Science.gov

Sample records for activated carbon absorption

  1. TESTING GUIDELINES FOR TECHNETIUM-99 ABSORPTION ON ACTIVATED CARBON

    SciTech Connect

    BYRNES ME

    2010-09-08

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs) will

  2. Estimating organic micro-pollutant removal potential of activated carbons using UV absorption and carbon characteristics.

    PubMed

    Zietzschmann, Frederik; Altmann, Johannes; Ruhl, Aki Sebastian; Dünnbier, Uwe; Dommisch, Ingvild; Sperlich, Alexander; Meinel, Felix; Jekel, Martin

    2014-06-01

    Eight commercially available powdered activated carbons (PAC) were examined regarding organic micro-pollutant (OMP) removal efficiencies in wastewater treatment plant (WWTP) effluent. PAC characteristic numbers such as B.E.T. surface, iodine number and nitrobenzene number were checked for their potential to predict the OMP removal of the PAC products. Furthermore, the PAC-induced removal of UV254 nm absorption (UVA254) in WWTP effluent was determined and also correlated with OMP removal. None of the PAC characteristic numbers can satisfactorily describe OMP removal and accordingly, these characteristics have little informative value on the reduction of OMP concentrations in WWTP effluent. In contrast, UVA254 removal and OMP removal correlate well for carbamazepine, diclofenac, and several iodinated x-ray contrast media. Also, UVA254 removal can roughly describe the average OMP removal of all measured OMP, and can accordingly predict PAC performance in OMP removal. We therefore suggest UVA254 as a handy indicator for the approximation of OMP removal in practical applications where direct OMP concentration quantification is not always available. In continuous operation of large-scale plants, this approach allows for the efficient adjustment of PAC dosing to UVA254, in order to ensure reliable OMP removal whilst minimizing PAC consumption. PMID:24651017

  3. Activity and stability of immobilized carbonic anhydrase for promoting CO2 absorption into a carbonate solution for post-combustion CO2 capture

    USGS Publications Warehouse

    Zhang, S.; Zhang, Z.; Lu, Y.; Rostam-Abadi, M.; Jones, A.

    2011-01-01

    An Integrated Vacuum Carbonate Absorption Process (IVCAP) currently under development could significantly reduce the energy consumed when capturing CO2 from the flue gases of coal-fired power plants. The biocatalyst carbonic anhydrase (CA) has been found to effectively promote the absorption of CO2 into the potassium carbonate solution that would be used in the IVCAP. Two CA enzymes were immobilized onto three selected support materials having different pore structures. The thermal stability of the immobilized CA enzymes was significantly greater than their free counterparts. For example, the immobilized enzymes retained at least 60% of their initial activities after 90days at 50??C compared to about 30% for their free counterparts under the same conditions. The immobilized CA also had significantly improved resistance to concentrations of sulfate (0.4M), nitrate (0.05M) and chloride (0.3M) typically found in flue gas scrubbing liquids than their free counterparts. ?? 2011 Elsevier Ltd.

  4. Carbon Dioxide Absorption Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  5. Activation Effect of Fullerene C60 on the Carbon Dioxide Absorption Performance of Amine-Rich Polypropylenimine Dendrimers.

    PubMed

    Andreoli, Enrico; Barron, Andrew R

    2015-08-24

    Converting amine-rich compounds into highly effective carbon dioxide (CO2 ) sorbents requires a better understanding and control of their properties. The reaction of fullerene C60 with polyethyleneimine converts the polymer into a high-performance CO2 sorbent. In this study, experimental evidence is reported for the activation effect of C60 on the amine moieties of the polymer. To do so, polypropylenimine (PPI) dendrimers that allowed for a systematic comparison of molecular composition and CO2 absorption were used. The addition of C60 to PPI to form PPI-C60 results in a reduction of the energy barrier of CO2 absorption, but also in a parallel decrease in the frequency of successful collisions between CO2 and PPI-C60 due to a possible disruption of the hydrogen-bonding network of amino groups and bound water in PPI. This finding supports the existence of a non-affinity "repulsive" effect between hydrophobic C60 and hydrophilic amines that forces them to be actively exposed to CO2. PMID:26223905

  6. Fractional absorption of active absorbable algal calcium (AAACa) and calcium carbonate measured by a dual stable-isotope method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the use of stable isotopes, this study aimed to compare the bioavailability of active absorbable algal calcium (AAACa), obtained from oyster shell powder heated to a high temperature, with an additional heated seaweed component (Heated Algal Ingredient, HAI), with that of calcium carbonate. In ...

  7. Sevelamer carbonate markedly reduces levothyroxine absorption.

    PubMed

    Iovino, Michele; Iovine, Nicola; Petrosino, Alfanso; Giagulli, Vito A; Licchelli, Brunella; Guastamacchia, Edoardo; Triggiani, Vincenzo

    2014-01-01

    We report the case of a young woman affected by hypothyroidism due to Hashimoto's thyroiditis, previously well compensated with a full replacement therapy (150 mcg/day of levothyroxine), presenting a clinical picture of myxedema, with a TSH=650 mU/L. Two years earlier she had started a dialysis treatment because of a chronic renal failure and had been under treatment for the last 18 months with sevelamer carbonate, a phosphate binder. No improvement of clinical conditions nor reduction in TSH serum levels was observed even on increasing the dose of levothyroxine up to 300 mcg/day, whereas euthyroidism finally restored by administering the first morning dose of sevelamer carbonate at least 4 hours after levothyroxine administration. This case shows that sevelamer carbonate, in analogy with what has been already reported for sevelamer hydrochloride, can interfere with levothyroxine absorption leading to a condition of hypothyroidism in patients previously well compensated with a given replacement dose. PMID:25183496

  8. Universal nonresonant absorption in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Vialla, Fabien; Malic, Ermin; Langlois, Benjamin; Chassagneux, Yannick; Diederichs, Carole; Deleporte, Emmanuelle; Roussignol, Philippe; Lauret, Jean-Sébastien; Voisin, Christophe

    2014-10-01

    Photoluminescence excitation measurements in semiconducting carbon nanotubes show a systematic nonresonant contribution between the well-known excitonic resonances. Using a global analysis method, we were able to delineate the contribution of each chiral species, including its tiny nonresonant component. By comparison with the recently reported excitonic absorption cross section on the S22 resonance, we found a universal nonresonant absorbance which turns out to be of the order of one-half of that of an equivalent graphene sheet. This value, as well as the absorption line shape in the nonresonant window, is in excellent agreement with microscopic calculations based on the density-matrix formalism. This nonresonant absorption of semiconducting nanotubes is essentially frequency independent over 0.5-eV-wide windows and reaches approximately the same value between the S11 and S22 resonances and between the S22 and S33 resonances. In addition, the nonresonant absorption cross section turns out to be the same for all the chiral species we measured in this study. From a practical point of view, this study provides a solid framework for sample content analysis based on photoluminescence studies by targeting specific excitation wavelengths that lead to almost uniform excitation of all the chiral species of a sample within a given diameter range.

  9. Activation Effect of Fullerene C60 on the Carbon Dioxide Absorption Performance of Amine-Rich Polypropylenimine Dendrimers.

    PubMed

    Andreoli, Enrico; Barron, Andrew R

    2015-08-24

    Invited for this month's cover are Dr. Enrico Andreoli and Prof. Andrew R. Barron from the Energy Safety Research Institute (ESRI) of Swansea University. The image shows how fullerene C60 can activate amine-rich polymers toward CO2 capture for clean energy production. The Full Paper itself is available at 10.1002/cssc.201500605. PMID:26259624

  10. Microwave absorption properties of pyrolytic carbon nanofilm

    PubMed Central

    2013-01-01

    We analyzed the electromagnetic (EM) shielding effectiveness in the Ka band (26 to 37 GHz) of highly amorphous nanometrically thin pyrolytic carbon (PyC) films with lateral dimensions of 7.2 × 3.4 mm2, which consists of randomly oriented and intertwined graphene flakes with a typical size of a few nanometers. We discovered that the manufactured PyC films, whose thickness is thousand times less than the skin depth of conventional metals, provide a reasonably high EM attenuation. The latter is caused by absorption losses that can be as high as 38% to 20% in the microwave frequency range. Being semi-transparent in visible and infrared spectral ranges and highly conductive at room temperature, PyC films emerge as a promising material for manufacturing ultrathin microwave (e.g., Ka band) filters and shields. PMID:23388194

  11. Experimental study of neutrino absorption on carbon

    SciTech Connect

    Krakauer, D.A.; Talaga, R.L. ); Allen, R.C.; Chen, H.H.; Hausammann, R.; Lee, W.P.; Mahler, H.J.; Lu, X.Q.; Wang, K.C. ); Bowles, T.J.; Burman, R.L.; Carlini, R.D.; Cochran, D.R.F.; Doe, P.J.; Frank, J.S.; Piasetzky, E.; Potter, M.E.; Sandberg, V.D. )

    1992-05-01

    The process of electron emission from {similar to}30 MeV neutrino absorption on carbon, {sup 12}C({nu}{sub {ital e}},{ital e}{sup {minus}}){sup 12}N, has been observed. The flux-weighted total cross section for the exclusive neutrino-induced nuclear transition {sup 12}C({nu}{sub {ital e}},{ital e}{sup {minus}}){sup 12}N(g.s.) is (1.05{plus minus}0.10(stat){plus minus}0.10(syst)){times}10{sup {minus}41} cm{sup 2}. The measured cross section and angular distribution {ital d}{sigma}/{ital d}{Omega} are in agreement with theoretical estimates. The inclusive {nu}{sub {ital e}} {sup 12}C reaction rate, which accounted for the majority of all neutrino interactions observed in this experiment, was determined from a detailed fit of energy and angular distributions for the observed electrons. The inclusive {sup 12}C({nu}{sub {ital e}},{ital e}{sup {minus}}){ital X} cross section is measured to be (1.41{plus minus}0.23(tot)){times}10{sup {minus}41} cm{sup 2}. An upper limit for the sum of the {sup 13}C({nu}{sub {ital e}},{ital e}{sup {minus}}){ital X}+{sup 27}Al({nu}{sub {ital e}},{ital e}{sup {minus}}){ital X} inclusive absorption cross sections is presented.

  12. Activated carbon-modified knotted reactor coupled to electrothermal atomic absorption spectrometry for sensitive determination of arsenic species in medicinal herbs and tea infusions

    NASA Astrophysics Data System (ADS)

    Grijalba, Alexander Castro; Martinis, Estefanía M.; Lascalea, Gustavo E.; Wuilloud, Rodolfo G.

    2015-01-01

    A flow injection system based on a modified polytetrafluoroethylene (PTFE) knotted reactor (KR) was developed for arsenite [As(III)] and arsenate [As(V)] species preconcentration and determination by electrothermal atomic absorption spectrometry (ETAAS). Activated carbon (AC) was immobilized on the inner walls of a PTFE KR by a thermal treatment. A significant increase in analyte retention was obtained with the AC-modified KR (100%) as compared to the regular PTFE KR (25%). The preconcentration method involved the on-line formation of As(III)-ammonium pyrrolidinedithiocarbamate (As-APDC) complex, followed by its adsorption onto the inner walls of the AC-modified KR. After analyte retention, the complex was eluted with acetone directly into the graphite furnace of ETAAS. The parameters affecting the flow injection system were evaluated with a full central composite face centered design with three center points. Under optimum conditions, a preconcentration factor of 200 was obtained with 10 ml of sample. The detection limit was 4 ng L- 1 and the relative standard deviation (RSD) for six replicate measurements at 0.2 μg L- 1 of As were 4.3% and 4.7% for As(III) and As(V), respectively. The developed methodology was highly selective towards As(III), while As(V), monomethylarsonic acid [MMA(V)] and dimethylarsinic [DMA(V)] were not retained in the AC-modified KR. The proposed method was successfully applied for As speciation analysis in infusions originated from medicinal herbs and tea.

  13. Light Absorption in Arctic Sea Ice - Black Carbon vs Chlorophyll

    NASA Astrophysics Data System (ADS)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Hunke, E. C.; Flanner, M.; Wang, H.; Dubey, M. K.; Jeffery, N.

    2015-12-01

    The fingerprint of climate change is more obvious in the Arctic than any other place on Earth. This is not only because the surface temperature there has increased at twice the rate of global mean temperature but also because Arctic sea ice extent has reached a record low of 49% reduction relative to the 1979-2000 climatology. Radiation absorption through black carbon (BC) deposited on Arctic snow and sea ice surface is one of the major hypothesized contributors to the decline. However, we note that chlorophyll-a absorption owing to increasing biology activity in this region could be a major competitor during boreal spring. Modeling of sea-ice physical and biological processes together with experiments and field observations promise rapid progress in the quality of Arctic ice predictions. Here we develop a dynamic ice system module to investigate discrete absorption of both BC and chlorophyll in the Arctic, using BC deposition fields from version 5 of Community Atmosphere Model (CAM5) and vertically distributed layers of chlorophyll concentrations from Sea Ice Model (CICE). To this point, our black carbon mixing ratios compare well with available in situ data. Both results are in the same order of magnitude. Estimates from our calculations show that sea ice and snow around the Canadian Arctic Archipelago and Baffin Bay has the least black carbon absorption while values at the ice-ocean perimeter in the region of the Barents Sea peak significantly. With regard to pigment concentrations, high amounts of chlorophyll are produced in Arctic sea ice by the bottom microbial community, and also within the columnar pack wherever substantial biological activity takes place in the presence of moderate light. We show that the percentage of photons absorbed by chlorophyll in the spring is comparable to the amount attributed to BC, especially in areas where the total deposition rates are decreasing with time on interannual timescale. We expect a continuous increase in

  14. Carbon Dioxide Absorption in a Membrane Contactor with Color Change

    ERIC Educational Resources Information Center

    Pantaleao, Ines; Portugal, Ana F.; Mendes, Adelio; Gabriel, Joaquim

    2010-01-01

    A pedagogical experiment is described to examine the physical absorption of gases, in this case carbon dioxide, in a hollow fiber membrane contactor (HFMC) where the absorption concentration profile can be followed by a color change. The HFMC is used to teach important concepts and can be used in interesting applications for students, such as…

  15. Activated carbon from biomass

    NASA Astrophysics Data System (ADS)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  16. Thermal properties of carbon black aqueous nanofluids for solar absorption

    NASA Astrophysics Data System (ADS)

    Han, Dongxiao; Meng, Zhaoguo; Wu, Daxiong; Zhang, Canying; Zhu, Haitao

    2011-07-01

    In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  17. Light absorption by organic carbon from wood combustion

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Bond, T. C.

    2009-09-01

    Carbonaceous aerosols affect the radiative balance of the Earth by absorbing and scattering light. While BC is highly absorbing, some organic compounds also have significant absorption, which is greater at near-ultraviolet and blue wavelengths. To the extent that OC absorbs visible light, it may be a non-negligible contributor to direct aerosol radiative forcing. In this work, we examine absorption by primary OC emitted from solid fuel pyrolysis. We provide absorption spectra of this material, which can be related to the imaginary refractive index. This material has polar character but is not fully water-soluble: more than 92% was extractable by methanol or acetone, compared with 73% for water and 52% for hexane. Water-soluble organic carbon contributed to light absorption at both ultraviolet and visible wavelengths. However, a larger portion came from organic carbon that is extractable only by methanol. The spectra of water-soluble organic carbon are similar to others in the literature. We compared spectra for material generated with different wood type, wood size and pyrolysis temperature. Higher wood temperature is the main factor creating organic aerosol with higher absorption, causing about a factor of four increase in mass-normalized absorption at visible wavelengths. A simple model suggests that, despite the absorption, both high-temperature and low-temperature carbon have negative climate forcing over a surface with average albedo.

  18. Methods to Parameterize Brown Carbon, Distinguish Brown Carbon Absorption From Enhanced Black Carbon Absorption, and Assess the Stability of Brown Carbon to Photochemical Aging

    NASA Astrophysics Data System (ADS)

    Murphy, S. M.; Pokhrel, R. P.; Beamesderfer, E.; Wagner, N. L.; Langridge, J.; Lack, D.

    2015-12-01

    We present results obtained during the Fire Lab at Missoula Experiment-4 (FLAME-4) with a combination of multi-wavelength photoacoustic and cavity ringdown spectrometers. It will be shown that the single scattering albedo and Angstrom exponent of biomass burning emissions can be better parameterized by the organic carbon to black carbon ratio than by the modified combustion efficiency. Two different methods to distinguish the contribution to aerosol absorption from brown carbon versus black carbon and enhanced black carbon absorption will be presented. One method is based on extending the absorption seen at 660 nm with an assumed Angstrom exponent while the other assumes a similar absorption enhancement (determined via thermal denuder) of black carbon at 660 and 405 nm. Potential errors and advantages of both methods will be discussed. Finally, chamber experiments that show degradation of brown carbon by photochemical oxidation will be presented along with a number of methods by which to assess the amount of brown carbon that is degraded.

  19. Thermo-Active Behavior of Ethylene-Vinyl Acetate | Multiwall Carbon Nanotube Composites Examined by in Situ near-Edge X-ray Absorption Fine-Structure Spectroscopy

    PubMed Central

    2015-01-01

    NEXAFS spectroscopy was used to investigate the temperature dependence of thermally active ethylene-vinyl acetate | multiwall carbon nanotube (EVA|MWCNT) films. The data shows systematic variations of intensities with increasing temperature. Molecular orbital assignment of interplaying intensities identified the 1s → π*C=C and 1s → π*C=O transitions as the main actors during temperature variation. Furthermore, enhanced near-edge interplay was observed in prestrained composites. Because macroscopic observations confirmed enhanced thermal-mechanical actuation in prestrained composites, our findings suggest that the interplay of C=C and C=O π orbitals may be instrumental to actuation. PMID:24803975

  20. Light absorption by organic carbon from wood combustion

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Bond, T. C.

    2010-02-01

    Carbonaceous aerosols affect the radiative balance of the Earth by absorbing and scattering light. While black carbon (BC) is highly absorbing, some organic carbon (OC) also has significant absorption, especially at near-ultraviolet and blue wavelengths. To the extent that OC absorbs visible light, it may be a non-negligible contributor to positive direct aerosol radiative forcing. Quantification of that absorption is necessary so that radiative-transfer models can evaluate the net radiative effect of OC. In this work, we examine absorption by primary OC emitted from solid fuel pyrolysis. We provide absorption spectra of this material, which can be related to the imaginary refractive index. This material has polar character but is not fully water-soluble: more than 92% was extractable by methanol or acetone, compared with 73% for water and 52% for hexane. Water-soluble OC contributes to light absorption at both ultraviolet and visible wavelengths. However, a larger portion of the absorption comes from OC that is extractable only by methanol. Absorption spectra of water-soluble OC are similar to literature reports. We compare spectra for material generated with different wood type, wood size and pyrolysis temperature. Higher wood temperature is the main factor creating OC with higher absorption; changing wood temperature from a devolatilizing state of 210 °C to a near-flaming state of 360 °C causes about a factor of four increase in mass-normalized absorption at visible wavelengths. A clear-sky radiative transfer model suggests that, despite the absorption, both high-temperature and low-temperature OC result in negative top-of-atmosphere radiative forcing over a surface with an albedo of 0.19 and positive radiative forcing over bright surfaces. Unless absorption by real ambient aerosol is higher than that measured here, it probably affects global average clear-sky forcing very little, but could be important in energy balances over bright surfaces.

  1. Activated carbon material

    DOEpatents

    Evans, A. Gary

    1978-01-01

    Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

  2. Carbon Dioxide Separation from Flue Gas by Phase Enhanced Absorption

    SciTech Connect

    Tim Fout

    2007-06-30

    A new process, phase enhanced absorption, was invented. The method is carried out in an absorber, where a liquid carrier (aqueous solution), an organic mixture (or organic compound), and a gas mixture containing a gas to be absorbed are introduced from an inlet. Since the organic mixture is immiscible or at least partially immiscible with the liquid carrier, the organic mixture forms a layer or small parcels between the liquid carrier and the gas mixture. The organic mixture in the absorber improves mass transfer efficiency of the system and increases the absorption rate of the gas. The organic mixture serves as a transportation media. The gas is finally accumulated in the liquid carrier as in a conventional gas-liquid absorption system. The presence of the organic layer does not hinder the regeneration of the liquid carrier or recovery of the gas because the organic layer is removed by a settler after the absorption process is completed. In another aspect, the system exhibited increased gas-liquid separation efficiency, thereby reducing the costs of operation and maintenance. Our study focused on the search of the organic layer or transportation layer to enhance the absorption rate of carbon dioxide. The following systems were studied, (1) CO{sub 2}-water system and CO{sub 2}-water-organic layer system; (2) CO{sub 2}-Potassium Carbonate aqueous solution system and CO{sub 2}-Potassium Carbonate aqueous solution-organic layer system. CO{sub 2}-water and CO{sub 2}-Potassium Carbonate systems are the traditional gas-liquid absorption processes. The CO{sub 2}-water-organic layer and CO{sub 2}-Potassium Carbonate-organic layer systems are the novel absorption processes, phase enhanced absorption. As we mentioned early, organic layer is used for the increase of absorption rate, and plays the role of transportation of CO{sub 2}. Our study showed that the absorption rate can be increased by adding the organic layer. However, the enhanced factor is highly depended on the

  3. Less-costly activated carbon for sewage treatment

    NASA Technical Reports Server (NTRS)

    Ingham, J. D.; Kalvinskas, J. J.; Mueller, W. A.

    1977-01-01

    Lignite-aided sewage treatment is based on absorption of dissolved pollutants by activated carbon. Settling sludge is removed and dried into cakes that are pyrolyzed with lignites to yield activated carbon. Lignite is less expensive than activated carbon previously used to supplement pyrolysis yield.

  4. Selective microwave absorption of iron-rich carbon nanotube composites.

    PubMed

    Gui, Xuchun; Wang, Kunlin; Cao, Anyuan; Wei, Jinquan; Lv, Ruitao; Kang, Feiyu; Shu, Qinke; Jia, Yi; Wu, Dehai

    2010-03-01

    We report on high selectivity of microwave absorption by controlling the concentration of carbon nanotubes in polymer composites and matching the dielectric loss and magnetic loss through encapsulation of crystalline Fe nanorods inside nanotubes. The reflection loss reached more than 10 dB (> 90% absorption) by loading nanotubes at concentrations of 1 wt% to 10 wt% into the composites, and the frequencies corresponding to the maximum loss can be tailored throughout the range of 2 to 18 GHz by changing the concentration. A maximum absorption capability (75 dB x GHz) was observed at a CNT loading of about 4.5 wt%. The crystalline structure of encapsulated Fe nanorods can be modified to enhance the reflection loss. Control of absorption selectivity by modifying the structure and concentration of nanoscale fillers could facilitate potential higher-frequency applications (e.g., radar absorbing) of nanocomposites. PMID:20355578

  5. Atomistic Simulation of Carbon Nanotube Ropes and Hydrogen Absorption

    NASA Astrophysics Data System (ADS)

    Li, Ju; Yip, Sidney; Fujiwara, Joshua

    2001-06-01

    Atomistic Simulation of Carbon Nanotube Ropes and Hydrogen Absorption Ju Li, Sidney Yip, Massachusetts Institute of Technology, Department of Nuclear Engineering, Cambridge, MA 02139; Joshua Fujiwara, Honda R&D Co., Ltd., Wako Research Center, JAPAN. Using Brenner type Reactive Empirical Bond Order (REBO) interatomic potentials, we perform atomistic simulations to calculate the optimized structures, tensile and bending strengths, and thermal conductivities of both straight and twisted single-walled nanotube ropes (bundles) where results from direct simulation are checked against those from the Green-Kubo linear response theory. Preliminary calculations are performed to study hydrogen absorption by SWNTs at room temperature and 77K.

  6. Tuning the Carbon Dioxide Absorption in Amino Acid Ionic Liquids.

    PubMed

    Firaha, Dzmitry S; Kirchner, Barbara

    2016-07-01

    One of the possible solutions to prevent global climate change is the reduction of CO2 emissions, which is highly desired for the sustainable development of our society. In this work, the chemical absorption of carbon dioxide in amino acid ionic liquids was studied through first-principles methods. The use of readily accessible and biodegradable amino acids as building blocks for ionic liquids makes them highly promising replacements for the widely applied hazardous aqueous solutions of amines. A detailed insight into the reaction mechanism of the CO2 absorption was obtained through state-of-the-art theoretical methods. This allowed us to determine the reason for the specific CO2 capacities found experimentally. Moreover, we have also conducted a theoretical design of ionic liquids to provide valuable insights into the precise tuning of the energetic and kinetic parameters of the CO2 absorption. PMID:27214652

  7. Carbon Dioxide Absorption from Anæsthetic Atmospheres 1

    PubMed Central

    Waters, Ralph M.

    1936-01-01

    A safe and practical technique for the application of carbon dioxide absorption from anæsthetic atmospheres is described. It has been found satisfactory in over 20,000 administrations over a period of fifteen years. High-grade soda lime is utilized as the chemical absorbent. Granules are placed in a canister between face mask, and breathing bag. The canister is carefully checked for efficiency by both chemical analyses and physical experiments. Its size, shape and arrangement is shown to be important for safety and maximum efficiency. Detailed techniques are described for the use of various agents. Advantages of carbon dioxide absorption are set forth. The “Apnœa” suggested by Guedel is described under the term “Controlled Respiration” and attention is called to certain of its advantages. ImagesFig. 2Fig. 6Fig. 7Fig. 8 PMID:19990907

  8. Radiative absorption enhancement from coatings on black carbon aerosols.

    PubMed

    Cui, Xinjuan; Wang, Xinfeng; Yang, Lingxiao; Chen, Bing; Chen, Jianmin; Andersson, August; Gustafsson, Örjan

    2016-05-01

    The radiative absorption enhancement of ambient black carbon (BC), by light-refractive coatings of atmospheric aerosols, constitutes a large uncertainty in estimates of climate forcing. The direct measurements of radiative absorption enhancement require the experimentally-removing the coating materials in ambient BC-containing aerosols, which remains a challenge. Here, the absorption enhancement of the BC core by non-absorbing aerosol coatings was quantified using a two-step removal of both inorganic and organic matter coatings of ambient aerosols. The mass absorption cross-section (MAC) of decoated/pure atmospheric BC aerosols of 4.4±0.8m(2)g(-1) was enhanced to 9.6±1.8m(2)g(-1) at 678-nm wavelength for ambiently-coated BC aerosols at a rural Northern China site. The enhancement of MAC (EMAC) rises from 1.4±0.3 in fresh combustion emissions to ~3 for aged ambient China aerosols. The three-week high-intensity campaign observed an average EMAC of 2.25±0.55, and sulfates were primary drivers of the enhanced BC absorption. PMID:26874760

  9. Development of a carbonate absorption-based process for post-combustion CO2 capture: The role of biocatalyst to promote CO2 absorption rate

    USGS Publications Warehouse

    Lu, Y.; Ye, X.; Zhang, Z.; Khodayari, A.; Djukadi, T.

    2011-01-01

    An Integrated Vacuum Carbonate Absorption Process (IVCAP) for post-combustion carbon dioxide (CO2) capture is described. IVCAP employs potassium carbonate (PC) as a solvent, uses waste or low quality steam from the power plant for CO2 stripping, and employs a biocatalyst, carbonic anhydrase (CA) enzyme, for promoting the CO2 absorption into PC solution. A series of experiments were performed to evaluate the activity of CA enzyme mixed in PC solutions in a stirred tank reactor system under various temperatures, CA dosages, CO2 loadings, CO2 partial pressures, and the presence of major flue gas contaminants. It was demonstrated that CA enzyme is an effective biocatalyst for CO2 absorption under IVCAP conditions. ?? 2011 Published by Elsevier Ltd.

  10. Airborne Carbon Dioxide Laser Absorption Spectrometer for IPDA Measurements of Tropospheric CO2: Recent Results

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.; Menzies, Robert T.

    2008-01-01

    The National Research Council's decadal survey on Earth Science and Applications from Space[1] recommended the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission for launch in 2013-2016 as a logical follow-on to the Orbiting Carbon Observatory (OCO) which is scheduled for launch in late 2008 [2]. The use of a laser absorption measurement technique provides the required ability to make day and night measurements of CO2 over all latitudes and seasons. As a demonstrator for an approach to meeting the instrument needs for the ASCENDS mission we have developed the airborne Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) which uses the Integrated Path Differential Absorption (IPDA) Spectrometer [3] technique operating in the 2 micron wavelength region.. During 2006 a short engineering checkout flight of the CO2LAS was conducted and the results presented previously [4]. Several short flight campaigns were conducted during 2007 and we report results from these campaigns.

  11. Investigation on optical absorption properties of ion irradiated single walled carbon nanotubes

    SciTech Connect

    Vishalli, Dharamvir, Keya; Kaur, Ramneek; Raina, K. K.; Avasthi, D. K.; Jeet, Kiran

    2015-08-28

    In the present study change in the optical absorption properties of single walled carbon nanotubes (SWCNTs) under nickel ion (60 MeV) irradiation at various fluences has been investigated. Langmuir Blodgett technique is used to deposit SWCNT thin film of uniform thickness. AFM analysis shows a network of interconnected bundles of nanotubes. UV-Vis-NIR absorption spectra indicate that the sample mainly contain SWCNTs of semiconducting nature. It has been found in absorption spectra that there is decrease in the intensity of the characteristic SWCNT peaks with increase in fluence. At fluence value 1×10{sup 14} ions/cm{sup 2} there is almost complete suppression of the characteristic SWCNTs peaks.The decrease in the optical absorption with increase in fluence is due to the increase in the disorder in the system which leads to the decrease in optically active states.

  12. Determination of gold in geological materials by carbon slurry sampling graphite furnace atomic absorption spectrometry.

    PubMed

    Dobrowolski, Ryszard; Kuryło, Michał; Otto, Magdalena; Mróz, Agnieszka

    2012-09-15

    A simple and cost effective preconcentration method on modified activated carbons is described for the determination of traces of gold (Au) in geological samples by carbon slurry sampling graphite furnace atomic absorption spectrometry (GFAAS). The basic parameters affecting the adsorption capacity of Au(III) ions on modified activated carbons were studied in detail and the effect of activated carbons modification has been determined by studying the initial runs of adsorption isotherms. The influence of chlorides and nitrates on adsorption ability of Au(III) ions onto the modified activated carbons for diluted aqueous solution was also studied in detail in respect to the determination of gold in solid materials after digestion steps in the analytical procedure, which usually involves the application of aqua regia. SEM-EDX and XPS studies confirmed that the surface reduction of Au(III) ions to Au(0) is the main gold adsorption mechanism on the activated carbon. Determination of gold after its preconcentration on the modified activated carbon was validated by applying certified reference materials. The experimental results are in good agreement with the certified values. The proposed method has been successfully applied for the determination of Au in real samples using aqueous standards. PMID:22967620

  13. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; A. Frank Seibert; J. Tim Cullinane; Terraun Jones

    2003-01-01

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Progress has been made in this reporting period on three subtasks. The rigorous Electrolyte Non-Random Two-Liquid (electrolyte-NRTL) model has been regressed to represent CO{sub 2} solubility in potassium carbonate/bicarbonate solutions. An analytical method for piperazine has been developed using a gas chromatograph. Funding has been obtained and equipment has been donated to provide for modifications of the existing pilot plant system with stainless steel materials.

  14. Energy Absorption in Chopped Carbon Fiber Compression Molded Composites

    SciTech Connect

    Starbuck, J.M.

    2001-07-20

    In passenger vehicles the ability to absorb energy due to impact and be survivable for the occupant is called the ''crashworthiness'' of the structure. To identify and quantify the energy absorbing mechanisms in candidate automotive composite materials, test methodologies were developed for conducting progressive crush tests on composite plate specimens. The test method development and experimental set-up focused on isolating the damage modes associated with the frond formation that occurs in dynamic testing of composite tubes. Quasi-static progressive crush tests were performed on composite plates manufactured from chopped carbon fiber with an epoxy resin system using compression molding techniques. The carbon fiber was Toray T700 and the epoxy resin was YLA RS-35. The effect of various material and test parameters on energy absorption was evaluated by varying the following parameters during testing: fiber volume fraction, fiber length, fiber tow size, specimen width, profile radius, and profile constraint condition. It was demonstrated during testing that the use of a roller constraint directed the crushing process and the load deflection curves were similar to progressive crushing of tubes. Of all the parameters evaluated, the fiber length appeared to be the most critical material parameter, with shorter fibers having a higher specific energy absorption than longer fibers. The combination of material parameters that yielded the highest energy absorbing material was identified.

  15. JPL Carbon Dioxide Laser Absorption Spectrometer Data Processing Results for the 2010 Flight Campaign

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Spiers, Gary D.; Menzie, Robert T.; Christensen, Lance E.

    2011-01-01

    As a precursor to and validation of the core technology necessary for NASA's Active Sensing of CO2 Emissions over Nights, Days,and Seasons (ASCENDS) mission, we flew JPL's Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) in a campaign of five flights onboard NASA's DC-8 Airborne Laboratory in July 2010. This is the latest in a series of annual flight campaigns that began in 2006, and our first on the DC-8 aircraft.

  16. Dewatering Peat With Activated Carbon

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1984-01-01

    Proposed process produces enough gas and carbon to sustain itself. In proposed process peat slurry is dewatered to approximately 40 percent moisture content by mixing slurry with activated carbon and filtering with solid/liquid separation techniques.

  17. CO{sub 2} CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; J.Tim Cullinane; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas

    2005-01-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Thermodynamic modeling predicts that the heat of desorption of CO{sub 2} from 5m K+/2.5 PZ from 85 kJ/mole at 40 C to 30 kJ/mole at 120 C. Mass transfer modeling of this solvent suggests that carbonate and general salt concentration play a major role in catalyzing the rate of reaction of CO{sub 2} with piperazine. Stripper modeling suggests that with the multipressure stripper, the energy consumption with a generic solvent decreases by 15% as the heat of desorption is decreased from 23.8 to 18.5 kcal/gmol. A second pilot plant campaign with 5m K+/2.5 PZ was successfully completed.

  18. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marcus Hilliard; Amornvadee Veawab

    2006-09-30

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Ethylenediamine was detected in a degraded solution of MEA/PZ solution, suggesting that piperazine is subject to oxidation. Stripper modeling has demonstrated that vacuum strippers will be more energy efficient if constructed short and fat rather than tall and skinny. The matrix stripper has been identified as a configuration that will significantly reduce energy use. Extensive measurements of CO{sub 2} solubility in 7 m MEA at 40 and 60 C have confirmed the work by Jou and Mather. Corrosion of carbon steel without inhibitors increases from 19 to 181 mpy in lean solutions of 6.2 m MEA/PZ as piperazine increases from 0 to 3.1 m.

  19. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marcus Hilliard; Amorvadee Veawab

    2006-07-28

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The pilot plant data have been reconciled using 17% inlet CO{sub 2}. A rate-based model demonstrates that the stripper is primarily controlled by liquid film mast transfer resistance, with kinetics at vacuum and diffusion of reactants and products at normal pressure. An additional major unknown ion, probably glyoxylate, has been observed in MEA degradation. Precipitation of gypsum may be a feasible approach to removing sulphate from amine solutions and providing for simultaneous removal of CO{sub 2} and SO{sub 2}. Corrosion of carbon steel in uninhibited MEA solution is increased by increased amine concentration, by addition of piperazine, and by greater CO{sub 2} loading.

  20. Special aspects of the temperature dependence of EPR absorption of chemically carbonized polyvinylidene fluoride derivatives

    NASA Astrophysics Data System (ADS)

    Zhivulin, V. E.; Pesin, L. A.; Ivanov, D. V.

    2016-01-01

    The temperature dependences of electron paramagnetic resonance (EPR) absorption of two samples of chemically carbonized derivatives of polyvinylidene fluoride (PVDF) synthesized under different conditions have been measured in the range of 100-300 K. It has been found that the temperature dependence of the integrated intensity of the EPR signal of both samples is nonmonotonic and does not obey the classical Curie dependence characteristic of free radicals. An analytical expression that is consistent with experimental data and suggests the presence of an activation component of paramagnetism in the test samples has been obtained. The presence of a term independent of temperature in this equation also indicates the paramagnetic contribution of free electrons. The magnitude of the activation energy of the singlet-triplet transitions has been evaluated: δ = 0.067 eV. The HYSCORE spectra of chemically carbonized PVDF derivatives have been obtained for the first time.

  1. New analytical technique for carbon dioxide absorption solvents

    SciTech Connect

    Pouryousefi, F.; Idem, R.O.

    2008-02-15

    The densities and refractive indices of two binary systems (water + MEA and water + MDEA) and three ternary systems (water + MEA + CO{sub 2}, water + MDEA + CO{sub 2}, and water + MEA + MDEA) used for carbon dioxide (CO{sub 2}) capture were measured over the range of compositions of the aqueous alkanolamine(s) used for CO{sub 2} absorption at temperatures from 295 to 338 K. Experimental densities were modeled empirically, while the experimental refractive indices were modeled using well-established models from the known values of their pure-component densities and refractive indices. The density and Gladstone-Dale refractive index models were then used to obtain the compositions of unknown samples of the binary and ternary systems by simultaneous solution of the density and refractive index equations. The results from this technique have been compared with HPLC (high-performance liquid chromatography) results, while a third independent technique (acid-base titration) was used to verify the results. The results show that the systems' compositions obtained from the simple and easy-to-use refractive index/density technique were very comparable to the expensive and laborious HPLC/titration techniques, suggesting that the refractive index/density technique can be used to replace existing methods for analysis of fresh or nondegraded, CO{sub 2}-loaded, single and mixed alkanolamine solutions.

  2. Separating proteins with activated carbon.

    PubMed

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon. PMID:24898563

  3. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, David T.

    1992-01-01

    A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.

  4. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees

    2005-07-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The baseline campaign with 30% MEA has given heat duties from 40 to 70 kcal/gmol CO{sub 2} as predicted by the stripper model. The Flexipak 1Y structured packing gives significantly better performance than IMTP 40 duped packing in the absorber, but in the stripper the performance of the two packings is indistinguishable. The FTIR analyzer measured MEA volatility in the absorber represented by an activity coefficient of 0.7. In the MEA campaign the material balance closed with an average error of 3.5% and the energy balance had an average error of 5.9.

  5. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    PubMed Central

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; Brooks, William A.; Onasch, Timothy B.; Jayne, John T.; Worsnop, Douglas R.; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L.; Liu, Dantong; Allan, James D.; Lee, James D.; Fleming, Zoë L.; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S. H.

    2015-01-01

    Black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC's light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ∼1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC's warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. We conclude that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models. PMID:26419204

  6. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marus Hiilliard; Qing Xu; David Van Wagener; Jorge M. Plaza

    2006-12-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The best solvent and process configuration, matrix with MDEA/PZ, offers 22% and 15% energy savings over the baseline and improved baseline, respectively, with stripping and compression to 10 MPa. The energy requirement for stripping and compression to 10 MPa is about 20% of the power output from a 500 MW power plant with 90% CO{sub 2} removal. The stripper rate model shows that a ''short and fat'' stripper requires 7 to 15% less equivalent work than a ''tall and skinny'' one. The stripper model was validated with data obtained from pilot plant experiments at the University of Texas with 5m K{sup +}/2.5m PZ and 6.4m K{sup +}/1.6m PZ under normal pressure and vacuum conditions using Flexipac AQ Style 20 structured packing. Experiments with oxidative degradation at low gas rates confirm the effects of Cu{sup +2} catalysis; in MEA/PZ solutions more formate and acetate is produced in the presence of Cu{sup +2}. At 150 C, the half life of 30% MEA with 0.4 moles CO{sub 2}/mole amine is about 2 weeks. At 100 C, less than 3% degradation occurred in two weeks. The solubility of potassium sulfate in MEA solution increases significantly with CO{sub 2} loading and decreases with MEA concentration. The base case corrosion rate in 5 M MEA/1,2M PZ is 22 mpy. With 1 wt% heat stable salt, the corrosion rate increases by 50% to 160% in the order: thiosulfate< oxalatecarbonate is ineffective in the absence of oxygen, but 50 to 250 ppm reduces corrosion to less than 2 mpy in the presence of oxygen.

  7. Direct Measurements of Brown Carbon Absorption in A Wide Range of Biomass Burning Plumes

    NASA Astrophysics Data System (ADS)

    Murphy, S. M.; Pokhrel, R. P.; Beamesderfer, E.; Lack, D.; Langridge, J.; Wagner, N. L.

    2014-12-01

    Biomass burning represents one of the largest global sources of absorbing aerosol. Despite the importance of biomass burning emissions on the Earth's radiative balance, there remains significant uncertainty about the optical properties of emitted particles. Of particular interest is the impact of lensing on black carbon absorption and the impact of brown carbon. This presentation describes results from the Fire Lab at Missoula Experiment-4 (FLAME-4), which occurred in October 2012. Multi-channel photoacoustic (PAS) and Cavity Ringdown (CRDS) spectrometers were used to measure absorption, extinction, and absorption enhancement of aerosol particles produced from a wide range of globally relevant biomass fuels. Measurements were made at 405, 532, and 660 nm with duplicate channels at 405 and 660 measuring denuded particles, allowing for direct observation of the enhancement of absorption by black carbon particles caused by clear and brown organic coatings. Fuels were chosen based on their contribution to global wildfire emissions and a wide range of fuels will be discussed including some of the first optical measurements of Indonesian peat. The SSA and absorption angstrom exponent (AAE) of different biomass fuels will be explored and the relative importance of black and brown carbon emitted from different biomass fuels will be assessed, demonstrating that for certain fuels absorption from brown carbon is as important, or even more important than absorption from black carbon.

  8. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities.

    PubMed

    Sun, Hao; Che, Renchao; You, Xiao; Jiang, Yishu; Yang, Zhibin; Deng, Jue; Qiu, Longbin; Peng, Huisheng

    2014-12-23

    Aligned carbon-nanotube (CNT) sheets are used as building blocks to prepare light-weight, frequency-tunable and high-performance microwave absorbers, and the absorption frequency can be accurately controlled by stacking them with different intersectional angles. A remarkable reflection loss of -47.66 dB is achieved by stacking four aligned CNT sheets with an intersectional angle of 90° between two neighboring ones. The incorporation of a second phase such as a metal and a conducting polymer greatly enhances the microwave-absorption capability. PMID:25338951

  9. Nickel adsorption by sodium polyacrylate-grafted activated carbon.

    PubMed

    Ewecharoen, A; Thiravetyan, P; Wendel, E; Bertagnolli, H

    2009-11-15

    A novel sodium polyacrylate grafted activated carbon was produced by using gamma radiation to increase the number of functional groups on the surface. After irradiation the capacity for nickel adsorption was studied and found to have increased from 44.1 to 55.7 mg g(-1). X-ray absorption spectroscopy showed that the adsorbed nickel on activated carbon and irradiation-grafted activated carbon was coordinated with 6 oxygen atoms at 2.04-2.06 A. It is proposed that this grafting technique could be applied to other adsorbents to increase the efficiency of metal adsorption. PMID:19576692

  10. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Andrew Sexton; Jason Davis; Marcus Hilliard; Qing Xu; David Van Wagener; Jorge M. Plaza

    2007-03-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The best K{sup +}/PZ solvent, 4.5 m K{sup +}/4.5 m PZ, requires equivalent work of 31.8 kJ/mole CO{sub 2} when used with a double matrix stripper and an intercooled absorber. The oxidative degradation of piperazine or organic acids is reduced significantly by inhibitor A, but the production of ethylenediamine is unaffected. The oxidative degradation of piperazine in 7 m MEA/2 m PZ is catalyzed by Cu{sup ++}. The thermal degradation of MEA becomes significant at 120 C. The solubility of potassium sulfate in MEA/PZ solvents is increased at greater CO{sub 2} loading. The best solvent and process configuration, matrix with MDEA/PZ, offers 22% and 15% energy savings over the baseline and improved baseline, respectively, with stripping and compression to 10 MPa. The energy requirement for stripping and compression to 10 MPa is about 20% of the power output from a 500 MW power plant with 90% CO{sub 2} removal. The stripper rate model shows that a ''short and fat'' stripper requires 7 to 15% less equivalent work than a ''tall and skinny'' one. The stripper model was validated with data obtained from pilot plant experiments at the University of Texas with 5m K{sup +}/2.5m PZ and 6.4m K{sup +}/1.6m PZ under normal pressure and vacuum conditions using Flexipac AQ Style 20 structured packing. Experiments with oxidative degradation at low gas rates confirm the effects of Cu{sup +2} catalysis; in MEA/PZ solutions more formate and acetate is produced in the presence of Cu{sup +2}. At 150 C, the half life of 30% MEA with 0.4 moles CO{sub 2}/mole amine is about 2 weeks. At 100 C, less than 3% degradation occurred in two weeks. The solubility of potassium sulfate in MEA solution increases significantly with CO{sub 2} loading and decreases with MEA concentration. The base case corrosion

  11. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller

    NASA Astrophysics Data System (ADS)

    Margalef, Pere; Samuelsen, Scott

    A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two "off the shelf" units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow rate increase of the

  12. Activated carbon to the rescue

    SciTech Connect

    Sen, S.

