vallery, Heike; Wolf, Peter; Dietz, Volker; Kollias, Spyros; Riener, Robert

    2011-09-30

    Little is known about the impact of supraspinal centers on the control of human locomotion. Analyzing brain activity can help to clarify their impact and to improve the effects of locomotor training. A fMRI-compatible pneumatic robotic device is presented that can generate freely programmable, highly repetitive periodic active and passive leg movements comprised by hip, knee, and ankle joint displacements. Forces of up to 400N can be applied to each foot while the subject is lying in a supine position. Magnetic interference of the device with the magnetic field of the scanner is measurable, but does not affect the image quality as obtained by a usual image analysis procedure. In a first experiment, brain activity of one healthy subject was acquired during nine different gait-like movement conditions. Brain activity in the somatosensory and motor function related areas increased more when the subject actively moved the legs than when the legs were passively moved by the device. In almost all conditions, mean head motion could be limited to 2mm within the duration of one fMRI scan by a specifically developed head and trunk fixation system. Based on these results, it is concluded that our device will significantly contribute to a better understanding of human locomotor control and related therapeutic effects in spinal cord injured and stroke patients, and thereby, to improve training approaches. PMID:21827788

  15. Scale-free brain activity: past, present and future

    PubMed Central

    He, Biyu J.

    2014-01-01

    Brain activity observed at many spatiotemporal scales exhibits a 1/f-like power spectrum, including neuronal membrane potentials, neural field potentials, noninvasive electroencephalography, magnetoencephalography and functional magnetic resonance imaging signals. A 1/f-like power spectrum is indicative of arrhythmic brain activity that does not contain a predominant temporal scale (hence, “scale-free”). This characteristic of scale-free brain activity distinguishes it from brain oscillations. While scale-free brain activity and brain oscillations coexist, our understanding of the former remains very limited. Recent research has shed light on the spatiotemporal organization, functional significance and potential generative mechanisms of scale-free brain activity, as well as its developmental and clinical relevance. A deeper understanding of this prevalent brain signal should provide new insights and analytical tools for cognitive neuroscience. PMID:24788139

  16. Scale-free brain activity: past, present, and future.

    PubMed

    He, Biyu J

    2014-09-01

    Brain activity observed at many spatiotemporal scales exhibits a 1/f-like power spectrum, including neuronal membrane potentials, neural field potentials, noninvasive electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) signals. A 1/f-like power spectrum is indicative of arrhythmic brain activity that does not contain a predominant temporal scale (hence, 'scale-free'). This characteristic of scale-free brain activity distinguishes it from brain oscillations. Although scale-free brain activity and brain oscillations coexist, our understanding of the former remains limited. Recent research has shed light on the spatiotemporal organization, functional significance, and potential generative mechanisms of scale-free brain activity, as well as its developmental and clinical relevance. A deeper understanding of this prevalent brain signal should provide new insights into, and analytical tools for, cognitive neuroscience.

  17. Noise in brain activity engenders perception and influences discrimination sensitivity.

    PubMed

    Bernasconi, Fosco; De Lucia, Marzia; Tzovara, Athina; Manuel, Aurelie L; Murray, Micah M; Spierer, Lucas

    2011-12-01

    Behavioral and brain responses to identical stimuli can vary with experimental and task parameters, including the context of stimulus presentation or attention. More surprisingly, computational models suggest that noise-related random fluctuations in brain responses to stimuli would alone be sufficient to engender perceptual differences between physically identical stimuli. In two experiments combining psychophysics and EEG in healthy humans, we investigated brain mechanisms whereby identical stimuli are (erroneously) perceived as different (higher vs lower in pitch or longer vs shorter in duration) in the absence of any change in the experimental context. Even though, as expected, participants' percepts to identical stimuli varied randomly, a classification algorithm based on a mixture of Gaussians model (GMM) showed that there was sufficient information in single-trial EEG to reliably predict participants' judgments of the stimulus dimension. By contrasting electrical neuroimaging analyses of auditory evoked potentials (AEPs) to the identical stimuli as a function of participants' percepts, we identified the precise timing and neural correlates (strength vs topographic modulations) as well as intracranial sources of these erroneous perceptions. In both experiments, AEP differences first occurred ~100 ms after stimulus onset and were the result of topographic modulations following from changes in the configuration of active brain networks. Source estimations localized the origin of variations in perceived pitch of identical stimuli within right temporal and left frontal areas and of variations in perceived duration within right temporoparietal areas. We discuss our results in terms of providing neurophysiologic evidence for the contribution of random fluctuations in brain activity to conscious perception.

  18. Brain activity correlates with emotional perception induced by dynamic avatars.

    PubMed

    Goldberg, Hagar; Christensen, Andrea; Flash, Tamar; Giese, Martin A; Malach, Rafael

    2015-11-15

    An accurate judgment of the emotional state of others is a prerequisite for successful social interaction and hence survival. Thus, it is not surprising that we are highly skilled at recognizing the emotions of others. Here we aimed to examine the neuronal correlates of emotion recognition from gait. To this end we created highly controlled dynamic body-movement stimuli based on real human motion-capture data (Roether et al., 2009). These animated avatars displayed gait in four emotional (happy, angry, fearful, and sad) and speed-matched neutral styles. For each emotional gait and its equivalent neutral gait, avatars were displayed at five morphing levels between the two. Subjects underwent fMRI scanning while classifying the emotions and the emotional intensity levels expressed by the avatars. Our results revealed robust brain selectivity to emotional compared to neutral gait stimuli in brain regions which are involved in emotion and biological motion processing, such as the extrastriate body area (EBA), fusiform body area (FBA), superior temporal sulcus (STS), and the amygdala (AMG). Brain activity in the amygdala reflected emotional awareness: for visually identical stimuli it showed amplified stronger response when the stimulus was perceived as emotional. Notably, in avatars gradually morphed along an emotional expression axis there was a parametric correlation between amygdala activity and emotional intensity. This study extends the mapping of emotional decoding in the human brain to the domain of highly controlled dynamic biological motion. Our results highlight an extensive level of brain processing of emotional information related to body language, which relies mostly on body kinematics. PMID:26220746

  19. Brain activity during driving with distraction: an immersive fMRI study

    PubMed Central

    Schweizer, Tom A.; Kan, Karen; Hung, Yuwen; Tam, Fred; Naglie, Gary; Graham, Simon J.

    2013-01-01

    Introduction: Non-invasive measurements of brain activity have an important role to play in understanding driving ability. The current study aimed to identify the neural underpinnings of human driving behavior by visualizing the areas of the brain involved in driving under different levels of demand, such as driving while distracted or making left turns at busy intersections. Materials and Methods: To capture brain activity during driving, we placed a driving simulator with a fully functional steering wheel and pedals in a 3.0 Tesla functional magnetic resonance imaging (fMRI) system. To identify the brain areas involved while performing different real-world driving maneuvers, participants completed tasks ranging from simple (right turns) to more complex (left turns at busy intersections). To assess the effects of driving while distracted, participants were asked to perform an auditory task while driving analogous to speaking on a hands-free device and driving. Results: A widely distributed brain network was identified, especially when making left turns at busy intersections compared to more simple driving tasks. During distracted driving, brain activation shifted dramatically from the posterior, visual and spatial areas to the prefrontal cortex. Conclusions: Our findings suggest that the distracted brain sacrificed areas in the posterior brain important for visual attention and alertness to recruit enough brain resources to perform a secondary, cognitive task. The present findings offer important new insights into the scientific understanding of the neuro-cognitive mechanisms of driving behavior and lay down an important foundation for future clinical research. PMID:23450757

  20. The change of the brain activation patterns as children learn algebra equation solving

    PubMed Central

    Qin, Yulin; Carter, Cameron S.; Silk, Eli M.; Stenger, V. Andrew; Fissell, Kate; Goode, Adam; Anderson, John R.

    2004-01-01

    In a brain imaging study of children learning algebra, it is shown that the same regions are active in children solving equations as are active in experienced adults solving equations. As with adults, practice in symbol manipulation produces a reduced activation in prefrontal cortex area. However, unlike adults, practice seems also to produce a decrease in a parietal area that is holding an image of the equation. This finding suggests that adolescents' brain responses are more plastic and change more with practice. These results are integrated in a cognitive model that predicts both the behavioral and brain imaging results. PMID:15064407

  1. Functional Specificity of the Visual Word Form Area: General Activation for Words and Symbols but Specific Network Activation for Words

    ERIC Educational Resources Information Center

    Reinke, Karen; Fernandes, Myra; Schwindt, Graeme; O'Craven, Kathleen; Grady, Cheryl L.

    2008-01-01

    The functional specificity of the brain region known as the Visual Word Form Area (VWFA) was examined using fMRI. We explored whether this area serves a general role in processing symbolic stimuli, rather than being selective for the processing of words. Brain activity was measured during a visual 1-back task to English words, meaningful symbols…

  2. Invisible Brain: Knowledge in Research Works and Neuron Activity.

    PubMed

    Segev, Aviv; Curtis, Dorothy; Jung, Sukhwan; Chae, Suhyun

    2016-01-01

    If the market has an invisible hand, does knowledge creation and representation have an "invisible brain"? While knowledge is viewed as a product of neuron activity in the brain, can we identify knowledge that is outside the brain but reflects the activity of neurons in the brain? This work suggests that the patterns of neuron activity in the brain can be seen in the representation of knowledge-related activity. Here we show that the neuron activity mechanism seems to represent much of the knowledge learned in the past decades based on published articles, in what can be viewed as an "invisible brain" or collective hidden neural networks. Similar results appear when analyzing knowledge activity in patents. Our work also tries to characterize knowledge increase as neuron network activity growth. The results propose that knowledge-related activity can be seen outside of the neuron activity mechanism. Consequently, knowledge might exist as an independent mechanism. PMID:27439199

  3. Spatiotemporal characteristics of electrocortical brain activity during mental calculation.

    PubMed

    Vansteensel, Mariska J; Bleichner, Martin G; Freudenburg, Zac V; Hermes, Dora; Aarnoutse, Erik J; Leijten, Frans S S; Ferrier, Cyrille H; Jansma, Johan Martijn; Ramsey, Nick F

    2014-12-01

    Mental calculation is a complex mental procedure involving a frontoparietal network of brain regions. Functional MRI (fMRI) studies have revealed interesting characteristics of these regions, but the precise function of some areas remains elusive. In the present study, we used electrocorticographic (ECoG) recordings to chronometrically assess the neuronal processes during mental arithmetic. A calculation task was performed during presurgical 3T fMRI scanning and subsequent ECoG monitoring. Mental calculation induced an increase in fMRI blood oxygen level dependent signal in prefrontal, parietal and lower temporo-occipital regions. The group-fMRI result was subsequently used to cluster the implanted electrodes into anatomically defined regions of interest (ROIs). We observed remarkable differences in high frequency power profiles between ROIs, some of which were closely associated with stimulus presentation and others with the response. Upon stimulus presentation, occipital areas were the first to respond, followed by parietal and frontal areas, and finally by motor areas. Notably, we demonstrate that the fMRI activation in the middle frontal gyrus/precentral gyrus is associated with two subfunctions during mental calculation. This finding reveals the significance of the temporal dynamics of neural ensembles within regions with an apparent uniform function. In conclusion, our results shed more light on the spatiotemporal aspects of brain activation during a mental calculation task, and demonstrate that the use of fMRI data to cluster ECoG electrodes is a useful approach for ECoG group analysis. PMID:25044370

  4. Altered brain activity during pain processing in fibromyalgia.

    PubMed

    Burgmer, Markus; Pogatzki-Zahn, Esther; Gaubitz, Markus; Wessoleck, Erik; Heuft, Gereon; Pfleiderer, Bettina

    2009-01-15

    Fibromyalgia syndrome (FMS) is characterized by widespread pain. Studies with functional neuroimaging support the hypothesis of central pain augmentation in FMS. We tested this in our study with a novel paradigm of tonic pain induced by a single stimulus. Tonic pain, in contrast to phasic pain, seems to be a more appropriate experimental approach to study adaptive mechanisms of pain processing in FMS. We hypothesized that brain areas related to the "medial" pain system and the amygdalae will present different activation in patients compared to healthy subjects. An fMRI-block design before, during and after an incision was made in patients with FMS and in healthy controls. Acute pain caused by the incision was measured during the course of the experiment. A 2 factorial model of BOLD-signal changes was designed to explore significant differences of brain activation between both groups during the pain stimulus. Additionally the first Eigenvariates in those areas which show an interaction between both factors were determined over the time course of pain stimulation. Differences of activation in the fronto-cingulate cortex, the supplemental motor areas, and the thalamus were found between both groups with distinct differences in BOLD-signals changes over the time course of pain stimulation, even during anticipation of pain. Our results support the hypothesis that central mechanisms of pain processing in the medial pain system, favourable cognitive/affective factors even during the anticipation of pain, may play an important role for pain processing in patients with FMS. PMID:18848998

  5. Uni- and multisensory brain areas are synchronised across spectators when watching unedited dance recordings

    PubMed Central

    Jola, Corinne; McAleer, Phil; Grosbras, Marie-Hélène; Love, Scott A.; Morison, Gordon; Pollick, Frank E.

    2013-01-01

    The superior temporal sulcus (STS) and gyrus (STG) are commonly identified to be functionally relevant for multisensory integration of audiovisual (AV) stimuli. However, most neuroimaging studies on AV integration used stimuli of short duration in explicit evaluative tasks. Importantly though, many of our AV experiences are of a long duration and ambiguous. It is unclear if the enhanced activity in audio, visual, and AV brain areas would also be synchronised over time across subjects when they are exposed to such multisensory stimuli. We used intersubject correlation to investigate which brain areas are synchronised across novices for uni- and multisensory versions of a 6-min 26-s recording of an unfamiliar, unedited Indian dance recording (Bharatanatyam). In Bharatanatyam, music and dance are choreographed together in a highly intermodal-dependent manner. Activity in the middle and posterior STG was significantly correlated between subjects and showed also significant enhancement for AV integration when the functional magnetic resonance signals were contrasted against each other using a general linear model conjunction analysis. These results extend previous studies by showing an intermediate step of synchronisation for novices: while there was a consensus across subjects' brain activity in areas relevant for unisensory processing and AV integration of related audio and visual stimuli, we found no evidence for synchronisation of higher level cognitive processes, suggesting these were idiosyncratic. PMID:24349687

  6. Brain activities during synchronized tapping task.

    PubMed

    Hiroyasu, Tomoyuki; Murakami, Akiho; Mao Gto; Yokouchi, Hisatake

    2015-01-01

    This study aims to investigate how people process information about other people to determine a response during human-to-human cooperative work. As a preliminary study, the mechanism of cooperative work was examined using interaction between a machine and a human. This machine was designed to have an "other person" model that simulates an emotional model of another person. The task performed in the experiment was a synchronized tapping task. Two models were prepared for this experiment, a simple model that does not employ the other person model and a synchronized model that employs the other person model. Subjects performed cooperative work with these machines. During the experiment, brain activities were measured using functional near-infrared spectroscopy. It was observed that the left inferior frontal gyrus was activated more with the synchronized model than the simple model. PMID:26737670

  7. Brain Activity with Reading Sentences and Emoticons

    NASA Astrophysics Data System (ADS)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe a person's brain activity when he/she sees an emoticon at the end of a sentence. An emoticon consists of some characters that resemble the human face and expresses a sender's emotion. With the help of a computer network, we use e-mail, messenger, avatars and so on, in order to convey what we wish to, to a receiver. Moreover, we send an emotional expression by using an emoticon at the end of a sentence. In this research, we investigate the effect of an emoticon as nonverbal information, using an fMRI study. The experimental results show that the right and left inferior frontal gyrus were activated and we detect a sentence with an emoticon as the verbal and nonverval information.

  8. Influence of endocrine active compounds on the developing rodent brain.

    PubMed

    Patisaul, Heather B; Polston, Eva K

    2008-03-01

    Changes in the volumes of sexually dimorphic brain nuclei are often used as a biomarker for developmental disruption by endocrine-active compounds (EACs). However, these gross, morphological analyses do not reliably predict disruption of cell phenotype or neuronal function. Therefore, an experimental approach that simultaneously assesses anatomical, physiological and behavioral endpoints is required when developing risk assessment models for EAC exposure. Using this more comprehensive approach we have demonstrated that the disruption of nuclear volume does not necessarily coincide with disruption of cellular phenotype or neuroendocrine function in two sexually dimorphic brain nuclei: the anteroventral periventricular nucleus of the hypothalamus (AVPV) and the sexually dimorphic nucleus of the preoptic area (SDN). These results demonstrate that nuclear volume is likely not an appropriate biomarker for EAC exposure. We further demonstrated that neonatal exposure to the EACs genistein (GEN) and Bisphenol-A (BPA) can affect sexually dimorphic brain morphology and neuronal phenotypes in adulthood with regional and cellular specificity suggesting that effects observed in one brain region may not be predictive of effects within neighboring regions. Finally, developmental EAC exposure has been shown to affect a variety of sexually dimorphic behaviors including reproductive behavior. These effects are likely to have a broad impact as maladaptive behavior could translate to decreased fitness of entire populations. Collectively, these findings emphasize the need to employ a comprehensive approach that addresses anatomical, functional and behavioral endpoints when evaluating the potential effects of EAC exposure.

  9. Mapping social behavior-induced brain activation at cellular resolution in the mouse

    PubMed Central

    Kim, Yongsoo; Venkataraju, Kannan Umadevi; Pradhan, Kith; Mende, Carolin; Taranda, Julian; Turaga, Srinivas C.; Arganda-Carreras, Ignacio; Ng, Lydia; Hawrylycz, Michael J.; Rockland, Kathleen; Seung, H. Sebastian; Osten, Pavel

    2014-01-01

    Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate early gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP-positive neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse. PMID:25558063

  10. Age-Related Differences in the Brain Areas outside the Classical Language Areas among Adults Using Category Decision Task

    ERIC Educational Resources Information Center

    Cho, Yong Won; Song, Hui-Jin; Lee, Jae Jun; Lee, Joo Hwa; Lee, Hui Joong; Yi, Sang Doe; Chang, Hyuk Won; Berl, Madison M.; Gaillard, William D.; Chang, Yongmin

    2012-01-01

    Older adults perform much like younger adults on language. This similar level of performance, however, may come about through different underlying brain processes. In the present study, we evaluated age-related differences in the brain areas outside the typical language areas among adults using a category decision task. Our results showed that…

  11. New Perspectives on Spontaneous Brain Activity: Dynamic Networks and Energy Matter.

    PubMed

    Tozzi, Arturo; Zare, Marzieh; Benasich, April A

    2016-01-01

    Spontaneous brain activity has received increasing attention as demonstrated by the exponential rise in the number of published article on this topic over the last 30 years. Such "intrinsic" brain activity, generated in the absence of an explicit task, is frequently associated with resting-state or default-mode networks (DMN)s. The focus on characterizing spontaneous brain activity promises to shed new light on questions concerning the structural and functional architecture of the brain and how they are related to "mind". However, many critical questions have yet to be addressed. In this review, we focus on a scarcely explored area, specifically the energetic requirements and constraints of spontaneous activity, taking into account both thermodynamical and informational perspectives. We argue that the "classical" definitions of spontaneous activity do not take into account an important feature, that is, the critical thermodynamic energetic differences between spontaneous and evoked brain activity. Spontaneous brain activity is associated with slower oscillations compared with evoked, task-related activity, hence it exhibits lower levels of enthalpy and "free-energy" (i.e., the energy that can be converted to do work), thus supporting noteworthy thermodynamic energetic differences between spontaneous and evoked brain activity. Increased spike frequency during evoked activity has a significant metabolic cost, consequently, brain functions traditionally associated with spontaneous activity, such as mind wandering, require less energy that other nervous activities. We also review recent empirical observations in neuroscience, in order to capture how spontaneous brain dynamics and mental function can be embedded in a non-linear dynamical framework, which considers nervous activity in terms of phase spaces, particle trajectories, random walks, attractors and/or paths at the edge of the chaos. This takes us from the thermodynamic free-energy, to the realm of "variational

  12. New Perspectives on Spontaneous Brain Activity: Dynamic Networks and Energy Matter.

    PubMed

    Tozzi, Arturo; Zare, Marzieh; Benasich, April A

    2016-01-01

    Spontaneous brain activity has received increasing attention as demonstrated by the exponential rise in the number of published article on this topic over the last 30 years. Such "intrinsic" brain activity, generated in the absence of an explicit task, is frequently associated with resting-state or default-mode networks (DMN)s. The focus on characterizing spontaneous brain activity promises to shed new light on questions concerning the structural and functional architecture of the brain and how they are related to "mind". However, many critical questions have yet to be addressed. In this review, we focus on a scarcely explored area, specifically the energetic requirements and constraints of spontaneous activity, taking into account both thermodynamical and informational perspectives. We argue that the "classical" definitions of spontaneous activity do not take into account an important feature, that is, the critical thermodynamic energetic differences between spontaneous and evoked brain activity. Spontaneous brain activity is associated with slower oscillations compared with evoked, task-related activity, hence it exhibits lower levels of enthalpy and "free-energy" (i.e., the energy that can be converted to do work), thus supporting noteworthy thermodynamic energetic differences between spontaneous and evoked brain activity. Increased spike frequency during evoked activity has a significant metabolic cost, consequently, brain functions traditionally associated with spontaneous activity, such as mind wandering, require less energy that other nervous activities. We also review recent empirical observations in neuroscience, in order to capture how spontaneous brain dynamics and mental function can be embedded in a non-linear dynamical framework, which considers nervous activity in terms of phase spaces, particle trajectories, random walks, attractors and/or paths at the edge of the chaos. This takes us from the thermodynamic free-energy, to the realm of "variational

  13. New Perspectives on Spontaneous Brain Activity: Dynamic Networks and Energy Matter

    PubMed Central

    Tozzi, Arturo; Zare, Marzieh; Benasich, April A.

    2016-01-01

    Spontaneous brain activity has received increasing attention as demonstrated by the exponential rise in the number of published article on this topic over the last 30 years. Such “intrinsic” brain activity, generated in the absence of an explicit task, is frequently associated with resting-state or default-mode networks (DMN)s. The focus on characterizing spontaneous brain activity promises to shed new light on questions concerning the structural and functional architecture of the brain and how they are related to “mind”. However, many critical questions have yet to be addressed. In this review, we focus on a scarcely explored area, specifically the energetic requirements and constraints of spontaneous activity, taking into account both thermodynamical and informational perspectives. We argue that the “classical” definitions of spontaneous activity do not take into account an important feature, that is, the critical thermodynamic energetic differences between spontaneous and evoked brain activity. Spontaneous brain activity is associated with slower oscillations compared with evoked, task-related activity, hence it exhibits lower levels of enthalpy and “free-energy” (i.e., the energy that can be converted to do work), thus supporting noteworthy thermodynamic energetic differences between spontaneous and evoked brain activity. Increased spike frequency during evoked activity has a significant metabolic cost, consequently, brain functions traditionally associated with spontaneous activity, such as mind wandering, require less energy that other nervous activities. We also review recent empirical observations in neuroscience, in order to capture how spontaneous brain dynamics and mental function can be embedded in a non-linear dynamical framework, which considers nervous activity in terms of phase spaces, particle trajectories, random walks, attractors and/or paths at the edge of the chaos. This takes us from the thermodynamic free-energy, to the realm

  14. Changes in baseball batters' brain activity with increased pitch choice.

    PubMed

    Ryu, Kwangmin; Kim, Jingu; Ali, Asif; Kim, Woojong; Radlo, Steven J

    2015-09-01

    In baseball, one factor necessary for batters to decide whether to swing or not depends on what type of pitch is thrown. Oftentimes batters will look for their pitch (i.e., waiting for a fastball). In general, when a pitcher has many types of pitches in his arsenal, batters will have greater difficulty deciding upon the pitch thrown. Little research has been investigated the psychophysiology of a batters decision-making processes. Therefore, the primary purpose of this study was to determine how brain activation changes according to an increase in the number of alternatives (NA) available. A total of 15 male college baseball players participated in this study. The stimuli used in this experiment were video clips of a right-handed pitcher throwing fastball, curve, and slider pitches. The task was to press a button after selecting the fastball as the target stimulus from two pitch choices (fastball and curve), and then from three possibilities (fastball, curve, and slider). Functional and anatomic image scanning magnetic resonance imaging (MRI) runs took 4 and 5[Formula: see text]min, respectively. According to our analysis, the right precentral gyrus, left medial frontal gyrus, and right fusiform gyrus were activated when the NA was one. The supplementary motor areas (SMA) and primary motor cortex were activated when there were two alternatives to choose from and the inferior orbitofrontal gyrus was specifically activated with three alternatives. Contrary to our expectations, the NA was not a critical factor influencing the activation of related decision making areas when the NA was compared against one another. These findings highlight that specific brain areas related to decision making were activated as the NA increased.

  15. Changes in baseball batters' brain activity with increased pitch choice.

    PubMed

    Ryu, Kwangmin; Kim, Jingu; Ali, Asif; Kim, Woojong; Radlo, Steven J

    2015-09-01

    In baseball, one factor necessary for batters to decide whether to swing or not depends on what type of pitch is thrown. Oftentimes batters will look for their pitch (i.e., waiting for a fastball). In general, when a pitcher has many types of pitches in his arsenal, batters will have greater difficulty deciding upon the pitch thrown. Little research has been investigated the psychophysiology of a batters decision-making processes. Therefore, the primary purpose of this study was to determine how brain activation changes according to an increase in the number of alternatives (NA) available. A total of 15 male college baseball players participated in this study. The stimuli used in this experiment were video clips of a right-handed pitcher throwing fastball, curve, and slider pitches. The task was to press a button after selecting the fastball as the target stimulus from two pitch choices (fastball and curve), and then from three possibilities (fastball, curve, and slider). Functional and anatomic image scanning magnetic resonance imaging (MRI) runs took 4 and 5[Formula: see text]min, respectively. According to our analysis, the right precentral gyrus, left medial frontal gyrus, and right fusiform gyrus were activated when the NA was one. The supplementary motor areas (SMA) and primary motor cortex were activated when there were two alternatives to choose from and the inferior orbitofrontal gyrus was specifically activated with three alternatives. Contrary to our expectations, the NA was not a critical factor influencing the activation of related decision making areas when the NA was compared against one another. These findings highlight that specific brain areas related to decision making were activated as the NA increased. PMID:26227537

  16. Investigating causality between interacting brain areas with multivariate autoregressive models of MEG sensor data.

    PubMed

    Michalareas, George; Schoffelen, Jan-Mathijs; Paterson, Gavin; Gross, Joachim

    2013-04-01

    In this work, we investigate the feasibility to estimating causal interactions between brain regions based on multivariate autoregressive models (MAR models) fitted to magnetoencephalographic (MEG) sensor measurements. We first demonstrate the theoretical feasibility of estimating source level causal interactions after projection of the sensor-level model coefficients onto the locations of the neural sources. Next, we show with simulated MEG data that causality, as measured by partial directed coherence (PDC), can be correctly reconstructed if the locations of the interacting brain areas are known. We further demonstrate, if a very large number of brain voxels is considered as potential activation sources, that PDC as a measure to reconstruct causal interactions is less accurate. In such case the MAR model coefficients alone contain meaningful causality information. The proposed method overcomes the problems of model nonrobustness and large computation times encountered during causality analysis by existing methods. These methods first project MEG sensor time-series onto a large number of brain locations after which the MAR model is built on this large number of source-level time-series. Instead, through this work, we demonstrate that by building the MAR model on the sensor-level and then projecting only the MAR coefficients in source space, the true casual pathways are recovered even when a very large number of locations are considered as sources. The main contribution of this work is that by this methodology entire brain causality maps can be efficiently derived without any a priori selection of regions of interest.

  17. On a Quantum Model of Brain Activities

    NASA Astrophysics Data System (ADS)

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2010-01-01

    One of the main activities of the brain is the recognition of signals. A first attempt to explain the process of recognition in terms of quantum statistics was given in [6]. Subsequently, details of the mathematical model were presented in a (still incomplete) series of papers (cf. [7, 2, 5, 10]). In the present note we want to give a general view of the principal ideas of this approach. We will introduce the basic spaces and justify the choice of spaces and operations. Further, we bring the model face to face with basic postulates any statistical model of the recognition process should fulfill. These postulates are in accordance with the opinion widely accepted in psychology and neurology.

  18. Leptin Therapy Alters Appetite and Neural Responses to Food Stimuli in Brain Areas of Leptin-Sensitive Subjects Without Altering Brain Structure

    PubMed Central

    Farr, Olivia M.; Fiorenza, Christina; Papageorgiou, Panagiotis; Brinkoetter, Mary; Ziemke, Florencia; Koo, Bang-Bon; Rojas, Rafael

    2014-01-01

    Context: Leptin is a key regulator of energy intake and expenditure. Individuals with congenital leptin deficiency demonstrate structural and functional brain changes when given leptin. However, whether acquired leptin deficiency may operate similarly is unclear. Objective: We set out to determine whether the brains of individuals with acquired leptin deficiency may react to leptin in a similar manner. Design: We used functional magnetic resonance imaging before and after short- and long-term metreleptin treatment in three leptin-sensitive patients with acquired hypoleptinemia. Nine healthy women were scanned as normoleptinemic controls. Setting: The setting was an academic medical center. Patients or Other Participants: The participants were 3 hypoleptinemic women and nine normoleptinemic, matched women. Interventions: We used metreleptin, recombinant leptin, therapy for 24 weeks in hypoleptinemic women only. Main Outcome Measure: We measured neural changes in response to viewing food as compared to nonfood images. We hypothesized that metreleptin treatment would increase brain activity in areas related to cognitive control and inhibition and would decrease brain activity in areas related to reward processing, as compared to the normoleptinemic counterparts. Results: Unlike patients with congenital leptin deficiency, hypoleptinemic patients demonstrated no structural brain differences from healthy controls and/or structural changes in response to treatment. Short-term metreleptin treatment in leptin-sensitive hypoleptinemic subjects enhances areas involved in detecting the salience and rewarding value of food during fasting, whereas long-term treatment decreases attention to food and the rewarding value of food after feeding. Furthermore, hypothalamic activity is modulated by metreleptin treatment, and leptin decreases functional connectivity of the hypothalamus to key feeding-related areas in these hypoleptinemic subjects. Conclusions: Leptin replacement in

  19. Altered Spontaneous Brain Activity in Betel Quid Dependence

    PubMed Central

    Liu, Tao; Li, Jian-jun; Zhao, Zhong-yan; Yang, Guo-shuai; Pan, Meng-jie; Li, Chang-qing; Pan, Su-yue; Chen, Feng

    2016-01-01

    Abstract It has been suggested by the first voxel-based morphometry investigation that betel quid dependence (BQD) individuals are presented with brain structural changes in previous reports, and there may be a neurobiological basis for BQD individuals related to an increased risk of executive dysfunction and disinhibition, subjected to the reward system, cognitive system, and emotion system. However, the effects of BQD on neural activity remain largely unknown. Individuals with impaired cognitive control of behavior often reveal altered spontaneous cerebral activity in resting-state functional magnetic resonance imaging and those changes are usually earlier than structural alteration. Here, we examined BQD individuals (n = 33) and age-, sex-, and education-matched healthy control participants (n = 32) in an resting-state functional magnetic resonance imaging study to observe brain function alterations associated with the severity of BQD. Amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) values were both evaluated to stand for spontaneous cerebral activity. Gray matter volumes of these participants were also calculated for covariate. In comparison with healthy controls, BQD individuals demonstrated dramatically decreased ALFF and ReHo values in the prefrontal gurus along with left fusiform, and increased ALFF and ReHo values in the primary motor cortex area, temporal lobe as well as some regions of occipital lobe. The betel quid dependence scores (BQDS) were negatively related to decreased activity in the right anterior cingulate. The abnormal spontaneous cerebral activity revealed by ALFF and ReHo calculation excluding the structural differences in patients with BQD may help us probe into the neurological pathophysiology underlying BQD-related executive dysfunction and disinhibition. Diminished spontaneous brain activity in the right anterior cingulate cortex may, therefore, represent a biomarker of BQD individuals. PMID

  20. Reduced brain activation in violent adolescents during response inhibition.

    PubMed

    Qiao, Yi; Mei, Yi; Du, XiaoXia; Xie, Bin; Shao, Yang

    2016-01-01

    Deficits in inhibitory control have been linked to aggression and violent behaviour. This study aimed to observe whether violent adolescents show different brain activation patterns during response inhibition and to ascertain the roles these brain regions play. A self-report method and modified overt aggression scale (MOAS) were used to evaluate violent behaviour. Functional magnetic resonance imaging was performed in 22 violent adolescents and 17 matched healthy subjects aged 12 to 18 years. While scanning, a go/no-go task was performed. Between-group comparisons revealed that activation in the bilateral middle and superior temporal gyrus, hippocampus, and right orbitofrontal area (BA11) regions were significantly reduced in the violent group compared with the control group. Meanwhile, the violent group had more widespread activation in the prefrontal cortex than that observed in the control group. Activation of the prefrontal cortex in the violent group was widespread but lacking in focus, failing to produce intensive activation in some functionally related regions during response inhibition. PMID:26888566

  1. Brain functional network changes following Prelimbic area inactivation in a spatial memory extinction task.

    PubMed

    Méndez-Couz, Marta; Conejo, Nélida M; Vallejo, Guillermo; Arias, Jorge L

    2015-01-01

    Several studies suggest a prefrontal cortex involvement during the acquisition and consolidation of spatial memory, suggesting an active modulating role at late stages of acquisition processes. Recently, we have reported that the prelimbic and infralimbic areas of the prefrontal cortex, among other structures, are also specifically involved in the late phases of spatial memory extinction. This study aimed to evaluate whether the inactivation of the prelimbic area of the prefrontal cortex impaired spatial memory extinction. For this purpose, male Wistar rats were implanted bilaterally with cannulae into the prelimbic region of the prefrontal cortex. Animals were trained during 5 consecutive days in a hidden platform task and tested for reference spatial memory immediately after the last training session. One day after completing the training task, bilateral infusion of the GABAA receptor agonist Muscimol was performed before the extinction protocol was carried out. Additionally, cytochrome c oxidase histochemistry was applied to map the metabolic brain activity related to the spatial memory extinction under prelimbic cortex inactivation. Results show that animals acquired the reference memory task in the water maze, and the extinction task was successfully completed without significant impairment. However, analysis of the functional brain networks involved by cytochrome oxidase activity interregional correlations showed changes in brain networks between the group treated with Muscimol as compared to the saline-treated group, supporting the involvement of the mammillary bodies at a the late stage in the memory extinction process.

  2. Brain functional network changes following Prelimbic area inactivation in a spatial memory extinction task.

    PubMed

    Méndez-Couz, Marta; Conejo, Nélida M; Vallejo, Guillermo; Arias, Jorge L

    2015-01-01

    Several studies suggest a prefrontal cortex involvement during the acquisition and consolidation of spatial memory, suggesting an active modulating role at late stages of acquisition processes. Recently, we have reported that the prelimbic and infralimbic areas of the prefrontal cortex, among other structures, are also specifically involved in the late phases of spatial memory extinction. This study aimed to evaluate whether the inactivation of the prelimbic area of the prefrontal cortex impaired spatial memory extinction. For this purpose, male Wistar rats were implanted bilaterally with cannulae into the prelimbic region of the prefrontal cortex. Animals were trained during 5 consecutive days in a hidden platform task and tested for reference spatial memory immediately after the last training session. One day after completing the training task, bilateral infusion of the GABAA receptor agonist Muscimol was performed before the extinction protocol was carried out. Additionally, cytochrome c oxidase histochemistry was applied to map the metabolic brain activity related to the spatial memory extinction under prelimbic cortex inactivation. Results show that animals acquired the reference memory task in the water maze, and the extinction task was successfully completed without significant impairment. However, analysis of the functional brain networks involved by cytochrome oxidase activity interregional correlations showed changes in brain networks between the group treated with Muscimol as compared to the saline-treated group, supporting the involvement of the mammillary bodies at a the late stage in the memory extinction process. PMID:25813749

  3. Facility Focus: Student Activity Areas.

    ERIC Educational Resources Information Center

    College Planning & Management, 2001

    2001-01-01

    Discusses the design of student activity facilities that are showpieces containing both business and entertainment elements. Four examples are highlighted including a performing arts center, a college gym, a student services facility, and a student union. (GR)

  4. Tank Focus Area pretreatment activities

    SciTech Connect

    McGinnis, C.P.; Welch, T.D.; Manke, K.L.

    1997-03-01

    Plans call for the high-level wastes to be retrieved from the tanks and immobilized in a stable waste form suitable for long-term isolation. Chemistry and chemical engineering operations are required to retrieve the wastes, to condition the wastes for subsequent steps, and to reduce the costs of the waste management enterprise. Pretreatment includes those processes between retrieval and immobilization, and includes preparation of suitable feed material for immobilization and separations to partition the waste into streams that yield lower life-cycle costs. Some of the technologies being developed by the Tank Focus Area (TFA) to process these wastes are described. These technologies fall roughly into three areas: (1) solid/liquid separation (SLS), (2) sludge pretreatment, and (3) supernate pretreatment.

  5. Brain areas associated with force steadiness and intensity during isometric ankle dorsiflexion in men and women.

    PubMed

    Yoon, Tejin; Vanden Noven, Marnie L; Nielson, Kristy A; Hunter, Sandra K

    2014-10-01

    Although maintenance of steady contractions is required for many daily tasks, there is little understanding of brain areas that modulate lower limb force accuracy. Functional magnetic resonance imaging was used to determine brain areas associated with steadiness and force during static (isometric) lower limb target-matching contractions at low and high intensities. Fourteen young adults (6 men and 8 women; 27.1 ± 9.1 years) performed three sets of 16-s isometric contractions with the ankle dorsiflexor muscles at 10, 30, 50, and 70 % of maximal voluntary contraction (MVC). Percent signal changes (PSCs, %) of the blood oxygenation level-dependent response were extracted for each contraction using region of interest analysis. Mean PSC increased with contraction intensity in the contralateral primary motor area (M1), supplementary motor area, putamen, pallidum cingulate cortex, and ipsilateral cerebellum (p < 0.05). The amplitude of force fluctuations (standard deviation, SD) increased from 10 to 70 % MVC but relative to the mean force (coefficient of variation, CV %) was greatest at 10 % MVC. The CV of force was associated with PSC in the ipsilateral parietal lobule (r = -0.28), putamen (r = -0.29), insula (r = -0.33), and contralateral superior frontal gyrus (r = -0.33, p < 0.05). There were minimal sex differences in brain activation across the isometric motor tasks indicating men and women were similarly motivated and able to activate cortical motor centers during static tasks. Control of steady lower limb contractions involves cortical and subcortical motor areas in both men and women and provides insight into key areas for potential cortical plasticity with impaired or enhanced leg function.

  6. Supervised learning for neural manifold using spatiotemporal brain activity

    NASA Astrophysics Data System (ADS)

    Kuo, Po-Chih; Chen, Yong-Sheng; Chen, Li-Fen

    2015-12-01

    Objective. Determining the means by which perceived stimuli are compactly represented in the human brain is a difficult task. This study aimed to develop techniques for the construction of the neural manifold as a representation of visual stimuli. Approach. We propose a supervised locally linear embedding method to construct the embedded manifold from brain activity, taking into account similarities between corresponding stimuli. In our experiments, photographic portraits were used as visual stimuli and brain activity was calculated from magnetoencephalographic data using a source localization method. Main results. The results of 10 × 10-fold cross-validation revealed a strong correlation between manifolds of brain activity and the orientation of faces in the presented images, suggesting that high-level information related to image content can be revealed in the brain responses represented in the manifold. Significance. Our experiments demonstrate that the proposed method is applicable to investigation into the inherent patterns of brain activity.

  7. Invisible Brain: Knowledge in Research Works and Neuron Activity

    PubMed Central

    Segev, Aviv; Curtis, Dorothy; Jung, Sukhwan; Chae, Suhyun

    2016-01-01

    If the market has an invisible hand, does knowledge creation and representation have an “invisible brain”? While knowledge is viewed as a product of neuron activity in the brain, can we identify knowledge that is outside the brain but reflects the activity of neurons in the brain? This work suggests that the patterns of neuron activity in the brain can be seen in the representation of knowledge-related activity. Here we show that the neuron activity mechanism seems to represent much of the knowledge learned in the past decades based on published articles, in what can be viewed as an “invisible brain” or collective hidden neural networks. Similar results appear when analyzing knowledge activity in patents. Our work also tries to characterize knowledge increase as neuron network activity growth. The results propose that knowledge-related activity can be seen outside of the neuron activity mechanism. Consequently, knowledge might exist as an independent mechanism. PMID:27439199

  8. Acute moderate exercise enhances compensatory brain activation in older adults.

    PubMed

    Hyodo, Kazuki; Dan, Ippeita; Suwabe, Kazuya; Kyutoku, Yasushi; Yamada, Yuhki; Akahori, Mitsuya; Byun, Kyeongho; Kato, Morimasa; Soya, Hideaki

    2012-11-01

    A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation. PMID:22300952

  9. Acute moderate exercise enhances compensatory brain activation in older adults.

    PubMed

    Hyodo, Kazuki; Dan, Ippeita; Suwabe, Kazuya; Kyutoku, Yasushi; Yamada, Yuhki; Akahori, Mitsuya; Byun, Kyeongho; Kato, Morimasa; Soya, Hideaki

    2012-11-01

    A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation.

  10. Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression

    PubMed Central

    Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M.; Pradhan, Kith; Henn, Fritz A.; Shea, Stephen; Osten, Pavel; Li, Bo

    2016-01-01

    Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing “helpless” behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing “resilient” behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses. PMID:26869888

  11. Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression.

    PubMed

    Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M; Pradhan, Kith; Henn, Fritz A; Shea, Stephen; Osten, Pavel; Li, Bo

    2016-01-01

    Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP - a marker of neuronal activation - in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing "helpless" behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing "resilient" behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses. PMID:26869888

  12. Brain Activity during Lower-Limb Movement with Manual Facilitation: An fMRI Study

    PubMed Central

    de Almeida, Patrícia Maria Duarte; Vieira, Ana Isabel Correia Matos de Ferreira; Canário, Nádia Isabel Silva; Castelo-Branco, Miguel; de Castro Caldas, Alexandre Lemos

    2015-01-01

    Brain activity knowledge of healthy subjects is an important reference in the context of motor control and reeducation. While the normal brain behavior for upper-limb motor control has been widely explored, the same is not true for lower-limb control. Also the effects that different stimuli can evoke on movement and respective brain activity are important in the context of motor potentialization and reeducation. For a better understanding of these processes, a functional magnetic resonance imaging (fMRI) was used to collect data of 10 healthy subjects performing lower-limb multijoint functional movement under three stimuli: verbal stimulus, manual facilitation, and verbal + manual facilitation. Results showed that, with verbal stimulus, both lower limbs elicit bilateral cortical brain activation; with manual facilitation, only the left lower limb (LLL) elicits bilateral activation while the right lower limb (RLL) elicits contralateral activation; verbal + manual facilitation elicits bilateral activation for the LLL and contralateral activation for the RLL. Manual facilitation also elicits subcortical activation in white matter, the thalamus, pons, and cerebellum. Deactivations were also found for lower-limb movement. Manual facilitation is stimulus capable of generating brain activity in healthy subjects. Stimuli need to be specific for bilateral activation and regarding which brain areas we aim to activate. PMID:25722890

  13. REM sleep loss associated changes in orexin-A levels in discrete brain areas in rats.

    PubMed

    Mehta, Rachna; Khanday, Mudasir Ahmad; Mallick, Birendra Nath

    2015-03-17

    Rapid eye movement sleep (REMS) serves house-keeping function of the brain and its loss affects several pathophysiological processes. Relative levels of neurotransmitters including orexin A (Orx-A) in various parts of the brain in health and diseases are among the key factors for modulation of behaviors, including REMS. The level of neurotransmitter in an area in the brain directly depends on number of projecting neurons and their firing rates. The locus coeruleus (LC), the site of REM-OFF neurons, receives densest, while the pedunculo-pontine area (PPT), the site of REM-ON neurons receives lesser projections from the Orx-ergic neurons. Further, the Orx-ergic neurons are active during waking and silent during REMS and NREMS. Therefore, the level of Orx-A in discrete regions of the brain is likely to be different during normal and altered states, which in turn is likely to be responsible for altered behaviors in health and diseases, including in relation to REMS. Therefore, in the present study, we estimated Orx-A level in LC, cortex, posterior hypothalamus (PH), hippocampus, and PPT after 96 h REMSD, in post-deprivation recovered rats and in control rats. This is the first report of estimation of Orx-A in different brain regions after prolonged REMSD. It was observed that after REMSD the Orx-A level increased significantly in LC, cortex and PH which returned to normal level after recovery; however, the level did not change in the hippocampus and PPT. The Orx-A induced modulation of REMS could be secondary to increased waking.

  14. Social Support Can Buffer against Stress and Shape Brain Activity

    PubMed Central

    Hostinar, Camelia E.; Gunnar, Megan R.

    2015-01-01

    Social support from close relationship partners is an important resource for coping with stress, particularly during childhood. We discuss ethical challenges associated with studying stress and its social buffering in the laboratory, as well as emerging evidence regarding two potential neural substrates for the social buffering of stress: hypothalamic oxytocin activity and activation of areas in the prefrontal cortex associated with effective self-regulation. We also address the role of early-life social experiences in shaping brain development, as well as recommendations for practice and policy that would advance the ethical treatment of children and reduce social inequalities in early-life experiences and opportunities–e.g., investing in programs that prevent child maltreatment and facilitating access to high-quality child care for economically disadvantaged families. We also debate the ethical implications of using oxytocin nasal sprays to simulate the stress-reducing properties of social support and advise waiting for more evidence before recommending their use. PMID:26478822

  15. Language testing during awake "anesthesia" in a bilingual patient with brain lesion adjacent to Wernicke's area.

    PubMed

    Bilotta, Federico; Stazi, Elisabetta; Delfini, Roberto; Rosa, Giovanni

    2011-04-01

    Awake "anesthesia" is the preferable anesthetic approach for neurosurgical procedures that require intraoperative localization of eloquent brain areas. We describe intraoperative inducible selective English aphasia in a bilingual (English and Italian) patient undergoing awake anesthesia for excision of a brain lesion adjacent to Wernicke's area with no postoperative neurological sequelae. We discuss the importance of intraoperative brain mapping and intraoperative language testing in bilingual patients to prevent iatrogenic-related morbidity.

  16. Naturalizing aesthetics: brain areas for aesthetic appraisal across sensory modalities.

    PubMed

    Brown, Steven; Gao, Xiaoqing; Tisdelle, Loren; Eickhoff, Simon B; Liotti, Mario

    2011-09-01

    We present here the most comprehensive analysis to date of neuroaesthetic processing by reporting the results of voxel-based meta-analyses of 93 neuroimaging studies of positive-valence aesthetic appraisal across four sensory modalities. The results demonstrate that the most concordant area of activation across all four modalities is the right anterior insula, an area typically associated with visceral perception, especially of negative valence (disgust, pain, etc.). We argue that aesthetic processing is, at its core, the appraisal of the valence of perceived objects. This appraisal is in no way limited to artworks but is instead applicable to all types of perceived objects. Therefore, one way to naturalize aesthetics is to argue that such a system evolved first for the appraisal of objects of survival advantage, such as food sources, and was later co-opted in humans for the experience of artworks for the satisfaction of social needs.

  17. Brain areas involved in the acupuncture treatment of AD model rats: a PET study

    PubMed Central

    2014-01-01

    Background Acupuncture may effectively treat certain symptoms of Alzheimer’s disease (AD). Although several studies have used functional brain imaging to investigate the mechanisms of acupuncture treatment on AD, these mechanisms are still poorly understood. We therefore further explored the mechanism by which needling at ST36 may have a therapeutic effect in a rat AD model. Methods A total of 80 healthy Wistar rats were divided into healthy control (n = 15) and pre-model (n = 65) groups. After inducing AD-like disease, a total of 45 AD model rats were randomly divided into three groups: the model group (n = 15), the sham-point group (n = 15), and the ST36 group (n = 15). The above three groups underwent PET scanning. PET images were processed with SPM2. Results The brain areas that were activated in the sham-point group relative to the model group were primarily centred on the bilateral limbic system, the right frontal lobe, and the striatum, whereas the activated areas in the ST36 group were primarily centred on the bilateral limbic system (pyriform cortex), the bilateral temporal lobe (olfactory cortex), the right amygdala and the right hippocampus. Compared with the sham-point group, the ST36 group showed greater activation in the bilateral amygdalae and the left temporal lobe. Conclusion We concluded that needling at a sham point or ST36 can increase blood perfusion and glycol metabolism in certain brain areas, and thus may have a positive influence on the cognition of AD patients. PMID:24886495

  18. Tasting calories differentially affects brain activation during hunger and satiety.

    PubMed

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2015-02-15

    An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three stimuli in two motivational states (hunger and satiety) while their brain responses were measured using functional magnetic resonance imaging in a randomized crossover design. Stimuli were solutions of sucralose (sweet, no energy), maltodextrin (non-sweet, energy) and sucralose+maltodextrin (sweet, energy). We found no main effect of energy content and no interaction between energy content and sweetness. However, there was an interaction between hunger state and energy content in the median cingulate (bilaterally), ventrolateral prefrontal cortex, anterior insula and thalamus. This indicates that the anterior insula and thalamus, areas in which hunger state and taste of a stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. Furthermore, in the median cingulate and ventrolateral prefrontal cortex, tasting energy resulted in more activation during satiety compared to hunger. This finding indicates that these areas, which are known to be involved in processes that require approach and avoidance, are also involved in guiding ingestive behavior. In conclusion, our results suggest that energy sensing is a hunger state dependent process, in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus play a central role by integrating hunger state with stimulus relevance.

  19. Separate and overlapping brain areas encode subjective value during delay and effort discounting.

    PubMed

    Massar, Stijn A A; Libedinsky, Camilo; Weiyan, Chee; Huettel, Scott A; Chee, Michael W L

    2015-10-15

    Making decisions about rewards that involve delay or effort requires the integration of value and cost information. The brain areas recruited in this integration have been well characterized for delay discounting. However only a few studies have investigated how effort costs are integrated into value signals to eventually determine choice. In contrast to previous studies that have evaluated fMRI signals related to physical effort, we used a task that focused on cognitive effort. Participants discounted the value of delayed and effortful rewards. The value of cognitively effortful rewards was represented in the anterior portion of the inferior frontal gyrus and dorsolateral prefrontal cortex. Additionally, the value of the chosen option was encoded in the anterior cingulate cortex, caudate, and cerebellum. While most brain regions showed no significant dissociation between effort discounting and delay discounting, the ACC was significantly more activated in effort compared to delay discounting tasks. Finally, overlapping regions within the right orbitofrontal cortex and lateral temporal and parietal cortices encoded the value of the chosen option during both delay and effort discounting tasks. These results indicate that encoding of rewards discounted by cognitive effort and delay involves partially dissociable brain areas, but a common representation of chosen value is present in the orbitofrontal, temporal and parietal cortices.

  20. Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin.

    PubMed

    Feenders, Gesa; Liedvogel, Miriam; Rivas, Miriam; Zapka, Manuela; Horita, Haruhito; Hara, Erina; Wada, Kazuhiro; Mouritsen, Henrik; Jarvis, Erich D

    2008-03-12

    Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls

  1. Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin.

    PubMed

    Feenders, Gesa; Liedvogel, Miriam; Rivas, Miriam; Zapka, Manuela; Horita, Haruhito; Hara, Erina; Wada, Kazuhiro; Mouritsen, Henrik; Jarvis, Erich D

    2008-01-01

    Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls

  2. Extreme brain events: Higher-order statistics of brain resting activity and its relation with structural connectivity

    NASA Astrophysics Data System (ADS)

    Amor, T. A.; Russo, R.; Diez, I.; Bharath, P.; Zirovich, M.; Stramaglia, S.; Cortes, J. M.; de Arcangelis, L.; Chialvo, D. R.

    2015-09-01

    The brain exhibits a wide variety of spatiotemporal patterns of neuronal activity recorded using functional magnetic resonance imaging as the so-called blood-oxygenated-level-dependent (BOLD) signal. An active area of work includes efforts to best describe the plethora of these patterns evolving continuously in the brain. Here we explore the third-moment statistics of the brain BOLD signals in the resting state as a proxy to capture extreme BOLD events. We find that the brain signal exhibits typically nonzero skewness, with positive values for cortical regions and negative values for subcortical regions. Furthermore, the combined analysis of structural and functional connectivity demonstrates that relatively more connected regions exhibit activity with high negative skewness. Overall, these results highlight the relevance of recent results emphasizing that the spatiotemporal location of the relatively large-amplitude events in the BOLD time series contains relevant information to reproduce a number of features of the brain dynamics during resting state in health and disease.

  3. The Brain in Space: A Teacher's Guide with Activities for Neuroscience.

    ERIC Educational Resources Information Center

    MacLeish, Marlene Y.; McLean, Bernice R.

    This educators guide discusses the brain and contains activities on neuroscience. Activities include: (1) "The Space Life Sciences"; (2) "Space Neuroscience: A Special Area within the Space Life Sciences"; (3) "Space Life Sciences Research"; (4) "Neurolab: A Special Space Mission to Study the Nervous System"; (5) "The Nervous System"; (6)…

  4. Chronic stress and moderate physical exercise prompt widespread common activation and limited differential activation in specific brain regions.

    PubMed

    Kim, Tae-Kyung; Han, Pyung-Lim

    2016-10-01

    Chronic stress in rodents produces depressive behaviors, whereas moderate physical exercise counteracts stress-induced depressive behaviors. Chronic stress and physical exercise appear to produce such opposing effects by changing the neural activity of specific brain regions. However, the detailed mechanisms through which the two different types of stimuli regulate brain function in opposite directions are not clearly understood. In the present study, we attempted to explore the neuroanatomical substrates mediating stress-induced behavioral changes and anti-depressant effects of exercise by examining stimulus-dependent c-Fos induction in the brains of mice that were exposed to repeated stress or exercise in a scheduled manner. Systematic and integrated analyses of c-Fos expression profiles indicated that various brain areas, including the prelimbic cortex, lateral septal area, and paraventricular nuclei of hypothalamus were commonly and strongly activated by both stress and exercise, while the lateral habenula and hippocampus were identified as being preferentially activated by stress and exercise, respectively. Exercise-dependent c-Fos expression in all regions examined in the brain occurred in both glutamatergic and GABAergic neurons. These results suggest that chronic stress and moderate exercise produce counteractive effects on mood behaviors, along with prompting widespread common activation and limited differential activation in specific brain regions. PMID:27539656

  5. Chronic stress and moderate physical exercise prompt widespread common activation and limited differential activation in specific brain regions.

    PubMed

    Kim, Tae-Kyung; Han, Pyung-Lim

    2016-10-01

    Chronic stress in rodents produces depressive behaviors, whereas moderate physical exercise counteracts stress-induced depressive behaviors. Chronic stress and physical exercise appear to produce such opposing effects by changing the neural activity of specific brain regions. However, the detailed mechanisms through which the two different types of stimuli regulate brain function in opposite directions are not clearly understood. In the present study, we attempted to explore the neuroanatomical substrates mediating stress-induced behavioral changes and anti-depressant effects of exercise by examining stimulus-dependent c-Fos induction in the brains of mice that were exposed to repeated stress or exercise in a scheduled manner. Systematic and integrated analyses of c-Fos expression profiles indicated that various brain areas, including the prelimbic cortex, lateral septal area, and paraventricular nuclei of hypothalamus were commonly and strongly activated by both stress and exercise, while the lateral habenula and hippocampus were identified as being preferentially activated by stress and exercise, respectively. Exercise-dependent c-Fos expression in all regions examined in the brain occurred in both glutamatergic and GABAergic neurons. These results suggest that chronic stress and moderate exercise produce counteractive effects on mood behaviors, along with prompting widespread common activation and limited differential activation in specific brain regions.

  6. Active microwave computed brain tomography: the response to a challenge.

    PubMed

    Almirall, H; Broquetas, A; Jofre, L

    1991-02-01

    The potential application of active microwave techniques to brain imaging is studied by numerical simulations and experimentally using a recently developed cylindrical microwave scanner. The potential advantages and limitations of this method in static and dynamic brain imaging are presented and compared with other imaging techniques. PMID:2062119

  7. A balancing act of the brain: activations and deactivations driven by cognitive load

    PubMed Central

    Arsalidou, Marie; Pascual-Leone, Juan; Johnson, Janice; Morris, Drew; Taylor, Margot J

    2013-01-01

    The majority of neuroimaging studies focus on brain activity during performance of cognitive tasks; however, some studies focus on brain areas that activate in the absence of a task. Despite the surge of research comparing these contrasted areas of brain function, their interrelation is not well understood. We systematically manipulated cognitive load in a working memory task to examine concurrently the relation between activity elicited by the task versus activity during control conditions. We presented adults with six levels of task demand, and compared those with three conditions without a task. Using whole-brain analysis, we found positive linear relations between cortical activity and task difficulty in areas including middle frontal gyrus and dorsal cingulate; negative linear relations were found in medial frontal gyrus and posterior cingulate. These findings demonstrated balancing of activation patterns between two mental processes, which were both modulated by task difficulty. Frontal areas followed a graded pattern more closely than other regions. These data also showed that working memory has limited capacity in adults: an upper bound of seven items and a lower bound of four items. Overall, working memory and default-mode processes, when studied concurrently, reveal mutually competing activation patterns. PMID:23785659

  8. Anomalous Light Phenomena vs. Bioelectric Brain Activity

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    We present a research proposal concerning the instrumented investigation of anomalous light phenomena that are apparently correlated with particular mind states, such as prayer, meditation or psi. Previous research by these authors demonstrate that such light phenomena can be monitored and measured quite efficiently in areas of the world where they are reported in a recurrent way. Instruments such as optical equipment for photography and spectroscopy, VLF spectrometers, magnetometers, radar and IR viewers were deployed and used massively in several areas of the world. Results allowed us to develop physical models concerning the structural and time-variable behaviour of light phenomena, and their kinematics. Recent insights and witnesses have suggested to us that a sort of "synchronous connection" seems to exist between plasma-like phenomena and particular mind states of experiencers who seem to trigger a light manifestation which is very similar to the one previously investigated. The main goal of these authors is now aimed at the search for a concrete "entanglement-like effect" between the experiencer's mind and the light phenomena, in such a way that both aspects are intended to be monitored and measured simultaneously using appropriate instrumentation. The goal of this research project is twofold: a) to verify quantitatively the existence of one very particular kind of mind-matter interaction and to study in real time its physical and biophysical manifestations; b) to repeat the same kind of experiment using the same test-subject in different locations and under various conditions of geomagnetic activity.

  9. Brain activation induced by psychological stress in patients with schizophrenia.

    PubMed

    Castro, M N; Villarreal, M F; Bolotinsky, N; Papávero, E; Goldschmidt, M G; Costanzo, E Y; Drucaroff, L; Wainsztein, A; de Achával, D; Pahissa, J; Bär, K-J; Nemeroff, C B; Guinjoan, S M

    2015-10-01

    Environmental influences are critical for the expression of genes putatively related to the behavioral and cognitive phenotypes of schizophrenia. Among such factors, psychosocial stress has been proposed to play a major role in the expression of symptoms. However, it is unsettled how stress interacts with pathophysiological pathways to produce the disease. We studied 21 patients with schizophrenia and 21 healthy controls aged 18 to 50years with 3T-fMRI, in which a period of 6min of resting state acquisition was followed by a block design, with three blocks of 1-min control-task, 1-min stress-task and 1-min rest after-task. Self-report of stress and PANSS were measured. Limbic structures were activated in schizophrenia patients by simple tasks and remained active during, and shortly after stress. In controls, stress-related brain activation was more time-focused, and restricted to the stressful task itself. Negative symptom severity was inversely related to activation of anterior cingulum and orbitofrontal cortex. Results might represent the neurobiological aspect of hyper-reactivity to normal stressful situations previously described in schizophrenia, thus providing evidence on the involvement of limbic areas in the response to stress in schizophrenia. Patients present a pattern of persistent limbic activation probably contributing to hypervigilance and subsequent psychotic thought distortions.

  10. Differential activation of the amygdala and the 'social brain' during fearful face-processing in Asperger Syndrome.

    PubMed

    Ashwin, Chris; Baron-Cohen, Simon; Wheelwright, Sally; O'Riordan, Michelle; Bullmore, Edward T

    2007-01-01

    Impaired social cognition is a core feature of autism. There is much evidence showing people with autism use a different cognitive style than controls for face-processing. We tested if people with autism would show differential activation of social brain areas during a face-processing task. Thirteen adults with high-functioning autism or Asperger Syndrome (HFA/AS) and 13 matched controls. We used fMRI to investigate 'social brain' activity during perception of fearful faces. We employed stimuli known to reliably activate the amygdala and other social brain areas, and ROI analyses to investigate brain areas responding to facial threat as well as those showing a linear response to varying threat intensities. We predicted: (1) the HFA/AS group would show differential activation (as opposed to merely deficits) of the social brain compared to controls and (2) that social brain areas would respond to varied intensity of fear in the control group, but not the HFA/AS group. Both predictions were confirmed. The controls showed greater activation in the left amygdala and left orbito-frontal cortex, while the HFA/AS group showed greater activation in the anterior cingulate gyrus and superior temporal cortex. The control group also showed varying responses in social brain areas to varying intensities of fearful expression, including differential activations in the left and right amygdala. This response in the social brain was absent in the HFA/AS group. HFA/AS are associated with different patterns of activation of social brain areas during fearful emotion processing, and the absence in the HFA/AS brain of a response to varying emotional intensity.

  11. Spatial heterogeneity analysis of brain activation in fMRI

    PubMed Central

    Gupta, Lalit; Besseling, René M.H.; Overvliet, Geke M.; Hofman, Paul A.M.; de Louw, Anton; Vaessen, Maarten J.; Aldenkamp, Albert P.; Ulman, Shrutin; Jansen, Jacobus F.A.; Backes, Walter H.

    2014-01-01

    In many brain diseases it can be qualitatively observed that spatial patterns in blood oxygenation level dependent (BOLD) activation maps appear more (diffusively) distributed than in healthy controls. However, measures that can quantitatively characterize this spatial distributiveness in individual subjects are lacking. In this study, we propose a number of spatial heterogeneity measures to characterize brain activation maps. The proposed methods focus on different aspects of heterogeneity, including the shape (compactness), complexity in the distribution of activated regions (fractal dimension and co-occurrence matrix), and gappiness between activated regions (lacunarity). To this end, functional MRI derived activation maps of a language and a motor task were obtained in language impaired children with (Rolandic) epilepsy and compared to age-matched healthy controls. Group analysis of the activation maps revealed no significant differences between patients and controls for both tasks. However, for the language task the activation maps in patients appeared more heterogeneous than in controls. Lacunarity was the best measure to discriminate activation patterns of patients from controls (sensitivity 74%, specificity 70%) and illustrates the increased irregularity of gaps between activated regions in patients. The combination of heterogeneity measures and a support vector machine approach yielded further increase in sensitivity and specificity to 78% and 80%, respectively. This illustrates that activation distributions in impaired brains can be complex and more heterogeneous than in normal brains and cannot be captured fully by a single quantity. In conclusion, heterogeneity analysis has potential to robustly characterize the increased distributiveness of brain activation in individual patients. PMID:25161893

  12. Brain activation-based sexual orientation in female-to-male transsexuals.

    PubMed

    Kim, T-H; Kim, G-W; Kim, S-K; Jeong, G-W

    2016-01-01

    This study was performed to identify the sexual orientation in association with brain activation pattern in response to visual erotic stimuli in female-to-male (FtM) transsexuals by using functional magnetic resonance imaging (fMRI). Eleven FtM transsexuals who have had sex-reassignment surgery to alter their natal bodies with the gender-identity disorder were participated. Brain activation for sexual orientation was induced by visual stimuli with female and male erotic nude pictures compared with emotionally-neutral pictures. During viewing the erotic female pictures, the brain areas dominantly activated consist of the superior frontal gyrus, supplementary motor area, anterior/median cingulate gyri and hypothalamus, whereas during viewing male pictures, the brain areas with predominant activities were the middle frontal gyrus, precentral gyrus, middle temporal gyrus, fusiform gyrus, angular gyrus, precuneus, superior/middle occipital gyri, cerebellar cortex and vermis. These findings demonstrate that the brain activation patterns induced by viewing male or female erotic pictures show some correlation to the sexual orientation opposite to the genetic sex in FtM transsexuals. This study would be helpful to understand the neural mechanism associated with visual sexual arousal in patients with gender disorder. PMID:26581912

  13. Brain activation-based sexual orientation in female-to-male transsexuals.

    PubMed

    Kim, T-H; Kim, G-W; Kim, S-K; Jeong, G-W

    2016-01-01

    This study was performed to identify the sexual orientation in association with brain activation pattern in response to visual erotic stimuli in female-to-male (FtM) transsexuals by using functional magnetic resonance imaging (fMRI). Eleven FtM transsexuals who have had sex-reassignment surgery to alter their natal bodies with the gender-identity disorder were participated. Brain activation for sexual orientation was induced by visual stimuli with female and male erotic nude pictures compared with emotionally-neutral pictures. During viewing the erotic female pictures, the brain areas dominantly activated consist of the superior frontal gyrus, supplementary motor area, anterior/median cingulate gyri and hypothalamus, whereas during viewing male pictures, the brain areas with predominant activities were the middle frontal gyrus, precentral gyrus, middle temporal gyrus, fusiform gyrus, angular gyrus, precuneus, superior/middle occipital gyri, cerebellar cortex and vermis. These findings demonstrate that the brain activation patterns induced by viewing male or female erotic pictures show some correlation to the sexual orientation opposite to the genetic sex in FtM transsexuals. This study would be helpful to understand the neural mechanism associated with visual sexual arousal in patients with gender disorder.

  14. Brain activation during anticipation of sound sequences.

    PubMed

    Leaver, Amber M; Van Lare, Jennifer; Zielinski, Brandon; Halpern, Andrea R; Rauschecker, Josef P

    2009-02-25

    Music consists of sound sequences that require integration over time. As we become familiar with music, associations between notes, melodies, and entire symphonic movements become stronger and more complex. These associations can become so tight that, for example, hearing the end of one album track can elicit a robust image of the upcoming track while anticipating it in total silence. Here, we study this predictive "anticipatory imagery" at various stages throughout learning and investigate activity changes in corresponding neural structures using functional magnetic resonance imaging. Anticipatory imagery (in silence) for highly familiar naturalistic music was accompanied by pronounced activity in rostral prefrontal cortex (PFC) and premotor areas. Examining changes in the neural bases of anticipatory imagery during two stages of learning conditional associations between simple melodies, however, demonstrates the importance of fronto-striatal connections, consistent with a role of the basal ganglia in "training" frontal cortex (Pasupathy and Miller, 2005). Another striking change in neural resources during learning was a shift between caudal PFC earlier to rostral PFC later in learning. Our findings regarding musical anticipation and sound sequence learning are highly compatible with studies of motor sequence learning, suggesting common predictive mechanisms in both domains. PMID:19244522

  15. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    PubMed

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function.

  16. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    PubMed

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function. PMID:26068849

  17. Model of local temperature changes in brain upon functional activation.

    PubMed

    Collins, Christopher M; Smith, Michael B; Turner, Robert

    2004-12-01

    Experimental results for changes in brain temperature during functional activation show large variations. It is, therefore, desirable to develop a careful numerical model for such changes. Here, a three-dimensional model of temperature in the human head using the bioheat equation, which includes effects of metabolism, perfusion, and thermal conduction, is employed to examine potential temperature changes due to functional activation in brain. It is found that, depending on location in brain and corresponding baseline temperature relative to blood temperature, temperature may increase or decrease on activation and concomitant increases in perfusion and rate of metabolism. Changes in perfusion are generally seen to have a greater effect on temperature than are changes in metabolism, and hence active brain is predicted to approach blood temperature from its initial temperature. All calculated changes in temperature for reasonable physiological parameters have magnitudes <0.12 degrees C and are well within the range reported in recent experimental studies involving human subjects.

  18. Distinct and Overlapping Brain Areas Engaged during Value-Based, Mathematical, and Emotional Decision Processing

    PubMed Central

    Hsu, Chun-Wei; Goh, Joshua O. S.

    2016-01-01

    When comparing between the values of different choices, human beings can rely on either more cognitive processes, such as using mathematical computation, or more affective processes, such as using emotion. However, the neural correlates of how these two types of processes operate during value-based decision-making remain unclear. In this study, we investigated the extent to which neural regions engaged during value-based decision-making overlap with those engaged during mathematical and emotional processing in a within-subject manner. In a functional magnetic resonance imaging experiment, participants viewed stimuli that always consisted of numbers and emotional faces that depicted two choices. Across tasks, participants decided between the two choices based on the expected value of the numbers, a mathematical result of the numbers, or the emotional face stimuli. We found that all three tasks commonly involved various cortical areas including frontal, parietal, motor, somatosensory, and visual regions. Critically, the mathematical task shared common areas with the value but not emotion task in bilateral striatum. Although the emotion task overlapped with the value task in parietal, motor, and sensory areas, the mathematical task also evoked responses in other areas within these same cortical structures. Minimal areas were uniquely engaged for the value task apart from the other two tasks. The emotion task elicited a more expansive area of neural activity whereas value and mathematical task responses were in more focal regions. Whole-brain spatial correlation analysis showed that valuative processing engaged functional brain responses more similarly to mathematical processing than emotional processing. While decisions on expected value entail both mathematical and emotional processing regions, mathematical processes have a more prominent contribution particularly in subcortical processes. PMID:27375466

  19. Distinct and Overlapping Brain Areas Engaged during Value-Based, Mathematical, and Emotional Decision Processing.

    PubMed

    Hsu, Chun-Wei; Goh, Joshua O S

    2016-01-01

    When comparing between the values of different choices, human beings can rely on either more cognitive processes, such as using mathematical computation, or more affective processes, such as using emotion. However, the neural correlates of how these two types of processes operate during value-based decision-making remain unclear. In this study, we investigated the extent to which neural regions engaged during value-based decision-making overlap with those engaged during mathematical and emotional processing in a within-subject manner. In a functional magnetic resonance imaging experiment, participants viewed stimuli that always consisted of numbers and emotional faces that depicted two choices. Across tasks, participants decided between the two choices based on the expected value of the numbers, a mathematical result of the numbers, or the emotional face stimuli. We found that all three tasks commonly involved various cortical areas including frontal, parietal, motor, somatosensory, and visual regions. Critically, the mathematical task shared common areas with the value but not emotion task in bilateral striatum. Although the emotion task overlapped with the value task in parietal, motor, and sensory areas, the mathematical task also evoked responses in other areas within these same cortical structures. Minimal areas were uniquely engaged for the value task apart from the other two tasks. The emotion task elicited a more expansive area of neural activity whereas value and mathematical task responses were in more focal regions. Whole-brain spatial correlation analysis showed that valuative processing engaged functional brain responses more similarly to mathematical processing than emotional processing. While decisions on expected value entail both mathematical and emotional processing regions, mathematical processes have a more prominent contribution particularly in subcortical processes. PMID:27375466

  20. Some problems for representations of brain organization based on activation in functional imaging.

    PubMed

    Sidtis, John J

    2007-08-01

    Functional brain imaging has overshadowed traditional lesion studies in becoming the dominant approach to the study of brain-behavior relationships. The proponents of functional imaging studies frequently argue that this approach provides an advantage over lesion studies by observing normal brain activity in vivo without the disruptive effects of brain damage. However, the enthusiastic onslaught of brain images, frequently presented as veridical representations of mental function, has sometimes overwhelmed some basic facts about brain organization repeatedly observed over more than a century. In particular, the lateralization of speech and language to the left cerebral hemisphere in over 90% of the right-handed population does not appear to have been taken as a serious constraint in the interpretation of imaging results in studies of these functions. This paper reviews a number of areas in which standard activation assumptions yield results that are at odds with clinical experience. The activation approach will be contrasted with a performance-based analysis of functional image data, which, at least in the case of speech production, yields results in better agreement with lesion data. Functional imaging represents enormous opportunities for understanding brain-behavior relationships, but at the present level of understanding of what is being represented in such images, it is premature to adhere to a single approach based on the strong but questionable assumptions inherent in most activation studies. PMID:16938343

  1. Patterns of brain activity in normals and schizophrenics with positron emission tomography

    SciTech Connect

    Volkow, N.D.; Wolf, A.P.; Gomez-Mont, F.; Brodie, J.D.; Canero, R.; Van Gelder, P.; Russell, J.A.G.

    1985-05-01

    The authors investigated the functional interaction among brain areas under baseline and upon activation by a visual task to compare the response of normal subjects from the ones of chronic schizophrenics. Cerebral metabolic images were obtained on twelve healthy volunteers an eighteen schizophrenics with positron emission tomography and 11-C-Deoxyglucose. Correlation coefficients among the relative metabolic values (region of interest divided by the average of whole brain gray matter) of 11 brain regions; frontal, parietal, temporal and occipital left and right lobes, left and right basal ganglia and thalamus were computed for the baseline and for the task. Under baseline, normals showed more functional correlations than schizophrenics. Both groups showed a thalamo-occipital (positive) and thalamo-frontal (negative) interaction. The highest correlations among homologous brain areas were the frontal, occipital and basal ganglia.

  2. Greater Impulsivity is Associated with Decreased Brain Activation in Obese Women during a Delay Discounting Task

    PubMed Central

    Stoeckel, Luke E.; Murdaugh, Donna L.; Cox, James E.; Cook, Edwin W.; Weller, Rosalyn E.

    2012-01-01

    Impulsivity and poor inhibitory control are associated with higher rates of delay discounting (DD) or a greater preference for smaller, more immediate rewards at the expense of larger, but delayed rewards. Of the many functional magnetic resonance imaging (fMRI) studies of DD, few have investigated the correlation between individual differences in DD rate and brain activation related to DD trial difficulty, with difficult DD trials expected to activate putative executive function brain areas involved in impulse control. In the current study, we correlated patterns of brain activation as measured by fMRI during difficult vs. easy trials of a DD task with DD rate (k) in obese women. Difficulty was defined by how much a reward choice deviated from an individual’s ‘indifference point’, or the point where the subjective preference for an immediate and a delayed reward was approximately equivalent. We found that greater delay discounting was correlated with less modulation of activation in putative executive function brain areas, such as the middle and superior frontal gyri and inferior parietal lobule, in response to difficult compared to easy DD trials. These results support the suggestion that increased impulsivity is associated with deficient functioning of executive function areas of the brain. PMID:22948956

  3. The impact of microglial activation on blood-brain barrier in brain diseases

    PubMed Central

    da Fonseca, Anna Carolina Carvalho; Matias, Diana; Garcia, Celina; Amaral, Rackele; Geraldo, Luiz Henrique; Freitas, Catarina; Lima, Flavia Regina Souza

    2014-01-01

    The blood-brain barrier (BBB), constituted by an extensive network of endothelial cells (ECs) together with neurons and glial cells, including microglia, forms the neurovascular unit (NVU). The crosstalk between these cells guarantees a proper environment for brain function. In this context, changes in the endothelium-microglia interactions are associated with a variety of inflammation-related diseases in brain, where BBB permeability is compromised. Increasing evidences indicate that activated microglia modulate expression of tight junctions, which are essential for BBB integrity and function. On the other hand, the endothelium can regulate the state of microglial activation. Here, we review recent advances that provide insights into interactions between the microglia and the vascular system in brain diseases such as infectious/inflammatory diseases, epilepsy, ischemic stroke and neurodegenerative disorders. PMID:25404894

  4. Early Risk, Attention, and Brain Activation in Adolescents Born Preterm

    ERIC Educational Resources Information Center

    Carmody, Dennis P.; Bendersky, Margaret; Dunn, Stanley M.; DeMarco, J. Kevin; Hegyi, Thomas; Hiatt, Mark; Lewis, Michael

    2006-01-01

    The relations among early cumulative medical risk, cumulative environmental risk, attentional control, and brain activation were assessed in 15-16-year-old adolescents who were born preterm. Functional magnetic resonance imaging found frontal, temporal, and parietal cortex activation during an attention task with greater activation of the left…

  5. Visualization of Active Glucocerebrosidase in Rodent Brain with High Spatial Resolution following In Situ Labeling with Fluorescent Activity Based Probes

    PubMed Central

    Herrera Moro Chao, Daniela; Kallemeijn, Wouter W.; Marques, Andre R. A.; Orre, Marie; Ottenhoff, Roelof; van Roomen, Cindy; Foppen, Ewout; Renner, Maria C.; Moeton, Martina; van Eijk, Marco; Boot, Rolf G.; Kamphuis, Willem; Hol, Elly M.; Aten, Jan; Overkleeft, Hermen S.; Kalsbeek, Andries; Aerts, Johannes M. F. G.

    2015-01-01

    Gaucher disease is characterized by lysosomal accumulation of glucosylceramide due to deficient activity of lysosomal glucocerebrosidase (GBA). In cells, glucosylceramide is also degraded outside lysosomes by the enzyme glucosylceramidase 2 (GBA2) of which inherited deficiency is associated with ataxias. The interest in GBA and glucosylceramide metabolism in the brain has grown following the notion that mutations in the GBA gene impose a risk factor for motor disorders such as α-synucleinopathies. We earlier developed a β-glucopyranosyl-configured cyclophellitol-epoxide type activity based probe (ABP) allowing in vivo and in vitro visualization of active molecules of GBA with high spatial resolution. Labeling occurs through covalent linkage of the ABP to the catalytic nucleophile residue in the enzyme pocket. Here, we describe a method to visualize active GBA molecules in rat brain slices using in vivo labeling. Brain areas related to motor control, like the basal ganglia and motor related structures in the brainstem, show a high content of active GBA. We also developed a β-glucopyranosyl cyclophellitol-aziridine ABP allowing in situ labeling of GBA2. Labeled GBA2 in brain areas can be identified and quantified upon gel electrophoresis. The distribution of active GBA2 markedly differs from that of GBA, being highest in the cerebellar cortex. The histological findings with ABP labeling were confirmed by biochemical analysis of isolated brain areas. In conclusion, ABPs offer sensitive tools to visualize active GBA and to study the distribution of GBA2 in the brain and thus may find application to establish the role of these enzymes in neurodegenerative disease conditions such as α-synucleinopathies and cerebellar ataxia. PMID:26418157

  6. Compromised Blood-Brain Barrier Competence in Remote Brain Areas in Ischemic Stroke Rats at Chronic Stage

    PubMed Central

    Garbuzova-Davis, Svitlana; Haller, Edward; Williams, Stephanie N.; Haim, Eithan D.; Tajiri, Naoki; Hernandez-Ontiveros, Diana G.; Frisina-Deyo, Aric; Boffeli, Sean M.; Sanberg, Paul R.; Borlongan, Cesario V.

    2014-01-01

    Stroke is a life threatening disease leading to long-term disability in stroke survivors. Cerebral functional insufficiency in chronic stroke might be due to pathological changes in brain areas remote from initial ischemic lesion, i.e. diaschisis. Previously, we showed that the damaged blood-brain barrier (BBB) was implicated in subacute diaschisis. The present study investigated BBB competence in chronic diaschisis using a transient middle cerebral artery occlusion (tMCAO) rat model. Our results demonstrated significant BBB damage mostly in the ipsilateral striatum and motor cortex in rats at 30 days after tMCAO. The BBB alterations were also determined in the contralateral hemisphere via ultrastructural and immunohistochemical analyses. Major BBB pathological changes in contralateral remote striatum and motor cortex areas included: (1) vacuolated endothelial cells containing large autophagosomes, (2) degenerated pericytes displaying mitochondria with cristae disruption, (3) degenerated astrocytes and perivascular edema, (4) Evans Blue extravasation, and (5) appearance of parenchymal astrogliosis. Importantly, discrete analyses of striatal and motor cortex areas revealed significantly higher autophagosome accumulation in capillaries of ventral striatum and astrogliosis in dorsal striatum in both cerebral hemispheres. These widespread microvascular alterations in ipsilateral and contralateral brain hemispheres suggest persistent and/or continued BBB damage in chronic ischemia. The pathological changes in remote brain areas likely indicate chronic ischemic diaschisis, which should be considered in the development of treatment strategies for stroke. PMID:24610730

  7. Is Brain Activity during Action Observation Modulated by the Perceived Fairness of the Actor?

    PubMed

    Etzel, Joset A; Valchev, Nikola; Gazzola, Valeria; Keysers, Christian

    2016-01-01

    Perceiving other people's actions triggers activity in premotor and parietal areas, brain areas also involved in executing and sensing our own actions. Paralleling this phenomenon, observing emotional states (including pain) in others is associated with activity in the same brain areas as activated when experiencing similar emotions directly. This emotion perception associated activity has been shown to be affected by the perceived fairness of the actor, and in-group membership more generally. Here, we examine whether action observation associated brain activity is also affected by the perceived social fairness of the actors. Perceived fairness was manipulated using an alternating iterated Prisoner's Dilemma game between the participant and two confederates, one of whom played fairly and the other unfairly. During fMRI scanning the participants watched movies of the confederates performing object-directed hand actions, and then performed hand actions themselves. Mass-univariate analysis showed that observing the actions triggered robust activation in regions associated with action execution, but failed to identify a strong modulation of this activation based on perceived fairness. Multivariate pattern analysis, however, identified clusters potentially carrying information about the perceived fairness of the actor in the middle temporal gyrus, left postcentral gyrus, right inferior parietal lobule, right middle cingulate cortex, right angular gyrus, and right superioroccipital gyrus. Despite being identified by a whole-brain searchlight analysis (and so without anatomical restriction), these clusters fall into areas frequently associated with action observation. We conclude that brain activity during action observation may be modulated by perceived fairness, but such modulation is subtle; robust activity is associated with observing the actions of both fair and unfair individuals.

  8. Is Brain Activity during Action Observation Modulated by the Perceived Fairness of the Actor?

    PubMed

    Etzel, Joset A; Valchev, Nikola; Gazzola, Valeria; Keysers, Christian

    2016-01-01

    Perceiving other people's actions triggers activity in premotor and parietal areas, brain areas also involved in executing and sensing our own actions. Paralleling this phenomenon, observing emotional states (including pain) in others is associated with activity in the same brain areas as activated when experiencing similar emotions directly. This emotion perception associated activity has been shown to be affected by the perceived fairness of the actor, and in-group membership more generally. Here, we examine whether action observation associated brain activity is also affected by the perceived social fairness of the actors. Perceived fairness was manipulated using an alternating iterated Prisoner's Dilemma game between the participant and two confederates, one of whom played fairly and the other unfairly. During fMRI scanning the participants watched movies of the confederates performing object-directed hand actions, and then performed hand actions themselves. Mass-univariate analysis showed that observing the actions triggered robust activation in regions associated with action execution, but failed to identify a strong modulation of this activation based on perceived fairness. Multivariate pattern analysis, however, identified clusters potentially carrying information about the perceived fairness of the actor in the middle temporal gyrus, left postcentral gyrus, right inferior parietal lobule, right middle cingulate cortex, right angular gyrus, and right superioroccipital gyrus. Despite being identified by a whole-brain searchlight analysis (and so without anatomical restriction), these clusters fall into areas frequently associated with action observation. We conclude that brain activity during action observation may be modulated by perceived fairness, but such modulation is subtle; robust activity is associated with observing the actions of both fair and unfair individuals. PMID:26820995

  9. Is Brain Activity during Action Observation Modulated by the Perceived Fairness of the Actor?

    PubMed Central

    Gazzola, Valeria; Keysers, Christian

    2016-01-01

    Perceiving other people’s actions triggers activity in premotor and parietal areas, brain areas also involved in executing and sensing our own actions. Paralleling this phenomenon, observing emotional states (including pain) in others is associated with activity in the same brain areas as activated when experiencing similar emotions directly. This emotion perception associated activity has been shown to be affected by the perceived fairness of the actor, and in-group membership more generally. Here, we examine whether action observation associated brain activity is also affected by the perceived social fairness of the actors. Perceived fairness was manipulated using an alternating iterated Prisoner’s Dilemma game between the participant and two confederates, one of whom played fairly and the other unfairly. During fMRI scanning the participants watched movies of the confederates performing object-directed hand actions, and then performed hand actions themselves. Mass-univariate analysis showed that observing the actions triggered robust activation in regions associated with action execution, but failed to identify a strong modulation of this activation based on perceived fairness. Multivariate pattern analysis, however, identified clusters potentially carrying information about the perceived fairness of the actor in the middle temporal gyrus, left postcentral gyrus, right inferior parietal lobule, right middle cingulate cortex, right angular gyrus, and right superioroccipital gyrus. Despite being identified by a whole-brain searchlight analysis (and so without anatomical restriction), these clusters fall into areas frequently associated with action observation. We conclude that brain activity during action observation may be modulated by perceived fairness, but such modulation is subtle; robust activity is associated with observing the actions of both fair and unfair individuals. PMID:26820995

  10. Behavioral activation system modulation on brain activation during appetitive and aversive stimulus processing

    PubMed Central

    Ventura-Campos, Noelia; Sanjuán-Tomás, Ana; Belloch, Vicente; Parcet, Maria-Antònia; Ávila, César

    2010-01-01

    The reinforcement sensitivity theory (RST) proposed the behavioral activation system (BAS) as a neurobehavioral system that is dependent on dopamine-irrigated structures and that mediates the individual differences in sensitivity and reactivity to appetitive stimuli associated with BAS-related personality traits. Theoretical developments propose that high BAS sensitivity is associated with both enhanced appetitive stimuli processing and the diminished processing of aversive stimuli. The objective of this study was to analyze how individual differences in BAS functioning were associated with brain activation during erotic and aversive picture processing while subjects were involved in a simple goal-directed task. Forty-five male participants took part in this study. The task activation results confirm the activation of the reward and punishment brain-related structures while viewing erotic and aversive pictures, respectively. The SR scores show a positive correlation with activation of the left lateral prefrontal cortex, the mesial prefrontal cortex and the right occipital cortex while viewing erotic pictures, and a negative correlation with the right lateral prefrontal cortex and the left occipital cortex while viewing aversive pictures. In summary, the SR scores modulate the activity of the cortical areas in the prefrontal and the occipital cortices that are proposed to modulate the BAS and the BIS-FFFS. PMID:20147458

  11. Behavioral activation system modulation on brain activation during appetitive and aversive stimulus processing.

    PubMed

    Barrós-Loscertales, Alfonso; Ventura-Campos, Noelia; Sanjuán-Tomás, Ana; Belloch, Vicente; Parcet, Maria-Antònia; Avila, César

    2010-03-01

    The reinforcement sensitivity theory (RST) proposed the behavioral activation system (BAS) as a neurobehavioral system that is dependent on dopamine-irrigated structures and that mediates the individual differences in sensitivity and reactivity to appetitive stimuli associated with BAS-related personality traits. Theoretical developments propose that high BAS sensitivity is associated with both enhanced appetitive stimuli processing and the diminished processing of aversive stimuli. The objective of this study was to analyze how individual differences in BAS functioning were associated with brain activation during erotic and aversive picture processing while subjects were involved in a simple goal-directed task. Forty-five male participants took part in this study. The task activation results confirm the activation of the reward and punishment brain-related structures while viewing erotic and aversive pictures, respectively. The SR scores show a positive correlation with activation of the left lateral prefrontal cortex, the mesial prefrontal cortex and the right occipital cortex while viewing erotic pictures, and a negative correlation with the right lateral prefrontal cortex and the left occipital cortex while viewing aversive pictures. In summary, the SR scores modulate the activity of the cortical areas in the prefrontal and the occipital cortices that are proposed to modulate the BAS and the BIS-FFFS.

  12. Behavioral activation system modulation on brain activation during appetitive and aversive stimulus processing.

    PubMed

    Barrós-Loscertales, Alfonso; Ventura-Campos, Noelia; Sanjuán-Tomás, Ana; Belloch, Vicente; Parcet, Maria-Antònia; Avila, César

    2010-03-01

    The reinforcement sensitivity theory (RST) proposed the behavioral activation system (BAS) as a neurobehavioral system that is dependent on dopamine-irrigated structures and that mediates the individual differences in sensitivity and reactivity to appetitive stimuli associated with BAS-related personality traits. Theoretical developments propose that high BAS sensitivity is associated with both enhanced appetitive stimuli processing and the diminished processing of aversive stimuli. The objective of this study was to analyze how individual differences in BAS functioning were associated with brain activation during erotic and aversive picture processing while subjects were involved in a simple goal-directed task. Forty-five male participants took part in this study. The task activation results confirm the activation of the reward and punishment brain-related structures while viewing erotic and aversive pictures, respectively. The SR scores show a positive correlation with activation of the left lateral prefrontal cortex, the mesial prefrontal cortex and the right occipital cortex while viewing erotic pictures, and a negative correlation with the right lateral prefrontal cortex and the left occipital cortex while viewing aversive pictures. In summary, the SR scores modulate the activity of the cortical areas in the prefrontal and the occipital cortices that are proposed to modulate the BAS and the BIS-FFFS. PMID:20147458

  13. Gray Matter Volumes of Pain Related Brain Areas are Decreased in Fibromyalgia Syndrome

    PubMed Central

    Robinson, Michael E.; Craggs, Jason G.; Price, Donald D.; Perlstein, William M.; Staud, Roland

    2010-01-01

    Fibromyalgia (FM) is a chronic widespread musculoskeletal pain disorder that is very prevalent in the general population (approx. 5%). Accumulating evidence suggests that FM is associated with central pain processing abnormalities, i.e. central sensitization. Several previous studies of chronic pain patients, including FM, have shown gray matter atrophy of brain areas associated with sensory and affective pain processing. These findings, however, have not been confirmed in all FM studies. In this study, we investigated gray matter volumes of brain areas associated with pain-related areas of FM patients identified by functional brain imaging. Using voxel-based morphometric (VBM) analysis of magnetic resonance brain images, we compared 19 pain related brain areas of 14 female FM patients and 11 healthy controls (NC). We found that FM patients had significantly less gray matter volumes than NC in three of these brain regions, including the anterior and mid-cingulate, as well as mid-insular cortices. Importantly, FM patients neither demonstrated global gray matter atrophy nor gray matter changes associated with depression, as shown in some studies. Using a more stringent analysis than other VBM studies, we provide evidence for decreased gray matter volumes in a number of pain related brain areas in FM. Although the mechanisms for these gray matter changes are presently unclear, they may contribute to some of the core features of this chronic disorder including affective disturbances and chronic widespread pain PMID:21146463

  14. Applications of brain blood flow imaging in behavioral neurophysiology: cortical field activation hypothesis

    SciTech Connect

    Roland, P.E.

    1985-01-01

    The /sup 133/xenon intracarotid method for rCBF measurements has been a very useful method for functional mapping and functional dissection of the cerebral cortex in humans. With this method it has been shown that different types of cortical information treatment activate different cortical areas and furthermore that sensory and motor functions of the cerebral cortex could be dissected into anatomical and informational subcomponents by behavioral manipulations. The brain organizes its own activity. One of the principles of organization was that the brain could recruit in advance cortical fields that were expected to participate in a certain type of information operation. During brain work in awake human beings the cerebral cortex was activated in fields that, projected on the cerebral surface, most often had a size greater than 3 CM/sup 2/. Such activated fields appeared no matter which type of information processing was going on in the brain: during planning and execution of voluntary movements, during preparation for sensory information processing, and during sensory information processing, as well as during cognitive brain work and retrieval of specific memories. Therefore, it was hypothesized that cortical field activation was the physiological manifestation of normal brain work in awake humans.

  15. Neural Processing of Calories in Brain Reward Areas Can be Modulated by Reward Sensitivity

    PubMed Central

    van Rijn, Inge; Griffioen-Roose, Sanne; de Graaf, Cees; Smeets, Paul A. M.

    2016-01-01

    A food's reward value is dependent on its caloric content. Furthermore, a food's acute reward value also depends on hunger state. The drive to obtain rewards (reward sensitivity), however, differs between individuals. Here, we assessed the association between brain responses to calories in the mouth and trait reward sensitivity in different hunger states. Firstly, we assessed this in data from a functional neuroimaging study (van Rijn et al., 2015), in which participants (n = 30) tasted simple solutions of a non-caloric sweetener with or without a non-sweet carbohydrate (maltodextrin) during hunger and satiety. Secondly, we expanded these analyses to regular drinks by assessing the same relationship in data from a study in which soft drinks sweetened with either sucrose or a non-caloric sweetener were administered during hunger (n = 18) (Griffioen-Roose et al., 2013). First, taste activation by the non-caloric solution/soft drink was subtracted from that by the caloric solution/soft drink to eliminate sweetness effects and retain activation induced by calories. Subsequently, this difference in taste activation was correlated with reward sensitivity as measured with the BAS drive subscale of the Behavioral Activation System (BAS) questionnaire. When participants were hungry and tasted calories from the simple solution, brain activation in the right ventral striatum (caudate), right amygdala and anterior cingulate cortex (bilaterally) correlated negatively with BAS drive scores. In contrast, when participants were satiated, taste responses correlated positively with BAS drive scores in the left caudate. These results were not replicated for soft drinks. Thus, neural responses to oral calories from maltodextrin were modulated by reward sensitivity in reward-related brain areas. This was not the case for sucrose. This may be due to the direct detection of maltodextrin, but not sucrose in the oral cavity. Also, in a familiar beverage, detection of calories per se may be

  16. [Dynamics of Brain Activity during Voluntary Movement: fMRI Study].

    PubMed

    Sedov, A S; Devetiarov, D A; Semenova, U N; Zavyalova, V V; Ushakov, V L; Medvednik, R S; Ublinsky, M V; Akhadov, T A; Semenova, N A

    2015-01-01

    The use of event-related fMRI makes it possible to investigate spatio-temporal dynamics of cortical and subcortical human brain structures activity during voluntary movement performance in response to presentation of relevant verbal stimuli. The results of the study showed that voluntary movement was associated with higher contralateral brain activation in a number of areas: primary motor and somatosensory cortex, premotor cortex, supplementary motor area and insula with adjacent regions. Ipsilateral activation of the cerebellum also was observed. It should be emphasized that contralateral strio-pallidal complex and ventral thalamus showed significant response to motor tasks. Similarly, the dynamics of cortex and deep brain structures activation involving in the phasic and tonic components of voluntary movement was uncovered. We showed, in particular, the noticeable difference in brain activation between the right and left hand movement performance. The obtained results enable to enhance understanding of the role of deep brain structures in voluntary movement organization in human and motor control system as a whole. PMID:26601503

  17. Brain activity accompanying perception of implied motion in abstract paintings.

    PubMed

    Kim, Chai-Youn; Blake, Randolph

    2007-01-01

    Early 20th century artists including Duchamp and Balla tried to portray moving objects on a static canvas by superimposing objects in successive portrayals of an action. We investigated whether implied motion in those paintings is associated with activation of motion-sensitive area MT+. In Experiment 1, we found that observers rated these kinds of paintings higher in portraying motion than they did other abstract paintings in which motion is not intended. We also found that observers who had previously experienced abstract paintings with implied motion tended to give higher motion ratings to that class of paintings. In Experiment 2, we used functional magnetic resonance imaging (fMRI) to measure brain activity of observers while viewing abstract paintings receiving the highest and the lowest motion rating scores in Experiment 1. We found MT+, but not primary visual cortex (V1), showed greater BOLD responses to abstract paintings with implied motion than to abstract paintings with little motion impression, but only in observers with prior experience viewing those kinds of paintings. These results imply that the neural machinery ordinarily engaged during perception of real visual motion is activated when people view paintings explicitly designed to convey a sense of visual motion. Experience, however, is necessary to achieve this sense of motion.

  18. Microglial activation and progressive brain changes in schizophrenia.

    PubMed

    Laskaris, L E; Di Biase, M A; Everall, I; Chana, G; Christopoulos, A; Skafidas, E; Cropley, V L; Pantelis, C

    2016-02-01

    Schizophrenia is a debilitating disorder that typically begins in adolescence and is characterized by perceptual abnormalities, delusions, cognitive and behavioural disturbances and functional impairments. While current treatments can be effective, they are often insufficient to alleviate the full range of symptoms. Schizophrenia is associated with structural brain abnormalities including grey and white matter volume loss and impaired connectivity. Recent findings suggest these abnormalities follow a neuroprogressive course in the earliest stages of the illness, which may be associated with episodes of acute relapse. Neuroinflammation has been proposed as a potential mechanism underlying these brain changes, with evidence of increased density and activation of microglia, immune cells resident in the brain, at various stages of the illness. We review evidence for microglial dysfunction in schizophrenia from both neuroimaging and neuropathological data, with a specific focus on studies examining microglial activation in relation to the pathology of grey and white matter. The studies available indicate that the link between microglial dysfunction and brain change in schizophrenia remains an intriguing hypothesis worthy of further examination. Future studies in schizophrenia should: (i) use multimodal imaging to clarify this association by mapping brain changes longitudinally across illness stages in relation to microglial activation; (ii) clarify the nature of microglial dysfunction with markers specific to activation states and phenotypes; (iii) examine the role of microglia and neurons with reference to their overlapping roles in neuroinflammatory pathways; and (iv) examine the impact of novel immunomodulatory treatments on brain structure in schizophrenia. PMID:26455353

  19. Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients

    PubMed Central

    Chang, Won Hyuk; Kim, Yun-Hee; Lee, Seong-Whan; Kwon, Gyu Hyun

    2015-01-01

    Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal functional

  20. Brain activity: connectivity, sparsity, and mutual information.

    PubMed

    Cassidy, Ben; Rae, Caroline; Solo, Victor

    2015-04-01

    We develop a new approach to functional brain connectivity analysis, which deals with four fundamental aspects of connectivity not previously jointly treated. These are: temporal correlation, spurious spatial correlation, sparsity, and network construction using trajectory (as opposed to marginal) Mutual Information. We call the new method Sparse Conditional Trajectory Mutual Information (SCoTMI). We demonstrate SCoTMI on simulated and real fMRI data, showing that SCoTMI gives more accurate and more repeatable detection of network links than competing network estimation methods.

  1. Spontaneous and task-evoked brain activity negatively interact

    PubMed Central

    He, Biyu J.