    1996-03-01

    This article describes the response to pipeline spill of ethylene dichloride (EDC) on the property of an oil company. Activated carbon cleanup proceedure was used. During delivery, changeout, transport, storage, thermal reactivation, and return delivery to the site, the carbon never came into direct contact with operating personnel or the atmosphere. More than 10,000 tones of dredge soil and 50 million gallons of surface water were processed during the emergency response.

  13. Soft X-Ray Absorption Spectroscopy of High-Abrasion-Furnace Carbon Black

    NASA Astrophysics Data System (ADS)

    Muramatsu, Yasuji; Harada, Ryusuke; Gullikson, Eric M.

    2007-02-01

    The soft x-ray absorption spectra of high-abrasion-furnace carbon black were measured to obtain local-structure/chemical-states information of the primary particles and/or crystallites. The soft x-ray absorption spectral features of carbon black represent broader π* and σ* peak structures compared to highly oriented pyrolytic graphite (HOPG). The subtracted spectra between the carbon black and HOPG, (carbon black) — (HOPG), show double-peak structures on both sides of the π* peak. The lower-energy peak, denoted as the "pre-peak", in the subtracted spectra and the π*/σ* peak intensity ratio in the absorption spectra clearly depend on the specific surface area by nitrogen adsorption (NSA). Therefore, it is concluded that the pre-peak intensity and the π*/σ* ratio reflect the local graphitic structure of carbon black.

  14. A carbonyl iron/carbon fiber material for electromagnetic wave absorption.

    PubMed

    Youh, Meng-Jey; Wu, Hung-Chih; Lin, Wang-Hua; Chiu, Sheng-Cheng; Huang, Chien-Fa; Yu, Hsin-Chih; Hsu, Jen-Sung; Li, Yuan-Yao

    2011-03-01

    A carbonyl iron/carbon fiber material consisting of carbon fibers grown on micrometer-sized carbonyl iron sphere, was synthesized by chemical vapor deposition using a mixture of C2H2 and H2. The hollow-core carbon fibers (outer diameter: 140 nm and inner diameter: 40 nm) were composed of well-ordered graphene layers which were almost parallel to the long axis of the fibers. A composite (2 mm thick) consisting of the carbonyl iron/carbon fibers and epoxy resin demonstrated excellent electromagnetic (EM) wave absorption. Minimum reflection losses of -36 dB (99.95% of EM wave absorption) at 7.6 GHz and -32 dB (99.92% of EM wave absorption) at 34.1 GHz were achieved. The well-dispersed and network-like carbon fibers in the resin matrix affected the dielectric loss of the EM wave while the carbonyl iron affected the magnetic loss. PMID:21449387

  15. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    PubMed

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications. PMID:23171130

  16. The fate of calcium carbonate nanoparticles administered by oral route: absorption and their interaction with biological matrices

    PubMed Central

    Lee, Jeong-A; Kim, Mi-Kyung; Kim, Hyoung-Mi; Lee, Jong Kwon; Jeong, Jayoung; Kim, Young-Rok; Oh, Jae-Min; Choi, Soo-Jin

    2015-01-01

    Background Orally administered particles rapidly interact with biological fluids containing proteins, enzymes, electrolytes, and other biomolecules to eventually form particles covered by a corona, and this corona potentially affects particle uptake, fate, absorption, distribution, and elimination in vivo. This study explored relationships between the biological interactions of calcium carbonate particles and their biokinetics. Methods We examined the effects of food grade calcium carbonates of different particle size (nano [N-Cal] and bulk [B-Cal]: specific surface areas of 15.8 and 0.83 m2/g, respectively) on biological interactions in in vitro simulated physiological fluids, ex vivo biofluids, and in vivo in gastrointestinal fluid. Moreover, absorption and tissue distribution of calcium carbonates were evaluated following a single dose oral administration to rats. Results N-Cal interacted more with biomatrices than bulk materials in vitro and ex vivo, as evidenced by high fluorescence quenching ratios, but it did not interact more actively with biomatrices in vivo. Analysis of coronas revealed that immunoglobulin, apolipoprotein, thrombin, and fibrinogen, were the major corona proteins, regardless of particle size. A biokinetic study revealed that orally delivered N-Cal was more rapidly absorbed into the blood stream than B-Cal, but no significant differences were observed between the two in terms of absorption efficiencies or tissue distributions. Both calcium carbonates were primarily present as particulate forms in gastrointestinal fluids but enter the circulatory system in dissolved Ca2+, although both types showed partial phase transformation to dicalcium phosphate dihydrate. Relatively low dissolution (about 4%), no remarkable protein–particle interaction, and the major particulate fate of calcium carbonate in vivo gastrointestinal fluids can explain its low oral absorption (about 4%) regardless of particle size. Conclusion We conclude that calcium

  17. DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    SciTech Connect

    OGDEN DM; KIRCH NW

    2007-10-31

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

  18. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, D.T.

    1992-10-06

    A method is described for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction. 2 figs.

  19. Carbon monoxide absorption through the oral and nasal mucosae of cynomolgus monkeys

    SciTech Connect

    Schoenfisch, W.H.; Hoop, K.A.

    1980-05-01

    Previous studies have shown that blood levels of carbon monoxide increase during cigarette smoking. It has genrally been assumed that increases in blood levels of carbon monoxide could be interpreted as evidence that deep lung penetration of cigarette smoke had occurred. This study was designed to examine whether increased blood levels of carbon monoxide could result from absorption in the nasal and oral cavitites. The nasal and oral cavities of cynomolgus monkeys were exposed, independently of the lungs, to cigarette smoke under rigorous smoking conditions. Pre- and post-exposure blood levels of carbon monoxide were measured. As a positive control, similar volumes of cigarette smoke were passed directly into the lungs, thus bypassing the oral and nasal cavities, and blood levels of carbon monoxide were again measured. The results inidcate that absorption of carbon monoxide in the oral and nasal cavities is negligible under the heavy smoking regimen employed here, and hence, would be negligible under normal smoking conditions.

  20. Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines

    SciTech Connect

    Graeme Puxty; Robert Rowland; Andrew Allport; Qi Yang; Mark Bown; Robert Burns; Marcel Maeder; Moetaz Attalla

    2009-08-15

    The significant and rapid reduction of greenhouse gas emissions is recognized as necessary to mitigate the potential climate effects from global warming. The postcombustion capture (PCC) and storage of carbon dioxide (CO{sub 2}) produced from the use of fossil fuels for electricity generation is a key technology needed to achieve these reductions. The most mature technology for CO{sub 2} capture is reversible chemical absorption into an aqueous amine solution. In this study the results from measurements of the CO{sub 2} absorption capacity of aqueous amine solutions for 76 different amines are presented. Measurements were made using both a novel isothermal gravimetric analysis (IGA) method and a traditional absorption apparatus. Seven amines, consisting of one primary, three secondary, and three tertiary amines, were identified as exhibiting outstanding absorption capacities. Most have a number of structural features in common including steric hindrance and hydroxyl functionality 2 or 3 carbons from the nitrogen. Initial CO{sub 2} absorption rate data from the IGA measurements was also used to indicate relative absorption rates. Most of the outstanding performers in terms of capacity also showed initial absorption rates comparable to the industry standard monoethanolamine (MEA). This indicates, in terms of both absorption capacity and kinetics, that they are promising candidates for further investigation. 30 refs., 8 figs.

  1. Biomass burning dominates brown carbon absorption in the rural southeastern United States

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Brock, C. A.; Guo, H.; Xu, L.; Weber, R. J.; Ng, N. L.; Allen, H. M.; Ayres, B. R.; Baumann, K.; Cohen, R. C.; Draper, D. C.; Duffey, K. C.; Edgerton, E.; Fry, J. L.; Hu, W. W.; Jimenez, J. L.; Palm, B. B.; Romer, P.; Stone, E. A.; Wooldridge, P. J.; Brown, S. S.

    2015-01-01

    carbon aerosol consists of light-absorbing organic particulate matter with wavelength-dependent absorption. Aerosol optical extinction, absorption, size distributions, and chemical composition were measured in rural Alabama during summer 2013. The field site was well located to examine sources of brown carbon aerosol, with influence by high biogenic organic aerosol concentrations, pollution from two nearby cities, and biomass burning aerosol. We report the optical closure between measured dry aerosol extinction at 365 nm and calculated extinction from composition and size distribution, showing agreement within experiment uncertainties. We find that aerosol optical extinction is dominated by scattering, with single-scattering albedo values of 0.94 ± 0.02. Black carbon aerosol accounts for 91 ± 9% of the total carbonaceous aerosol absorption at 365 nm, while organic aerosol accounts for 9 ± 9%. The majority of brown carbon aerosol mass is associated with biomass burning, with smaller contributions from biogenically derived secondary organic aerosol.

  2. A hybrid absorption-adsorption method to efficiently capture carbon

    NASA Astrophysics Data System (ADS)

    Liu, Huang; Liu, Bei; Lin, Li-Chiang; Chen, Guangjin; Wu, Yuqing; Wang, Jin; Gao, Xueteng; Lv, Yining; Pan, Yong; Zhang, Xiaoxin; Zhang, Xianren; Yang, Lanying; Sun, Changyu; Smit, Berend; Wang, Wenchuan

    2014-10-01

    Removal of carbon dioxide is an essential step in many energy-related processes. Here we report a novel slurry concept that combines specific advantages of metal-organic frameworks, ion liquids, amines and membranes by suspending zeolitic imidazolate framework-8 in glycol-2-methylimidazole solution. We show that this approach may give a more efficient technology to capture carbon dioxide compared to conventional technologies. The carbon dioxide sorption capacity of our slurry reaches 1.25 mol l-1 at 1 bar and the selectivity of carbon dioxide/hydrogen, carbon dioxide/nitrogen and carbon dioxide/methane achieves 951, 394 and 144, respectively. We demonstrate that the slurry can efficiently remove carbon dioxide from gas mixtures at normal pressure/temperature through breakthrough experiments. Most importantly, the sorption enthalpy is only -29 kJ mol-1, indicating that significantly less energy is required for sorbent regeneration. In addition, from a technological point of view, unlike solid adsorbents slurries can flow and be pumped. This allows us to use a continuous separation process with heat integration.

  3. Bicarbonate absorption stimulates active calcium absorption in the rat proximal tubule.

    PubMed Central

    Bomsztyk, K; Calalb, M B

    1988-01-01

    To evaluate the effect of luminal bicarbonate on calcium reabsorption, rat proximal tubules were perfused in vivo. Perfusion solution contained mannitol to reduce water flux to zero. Total Ca concentration was measured by atomic absorption spectrometry, Ca ion concentration in the tubule lumen (CaL2+) and the peritubular capillary (CaP2+), and luminal pH (pHL) with ion-selective microelectrodes and transepithelial voltage (VTE) with conventional microelectrodes. When tubules were perfused with buffer-free Cl-containing solution, net Ca absorption (JCa) averaged 3.33 pmol/min. Even though VTE was 1.64 mV lumen-positive, CaL2+, 1.05 mM, did not fall below the concentration in the capillary blood, 1.07 mM. When 27 mM of Cl was replaced with HCO3, there was luminal fluid acidification. Despite a decrease in VTE and CaL2+, JCa increased to 7.13 pmol/min, indicating that the enhanced JCa could not be accounted for by the reduced electrochemical gradient, delta CCa. When acetazolamide or an analogue of amiloride was added to the HCO3 solution, JCa was not different from the buffer-free solution, suggesting that HCO3-stimulated JCa may be linked to acidification. To further test this hypothesis, we used 27 mM Hepes as the luminal buffer. With Hepes there was luminal fluid acidification and JCa was not different from the buffer-free solution but delta CCa was significantly reduced, indicating enhanced active calcium transport. We conclude from the results of the present study that HCO3 stimulates active Ca absorption, a process that may be linked to acidification-mediated HCO3 absorption. PMID:3366902

  4. Enhanced Solar Energy Absorption by Internally-mixed Black Carbon in Snow Grains

    SciTech Connect

    Flanner, M. G.; Liu, Xiaohong; Zhou, Cheng; Penner, Joyce E.; Jiao, C.

    2012-05-30

    Here we explore light absorption by snowpack containing black carbon (BC) particles residing within ice grains. Basic considerations of particle volumes and BC/snow mass concentrations show that there are generally 0:05-109 BC particles for each ice grain. This suggests that internal BC is likely distributed as multiple inclusions within ice grains, and thus the dynamic effective medium approximation (DEMA) (Chylek and Srivastava, 1983) is a more appropriate optical representation for BC/ice composites than coated-sphere or standard mixing approximations. DEMA calculations show that the 460 nm absorption cross-section of BC/ice composites, normalized to the mass of BC, is typically enhanced by factors of 1.8-2.1 relative to interstitial BC. BC effective radius is the dominant cause of variation in this enhancement, compared with ice grain size and BC volume fraction. We apply two atmospheric aerosol models that simulate interstitial and within-hydrometeor BC lifecycles. Although only {approx}2% of the atmospheric BC burden is cloud-borne, 71-83% of the BC deposited to global snow and sea-ice surfaces occurs within hydrometeors. Key processes responsible for within-snow BC deposition are development of hydrophilic coatings on BC, activation of liquid droplets, and subsequent snow formation through riming or ice nucleation by other species and aggregation/accretion of ice particles. Applying deposition fields from these aerosol models in offline snow and sea-ice simulations, we calculate that 32-73% of BC in global surface snow resides within ice grains. This fraction is smaller than the within-hydrometeor deposition fraction because meltwater flux preferentially removes internal BC, while sublimation and freezing within snowpack expose internal BC. Incorporating the DEMA into a global climate model, we simulate increases in BC/snow radiative forcing of 43-86%, relative to scenarios that apply external optical properties to all BC. We show that snow metamorphism

  5. Induced Potential in Porous Carbon Films through Water Vapor Absorption.

    PubMed

    Liu, Kang; Yang, Peihua; Li, Song; Li, Jia; Ding, Tianpeng; Xue, Guobin; Chen, Qian; Feng, Guang; Zhou, Jun

    2016-07-01

    Sustainable electrical potential of tens of millivolts can be induced by water vapor adsorption on a piece of porous carbon film that has two sides with different functional group contents. Integrated experiments, and Monte Carlo and ab initio molecular dynamics simulations reveal that the induced potential originates from the nonhomogeneous distribution of functional groups along the film, especially carboxy groups. Sufficient adsorbed water molecules in porous carbon facilitate the release of protons from the carboxy groups, resulting in a potential drop across the carbon film because of the concentration difference of the released free protons on the two sides. The potential utilization of such a phenomenon is also demonstrated by a self-powered humidity sensor. PMID:27159427

  6. Photoconductivity of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  7. Retrieval of Black Carbon Absorption from Proposed Satellite Measurements Over the Ocean Glint

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Matins, J. V.; Remer, L. A.; Schoeberl, M. R.; Yamasoe, M. A.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Haze and air pollution includes many chemicals that together form small particles suspended in the air called aerosols. One of the main ingredients found to affect climate and human health is Black Carbon. Black particles emitted from engines that do not burn the fuel completely, e.g. old trucks. Black carbon absorption of sunlight emerges as one of the key components of man-made forcing of climate. However, global characterization of black carbon emissions, distribution and pathways in which it can affect the amount of solar radiation absorbed by the atmosphere is very uncertain. A new method is proposed to measure sunlight absorption by fine aerosol particles containing black carbon over the ocean glint from a satellite mission designed for this purpose. The satellite will scan the same spot over the ocean in the glint plane and a plane 40 degrees off-glint a minute apart, collecting measurements of the reflected light across the solar spectrum. First the dark ocean off the glint is used to derive aerosol properties. Then the black carbon absorption is derived prop the attenuation of the bright glint by the aerosol layer. Such measurements if realized in a proposed future mission - COBRA are expected to produce global monthly climatology of black carbon absorption with high accuracy (110 to 15%) that can show their effect on climate.

  8. Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties

    PubMed Central

    Qi, Xiaosi; Xu, Jianle; Hu, Qi; Deng, Yu; Xie, Ren; Jiang, Yang; Zhong, Wei; Du, Youwei

    2016-01-01

    In order to clearly understand the intrinsic microwave absorption properties of carbon nanomaterials, we proposed an efficient strategy to synthesize high purity metal-free carbon nanotubes (CNTs) over water-soluble K2CO3 particles through chemical vapor decomposition and water-washing process. The comparison results indicated the leftover catalyst caused negative effects in intrinsic microwave absorption properties of CNTs, while an enhanced microwave absorption performance could be observed over the metal-free CNT sample. Moreover, the results indicated that the microwave absorption properties could be tuned by the CNT content. Therefore, we provided a simple route to investigate the intrinsic properties of CNTs and a possible enhanced microwave absorbing mechanism. PMID:27324290

  9. Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties.

    PubMed

    Qi, Xiaosi; Xu, Jianle; Hu, Qi; Deng, Yu; Xie, Ren; Jiang, Yang; Zhong, Wei; Du, Youwei

    2016-01-01

    In order to clearly understand the intrinsic microwave absorption properties of carbon nanomaterials, we proposed an efficient strategy to synthesize high purity metal-free carbon nanotubes (CNTs) over water-soluble K2CO3 particles through chemical vapor decomposition and water-washing process. The comparison results indicated the leftover catalyst caused negative effects in intrinsic microwave absorption properties of CNTs, while an enhanced microwave absorption performance could be observed over the metal-free CNT sample. Moreover, the results indicated that the microwave absorption properties could be tuned by the CNT content. Therefore, we provided a simple route to investigate the intrinsic properties of CNTs and a possible enhanced microwave absorbing mechanism. PMID:27324290

  10. Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Qi, Xiaosi; Xu, Jianle; Hu, Qi; Deng, Yu; Xie, Ren; Jiang, Yang; Zhong, Wei; Du, Youwei

    2016-06-01

    In order to clearly understand the intrinsic microwave absorption properties of carbon nanomaterials, we proposed an efficient strategy to synthesize high purity metal-free carbon nanotubes (CNTs) over water-soluble K2CO3 particles through chemical vapor decomposition and water-washing process. The comparison results indicated the leftover catalyst caused negative effects in intrinsic microwave absorption properties of CNTs, while an enhanced microwave absorption performance could be observed over the metal-free CNT sample. Moreover, the results indicated that the microwave absorption properties could be tuned by the CNT content. Therefore, we provided a simple route to investigate the intrinsic properties of CNTs and a possible enhanced microwave absorbing mechanism.

  11. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; Eric Chen; J. Tim Cullinane; Marcus Hilliard; Babatunde Oyenekan; Terraun Jones

    2003-07-28

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. A rigorous thermodynamic model has been further developed with a standalone FORTRAN code to represent the CO{sub 2} vapor pressure and speciation of the new solvent. Gas chromatography has been used to measure the oxidative degradation of piperazine. The heat exchangers for the pilot plant have been received. The modifications are on schedule for start-up in November 2003.

  12. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; Eric Chen; J. Tim Cullinane; Marcus Hillard; Babatunde Oyenekan

    2003-10-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. A rigorous thermodynamic model has been further developed with a standalone FORTRAN code to represent the CO{sub 2} vapor pressure and speciation of the new solvent. The welding work has initiated and will be completed for a revised startup of the pilot plant in February 2004.

  13. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; A. Frank Seibert

    2002-10-01

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Progress has been made in this reporting period on three subtasks. A simple thermodynamic model has been developed to represent the CO{sub 2} vapor pressure and speciation of the new solvent. A rate model has been formulated to predict the CO{sub 2} flux with these solutions under absorber conditions. A process and instrumentation diagram and process flow diagram have been prepared for modifications of the existing pilot plant system.

  14. Experiments on passive hypersonic boundary layer control using ultrasonically absorptive carbon-carbon material with random microstructure

    NASA Astrophysics Data System (ADS)

    Wagner, Alexander; Kuhn, Markus; Martinez Schramm, Jan; Hannemann, Klaus

    2013-10-01

    For the first time, the influence of ultrasonically absorptive carbon-carbon material on hypersonic laminar to turbulent boundary layer transition was investigated experimentally. A 7° half-angle blunted cone with a nose radius of 2.5 mm and a total length of 1,077 mm was tested at zero angle of attack in the High Enthalpy Shock Tunnel Göttingen of the German Aerospace Center (DLR) at Mach 7.5. One-third of the metallic model surface in circumferential direction was replaced by DLR in-house manufactured ultrasonically absorptive carbon-carbon material with random microstructure for passive transition control. The remaining model surface consisted of polished steel and served as reference surface. The model was equipped with coaxial thermocouples to determine the transition location by means of surface heat flux distribution. Flush-mounted piezoelectric fast-response pressure transducers were used to measure the pressure fluctuations in the boundary layer associated with second-mode instabilities. The free-stream unit Reynolds number was varied over a range of Re m = 1.5 × 106 m-1 to Re m = 6.4 × 106 m-1 at a stagnation enthalpy of h 0 ≈ 3.2 MJ/kg and a wall temperature ratio of T w/ T 0 ≈ 0.1. The present study revealed a clear damping of the second-mode instabilities and a delay of boundary layer transition along the ultrasonically absorptive carbon-carbon insert.

  15. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    SciTech Connect

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; Brooks, William A.; Onasch, Timothy B.; Jayne, John T.; Worsnop, Douglas R.; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L.; Liu, Dantong; Allan, James D.; Lee, James D.; Fleming, Zoë L.; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S. H.

    2015-09-30

    We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.

  16. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    DOE PAGESBeta

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; et al

    2015-09-30

    We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combinationmore » of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.« less

  17. Seismic signatures of carbonate caves affected by near-surface absorptions

    NASA Astrophysics Data System (ADS)

    Rao, Ying; Wang, Yanghua

    2015-12-01

    The near-surface absorption within a low-velocity zone generally has an exponential attenuation effect on seismic waves. But how does this absorption affect seismic signatures of karstic caves in deep carbonate reservoirs? Seismic simulation and analysis reveals that, although this near-surface absorption attenuates the wave energy of a continuous reflection, it does not alter the basic kinematic shape of bead-string reflections, a special seismic characteristic associated with carbonate caves in the Tarim Basin, China. Therefore, the bead-strings in seismic profiles can be utilized, with a great certainty, for interpreting the existence of caves within the deep carbonate reservoirs and for evaluating their pore spaces. Nevertheless, the difference between the central frequency and the peak frequency is increased along with the increment in the absorption. While the wave energy of bead-string reflections remains strong, due to the interference of seismic multiples generated by big impedance contrast between the infill materials of a cave and the surrounding carbonate rocks, the central frequency is shifted linearly with respect to the near-surface absorption. These two features can be exploited simultaneously, for a stable attenuation analysis of field seismic data.

  18. Direct Measurement of Polarized Absorption Cross-Section of Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Islam, M. F.; Milkie, D. E.; Kane, C. L.; Yodh, A. Y.; Kikkawa, J. M.

    2004-03-01

    We use a combination of polarized Raman scattering and linear optical absorption to infer optical absorption cross-sections of single-wall carbon nanotube ensembles for visible light co- and cross-polarized with respect to the nanotube axes. These data reveal a strong linear absorption anisotropy, and provide a rapid method by which linear absorption spectra can be used to quantitatively measure the orientation of dispersed nanotubes, even in strongly absorbing media for which Raman approaches are complicated by anisotropic re-absorption processes. Comparison with theory demonstrates that local field depolarization plays a crucial role in affecting optical spectra of the nanotubes. This work supported by NSF through DMR-0203378, DMR-079909 and DGE-0221664, NASA through NAG8-2172, DARPA/ONR through N00014-01-1-0831, and SENS.

  19. Polarized absorption spectra of (2,2) carbon nanotubes aligned in channels of an AEL crystal

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Zhai, Jianpang; Li, Irene Ling; Ruan, Shuangchen; Tang, Zikang

    2015-11-01

    We report polarized absorption spectra for the (2,2) tubes arrayed in the one-dimensional channels of an AlPO4-11 (AEL) single crystal. Strong polarization dependence is observed indicating a preferential optical dipole along the axis of carbon nanotubes. By correlating with the absorption spectra and First-principles local density function (LDA) calculation, the absorption peak at 2.95 eV is uniquely assigned to semiconducting type (2,2) tubes, and peaks at 2.67 and 2.40 eV are corresponding to metallic type (2,2) tubes.

  20. Multiband microwave absorption films based on defective multiwalled carbon nanotubes added carbonyl iron/acrylic resin

    NASA Astrophysics Data System (ADS)

    Li, Yong; Chen, Changxin; Pan, Xiaoyan; Ni, Yuwei; Zhang, Song; Huang, Jie; Chen, Da; Zhang, Yafei

    2009-05-01

    Defective multiwalled carbon nanotubes (MWCNTs) were introduced to the carbonyl iron (CI) based composites to improve its microwave absorption by a simple ultrasonic mixing process. The electromagnetic parameters were measured in the 2-18 GHz range. Microwave absorption of CI based composites with 2 mm in thickness was evidently enhanced by adding as little as 1.0 wt% defective MWCNTs with two well separated absorption peaks exceeding -20 dB, as compared with that of pure CI based and defective MWCNTs composites. The enhancement mechanism is thought due to the interaction and better electromagnetic match between defective MWCNTs and ferromagnetic CI particles.

  1. [Comparison study on adsorption of middle molecular substances with multiwalled carbon nanotubes and activated carbon].

    PubMed

    Li, Guifeng; Wan, Jianxin; Huang, Xiangqian; Zeng, Qiao; Tang, Jing

    2011-08-01

    In recent years, multi-walled carbon nanotubes (MWCTs) are very favorable to the adsorption of middle molecular substances in the hemoperfusion because of their multiporous structure, large surface area and high reactivity, which are beneficial to the excellent absorption properties. The purpose of this study was to study the MWCTs on the adsorption capacity of the middle molecular substances. Vitamin B12 (VB12) was selected as a model of the middle molecular substances. The morphologies of MWCTs and activated carbon from commercial "carbon kidney" were observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The adsorption behavior of VB12 was compared to each other with UV-visible absorption spectra. The MWCTs formed a sophistaicate gap structure, and compared to the activated carbon, MWCTs had a larger surface area. By Langmuir equation and Freundlich equation fitting analysis, VB12 adsorption on MWCTs is fit for multi-molecular layer adsorption, and the adsorption type of activated carbon is more inclined to the model corresponding to Langmuir monolayer adsorption. The adsorption rate of MWCTs is faster than that of the activated carbon and the adsorption capacity is greater, which could be expected to become the new adsorbent in the hemoperfusion. PMID:21936376

  2. Determination of cadmium in the livers and kidneys of puffins by carbon furnace atomic absorption spectrometry.

    PubMed

    Ottaway, J M; Campbell, W C

    1976-01-01

    A carbon furnace atomic absorption procedure is described for the determination of cadmium in the livers and kidneys of puffins, fratercula arctica. Samples are dried and weighed and 2 to 100 mg are dissolved in sulphuric and nitric acids. These solutions are analysed directly in the carbon furnace against aqueous standards and provide accurate results in the range 0-1 to 100 micrograms/g dry weight. The method is simple and rapid and requires much less of the small total sample than would be required for flame atomic absorption. PMID:1030692

  3. Broadening of infrared absorption lines at reduced temperatures - Carbon dioxide.

    NASA Technical Reports Server (NTRS)

    Tubbs, L. D.; Williams, D.

    1972-01-01

    An evacuated high-resolution Czerny-Turner spectrograph, which is described in this paper, has been used to determine the strengths S and self-broadening parameters for lines in the R branch of the nu (sub 3) fundamental of carbon dioxide at 298 and at 207 K. The values of self-broadening parameters at 207 K are greater than those to be expected on the basis of a fixed collision cross section.

  4. Photoacoustic measurements of black carbon light absorption coefficients in Irbid city, Jordan.

    PubMed

    Hamasha, Khadeejeh M; Arnott, W Patrick

    2010-07-01

    There is a need to recognize air pollution levels by particles, especially in developing countries such as Jordan where data are scarce due to the absence of routine monitoring of ambient air quality. This study aims at studying the air quality in different locations at Irbid, Jordan through the measurement and analysis of the time series of black carbon light absorption coefficients (B (abs)). Black carbon light absorption coefficients were measured with a photoacoustic instrument at a wavelength of 870 nm. The measurements were conducted during July 2007 at six sites in Irbid city, Jordan. Comparisons of black carbon concentrations at various locations were conducted to understand where values tend to be largest. The average value of B (abs) of all sites was 40.4 Mm(-1). The largest value of B (abs) was 61.2 Mm(-1) at Palestine Street which is located at a very crowded street in a highly populated region in the city center. The lowest value was 14.1 Mm(-1) at Thirtieth Street which is located at a main street in an open plain region in the east of the city. The black carbon light absorption coefficients fluctuate above a background level (transported black carbon from the neighboring states), which are almost identical at all sampling sites. The light absorption coefficients will be used as a benchmark in later years as combustion efficiencies and population patterns change. PMID:19479334

  5. Remote sensing of soot carbon - Part 2: Understanding the absorption Ångström exponent

    NASA Astrophysics Data System (ADS)

    Schuster, G. L.; Dubovik, O.; Arola, A.; Eck, T. F.; Holben, B. N.

    2016-02-01

    Recently, some authors have suggested that the absorption Ångström exponent (AAE) can be used to deduce the component aerosol absorption optical depths (AAODs) of carbonaceous aerosols in the AERONET database. This AAE approach presumes that AAE ≪ 1 for soot carbon, which contrasts the traditional small particle limit of AAE = 1 for soot carbon. Thus, we provide an overview of the AERONET retrieval, and we investigate how the microphysics of carbonaceous aerosols can be interpreted in the AERONET AAE product. We find that AAE ≪ 1 in the AERONET database requires large coarse mode fractions and/or imaginary refractive indices that increase with wavelength. Neither of these characteristics are consistent with the current definition of soot carbon, so we explore other possibilities for the cause of AAE ≪ 1. AAE is related to particle size, and coarse mode particles have a smaller AAE than fine mode particles for a given aerosol mixture of species. We also note that the mineral goethite has an imaginary refractive index that increases with wavelength, is very common in dust regions, and can easily contribute to AAE ≪ 1. We find that AAE ≪ 1 can not be caused by soot carbon, unless soot carbon has an imaginary refractive index that increases with wavelength throughout the visible and near-infrared spectrums. Finally, AAE is not a robust parameter for separating carbonaceous absorption from dust aerosol absorption in the AERONET database.

  6. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees; Andrew Sexton; Amorvadee Veawab

    2005-01-26

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. In Campaign 3 of the pilot plant, the overall mass transfer coefficient for the stripper with 7 m MEA decreased from 0.06 to 0.01 mol/(m{sup 3}.s.kPa) as the rich loading increased from 0.45 to 0.6 mol CO{sub 2}/mol MEA. Anion chromatography has demonstrated that nitrate and nitrite are major degradation products of MEA and PZ with pure oxygen. In measurements with the high temperature FTIR in 7 m MEA the MEA vapor pressure varied from 2 to 20 Pa at 35 to 70 C. In 2.5 m PZ the PZ vapor pressure varied from 0.2 to 1 Pa from 37 to 70 C.

  7. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; Eric Chen; J.Tim Cullinane; Marcus Hilliard; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

    2004-07-29

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. CO{sub 2} mass transfer rates are second order in piperazine concentration and increase with ionic strength. Modeling of stripper performance suggests that 5 m K{sup +}/2.5 m PZ will require 25 to 46% less heat than 7 m MEA. The first pilot plant campaign was completed on June 24. The CO{sub 2} penetration through the absorber with 20 feet of Flexipac{trademark} 1Y varied from 0.6 to 16% as the inlet CO{sub 2} varied from 3 to 12% CO{sub 2} and the gas rate varied from 0.5 to 3 kg/m{sup 2}-s.

  8. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees; Andrew Sexton; Daniel Ellenberger

    2005-10-26

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Modeling of stripper performance suggests that vacuum stripping may be an attractive configuration for all solvents. Flexipac 1Y structured packing performs in the absorber as expected. It provides twice as much mass transfer area as IMTP No.40 dumped packing. Independent measurements of CO{sub 2} solubility give a CO{sub 2} loading that is 20% lower than that Cullinane's values with 3.6 m PZ at 100-120 C. The effective mass transfer coefficient (K{sub G}) in the absorber with 5 m K/2.5 m PZ appears to be 0 to 30% greater than that of 30 wt% MEA.

  9. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Amorvadee Veawab

    2006-04-28

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The final campaign of the pilot plant was completed in February 2006 with 5m K{sup +}/2.5m PZ and 6.4m K{sup +}/1.6m PZ using Flexipac AQ Style 20. The new cross-exchanger reduced the approach temperature to less than 9 C. Stripper modeling has demonstrated that a configuration with a ''Flashing Feed'' requires 6% less work that a simple stripper. The oxidative degradation of piperazine proceeds more slowly than that of monoethanolamine and produces ethylenediamine and other products. Uninhibited 5 m KHCO{sub 3}/2.5 m PZ corrodes 5 to 6 times faster that 30% MEA with 0.2 mol CO{sub 2}/mol MEA.

  10. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; Eric Chen; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

    2005-04-29

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Stripper modeling suggests the energy requirement with a simple stripper will be about the same for 5 m K{sup +}/2.5 m PZ and 7 m MEA. Modeling with a generic solvent shows that the optimum heat of CO{sub 2} desorption to minimize heat duty lies between 15 and 25 kcal/gmol. On-line pH and density measurements are effective indicators of loading and total alkalinity for the K+/PZ solvent. The baseline pilot plant campaign with 30% MEA has been started.

  11. Contribution of Black Carbon, Brown Carbon and Lensing Effect to Total Aerosol Absorption in Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Shamjad, Pm; Tripathi, Sachchida; Bergin, Mike; Vreeland, Heidi

    2016-04-01

    This study reports the optical and physical properties of atmospheric and denuded (heated at 300°C) aerosols from Indo-Gangetic Plain (IGP) during 20 December 2014 to 28 February 2015. A Single Particle Soot Photometer (SP2) and High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) were used to measure black carbon (BC) and organic carbon (OC) in real time respectively. During experiments large scale carbonaceous aerosol loading is observed in IGP. Multiple biomass burning events are observed with varying intensity and duration. Refractive index of brown carbon (BrC) is derived from filter extracts using Liquid Core Wave Capillary Cell (LWCC). Refractive index of BrC at 405 is 4 times higher in IGP when compared to studies conducted in USA. Through Mie modelling we identified the percentage contribution of black carbon, BrC and lensing effect to total aerosol absorption. On average 75% of absorption is from black carbon alone, while rest is contributed from volatile components. Within the volatile component contribution, at 405 nm BrC contributes around 20% and rest from lensing effect. But at 781 nm lensing contributed more than BrC. Overall results indicate the special characteristics on BrC aerosols in IGP and the importance of considering spectral absorption in global aerosol modelling studies.

  12. Activated, coal-based carbon foam

    DOEpatents

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  13. Activated, coal-based carbon foam

    SciTech Connect

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2009-06-09

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  14. Measurement of Carbon Dioxide Column via Space Borne Laser Absorption

    NASA Technical Reports Server (NTRS)

    Heaps, WIlliam S.

    2007-01-01

    In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. In order to uncover the 'missing sink that is responsible for the large discrepancies in the budget as we presently understand it calculation has indicated that measurement accuracy on the order of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of .25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget in order to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong requirements on the laser system used for the measurement. This work presents an analysis of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics Several systems for meeting these requirements that are under investigation at various institutions in the US as well as Europe will be discussed.

  15. Research of fiber carbon dioxide sensing system based laser absorption spectrum

    NASA Astrophysics Data System (ADS)

    Wei, Yubin; Zhang, Tingting; Li, Yanfang; Zhao, Yanjie; Wang, Chang; Liu, Tongyu

    2012-02-01

    Carbon dioxide is one of the important gas need to be detected in coal mine safety. In the mine limited ventilation environment, Concentration of carbon dioxide directly affects the health of coal miners. Carbon dioxide is also one of important signature Gas in spontaneous combustion forecasting of coal goaf area, it is important to accurately detect concentration of carbon dioxide in coal goaf area. This paper proposed a fiber carbon dioxide online sensing system based on tunable diode laser spectroscopy. The system used laser absorption spectroscopy and optical fiber sensors combined, and a near-infrared wavelength 1608nm fiber-coupled distributed feedback laser (DFB) as a light source and a 7cm length gas cell, to achieve a high sensitivity concentration detection of carbon dioxide gas. The technical specifications of sensing system can basically meet the need of mine safety.

  16. Design of activated carbon/activated carbon asymmetric capacitors

    NASA Astrophysics Data System (ADS)

    Piñeiro-Prado, Isabel; Salinas-Torres, David; Ruiz Rosas, Ramiro; Morallon, Emilia; Cazorla-Amoros, Diego

    2016-03-01

    Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed. In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  17. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; Eric Chen; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

    2004-11-08

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The stripper model with Aspen Custom Modeler and careful optimization of solvent rate suggests that 7 m MEA and 5 m K+/2.5 m PZ will be practically equivalent in energy requirement and optimum solution capacity. The multipressure stripper reduces energy consumption by 15% with a maximum pressure of 5 atm. The use of vanadium as a corrosion inhibitor will carry little risk of long-term environmental or health effects liability, but the disposal of solvent with vanadium will be subject to regulation, probably as a hazardous waste. Analysis of the pilot plant data from Campaign 1 has given values of the mass transfer coefficient consistent with the rate data from the wetted wall column. With a rich end pinch, 30% MEA should provide a capacity of 1.3-1.4 mole CO{sub 2}/kg solvent.

  18. Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation

    NASA Astrophysics Data System (ADS)

    Kirchstetter, T. W.; Thatcher, T. L.

    2012-02-01

    Spectroscopic analysis shows that 115 residential wood smoke-dominated particulate matter samples absorb light with strong spectral selectivity, consistent with prior work that has demonstrated that organic carbon (OC), in addition to black carbon (BC), appreciably absorbs solar radiation in the visible and ultraviolet spectral regions. Apportionment of light absorption yields the absorption Ångström exponent of the light absorbing OC in these samples, which ranges from 3.0 to 7.4 and averages 5.0, and indicates that OC and BC, respectively, would account for 14% and 86% of solar radiation absorbed by the wood smoke in the atmosphere (integrated over the solar spectrum from 300 to 2500 nm). OC would contribute 49% of the wood smoke particulate matter absorption of ultraviolet solar radiation at wavelengths below 400 nm. These results illustrate that BC is the dominant light absorbing particulate matter species in atmospheres burdened with residential wood smoke and OC absorption is secondary but not insignificant. Further, since biomass combustion generates a major portion of atmospheric particulate matter globally, these results suggest that OC absorption should be included when particulate matter effects on the radiative forcing of climate are considered, and that OC absorption may affect the ultraviolet actinic flux and thus tropospheric photochemistry.

  19. Mercury binding on activated carbon

    SciTech Connect

    Bihter Padak; Michael Brunetti; Amanda Lewis; Jennifer Wilcox

    2006-11-15

    Density functional theory has been employed for the modeling of activated carbon (AC) using a fused-benzene ring cluster approach. Oxygen functional groups have been investigated for their promotion of effective elemental mercury binding on AC surface sites. Lactone and carbonyl functional groups yield the highest mercury binding energies. Further, the addition of halogen atoms has been considered to the modeled surface, and has been found to increase the AC's mercury adsorption capacity. The mercury binding energies increase with the addition of the following halogen atoms, F {gt} Cl {gt} Br {gt} I, with the fluorine addition being the most promising halogen for increasing mercury adsorption.

  20. Size separation method for absorption characterization in brown carbon: Application to an aged biomass burning sample

    NASA Astrophysics Data System (ADS)

    Di Lorenzo, Robert A.; Young, Cora J.

    2016-01-01

    The majority of brown carbon (BrC) in atmospheric aerosols is derived from biomass burning (BB) and is primarily composed of extremely low volatility organic carbons. We use two chromatographic methods to compare the contribution of large and small light-absorbing BrC components in aged BB aerosols with UV-vis absorbance detection: (1) size exclusion chromatography (SEC) and (2) reverse phase high-performance liquid chromatography. We observe no evidence of small molecule absorbers. Most BrC absorption arises from large molecular weight components (>1000 amu). This suggests that although small molecules may contribute to BrC absorption near the BB source, analyses of aerosol extracts should use methods selective to large molecular weight compounds because these species may be responsible for long-term BrC absorption. Further characterization with electrospray ionization mass spectrometry (MS) coupled to SEC demonstrates an underestimation of the molecular size determined through MS as compared to SEC.

  1. Solar absorption by elemental and brown carbon determined from spectral observations

    PubMed Central

    Bahadur, Ranjit; Praveen, Puppala S.; Xu, Yangyang; Ramanathan, V.

    2012-01-01

    Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols (TC) and is typically dominated by soot-like elemental carbon (EC). However, organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC), which is typically not represented in climate models. We propose an observationally based analytical method for rigorously partitioning measured absorption aerosol optical depths (AAOD) and single scattering albedo (SSA) among EC and BrC, using multiwavelength measurements of total (EC, OC, and dust) absorption. EC is found to be strongly absorbing (SSA of 0.38) whereas the BrC SSA varies globally between 0.77 and 0.85. The method is applied to the California region. We find TC (EC + BrC) contributes 81% of the total absorption at 675 nm and 84% at 440 nm. The BrC absorption at 440 nm is about 40% of the EC, whereas at 675 nm it is less than 10% of EC. We find an enhanced absorption due to OC in the summer months and in southern California (related to forest fires and secondary OC). The fractions and trends are broadly consistent with aerosol chemical-transport models as well as with regional emission inventories, implying that we have obtained a representative estimate for BrC absorption. The results demonstrate that current climate models that treat OC as nonabsorbing are underestimating the total warming effect of carbonaceous aerosols by neglecting part of the atmospheric heating, particularly over biomass-burning regions that emit BrC. PMID:23045698

  2. Systematic determination of absolute absorption cross-section of individual carbon nanotubes

    PubMed Central

    Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B.; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G.; Wang, Enge; Wang, Feng

    2014-01-01

    Optical absorption is the most fundamental optical property characterizing light–matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important

  3. Equimolar carbon absorption by potassium phthalimide and in situ catalytic conversion under mild conditions.

    PubMed

    Zhang, Shuai; Li, Yu-Nong; Zhang, Ya-Wei; He, Liang-Nian; Yu, Bing; Song, Qing-Wen; Lang, Xian-Dong

    2014-05-01

    Potassium phthalimide, with weak basicity, is an excellent absorbent for rapid carbon dioxide capture with almost equimolar absorption. This process is assumed to proceed through the potassium carbamate formation pathway, as supported by NMR spectroscopy, an in situ FTIR study, and computational calculations. Both the basicity and nucleophilicity of phthalimide salts have a crucial effect on the capture process. Furthermore, the captured carbon dioxide could more easily be converted in situ into value-added chemicals and fuel-related products through carbon capture and utilization, rather than going through a desorption process. PMID:24677616

  4. Studies of Microwave Absorption Properties of Carbon Nanotubes/Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Zhao, Guang-Lin

    2010-10-01

    Less weight, excellent mechanical properties, and high efficiency in absorbing electromagnetic (EM) wave make carbon nanotubes (CNTs) composites attractive for microwave technology applications. Multi-walled carbon nanotubes (MWNTs) have much higher performance-to-price ratio (PPR) than SWNTs do in the composite applications. In this work, we aim to study the effect of the outside diameter (OD) distributions of MWNTs on their microwave absorption properties. We have fabricated six groups of carbon nanotube/epoxy composite samples with various OD distributions. The weight percentages of MWNTs in the composites were controlled in the range from 1 to 10%. We utilized a microwave resonant cavity technique to measure the microwave absorption properties of all the sixty samples around the central frequency of 9.968 GHz. Our results have shown that the maxima of EM wave absorptions for the six groups of samples were all around 7% MWNTs weight percentage. We further studied the effective attenuations of the electric and magnetic fields in six groups of MWNT composite samples with the same (7 %) MWNT blend in epoxy. The results show that, in general, the MWNTs with smaller diameters have higher microwave absorption at 9.968 GHz. However, sample group M5 (OD<8nm) shows unusual results, a lower microwave absorption than the other samples. We then used a scanning electron microscope (SEM) to study the morphologies of the MWNT samples. Based on the SEM analysis and microwave absorption measurements, we found that the efficiency of the microwave absorption of MWNT/Epoxy composites is strongly affected by the morphologies/structures of MWNTs in individual bundles.