    2013-01-01

    A widely held assumption is that spontaneous and task-evoked brain activity sum linearly, such that the recorded brain response in each single trial is the algebraic sum of the constantly changing ongoing activity and the stereotypical evoked activity. Using functional magnetic resonance imaging (fMRI) signals acquired from normal humans, we show that this assumption is invalid. Across widespread cortices, evoked activity interacts negatively with ongoing activity, such that higher prestimulus baseline results in less activation or more deactivation. As a consequence of this negative interaction, trial-to-trial variability of cortical activity decreases following stimulus onset. We further show that variability reduction follows overlapping but distinct spatial pattern from that of task activation/deactivation and it contains behaviorally relevant information. These results favor an alternative perspective to the traditional dichotomous framework of ongoing and evoked activity – one that views the brain as a nonlinear dynamical system whose trajectory is tighter when performing a task; further, incoming sensory stimuli modulate the brain’s activity in a manner that depends on its initial state. We propose that across-trial variability may provide a new approach to brain mapping in the context of cognitive experiments. PMID:23486941

  2. Brain activity in predictive sensorimotor control for landings: an EEG pilot study.

    PubMed

    Baumeister, J; von Detten, S; van Niekerk, S-M; Schubert, M; Ageberg, E; Louw, Q A

    2013-12-01

    Landing from a jump is related to predictive sensorimotor control. Frontal, central and parietal brain areas are known to play a role in this process based on online sensory feedback. This can be measured by EEG. However, there is only limited knowledge about brain activity during predictive preparation for drop landings (DL). The purpose is to demonstrate changes in brain activity in preparation for DL in different conditions. After resting, 10 athletes performed a series of DLs and were asked to concentrate on the landing preparation for 10 s before an auditory signal required them to drop land from a 30 cm platform. This task was executed before and after a standardized fatigue protocol. EEG spectral power was calculated during DL preparation. Frontal Theta power was increased during preparation compared to rest. Parietal Alpha-2 power demonstrated higher values in preparation after fatigue condition while lower limb kinematics remained unchanged. Cortical activity in frontal and parietal brain areas is sensitive for predictive sensorimotor control of drop landings. Frontal Theta power demonstrates an increase and is related to higher attentional control. In a fatigued condition the parietal Alpha-2 power increase might be related to a deactivation in the somatosensory brain areas. PMID:23740338

  3. Brain activity in predictive sensorimotor control for landings: an EEG pilot study.

    PubMed

    Baumeister, J; von Detten, S; van Niekerk, S-M; Schubert, M; Ageberg, E; Louw, Q A

    2013-12-01

    Landing from a jump is related to predictive sensorimotor control. Frontal, central and parietal brain areas are known to play a role in this process based on online sensory feedback. This can be measured by EEG. However, there is only limited knowledge about brain activity during predictive preparation for drop landings (DL). The purpose is to demonstrate changes in brain activity in preparation for DL in different conditions. After resting, 10 athletes performed a series of DLs and were asked to concentrate on the landing preparation for 10 s before an auditory signal required them to drop land from a 30 cm platform. This task was executed before and after a standardized fatigue protocol. EEG spectral power was calculated during DL preparation. Frontal Theta power was increased during preparation compared to rest. Parietal Alpha-2 power demonstrated higher values in preparation after fatigue condition while lower limb kinematics remained unchanged. Cortical activity in frontal and parietal brain areas is sensitive for predictive sensorimotor control of drop landings. Frontal Theta power demonstrates an increase and is related to higher attentional control. In a fatigued condition the parietal Alpha-2 power increase might be related to a deactivation in the somatosensory brain areas.

  4. Physical Activity Affects Brain Integrity in HIV + Individuals

    PubMed Central

    Ortega, Mario; Baker, Laurie M.; Vaida, Florin; Paul, Robert; Basco, Brian; Ances, Beau M.

    2015-01-01

    Prior research has suggested benefits of aerobic physical activity (PA) on cognition and brain volumes in HIV uninfected (HIV−) individuals, however, few studies have explored the relationships between PA and brain integrity (cognition and structural brain volumes) in HIV-infected (HIV +) individuals. Seventy HIV + individuals underwent neuropsychological testing, structural neuroimaging, laboratory tests, and completed a PA questionnaire, recalling participation in walking, running, and jogging activities over the last year. A PA engagement score of weekly metabolic equivalent (MET) hr of activity was calculated using a compendium of PAs. HIV + individuals were classified as physically active (any energy expended above resting expenditure, n = 22) or sedentary (n = 48). Comparisons of neuropsychological performance, grouped by executive and motor domains, and brain volumes were completed between groups. Physically active and sedentary HIV + individuals had similar demographic and laboratory values, but the active group had higher education (14.0 vs. 12.6 years, p = .034). Physically active HIV + individuals performed better on executive (p = .040, unadjusted; p = .043, adjusted) but not motor function (p = .17). In addition, among the physically active group the amount of physical activity (METs) positively correlated with executive (Pearson’s r = 0.45, p = 0.035) but not motor (r = 0.21; p = .35) performance. In adjusted analyses the physically active HIV + individuals had larger putamen volumes (p = .019). A positive relationship exists between PA and brain integrity in HIV + individuals. Results from the present study emphasize the importance to conduct longitudinal interventional investigation to determine if PA improves brain integrity in HIV + individuals. PMID:26581799

  5. Sex differences in how stress affects brain activity during face viewing.

    PubMed

    Mather, Mara; Lighthall, Nichole R; Nga, Lin; Gorlick, Marissa A

    2010-10-01

    Under stress, men tend to withdraw socially whereas women seek social support. This functional magnetic resonance imaging study indicates that stress also affects brain activity while viewing emotional faces differently for men and women. Fusiform face area response to faces was diminished by acute stress in men but increased by stress in women. Furthermore, among stressed men viewing angry faces, brain regions involved in interpreting and understanding others' emotions (the insula, temporal pole, and inferior frontal gyrus) showed reduced coordination with the fusiform face area and the amygdala, whereas the functional connectivity among these regions increased with stress for women. These findings suggest that stress influences emotional perception differently for men and women.

  6. Decoding mental states from brain activity in humans.

    PubMed

    Haynes, John-Dylan; Rees, Geraint

    2006-07-01

    Recent advances in human neuroimaging have shown that it is possible to accurately decode a person's conscious experience based only on non-invasive measurements of their brain activity. Such 'brain reading' has mostly been studied in the domain of visual perception, where it helps reveal the way in which individual experiences are encoded in the human brain. The same approach can also be extended to other types of mental state, such as covert attitudes and lie detection. Such applications raise important ethical issues concerning the privacy of personal thought.

  7. Magnesium, aluminum and lead in various brain areas

    SciTech Connect

    Zumkley, H.; Bertram, H.P.; Brandt, M.; Roedig, M.; Spieker, C.

    1986-01-01

    Whereas the lead concentrations were increased in brain tissue of patients with chronic alcoholism, the aluminum concentrations remained within the normal range. The magnesium concentrations were found decreased in patients with chronic alcoholism compared to normal controls. The sources for the elevated lead levels seem to be the increased intake of alcohol. The decreased magnesium levels are probably caused by an increased loss of magnesium with the urine, malnutrition, malabsorption, hormonal factors and drugs. Various neurological disorders which often accompanied chronic alcoholism may be caused or aggravated by lead encephalopathy and hypomagnesemia. Therapeutical implications may be the early substitution of magnesium deficiency in chronic alcoholism. 10 references, 5 figures.

  8. Areas of Brain Damage Underlying Increased Reports of Behavioral Disinhibition.

    PubMed

    Knutson, Kristine M; Dal Monte, Olga; Schintu, Selene; Wassermann, Eric M; Raymont, Vanessa; Grafman, Jordan; Krueger, Frank

    2015-01-01

    Disinhibition, the inability to inhibit inappropriate behavior, is seen in frontal-temporal degeneration, Alzheimer's disease, and stroke. Behavioral disinhibition leads to social and emotional impairments, including impulsive behavior and disregard for social conventions. The authors investigated the effects of lesions on behavioral disinhibition measured by the Neuropsychiatric Inventory in 177 veterans with traumatic brain injuries. The authors performed voxel-based lesion-symptom mapping using MEDx. Damage in the frontal and temporal lobes, gyrus rectus, and insula was associated with greater behavioral disinhibition, providing further evidence of the frontal lobe's involvement in behavioral inhibition and suggesting that these regions are necessary to inhibit improper behavior. PMID:25959040

  9. Areas of Brain Damage Underlying Increased Reports of Behavioral Disinhibition.

    PubMed

    Knutson, Kristine M; Dal Monte, Olga; Schintu, Selene; Wassermann, Eric M; Raymont, Vanessa; Grafman, Jordan; Krueger, Frank

    2015-01-01

    Disinhibition, the inability to inhibit inappropriate behavior, is seen in frontal-temporal degeneration, Alzheimer's disease, and stroke. Behavioral disinhibition leads to social and emotional impairments, including impulsive behavior and disregard for social conventions. The authors investigated the effects of lesions on behavioral disinhibition measured by the Neuropsychiatric Inventory in 177 veterans with traumatic brain injuries. The authors performed voxel-based lesion-symptom mapping using MEDx. Damage in the frontal and temporal lobes, gyrus rectus, and insula was associated with greater behavioral disinhibition, providing further evidence of the frontal lobe's involvement in behavioral inhibition and suggesting that these regions are necessary to inhibit improper behavior.

  10. Telomerase Activity is Downregulated Early During Human Brain Development

    PubMed Central

    Ishaq, Abbas; Hanson, Peter S.; Morris, Christopher M.; Saretzki, Gabriele

    2016-01-01

    Changes in hTERT splice variant expression have been proposed to facilitate the decrease of telomerase activity during fetal development in various human tissues. Here, we analyzed the expression of telomerase RNA (hTR), wild type and α-spliced hTERT in developing human fetal brain (post conception weeks, pcw, 6–19) and in young and old cortices using qPCR and correlated it to telomerase activity measured by TRAP assay. Decrease of telomerase activity occurred early during brain development and correlated strongest to decreased hTR expression. The expression of α-spliced hTERT increased between pcw 10 and 19, while that of wild type hTERT remained unchanged. Lack of expression differences between young and old cortices suggests that most changes seem to occur early during human brain development. Using in vitro differentiation of neural precursor stem cells (NPSCs) derived at pcw 6 we found a decrease in telomerase activity but no major expression changes in telomerase associated genes. Thus, they do not seem to model the mechanisms for the decrease in telomerase activity in fetal brains. Our results suggest that decreased hTR levels, as well as transient increase in α-spliced hTERT, might both contribute to downregulation of telomerase activity during early human brain development between 6 and 17 pcw. PMID:27322326

  11. Exploiting Complexity Information for Brain Activation Detection

    PubMed Central

    Zhang, Yan; Liang, Jiali; Lin, Qiang; Hu, Zhenghui

    2016-01-01

    We present a complexity-based approach for the analysis of fMRI time series, in which sample entropy (SampEn) is introduced as a quantification of the voxel complexity. Under this hypothesis the voxel complexity could be modulated in pertinent cognitive tasks, and it changes through experimental paradigms. We calculate the complexity of sequential fMRI data for each voxel in two distinct experimental paradigms and use a nonparametric statistical strategy, the Wilcoxon signed rank test, to evaluate the difference in complexity between them. The results are compared with the well known general linear model based Statistical Parametric Mapping package (SPM12), where a decided difference has been observed. This is because SampEn method detects brain complexity changes in two experiments of different conditions and the data-driven method SampEn evaluates just the complexity of specific sequential fMRI data. Also, the larger and smaller SampEn values correspond to different meanings, and the neutral-blank design produces higher predictability than threat-neutral. Complexity information can be considered as a complementary method to the existing fMRI analysis strategies, and it may help improving the understanding of human brain functions from a different perspective. PMID:27045838

  12. Eeg Imaging Of Brain Activity: Methods And Potentials

    NASA Astrophysics Data System (ADS)

    Coppola, Richard

    1984-08-01

    Currently there are several methods for creating images that relate to either the anatomy or function of the human brain. Static pictures of anatomical structures are produced by computerized axial tomography (CAT) and the presently evolving methods of nuclear magnetic resonance (NM P). These images give excellent resolution of various degrees of structures but do not reveal any aspects of function. A variety of radioactive labeling and detection techniques are available that produce images related to brain activity.

  13. Bilinguals Use Language-Control Brain Areas More Than Monolinguals to Perform Non-Linguistic Switching Tasks

    PubMed Central

    Rodríguez-Pujadas, Aina; Sanjuán, Ana; Ventura-Campos, Noelia; Román, Patricia; Martin, Clara; Barceló, Francisco; Costa, Albert; Ávila, César

    2013-01-01

    We tested the hypothesis that early bilinguals use language-control brain areas more than monolinguals when performing non-linguistic executive control tasks. We do so by exploring the brain activity of early bilinguals and monolinguals in a task-switching paradigm using an embedded critical trial design. Crucially, the task was designed such that the behavioural performance of the two groups was comparable, allowing then to have a safer comparison between the corresponding brain activity in the two groups. Despite the lack of behavioural differences between both groups, early bilinguals used language-control areas – such as left caudate, and left inferior and middle frontal gyri – more than monolinguals, when performing the switching task. Results offer direct support for the notion that, early bilingualism exerts an effect in the neural circuitry responsible for executive control. This effect partially involves the recruitment of brain areas involved in language control when performing domain-general executive control tasks, highlighting the cross-talk between these two domains. PMID:24058456

  14. Bilinguals use language-control brain areas more than monolinguals to perform non-linguistic switching tasks.

    PubMed

    Rodríguez-Pujadas, Aina; Sanjuán, Ana; Ventura-Campos, Noelia; Román, Patricia; Martin, Clara; Barceló, Francisco; Costa, Albert; Avila, César

    2013-01-01

    We tested the hypothesis that early bilinguals use language-control brain areas more than monolinguals when performing non-linguistic executive control tasks. We do so by exploring the brain activity of early bilinguals and monolinguals in a task-switching paradigm using an embedded critical trial design. Crucially, the task was designed such that the behavioural performance of the two groups was comparable, allowing then to have a safer comparison between the corresponding brain activity in the two groups. Despite the lack of behavioural differences between both groups, early bilinguals used language-control areas--such as left caudate, and left inferior and middle frontal gyri--more than monolinguals, when performing the switching task. Results offer direct support for the notion that, early bilingualism exerts an effect in the neural circuitry responsible for executive control. This effect partially involves the recruitment of brain areas involved in language control when performing domain-general executive control tasks, highlighting the cross-talk between these two domains.

  15. Increased brain activation during working memory processing after pediatric mild traumatic brain injury (mTBI)

    PubMed Central

    Westfall, Daniel R.; West, John D.; Bailey, Jessica N.; Arnold, Todd W.; Kersey, Patrick A.; Saykin, Andrew J.; McDonald, Brenna C.

    2016-01-01

    Purpose The neural substrate of post-concussive symptoms following the initial injury period after mild traumatic brain injury (mTBI) in pediatric populations remains poorly elucidated. This study examined neuropsychological, behavioral, and brain functioning in adolescents post-mTBI to assess whether persistent differences were detectable up to a year post-injury. Methods Nineteen adolescents (mean age 14.7 years) who experienced mTBI 3–12 months previously (mean 7.5 months) and 19 matched healthy controls (mean age 14.0 years) completed neuropsychological testing and an fMRI auditory-verbal N-back working memory task. Parents completed behavioral ratings. Results No between-group differences were found for cognition, behavior, or N-back task performance, though the expected decreased accuracy and increased reaction time as task difficulty increased were apparent. However, the mTBI group showed significantly greater brain activation than controls during the most difficult working memory task condition. Conclusion Greater working memory task-related activation was found in adolescents up to one year post-mTBI relative to controls, potentially indicating compensatory activation to support normal task performance. Differences in brain activation in the mTBI group so long after injury may indicate residual alterations in brain function much later than would be expected based on the typical pattern of natural recovery, which could have important clinical implications. PMID:26684070

  16. Dynamics of fMRI signals during human brain activations to a stimulus

    NASA Astrophysics Data System (ADS)

    Liu, Haiying; Kato, Toshinori; Neves, Carlos

    2001-05-01

    In fMRI memory study, the temporal behavior of BOLD fMRI signals were consistently observed from various brain processing areas at 1.5 Tesla and consistent with the expected functions. Also, all the activations generally exhibit three types of temporal characteristics: short, sustained and delayed responses in relation to the primary stimuli. To address these cerebral multiphasic responses, a suitable functional data analysis scheme has been used, in which the neural response of a specific brain area to a pre-determined stimulation input of some sort was assumed to be linear. The visual memory study was performed on 6 normal subjects on a clinical MR scanner using a 5 min long rapid dynamical whole brain imaging using EPI acquisition during a single memory task, which involved a 45 sec visual presentation of three simple abstract geometric figures to the subject via LCD projector. The results showed that the activations in visual cortex were tightly correlated with the visual stimulus, while the activations detected in interior temporal, entorhinal cortex and inferior temporal area were delayed. Using the new technique, the brian activations were further characterized quantitatively in terms of delay and prolonged response. The resulting effective impulse response functions corresponding to these brain activations revealed much clearly all the temporal components.

  17. Brain modularity controls the critical behavior of spontaneous activity

    NASA Astrophysics Data System (ADS)

    Russo, R.; Herrmann, H. J.; de Arcangelis, L.

    2014-03-01

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.

  18. Using perturbations to identify the brain circuits underlying active vision

    PubMed Central

    Wurtz, Robert H.

    2015-01-01

    The visual and oculomotor systems in the brain have been studied extensively in the primate. Together, they can be regarded as a single brain system that underlies active vision—the normal vision that begins with visual processing in the retina and extends through the brain to the generation of eye movement by the brainstem. The system is probably one of the most thoroughly studied brain systems in the primate, and it offers an ideal opportunity to evaluate the advantages and disadvantages of the series of perturbation techniques that have been used to study it. The perturbations have been critical in moving from correlations between neuronal activity and behaviour closer to a causal relation between neuronal activity and behaviour. The same perturbation techniques have also been used to tease out neuronal circuits that are related to active vision that in turn are driving behaviour. The evolution of perturbation techniques includes ablation of both cortical and subcortical targets, punctate chemical lesions, reversible inactivations, electrical stimulation, and finally the expanding optogenetic techniques. The evolution of perturbation techniques has supported progressively stronger conclusions about what neuronal circuits in the brain underlie active vision and how the circuits themselves might be organized. PMID:26240420

  19. Using perturbations to identify the brain circuits underlying active vision.

    PubMed

    Wurtz, Robert H

    2015-09-19

    The visual and oculomotor systems in the brain have been studied extensively in the primate. Together, they can be regarded as a single brain system that underlies active vision--the normal vision that begins with visual processing in the retina and extends through the brain to the generation of eye movement by the brainstem. The system is probably one of the most thoroughly studied brain systems in the primate, and it offers an ideal opportunity to evaluate the advantages and disadvantages of the series of perturbation techniques that have been used to study it. The perturbations have been critical in moving from correlations between neuronal activity and behaviour closer to a causal relation between neuronal activity and behaviour. The same perturbation techniques have also been used to tease out neuronal circuits that are related to active vision that in turn are driving behaviour. The evolution of perturbation techniques includes ablation of both cortical and subcortical targets, punctate chemical lesions, reversible inactivations, electrical stimulation, and finally the expanding optogenetic techniques. The evolution of perturbation techniques has supported progressively stronger conclusions about what neuronal circuits in the brain underlie active vision and how the circuits themselves might be organized.

  20. Piecemeal recruitment of left-lateralized brain areas during reading: a spatio-functional account.

    PubMed

    Levy, Jonathan; Pernet, Cyril; Treserras, Sebastien; Boulanouar, Kader; Berry, Isabelle; Aubry, Florent; Demonet, Jean-Francois; Celsis, Pierre

    2008-11-15

    Neuroimaging studies of reading converge to suggest that linguistically elementary stimuli are confined to the activation of bilateral posterior regions, whereas linguistically complex stimuli additionally recruit left hemispheric anterior regions, raising the hypotheses of a gradual bilateral-to-left and a posterior-to-anterior recruitment of reading related areas. Here, we tested these two hypotheses by contrasting a repertoire of eight categories of stimuli ranging from simple orthographic-like characters to words and pseudowords in a single experiment, and by measuring BOLD signal changes and connectivity while 16 fluent readers passively viewed the stimuli. Our results confirm the existence of a bilateral-to-left and posterior-to-anterior recruitment of reading related areas, straightforwardly resulting from the increase in stimuli's linguistic processing load, which reflects reading processes: visual analysis, orthographic encoding and phonological decoding. Connectivity analyses strengthened the validity of these observations and additionally revealed an enhancement of the left parieto-frontal information trafficking for higher linguistic processing. Our findings clearly establish the notion of a gradual spatio-functional recruitment of reading areas and demonstrate, to the best of our knowledge, the first evidence of a robust and staged link between the level of linguistic processing, the spatial distribution of brain activity and its information trafficking. PMID:18778780

  1. [The language area of the brain: a functional reassessment].

    PubMed

    Ardila, Alfredo; Bernal, Byron; Rosselli, Monica

    2016-02-01

    Introduccion. Hacia finales del siglo XIX y comienzos del siglo XX, y basandose en observaciones clinicas, se propuso que existe un 'area del lenguaje' en el cerebro que corresponde, en general, a la region perisilviana del hemisferio izquierdo. Tal idea ha continuado existiendo desde entonces. Objetivo. Partiendo de los estudios contemporaneos de imagenes cerebrales, reanalizar la localizacion y extension del area del lenguaje con relacion a las diferentes areas de Brodmann. Materiales y metodos. Utilizando la metodologia conocida como metaanalytic connectivity modeling, se revisan varios estudios metaanaliticos en los cuales se analizan las imagenes de resonancia magnetica funcional durante la realizacion de tareas linguisticas. Resultados. Se encontro que existen dos sistemas linguisticos diferentes en el cerebro: un sistema lexico/semantico, relacionado con el area de Wernicke, y que incluye un area de Wernicke central (reconocimiento de palabras) y un area de Wernicke extendida (asociaciones linguisticas); y un sistema gramatical, dependiente del complejo de Broca (produccion del lenguaje y gramatica), en el lobulo frontal, y que se extiende subcorticalmente. Se propone tambien que la insula desempeña un papel de coordinacion de estos dos sistemas linguisticos cerebrales. Conclusion. Los estudios contemporaneos de neuroimagen sugieren que el area del lenguaje en el cerebro es notoriamente mas amplia de lo que se supuso hace un siglo basandose en observaciones clinicas. Tal como se consideraba durante el siglo XIX, la insula parece desempeñar un papel critico en el lenguaje.

  2. Brain acetycholinesterase activity in botulism-intoxicated mallards

    USGS Publications Warehouse

    Rocke, T.E.; Samuel, M.D.

    1991-01-01

    Brain acetylcholinesterase (AChE) activity in captive-reared mallards (Anas platyrhynchos) that died of botulism was compared with euthanized controls. AChE levels for both groups were within the range reported for normal mallards, and there was no significant difference in mean AChE activity between birds that ingested botulism toxin and died and those that did not.

  3. Identifying functional subdivisions in the human brain using meta-analytic activation modeling-based parcellation.

    PubMed

    Yang, Yong; Fan, Lingzhong; Chu, Congying; Zhuo, Junjie; Wang, Jiaojian; Fox, Peter T; Eickhoff, Simon B; Jiang, Tianzi

    2016-01-01

    Parcellation of the human brain into fine-grained units by grouping voxels into distinct clusters has been an effective approach for delineating specific brain regions and their subregions. Published neuroimaging studies employing coordinate-based meta-analyses have shown that the activation foci and their corresponding behavioral categories may contain useful information about the anatomical-functional organization of brain regions. Inspired by these developments, we proposed a new parcellation scheme called meta-analytic activation modeling-based parcellation (MAMP) that uses meta-analytically obtained information. The raw meta data, including the experiments and the reported activation coordinates related to a brain region of interest, were acquired from the Brainmap database. Using this data, we first obtained the "modeled activation" pattern by modeling the voxel-wise activation probability given spatial uncertainty for each experiment that featured at least one focus within the region of interest. Then, we processed these "modeled activation" patterns across the experiments with a K-means clustering algorithm to group the voxels into different subregions. In order to verify the reliability of the method, we employed our method to parcellate the amygdala and the left Brodmann area 44 (BA44). The parcellation results were quite consistent with previous cytoarchitectonic and in vivo neuroimaging findings. Therefore, the MAMP proposed in the current study could be a useful complement to other methods for uncovering the functional organization of the human brain.

  4. Different aspects of performance feedback engage different brain areas: disentangling valence and expectancy in feedback processing.

    PubMed

    Ferdinand, Nicola K; Opitz, Bertram

    2014-08-07

    Evaluating the positive and negative outcomes of our behaviour is important for action selection and learning. Such reinforcement learning has been shown to engage a specific neural circuitry including the mesencephalic dopamine system and its target areas, the striatum and medial frontal cortex, especially the anterior cingulate cortex (ACC). An intensively pursued debate regards the prevailing influence of feedback expectancy and feedback valence on the engagement of these two brain regions in reinforcement learning and their respective roles are far from being understood. To this end, we used a time estimation task with three different types of feedback that allows disentangling the effect of feedback valence and expectancy using functional magnetic resonance imaging (fMRI). Our results show greater ACC activation after unexpected positive and unexpected negative feedback than after expected feedback and by this sensitivity to unexpected events in general irrespective of their valence.

  5. Brain network activity in monolingual and bilingual older adults.

    PubMed

    Grady, Cheryl L; Luk, Gigi; Craik, Fergus I M; Bialystok, Ellen

    2015-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life.

  6. Brain network activity in monolingual and bilingual older adults.

    PubMed

    Grady, Cheryl L; Luk, Gigi; Craik, Fergus I M; Bialystok, Ellen

    2015-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life. PMID:25445783

  7. Brain Network Activity in Monolingual and Bilingual Older Adults

    PubMed Central

    Grady, Cheryl L.; Luk, Gigi; Craik, Fergus I.M.; Bialystok, Ellen

    2016-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life. PMID:25445783

  8. The time-course and spatial distribution of brain activity associated with sentence processing.

    PubMed

    Brennan, Jonathan; Pylkkänen, Liina

    2012-04-01

    Sentence comprehension involves a host of highly interrelated processes, including syntactic parsing, semantic composition, and pragmatic inferencing. In neuroimaging, a primary paradigm for examining the brain bases of sentence processing has been to compare brain activity elicited by sentences versus unstructured lists of words. These studies commonly find an effect of increased activity for sentences in the anterior temporal lobes (aTL). Together with neuropsychological data, these findings have motivated the hypothesis that the aTL is engaged in sentence level combinatorics. Combinatoric processing during language comprehension, however, occurs within tens and hundreds of milliseconds, i.e., at a time-scale much faster than the temporal resolution of hemodynamic measures. Here, we examined the time-course of sentence-level processing using magnetoencephalography (MEG) to better understand the temporal profile of activation in this common paradigm and to test a key prediction of the combinatoric hypothesis: because sentences are interpreted incrementally, word-by-word, activity associated with basic linguistic combinatorics should be time-locked to word-presentation. Our results reveal increased anterior temporal activity for sentences compared to word lists beginning approximately 250 ms after word onset. We also observed increased activation in a network of other brain areas, extending across posterior temporal, inferior frontal, and ventral medial areas. These findings confirm a key prediction of the combinatoric hypothesis for the aTL and further elucidate the spatio-temporal characteristics of sentence-level computations in the brain.

  9. The time-course and spatial distribution of brain activity associated with sentence processing.

    PubMed

    Brennan, Jonathan; Pylkkänen, Liina

    2012-04-01

    Sentence comprehension involves a host of highly interrelated processes, including syntactic parsing, semantic composition, and pragmatic inferencing. In neuroimaging, a primary paradigm for examining the brain bases of sentence processing has been to compare brain activity elicited by sentences versus unstructured lists of words. These studies commonly find an effect of increased activity for sentences in the anterior temporal lobes (aTL). Together with neuropsychological data, these findings have motivated the hypothesis that the aTL is engaged in sentence level combinatorics. Combinatoric processing during language comprehension, however, occurs within tens and hundreds of milliseconds, i.e., at a time-scale much faster than the temporal resolution of hemodynamic measures. Here, we examined the time-course of sentence-level processing using magnetoencephalography (MEG) to better understand the temporal profile of activation in this common paradigm and to test a key prediction of the combinatoric hypothesis: because sentences are interpreted incrementally, word-by-word, activity associated with basic linguistic combinatorics should be time-locked to word-presentation. Our results reveal increased anterior temporal activity for sentences compared to word lists beginning approximately 250 ms after word onset. We also observed increased activation in a network of other brain areas, extending across posterior temporal, inferior frontal, and ventral medial areas. These findings confirm a key prediction of the combinatoric hypothesis for the aTL and further elucidate the spatio-temporal characteristics of sentence-level computations in the brain. PMID:22248581

  10. Developmental Changes in Infant Brain Activity During Naturalistic Social Experiences

    PubMed Central

    Jones, Emily J. H.; Venema, Kaitlin; Lowy, Rachel; Earl, Rachel K.; Webb, Sara Jane

    2015-01-01

    Between 6 and 12 months, typically developing infants undergo a socio-cognitive ‘revolution’. The Interactive Specialization (IS) theory of brain development predicts that these behavioral changes will be underpinned by developmental increases in the power and topographic extent of socially selective cortical responses. To test this hypothesis, we used EEG to examine developmental changes in cortical selectivity for ecologically valid dynamic social versus non-social stimuli in a large cohort of 6- and 12-month-old infants. Consistent with the Interactive Specialization model, results showed that differences in EEG theta activity between social and non-social stimuli became more pronounced and widespread with age. Differences in EEG activity were most clearly elicited by a live naturalistic interaction, suggesting that measuring brain activity in ecologically valid contexts is central to mapping social brain development in infancy. PMID:26219834

  11. Common effects of fat, ethanol, and nicotine on enkephalin in discrete areas of the brain.

    PubMed

    Chang, G-Q; Karatayev, O; Barson, J R; Liang, S C; Leibowitz, S F

    2014-09-26

    Fat, ethanol, and nicotine share a number of properties, including their ability to reinforce behavior and produce overconsumption. To test whether these substances act similarly on the same neuronal populations in specific brain areas mediating these behaviors, we administered the substances short-term, using the same methods and within the same experiment, and measured their effects, in areas of the hypothalamus (HYPO), amygdala (AMYG), and nucleus accumbens (NAc), on mRNA levels of the opioid peptide, enkephalin (ENK), using in situ hybridization and on c-Fos immunoreactivity (ir) to indicate neuronal activity, using immunofluorescence histochemistry. In addition, we examined for comparison another reinforcing substance, sucrose, and also took measurements of stress-related behaviors and circulating corticosterone (CORT) and triglycerides (TG), to determine if they contribute to these substances' behavioral and physiological effects. Adult Sprague-Dawley rats were gavaged three times daily over 5 days with 3.5 mL of water, Intralipid (20% v/v), ethanol (12% v/v), nicotine (0.01% w/v) or sucrose (22% w/v) (approximately 7 kcal/dose), and tail vein blood was collected for measurements of circulating CORT and TG. On day five, animals were sacrificed, brains removed, and the HYPO, AMYG, and NAc processed for single- or double-labeling of ENK mRNA and c-Fos-ir. Fat, ethanol, and nicotine, but not sucrose, increased the single- and double-labeling of ENK and c-Fos-ir in precisely the same brain areas, the middle parvocellular but not lateral area of the paraventricular nucleus, central but not basolateral nucleus of the AMYG, and core but not shell of the NAc. While having little effect on stress-related behaviors or CORT levels, fat, ethanol, and nicotine all increased circulating levels of TG. These findings suggest that the overconsumption of these three substances and their potential for abuse are mediated by the same populations of ENK-expressing neurons in

  12. Topographic regulation of kinase activity in Alzheimer's disease brains.

    PubMed

    Grant, Philip; Pant, Harish C

    2002-08-01

    At autopsy, a most distinctive pathology seen in Alzheimer's disease (AD) brains is numerous abnormal neurons filled with neurofibrillary tangles (NFTs) containing stable complexes of hyperphosphorylated tau (PHF), neurofilaments and various kinases, among other proteins. Though these neuronal aggregates have been actively studied, their nature and origin are still poorly understood. Our studies of regulation of phosphorylation in neurons of the squid giant fiber system, using P13(suc1) affinity chromatography, suggest that neuronal phosphorylation of cytoskeletal proteins is compartmentalized into active axonal and inactive cell body-specific multimeric complexes of kinases, substrates and phosphatases. To determine whether such compartment-specific phosphorylation complexes are present in human brains, we separated gray matter (enriched in cell bodies) and white matter (enriched in axons) from normal and AD brains and studied the total kinase activities in lysates, pellets and P13(suc1) complexes. In addition, Western blot analysis was used to characterize the proteins associated with P13(suc1) multimeric complexes extracted from gray and white matter. We tested the hypothesis that P13 phosphorylation complexes were abnormally compartmentalized in AD neurons with the more active complexes shifted to cell bodies (gray matter) instead of axons (white matter). We found that (1) endogenous and exogenous substrate-dependent kinase activities of AD and control brain extracts were similar in both gray and white matter. (2) Long post mortem times tend to erase any differences in kinase activity between control and AD extracts. In contrast to shorter post mortem times (4.5-10 hrs), long post mortem times (13-34 hrs) significantly minimize the variances in kinase activities between control and AD brain extracts suggesting that cell death and proteolysis may eliminate any intrinsic differences in enzyme activities. (3) Except for the significantly higher level of histone

  13. A hyperspectral time resolved DOT system to monitor physiological changes of the human brain activity

    NASA Astrophysics Data System (ADS)

    Lange, F.; Peyrin, F.; Montcel, B.

    2015-07-01

    Diffuse optical tomography (DOT) is a growing area of research in the field of biomedical optics and neurosciences. Over the past 20 years, technical development allowed a more and more accurate detection of the brain activation, both spatially and in the calculation of the variations of chromophores's concentrations such as Hemoglobin, cytochrome c oxidase, etc. In particular, time resolved systems are able to distinguish between superficial layers (skin, skull) and deep layers (brain) allowing the differentiation between the systemic response and the response of the brain. In order to increase the accuracy of the brain's activation detection, we have developed a Hyperspectral Time Resolved DOT system. It is composed of a compact supercontinuum laser within the picosecond range for the source part and of an ICCD camera coupled with an imaging spectrometer for the detection part. This allows a simultaneous detection of the spatial and spectral dimension, as well as the time of flight of photons. Through the information acquired by our system, we've been able to retrieve, to our knowledge, the first spectrum of the physiology of the human brain activity as function as depth. Here we present the instrument and show our first in-vivo results that are demonstrating its capabilities to distinguish between the skin's response and the brain's responses during a cognitive task. We are also focused on the detection of the Fast Optical Signal.

  14. Applications of electroencephalography to characterize brain activity: perspectives in stroke.

    PubMed

    Borich, Michael R; Brown, Katlyn E; Lakhani, Bimal; Boyd, Lara A

    2015-01-01

    A wide array of neuroimaging technologies are now available that offer unprecedented opportunities to study the brain in health and disease. Each technology has associated strengths and weaknesses that need to be considered to maximize their utility, especially when used in combination. One imaging technology, electroencephalography (EEG), has been in use for more than 80 years, but as a result of recent technologic advancements EEG has received renewed interest as an inexpensive, noninvasive and versatile technique to evaluate neural activity in the brain. In part, this is due to new opportunities to combine EEG not only with other imaging modalities, but also with neurostimulation and robotics technologies. When used in combination, noninvasive brain stimulation and EEG can be used to study cause-and-effect relationships between interconnected brain regions providing new avenues to study brain function. Although many of these approaches are still in the developmental phase, there is substantial promise in their ability to deepen our understanding of brain function. The ability to capture the causal relationships between brain function and behavior in individuals with neurologic disorders or injury has important clinical implications for the development of novel biomarkers of recovery and response to therapeutic interventions. The goals of this paper are to provide an overview of the fundamental principles of EEG; discuss past, present, and future applications of EEG in the clinical management of stroke; and introduce the technique of combining EEG with a form of noninvasive brain stimulation, transcranial magnetic stimulation, as a powerful synergistic research paradigm to characterize brain function in both health and disease.Video Abstract available (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A87) for more insights from the authors. PMID:25522236

  15. Mapping brain region activity during chewing: a functional magnetic resonance imaging study.

    PubMed

    Onozuka, M; Fujita, M; Watanabe, K; Hirano, Y; Niwa, M; Nishiyama, K; Saito, S

    2002-11-01

    Mastication has been suggested to increase neuronal activities in various regions of the human brain. However, because of technical difficulties, the fine anatomical and physiological regions linked to mastication have not been fully elucidated. Using functional magnetic resonance imaging during cycles of rhythmic gum-chewing and no chewing, we therefore examined the interaction between chewing and brain regional activity in 17 subjects (aged 20-31 years). In all subjects, chewing resulted in a bilateral increase in blood oxygenation level-dependent (BOLD) signals in the sensorimotor cortex, supplementary motor area, insula, thalamus, and cerebellum. In addition, in the first three regions, chewing of moderately hard gum produced stronger BOLD signals than the chewing of hard gum. However, the signal was higher in the cerebellum and not significant in the thalamus, respectively. These results suggest that chewing causes regional increases in brain neuronal activities which are related to biting force.

  16. Inferring brain-computational mechanisms with models of activity measurements

    PubMed Central

    Diedrichsen, Jörn

    2016-01-01

    High-resolution functional imaging is providing increasingly rich measurements of brain activity in animals and humans. A major challenge is to leverage such data to gain insight into the brain's computational mechanisms. The first step is to define candidate brain-computational models (BCMs) that can perform the behavioural task in question. We would then like to infer which of the candidate BCMs best accounts for measured brain-activity data. Here we describe a method that complements each BCM by a measurement model (MM), which simulates the way the brain-activity measurements reflect neuronal activity (e.g. local averaging in functional magnetic resonance imaging (fMRI) voxels or sparse sampling in array recordings). The resulting generative model (BCM-MM) produces simulated measurements. To avoid having to fit the MM to predict each individual measurement channel of the brain-activity data, we compare the measured and predicted data at the level of summary statistics. We describe a novel particular implementation of this approach, called probabilistic representational similarity analysis (pRSA) with MMs, which uses representational dissimilarity matrices (RDMs) as the summary statistics. We validate this method by simulations of fMRI measurements (locally averaging voxels) based on a deep convolutional neural network for visual object recognition. Results indicate that the way the measurements sample the activity patterns strongly affects the apparent representational dissimilarities. However, modelling of the measurement process can account for these effects, and different BCMs remain distinguishable even under substantial noise. The pRSA method enables us to perform Bayesian inference on the set of BCMs and to recognize the data-generating model in each case. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574316

  17. Inferring brain-computational mechanisms with models of activity measurements.

    PubMed

    Kriegeskorte, Nikolaus; Diedrichsen, Jörn

    2016-10-01

    High-resolution functional imaging is providing increasingly rich measurements of brain activity in animals and humans. A major challenge is to leverage such data to gain insight into the brain's computational mechanisms. The first step is to define candidate brain-computational models (BCMs) that can perform the behavioural task in question. We would then like to infer which of the candidate BCMs best accounts for measured brain-activity data. Here we describe a method that complements each BCM by a measurement model (MM), which simulates the way the brain-activity measurements reflect neuronal activity (e.g. local averaging in functional magnetic resonance imaging (fMRI) voxels or sparse sampling in array recordings). The resulting generative model (BCM-MM) produces simulated measurements. To avoid having to fit the MM to predict each individual measurement channel of the brain-activity data, we compare the measured and predicted data at the level of summary statistics. We describe a novel particular implementation of this approach, called probabilistic representational similarity analysis (pRSA) with MMs, which uses representational dissimilarity matrices (RDMs) as the summary statistics. We validate this method by simulations of fMRI measurements (locally averaging voxels) based on a deep convolutional neural network for visual object recognition. Results indicate that the way the measurements sample the activity patterns strongly affects the apparent representational dissimilarities. However, modelling of the measurement process can account for these effects, and different BCMs remain distinguishable even under substantial noise. The pRSA method enables us to perform Bayesian inference on the set of BCMs and to recognize the data-generating model in each case.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  18. Inferring brain-computational mechanisms with models of activity measurements.

    PubMed

    Kriegeskorte, Nikolaus; Diedrichsen, Jörn

    2016-10-01

    High-resolution functional imaging is providing increasingly rich measurements of brain activity in animals and humans. A major challenge is to leverage such data to gain insight into the brain's computational mechanisms. The first step is to define candidate brain-computational models (BCMs) that can perform the behavioural task in question. We would then like to infer which of the candidate BCMs best accounts for measured brain-activity data. Here we describe a method that complements each BCM by a measurement model (MM), which simulates the way the brain-activity measurements reflect neuronal activity (e.g. local averaging in functional magnetic resonance imaging (fMRI) voxels or sparse sampling in array recordings). The resulting generative model (BCM-MM) produces simulated measurements. To avoid having to fit the MM to predict each individual measurement channel of the brain-activity data, we compare the measured and predicted data at the level of summary statistics. We describe a novel particular implementation of this approach, called probabilistic representational similarity analysis (pRSA) with MMs, which uses representational dissimilarity matrices (RDMs) as the summary statistics. We validate this method by simulations of fMRI measurements (locally averaging voxels) based on a deep convolutional neural network for visual object recognition. Results indicate that the way the measurements sample the activity patterns strongly affects the apparent representational dissimilarities. However, modelling of the measurement process can account for these effects, and different BCMs remain distinguishable even under substantial noise. The pRSA method enables us to perform Bayesian inference on the set of BCMs and to recognize the data-generating model in each case.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574316

  19. Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks.

    PubMed

    Sanabria-Diaz, Gretel; Melie-García, Lester; Iturria-Medina, Yasser; Alemán-Gómez, Yasser; Hernández-González, Gertrudis; Valdés-Urrutia, Lourdes; Galán, Lídice; Valdés-Sosa, Pedro

    2010-05-01

    Recently, a related morphometry-based connection concept has been introduced using local mean cortical thickness and volume to study the underlying complex architecture of the brain networks. In this article, the surface area is employed as a morphometric descriptor to study the concurrent changes between brain structures and to build binarized connectivity graphs. The statistical similarity in surface area between pair of regions was measured by computing the partial correlation coefficient across 186 normal subjects of the Cuban Human Brain Mapping Project. We demonstrated that connectivity matrices obtained follow a small-world behavior for two different parcellations of the brain gray matter. The properties of the connectivity matrices were compared to the matrices obtained using the mean cortical thickness for the same cortical parcellations. The topology of the cortical thickness and surface area networks were statistically different, demonstrating that both capture distinct properties of the interaction or different aspects of the same interaction (mechanical, anatomical, chemical, etc.) between brain structures. This finding could be explained by the fact that each descriptor is driven by distinct cellular mechanisms as result of a distinct genetic origin. To our knowledge, this is the first time that surface area is used to study the morphological connectivity of brain networks. PMID:20083210

  20. On a Mathematical Model of Brain Activities

    SciTech Connect

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2007-12-03

    The procedure of recognition can be described as follows: There is a set of complex signals stored in the memory. Choosing one of these signals may be interpreted as generating a hypothesis concerning an 'expexted view of the world'. Then the brain compares a signal arising from our senses with the signal chosen from the memory leading to a change of the state of both signals. Furthermore, measurements of that procedure like EEG or MEG are based on the fact that recognition of signals causes a certain loss of excited neurons, i.e. the neurons change their state from 'excited' to 'nonexcited'. For that reason a statistical model of the recognition process should reflect both--the change of the signals and the loss of excited neurons. A first attempt to explain the process of recognition in terms of quantum statistics was given. In the present note it is not possible to present this approach in detail. In lieu we will sketch roughly a few of the basic ideas and structures of the proposed model of the recognition process (Section). Further, we introduce the basic spaces and justify the choice of spaces used in this approach. A more elaborate presentation including all proofs will be given in a series of some forthcoming papers. In this series also the procedures of creation of signals from the memory, amplification, accumulation and transformation of input signals, and measurements like EEG and MEG will be treated in detail.

  1. On a Mathematical Model of Brain Activities

    NASA Astrophysics Data System (ADS)

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2007-12-01

    The procedure of recognition can be described as follows: There is a set of complex signals stored in the memory. Choosing one of these signals may be interpreted as generating a hypothesis concerning an "expexted view of the world". Then the brain compares a signal arising from our senses with the signal chosen from the memory leading to a change of the state of both signals. Furthermore, measurements of that procedure like EEG or MEG are based on the fact that recognition of signals causes a certain loss of excited neurons, i.e. the neurons change their state from "excited" to "nonexcited". For that reason a statistical model of the recognition process should reflect both—the change of the signals and the loss of excited neurons. A first attempt to explain the process of recognition in terms of quantum statistics was given in [1]. In the present note it is not possible to present this approach in detail. In lieu we will sketch roughly a few of the basic ideas and structures of the proposed model of the recognition process (Section). Further, we introduce the basic spaces and justify the choice of spaces used in this approach. A more elaborate presentation including all proofs will be given in a series of some forthcoming papers [2, 3]. In this series also the procedures of creation of signals from the memory, amplification, accumulation and transformation of input signals, and measurements like EEG and MEG will be treated in detail.

  2. EEG Bands of Wakeful Rest, Slow-Wave and Rapid-Eye-Movement Sleep at Different Brain Areas in Rats

    PubMed Central

    Jing, Wei; Wang, Yanran; Fang, Guangzhan; Chen, Mingming; Xue, Miaomiao; Guo, Daqing; Yao, Dezhong; Xia, Yang

    2016-01-01

    Accumulating evidence reveals that neuronal oscillations with various frequency bands in the brain have different physiological functions. However, the frequency band divisions in rats were typically based on empirical spectral distribution from limited channels information. In the present study, functionally relevant frequency bands across vigilance states and brain regions were identified using factor analysis based on 9 channels EEG signals recorded from multiple brain areas in rats. We found that frequency band divisions varied both across vigilance states and brain regions. In particular, theta oscillations during REM sleep were subdivided into two bands, 5–7 and 8–11 Hz corresponding to the tonic and phasic stages, respectively. The spindle activities of SWS were different along the anterior-posterior axis, lower oscillations (~16 Hz) in frontal regions and higher in parietal (~21 Hz). The delta and theta activities co-varied in the visual and auditory cortex during wakeful rest. In addition, power spectra of beta oscillations were significantly decreased in association cortex during REM sleep compared with wakeful rest. These results provide us some new insights into understand the brain oscillations across vigilance states, and also indicate that the spatial factor should not be ignored when considering the frequency band divisions in rats. PMID:27536231

  3. EEG Bands of Wakeful Rest, Slow-Wave and Rapid-Eye-Movement Sleep at Different Brain Areas in Rats.

    PubMed

    Jing, Wei; Wang, Yanran; Fang, Guangzhan; Chen, Mingming; Xue, Miaomiao; Guo, Daqing; Yao, Dezhong; Xia, Yang

    2016-01-01

    Accumulating evidence reveals that neuronal oscillations with various frequency bands in the brain have different physiological functions. However, the frequency band divisions in rats were typically based on empirical spectral distribution from limited channels information. In the present study, functionally relevant frequency bands across vigilance states and brain regions were identified using factor analysis based on 9 channels EEG signals recorded from multiple brain areas in rats. We found that frequency band divisions varied both across vigilance states and brain regions. In particular, theta oscillations during REM sleep were subdivided into two bands, 5-7 and 8-11 Hz corresponding to the tonic and phasic stages, respectively. The spindle activities of SWS were different along the anterior-posterior axis, lower oscillations (~16 Hz) in frontal regions and higher in parietal (~21 Hz). The delta and theta activities co-varied in the visual and auditory cortex during wakeful rest. In addition, power spectra of beta oscillations were significantly decreased in association cortex during REM sleep compared with wakeful rest. These results provide us some new insights into understand the brain oscillations across vigilance states, and also indicate that the spatial factor should not be ignored when considering the frequency band divisions in rats. PMID:27536231

  4. Modulation of the inter-hemispheric asymmetry of motor-related brain activity using brain-computer interfaces.

    PubMed

    Pereira, Michael; Sobolewski, Aleksander; Millan, Jose Del R

    2015-01-01

    Non-invasive brain stimulation has shown promising results in neurorehabilitation for motor-impaired stroke patients, by rebalancing the relative involvement of each hemisphere in movement generation. Similarly, brain-computer interfaces have been used to successfully facilitate movement-related brain activity spared by the infarct. We propose to merge both approaches by using BCI to train stroke patients to rebalance their motor-related brain activity during motor tasks, through the use of online feedback. In this pilot study, we report results showing that some healthy subjects were able to learn to spontaneously up- and/or down-regulate their ipsilateral brain activity during a single session.

  5. Stress-induced asymmetric frontal brain activity and aggression risk.

    PubMed

    Verona, Edelyn; Sadeh, Naomi; Curtin, John J

    2009-02-01

    Impersonal stressors, not only interpersonal provocation, can instigate aggression through an associative network linking negative emotions to behavioral activation (L. Berkowitz, 1990). Research has not examined the brain mechanisms that are engaged by different types of stress and serve to promote hostility and aggression. The present study examined whether stress exposure elicits more left than right frontal brain activity implicated in behavioral approach motivation and whether this lateralized brain activity predicts stress-induced aggression and hostile/aggressive tendencies. Results showed that (a) participants in the impersonal (assigned to stress by a computer) and interpersonal (assigned to stress by a provoking confederate) stress conditions both showed more left than right frontal electroencephalogram activity after condition assignment and stress exposure and (b) the 2 stress groups exhibited subsequent increases in aggression relative to the no-stress group. Importantly, left frontal asymmetry in response to stress exposure predicted increases in subsequent aggressive behavior, a finding that did not emerge in the no-stress condition. Thus, both the interpersonal and impersonal stressors impacted state changes in brain activity related to behavioral approach, suggesting that stress reactivity involving approach activation represents risk for behavioral dysregulation.

  6. The translating brain: cerebral activation patterns during simultaneous interpreting.

    PubMed

    Rinne, J O; Tommola, J; Laine, M; Krause, B J; Schmidt, D; Kaasinen, V; Teräs, M; Sipilä, H; Sunnari, M

    2000-11-17

    Brain activation was measured in professional interpreters during simultaneous interpreting (SI) vs. repetition (shadowing) of auditorily presented text by positron emission tomography (PET). SI into the native language (Finnish) elicited left frontal activation increases. SI into the non-native language (English) elicited much more extensive left-sided fronto-temporal activation increases. Our results indicate that SI activates predominantly left-hemispheric structures (particularly the left dorsolateral frontal cortex) previously related to lexical search, semantic processing and verbal working memory. Brain activation patterns were clearly modulated by direction of translation, with more extensive activation during translation into the non-native language which is often considered to a be more demanding task.

  7. Electrical stimulation of a small brain area reversibly disrupts consciousness.

    PubMed

    Koubeissi, Mohamad Z; Bartolomei, Fabrice; Beltagy, Abdelrahman; Picard, Fabienne

    2014-08-01

    The neural mechanisms that underlie consciousness are not fully understood. We describe a region in the human brain where electrical stimulation reproducibly disrupted consciousness. A 54-year-old woman with intractable epilepsy underwent depth electrode implantation and electrical stimulation mapping. The electrode whose stimulation disrupted consciousness was between the left claustrum and anterior-dorsal insula. Stimulation of electrodes within 5mm did not affect consciousness. We studied the interdependencies among depth recording signals as a function of time by nonlinear regression analysis (h(2) coefficient) during stimulations that altered consciousness and stimulations of the same electrode at lower current intensities that were asymptomatic. Stimulation of the claustral electrode reproducibly resulted in a complete arrest of volitional behavior, unresponsiveness, and amnesia without negative motor symptoms or mere aphasia. The disruption of consciousness did not outlast the stimulation and occurred without any epileptiform discharges. We found a significant increase in correlation for interactions affecting medial parietal and posterior frontal channels during stimulations that disrupted consciousness compared with those that did not. Our findings suggest that the left claustrum/anterior insula is an important part of a network that subserves consciousness and that disruption of consciousness is related to increased EEG signal synchrony within frontal-parietal networks.

  8. Electrical stimulation of a small brain area reversibly disrupts consciousness.

    PubMed

    Koubeissi, Mohamad Z; Bartolomei, Fabrice; Beltagy, Abdelrahman; Picard, Fabienne

    2014-08-01

    The neural mechanisms that underlie consciousness are not fully understood. We describe a region in the human brain where electrical stimulation reproducibly disrupted consciousness. A 54-year-old woman with intractable epilepsy underwent depth electrode implantation and electrical stimulation mapping. The electrode whose stimulation disrupted consciousness was between the left claustrum and anterior-dorsal insula. Stimulation of electrodes within 5mm did not affect consciousness. We studied the interdependencies among depth recording signals as a function of time by nonlinear regression analysis (h(2) coefficient) during stimulations that altered consciousness and stimulations of the same electrode at lower current intensities that were asymptomatic. Stimulation of the claustral electrode reproducibly resulted in a complete arrest of volitional behavior, unresponsiveness, and amnesia without negative motor symptoms or mere aphasia. The disruption of consciousness did not outlast the stimulation and occurred without any epileptiform discharges. We found a significant increase in correlation for interactions affecting medial parietal and posterior frontal channels during stimulations that disrupted consciousness compared with those that did not. Our findings suggest that the left claustrum/anterior insula is an important part of a network that subserves consciousness and that disruption of consciousness is related to increased EEG signal synchrony within frontal-parietal networks. PMID:24967698

  9. Human ecstasy (MDMA) polydrug users have altered brain activation during semantic processing

    PubMed Central

    Watkins, Tristan J.; Raj, Vidya; Lee, Junghee; Dietrich, Mary S.; Cao, Aize; Blackford, Jennifer U.; Salomon, Ronald M.; Park, Sohee; Benningfield, Margaret M.; Di Iorio, Christina R.; Cowan, Ronald L.

    2012-01-01

    Rationale Ecstasy (MDMA) polydrug users have verbal memory performance that is statistically significantly lower than comparison control subjects. Studies have correlated long-term MDMA use with altered brain activation in regions that play a role in verbal memory. Objectives The aim of our study was to examine the association of lifetime ecstasy use with semantic memory performance and brain activation in ecstasy polydrug users. Methods 23 abstinent ecstasy polydrug users (age=24.57) and 11 controls (age=22.36) performed a two-part fMRI semantic encoding and recognition task. To isolate brain regions activated during each semantic task, we created statistical activation maps in which brain activation was greater for word stimuli than for non-word stimuli (corrected p<0.05). Results During the encoding phase, ecstasy polydrug users had greater activation during semantic encoding bilaterally in language processing regions, including Brodmann Areas 7, 39, and 40. Of this bilateral activation, signal intensity with a peak T in the right superior parietal lobe was correlated with lifetime ecstasy use (rs=0.43, p=0.042). Behavioral performance did not differ between groups. Conclusions These findings demonstrate that ecstasy polydrug users have increased brain activation during semantic processing. This increase in brain activation in the absence of behavioral deficits suggests that ecstasy polydrug users have reduced cortical efficiency during semantic encoding, possibly secondary to MDMA-induced 5-HT neurotoxicity. Although pre-existing differences cannot be ruled out, this suggests the possibility of a compensatory mechanism allowing ecstasy polydrug users to perform equivalently to controls, providing additional support for an association of altered cerebral neurophysiology with MDMA exposure. PMID:23241648

  10. What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations

    PubMed Central

    Fraiman, Daniel; Chialvo, Dante R.

    2012-01-01

    The study of spontaneous fluctuations of brain activity, often referred as brain noise, is getting increasing attention in functional magnetic resonance imaging (fMRI) studies. Despite important efforts, much of the statistical properties of such fluctuations remain largely unknown. This work scrutinizes these fluctuations looking at specific statistical properties which are relevant to clarify its dynamical origins. Here, three statistical features which clearly differentiate brain data from naive expectations for random processes are uncovered: First, the variance of the fMRI mean signal as a function of the number of averaged voxels remains constant across a wide range of observed clusters sizes. Second, the anomalous behavior of the variance is originated by bursts of synchronized activity across regions, regardless of their widely different sizes. Finally, the correlation length (i.e., the length at which the correlation strength between two regions vanishes) as well as mutual information diverges with the cluster's size considered, such that arbitrarily large clusters exhibit the same collective dynamics than smaller ones. These three properties are known to be exclusive of complex systems exhibiting critical dynamics, where the spatio-temporal dynamics show these peculiar type of fluctuations. Thus, these findings are fully consistent with previous reports of brain critical dynamics, and are relevant for the interpretation of the role of fluctuations and variability in brain function in health and disease. PMID:22934058

  11. Healthy brain aging: role of exercise and physical activity.

    PubMed

    Rolland, Yves; Abellan van Kan, Gabor; Vellas, Bruno

    2010-02-01

    There is increasing evidence to suggest that physical activity has a protective effect on brain functioning in older people. To date, no randomized controlled trial (RCT) has shown that regular physical activity prevents dementia, but recent RCTs suggests an improvement of cognitive functioning in persons involved in aerobic programs, and evidence is accumulating from basic research. Future prevention of Alzheimer disease may depend on lifestyle habits such as physical activity.

  12. Flyception: imaging brain activity in freely walking fruit flies.

    PubMed

    Grover, Dhruv; Katsuki, Takeo; Greenspan, Ralph J

    2016-07-01

    Genetically encoded calcium sensors have enabled monitoring of neural activity in vivo using optical imaging techniques. Linking neural activity to complex behavior remains challenging, however, as most imaging systems require tethering the animal, which can impact the animal's behavioral repertoire. Here, we report a method for monitoring the brain activity of untethered, freely walking Drosophila melanogaster during sensorially and socially evoked behaviors to facilitate the study of neural mechanisms that underlie naturalistic behaviors. PMID:27183441

  13. Natural distribution of environmental radon daughters in the different brain areas of an Alzheimer Disease victim

    PubMed Central

    Momčilović, Berislav; Lykken, Glenn I; Cooley, Marvin

    2006-01-01

    Background Radon is a ubiquitous noble gas in the environment and a primary source of harmful radiation exposure for humans; it decays in a cascade of daughters (RAD) by releasing the cell damaging high energy alpha particles. Results We studied natural distribution of RAD 210Po and 210Bi in the different parts of the postmortem brain of 86-year-old woman who had suffered from Alzheimer's disease (AD). A distinct brain map emerged, since RAD distribution was different among the analyzed brain areas. The highest RAD irradiation (mSv·year-1) occurred in the decreasing order of magnitude: amygdale (Amy) >> hippocampus (Hip) > temporal lobe (Tem) ~ frontal lobe (Fro) > occipital lobe (Occ) ~ parietal lobe (Par) > substantia nigra (SN) >> locus ceruleus (LC) ~ nucleus basalis (NB); generally more RAD accumulated in the proteins than lipids of gray and white (gray > white) brain matter. Amy and Hip are particularly vulnerable brain structure targets to significant RAD internal radiation damage in AD (5.98 and 1.82 mSv·year-1, respectively). Next, naturally occurring RAD radiation for Tem and Fro, then Occ and Par, and SN was an order of magnitude higher than that in LC and NB; the later was within RAD we observed previously in the healthy control brains. Conclusion Naturally occurring environmental RAD exposure may dramatically enhance AD deterioration by selectively targeting brain areas of emotions (Amy) and memory (Hip). PMID:16965619

  14. Identification of Hematomas in Mild Traumatic Brain Injury Using an Index of Quantitative Brain Electrical Activity

    PubMed Central

    Naunheim, Rosanne; Bazarian, Jeffrey; Mould, W. Andrew; Hanley, Daniel

    2015-01-01

    Abstract Rapid identification of traumatic intracranial hematomas following closed head injury represents a significant health care need because of the potentially life-threatening risk they present. This study demonstrates the clinical utility of an index of brain electrical activity used to identify intracranial hematomas in traumatic brain injury (TBI) presenting to the emergency department (ED). Brain electrical activity was recorded from a limited montage located on the forehead of 394 closed head injured patients who were referred for CT scans as part of their standard ED assessment. A total of 116 of these patients were found to be CT positive (CT+), of which 46 patients with traumatic intracranial hematomas (CT+) were identified for study. A total of 278 patients were found to be CT negative (CT−) and were used as controls. CT scans were subjected to quanitative measurements of volume of blood and distance of bleed from recording electrodes by blinded independent experts, implementing a validated method for hematoma measurement. Using an algorithm based on brain electrical activity developed on a large independent cohort of TBI patients and controls (TBI-Index), patients were classified as either positive or negative for structural brain injury. Sensitivity to hematomas was found to be 95.7% (95% CI=85.2, 99.5), specificity was 43.9% (95% CI=38.0, 49.9). There was no significant relationship between the TBI-Index and distance of the bleed from recording sites (F=0.044, p=0.833), or volume of blood measured F=0.179, p=0.674). Results of this study are a validation and extension of previously published retrospective findings in an independent population, and provide evidence that a TBI-Index for structural brain injury is a highly sensitive measure for the detection of potentially life-threatening traumatic intracranial hematomas, and could contribute to the rapid, quantitative evaluation and treatment of such patients. PMID:25054838

  15. Semantic brain areas are involved in gesture comprehension: An electrical neuroimaging study.

    PubMed

    Proverbio, Alice Mado; Gabaro, Veronica; Orlandi, Andrea; Zani, Alberto

    2015-08-01

    While the mechanism of sign language comprehension in deaf people has been widely investigated, little is known about the neural underpinnings of spontaneous gesture comprehension in healthy speakers. Bioelectrical responses to 800 pictures of actors showing common Italian gestures (e.g., emblems, deictic or iconic gestures) were recorded in 14 persons. Stimuli were selected from a wider corpus of 1122 gestures. Half of the pictures were preceded by an incongruent description. ERPs were recorded from 128 sites while participants decided whether the stimulus was congruent. Congruent pictures elicited a posterior P300 followed by late positivity, while incongruent gestures elicited an anterior N400 response. N400 generators were investigated with swLORETA reconstruction. Processing of congruent gestures activated face- and body-related visual areas (e.g., BA19, BA37, BA22), the left angular gyrus, mirror fronto/parietal areas. The incongruent-congruent contrast particularly stimulated linguistic and semantic brain areas, such as the left medial and the superior temporal lobe.

  16. Language modulates brain activity underlying representation of kinship terms.

    PubMed

    Wu, Haiyan; Ge, Yue; Tang, Honghong; Luo, Yue-Jia; Mai, Xiaoqin; Liu, Chao

    2015-12-21

    Kinship terms have been found to be highly diverse across languages. Here we investigated the brain representation of kinship terms in two distinct populations, native Chinese and Caucasian English speakers, with a five-element kinship identification (FEKI) task. The neuroimaging results showed a common extensive frontal and parietal lobe brain activation pattern for different kinship levels for both Chinese and Caucasian English speakers. Furthermore, Chinese speakers had longer reaction times and elicited more fronto-parietal brain networks activation compared to English speakers in level three (e.g., uncle and nephew) and four (e.g., cousin), including an association between the middle frontal gyrus and superior parietal lobe, which might be associated with higher working memory, attention control, and social distance representation load in Chinese kinship system processing. These results contribute to our understanding of the representation of kinship terms in the two languages.

  17. Sensorimotor semantics on the spot: brain activity dissociates between conceptual categories within 150 ms.

    PubMed

    Moseley, Rachel L; Pulvermüller, Friedemann; Shtyrov, Yury

    2013-01-01

    Although semantic processing has traditionally been associated with brain responses maximal at 350-400 ms, recent studies reported that words of different semantic types elicit topographically distinct brain responses substantially earlier, at 100-200 ms. These earlier responses have, however, been achieved using insufficiently precise source localisation techniques, therefore casting doubt on reported differences in brain generators. Here, we used high-density MEG-EEG recordings in combination with individual MRI images and state-of-the-art source reconstruction techniques to compare localised early activations elicited by words from different semantic categories in different cortical areas. Reliable neurophysiological word-category dissociations emerged bilaterally at ~ 150 ms, at which point action-related words most strongly activated frontocentral motor areas and visual object-words occipitotemporal cortex. These data now show that different cortical areas are activated rapidly by words with different meanings and that aspects of their category-specific semantics is reflected by dissociating neurophysiological sources in motor and visual brain systems.

  18. Chronic wheel running affects cocaine-induced c-Fos expression in brain reward areas in rats.

    PubMed

    Zlebnik, Natalie E; Hedges, Valerie L; Carroll, Marilyn E; Meisel, Robert L

    2014-03-15

    Emerging evidence from human and animal studies suggests that exercise is a highly effective treatment for drug addiction. However, most work has been done in behavioral models, and the effects of exercise on the neurobiological substrates of addiction have not been identified. Specifically, it is unknown whether prior exercise exposure alters neuronal activation of brain reward circuitry in response to drugs of abuse. To investigate this hypothesis, rats were given 21 days of daily access to voluntary wheel running in a locked or unlocked running wheel. Subsequently, they were challenged with a saline or cocaine (15 mg/kg, i.p.) injection and sacrificed for c-Fos immunohistochemistry. The c-Fos transcription factor is a measure of cellular activity and was used to quantify cocaine-induced activation of reward-processing areas of the brain: nucleus accumbens (NAc), caudate putamen (CPu), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC). The mean fold change in cocaine-induced c-Fos cell counts relative to saline-induced c-Fos cell counts was significantly higher in exercising compared to control rats in the NAc core, dorsomedial and dorsolateral CPu, the prelimbic area, and the OFC, indicating differential cocaine-specific cellular activation of brain reward circuitry between exercising and control animals. These results suggest neurobiological mechanisms by which voluntary wheel running attenuates cocaine-motivated behaviors and provide support for exercise as a novel treatment for drug addiction. PMID:24342748

  19. Chronic wheel running affects cocaine-induced c-Fos expression in brain reward areas in rats

    PubMed Central

    Zlebnik, Natalie E.; Hedges, Valerie L.; Carroll, Marilyn E.; Meisel, Robert L.

    2014-01-01

    Emerging evidence from human and animal studies suggests that exercise is a highly effective treatment for drug addiction. However, most work has been done in behavioral models, and the effects of exercise on the neurobiological substrates of addiction have not been identified. Specifically, it is unknown whether prior exercise exposure alters neuronal activation of brain reward circuitry in response to drugs of abuse. To investigate this hypothesis, rats were given 21 days of daily access to voluntary wheel running in a locked or unlocked running wheel. Subsequently, they were challenged with a saline or cocaine (15 mg/kg, ip) injection and sacrificed for c-Fos immunohistochemistry. The c-Fos transcription factor is a measure of cellular activity and was used to quantify cocaine-induced activation of reward-processing areas of the brain: nucleus accumbens (NAc), caudate putamen (CPu), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC). The mean fold change in cocaine-induced c-Fos cell counts relative to saline-induced c-Fos cell counts was significantly higher in exercising compared to control rats in the NAc core, dorsomedial and dorsolateral CPu, the prelimbic area, and the OFC, indicating differential cocaine-specific cellular activation of brain reward circuitry between exercising and control animals. These results suggest neurobiological mechanisms by which voluntary wheel running attenuates cocaine-motivated behaviors and provide support for exercise as a novel treatment for drug addiction. PMID:24342748

  20. The relationship between brain cortical activity and brain oxygenation in the prefrontal cortex during hypergravity exposure.

    PubMed

    Smith, Craig; Goswami, Nandu; Robinson, Ryan; von der Wiesche, Melanie; Schneider, Stefan

    2013-04-01

    Artificial gravity has been proposed as a method to counteract the physiological deconditioning of long-duration spaceflight; however, the effects of hypergravity on the central nervous system has had little study. The study aims to investigate whether there is a relationship between prefrontal cortex brain activity and prefrontal cortex oxygenation during exposure to hypergravity. Twelve healthy participants were selected to undergo hypergravity exposure aboard a short-arm human centrifuge. Participants were exposed to hypergravity in the +Gz axis, starting from 0.6 +Gz for women, and 0.8 +Gz for men, and gradually increasing by 0.1 +Gz until the participant showed signs of syncope. Brain cortical activity was measured using electroencephalography (EEG) and localized to the prefrontal cortex using standard low-resolution brain electromagnetic tomography (LORETA). Prefrontal cortex oxygenation was measured using near-infrared spectroscopy (NIRS). A significant increase in prefrontal cortex activity (P < 0.05) was observed during hypergravity exposure compared with baseline. Prefrontal cortex oxygenation was significantly decreased during hypergravity exposure, with a decrease in oxyhemoglobin levels (P < 0.05) compared with baseline and an increase in deoxyhemoglobin levels (P < 0.05) with increasing +Gz level. No significant correlation was found between prefrontal cortex activity and oxy-/deoxyhemoglobin. It is concluded that the increase in prefrontal cortex activity observed during hypergravity was most likely not the result of increased +Gz values resulting in a decreased oxygenation produced through hypergravity exposure. No significant relationship between prefrontal cortex activity and oxygenation measured by NIRS concludes that brain activity during exposure to hypergravity may be difficult to measure using NIRS. Instead, the increase in prefrontal cortex activity might be attributable to psychological stress, which could pose a problem for the use of a

  1. Oxytocin receptor gene and racial ingroup bias in empathy-related brain activity.

    PubMed

    Luo, Siyang; Li, Bingfeng; Ma, Yina; Zhang, Wenxia; Rao, Yi; Han, Shihui

    2015-04-15

    The human brain responds more strongly to racial ingroup than outgroup individuals' pain. This racial ingroup bias varies across individuals and has been attributed to social experiences. What remains unknown is whether the racial ingroup bias in brain activity is associated with a genetic polymorphism. We investigated genetic associations of racial ingroup bias in the brain activity to racial ingroup and outgroup faces that received painful or non-painful stimulations by scanning A/A and G/G homozygous of the oxytocin receptor gene polymorphism (OXTR rs53576) using functional MRI. We found that G/G compared to A/A individuals showed stronger activity in the anterior cingulate and supplementary motor area (ACC/SMA) in response to racial ingroup members' pain, whereas A/A relative to G/G individuals exhibited greater activity in the nucleus accumbens (NAcc) in response to racial outgroup members' pain. Moreover, the racial ingroup bias in ACC/SMA activity positively predicted participants' racial ingroup bias in implicit attitudes and NAcc activity to racial outgroup individuals' pain negatively predicted participants' motivations to reduce racial outgroup members' pain. Our results suggest that the two variants of OXTR rs53576 are associated with racial ingroup bias in brain activities that are linked to implicit attitude and altruistic motivation, respectively. PMID:25637390

  2. Oxytocin receptor gene and racial ingroup bias in empathy-related brain activity.

    PubMed

    Luo, Siyang; Li, Bingfeng; Ma, Yina; Zhang, Wenxia; Rao, Yi; Han, Shihui

    2015-04-15

    The human brain responds more strongly to racial ingroup than outgroup individuals' pain. This racial ingroup bias varies across individuals and has been attributed to social experiences. What remains unknown is whether the racial ingroup bias in brain activity is associated with a genetic polymorphism. We investigated genetic associations of racial ingroup bias in the brain activity to racial ingroup and outgroup faces that received painful or non-painful stimulations by scanning A/A and G/G homozygous of the oxytocin receptor gene polymorphism (OXTR rs53576) using functional MRI. We found that G/G compared to A/A individuals showed stronger activity in the anterior cingulate and supplementary motor area (ACC/SMA) in response to racial ingroup members' pain, whereas A/A relative to G/G individuals exhibited greater activity in the nucleus accumbens (NAcc) in response to racial outgroup members' pain. Moreover, the racial ingroup bias in ACC/SMA activity positively predicted participants' racial ingroup bias in implicit attitudes and NAcc activity to racial outgroup individuals' pain negatively predicted participants' motivations to reduce racial outgroup members' pain. Our results suggest that the two variants of OXTR rs53576 are associated with racial ingroup bias in brain activities that are linked to implicit attitude and altruistic motivation, respectively.

  3. On the Modulation of Brain Activation During Simulated Weight Bearing in Supine Gait-Like Stepping.

    PubMed

    Jaeger, Lukas; Marchal-Crespo, Laura; Wolf, Peter; Luft, Andreas R; Riener, Robert; Michels, Lars; Kollias, Spyros

    2016-01-01

    To date, the neurophysiological correlates of muscle activation required for weight bearing during walking are poorly understood although, a supraspinal involvement has been discussed in the literature for many years. The present study investigates the effect of simulated ground reaction forces (0, 20, and 40% of individual body weight) on brain activation in sixteen healthy participants. A magnetic resonance compatible robot was applied to render three different levels of load against the feet of the participants during active and passive gait-like stepping movements. Brain activation was analyzed by the means of voxel-wise whole brain analysis as well as by a region-of-interest analysis. A significant modulation of brain activation in sensorimotor areas by the load level could neither be demonstrated during active nor during passive stepping. These observations suggest that the regulation of muscle activation under different weight-bearing conditions during stepping occurs at the level of spinal circuitry or the brainstem rather than at the supraspinal level.

  4. Common brain areas engaged in false belief reasoning and visual perspective taking: a meta-analysis of functional brain imaging studies

    PubMed Central

    Schurz, Matthias; Aichhorn, Markus; Martin, Anna; Perner, Josef

    2013-01-01

    We performed a quantitative meta-analysis of functional neuroimaging studies to identify brain areas which are commonly engaged in social and visuo-spatial perspective taking. Specifically, we compared brain activation for visual-perspective taking to activation for false belief reasoning, which requires awareness of perspective to understand someone's mistaken belief about the world which contrasts with reality. In support of a previous account by Perner and Leekam (2008), our meta-analytic conjunction analysis found common activation for false belief reasoning and visual perspective taking in the left but not the right dorsal temporo-parietal junction (TPJ). This fits with the idea that the left dorsal TPJ is responsible for representing different perspectives in a domain-general fashion. Moreover, our conjunction analysis found activation in the precuneus and the left middle occipital gyrus close to the putative Extrastriate Body Area (EBA). The precuneus is linked to mental-imagery which may aid in the construction of a different perspective. The EBA may be engaged due to imagined body-transformations when another's viewpoint is adopted. PMID:24198773

  5. Brain monoamine oxidase A activity predicts trait aggression.

    PubMed

    Alia-Klein, Nelly; Goldstein, Rita Z; Kriplani, Aarti; Logan, Jean; Tomasi, Dardo; Williams, Benjamin; Telang, Frank; Shumay, Elena; Biegon, Anat; Craig, Ian W; Henn, Fritz; Wang, Gene-Jack; Volkow, Nora D; Fowler, Joanna S

    2008-05-01

    The genetic deletion of monoamine oxidase A (MAO A), an enzyme that breaks down the monoamine neurotransmitters norepinephrine, serotonin, and dopamine, produces aggressive phenotypes across species. Therefore, a common polymorphism in the MAO A gene (MAOA, Mendelian Inheritance in Men database number 309850, referred to as high or low based on transcription in non-neuronal cells) has been investigated in a number of externalizing behavioral and clinical phenotypes. These studies provide evidence linking the low MAOA genotype and violent behavior but only through interaction with severe environmental stressors during childhood. Here, we hypothesized that in healthy adult males the gene product of MAO A in the brain, rather than the gene per se, would be associated with regulating the concentration of brain amines involved in trait aggression. Brain MAO A activity was measured in vivo in healthy nonsmoking men with positron emission tomography using a radioligand specific for MAO A (clorgyline labeled with carbon 11). Trait aggression was measured with the multidimensional personality questionnaire (MPQ). Here we report for the first time that brain MAO A correlates inversely with the MPQ trait measure of aggression (but not with other personality traits) such that the lower the MAO A activity in cortical and subcortical brain regions, the higher the self-reported aggression (in both MAOA genotype groups) contributing to more than one-third of the variability. Because trait aggression is a measure used to predict antisocial behavior, these results underscore the relevance of MAO A as a neurochemical substrate of aberrant aggression. PMID:18463263

  6. Alteration of spontaneous brain activity in COPD patients

    PubMed Central

    Zhang, Jiaxing; Chen, Ji; Yu, Qian; Fan, Cunxiu; Zhang, Ran; Lin, Jianzhong; Yang, Tianhe; Fan, Ming

    2016-01-01

    Background and objective Airflow limitation in chronic obstructive pulmonary disease (COPD) results in a decrease in oxygen transport to the brain. The aim of the present study was to explore the alteration of spontaneous brain activity induced by hypoxia in patients with COPD. Patients and methods Twenty-five stable patients with COPD and 25 matching healthy volunteers were investigated. Amplitude of low-frequency fluctuation (ALFF) of blood oxygenation level-dependent signal at resting state in the brain was analyzed using functional magnetic resonance imaging. Results Whole-brain analysis using functional magnetic resonance imaging revealed significant decreases in ALFF in the bilateral posterior cingulate gyri and right lingual gyrus and an increase in ALFF in the left postcentral gyrus of patients with COPD. After controlling for SaO2, patients with COPD only showed an increase in ALFF in the left postcentral gyrus. Region of interest analysis showed a decrease in ALFF in the left precentral gyrus and an increase in ALFF in the left caudate nucleus of patients with COPD. In all subjects, ALFF in the bilateral posterior cingulate gyri and right lingual gyrus showed positive correlations with visual reproduction. Conclusion We demonstrated abnormal spontaneous brain activity of patients with COPD, which may have a pathophysiologic meaning. PMID:27555761

  7. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling

    PubMed Central

    Hagmann, Patric; Deco, Gustavo

    2015-01-01

    How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model’s prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information. PMID:26317432

  8. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling.

    PubMed

    Ponce-Alvarez, Adrián; He, Biyu J; Hagmann, Patric; Deco, Gustavo

    2015-08-01

    How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model's prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information.

  9. Expression of Npas4 mRNA in Telencephalic Areas of Adult and Postnatal Mouse Brain

    PubMed Central

    Damborsky, Joanne C.; Slaton, G. Simona; Winzer-Serhan, Ursula H.

    2015-01-01

    The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission. PMID:26633966

  10. Brain activation during facial emotion processing.

    PubMed

    Gur, Ruben C; Schroeder, Lee; Turner, Travis; McGrath, Claire; Chan, Robin M; Turetsky, Bruce I; Alsop, David; Maldjian, Joseph; Gur, Raquel E

    2002-07-01

    Functional neuroimaging studies have helped identify neural systems involved in cognitive processing and more recently have indicated limbic activation to emotional stimuli. Some functional magnetic resonance imaging (fMRI) studies have reported increased amygdala response during exposure to emotional stimuli while others have not shown such activation. The present study was designed to test the hypothesis that activation of the amygdala is related to the relevance of the emotional valence of stimuli. Healthy young participants (7 men, 7 women) were studied in a high-field (4 tesla) scanner using blood oxygenation-level dependent (BOLD) signal changes in a blocked "box car" design. They viewed facial displays of happiness, sadness, anger, fear, and disgust as well as neutral faces obtained from professional actors and actresses of diverse ethnicity and age. Their task alternated between emotion discrimination (indicating whether the emotion was positive or negative) and age discrimination (indicating whether the poser was older or younger than 30). Blocks contained the same proportion of emotional and neutral faces. Limbic response was greater during the emotion than during the age discrimination conditions. The response was most pronounced in the amygdala, but was also present in the hippocampus and circumscribed voxels in other limbic regions. These results support the central role of the amygdala in emotion processing, and indicate its sensitivity to the task relevance of the emotional display.

  11. Working Memory Training: Improving Intelligence--Changing Brain Activity

    ERIC Educational Resources Information Center

    Jausovec, Norbert; Jausovec, Ksenija

    2012-01-01

    The main objectives of the study were: to investigate whether training on working memory (WM) could improve fluid intelligence, and to investigate the effects WM training had on neuroelectric (electroencephalography--EEG) and hemodynamic (near-infrared spectroscopy--NIRS) patterns of brain activity. In a parallel group experimental design,…

  12. Brain Activation during the Course of Sentence Comprehension

    ERIC Educational Resources Information Center

    Ikuta, Naho; Sugiura, Motoaki; Sassa, Yuko; Watanabe, Jobu; Akitsuki, Yuko; Iwata, Kazuki; Miura, Naoki; Okamoto, Hideyuki; Watanabe, Yoshihiko; Sato, Shigeru; Horie, Kaoru; Matsue, Yoshihiko; Kawashima, Ryuta

    2006-01-01

    The purpose of this study is to determine, by functional magnetic resonance imaging, how the activated regions of the brain change as a Japanese sentence is presented in a grammatically correct order. In this study, we presented constituents of a sentence to Japanese participants one by one at regular intervals. The results showed that the left…

  13. Smart Moves: Powering up the Brain with Physical Activity

    ERIC Educational Resources Information Center

    Conyers, Marcus; Wilson, Donna

    2015-01-01

    The Common Core State Standards emphasize higher-order thinking, problem solving, and the creation, retention, and application of knowledge. Achieving these standards creates greater cognitive demands on students. Recent research suggests that active play and regular exercise have a positive effect on brain regions associated with executive…

  14. Activities of lysosomal enzymes in rabbit brain with experimental neurofibrillary changes.

    PubMed

    Suzuki, H; Takeda, M; Nakamura, Y; Tada, K; Hariguchi, S; Nishimura, T

    1988-06-29

    Rabbits were injected intracerebrally with aluminum salt leading to experimental neurofibrillary change formation as a model of Alzheimer neurofibrillary change. Eleven days after the injection, the brain tissues were excised from the cortex, hippocampus, and cervical region of spinal cord. Five lysosomal enzymes (cathepsin D, beta-glucuronidase, acid phosphatase, acid DNase, alkaline DNase) were assayed and compared with the control. Cathepsin D, acid DNase and beta-glucuronidase activities increased significantly in all 3 areas of aluminum-injected brain. On the other hand, acid phosphatase and alkaline DNase activities remained at the same level. The results showed the lysosomal enzymes did not change in parallel after aluminum administration, suggesting a role of the increased enzymes in the brain with neurofibrillary changes.

  15. Effects of weightlessness on neurotransmitter receptors in selected brain areas

    NASA Technical Reports Server (NTRS)

    Miller, J. D.; Murakami, D. M.; Mcmillen, B. A.; Mcconnaughey, M. M.; Williams, H. L.

    1985-01-01

    The central nervous system receptor dynamics of rats exposed to 7 days of microgravity are studied. The receptor affinity and receptor number at the hippocampus, lateral frontal cortex, prefrontal cortex, corpus striatum, cerebellum and pons-medulla, and the Na(+)/K(+)ATPase activity are examined. The data reveal that there is no significant change in the receptor affinity and receptor number for the lateral frontal cortex, prefrontal cortex, cerebellum and pons-medulla; however, there is an increase from 81 + or - 11 to 120 + or 5 fmole/mg protein in the receptor number for hippocampal binding, and a decrease in receptor number for the striatum from 172 + or - 14 to 143 + or - 10 fmoles/mg protein. A 9 percent decrease in Mg-dependent Na(+)/K(+)ATPase activity is observed. It is detected that the terminal mechanism may be affected by exposure to microgravity.

  16. Brain

    MedlinePlus

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  17. Imaging of water distribution in the rat brain by activation autoradiography

    SciTech Connect

    Kogure, K.; Kawashima, K.; Iwata, R.; Ido, T. )

    1990-01-01

    Regional water distribution in the rat brain was obtained autoradiographically by activation analysis. The autoradiogram obtained for the normal rat brain showed high accumulation of water in the areas of sensory-motor cortex, hippocampus, thalamus, and amygdaloid cortex, whereas corpus callosum and internal capsule showed low water contents as expected. The estimated values of water content were 78.6 +/- 4.9 weight % for gray matter, and 73.5 +/- 4.9 weight % for white matter, respectively. The mean values of the water content were consistent with those obtained by a conventional drying-weighing method.

  18. VIP+ interneurons control neocortical activity across brain states.

    PubMed

    Jackson, Jesse; Ayzenshtat, Inbal; Karnani, Mahesh M; Yuste, Rafael

    2016-06-01

    GABAergic interneurons are positioned to powerfully influence the dynamics of neural activity, yet the interneuron-mediated circuit mechanisms that control spontaneous and evoked neocortical activity remains elusive. Vasoactive intestinal peptide (VIP+) interneurons are a specialized cell class which synapse specifically on other interneurons, potentially serving to facilitate increases in cortical activity. In this study, using in vivo Ca(2+) imaging, we describe the interaction between local network activity and VIP+ cells and determine their role in modulating neocortical activity in mouse visual cortex. VIP+ cells were active across brain states including locomotion, nonlocomotion, visual stimulation, and under anesthesia. VIP+ activity correlated most clearly with the mean level of population activity of nearby excitatory neurons during all brain states, suggesting VIP+ cells enable high-excitability states in the cortex. The pharmacogenetic blockade of VIP+ cell output reduced network activity during locomotion, nonlocomotion, anesthesia, and visual stimulation, suggesting VIP+ cells exert a state-independent facilitation of neural activity in the cortex. Collectively, our findings demonstrate that VIP+ neurons have a causal role in the generation of high-activity regimes during spontaneous and stimulus evoked neocortical activity. PMID:26961109

  19. SPM95 sensitivity to size, intensity and asymmetry of brain activation/deactivation patterns

    SciTech Connect

    Levy, A.V.; Volkow, N.D.; Alexoff, D.

    1996-05-01

    Statistical Parametric Mapping (Friston, SPM95), is used widely to ascertain the statistical significance between different brain patterns induced by functional activation, drug, effects or mental illness. Our purpose is to understand the limitations of applying the SPM95 methodology. We used a group of 8 FDG PET (CTI 931) studies from normal resting human subjects and via software we activated or deactivated the same specific pixel patterns (ROIs), across the group and observed if SPM95 performed correctly. A set of 6 experiments was designed with varying ROI intensities, (from +/-2% to +/-100% of original ROI value), varying ROI sizes, (from 76 to 656 mm{sup 2}) and different locations in the brain, (cortical and/or subcortical). In experiments where the selected activation pattern was spatially symmetric SPM95 identified correctly areas of activation for cortical ROIs as small as 76 mm{sup 2} having as low as a 10% activation with p<0.01; larger areas, 656 mm{sup 2} can be correctly identified even down to only 2%. In activation experiments with left/right cortical or anterior/posterior cortical asymmetry, SPM95 reported Type II errors for levels larger than +/-20% activation/deactivation. In experiments with left/right striatum asymmetry larger than +/-20% SPM95 reported Type I Errors. In experiments where the level of asymmetry was changes while keeping one ROI as a control at the same level of activation, SPM95 erroneously reported different p values for its statistical significance. One of the typical Type I Errors is shown in the figure as an ROI along the brain`s edge; this type of error has been previously observed to be caused by residual spatial registration errors that induce false activation signals. We conclude that while the statistical part of SPM95 performs correctly, the spatial registration method used in SPM95 has residual registration errors sensitive to the type of activation pattern.

  20. Trying to trust: Brain activity during interpersonal social attitude change.

    PubMed

    Filkowski, Megan M; Anderson, Ian W; Haas, Brian W

    2016-04-01

    Interpersonal trust and distrust are important components of human social interaction. Although several studies have shown that brain function is associated with either trusting or distrusting others, very little is known regarding brain function during the control of social attitudes, including trust and distrust. This study was designed to investigate the neural mechanisms involved when people attempt to control their attitudes of trust or distrust toward another person. We used a novel control-of-attitudes fMRI task, which involved explicit instructions to control attitudes of interpersonal trust and distrust. Control of trust or distrust was operationally defined as changes in trustworthiness evaluations of neutral faces before and after the control-of-attitudes fMRI task. Overall, participants (n = 60) evaluated faces paired with the distrust instruction as being less trustworthy than faces paired with the trust instruction following the control-of-distrust task. Within the brain, both the control-of-trust and control-of-distrust conditions were associated with increased temporoparietal junction, precuneus (PrC), inferior frontal gyrus (IFG), and medial prefrontal cortex activity. Individual differences in the control of trust were associated with PrC activity, and individual differences in the control of distrust were associated with IFG activity. Together, these findings identify a brain network involved in the explicit control of distrust and trust and indicate that the PrC and IFG may serve to consolidate interpersonal social attitudes.

  1. Altered brain activity for phonological manipulation in dyslexic Japanese children.

    PubMed

    Kita, Yosuke; Yamamoto, Hisako; Oba, Kentaro; Terasawa, Yuri; Moriguchi, Yoshiya; Uchiyama, Hitoshi; Seki, Ayumi; Koeda, Tatsuya; Inagaki, Masumi

    2013-12-01

    Because of unique linguistic characteristics, the prevalence rate of developmental dyslexia is relatively low in the Japanese language. Paradoxically, Japanese children have serious difficulty analysing phonological processes when they have dyslexia. Neurobiological deficits in Japanese dyslexia remain unclear and need to be identified, and may lead to better understanding of the commonality and diversity in the disorder among different linguistic systems. The present study investigated brain activity that underlies deficits in phonological awareness in Japanese dyslexic children using functional magnetic resonance imaging. We developed and conducted a phonological manipulation task to extract phonological processing skills and to minimize the influence of auditory working memory on healthy adults, typically developing children, and dyslexic children. Current experiments revealed that several brain regions participated in manipulating the phonological information including left inferior and middle frontal gyrus, left superior temporal gyrus, and bilateral basal ganglia. Moreover, dyslexic children showed altered activity in two brain regions. They showed hyperactivity in the basal ganglia compared with the two other groups, which reflects inefficient phonological processing. Hypoactivity in the left superior temporal gyrus was also found, suggesting difficulty in composing and processing phonological information. The altered brain activity shares similarity with those of dyslexic children in countries speaking alphabetical languages, but disparity also occurs between these two populations. These are initial findings concerning the neurobiological impairments in dyslexic Japanese children.

  2. Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain

    NASA Astrophysics Data System (ADS)

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-12-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

  3. Anatomical Location of LPA1 Activation and LPA Phospholipid Precursors in Rodent and Human Brain

    PubMed Central

    González de San Román, E; Manuel, I; Giralt, MT; Chun, J; Estivill-Torrús, G; Rodriguez de Fonseca, F; Santín, LJ; Ferrer, I; Rodriguez-Puertas, R

    2016-01-01

    Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors (GPCRs): LPA1–LPA6. LPA evokes several responses in the CNS including cortical development and folding, growth of the axonal cone and its retraction process. Those cell processes involve survival, migration, adhesion proliferation, differentiation and myelination. The anatomical localization of LPA1 is incompletely understood, particularly with regard to LPA binding. Therefore, we have used functional [35S]GTPγS autoradiography to verify the anatomical distribution of LPA1 binding sites in adult rodent and human brain. The greatest activity was observed in myelinated areas of the white matter such as corpus callosum, internal capsule and cerebellum. MaLPA1-null mice (a variant of LPA1-null) lack [35S]GTPγS basal binding in white matter areas, where the LPA1 receptor is expressed at high levels, suggesting a relevant role of the activity of this receptor in the most myelinated brain areas. In addition, phospholipid precursors of LPA were localized by MALDI-IMS in both rodent and human brain slices identifying numerous species of phosphatides (PA) and phosphatidylcholines (PC). Both PA and PC species represent potential LPA precursors. The anatomical distribution of these precursors in rodent and human brain may indicate a metabolic relationship between LPA and LPA1 receptors. PMID:25857358

  4. Decoding the Semantic Content of Natural Movies from Human Brain Activity

    PubMed Central

    Huth, Alexander G.; Lee, Tyler; Nishimoto, Shinji; Bilenko, Natalia Y.; Vu, An T.; Gallant, Jack L.

    2016-01-01

    One crucial test for any quantitative model of the brain is to show that the model can be used to accurately decode information from evoked brain activity. Several recent neuroimaging studies have decoded the structure or semantic content of static visual images from human brain activity. Here we present a decoding algorithm that makes it possible to decode detailed information about the object and action categories present in natural movies from human brain activity signals measured by functional MRI. Decoding is accomplished using a hierarchical logistic regression (HLR) model that is based on labels that were manually assigned from the WordNet semantic taxonomy. This model makes it possible to simultaneously decode information about both specific and general categories, while respecting the relationships between them. Our results show that we can decode the presence of many object and action categories from averaged blood-oxygen level-dependent (BOLD) responses with a high degree of accuracy (area under the ROC curve > 0.9). Furthermore, we used this framework to test whether semantic relationships defined in the WordNet taxonomy are represented the same way in the human brain. This analysis showed that hierarchical relationships between general categories and atypical examples, such as organism and plant, did not seem to be reflected in representations measured by BOLD fMRI. PMID:27781035

  5. Altered Spontaneous Brain Activity in Patients with Acute Spinal Cord Injury Revealed by Resting-State Functional MRI

    PubMed Central

    Zhu, Ling; Wu, Guangyao; Zhou, Xin; Li, Jielan; Wen, Zhi; Lin, Fuchun

    2015-01-01

    Background Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI). However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo) analysis based on resting-state functional magnetic resonance imaging. Methods A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity. Results Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores. Conclusion Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as

  6. Brain Response to a Humanoid Robot in Areas Implicated in the Perception of Human Emotional Gestures

    PubMed Central

    Chaminade, Thierry; Zecca, Massimiliano; Blakemore, Sarah-Jayne; Takanishi, Atsuo; Frith, Chris D.; Micera, Silvestro; Dario, Paolo; Rizzolatti, Giacomo; Gallese, Vittorio; Umiltà, Maria Alessandra

    2010-01-01

    Background The humanoid robot WE4-RII was designed to express human emotions in order to improve human-robot interaction. We can read the emotions depicted in its gestures, yet might utilize different neural processes than those used for reading the emotions in human agents. Methodology Here, fMRI was used to assess how brain areas activated by the perception of human basic emotions (facial expression of Anger, Joy, Disgust) and silent speech respond to a humanoid robot impersonating the same emotions, while participants were instructed to attend either to the emotion or to the motion depicted. Principal Findings Increased responses to robot compared to human stimuli in the occipital and posterior temporal cortices suggest additional visual processing when perceiving a mechanical anthropomorphic agent. In contrast, activity in cortical areas endowed with mirror properties, like left Broca's area for the perception of speech, and in the processing of emotions like the left anterior insula for the perception of disgust and the orbitofrontal cortex for the perception of anger, is reduced for robot stimuli, suggesting lesser resonance with the mechanical agent. Finally, instructions to explicitly attend to the emotion significantly increased response to robot, but not human facial expressions in the anterior part of the left inferior frontal gyrus, a neural marker of motor resonance. Conclusions Motor resonance towards a humanoid robot, but not a human, display of facial emotion is increased when attention is directed towards judging emotions. Significance Artificial agents can be used to assess how factors like anthropomorphism affect neural response to the perception of human actions. PMID:20657777

  7. Active Lessons for Active Brains: Teaching Boys and Other Experiential Learners, Grades 3-10

    ERIC Educational Resources Information Center

    James, Abigail Norfleet; Allison, Sandra Boyd; McKenzie, Caitlin Zimmerman

    2011-01-01

    If you're tired of repeating yourself to students who aren't listening, try a little less talk and a lot more action. The authors follow the best-selling "Teaching the Male Brain and Teaching the Female Brain" with this ready-to-use collection of mathematics, language arts, science, and classroom management strategies. Designed for active,…

  8. Synaesthetic Colour in the Brain: Beyond Colour Areas. A Functional Magnetic Resonance Imaging Study of Synaesthetes and Matched Controls

    PubMed Central

    van Leeuwen, Tessa M.; Petersson, Karl Magnus; Hagoort, Peter

    2010-01-01

    Background In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour). Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our question was whether the neural correlates of synaesthetically induced colour and real colour experience are truly shared. Methodology/Principal Findings First, in a free viewing functional magnetic resonance imaging (fMRI) experiment, we located main effects of synaesthesia in left superior parietal lobule and in colour related areas. In the left superior parietal lobe, individual differences between synaesthetes (projector-associator distinction) also influenced brain activity, confirming the importance of the left superior parietal lobe for synaesthesia. Next, we applied a repetition suppression paradigm in fMRI, in which a decrease in the BOLD (blood-oxygenated-level-dependent) response is generally observed for repeated stimuli. We hypothesized that synaesthetically induced colours would lead to a reduction in BOLD response for subsequently presented real colours, if the neural correlates were overlapping. We did find BOLD suppression effects induced by synaesthesia, but not within the colour areas. Conclusions/Significance Because synaesthetically induced colours were not able to suppress BOLD effects for real colour, we conclude that the neural correlates of synaesthetic colour experience and real colour experience are not fully shared. We propose that synaesthetic colour experiences are mediated by higher-order visual pathways that lie beyond the scope of classical, ventral-occipital visual areas. Feedback from these areas, in which the left parietal cortex is likely to

  9. The Track of Brain Activity during the Observation of TV Commercials with the High-Resolution EEG Technology

    PubMed Central

    Astolfi, Laura; Vecchiato, Giovanni; De Vico Fallani, Fabrizio; Salinari, Serenella; Cincotti, Febo; Aloise, Fabio; Mattia, Donatella; Marciani, Maria Grazia; Bianchi, Luigi; Soranzo, Ramon; Babiloni, Fabio

    2009-01-01

    We estimate cortical activity in normal subjects during the observation of TV commercials inserted within a movie by using high-resolution EEG techniques. The brain activity was evaluated in both time and frequency domains by solving the associate inverse problem of EEG with the use of realistic head models. In particular, we recover statistically significant information about cortical areas engaged by particular scenes inserted within the TV commercial proposed with respect to the brain activity estimated while watching a documentary. Results obtained in the population investigated suggest that the statistically significant brain activity during the observation of the TV commercial was mainly concentrated in frontoparietal cortical areas, roughly coincident with the Brodmann areas 8, 9, and 7, in the analyzed population. PMID:19584910

  10. Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain.

    PubMed

    Mora, Francisco; Segovia, Gregorio; del Arco, Alberto

    2007-08-01

    Cajal was probably the first neurobiologist to suggest that plasticity of nerve cells almost completely disappeared during aging. However, we know today that neural plasticity is still present in the brain during aging. In this review we suggest that aging is a physiological process that occurs asynchronously in different areas of the brain and that the rate of that process is modulated by environmental factors and related to the neuronal-synaptic-molecular substrates of each area. We review here some of the most recent results on aging of the brain in relation to the plastic changes that occur in young and aged animals as a result of living in an enriched environment. We highlight the results from our own laboratory on the dynamics of neurotransmitters in different areas of the brain. Specifically we review first the effects of aging on neurons, dendrites, synapses, and also on molecular and functional plasticity. Second, the effects of environmental enrichment on the brain of young and aged animals. And third the effects of an enriched environment on the age-related changes in neurogenesis and in the extracellular concentrations of glutamate and GABA in hippocampus, and on dopamine, acetylcholine, glutamate and GABA under a situation of acute mild stress in the prefrontal cortex.