  5. Regeneration of 2-amino-2-methyl-1-propanol used for carbon dioxide absorption.

    PubMed

    Zhang, Pei; Shi, Yao; Wei, Jianwen; Zhao, Wei; Ye, Qing

    2008-01-01

    To improve the efficiency of the carbon dioxide cycling process and to reduce the regeneration energy consumption, a sterically hindered amine of 2-amino-2-methyl-1-propranol (AMP) was investigated to determine its regeneration behavior as a CO2 absorbent. The CO2 absorption and amine regeneration characteristics were experimentally examined under various operating conditions. The regeneration efficiency increased from 86.2% to 98.3% during the temperature range of 358 to 403 K. The most suitable regeneration temperature for AMP was 383 K, in this experiment condition, and the regeneration efficiency of absorption/regenerationruns descended from 98.3% to 94.0%. A number of heat-stable salts (HSS) could cause a reduction in CO2 absorption capacity and regeneration efficiency. The results indicated that aqueous AMP was easier to regenerate with less loss of absorption capacity than other amines, such as, monoethanolamine (MEA), diethanolamine (DEA), diethylenetriamine (DETA), and N-methyldiethanolamine (MDEA). PMID:18572520

  6. Discovery of carbon radio recombination lines in absorption towards Cygnus A

    NASA Astrophysics Data System (ADS)

    Oonk, J. B. R.; van Weeren, R. J.; Salgado, F.; Morabito, L. K.; Tielens, A. G. G. M.; Rottgering, H. J. A.; Asgekar, A.; White, G. J.; Alexov, A.; Anderson, J.; Avruch, I. M.; Batejat, F.; Beck, R.; Bell, M. E.; van Bemmel, I.; Bentum, M. J.; Bernardi, G.; Best, P.; Bonafede, A.; Breitling, F.; Brentjens, M.; Broderick, J.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; Conway, J. E.; Corstanje, A.; de Gasperin, F.; de Geus, E.; de Vos, M.; Duscha, S.; Eislöffel, J.; Engels, D.; van Enst, J.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Hamaker, J. P.; Hassall, T. E.; Heald, G.; Hessels, J. W. T.; Hoeft, M.; Horneffer, A.; van der Horst, A.; Iacobelli, M.; Jackson, N. J.; Juette, E.; Karastergiou, A.; Klijn, W.; Kohler, J.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Macario, G.; Mann, G.; Markoff, S.; McKean, J. P.; Mevius, M.; Miller-Jones, J. C. A.; Mol, J. D.; Mulcahy, D. D.; Munk, H.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Scaife, A. M. M.; Schoenmakers, A.; Schwarz, D.; Shulevski, A.; Sluman, J.; Smirnov, O.; Sobey, C.; Stappers, B. W.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; Veen, S. ter; Thoudam, S.; Toribio, C.; van Nieuwpoort, R.; Vermeulen, R.; Vocks, C.; Vogt, C.; Wijers, R. A. M. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.; Zensus, A.

    2014-02-01

    We present the first detection of carbon radio recombination line absorption along the line of sight to Cygnus A. The observations were carried out with the Low Frequency Array in the 33-57 MHz range. These low-frequency radio observations provide us with a new line of sight to study the diffuse, neutral gas in our Galaxy. To our knowledge this is the first time that foreground Milky Way recombination line absorption has been observed against a bright extragalactic background source. By stacking 48 carbon α lines in the observed frequency range we detect carbon absorption with a signal-to-noise ratio of about 5. The average carbon absorption has a peak optical depth of 2 × 10-4, a line width of 10 km s-1 and a velocity of +4 km s-1 with respect to the local standard of rest. The associated gas is found to have an electron temperature Te ˜ 110 K and density ne ˜ 0.06 cm-3. These properties imply that the observed carbon α absorption likely arises in the cold neutral medium of the Orion arm of the Milky Way. Hydrogen and helium lines were not detected to a 3σ peak optical depth limit of 1.5 × 10-4 for a 4 km s-1 channel width. Radio recombination lines associated with Cygnus A itself were also searched for, but are not detected. We set a 3σ upper limit of 1.5 × 10-4 for the peak optical depth of these lines for a 4 km s-1 channel width.

  7. Contribution of particulate brown carbon to light absorption in the rural and urban Southeast US

    NASA Astrophysics Data System (ADS)

    Devi, J. Jai; Bergin, Michael H.; Mckenzie, Michael; Schauer, James J.; Weber, Rodney J.

    2016-07-01

    Measurements of wavelength dependent aerosol light absorption coefficients were carried out as part of the Southern Oxidant and Aerosol Study (SOAS) during the summer of 2013 to determine the contribution of light absorbing organic carbon (BrC) to total aerosol light absorption in a rural location (Centreville, AL) and an urban area (Atlanta, GA). The light absorption coefficients in the near UV and visible wavelengths were measured for both ambient air, as well as ambient air heated in a thermal denuder to 200 °C to remove the semi-volatile organic compounds. Atlanta measurements show dominance of semi-volatile brown carbon with an average absorption angstrom exponent (AAE) of 1.4 before heating and about 1.0 after heating. In urban Atlanta, a decrease of about ∼35% in the light absorption coefficient at 370 nm after heating indicates that light absorbing organic compounds are a substantial fraction of the light absorption budget. Furthermore, a considerable increase in the fraction of light absorption by the semi-volatile aerosol occurs during the daytime, likely linked with photochemistry. Measurements at rural Centerville, on the other hand, do not show any major change in AAE with values before and after heating of 0.99 and 0.98, respectively. Overall the results suggest that photochemical aged urban emissions result in the presence of light absorbing BrC, while at rural locations which are dominated by aged aerosol and local biogenic emissions (based on measurements of Angstrom exponents) BrC does not significantly contribute to light absorption.

  8. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Hennigan, C. J.; McMeeking, G. R.; Chuang, W. K.; Robinson, E. S.; Coe, H.; Donahue, N. M.; Robinson, A. L.

    2013-05-01

    Experiments were conducted to investigate light absorption of organic aerosol (OA) in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak) and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry). Photo-chemical aging was performed in an environmental chamber. We constrained the light-absorption properties of the OA using conservative limiting assumptions, and found that both primary organic aerosol (POA) in the fresh emissions and secondary organic aerosol (SOA) produced by photo-chemical aging absorb light to a significant extent, and are categorized as brown carbon. This work presents the first direct evidence that SOA produced in aged biomass-burning emissions is absorptive. For the investigated fuels, SOA is less absorptive than POA in the long visible, but exhibits steeper wavelength-dependence (larger Absorption Ångström Exponent) and is more absorptive in the short visible and near-UV. Light absorption by SOA in biomass-burning emissions might be an important contributor to the global radiative forcing budget.

  9. Light Absorption of Brown Carbon Aerosol in the Pearl River Delta Region of China

    NASA Astrophysics Data System (ADS)

    Huang, X.

    2015-12-01

    X.F. Huang, J.F. Yuan, L.M. Cao, J. Cui, C.N. Huang, Z.J. Lan and L.Y. He Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, ChinaCorresponding author. Tel.: +86 755 26032532; fax: +86 755 26035332. E-mail address: huangxf@pku.edu.cn (X. F. Huang). Abstract: The strong spectral dependence of light absorption of brown carbon (BrC) aerosol has been recognized in recent decades. The Absorption Angstrom Exponent (AAE) of ambient aerosol was widely used in previous studies to attribute light absorption of brown carbon at shorter wavelengths, with a theoretical assumption that the AAE of black carbon (BC) aerosol equals to unit. In this study, the AAE method was improved by statistical extrapolation based on ambient measurements in the polluted seasons in typical urban and rural areas in the Pearl River Delta (PRD) region of China. A three-wavelength photoacoustic soot spectrometer (PASS-3) and an aerosol mass spectrometer (AMS) were used to explore the relationship between the ambient measured AAE and the ratio of organic aerosol to BC aerosol, in order to extract the more realistic AAE by pure BC aerosol, which were found to be 0.86, 0.82 and 1.02 at 405nm and 0.70, 0.71, and 0.86 at 532nm in the campaigns of urban-winter, urban-fall, and rural-fall, respectively. Roadway tunnel experiment results further supported the effectiveness of the obtained AAE for pure BC aerosol. In addition, biomass burning experiments proved higher spectral dependence of more-BrC environment and further verified the reliability of the instruments' response. Then, the average light absorption contribution of BrC aerosol was calculated to be 11.7, 6.3 and 12.1% (with total relative uncertainty of 7.5, 6.9 and 10.0%) at 405nm and 10.0, 4.1 and 5.5% (with total relative uncertainty of 6.5, 8.6 and 15.4%) at 532nm of the three campaigns, respectively. These results indicate that the

  10. Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies

    NASA Astrophysics Data System (ADS)

    Wan, Yizao; Xiao, Jian; Li, Chunzhi; Xiong, Guangyao; Guo, Ruisong; Li, Lili; Han, Ming; Luo, Honglin

    2016-02-01

    Hybridizing carbon materials with magnetic metals and oxides has attracted much attention for enhanced microwave absorption. In this study, a magnetic Fe-Co alloy was coated on the surface of carbon fibers (FeCo@CFs) by electrodeposition. For the first time, different Fe-Co coating morphologies (thin plate, irregular particle, and pyramid) were obtained by adjusting the plating temperature. The morphology, structure, magnetic properties, and complex permittivity and permeability of the FeCo@CFs were determined as a function of plating temperature. Results show that the FeCo@CFs with different coating morphologies exhibit different magnetic properties and complex permittivity. The FeCo@CFs with plate-like morphology demonstrate the best absorption performance. It has been shown that the absorption of FeCo@CFs can be controlled by adjusting the morphology of Fe-Co coating, which provides a new and effective way to endow Fe-Co-coated carbon fibers with good microwave absorption properties.

  11. Carbon-Nanohorn Based Nanofluids for a Direct Absorption Solar Collector for Civil Application.

    PubMed

    Moradi, A; Sani, E; Simonetti, M; Francini, F; Chiavazzo, E; Asinari, P

    2015-05-01

    Direct solar absorption has been often considered in the past as a possible solution for solar thermal collectors for residential and small commercial applications. A direct absorption could indeed improve the performance of solar collectors by skipping one step of the heat transfer mechanism in standard devices and having a more convenient temperature distribution inside the collector. Classical solar thermal collectors have a metal sheet as absorber, designed such that water has the minimum temperature in each transversal section, in order to collect as much solar thermal energy as possible. On the other hand, in a direct configuration, the hottest part of the system is the operating fluid and this allows to have a more efficient conversion. Nanofluids, i.e., fluids with a suspension of nanoparticles, such as carbon nanohorns, could be a good and innovative family of absorbing fluids owing to their higher absorption coefficient compared to the base fluid and stability under moderate temperature gradients. Moreover, carbon nanohorns offer the remarkable advantage of a reduced toxicity over other carbon nanoparticles. In this work, a three-dimensional model of the absorption phenomena in nanofluids within a cylindrical tube is coupled with a computational fluid dynamics (CFD) analysis of the flow and temperature field. Measured optical properties of nanofluids at different concentrations have been implemented in the model. Heat losses due to conduction, convection and radiation at the boundaries are considered as well. PMID:26504968

  12. Exclusive-OR Encryption by Photoconduction and Two-Photon Absorption in Carbon Nanotubes.

    PubMed

    Torres-Torres, C; Rebollo, N R; Castañeda, L; Trejo-Valdez, M; Torres-Marínez, R

    2015-02-01

    A two-wave photoconductive system dependent on the nonlinear optical absorption in carbon nano-tubes is presented. Optical irradiation at 532 nm wavelength and 1 nanosecond pulse duration was employed for performing the experiments. A vectorial two-wave mixing configuration was used in order to measure the absorptive and refractive nonlinearities. A single-beam transmittance technique was carried out to evaluate the photoconductivity and also it allows us to confirm the participation of the nonlinear optical absorption displayed by the samples. A two-photon absorption effect was identified as the main physical mechanism associated to the third order absorptive nonlinearity. The exclusive disjunctive logic function was achieved by the optoelectronic response of an interferometric configuration. An ultrasonic spray pyrolysis processing route was utilized for the preparation of the samples. The morphology of the nanotubes was estimated by using scanning electronic microscopy. By combining the photoconductive response of two different carbon nanotubes thin film samples, a straightforward XOR encryption was performed. PMID:26353707

  13. Performance characteristics and modeling of carbon dioxide absorption by amines in a packed column

    SciTech Connect

    Lin, S.H.; Shyu, C.T. . Dept. of Chemical Engineering)

    1999-01-01

    Carbon dioxide (CO[sub 2]) is widely recognized as a major greenhouse gas contributing to global warming. To mitigate the global warming problem, removal of CO[sub 2] from the industrial flue gases is necessary. Absorption of carbon dioxide by amines in a packed column was experimentally investigated. The amines employed in the present study were the primary mono-ethanolamine (MEA) and tertiary N-methyldiethanolamine (MDEA), two very popular amines widely used in the industries for gas purification. The CO[sub 2] absorption characteristics by these two amines were experimentally examined under various operating conditions. A theoretical model was developed for describing the CO[sub 2] absorption behavior. Test data have revealed that the model predictions and the observed CO[sub 2] absorption breakthrough curves agree very well, validating the proposed model. Preliminary regeneration tests of exhausted amine solution were also conducted. The results indicated that the tertiary amine is easier to regenerate with less loss of absorption capacity than the primary one.

  14. Contribution of Brown Carbon to Total Aerosol Absorption in Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Tripathi, S. N.; Moosakutty, S. P.; Bergin, M.; Vreeland, H. P.

    2015-12-01

    Carbonaceous aerosols play an important role in earth's radiative balance by absorbing and scattering light. We report physical and optical properties of carbonaceous aerosols from Indo-Gangetic Plain (IGP) for 60 days during 2014-15 winter season. Mass concentration and size distribution of black carbon (BC) and organic carbon (OC) were measured in real time using Single Particle Soot Photometer (SP2) and High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) respectively. Optical properties of aerosols at atmospheric and denuded (heated at 300 ˚C) conditions were also measured using 3 wavelength Photo Acoustic Soot Spectrometer (PASS 3). Analysis shows large scale carbonaceous aerosol loading during winter season in IGP. Multiple biomass burning events combined with trash burning contributed to this high loading along with very low boundary layer height. An inter-comparison shows that Aethalometer over estimates BC by a factor of 3 when compared with that of SP 2 measurement. Enhancement in absorption (Eabs) defined as the ratio of atmospheric absorption to denuded absorption shows presence of absorbing organics known as brown carbon (BrC). Optical closure performed between denuded aerosol absorption measured by PASS 3 and Mie theory derived absorption using SP 2 BC size distribution showed a difference of only 30 % at 781 nm. This difference might be due to the non-spherical shape and presence of residual coating on BC. Refractive index of BrC at 405 and 532 nm were derived using optical closure method for the entire sampling period. Overall results indicates that the impact of BrC on optical absorption is significant in areas dominated by biomass burning such as IGP and such effects needs to be considered in global aerosol modelling studies.

  15. Adsorption of herbicides using activated carbons

    SciTech Connect

    Derbyshire, F.; Jagtoyan, M.; Lafferty, C.; Kimber, G.

    1996-10-01

    This work describes development of a series of novel activated carbon materials and their testing for possible water treatment applications by studying the adsorption of sodium pentachlorphenolate, PCP (a common herbicide/wood preservative). Although the application of activated carbons is an established technology for the treatment of public water supplies, there is a growing need for materials with higher selectivity and adsorptive capacities as well as high abrasion resistance. The materials that will be discussed include extruded wood-derived carbons with novel pore size distributions and high hardness, as well as activated carbon fiber composites. Comparisons will be made with commercial granular water treatment carbons.

  16. Fractal morphology of black carbon aerosol enhances absorption in the thermal infrared wavelengths.

    PubMed

    Heinson, William R; Chakrabarty, Rajan K

    2016-02-15

    In this Letter, we numerically calculate the mass absorption cross sections (MACs) of black carbon fractal aggregates in the thermal infrared solar spectrum. Compared to equivalent-size spheres, the MAC values of aggregates show a percent enhancement of ≈150 and 400 at small and large length scales, respectively. The absorption properties of aggregates with size parameters >1 surprisingly continued to remain in the Rayleigh optics regime. We explain this phenomenon using the Maxwell-Garnett effective medium theory and the concept of phase shift parameter. PMID:26872194

  17. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Hennigan, C. J.; McMeeking, G. R.; Chuang, W. K.; Robinson, E. S.; Coe, H.; Donahue, N. M.; Robinson, A. L.

    2013-08-01

    Experiments were conducted to investigate light absorption of organic aerosol (OA) in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak) and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry). Photo-chemical aging was performed in an environmental chamber. We constrained the effective light-absorption properties of the OA using conservative limiting assumptions, and found that both primary organic aerosol (POA) in the fresh emissions and secondary organic aerosol (SOA) produced by photo-chemical aging contain brown carbon, and absorb light to a significant extent. This work presents the first direct evidence that SOA produced in aged biomass-burning emissions is absorptive. For the investigated fuels, SOA is less absorptive than POA in the long visible, but exhibits stronger wavelength-dependence and is more absorptive in the short visible and near-UV. Light absorption by SOA in biomass-burning emissions might be an important contributor to the global radiative forcing budget.

  18. SORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBONS

    EPA Science Inventory

    The mechanisms and rate of elemental mercury (HgO) capture by activated carbons have been studied using a bench-scale apparatus. Three types of activated carbons, two of which are thermally activated (PC-100 and FGD) and one with elemental sulfur (S) impregnated in it (HGR), were...

  19. Carbon monoxide in indoor ice skating rinks: Evaluation of absorption by adult hockey players

    SciTech Connect

    Levesque, B.; Dewailly, E.; Lavoie, R.; Prud'Homme, D.; Allaire, S. )

    1990-05-01

    We evaluated alveolar carbon monoxide (CO) levels of 122 male, adult hockey players active in recreational leagues of the Quebec City region (Canada), before and after 10 weekly 90-minute games in 10 different rinks. We also determined exposure by quantifying the average CO level in the rink during the games. Other variables documented included age, pulmonary function, aerobic capacity, and smoking status. Environmental concentrations varied from 1.6 to 131.5 parts per million (ppm). We examined the absorption/exposure relationship using a simple linear regression model. In low CO exposure levels, physical exercise lowered the alveolar CO concentration. However, we noted that for each 10 ppm of CO in the ambient air, the players had adsorbed enough CO to raise their carboxyhemoglobin (COHb) levels by 1 percent. This relationship was true both for smokers and non-smokers. We suggest that an average environmental concentration of 20 ppm of CO for the duration of a hockey game (90 minutes) should be reference limit not to be exceeded in indoor skating rinks.

  20. Indoor carbon dioxide monitoring with diode laser absorption at 2 μm

    NASA Astrophysics Data System (ADS)

    Li, Jinyi; Du, Zhenhui; Ma, Yiwen; Liu, Jingwang

    2015-05-01

    In order to investigate the variation of indoor carbon dioxide concentration and how it changes with human activities, a tunable diode laser absorption spectroscopy (TDLAS) system was used to monitor the indoor CO2 concentration. Based on Wavelength Modulation Spectroscopy double frequency detection (WMS-2f), the 2v1+v3 characteristic line (4991.26 cm-1) of CO2 was measured by a DFB laser. The measured concentration values were calibrated by means of a cell filled with reference gas. The results show that the daily average indoor CO2 concentrations is about 419ppm which is slightly higher than that of the outdoor and the changing range is between 380ppm and 510ppm in a day. The indoor CO2 concentration was influenced by the change of ventilation and indoor staff. The respiration of the indoor staff makes a greater impact on a relatively confined indoor CO2 concentration. The CO2 increasing rate is measured to be 80ppm/hour in the case of occupant density of 0.06 people/m3. Therefore, the staff crowded indoor should ventilate timely to prevent excessive CO2 causing people discomfort.

  1. Carbon monoxide in indoor ice skating rinks: evaluation of absorption by adult hockey players.

    PubMed Central

    Lévesque, B; Dewailly, E; Lavoie, R; Prud'Homme, D; Allaire, S

    1990-01-01

    We evaluated alveolar carbon monoxide (CO) levels of 122 male, adult hockey players active in recreational leagues of the Quebec City region (Canada), before and after 10 weekly 90-minute games in 10 different rinks. We also determined exposure by quantifying the average CO level in the rink during the games. Other variables documented included age, pulmonary function, aerobic capacity, and smoking status. Environmental concentrations varied from 1.6 to 131.5 parts per million (ppm). We examined the absorption/exposure relationship using a simple linear regression model. In low CO exposure levels, physical exercise lowered the alveolar CO concentration. However, we noted that for each 10 ppm of CO in the ambient air, the players had adsorbed enough CO to raise their carboxyhemoglobin (COHb) levels by 1 percent. This relationship was true both for smokers and non-smokers. We suggest that an average environmental concentration of 20 ppm of CO for the duration of a hockey game (90 minutes) should be reference limit not to be exceeded in indoor skating rinks. PMID:2327538

  2. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors

    NASA Astrophysics Data System (ADS)

    Gamby, J.; Taberna, P. L.; Simon, P.; Fauvarque, J. F.; Chesneau, M.

    Various activated carbons from the PICA Company have been tested in supercapacitor cells in order to compare their performances. The differences measured in terms of specific capacitance and cell resistance are presented. Porosity measurements made on activated carbon powders and electrode allowed a better understanding of the electrochemical behaviour of these activated carbons. In this way, the PICACTIF SC carbon was found to be an interesting active material for supercapacitors, with a specific capacitance as high as 125 F/g.

  3. Enhanced Microwave Absorption Properties of Carbon Black/Silicone Rubber Coating by Frequency-Selective Surface

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoning; Luo, Fa; Gao, Lu; Qing, Yuchang; Zhou, Wancheng; Zhu, Dongmei

    2016-06-01

    A square frequency-selective surface (FSS) design has been employed to improve the microwave absorption properties of carbon black/silicone rubber (CBSR) composite coating. The FSS is placed on the surface of the CBSR coating. The effects of FSS design parameters on the microwave absorption properties of the CBSR coating have been investigated, including the size and period of the FSS design, and the thickness and permittivity of the coating. Simulation results indicate that the absorption peak for the CBSR coating alone is related to its thickness and electromagnetic parameters, while the combination of the CBSR coating with a FSS can exhibit a new absorption peak in the reflection curve; the frequency of the new absorption peak is determined by the resonance of the square FSS design and tightly depends on the size of the squares, with larger squares in the FSS design leading to a lower frequency of the new absorption peak. The enhancement of the absorption performance depends on achievement of a new absorption peak using a suitable␣size and period of the FSS design. In addition, the FSS design has a stable␣frequency response for both transverse electromagnetic (TE) and transverse magnetic (TM) polarizations as the incident angle varies from 0° to 40°. The optimized results indicate that the bandwidth with reflection loss below -5 dB can encompass the whole frequency range from 8 GHz to 18 GHz for thickness of the CBSR coating of only 1.8 mm. The simulation results are confirmed by experiments.

  4. Radiative absorption enhancements due to the mixing state of atmospheric black carbon

    SciTech Connect

    Cappa, Christopher D.; Onasch, Timothy B.; Massoli, Paola; Worsnop, Douglas R.; Bates, Timothy S.; Cross, Eben S.; Davidovits, Paul; Hakala, Jani; Hayden, Katherine; Jobson, Bertram Thomas; Kolesar, K. R.; Lack, D. A.; Lerner, Brian M.; Li, Shao-Meng; Mellon, Daniel; Nuaaman, Ibraheem; Olfert, Jason; Petaja, Tuukka; Quinn, P. K.; Song, Chen; Subramanian, R.; Williams, Eric; Zaveri, Rahul A.

    2012-08-30

    Atmospheric particulate black carbon (BC) leads to warming of the Earth's climate. Many models that include forcing by BC assume that non-BC aerosol species internally mixed with BC enhance BC absorption, often by a factor of {approx}2. However, such model estimates have yet to be clearly validated through atmospheric observations. Here, we report on direct measurements of the absorption enhancement (Eabs) of BC in the atmosphere around California and find that it is negligible at 532 nm and much smaller than predicted from theoretical calculations that are uniquely constrained by observations, suggesting that the warming by BC may be significantly overestimated (factor of 2) in many climate models. Additionally, non-BC particulate matter is found to contribute {approx}10% to the total absorption at 405 nm.

  5. Far-infrared absorption measurements of graphite, amorphous carbon, and silicon carbide

    NASA Astrophysics Data System (ADS)

    Tanabe, T.; Nakada, Y.; Kamijo, F.; Sakata, A.

    The mass absorption coefficients of graphite (G), amorphous-carbon (AC), and SiC grains at 25-250 microns are determined experimentally at room temperature and applied to the interpretation of published IR observations of IRC+10216. Absorption measurements are obtained using a single-beam grating spectrometer with a Goley-cell detector by a polyethylene-powder-tablet technique. The results are presented in a table and graphs. The mass absorption constants (in sq cm/g) are calculated as 642 for G, 281 for AC produced in Ar, 93.9 for AC produced in H2, and 19.6 for SiC; power-law relationships to wavelength, with indices of -2.18, 0.60, -0.59, and -1.37 (respectively) are established. AC is found to be the most likely constituent of the IRC+10216 dust cloud, permitting the dust mass to be estimated as 0.0001 solar mass.

  6. Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor

    NASA Technical Reports Server (NTRS)

    Kurtz, Joe; Huffman, Donald R.

    1989-01-01

    Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.

  7. Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers

    PubMed Central

    2011-01-01

    In the present work, we investigated the scattering and spectrally resolved absorption properties of nanofluids consisting in aqueous and glycol suspensions of single-wall carbon nanohorns. The characteristics of these nanofluids were evaluated in view of their use as sunlight absorber fluids in a solar device. The observed nanoparticle-induced differences in optical properties appeared promising, leading to a considerably higher sunlight absorption with respect to the pure base fluids. Scattered light was found to be not more than about 5% with respect to the total attenuation of light. Both these effects, together with the possible chemical functionalization of carbon nanohorns, make this new kind of nanofluids very interesting for increasing the overall efficiency of the sunlight exploiting device. PACS 78.40.Ri, 78.35.+c, 78.67.Bf, 88.40.fh, 88.40.fr, 81.05.U. PMID:21711795

  8. Aerosol Absorption by Black Carbon and Dust: Implications of Climate Change and Air Quality in Asia

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2010-01-01

    Atmospheric aerosol distributions from 2000 to 2007 are simulated with the global model GOCART to attribute light absorption by aerosol to its composition and sources. We show the seasonal and interannual variations of absorbing aerosols in the atmosphere over Asia, mainly black carbon and dust. and their linkage to the changes of anthropogenic and dust emissions in the region. We compare our results with observations from satellite and ground-based networks, and estimate the importance of black carbon and dust on regional climate forcing and air quality.

  9. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    NASA Astrophysics Data System (ADS)

    Olson, Michael R.; Victoria Garcia, Mercedes; Robinson, Michael A.; Van Rooy, Paul; Dietenberger, Mark A.; Bergin, Michael; Schauer, James Jay

    2015-07-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings. Filter-based absorption measurements were corrected and compared to photoacoustic absorption results. BC absorption was segregated from the total light extinction to estimate the BrC absorption from individual sources. Results were compared to elemental carbon (EC)/organic carbon (OC) concentrations to determine composition's impact on light absorption. Multiple-wavelength absorption coefficients, Angstrom exponent (6.9 to <1.0), mass absorption cross section (MAC), and Delta C (97 µg m-3 to ~0 µg m-3) were highly variable. Sources such as incense and peat emissions showed ultraviolet wavelength (370 nm) BrC absorption over 175 and 80 times (respectively) the BC absorption but only 21 and 11 times (respectively) at 520 nm wavelength. The bulk EC MACEC, λ (average at 520 nm = 9.0 ± 3.7 m2 g-1; with OC fraction <0.85 = ~7.5 m2 g-1) and the BrC OC mass absorption cross sections (MACBrC,OC,λ) were calculated; at 370 nm ultraviolet wavelengths; the MACBrC,OC,λ ranged from 0.8 m2 g-1 to 2.29 m2 g-1 (lowest peat, highest kerosene), while at 520 nm wavelength MACBrC,OC,λ ranged from 0.07 m2 g-1 to 0.37 m2 g-1 (lowest peat, highest kerosene/incense mixture). These MAC results show that OC content can be an important contributor to light absorption when present in significant quantities (>0.9 OC/TC), source emissions have variable absorption spectra, and nonbiomass combustion sources can be significant contributors to BrC.

  10. Carboxyl multiwalled carbon nanotubes modified polypyrrole (PPy) aerogel for enhanced electromagnetic absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Xie, Aming; Wu, Fan; Jiang, Wanchun; Wang, Mingyang; Dong, Wei

    2016-05-01

    Polypyrrole (PPy) aerogel is a low-cost and lightweight material with high-performance electromagnetic absorption (EA). However, it does not always meet the requirements of practical applications. In this study, we used trace amounts of carboxyl multiwalled carbon nanotubes to regulate the dielectric property of PPy aerogel, thus enhancing the EA performance. Furthermore, the reason for enhanced EA performance can be elaborated by an electron blocking mechanism.

  11. Efficient, Absorption-Powered Artificial Muscles Based on Carbon Nanotube Hybrid Yarns.

    PubMed

    Lima, Márcio Dias; Hussain, Mohammad W; Spinks, Geoffrey M; Naficy, Sina; Hagenasr, Daniela; Bykova, Julia S; Tolly, Derrick; Baughman, Ray H

    2015-07-01

    A new type of absorption-powered artificial muscle provides high performance without needing a temperature change. These muscles, comprising coiled carbon nanotube fibers infiltrated with silicone rubber, can contract up to 50% to generate up to 1.2 kJ kg(-1) . The drive mechanism for actuation is the rubber swelling during exposure to a nonpolar solvent. Theoretical energy efficiency conversion can be as high as 16%. PMID:25755113

  12. Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation

    NASA Astrophysics Data System (ADS)

    Kirchstetter, T. W.; Thatcher, T. L.

    2012-07-01

    A spectroscopic analysis of 115 wintertime particulate matter samples collected in rural California shows that wood smoke absorbs solar radiation with a strong spectral selectivity. This is consistent with prior work that has demonstrated that organic carbon (OC), in addition to black carbon (BC), appreciably absorbs solar radiation in the visible and ultraviolet spectral regions. We apportion light absorption to OC and BC and find that the absorption Ångström exponent of the light-absorbing OC in these samples ranges from 3.0 to 7.4 and averages 5.0. Further, we calculate that OC would account for 14% and BC would account for 86% of solar radiation absorbed by the wood smoke in the atmosphere (integrated over the solar spectrum from 300 to 2500 nm). OC would contribute 49% of the wood smoke particulate matter absorption of ultraviolet solar radiation at wavelengths below 400 nm and, therefore, may affect tropospheric photochemistry. These results illustrate that BC is the dominant light-absorbing particulate matter species in atmospheres burdened with residential wood smoke and OC absorption is secondary but not insignificant. Further, these results add to the growing body of evidence that light-absorbing OC is ubiquitous in atmospheres influenced by biomass burning and may be important to include when considering particulate matter effects on climate.

  13. Absorptive carbon nanotube electrodes: Consequences of optical interference loss in thin film solar cells

    NASA Astrophysics Data System (ADS)

    Tait, Jeffrey G.; de Volder, Michaël F. L.; Cheyns, David; Heremans, Paul; Rand, Barry P.

    2015-04-01

    A current bottleneck in the thin film photovoltaic field is the fabrication of low cost electrodes. We demonstrate ultrasonically spray coated multiwalled carbon nanotube (CNT) layers as opaque and absorptive metal-free electrodes deposited at low temperatures and free of post-deposition treatment. The electrodes show sheet resistance as low as 3.4 Ω □-1, comparable to evaporated metallic contacts deposited in vacuum. Organic photovoltaic devices were optically simulated, showing comparable photocurrent generation between reflective metal and absorptive CNT electrodes for photoactive layer thickness larger than 600 nm when using archetypal poly(3-hexylthiophene) (P3HT) : (6,6)-phenyl C61-butyric acid methyl ester (PCBM) cells. Fabricated devices clearly show that the absorptive CNT electrodes display comparable performance to solution processed and spray coated Ag nanoparticle devices. Additionally, other candidate absorber materials for thin film photovoltaics were simulated with absorptive contacts, elucidating device design in the absence of optical interference and reflection.A current bottleneck in the thin film photovoltaic field is the fabrication of low cost electrodes. We demonstrate ultrasonically spray coated multiwalled carbon nanotube (CNT) layers as opaque and absorptive metal-free electrodes deposited at low temperatures and free of post-deposition treatment. The electrodes show sheet resistance as low as 3.4 Ω □-1, comparable to evaporated metallic contacts deposited in vacuum. Organic photovoltaic devices were optically simulated, showing comparable photocurrent generation between reflective metal and absorptive CNT electrodes for photoactive layer thickness larger than 600 nm when using archetypal poly(3-hexylthiophene) (P3HT) : (6,6)-phenyl C61-butyric acid methyl ester (PCBM) cells. Fabricated devices clearly show that the absorptive CNT electrodes display comparable performance to solution processed and spray coated Ag nanoparticle

  14. Activation of rat intestinal mucosal mast cells by fat absorption.

    PubMed

    Ji, Yong; Sakata, Yasuhisa; Yang, Qing; Li, Xiaoming; Xu, Min; Yoder, Stephanie; Langhans, Wolfgang; Tso, Patrick

    2012-06-01

    Previous studies have linked certain types of gut mucosal immune cells with fat intake. We determined whether fat absorption activates intestinal mucosal mast cells (MMC), a key component of the gut mucosal immune system. Conscious intestinal lymph fistula rats were used. The mesenteric lymph ducts were cannulated, and the intraduodenal (i.d.) tubes were installed for the infusion of Liposyn II 20% (an intralipid emulsion). Lymphatic concentrations of histamine, rat MMC protease II (RMCPII), a specific marker of rat intestinal MMC degranulation, and prostaglandin D(2) (PGD(2)) were measured by ELISA. Intestinal MMC degranulation was visualized by immunofluorescent microscopy of jejunum sections taken at 1 h after Liposyn II gavage. Intraduodenal bolus infusion of Liposyn II 20% (4.4 kcal/3 ml) induced approximately a onefold increase in lymphatic histamine and PGD(2), ∼20-fold increase in lymphatic RMCPII, but only onefold increase in peripheral serum RMCPII concentrations. Release of RMCPII into lymph increased dose dependently with the amount of lipid fed. In addition, i.d. infusion of long-chain triacylglycerol trilinolein (C18:2 n-6, the major composite in Liposyn II) significantly increased the lymphatic RMCPII concentration, whereas medium-chain triacylglycerol tricaprylin (C8:0) did not alter lymph RMCPII secretion. Immunohistochemistry image revealed the degranulation of MMC into lamina propria after lipid feeding. These novel findings indicate that intestinal MMC are activated and degranulate to release MMC mediators to the circulation during fat absorption. This action of fatty acid is dose and chain length dependent. PMID:22461027

  15. Simulation of carbon dioxide absorption by sodium hydroxide solution in a packed bed and studying the effect of operating parameters on absorption

    SciTech Connect

    Yazdanbakhsh, Farzad; Soltani Goharrizi, Ata'ollah; Hashemipour Rafsanjani, Hassan

    2007-07-01

    Available in abstract form only. Full text of publication follows: In this study. simulation of carbon dioxide absorption by Sodium Hydroxide solution in a packed bed has been investigated. At first, mass and energy balances were applied around a differential height of the bed. So, the governing equations were obtained. Surface renewal theory by Danckwerts was used to represent the mass transfer operation Finally, by changing the operating parameters like solvent temperature, inlet gas composition pressure and height of the bed, the effect of these parameters on the absorption and the composition of carbon dioxide in exit stream have been investigated. (authors)

  16. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments

    NASA Astrophysics Data System (ADS)

    Peng, Jianfei; Hu, Min; Guo, Song; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Levy Zamora, Misti; Zeng, Limin; Shao, Min; Wu, Yu-Sheng; Zheng, Jun; Wang, Yuan; Glen, Crystal R.; Collins, Donald R.; Molina, Mario J.

    2016-04-01

    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.

  17. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments.

    PubMed

    Peng, Jianfei; Hu, Min; Guo, Song; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Levy Zamora, Misti; Zeng, Limin; Shao, Min; Wu, Yu-Sheng; Zheng, Jun; Wang, Yuan; Glen, Crystal R; Collins, Donald R; Molina, Mario J; Zhang, Renyi

    2016-04-19

    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries. PMID:27035993

  18. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments

    PubMed Central

    Peng, Jianfei; Hu, Min; Guo, Song; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Levy Zamora, Misti; Zeng, Limin; Shao, Min; Wu, Yu-Sheng; Zheng, Jun; Wang, Yuan; Glen, Crystal R.; Collins, Donald R.; Molina, Mario J.; Zhang, Renyi

    2016-01-01

    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries. PMID:27035993

  19. Portable 4.6 Micrometers Laser Absorption Spectrometer for Carbon Monoxide Monitoring and Fire Detection

    NASA Technical Reports Server (NTRS)

    Briggs, Ryan M.; Frez, Clifford; Forouhar, Siamak; May, Randy D.; Ruff, Gary A.

    2013-01-01

    The air quality aboard manned spacecraft must be continuously monitored to ensure crew safety and identify equipment malfunctions. In particular, accurate real-time monitoring of carbon monoxide (CO) levels helps to prevent chronic exposure and can also provide early detection of combustion-related hazards. For long-duration missions, environmental monitoring grows in importance, but the mass and volume of monitoring instruments must be minimized. Furthermore, environmental analysis beyond low-Earth orbit must be performed in-situ, as sample return becomes impractical. Due to their small size, low power draw, and performance reliability, semiconductor-laser-based absorption spectrometers are viable candidates for this purpose. To reduce instrument form factor and complexity, the emission wavelength of the laser source should coincide with strong fundamental absorption lines of the target gases, which occur in the 3 to 5 micrometers wavelength range for most combustion products of interest, thereby reducing the absorption path length required for low-level concentration measurements. To address the needs of current and future NASA missions, we have developed a prototype absorption spectrometer using a semiconductor quantum cascade laser source operating near 4.6 micrometers that can be used to detect low concentrations of CO with a compact single-pass absorption cell. In this study, we present the design of the prototype instrument and report on measurements of CO emissions from the combustion of a variety of aerospace plastics.

  20. Preparation of activated carbon by chemical activation under vacuum.

    PubMed

    Juan, Yang; Ke-Qiang, Qiu

    2009-05-01

    Activated carbons especially used for gaseous adsorption were prepared from Chinesefir sawdust by zinc chloride activation under vacuum condition. The micropore structure, adsorption properties, and surface morphology of activated carbons obtained under atmosphere and vacuum were investigated. The prepared activated carbons were characterized by SEM, FTIR, and nitrogen adsorption. It was found that the structure of the starting material is kept after activation. The activated carbon prepared under vacuum exhibited higher values of the BET surface area (up to 1079 m2 g(-1)) and total pore volume (up to 0.5665 cm3 g(-1)) than those of the activated carbon obtained under atmosphere. This was attributed to the effect of vacuum condition that reduces oxygen in the system and limits the secondary reaction of the organic vapor. The prepared activated carbon has well-developed microstructure and high microporosity. According to the data obtained, Chinese fir sawdust is a suitable precursor for activated carbon preparation. The obtained activated carbon could be used as a low-cost adsorbent with favorable surface properties. Compared with the traditional chemical activation, vacuum condition demands less energy consumption, simultaneity, and biomass-oil is collected in the procedure more conveniently. FTIR analysis showed that heat treatment would result in the aromatization of the carbon structure. PMID:19534162

  1. Modification of pure oxygen absorption equipment for concurrent stripping of carbon dioxide

    USGS Publications Warehouse

    Watten, B.J.; Sibrell, P.L.; Montgomery, G.A.; Tsukuda, S.M.

    2004-01-01

    The high solubility of carbon dioxide precludes significant desorption within commercial oxygen absorption equipment. This operating characteristic of the equipment limits its application in recirculating water culture systems despite its ability to significantly increase allowable fish loading rates (kg/(L min)). Carbon dioxide (DC) is typically removed by air stripping. This process requires a significant energy input for forced air movement, air heating in cold climates and water pumping. We developed a modification for a spray tower that provides for carbon dioxide desorption as well as oxygen absorption. Elimination of the air-stripping step reduces pumping costs while allowing dissolved nitrogen to drop below saturation concentrations. This latter response provides for an improvement in oxygen absorption efficiency within the spray tower. DC desorption is achieved by directing head-space gases from the spray tower (O2, N2, CO2) through a sealed packed tower scrubber receiving a 2 N NaOH solution. Carbon dioxide is selectively removed from the gas stream, by chemical reaction, forming the product Na 2CO3. Scrubber off-gas, lean with regard to carbon dioxide but still rich with oxygen, is redirected through the spray tower for further stripping of DC and absorption of oxygen. Make-up NaOH is metered into the scrubbing solution sump on an as needed basis as directed by a feedback control loop programmed to maintain a scrubbing solution pH of 11.4-11.8. The spent NaOH solution is collected, then regenerated for reuse, in a batch process that requires relatively inexpensive hydrated lime (Ca(OH)2). A by-product of the regeneration step is an alkaline filter cake, which may have use in bio-solids stabilization. Given the enhanced gas transfer rates possible with chemical reaction, the required NaOH solution flow rate through the scrubber represents a fraction of the spray tower water flow rate. Further, isolation of the water being treated from the atmosphere (1

  2. Inferring brown carbon content from UV aerosol absorption measurements during biomass burning season

    NASA Astrophysics Data System (ADS)

    Mok, J.; Krotkov, N. A.; Arola, A. T.; Torres, O.; Jethva, H. T.; Andrade, M.; Labow, G. J.; Eck, T. F.; Li, Z.; Dickerson, R. R.; Stenchikov, G. L.; Osipov, S.