  11. Movement preparation and execution: differential functional activation patterns after traumatic brain injury.

    PubMed

    Gooijers, Jolien; Beets, Iseult A M; Albouy, Genevieve; Beeckmans, Kurt; Michiels, Karla; Sunaert, Stefan; Swinnen, Stephan P

    2016-09-01

    Years following the insult, patients with traumatic brain injury often experience persistent motor control problems, including bimanual coordination deficits. Previous studies revealed that such deficits are related to brain structural white and grey matter abnormalities. Here, we assessed, for the first time, cerebral functional activation patterns during bimanual movement preparation and performance in patients with traumatic brain injury, using functional magnetic resonance imaging. Eighteen patients with moderate-to-severe traumatic brain injury (10 females; aged 26.3 years, standard deviation = 5.2; age range: 18.4-34.6 years) and 26 healthy young adults (15 females; aged 23.6 years, standard deviation = 3.8; age range: 19.5-33 years) performed a complex bimanual tracking task, divided into a preparation (2 s) and execution (9 s) phase, and executed either in the presence or absence of augmented visual feedback. Performance on the bimanual tracking task, expressed as the average target error, was impaired for patients as compared to controls (P < 0.001) and for trials in the absence as compared to the presence of augmented visual feedback (P < 0.001). At the cerebral level, movement preparation was characterized by reduced neural activation in the patient group relative to the control group in frontal (bilateral superior frontal gyrus, right dorsolateral prefrontal cortex), parietal (left inferior parietal lobe) and occipital (right striate and extrastriate visual cortex) areas (P's < 0.05). During the execution phase, however, the opposite pattern emerged, i.e. traumatic brain injury patients showed enhanced activations compared with controls in frontal (left dorsolateral prefrontal cortex, left lateral anterior prefrontal cortex, and left orbitofrontal cortex), parietal (bilateral inferior parietal lobe, bilateral superior parietal lobe, right precuneus, right primary somatosensory cortex), occipital (right striate and extrastriate visual cortices), and

  12. Movement preparation and execution: differential functional activation patterns after traumatic brain injury.

    PubMed

    Gooijers, Jolien; Beets, Iseult A M; Albouy, Genevieve; Beeckmans, Kurt; Michiels, Karla; Sunaert, Stefan; Swinnen, Stephan P

    2016-09-01

    Years following the insult, patients with traumatic brain injury often experience persistent motor control problems, including bimanual coordination deficits. Previous studies revealed that such deficits are related to brain structural white and grey matter abnormalities. Here, we assessed, for the first time, cerebral functional activation patterns during bimanual movement preparation and performance in patients with traumatic brain injury, using functional magnetic resonance imaging. Eighteen patients with moderate-to-severe traumatic brain injury (10 females; aged 26.3 years, standard deviation = 5.2; age range: 18.4-34.6 years) and 26 healthy young adults (15 females; aged 23.6 years, standard deviation = 3.8; age range: 19.5-33 years) performed a complex bimanual tracking task, divided into a preparation (2 s) and execution (9 s) phase, and executed either in the presence or absence of augmented visual feedback. Performance on the bimanual tracking task, expressed as the average target error, was impaired for patients as compared to controls (P < 0.001) and for trials in the absence as compared to the presence of augmented visual feedback (P < 0.001). At the cerebral level, movement preparation was characterized by reduced neural activation in the patient group relative to the control group in frontal (bilateral superior frontal gyrus, right dorsolateral prefrontal cortex), parietal (left inferior parietal lobe) and occipital (right striate and extrastriate visual cortex) areas (P's < 0.05). During the execution phase, however, the opposite pattern emerged, i.e. traumatic brain injury patients showed enhanced activations compared with controls in frontal (left dorsolateral prefrontal cortex, left lateral anterior prefrontal cortex, and left orbitofrontal cortex), parietal (bilateral inferior parietal lobe, bilateral superior parietal lobe, right precuneus, right primary somatosensory cortex), occipital (right striate and extrastriate visual cortices), and

  13. Mitochondrial Complex 1 Activity Measured by Spectrophotometry Is Reduced across All Brain Regions in Ageing and More Specifically in Neurodegeneration

    PubMed Central

    Chakrabarti, Lisa

    2016-01-01

    Mitochondrial function, in particular complex 1 of the electron transport chain (ETC), has been shown to decrease during normal ageing and in neurodegenerative disease. However, there is some debate concerning which area of the brain has the greatest complex 1 activity. It is important to identify the pattern of activity in order to be able to gauge the effect of age or disease related changes. We determined complex 1 activity spectrophotometrically in the cortex, brainstem and cerebellum of middle aged mice (70–71 weeks), a cerebellar ataxic neurodegeneration model (pcd5J) and young wild type controls. We share our updated protocol on the measurements of complex1 activity and find that mitochondrial fractions isolated from frozen tissues can be measured for robust activity. We show that complex 1 activity is clearly highest in the cortex when compared with brainstem and cerebellum (p<0.003). Cerebellum and brainstem mitochondria exhibit similar levels of complex 1 activity in wild type brains. In the aged brain we see similar levels of complex 1 activity in all three-brain regions. The specific activity of complex 1 measured in the aged cortex is significantly decreased when compared with controls (p<0.0001). Both the cerebellum and brainstem mitochondria also show significantly reduced activity with ageing (p<0.05). The mouse model of ataxia predictably has a lower complex 1 activity in the cerebellum, and although reductions are measured in the cortex and brain stem, the remaining activity is higher than in the aged brains. We present clear evidence that complex 1 activity decreases across the brain with age and much more specifically in the cerebellum of the pcd5j mouse. Mitochondrial impairment can be a region specific phenomenon in disease, but in ageing appears to affect the entire brain, abolishing the pattern of higher activity in cortical regions. PMID:27333203

  14. Prefrontal Brain Activation During Emotional Processing: A Functional Near Infrared Spectroscopy Study (fNIRS)

    PubMed Central

    Glotzbach, Evelyn; Mühlberger, Andreas; Gschwendtner, Kathrin; Fallgatter, Andreas J; Pauli, Paul; Herrmann, Martin J

    2011-01-01

    The limbic system and especially the amygdala have been identified as key structures in emotion induction and regulation. Recently research has additionally focused on the influence of prefrontal areas on emotion processing in the limbic system and the amygdala. Results from fMRI studies indicate that the prefrontal cortex (PFC) is involved not only in emotion induction but also in emotion regulation. However, studies using fNIRS only report prefrontal brain activation during emotion induction. So far it lacks the attempt to compare emotion induction and emotion regulation with regard to prefrontal activation measured with fNIRS, to exclude the possibility that the reported prefrontal brain activation in fNIRS studies are mainly caused by automatic emotion regulation processes. Therefore this work tried to distinguish emotion induction from regulation via fNIRS of the prefrontal cortex. 20 healthy women viewed neutral pictures as a baseline condition, fearful pictures as induction condition and reappraised fearful pictures as regulation condition in randomized order. As predicted, the view-fearful condition led to higher arousal ratings than the view-neutral condition with the reappraise-fearful condition in between. For the fNIRS results the induction condition showed an activation of the bilateral PFC compared to the baseline condition (viewing neutral). The regulation condition showed an activation only of the left PFC compared to the baseline condition, although the direct comparison between induction and regulation condition revealed no significant difference in brain activation. Therefore our study underscores the results of previous fNIRS studies showing prefrontal brain activation during emotion induction and rejects the hypothesis that this prefrontal brain activation might only be a result of automatic emotion regulation processes. PMID:21673974

  15. Fast transient networks in spontaneous human brain activity

    PubMed Central

    Baker, Adam P; Brookes, Matthew J; Rezek, Iead A; Smith, Stephen M; Behrens, Timothy; Probert Smith, Penny J; Woolrich, Mark

    2014-01-01

    To provide an effective substrate for cognitive processes, functional brain networks should be able to reorganize and coordinate on a sub-second temporal scale. We used magnetoencephalography recordings of spontaneous activity to characterize whole-brain functional connectivity dynamics at high temporal resolution. Using a novel approach that identifies the points in time at which unique patterns of activity recur, we reveal transient (100–200 ms) brain states with spatial topographies similar to those of well-known resting state networks. By assessing temporal changes in the occurrence of these states, we demonstrate that within-network functional connectivity is underpinned by coordinated neuronal dynamics that fluctuate much more rapidly than has previously been shown. We further evaluate cross-network interactions, and show that anticorrelation between the default mode network and parietal regions of the dorsal attention network is consistent with an inability of the system to transition directly between two transient brain states. DOI: http://dx.doi.org/10.7554/eLife.01867.001 PMID:24668169

  16. Fast transient networks in spontaneous human brain activity.

    PubMed

    Baker, Adam P; Brookes, Matthew J; Rezek, Iead A; Smith, Stephen M; Behrens, Timothy; Probert Smith, Penny J; Woolrich, Mark

    2014-03-25

    To provide an effective substrate for cognitive processes, functional brain networks should be able to reorganize and coordinate on a sub-second temporal scale. We used magnetoencephalography recordings of spontaneous activity to characterize whole-brain functional connectivity dynamics at high temporal resolution. Using a novel approach that identifies the points in time at which unique patterns of activity recur, we reveal transient (100-200 ms) brain states with spatial topographies similar to those of well-known resting state networks. By assessing temporal changes in the occurrence of these states, we demonstrate that within-network functional connectivity is underpinned by coordinated neuronal dynamics that fluctuate much more rapidly than has previously been shown. We further evaluate cross-network interactions, and show that anticorrelation between the default mode network and parietal regions of the dorsal attention network is consistent with an inability of the system to transition directly between two transient brain states. DOI: http://dx.doi.org/10.7554/eLife.01867.001.

  17. Contributions of Glycogen to Astrocytic Energetics during Brain Activation

    PubMed Central

    Dienel, Gerald A.; Cruz, Nancy F.

    2014-01-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 mol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K+ level, oxidative stress management, and memory consolidation; it is a multi-functional compound. PMID:24515302

  18. Contributions of glycogen to astrocytic energetics during brain activation.

    PubMed

    Dienel, Gerald A; Cruz, Nancy F

    2015-02-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 μmol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K(+) level, oxidative stress management, and memory consolidation; it is a multi-functional compound.

  19. Brain volumetry and self-regulation of brain activity relevant for neurofeedback.

    PubMed

    Ninaus, M; Kober, S E; Witte, M; Koschutnig, K; Neuper, C; Wood, G

    2015-09-01

    Neurofeedback is a technique to learn to control brain signals by means of real time feedback. In the present study, the individual ability to learn two EEG neurofeedback protocols - sensorimotor rhythm and gamma rhythm - was related to structural properties of the brain. The volumes in the anterior insula bilaterally, left thalamus, right frontal operculum, right putamen, right middle frontal gyrus, and right lingual gyrus predicted the outcomes of sensorimotor rhythm training. Gray matter volumes in the supplementary motor area and left middle frontal gyrus predicted the outcomes of gamma rhythm training. These findings combined with further evidence from the literature are compatible with the existence of a more general self-control network, which through self-referential and self-control processes regulates neurofeedback learning.

  20. Anatomical location of LPA1 activation and LPA phospholipid precursors in rodent and human brain.

    PubMed

    González de San Román, Estibaliz; Manuel, Iván; Giralt, María Teresa; Chun, Jerold; Estivill-Torrús, Guillermo; Rodríguez de Fonseca, Fernando; Santín, Luis Javier; Ferrer, Isidro; Rodríguez-Puertas, Rafael

    2015-08-01

    Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors: LPA1 -LPA6 . LPA evokes several responses in the CNS, including cortical development and folding, growth of the axonal cone and its retraction process. Those cell processes involve survival, migration, adhesion proliferation, differentiation, and myelination. The anatomical localization of LPA1 is incompletely understood, particularly with regard to LPA binding. Therefore, we have used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 binding sites in adult rodent and human brain. The greatest activity was observed in myelinated areas of the white matter such as corpus callosum, internal capsule and cerebellum. MaLPA1 -null mice (a variant of LPA1 -null) lack [(35) S]GTPγS basal binding in white matter areas, where the LPA1 receptor is expressed at high levels, suggesting a relevant role of the activity of this receptor in the most myelinated brain areas. In addition, phospholipid precursors of LPA were localized by MALDI-IMS in both rodent and human brain slices identifying numerous species of phosphatides and phosphatidylcholines. Both phosphatides and phosphatidylcholines species represent potential LPA precursors. The anatomical distribution of these precursors in rodent and human brain may indicate a metabolic relationship between LPA and LPA1 receptors. Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors (GPCR), LPA1 to LPA6 . LPA evokes several responses in the central nervous system (CNS), including cortical development and folding, growth of the axonal cone and its retraction process. We used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 -binding sites in adult rodent and human brain. The distribution of LPA1 receptors in rat, mouse and human brains show the highest activity in white matter myelinated areas. The basal and

  1. Anatomical location of LPA1 activation and LPA phospholipid precursors in rodent and human brain.

    PubMed

    González de San Román, Estibaliz; Manuel, Iván; Giralt, María Teresa; Chun, Jerold; Estivill-Torrús, Guillermo; Rodríguez de Fonseca, Fernando; Santín, Luis Javier; Ferrer, Isidro; Rodríguez-Puertas, Rafael

    2015-08-01

    Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors: LPA1 -LPA6 . LPA evokes several responses in the CNS, including cortical development and folding, growth of the axonal cone and its retraction process. Those cell processes involve survival, migration, adhesion proliferation, differentiation, and myelination. The anatomical localization of LPA1 is incompletely understood, particularly with regard to LPA binding. Therefore, we have used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 binding sites in adult rodent and human brain. The greatest activity was observed in myelinated areas of the white matter such as corpus callosum, internal capsule and cerebellum. MaLPA1 -null mice (a variant of LPA1 -null) lack [(35) S]GTPγS basal binding in white matter areas, where the LPA1 receptor is expressed at high levels, suggesting a relevant role of the activity of this receptor in the most myelinated brain areas. In addition, phospholipid precursors of LPA were localized by MALDI-IMS in both rodent and human brain slices identifying numerous species of phosphatides and phosphatidylcholines. Both phosphatides and phosphatidylcholines species represent potential LPA precursors. The anatomical distribution of these precursors in rodent and human brain may indicate a metabolic relationship between LPA and LPA1 receptors. Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors (GPCR), LPA1 to LPA6 . LPA evokes several responses in the central nervous system (CNS), including cortical development and folding, growth of the axonal cone and its retraction process. We used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 -binding sites in adult rodent and human brain. The distribution of LPA1 receptors in rat, mouse and human brains show the highest activity in white matter myelinated areas. The basal and

  2. Conceptual flexibility in the human brain: dynamic recruitment of semantic maps from visual, motor, and motion-related areas.

    PubMed

    Hoenig, Klaus; Sim, Eun-Jin; Bochev, Viktor; Herrnberger, Bärbel; Kiefer, Markus

    2008-10-01

    Traditionally, concepts are assumed to be situational invariant mental knowledge entities (conceptual stability), which are represented in a unitary brain system distinct from sensory and motor areas (amodality). However, accumulating evidence suggests that concepts are embodied in perception and action in that their conceptual features are stored within modality-specific semantic maps in the sensory and motor cortex. Nonetheless, the first traditional assumption of conceptual stability largely remains unquestioned. Here, we tested the notion of flexible concepts using functional magnetic resonance imaging and event-related potentials (ERPs) during the verification of two attribute types (visual, action-related) for words denoting artifactual and natural objects. Functional imaging predominantly revealed crossover interactions between category and attribute type in visual, motor, and motion-related brain areas, indicating that access to conceptual knowledge is strongly modulated by attribute type: Activity in these areas was highest when nondominant conceptual attributes had to be verified. ERPs indicated that these category-attribute interactions emerged as early as 116 msec after stimulus onset, suggesting that they reflect rapid access to conceptual features rather than postconceptual processing. Our results suggest that concepts are situational-dependent mental entities. They are composed of semantic features which are flexibly recruited from distributed, yet localized, semantic maps in modality-specific brain regions depending on contextual constraints.

  3. Sleep deprivation disturbed regional brain activity in healthy subjects: evidence from a functional magnetic resonance-imaging study

    PubMed Central

    Wang, Li; Chen, Yin; Yao, Ying; Pan, Yu; Sun, Yi

    2016-01-01

    Objective The aim of this study was to use amplitude of low-frequency fluctuation (ALFF) to explore regional brain activities in healthy subjects after sleep deprivation (SD). Materials and methods A total of 16 healthy subjects (eight females, eight males) underwent the session twice: once was after normal sleep (NS), and the other was after SD. ALFF was used to assess local brain features. The mean ALFF-signal values of the different brain areas were evaluated to investigate relationships with clinical features and were analyzed with a receiver-operating characteristic curve. Results Compared with NS subjects, SD subjects showed a lower response-accuracy rate, longer response time, and higher lapse rate. Compared with NS subjects, SD subjects showed higher ALFF area in the right cuneus and lower ALFF area in the right lentiform nucleus, right claustrum, left dorsolateral prefrontal cortex, and left inferior parietal cortex. ALFF differences in regional brain areas showed high sensitivity and specificity. In the SD group, mean ALFF of the right claustrum showed a significant positive correlation with accuracy rate (r=0.687, P=0.013) and a negative correlation with lapse rate (r=−0.706, P=0.01). Mean ALFF of the dorsolateral prefrontal cortex showed a significant positive correlation with response time (r=0.675, P=0.016). Conclusion SD disturbed the regional brain activity of the default-mode network, its anticorrelated “task-positive” network, and the advanced cognitive function brain areas. PMID:27110113

  4. Worry tendencies predict brain activation during aversive imagery.

    PubMed

    Schienle, Anne; Schäfer, Axel; Pignanelli, Roman; Vaitl, Dieter

    2009-09-25

    Because of its abstract nature, worrying might function as an avoidance response in order to cognitively disengage from fearful imagery. The present functional magnetic resonance imaging study investigated neural correlates of aversive imagery and their association with worry tendencies, as measured by the Penn State Worry Questionnaire (PSWQ). Nineteen healthy women first viewed, and subsequently imagined pictures from two categories, 'threat' and 'happiness'. Worry tendencies were negatively correlated with brain activation in the anterior cingulate cortex, the prefrontal cortex (dorsolateral, dorsomedial, ventrolateral), the parietal cortex and the insula. These negative correlations between PSWQ scores and localized brain activation were specific for aversive imagery. Moreover, activation in the above mentioned regions was positively associated with the experienced vividness of both pleasant and unpleasant mental pictures. As the identified brain regions are involved in emotion regulation, vivid imagery and memory retrieval, a lowered activity in high PSWQ scorers might be associated with cognitive disengagement from aversive imagery as well as insufficient refresh rates of mental pictures. Our preliminary findings encourage future imagery studies on generalized anxiety disorder patients, as one of the main symptoms of this disorder is excessive worrying. PMID:19545612

  5. Brain cholinesterase activity of apparently normal wild birds

    USGS Publications Warehouse

    Hill, E.F.

    1988-01-01

    Organophosphorus and carbamate pesticides are potent anticholinesterase substances that have killed large numbers of wild birds of various species. Cause of death is diagnosed by demonstration of depressed brain cholinesterase (ChE) activity in combination with chemical detection of anticholinesterase residue in the affected specimen. ChE depression is determined by comparison of the affected specimen to normal ChE activity for a sample of control specimens of the same species, but timely procurement of controls is not always possible. Therefore, a reference file of normal whole brain ChE activity is provided for 48 species of wild birds from North America representing 11 orders and 23 families for use as emergency substitutes in diagnosis of anticholinesterase poisoning. The ChE values, based on 83 sets of wild control specimens from across the United States, are reproducible provided the described procedures are duplicated. Overall, whole brain ChE activity varied nearly three-fold among the 48 species represented, but it was usually similar for closely related species. However, some species were statistically separable in most families and some species of the same genus differed as much as 50%.

  6. Motor and non-motor error and the influence of error magnitude on brain activity.

    PubMed

    Nadig, Karin Graziella; Jäncke, Lutz; Lüchinger, Roger; Lutz, Kai

    2010-04-01

    It has been shown that frontal cortical areas increase their activity during error perception and error processing. However, it is not yet clear whether perception of motor errors is processed in the same frontal areas as perception of errors in cognitive tasks. It is also unclear whether brain activity level is influenced by the magnitude of error. For this purpose, we conducted a study in which subjects were confronted with motor and non-motor errors, and had them perform a sensorimotor transformation task in which they were likely to commit motor errors of different magnitudes (internal errors). In addition to the internally committed motor errors, non-motor errors (external errors) were added to the feedback in some trials. We found that activity in the anterior insula, inferior frontal gyrus (IFG), cerebellum, precuneus, and posterior medial frontal cortex (pMFC) correlated positively with the magnitude of external errors. The middle frontal gyrus (MFG) and the pMFC cortex correlated positively with the magnitude of the total error fed back to subjects (internal plus external). No significant positive correlation between internal error and brain activity could be detected. These results indicate that motor errors have a differential effect on brain activity compared with non-motor errors.

  7. Regional contraction of brain surface area involves three large-scale networks in schizophrenia.

    PubMed

    Palaniyappan, Lena; Mallikarjun, Pavan; Joseph, Verghese; White, Thomas P; Liddle, Peter F

    2011-07-01

    In schizophrenia, morphological changes in the cerebral cortex have been primarily investigated using volumetric or cortical thickness measurements. In healthy subjects, as the brain size increases, the surface area expands disproportionately when compared to the scaling of cortical thickness. In this structural MRI study, we investigated the changes in brain surface area in schizophrenia by constructing relative areal contraction/expansion maps showing group differences in surface area using Freesurfer software in 57 patients and 41 controls. We observed relative areal contraction affecting Default Mode Network, Central Executive Network and Salience Network, in addition to other regions in schizophrenia. We confirmed the surface area reduction across these three large-scale brain networks by undertaking further region-of-interest analysis of surface area. We also observed a significant hemispheric asymmetry in the surface area changes, with the left hemisphere showing a greater reduction in the areal contraction maps. Our findings suggest that a fundamental disturbance in cortical expansion is likely in individuals who develop schizophrenia. PMID:21497489

  8. Orthographic Coding: Brain Activation for Letters, Symbols, and Digits.

    PubMed

    Carreiras, Manuel; Quiñones, Ileana; Hernández-Cabrera, Juan Andrés; Duñabeitia, Jon Andoni

    2015-12-01

    The present experiment investigates the input coding mechanisms of 3 common printed characters: letters, numbers, and symbols. Despite research in this area, it is yet unclear whether the identity of these 3 elements is processed through the same or different brain pathways. In addition, some computational models propose that the position-in-string coding of these elements responds to general flexible mechanisms of the visual system that are not character-specific, whereas others suggest that the position coding of letters responds to specific processes that are different from those that guide the position-in-string assignment of other types of visual objects. Here, in an fMRI study, we manipulated character position and character identity through the transposition or substitution of 2 internal elements within strings of 4 elements. Participants were presented with 2 consecutive visual strings and asked to decide whether they were the same or different. The results showed: 1) that some brain areas responded more to letters than to numbers and vice versa, suggesting that processing may follow different brain pathways; 2) that the left parietal cortex is involved in letter identity, and critically in letter position coding, specifically contributing to the early stages of the reading process; and that 3) a stimulus-specific mechanism for letter position coding is operating during orthographic processing.

  9. Time delay between cardiac and brain activity during sleep transitions

    NASA Astrophysics Data System (ADS)

    Long, Xi; Arends, Johan B.; Aarts, Ronald M.; Haakma, Reinder; Fonseca, Pedro; Rolink, Jérôme

    2015-04-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by electroencephalographic (EEG) mean frequency and the cardiac parameters included heart rate, standard deviation of heartbeat intervals, and their low- and high-frequency spectral powers. Using a cross-correlation analysis, we found that the cardiac variations during wake-sleep and NREM sleep transitions preceded the EEG changes by 1-3 min but this was not the case for REM sleep transitions. These important findings can be further used to predict the onset and ending of some sleep stages in an early manner.

  10. Area-specific migration and recruitment of new neurons in the adult songbird brain.

    PubMed

    Vellema, Michiel; van der Linden, Annemie; Gahr, Manfred

    2010-05-01

    Neuron recruitment has been implicated in morphological and functional plasticity in the adult brain. Whereas mammals restrict neuron recruitment specifically to two regions of known plasticity, the hippocampus and olfactory bulb, newborn neurons are found throughout the forebrain of adult songbirds. In order to study the area-specificity of the widespread proliferation and recruitment in the songbird brain, six adult male canaries received repetitive intraperitoneal injections of the mitotic marker BrdU (5-bromo-2-deoxyuridine) and were sacrificed after 24 hours to study proliferation or after 38 days to study recruitment. Migration and incorporation of new neurons was apparent throughout many but not all parts of the canary forebrain and was quantitatively related to mitotic levels in the most closely associated proliferative zones. Surprisingly, some areas of the vocal control system sensitive to plastic changes, such as nucleus higher vocal center (HVC) and area X, recruited similar numbers of new neurons as their surrounding brain tissues, employing no specific directional mechanisms. The distribution pattern in and around HVC could best be described by a random displacement model, where cells originating from the overlying lateral ventricle can move independently in any direction. Other plastic song control areas, such as the medial magnocellular nucleus of anterior nidopallium and the robust nucleus of arcopallium, were specifically avoided by migrating neurons, while migration toward the olfactory bulb showed high specificity, similar to the mammalian rostral migratory stream. Thus, different mechanisms appear to organize area-specific neuron recruitment in different recipients of the adult songbird brain, unrelated to global plasticity of brain regions.

  11. FMRI Brain Activation in a Finnish Family with Specific Language Impairment Compared with a Normal Control Group

    ERIC Educational Resources Information Center

    Hugdahl, Kenneth; Gundersen, Hilde; Brekke, Cecilie; Thomsen, Tormod; Rimol, Lars Morten; Ersland, Lars; Niemi, Jussi

    2004-01-01

    The aim of the present study was to investigate differences in brain activation in a family with SLI as compared to intact individuals with normally developed language during processing of language stimuli. Functional magnetic resonance imaging (fMRI) was used to monitor changes in neuronal activation in temporal and frontal lobe areas in 5…

  12. How networks communicate: propagation patterns in spontaneous brain activity.

    PubMed

    Mitra, Anish; Raichle, Marcus E

    2016-10-01

    Initially regarded as 'noise', spontaneous (intrinsic) activity accounts for a large portion of the brain's metabolic cost. Moreover, it is now widely known that infra-slow (less than 0.1 Hz) spontaneous activity, measured using resting state functional magnetic resonance imaging of the blood oxygen level-dependent (BOLD) signal, is correlated within functionally defined resting state networks (RSNs). However, despite these advances, the temporal organization of spontaneous BOLD fluctuations has remained elusive. By studying temporal lags in the resting state BOLD signal, we have recently shown that spontaneous BOLD fluctuations consist of remarkably reproducible patterns of whole brain propagation. Embedded in these propagation patterns are unidirectional 'motifs' which, in turn, give rise to RSNs. Additionally, propagation patterns are markedly altered as a function of state, whether physiological or pathological. Understanding such propagation patterns will likely yield deeper insights into the role of spontaneous activity in brain function in health and disease.This article is part of the themed issue 'Interpreting blood oxygen level-dependent: a dialogue between cognitive and cellular neuroscience'. PMID:27574315

  13. Brain activation to cocaine cues and motivation/treatment status

    PubMed Central

    Prisciandaro, James J.; McRae-Clark, Aimee L.; Myrick, Hugh; Henderson, Scott; Brady, Kathleen T.

    2012-01-01

    Motivation to change is believed to be a key factor in therapeutic success in substance use disorders; however, the neurobiological mechanisms through which motivation to change impacts decreased substance use remain unclear. Existing research is conflicting, with some investigations supporting decreased and others reporting increased frontal activation to drug cues in individuals seeking treatment for substance use disorders. The present study investigated the relationship between motivation to change cocaine use and cue-elicited brain activity in cocaine-dependent individuals using two conceptualizations of “motivation to change:” 1) current treatment status (i.e., currently receiving vs. not receiving outpatient treatment for cocaine dependence) and 2) self-reported motivation to change substance use, using the Stages of Change Readiness and Treatment Eagerness Scale (SOCRATES; Miller and Tonigan, 1996). Thirty-eight cocaine-dependent individuals (14 currently in treatment) completed a diagnostic assessment and an fMRI cocaine cue-reactivity task. Whole-brain analyses demonstrated that both treatment-seeking and motivated participants had lower activation to cocaine cues in a wide variety of brain regions in the frontal, occipital, temporal, and cingulate cortices relative to non-treatment-seeking and less motivated participants. Future research is needed to explain the mechanism by which treatment and/or motivation impacts neural cue-reactivity, as such work could potentially aid in the development of more effective therapeutic techniques for substance-dependent patients. PMID:22458561

  14. Brain activation to cocaine cues and motivation/treatment status.

    PubMed

    Prisciandaro, James J; McRae-Clark, Aimee L; Myrick, Hugh; Henderson, Scott; Brady, Kathleen T

    2014-03-01

    Motivation to change is believed to be a key factor in therapeutic success in substance use disorders; however, the neurobiological mechanisms through which motivation to change impacts decreased substance use remain unclear. Existing research is conflicting, with some investigations supporting decreased and others reporting increased frontal activation to drug cues in individuals seeking treatment for substance use disorders. The present study investigated the relationship between motivation to change cocaine use and cue-elicited brain activity in cocaine-dependent individuals using two conceptualizations of 'motivation to change': (1) current treatment status (i.e. currently receiving versus not receiving outpatient treatment for cocaine dependence) and (2) self-reported motivation to change substance use, using the Stages of Change Readiness and Treatment Eagerness Scale. Thirty-eight cocaine-dependent individuals (14 currently in treatment) completed a diagnostic assessment and an fMRI cocaine cue-reactivity task. Whole-brain analyses demonstrated that both treatment-seeking and motivated participants had lower activation to cocaine cues in a wide variety of brain regions in the frontal, occipital, temporal and cingulate cortices relative to non-treatment-seeking and less motivated participants. Future research is needed to explain the mechanism by which treatment and/or motivation impacts neural cue reactivity, as such work could potentially aid in the development of more effective therapeutic techniques for substance-dependent patients.

  15. Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats

    PubMed Central

    2012-01-01

    Background Higher aluminum (Al) content in infant formula and its effects on neonatal brain development are a cause for concern. This study aimed to evaluate the distribution and concentration of Al in neonatal rat brain following Al treatment, and oxidative stress in brain tissues induced by Al overload. Methods Postnatal day 3 (PND 3) rat pups (n =46) received intraperitoneal injection of aluminum chloride (AlCl3), at dosages of 0, 7, and 35 mg/kg body wt (control, low Al (LA), and high Al (HA), respectively), over 14 d. Results Aluminum concentrations were significantly higher in the hippocampus (751.0 ± 225.8 ng/g v.s. 294.9 ± 180.8 ng/g; p < 0.05), diencephalon (79.6 ± 20.7 ng/g v.s. 20.4 ± 9.6 ng/g; p < 0.05), and cerebellum (144.8 ± 36.2 ng/g v.s. 83.1 ± 15.2 ng/g; p < 0.05) in the HA group compared to the control. The hippocampus, diencephalon, cerebellum, and brain stem of HA animals displayed significantly higher levels of lipid peroxidative products (TBARS) than the same regions in the controls. However, the average superoxide dismutase (SOD) activities in the cerebral cortex, hippocampus, cerebellum, and brain stem were lower in the HA group compared to the control. The HA animals demonstrated increased catalase activity in the diencephalon, and increased glutathione peroxidase (GPx) activity in the cerebral cortex, hippocampus, cerebellum, and brain stem, compared to controls. Conclusion Aluminum overload increases oxidative stress (H2O2) in the hippocampus, diencephalon, cerebellum, and brain stem in neonatal rats. PMID:22613782

  16. Brain activation in response to randomized visual stimulation as obtained from conjunction and differential analysis: an fMRI study

    NASA Astrophysics Data System (ADS)

    Nasaruddin, N. H.; Yusoff, A. N.; Kaur, S.

    2014-11-01

    The objective of this multiple-subjects functional magnetic resonance imaging (fMRI) study was to identify the common brain areas that are activated when viewing black-and-white checkerboard pattern stimuli of various shapes, pattern and size and to investigate specific brain areas that are involved in processing static and moving visual stimuli. Sixteen participants viewed the moving (expanding ring, rotating wedge, flipping hour glass and bowtie and arc quadrant) and static (full checkerboard) stimuli during an fMRI scan. All stimuli have black-and-white checkerboard pattern. Statistical parametric mapping (SPM) was used in generating brain activation. Differential analyses were implemented to separately search for areas involved in processing static and moving stimuli. In general, the stimuli of various shapes, pattern and size activated multiple brain areas mostly in the left hemisphere. The activation in the right middle temporal gyrus (MTG) was found to be significantly higher in processing moving visual stimuli as compared to static stimulus. In contrast, the activation in the left calcarine sulcus and left lingual gyrus were significantly higher for static stimulus as compared to moving stimuli. Visual stimulation of various shapes, pattern and size used in this study indicated left lateralization of activation. The involvement of the right MTG in processing moving visual information was evident from differential analysis, while the left calcarine sulcus and left lingual gyrus are the areas that are involved in the processing of static visual stimulus.

  17. The brain in micro- and hypergravity: the effects of changing gravity on the brain electrocortical activity.

    PubMed

    Marušič, Uroš; Meeusen, Romain; Pišot, Rado; Kavcic, Voyko

    2014-01-01

    Understanding the effects of increased and decreased gravity on central nervous system is essential for developing proper physical and cognitive countermeasures to assure safe and effective space missions and human survival in space. This short review covers the available literature on the brain electrocortical activity effects of decreased and increased gravitational force comparing to the 1g Earth conditions. Among all neuroimaging methods such as functional magnetic resonance imaging (fMRI), positron-emission tomography (PET), diffusion tensor imaging (DTI), the electroencephalography (EEG) was found to be suitable method to monitor brain electrocortical activity in the extreme environments. Due to complexity and high cost of space flight missions, ground-based models have been employed to simulate microgravity effects on human body. Surprisingly, there is very limited number of publications reporting gravity-dependent EEG spectral changes. With increased gravity there are initially increased EEG activity in higher frequencies and at around 4 g appears loss of consciousness with accompanying slowing of EEG due to hypoxia. In microgravity, the most prevalent changes in EEG are faster frequencies such as alpha and beta. The results from simulated microgravity (bed rest) are pointing to changes in theta and alpha, representing signs of cortical inhibition. The changes in EEG activity in space flight are attributed to a decreased sensorimotor input while in parabolic flights short and fast transitions from hyper to microgravity presumably reflect lower arousal levels and emotional processes in microgravity. Thus, based on limited research about gravity-related changes in EEG from different environments it is difficult to draw any unequivocal conclusions. Additional systematic studies about electrocortical activity in space and parabolic flights, as well as longer bed rest studies are needed in order to advance knowledge about brain functioning in extreme conditions

  18. The brain in micro- and hypergravity: the effects of changing gravity on the brain electrocortical activity.

    PubMed

    Marušič, Uroš; Meeusen, Romain; Pišot, Rado; Kavcic, Voyko

    2014-01-01

    Understanding the effects of increased and decreased gravity on central nervous system is essential for developing proper physical and cognitive countermeasures to assure safe and effective space missions and human survival in space. This short review covers the available literature on the brain electrocortical activity effects of decreased and increased gravitational force comparing to the 1g Earth conditions. Among all neuroimaging methods such as functional magnetic resonance imaging (fMRI), positron-emission tomography (PET), diffusion tensor imaging (DTI), the electroencephalography (EEG) was found to be suitable method to monitor brain electrocortical activity in the extreme environments. Due to complexity and high cost of space flight missions, ground-based models have been employed to simulate microgravity effects on human body. Surprisingly, there is very limited number of publications reporting gravity-dependent EEG spectral changes. With increased gravity there are initially increased EEG activity in higher frequencies and at around 4 g appears loss of consciousness with accompanying slowing of EEG due to hypoxia. In microgravity, the most prevalent changes in EEG are faster frequencies such as alpha and beta. The results from simulated microgravity (bed rest) are pointing to changes in theta and alpha, representing signs of cortical inhibition. The changes in EEG activity in space flight are attributed to a decreased sensorimotor input while in parabolic flights short and fast transitions from hyper to microgravity presumably reflect lower arousal levels and emotional processes in microgravity. Thus, based on limited research about gravity-related changes in EEG from different environments it is difficult to draw any unequivocal conclusions. Additional systematic studies about electrocortical activity in space and parabolic flights, as well as longer bed rest studies are needed in order to advance knowledge about brain functioning in extreme conditions

  19. Early oxygen-utilization and brain activity in preterm infants.

    PubMed

    Tataranno, Maria Luisa; Alderliesten, Thomas; de Vries, Linda S; Groenendaal, Floris; Toet, Mona C; Lemmers, Petra M A; Vosse van de, Renè E; van Bel, Frank; Benders, Manon J N L

    2015-01-01

    The combined monitoring of oxygen supply and delivery using Near-InfraRed spectroscopy (NIRS) and cerebral activity using amplitude-integrated EEG (aEEG) could yield new insights into brain metabolism and detect potentially vulnerable conditions soon after birth. The relationship between NIRS and quantitative aEEG/EEG parameters has not yet been investigated. Our aim was to study the association between oxygen utilization during the first 6 h after birth and simultaneously continuously monitored brain activity measured by aEEG/EEG. Forty-four hemodynamically stable babies with a GA < 28 weeks, with good quality NIRS and aEEG/EEG data available and who did not receive morphine were included in the study. aEEG and NIRS monitoring started at NICU admission. The relation between regional cerebral oxygen saturation (rScO2) and cerebral fractional tissue oxygen extraction (cFTOE), and quantitative measurements of brain activity such as number of spontaneous activity transients (SAT) per minute (SAT rate), the interval in seconds (i.e. time) between SATs (ISI) and the minimum amplitude of the EEG in μV (min aEEG) were evaluated. rScO2 was negatively associated with SAT rate (β=-3.45 [CI=-5.76- -1.15], p=0.004) and positively associated with ISI (β=1.45 [CI=0.44-2.45], p=0.006). cFTOE was positively associated with SAT rate (β=0.034 [CI=0.009-0.059], p=0.008) and negatively associated with ISI (β=-0.015 [CI=-0.026- -0.004], p=0.007). Oxygen delivery and utilization, as indicated by rScO2 and cFTOE, are directly related to functional brain activity, expressed by SAT rate and ISI during the first hours after birth, showing an increase in oxygen extraction in preterm infants with increased early electro-cerebral activity. NIRS monitored oxygenation may be a useful biomarker of brain vulnerability in high-risk infants. PMID:25965343

  20. Motor directional tuning across brain areas: directional resonance and the role of inhibition for directional accuracy.

    PubMed

    Mahan, Margaret Y; Georgopoulos, Apostolos P

    2013-01-01

    Motor directional tuning (Georgopoulos et al., 1982) has been found in every brain area in which it has been sought for during the past 30-odd years. It is typically broad, with widely distributed preferred directions and a population signal that predicts accurately the direction of an upcoming reaching movement or isometric force pulse (Georgopoulos et al., 1992). What is the basis for such ubiquitous directional tuning? How does the tuning come about? What are the implications of directional tuning for understanding the brain mechanisms of movement in space? This review addresses these questions in the light of accumulated knowledge in various sub-fields of neuroscience and motor behavior. It is argued (a) that direction in space encompasses many aspects, from vision to muscles, (b) that there is a directional congruence among the central representations of these distributed "directions" arising from rough but orderly topographic connectivities among brain areas, (c) that broad directional tuning is the result of broad excitation limited by recurrent and non-recurrent (i.e., direct) inhibition within the preferred direction loci in brain areas, and (d) that the width of the directional tuning curve, modulated by local inhibitory mechanisms, is a parameter that determines the accuracy of the directional command. PMID:23720612

  1. Carbohydrate in the mouth enhances activation of brain circuitry involved in motor performance and sensory perception.

    PubMed

    Turner, Clare E; Byblow, Winston D; Stinear, Cathy M; Gant, Nicholas

    2014-09-01

    The presence of carbohydrate in the human mouth has been associated with the facilitation of motor output and improvements in physical performance. Oral receptors have been identified as a potential mode of afferent transduction for this novel form of nutrient signalling that is distinct from taste. In the current study oral exposure to carbohydrate was combined with a motor task in a neuroimaging environment to identify areas of the brain involved in this phenomenon. A mouth-rinsing protocol was conducted whilst carbohydrate (CHO) and taste-matched placebo (PLA) solutions were delivered and recovered from the mouths of 10 healthy volunteers within a double-blind, counterbalanced design. This protocol eliminates post-oral factors and controls for the perceptual qualities of solutions. Functional magnetic resonance imaging of the brain was used to identify cortical areas responsive to oral carbohydrate during rest and activity phases of a hand-grip motor task. Mean blood-oxygen-level dependent signal change experienced in the contralateral primary sensorimotor cortex was larger for CHO compared with PLA during the motor task when contrasted with a control condition. Areas of activation associated with CHO exclusively were observed over the primary taste cortex and regions involved in visual perception. Regions in the limbic system associated with reward were also significantly more active with CHO. This is the first demonstration that oral carbohydrate signalling can increase activation within the primary sensorimotor cortex during physical activity and enhance activation of neural networks involved in sensory perception.

  2. Neuroimaging and Neuroenergetics: Brain Activations as Information-Driven Reorganization of Energy Flows

    ERIC Educational Resources Information Center

    Strelnikov, Kuzma

    2010-01-01

    There is increasing focus on the neurophysiological underpinnings of brain activations, giving birth to an emerging branch of neuroscience--neuroenergetics. However, no common definition of "brain activation" exists thus far. In this article, we define brain activation as the information-driven reorganization of energy flows in a population of…

  3. Retrieving Binary Answers Using Whole-Brain Activity Pattern Classification

    PubMed Central

    Nawa, Norberto E.; Ando, Hiroshi

    2015-01-01

    Multivariate pattern analysis (MVPA) has been successfully employed to advance our understanding of where and how information regarding different mental states is represented in the human brain, bringing new insights into how these states come to fruition, and providing a promising complement to the mass-univariate approach. Here, we employed MVPA to classify whole-brain activity patterns occurring in single fMRI scans, in order to retrieve binary answers from experiment participants. Five healthy volunteers performed two types of mental task while in the MRI scanner: counting down numbers and recalling positive autobiographical events. Data from these runs were used to train individual machine learning based classifiers that predicted which mental task was being performed based on the voxel-based brain activity patterns. On a different day, the same volunteers reentered the scanner and listened to six statements (e.g., “the month you were born is an odd number”), and were told to countdown numbers if the statement was true (yes) or recall positive events otherwise (no). The previously trained classifiers were then used to assign labels (yes/no) to the scans collected during the 24-second response periods following each one of the statements. Mean classification accuracies at the single scan level were in the range of 73.6 to 80.8%, significantly above chance for all participants. When applying a majority vote on the scans within each response period, i.e., the most frequent label (yes/no) in the response period becomes the answer to the previous statement, 5.0 to 5.8 sentences, out of 6, were correctly classified in each one of the runs, on average. These results indicate that binary answers can be retrieved from whole-brain activity patterns, suggesting that MVPA provides an alternative way to establish basic communication with unresponsive patients when other techniques are not successful. PMID:26778992

  4. Spatiotemporal dynamics of large-scale brain activity

    NASA Astrophysics Data System (ADS)

    Neuman, Jeremy

    Understanding the dynamics of large-scale brain activity is a tough challenge. One reason for this is the presence of an incredible amount of complexity arising from having roughly 100 billion neurons connected via 100 trillion synapses. Because of the extremely high number of degrees of freedom in the nervous system, the question of how the brain manages to properly function and remain stable, yet also be adaptable, must be posed. Neuroscientists have identified many ways the nervous system makes this possible, of which synaptic plasticity is possibly the most notable one. On the other hand, it is vital to understand how the nervous system also loses stability, resulting in neuropathological diseases such as epilepsy, a disease which affects 1% of the population. In the following work, we seek to answer some of these questions from two different perspectives. The first uses mean-field theory applied to neuronal populations, where the variables of interest are the percentages of active excitatory and inhibitory neurons in a network, to consider how the nervous system responds to external stimuli, self-organizes and generates epileptiform activity. The second method uses statistical field theory, in the framework of single neurons on a lattice, to study the concept of criticality, an idea borrowed from physics which posits that in some regime the brain operates in a collectively stable or marginally stable manner. This will be examined in two different neuronal networks with self-organized criticality serving as the overarching theme for the union of both perspectives. One of the biggest problems in neuroscience is the question of to what extent certain details are significant to the functioning of the brain. These details give rise to various spatiotemporal properties that at the smallest of scales explain the interaction of single neurons and synapses and at the largest of scales describe, for example, behaviors and sensations. In what follows, we will shed some

  5. Abdominal surgery activates nesfatin-1 immunoreactive brain nuclei in rats.

    PubMed

    Stengel, Andreas; Goebel, Miriam; Wang, Lixin; Taché, Yvette

    2010-02-01

    Abdominal surgery-induced postoperative gastric ileus is well established to induce Fos expression in specific brain nuclei in rats within 2-h after surgery. However, the phenotype of activated neurons has not been thoroughly characterized. Nesfatin-1 was recently discovered in the rat hypothalamus as a new anorexigenic peptide that also inhibits gastric emptying and is widely distributed in rat brain autonomic nuclei suggesting an involvement in stress responses. Therefore, we investigated whether abdominal surgery activates nesfatin-1-immunoreactive (ir) neurons in the rat brain. Two hours after abdominal surgery with cecal palpation under short isoflurane anesthesia or anesthesia alone, rats were transcardially perfused and brains processed for double immunohistochemical labeling of Fos and nesfatin-1. Abdominal surgery, compared to anesthesia alone, induced Fos expression in neurons of the supraoptic nucleus (SON), paraventricular nucleus (PVN), locus coeruleus (LC), Edinger-Westphal nucleus (EW), rostral raphe pallidus (rRPa), nucleus of the solitary tract (NTS) and ventrolateral medulla (VLM). Double Fos/nesfatin-1 labeling showed that of the activated cells, 99% were nesfatin-1-immunoreactive in the SON, 91% in the LC, 82% in the rRPa, 74% in the EW and VLM, 71% in the anterior parvicellular PVN, 47% in the lateral magnocellular PVN, 41% in the medial magnocellular PVN, 14% in the NTS and 9% in the medial parvicellular PVN. These data established nesfatin-1 immunoreactive neurons in specific nuclei of the hypothalamus and brainstem as part of the neuronal response to abdominal surgery and suggest a possible implication of nesfatin-1 in the alterations of food intake and gastric transit associated with such a stressor. PMID:19944727

  6. Deep brain stimulation suppresses pallidal low frequency activity in patients with phasic dystonic movements.

    PubMed

    Barow, Ewgenia; Neumann, Wolf-Julian; Brücke, Christof; Huebl, Julius; Horn, Andreas; Brown, Peter; Krauss, Joachim K; Schneider, Gerd-Helge; Kühn, Andrea A

    2014-11-01

    Deep brain stimulation of the globus pallidus internus alleviates involuntary movements in patients with dystonia. However, the mechanism is still not entirely understood. One hypothesis is that deep brain stimulation suppresses abnormally enhanced synchronized oscillatory activity within the motor cortico-basal ganglia network. Here, we explore deep brain stimulation-induced modulation of pathological low frequency (4-12 Hz) pallidal activity that has been described in local field potential recordings in patients with dystonia. Therefore, local field potentials were recorded from 16 hemispheres in 12 patients undergoing deep brain stimulation for severe dystonia using a specially designed amplifier allowing simultaneous high frequency stimulation at therapeutic parameter settings and local field potential recordings. For coherence analysis electroencephalographic activity (EEG) over motor areas and electromyographic activity (EMG) from affected neck muscles were recorded before and immediately after cessation of high frequency stimulation. High frequency stimulation led to a significant reduction of mean power in the 4-12 Hz band by 24.8 ± 7.0% in patients with predominantly phasic dystonia. A significant decrease of coherence between cortical EEG and pallidal local field potential activity in the 4-12 Hz range was revealed for the time period of 30 s after switching off high frequency stimulation. Coherence between EMG activity and pallidal activity was mainly found in patients with phasic dystonic movements where it was suppressed after high frequency stimulation. Our findings suggest that high frequency stimulation may suppress pathologically enhanced low frequency activity in patients with phasic dystonia. These dystonic features are the quickest to respond to high frequency stimulation and may thus directly relate to modulation of pathological basal ganglia activity, whereas improvement in tonic features may depend on long-term plastic changes within the

  7. PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation.

    PubMed

    Trapp, Stefan; Cork, Simon C

    2015-10-15

    Within the brain, glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Additionally, GLP-1 influences the mesolimbic reward system to modulate the rewarding properties of palatable food. GLP-1 is produced in the gut and by hindbrain preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarii (NTS) and medullary intermediate reticular nucleus. Transgenic mice expressing glucagon promoter-driven yellow fluorescent protein revealed that PPG neurons not only project to central autonomic control regions and mesolimbic reward centers, but also strongly innervate spinal autonomic neurons. Therefore, these brain stem PPG neurons could directly modulate sympathetic outflow through their spinal inputs to sympathetic preganglionic neurons. Electrical recordings from PPG neurons in vitro have revealed that they receive synaptic inputs from vagal afferents entering via the solitary tract. Vagal afferents convey satiation to the brain from signals like postprandial gastric distention or activation of peripheral GLP-1 receptors. CCK and leptin, short- and long-term satiety peptides, respectively, increased the electrical activity of PPG neurons, while ghrelin, an orexigenic peptide, had no effect. These findings indicate that satiation is a main driver of PPG neuronal activation. They also show that PPG neurons are in a prime position to respond to both immediate and long-term indicators of energy and feeding status, enabling regulation of both energy balance and general autonomic homeostasis. This review discusses the question of whether PPG neurons, rather than gut-derived GLP-1, are providing the physiological substrate for the effects elicited by central nervous system GLP-1 receptor activation.