    2015-12-01

    Measuring spectral dependence of light absorption by colored organic or "brown" carbon (BrC) is important, because of its effects on photolysis rates of ozone and surface ultraviolet (UV) radiation. Enhanced UV spectral absorption by BrC can in turn be exploited for simultaneous retrievals of BrC and black carbon (BC) column amounts in field campaigns. We present an innovative ground-based retrieval of BC and BrC volume fractions and their mass absorption efficiencies during the biomass burning season in Santa Cruz, Bolivia in September-October 2007. Our method combines retrieval of BC volume fraction using AERONET inversion in visible wavelengths with the inversion of total BC+BrC absorption (i.e., column effective imaginary refractive index, kmeas) using Diffuse/Direct irradiance measurements in UV wavelengths. First, we retrieve BrC volume fraction by fitting kmeas at 368nm using Maxwell-Garnett (MG) mixing rules assuming: (1) flat spectral dependence of kBC, (2) known value of kBrC at 368nm from laboratory absorption measurements or smoke chamber experiments, and (3) known BC volume fraction from AERONET inversion. Next, we derive kBrC in short UVB wavelengths by fitting kmeas at 305nm, 311nm, 317nm, 325nm, and 332nm using MG mixing rules and fixed volume fractions of BC and BrC. Our retrievals show larger than expected spectral dependence of kBrC in UVB wavelengths, implying reduced surface UVB irradiance and inhibited photolysis rates of surface ozone destruction. We use a one-dimensional chemical box model to show that the observed strong wavelength dependence of BrC absorption leads to inhibited photolysis of ozone to O(1D), a loss mechanism, while having little impact or even accelerating photolysis of NO2, an ozone production mechanism. Although BC only absorption in biomass burning aerosols is important for climate radiative forcing in the visible wavelengths, additional absorption by BrC is important because of its impact on surface UVB radiation

  3. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid.

    PubMed

    Khalizov, Alexei F; Xue, Huaxin; Wang, Lin; Zheng, Jun; Zhang, Renyi

    2009-02-12

    Light absorption by carbon soot increases when the particles are internally mixed with nonabsorbing materials, leading to increased radiative forcing, but the magnitude of this enhancement is a subject of great uncertainty. We have performed laboratory experiments of the optical properties of fresh and internally mixed carbon soot aerosols with a known particle size, morphology, and the mixing state. Flame-generated soot aerosol is size-selected with a double-differential mobility analyzer (DMA) setup to eliminate multiply charged particle modes and then exposed to gaseous sulfuric acid (10(9)-10(10) molecule cm(-3)) and water vapor (5-80% relative humidity, RH). Light extinction and scattering by fresh and internally mixed soot aerosol are measured at 532 nm wavelength using a cavity ring-down spectrometer and an integrating nephelometer, respectively, and the absorption is derived as the difference between extinction and scattering. The optical properties of fresh soot are independent of RH, whereas soot internally mixed with sulfuric acid exhibits significant enhancement in light absorption and scattering, increasing with the mass fraction of sulfuric acid coating and relative humidity. For soot particles with an initial mobility diameter of 320 nm and a 40% H(2)SO(4) mass coating fraction, absorption and scattering are increased by 1.4- and 13-fold at 80% RH, respectively. Also, the single scattering albedo of soot aerosol increases from 0.1 to 0.5 after coating and humidification. Additional measurements with soot particles that are first coated with sulfuric acid and then heated to remove the coating show that both scattering and absorption are enhanced by irreversible restructuring of soot aggregates to more compact globules. Depending on the initial size and density of soot aggregates, restructuring acts to increase or decrease the absorption cross-section, but the combination of restructuring and encapsulation always results in an increased absorption for

  4. Enhanced photocatalytic activity of titanium dioxide by nut shell carbon.

    PubMed

    Shi, Xiaoliang; Wang, Sheng; Dong, Xuebin; Zhang, Qiaoxin

    2009-08-15

    Nut shell carbon (NSC)-nanotitanium dioxide (TiO(2)) composites were prepared by sol-gel method. Photocatalytic activity on degradation of dye Rhodamine B was studied. X-ray diffraction, field emission scanning electron microscopy, Brunauer-Emmett-Teller surface area, pore size distribution, ultraviolet-vis light absorption spectrum, and photoluminescence spectrum were carried out to characterize the composite catalyst. The results indicated that the photocatalytic activity of NSC-nano-TiO(2) composites was much higher than P25 (Degussa). NSC could greatly absorb the organic substance and oxygen of solution because of its large surface area. PMID:19200653

  5. The impact of biogenic carbon emissions on aerosol absorption inMexico City

    SciTech Connect

    Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

    2009-02-24

    In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

  6. Measured Wavelength-Dependent Absorption Enhancement of Internally Mixed Black Carbon with Absorbing and Nonabsorbing Materials.

    PubMed

    You, Rian; Radney, James G; Zachariah, Michael R; Zangmeister, Christopher D

    2016-08-01

    Optical absorption spectra of laboratory generated aerosols consisting of black carbon (BC) internally mixed with nonabsorbing materials (ammonium sulfate, AS, and sodium chloride, NaCl) and BC with a weakly absorbing brown carbon surrogate derived from humic acid (HA) were measured across the visible to near-IR (550 to 840 nm). Spectra were measured in situ using a photoacoustic spectrometer and step-scanning a supercontinuum laser source with a tunable wavelength and bandwidth filter. BC had a mass-specific absorption cross section (MAC) of 7.89 ± 0.25 m(2) g(-1) at λ = 550 nm and an absorption Ångström exponent (AAE) of 1.03 ± 0.09 (2σ). For internally mixed BC, the ratio of BC mass to the total mass of the mixture was chosen as 0.13 to mimic particles observed in the terrestrial atmosphere. The manner in which BC mixed with each material was determined from transmission electron microscopy (TEM). AS/BC and HA/BC particles were fully internally mixed, and the BC was both internally and externally mixed for NaCl/BC particles. The AS/BC, NaCl/BC, and HA/BC particles had AAEs of 1.43 ± 0.05, 1.34 ± 0.06, and 1.91 ± 0.05, respectively. The observed absorption enhancement of mixed BC relative to the pure BC was wavelength dependent for AS/BC and decreased from 1.5 at λ = 550 nm with increasing wavelength while the NaCl/BC enhancement was essentially wavelength independent. For HA/BC, the enhancement ranged from 2 to 3 and was strongly wavelength dependent. Removal of the HA absorption contribution to enhancement revealed that the enhancement was ≈1.5 and independent of wavelength. PMID:27359341

  7. Kinetic study of carbon dioxide absorption into glycine promoted diethanolamine (DEA)

    NASA Astrophysics Data System (ADS)

    Pudjiastuti, Lily; Susianto, Altway, Ali; IC, Maria Hestia; Arsi, Kartika

    2015-12-01

    In industry, especially petrochemical, oil and natural gas industry, required separation process of CO2 gas which is a corrosive gas (acid gas). This characteristic can damage the plant utility and piping systems as well as reducing the caloric value of natural gas. Corrosive characteristic of CO2 will appear in areas where there is a decrease in temperature and pressure, such as at the elbow pipe, tubing, cooler and injector turbine. From disadvantages as described above, then it is important to do separation process in the CO2 gas stream, one of the method for remove CO2 from the gas stream is reactive absorption using alkanolamine based solution with promotor. Therefore, this study is done to determine the kinetics constant of CO2 absorption in diethanolamine (DEA) solution using a glycine promoter. Glycine is chosen as a promoter because glycine is a primary amine compound which is reactive, moreover, glycine has resistance to high temperatures so it will not easy to degradable and suitable for application in industry. The method used in this study is absorption using laboratory scale wetted wall column equipment at atmospheric of pressure. This study will to provide the reaction kinetics data information in order to optimize the separation process of CO2 in the industrialized world. The experimental results show that rising temperatures from 303,15 - 328,15 K and the increase of concentration of glycine from 1% - 3% weight will increase the absorption rate of carbon dioxide in DEA promoted with glycine by 24,2% and 59,764% respectively, also the reaction kinetic constant is 1.419 × 1012 exp (-3634/T) (m3/kmol.s). This result show that the addition of glycine as a promoter can increase absorption rate of carbon dioxide in diethanolamine solution and cover the weaknesses of diethanolamine solution.

  8. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    SciTech Connect

    Abdullah, N.; Muhammad, I. S.; Hamid, S. B. Abd.; Rinaldi, A.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300 deg. C for an hour in each step. The catalytic growth of nanocarbon in C{sub 2}H{sub 4}/H{sub 2} was carried out at temperature of 550 deg. C for 2 hrs with different rotating angle in the fluidization system. SEM and N{sub 2} isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  9. Making Activated Carbon by Wet Pressurized Pyrolysis

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark

    2006-01-01

    A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb

  10. Light absorption of brown carbon aerosol in the PRD region of China

    NASA Astrophysics Data System (ADS)

    Yuan, J.-F.; Huang, X.-F.; Cao, L.-M.; Cui, J.; Zhu, Q.; Huang, C.-N.; Lan, Z.-J.; He, L.-Y.

    2015-10-01

    The strong spectral dependence of light absorption of brown carbon (BrC) aerosol is regarded to influence aerosol's radiative forcing significantly. The Absorption Angstrom Exponent (AAE) method was widely used in previous studies to attribute light absorption of BrC at shorter wavelengths for ambient aerosol, with a theoretical assumption that the AAE of "pure" black carbon (BC) aerosol equals to 1.0. In this study, the previous AAE method was improved by statistical analysis and applied in both urban and rural environments in the Pearl River Delta (PRD) region of China. A three-wavelength photo-acoustic soot spectrometer (PASS-3) and aerosol mass spectrometers (AMS) were used to explore the relationship between the measured AAE and the relative abundance of organic aerosol to BC. The regression and extrapolation analysis revealed that the more realistic AAE values for "pure" BC aerosol were 0.86, 0.82, and 1.02 at 405 nm, and 0.70, 0.71, and 0.86 at 532 nm, in the campaigns of urban_winter, urban_fall, and rural_fall, respectively. Roadway tunnel experiments were also conducted, and the results further supported the representativeness of the obtained AAE values for "pure" BC aerosol in the urban environments. Finally, the average aerosol light absorption contribution of BrC was quantified to be 11.7, 6.3, and 12.1 % (with relative uncertainties of 4, 4, and 7 %) at 405 nm, and 10.0, 4.1, and 5.5 % (with relative uncertainties of 2, 2, and 5 %) at 532 nm, in the campaigns of urban_winter, urban_fall, and rural_fall, respectively. The relatively higher BrC absorption contribution at 405 nm in the rural_fall campaign was likely a result of the biomass burning events nearby, which was supported by the biomass burning simulation experiments performed in this study. The results of this paper indicate that the brown carbon contribution to aerosol light absorption at shorter wavelengths is not negligible in the highly urbanized and industrialized PRD region.

  11. Influence of Magnetic Losses on Microwave Absorption by Carbon-Nanotube Nanocomposites with a Low Concentration of Ferromagnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Avramchuk, A. V.; Kasperovich, M. M.; Pevneva, N. A.; Gusinsky, A. V.; Korolik, O. V.; Tivanov, M. S.; Shulitski, B. G.; Labunov, V. A.; Danilyuk, A. L.; Komissarov, I. V.; Prischepa, S. L.

    2016-05-01

    The absorption properties of magnetic nanocomposites based on carbon nanotubes with a low concentration of ferromagnetic nanoparticles have been investigated in the 78-118 GHz frequency range. A correlation was established between the absorption properties of the nanocomposites and the character of the magnetostatic interaction between nanoparticles.

  12. Influence of Brown Carbon Aerosols on Absorption Enhancement and Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Shamjad, Puthukkadan; Nand Tripathi, Sachchida; Kant Pathak, Ravi; Hallquist, Mattias

    2015-04-01

    This study presents aerosol mass and optical properties measured during winter-spring months (February-March) of two consecutive years (2013-2014) from Kanpur, India located inside Gangetic Plain. Spectral absorption and scattering coefficients (405, 532 and 781 nm) of both atmospheric and denuded (at 300° C) is measured using a 3 wavelength Photo Acoustic Soot Spectrometer (PASS 3). Ratio between the atmospheric and denuded absorption is reported as enhancement in absorption (Eabs). Eabs values shows presence of large quantities of Brown Carbon (BrC) aerosols in the location. Diurnal trend of Eabs shows similar patterns at 405 and 532 nm. But at 781 nm Eabs values increased during day time (10:00 to 18:00) while that 405 and 532 nm decreased. Positive Matrix Analysis (PMF) of organic aerosols measured using HR-ToF-AMS shows factors with different trends with total absorption. Semi-volatile factor (SV-OOA) show no correlation with absorption but other factors such as Low-volatile (LV-OOA), Hydrocarbon (HOA) and Biomass burning (BBOA) organic aerosols shows a positive trend. All factors shows good correlation with scattering coefficient. Also a strong dependence of absorption is observed at 405 and 532 nm and a weak dependence at 781 nm is observed during regression analysis with factors and mass loading. We also present direct radiative forcing (DRF) calculated from measured optical properties due to total aerosol loading and only due to BrC. Total and BrC aerosol DRF shows cooling trends at top of atmosphere (TOA) and surface and warming trend in atmosphere. Days with biomass burning events shows increase in magnitude of DRF at atmosphere and surface up to 30 % corresponding to clear days. TOA forcing during biomass burning days shows increase in magnitude indicating change from negative to less negative.

  13. Black carbon absorption at the global scale is affected by particle-scale diversity in composition.

    PubMed

    Fierce, Laura; Bond, Tami C; Bauer, Susanne E; Mena, Francisco; Riemer, Nicole

    2016-01-01

    Atmospheric black carbon (BC) exerts a strong, but uncertain, warming effect on the climate. BC that is coated with non-absorbing material absorbs more strongly than the same amount of BC in an uncoated particle, but the magnitude of this absorption enhancement (Eabs) is not well constrained. Modelling studies and laboratory measurements have found stronger absorption enhancement than has been observed in the atmosphere. Here, using a particle-resolved aerosol model to simulate diverse BC populations, we show that absorption is overestimated by as much as a factor of two if diversity is neglected and population-averaged composition is assumed across all BC-containing particles. If, instead, composition diversity is resolved, we find Eabs=1-1.5 at low relative humidity, consistent with ambient observations. This study offers not only an explanation for the discrepancy between modelled and observed absorption enhancement, but also demonstrates how particle-scale simulations can be used to develop relationships for global-scale models. PMID:27580627

  14. Micropulse differential absorption lidar for identification of carbon sequestration site leakage.

    PubMed

    Johnson, William; Repasky, Kevin S; Carlsten, John L

    2013-05-01

    A scanning differential absorption lidar (DIAL) instrument for identification of carbon dioxide leaks at carbon sequestration sites has been developed and initial data has been collected at Montana State University. The laser transmitter uses two tunable discrete mode laser diodes operating in the continuous-wave mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto-optic modulator is used to generate a pulse train used to injection seed an erbium-doped fiber amplifier to produce eye-safe laser pulses with maximum pulse energies of 66 μJ, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 μm. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photomultiplier tube module operating in the photon counting mode. The DIAL has measured carbon dioxide profiles from 1 to 2.5 km with 60 min temporal averaging. Comparisons of DIAL measurements with a Licor LI-820 gas analyzer point sensor have been made. PMID:23669765

  15. Effect of moisture absorption on the impact behavior of unidirectional carbon fiber reinforced nylon 6 composite

    SciTech Connect

    Lin, C.W.

    1993-12-31

    The impact behaviors of carbon fiber reinforced nylon 6(CF/PA6) composite at various levels of moisture absorption have been investigated and the fracture behaviors were characterized by scanning electron microscopy. Both impact strength and impact resistance of the CF/PA6 composite were found to have decreased with an increasing moisture absorption as the laminate was annealed from melt. For the fast-cooled specimens, a small amount of moisture (less than 2.1 wt %) was advantageous to the impact properties as compared with the dried laminate; it, however, became detrimental as the moisture intake got higher. A competition of crack-tip blunting, fiber-matrix interfacial strength and plasticization-caused variation of stiffness was proposed to interpret the experimental results.

  16. Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) Aircraft Measurements of CO2

    NASA Technical Reports Server (NTRS)

    Christensen, Lance E.; Spiers, Gary D.; Menzies, Robert T.; Jacob, Joseph C.; Hyon, Jason

    2011-01-01

    The Jet Propulsion Laboratory Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) utilizes Integrated Path Differential Absorption (IPDA) at 2.05 microns to obtain CO2 column mixing ratios weighted heavily in the boundary layer. CO2LAS employs a coherent detection receiver and continuous-wave Th:Ho:YLF laser transmitters with output powers around 100 milliwatts. An offset frequency-locking scheme coupled to an absolute frequency reference enables the frequencies of the online and offline lasers to be held to within 200 kHz of desired values. We describe results from 2009 field campaigns when CO2LAS flew on the Twin Otter. We also describe spectroscopic studies aimed at uncovering potential biases in lidar CO2 retrievals at 2.05 microns.

  17. Preparation and Microwave Absorption Properties of Novel Carbon Nanofiber/Fe3O4 Composites.

    PubMed

    Ren, Yong; Dai, Bo; Wang, Gai-Hua; Zhang, Xiao-Wei; Zhu, Pei; Li, Shi-Rong

    2015-04-01

    Novel, carbonized bacterial cellulose (CBC)/Fe3O4 nanocomposites were synthesized using vacuum filtration and annealing (VFA) methods. The as-synthesized products were characterized by scanning electron microscopy, vibrating sample magnetometry, and transmission electron microscopy. The complex permittivity and permeability of Fe3O4-CBC (5 wt.% CBC)/paraffin wax composites were measured by vector network analysis. To study the microwave absorption (MA) performances, we compared the VFA products with the vacuum filtration (VF) products. The VFA products exhibited better absorption performances because of their larger dielectric loss. When the matching thickness was 2.4 mm, the calculated reflection loss reached a minimum value of -27 dB when VFA was used and a value of -11 dB when VF was used. The wide-range MA properties of these materials lead to potential applications in MA fields. PMID:26353503

  18. Characterization of fluorinated multiwalled carbon nanotubes by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Brzhezinskaya, M. M.; Vinogradov, N. A.; Muradyan, V. E.; Shul'Ga, Yu. M.; Polyakova, N. V.; Vinogradov, A. S.

    2008-03-01

    The C 1 s and F 1 s x-ray absorption spectra of fluorinated multiwalled carbon nanotubes with different fluorine contents and reference compounds (highly oriented pyrolytic graphite crystals and "white" graphite fluoride) were measured using the equipment of the Russian-German beamline at the BESSY II storage ring with a high energy resolution. The spectra obtained were analyzed with the aim of characterizing multiwalled carbon nanotubes and their products formed upon treatment of the nanotubes with fluorine at a temperature of 420°C. It was established that, within the probing depth (˜15 nm) of carbon nanotubes, the process of fluorination occurs uniformly and does not depend on the fluorine concentration. The interaction of fluorine atoms with multiwalled carbon nanotubes in this case proceeds through the covalent attachment of fluorine atoms to graphene layers of the graphite skeleton and is accompanied by a change in the hybridization of the 2 s and 2 p valence electron states of the carbon atom from the trigonal ( sp 2) to tetrahedral ( sp 3) hybridization.

  19. The Transport Properties of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  20. The transport properties of activated carbon fibers

    SciTech Connect

    di Vittorio, S.L. . Dept. of Materials Science and Engineering); Dresselhaus, M.S. . Dept. of Electrical Engineering and Computer Science Massachusetts Inst. of Tech., Cambridge, MA . Dept. of Physics); Endo, M. . Dept. of Electrical Engineering); Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons. 19 refs., 4 figs.

  1. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    SciTech Connect

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  2. Light absorption of brown carbon aerosol in the PRD region of China

    NASA Astrophysics Data System (ADS)

    Yuan, J.-F.; Huang, X.-F.; Cao, L.-M.; Cui, J.; Zhu, Q.; Huang, C.-N.; Lan, Z.-J.; He, L.-Y.

    2016-02-01

    The strong spectral dependence of light absorption of brown carbon (BrC) aerosol is regarded to influence aerosol's radiative forcing significantly. The Absorption Angstrom Exponent (AAE) method has been widely used in previous studies to attribute light absorption of BrC at shorter wavelengths for ambient aerosols, with a theoretical assumption that the AAE of "pure" black carbon (BC) aerosol equals to 1.0. In this study, the AAE method was applied to both urban and rural environments in the Pearl River Delta (PRD) region of China, with an improvement of constraining the realistic AAE of "pure" BC through statistical analysis of on-line measurement data. A three-wavelength photo-acoustic soot spectrometer (PASS-3) and aerosol mass spectrometers (AMS) were used to explore the relationship between the measured AAE and the relative abundance of organic aerosol to BC. The regression and extrapolation analysis revealed that more realistic AAE values for "pure" BC aerosol (AAEBC) were 0.86, 0.82, and 1.02 between 405 and 781 nm, and 0.70, 0.71, and 0.86 between 532 and 781 nm, in the campaigns of urbanwinter, urbanfall, and ruralfall, respectively. Roadway tunnel experiments were conducted and the results further confirmed the representativeness of the obtained AAEBC values for the urban environment. Finally, the average light absorption contributions of BrC (± relative uncertainties) at 405 nm were quantified to be 11.7 % (±5 %), 6.3 % (±4 %), and 12.1 % (±7 %) in the campaigns of urbanwinter, urbanfall, and ruralfall, respectively, and those at 532 nm were 10.0 % (±2 %), 4.1 % (±3 %), and 5.5 % (±5 %), respectively. The relatively higher BrC absorption contribution at 405 nm in the ruralfall campaign could be reasonably attributed to the biomass burning events nearby, which was then directly supported by the biomass burning simulation experiments performed in this study. This paper indicates that the BrC contribution to total aerosol light absorption at shorter

  3. 'Diamondlike' carbon films - Optical absorption, dielectric properties, and hardness dependence on deposition parameters

    NASA Technical Reports Server (NTRS)

    Natarajan, V.; Lamb, J. D.; Woollam, J. A.; Liu, D. C.; Gulino, D. A.

    1985-01-01

    An RF plasma deposition system was used to prepare amorphous 'diamondlike' carbon films. The source gases for the RF system include methane, ethylene, propane, and propylene, and the parameters varied were power, dc substrate bias, and postdeposition anneal temperature. Films were deposited on various substrates. The main diagnostics were optical absorption in the visible and in the infrared, admittance as a function of frequency, hardness, and Auger and ESCA spectroscopy. Band gap is found to depend strongly on RF power level and band gaps up to 2.7 eV and hardness up to 7 Mohs were found. There appears to be an inverse relationship between hardness and optical band gap.

  4. Dynamic light absorption of biomass burning organic carbon photochemically aged under natural sunlight

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Jang, M.

    2013-08-01

    Wood burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV-visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross-section (integrated between 280 nm and 600 nm) of OC increased by 11-54% (except high RH) in the morning and then gradually decreased by 19-68% in the afternoon. This dynamic change in light absorption of wood burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of POA with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line Wildfire in Florida. We conclude that the biomass burning OC becomes less light absorbing after 8-9 h sunlight exposure compared to fresh wood burning OC.

  5. Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Jang, M.

    2014-02-01

    Wood-burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV-visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross section (integrated between 280 and 600 nm) of OC increased by 11-54% (except high RH) in the morning and then gradually decreased by 19-68% in the afternoon. This dynamic change in light absorption of wood-burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time, indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of primary organic aerosol with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood-burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line wildfire in Florida. We conclude that the biomass-burning OC becomes less light absorbing after 8-9 h sunlight exposure compared to fresh wood-burning OC.

  6. Optical Absorption Cross Section of Individual Multi-Walled Carbon Nanotubes in the Visible Region.

    PubMed

    Shahzad, Muhammad Imran; Shahzad, Nadia; Tagliaferro, Alberto

    2016-01-01

    The aim of the present work is to determine the optical absorption cross section for visible radiation of various types of multiwall carbon nanotubes (MWCNTs) having different dimensions through macroscopic optical measurements. This is achieved by dispersing MWCNTs in polydimethylsiloxane (PDMS) and preparing composite films. Different percentages (0.0% to 1.5%) of each MWCNTs type were mixed into the PDMS matrix using high speed mechanical stirring (~1000 rpm) and ultrasonication (~37 kHz) to reach optimal dispersion. By using doctor blading technique, 100 µm thick uniform films were produced on glass. They were then thermally cured and detached from the glass to get flexible and self-standing films. Field-Emission Scanning Electron Microscope (FESEM) analysis of cryo-fractured composite samples was used to check the dispersion of MWCNTs in PDMS, while Raman spectroscopy and FTIR were employed to rule out possible structural changes of the polymer in the composite that would have altered its optical properties. Total and specular reflection and transmission spectra were measured for all films. The absorption coefficient, which represents the fractional absorption per unit length and is proportional to the concentration of absorbing sites (i.e., MWCNTs at photon energies upon which PDMS is non-absorbing), was extracted. For each MWCNTs type, the absorption cross section of an individual MWCNT was obtained from the slope of absorption coefficient versus MWCNTs number density curve. It was found to be related with MWCNT volume. This method can be applied to all other nanoparticles as far as they can be dispersed in a host transparent matrix. PMID:27398474

  7. The role of the carbon-silicon complex in eliminating deep ultraviolet absorption in AlN

    SciTech Connect

    Gaddy, BE; Bryan, Z; Bryan, I; Xie, JQ; Dalmau, R; Moody, B; Kumagai, Y; Nagashima, T; Kubota, Y; Kinoshita, T; Koukitu, A; Kirste, R; Sitar, Z; Collazo, R; Irving, DL

    2014-05-19

    Co-doping AlN crystals with Si is found to suppress the unwanted 4.7 eV (265 nm) deep ultraviolet absorption associated with isolated carbon acceptors common in materials grown by physical vapor transport. Density functional theory calculations with hybrid functionals demonstrate that silicon forms a stable nearest-neighbor defect complex with carbon. This complex is predicted to absorb at 5.5 eV and emit at or above 4.3 eV. Absorption and photoluminescence measurements of co-doped samples confirm the presence of the predicted C-N-Si-Al complex absorption and emission peaks and significant reduction of the 4.7 eV absorption. Other sources of deep ultraviolet absorption in AlN are also discussed. (C) 2014 AIP Publishing LLC.

  8. The role of the carbon-silicon complex in eliminating deep ultraviolet absorption in AlN

    NASA Astrophysics Data System (ADS)

    Gaddy, Benjamin E.; Bryan, Zachary; Bryan, Isaac; Xie, Jinqiao; Dalmau, Rafael; Moody, Baxter; Kumagai, Yoshinao; Nagashima, Toru; Kubota, Yuki; Kinoshita, Toru; Koukitu, Akinori; Kirste, Ronny; Sitar, Zlatko; Collazo, Ramón; Irving, Douglas L.

    2014-05-01

    Co-doping AlN crystals with Si is found to suppress the unwanted 4.7 eV (265 nm) deep ultraviolet absorption associated with isolated carbon acceptors common in materials grown by physical vapor transport. Density functional theory calculations with hybrid functionals demonstrate that silicon forms a stable nearest-neighbor defect complex with carbon. This complex is predicted to absorb at 5.5 eV and emit at or above 4.3 eV. Absorption and photoluminescence measurements of co-doped samples confirm the presence of the predicted CN-SiAl complex absorption and emission peaks and significant reduction of the 4.7 eV absorption. Other sources of deep ultraviolet absorption in AlN are also discussed.

  9. Optical absorption and energy-loss spectra of aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    García-Vidal, F. J.; Pitarke, J. M.

    2001-07-01

    Optical-absorption cross-sections and energy-loss spectra of aligned multishell carbon nanotubes are investigated, on the basis of photonic band-structure calculations. A local graphite-like dielectric tensor is assigned to every point of the tubules, and the effective transverse dielectric function of the composite is computed by solving Maxwell's equations in media with tensor-like dielectric functions. A Maxwell-Garnett-like approach appropriate to the case of infinitely long anisotropic tubules is also developed. Our full calculations indicate that the experimentally measured macroscopic dielectric function of carbon nanotube materials is the result of a strong electromagnetic coupling between the tubes. An analysis of the electric-field pattern associated with this coupling is presented, showing that in the close-packed regime the incident radiation excites a very localized tangential surface plasmon.

  10. Adsorption of herbicides using activated carbons

    SciTech Connect

    Derbyshire, F.; Jagtoyen, M.; Lafferty, C.; Kimber, G.

    1996-12-31

    This paper describes the results of research in which novel activated carbons have been examined for their efficacy in water treatment and, specifically, for the adsorption of a common herbicide and wood preservative, sodium pentachlorophenolate. To place this work in context, the introduction will discuss first some of the considerations of using activated carbons for water treatment, and then certain aspects of the authors research that has led to this particular topic.

  11. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined. PMID:27243042

  12. Influence of sorption on sound propagation in granular activated carbon.

    PubMed

    Venegas, Rodolfo; Umnova, Olga

    2016-08-01

    Granular activated carbon (GAC) has numerous applications due to its ability to adsorb and desorb gas molecules. Recently, it has been shown to exhibit unusually high low frequency sound absorption. This behavior is determined by both the multi-scale nature of the material, i.e., the existence of three scales of heterogeneities, and physical processes specific to micro- and nanometer-size pores, i.e., rarefaction and sorption effects. To account for these processes a model for sound propagation in GAC is developed in this work. A methodology for characterizing GAC which includes optical granulometry, flow resistivity measurements, and the derivation of the inner-particle model parameters from acoustical and non-acoustical measurements is also presented. The model agrees with measurements of normal incidence surface impedance and sound absorption coefficient on three different GAC samples. PMID:27586708

  13. Activated carbons derived from oil palm empty-fruit bunches: application to environmental problems.

    PubMed

    Alam, Md Zahangir; Muyibi, Suleyman A; Mansor, Mariatul F; Wahid, Radziah

    2007-01-01

    Activated carbons derived from oil palm empty fruit bunches (EFB) were investigated to find the suitability of its application for removal of phenol in aqueous solution through adsorption process. Two types of activation namely; thermal activation at 300, 500 and 800 degrees C and physical activation at 150 degrees C (boiling treatment) were used for the production of the activated carbons. A control (untreated EFB) was used to compare the adsorption capacity of the activated carbons produced from these processes. The results indicated that the activated carbon derived at the temperature of 800 degrees C showed maximum absorption capacity in the aqueous solution of phenol. Batch adsorption studies showed an equilibrium time of 6 h for the activated carbon at 800 degrees C. It was observed that the adsorption capacity was higher at lower values of pH (2-3) and higher value of initial concentration of phenol (200-300 mg/L). The equilibrium data fitted better with the Freundlich adsorption isotherm compared to the Langmuir. Kinetic studies of phenol adsorption onto activated carbons were also studied to evaluate the adsorption rate. The estimated cost for production of activated carbon from EFB was shown in lower price (USD 0.50/kg of activated carbon) compared the activated carbon from other sources and processes. PMID:17913162

  14. Activated Carbons From Grape Seeds By Chemical Activation With Potassium Carbonate And Potassium Hydroxide

    NASA Astrophysics Data System (ADS)

    Okman, Irem; Karagöz, Selhan; Tay, Turgay; Erdem, Murat

    2014-02-01

    Activated carbons were produced from grape seed using either potassium carbonate (K2CO3) or potassium hydroxide (KOH). The carbonization experiments were accomplished at 600 and 800 °C. The effects of the experimental conditions (i.e., type of activation reagents, reagent concentrations, and carbonization temperatures) on the yields and the properties of these activated carbons were analyzed under identical conditions. An increase in the temperature at the same concentrations for both K2CO3 and KOH led to a decrease in the yields of the activated carbons. The lowest activated carbon yields were obtained at 800 °C at the highest reagent concentration (100 wt%) for both K2CO3 and KOH. The activated carbon with the highest surface area of 1238 m2g-1 was obtained at 800 °C in K2CO3 concentration of 50 wt% while KOH produced the activated carbon with the highest surface area of 1222 m2g-1 in a concentration of 25wt% at 800 °C. The obtained activated carbons were mainly microporous.

  15. Organic solvent regeneration of granular activated carbon

    NASA Astrophysics Data System (ADS)

    Cross, W. H.; Suidan, M. T.; Roller, M. A.; Kim, B. R.; Gould, J. P.

    1982-09-01

    The use of activated carbon for the treatment of industrial waste-streams was shown to be an effective treatment. The high costs associated with the replacement or thermal regeneration of the carbon have prohibited the economic feasibility of this process. The in situ solvent regeneration of activated carbon by means of organic solvent extraction was suggested as an economically alternative to thermal regeneration. The important aspects of the solvent regeneration process include: the physical and chemical characteristics of the adsorbent, the pore size distribution and energy of adsorption associated with the activated carbon; the degree of solubility of the adsorbate in the organic solvent; the miscibility of the organic solvent in water; and the temperature at which the generation is performed.

  16. Surface modification, characterization and adsorptive properties of a coconut activated carbon

    NASA Astrophysics Data System (ADS)

    Lu, Xincheng; Jiang, Jianchun; Sun, Kang; Xie, Xinping; Hu, Yiming

    2012-08-01

    A coconut activated carbon was modified using chemical methods. Different concentration of nitric acid oxidation of the conventional sample produced samples with weakly acidic functional groups. The oxidized samples were characterized by scanning electron micrograph, nitrogen absorption-desorption, Fourier transform infra red spectroscopy, Bothem method, pH titration, adsorption capacity of sodium and formaldehyde, and the adsorption mechanism of activated carbons was investigated. The results showed that BET surface area and pore volume of activated carbons were decreased after oxidization process, while acidic functional groups were increased. The surface morphology of oxidized carbons looked clean and eroded which was caused by oxidization of nitric acid. The oxidized carbons showed high adsorption capacity of sodium and formaldehyde, and chemical properties of activated carbon played an important role in adsorption of metal ions and organic pollutants.

  17. State of mixture of atmospheric submicrometer black carbon particles and its effect on particulate light absorption

    NASA Astrophysics Data System (ADS)

    Naoe, Hiroaki; Hasegawa, Shuichi; Heintzenberg, Jost; Okada, Kikuo; Uchiyama, Akihiro; Zaizen, Yuji; Kobayashi, Eriko; Yamazaki, Akihiro

    The state of mixture of light-absorbing carbonaceous particles was investigated in relation to light absorption properties using electron microscopic examinations, black carbon (BC) analyses of quartz filter by thermal/optical reflectance (TOR) method, measurements with two continuous light-absorbing photometers at a suburban site of Tsukuba, about 60 km northeast of Tokyo. The volume fraction of water-soluble material ( ɛ) in individual particles is important for assessing particulate light-absorbing and/or scattering of atmospheric aerosols. The values of ɛ in BC particles were evaluated by electron micrographs before and after dialysis (extraction) of water-soluble material. The mass absorption coefficient (MAC in units of m 2 g -1) tended to increase with increasing the average ɛ in BC particles with the radius range of 0.05-0.5 μm. Thus, our results indicate that coatings of water-soluble material around BC particles can enhance the absorption of solar radiation. Moreover, the single scattering albedo (SSA) will increase because a large amount of coating material will scatter more light.

  18. Microwave-assisted regeneration of activated carbon.

    PubMed

    Foo, K Y; Hameed, B H

    2012-09-01

    Microwave heating was used in the regeneration of methylene blue-loaded activated carbons produced from fibers (PFAC), empty fruit bunches (EFBAC) and shell (PSAC) of oil palm. The dye-loaded carbons were treated in a modified conventional microwave oven operated at 2450 MHz and irradiation time of 2, 3 and 5 min. The virgin properties of the origin and regenerated activated carbons were characterized by pore structural analysis and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement and determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue (MB). Microwave irradiation preserved the pore structure, original active sites and adsorption capacity of the regenerated activated carbons. The carbon yield and the monolayer adsorption capacities for MB were maintained at 68.35-82.84% and 154.65-195.22 mg/g, even after five adsorption-regeneration cycles. The findings revealed the potential of microwave heating for regeneration of spent activated carbons. PMID:22728787

  19. Antimicrobial Activity of Carbon-Based Nanoparticles

    PubMed Central

    Maleki Dizaj, Solmaz; Mennati, Afsaneh; Jafari, Samira; Khezri, Khadejeh; Adibkia, Khosro

    2015-01-01

    Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs) (especially single-walled carbon nanotubes (SWCNTs)) and graphene oxide (GO) nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery. PMID:25789215

  20. Development and Evaluation of a Novel Integrated Vacuum Carbonate Absorption Process

    SciTech Connect

    Lu, Yongqi; Rostam-Abadi, Massoud; Ye, Xinhuai; Zhang, Shihan; Ruhter, David; Khodayari, Arezoo; Rood, Mark

    2012-04-30

    This project was aimed at obtaining process engineering and scale-up data at a laboratory scale to investigate the technical and economic feasibility of a patented post-combustion carbon dioxide (CO{sub 2}) capture process?the Integrated Vacuum Carbonate Absorption Process (IVCAP). Unique features of the IVCAP include its ability to be fully-integrated with the power plant?s steam cycle and potential for combined sulfur dioxide (SO{sub 2}) removal and CO{sub 2} capture. Theoretical and experimental studies of this project were aimed at answering three major technical questions: 1) What additives can effectively reduce the water vapor saturation pressure and energy requirement for water vaporization in the vacuum stripper of the IVCAP? 2) What catalysts can promote CO{sub 2} absorption into the potassium carbonate (PC) solution to achieve an overall absorption rate comparable to monoethanolamine (MEA) and are the catalysts stable at the IVCAP conditions and in the flue gas environment? 3) Are any process modifications needed to combine SO{sub 2} and CO{sub 2} removal in the IVCAP? Lab-scale experiments and thermodynamic and process simulation studies performed to obtain detailed information pertinent to the above three technical questions produced the following results: 1) Two additives were identified that lower the saturation pressure of water vapor over the PC solution by about 20%. 2) The carbonic anhydrase (CA) enzyme was identified as the most effective catalyst for promoting CO{sub 2} absorption. The absorption rate into the CO{sub 2}-lean PC solution promoted with 300 mg/L CA was several times slower than the corresponding 5 M MEA solution, but absorption into the CO{sub 2}-rich PC solution was comparable to the CO{sub 2}-rich MEA solution. The tested CA enzymes demonstrated excellent resistance to major flue gas impurities. A technical-grade CA enzyme was stable at 40{degrees}C (104{degrees}F) over a six-month test period, while its half-life was about two

  1. Activated coconut shell charcoal carbon using chemical-physical activation

    NASA Astrophysics Data System (ADS)

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  2. Active Galactic Nuclei Probed by QSO Absorption Lines

    NASA Astrophysics Data System (ADS)

    Misawa, Toru

    2007-07-01

    Quasars are the extremely bright nuclei found in about 10% of galaxies. A variety of absorption features (known collectively as quasar absorption lines) are detected in the rest-frame UV spectra of these objects. While absorption lines that have very broad widths originate in gas that is probably physocally related to the quasars, narrow absorption lines (NALs) were thought to arise in galaxies and/or in the intter-alacttic medium between the quasars and us. Using high-resolution spectra of quasars, it is found that a substantial fraction of NALs arise in gas in the immediate vicinity of the quasars. A dramatically variable, moderately-broad absorption line in the spectrum of the quasar HS 1603+3820l is also found. The variability of this line is monitored in a campaign with Subaru telescope. These observational results are compared to models for outflows from the quasars, specifically, models for accretion disk winds and evaporating obscuring tori. It is quite important to determine the mechanism of outflow because of its cosmological implications. The outflow could expel angular momentum from the accretion disk and enable quasars to accrete and shine. In addition, the outflow may also regulate star formation in the early stages of the assembly of the host galaxy and enrich the interstellar and intergalactic medium with metals.

  3. Effect of water on the carbon dioxide absorption by 1-alkyl-3-methylimidazolium acetate ionic liquids.

    PubMed

    Stevanovic, Stéphane; Podgoršek, Ajda; Pádua, Agilio A H; Costa Gomes, Margarida F

    2012-12-13

    The absorption of carbon dioxide by the pure ionic liquids 1-ethyl-3-methylimidazolium acetate ([C(1)C(2)Im][OAc]) and 1-butyl-3-methylimidazolium acetate ([C(1)C(4)Im][OAc]) was studied experimentally from 303 to 343 K. As expected, the mole fraction of absorbed carbon dioxide is high (0.16 at 303 K and 5.5 kPa and 0.19 at 303 and 9.6 KPa for [C(1)C(2)Im][OAc] and [C(1)C(4)Im][OAc], respectively), does not obey Henry's law, and is compatible with the chemisorption of the gas by the liquid. Evidence of a chemical reaction between the gas and the liquid was found both by NMR and by molecular simulation. In the presence of water, the properties of the liquid absorber significantly change, especially the viscosity that decreases by as much as 25% (to 78 mPa s) and 30% (to 262 mPa s) in the presence of 0.2 mol fraction of water for [C(1)C(2)Im][OAc] and [C(1)C(2)Im][OAc] at 303 K, respectively. The absorption of carbon dioxide decreases when the water concentration increases: a decrease of 83% in CO(2) absorption is found for [C(1)C(4)Im][OAc] with 0.6 mol fraction of water at 303 K. It is proved in this work, by combining experimental data with molecular simulation, that the presence of water not only renders the chemical reaction between the gas and the ionic liquid less favorable but also lowers the (physical) solubility of the gas as it competes by the same solvation sites of the ionic liquid. The lowering of the viscosity of the liquid absorbent largely compensates these apparent drawbacks and the mixtures of [C(1)C(2)Im][OAc] and [C(1)C(2)Im][OAc] with water seem promising to be used for carbon dioxide capture. PMID:23145571

  4. Accounting for nanometer-thick adventitious carbon contamination in X-ray absorption spectra of carbon-based materials.

    PubMed

    Mangolini, Filippo; McClimon, J Brandon; Rose, Franck; Carpick, Robert W

    2014-12-16

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is a powerful technique for characterizing the composition and bonding state of nanoscale materials and the top few nanometers of bulk and thin film specimens. When coupled with imaging methods like photoemission electron microscopy, it enables chemical imaging of materials with nanometer-scale lateral spatial resolution. However, analysis of NEXAFS spectra is often performed under the assumption of structural and compositional homogeneity within the nanometer-scale depth probed by this technique. This assumption can introduce large errors when analyzing the vast majority of solid surfaces due to the presence of complex surface and near-surface structures such as oxides and contamination layers. An analytical methodology is presented for removing the contribution of these nanoscale overlayers from NEXAFS spectra of two-layered systems to provide a corrected photoabsorption spectrum of the substrate. This method relies on the subtraction of the NEXAFS spectrum of the overlayer adsorbed on a reference surface from the spectrum of the two-layer system under investigation, where the thickness of the overlayer is independently determined by X-ray photoelectron spectroscopy (XPS). This approach is applied to NEXAFS data acquired for one of the most challenging cases: air-exposed hard carbon-based materials with adventitious carbon contamination from ambient exposure. The contribution of the adventitious carbon was removed from the as-acquired spectra of ultrananocrystalline diamond (UNCD) and hydrogenated amorphous carbon (a-C:H) to determine the intrinsic photoabsorption NEXAFS spectra of these materials. The method alters the calculated fraction of sp(2)-hybridized carbon from 5 to 20% and reveals that the adventitious contamination can be described as a layer containing carbon and oxygen ([O]/[C] = 0.11 ± 0.02) with a thickness of 0.6 ± 0.2 nm and a fraction of sp(2)-bonded carbon of 0.19 ± 0.03. This

  5. Development of a differential absorption lidar for identification of carbon sequestration site leakage

    NASA Astrophysics Data System (ADS)

    Johnson, William Eric

    This thesis describes the development and deployment of a near-infrared scanning micropulse differential absorption lidar (DIAL) system for monitoring carbon dioxide sequestration site integrity. The DIAL utilizes a custom-built lidar (light detection and ranging) transmitter system based on two commercial tunable diode lasers operating at 1.571 microm, an acousto-optic modulator, fiber optic switches, and an Erbium-doped fiber amplifier to generate 65 microJ 200 ns pulses at a 15 kHz repetition rate. Backscattered laser transmitter light is collected with an 11 inch Schmidt-Cassegrain telescope where it is optically filtered to reduce background noise. A fiber-coupled photomultiplier tube operating in the photon counting mode is then used to monitor the collected return signal. Averaging over periods typically of one hour permit range-resolved measurements of carbon dioxide from 1 to 2.5 km with a typical error of 40 ppm. For monitoring a field site, the system scans over a field area by pointing the transmitter and receiver with a computer controlled motorized commercial telescope base. The system has made autonomous field measurements in an agricultural field adjacent to Montana State University and at the Kevin Dome carbon sequestration site in rural northern Montana. Comparisons have been made with an in situ sensor showing agreement between the two measurements to within the 40 error of the DIAL. In addition to the work on the 1.57 micron DIAL, this thesis also presents work done at NASA Langley Research Center on the development and deployment of a 2 micron integrated path differential absorption (IPDA) lidar. The 2 micron system utilizes a low repetition rate 140 mJ double pulsed Ho:Tm:YLF laser developed at NASA Langley.

  6. Modified thermal-optical analysis using spectral absorption selectivity to distinguish black carbon from pyrolized organic carbon

    SciTech Connect

    Hadley, Odelle; Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.

    2008-04-14

    Black carbon (BC), a main component of combustion-generated soot, is a strong absorber of sunlight and contributes to climate change. Measurement methods for BC are uncertain, however. This study presents a method for analyzing the BC mass loading on a quartz fiber filter using a modified thermal-optical analysis method, wherein light transmitted through the sample is measured over a spectral region instead of at a single wavelength as the sample is heated. Evolution of the spectral light transmission signal depends on the relative amounts of light-absorbing BC and char, the latter of which forms when organic carbon in the sample pyrolyzes during heating. Absorption selectivities of BC and char are found to be distinct and are used to apportion the amount of light attenuated by each component in the sample. Light attenuation is converted to mass concentration based on derived mass attenuation efficiencies (MAE) of BC and char. The fraction of attenuation due to each component are scaled by their individual MAE values and added together as the total mass of light absorbing carbon (LAC). An iterative algorithm is used to find the MAE values for both BC and char that provide the best fit to the carbon mass remaining on the filter (derived from direct measurements of thermally evolved CO{sub 2}) at temperatures higher than 480 C. This method was applied to measure the BC concentration in precipitation samples collected from coastal and mountain sites in Northern California. The uncertainty in measured BC concentration of samples that contained a high concentration of organics susceptible to char ranged from 12 to 100 percent, depending on the mass loading of BC on the filter. The lower detection limit for this method was approximately 0.35 {micro}g BC and uncertainty approached 20 percent for BC mass loading greater than 1.0 {micro}g BC.

  7. Modified thermal-optical analysis using spectral absorption selectivity to distinguish black carbon from pyrolized organic carbon.

    PubMed

    Hadley, Odelle L; Corrigan, Craig E; Kirchstetter, Thomas W

    2008-11-15

    This study presents a method for analyzing the black carbon (BC) mass loading on a quartz fiber filter using a modified thermal-optical analysis method, wherein light transmitted through the sample is measured over a spectral region instead of at a single wavelength. Evolution of the spectral light transmission signal depends on the relative amounts of light-absorbing BC and char, the latter of which forms when organic carbon in the sample pyrolyzes during heating. Absorption selectivities of BC and char are found to be distinct and are used to apportion the amount of light attenuated by each component in the sample. Light attenuation is converted to mass concentration on the basis of derived mass attenuation efficiencies (MAEs) of BC and char. The fractions of attenuation due to each component are scaled by their individual MAE values and added together as the total mass of light absorbing carbon (LAC). An iterative algorithm is used to find the MAE values for both BC and char that provide the best fit to the carbon mass remaining on the filter (derived from direct measurements of thermally evolved CO2) at temperatures higher than 480 degrees C. This method was applied to measure the BC concentration in precipitation samples collected in northern California. The uncertainty in the measured BC concentration of samples that contained a high concentration of organics susceptible to char ranged from 12% to 100%, depending on the mass loading of BC on the filter. The lower detection limit for this method was approximately 0.35 microg of BC, and the uncertainty approached 20% for BC mass loading greater than 1.0 microg of BC. PMID:19068832

  8. Excellent Electromagnetic Absorption Capability of Ni/Carbon Based Conductive and Magnetic Foams Synthesized via a Green One Pot Route.

    PubMed

    Zhao, Hai-Bo; Fu, Zhi-Bing; Chen, Hong-Bing; Zhong, Ming-Long; Wang, Chao-Yang

    2016-01-20

    Electromagnetic microwave absorption materials have attracted a great deal of attention. Foams for the low density and tunable porosity are considered as ideal microwave absorbents, while with the requirement of improving their inherent electromagnetic properties. In this manuscript, an innovative, easy, and green method was presented to synthesize an electromagnetic functionalized Ni/carbon foam, in which the formation of Ni nanoparticles and carbon occurred simultaneously from an affordable alginate/Ni(2+) foam precursor. The resultant Ni/carbon foam had a low density (0.1 g/cm(-3)) and high Ni nanoparticles loading (42 wt %). These Ni nanoparticles with a diameter of about 50-100 nm were highly crystallized and evenly embedded in porous graphite carbon without aggregation. Also, the resultant foam had a high surface area (451 m(2) g(-1)) and porosity and showed a moderate conductivity (6 S/m) and significant magnetism. Due to these special characteristics, the Ni/carbon foam exhibited greatly enhanced microwave absorption ability. Only with 10 wt % of functional fillers being used in the test template, the Ni/carbon foam based composite could reach an effective absorption bandwidth (below -10 dB) of 4.5 GHz and the minimum reflection value of -45 dB at 13.3 GHz with a thickness of 2 mm, while the traditional carbon foam and nano-Ni powder both showed very weak microwave absorption (the minimum reflection value < -10 dB). This foam was demonstrated to be a lightweight, high performance, and low filler loading microwave absorbing material. Furthermore, the detailed absorption mechanism of the foam was investigated. The result showed that the derived strong dielectric loss, including conductivity loss, interface polarization loss, weak magnetic loss, and naoporosity, contributes a great electromagnetic absorption. PMID:26710881

  9. Synchrotron soft X-ray absorption spectroscopy study of carbon and silicon nanostructures for energy applications.

    PubMed

    Zhong, Jun; Zhang, Hui; Sun, Xuhui; Lee, Shuit-Tong

    2014-12-10

    Carbon and silicon materials are two of the most important materials involved in the history of the science and technology development. In the last two decades, C and Si nanoscale materials, e.g., carbon nanotubes, graphene, and silicon nanowires, and quantum dots, have also emerged as the most interesting nanomaterials in nanoscience and nanotechnology for their myriad promising applications such as for electronics, sensors, biotechnology, etc. In particular, carbon and silicon nanostructures are being utilized in energy-related applications such as catalysis, batteries, solar cells, etc., with significant advances. Understanding of the nature of surface and electronic structures of nanostructures plays a key role in the development and improvement of energy conversion and storage nanosystems. Synchrotron soft X-ray absorption spectroscopy (XAS) and related techniques, such as X-ray emission spectroscopy (XES) and scanning transmission X-ray microscopy (STXM), show unique capability in revealing the surface and electronic structures of C and Si nanomaterials. In this review, XAS is demonstrated as a powerful technique for probing chemical bonding, the electronic structure, and the surface chemistry of carbon and silicon nanomaterials, which can greatly enhance the fundamental understanding and also applicability of these nanomaterials in energy applications. The focus is on the unique advantages of XAS as a complementary tool to conventional microscopy and spectroscopy for effectively providing chemical and structural information about carbon and silicon nanostructures. The employment of XAS for in situ, real-time study of property evolution of C and Si nanostructures to elucidate the mechanisms in energy conversion or storage processes is also discussed. PMID:25204894

  10. Temperature activated absorption during laser-induced damage: The evolution of laser-supported solid-state absorption fronts

    SciTech Connect

    Carr, C W; Bude, J D; Shen, N; Demange, P

    2010-10-26

    Previously we have shown that the size of laser induced damage sites in both KDP and SiO{sub 2} is largely governed by the duration of the laser pulse which creates them. Here we present a model based on experiment and simulation that accounts for this behavior. Specifically, we show that solid-state laser-supported absorption fronts are generated during a damage event and that these fronts propagate at constant velocities for laser intensities up to 4 GW/cm{sup 2}. It is the constant absorption front velocity that leads to the dependence of laser damage site size on pulse duration. We show that these absorption fronts are driven principally by the temperature-activated deep sub band-gap optical absorptivity, free electron transport, and thermal diffusion in defect-free silica for temperatures up to 15,000K and pressures < 15GPa. In addition to the practical application of selecting an optimal laser for pre-initiation of large aperture optics, this work serves as a platform for understanding general laser-matter interactions in dielectrics under a variety of conditions.

  11. A Light-Emitting Diode- (LED-) Based Absorption Sensor for Simultaneous Detection of Carbon Monoxide and Carbon Dioxide.

    PubMed

    Thurmond, Kyle; Loparo, Zachary; Partridge, William; Vasu, Subith S

    2016-06-01

    A sensor was developed for simultaneous measurements of carbon monoxide (CO) and carbon dioxide (CO2) fluctuations in internal combustion engine exhaust gases. This sensor utilizes low-cost and compact light-emitting diodes (LEDs) that emit in the 3-5 µm wavelength range. An affordable, fast response sensor that can measure these gases has a broad application that can lead to more efficient, fuel-flexible engines and regulation of harmful emissions. Light emission from LEDs is spectrally broader and more spatially divergent when compared to that of lasers, which presented many design challenges. Optical design studies addressed some of the non-ideal characteristics of the LED emissions. Measurements of CO and CO2 were conducted using their fundamental absorption bands centered at 4.7 µm and 4.3 µm, respectively, while a 3.6 µm reference LED was used to account for scattering losses (due to soot, window deposits, etc.) common to the three measurement LEDs. Instrument validation and calibration was performed using a laboratory flow cell and bottled-gas mixtures. The sensor was able to detect CO2 and CO concentration changes as small as 30 ppm and 400 ppm, respectively. Because of the many control and monitor species with infra-red absorption features, which can be measured using the strategy described, this work demonstrates proof of concept for a wider range of fast (250 Hz) and low-cost sensors for gas measurement and process monitoring. PMID:27091903

  12. Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China

    NASA Astrophysics Data System (ADS)

    Kirillova, E. N.; Andersson, A.; Han, J.; Lee, M.; Gustafsson, Ö.

    2014-02-01

    High loadings of anthropogenic carbonaceous aerosols in Chinese air influence the air quality for over one billion people and impact the regional climate. A large fraction (17-80%) of this aerosol carbon is water-soluble, promoting cloud formation and thus climate cooling. Recent findings, however, suggest that water-soluble carbonaceous aerosols also absorb sunlight, bringing additional direct and indirect climate warming effects, yet the extent and nature of light absorption by this water-soluble "brown carbon" and its relation to sources is poorly understood. Here, we combine source estimates constrained by dual carbon isotopes with light-absorption measurements of water-soluble organic carbon (WSOC) for a March 2011 campaign at the Korea Climate Observatory at Gosan (KCOG), a receptor station in SE Yellow Sea for the outflow from northern China. The mass absorption cross section at 365 nm (MAC365) of WSOC for air masses from N. China were in general higher (0.8-1.1 m2 g-1), than from other source regions (0.3-0.8 m2 g-1). However, this effect corresponds to only 2-10% of the radiative forcing caused by light absorption by elemental carbon. Radiocarbon constraints show that the WSOC in Chinese outflow had significantly higher fraction fossil sources (30-50%) compared to previous findings in S. Asia, N. America and Europe. Stable carbon (δ13C) measurements were consistent with aging during long-range air mass transport for this large fraction of carbonaceous aerosols.

  13. Low temperature charge transport and microwave absorption of carbon coated iron nanoparticles–polymer composite films

    SciTech Connect

    Prasad, V.

    2012-06-15

    Highlights: ► Carbon coated Fe nanoparticle–PVC composite films were prepared by solution casting method. ► A low electrical percolation threshold of 2.2 was achieved. ► The low temperature electrical conductivity follows variable range hopping type conduction. ► An EMI shielding of 18 dB was achieved in 200 micron thick film. -- Abstract: In this paper, the low temperature electrical conductivity and microwave absorption properties of carbon coated iron nanoparticles–polyvinyl chloride composite films are investigated for different filler fractions. The filler particles are prepared by the pyrolysis of ferrocene at 980 °C and embedded in polyvinyl chloride matrix. The high resolution transmission electron micrographs of the filler material have shown a 5 nm thin layer graphitic carbon covering over iron particles. The room temperature electrical conductivity of the composite film changes by 10 orders of magnitude with the increase of filler concentration. A percolation threshold of 2.2 and an electromagnetic interference shielding efficiency (EMI SE) of ∼18.6 dB in 26.5–40 GHz range are observed for 50 wt% loading. The charge transport follows three dimensional variable range hopping conduction.

  14. Development of a Differential Absorption Lidar (DIAL) for Carbon Sequestration Site Monitoring

    NASA Astrophysics Data System (ADS)

    Johnson, W.; Bares, A.; Nehrir, A. R.; Repasky, K. S.; Carlsten, J.

    2010-12-01

    Rising levels of carbon dioxide (CO2) in the Earth’s atmosphere have been identified as a major contributor to climate change. Geologic carbon sequestration has the potential for mitigating CO2 emission into the atmosphere by capturing CO2 at power generation facilities and storing the CO2 in geologic formations. Several technological challenges need to be overcome for successful geologic sequestration of CO2 including surface monitoring tools and techniques for monitoring CO2 sequestration sites to ensure site integrity and public safety. Researchers at Montana State University are developing an eye-safe scanning differential absorption lidar (DIAL) capable of spatially mapping above-ground CO2 number densities for carbon sequestration site monitoring. The eye-safe scanning CO2 DIAL utilizes a temperature tunable fiber pigtailed distributed feedback (DFB) laser operating wavelength of 1.573 μm to access CO2 absorption features. The output of the DFB laser is split using an inline fiber splitter with part of the light sent to an optical wavemeter to monitor the operating wavelength of the laser transmitter. The remaining light is modulated using an inline acousto-optic modulator producing a pulse train with a 20 kHz pulse repetition frequency and a 2 μs duration. This pulse train is amplified in a commercial fiber amplifier producing up to 80 μJ per pulse energy. The output from the fiber amplifier is sent horizontally through the atmosphere and the scattered light is collected using a 28 cm diameter commercial Schmidt-Cassegrain telescope. The light collected by the telescope is collimated and focused into a multimode optical fiber. A fiber coupled photomultiplier (PMT) tube is then used to monitor the light collected by the DIAL receiver. Data is collected in the following manner. The DFB laser is tuned to the online wavelength of the CO2 absorption feature and data is collected for a user defined time. A feedback loop utilizing the optical wavemeter is used

  15. Ultra-high optical absorption efficiency from the ultraviolet to the infrared using multi-walled carbon nanotube ensembles.

    PubMed

    Kaul, Anupama B; Coles, James B; Eastwood, Michael; Green, Robert O; Bandaru, Prabhakar R

    2013-04-01

    The optical absorption efficiencies of vertically aligned multi-walled (MW)-carbon nanotube (CNT) ensembles are characterized in the 350-7000 nm wavelength range where CNT site densities > 1 × 10(11) /cm(2) are achieved directly on metallic substrates. The site density directly impacts the optical absorption characteristics, and while high-density arrays of CNTs on electrically insulating and non-metallic substrates have been commonly reported, achieving high site-densities on metals has been challenging and remains an area of active research. These absorber ensembles are ultra-thin (<10 μm) and yet they still exhibit a reflectance as low as ∼0.02%, which is 100 times lower than the reference; these characteristics make them potentially attractive for high-sensitivity and high-speed thermal detectors. In addition, the use of a plasma-enhanced chemical vapor deposition process for the synthesis of the absorbers increases the portfolio of materials that can be integrated with such absorbers due to the potential for reduced synthesis temperatures. The remarkable ruggedness of the absorbers is also demonstrated as they are exposed to high temperatures in an oxidizing ambient environment, making them well-suited for extreme thermal environments encountered in the field, potentially for solar cell applications. Finally, a phenomenological model enables the determinatiom of the extinction coefficients in these nanostructures and the results compare well with experiment. PMID:23233398

  16. Measurements of Black Carbon and aerosol absorption during global circumnavigation and Arctic campaigns

    NASA Astrophysics Data System (ADS)

    Močnik, Griša; Drinovec, Luka; Vidmar, Primož; Lenarčič, Matevž

    2015-04-01

    During two flight campaigns: around the world (2012) and over the Arctic (2013) we demonstrated the feasibility of scientific research and aerial measurements of aerosolized Black Carbon with ultra-light aircraft. Conducted measurements provided first ever information on Black Carbon concentrations and sources over such a large area at altitude. Ground-level measurements of atmospheric aerosols are routinely performed around the world, but there exists very little data on their vertical and geographical distribution in the global atmosphere. These data is a crucial requirement for our understanding of the dispersion of pollutant species of anthropogenic origin, and their possible effects on radiative forcing, cloud condensation, and other phenomena which can contribute to adverse outcomes. Light absorbing carbonaceous aerosols and black carbon (BC) in particular are a unique tracer for combustion emissions, and can be detected rapidly and with great sensitivity by filter-based optical methods. A single-seat ultra-light aircraft flew around the world and on a Arctic expedition. The flights covered all seven continents; crossed all major oceans; and operated at altitudes around 3000 m ASL and up to 8900 m ASL. The aircraft carried a specially-developed high-sensitivity miniaturized dual-wavelength Aethalometer, which recorded BC concentrations with very high temporal resolution and sensitivity [1, 2]. We present examples of data from flight tracks over remote oceans, uninhabited land masses, and densely populated areas. Measuring the dependence of the aerosol absorption on the wavelength, we show that aerosols produced during biomass combustion can be transported to high altitude in high concentrations and we estimate the underestimation of the direct forcing by models assuming a simple linear relationship between BC concentration and forcing in comparison to observations [3,4]. 1. , Carbon Sampling Takes Flight, Science 2012, 335, 1286. 2. G. Močnik, L. Drinovec, M

  17. Microcystin-LR Adsorption by Activated Carbon.

    PubMed

    Pendleton, Phillip; Schumann, Russell; Wong, Shiaw Hui

    2001-08-01

    We use a selection of wood-based and coconut-based activated carbons to investigate the factors controlling the removal of the hepatotoxin microcystin-LR (m-LR) from aqueous solutions. The wood carbons contain both micropores and mesopores. The coconut carbons contain micropores only. Confirming previously published observations, we also find that the wood-based carbons adsorb more microcystin than the coconut-based carbons. From a combination of a judicious modification of a wood-based carbon's surface chemistry and of the solution chemistry, we demonstrate that both surface and solution chemistry play minor roles in the adsorption process, with the adsorbent surface chemistry exhibiting less influence than the solution chemistry. Conformational changes at low solution pH probably contribute to the observed increase in adsorption by both classes of adsorbent. At the solution pH of 2.5, the coconut-based carbons exhibit a 400% increased affinity for m-LR compared with 100% increases for the wood-based carbons. In an analysis of the thermodynamics of adsorption, using multiple temperature adsorption chromatography methods, we indicate that m-LR adsorption is an entropy-driven process for each of the carbons, except the most hydrophilic and mesoporous carbon, B1. In this case, exothermic enthalpy contributions to adsorption also exist. From our overall observations, since m-LR contains molecular dimensions in the secondary micropore width range, we demonstrate that it is important to consider both the secondary micropore and the mesopore volumes for the adsorption of m-LR from aqueous solutions. Copyright 2001 Academic Press. PMID:11446779

  18. A novel activated carbon for supercapacitors

    SciTech Connect

    Shen, Haijie; Liu, Enhui; Xiang, Xiaoxia; Huang, Zhengzheng; Tian, Yingying; Wu, Yuhu; Wu, Zhilian; Xie, Hui

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer A novel activated carbon was prepared from phenol-melamine-formaldehyde resin. Black-Right-Pointing-Pointer The carbon has large surface area with microporous, and high heteroatom content. Black-Right-Pointing-Pointer Heteroatom-containing functional groups can improve the pseudo-capacitance. Black-Right-Pointing-Pointer Physical and chemical properties lead to the good electrochemical properties. -- Abstract: A novel activated carbon has been prepared by simple carbonization and activation of phenol-melamine-formaldehyde resin which is synthesized by the condensation polymerization method. The morphology, thermal stability, surface area, elemental composition and surface chemical composition of samples have been investigated by scanning electron microscope, thermogravimetry and differential thermal analysis, Brunauer-Emmett-Teller measurement, elemental analysis and X-ray photoelectron spectroscopy, respectively. Electrochemical properties have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol L{sup -1} potassium hydroxide. The activated carbon shows good capacitive behavior and the specific capacitance is up to 210 F g{sup -1}, which indicates that it may be a promising candidate for supercapacitors.

  19. Measurement of Apparent Thermal Conductivity and Laser Absorptivity of Individual Carbon Fibers

    NASA Astrophysics Data System (ADS)

    Liu, Jin-hui; Wang, Hai-dong; Hu, Yu-dong; Ma, Wei-gang; Zhang, Xing

    2015-11-01

    The apparent thermal conductivity (ATC) and laser absorptivity (α ) are important properties of miro/nano materials but a challenge to measure due to their small size. In this paper, a simple and effective method employing Raman spectroscopy together with electrical heating is developed to measure thermal properties of micro/nano wires. The sample used in the experiment is very simple and easy to fabricate. The ATC is obtained by measuring the temperature difference induced by changing the electrical heating power; the laser heating power is neither neglected nor needed. Using the laser heating temperature rise and the measured ATC, the absorbed laser power can be calculated. Three individual carbon fibers were studied using the presented method.

  20. X-ray Absorption Improvement of Single Wall Carbon Nanotube through Gadolinium Encapsulation

    NASA Astrophysics Data System (ADS)

    Alimin; Narsito, I.; Kartini; Santosa, S. J.

    2016-02-01

    X-ray absorption improvement of single-wall carbon nanotube (SWCNT) through gadolinium (Gd) encapsulation has been studied. The liquid phase adsorption using ethanol has been performed for the doping treatment. The Gd-doped SWCNT (Gd@SWCNT) was characterized by nitrogen adsorption isotherms, Raman spectroscopy, Transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA) techniques. A relatively high residual weight of Gd@SWCNT compared to non-doped SWCNT (n-SWCNT) indicated that Gd has been doped in the nanotube. Even though Gd nanoparticles could not be observed clearly by TEM image, however, a significant decrease of nitrogen uptakes at low pressure and RBM (Radial Breathing Mode) upshift of Raman spectra of Gd@SWCNT specimen suggest that the metal nanoparticles might be encapsulated in the internal tube spaces of the nanotube. It was found that Gd-doped in the SWCNT increased significantly mass attenuation coefficient of the nanotube.

  1. Light Absorption Properties of Brown Carbon from Fresh and Aged Biomass Burning Aerosols Characterized in a Smog Chamber

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Chuang, W.; Hennigan, C.; McMeeking, G. R.; Coe, H.; Donahue, N. M.; Robinson, A. L.

    2011-12-01

    Black carbon is an important particulate phase light absorber in the atmosphere. Recent studies have shown that some organic matter also absorb visible light, especially at short wavelengths. These organic compounds are referred to as "brown carbon". Biomass burning is a major contributor to brown carbon in atmospheric particulate matter; however, its optical properties are poorly characterized. We have conducted smog chamber experiments to investigate light absorption properties of brown carbon in primary and aged biomass burning emissions, namely the imaginary refractive index. The aging was performed in a smog chamber, where dilute emissions were exposed to UV lights to initiate photo-oxidation, which often produced substantial secondary organic aerosol. The experiments took place at Carnegie Mellon University (CMU) and at the US Fire Science Laboratory in Missoula, MT as part of the Fire Lab at Missoula field campaign (FLAME 2009). The CMU experiments simulated household wood burning (oak), and the FLAME experiments simulated wildland fires with fuels including gallberry, lodgepole pine, black spruce and ponderosa pine. Absorption coefficients were measured using an Aethalometer (Magee Scientific) at 7 different wavelengths ranging between 370 nm and 950 nm. The black carbon size distributions were measured using a Single Particle Soot Photometer (SP2, DMT), and total aerosol size distributions were measured using a Scanning Mobility Particle Sizer (SMPS, TSI). The absorption coefficients of both the fresh and aged aerosol were significantly larger, and had stronger wavelength dependence than what would be expected for black carbon alone, and for a black carbon core with a non-absorbing shell. This indicates that biomass burning organic aerosol should be classified as brown carbon. A (black carbon) core - (brown carbon) shell absorption model based on Mie theory was optimized to determine the shell imaginary refractive index which produces model outputs that

  2. [Carbon monoxide gas detection system based on mid-infrared spectral absorption technique].

    PubMed

    Li, Guo-Lin; Dong, Ming; Song, Nan; Song, Fang; Zheng, Chuan-Tao; Wang, Yi-Ding

    2014-10-01

    Based on infrared spectral absorption technique, a carbon monoxide (CO) detection system was developed using the fundamental absorption band at the wavelength of 4.6 μm of CO molecule and adopting pulse-modulated wideband incandescence and dual-channel detector. The detection system consists of pulse-modulated wideband incandescence, open ellipsoid light-collec- tor gas-cell, dual-channel detector, main-control and signal-processing module. By optimizing open ellipsoid light-collector gas- cell, the optical path of the gas absorption reaches 40 cm, and the amplitude of the electrical signal from the detector is 2 to 3 times larger than the original signal. Therefore, by using the ellipsoidal condenser, the signal-to-noise ratio of the system will be to some extent increased to improve performance of the system. With the prepared standard CO gas sample, sensing characteris- tics on CO gas were investigated. Experimental results reveal that, the limit of detection (LOD) is about 10 ppm; the relative er- ror at the LOD point is less than 14%, and that is less than 7. 8% within the low concentration range of 20~180 ppm; the maxi- mum absolute error of 50 min long-term measurement concentration on the 0 ppm gas sample is about 3 ppm, and the standard deviation is as small as 0. 18 ppm. Compared with the CO detection systems utilizing quantum cascaded lasers (QCLs) and dis- tributed feedback lasers (DFBLs), the proposed sensor shows potential applications in CO detection under the circumstances of coal-mine and environmental protection, by virtue of high performance-cost ratio, simple optical-path structure, etc. PMID:25739235

  3. Carbonic anhydrase-facilitated CO2 absorption with polyacrylamide buffering bead capture

    SciTech Connect

    Dilmore, Robert; Griffith, Craid; Liu, Zhu; Soong, Yee; Hedges, Sheila W.; Koepsel, Richard; Ataai, M

    2009-07-01

    A novel CO2 separation concept is described wherein the enzyme carbonic anhydrase (CA) is used to increase the overall rate Of CO2 absorption after which hydrated CO2 reacts with regenerable amine-bearing polyacrylamide buffering beads (PABB). Following saturation of the material's immobilized tertiary amines, CA-bearing carrier water is separated and recycled to the absorption stage while CO2-loaded material is thermally regenerated. Process application of this concept would involve operation of two or more columns in parallel with thermal regeneration with low-pressure steam taking place after the capacity of a column of amine-bearing polymeric material was exceeded. PABB CO2- bearing capacity was evaluated by thermogravimetric analysis (TGA) for beads of three acrylamido buffering monomer ingredient concentrations: 0 mol/kg bead, 0.857 mol/kg bead, and 2 mol/kg bead. TGA results demonstrate that CO2- bearing capacity increases with increasing PABB buffering concentration and that up to 78% of the theoretical CO2- bearing capacity was realized in prepared PABB samples (0.857 mol/kg recipe). The highest observed CO2-bearing capacity of PABB was 1.37 mol of CO2 per kg dry bead. TGA was also used to assess the regenerability Of CO2-loaded PABB. Preliminary results suggest that CO2 is partially driven from PABB samples at temperatures as low as 55 degrees C, with complete regeneration occurring at 100 degrees C. Other physical characteristics of PABB are discussed. In addition, the effectiveness of bovine carbonic anhydrase for the catalysis Of CO2 dissolution is evaluated. Potential benefits and drawbacks of the proposed process are discussed. Published by Elsevier Ltd.

  4. Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide.

    PubMed

    Nakazato, Masahisa; Nagai, Tomohiro; Sakai, Tetsu; Hirose, Yasuo

    2007-04-20

    A UV ozone differential-absorption lidar (DIAL) utilizing a Nd:YAG laser and a single Raman cell filled with carbon dioxide (CO(2)) is designed, developed, and evaluated. The generated wavelengths are 276, 287, and 299 nm, comprising the first to third Stokes lines of the stimulated Raman scattering technique. The correction terms originated from the aerosol extinction, the backscatter, and the absorption by other gases are estimated using a model atmosphere. The experimental results demonstrate that the emitted output energies were 13 mJ/pulse at 276 nm and 287 nm and 5 mJ/pulse at 299 nm, with pump energy of 91 mJ/pulse and a CO(2) pressure of 0.7 MPa. The three Stokes lines account for 44.0% of the available energy. The use of argon or helium as a buffer gas in the Raman cell was also investigated, but this leads to a dramatic decrease in the third Stokes line, which makes this wavelength practically unusable. Our observations confirmed that 30 min of integration were sufficient to observe ozone concentration profiles up to 10 km. Aerosol extinction and backscatter correction are estimated and applied. The aerosol backscatter correction profile using 287 and 299 nm as reference wavelengths is compared with that using 355 nm. The estimated statistical error is less than 5% at 1.5 km and 10% at 2.6 km. Comparisons with the operational carbon-iodine type chemical ozonesondes demonstrate 20% overestimation of the ozone profiles by the DIAL technique. PMID:17415396

  5. Activated carbon monoliths for methane storage

    NASA Astrophysics Data System (ADS)

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  6. Effect of carbon on hydrogen desorption and absorption of mechanically milled MgH 2

    NASA Astrophysics Data System (ADS)

    Shang, C. X.; Guo, Z. X.

    The use of MgH 2, instead of pure Mg, in the mechanical synthesis of Mg-based hydrogen storage materials offers added benefit to powder size refinement and reduced oxygen contamination. Alloying additions can further improve the sorption kinetics at a relatively low temperature. This paper examines the effect of graphitic carbon on the desorption and absorption of MgH 2. Graphite powder of different concentrations were mechanically milled with MgH 2 particles. The milled powder was characterised by XRD, SEM and simultaneous TG and DSC techniques. The results show that graphite poses little influence on the desorption properties of MgH 2. However, it does benefit the absorption process, leading to rapid hydrogen uptake in the re-hydrogenated sample. After dehydrogenation, 5 wt.% of hydrogen was re-absorbed within 30 min at 250 °C for the ( MgH 2+10 G) mixture prior-milled for 8 h, while only 0.8 wt.% for the pure MgH 2 milled for 8 h, the effect may be attributed to the interaction between crystalline graphite with H 2 disassociation close to the MgH 2 or Mg surface. Moreover, graphite can also inhibit the formation of a new oxide layer on the surface of Mg particles.

  7. Evaluation of iron-containing carbon nanotubes by near edge X-ray absorption technique

    NASA Astrophysics Data System (ADS)

    Osorio, A. G.; Bergmann, C. P.

    2015-10-01

    The synthesis of carbon nanotubes (CNTs) via Chemical Vapor Deposition method with ferrocene results in CNTs filled with Fe-containing nanoparticles. The present work proposes a novel route to characterize the Fe phases in CNTs inherent to the synthesis process. CNTs were synthesized and, afterwards, the CNTs were heat treated at 1000 °C for 20 min in an inert atmosphere during a thermogravimetric experiment. X-Ray Absorption Spectroscopy (XAS) experiments were performed on the CNTs before and after the heat treatment and, also, during the heat treatment, e.g., in situ tests were performed while several Near-Edge X-Ray Absorption (XANES) spectra were collected during the heating of the samples. The XAS technique was successfully applied to evaluate the phases encapsulated by CNTs. Phase transformations of the Fe-based nanoparticles were also observed from iron carbide to metallic iron when the in situ experiments were performed. Results also indicated that the applied synthesis method guarantees that Fe phases are not oxidize. In addition, the results show that heat treatment under inert atmosphere can control which phase remains encapsulated by the CNTs.

  8. Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries

    NASA Astrophysics Data System (ADS)

    Asmala, Eero; Stedmon, Colin A.; Thomas, David N.

    2012-10-01

    The quantity of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in three Finnish estuaries (Karjaanjoki, Kyrönjoki and Kiiminkijoki) was investigated, with respect to predicting DOC concentrations and loadings from spectral CDOM absorption measurements. Altogether 87 samples were collected from three estuarine transects which were studied in three seasons, covering a salinity range between 0 and 6.8, and DOC concentrations from 1572 μmol l-1 in freshwater to 222 μmol l-1 in coastal waters. CDOM absorption coefficient, aCDOM(375) values followed the trend in DOC concentrations across the salinity gradient and ranged from 1.67 to 33.4 m-1. The link between DOC and CDOM was studied using a range of wavelengths and algorithms. Wavelengths between 250 and 270 nm gave the best predictions with single linear regression. Total dissolved iron was found to influence the prediction in wavelengths above 520 nm. Despite significant seasonal and spatial differences in DOC-CDOM models, a universal relationship was tested with an independent data set and found to be robust. DOC and CDOM yields (loading/catchment area) from the catchments ranged from 1.98 to 5.44 g C m-2 yr-1, and 1.67 to 11.5 aCDOM(375) yr-1, respectively.

  9. A contribution of brown carbon aerosol to the aerosol light absorption and its radiative forcing in East Asia

    NASA Astrophysics Data System (ADS)

    Park, Rokjin J.; Kim, Minjoong J.; Jeong, Jaein I.; Youn, Daeok; Kim, Sangwoo

    2010-04-01

    Brown carbon aerosols were recently found to be ubiquitous and effectively absorb solar radiation. We use a 3-D global chemical transport model (GEOS-Chem) together with aircraft and ground based observations from the TRACE-P and the ACE-Asia campaigns to examine the contribution of brown carbon aerosol to the aerosol light absorption and its climatic implication over East Asia in spring 2001. We estimated brown carbon aerosol concentrations in the model using the mass ratio of brown carbon to black carbon (BC) aerosols based on measurements in China and Europe. The comparison of simulated versus observed aerosol light absorption showed that the model accounting for brown carbon aerosol resulted in a better agreement with the observations in East Asian-Pacific outflow. We then used the model results to compute the radiative forcing of brown carbon, which amounts up to -2.4 W m -2 and 0.24 W m -2 at the surface and at the top of the atmosphere (TOA), respectively, over East Asia. Mean radiative forcing of brown carbon aerosol is -0.43 W m -2 and 0.05 W m -2 at the surface and at the TOA, accounting for about 15% of total radiative forcing (-2.2 W m -2 and 0.33 W m -2) by absorbing aerosols (BC + brown carbon aerosol), having a significant climatic implication in East Asia.

  10. XAS AND XPS CHARACTERIZATION OF MERCURY BINDING ON BROMINATED ACTIVATED CARBON

    EPA Science Inventory

    Brominated powdered activated carbon sorbents have been shown to e quite effective for mercury capture when injected into the flue gas duct at coal-fired power plants and are especially useful when buring Western low-chlorine subbituminous coals. X-ray absorption spectroscopy (X...

  11. Preparation of activated carbons with mesopores by use of organometallics

    SciTech Connect

    Yamada, Yoshio; Yoshizawa, Noriko; Furuta, Takeshi

    1996-12-31

    Activated carbons are commercially produced by steam or CO{sub 2} activation of coal, coconut shell and so on. In general the carbons obtained give pores with a broad range of distribution. The objective of this study was to prepare activated carbons from coal by use of various organometallic compounds. The carbons were evaluated for pore size by nitrogen adsorption experiments.

  12. The spatial distribution of p-mode absorption in active regions

    NASA Technical Reports Server (NTRS)

    Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.

    1990-01-01

    The interaction of solar p-mode waves and active regions has been the subject of recent observational and theoretical investigations. Observations show that up to one-half of the power of incident high-degree acoustic may be absorbed in and around sunspots. In this paper the horizontal spatial distribution of high-degree p-mode absorption in solar active regions is explored. An appropriate Fourier-Hankel transform can be used to detect the mean absorption of waves passing through any given point on the solar surface. By repeating the analysis at multiple positions a map of the absorption can be constructed. A technique for optimal computation of absorption maps is developed and applied to observations of several active regions and an area of quiet sun near disk center. By comparing the distribution of p-mode absorption with magnetograms and line-wing intensity images, it is directly observed that the absorption is not limited to the location of the visible sunspots but is also associated with magnetic fields in the surrounding plage. It is estimated that the absorption efficiency scales roughly with the magnetic flux density, although the absorption appears to saturate inside the strongest fields.

  13. Mass absorption efficiency of elemental carbon for source samples from residential biomass and coal combustions

    NASA Astrophysics Data System (ADS)

    Shen, Guofeng; Chen, Yuanchen; Wei, Siye; Fu, Xiaofang; Zhu, Ying; Tao, Shu

    2013-11-01

    Optical properties of particulate matter are of growing concern due to their complex effects on atmospheric visibility and local/regional climate change. In this study, mass absorption efficiency (MAE) of elemental carbon (EC) was measured for source emission samples obtained from the residential combustions of solid fuels using a thermal-optical carbon analyzer. For source samples from residential wood, crop straw, biomass pellet and coal combustions, MAE of EC measured at 650 nm, were 3.1 (2.4-3.7 as 95% Confidence Interval), 6.6 (5.5-7.6), 9.5 (6.7-12), and 7.9 (4.8-11) m2 g-1, respectively. MAE of EC for source sample from the wood combustion was significantly lower than those for the other fuels, and MAE of EC for coal briquette appeared to be different from that of raw chunk. MAE values of the investigated source emission samples were found to correlate with OC/EC ratio, and a significantly positive correlation was found between MAE and particle-bound polycyclic aromatic hydrocarbons (pPAHs), though pPAHs contributed a relatively small fraction of OC.

  14. Absorption of metals in mulloway (Argyrosomus japonicus) after ingesting nickel-plated carbon-steel hooks.

    PubMed

    McGrath, Shane P; Reichelt-Brushett, Amanda J; Butcher, Paul A; Cairns, Stuart C

    2014-08-01

    Previous research has alluded to the potential of metals being absorbed by fish after ingesting fishing hooks, which may have adverse effects on fish health and the organisms that consume them. Subsequently, this study aimed to quantify the potential of mulloway (Argyrosomus japonicus) to absorb metals during the decay of ingested nickel-plated carbon-steel hooks. Twenty-five treatment fish were allowed to ingest nickel-plated carbon-steel hooks during angling and then monitored with 25 controls (untreated fish) for up to 42 days for hook ejection and mortality. Blood, liver and muscle samples were collected from treatment, control and 14 wild-caught individuals to determine the concentrations of chromium, cobalt, copper, iron, manganese and nickel. The results showed that increased oxidation influenced hook ejection, and that hook-ingested fish had significantly elevated concentrations of nickel in their liver and blood, but not muscle. This research has shown that there is an avenue for metal absorption from ingested hooks. PMID:25016938

  15. Electrical Activation of Dark Excitonic States in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Uda, Takushi; Yoshida, Masahiro; Ishii, Akihiro; Kato, Yuichiro K.

    Electrical activation of optical transitions to parity-forbidden dark excitonic states in individual carbon nanotubes is reported. We examine electric field effects on various excitonic states by simultaneously measuring both photocurrent and photoluminescence. As the applied field increases, we observe an emergence of new absorption peaks in the excitation spectra. From the diameter dependence of the energy separation between the new peaks and the ground state of E11 excitons, we attribute the peaks to the dark excited states which became optically active due to the applied field. A simple field-induced exciton dissociation model is introduced to explain the photocurrent threshold fields, and the edge of the E11 continuum states have been identified using this model. Work supported by JSPS (KAKENHI 24340066, 26610080), MEXT (Photon Frontier Network Program, Nanotechnology Platform), Canon Foundation, and Asahi Glass Foundation.

  16. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    EPA Science Inventory

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  17. EPA'S RESEARCH PROGRAM IN GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Research into Granular Activated Carbon (GAC) for use in drinking water treatment has a long history in the Drinking Water Research Division and its predecessor organizations. tudies were conducted by the U.S. Public Health Service in the late fifties and early sixties to examine...

  18. USING POWDERED ACTIVATED CARBON: A CRITICAL REVIEW

    EPA Science Inventory

    Because the performance of powdered activated carbon (PAC) for uses other than taste and odor control is poorly documented, the purpose of this article is to critically review uses that have been reported (i.e., pesticides and herbicides, synthetic organic chemicals, and trihalom...

  19. ACTIVATED CARBON TREATMENT OF KRAFT BLEACHING EFFLUENTS

    EPA Science Inventory

    The removal of color and organic contaminants by adsorption on activated carbon from the effluent of a kraft pulp bleaching plant was investigated in a pilot plant. The caustic bleach effluent, which contains 80% of the color from pulp bleaching, was decolorized successfully when...

  20. Making Activated Carbon for Storing Gas

    NASA Technical Reports Server (NTRS)

    Wojtowicz, Marek A.; Serio, Michael A.; Suuberg, Eric M.

    2005-01-01

    Solid disks of microporous activated carbon, produced by a method that enables optimization of pore structure, have been investigated as means of storing gas (especially hydrogen for use as a fuel) at relatively low pressure through adsorption on pore surfaces. For hydrogen and other gases of practical interest, a narrow distribution of pore sizes <2 nm is preferable. The present method is a variant of a previously patented method of cyclic chemisorption and desorption in which a piece of carbon is alternately (1) heated to the lower of two elevated temperatures in air or other oxidizing gas, causing the formation of stable carbon/oxygen surface complexes; then (2) heated to the higher of the two elevated temperatures in flowing helium or other inert gas, causing the desorption of the surface complexes in the form of carbon monoxide. In the present method, pore structure is optimized partly by heating to a temperature of 1,100 C during carbonization. Another aspect of the method exploits the finding that for each gas-storage pressure, gas-storage capacity can be maximized by burning off a specific proportion (typically between 10 and 20 weight percent) of the carbon during the cyclic chemisorption/desorption process.

  1. Absorption edge and the refractive index dispersion of carbon-nickel composite films at different annealing temperatures

    NASA Astrophysics Data System (ADS)

    Dalouji, Vali; Elahi, Seyed Mohammad; Solaymani, Shahram; Ghaderi, Atefeh

    2016-04-01

    In this paper, the optical properties of carbon-nickel films annealed at different temperatures 300, 500, 800 and 1000 ° C, with a special emphasis on the absorption edge, were investigated. The optical transmittance spectra in the wavelength range 300-1000nm were used to compute the absorption coefficient. The optical dispersion parameters were calculated according to Wemple and DiDomenico (WDD) single-oscillator model. Photoluminescence (PL) measurements of carbon-nickel films exhibit two main peaks at about 2.5 and 3.3eV which correspond to the fundamental indirect and direct gap, respectively. The field emission scanning electron microscopy (FESEM) showed that the absorption edge in the films was controlled by the nanoparticle size. The films annealed at 500 ° C have minimum indirect optical band gap and maximum disorder.

  2. Identification of intestinal bicarbonate transporters involved in formation of carbonate precipitates to stimulate water absorption in marine teleost fish.