  8. Trajectories of cortical surface area and cortical volume maturation in normal brain development

    PubMed Central

    Ducharme, Simon; Albaugh, Matthew D.; Nguyen, Tuong-Vi; Hudziak, James J.; Mateos-Pérez, J.M.; Labbe, Aurelie; Evans, Alan C.; Karama, Sherif

    2015-01-01

    This is a report of developmental trajectories of cortical surface area and cortical volume in the NIH MRI Study of Normal Brain Development. The quality-controlled sample included 384 individual typically-developing subjects with repeated scanning (1–3 per subject, total scans n=753) from 4.9 to 22.3 years of age. The best-fit model (cubic, quadratic, or first-order linear) was identified at each vertex using mixed-effects models, with statistical correction for multiple comparisons using random field theory. Analyses were performed with and without controlling for total brain volume. These data are provided for reference and comparison with other databases. Further discussion and interpretation on cortical developmental trajectories can be found in the associated Ducharme et al.׳s article “Trajectories of cortical thickness maturation in normal brain development – the importance of quality control procedures” (Ducharme et al., 2015) [1]. PMID:26702424

  9. Brain Activations Related to Saccadic Response Conflict are not Sensitive to Time on Task

    PubMed Central

    Beldzik, Ewa; Domagalik, Aleksandra; Oginska, Halszka; Marek, Tadeusz; Fafrowicz, Magdalena

    2015-01-01

    Establishing a role of the dorsal medial frontal cortex in the performance monitoring and cognitive control has been a challenge to neuroscientists for the past decade. In light of recent findings, the conflict monitoring hypothesis has been elaborated to an action-outcome predictor theory. One of the findings that led to this re-evaluation was the fMRI study in which conflict-related brain activity was investigated in terms of the so-called time on task effect, i.e., a linear increase of the BOLD signal with longer response times. The aim of this study was to investigate brain regions involved in the processing of saccadic response conflict and to account for the time on task effect. A modified spatial cueing task was implemented in the event-related fMRI study with oculomotor responses. The results revealed several brain regions which show higher activity for incongruent trials in comparison to the congruent ones, including pre-supplementary motor area together with the frontal and parietal regions. Further analysis accounting for the effect of response time provided evidence that these brain activations were not sensitive to time on task but reflected purely the congruency effect. PMID:26696871

  10. Identification of a brain center whose activity discriminates a choice behavior in zebrafish.

    PubMed

    Lau, Billy Y B; Mathur, Priya; Gould, Georgianna G; Guo, Su

    2011-02-01

    The ability to make choices and carry out appropriate actions is critical for individual survival and well-being. Choice behaviors, from hard-wired to experience-dependent, have been observed across the animal kingdom. Although differential engagement of sensory neuronal pathways is a known mechanism, neurobiological substrates in the brain that underlie choice making downstream of sensory perception are not well understood. Here, we report a behavioral paradigm in zebrafish in which a half-light/half-dark visual image evokes an innate choice behavior, light avoidance. Neuronal activity mapping using the immediate early gene c-fos reveals the engagement of distinct brain regions, including the medial zone of the dorsal telencephalic region (Dm) and the dorsal nucleus of the ventral telencephalic area (Vd), the teleost anatomical homologs of the mammalian amygdala and striatum, respectively. In animals that were subjected to the identical sensory stimulus but displayed little or no avoidance, strikingly, the Dm and Vd were not engaged, despite similar levels of activation in the brain nuclei involved in visual processing. Based on these findings and previous connectivity data, we propose a neural circuitry model in which the Dm serves as a brain center, the activity of which predicates this choice behavior in zebrafish.

  11. Protracted cocaine withdrawal produces circadian rhythmic alterations of phosphorylated GSK-3β in reward-related brain areas in rats.

    PubMed

    Wei, Yi-ming; Li, Su-xia; Shi, Hai-shui; Ding, Zeng-bo; Luo, Yi-xiao; Xue, Yan-xue; Lu, Lin; Yu, Chang-xi

    2011-03-17

    Protracted cocaine withdrawal can extend for months and contribute to cocaine seeking and relapse. However, no previous studies have reported the manifestation of protracted withdrawal from chronic cocaine in rats. Glycogen synthase kinase 3β (GSK-3β) can phosphorylate PER2, CRY2, Rev-erbα, and BMAL1 in mammals. The circadian rhythmic expression of GSK-3β in reward-related brain areas is unclear. We examined rodent behaviors and circadian disturbances of GSK-3β expression during 30 days of protracted cocaine withdrawal. The behavioral tests included open field, elevated plus maze, weight gain, and sucrose preference tests performed 3, 10, and 30 days after stopping cocaine. At these three assessment points, we collected brain samples every 4h for 24h to examine the circadian rhythmic expression of GSK-3β. Decreased locomotor activity, weight loss, decreased sucrose consumption on day 3, and increased time spent in the open arms of the elevated plus maze on day 10 after cocaine administration were found. Blunted circadian rhythms of phosphorylated GFK-3β (pGSK-3β) persisted for at least 30 days in all examined brain areas, with the exception of 10 days in the suprachiasmatic nucleus (SCN) and nucleus accumbens (NAc). The expression of pGSK-3β decreased in the SCN and increased in the NAc and ventral tegmental area persisted for at least 30 days, whereas in the prefrontal cortex decreased during withdrawal for 10 days but then reversed to abnormally high levels with protracted withdrawal. These long-lasting changes disrupted circadian rhythms and produced abnormal levels of phosphorylated GSK-3β protein in reward-related brain circuits, which may play a role in protracted cocaine withdrawal and contribute to relapse.

  12. Differential Activation Patterns in the Same Brain Region Led to Opposite Emotional States.

    PubMed

    Shibata, Kazuhisa; Watanabe, Takeo; Kawato, Mitsuo; Sasaki, Yuka

    2016-09-01

    In human studies, how averaged activation in a brain region relates to human behavior has been extensively investigated. This approach has led to the finding that positive and negative facial preferences are represented by different brain regions. However, using a functional magnetic resonance imaging (fMRI) decoded neurofeedback (DecNef) method, we found that different patterns of neural activations within the cingulate cortex (CC) play roles in representing opposite directions of facial preference. In the present study, while neutrally preferred faces were presented, multi-voxel activation patterns in the CC that corresponded to higher (or lower) preference were repeatedly induced by fMRI DecNef. As a result, previously neutrally preferred faces became more (or less) preferred. We conclude that a different activation pattern in the CC, rather than averaged activation in a different area, represents and suffices to determine positive or negative facial preference. This new approach may reveal the importance of an activation pattern within a brain region in many cognitive functions.

  13. Differential Activation Patterns in the Same Brain Region Led to Opposite Emotional States.

    PubMed

    Shibata, Kazuhisa; Watanabe, Takeo; Kawato, Mitsuo; Sasaki, Yuka

    2016-09-01

    In human studies, how averaged activation in a brain region relates to human behavior has been extensively investigated. This approach has led to the finding that positive and negative facial preferences are represented by different brain regions. However, using a functional magnetic resonance imaging (fMRI) decoded neurofeedback (DecNef) method, we found that different patterns of neural activations within the cingulate cortex (CC) play roles in representing opposite directions of facial preference. In the present study, while neutrally preferred faces were presented, multi-voxel activation patterns in the CC that corresponded to higher (or lower) preference were repeatedly induced by fMRI DecNef. As a result, previously neutrally preferred faces became more (or less) preferred. We conclude that a different activation pattern in the CC, rather than averaged activation in a different area, represents and suffices to determine positive or negative facial preference. This new approach may reveal the importance of an activation pattern within a brain region in many cognitive functions. PMID:27608359

  14. Differential Activation Patterns in the Same Brain Region Led to Opposite Emotional States

    PubMed Central

    Shibata, Kazuhisa; Watanabe, Takeo; Kawato, Mitsuo; Sasaki, Yuka

    2016-01-01

    In human studies, how averaged activation in a brain region relates to human behavior has been extensively investigated. This approach has led to the finding that positive and negative facial preferences are represented by different brain regions. However, using a functional magnetic resonance imaging (fMRI) decoded neurofeedback (DecNef) method, we found that different patterns of neural activations within the cingulate cortex (CC) play roles in representing opposite directions of facial preference. In the present study, while neutrally preferred faces were presented, multi-voxel activation patterns in the CC that corresponded to higher (or lower) preference were repeatedly induced by fMRI DecNef. As a result, previously neutrally preferred faces became more (or less) preferred. We conclude that a different activation pattern in the CC, rather than averaged activation in a different area, represents and suffices to determine positive or negative facial preference. This new approach may reveal the importance of an activation pattern within a brain region in many cognitive functions. PMID:27608359

  15. Mapping brain activity at scale with cluster computing.

    PubMed

    Freeman, Jeremy; Vladimirov, Nikita; Kawashima, Takashi; Mu, Yu; Sofroniew, Nicholas J; Bennett, Davis V; Rosen, Joshua; Yang, Chao-Tsung; Looger, Loren L; Ahrens, Misha B

    2014-09-01

    Understanding brain function requires monitoring and interpreting the activity of large networks of neurons during behavior. Advances in recording technology are greatly increasing the size and complexity of neural data. Analyzing such data will pose a fundamental bottleneck for neuroscience. We present a library of analytical tools called Thunder built on the open-source Apache Spark platform for large-scale distributed computing. The library implements a variety of univariate and multivariate analyses with a modular, extendable structure well-suited to interactive exploration and analysis development. We demonstrate how these analyses find structure in large-scale neural data, including whole-brain light-sheet imaging data from fictively behaving larval zebrafish, and two-photon imaging data from behaving mouse. The analyses relate neuronal responses to sensory input and behavior, run in minutes or less and can be used on a private cluster or in the cloud. Our open-source framework thus holds promise for turning brain activity mapping efforts into biological insights.

  16. Tracking of EEG activity using motion estimation to understand brain wiring.

    PubMed

    Nisar, Humaira; Malik, Aamir Saeed; Ullah, Rafi; Shim, Seong-O; Bawakid, Abdullah; Khan, Muhammad Burhan; Subhani, Ahmad Rauf

    2015-01-01

    The fundamental step in brain research deals with recording electroencephalogram (EEG) signals and then investigating the recorded signals quantitatively. Topographic EEG (visual spatial representation of EEG signal) is commonly referred to as brain topomaps or brain EEG maps. In this chapter, full search full search block motion estimation algorithm has been employed to track the brain activity in brain topomaps to understand the mechanism of brain wiring. The behavior of EEG topomaps is examined throughout a particular brain activation with respect to time. Motion vectors are used to track the brain activation over the scalp during the activation period. Using motion estimation it is possible to track the path from the starting point of activation to the final point of activation. Thus it is possible to track the path of a signal across various lobes.

  17. Nonlinear analysis of brain activity in magnetic influenced Parkinson patients.

    PubMed

    Anninos, P A; Adamopoulos, A V; Kotini, A; Tsagas, N

    2000-01-01

    Magnetoencephalogram (MEG) recordings were obtained from the brain of patients suffering from Parkinson's disease (PD) using the Superconductive Quantum Interference Device (SQUID). For each patient the magnetic activity was recorded from a total of 64 points of the skull (32 points from each temporal lobe) as defined by a recording reference system, which is based on the 10-20 Electrode Placement System. Some of the recorded points were observed to exhibit abnormal rhythmic activity, characterized by high amplitudes and low frequencies. External magnetic stimulation (EMS) with intensity 1-7.5pT, and frequency the alpha-rhythm of the patient (8-13 Hz) was applied in the left-right temporal, frontal-occipital and vertex (2 minutes over each of the above regions) and the brain magnetic activity was recorded again. The application of the EMS resulted in rapid attenuation of the MEG activity of PD patients. Furthermore, chaotic dynamic methods were used, in order to estimate the correlation dimension D of the reconstructed phase spaces. The estimated values of D, in conjunction with the results derived from the other data analysis methods, strongly support the existence of low dimension chaotic structures in the dynamics of cortical activity of PD patients. In addition, the increased values of D of the MEG after the application of EMS when compared with the corresponding ones obtained from the MEGs prior to the EMS, suggest that the neural dynamics are strongly influenced by the application of EMS. PMID:11154103

  18. Source localization of brain activity using helium-free interferometer

    NASA Astrophysics Data System (ADS)

    Dammers, Jürgen; Chocholacs, Harald; Eich, Eberhard; Boers, Frank; Faley, Michael; Dunin-Borkowski, Rafal E.; Jon Shah, N.

    2014-05-01

    To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-Tc) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localization of neuromagnetic activity is indeed possible using high-Tc SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-Tc SQUID-based MEG systems.

  19. Modulation of Fgf8 activity during vertebrate brain development.

    PubMed

    Echevarria, Diego; Belo, Jose Antonio; Martinez, Salvador

    2005-09-01

    In recent years much emphasis has been placed on investigation of the precise control of FGF signaling during brain development. Such control is achieved in part by regulatory elements that determine the domains and levels of expression of genes coding for the diverse FGF ligands via specific molecular signaling pathways. There is new knowledge on the operation of such mechanisms in regions of the neural tube involved in the correct patterning of adjacent territories (known as secondary organizers of neural tube pattern). In the present minireview we intend to summarize recent evidence and emerging conclusions on potent modulators that govern the activity of Fgf8 signals in the developing vertebrate brain, focusing our attention on the best known secondary organizer, the isthmic organizer.

  20. Source localization of brain activity using helium-free interferometer

    SciTech Connect

    Dammers, Jürgen Chocholacs, Harald; Eich, Eberhard; Boers, Frank; Faley, Michael; Dunin-Borkowski, Rafal E.; Jon Shah, N.

    2014-05-26

    To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-T{sub c}) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localization of neuromagnetic activity is indeed possible using high-T{sub c} SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-T{sub c} SQUID-based MEG systems.

  1. Brain mechanical property measurement using MRE with intrinsic activation

    NASA Astrophysics Data System (ADS)

    Weaver, John B.; Pattison, Adam J.; McGarry, Matthew D.; Perreard, Irina M.; Swienckowski, Jessica G.; Eskey, Clifford J.; Lollis, S. Scott; Paulsen, Keith D.

    2012-11-01

    , termed intrinsic activation, produces sufficient motion to allow mechanical properties to be recovered. The poroelastic model is more consistent with the measured data from brain at low frequencies than the linear elastic model. Intrinsic activation allows MRE to be performed without a device shaking the head so the patient notices no differences between it and the other sequences in an MR examination.

  2. Differential investment in visual and olfactory brain areas reflects behavioural choices in hawk moths

    PubMed Central

    Stöckl, Anna; Heinze, Stanley; Charalabidis, Alice; el Jundi, Basil; Warrant, Eric; Kelber, Almut

    2016-01-01

    Nervous tissue is one of the most metabolically expensive animal tissues, thus evolutionary investments that result in enlarged brain regions should also result in improved behavioural performance. Indeed, large-scale comparative studies in vertebrates and invertebrates have successfully linked differences in brain anatomy to differences in ecology and behaviour, but their precision can be limited by the detail of the anatomical measurements, or by only measuring behaviour indirectly. Therefore, detailed case studies are valuable complements to these investigations, and have provided important evidence linking brain structure to function in a range of higher-order behavioural traits, such as foraging experience or aggressive behaviour. Here, we show that differences in the size of both lower and higher-order sensory brain areas reflect differences in the relative importance of these senses in the foraging choices of hawk moths, as suggested by previous anatomical work in Lepidopterans. To this end we combined anatomical and behavioural quantifications of the relative importance of vision and olfaction in two closely related hawk moth species. We conclude that differences in sensory brain volume in these hawk moths can indeed be interpreted as differences in the importance of these senses for the animal’s behaviour. PMID:27185464

  3. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid

    PubMed Central

    Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R.; Masliah, Eliezer; Lipton, Stuart A.

    2015-01-01

    Cyanide is a life threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species (ROS). This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain-barrier to upregulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human induced pluripotent stem cell (hiPSC)-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino (NSA) mouse model of cyanide poisoning that simulates damage observed in the human brain. PMID:25692407

  4. Cell proliferation and death in the brain of active and hibernating frogs

    PubMed Central

    Cerri, Silvia; Bottiroli, Giovanni; Bottone, Maria Grazia; Barni, Sergio; Bernocchi, Graziella

    2009-01-01

    ‘Binomial’ cell proliferation and cell death have been studied in only a few non-mammalian vertebrates, such as fish. We thought it of interest to map cell proliferation/apoptosis in the brain of the frog (Rana esculenta L.) as this animal species undergoes, during the annual cycle, physiological events that could be associated with central nervous system damage. Therefore, we compared the active period and the deep underground hibernation of the frog. Using western blot analysis for proliferating cell nuclear antigen (PCNA), we revealed a positive 36 kDa band in all samples and found higher optical density values in the hibernating frogs than in active frogs. In both active and hibernating frogs, we found regional differences in PCNA-immunoreactive cells and terminal transferase dUTP nick-end labelling apoptotic cells in the ventricular zones and parenchyma areas of the main encephalon subdivisions. During the active period of the frogs, the highest concentration of PCNA-immunoreactive cells was found in the ventricle dorsal zone of the cerebral hemispheres but only some of the cells were apoptotic. By contrast, the tectal and cerebellar ventricular zones had a small or medium amount of PCNA-immunoreactive cells, respectively, and a higher number of apoptotic cells. During hibernation, an increased PCNA-immunoreactive cell number was observed in both the brain ventricles and parenchyma compared with active frogs. This increase was primarily evident in the lateral ventricles, a region known to be a proliferation ‘hot spot’. Although differences existed among the brain areas, a general increase of apoptotic cell death was found in hibernating frogs, with the highest number of apoptotic cells being detected in the parenchyma of the cerebral hemispheres and optic tectum. In particular, the increased number of apoptotic cells in the hibernating frogs compared with active frogs in the parenchyma of these brain areas occurred when cell proliferation was higher in

  5. Cell proliferation and death in the brain of active and hibernating frogs.

    PubMed

    Cerri, Silvia; Bottiroli, Giovanni; Bottone, Maria Grazia; Barni, Sergio; Bernocchi, Graziella

    2009-08-01

    'Binomial' cell proliferation and cell death have been studied in only a few non-mammalian vertebrates, such as fish. We thought it of interest to map cell proliferation/apoptosis in the brain of the frog (Rana esculenta L.) as this animal species undergoes, during the annual cycle, physiological events that could be associated with central nervous system damage. Therefore, we compared the active period and the deep underground hibernation of the frog. Using western blot analysis for proliferating cell nuclear antigen (PCNA), we revealed a positive 36 kDa band in all samples and found higher optical density values in the hibernating frogs than in active frogs. In both active and hibernating frogs, we found regional differences in PCNA-immunoreactive cells and terminal transferase dUTP nick-end labelling apoptotic cells in the ventricular zones and parenchyma areas of the main encephalon subdivisions. During the active period of the frogs, the highest concentration of PCNA-immunoreactive cells was found in the ventricle dorsal zone of the cerebral hemispheres but only some of the cells were apoptotic. By contrast, the tectal and cerebellar ventricular zones had a small or medium amount of PCNA-immunoreactive cells, respectively, and a higher number of apoptotic cells. During hibernation, an increased PCNA-immunoreactive cell number was observed in both the brain ventricles and parenchyma compared with active frogs. This increase was primarily evident in the lateral ventricles, a region known to be a proliferation 'hot spot'. Although differences existed among the brain areas, a general increase of apoptotic cell death was found in hibernating frogs, with the highest number of apoptotic cells being detected in the parenchyma of the cerebral hemispheres and optic tectum. In particular, the increased number of apoptotic cells in the hibernating frogs compared with active frogs in the parenchyma of these brain areas occurred when cell proliferation was higher in the

  6. Action sentences activate sensory motor regions in the brain independently of their status of reality.

    PubMed

    de Vega, Manuel; León, Inmaculada; Hernández, Juan A; Valdés, Mitchell; Padrón, Iván; Ferstl, Evelyn C

    2014-07-01

    Some studies have reported that understanding concrete action-related words and sentences elicits activations of motor areas in the brain. The present fMRI study goes one step further by testing whether this is also the case for comprehension of nonfactual statements. Three linguistic structures were used (factuals, counterfactuals, and negations), referring either to actions or, as a control condition, to visual events. The results showed that action sentences elicited stronger activations than visual sentences in the SMA, extending to the primary motor area, as well as in regions generally associated with the planning and understanding of actions (left superior temporal gyrus, left and right supramarginal gyri). Also, we found stronger activations for action sentences than for visual sentences in the extrastriate body area, a region involved in the visual processing of human body movements. These action-related effects occurred not only in factuals but also in negations and counterfactuals, suggesting that brain regions involved in action understanding and planning are activated by default even when the actions are described as hypothetical or as not happening. Moreover, some of these regions overlapped with those activated during the observation of action videos, indicating that the act of understanding action language and that of observing real actions share neural networks. These results support the claim that embodied representations of linguistic meaning are important even in abstract linguistic contexts.

  7. Hypometabolism of watershed areas of the brain in HTLV-1-associated myelopathy/tropical spastic paraparesis.

    PubMed

    Taniguchi, Akitoshi; Mochizuki, Hitoshi; Nagamachi, Shigeki; Ebihara, Yuka; Ishii, Nobuyuki; Shiomi, Kazutaka; Nakazato, Masamitsu

    2015-11-01

    In previous studies of human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), areas of slow blood flow in the spinal cord were related to pathological changes. While the pathological changes in the brain are milder than those in the spinal cord, they are also more significant in sites with slow blood flow. In this study, we investigated brain glucose metabolism in slow blood flow areas using fluorine-18 fluorodeoxyglucose positron emission tomography ((18)F-FDG-PET). Clinical features and brain (18)F-FDG-PET parameters were analyzed in six patients with HAM/TSP. For comparison of PET data, eight healthy volunteers were enrolled as normal controls (NLs). Glucose metabolism in the watershed areas of the middle and posterior cerebral arteries, as compared with that in the occipital lobes as a control, was significantly lower in HAM/TSP patients than in NLs. This result confirmed the relationship between slow blood flow areas and hypometabolism in HAM/TSP, and is consistent with previous findings that pathological changes are accentuated in sites with slow blood flow.

  8. Measuring emotion in advertising research: prefrontal brain activity.

    PubMed

    Silberstein, Richard B; Nield, Geoffrey E

    2012-01-01

    With the current interest in the role of emotion in advertising and advertising research, there has been an increasing interest in the use of various brain activity measures to access nonverbal emotional responses. One such approach relies on measuring the difference between left and right hemisphere prefrontal cortical activity to assess like and dislike. This approach is based on electroencephalography (EEG) and neuroimaging work, suggesting that the approach/withdrawal (frequently but not always associated with like/dislike) dimension of emotion is indicated by the balance of activity between the left and right prefrontal cortex. Much of this work was initiated by Richard Davidson in the early 1990s. An early study by Davidson et al. measured brain electrical activity to assess patterns of activation during the experience of happiness and disgust. The authors reported that disgust was found to be associated with increased right-sided activation in the frontal and anterior temporal regions compared with happiness. In contrast, happiness was found to be accompanied by left-sided activation in the anterior temporal region compared with disgust. Early reports suggested that frontal laterality indexes motivational valence with positive emotions (happy, like) associated with left greater than the right frontal activity and vice versa. Although these findings appear to be consistent with personality traits (e.g., optimism pessimism), state changes in frontal laterality appears to index approach withdraw rather than emotional valence. Interestingly, the behavioral and motivational correlates of prefrontal asymmetric activity are not restricted to humans or even primates but have been observed in numerous species such as birds and fish (see [4]). Henceforth, we use the term motivational valence (MV) rather than the more cumbersome term approach withdraw. PMID:22678836

  9. Alterations of Regional Spontaneous Brain Activity and Gray Matter Volume in the Blind

    PubMed Central

    Jiang, Aili; Tian, Jing; Li, Rui; Liu, Yong; Jiang, Tianzi; Qin, Wen; Yu, Chunshui

    2015-01-01

    Visual deprivation can induce alterations of regional spontaneous brain activity (RSBA). However, the effects of onset age of blindness on the RSBA and the association between the alterations of RSBA and brain structure are still unclear in the blind. In this study, we performed resting-state functional and structural magnetic resonance imaging on 50 sighted controls and 91 blind subjects (20 congenitally blind, 27 early blind, and 44 late blind individuals). Compared with the sighted control, we identified increased RSBA in the blind in primary and high-level visual areas and decreased RSBA in brain regions which are ascribed to sensorimotor and salience networks. In contrast, blind subjects exhibited significantly decreased gray matter volume (GMV) in the visual areas, while they exhibited significantly increased GMV in the sensorimotor areas. Moreover, the onset age of blindness was negatively correlated with the GMV of visual areas in blind subjects, whereas it exerted complex influences on the RSBA. Finally, significant negative correlations were shown between RSBA and GMV values. Our results demonstrated system-dependent, inverse alterations in RSBA and GMV after visual deprivation. Furthermore, the onset age of blindness has different effects on the reorganizations in RSBA and GMV. PMID:26568891

  10. Alterations of Regional Spontaneous Brain Activity and Gray Matter Volume in the Blind.

    PubMed

    Jiang, Aili; Tian, Jing; Li, Rui; Liu, Yong; Jiang, Tianzi; Qin, Wen; Yu, Chunshui

    2015-01-01

    Visual deprivation can induce alterations of regional spontaneous brain activity (RSBA). However, the effects of onset age of blindness on the RSBA and the association between the alterations of RSBA and brain structure are still unclear in the blind. In this study, we performed resting-state functional and structural magnetic resonance imaging on 50 sighted controls and 91 blind subjects (20 congenitally blind, 27 early blind, and 44 late blind individuals). Compared with the sighted control, we identified increased RSBA in the blind in primary and high-level visual areas and decreased RSBA in brain regions which are ascribed to sensorimotor and salience networks. In contrast, blind subjects exhibited significantly decreased gray matter volume (GMV) in the visual areas, while they exhibited significantly increased GMV in the sensorimotor areas. Moreover, the onset age of blindness was negatively correlated with the GMV of visual areas in blind subjects, whereas it exerted complex influences on the RSBA. Finally, significant negative correlations were shown between RSBA and GMV values. Our results demonstrated system-dependent, inverse alterations in RSBA and GMV after visual deprivation. Furthermore, the onset age of blindness has different effects on the reorganizations in RSBA and GMV. PMID:26568891

  11. Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities

    NASA Astrophysics Data System (ADS)

    El Houssaini, Kenza; Ivanov, Anton I.; Bernard, Christophe; Jirsa, Viktor K.

    2015-01-01

    Epilepsy, refractory status epilepticus, and depolarization block are pathological brain activities whose mechanisms are poorly understood. Using a generic mathematical model of seizure activity, we show that these activities coexist under certain conditions spanning the range of possible brain activities. We perform a detailed bifurcation analysis and predict strategies to escape from some of the pathological states. Experimental results using rodent data provide support of the model, highlighting the concept that these pathological activities belong to the endogenous repertoire of brain activities.

  12. Hypoxia-Ischemia or Excitotoxin-Induced Tissue Plasminogen Activator- Dependent Gelatinase Activation in Mice Neonate Brain Microvessels

    PubMed Central

    Omouendze, Priscilla L.; Henry, Vincent J.; Porte, Baptiste; Dupré, Nicolas; Carmeliet, Peter; Gonzalez, Bruno J.; Marret, Stéphane; Leroux, Philippe

    2013-01-01

    Hypoxia-ischemia (HI) and excitotoxicity are validated causes of neonatal brain injuries and tissue plasminogen activator (t-PA) participates in the processes through proteolytic and receptor-mediated pathways. Brain microvascular endothelial cells from neonates in culture, contain and release more t-PA and gelatinases upon glutamate challenge than adult cells. We have studied t-PA to gelatinase (MMP-2 and MMP-9) activity links in HI and excitotoxicity lesion models in 5 day–old pups in wild type and in t-PA or its inhibitor (PAI-1) genes inactivated mice. Gelatinolytic activities were detected in SDS-PAGE zymograms and by in situ fluorescent DQ-gelatin microscopic zymographies. HI was achieved by unilateral carotid ligature followed by a 40 min hypoxia (8%O2). Excitotoxic lesions were produced by intra parenchymal cortical (i.c.) injections of 10 µg ibotenate (Ibo). Gel zymograms in WT cortex revealed progressive extinction of MMP-2 and MMP-9 activities near day 15 or day 8 respectively. MMP-2 expression was the same in all strains while MMP-9 activity was barely detectable in t-PA−/− and enhanced in PAI-1−/− mice. HI or Ibo produced activation of MMP-2 activities 6 hours post-insult, in cortices of WT mice but not in t-PA−/− mice. In PAI-1−/− mice, HI or vehicle i.c. injection increased MMP-2 and MMP-9 activities. In situ zymograms using DQ-gelatin revealed vessel associated gelatinolytic activity in lesioned areas in PAI-1−/− and in WT mice. In WT brain slices incubated ex vivo, glutamate (200 µM) induced DQ-gelatin activation in vessels. The effect was not detected in t-PA−/−mice, but was restored by concomitant exposure to recombinant t-PA (20 µg/mL). In summary, neonatal brain lesion paradigms and ex vivo excitotoxic glutamate evoked t-PA-dependent gelatinases activation in vessels. Both MMP-2 and MMP-9 activities appeared t-PA-dependent. The data suggest that vascular directed protease inhibition may have neuroprotection

  13. Contextual cues associated with nicotine administration increase arc mRNA expression in corticolimbic areas of the rat brain.

    PubMed

    Schiltz, Craig A; Kelley, Ann E; Landry, Charles F

    2005-03-01

    Conditioned responses to cues associated with the administration of drugs of misuse are an impediment to continued abstinence for drug-free addicted individuals. In order to study the neuroanatomical and cellular response of the brain to cues associated with nicotine administration, we conditioned Sprague-Dawley rats to receive an ascending dose regimen of nicotine over 14 days in two distinct non-home cage environments and assessed expression of the early response gene arc in corticolimbic areas in response to the nicotine-associated context. All of the rats received the same dose regimen of nicotine. Three days after the last training day, the rats were exposed to the test environment. The rats that had previously received nicotine exhibited increased motor activity compared with the rats that had received saline in the test environment. After 45 min in the test environment, brains were taken for Northern blotting and in situ hybridization analysis, which revealed an increase in levels of activity-regulated, dendritically localized mRNA for arc in a variety of brain regions (medial and lateral prefrontal cortices, cingulate cortex, primary sensory cortex, sensorimotor cortex, ventral striatum and amygdala). Plasma corticosterone levels were not different between the groups, suggesting that exposure to nicotine cues is insufficient to activate the hypothalamo-pituitary-adrenal axis. Given that Arc plays a direct role in neuronal plasticity and memory consolidation, its induction by nicotine-associated cues in brain regions critical for cognitive and emotional processing suggests that rats may be learning that these cues are no longer necessarily predictive of nicotine administration. Further work will be needed in order to assess the role of arc expression in the extinction of conditioned responses to drug-paired cues.

  14. Changes in music tempo entrain movement related brain activity.

    PubMed

    Daly, Ian; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Roesch, Etienne; Weaver, James; Williams, Duncan; Miranda, Eduardo; Nasuto, Slawomir J

    2014-01-01

    The neural mechanisms of music listening and appreciation are not yet completely understood. Based on the apparent relationship between the beats per minute (tempo) of music and the desire to move (for example feet tapping) induced while listening to that music it is hypothesised that musical tempo may evoke movement related activity in the brain. Participants are instructed to listen, without moving, to a large range of musical pieces spanning a range of styles and tempos during an electroencephalogram (EEG) experiment. Event-related desynchronisation (ERD) in the EEG is observed to correlate significantly with the variance of the tempo of the musical stimuli. This suggests that the dynamics of the beat of the music may induce movement related brain activity in the motor cortex. Furthermore, significant correlations are observed between EEG activity in the alpha band over the motor cortex and the bandpower of the music in the same frequency band over time. This relationship is observed to correlate with the strength of the ERD, suggesting entrainment of motor cortical activity relates to increased ERD strength. PMID:25571015

  15. The sequential structure of brain activation predicts skill.

    PubMed

    Anderson, John R; Bothell, Daniel; Fincham, Jon M; Moon, Jungaa

    2016-01-29

    In an fMRI study, participants were trained to play a complex video game. They were scanned early and then again after substantial practice. While better players showed greater activation in one region (right dorsal striatum) their relative skill was better diagnosed by considering the sequential structure of whole brain activation. Using a cognitive model that played this game, we extracted a characterization of the mental states that are involved in playing a game and the statistical structure of the transitions among these states. There was a strong correspondence between this measure of sequential structure and the skill of different players. Using multi-voxel pattern analysis, it was possible to recognize, with relatively high accuracy, the cognitive states participants were in during particular scans. We used the sequential structure of these activation-recognized states to predict the skill of individual players. These findings indicate that important features about information-processing strategies can be identified from a model-based analysis of the sequential structure of brain activation. PMID:26707716

  16. Brain Activity Associated with Emoticons: An fMRI Study

    NASA Astrophysics Data System (ADS)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe that brain activities associated with emoticons by using fMRI. In communication over a computer network, we use abstract faces such as computer graphics (CG) avatars and emoticons. These faces convey users' emotions and enrich their communications. However, the manner in which these faces influence the mental process is as yet unknown. The human brain may perceive the abstract face in an entirely different manner, depending on its level of reality. We conducted an experiment using fMRI in order to investigate the effects of emoticons. The results show that right inferior frontal gyrus, which associated with nonverbal communication, is activated by emoticons. Since the emoticons were created to reflect the real human facial expressions as accurately as possible, we believed that they would activate the right fusiform gyrus. However, this region was not found to be activated during the experiment. This finding is useful in understanding how abstract faces affect our behaviors and decision-making in communication over a computer network.

  17. Changes in music tempo entrain movement related brain activity.

    PubMed

    Daly, Ian; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Roesch, Etienne; Weaver, James; Williams, Duncan; Miranda, Eduardo; Nasuto, Slawomir J

    2014-01-01

    The neural mechanisms of music listening and appreciation are not yet completely understood. Based on the apparent relationship between the beats per minute (tempo) of music and the desire to move (for example feet tapping) induced while listening to that music it is hypothesised that musical tempo may evoke movement related activity in the brain. Participants are instructed to listen, without moving, to a large range of musical pieces spanning a range of styles and tempos during an electroencephalogram (EEG) experiment. Event-related desynchronisation (ERD) in the EEG is observed to correlate significantly with the variance of the tempo of the musical stimuli. This suggests that the dynamics of the beat of the music may induce movement related brain activity in the motor cortex. Furthermore, significant correlations are observed between EEG activity in the alpha band over the motor cortex and the bandpower of the music in the same frequency band over time. This relationship is observed to correlate with the strength of the ERD, suggesting entrainment of motor cortical activity relates to increased ERD strength.

  18. Lateralization of brain activity pattern during unilateral movement in Parkinson's disease.

    PubMed

    Wu, Tao; Hou, Yanan; Hallett, Mark; Zhang, Jiarong; Chan, Piu

    2015-05-01

    We investigated the lateralization of brain activity pattern during performance of unilateral movement in drug-naïve Parkinson's disease (PD) patients with only right hemiparkinsonian symptoms. Functional MRI was obtained when the subjects performed strictly unilateral right hand movement. A laterality index was calculated to examine the lateralization. Patients had decreased activity in the left putamen and left supplementary motor area, but had increased activity in the right primary motor cortex, right premotor cortex, left postcentral gyrus, and bilateral cerebellum. The laterality index was significantly decreased in PD patients compared with controls (0.41 ± 0.14 vs. 0.84 ± 0.09). The connectivity from the left putamen to cortical motor regions and cerebellum was decreased, while the interactions between the cortical motor regions, cerebellum, and right putamen were increased. Our study demonstrates that in early PD, the lateralization of brain activity during unilateral movement is significantly reduced. The dysfunction of the striatum-cortical circuit, decreased transcallosal inhibition, and compensatory efforts from cortical motor regions, cerebellum, and the less affected striatum are likely reasons contributing to the reduced motor lateralization. The disruption of the lateralized brain activity pattern might be a reason underlying some motor deficits in PD, like mirror movements or impaired bilateral motor coordination. PMID:25644527

  19. Lateralization of brain activity pattern during unilateral movement in Parkinson's disease.

    PubMed

    Wu, Tao; Hou, Yanan; Hallett, Mark; Zhang, Jiarong; Chan, Piu

    2015-05-01

    We investigated the lateralization of brain activity pattern during performance of unilateral movement in drug-naïve Parkinson's disease (PD) patients with only right hemiparkinsonian symptoms. Functional MRI was obtained when the subjects performed strictly unilateral right hand movement. A laterality index was calculated to examine the lateralization. Patients had decreased activity in the left putamen and left supplementary motor area, but had increased activity in the right primary motor cortex, right premotor cortex, left postcentral gyrus, and bilateral cerebellum. The laterality index was significantly decreased in PD patients compared with controls (0.41 ± 0.14 vs. 0.84 ± 0.09). The connectivity from the left putamen to cortical motor regions and cerebellum was decreased, while the interactions between the cortical motor regions, cerebellum, and right putamen were increased. Our study demonstrates that in early PD, the lateralization of brain activity during unilateral movement is significantly reduced. The dysfunction of the striatum-cortical circuit, decreased transcallosal inhibition, and compensatory efforts from cortical motor regions, cerebellum, and the less affected striatum are likely reasons contributing to the reduced motor lateralization. The disruption of the lateralized brain activity pattern might be a reason underlying some motor deficits in PD, like mirror movements or impaired bilateral motor coordination.

  20. Using real-time fMRI to control a dynamical system by brain activity classification.

    PubMed

    Eklund, Anders; Ohlsson, Henrik; Andersson, Mats; Rydell, Joakim; Ynnerman, Anders; Knutsson, Hans

    2009-01-01

    We present a method for controlling a dynamical system using real-time fMRI. The objective for the subject in the MR scanner is to balance an inverted pendulum by activating the left or right hand or resting. The brain activity is classified each second by a neural network and the classification is sent to a pendulum simulator to change the force applied to the pendulum. The state of the inverted pendulum is shown to the subject in a pair of VR goggles. The subject was able to balance the inverted pendulum during several minutes, both with real activity and imagined activity. In each classification 9000 brain voxels were used and the response time for the system to detect a change of activity was on average 2-4 seconds. The developments here have a potential to aid people with communication disabilities, such as locked in people. Another future potential application can be to serve as a tool for stroke and Parkinson patients to be able to train the damaged brain area and get real-time feedback for more efficient training.

  1. [Spectrofluorometric determination of dopamine in small areas of rat brain (author's transl)].

    PubMed

    López-Novoa, J M; Martínez-Conde, E; Fraile, A

    1977-03-01

    A method for the extraction and quantification of Dopamine from small areas of rat brain has been developed. The extraction with solvents eliminates the column cromatography separations and allows the simultaneous processing of a good number of samples. Sample retrieval is quite high (70%) and very reproducible. The evaluation was made from areas with a minimal weight of 0.225 g. The quantification of Dopamine was obtained using spectrofluorometric techniques, reading the fluorescence of the trihydroxy indol derivate. The linear relation between the instrument readings and the concentration of Dopamine is from 0 to 0.5 microng/ml. The maximal concentration of Dopamine was found in the decorticated cerebral hemispheres (1.485 microng/g), the next highest values in the diencephalon (1.046 microng/), and the minimal concentration in the cerebellum (0.283 microng/g). The concentration of the whole brain was 0.701 microng/g.

  2. Brain activation during visual working memory correlates with behavioral mobility performance in older adults.

    PubMed

    Kawagoe, Toshikazu; Suzuki, Maki; Nishiguchi, Shu; Abe, Nobuhito; Otsuka, Yuki; Nakai, Ryusuke; Yamada, Minoru; Yoshikawa, Sakiko; Sekiyama, Kaoru

    2015-01-01

    Functional mobility and cognitive function often decline with age. We previously found that functional mobility as measured by the Timed Up and Go Test (TUG) was associated with cognitive performance for visually-encoded (i.e., for location and face) working memory (WM) in older adults. This suggests a common neural basis between TUG and visual WM. To elucidate this relationship further, the present study aimed to examine the neural basis for the WM-mobility association. In accordance with the well-known neural compensation model in aging, we hypothesized that "attentional" brain activation for easy WM would increase in participants with lower mobility. The data from 32 healthy older adults were analyzed, including brain activation during easy WM tasks via functional Magnetic Resonance Imaging (fMRI) and mobility performance via both TUG and a simple walking test. WM performance was significantly correlated with TUG but not with simple walking. Some prefrontal brain activations during WM were negatively correlated with TUG performance, while positive correlations were found in subcortical structures including the thalamus, putamen and cerebellum. Moreover, activation of the subcortical regions was significantly correlated with WM performance, with less activation for lower WM performers. These results indicate that older adults with lower mobility used more cortical (frontal) and fewer subcortical resources for easy WM tasks. To date, the frontal compensation has been proposed separately in the motor and cognitive domains, which have been assumed to compensate for dysfunction of the other brain areas; however, such dysfunction was less clear in previous studies. The present study observed such dysfunction as degraded activation associated with lower performance, which was found in the subcortical regions. We conclude that a common dysfunction-compensation activation pattern is likely the neural basis for the association between visual WM and functional mobility.

  3. Do human brain areas involved in visuomotor actions show a preference for real tools over visually similar non-tools?

    PubMed

    Macdonald, Scott N; Culham, Jody C

    2015-10-01

    Neuroimaging has revealed a left-lateralized network of brain areas implicated in understanding the conceptual and sensorimotor aspects of tool perception and tool use. Often this network of areas is identified by contrasting brain activity when participants view pictures of tools vs. pictures of non-tools (e.g., animals or buildings). It is unclear, however, what aspect of tools drive activity in the tool network as both tools and non-tools tend to differ in their low-level features. For instance, areas in the tool network may simply activate to elongated objects or to handheld objects over round or ungraspable objects irrespective of object category. To test whether tools indeed drive activity in tool-selective areas over non-tools, participants passively viewed real tools and non-tools matched on low-level features during functional magnetic resonance imaging (fMRI). To maximize the potential for action, participants saw real-tools as opposed to pictures of tools. The non-tools were created by chopping the business ends of tools into pieces and attaching the pieces to both ends of the original tool handles. In doing so, the tools and non-tools were matched for elongation and real-world size. Importantly, tools and non-tools were viewed directly without the use of mirrors and placed within the participants' reach. Stimuli were presented at two opposite horizontal orientations to investigate whether areas that are selective for tools also show greater activation when the tool's handle is directed towards the hand as opposed to away from it. Our results showed that, even after the low-level differences between tools and non-tools were controlled, tools evoked more activation in the tool network as well as in sensorimotor areas. The orientation of the tool handles did not mediate effects within these sensorimotor areas. In sum, when we passively view tools, even without an intent to act, functional associations are automatically evoked and these associations are not

  4. Distinct resting-state brain activity in patients with functional constipation.

    PubMed

    Zhu, Qiang; Cai, Weiwei; Zheng, Jianyong; Li, Guanya; Meng, Qianqian; Liu, Qiaoyun; Zhao, Jizheng; von Deneen, Karen M; Wang, Yuanyuan; Cui, Guangbin; Duan, Shijun; Han, Yu; Wang, Huaning; Tian, Jie; Zhang, Yi; Nie, Yongzhan

    2016-10-01

    Functional constipation (FC) is a common functional gastrointestinal disorder (FGID) with a higher prevalence in clinical practice. The primary brain regions involved in emotional arousal regulation, somatic, sensory and motor control processing have been identified with neuroimaging in FGID. It remains unclear how these factors interact to influence the baseline brain activity of patients with FC. In the current study, we combined resting-state fMRI (RS-fMRI) with Granger causality analysis (GCA) to investigate the causal interactions of the brain areas in 14 patients with FC and in 26 healthy controls (HC). Our data showed significant differences in baseline brain activities in a number of major brain regions implicated in emotional process modulation (i.e. dorsal anterior cingulate cortex-dACC, anterior insula-aINS, orbitofrontal cortex-OFC, hippocampus-HIPP), somatic and sensory processing, and motor control (i.e., supplementary motor area-SMA, precentral gyrus-PreCen) (P<0.05, FDR correction). The GCA results revealed stronger effective connectivity from the OFC and dACC, which are regions involved with emotional regulation, propel limbic regions at the aINS and HIPP to induce abnormal emotional processing regulating visceral responses; and weaker effective connectivity from the SMA and PreCen, which are regions involved with somatic, sensory and motor control, propel the aINS and HIPP, suggesting abnormalities of sensory and behavioral responses. Such information of basal level functional abnormalities expands our current understanding of neural mechanisms underlying functional constipation.

  5. Does the olfactory cue activate the same brain network during aging in the rat after taste potentiated odor aversion retrieval?

    PubMed

    Dardou, David; Datiche, Frédérique; Cattarelli, Martine

    2010-01-01

    Depending on the brain networks involved, aging is not accompanied by a general decrease in learning and memory capabilities. We demonstrated previously that learning and retrieval of taste potentiated odor aversion (TPOA) is preserved, and even slightly improved, in senescent rats showing some memory deficiencies in cognitive tasks (Dardou, Datiche, & Cattarelli, 2008). TPOA is a particular behavior in which the simultaneous presentation of odor and taste cues followed by a delayed visceral illness leads to a robust aversion towards both conditioned stimuli, which permits diet selection and animal survival. The present experiment was performed in order to investigate the stability or the evolution of the brain network underlying TPOA retrieval during aging. By using immunocytochemical detection of Fos and Egr1 proteins we mapped the cerebral activation induced by TPOA retrieval elicited by the odor presentation in the young, the adult and the senescent rats. The pattern of brain activation changed and the number of activated areas decreased with age. Nevertheless, the piriform cortex and the basolateral amygdala nucleus were always activated and seemed essential for TPOA retrieval. The hippocampus and the neocortical areas could have different implications in TPOA memory in relation to age. The patterns of expression of Fos and Egr1 were different, suggesting their differential involvement in TPOA retrieval. Data are discussed according to the possible roles of the brain areas studied and a model of schematic brain network subtending TPOA retrieval induced by the odor cue is proposed.

  6. The hypothermic action of carbachol in the rat brain periaqueductal grey area may involve neurotensin.

    PubMed Central

    Griffiths, E. C.; Slater, P.; Widdowson, P. S.

    1986-01-01

    Neurotensin (NT) and carbachol both caused hypothermia when injected into the periaqueductal grey area (PAG) of rat brain. Atropine prevented carbachol- but not NT-induced hypothermia. NT-induced hypothermia was unaffected by various neurotransmitter agonists and antagonists in the PAG. Both NT antibodies and thyrotrophin releasing hormone prevented carbachol hypothermia. It is concluded that the hypothermic action of carbachol in the PAG is mediated via endogenous NT. PMID:3742153

  7. Brain activity during divided and selective attention to auditory and visual sentence comprehension tasks

    PubMed Central

    Moisala, Mona; Salmela, Viljami; Salo, Emma; Carlson, Synnöve; Vuontela, Virve; Salonen, Oili; Alho, Kimmo

    2015-01-01

    Using functional magnetic resonance imaging (fMRI), we measured brain activity of human participants while they performed a sentence congruence judgment task in either the visual or auditory modality separately, or in both modalities simultaneously. Significant performance decrements were observed when attention was divided between the two modalities compared with when one modality was selectively attended. Compared with selective attention (i.e., single tasking), divided attention (i.e., dual-tasking) did not recruit additional cortical regions, but resulted in increased activity in medial and lateral frontal regions which were also activated by the component tasks when performed separately. Areas involved in semantic language processing were revealed predominantly in the left lateral prefrontal cortex by contrasting incongruent with congruent sentences. These areas also showed significant activity increases during divided attention in relation to selective attention. In the sensory cortices, no crossmodal inhibition was observed during divided attention when compared with selective attention to one modality. Our results suggest that the observed performance decrements during dual-tasking are due to interference of the two tasks because they utilize the same part of the cortex. Moreover, semantic dual-tasking did not appear to recruit additional brain areas in comparison with single tasking, and no crossmodal inhibition was observed during intermodal divided attention. PMID:25745395

  8. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks.

    PubMed

    Maniyar, Farooq Husain; Sprenger, Till; Monteith, Teshamae; Schankin, Christoph; Goadsby, Peter James

    2014-01-01

    Our aim was identify brain areas involved in the premonitory phase of migraine using functional neuroimaging. To this end, we performed positron emission tomography scans with H2(15)O to measure cerebral blood flow as a marker of neuronal activity. We conducted positron emission tomography scans at baseline, in the premonitory phase without pain and during migraine headache in eight patients. We used glyceryl trinitrate (nitroglycerin) to trigger premonitory symptoms and migraine headache in patients with episodic migraine without aura who habitually experienced premonitory symptoms during spontaneous attacks. The main outcome was comparing the first premonitory scans in all patients to baseline scans in all patients. We found activations in the posterolateral hypothalamus, midbrain tegmental area, periaqueductal grey, dorsal pons and various cortical areas including occipital, temporal and prefrontal cortex. Brain activations, in particular of the hypothalamus, seen in the premonitory phase of glyceryl trinitrate-triggered migraine attacks can explain many of the premonitory symptoms and may provide some insight into why migraine is commonly activated by a change in homeostasis.

  9. Cocaine induces DNA damage in distinct brain areas of female rats under different hormonal conditions.

    PubMed

    de Souza, Marilise F; Gonçales, Tierre A; Steinmetz, Aline; Moura, Dinara J; Saffi, Jenifer; Gomez, Rosane; Barros, Helena M T

    2014-04-01

    We evaluated levels of neuronal DNA damage after acute or repeated cocaine treatment in different brain areas of female rats after ovariectomy or sham surgery. Rats in the control and acute groups were given saline i.p., whereas in the repeated group were given 15 mg/kg, i.p., cocaine for 8 days. After a 10 day washout period, the control group was given saline i.p., whereas rats in the acute and repeated groups were given a challenge dose of 15 mg/kg, i.p., cocaine. After behavioural assessment, rats were killed and the cerebellum, hippocampus, hypothalamus, prefrontal cortex and striatum were dissected for the Comet assay. Acute cocaine exposure induced DNA damage in all brain areas. This effect persisted after repeated administration, except in the hypothalamus, where repeated treatment did not cause increased DNA damage. Sexual hormones exhibited a neuroprotective effect, decreasing cocaine-induced DNA damage in cycling rats in all brain areas. PMID:24552452

  10. Specificity and efficacy of noradrenaline, serotonin depletion in discrete brain areas of Swiss mice by neurotoxins.

    PubMed

    Dailly, Eric; Chenu, Franck; Petit-Demoulière, Benoit; Bourin, Michel

    2006-01-15

    The aim of this work is to define neurotoxins doses to have efficient and specific depletion of noradrenaline (NA), serotonin (5-HT) neurotransmission in cortex, striatum, hippocampus and hypothalamus of Swiss mice after intraperitoneal administration of, respectively, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4) and para-chlorophenylalanine methyl ester hydrochloride (PCPA). The neurotransmitters concentrations were determined by high performance liquid chromatography with amperometric detection. The minimal single dose necessary to produce a highly significant decrease of NA levels (p<0.01 in comparison with control group) in hypothalamus (-44%), hippocampus (-91%), striatum (-40%) and cortex (-68%) was 50mg/kg but DA and 5-HT levels were modified, respectively, in hypothalamus and striatum. Three doses of PCPA 300 mg/kg over 3 consecutive days involve a profound depletion of 5-HT transmission in all discrete brain areas but NA and DA levels were also significantly reduced. In conclusion, DSP-4 has a different efficacy in discrete brain areas with a noradrenergic specificity which is not absolute, PCPA has a similar efficacy in all brain areas but is unspecific of 5-HT transmission.

  11. Investigating the physiology of brain activation with MRI

    NASA Astrophysics Data System (ADS)

    Buxton, Richard B.; Uludag, Kamil; Dubowitz, David J.

    2004-04-01

    Functional magnetic resonance imaging (fMRI) has become a powerful tool for investigating the working human brain based on the blood oxygenation level dependent (BOLD) effect on the MR signal. However, despite the widespread use of fMRI techniques for mapping brain activation, the basic physiological mechanisms underlying the observed signal changes are still poorly understood. Arterial spin labeling (ASL) techniques, which measure cerebral blood flow (CBF) and the BOLD effect simultaneously, provide a useful tool for investigating these physiological questions. In this paper, recent results of studies manipulating the baseline CBF both pharmacologically and physiologically will be discussed. These data are consistent with a feed-forward mechanism of neurovascular coupling, and suggest that the CBF change itself may be a more robust reflection of neural activity changes than the BOLD effect. Consistent with these data, a new thermodynamic hypothesis is proposed for the physiological function of CBF regulation: maintenance of the [O2]/[CO2] concentration ratio at the mitochondria in order to preserve the free energy available from oxidative metabolism. A kinetic model based on this hypothesis provides a reasonable quantitative description of the CBF changes associated with neural activity and altered blood gases (CO2 and O2).

  12. The multifaceted nature of the relationship between performance and brain activity in motor sequence learning.

    PubMed

    Orban, Pierre; Peigneux, Philippe; Lungu, Ovidiu; Albouy, Geneviève; Breton, Estelle; Laberenne, Frédéric; Benali, Habib; Maquet, Pierre; Doyon, Julien

    2010-01-01

    The 'learning and performance' conundrum has for a long time puzzled the field of cognitive neuroscience. Deciphering the genuine functional neuroanatomy of motor sequence learning, among that of other skills, has thereby been hampered. The main caveat is that changes in neural activity that inherently accompany task practice may not only reflect the learning process per se, but also the basic motor implementation of improved performance. Previous research has attempted to control for a performance confound in brain activity by adopting methodologies that prevent changes in performance. However, blocking the expression of performance is likely to distort the very nature of the motor sequence learning process, and may thus represent a major confound in itself. In the present study, we postulated that both learning-dependent plasticity mechanisms and learning-independent implementation processes are nested within the relationship that exists between performance and brain activity. Functional magnetic resonance imaging (fMRI) was used to map brain responses in healthy volunteers while they either (a) learned a novel sequence, (b) produced a highly automatized sequence or (c) executed non-sequential movements matched for speed frequency. In order to dissociate between qualitatively distinct, but intertwined, relationships between performance and neural activity, our analyses focused on correlations between variations in performance and brain activity, and how this relationship differs or shares commonalities between conditions. Results revealed that activity in the putamen and contralateral lobule VI of the cerebellum most strongly correlated with performance during learning per se, suggesting their key role in this process. By contrast, activity in a parallel cerebellar network, as well as in motor and premotor cortical areas, was modulated by performance during learning and during one or both control condition(s), suggesting the primary contribution of these areas in

  13. Alzheimer Disease Alters the Relationship of Cardiorespiratory Fitness With Brain Activity During the Stroop Task

    PubMed Central

    Gayed, Matthew R.; Honea, Robyn A.; Savage, Cary R.; Hobbs, Derek; Burns, Jeffrey M.

    2013-01-01

    Background Despite mounting evidence that physical activity has positive benefits for brain and cognitive health, there has been little characterization of the relationship between cardiorespiratory (CR) fitness and cognition-associated brain activity as measured by functional magnetic resonance imaging (fMRI). The lack of evidence is particularly glaring for diseases such as Alzheimer disease (AD) that degrade cognitive and functional performance. Objective The aim of this study was to describe the relationship between regional brain activity during cognitive tasks and CR fitness level in people with and without AD. Design A case-control, single-observation study design was used. Methods Thirty-four individuals (18 without dementia and 16 in the earliest stages of AD) completed maximal exercise testing and performed a Stroop task during fMRI. Results Cardiorespiratory fitness was inversely associated with anterior cingulate activity in the participants without dementia (r=−.48, P=.05) and unassociated with activation in those with AD (P>.7). Weak associations of CR fitness and middle frontal cortex were noted. Limitations The wide age range and the use of a single task in fMRI rather than multiple tasks challenging different cognitive capacities were limitations of the study. Conclusions The results offer further support of the relationship between CR fitness and regional brain activity. However, this relationship may be attenuated by disease. Future work in this area may provide clinicians and researchers with interpretable and dependable regional fMRI biomarker signatures responsive to exercise intervention. It also may shed light on mechanisms by which exercise can support cognitive function. PMID:23559521

  14. Continuous monitoring of caspase-3 activation induced by propofol in developing mouse brain.

    PubMed

    Konno, Ayumi; Nishimura, Akiko; Nakamura, Shiro; Mochizuki, Ayako; Yamada, Atsushi; Kamijo, Ryutaro; Inoue, Tomio; Iijima, Takehiko

    2016-06-01

    The neurotoxicity of anesthetics on the developing brain has drawn the attention of anesthesiologists. Several studies have shown that apoptosis is enhanced by exposure to anesthesia during brain development. Although apoptosis is a physiological developmental step occurring before the maturation of neural networks and the integration of brain function, pathological damage also involves apoptosis. Previous studies have shown that prolonged exposure to anesthetics causes apoptosis. Exactly when the apoptotic cascade starts in the brain remains uncertain. If it starts during the early stage of anesthesia, even short-term anesthesia could harm the brain. Therefore, apoptogenesis should be continuously monitored to elucidate when the apoptotic cascade is triggered by anesthesia. Here, we describe the development of a continuous monitoring system to detect caspase-3 activation using an in vivo model. Brain slices from postnatal days 0-4 SCAT3 transgenic mice with a heterozygous genotype (n=20) were used for the monitoring of caspase-3 cleavage. SCAT3 is a fusion protein of ECFP and Venus connected by a caspase-3 cleavable peptide, DEVD. A specimen from the hippocampal CA1 sector was mounted on a confocal laser microscope and was continuously superfused with artificial cerebrospinal fluid, propofol (2,6-diisopropylphenol, 1μM or 10μM), and dimethyl sulfoxide. Images were obtained every hour for five hours. A pixel analysis of the ECFP/Venus ratio images was performed using a histogram showing the number of pixels with each ratio. In the histogram of the ECFP/Venus ratio, an area with a ratio>1 indicated the number of pixels from caspase-3-activated CA1 neurons. We observed a shift in the histogram toward the right over time, indicating caspase-3 activation. This right-ward shift dramatically changed at five hours in the propofol 1μM and 10μM groups and was obviously different from that in the control group. Thus, real-time fluorescence energy transfer (FRET) imaging

  15. Hippocampal inactivation with TTX impairs long-term spatial memory retrieval and modifies brain metabolic activity.

    PubMed

    Conejo, Nélida María; Cimadevilla, José Manuel; González-Pardo, Héctor; Méndez-Couz, Marta; Arias, Jorge Luis

    2013-01-01

    Functional inactivation techniques enable studying the hippocampal involvement in each phase of spatial memory formation in the rat. In this study, we applied tetrodotoxin unilaterally or bilaterally into the dorsal hippocampus to evaluate the role of this brain structure in retrieval of memories acquired 28 days before in the Morris water maze. We combined hippocampal inactivation with the assessment of brain metabolism using cytochrome oxidase histochemistry. Several brain regions were considered, including the hippocampus and other related structures. Results showed that both unilateral and bilateral hippocampal inactivation impaired spatial memory retrieval. Hence, whereas subjects with bilateral hippocampal inactivation showed a circular swim pattern at the side walls of the pool, unilateral inactivation favoured swimming in the quadrants adjacent to the target one. Analysis of cytochrome oxidase activity disclosed regional differences according to the degree of hippocampal functional blockade. In comparison to control group, animals with bilateral inactivation showed increased CO activity in CA1 and CA3 areas of the hippocampus during retrieval, while the activity of the dentate gyrus substantially decreased. However, unilateral inactivated animals showed decreased CO activity in Ammon's horn and the dentate gyrus. This study demonstrated that retrieval recruits differentially the hippocampal subregions and the balance between them is altered with hippocampal functional lesions.

  16. Hippocampal inactivation with TTX impairs long-term spatial memory retrieval and modifies brain metabolic activity.

    PubMed

    Conejo, Nélida María; Cimadevilla, José Manuel; González-Pardo, Héctor; Méndez-Couz, Marta; Arias, Jorge Luis

    2013-01-01

    Functional inactivation techniques enable studying the hippocampal involvement in each phase of spatial memory formation in the rat. In this study, we applied tetrodotoxin unilaterally or bilaterally into the dorsal hippocampus to evaluate the role of this brain structure in retrieval of memories acquired 28 days before in the Morris water maze. We combined hippocampal inactivation with the assessment of brain metabolism using cytochrome oxidase histochemistry. Several brain regions were considered, including the hippocampus and other related structures. Results showed that both unilateral and bilateral hippocampal inactivation impaired spatial memory retrieval. Hence, whereas subjects with bilateral hippocampal inactivation showed a circular swim pattern at the side walls of the pool, unilateral inactivation favoured swimming in the quadrants adjacent to the target one. Analysis of cytochrome oxidase activity disclosed regional differences according to the degree of hippocampal functional blockade. In comparison to control group, animals with bilateral inactivation showed increased CO activity in CA1 and CA3 areas of the hippocampus during retrieval, while the activity of the dentate gyrus substantially decreased. However, unilateral inactivated animals showed decreased CO activity in Ammon's horn and the dentate gyrus. This study demonstrated that retrieval recruits differentially the hippocampal subregions and the balance between them is altered with hippocampal functional lesions. PMID:23724089

  17. Hippocampal Inactivation with TTX Impairs Long-Term Spatial Memory Retrieval and Modifies Brain Metabolic Activity

    PubMed Central

    Conejo, Nélida María; Cimadevilla, José Manuel; González-Pardo, Héctor; Méndez-Couz, Marta; Arias, Jorge Luis

    2013-01-01

    Functional inactivation techniques enable studying the hippocampal involvement in each phase of spatial memory formation in the rat. In this study, we applied tetrodotoxin unilaterally or bilaterally into the dorsal hippocampus to evaluate the role of this brain structure in retrieval of memories acquired 28 days before in the Morris water maze. We combined hippocampal inactivation with the assessment of brain metabolism using cytochrome oxidase histochemistry. Several brain regions were considered, including the hippocampus and other related structures. Results showed that both unilateral and bilateral hippocampal inactivation impaired spatial memory retrieval. Hence, whereas subjects with bilateral hippocampal inactivation showed a circular swim pattern at the side walls of the pool, unilateral inactivation favoured swimming in the quadrants adjacent to the target one. Analysis of cytochrome oxidase activity disclosed regional differences according to the degree of hippocampal functional blockade. In comparison to control group, animals with bilateral inactivation showed increased CO activity in CA1 and CA3 areas of the hippocampus during retrieval, while the activity of the dentate gyrus substantially decreased. However, unilateral inactivated animals showed decreased CO activity in Ammon's horn and the dentate gyrus. This study demonstrated that retrieval recruits differentially the hippocampal subregions and the balance between them is altered with hippocampal functional lesions. PMID:23724089

  18. Defining Face Perception Areas in the Human Brain: A Large-Scale Factorial fMRI Face Localizer Analysis

    ERIC Educational Resources Information Center

    Rossion, Bruno; Hanseeuw, Bernard; Dricot, Laurence

    2012-01-01

    A number of human brain areas showing a larger response to faces than to objects from different categories, or to scrambled faces, have been identified in neuroimaging studies. Depending on the statistical criteria used, the set of areas can be overextended or minimized, both at the local (size of areas) and global (number of areas) levels. Here…

  19. Effects of virtual reality-based bilateral upper-extremity training on brain activity in post-stroke patients.

    PubMed

    Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee

    2015-07-01

    [Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.

  20. Maladaptive Plasticity in Aphasia: Brain Activation Maps Underlying Verb Retrieval Errors

    PubMed Central

    Durand, Edith; Marcotte, Karine; Ansaldo, Ana Inés

    2016-01-01

    Anomia, or impaired word retrieval, is the most widespread symptom of aphasia, an acquired language impairment secondary to brain damage. In the last decades, functional neuroimaging techniques have enabled studying the neural basis underlying anomia and its recovery. The present study aimed to explore maladaptive plasticity in persistent verb anomia, in three male participants with chronic nonfluent aphasia. Brain activation maps associated with semantic verb paraphasia occurring within an oral picture-naming task were identified with an event-related fMRI paradigm. These maps were compared with those obtained in our previous study examining adaptive plasticity (i.e., successful verb naming) in the same participants. The results show that activation patterns related to semantic verb paraphasia and successful verb naming comprise a number of common areas, contributing to both maladaptive and adaptive neuroplasticity mechanisms. This finding suggests that the segregation of brain areas provides only a partial view of the neural basis of verb anomia and successful verb naming. Therefore, it indicates the importance of network approaches which may better capture the complexity of maladaptive and adaptive neuroplasticity mechanisms in anomia recovery. PMID:27429808

  1. Domain-general inhibition areas of the brain are involved in language switching: fMRI evidence from trilingual speakers.

    PubMed

    de Bruin, Angela; Roelofs, Ardi; Dijkstra, Ton; Fitzpatrick, Ian

    2014-04-15

    The prevailing theory of language switching states that unbalanced bilingual speakers use inhibition to switch between their languages (Inhibitory Control or IC model; Green, 1998). Using fMRI, we examined the brain mechanisms underlying language switching and investigated the role of domain-general inhibition areas such as the right inferior frontal gyrus (rIFG) and the pre-supplementary motor area (pre-SMA). Dutch-English-German trilinguals performed a picture naming task in the MRI scanner in both a blocked-language and a mixed-language context. The rIFG and pre-SMA showed more activation for switches to the second and third language (L2 and L3) compared to non-switch trials and blocked trials. No such difference was found for switches to the first language (L1). Our results indicate that language switching recruits brain areas related to domain-general inhibition. In this way, our study supports the claim that multilinguals use inhibition to switch between their languages.

  2. Human sexual behavior related to pathology and activity of the brain.

    PubMed

    Komisaruk, Barry R; Rodriguez Del Cerro, Maria Cruz

    2015-01-01

    Reviewed in this chapter are: (1) correlations among human sexual behavior, brain pathology, and brain activity, including caveats regarding the interpretation of "cause and effect" among these factors, and the degree to which "hypersexuality" and reported changes in sexual orientation correlated with brain pathology are uniquely sexual or are attributable to a generalized disinhibition of brain function; (2) the effects, in some cases inhibitory, in others facilitatory, on sexual behavior and motivation, of stroke, epileptic seizures, traumatic brain injury, and brain surgery; and (3) insights into sexual motivation and behavior recently gained from functional brain imaging research and its interpretive limitations. We conclude from the reviewed research that the neural orchestra underlying the symphony of human sexuality comprises, rather than brain "centers," multiple integrated brain systems, and that there are more questions than answers in our understanding of the control of human sexual behavior by the brain - a level of understanding that is still in embryonic form.

  3. Accumulation of waterborne mercury(II) in specific areas of fish brain

    SciTech Connect

    Rouleau, C.; Borg-Neczak, K.; Gottofrey, J.; Tjaelve, H.

    1999-10-01

    The authors used whole-body autoradiography to study the distribution of {sup 203}Hg(II) in the central nervous system of brown (Salmo trutta) and rainbow (Oncorhynchus mykiss) trout. Fish were either exposed to waterborne Hg(II) for 7 and 21 d or they received an intravenous injection of the metal and were sacrificed 1 and 21 d later. Mercury did not accumulate in the brain after intravenous injection, indicating that the blood-brain barrier is impervious to Hg in plasma. In contrast, Hg was accumulated in specific areas of the grain and spinal cord following water exposure. The specificity of the accumulation sites strongly suggests that waterborne Hg was taken up by water-exposed receptor cells of sensory nerves and subsequently transferred toward the brain by axonal transport, a normal physiological process for the transport of organelles and dissolved neuronal constituents along nerve axons. Accumulation of Hg in ventral horn ganglis is probably the result of leaching of metal from blood into muscle followed by uptake in motor plates. Axonal transport allows waterborne inorganic Hg, and possibly other xenobiotics, to circumvent the blood-brain barrier. Considering the importance of complex behavior in the life of fish, and the well-known deleterious effects of mercury on the nervous system, the toxicological significance of this uptake route needs to be assessed.

  4. The effects of age and sex on mental rotation performance, verbal performance, and brain electrical activity.

    PubMed

    Roberts, Jonathan E; Bell, Martha Ann

    2002-05-01

    This study examined the effects of age and sex on mental rotation performance, verbal performance, and brain-wave activity. Thirty-two 8-year-olds (16 boys) and 32 college students (16 men) had EEG recorded at baseline and while performing four computerized tasks: a two-dimensional (2D) gingerbread man mental rotation, a 2D alphanumeric mental rotation, of three-dimensional (3D) basketball player mental rotation, and lexical decision making. Additionally, participants completed a paper- and pencil water level task and an oral verbal fluency task. On the 2D alphanumeric and 3D basketball player mental rotation tasks, men performed better than boys, but the performance of women and girls did not differ. On the water level task, men performed better than women whereas there was no difference between boys and girls. No sex differences were found on the 2D gingerbread man mental rotation, lexical decision-making, and verbal fluency tasks. EEG analyses indicated that men exhibited left posterior temporal activation during the 2D alphanumeric task and that men and boys both exhibited greater left parietal activation than women and girls during the 2D gingerbread man task. On the 3D basketball player mental rotation task, all participants exhibited greater activation of the right parietal area than the left parietal area. These data give insight into the brain activity and cognitive development changes that occur between childhood and adulthood.

  5. Inaudible high-frequency sounds affect brain activity: hypersonic effect.

    PubMed

    Oohashi, T; Nishina, E; Honda, M; Yonekura, Y; Fuwamoto, Y; Kawai, N; Maekawa, T; Nakamura, S; Fukuyama, H; Shibasaki, H

    2000-06-01

    Although it is generally accepted that humans cannot perceive sounds in the frequency range above 20 kHz, the question of whether the existence of such "inaudible" high-frequency components may affect the acoustic perception of audible sounds remains unanswered. In this study, we used noninvasive physiological measurements of brain responses to provide evidence that sounds containing high-frequency components (HFCs) above the audible range significantly affect the brain activity of listeners. We used the gamelan music of Bali, which is extremely rich in HFCs with a nonstationary structure, as a natural sound source, dividing it into two components: an audible low-frequency component (LFC) below 22 kHz and an HFC above 22 kHz. Brain electrical activity and regional cerebral blood flow (rCBF) were measured as markers of neuronal activity while subjects were exposed to sounds with various combinations of LFCs and HFCs. None of the subjects recognized the HFC as sound when it was presented alone. Nevertheless, the power spectra of the alpha frequency range of the spontaneous electroencephalogram (alpha-EEG) recorded from the occipital region increased with statistical significance when the subjects were exposed to sound containing both an HFC and an LFC, compared with an otherwise identical sound from which the HFC was removed (i.e., LFC alone). In contrast, compared with the baseline, no enhancement of alpha-EEG was evident when either an HFC or an LFC was presented separately. Positron emission tomography measurements revealed that, when an HFC and an LFC were presented together, the rCBF in the brain stem and the left thalamus increased significantly compared with a sound lacking the HFC above 22 kHz but that was otherwise identical. Simultaneous EEG measurements showed that the power of occipital alpha-EEGs correlated significantly with the rCBF in the left thalamus. Psychological evaluation indicated that the subjects felt the sound containing an HFC to be more

  6. Evidence for brain glial activation in chronic pain patients.

    PubMed

    Loggia, Marco L; Chonde, Daniel B; Akeju, Oluwaseun; Arabasz, Grae; Catana, Ciprian; Edwards, Robert R; Hill, Elena; Hsu, Shirley; Izquierdo-Garcia, David; Ji, Ru-Rong; Riley, Misha; Wasan, Ajay D; Zürcher, Nicole R; Albrecht, Daniel S; Vangel, Mark G; Rosen, Bruce R; Napadow, Vitaly; Hooker, Jacob M

    2015-03-01

    Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal models, the role of glial cells in human pain disorders remains unknown. Here, using the novel technology of integrated positron emission tomography-magnetic resonance imaging and the recently developed radioligand (11)C-PBR28, we show increased brain levels of the translocator protein (TSPO), a marker of glial activation, in patients with chronic low back pain. As the Ala147Thr polymorphism in the TSPO gene affects binding affinity for (11)C-PBR28, nine patient-control pairs were identified from a larger sample of subjects screened and genotyped, and compared in a matched-pairs design, in which each patient was matched to a TSPO polymorphism-, age- and sex-matched control subject (seven Ala/Ala and two Ala/Thr, five males and four females in each group; median age difference: 1 year; age range: 29-63 for patients and 28-65 for controls). Standardized uptake values normalized to whole brain were significantly higher in patients than controls in multiple brain regions, including thalamus and the putative somatosensory representations of the lumbar spine and leg. The thalamic levels of TSPO were negatively correlated with clinical pain and circulating levels of the proinflammatory citokine interleukin-6, suggesting that TSPO expression exerts pain-protective/anti-inflammatory effects in humans, as predicted by animal studies. Given the putative role of activated glia in the establishment and or maintenance of persistent pain, the present findings offer clinical implications that may serve to guide future studies of the pathophysiology and management of a variety of persistent pain conditions.

  7. Regional brain differences in cortical thickness, surface area and subcortical volume in individuals with Williams syndrome.

    PubMed

    Meda, Shashwath A; Pryweller, Jennifer R; Thornton-Wells, Tricia A

    2012-01-01

    Williams syndrome (WS) is a rare genetic neurodevelopmental disorder characterized by increased non-social anxiety, sensitivity to sounds and hypersociability. Previous studies have reported contradictory findings with regard to regional brain variation in WS, relying on only one type of morphological measure (usually volume) in each study. The present study aims to contribute to this body of literature and perhaps elucidate some of these discrepancies by examining concurrent measures of cortical thickness, surface area and subcortical volume between WS subjects and typically-developing (TD) controls. High resolution MRI scans were obtained on 31 WS subjects and 50 typically developing control subjects. We derived quantitative regional estimates of cortical thickness, cortical surface area, and subcortical volume using FreeSurfer software. We evaluated between-group ROI differences while controlling for total intracranial volume. In post-hoc exploratory analyses within the WS group, we tested for correlations between regional brain variation and Beck Anxiety Inventory scores. Consistent with our hypothesis, we detected complex patterns of between-group cortical variation, which included lower surface area in combination with greater thickness in the following cortical regions: post central gyrus, cuneus, lateral orbitofrontal cortex and lingual gyrus. Additional cortical regions showed between-group differences in one (but not both) morphological measures. Subcortical volume was lower in the basal ganglia and the hippocampus in WS versus TD controls. Exploratory correlations revealed that anxiety scores were negatively correlated with gray matter surface area in insula, OFC, rostral middle frontal, superior temporal and lingual gyrus. Our results were consistent with previous reports showing structural alterations in regions supporting the socio-affective and visuospatial impairments in WS. However, we also were able to effectively capture novel and complex

  8. When the brain simulates stopping: Neural activity recorded during real and imagined stop-signal tasks.

    PubMed

    González-Villar, Alberto J; Bonilla, F Mauricio; Carrillo-de-la-Peña, María T

    2016-10-01

    It has been suggested that mental rehearsal activates brain areas similar to those activated by real performance. Although inhibition is a key function of human behavior, there are no previous reports of brain activity during imagined response cancellation. We analyzed event-related potentials (ERPs) and time-frequency data associated with motor execution and inhibition during real and imagined performance of a stop-signal task. The ERPs characteristic of stop trials-that is, the stop-N2 and stop-P3-were also observed during covert performance of the task. Imagined stop (IS) trials yielded smaller stop-N2 amplitudes than did successful stop (SS) and unsuccessful stop (US) trials, but midfrontal theta power similar to that in SS trials. The stop-P3 amplitude for IS was intermediate between those observed for SS and US. The results may be explained by the absence of error-processing and correction processes during imagined performance. For go trials, real execution was associated with higher mu and beta desynchronization over motor areas, which confirms previous reports of lower motor activation during imagined execution and also with larger P3b amplitudes, probably indicating increased top-down attention to the real task. The similar patterns of activity observed for imagined and real performance suggest that imagination tasks may be useful for training inhibitory processes. Nevertheless, brain activation was generally weaker during mental rehearsal, probably as a result of the reduced engagement of top-down mechanisms and limited error processing. PMID:27160368

  9. Acute caffeine administration effect on brain activation patterns in mild cognitive impairment.

    PubMed

    Haller, Sven; Montandon, Marie-Louise; Rodriguez, Cristelle; Moser, Dominik; Toma, Simona; Hofmeister, Jeremy; Sinanaj, Indrit; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon

    2014-01-01

    Previous studies showed that acute caffeine administration enhances task-related brain activation in elderly individuals with preserved cognition. To explore the effects of this widely used agent on cognition and brain activation in early phases of cognitive decline, we performed a double-blinded, placebo-controlled functional magnetic resonance imaging (fMRI) study during an n-back working memory task in 17 individuals with mild cognitive impairment (MCI) compared to 17 age-matched healthy controls (HC). All individuals were regular caffeine consumers with an overnight abstinence and given 200 mg caffeine versus placebo tablets 30 minutes before testing. Analyses included assessment of task-related activation (general linear model), functional connectivity (tensorial-independent component analysis, TICA), baseline perfusion (arterial spin labeling, ASL), grey matter density (voxel-based morphometry, VBM), and white matter microstructure (tract-based spatial statistics, TBSS). Acute caffeine administration induced a focal activation of the prefrontal areas in HC with a more diffuse and posteromedial activation pattern in MCI individuals. In MCI, TICA documented a significant caffeine-related enhancement in the prefrontal cortex, supplementary motor area, ventral premotor and parietal cortex as well as the basal ganglia and cerebellum. The absence of significant group differences in baseline ASL perfusion patterns supports a neuronal rather than a purely vascular origin of these differences. The VBM and TBSS analyses excluded potentially confounding differences in grey matter density and white matter microstructure between MCI and HC. The present findings suggest a posterior displacement of working memory-related brain activation patterns after caffeine administration in MCI that may represent a compensatory mechanism to counterbalance a frontal lobe dysfunction.

  10. Differential Activation of the Amygdala and the "Social Brain" during Fearful Face-Processing in Asperger Syndrome

    ERIC Educational Resources Information Center

    Ashwin, Chris; Baron-Cohen, Simon; Wheelwright, Sally; O'Riordan, Michelle; Bullmore, Edward T.

    2007-01-01

    Impaired social cognition is a core feature of autism. There is much evidence showing people with autism use a different cognitive style than controls for face-processing. We tested if people with autism would show differential activation of social brain areas during a face-processing task. Thirteen adults with high-functioning autism or Asperger…

  11. Multi-Dimensional Dynamics of Human Electromagnetic Brain Activity

    PubMed Central

    Kida, Tetsuo; Tanaka, Emi; Kakigi, Ryusuke

    2016-01-01

    Magnetoencephalography (MEG) and electroencephalography (EEG) are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency), which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory) analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain. PMID:26834608

  12. Multi-Dimensional Dynamics of Human Electromagnetic Brain Activity.

    PubMed

    Kida, Tetsuo; Tanaka, Emi; Kakigi, Ryusuke

    2015-01-01

    Magnetoencephalography (MEG) and electroencephalography (EEG) are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency), which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory) analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain. PMID:26834608

  13. Natural image classification driven by human brain activity

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao

    2016-03-01

    Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.

  14. Smart helmet: Monitoring brain, cardiac and respiratory activity.

    PubMed

    von Rosenberg, Wilhelm; Chanwimalueang, Theerasak; Goverdovsky, Valentin; Mandic, Danilo P

    2015-01-01

    The timing of the assessment of the injuries following a road-traffic accident involving motorcyclists is absolutely crucial, particularly in the events with head trauma. Standard apparatus for monitoring cardiac activity is usually attached to the limbs or the torso, while the brain function is routinely measured with a separate unit connected to the head-mounted sensors. In stark contrast to these, we propose an integrated system which incorporates the two functionalities inside an ordinary motorcycle helmet. Multiple fabric electrodes were mounted inside the helmet at positions featuring good contact with the skin at different sections of the head. The experimental results demonstrate that the R-peaks (and therefore the heart rate) can be reliably extracted from potentials measured with electrodes on the mastoids and the lower jaw, while the electrodes on the forehead enable the observation of neural signals. We conclude that various vital sings and brain activity can be readily recorded from the inside of a helmet in a comfortable and inconspicuous way, requiring only a negligible setup effort. PMID:26736636

  15. Dynamic brain architectures in local brain activity and functional network efficiency associate with efficient reading in bilinguals.

    PubMed

    Feng, Gangyi; Chen, Hsuan-Chih; Zhu, Zude; He, Yong; Wang, Suiping

    2015-10-01

    The human brain is organized as a dynamic network, in which both regional brain activity and inter-regional connectivity support high-level cognitive processes, such as reading. However, it is still largely unknown how the functional brain network organizes to enable fast and effortless reading processing in the native language (L1) but not in a non-proficient second language (L2), and whether the mechanisms underlying local activity are associated with connectivity dynamics in large-scale brain networks. In the present study, we combined activation-based and multivariate graph-theory analysis with functional magnetic resonance imaging data to address these questions. Chinese-English unbalanced bilinguals read narratives for comprehension in Chinese (L1) and in English (L2). Compared with L2, reading in L1 evoked greater brain activation and recruited a more globally efficient but less clustered network organization. Regions with both increased network efficiency and enhanced brain activation in L1 reading were mostly located in the fronto-temporal reading-related network (RN), whereas regions with decreased global network efficiency, increased clustering, and more deactivation in L2 reading were identified in the default mode network (DMN). Moreover, functional network efficiency was closely associated with local brain activation, and such associations were also modulated by reading efficiency in the two languages. Our results demonstrate that an economical and integrative brain network topology is associated with efficient reading, and further reveal a dynamic association between network efficiency and local activation for both RN and DMN. These findings underscore the importance of considering interregional connectivity when interpreting local BOLD signal changes in bilingual reading.

  16. Dynamic brain architectures in local brain activity and functional network efficiency associate with efficient reading in bilinguals.

    PubMed

    Feng, Gangyi; Chen, Hsuan-Chih; Zhu, Zude; He, Yong; Wang, Suiping

    2015-10-01

    The human brain is organized as a dynamic network, in which both regional brain activity and inter-regional connectivity support high-level cognitive processes, such as reading. However, it is still largely unknown how the functional brain network organizes to enable fast and effortless reading processing in the native language (L1) but not in a non-proficient second language (L2), and whether the mechanisms underlying local activity are associated with connectivity dynamics in large-scale brain networks. In the present study, we combined activation-based and multivariate graph-theory analysis with functional magnetic resonance imaging data to address these questions. Chinese-English unbalanced bilinguals read narratives for comprehension in Chinese (L1) and in English (L2). Compared with L2, reading in L1 evoked greater brain activation and recruited a more globally efficient but less clustered network organization. Regions with both increased network efficiency and enhanced brain activation in L1 reading were mostly located in the fronto-temporal reading-related network (RN), whereas regions with decreased global network efficiency, increased clustering, and more deactivation in L2 reading were identified in the default mode network (DMN). Moreover, functional network efficiency was closely associated with local brain activation, and such associations were also modulated by reading efficiency in the two languages. Our results demonstrate that an economical and integrative brain network topology is associated with efficient reading, and further reveal a dynamic association between network efficiency and local activation for both RN and DMN. These findings underscore the importance of considering interregional connectivity when interpreting local BOLD signal changes in bilingual reading. PMID:26095088

  17. Does excessive play of violent first-person-shooter-video-games dampen brain activity in response to emotional stimuli?

    PubMed

    Montag, Christian; Weber, Bernd; Trautner, Peter; Newport, Beate; Markett, Sebastian; Walter, Nora T; Felten, Andrea; Reuter, Martin

    2012-01-01

    The present case-control study investigated the processing of emotional pictures in excessive first-person-shooter-video-players and control persons. All participants of the fMRI experiment were confronted with pictures from four categories including pleasant, unpleasant, neutral content and pictures from the first-person-shooter-video-game 'Counterstrike'. Compared to controls, gamers showed a significantly lower activation of the left lateral medial frontal lobe while processing negative emotions. Another interesting finding of the study represents the higher activation of frontal and temporal brain areas in gamers when processing screen-shots from the first-person-shooter-video-game 'Counterstrike'. Higher brain activity in the lateral prefrontal cortex could represent a protection mechanism against experiencing negative emotions by down-regulating limbic brain activity. Due to a frequent confrontation with violent scenes, the first-person-shooter-video-gamers might have habituated to the effects of unpleasant stimuli resulting in lower brain activation. Individual differences in brain activations of the contrast Counterstrike>neutral pictures potentially resemble the activation of action-scripts related to the video-game. PMID:21982747

  18. Does excessive play of violent first-person-shooter-video-games dampen brain activity in response to emotional stimuli?

    PubMed

    Montag, Christian; Weber, Bernd; Trautner, Peter; Newport, Beate; Markett, Sebastian; Walter, Nora T; Felten, Andrea; Reuter, Martin

    2012-01-01

    The present case-control study investigated the processing of emotional pictures in excessive first-person-shooter-video-players and control persons. All participants of the fMRI experiment were confronted with pictures from four categories including pleasant, unpleasant, neutral content and pictures from the first-person-shooter-video-game 'Counterstrike'. Compared to controls, gamers showed a significantly lower activation of the left lateral medial frontal lobe while processing negative emotions. Another interesting finding of the study represents the higher activation of frontal and temporal brain areas in gamers when processing screen-shots from the first-person-shooter-video-game 'Counterstrike'. Higher brain activity in the lateral prefrontal cortex could represent a protection mechanism against experiencing negative emotions by down-regulating limbic brain activity. Due to a frequent confrontation with violent scenes, the first-person-shooter-video-gamers might have habituated to the effects of unpleasant stimuli resulting in lower brain activation. Individual differences in brain activations of the contrast Counterstrike>neutral pictures potentially resemble the activation of action-scripts related to the video-game.

  19. Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults

    PubMed Central

    Wong, Chelsea N.; Chaddock-Heyman, Laura; Voss, Michelle W.; Burzynska, Agnieszka Z.; Basak, Chandramallika; Erickson, Kirk I.; Prakash, Ruchika S.; Szabo-Reed, Amanda N.; Phillips, Siobhan M.; Wojcicki, Thomas; Mailey, Emily L.; McAuley, Edward; Kramer, Arthur F.

    2015-01-01

    Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59–80 years). Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA), thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function. PMID:26321949

  20. The future of real-world neuroscience: imaging techniques to assess active brains in social environments.

    PubMed

    Kasai, Kiyoto; Fukuda, Masato; Yahata, Noriaki; Morita, Kentaro; Fujii, Naotaka

    2015-01-01

    The human brain is characterized by an evolutionarily new, highly developed neocortex, which has characteristic connections with phylogenically older structures to enable adaptation to complex social environments. Adaptive social behavior requires successful mental representations of the self and others' emotions and intentions. Measurement of brain activity under laboratory-based settings has been the gold standard in previous cognitive neuroscience studies. However, these measurement settings may be sub-optimal if we want to visualize brain function in active individuals in real-world environments. Neuroscience has historically developed through generations of the "sensing brain," "emotional brain," "social brain," and "ego brain." The next generation is the "action brain" combined with "real-world neuroscience" perspective. To enable in situ measurement of the action brain, real-world or two-person neuroimaging techniques are necessary to visualize brain dynamics during natural social situations, such as the presence of others. This review discusses recent literature describing non-human primate (NHP) and human brain functions during active behaviors in social environments. Uncovering the neurobiological mechanisms of the active brain in the presence of others by using real-world neuroimaging will be an important step toward fully understanding the human brain and its mental functions.

  1. Melanocortin 4 Receptor and Dopamine D2 Receptor Expression in Brain Areas Involved in Food Intake

    PubMed Central

    Yoon, Ye Ran

    2015-01-01

    Background The melanocortin 4 receptor (MC4R) is involved in the regulation of homeostatic energy balance by the hypothalamus. Recent reports showed that MC4R can also control the motivation for food in association with a brain reward system, such as dopamine. We investigated the expression levels of MC4R and the dopamine D2 receptor (D2R), which is known to be related to food rewards, in both the hypothalamus and brain regions involved in food rewards. Methods We examined the expression levels of D2R and MC4R by dual immunofluorescence histochemistry in hypothalamic regions and in the bed nucleus of the stria terminalis (BNST), the central amygdala, and the ventral tegmental area of transgenic mice expressing enhanced green fluorescent protein under the control of the D2R gene. Results In the hypothalamic area, significant coexpression of MC4R and D2R was observed in the arcuate nucleus. We observed a significant coexpression of D2R and MC4R in the BNST, which has been suggested to be an important site for food reward. Conclusion We suggest that MC4R and D2R function in the hypothalamus for control of energy homeostasis and that within the brain regions related with rewards, such as the BNST, the melanocortin system works synergistically with dopamine for the integration of food motivation in the control of feeding behaviors. PMID:26790386

  2. Selective Activation of Resting-State Networks following Focal Stimulation in a Connectome-Based Network Model of the Human Brain

    PubMed Central

    2016-01-01

    Abstract When the brain is stimulated, for example, by sensory inputs or goal-oriented tasks, the brain initially responds with activities in specific areas. The subsequent pattern formation of functional networks is constrained by the structural connectivity (SC) of the brain. The extent to which information is processed over short- or long-range SC is unclear. Whole-brain models based on long-range axonal connections, for example, can partly describe measured functional connectivity dynamics at rest. Here, we study the effect of SC on the network response to stimulation. We use a human whole-brain network model comprising long- and short-range connections. We systematically activate each cortical or thalamic area, and investigate the network response as a function of its short- and long-range SC. We show that when the brain is operating at the edge of criticality, stimulation causes a cascade of network recruitments, collapsing onto a smaller space that is partly constrained by SC. We found both short- and long-range SC essential to reproduce experimental results. In particular, the stimulation of specific areas results in the activation of one or more resting-state networks. We suggest that the stimulus-induced brain activity, which may indicate information and cognitive processing, follows specific routes imposed by structural networks explaining the emergence of functional networks. We provide a lookup table linking stimulation targets and functional network activations, which potentially can be useful in diagnostics and treatments with brain stimulation. PMID:27752540

  3. Body-selective areas in the visual cortex are less active in children than in adults

    PubMed Central

    Ross, Paddy D.; de Gelder, Beatrice; Crabbe, Frances; Grosbras, Marie-Hélène

    2014-01-01

    Our ability to read other people’s non-verbal signals gets refined throughout childhood and adolescence. How this is paralleled by brain development has been investigated mainly with regards to face perception, showing a protracted functional development of the face-selective visual cortical areas. In view of the importance of whole-body expressions in interpersonal communication it is important to understand the development of brain areas sensitive to these social signals. Here we used functional magnetic resonance imaging (fMRI) to compare brain activity in a group of 24 children (age 6–11) and 26 adults while they passively watched short videos of body or object movements. We observed activity in similar regions in both groups; namely the extra-striate body area (EBA), fusiform body area (FBA), posterior superior temporal sulcus (pSTS), amygdala and premotor regions. Adults showed additional activity in the inferior frontal gyrus (IFG). Within the main body-selective regions (EBA, FBA and pSTS), the strength and spatial extent of fMRI signal change was larger in adults than in children. Multivariate Bayesian (MVB) analysis showed that the spatial pattern of neural representation within those regions did not change over age. Our results indicate, for the first time, that body perception, like face perception, is still maturing through the second decade of life. PMID:25484863

  4. Decoding Target Distance and Saccade Amplitude from Population Activity in the Macaque Lateral Intraparietal Area (LIP)

    PubMed Central

    Bremmer, Frank; Kaminiarz, Andre; Klingenhoefer, Steffen; Churan, Jan

    2016-01-01

    Primates perform saccadic eye movements in order to bring the image of an interesting target onto the fovea. Compared to stationary targets, saccades toward moving targets are computationally more demanding since the oculomotor system must use speed and direction information about the target as well as knowledge about its own processing latency to program an adequate, predictive saccade vector. In monkeys, different brain regions have been implicated in the control of voluntary saccades, among them the lateral intraparietal area (LIP). Here we asked, if activity in area LIP reflects the distance between fovea and saccade target, or the amplitude of an upcoming saccade, or both. We recorded single unit activity in area LIP of two macaque monkeys. First, we determined for each neuron its preferred saccade direction. Then, monkeys performed visually guided saccades along the preferred direction toward either stationary or moving targets in pseudo-randomized order. LIP population activity allowed to decode both, the distance between fovea and saccade target as well as the size of an upcoming saccade. Previous work has shown comparable results for saccade direction (Graf and Andersen, 2014a,b). Hence, LIP population activity allows to predict any two-dimensional saccade vector. Functional equivalents of macaque area LIP have been identified in humans. Accordingly, our results provide further support for the concept of activity from area LIP as neural basis for the control of an oculomotor brain-machine interface.

  5. Decoding Target Distance and Saccade Amplitude from Population Activity in the Macaque Lateral Intraparietal Area (LIP)

    PubMed Central

    Bremmer, Frank; Kaminiarz, Andre; Klingenhoefer, Steffen; Churan, Jan

    2016-01-01

    Primates perform saccadic eye movements in order to bring the image of an interesting target onto the fovea. Compared to stationary targets, saccades toward moving targets are computationally more demanding since the oculomotor system must use speed and direction information about the target as well as knowledge about its own processing latency to program an adequate, predictive saccade vector. In monkeys, different brain regions have been implicated in the control of voluntary saccades, among them the lateral intraparietal area (LIP). Here we asked, if activity in area LIP reflects the distance between fovea and saccade target, or the amplitude of an upcoming saccade, or both. We recorded single unit activity in area LIP of two macaque monkeys. First, we determined for each neuron its preferred saccade direction. Then, monkeys performed visually guided saccades along the preferred direction toward either stationary or moving targets in pseudo-randomized order. LIP population activity allowed to decode both, the distance between fovea and saccade target as well as the size of an upcoming saccade. Previous work has shown comparable results for saccade direction (Graf and Andersen, 2014a,b). Hence, LIP population activity allows to predict any two-dimensional saccade vector. Functional equivalents of macaque area LIP have been identified in humans. Accordingly, our results provide further support for the concept of activity from area LIP as neural basis for the control of an oculomotor brain-machine interface. PMID:27630547

  6. Decoding Target Distance and Saccade Amplitude from Population Activity in the Macaque Lateral Intraparietal Area (LIP).

    PubMed

    Bremmer, Frank; Kaminiarz, Andre; Klingenhoefer, Steffen; Churan, Jan

    2016-01-01

    Primates perform saccadic eye movements in order to bring the image of an interesting target onto the fovea. Compared to stationary targets, saccades toward moving targets are computationally more demanding since the oculomotor system must use speed and direction information about the target as well as knowledge about its own processing latency to program an adequate, predictive saccade vector. In monkeys, different brain regions have been implicated in the control of voluntary saccades, among them the lateral intraparietal area (LIP). Here we asked, if activity in area LIP reflects the distance between fovea and saccade target, or the amplitude of an upcoming saccade, or both. We recorded single unit activity in area LIP of two macaque monkeys. First, we determined for each neuron its preferred saccade direction. Then, monkeys performed visually guided saccades along the preferred direction toward either stationary or moving targets in pseudo-randomized order. LIP population activity allowed to decode both, the distance between fovea and saccade target as well as the size of an upcoming saccade. Previous work has shown comparable results for saccade direction (Graf and Andersen, 2014a,b). Hence, LIP population activity allows to predict any two-dimensional saccade vector. Functional equivalents of macaque area LIP have been identified in humans. Accordingly, our results provide further support for the concept of activity from area LIP as neural basis for the control of an oculomotor brain-machine interface. PMID:27630547

  7. Differential changes of metabolic brain activity and interregional functional coupling in prefronto-limbic pathways during different stress conditions: functional imaging in freely behaving rodent pups.

    PubMed

    Bock, Jörg; Riedel, Anett; Braun, Katharina

    2012-01-01

    The trumpet-tailed rat or degu (Octodon degus) is an established model to investigate the consequences of early stress on the development of emotional brain circuits and behavior. The aim of this study was to identify brain circuits, that respond to different stress conditions and to test if acute stress alters functional coupling of brain activity among prefrontal and limbic regions. Using functional imaging (2-Fluoro-deoxyglucose method) in 8-day-old male degu pups the following stress conditions were compared: (A) pups together with parents and siblings (control), (B) separation of the litter from the parents, (C) individual separation from parents and siblings, and (D) individual separation and presentation of maternal calls. Condition (B) significantly downregulated brain activity in the prefrontal cortex, hippocampus, nucleus accumbens (NAcc), and sensory areas compared to controls. Activity decrease was even more pronounced during condition (C), where, in contrast to all other regions, activity in the PAG was increased. Interestingly, brain activity in stress-associated brain regions such as the amygdala and habenula was not affected. In condition (D) maternal vocalizations "reactivated" brain activity in the cingulate and precentral medial cortex, NAcc, and striatum and in sensory areas. In contrast, reduced activity was measured in the prelimbic and infralimbic cortex (IL) and in the hippocampus and amygdala. Correlation analysis revealed complex, region- and situation-specific changes of interregional functional coupling among prefrontal and limbic brain regions during stress exposure. We show here for the first time that early life stress results in a widespread reduction of brain activity in the infant brain and changes interregional functional coupling. Moreover, maternal vocalizations can partly buffer stress-induced decrease in brain activity in some regions and evoked very different functional coupling patterns compared to the three other conditions.

  8. Functional Magnetic Resonance Imaging for Imaging Neural Activity in the Human Brain: The Annual Progress

    PubMed Central

    Chen, Shengyong; Li, Xiaoli

    2012-01-01

    Functional magnetic resonance imaging (fMRI) is recently developed and applied to measure the hemodynamic response related to neural activity. The fMRI can not only noninvasively record brain signals without risks of ionising radiation inherent in other scanning methods, such as CT or PET scans, but also record signal from all regions of the brain, unlike EEG/MEG which are biased towards the cortical surface. This paper introduces the fundamental principles and summarizes the research progress of the last year for imaging neural activity in the human brain. Aims of functional analysis of neural activity from fMRI include biological findings, functional connectivity, vision and hearing research, emotional research, neurosurgical planning, pain management, and many others. Besides formulations and basic processing methods, models and strategies of processing technology are introduced, including general linear model, nonlinear model, generative model, spatial pattern analysis, statistical analysis, correlation analysis, and multimodal combination. This paper provides readers the most recent representative contributions in the area. PMID:22319550

  9. Effects of active music therapy on the normal brain: fMRI based evidence.

    PubMed

    Raglio, Alfredo; Galandra, Caterina; Sibilla, Luisella; Esposito, Fabrizio; Gaeta, Francesca; Di Salle, Francesco; Moro, Luca; Carne, Irene; Bastianello, Stefano; Baldi, Maurizia; Imbriani, Marcello

    2016-03-01

    The aim of this study was to investigate the neurophysiological bases of Active Music Therapy (AMT) and its effects on the normal brain. Twelve right-handed, healthy, non-musician volunteers were recruited. The subjects underwent 2 AMT sessions based on the free sonorous-music improvisation using rhythmic and melodic instruments. After these sessions, each subject underwent 2 fMRI scan acquisitions while listening to a Syntonic (SP) and an A-Syntonic (AP) Production from the AMT sessions. A 3 T Discovery MR750 scanner with a 16-channel phased array head coil was used, and the image analysis was performed with Brain Voyager QX 2.8. The listening to SP vs AP excerpts mainly activated: (1) the right middle temporal gyrus and right superior temporal sulcus, (2) the right middle frontal gyrus and in particular the right precentral gyrus, (3) the bilateral precuneus, (4) the left superior temporal sulcus and (5) the left middle temporal gyrus. These results are consistent with the psychological bases of the AMT approach and with the activation of brain areas involved in memory and autobiographical processes, and also in personal or interpersonal significant experiences. Further studies are required to confirm these findings and to explain possible effects of AMT in clinical settings.