    PubMed

    Kurita, Yukihiro; Nakada, Tsutomu; Kato, Akira; Doi, Hiroyuki; Mistry, Abinash C; Chang, Min-Hwang; Romero, Michael F; Hirose, Shigehisa

    2008-04-01

    Marine teleost fish precipitate divalent cations as carbonate deposits in the intestine to minimize the potential for excessive Ca2+ entry and to stimulate water absorption by reducing luminal osmotic pressure. This carbonate deposit formation, therefore, helps maintain osmoregulation in the seawater (SW) environment and requires controlled secretion of HCO3(-) to match the amount of Ca2+ entering the intestinal lumen. Despite its physiological importance, the process of HCO3(-) secretion has not been characterized at the molecular level. We analyzed the expression of two families of HCO3(-) transporters, Slc4 and Slc26, in fresh-water- and SW-acclimated euryhaline pufferfish, mefugu (Takifugu obscurus), and obtained the following candidate clones: NBCe1 (an Na+-HCO3(-) cotransporter) and Slc26a6A and Slc26a6B (putative Cl(-)/HCO3(-) exchangers). Heterologous expression in Xenopus oocytes showed that Slc26a6A and Slc26a6B have potent HCO3(-)-transporting activity as electrogenic Cl(-)/nHCO3(-) exchangers, whereas mefugu NBCe1 functions as an electrogenic Na+-nHCO3(-) cotransporter. Expression of NBCe1 and Slc26a6A was highly induced in the intestine in SW and expression of Slc26a6B was high in the intestine in SW and fresh water, suggesting their involvement in HCO3(-) secretion and carbonate precipitate formation. Immunohistochemistry showed staining on the apical (Slc26a6A and Slc26a6B) and basolateral (NBCe1) membranes of the intestinal epithelial cells in SW. We therefore propose a mechanism for HCO3(-) transport across the intestinal epithelial cells of marine fish that includes basolateral HCO3(-) uptake (NBCe1) and apical HCO3(-) secretion (Slc26a6A and Slc26a6B). PMID:18216137

  3. The biomass derived activated carbon for supercapacitor

    NASA Astrophysics Data System (ADS)

    Senthilkumar, S. T.; Selvan, R. Kalai; Melo, J. S.

    2013-06-01

    In this work, the activated carbon was prepared from biowaste of Eichhornia crassipes by chemical activation method using KOH as the activating agent at various carbonization temperatures (600 °C, 700 °C and 800 °C). The disordered nature, morphology and surface functional groups of ACs were examined by XRD, SEM and FT-IR. The electrochemical properties of AC electrodes were studied in 1M H2SO4 in the potential range of -0.2 to 0.8 V using cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) techniques in a three electrode system. Subsequently, the fabricated supercapacitor using AC electrode delivered the higher specific capacitance and energy density of 509 F/g at current density of 1 mA/cm2 and 17 Wh/kg at power density of 0.416 W/g.

  4. Synthesis of zinc oxide particles coated multiwalled carbon nanotubes: Dielectric properties, electromagnetic interference shielding and microwave absorption

    SciTech Connect

    Song, Wei-Li; Cao, Mao-Sheng; Wen, Bo; Hou, Zhi-Ling; Cheng, Jin; Yuan, Jie

    2012-07-15

    Graphical abstract: A resistor–capacitor model could well describe the relationships between the structure and the dielectric properties, electromagnetic interference shielding and microwave-absorption of the composites in the frequency range of 2–18 GHz. The resonant behavior associated with the multiwalled carbon nanotubes/zinc oxide (MWCNTs/ZnO) interface greatly broadens the absorption band. Highlights: ► ZnO-immobilized on multiwalled carbon nanotubes (MWCNTs/ZnO) have resonant behavior. ► A resistor–capacitor model describes the relation between the structure and properties. ► The composite with 40 wt% MWCNTs/ZnO has good electromagnetic interference shielding. ► Two different types of absorption peaks are found in the MWCNTs/ZnO composites. ► The existence of MWCNTs/ZnO interface broadens the absorption band. -- Abstract: Zinc oxide (ZnO) nanoparticles were coated on the surfaces of multiwalled carbon nanotubes (MWCNTs). High resolution transmission electron microscopy images show that the wurtzite ZnO immobilized on the MWCNTs is single-crystalline with a preferential [0 0 0 2] growth direction. A capacitor was generated by the interface of ZnO and MWCNTs, and a resistor–capacitor model could well describe the relationships between the structure and the dielectric properties, electromagnetic interference shielding and microwave-absorption of the composites in the frequency range of 2–18 GHz. The network built by ZnO-immobilized MWCNTs could contribute to the improvement of electrical properties. Resonant peaks associated with the capacitor formed by the interface were observed in the microwave absorption spectra, which suggest that reflection–loss peaks greatly broadens the absorption bandwidth.

  5. Effect of Carbon Black on Dielectric and Microwave Absorption Properties of Carbon Black/Cordierite Plasma-Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Su, Jinbu; Zhou, Wancheng; Liu, Yi; Qing, Yuchang; Luo, Fa; Zhu, Dongmei

    2015-06-01

    Carbon black (CB)/cordierite composite coatings with different CB contents were fabricated by a multi-function micro-plasma spraying system developed by the Second Artillery Engineering College. Scanning electron microscopy was employed to investigate the microstructure of the spray-dried powders and as-sprayed coatings. The complex permittivities of the coatings and powders with different CB contents were investigated at the frequency of 8.2-12.4 GHz. The results show that both real and imaginary part of the permittivity increase with increasing CB content, which can be ascribed to the increase of the number of micro-capacitors and the polarization centers. Reflection loss of the as-sprayed coatings with different CB contents and thicknesses was calculated according to the transmission line theory. The coating with 4.54% CB content and 3.0 mm thickness shows optical microwave absorption with a minimum reflection loss of -23.90 dB at 10.13 GHz and reflection loss less than -9 dB over the whole investigated frequency.

  6. JV Task 119 - Effects of Aging on Treated Activated Carbons

    SciTech Connect

    Edwin Olson; Lucinda Hamre; John Pavlish; Blaise Mibeck

    2009-03-25

    For both the United States and Canada, testing has been under way for electric utilities to find viable and economical mercury control strategies to meet pending future mercury emission limits. The technology that holds the most promise for mercury control in low-chlorine lignite to meet the needs of the Clean Air Act in the United States and the Canada-Wide Standards in Canada is injection of treated activated carbon (AC) into the flue gas stream. Most of the treated carbons are reported to be halogenated, often with bromine. Under a previous multiyear project headed by the Energy & Environmental Research Center (EERC), testing was performed on a slipstream unit using actual lignite-derived flue gas to evaluate various sorbent technologies for their effectiveness, performance, and cost. Testing under this project showed that halogenated ACs performed very well, with mercury capture rates often {ge} 90%. However, differences were noted between treated ACs with respect to reactivity and capacity, possibly as a result of storage conditions. Under certain conditions (primarily storage in ambient air), notable performance degradation had occurred in mercury capture efficiency. Therefore, a small exploratory task within this project evaluated possible differences resulting from storage conditions and subsequent effects of aging that might somehow alter their chemical or physical properties. In order to further investigate this potential degradation of treated (halogenated) ACs, the EERC, together with DOE's National Energy Technology Laboratory, the North Dakota Industrial Commission (NDIC), the Electric Power Research Institute (EPRI), SaskPower, and Otter Tail Power Company, assessed the aging effects of brominated ACs for the effect that different storage durations, temperatures, and humidity conditions have on the mercury sorption capacity of treated ACs. No aging effects on initial capture activity were observed for any carbons or conditions in the investigation

  7. Supercapacitor Electrodes from Activated Carbon Monoliths and Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Dolah, B. N. M.; Othman, M. A. R.; Deraman, M.; Basri, N. H.; Farma, R.; Talib, I. A.; Ishak, M. M.

    2013-04-01

    Binderless monoliths of supercapacitor electrodes were prepared by the carbonization (N2) and activation (CO2) of green monoliths (GMs). GMs were made from mixtures of self-adhesive carbon grains (SACG) of fibers from oil palm empty fruit bunches and a combination of 5 & 6% KOH and 0, 5 & 6% carbon nanotubes (CNTs) by weight. The electrodes from GMs containing CNTs were found to have lower specific BET surface area (SBET). The electrochemical behavior of the supercapacitor fabricated using the prepared electrodes were investigated by electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD). In general an addition of CNTs into the GMs reduces the equivalent series resistance (ESR) value of the cells. A cell fabricated using electrodes from GM with 5% CNT and 5% KOH was found to have the largest reduction of ESR value than that from the others GMs containing CNT. The cell has steeper Warburg's slope than that from its respective non-CNT GM, which reflect the smaller resistance for electrolyte ions to move into pores of electrodes despite these electrodes having largest reduction in specific BET surface area. The cell also has the smallest reduction of specific capacitance (Csp) and maintains the specific power range despite a reduction in the specific energy range due to the CNT addition.

  8. Assignment and rotational analysis of new absorption bands of carbon dioxide isotopologues in Venus spectra

    NASA Astrophysics Data System (ADS)

    Robert, S.; Borkov, Yu. G.; Vander Auwera, J.; Drummond, R.; Mahieux, A.; Wilquet, V.; Vandaele, A. C.; Perevalov, V. I.; Tashkun, S. A.; Bertaux, J. L.

    2013-01-01

    We present absorption bands of carbon dioxide isotopologues, detected by the Solar Occultation for the Infrared Range (SOIR) instrument on board the Venus Express Satellite. The SOIR instrument combines an echelle spectrometer and an Acousto-Optical Tunable Filter (AOTF) for order selection. It performs solar occultation measurements in the Venus atmosphere in the IR region (2.2-4.3 μm), at a resolution of 0.12-0.18 cm-1. The wavelength range probed by SOIR allows a detailed chemical inventory of the Venus atmosphere above the cloud layer (65-150 km) to be made with emphasis on the vertical distributions of gases. Thanks to the SOIR spectral resolution, a new CO2 absorption band was identified: the 21101-01101 band of 16O12C18O with R branch up to J=31. Two other previously reported bands were observed dispelling any doubts about their identifications: the 20001-00001 band of 16O13C18O [Villanueva G, et al. J Quant Spectrosc Radiat Transfer 2008;109:883-894] and the 01111-00001 band of 16O12C18O [Villanueva G, et al. J Quant Spectrosc Radiat Transfer 2008;109:883-894 and Wilquet V, et al. J Quant Spectrosc Radiat Transfer 2008;109:895-905]. These bands were analyzed, and spectroscopic constants characterizing them were obtained. The rotational assignment of the 20001-00001 band was corrected. The present measurements are compared with data available in the HITRAN database.

  9. THE 217.5 nm BAND, INFRARED ABSORPTION, AND INFRARED EMISSION FEATURES IN HYDROGENATED AMORPHOUS CARBON NANOPARTICLES

    SciTech Connect

    Duley, W. W.; Hu, Anming E-mail: a2hu@uwaterloo.ca

    2012-12-20

    We report on the preparation of hydrogenated amorphous carbon nanoparticles whose spectral characteristics include an absorption band at 217.5 nm with the profile and characteristics of the interstellar 217.5 nm feature. Vibrational spectra of these particles also contain the features commonly observed in absorption and emission from dust in the diffuse interstellar medium. These materials are produced under ''slow'' deposition conditions by minimizing the flux of incident carbon atoms and by reducing surface mobility. The initial chemistry leads to the formation of carbon chains, together with a limited range of small aromatic ring molecules, and eventually results in carbon nanoparticles having an sp {sup 2}/sp {sup 3} ratio Almost-Equal-To 0.4. Spectroscopic analysis of particle composition indicates that naphthalene and naphthalene derivatives are important constituents of this material. We suggest that carbon nanoparticles with similar composition are responsible for the appearance of the interstellar 217.5 nm band and outline how these particles can form in situ under diffuse cloud conditions by deposition of carbon on the surface of silicate grains. Spectral data from carbon nanoparticles formed under these conditions accurately reproduce IR emission spectra from a number of Galactic sources. We provide the first detailed fits to observational spectra of Type A and B emission sources based entirely on measured spectra of a carbonaceous material that can be produced in the laboratory.

  10. Line by Line Analysis of Carbon Dioxide Absorption for Predicting Global Warming

    NASA Astrophysics Data System (ADS)

    Smith, D. C.

    2010-12-01

    The anthropologic cause of global warming rests on the impact of CO2 on the green house effect. Previous derivations of the increase in the CO2 Forcing Function caused by doubling of atmospheric CO2 from 320 ppm to 640 ppm reported a value of 4 W/M2( Ramananathan,V,et al, J.of Geophysical Research Vol 84, C8,p4949, Aug.1979) This value leads to a calculated temperature rise of 1 deg.K (Charney,J. et al,”Carbon Dioxide and Climate: A Scientific Assessment”, National Academy of Science, Washington D.C., 1979). This increase in global temperature leads to an increase in water vapor if it is assumed that the relative humidity is constant. This ampflication leads to a calculated temperature rise of an additional 2 deg.K. Different arguments as to the effects of the earth’s albido change, clouds, and the oceans also impact the earths global warming with predictions of total temperature rise of as high as 6 deg.K { IPCC,2007 Summary for Policymakers. In: Climate Change 2007: The Physical Sciences Basis. Contributions of Working Group 1 to the Fourth Assessment Report of the IPCC [ Solomon,S,D. et al (eds)] Cambridge University Press, NY,USA}. Regardless of the other effects, the only way that man can be held responsible for global warming is by CO2 emissions and the resulting increase in the Forcing Function. This paper challenges the magnitude of the 4 W/M2 Forcing Function. The earth radiates in the 4 to 30 micron wavelength range. CO2 has absorption bands in the 4, 10, and 15 micron wavelengths (Hertzberg G. Molecular Spectra & Molecular Structure,Norstrand Co.,1960). McClatchey has tabulated the line stengths for all CO2 transitions and they are used to calculate the atmospheric absorption (McClatchey,R, et al “AFCRL Atmospheric Absorption Line Parameter Compilation”,AFCRL-TR-0096,1973). Detailed calculations of the CO2 line absorption in the 8 to 12 micron atmospheric window shows an increase of 0.3 W/M2 for CO2 doubling. The increase in absorbed fluence in

  11. Comparison of activated charcoal and ipecac syrup in prevention of drug absorption.

    PubMed

    Neuvonen, P J; Vartiainen, M; Tokola, O

    1983-01-01

    The efficacy of activated charcoal and ipecac syrup in the prevention of drug absorption was studied in 6 healthy adult volunteers, using a randomized, cross-over design. Paracetamol 1000 mg, tetracycline 500 mg and aminophylline 350 mg were ingested on an empty stomach with 100 ml water. Then, after 5 or 30 min, the subjects ingested, either activated charcoal suspension (50 g charcoal), syrup of ipecac, or, only after 5 min, water 300 ml. Activated charcoal, given either after 5 or 30 min, significantly (p less than 0.01 or less 0.05) reduced the absorption of these 3 drugs measured, for example as AUC0-24 h. Syrup of ipecac caused emesis on each occasion, with a mean delay of 15 min. When ipecac was given 5 min after the drugs, its effect on absorption was significant, but when it was given after 30 min only the absorption of tetracycline was reduced. Activated charcoal was significantly (p less than 0.05) more effective than ipecac in reducing drug absorption when given at the same time points. In cases of acute intoxication, depending on the quality and quantity of the drugs ingested, the relative efficacy of charcoal and ipecac may be somewhat different from that observed in the present study. Despite its emetic action, however, ipecac syrup is not very effective in preventing drug absorption and, in general, activated charcoal should also be given after induced emesis or gastric lavage. PMID:6134626

  12. Laser Based Instruments Using Differential Absorption Detection for Above and Below Ground Monitoring of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Humphries, S. D.; Barr, J. L.; Repasky, K. S.; Carlsten, J. L.; Spangler, L. H.; Dobeck, L. M.

    2008-12-01

    Carbon capture and sequestration in geologic formations provides a method to remove carbon dioxide (CO2) from entering the Earth's atmosphere. An important issue for the successful storage of CO2 is the ability to monitor geologic sequestration sites for leakage to verify site integrity. A field site for testing the performance of CO2 detection instruments and techniques has been developed by the Zero Emissions Research Technology (ZERT) group at Montana State University. A field experiment was conducted at the ZERT field site beginning July 9th, 2008 and ending August 7th, 2008 to test the performance of several CO2 detection instruments. The field site allows a controlled flow rate of CO2 to be released underground through a 100 m long horizontal pipe placed below the water table. A flow rate of 0.3 tons CO2/day was used for the entirety of this experiment. This paper describes the results from two laser based instruments that use differential absorption techniques to determine CO2 concentrations in real time both above and below the ground surface. Both instruments use a continuous wave (cw) temperature tunable distributed feedback (DFB) laser capable of tuning across several CO2 and water vapor absorption features between at 2003 nm and 2006 nm. The first instrument uses the DFB laser to measure path integrated atmospheric concentrations of CO2. The second instrument uses the temperature tunable DFB laser to monitor underground CO2 concentrations using a buried photonic bandgap optical fiber. The above ground instrument operated nearly continuously during the CO2 release experiment and an increase in atmospheric CO2 concentration above the release pipe of approximately 2.5 times higher than the background was observed. The underground instrument also operated continuously during the experiment and saw an increase in underground CO2 concentration of approximately 15 times higher than the background. These results from the 2008 ZERT field experiment demonstrate

  13. A facile method of activating graphitic carbon nitride for enhanced photocatalytic activity.

    PubMed

    Liao, Yongliang; Zhu, Shenmin; Chen, Zhixin; Lou, Xianghong; Zhang, Di

    2015-11-01

    Activated graphitic carbon nitride (g-C3N4) with enhanced photocatalytic capability under visible light irradiation was fabricated by using a facile chemical activation treatment method. In the chemical activation, a mixed solution of hydrogen peroxide and ammonia was employed. The yield can reach as high as 90% after the activation process. The activation process did not change the crystal structure, functional group, morphology and specific surface area of pristine g-C3N4, but it introduced H and O elements into the CN framework of g-C3N4, resulting in a broader optical absorption range, higher light absorption capability and more efficient separation of photogenerated electrons and holes. The photoactivity was investigated by the degradation of rhodamine B (RhB) under visible light irradiation. As compared to the pristine g-C3N4, the activated g-C3N4 exhibited a distinct and efficient two-step degradation process. It was found that the RhB dye in the activated g-C3N4 was mainly oxidized by the photogenerated holes. It is believed that sufficient holes account for the two-step degradation process because they would significantly improve the efficiency of the N-de-ethylation reaction of RhB. PMID:26437896

  14. Carbon nanomaterials: Biologically active fullerene derivatives.

    PubMed

    Bogdanović, Gordana; Djordjević, Aleksandar

    2016-01-01

    Since their discovery, fullerenes, carbon nanotubes, and graphene attract significant attention of researches in various scientific fields including biomedicine. Nano-scale size and a possibility for diverse surface modifications allow carbon nanoallotropes to become an indispensable nanostructured material in nanotechnologies, including nanomedicine. Manipulation of surface chemistry has created diverse populations of water-soluble derivatives of fullerenes, which exhibit different behaviors. Both non-derivatized and derivatized fullerenes show various biological activities. Cellular processes that underline their toxicity are oxidative, genotoxic, and cytotoxic responses.The antioxidant/cytoprotective properties of fullerenes and derivatives have been considered in the prevention of organ oxidative damage and treatment. The same unique physiochemical properties of nanomaterials may also be associated with potential health hazards. Non-biodegradability and toxicity of carbon nanoparticles still remain a great concern in the area of biomedical application. In this review, we report on basic physical and chemical properties of carbon nano-clusters--fullerenes, nanotubes, and grapheme--their specificities, activities, and potential application in biological systems. Special emphasis is given to our most important results obtained in vitro and in vivo using polyhydroxylated fullerene derivative C₆₀(OH)₂₄. PMID:27483572

  15. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates

    NASA Astrophysics Data System (ADS)

    Lu, Beihu; Xiao, Zuoan; Zhu, Hua; Xiao, Wei; Wu, Wenlong; Wang, Dihua

    2015-12-01

    Simple, affordable and green methods to improve capacitive properties of commercial activated carbon (AC) are intriguing since ACs possess a predominant role in the commercial supercapacitor market. Herein, we report a green reactivation of commercial ACs by soaking ACs in molten Na2CO3-K2CO3 (equal in mass ratios) at 850 °C combining the merits of both physical and chemical activation strategies. The mechanism of molten carbonate treatment and structure-capacitive activity correlations of the ACs are rationalized. Characterizations show that the molten carbonate treatment increases the electrical conductivity of AC without compromising its porosity and wettability of electrolytes. Electrochemical tests show the treated AC exhibited higher specific capacitance, enhanced high-rate capability and excellent cycle performance, promising its practical application in supercapacitors. The present study confirms that the molten carbonate reactivation is a green and effective method to enhance capacitive properties of ACs.

  16. Kinetics of adsorption with granular, powdered, and fibrous activated carbon

    SciTech Connect

    Shmidt, J.L.; Pimenov, A.V.; Lieberman, A.I.; Cheh, H.Y.

    1997-08-01

    The properties of three different types of activated carbon, fibrous, powdered, and granular, were investigated theoretically and experimentally. The adsorption rate of the activated carbon fiber was found to be two orders of magnitude higher than that of the granular activated carbon, and one order of magnitude higher than that of the powdered activated carbon. Diffusion coefficients of methylene blue in the fibrous, powdered, and granular activated carbons were determined experimentally. A new method for estimating the meso- and macropore surface areas in these carbons was proposed.

  17. Adsorption of chlorophenols on granular activated carbon

    SciTech Connect

    Yang, M.

    1993-12-31

    Studies were undertaken of the adsorption of chlorinated phenols from aqueous solution on granular activated carbon (Filtrasorb-400, 30 x 40 mesh). Single-component equilibrium adsorption data on the eight compounds in two concentration ranges at pH 7.0 fit the Langmuir equation better than the Freundlich equation. The adsorptive capacities at pH 7.0 increase from pentachlorophenol to trichlorophenols and are fairly constant from trichlorophenols to monochlorophenols. The adsorption process was found to be exothermic for pentachlorophenol and 2,4,6-trichlorophenol, and endothermic for 2,4-dichlorophenol and 4-chlorophenol. Equilibrium measurements were also conducted for 2,4,5-trichlorophenol, 2,4-dichlorophenol, and 4-chlorophenol over a wide pH range. A surface complexation model was proposed to describe the effect of pH on adsorption equilibria of chlorophenols on activated carbon. The simulations of the model are in excellent agreement with the experimental data. Batch kinetics studies were conducted of the adsorption of chlorinated phenols on granular activated carbon. The results show that the surface reaction model best describes both the short-term and long-term kinetics, while the external film diffusion model describes the short-term kinetics data very well and the linear-driving-force approximation improved its performance for the long-term kinetics. Multicomponent adsorption equilibria of chlorophenols on granular activated carbon was investigated in the micromolar equilibrium concentration range. The Langmuir competitive and Ideal Adsorbed Solution (IAS) models were tested for their performance on the three binary systems of pentachlorophenol/2,4,6-trichlorophenol, 2,4,6-trichlorophenol/2,4-dichlorophenol, and 2,4-dichlorophenol/4-chlorophenol, and the tertiary system of 2,4,6-trichlorophenol/2,4-dichlorophenol/4-chlorophenol, and found to fail to predict the two-component adsorption equilibria of the former two binary systems and the tertiary system.

  18. Aqueous mercury adsorption by activated carbons.

    PubMed

    Hadi, Pejman; To, Ming-Ho; Hui, Chi-Wai; Lin, Carol Sze Ki; McKay, Gordon

    2015-04-15

    Due to serious public health threats resulting from mercury pollution and its rapid distribution in our food chain through the contamination of water bodies, stringent regulations have been enacted on mercury-laden wastewater discharge. Activated carbons have been widely used in the removal of mercuric ions from aqueous effluents. The surface and textural characteristics of activated carbons are the two decisive factors in their efficiency in mercury removal from wastewater. Herein, the structural properties and binding affinity of mercuric ions from effluents have been presented. Also, specific attention has been directed to the effect of sulfur-containing functional moieties on enhancing the mercury adsorption. It has been demonstrated that surface area, pore size, pore size distribution and surface functional groups should collectively be taken into consideration in designing the optimal mercury removal process. Moreover, the mercury adsorption mechanism has been addressed using equilibrium adsorption isotherm, thermodynamic and kinetic studies. Further recommendations have been proposed with the aim of increasing the mercury removal efficiency using carbon activation processes with lower energy input, while achieving similar or even higher efficiencies. PMID:25644627

  19. X-ray absorption spectroscopic studies of the active sites of nickel- and copper-containing metalloproteins

    SciTech Connect

    Tan, G.O.

    1993-06-01

    X-ray absorption spectroscopy (XAS) is a useful tool for obtaining structural and chemical information about the active sites of metalloproteins and metalloenzymes. Information may be obtained from both the edge region and the extended X-ray absorption fine structure (EXAFS) or post-edge region of the K-edge X-ray absorption spectrum of a metal center in a compound. The edge contains information about the valence electronic structure of the atom that absorbs the X-rays. It is possible in some systems to infer the redox state of the metal atom in question, as well as the geometry and nature of ligands connected to it, from the features in the edge in a straightforward manner. The EXAFS modulations, being produced by the backscattering of the ejected photoelectron from the atoms surrounding the metal atom, provide, when analyzed, information about the number and type of neighbouring atoms, and the distances at which they occur. In this thesis, analysis of both the edge and EXAFS regions has been used to gain information about the active sites of various metalloproteins. The metalloproteins studied were plastocyanin (Pc), laccase and nickel carbon monoxide dehydrogenase (Ni CODH). Studies of Cu(I)-imidazole compounds, related to the protein hemocyanin, are also reported here.

  20. Lack of relationship between activity of intestinal alkaline phosphatase and calcium or phosphate absorption.

    PubMed

    Asteggiano, C; Tolosa, N; Pereira, R; Moreno, J; Cañas, F

    1981-01-01

    The effects of vitamin D3 and the aqueous extract of Solanum malacoxylon on intestinal alkaline phosphatase and tissue phosphate content were studied on rachitic chicks treated with large doses of ethane-1-hydroxy-1,1 diphosphonate (EHDP). The EHDP treatment blocks the increase of intestinal calcium or phosphate absorption induced by the vitamin D3, while it has no effects on the rise of intestinal alkaline phosphatase activity or the increment in tissue phosphate content. The lack of correlation between the increment of alkaline phosphatase and that of Ca or phosphate absorption in vitamin D3 plus EHDP treated chicks excludes a participation of the alkaline phosphatase in the mechanism of Ca or P intestinal absorption. The Ca or phosphorus absorption are elicited specifically by 1,25-(OH)2-D3, while alkaline phosphatase activity and phosphate tissue concentration respond to a broader spectrum of stimuli. PMID:6316731

  1. Optical Absorptions of Oxygenated Carbon Chain Cations in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Hardy, F.-X.; Rice, C. A.; Chakraborty, A.; Fulara, J.; Maier, J. P.

    2016-06-01

    The gas-phase electronic spectra of linear OC4O+ and a planar C6H2O+ isomer were obtained at a rotational temperature of ≈10 K. Absorption measurements in a 6 K neon matrix were followed by gas-phase observations in a cryogenic radiofrequency ion trap. The origin bands of the 1{}2{{{\\Pi }}}u ≤ftarrow X{}2{{{\\Pi }}}g transition of OC4O+ and the 1{}2A{}2 ≤ftarrow X{}2B1 of HCCC(CO)CCH+ lie at 417.31 ± 0.01 nm and 523.49 ± 0.01 nm, respectively. These constitute the first electronic spectra of oxygenated carbon chain cations studied under conditions that are relevant to the diffuse interstellar bands (DIBs), as both have a visible transition. The recent analysis of the 579.5 nm DIB indicates that small carriers, five to seven heavy atoms, continue to be possible candidates (Huang & Oka 2015). Astronomical implications are discussed regarding this kind of oxygenated molecules.

  2. Mid-infrared carbon monoxide detection system using differential absorption spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Dong, Ming; Sui, Yue; Li, Guo-lin; Zheng, Chuan-tao; Chen, Mei-mei; Wang, Yi-ding

    2015-11-01

    A differential carbon monoxide (CO) concentration sensing device using a self-fabricated spherical mirror (e.g. light-collector) and a multi-pass gas-chamber is presented in this paper. Single-source dual-channel detection method is adopted to suppress the interferences from light source, optical path and environmental changes. Detection principle of the device is described, and both the optical part and the electrical part are developed. Experiments are carried out to evaluate the sensing performance on CO concentration. The results indicate that at 1.013×105 Pa and 298 K, the limit of detection (LoD) is about 11.5 mg/m3 with an absorption length of 40 cm. As the gas concentration gets larger than 115 mg/m3 (1.013×105 Pa, 298 K), the relative detection error falls into the range of -1.7%—+1.9%. Based on 12 h long-term measurement on the 115 mg/m3 and 1 150 mg/m3 CO samples, the maximum detection errors are about 0.9% and 5.5%, respectively. Due to the low cost and competitive characteristics, the proposed device shows potential applications in CO detection in the circumstances of coal-mine production and environmental protection.

  3. Equilibrium and Absorption Kinetics of Carbon Dioxide by solid Supported Amine Sorbent

    SciTech Connect

    Monazam, Esmail R.; Shadle, Lawrence J.; Siriwardane, Ranjani

    2011-11-01

    The equilibrium and conversion-time data on the absorption of carbon dioxide (CO{sub 2}) with amine-based solid sorbent were analyzed over the range of 303–373 K. Data on CO{sub 2} loading on amine based solid sorbent at these temperatures and CO{sub 2} partial pressure between 10 and 760 mm Hg obtained from volumetric adsorption apparatus were fitted to a simple equilibrium model to generate the different parameters (including equilibrium constant) in the model. Using these constants, a correlation was obtained to define equilibrium constant and maximum CO{sub 2} loading as a function of temperature. In this study, a shrinking core model (SCM) was applied to elucidate the relative importance of pore diffusion and surface chemical reaction in controlling the rate of reaction. Application of SCM to the data suggested a surface reaction-controlled mechanism for the temperature of up to 40°C and pore-diffusion mechanism at higher temperature.

  4. Strong anisotropy in the THz absorption spectra of stretch-aligned single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Iwasa, Y.; Akima, N.; Matsui, H.; Toyota, N.; Brown, S.; Barbour, A. M.; Cao, J.; Musfeldt, J. L.; Shiraishi, M.; Shimoda, H.; Zhou, O.

    2006-03-01

    Polarized THz spectroscopy is crucial for understanding the low-energy electronic structure and carrier dynamics in single walled carbon nanotubes (SWNTs), as well as for exploring polarization-sensitive THz applications. We prepared stretch-aligned SWNT/polymer composites, and measured the polarized absorption spectra from the THz through the visible region. The low-frequency electronic excitations are predominantly polarized parallel to the tube direction. The peak centered near 100 cm-1 is discussed in terms of a curvature-induced gap and a plasmon resonance due to a finite size/wavelength effects in the SWNTs. The broad middle infrared structure that is observed in unoriented films with spaghetti-like morphology disappears in stretch-aligned samples, suggesting that this middle infrared feature may be due to in-gap states in the semiconducting tubes caused by the highly disordered morphology of the unoriented films. Hole doping effects were also investigated, and conversion of semiconducting tubes to more conducting ones is demonstrated.

  5. APPRAISAL OF POWDERED ACTIVATED CARBON PROCESSES FOR MUNICIPAL WASTEWATER TREATMENT

    EPA Science Inventory

    Powdered activated carbon has been the subject of several developmental efforts directed towards producing improved methods for treating municipal wastewaters. Granular activated carbon has proven itself as an effective means of reducing dissolved organic contaminant levels, but ...

  6. Factors affecting the behavior of unburned carbon upon steam activation

    NASA Astrophysics Data System (ADS)

    Lu, Zhe

    The main objective of this study is to investigate the factors that could affect the behavior of unburned carbon samples upon steam activation. Through this work, the relationships among the factors that could influence the carbon-steam reaction with the surface area of the produced activated carbon were explored. Statistical analysis was used to relate the chemical and physical properties of the unburned carbon to the surface area of the activated carbon. Six unburned carbons were selected as feedstocks for activated carbon, and marked as UCA through UCF. The unburned carbons were activated using steam at 850°C for 90 minutes, and the surface areas of their activated counterparts were measured using N2 adsorption isotherms at 77K. The activated carbons produced from different unburned carbon precursors presented different surface areas at similar carbon burn-off levels. Moreover, in different carbon burn-off regions, the sequences for surface area of activated carbons from different unburned carbon samples were different. The factors that may affect the carbon-steam gasification reactions, including the concentration of carbon active sites, the crystallite size of the carbon, the intrinsic porous structure of carbon, and the inorganic impurities, were investigated. All unburned carbons investigated in this study were similar in that they showed the very broad (002) and (10 ) carbon peaks, which are characteristic of highly disordered carbonaceous materials. In this study, the unburned carbon samples contained about 17--48% of inorganic impurities. Compared to coals, the unburned carbon samples contain a larger amount of inorganic impurities as a result of the burn-off, or at lease part, of the carbon during the combustion process. These inorganic particles were divided into two groups in terms of the way they are associated with carbon particles: free single particles, and particles combined with carbon particles. As indicated from the present work, unburned

  7. REACTION OF ACTIVATED CARBON WITH AQUEOUS CHLORINE AND CHLORINE DIOXIDE

    EPA Science Inventory

    The objective of this research was to determine whether aqueous chlorine and chlorine dioxide react with activated carbon, or with compounds adsorbed on activated carbon, to produce compounds that would not form in the absence of activated carbon. The experimental conditions were...

  8. Contribution of sorbitol combined with activated charcoal in prevention of salicylate absorption.

    PubMed

    Keller, R E; Schwab, R A; Krenzelok, E P

    1990-06-01

    The use of cathartics and activated charcoal in treating toxic ingestions has become a standard treatment modality. Sorbitol has been shown to be the most rapidly acting cathartic, but its therapeutic significance has been debated. Using a previously described aspirin overdose model, ten healthy volunteers participated in a crossover design study that investigated the effect of activated charcoal alone versus that of activated charcoal and sorbitol in preventing salicylate absorption. In phase 1 of the study, subjects consumed 2.5 g aspirin followed by 25 g activated charcoal one hour later. Urine was collected for 48 hours and analyzed for quantitative salicylate metabolites. Phase 2 was identical except that 1.5 g/kg sorbitol was consumed with the activated charcoal. The mean amount of aspirin absorbed without the use of sorbitol was 1.26 +/- 0.15 g, whereas the mean absorption was 0.912 +/- 0.18 g with the addition of sorbitol. This is a 28% decrease in absorption of salicylates attributable to the use of sorbitol. The difference is significant at P less than .05 by the paired Student's t test. This study demonstrates that the addition of sorbitol significantly decreases drug absorption in a simulated drug overdose model. Effects on absorption in actual overdose situations and on patient outcome should be the subjects of further study. PMID:2188536

  9. Hierarchically structured activated carbon for ultracapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Mok-Hwa; Kim, Kwang-Bum; Park, Sun-Min; Roh, Kwang Chul

    2016-02-01

    To resolve the pore-associated bottleneck problem observed in the electrode materials used for ultracapacitors, which inhibits the transport of the electrolyte ions, we designed hierarchically structured activated carbon (HAC) by synthesizing a mesoporous silica template/carbon composite and chemically activating it to simultaneously remove the silica template and increase the pore volume. The resulting HAC had a well-designed, unique porous structure, which allowed for large interfaces for efficient electric double-layer formation. Given the unique characteristics of the HAC, we believe that the developed synthesis strategy provides important insights into the design and fabrication of hierarchical carbon nanostructures. The HAC, which had a specific surface area of 1,957 m2 g-1, exhibited an extremely high specific capacitance of 157 F g-1 (95 F cc-1), as well as a high rate capability. This indicated that it had superior energy storage capability and was thus suitable for use in advanced ultracapacitors.

  10. Hierarchically structured activated carbon for ultracapacitors

    PubMed Central

    Kim, Mok-Hwa; Kim, Kwang-Bum; Park, Sun-Min; Roh, Kwang Chul

    2016-01-01

    To resolve the pore-associated bottleneck problem observed in the electrode materials used for ultracapacitors, which inhibits the transport of the electrolyte ions, we designed hierarchically structured activated carbon (HAC) by synthesizing a mesoporous silica template/carbon composite and chemically activating it to simultaneously remove the silica template and increase the pore volume. The resulting HAC had a well-designed, unique porous structure, which allowed for large interfaces for efficient electric double-layer formation. Given the unique characteristics of the HAC, we believe that the developed synthesis strategy provides important insights into the design and fabrication of hierarchical carbon nanostructures. The HAC, which had a specific surface area of 1,957 m2 g−1, exhibited an extremely high specific capacitance of 157 F g−1 (95 F cc−1), as well as a high rate capability. This indicated that it had superior energy storage capability and was thus suitable for use in advanced ultracapacitors. PMID:26878820

  11. Theoretical study of carbon dioxide activation by metals (Co, Cu, Ni) supported on activated carbon.

    PubMed

    Ha, Nguyen Ngoc; Ha, Nguyen Thi Thu; Van Khu, Le; Cam, Le Minh

    2015-12-01

    The activation of carbon dioxide (CO2) by catalytic systems comprising a transition metal (Co, Cu,Ni) on an activated carbon (AC) support was investigated using a combination of different theoretical calculation methods: Monte Carlo simulation, DFT and DFT-D, molecular dynamics (MD), and a climbing image nudged elastic band (CI-NEB) method. The results obtained indicate that CO2 is easily adsorbed by AC or MAC (M: Cu, Co, Ni). The results also showed that the process of adsorbing CO2 does not involve a transition state, and that NiAC and CoAC are the most effective of the MAC catalysts at adsorbing CO2. Adsorption on NiAC led to the strongest activation of the C-O bond, while adsorption on CuAC led to the weakest activation. Graphical Abstract Models of CO2 activation on: a)- activated carbon; b)- metal supported activated carbon (M-AC), where M: Co, Cu, Ni. PMID:26637187

  12. Local Structure Determination of Carbon/Nickel Ferrite Composite Nanofibers Probed by X-ray Absorption Spectroscopy.

    PubMed

    Nilmoung, Sukunya; Kidkhunthod, Pinit; Maensiri, Santi

    2015-11-01

    Carbon/NiFe2O4 composite nanofibers have been successfully prepared by electrospinning method using a various concentration solution of Ni and Fe nitrates dispersed into polyacrylonitride (PAN) solution in N,N' dimethylformamide. The phase and mophology of PAN/NiFe2O4 composite samples were characterized and investigated by X-ray diffraction and scanning electron microscopy. The magnetic properties of the prepared samples were measured at ambient temperature by a vibrating sample magnetometer. It is found that all composite samples exhibit ferromagnetism. This could be local-structurally explained by the existed oxidation states of Ni2+ and Fe3+ in the samples. Moreover, local environments around Ni and Fe ions could be revealed by X-ray absorption spectroscopy (XAS) measurement including X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS). PMID:26726677

  13. Relaxation of the V = 4,5,6,7, Sigma g/+/ vibrational levels of carbon monoxide studied by laser absorption.

    NASA Technical Reports Server (NTRS)

    Chackerian, C., Jr.; Weisbach, M. F.

    1973-01-01

    The vibrational relaxation of individual vibration rotation levels of carbon monoxide behind incident shock waves of carbon monoxide has been studied by the method of laser absorption. For the particular vibrational states (V = 4 to 7) and temperature range (2500 to 5500 K) studied, it is concluded that the characteristic relaxation times are in excellent agreement with those obtained via previous measurements of 'bulk' gas properties. Further, the data furnish strong corroboration of the idea that the individual levels are in Boltzmann vibrational equilibrium during the relaxation process.

  14. Angle-resolved x-ray absorption near edge structure study of vertically aligned single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Zhongrui; Zhang, Liang; Resasco, Daniel E.; Mun, Bongjin Simon; Requejo, Félix G.

    2007-03-01

    Vertically aligned single-walled carbon nanotube (SWNT) forest was studied by using angular-dependent C K-edge x-ray absorption near edge structure (XANES) with linearly polarized x-ray beam. The XANES analysis found a crust of entangled nanotubes on top of the forest formed at the first stage of the forest growth, which shapes the morphology of the entire forest and constricts the nanotubes to grow to the same length. It indicates that this type of SWNT forest has a different growth mechanism from the multiwalled carbon nanotube forest.

  15. Estimation of the Mass Absorption Cross Section of the Organic Carbon Component of Aerosols in the Mexico City Metropolitan Area

    SciTech Connect

    Barnard, James C.; Volkamer, Rainer M.; Kassianov, Evgueni I.

    2008-11-19

    Data taken from the MCMA-2003 and the 2006 MILAGRO field campaigns are used to examine the absorption of solar radiation by the organic component of aerosols. Using irradiance data from an Multi-Filter Rotating Shadowband Radiometer (MFRSR) and an actinic flux spectroradiometer, we find aerosol single scattering albedo, ω-0,λ, as a function of wavelength, λ. We find that in near-UV spectral range (defined here as 250 nm to 400 nm) ω-0,λ is much lower compared to ω-0,λ at 500 nm suggesting enhanced absorption in the near-UV range. Absorption by elemental carbon, dust, or gas cannot account for this enhanced absorption leaving only the organic part of the aerosol to account for it. We use data from a surface deployed Aerodyne Aerosol Mass Spectrometer (AMS) along with the inferred ω-0,λ to estimate the Mass Absorption Cross-section (MAC) for the organic carbon. We find that the MAC is about 10.5 m2/g at 300 nm and falls close to zero at about 500 nm; values that are roughly consistent with other estimates of organic carbon MAC. These MAC values can be considered as “radiatively correct” because when used in radiative transfer calculations the calculated irradiances match the measured irradiances at the wavelengths considered here. The uncertainties of individual estimates are quite large, ±30% at 300 nm for the random error, and even larger for a worst-case estimate of the systematic error, ±80%. The error represents the unusual circumstance where no error cancellation is permitted, and is unlikely ever to be realized.

  16. Characterization and Conductivity Behavior of Magnetic Activated Carbon (MAC) from FeCl2.4H2O-Containing Carbon

    NASA Astrophysics Data System (ADS)

    Aripin, Department Of Physics, Faculty Of Mathematics; Natural Science, Haluoleo University, Kampus Bumi Tridharma Anduonohu Kendari 93232 Indonesia

    2007-05-01

    Activated carbons (AC) and magnetic-containing activated carbons (MAC) have been synthesized using coconut shells as carbon sources and FeCl2.4H2O as magnetic precursor. The samples were characterized by nitrogen sorption, XRD, and FTIR. The BET surface area and total pore volume of MAC increase as the temperature increased. AC has XRD peaks, which evidences an amorphous carbon framework and MAC shows that this material consists of an organized carbon with the nanocrystalline magnetite embedded in its structure. The FTIR spectrum of MAC shows that carboxyl groups decreased as the temperature increased. Absorption bands of MAC shows the stretching and torsional vibration modes of the magnetite Fe-O bond in tetrahedral and octahedral sites, respectively. The electrical conductivity studies showed that conductivity of MAC is more than the AC due to structural properties of carbons exists on a framework containing metal structures.

  17. Development and Testing of a Scanning Differential Absorption Lidar For Carbon Sequestration Site Monitoring

    NASA Astrophysics Data System (ADS)

    Soukup, B.; Johnson, W.; Repasky, K. S.; Carlsten, J. L.

    2013-12-01

    A scanning differential absorption lidar (DIAL) instrument for carbon sequestration site monitoring is under development and testing at Montana State University. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the on-line absorption wavelength at 1571.4067 nm and the second operating at the off-line wavelength at 1571.2585 nm. Two in-line fiber optic switches are used to switch between on-line and off-line operation. After the fiber optic switches, an acousto-optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 J and a pulse repetition frequency of 15 kHz. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a fiber coupled photo-multiplier tube (PMT) module operating in the photon counting mode. The PMT has a 3% quantum efficiency, a dark count rate of 90 kHz, and a maximum count rate of 1 MHz. Recently, a fiber coupled avalanche photodiode (APD) operating in the geiger mode has been incorporated into the DIAL receiver. The APD has a quantum efficiency of 10%, a dark count rate of 10 kHz, and a maximum count rate of 1 MHz and provides a much larger dynamic range than the PMT. Both the PMT and APD provide TTL logic pulses that are monitored using a multichannel scaler card used to count the return photons as a function of time of flight and are thus interchangeable. The DIAL instrument was developed at the 1.571 m wavelength to take advantage of commercial-off-the-shelf components. The instrument is operated using a custom Labview program that switches to the DMLD operating at the on-line wavelength, locks this laser to a user defined wavelength setting, and collects return signals for a user defined time. The control program switches to the DMLD operating at the off

  18. Vibration damping with active carbon fiber structures

    NASA Astrophysics Data System (ADS)

    Neugebauer, Reimund; Kunze, Holger; Riedel, Mathias; Roscher, Hans-Jürgen

    2007-04-01

    This paper presents a mechatronic strategy for active reduction of vibrations on machine tool struts or car shafts. The active structure is built from a carbon fiber composite with embedded piezofiber actuators that are composed of piezopatches based on the Macro Fiber Composite (MFC) technology, licensed by NASA and produced by Smart Material GmbH in Dresden, Germany. The structure of these actuators allows separate or selectively combined bending and torsion, meaning that both bending and torsion vibrations can be actively absorbed. Initial simulation work was done with a finite element model (ANSYS). This paper describes how state space models are generated out of a structure based on the finite element model and how controller codes are integrated into finite element models for transient analysis and the model-based control design. Finally, it showcases initial experimental findings and provides an outlook for damping multi-mode resonances with a parallel combination of resonant controllers.

  19. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    DOEpatents

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  20. Direct determination and speciation of mercury compounds in environmental and biological samples by carbon bed atomic absorption spectroscopy

    SciTech Connect

    Skelly, E.M.

    1982-01-01

    A method was developed for the direct determination of mercury in water and biological samples using a unique carbon bed atomizer for atomic absorption spectroscopy. The method avoided sources of error such as loss of volatile mercury during sample digestion and contamination of samples through added reagents by eliminating sample pretreatment steps. The design of the atomizer allowed use of the 184.9 nm mercury resonance line in the vacuum ultraviolet region, which increased sensitivity over the commonly used spin-forbidden 253.7 nm line. The carbon bed atomizer method was applied to a study of mercury concentrations in water, hair, sweat, urine, blood, breath and saliva samples from a non-occupationally exposed population. Data were collected on the average concentration, the range and distribution of mercury in the samples. Data were also collected illustrating individual variations in mercury concentrations with time. Concentrations of mercury found were significantly higher than values reported in the literature for a ''normal'' population. This is attributed to the increased accuracy gained by eliminating pretreatment steps and increasing atomization efficiency. Absorption traces were obtained for various solutions of pure and complexed mercury compounds. Absorption traces of biological fluids were also obtained. Differences were observed in the absorption-temperatures traces of various compounds. The utility of this technique for studying complexation was demonstrated.

  1. Synthesis, characterization and microwave absorption properties of dendrite-like Fe3O4 embedded within amorphous sugar carbon matrix

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Wang, Liuding; Wu, Hongjing

    2014-01-01

    Magnetite dendrites/sugar carbon (MDs/SC) nanocomposites, embedding MDs within amorphous SC matrix, were prepared by simple carbonization-reduction method using α-Fe2O3 dendrites (HDs) as precursor of MDs and sucrose as SC source, while still maintain the dendritic shape of the precursor. The morphology, composition, structure and static magnetic properties of the as-prepared MDs/SC nanocomposites were characterized by various techniques thoroughly. Particularly, the electromagnetic and microwave absorption properties of the MDs/SC and MDs paraffin composites (40 wt.%) were compared over 2-14 GHz. The results show that the microwave absorption performance of MDs/SC samples is comparable or even superior to that of MDs case. The absorption band with reflection loss (RL) below -20 dB for one of the MDs/SC samples can cover the whole X-band (8-12 GHz) with thickness of 1.8-2.4 mm when the content of MDs in the MDs/SC nanocomposite is 25.8 wt.%, and the minimum RL can reach -49.9 dB at 12.1 GHz when the layer thickness is only 1.9 mm. The excellent microwave absorption properties of the MDs/SC paraffin composites are attributed to the proper match between the complex permittivity and permeability, and the unique fractal structures of MDs.

  2. X-ray Absorption Spectroscopy Identifies Calcium-Uranyl-Carbonate Complexes at Environmental Concentrations

    SciTech Connect

    Kelly, Shelly D; Kemner, Kenneth M; Brooks, Scott C

    2007-01-01

    Current research on bioremediation of uranium-contaminated groundwater focuses on supplying indigenous metal-reducing bacteria with the appropriate metabolic requirements to induce microbiological reduction of soluble uranium(VI) to poorly soluble uranium(IV). Recent studies of uranium(VI) bioreduction in the presence of environmentally relevant levels of calcium revealed limited and slowed uranium(VI) reduction and the formation of a Ca-UO2-CO3 complex. However, the stoichiometry of the complex is poorly defined and may be complicated by the presence of a Na-UO2-CO3 complex. Such a complex might exist even at high calcium concentrations, as some UO2-CO3 complexes will still be present. The number of calcium and/or sodium atoms coordinated to a uranyl carbonate complex will determine the net charge of the complex. Such a change in aqueous speciation of uranium(VI) in calcareous groundwater may affect the fate and transport properties of uranium. In this paper, we present the results from X-ray absorption fine structure (XAFS) measurements of a series of solutions containing 50 lM uranium(VI) and 30 mM sodium bicarbonate, with various calcium concentrations of 0-5 mM. Use of the data series reduces the uncertainty in the number of calcium atoms bound to the UO2-CO3 complex to approximately 0.6 and enables spectroscopic identification of the Na-UO2-CO3 complex. At nearly neutral pH values, the numbers of sodium and calcium atoms bound to the uranyl triscarbonate species are found to depend on the calcium concentration, as predicted by speciation calculations.

  3. X-ray absorption spectroscopy identifies calcium-uranyl-carbonate complexes at environmental concentrations.

    SciTech Connect

    Kelly, S. D.; Kemner, K. M.; Brooks, S. C.; Biosciences Division; ORNL

    2007-01-01

    Current research on bioremediation of uranium-contaminated groundwater focuses on supplying indigenous metal-reducing bacteria with the appropriate metabolic requirements to induce microbiological reduction of soluble uranium(VI) to poorly soluble uranium(IV). Recent studies of uranium(VI) bioreduction in the presence of environmentally relevant levels of calcium revealed limited and slowed uranium(VI) reduction and the formation of a Ca-UO{sub 2}-CO{sub 3} complex. However, the stoichiometry of the complex is poorly defined and may be complicated by the presence of a Na-UO{sub 2}-CO{sub 3} complex. Such a complex might exist even at high calcium concentrations, as some UO{sub 2}-CO{sub 3} complexes will still be present. The number of calcium and/or sodium atoms coordinated to a uranyl carbonate complex will determine the net charge of the complex. Such a change in aqueous speciation of uranium(VI) in calcareous groundwater may affect the fate and transport properties of uranium. In this paper, we present the results from X-ray absorption fine structure (XAFS) measurements of a series of solutions containing 50 {micro}M uranium(VI) and 30 mM sodium bicarbonate, with various calcium concentrations of 0-5 mM. Use of the data series reduces the uncertainty in the number of calcium atoms bound to the UO{sub 2}-CO{sub 3} complex to approximately 0.6 and enables spectroscopic identification of the Na-UO{sub 2}-CO{sub 3} complex. At nearly neutral pH values, the numbers of sodium and calcium atoms bound to the uranyl triscarbonate species are found to depend on the calcium concentration, as predicted by speciation calculations.

  4. Adsorbed natural gas storage with activated carbon

    SciTech Connect

    Sun, Jian; Brady, T.A.; Rood, M.J.

    1996-12-31

    Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

  5. Charcoal and activated carbon at elevated pressure

    SciTech Connect

    Antal, M.J. Jr.; Dai, Xiangfeng; Norberg, N.

    1995-12-01

    High quality charcoal has been produced with very high yields of 50% to 60% from macadamia nut and kukui nut shells and of 44% to 47% from Eucalyptus and Leucaena wood in a bench scale unit at elevated pressure on a 2 to 3 hour cycle, compared to commercial practice of 25% to 30% yield on a 7 to 12 day operating cycle. Neither air pollution nor tar is produced by the process. The effects of feedstock pretreatments with metal additives on charcoal yield are evaluated in this paper. Also, the influences of steam and air partial pressure and total pressure on yields of activated carbon from high yield charcoal are presented.

  6. Production of activated carbon from TCR char

    NASA Astrophysics Data System (ADS)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  7. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface

    SciTech Connect

    Erikat, I. A.; Hamad, B. A.

    2013-11-07

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir–C and Ir–Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  8. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface.

    PubMed

    Erikat, I A; Hamad, B A

    2013-11-01

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule. PMID:24206318

  9. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface

    NASA Astrophysics Data System (ADS)

    Erikat, I. A.; Hamad, B. A.

    2013-11-01

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  10. Nanoconfinement in activated mesoporous carbon of calcium borohydride for improved reversible hydrogen storage.

    PubMed

    Comănescu, Cezar; Capurso, Giovanni; Maddalena, Amedeo

    2012-09-28

    Mesoporous carbon frameworks were synthesized using the soft-template method. Ca(BH(4))(2) was incorporated into activated mesoporous carbon by the incipient wetness method. The activation of mesoporous carbon was necessary to optimize the surface area and pore size. Thermal programmed absorption measurements showed that the confinement of this borohydride into carbon nanoscaffolds improved its reversible capacity (relative to the reactive portion) and performance of hydrogen storage compared to unsupported borohydride. Hydrogen release from the supported hydride started at a temperature as low as 100 °C and the dehydrogenation rate was fast compared to the bulk borohydride. In addition, the hydrogen pressure necessary to regenerate the borohydride from the dehydrogenation products was reduced. PMID:22948563

  11. The Effects of Void Geometry and Contact Angle on the Absorption of Liquids into Porous Calcium Carbonate Structures.

    PubMed

    Ridgway, Cathy J.; Schoelkopf, Joachim; Matthews, G. Peter; Gane, Patrick A. C.; James, Philip W.

    2001-07-15

    The absorption (permeation) of alcohols into porous blocks of calcium carbonate has been studied experimentally and with a computer model. The experimental measurement was of change in apparent weight of a block with time after contact with liquid. The modeling used the previously developed 'Pore-Cor' model, based on unit cells of 1000 cubic pores connected by cylindrical throats. To gain some insight into absorption into voids of complex geometry, and to provide a representation of heterogeneities in surface interaction energy, the cylindrical throats were converted to double cones. Relative to cylinders, such geometries caused hold-ups of the percolation of nonwetting fluids with respect to increasing applied pressure, and a change in the rate of absorption of wetting fluids. Both the measured absorption of the alcohols and the simulated absorption of the alcohols and of water showed significant deviations from that predicted by an effective hydraulic radius approximation. The simulation demonstrated the development of a highly heterogeneous wetting front, and of preferred wetting pathways that were perturbed by inertial retardation. The findings are useful in the design of high-performance, low-waste pigments for paper coatings, and environmentally friendly printing inks, as well as in wider industrial, environmental, and geological contexts. Copyright 2001 Academic Press. PMID:11427007

  12. The regeneration of polluted activated carbon by radiation techniques

    NASA Astrophysics Data System (ADS)

    Minghong, Wu; Borong, Bao; Ruimin, Zhou; Jinliang, Zhu; Longxin, Hu

    1998-10-01

    In this paper, the regeneration of used activated carbon from monosodium glutamate factory was experimented using radiation and acid-alkali chemical cleaning method. Results showed that the activated carbon saturated with pollutants can be wash away easily by flushing with chemical solution prior irradiation. DSC was used to monitor the change of carbon adsorption

  13. Quantitative Evaluation of the Carbon Hybridization State by Near Edge X-ray Absorption Fine Structure Spectroscopy.

    PubMed

    Mangolini, Filippo; McClimon, J Brandon; Carpick, Robert W

    2016-03-01

    The characterization of the local bonding configuration of carbon in carbon-based materials is of paramount importance since the properties of such materials strongly depend on the distribution of carbon hybridization states, the local ordering, and the degree of hydrogenation. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectroscopy is one of the most powerful techniques for gaining insights into the bonding configuration of near-surface carbon atoms. The common methodology for quantitatively evaluating the carbon hybridization state using C 1s NEXAFS measurements, which is based on the analysis of the sample of interest and of a highly ordered pyrolytic graphite (HOPG) reference sample, was reviewed and critically assessed, noting that inconsistencies are found in the literature in applying this method. A theoretical rationale for the specific experimental conditions to be used for the acquisition of HOPG reference spectra is presented together with the potential sources of uncertainty and errors in the correctly computed fraction of sp(2)-bonded carbon. This provides a specific method for analyzing the distribution of carbon hybridization state using NEXAFS spectroscopy. As an illustrative example, a hydrogenated amorphous carbon film was analyzed using this method and showed good agreement with X-ray photoelectron spectroscopy (which is surface sensitive). Furthermore, the results were consistent with analysis from Raman spectroscopy (which is not surface sensitive), indicating the absence of a structurally different near-surface region in this particular thin film material. The present work can assist surface scientists in the analysis of NEXAFS spectra for the accurate characterization of the structure of carbon-based materials. PMID:26814796

  14. Evidence for Mg-rich carbonates on Mars from a 3.9 μm absorption feature

    NASA Astrophysics Data System (ADS)

    Palomba, Ernesto; Zinzi, Angelo; Cloutis, Edward A.; D'Amore, Mario; Grassi, Davide; Maturilli, Alessandro

    2009-09-01

    The origin and nature of the early atmosphere of Mars is still debated. The discovery of sulfate deposits on the surface, coupled with the evidence that there are not large abundances of carbonates detectable on Mars in the optically accessible part of the regolith, leaves open different paleoclimatic evolutionary pathways. Even if carbonates are responsible for the feature observed by TES and Mini-TES at 6.76 μm, alternative hypotheses suggest that it could be due to the presence of Hydrated Iron Sulfates (HIS). Carbonates can be discerned from HIS by investigating the spectral region in which a strong overtone carbonate band is present. The Planetary Fourier Spectrometer on board the Mars Express spacecraft has acquired several thousand martian spectra in the range 1.2-45 μm since January 2004, most of which show a weak absorption feature between 3.8 and 4 μm. A similar feature was observed previously from the Earth, but its origin could not be straightforwardly ascribed to surface materials, and specifically to carbonates. Here we show the surficial nature of this band that can be ascribed to carbonate mixed with the martian soil materials. The materials that best reproduce the detected feature are Mg-rich carbonates (huntite [CaMg 3(CO 3) 4] and/or magnesite [MgCO 3]). The presence of carbonates is demonstrated in both bright and dark martian regions. An evaluation of the likeliest abundance gives an upper limit of ˜10 wt%. The widespread distribution of carbonates supports scenarios that suggest carbonate formation occurred not by precipitation in a water-rich environment but by weathering processes.

  15. Preparation of binderless activated carbon monolith from pre-carbonization rubber wood sawdust by controlling of carbonization and activation condition

    NASA Astrophysics Data System (ADS)

    Taer, E.; Deraman, M.; Taslim, R.; Iwantono

    2013-09-01

    Binderless activated carbon monolith (ACM) was prepared from pre-carbonized rubber wood sawdust (RWSD). The effect of the carbonization temperature (400, 500, 600, 700, 800 dan 900 °C) on porosity characteristic of the ACM have been studied. The optimum carbonization temperature for obtaining ACM with high surface area of 600 °C with CO2 activation at 800 °C for one hour. At this condition, the surface area as high as 733 m2 g-1 could be successfully obtained. By improved the activation temperature at 900 °C for 2.5 h, it was found that the surface area of 860 m2 g-1. For this condition, the ACM exhibit the specific capacitance of 90 F g-1. In addition the termogravimertic (TG)-differential termografimertic (DTG) and field emission scanning electron microscope (FESEM) measurement were also performed on the ACMs and the result has been studied. Finally, it was conclude that the high surface area of ACM from RWSD could be produced by proper selections of carbonization and activation condition.

  16. Plant diversity increases soil microbial activity and soil carbon storage.

    PubMed

    Lange, Markus; Eisenhauer, Nico; Sierra, Carlos A; Bessler, Holger; Engels, Christoph; Griffiths, Robert I; Mellado-Vázquez, Perla G; Malik, Ashish A; Roy, Jacques; Scheu, Stefan; Steinbeiss, Sibylle; Thomson, Bruce C; Trumbore, Susan E; Gleixner, Gerd

    2015-01-01

    Plant diversity strongly influences ecosystem functions and services, such as soil carbon storage. However, the mechanisms underlying the positive plant diversity effects on soil carbon storage are poorly understood. We explored this relationship using long-term data from a grassland biodiversity experiment (The Jena Experiment) and radiocarbon ((14)C) modelling. Here we show that higher plant diversity increases rhizosphere carbon inputs into the microbial community resulting in both increased microbial activity and carbon storage. Increases in soil carbon were related to the enhanced accumulation of recently fixed carbon in high-diversity plots, while plant diversity had less pronounced effects on the decomposition rate of existing carbon. The present study shows that elevated carbon storage at high plant diversity is a direct function of the soil microbial community, indicating that the increase in carbon storage is mainly limited by the integration of new carbon into soil and less by the decomposition of existing soil carbon. PMID:25848862

  17. Subterranean Carbon Dioxide Concentration Analysis Utilizing a Scalable Optical Fiber-Based Absorption Cell Array for Carbon Capture and Storage Site Integrity Monitoring

    NASA Astrophysics Data System (ADS)

    Wicks, G. R.; Soukup, B.; Repasky, K. S.; Carlsten, J.

    2011-12-01

    Geologic carbon sequestration is a means to mitigate the increasing atmospheric concentration of carbon dioxide (CO2) by capturing the CO2 at a source such as a power generation facility and storing the captured CO2 in geologic formations. Many technological advances will need to occur for successful carbon sequestration, including near surface monitoring tools and techniques to ensure site integrity and public safety. Researchers at Montana State University (MSU) are developing a scalable fiber sensor array in a call/return configuration for monitoring near sub-surface CO2 concentrations for the purpose of carbon sequestration site integrity monitoring. The system measures CO2 concentrations through the application of tunable diode laser absorption spectroscopy (TDLAS). The instrument utilizes four fiber probes (absorption cells) connected to a detector, a fiber-optic beam splitter, and a 1 x 4 fiber-optic micro-electromechanical (MEMS) switch that can direct the light to one of the four probes, and employs a single tunable distributed feedback (DFB) diode laser with a center wavelength of 2.004 μm to access CO2 absorption features. The fiber sensor array can easily be reconfigured by simply moving the fiber probes. Low cost is achieved by using inexpensive passive components in the probes while limiting the number of the more expensive components including the DFB laser, the detector, and the 1 X 4 MEMS switch. The fiber sensor system was tested over a sixty day period centered on a thirty day controlled CO2 release at the Zero Emission Research Technology (ZERT) facility that was developed for sub-surface and near surface carbon sequestration monitoring research. In this presentation, the design of the fiber sensor array system will be presented, along with the system performance during the sixty day monitoring experiment.

  18. REPEATED REDUCTIVE AND OXIDATIVE TREATMENTS ON GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Fenton oxidation and Fenton oxidation preceded by reduction solutions were applied to granular activated carbon (GAC) to chemically regenerate the adsorbent. No adsorbate was present on the GAC so physicochemical effects from chemically aggressive regeneration of the carbon coul...

  19. DISINFECTION OF BACTERIA ATTACHED TO GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Heterotrophic plate count bacteria, coliform organisms, and pathogenic microorganisms attached to granular activated carbon (GAC) particles were examined for their susceptibility to chlorine disinfection. When these bacteria were grown on carbon particles and then disinfected wit...

  20. OH 1.563 micron Absorption from Starspots on Active Stars

    NASA Astrophysics Data System (ADS)

    O'Neal, Douglas; Neff, James E.

    1997-03-01

    We present results from a study of starspots on active stars using a pair of vibrational-rotational absorption lines of the OH molecule near 1.563mu m. We detect excess OH absorption due to dark, cool starspots on the RS CVn binaries II Pegasi, V1762 Cygni, and lambda Andromedae. This is the first detection of OH absorption from spots on stars other than the Sun. We have measured absorption equivalent widths of these OH lines (which are blended at the resolution of our observations) in inactive giant and dwarf stars of spectral types G, K, and M. We find that the total equivalent width of the line pair increases approximately linearly as effective temperature decreases from 5000 K to 3000 K. This greatly extends the temperature range over which starspots can be detected through molecular absorption features. We measure starspot filling factors by fitting the spectra of active stars with linear combinations of comparison star spectra representing the spot and non-spot regions of the star. Fitting only one spectral feature, we cannot derive independent constraints on starspot area and temperature. Assuming spot temperatures based on previous analyses, we find (for one epoch) spot filling factors between 35% and 48% for II Peg, 22% and 26% for lambda And, and 27% and 32% for V1762 Cyg.

  1. REACTIONS OF CHLORITE WITH ACTIVATED CARBON AND WITH VANILLIC ACID AND INDAN ADSORBED ON ACTIVATED CARBON

    EPA Science Inventory

    The reaction between chlorite (CO2(-1)) and vanillic acid, at pH 6.0 in the presence of granular activated carbon (GAC), yielded several reaction products identifiable by GC/MS; no products were found in the absence of GAC. Indan and ClO2 or ClO2(-1) reacted in aqueous solution a...

  2. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  3. Airborne intercomparison of vacuum ultraviolet fluorescence and tunable diode laser absorption measurements of tropospheric carbon monoxide

    NASA Astrophysics Data System (ADS)

    Holloway, John S.; Jakoubek, Roger O.; Parrish, David D.; Gerbig, Christoph; Volz-Thomas, Andreas; Schmitgen, Sandra; Fried, Alan; Wert, Brian; Henry, Bruce; Drummond, James R.

    2000-01-01

    During the fall 1997 North Atlantic Regional Experiment (NARE 97), two separate intercomparisons of aircraft-based carbon monoxide measurement instrumentation were conducted. On September 2, CO measurements were simultaneously made aboard the National Oceanic and Atmospheric Administration (NOAA) WP-3 by vacuum ultraviolet (VUV) fluorescence and by tunable diode laser absorption spectroscopy (TDLAS). On September 18, an intercomparison flight was conducted between two separate instruments, both employing the VUV fluorescence method, on the NOAA WP-3 and the U.K. Meteorological Office C-130 Hercules. The results indicate that both of the VUV fluorescence instruments and the TDLAS system are capable of measuring ambient CO accurately and precisely with no apparent interferences in 5 s. The accuracy of the measurements, based upon three independent calibration systems, is indicated by the agreement to within 11% with systematic offsets of less than 1 ppbv. In addition, one of the groups participated in the Measurement of Air Pollution From Satellite (MAPS) intercomparison [Novelli et al., 1998] with a different measurement technique but very similar calibration system, and agreed with the accepted analysis to within 5%. The precision of the measurements is indicated by the variability of the ratio of simultaneous measurements from the separate instruments. This variability is consistent with the estimated precisions of 1.5 ppbv and 2.2 ppbv for the 5 s average results of the C-130 and the WP-3 instruments, respectively, and indicates a precision of approximately 3.6% for the TDLAS instrument. The excellent agreement of the instruments in both intercomparisons demonstrates that significant interferences in the measurements are absent in air masses that ranged from 7 km in the midtroposphere to boundary layer conditions including subtropical marine air and continental outflow with embedded urban plumes. The intercomparison of the two VUV instruments that differed widely

  4. Involvement of active sodium transport in the rectal absorption of gentamicin sulfate in the presence and absence of absorption-promoting adjuvants.

    PubMed

    Fix, J A; Porter, P A; Leppert, P S

    1983-06-01

    The involvement of active sodium transport in the rectal absorption of gentamicin sulfate was examined in rats, employing aqueous microenemas of known total ionic strength (mu) in the presence or absence of absorption-promoting adjuvants. Rectal gentamicin bio-availability, which is negligible (1 +/- 1.2%) at an ionic strength of 0.15 without adjuvants, is significantly (p less than 0.01) increased by including adjuvants in the formulation (sodium salicylate, 12 +/- 4.0%; sodium-5-bromosalicylate, 59 +/- 15.1%; disodium ethylene (dinitrilo)tetraacetate, 24 +/- 9.3%). Pretreating the rectal mucosa cells with ouabain, a specific inhibitor of active sodium transport, significantly (p less than 0.01) reduced gentamicin absorption in response to all three adjuvants. In contrast to previous findings with sodium chloride, high ionic strength choline chloride (mu = 1.056) did not promote gentamicin absorption. The data indicate that active sodium transport is an integral component of rectal absorption of water-soluble compounds and may be involved in the mechanism of action of absorption-promoting adjuvants. PMID:6875833

  5. Shock tube measurements of the optical absorption of triatomic carbon, C3

    NASA Technical Reports Server (NTRS)

    Jones, J. J.

    1977-01-01

    The spectral absorption of C3 has been measured in a shock tube using a test gas mixture of acetylene diluted with argon. The absorption of a pulsed xenon light source was measured by means of eight photomultiplier channels to a spectrograph and an accompanying drum camera. The postshock test gas temperature and pressure were varied over the range 3300-4300 K and 0.36 to 2.13 atmospheres, respectively. The results showed appreciable absorption from C3 for the wavelength range 300 to 540 nanometers. The computed electronic oscillator strength varied from 0.12 to 0.06 as a function of temperature.

  6. Absorption and scattering properties of organic carbon vs. sulfate dominant aerosols at Gosan climate observatory in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Lim, S.; Lee, M.; Kim, S.-W.; Yoon, S.-C.; Lee, G.; Lee, Y.

    2013-12-01

    Carbonaceous and soluble ionic species of PM1.0 and PM10 were measured along with the absorption and scattering properties and aerosol number size distributions at Gosan climate observatory (GCO) from January to September 2008. The daily averaged equivalent black carbon (EBC) measured as aerosol absorption exhibited two types of spectral dependence with a distinct maximum (peak) at either 370 nm or 880 nm, by which two subsets were extracted and classified into the respective groups (370 nm and 880 nm). The 370 nm group was distinguished by high organic carbon (OC) concentrations relative to elemental carbon (EC) and sulfate, but sulfate was predominant for the 880 nm group. The PM1.0 OC of the 370 nm group was mainly composed of refractory and pyrolized components that correlated well with PM1.0 EC1, referred to as char EC, which suggests biofuel and biomass combustion as the source of these OC fractions, particularly during winter. The scanning electron microscope (SEM) images and the number size distributions implied that aerosols of the 370 nm group were externally mixed upon transport in fast-moving air masses that passed through the Beijing area in about one day. In contrast, the aerosols of the 880 nm group were characterized by high sulfate concentrations, and seemed to be internally mixed during slow transport over the Yellow Sea region over approximately two to four days. The absorption and scattering coefficients of the 880 nm group were noticeably higher compared to those of the 370 nm group. The average absorption ångström exponent (AAE) was estimated to be 1.29 and 1.0 for the 370 nm and 880 nm groups, respectively, in the range 370-950 nm. These results demonstrated that the optical properties of aerosols were intimately linked to chemical composition and mixing state, characteristics determined both by source and atmospheric aging processes. In OC dominant aerosols, absorption was enhanced in the UV region, which was possibly due to refractory and

  7. Absorption and scattering properties of organic carbon versus sulfate dominant aerosols at Gosan climate observatory in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Lim, S.; Lee, M.; Kim, S.-W.; Yoon, S.-C.; Lee, G.; Lee, Y. J.

    2014-08-01

    Carbonaceous and soluble ionic species of PM1.0 and PM10 were measured along with the absorption and scattering properties and aerosol number size distributions at Gosan Climate Observatory (GCO) from January to September 2008. The daily averaged equivalent black carbon (EBC) measured as aerosol absorption exhibited two types of spectral dependence with a distinct maximum (peak) at either 370 nm or 880 nm, by which two subsets were extracted and classified into the respective groups (370 and 880 nm). The 370 nm group was distinguished by high organic carbon (OC) concentrations relative to elemental carbon (EC) and sulfate, but sulfate was predominant for the 880 nm group. The PM1.0 OC of the 370 nm group was mainly composed of refractory and pyrolized components that correlated well with PM1.0 EC1, referred to as char EC, which suggests biofuel and biomass combustion as the source of these OC fractions, particularly during winter. The scanning electron microscope (SEM) images and the number size distributions implied that aerosols of the 370 nm group were externally mixed upon transport in fast-moving air masses that passed through the Beijing area in about one day. In contrast, the aerosols of the 880 nm group were characterized by high sulfate concentrations, and seemed to be internally mixed during slow transport over the Yellow Sea region over approximately 2 to 4 days. The absorption and scattering coefficients of the 880 nm group were noticeably higher compared to those of the 370 nm group. The average absorption ångström exponent (AAE) was estimated to be 1.29 and 1.0 for the 370 and 880 nm groups, respectively, in the range 370-950 nm. These results demonstrated that the optical properties of aerosols were intimately linked to chemical composition and mixing state, characteristics determined both by source and atmospheric aging processes. In OC dominant aerosols, absorption was enhanced in the UV region, which was possibly due to refractory and pyrolized

  8. Quantitative Measurement of Protease-Activity with Correction of Probe Delivery and Tissue Absorption Effects

    PubMed Central

    Salthouse, Christopher D.; Reynolds, Fred; Tam, Jenny M.; Josephson, Lee; Mahmood, Umar

    2009-01-01

    Proteases play important roles in a variety of pathologies from heart disease to cancer. Quantitative measurement of protease activity is possible using a novel spectrally matched dual fluorophore probe and a small animal lifetime imager. The recorded fluorescence from an activatable fluorophore, one that changes its fluorescent amplitude after biological target interaction, is also influenced by other factors including imaging probe delivery and optical tissue absorption of excitation and emission light. Fluorescence from a second spectrally matched constant (non-activatable) fluorophore on each nanoparticle platform can be used to correct for both probe delivery and tissue absorption. The fluorescence from each fluorophore is separated using fluorescence lifetime methods. PMID:20161242

  9. Metal-carbon nanocomposites based on activated IR pyrolized polyacrylonitrile

    NASA Astrophysics Data System (ADS)

    Efimov, Mikhail N.; Zhilyaeva, Natalya A.; Vasilyev, Andrey A.; Muratov, Dmitriy G.; Zemtsov, Lev M.; Karpacheva, Galina P.

    2016-05-01

    In this paper we report about new approach to preparation of metal-carbon nanocomposites based on activated carbon. Polyacrylonitrile is suggested as a precursor for Co, Pd and Ru nanoparticles carbon support which is prepared under IR pyrolysis conditions of a precursor. The first part of the paper is devoted to study activated carbon structural characteristics dependence on activation conditions. In the second part the effect of type of metal introduced in precursor on metal-carbon nanocomposite structural characteristics is shown. Prepared AC and nanocomposite samples are characterized by BET, TEM, SEM and X-ray diffraction.

  10. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    NASA Astrophysics Data System (ADS)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  11. The application of atomic absorption spectrometry for the determination of residual active pharmaceutical ingredients in cleaning validation samples.

    PubMed

    Bubnič, Zoran; Urleb, Uroš; Kreft, Katjuša; Veber, Marjan

    2011-03-01

    The objective of this work was the development and validation of atomic absorption spectrometric (AAS) methods for the determination of residual active pharmaceutical ingredients (API) in rinse samples for cleaning validation. AAS as an indirect method for the determination of API in rinse samples can be applied when it is in the form of salt with metal ions or when the metal ion is a part of the API's structure. The electrothermal AAS methods (aqueous and ethanol medium) for the determination of magnesium in esomeprazole magnesium and the flame AAS method for the determination of lithium in lithium carbonate in rinse samples were developed. Various combinations of solvents were tested and a combination of 1% aqueous or ethanol solution of nitric acid for esomeprazole magnesium and 0.1% aqueous solution of nitric acid for lithium carbonate were found to be the most suitable. The atomization conditions in the graphite furnace and in the flame were carefully studied to avoid losses of analyte and to achieve suitable sensitivity. The cleaning verification methods were validated with respect to accuracy, precision, linearity, limit of detection, and quantification. In all the cases, the limits of detection were at the microgram level. The methods were successfully applied for the determination of esomeprazole magnesium and lithium carbonate in rinse samples from cleaning procedures. PMID:20923390

  12. Activated Carbon Composites for Air Separation

    SciTech Connect

    Baker, Frederick S; Contescu, Cristian I; Tsouris, Costas; Burchell, Timothy D

    2011-09-01

    Coal-derived synthesis gas is a potential major source of hydrogen for fuel cells. Oxygen-blown coal gasification is an efficient approach to achieving the goal of producing hydrogen from coal, but a cost-effective means of enriching O2 concentration in air is required. A key objective of this project is to assess the utility of a system that exploits porous carbon materials and electrical swing adsorption to produce an O2-enriched air stream for coal gasification. As a complement to O2 and N2 adsorption measurements, CO2 was used as a more sensitive probe molecule for the characterization of molecular sieving effects. To further enhance the potential of activated carbon composite materials for air separation, work was implemented on incorporating a novel twist into the system; namely the addition of a magnetic field to influence O2 adsorption, which is accompanied by a transition between the paramagnetic and diamagnetic states. The preliminary findings in this respect are discussed.

  13. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    NASA Astrophysics Data System (ADS)

    Byamba-Ochir, Narandalai; Shim, Wang Geun; Balathanigaimani, M. S.; Moon, Hee

    2016-08-01

    Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816-2063 m2/g and of 0.55-1.61 cm3/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  14. Determination of Chemical States of Mercury on Activated Carbon Using XANES

    SciTech Connect

    Takaoka, Masaki; Takeda, Nobuo; Oshita, Kazuyuki; Yamamoto, Takashi; Tanaka, Tsunehiro; Uruga, Tomoya

    2007-02-02

    Although the adsorption of mercury vapor onto activated carbon is a widely used technology to prevent environmental release, the adsorption mechanism is not clearly understood. In this study, we determined the chemical states of mercury on two kinds of activated carbon using X-ray absorption near-edge spectroscopy (XANES) to elucidate the adsorption mechanism. The adsorption experiments of elemental mercury onto activated carbon were conducted under air and nitrogen atmospheres at temperatures of 20 and 160 deg. C. Two types of activated carbon were prepared. X-ray absorption fine structure (XAFS) measurements were carried out on beamline BL01B1 at SPring-8. Hg-LIII edge XANES spectra suggested that chemical adsorption of elemental mercury on the activated carbon occurred in the 20-160 deg. C temperature range. According to the XANES spectra, a difference occurred in the chemical states of mercury between AC no. 1 and AC no. 2. The Hg XANES spectra on AC no. 1 were similar to those of Hg2Cl2 and HgS, and the Hg XANES spectra on AC no. 2 were similar to that of HgO, which suggested that nitric acid treatment removed sulfur from AC no. 1 and functional groups that were strong oxidizers on the surface of AC no. 2 created HgO. According to the EXAFS oscillation, a difference occurred in the chemical states of mercury on AC no. 1 between 20 and 160 deg. C. We found that impurities and oxidant functional groups on activated carbon play key roles in mercury adsorption.

  15. Characterization of Oxygen Containing Functional Groups on Carbon Materials with Oxygen K-edge X-ray Absorption Near Edge Structure Spectroscopy

    SciTech Connect

    K Kim; P Zhu; L Na; X Ma; Y Chen

    2011-12-31

    Surface functional groups on carbon materials are critical to their surface properties and related applications. Many characterization techniques have been used to identify and quantify the surface functional groups, but none is completely satisfactory especially for quantification. In this work, we used oxygen K-edge X-ray absorption near edge structure (XANES) spectroscopy to identify and quantify the oxygen containing surface functional groups on carbon materials. XANES spectra were collected in fluorescence yield mode to minimize charging effect due to poor sample conductivity which can potentially distort XANES spectra. The surface functional groups are grouped into three types, namely carboxyl-type, carbonyl-type, and hydroxyl-type. XANES spectra of the same type are very similar while spectra of different types are significantly different. Two activated carbon samples were analyzed by XANES. The total oxygen contents of the samples were estimated from the edge step of their XANES spectra, and the identity and abundance of different functional groups were determined by fitting of the sample XANES spectrum to a linear combination of spectra of the reference compounds. It is concluded that oxygen K-edge XANES spectroscopy is a reliable characterization technique for the identification and quantification of surface functional groups on carbon materials.

  16. Carbon Dioxide Absorption and Release Properties of Pyrolysis Products of Dolomite Calcined in Vacuum Atmosphere

    PubMed Central

    Wang, Fei; Kuzuya, Toshihiro; Hirai, Shinji; Li, Jihua; Li, Te

    2014-01-01

    The decomposition of dolomite into CaO and MgO was performed at 1073 K in vacuum and at 1273 K in an Ar atmosphere. The dolomite calcined in vacuum was found to have a higher specific surface area and a higher micropore volume when compared to the dolomite calcined in the Ar atmosphere. These pyrolysis products of dolomite were reacted with CO2 at 673 K for 21.6 ks. On the absorption of CO2, the formation of CaCO3 was observed. The degree of absorption of the dolomite calcined in vacuum was determined to be above 50%, which was higher than the degree of absorption of the dolomite calcined in the Ar atmosphere. The CO2 absorption and release procedures were repeated three times for the dolomite calcined in vacuum. The specific surface area and micropore volume of calcined dolomite decreased with successive repetitions of the CO2 absorption and release cycles leading to a decrease in the degree of absorption of CO2. PMID:25136696

  17. Characterization of Activated Carbons from Oil-Palm Shell by CO2 Activation with No Holding Carbonization Temperature

    PubMed Central

    Herawan, S. G.; Hadi, M. S.; Ayob, Md. R.; Putra, A.

    2013-01-01

    Activated carbons can be produced from different precursors, including coals of different ranks, and lignocellulosic materials, by physical or chemical activation processes. The objective of this paper is to characterize oil-palm shells, as a biomass byproduct from palm-oil mills which were converted into activated carbons by nitrogen pyrolysis followed by CO2 activation. The effects of no holding peak pyrolysis temperature on the physical characteristics of the activated carbons are studied. The BET surface area of the activated carbon is investigated using N2 adsorption at 77 K with selected temperatures of 500, 600, and 700°C. These pyrolysis conditions for preparing the activated carbons are found to yield higher BET surface area at a pyrolysis temperature of 700°C compared to selected commercial activated carbon. The activated carbons thus result in well-developed porosities and predominantly microporosities. By using this activation method, significant improvement can be obtained in the surface characteristics of the activated carbons. Thus this study shows that the preparation time can be shortened while better results of activated carbon can be produced. PMID:23737721

  18. Fast Carbon Isotope Analysis of CO2 Using Cavity Enhanced Laser Absorption: Water Effects and Extended Dynamic Range

    NASA Astrophysics Data System (ADS)

    McAlexander, W. I.; Fellers, R.; Owano, T. G.; Baer, D. S.

    2010-12-01

    Fast, precise, and accurate measurement of δ13C (13C / 12C in CO2) of carbon dioxide is desirable for a number of applications including atmospheric chemistry and carbon sequestering. Recent advances in laser absorption spectroscopy, such as cavity enhanced techniques, have enabled field portable instruments which have a number of advantages over traditional, laboratory-based mass spectroscopy systems. We report on the continued development of an analyzer, based on a patented laser absorption technique (off-axis integrated cavity output spectroscopy or Off-Axis ICOS), which measures CO2 concentration, δ13C, and H2O concentration. The analyzer operates at 1Hz and achieves an isotope precision of 0.25‰ (standard deviation) for δ13C with less than one minute of averaging. In addition, recent advances have allowed for the simultaneous measurement of water during the carbon isotope measurement. The instrument reports a dry mole fraction for CO2 and compensates for water broadening in the spectroscopic measurement of δ13C. A multi-point calibration routine has been developed to allow the instrument to fully realize an operational range of 300ppmV to 10% CO2 with a minimal number of reference gases. Details concerning these advances will be discussed.

  19. Simultaneous absorption of carbon dioxide and hydrogen sulfide with carbonyl sulfide contamination in aqueous methyldiethanolamine

    SciTech Connect

    Al-Ghawas, H.A.

    1988-01-01

    The primary objectives of the research were to: (1) obtain experimental data for simultaneous gas absorption systems to help formulate and test theoretical models of multicomponent mass transfer, and (2) develop the theoretical models which predict mass transfer rates from chemical reaction kinetics, system hydrodynamics and boundary conditions. To fulfill these objectives two-phase contact devices were designed and constructed. These were, a solubility of equilibrium apparatus, a laminar liquid jet apparatus, and a wetted-sphere apparatus. These devices were used to measure fundamental physiochemical properties of gases in liquids. The properties measured were the solubilities and diffusivities of N{sub 2}O, CO{sub 2}, and COS in aqueous MDEA. The reaction rate constants of the reactions between CO{sub 2} and MDEA and between COS and MDEA were also measured. In addition to these devices, a stirred tank absorber was used to obtain experimental data on multicomponent simultaneous absorption. A computer program was developed to solve the two-point boundary value problems generated by film theory. This research involved modeling and analyzing gas absorption systems with the chemical reactions taken as irreversible in one case and reversible in another. A parametric study of the case of reversible reactions revealed that for certain ranges of the parameter space the model predicted forced desorption. The program was tested against experimental data from two simultaneous absorption experiments. These were the simultaneous absorption of CO{sub 2}, COS, and N{sub 2} into aqueous MDEA and the simultaneous absorption of CO{sub 2}, H{sub 2}S, COS and N{sub 2} into aqueous MDEA. The program predictions of gas absorption rates were within 13% of the experimental values for the former experiment and within 9% for the latter.

  20. XAS and XPS Characterization of Mercury Binding on Brominated Activated Carbon

    SciTech Connect

    Hutson,N.; Attwood, B.; Scheckel, K.

    2007-01-01

    Brominated powdered activated carbon sorbents have been shown to be quite effective for mercury capture when injected into the flue gas duct at coal-fired power plants and are especially useful when burning Western low-chlorine subbituminous coals. X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) have been used to determine information about the speciation and binding of mercury on two commercially available brominated activated carbons. The results are compared with similar analysis of a conventional (non-halogenated) and chlorinated activated carbon. Both the XAS and XPS results indicate that the mercury, though introduced as elemental vapor, is consistently bound on the carbon in the oxidized form. The conventional and chlorinated activated carbons appeared to contain mercury bound to chlorinated sites and possibly to sulfate species that have been incorporated onto the carbon from adsorbed SO{sub 2}. The mercury-containing brominated sorbents appear to contain mercury bound primarily at bromination sites. The mechanism of capture for the sorbents likely consists of surface-enhanced oxidation of the elemental mercury vapor via interaction with surface-bound halide species with subsequent binding by surface halide or sulfate species.

  1. XAS and XPS characterization of mercury binding on brominated activated carbon

    SciTech Connect

    Nick D. Hutson; Brian C. Attwood; Kirk G. Scheckel

    2007-03-01

    Brominated powdered activated carbon sorbents have been shown to be quite effective for mercury capture when injected into the flue gas duct at coal-fired power plants and are especially useful when burning Western low-chlorine subbituminous coals. X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) have been used to determine information about the speciation and binding of mercury on two commercially available brominated activated carbons. The results are compared with similar analysis of a conventional (non-halogenated) and chlorinated activated carbon. Both the XAS and XPS results indicate that the mercury, though introduced as elemental vapor, is consistently bound on the carbon in the oxidized form. The conventional and chlorinated activated carbons appeared to contain mercury bound to chlorinated sites and possibly to sulfate species that have been incorporated onto the carbon from adsorbed SO{sub 2}. The mercury-containing brominated sorbents appear to contain mercury bound primarily at bromination sites. The mechanism of capture for the sorbents likely consists of surface-enhanced oxidation of the elemental mercury vapor via interaction with surface-bound halide species with subsequent binding by surface halide or sulfate species. 22 refs., 3 figs., 2 tabs.

  2. Mechanistic understanding of the effect of PPIs and acidic carbonated beverages on the oral absorption of itraconazole based on absorption modeling with appropriate in vitro data.