  10. Functional magnetic resonance imaging for imaging neural activity in the human brain: the annual progress.

    PubMed

    Chen, Shengyong; Li, Xiaoli

    2012-01-01

    Functional magnetic resonance imaging (fMRI) is recently developed and applied to measure the hemodynamic response related to neural activity. The fMRI can not only noninvasively record brain signals without risks of ionising radiation inherent in other scanning methods, such as CT or PET scans, but also record signal from all regions of the brain, unlike EEG/MEG which are biased towards the cortical surface. This paper introduces the fundamental principles and summarizes the research progress of the last year for imaging neural activity in the human brain. Aims of functional analysis of neural activity from fMRI include biological findings, functional connectivity, vision and hearing research, emotional research, neurosurgical planning, pain management, and many others. Besides formulations and basic processing methods, models and strategies of processing technology are introduced, including general linear model, nonlinear model, generative model, spatial pattern analysis, statistical analysis, correlation analysis, and multimodal combination. This paper provides readers the most recent representative contributions in the area.

  11. Manganese-enhanced MR imaging of brain activation evoked by noxious peripheral electrical stimulation.

    PubMed

    Cha, Myeounghoon; Lee, Kyuhong; Lee, Chulhyun; Cho, Jee-Hyun; Cheong, Chaejoon; Sohn, Jin-Hun; Lee, Bae Hwan

    2016-02-01

    As imaging technology develops, magnetic resonance imaging (MRI) has furthered our understanding of brain function by clarifying the anatomical structure and generating functional imaging data related to information processing in pain conditions. Recent studies have reported that manganese (Mn(2+))-enhanced MRI (MEMRI) provides valuable information about the functions of the central nervous system. The aim of this study was to identify specific brain regions activated during noxious electric stimulation using high-resolution MEMRI. Male Sprague Dawley rats were divided into three groups: naïve, sham electrical stimulation, and noxious electric stimulation. Under urethane with α-chloralose mixture anesthesia, a catheter was placed in the external carotid artery to administrate 20% mannitol and manganese chloride (25mM MnCl2). Noxious electric stimulation (2Hz, 10V) was applied to the hind paw with a needle electrode. Stimulation-induced neuronal activation was detected using 4.7-T MRI. In response to noxious electrical stimulation, remarkable Mn(2+)-enhanced signals were observed in the agranular insular cortex, auditory cortex, primary somatosensory cortex of the hind limb, and granular and dysgranular insular cortex, which correspond to sensory tactile electric stimulus to the hindpaws. These results indicate that the combination of MEMRI with activity-induced Mn(2+)-dependent contrast can delineate functional areas in the rat brain.

  12. Manganese-enhanced MR imaging of brain activation evoked by noxious peripheral electrical stimulation.

    PubMed

    Cha, Myeounghoon; Lee, Kyuhong; Lee, Chulhyun; Cho, Jee-Hyun; Cheong, Chaejoon; Sohn, Jin-Hun; Lee, Bae Hwan

    2016-02-01

    As imaging technology develops, magnetic resonance imaging (MRI) has furthered our understanding of brain function by clarifying the anatomical structure and generating functional imaging data related to information processing in pain conditions. Recent studies have reported that manganese (Mn(2+))-enhanced MRI (MEMRI) provides valuable information about the functions of the central nervous system. The aim of this study was to identify specific brain regions activated during noxious electric stimulation using high-resolution MEMRI. Male Sprague Dawley rats were divided into three groups: naïve, sham electrical stimulation, and noxious electric stimulation. Under urethane with α-chloralose mixture anesthesia, a catheter was placed in the external carotid artery to administrate 20% mannitol and manganese chloride (25mM MnCl2). Noxious electric stimulation (2Hz, 10V) was applied to the hind paw with a needle electrode. Stimulation-induced neuronal activation was detected using 4.7-T MRI. In response to noxious electrical stimulation, remarkable Mn(2+)-enhanced signals were observed in the agranular insular cortex, auditory cortex, primary somatosensory cortex of the hind limb, and granular and dysgranular insular cortex, which correspond to sensory tactile electric stimulus to the hindpaws. These results indicate that the combination of MEMRI with activity-induced Mn(2+)-dependent contrast can delineate functional areas in the rat brain. PMID:26733299

  13. Effects of active music therapy on the normal brain: fMRI based evidence.

    PubMed

    Raglio, Alfredo; Galandra, Caterina; Sibilla, Luisella; Esposito, Fabrizio; Gaeta, Francesca; Di Salle, Francesco; Moro, Luca; Carne, Irene; Bastianello, Stefano; Baldi, Maurizia; Imbriani, Marcello

    2016-03-01

    The aim of this study was to investigate the neurophysiological bases of Active Music Therapy (AMT) and its effects on the normal brain. Twelve right-handed, healthy, non-musician volunteers were recruited. The subjects underwent 2 AMT sessions based on the free sonorous-music improvisation using rhythmic and melodic instruments. After these sessions, each subject underwent 2 fMRI scan acquisitions while listening to a Syntonic (SP) and an A-Syntonic (AP) Production from the AMT sessions. A 3 T Discovery MR750 scanner with a 16-channel phased array head coil was used, and the image analysis was performed with Brain Voyager QX 2.8. The listening to SP vs AP excerpts mainly activated: (1) the right middle temporal gyrus and right superior temporal sulcus, (2) the right middle frontal gyrus and in particular the right precentral gyrus, (3) the bilateral precuneus, (4) the left superior temporal sulcus and (5) the left middle temporal gyrus. These results are consistent with the psychological bases of the AMT approach and with the activation of brain areas involved in memory and autobiographical processes, and also in personal or interpersonal significant experiences. Further studies are required to confirm these findings and to explain possible effects of AMT in clinical settings. PMID:25847861

  14. Differential distribution of the sodium‐activated potassium channels slick and slack in mouse brain

    PubMed Central

    Knaus, Hans‐Günther; Schwarzer, Christoph

    2015-01-01

    ABSTRACT The sodium‐activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high‐conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093–2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26587966

  15. [The brain structures functional activity and aggression patients' multiple sclerosis].

    PubMed

    Reznikova, T N; Seliverstova, N A; Kataeva, G V; Aroev, R A; Il'ves, A G; Kuznetsova, A K

    2015-01-01

    The article is devoted to investigation of unconscious aggression in patients with multiple sclerosis. We carried out comparison of the relative assessments of metabolism speed of glucose (according to positron emission tomography) and indicators of unconscious aggression (in the Hand test). It is shown that an increased tendency to open aggression (unconscious aggression) in patients with multiple sclerosis, is mainly linked with a reduction in the functioning of different departments of the frontal lobes of the brain on the left and with changes of the metabolism speed of glucose in the structures of the limbic system of the left and right hemisphere. With increasing of unconscious aggression we observed decrease of glucose metabolism speed in certain areas of the lower and middle frontal gyrus.

  16. Corpus Callosum Area and Brain Volume in Autism Spectrum Disorder: Quantitative Analysis of Structural MRI from the ABIDE Database

    ERIC Educational Resources Information Center

    Kucharsky Hiess, R.; Alter, R.; Sojoudi, S.; Ardekani, B. A.; Kuzniecky, R.; Pardoe, H. R.

    2015-01-01

    Reduced corpus callosum area and increased brain volume are two commonly reported findings in autism spectrum disorder (ASD). We investigated these two correlates in ASD and healthy controls using T1-weighted MRI scans from the Autism Brain Imaging Data Exchange (ABIDE). Automated methods were used to segment the corpus callosum and intracranial…

  17. Robot-assisted motor activation monitored by time-domain optical brain imaging

    NASA Astrophysics Data System (ADS)

    Steinkellner, O.; Wabnitz, H.; Schmid, S.; Steingräber, R.; Schmidt, H.; Krüger, J.; Macdonald, R.

    2011-07-01

    Robot-assisted motor rehabilitation proved to be an effective supplement to conventional hand-to-hand therapy in stroke patients. In order to analyze and understand motor learning and performance during rehabilitation it is desirable to develop a monitor to provide objective measures of the corresponding brain activity at the rehabilitation progress. We used a portable time-domain near-infrared reflectometer to monitor the hemodynamic brain response to distal upper extremity activities. Four healthy volunteers performed two different robot-assisted wrist/forearm movements, flexion-extension and pronation-supination in comparison with an unassisted squeeze ball exercise. A special headgear with four optical measurement positions to include parts of the pre- and postcentral gyrus provided a good overlap with the expected activation areas. Data analysis based on variance of time-of-flight distributions of photons through tissue was chosen to provide a suitable representation of intracerebral signals. In all subjects several of the four detection channels showed a response. In some cases indications were found of differences in localization of the activated areas for the various tasks.

  18. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid.

    PubMed

    Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R; Masliah, Eliezer; Lipton, Stuart A

    2015-06-01

    Cyanide is a life-threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species. This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain barrier to up-regulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human-induced pluripotent stem cell-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino mouse model of cyanide poisoning that simulates damage observed in the human brain. Cyanide, a potential bioterrorist agent, can produce a chronic delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Here, cyanide poisoning treated with the proelectrophillic compound carnosic acid, results in reduced neuronal cell death in both in vitro and in vivo models through activation of the Nrf2/ARE transcriptional pathway. Carnosic acid is therefore a potential treatment for the toxic central nervous system (CNS) effects of cyanide poisoning. ARE, antioxidant responsive element; Nrf2 (NFE2L2, Nuclear factor (erythroid-derived 2)-like 2).

  19. Interactions between cardiac, respiratory, and brain activity in humans

    NASA Astrophysics Data System (ADS)

    Musizza, Bojan; Stefanovska, Aneta

    2005-05-01

    The electrical activity of the heart (ECG), respiratory function and electric activity of the brain (EEG) were simultaneously recorded in conscious, healthy humans. Instantaneous frequencies of the heart beat, respiration and α-waves were then determined from 30-minutes recordings. The instantaneous cardiac frequency was defined as the inverse value of the time interval between two consecutive R-peaks. The instantaneous respiratory frequency was obtained from recordings of the excursions of thorax by application of the Hilbert transform. To obtain the instantaneous frequency of α-waves, the EEG signal recorded from the forehead was first analysed using the wavelet transform. Then the frequency band corresponding to α-waves was extracted and the Hilbert transform applied. Synchronization analysis was performed and the direction of coupling was ascertained, using pairs of instantaneous frequencies in each case. It is shown that the systems are weakly bidirectionally coupled. It was confirmed that, in conscious healthy humans, respiration drives cardiac activity. We also demonstrate from these analyses that α-activity drives both respiration and cardiac activity.

  20. Functional Brain Activity Relates to 0-3 and 3-8 Hz Force Oscillations in Essential Tremor.

    PubMed

    Neely, Kristina A; Kurani, Ajay S; Shukla, Priyank; Planetta, Peggy J; Wagle Shukla, Aparna; Goldman, Jennifer G; Corcos, Daniel M; Okun, Michael S; Vaillancourt, David E

    2015-11-01

    It is well-established that during goal-directed motor tasks, patients with essential tremor have increased oscillations in the 0-3 and 3-8 Hz bands. It remains unclear if these increased oscillations relate to activity in specific brain regions. This study used task-based functional magnetic resonance imaging to compare the brain activity associated with oscillations in grip force output between patients with essential tremor, patients with Parkinson's disease who had clinically evident tremor, and healthy controls. The findings demonstrate that patients with essential tremor have increased brain activity in the motor cortex and supplementary motor area compared with controls, and this activity correlated positively with 3-8 Hz force oscillations. Brain activity in cerebellar lobules I-V was reduced in essential tremor compared with controls and correlated negatively with 0-3 Hz force oscillations. Widespread differences in brain activity were observed between essential tremor and Parkinson's disease. Using functional connectivity analyses during the task evidenced reduced cerebellar-cortical functional connectivity in patients with essential tremor compared with controls and Parkinson's disease. This study provides new evidence that in essential tremor 3-8 Hz force oscillations relate to hyperactivity in motor cortex, 0-3 Hz force oscillations relate to the hypoactivity in the cerebellum, and cerebellar-cortical functional connectivity is impaired.

  1. Kalman estimator- and general linear model-based on-line brain activation mapping by near-infrared spectroscopy

    PubMed Central

    2010-01-01

    Background Near-infrared spectroscopy (NIRS) is a non-invasive neuroimaging technique that recently has been developed to measure the changes of cerebral blood oxygenation associated with brain activities. To date, for functional brain mapping applications, there is no standard on-line method for analysing NIRS data. Methods In this paper, a novel on-line NIRS data analysis framework taking advantages of both the general linear model (GLM) and the Kalman estimator is devised. The Kalman estimator is used to update the GLM coefficients recursively, and one critical coefficient regarding brain activities is then passed to a t-statistical test. The t-statistical test result is used to update a topographic brain activation map. Meanwhile, a set of high-pass filters is plugged into the GLM to prevent very low-frequency noises, and an autoregressive (AR) model is used to prevent the temporal correlation caused by physiological noises in NIRS time series. A set of data recorded in finger tapping experiments is studied using the proposed framework. Results The obtained results suggest that the method can effectively track the task related brain activation areas, and prevent the noise distortion in the estimation while the experiment is running. Thereby, the potential of the proposed method for real-time NIRS-based brain imaging was demonstrated. Conclusions This paper presents a novel on-line approach for analysing NIRS data for functional brain mapping applications. This approach demonstrates the potential of a real-time-updating topographic brain activation map. PMID:21138595

  2. Vocal area-related expression of the androgen receptor in the budgerigar (Melopsittacus undulatus) brain.

    PubMed

    Matsunaga, Eiji; Okanoya, Kazuo

    2008-05-01

    The androgen receptor is a steroid hormone receptor widely expressed in the vocal control nuclei in songbirds. Here, we analysed androgen receptor expression in the brains of juvenile and adult budgerigars. With a species-specific probe for budgerigar androgen receptor mRNA, we found that the androgen receptor was expressed in the vocal areas, such as the central nucleus of the lateral nidopallium, the anterior arcopallium, the oval nucleus of the mesopallium, the oval nucleus of the anterior nidopallium and the tracheosyringeal hypoglossal nucleus. With the present data, together with previous reports, it turned out that the androgen receptor expression in telencephalic vocal control areas is similar amongst three groups of vocal learners--songbirds, hummingbirds and parrots, suggesting the possibility that the androgen receptor might play a role in vocal development and that the molecular mechanism regulating the androgen receptor expression in the vocal areas might be important in the evolution of vocal learning.

  3. NASA's Spaceliner 100 Investment Area Technology Activities

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner100 Investment Area, third generation technologies are being pursued in the areas of propulsion, airframes, integrated vehicle health management (IVHM), launch systems, and operations and range. The ASTP program will mature these technologies through ground system testing. Flight testing where required, will be advocated on a case by case basis.

  4. The EEG signal: a window on the cortical brain activity.

    PubMed

    Constant, Isabelle; Sabourdin, Nada

    2012-06-01

    The accurate assessment of the depth of anesthesia, allowing a more accurate adaptation of the doses of hypnotics, is an important end point for the anesthesiologist. It is a particularly crucial issue in pediatric anesthesia, in the context of the recent controversies about the potential neurological consequences of the main anesthetic drugs on the developing brain. The electroencephalogram signal reflects the electrical activity of the neurons in the cerebral cortex. It is thus the key to assessment of the level of hypnosis. Beyond visual analysis, several monitoring devices allow an automated treatment of the electroencephalographic (EEG) signal, combining time and frequency domain analysis. Each of these monitors focuses on a specific combination of characteristics of the signal and provides the clinician with useful information that remains, however, partial. For a comprehensive approach of the EEG-derived indices, the main features of the normal EEG, in adults and children, will be presented in the awake state and during sleep. Age-related modifications accompanying cerebral maturation during infancy and childhood will be detailed. Then, this review will provide an update on how anesthetic drugs, particularly hypnotics, influence the EEG signal, and how the main available monitors analyze these drug-induced modifications. The relationships between pain, memory, and the EEG will be discussed. Finally, this review will focus on some specific EEG features such as the electrical epileptoid activity observed under sevoflurane anesthesia. The EEG signal is the best window we have on cortical brain activity and provides a fair pharmacodynamic feedback of the effects of hypnotics. However, the cortex is only one of several targets of anesthesia. Hypnotics and opiates, have also subcortical primary targets, and the EEG performances in the evaluation or prediction of nociception are poor. Monitoring subcortical structures in combination with the EEG might in the future

  5. NASA's Spaceliner Investment Area Technology Activities

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current conditions. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner Investment Area, third generation technologies are being pursued in the areas of propulsion, airframes, integrated vehicle health management (IVHM), avionics, power, operations, and range. The ASTP program will mature these technologies through both ground and flight system testing. The Spaceliner Investment Area plans to mature vehicle technologies to reduce the implementation risks for future commercially developed reusable launch vehicles (RLV). The plan is to substantially increase the design and operating margins of the third generation RLV (the Space Shuttle is the first generation) by incorporating advanced technologies in propulsion, materials, structures, thermal protection systems, avionics, and power. Advancements in design tools and better characterization of the operational environment will allow improvements in design margins. Improvements in operational efficiencies will be provided through use of advanced integrated health management, operations, and range technologies. The increase in margins will allow components to operate well below their design points resulting in improved component operating life, reliability, and safety which in turn reduces both maintenance and refurbishment costs. These technologies have the potential of enabling horizontal takeoff by reducing the takeoff weight and achieving the goal of airline-like operation. These factors in conjunction with increased flight rates from an expanding market will result in significant improvements in safety

  6. Age-Related Influences of Prior Sleep on Brain Activation during Verbal Encoding

    PubMed Central

    Jonelis, Michelle B.; Drummond, Sean P. A.; Salamat, Jennifer S.; McKenna, Benjamin S.; Ancoli-Israel, Sonia; Bondi, Mark W.

    2011-01-01

    Disrupted sleep is more common in older adults (OLD) than younger adults (YOUNG), often co-morbid with other conditions. How these sleep disturbances affect cognitive performance is an area of active study. We examined whether brain activation during verbal encoding correlates with sleep quantity and quality the night before testing in a group of healthy OLD and YOUNG. Twenty-seven OLD (ages 59–82) and 27 YOUNG (ages 19–36) underwent one night of standard polysomnography. Twelve hours post-awakening, subjects performed a verbal encoding task while undergoing functional magnetic resonance imaging. Analyses examined the group (OLD vs. YOUNG) by prior sleep quantity (total sleep time, TST) or quality (sleep efficiency, SE) interaction on cerebral activation, controlling for performance. Longer TST promoted higher levels of activation in the bilateral anterior parahippocampal in OLD and lower activation levels in the left anterior parahippocampus in YOUNG. Greater SE promoted higher activation levels in the left posterior parahippocampus and right inferior frontal gyrus in YOUNG, but not in OLD. The roles of these brain regions in verbal encoding suggest, in OLD, longer sleep duration may be linked to the ability to engage in functional compensation during cognitive challenges. By contrast, in YOUNG, shorter sleep duration may necessitate functional compensation to maintain cognitive performance, similar to what is seen following acute sleep deprivation. Additionally, in YOUNG, better sleep quality may improve semantic retrieval processes, thereby aiding encoding. PMID:22493590

  7. Brain activation in restrained and unrestrained eaters: an fMRI study.

    PubMed

    Coletta, Maria; Platek, Steven; Mohamed, Feroze B; van Steenburgh, J Jason; Green, Deborah; Lowe, Michael R

    2009-08-01

    Restraint theory has been used to model the process that produces binge eating. However, there is no satisfactory explanation for the tendency of restrained eaters (REs) to engage in counterregulatory eating, an ostensible analogue of binge eating. Using functional magnetic resonance imaging (fMRI), the authors investigated brain activation of normal weight REs (N = 9) and unrestrained eaters (UREs; N = 10) when fasted and fed and viewing pictures of highly and moderately palatable foods and neutral objects. When fasted and viewing highly palatable foods, UREs showed widespread bilateral activation in areas associated with hunger and motivation, whereas REs showed activation only in the cerebellum, an area previously implicated in low-level processing of appetitive stimuli. When fed and viewing high palatability foods, UREs showed activation in areas related to satiation and memory, whereas REs showed activation in areas implicated in desire, expectation of reward, and goal-defined behavior. These findings parallel those from behavioral research. The authors propose that the counterintuitive findings from preload studies and the present study are due to the fact that REs are less hungry than UREs when fasted and find palatable food more appealing than UREs when fed.

  8. Focal cerebral ischemia activates neurovascular restorative dynamics in mouse brain.

    PubMed

    Chu, Min; Hu, Xiaoming; Lu, Shiduo; Gan, Yu; Li, Peiying; Guo, Yanling; Zhang, Jia; Chen, Jun; Gao, Yanqin

    2012-01-01

    Cerebral ischemia triggers regeneration of neural stem/progenitor cells (NSCs/NPCs), which are associated with neovascularization and white matter repair in the brain. This study analyzed the dynamics of neurogenesis, neovascularization, and white matter injury/repair after middle cerebral artery occlusion (MCAO) and elucidated their temporal association. Mice were subjected to MCAO for 60 minutes and sacrificed up to 28 days after reperfusion. Neurogenesis and angiogenesis, as measured by double staining of 5-bromo-2-deoxyuridine (BrdU) with DCX or tomato lectin, respectively, were substantially activated soon after ischemia and persisted for 4 weeks. Despite the moderate recovery of functional vessels in infarct margin from 7 days post-ischemia, a significant decrease in vascular density remained over time. Clusters of immature neurons localized proximal to angiogenic blood vessels beginning 14 days after ischemia, suggesting interplay between neurogenesis and revascularization. Progenitors of oligodendrocytes (NG2+) constitutively presented in the normal brain and proliferated soon after ischemia. However, axon damage and the loss of white matter integrity after ischemic stroke were almost irreversible, as revealed by sustained decreases of myelin basic protein (MBP) and neurofilament-200 expression. PMID:22202008

  9. Some Problems for Representations of Brain Organization Based on Activation in Functional Imaging

    ERIC Educational Resources Information Center

    Sidtis, John J.

    2007-01-01

    Functional brain imaging has overshadowed traditional lesion studies in becoming the dominant approach to the study of brain-behavior relationships. The proponents of functional imaging studies frequently argue that this approach provides an advantage over lesion studies by observing normal brain activity in vivo without the disruptive effects of…

  10. The use of fluorine-18 fluorodeoxyglucose positron emission tomography for imaging human motor neuronal activation in the brain

    PubMed Central

    PAHK, KISOO; PARK, KUN-WOO; PYUN, SUNG BOM; LEE, JAE SUNG; KIM, SUNGEUN; CHOE, JAE GOL

    2015-01-01

    The present study aimed to visualize human motor neuronal activation in the brain using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET), and to develop an FDG-PET procedure for imaging neuronal activation. A male volunteer underwent 20 min periods of rest and motor activation, whilst being assessed using FDG-PET on two consecutive days. The motor task, which involved repetitively grasping and releasing the right hand, was performed during the initial 5 min of the activation period. Subtraction of the rest period signal from the activation PET images was performed using the subtraction ictal single-photon emission computed tomography co-registered to magnetic resonance imaging method. The subtracted image detected activation of the contralateral (left) primary motor cortex, supplementary motor area, and ipsilateral (right) cerebellum. In the present study, FDG-PET detected significantly increased motor-associated activation of the brain in a subject performing a motor task. PMID:26668604

  11. Reward Sensitivity Is Associated with Brain Activity during Erotic Stimulus Processing

    PubMed Central

    Costumero, Victor; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Ventura-Campos, Noelia; Fuentes, Paola; Rosell-Negre, Patricia; Ávila, César

    2013-01-01

    The behavioral approach system (BAS) from Gray’s reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray’s theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men completed the Sensitivity to Reward scale (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire) to measure BAS-related traits. Results showed that Sensitivity to Reward scores correlated positively with brain activity during reactivity to erotic pictures in the left orbitofrontal cortex, left insula, and right ventral striatum. These results demonstrated a relationship between the BAS and reward sensitivity during the processing of erotic stimuli, filling the gap of previous reports that identified the dopaminergic system as a neural substrate for the BAS during the processing of other rewarding stimuli such as money and food. PMID:23840558

  12. Reward sensitivity is associated with brain activity during erotic stimulus processing.

    PubMed

    Costumero, Victor; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Ventura-Campos, Noelia; Fuentes, Paola; Rosell-Negre, Patricia; Ávila, César

    2013-01-01

    The behavioral approach system (BAS) from Gray's reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray's theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men completed the Sensitivity to Reward scale (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire) to measure BAS-related traits. Results showed that Sensitivity to Reward scores correlated positively with brain activity during reactivity to erotic pictures in the left orbitofrontal cortex, left insula, and right ventral striatum. These results demonstrated a relationship between the BAS and reward sensitivity during the processing of erotic stimuli, filling the gap of previous reports that identified the dopaminergic system as a neural substrate for the BAS during the processing of other rewarding stimuli such as money and food.

  13. Reward sensitivity is associated with brain activity during erotic stimulus processing.

    PubMed

    Costumero, Victor; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Ventura-Campos, Noelia; Fuentes, Paola; Rosell-Negre, Patricia; Ávila, César

    2013-01-01

    The behavioral approach system (BAS) from Gray's reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray's theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men completed the Sensitivity to Reward scale (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire) to measure BAS-related traits. Results showed that Sensitivity to Reward scores correlated positively with brain activity during reactivity to erotic pictures in the left orbitofrontal cortex, left insula, and right ventral striatum. These results demonstrated a relationship between the BAS and reward sensitivity during the processing of erotic stimuli, filling the gap of previous reports that identified the dopaminergic system as a neural substrate for the BAS during the processing of other rewarding stimuli such as money and food. PMID:23840558

  14. Food hoarding and associated neuronal activation in brain reward circuitry in Mongolian gerbils.

    PubMed

    Yang, Hui-Di; Wang, Qian; Wang, Zuoxin; Wang, De-Hua

    2011-09-01

    Mongolian gerbils (Meriones unguiculatus) display food hoarding and thus provide an opportunity to study the neuromechanisms underlying this behavior. In the present study, male gerbils exhibited a bimodal expression of food hoarding behavior-some displayed high levels of food hoarding whereas others virtually lacked this behavior under normal laboratory conditions with free access to food. Food hoarding was found to be associated with an increase in neuronal activation, indicated by Fos immunoreactive (ir) staining, in several brain areas including the nucleus accumbens, ventral tegmental area (VTA), and lateral hypothalamus. Food hoarding was also associated with increases in the number of cells labeled for tyrosine hydroxylase (TH-ir), the rate limiting enzyme for dopamine conversion, and the number of cells co-labeled for TH-ir/Fos-ir in the VTA, suggesting that dopamine in the brain reward circuitry may be involved in food hoarding. Further, we found that 22 h of food deprivation induced food hoarding in some, but not all, males that naturally did not display food hoarding. In these males, however, food hoarding did not increase TH-ir or TH-ir/Fos-ir expression in the VTA. Together, these data indicate that male Mongolian gerbils display diverse phenotypes of food hoarding behavior and that dopamine in the brain reward circuitry may be involved in the control of naturally occurring, but not food deprivation-induced, food hoarding.

  15. Lithium lengthens circadian period of cultured brain slices in area specific manner.

    PubMed

    Yoshikawa, Tomoko; Honma, Sato

    2016-11-01

    Lithium has been used for the treatment of bipolar disorder (BD). However, the mechanisms how lithium exerts its mood stabilizing effects remain to be studied. The disorder in circadian pacemaking has been suggested as an underlying mechanism of the characteristic mood instability of the BD. Lithium is also known to lengthen the circadian periods. We recently proposed that chronic methamphetamine treatment induced circadian oscillation as a complex oscillator including multiple dopaminergic brain areas, and the complex oscillator regulates behavior rhythm independent from the central circadian oscillator in the suprachiasmatic nucleus (SCN). Sleep-wake pattern of rapid cycling BD exhibits similar rhythm disorganization to methamphetamine treated animals. Therefore, we hypothesized that the dysregulated circadian rhythm in BD patients is caused by desynchronization of sleep-wake rhythms from the central clock in the SCN, and that mood stabilizing effect of lithium is achieved through their resynchronization. In the present experiment, we examined how lithium affects the circadian rhythms of brain areas involved in the complex oscillator as well as the SCN. Here we report that lithium lengthens the circadian periods in the SCN, olfactory bulb, median eminence and substantia nigra with dose and area specific manner. The effective lithium dose was much higher than the plasma levels that are required for lengthening the circadian behavior rhythms as well for therapeutic use. Low dose of lithium did not lengthen the period but enhanced the amplitude of circadian rhythms, which may exert therapeutic effects on BD. PMID:27478137

  16. Brain cholinesterase activities of birds from forests sprayed with trichlorfon (Dylox) and carbaryl (Sevin-4-oil)

    USGS Publications Warehouse

    Zinkl, J.G.; Henny, C.J.; DeWeese, L.R.

    1977-01-01

    Brain cholinesterase activities were determined in birds from forests sprayed with Dylox2 at 1.13 kg/hectare (1 lb/acre ? active ingredient [a.i.]) or Sevin-4-oil2 at 1.13 kg/hectare (1 lb/acre ? a.i.) for up to 5 days postspray. Of ten bird species evaluated from the Dylox spray area, four species represented by six individuals had values which were depressed more than 2 standard deviations below the mean. Three of these activities (two species) were about 20% less than the mean. Of 12 species evaluated from the Sevin-4-oil spraying, three individuals representing three species had depressed values. One value was depressed greater than 20% below the mean. Half of the depressed activities were in canopy-dwelling birds collected on the day of spray.

  17. Genetic and environmental contributions to brain activation during calculation.

    PubMed

    Pinel, Philippe; Dehaene, Stanislas

    2013-11-01

    Twin studies have long suggested a genetic influence on inter-individual variations in mathematical abilities, and candidate genes have been identified by genome-wide association studies. However, the localization of the brain regions under genetic influence during number manipulation is still unexplored. Here we investigated fMRI data from a group of 19 MZ (monozygotic) and 13 DZ (dizygotic) adult twin pairs, scanned during a mental calculation task. We examined both the activation and the degree of functional lateralization in regions of interest (ROIs) centered on the main activated peaks. Heritability was first investigated by comparing the respective MZ and DZ correlations. Then, genetic and environmental contributions were jointly estimated by fitting a ACE model classically used in twin studies. We found that a subset of the activated network was under genetic influence, encompassing the bilateral posterior superior parietal lobules (PSPL), the right intraparietal sulcus (IPS) and a left superior frontal region. An additional region of the left inferior parietal cortex (IPC), whose deactivation correlated with a behavioral calculation score, also presented higher similarity between MZ than between DZ twins, thus offering a plausible physiological basis for the observable inheritance of math scores. Finally, the main impact of the shared environment was found in the lateralization of activation within the intraparietal sulcus. These maps of genetic and environmental contributions provide precise candidate phenotypes for further genetic association analyses, and illuminate how genetics and education shape the development of number processing networks.

  18. Perceived causality influences brain activity evoked by biological motion.

    PubMed

    Morris, James P; Pelphrey, Kevin A; McCarthy, Gregory

    2008-01-01

    Using functional magnetic resonance imaging (fMRI), we investigated brain activity in an observer who watched the hand and arm motions of an individual when that individual was, or was not, the cause of the motion. Subjects viewed a realistic animated 3D character who sat at a table containing four pistons. On Intended Motion trials, the character raised his hand and arm upwards. On Unintended Motion trials, the piston under one of the character's hands pushed the hand and arm upward with the same motion. Finally, during Non-Biological Motion control trials, a piston pushed a coffee mug upward in the same smooth motion. Hand and arm motions, regardless of intention, evoked significantly more activity than control trials in a bilateral region that extended ventrally from the posterior superior temporal sulcus (pSTS) region and which was more spatially extensive in the right hemisphere. The left pSTS near the temporal-parietal junction, robustly differentiated between the Intended Motion and Unintended Motion conditions. Here, strong activity was observed for Intended Motion trials, while Unintended Motion trials evoked similar activity as the coffee mug trials. Our results demonstrate a strong hemispheric bias in the role of the pSTS in the perception of causality of biological motion. PMID:18633843

  19. The Right Brain: An Active Partner in Written Literacy.

    ERIC Educational Resources Information Center

    Stahl-Gemake, Josephine; And Others

    The human brain is composed of two interdependent systems, the left hemisphere and the right hemisphere. While the left brain analyzes sequentially the phonemes of our language and names or reads words, the right brain produces the images, feelings, and associations connected with the words. Current educational systems, however, are doing little…

  20. Activation of extrastriate and frontal cortical areas by visual words and word-like stimuli

    SciTech Connect

    Petersen, S.E.; Fox, P.T.; Snyder, A.Z.; Raichle, M.E. )

    1990-08-31

    Visual presentation of words activates extrastriate regions of the occipital lobes of the brain. When analyzed by positron emission tomography (PET), certain areas in the left, medial extrastriate visual cortex were activated by visually presented pseudowords that obey English spelling rules, as well as by actual words. These areas were not activated by nonsense strings of letters or letter-like forms. Thus visual word form computations are based on learned distinctions between words and nonwords. In addition, during passive presentation of words, but not pseudowords, activation occurred in a left frontal area that is related to semantic processing. These findings support distinctions made in cognitive psychology and computational modeling between high-level visual and semantic computations on single words and describe the anatomy that may underlie these distinctions.

  1. 50 CFR 218.120 - Specified activity and geographical area.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Activities Area (GoA TMAA) § 218.120 Specified activity and geographical area. (a) Regulations in this... Alaska Temporary Maritime Activities Area (GoA TMAA) (as depicted in Figure 1-1 in the Navy's application for GoA TMAA), which is bounded by a hexagon with the following six corners: 57°30′ N. lat., 141°30′...

  2. Hidden Stages of Cognition Revealed in Patterns of Brain Activation.

    PubMed

    Anderson, John R; Pyke, Aryn A; Fincham, Jon M

    2016-09-01

    To advance cognitive theory, researchers must be able to parse the performance of a task into its significant mental stages. In this article, we describe a new method that uses functional MRI brain activation to identify when participants are engaged in different cognitive stages on individual trials. The method combines multivoxel pattern analysis to identify cognitive stages and hidden semi-Markov models to identify their durations. This method, applied to a problem-solving task, identified four distinct stages: encoding, planning, solving, and responding. We examined whether these stages corresponded to their ascribed functions by testing whether they are affected by appropriate factors. Planning-stage duration increased as the method for solving the problem became less obvious, whereas solving-stage duration increased as the number of calculations to produce the answer increased. Responding-stage duration increased with the difficulty of the motor actions required to produce the answer. PMID:27440808

  3. Detection of cocaine induced rat brain activation by photoacoustic tomography

    PubMed Central

    Jo, Janggun; Yang, Xinmai

    2011-01-01

    Photoacoustic tomography (PAT) was used to detect the progressive changes on the cerebral cortex of Sprague Dawley rats after the administration of cocaine hydrochloride. Different concentrations (0, 2.5, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution were injected into Sprague Dawley rats through tail veins. Cerebral cortex images of the animals were continuously acquired by PAT. For continuous observation, PAT system used multi-transducers to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The obtained photoacoustic images were compared with each other and confirmed that changes in blood volume were induced by cocaine hydrochloride injection. The results demonstrate that PAT may be used to detect the effects of drug abuse-induced brain activation. PMID:21163301

  4. Secondary Hyperalgesia Phenotypes Exhibit Differences in Brain Activation during Noxious Stimulation

    PubMed Central

    Werner, Mads Utke; Mårtensson, Johan; Larsson, Henrik B. W.; Dahl, Jørgen Berg

    2015-01-01

    Noxious stimulation of the skin with either chemical, electrical or heat stimuli leads to the development of primary hyperalgesia at the site of injury, and to secondary hyperalgesia in normal skin surrounding the injury. Secondary hyperalgesia is inducible in most individuals and is attributed to central neuronal sensitization. Some individuals develop large areas of secondary hyperalgesia (high-sensitization responders), while others develop small areas (low-sensitization responders). The magnitude of each area is reproducible within individuals, and can be regarded as a phenotypic characteristic. To study differences in the propensity to develop central sensitization we examined differences in brain activity and anatomy according to individual phenotypical expression of secondary hyperalgesia by magnetic resonance imaging. Forty healthy volunteers received a first-degree burn-injury (47°C, 7 min, 9 cm2) on the non-dominant lower-leg. Areas of secondary hyperalgesia were assessed 100 min after the injury. We measured neuronal activation by recording blood-oxygen-level-dependent-signals (BOLD-signals) during mechanical noxious stimulation before burn injury and in both primary and secondary hyperalgesia areas after burn-injury. In addition, T1-weighted images were used to measure differences in gray-matter density in cortical and subcortical regions of the brain. We found significant differences in neuronal activity between high- and low-sensitization responders at baseline (before application of the burn-injury) (p < 0.05). After the burn-injury, we found significant differences between responders during noxious stimulation of both primary (p < 0.01) and secondary hyperalgesia (p ≤ 0.04) skin areas. A decreased volume of the right (p = 0.001) and left caudate nucleus (p = 0.01) was detected in high-sensitization responders in comparison to low-sensitization responders. These findings suggest that brain-structure and neuronal activation to noxious stimulation

  5. Secondary hyperalgesia phenotypes exhibit differences in brain activation during noxious stimulation.

    PubMed

    Asghar, Mohammad Sohail; Pereira, Manuel Pedro; Werner, Mads Utke; Mårtensson, Johan; Larsson, Henrik B W; Dahl, Jørgen Berg

    2015-01-01

    Noxious stimulation of the skin with either chemical, electrical or heat stimuli leads to the development of primary hyperalgesia at the site of injury, and to secondary hyperalgesia in normal skin surrounding the injury. Secondary hyperalgesia is inducible in most individuals and is attributed to central neuronal sensitization. Some individuals develop large areas of secondary hyperalgesia (high-sensitization responders), while others develop small areas (low-sensitization responders). The magnitude of each area is reproducible within individuals, and can be regarded as a phenotypic characteristic. To study differences in the propensity to develop central sensitization we examined differences in brain activity and anatomy according to individual phenotypical expression of secondary hyperalgesia by magnetic resonance imaging. Forty healthy volunteers received a first-degree burn-injury (47 °C, 7 min, 9 cm(2)) on the non-dominant lower-leg. Areas of secondary hyperalgesia were assessed 100 min after the injury. We measured neuronal activation by recording blood-oxygen-level-dependent-signals (BOLD-signals) during mechanical noxious stimulation before burn injury and in both primary and secondary hyperalgesia areas after burn-injury. In addition, T1-weighted images were used to measure differences in gray-matter density in cortical and subcortical regions of the brain. We found significant differences in neuronal activity between high- and low-sensitization responders at baseline (before application of the burn-injury) (p < 0.05). After the burn-injury, we found significant differences between responders during noxious stimulation of both primary (p < 0.01) and secondary hyperalgesia (p ≤ 0.04) skin areas. A decreased volume of the right (p = 0.001) and left caudate nucleus (p = 0.01) was detected in high-sensitization responders in comparison to low-sensitization responders. These findings suggest that brain-structure and neuronal activation to noxious

  6. Amino acid activation in mammalian brain. Purification and characterization of tryptophan-activating enzyme from buffalo brain.

    PubMed

    Liu, C C; Chung, C H; Lee, M L

    1973-10-01

    l-Tryptophan-activating enzyme [l-tryptophan-tRNA ligase (AMP), EC 6.1.1.2] of water-buffalo brain was purified to near homogeneity by heat and pH treatments, ammonium sulphate fractionation, column chromatography on DEAE-cellulose, hydroxyapatite and Amberlite CG-50, and gel filtration on Sephadex G-200. The purified enzyme catalyses tryptophanyl-tRNA formation with yeast tRNA, but not with Escherichia coli tRNA. The enzyme exhibits multiple peaks of activity in Sephadex gel filtration with molecular weights corresponding to 155000, 105000 and 50000. However, only one peak of activity with molecular weight of 155000 can be detected when the enzyme is subjected to gel filtration at high concentration. Disc gel electrophoresis in the presence of sodium dodecyl sulphate reveals a single band with molecular weight of 55000. The activity of the enzyme is concentration dependent. Different K(m) and V(max.) values are obtained at different enzyme concentrations. These data suggest that this enzyme may exist in different quaternary structures, each with its own kinetic constants. The enzyme activity is inhibited by p-chloromercuribenzoate, and is not protected by the presence of the substrates, l-tryptophan, Mg(2+), ATP, in any combination.

  7. Sleep is associated with task-negative brain activity in fibromyalgia participants with comorbid chronic insomnia.

    PubMed

    Vatthauer, Karlyn E; Craggs, Jason G; Robinson, Michael E; Staud, Roland; Berry, Richard B; Perlstein, William M; McCrae, Christina S

    2015-01-01

    Patients with chronic pain exhibit altered default mode network (DMN) activity. This preliminary project questioned whether comorbid disease states are associated with further brain alterations. Thirteen women with fibromyalgia (FM) only and 26 women with fibromyalgia with comorbid chronic insomnia (FMI) underwent a single night of ambulatory polysomnography and completed a sleep diary each morning for 14 days prior to performing a neuroimaging protocol. Novel imaging analyses were utilized to identify regions associated with significantly disordered sleep that were more active in task-negative periods than task-oriented periods in participants with FMI, when compared to participants with FM. It was hypothesized that core DMN areas (ie, cingulate cortex, inferior parietal lobule, medial prefrontal cortex, medial temporal cortex, precuneus) would exhibit increased activity during task-negative periods. Analyses revealed that significantly disordered sleep significantly contributed to group differences in the right cingulate gyrus, left lentiform nucleus, left anterior cingulate, left superior gyrus, medial frontal gyrus, right caudate, and the left inferior parietal lobules. Results suggest that FMI may alter some brain areas of the DMN, above and beyond FM. However, future work will need to investigate these results further by controlling for chronic insomnia only before conclusions can be made regarding the effect of FMI comorbidity on the DMN. PMID:26648751

  8. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches

    PubMed Central

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Thibodeaux, David N.; Zhao, Hanzhi T.; Yu, Hang

    2016-01-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574312

  9. Brain activation by visual erotic stimuli in healthy middle aged males.

    PubMed

    Kim, S W; Sohn, D W; Cho, Y-H; Yang, W S; Lee, K-U; Juh, R; Ahn, K-J; Chung, Y-A; Han, S-I; Lee, K H; Lee, C U; Chae, J-H

    2006-01-01

    The objective of the present study was to identify brain centers, whose activity changes are related to erotic visual stimuli in healthy, heterosexual, middle aged males. Ten heterosexual, right-handed males with normal sexual function were entered into the present study (mean age 52 years, range 46-55). All potential subjects were screened over 1 h interview, and were encouraged to fill out questionnaires including the Brief Male Sexual Function Inventory. All subjects with a history of sexual arousal disorder or erectile dysfunction were excluded. We performed functional brain magnetic resonance imaging (fMRI) in male volunteers when an alternatively combined erotic and nonerotic film was played for 14 min and 9 s. The major areas of activation associated with sexual arousal to visual stimuli were occipitotemporal area, anterior cingulate gyrus, insula, orbitofrontal cortex, caudate nucleus. However, hypothalamus and thalamus were not activated. We suggest that the nonactivation of hypothalamus and thalamus in middle aged males may be responsible for the lesser physiological arousal in response to the erotic visual stimuli. PMID:16467858

  10. Sleep is associated with task-negative brain activity in fibromyalgia participants with comorbid chronic insomnia

    PubMed Central

    Vatthauer, Karlyn E; Craggs, Jason G; Robinson, Michael E; Staud, Roland; Berry, Richard B; Perlstein, William M; McCrae, Christina S

    2015-01-01

    Patients with chronic pain exhibit altered default mode network (DMN) activity. This preliminary project questioned whether comorbid disease states are associated with further brain alterations. Thirteen women with fibromyalgia (FM) only and 26 women with fibromyalgia with comorbid chronic insomnia (FMI) underwent a single night of ambulatory polysomnography and completed a sleep diary each morning for 14 days prior to performing a neuroimaging protocol. Novel imaging analyses were utilized to identify regions associated with significantly disordered sleep that were more active in task-negative periods than task-oriented periods in participants with FMI, when compared to participants with FM. It was hypothesized that core DMN areas (ie, cingulate cortex, inferior parietal lobule, medial prefrontal cortex, medial temporal cortex, precuneus) would exhibit increased activity during task-negative periods. Analyses revealed that significantly disordered sleep significantly contributed to group differences in the right cingulate gyrus, left lentiform nucleus, left anterior cingulate, left superior gyrus, medial frontal gyrus, right caudate, and the left inferior parietal lobules. Results suggest that FMI may alter some brain areas of the DMN, above and beyond FM. However, future work will need to investigate these results further by controlling for chronic insomnia only before conclusions can be made regarding the effect of FMI comorbidity on the DMN. PMID:26648751

  11. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches.

    PubMed

    Ma, Ying; Shaik, Mohammed A; Kim, Sharon H; Kozberg, Mariel G; Thibodeaux, David N; Zhao, Hanzhi T; Yu, Hang; Hillman, Elizabeth M C

    2016-10-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574312

  12. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches.

    PubMed

    Ma, Ying; Shaik, Mohammed A; Kim, Sharon H; Kozberg, Mariel G; Thibodeaux, David N; Zhao, Hanzhi T; Yu, Hang; Hillman, Elizabeth M C

    2016-10-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  13. Guide to good practices for control area activities

    SciTech Connect

    1998-12-01

    This Guide to Good Practices is written to enhance understanding of, and provide direction for, Control Area Activities, Chapter III of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements for DOE Facilities. The practices in this guide should be considered for controlling the activities in control areas. Contractors are advised to adopt procedures that meet the intent of DOE Order 5480.19. Control Area Activities is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for maintaining a formal environment in operational control areas to promote safe and efficient operations.

  14. Behavioral stochastic resonance associated with large-scale synchronization of human brain activity

    NASA Astrophysics Data System (ADS)

    Kitajo, Keiichi; Yamanaka, Kentaro; Nozaki, Daichi; Ward, Lawrence M.; Yamamoto, Yoshiharu

    2004-05-01

    We demonstrate experimentally that enhanced detection of weak visual signals by addition of visual noise is accompanied by an increase in phase synchronization of EEG signals across widely-separated areas of the human brain. In our sensorimotor integration task, observers responded to a weak rectangular gray-level signal presented to their right eyes by pressing and releasing a button whenever they detected an increment followed by a decrement in brightness. Signal detection performance was optimized by presenting randomly-changing-gray-level noise separately to observers' left eyes using a mirror stereoscope. We measured brain electrical activity at the scalp by electroencephalograph (EEG), calculated the instantaneous phase for each EEG signal, and evaluated the degree of large-scale phase synchronization between pairs of EEG signals. Dynamic synchronization-desynchronization patterns were observed and we found evidence of noise-enhanced large-scale synchronization associated with detection of the brightness changes under conditions of noise-enhanced performance. Our results suggest that behavioral stochastic resonance might arise from noise-enhanced synchronization of neural activities across widespread brain regions.

  15. Deep brain optical measurements of cell type–specific neural activity in behaving mice

    PubMed Central

    Cui, Guohong; Jun, Sang Beom; Jin, Xin; Luo, Guoxiang; Pham, Michael D; Lovinger, David M; Vogel, Steven S; Costa, Rui M

    2014-01-01

    Recent advances in genetically encoded fluorescent sensors enable the monitoring of cellular events from genetically defined groups of neurons in vivo. In this protocol, we describe how to use a time-correlated single-photon counting (tcspc)–based fiber optics system to measure the intensity, emission spectra and lifetime of fluorescent biosensors expressed in deep brain structures in freely moving mice. When combined with cre-dependent selective expression of genetically encoded ca2+ indicators (GecIs), this system can be used to measure the average neural activity from a specific population of cells in mice performing complex behavioral tasks. as an example, we used viral expression of GcaMps in striatal projection neurons (spns) and recorded the fluorescence changes associated with calcium spikes from mice performing a lever-pressing operant task. the whole procedure, consisting of virus injection, behavior training and optical recording, takes 3–4 weeks to complete. With minor adaptations, this protocol can also be applied to recording cellular events from other cell types in deep brain regions, such as dopaminergic neurons in the ventral tegmental area. the simultaneously recorded fluorescence signals and behavior events can be used to explore the relationship between the neural activity of specific brain circuits and behavior. PMID:24784819

  16. Evaluating effects of methylphenidate on brain activity in cocaine addiction: a machine-learning approach

    NASA Astrophysics Data System (ADS)

    Rish, Irina; Bashivan, Pouya; Cecchi, Guillermo A.; Goldstein, Rita Z.

    2016-03-01

    The objective of this study is to investigate effects of methylphenidate on brain activity in individuals with cocaine use disorder (CUD) using functional MRI (fMRI). Methylphenidate hydrochloride (MPH) is an indirect dopamine agonist commonly used for treating attention deficit/hyperactivity disorders; it was also shown to have some positive effects on CUD subjects, such as improved stop signal reaction times associated with better control/inhibition,1 as well as normalized task-related brain activity2 and resting-state functional connectivity in specific areas.3 While prior fMRI studies of MPH in CUDs have focused on mass-univariate statistical hypothesis testing, this paper evaluates multivariate, whole-brain effects of MPH as captured by the generalization (prediction) accuracy of different classification techniques applied to features extracted from resting-state functional networks (e.g., node degrees). Our multivariate predictive results based on resting-state data from3 suggest that MPH tends to normalize network properties such as voxel degrees in CUD subjects, thus providing additional evidence for potential benefits of MPH in treating cocaine addiction.

  17. How does transcranial magnetic stimulation modify neuronal activity in the brain? - Implications for studies