    PubMed

    Fotaki, Nikoletta; Klein, Sandra

    2013-11-01

    Proton pump inhibitors (PPIs) are potent gastric acid suppressing agents and are among the most widely sold drugs in the world. However, even though these antisecretory agents are regarded as safe, they can alter the pharmacokinetics of coadministered drugs. Due to the suppression of gastric acid secretion, they can significantly alter the intragastric pH conditions and are thus likely to affect the bioavailability of coadministered drugs requiring an acidic gastric environment for dissolution and subsequent absorption. Among these drugs can be found itraconazole, a poorly soluble triazole-type antifungal compound. Based on observations reported in the literature, gastric pH alterations due to the coadministration of PPIs or acidic beverages can significantly decrease (PPI) or increase (e.g., Coca-Cola) the bioavailability of this compound. In the present work we estimated the fraction of itraconazole that can be absorbed (fabs) from Sporanox capsules or an itraconazole-HBenBCD complex formulation after oral administration with and without coadministration of a PPI or an acidic (carbonated) beverage. For this purpose, the sensitivity of the two formulations toward the impact of various gastric variations (pH, volume, and emptying rate) as they can result from such administration conditions was studied using solubility and dissolution experiments and a physiologically based absorption model. Simulating coadministration of the two formulations with a PPI resulted in a significant (∼ 10-fold) decrease in itraconazole fabs, indicating the pH to be essential for in vivo dissolution and subsequent absorption. The fabs of itraconazole after coadministration of an acidic beverage (Coca-Cola) was far lower than the fabs obtained for itraconazole alone and did not support the observations reported in the literature. These results clearly indicate that in contrast to PPIs, which seem to affect itraconazole bioavailability mainly via intragastric pH changes, coadministered

  3. Aligned carbon nanotubes with built-in FeN{sub 4} active sites for electrocatalytic reduction of oxygen.

    SciTech Connect

    Yang, J.; Liu, D. J.; Chemical Engineering

    2008-01-01

    The electrocatalytic site FeN{sub 4}, which is active towards the oxygen reduction reaction, is incorporated into the graphene layer of aligned carbon nanotubes prepared through a chemical vapor deposition process, as is confirmed by X-ray absorption spectroscopy and other characterization techniques.

  4. Activated carbons from North Dakota lignite and leonardite

    SciTech Connect

    Young, B.C.; Olson, E.S.; Knudson, C.L.; Timpe, R.C.

    1995-12-31

    The EERC is undertaking a research and development program on carbon development, part of which is directed towards investigating the key parameters in the preparation of activated carbons from low-rank coals indigenous to North Dakota. Carbons have been prepared and characterized for potential sorption applications in flue gas and waste liquid streams. Lignite, owing to its wide occurrence and variability in properties, has received significant attention as a precursor of active carbon manufacture. Mineral matter content and its alkaline nature are two highly variable properties that can have important consequences on the production of suitable activated carbons. Other factors affecting the production include carbonizing conditions, the activation agents, activation temperature, and activation time. However, as previously noted, the relationship between the above factors and the sorption activity is particularly complex. Part of the difficulty is that sorption activity encompasses at least three parameters, namely, surface area, pore distribution, and surface acidity/basicity. The presence of mineral matter in the coal can affect not only carbonization but also the activation and subsequent sorption and desorption processes. This paper presents results of an investigation of demineralization, carbonization temperature, activation temperature, and activation time for one lignite and leonardite from North Dakota.

  5. Phenol adsorption by activated carbon produced from spent coffee grounds.

    PubMed

    Castro, Cínthia S; Abreu, Anelise L; Silva, Carmen L T; Guerreiro, Mário C

    2011-01-01

    The present work highlights the preparation of activated carbons (ACs) using spent coffee grounds, an agricultural residue, as carbon precursor and two different activating agents: water vapor (ACW) and K(2)CO(3) (ACK). These ACs presented the microporous nature and high surface area (620-950 m(2) g(-1)). The carbons, as well as a commercial activated carbon (CAC) used as reference, were evaluated as phenol adsorbent showing high adsorption capacity (≈150 mg g(-1)). The investigation of the pH solution in the phenol adsorption was also performed. The different activating agents led to AC with distinct morphological properties, surface area and chemical composition, although similar phenol adsorption capacity was verified for both prepared carbons. The production of activated carbons from spent coffee grounds resulted in promising adsorbents for phenol removal while giving a noble destination to the residue. PMID:22105129

  6. Introduction of the carbon dioxide absorption method with closed circle breathing into anesthesia practice.

    PubMed

    Foregger, R

    2000-07-01

    The circle breathing CO2 absorption system for use during acetylene anesthesia was described by Carl Gauss in 1924/1925. The apparatus was manufactured by Drägerwerk of Lübeck. A considerable number of publications on the apparatus employing the closed circle method of CO2 absorption appeared in the medical press soon thereafter. Later apparatus models, also built by Drägerwerk, were adapted for nitrous oxide-oxygen-ether anesthesia and introduced into practice by Paul Sudeck and Helmut Schmidt. Information about all this was transmitted to America through the German medical press, including the Draeger-Hefte. American anesthesia machine manufacturers began to develop closed circle CO2 absorbers several years later. Claims that the circle breathing CO2 absorption method was introduced into anesthesia practice by Brian Sword are not valid. PMID:10969391

  7. Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment

    SciTech Connect

    Li, Haitao; He, Xiaodie; Liu, Yang; Yu, Hang; Kang, Zhenhui; Lee, Shuit-Tong

    2011-01-15

    Water-soluble fluorescent carbon nanoparticles were synthesized directly from active carbon by a one-step hydrogen peroxide-assisted ultrasonic treatment. The carbon nanoparticles were characterized by transmission electron microscopy, optical fluorescent microscopy, fluorescent spectroscopy, Fourier transform infrared spectroscopy and ultraviolet-visible spectrophotometer. The results showed that the surface of carbon nanoparticles was rich of hydroxyl groups resulting in high hydrophilicity. The carbon nanoparticles could emit bright and colorful photoluminescence covering the entire visible-to-near infrared spectral range. Furthermore, these carbon nanoparticles also had excellent up-conversion fluorescent properties.

  8. [Effects of different fertilizer application on soil active organic carbon].

    PubMed

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  9. Digital measurements of LF radio wave absorption in the lower ionosphere and inferred gravity wave activity

    NASA Astrophysics Data System (ADS)

    Lastovicka, J.; Boska, J.; Buresova, D.

    1993-10-01

    Low frequency (LF) radio wave absorption in the lower ionosphere has been measured at Pruhonice (approximately 50 deg N) since 1957. A new digital computer-controlled measuring-recording-processing system was introduced in 1988. The A3 method of radio wave absorption measurement, the measuring equipment used for the digital measurements at 270 kHz, is briefly described. The digital nighttime LF A3 measurements allow the use of absorption data for studying and monitoring the gravity wave activity in the upper middle atmosphere in the period range 10 min-3(2) hours. The resulting gravity wave spectra are as expected even though their shapes vary. Individual period bands sometimes exhibit a similar general pattern of variability in gravity wave activity (winter 1990), while in other intervals we observe a shift of gravity wave energy from one period band to another (winter 1991). No strong, pronounced and consistent response to strong geomagnetic storms and midwinter stratospheric warming is found. An apparent seasonal variation with winter minima observed in shorter-period gravity wave activity is an artefact of the changing length of the night. There is no significant seasonal variation of gravity wave activity in the analysed data. The method is very cheap -- the results are a by-product of measurements made for ionospheric purposes.

  10. Interaction forces between waterborne bacteria and activated carbon particles.

    PubMed

    Busscher, Henk J; Dijkstra, Rene J B; Langworthy, Don E; Collias, Dimitris I; Bjorkquist, David W; Mitchell, Michael D; Van der Mei, Henny C

    2008-06-01

    Activated carbons remove waterborne bacteria from potable water systems through attractive Lifshitz-van der Waals forces despite electrostatic repulsion between negatively charged cells and carbon surfaces. In this paper we quantify the interaction forces between bacteria with negatively and positively charged, mesoporous wood-based carbons, as well as with a microporous coconut carbon. To this end, we glued carbon particles to the cantilever of an atomic force microscope and measured the interaction forces upon approach and retraction of thus made tips. Waterborne Raoultella terrigena and Escherichia coli adhered weakly (1-2 nN) to different activated carbon particles, and the main difference between the activated carbons was the percentage of curves with attractive sites revealed upon traversing of a carbon particle through the bacterial EPS layer. The percentage of curves showing adhesion forces upon retraction varied between 21% and 69%, and was highest for R. terrigena with positively charged carbon (66%) and a coconut carbon (69%). Macroscopic bacterial removal by the mesoporous carbon particles increased with increasing percentages of attractive sites revealed upon traversing a carbon particle through the outer bacterial surface layer. PMID:18405910

  11. JPL Activated Carbon Treatment System (ACTS) for sewage

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An Activated Carbon Treatment System (ACTS) was developed for sewage treatment and is being applied to a one-million gallon per day sewage treatment pilot plant in Orange County California. Activities reported include pyrolysis and activation of carbon-sewage sludge, and activated carbon treatment of sewage to meet ocean discharge standards. The ACTS Sewage treatment operations include carbon-sewage treatment, primary and secondary clarifiers, gravity (multi-media) filter, filter press dewatering, flash drying of carbon-sewage filter cake, and sludge pyrolysis and activation. Tests were conducted on a laboratory scale, 10,000 gallon per day demonstration plant and pilot test equipment. Preliminary economic studies are favorable to the ACTS process relative to activated sludge treatment for a 175,000,000 gallon per day sewage treatment plant.

  12. Activated Carbon Modified with Copper for Adsorption of Propanethiol

    PubMed Central

    Moreno-Piraján, Juan Carlos; Tirano, Joaquín; Salamanca, Brisa; Giraldo, Liliana

    2010-01-01

    Activated carbons were characterized texturally and chemically before and after treatment, using surface area determination in the BET model, Boehm titration, TPR, DRX and immersion calorimetry. The adsorption capacity and the kinetics of sulphur compound removal were determined by gas chromatography. It was established that the propanethiol retention capacity is dependent on the number of oxygenated groups generated on the activated carbon surface and that activated carbon modified with CuO at 0.25 M shows the highest retention of propanethiol. Additionally is proposed a mechanism of decomposition of propenothiol with carbon-copper system. PMID:20479992

  13. The optical absorption of triatomic carbon C3 for the wavelength range 260 to 560 nm

    NASA Technical Reports Server (NTRS)

    Jones, J. J.

    1978-01-01

    The spectral absorption properties of C3 have been measured in a shock tube containing a test gas mixture of acetylene diluted with argon. The absorption of a pulsed xenon light source was measured by means of eight photomultiplier channels to a spectrograph and an accompanying drum camera. The postshock test gas temperature and pressure were varied over the range 3240 to 4300 K and 37 to 229 kPa, respectively. The results showed appreciable absorption by C3 for the wavelength range 300 to 540 nm. The various reported measurements of the heat of formation of C3 which are available in the open literature were reviewed, and a value of 198 kcal/mol is recommended. This value, along with best available values for other species, was used to calculate the number density of C3 for the conditions of the present experiments in order to compute absorption cross section or electronic oscillator strength. The computed electronic oscillator strength varied from a high of 0.062 at 3300 K to a low of 0.036 at 3900 K.

  14. On-road measurement of black carbon mass, absorption, and single-scattering albedo

    EPA Science Inventory

    Absorption and scattering of solar radiation by aerosols emitted from combustion sources can affect the earth’s radiative balance and may potentially affect local and regional climate. Optical properties of aerosols emitted from mobile sources have not been thoroughly characteri...

  15. Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material

    DOE PAGESBeta

    Meng, Yujie; Yang, Timothy M.; Liu, Peizhi; Contescu, Cristian I.; Huang, Biao; Wang, Siqun

    2014-12-04

    The synthesis of a sponge-like carbon aerogel from microfibril cellulose (MFC), with high porosity (99%), ultra-low density (0.01 g/cm3), hydrophobic properties (149° static contact angle) and reusability is reported in this paper. The physical properties, internal morphology, thermal properties, and chemical properties of carbon aerogels heat-treated at 700 and 900 °C (Samples C-700 and C-900) were examined. Stabilization and carbonization parameters were optimized in terms of residual carbon yield. The BET surface area of Sample C-700 (521 m2 /g) was significantly higher than of Sample C-950 (149 m2 /g). Graphitic-like domains were observed in C-950. The highest normalized sorption capacitymore » (86 g/g) for paraffin oil was observed in sample C-700. The removal of hydrophilic function groups during carbonization causes carbon aerogel to present highly hydrophobic properties. Lastly, carbon aerogel's ability to absorb oil is enhanced by its highly porous 3D network structure with interconnected cellulose nanofibrils.« less

  16. Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material

    SciTech Connect

    Meng, Yujie; Yang, Timothy M.; Liu, Peizhi; Contescu, Cristian I.; Huang, Biao; Wang, Siqun

    2014-12-04

    The synthesis of a sponge-like carbon aerogel from microfibril cellulose (MFC), with high porosity (99%), ultra-low density (0.01 g/cm3), hydrophobic properties (149° static contact angle) and reusability is reported in this paper. The physical properties, internal morphology, thermal properties, and chemical properties of carbon aerogels heat-treated at 700 and 900 °C (Samples C-700 and C-900) were examined. Stabilization and carbonization parameters were optimized in terms of residual carbon yield. The BET surface area of Sample C-700 (521 m2 /g) was significantly higher than of Sample C-950 (149 m2 /g). Graphitic-like domains were observed in C-950. The highest normalized sorption capacity (86 g/g) for paraffin oil was observed in sample C-700. The removal of hydrophilic function groups during carbonization causes carbon aerogel to present highly hydrophobic properties. Lastly, carbon aerogel's ability to absorb oil is enhanced by its highly porous 3D network structure with interconnected cellulose nanofibrils.

  17. Acoustical evaluation of carbonized and activated cotton nonwovens.

    PubMed

    Jiang, N; Chen, J Y; Parikh, D V

    2009-12-01

    An activated carbon fiber nonwoven (ACF) was manufactured from a cotton nonwoven fabric. For the ACF acoustic application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glassfiber nonwoven, and the cotton nonwoven base layer with a layer of cotton fiber nonwoven. Their noise absorption coefficients and sound transmission loss were measured using the Brüel and Kjaer impedance tube instrument. Statistical significance of the differences between the composites was tested using the method of Duncan's grouping. The study concluded that the ACF composite exhibited a greater ability to absorb normal incidence sound waves than the composites with either glassfiber or cotton fiber. The analysis of sound transmission loss revealed that the three composites still obeyed the mass law of transmission loss. The composite with the surface layer of cotton fiber nonwoven possessed a higher fabric density and therefore showed a better sound insulation than the composites with glassfiber and ACF. PMID:19664919

  18. Finding consistency between different views of the absorption enhancement of black carbon: An observationally constrained hybrid model to support a transition in optical properties with mass fraction

    NASA Astrophysics Data System (ADS)

    Coe, H.; Allan, J. D.; Whitehead, J.; Alfarra, M. R. R.; Villegas, E.; Kong, S.; Williams, P. I.; Ting, Y. C.; Haslett, S.; Taylor, J.; Morgan, W.; McFiggans, G.; Spracklen, D. V.; Reddington, C.

    2015-12-01

    The mixing state of black carbon is uncertain yet has a significant influence on the efficiency with which a particle absorbs light. In turn, this may make a significant contribution to the uncertainty in global model predictions of the black carbon radiative budget. Previous modelling studies that have represented this mixing state using a core-shell approach have shown that aged black carbon particles may be considerably enhanced compared to freshly emitted black carbon due to the addition of co-emitted, weakly absorbing species. However, recent field results have demonstrated that any enhancement of absorption is minor in the ambient atmosphere. Resolving these differences in absorption efficiency is important as they will have a major impact on the extent to which black carbon heats the atmospheric column. We have made morphology-independent measurements of refractory black carbon mass and associated weakly absorbing material in single particles from laboratory-generated diesel soot and black carbon particles in ambient air influenced by traffic and wood burning sources and related these to the optical properties of the particles. We compared our calculated optical properties with optical models that use varying mixing state assumptions and by characterising the behaviour in terms of the relative amounts of weakly absorbing material and black carbon in a particle we show a sharp transition in mixing occurs. We show that the majority of black carbon particles from traffic-dominated sources can be treated as externally mixed and show no absorption enhancement, whereas models assuming internal mixing tend to give the best estimate of the absorption enhancement of thickly coated black carbon particles from biofuel or biomass burning. This approach reconciles the differences in absorption enhancement previously observed and offers a systematic way of treating the differences in behaviour observed.

  19. Absorption of ozone by porous particles

    SciTech Connect

    Afanas'ev, V.P.; Dorofeev, S.B.; Sinitsyn, V.I.; Smirnov, B.M.

    1981-11-01

    The absorption of ozone by porous zeolite, silica gel, and activated carbon particles has been studied experimentally. It was shown that in addition to absorption, dissociation of ozone on the surface plays an important and sometimes decisive role. The results obtained were used to analyze the nature of ball lightning.

  20. Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method.

    PubMed

    Zhao, Yanjie; Chang, Jun; Ni, Jiasheng; Wang, Qingpu; Liu, Tongyu; Wang, Chang; Wang, Pengpeng; Lv, Guangping; Peng, Gangding

    2014-05-01

    A novel active fiber loop ring-down gas sensor combined with dual wavelengths differential absorption method is proposed. Two Distributed Feedback Laser Diodes (DFB LDs) with different wavelengths are employed. One LD whose wavelength covered with the absorption line of target gas is used for sensing. Another LD whose wavelength is centered outside the absorption line is used for reference. The gas absorption loss can be obtained by differencing the reference signal and sensing signal. Compared with traditional method of one wavelength employed, it can eliminate the influence of the cavity loss variety and photoelectric device drift in the system efficiently. An Erbium Doped Fiber Amplifier (EDFA) with Automatic Gain Control (AGC) is used to compensate the loss of the light in the ring-down cavity, which will increase the cavity round trips and improve the precision of gas detection. And two fiber Bragg gratings (FBGs) are employed to get rid of amplified spontaneous emission (ASE) spectrum noise as filters. The calibrating ethyne samples of different concentrations are measured with a 65 mm long gas cell in order to evaluate the effect of reference. The results show the relative deviation is found to be less than ± 0.4% of 0.1% ethyne when a certain additional loss from 0 to 1.2dB is introduced to the cavity and the relative deviation of measured concentration is less than ± 0.5% over 24 hours. PMID:24921822

  1. Hydroxyl 1.563 Micron Absorption from Starspots on Active Stars

    NASA Astrophysics Data System (ADS)

    O'Neal, Douglas; Neff, James E.; Saar, Steven H.; Mines, Jonathan K.

    2001-10-01

    We present results from a study of starspots on active stars using a pair of vibrational-rotational absorption lines of the OH molecule near 1.563 μm. We detect excess OH absorption due to dark, cool starspots on several active stars of the RS CVn and BY Dra classes. Our results for the single-lined spectroscopic binaries II Pegasi, V1762 Cygni, and λ Andromedae augment those from a previous study that used a less sensitive detector. In this study, we were able for the first time to use molecular absorption features to measure starspot properties on double-lined spectroscopic binaries. Measuring the equivalent widths of these OH lines in inactive giant and dwarf stars of spectral types G, K, and M, we find that the total equivalent width of the line pair increases approximately linearly as effective temperature decreases from 5000 to 3000 K. We measure starspot filling factors by fitting the spectra of active stars with linear combinations of comparison star spectra representing the spot and nonspot regions of the star.

  2. Acoustical Evaluation of Carbonized and Activated Cotton Nonwovens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The process of manufacturing a carbonized and activated nonwoven made by cotton fiber was investigated in this paper. The study was focused on the acoustic application and nonwoven composites with cotton nonwoven as a base layer and glass fiber nonwoven, cotton nonwoven, and carbonized and activated...

  3. Preparation of nitrogen-enriched activated carbons from brown coal

    SciTech Connect

    Robert Pietrzak; Helena Wachowska; Piotr Nowicki

    2006-05-15

    Nitrogen-enriched activated carbons were prepared from a Polish brown coal. Nitrogen was introduced from urea at 350{sup o}C in an oxidizing atmosphere both to carbonizates obtained at 500-700{sup o}C and to activated carbons prepared from them. The activation was performed at 800{sup o}C with KOH in argon. It has been observed that the carbonization temperature determines the amount of nitrogen that is incorporated (DC5U, 8.4 wt % N{sup daf}; DC6U, 6.3 wt % N{sup daf}; and DC7U, 5.4 wt % N{sup daf}). X-ray photoelectron spectroscopy (XPS) measurements have shown that nitrogen introduced both at the stage of carbonizates and at the stage of activated carbons occurs mainly as -6, -5, and imine, amine and amide groups. On the other hand, the activation of carbons enriched with nitrogen results in the formation of pyridonic nitrogen and N-Q. The introduction of nitrogen at the activated carbon stage leads to a slight decrease in surface area. It has been proven that the most effective way of preparing microporous activated carbons enriched with nitrogen to a considerable extent and having high surface area ({approximately} 3000 m{sup 2}/g) is the following: carbonization - activation - reaction with urea. 40 refs., 1 fig., 6 tabs.

  4. Quantum cascade laser absorption sensor for carbon monoxide in high-pressure gases using wavelength modulation spectroscopy.

    PubMed

    Spearrin, R M; Goldenstein, C S; Jeffries, J B; Hanson, R K

    2014-03-20

    A tunable quantum cascade laser sensor, based on wavelength modulation absorption spectroscopy near 4.8 μm, was developed to measure CO concentration in harsh, high-pressure combustion gases. The sensor employs a normalized second harmonic detection technique (WMS-2f/1f) at a modulation frequency of 50 kHz. Wavelength selection at 2059.91  cm⁻¹ targets the P(20) transition within the fundamental vibrational band of CO, chosen for absorption strength and relative isolation from infrared water and carbon dioxide absorption. The CO spectral model is defined by the Voigt line-shape function, and key line-strength and line-broadening spectroscopic parameters were taken from the literature or measured. Sensitivity analysis identified the CO-N₂ collisional broadening coefficient as most critical for uncertainty mitigation in hydrocarbon/air combustion exhaust measurements, and this parameter was experimentally derived over a range of combustion temperatures (1100-2600 K) produced in a shock tube. Accuracy of the wavelength-modulation-spectroscopy-based sensor, using the refined spectral model, was validated at pressures greater than 40 atm in nonreactive shock-heated gas mixtures. The laser was then free-space coupled to an indium-fluoride single-mode fiber for remote light delivery. The fiber-coupled sensor was demonstrated on an ethylene/air pulse detonation combustor, providing time-resolved (~20  kHz), in situ measurements of CO concentration in a harsh flow field. PMID:24663473

  5. Studies of the moisture absorption of thin carbon fiber reinforced plastic substrates for x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Sugita, Satoshi; Awaki, Hisamitsu; Kurihara, Daichi; Yoshioka, Kenya; Nomura, Mizuki; Ogi, Keiji; Tomita, Yuuki; Mita, Tomoki; Kunieda, Hideyo; Matsumoto, Hironori; Miyazawa, Takuya; Mitsuishi, Ikuyuki; Iwase, Toshihiro; Maejima, Masato; Shima, Naoki; Ishikawa, Takashi; Hamada, Takayoshi; Ishida, Naoki; Akiyama, Hiromichi; Kishimoto, Kazuaki; Utsunomiya, Shin; Kamiya, Tomohiro

    2015-07-01

    We study a lightweight x-ray mirror with a carbon fiber reinforced plastic (CFRP) substrate for next-generation x-ray satellites. For tightly nested x-ray mirrors, such as those on the Suzaku and ASTRO-H telescopes, CFRP is the suitable substrate material because it has a higher strength-to-weight ratio and forming flexibility than those of metals. In flat CFRP substrate fabrication, the surface waviness has a root mean square (RMS) of ˜1 μm in the best products. The RMS approximately reaches a value consistent with the RMS of the mold used for the forming. We study the effect of moisture absorption using accelerated aging tests in three environments. The diffusivity of the CFRP substrate at 60°C and at relative humidity of 100% is ˜9.7×10-4 mm2.h-1, and the acceleration rate to the laboratory environment was 180 times higher. We also develop co-curing functional sheets with low water-vapor transmissivity on the CFRP substrate. Co-curing the sheets successfully reduced the moisture absorption rate by 440 times compared to the un-co-cured substrate. Details of the CFRP substrate fabrication and moisture absorption tests are also reported.

  6. Continuous measurements of stable carbon isotopes in CO2 with a near-IR laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Tanaka, Kotaro; Kojima, Ryota; Takahashi, Kenshi; Tonokura, Kenichi

    2013-09-01

    A near-IR laser absorption spectrometer using a technique of wavelength modulation spectroscopy is used to measure stable carbon isotope ratios of ambient CO2 (δ13C) via the absorption lines 12CO2 R(17) (2ν1 + ν12 - ν12 + ν3) at 4978.205 cm-1 and 13CO2 P(16) (ν1 + 2ν2 + ν3) at 4978.023 cm-1. The isotope ratios are measured with a reproducibility of 0.02‰ (1σ) in a 130-s integration time over a 12-h period. The humidity effect on δ13C values has been evaluated in laboratory experiments. The δ13C values of CO2 in ambient air were measured continuously over 8 days and agreed well with those from isotope ratio mass spectrometry of canister samples. The spectrometer is thus capable of real-time, in situ measurements of stable carbon isotope ratios of CO2 under ambient conditions.

  7. Seasons on Saturn. II. Influence of solar activity on variation of methane absorption

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2015-10-01

    Methane and ammonia in the atmosphere of Saturn are in the form of impurities at the level of less than tenths of a percentage. They take part in photochemical processes, the main products of which are hydrocarbons and ammonia NH3. Polyacetylenes absorb sunlight almost to 400 nm, and hydrocarbons <180 nm. Therefore, the solar activity cycle, the slope of the equator to the plane of the orbit, the orbital motion and the presence of the rings induce change in composition of the upper atmosphere. Radiation constants in the atmosphere depend on the physical and chemical conditions, decreasing from ~10 years at the visible clouds level, to months in tropopause, and days in stratosphere. The observed seasonal effects may be associated also with condensation and convection, and the dynamic time scale may be only tens of hours. The data analysis on the methane absorption distribution over the disk of Saturn for 1964-2012 showed a significant seasonal changes in the levels of visible clouds and above clouds haze. Changes of methane absorption along the meridian in the equinox 1966 and 1995, had the opposite course to the results in equinox 1980. But the expected differences in the change of methane absorption at the equinox 2009, similar to 1980, did not happen. Although all the physical and orbital characteristics of Saturn at equinoxes in these moments repeated, but the response to them were received various. A few years before the equinox in 1966, 1980 and 1995, the number of R, characterizing solar activity, varied from 40 to 180. Before equinox 2009 the Sun has minimal activity and the R value was practically zero. According to observations at the time of equinox 2009, convection in the Saturn's atmosphere stayed at a minimal level. After exiting of rings shadows in winter northern hemisphere deep cloud layer was "frozen" at the same low level at absence of active processes on the Sun. This allowed easily to register a thick layer of methane and ammonia gas. So how

  8. Light absorption of black carbon aerosol and its enhancement by mixing state in an urban atmosphere in South China

    NASA Astrophysics Data System (ADS)

    Lan, Zi-Juan; Huang, Xiao-Feng; Yu, Kuang-You; Sun, Tian-Le; Zeng, Li-Wu; Hu, Min

    2013-04-01

    The effects of black carbon (BC) aerosol on climate warming have been the study focus in the recent decade, and the reduction of BC is now expected to have significant near-term climate change mitigation. Large uncertainties of BC optical properties, however, still exist and seriously restrict the ability to quantify BC's climate effects. In this study, advanced instrumentation (a three-wavelength photoacoustic soot spectrometer (PASS-3) and a single particle soot photometer (SP2)) were used to measure black carbon aerosol and analyze its optical properties in a mega-city in South China, Shenzhen, during the summer of 2011. The results indicated that the average BC mass concentration was 4.0 ± 3.1 μg m-3 during the campaign, accounting for ˜11% of the total PM2.5 mass concentration. The PM2.5 light absorption at 405, 532 and 781 nm was 37.1 ± 28.1, 25.4 ± 19.0 and 17.6 ± 12.9 Mm-1, respectively. The average absorption Angstrom exponent of PM2.5 in visual spectrum (AAE405-781 nm) was 1.1 ± 0.1 during the campaign, indicating that the light absorbing carbon mainly came from vehicular emissions, with little contributions from biomass burning emissions. The mass absorption efficiency (MAE) of BC at 532 nm ranged from 5.0 to 8.5 m2 g-1 during the campaign, with an average of 6.5 ± 0.5 m2 g-1, and showed an obvious diurnal pattern with high values in the daytime. The average percentage of internally mixed BC was 24.3 ± 7.9% during the campaign, showing significant positive correlation relationship with the MAE of BC. More quantitative data analysis indicated that the internally mixed BC would amplify MAE by about 7% during the campaign, which stands in accordance with the new finding of a very recent Science magazine paper (Cappa et al., 2012) that the BC absorption enhancement due to internal mixing in the real atmosphere is relatively low, in apparent contrast to theoretical model predictions.

  9. A Magnesium-Activated Carbon Hybrid Capacitor

    SciTech Connect

    Yoo, HD; Shterenberg, I; Gofer, Y; Doe, RE; Fischer, CC; Ceder, G; Aurbach, D

    2013-12-11

    Prototype cells of hybrid capacitor were developed, comprising activated carbon (AC) cloth and magnesium (Mg) foil as the positive and negative electrodes, respectively. The electrolyte solution included ether solvent (TBF) and a magnesium organo-halo-aluminate complex 0.25 M Mg2Cl3+-Ph2AlCl2-. In this solution Mg can be deposited/dissolved reversibly for thousands of cycles with high reversibility (100% cycling efficiency). The main barrier for integrating porous AC electrodes with this electrolyte solution was the saturation of the pores with the large ions in the AC prior to reaching the potential limit. This is due to the existence of bulky Mg and Al based ionic complexes consisting Cl, alkyl or aryl (R), and THF ligands. This problem was resolved by adding 0.5 M of lithium chloride (LiCl), thus introducing smaller ionic species to the solution. This Mg hybrid capacitor system demonstrated a stable cycle performance for many thousands of cycles with a specific capacitance of 90 Fg(-1) for the AC positive electrodes along a potential range of 2.4 V. (C) 2014 The Electrochemical Society. All rights reserved.

  10. Ozone Removal by Filters Containing Activated Carbon: A Pilot Study

    SciTech Connect

    Fisk, William; Spears, Mike; Sullivan, Douglas; Mendell, Mark

    2009-09-01

    This study evaluated the ozone removal performance of moderate-cost particle filters containing activated carbon when installed in a commercial building heating, ventilating, and air conditioning (HVAC) system. Filters containing 300 g of activated carbon per 0.09 m2 of filter face area were installed in two 'experimental' filter banks within an office building located in Sacramento, CA. The ozone removal performance of the filters was assessed through periodic measurements of ozone concentrations in the air upstream and downstream of the filters. Ozone concentrations were also measured upstream and downstream of a 'reference' filter bank containing filters without any activated carbon. The filter banks with prefilters containing activated carbon were removing 60percent to 70percent of the ozone 67 and 81 days after filter installation. In contrast, there was negligible ozone removal by the reference filter bank without activated carbon.

  11. Impact of Radiative Absorption by Black Carbon on Meteorology over the Eastern United States in July 2004

    NASA Astrophysics Data System (ADS)

    Chung, S. H.; McKeen, S. A.; Fast, J. D.; Zaveri, R. A.; Barnard, J. C.; Grell, G. A.; Peckham, S. E.

    2006-12-01

    The increase in atmospheric abundance of aerosols since the preindustrial period has perturbed the radiative balance of the Earth-atmosphere system and may be contributing significantly to anthropogenic climate change. The radiative energy perturbation referred to as direct radiative forcing is due to aerosols' ability to scatter and absorb radiation. Global climate studies indicate that light-absorbing aerosol such as soot, often called black carbon (BC), exerts a warming influence that may be second only to that of carbon dioxide and may cause even larger perturbations on a regional scale. Atmospheric heating due to the absorption of solar radiation by BC is coincident with a reduction of solar radiation reaching the surface. This vertical redistribution of radiation directly affects static stability, boundary layer dynamics, and cloud evaporation. Each of these is an important factor in the transport and atmospheric distribution of aerosols and other chemical species, potentially resulting in complex feedbacks that occur at spatial scales smaller than typical resolutions of global climate models. This study examines the impact on meteorology of radiative absorption by BC. The mesoscale Weather Research and Forecast/Chemistry model (WRF/Chem) is used to simulate meteorology and air quality in the eastern United States for July 14-30, 2004. The Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) is coupled to WRF/Chem so that all aerosol processes and radiative calculations are simulated online with meteorological calculations. Simulation results show that a reduction of solar radiation due to scattering of aerosols has relatively small impact on surface temperature, whereas absorption of solar radiation by BC can cancel the cooling effect of scattering aerosols and induce a surface warming that is often correlated with reduction in low level clouds.

  12. 2-Micron Triple-Pulse Integrated Path Differential Absorption Lidar Development for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-01-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  13. Selecting activated carbon for water and wastewater treatability studies

    SciTech Connect

    Zhang, W.; Chang, Q.G.; Liu, W.D.; Li, B.J.; Jiang, W.X.; Fu, L.J.; Ying, W.C.

    2007-10-15

    A series of follow-up investigations were performed to produce data for improving the four-indicator carbon selection method that we developed to identify high-potential activated carbons effective for removing specific organic water pollutants. The carbon's pore structure and surface chemistry are dependent on the raw material and the activation process. Coconut carbons have relatively more small pores than large pores; coal and apricot nutshell/walnut shell fruit carbons have the desirable pore structures for removing adsorbates of all sizes. Chemical activation, excessive activation, and/or thermal reactivation enlarge small pores, resulting in reduced phenol number and higher tannic acid number. Activated carbon's phenol, iodine, methylene blue, and tannic acid numbers are convenient indicators of its surface area and pore volume of pore diameters < 10, 10-15, 15-28, and > 28 angstrom, respectively. The phenol number of a carbon is also a good indicator of its surface acidity of oxygen-containing organic functional groups that affect the adsorptive capacity for aromatic and other small polar organics. The tannic acid number is an indicator of carbon's capacity for large, high-molecular-weight natural organic precursors of disinfection by-products in water treatment. The experimental results for removing nitrobenzene, methyl-tert-butyl ether, 4,4-bisphenol, humic acid, and the organic constituents of a biologically treated coking-plant effluent have demonstrated the effectiveness of this capacity-indicator-based method of carbon selection.

  14. Differences in spectral absorption properties between active neovascular macular degeneration and mild age related maculopathy.

    PubMed

    Balaskas, Konstantinos; Nourrit, Vincent; Dinsdale, Michelle; Henson, David B; Aslam, Tariq

    2013-05-01

    This study examines the differences in spectral absorption properties between the maculae of patients with active neovascular macular degeneration and those with early age related maculopathy (ARM). Patients attending for management of neovascular age related macular degeneration (AMD) underwent multispectral imaging with a system comprising of a modified digital fundus camera coupled with a 250-W tungsten-halogen lamp and a liquid crystal fast-tuneable filter. Images were obtained at 8 wavelengths between 496 and 700 nm. Aligned images were used to generate a DLA (differential light absorption, a measure of spectral absorption properties) map of the macular area. DLA maps were generated for both eyes of 10 sequential patients attending for anti-vascular endothelial growth factor injections. Each of these patients had active leaking neovascular AMD in one eye and early ARM or milder disease in the fellow eye. Eyes with neovascular AMD demonstrated lower average levels of DLA compared with their fellow eyes with early ARM (p=0.037, t test). The significant difference in DLA demonstrates the potential of multispectral imaging for differentiating the two pathologies non-invasively. PMID:23137662

  15. Unprecedented photocatalytic activity of carbon coated/MoO3 core-shell nanoheterostructurs under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Ghaffar, Iqra; Warsi, Muhammad Farooq; Shahid, Muhammad; Shakir, Imran

    2016-05-01

    We reveal that nano-scale carbon layer deposited by hydrothermal process on molybdenum oxide (MoO3) nanowires surface significantly improve the light absorption range. Furthermore, the graphene-carbon coated MoO3 nanocopmosite (rGO/C-MoO3 nanocomposite) exhibits excellent chemical stability and enhanced photocatalytic activity for methylene blue in aqueous solution under visible light irradiation compared to the bare MoO3 nanowires and carbon coated MoO3 nanowires (C-MoO3 nanowires). The enhanced photocatalytic activity of rGO/C-MoO3 nanocomposite could be attributed to the extended light absorption range, better adsorptivity of dye molecules and efficient separation of photogenerated electrons and holes. Overall, this work provides new insights that the as synthesized rGO/C-MoO3 nanocomposite can be efficiently used as high performance photocatalysts to improve the environmental protection issues under visible light irradiation.

  16. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl 2 activation

    NASA Astrophysics Data System (ADS)

    Uçar, Suat; Erdem, Murat; Tay, Turgay; Karagöz, Selhan

    2009-08-01

    In this study, pomegranate seeds, a by-product of fruit juice industry, were used as precursor for the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonization temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons was studied. When using the 2.0 impregnation ratio at the carbonization temperature of 600 °C, the specific surface area of the resultant carbon is as high as 978.8 m 2 g -1. The results showed that the surface area and total pore volume of the activated carbons at the lowest impregnation ratio and the carbonization temperature were achieved as high as 709.4 m 2 g -1 and 0.329 cm 3 g -1. The surface area was strongly influenced by the impregnation ratio of activation reagent and the subsequent carbonization temperature.

  17. Applications of Lagrangian Dispersion Modeling to the Analysis of Changes in the Specific Absorption of Elemental Carbon

    SciTech Connect

    Doran, J. C.; Fast, Jerome D.; Barnard, James C.; Laskin, Alexander; Desyaterik, Yury; Gilles, Marry K.; Hopkins, Rebecca J.

    2008-03-07

    We use a Lagrangian dispersion model driven by a mesoscale model with four-dimensional data assimilation to simulate the dispersion of elemental carbon (EC) over a region encompassing Mexico City and its surroundings, the study domain for the 2006 MAX-MEX experiment, which was a component of the MILAGRO campaign. The results are used to identify periods when biomass burning was likely to have had a significant impact on the concentrations of elemental carbon at two sites, T1 and T2, downwind of the city, and when emissions from the Mexico City Metropolitan Area (MCMA) were likely to have been more important. They are also used to estimate the median ages of EC affecting the specific absorption of light, aABS, at 870 nm as well as to identify periods when the urban plume from the MCMA was likely to have been advected over T1 and T2. Values of aABS at T1, the nearer of the two sites to Mexico City, were smaller at night and increased rapidly after mid-morning, peaking in the mid-afternoon. The behavior is attributed to the coating of aerosols with substances such as sulfate or organic carbon during daylight hours, but such coating appears to be limited or absent at night. Evidence for this is provided by scanning electron microscope images of aerosols collected at three sampling sites. During daylight hours the values of aABS did not increase with aerosol age for median ages in the range of 1-4 hours. There is some evidence for absorption increasing as aerosols were advected from T1 to T2 but the statistical significance of that result is not strong.

  18. Studies relevant to the catalytic activation of carbon monoxide

    SciTech Connect

    Ford, P.C.

    1992-06-04

    Research activity during the 1991--1992 funding period has been concerned with the following topics relevant to carbon monoxide activation. (1) Exploratory studies of water gas shift catalysts heterogenized on polystyrene based polymers. (2) Mechanistic investigation of the nucleophilic activation of CO in metal carbonyl clusters. (3) Application of fast reaction techniques to prepare and to investigate reactive organometallic intermediates relevant to the activation of hydrocarbons toward carbonylation and to the formation of carbon-carbon bonds via the migratory insertion of CO into metal alkyl bonds.

  19. A new iron-based carbon monoxide oxidation catalyst: structure-activity correlation.

    PubMed

    Schoch, Roland; Huang, Heming; Schünemann, Volker; Bauer, Matthias

    2014-12-01

    A new iron-based catalyst for carbon monoxide oxidation, as a potential substitute for precious-metal systems, has been prepared by using a facile impregnation method with iron tris-acetylacetonate as a precursor on γ-Al2 O3 . Light-off and full conversion temperatures as low as 235 and 278 °C can be reached. However, the catalytic activity strongly depends on the loading; lower loadings perform better than higher ones. The different activities can be explained by variations of the structures formed. The structures are thoroughly characterized by a multimethodic approach by using X-ray diffraction, Brunauer-Emmett-Teller surface areas, and Mössbauer spectroscopy combined with diffuse reflectance UV/Vis and X-ray absorption spectroscopy. Consequently, isolated tetrahedrally coordinated Fe(3+) centers and phases of AlFeO3 are identified as structural requirements for high activity in the oxidation of carbon monoxide. PMID:25212843

  20. Design of plasmonic photodetector with high absorptance and nano-scale active regions.

    PubMed

    Guo, Jingshu; Wu, Zhiwei; Li, Yuan; Zhao, Yanli

    2016-08-01

    We propose a novel plasmonic photodetector with high responsivity, utilizing nano-scale active regions. This design can be applied to diverse materials (group III-V or IV materials) and different operation wavelengths covering the O-U bands. The periodic structure utilizing Surface Plasmon Polariton Bloch Waves (SPP-BWs) has low optical power loss. FDTD simulation shows an absorptance of 74.4% which means a responsivity of about 0.74 A/W at 1550 nm. The low capacitance brings low noise, reduced power consumption, and a high electrical bandwidth which is estimated to be 140 GHz. Among the plasmonic PDs with inherent high speeds but low responsivities, our design makes the obvious progress on improving the absorptance. PMID:27505787

  1. Determination of the texture of arrays of aligned carbon nanotubes from the angular dependence of the X-ray emission and X-ray absorption spectra

    SciTech Connect

    Okotrub, A. V. Belavin, V. V.; Bulusheva, L. G.; Gusel'nikov, A. V.; Kudashov, A. G.; Vyalikh, D. V.; Molodtsov, S. L.

    2008-09-15

    The properties of materials containing carbon nanotubes depend on the degree of alignment and the internal structure of nanotubes. It is shown that the degree of misorientation of carbon nanotubes in samples can be evaluated from the measurements of the angular dependences of the carbon X-ray emission and carbon X-ray absorption spectra. The CK{sub {alpha}} emission and CK X-ray absorption spectra of the array of multiwalled carbon nanotubes synthesized by catalytic thermolysis of a mixture of fullerene and ferrocene are measured. A comparison of the calculated model dependences of the relative intensities of the {pi} and {sigma} bands in the spectra with the experimental results makes it possible to evaluate the degree of misorientation of nanotubes in the sample and their internal texture.

  2. Impact of Sulfur Oxides on Mercury Capture by Activated Carbon

    SciTech Connect

    Presto, A.A.; Granite, E.J.

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACI, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  3. Cellulosic carbon fibers with branching carbon nanotubes for enhanced electrochemical activities for bioprocessing applications.

    PubMed

    Zhao, Xueyan; Lu, Xin; Tze, William Tai Yin; Kim, Jungbae; Wang, Ping

    2013-09-25

    Renewable biobased carbon fibers are promising materials for large-scale electrochemical applications including chemical processing, energy storage, and biofuel cells. Their performance is, however, often limited by low activity. Herein we report that branching carbon nanotubes can enhance the activity of carbonized cellulosic fibers, such that the oxidation potential of NAD(H) was reduced to 0.55 V from 0.9 V when applied for bioprocessing. Coordinating with enzyme catalysts, such hierarchical carbon materials effectively facilitated the biotransformation of glycerol, with the total turnover number of NAD(H) over 3500 within 5 h of reaction. PMID:24020801

  4. Determination of nickel in water, food, and biological samples by electrothermal atomic absorption spectrometry after preconcentration on modified carbon nanotubes.

    PubMed

    Taher, Mohammad Ali; Mazaheri, Lida; Ashkenani, Hamid; Mohadesi, Alireza; Afzali, Daryoush

    2014-01-01

    A new and sensitive SPE method using modified carbon nanotubes for extraction and preconcentration, and electrothermal atomic absorption spectrometric determination of nickel (Ni) in real samples at ng/L levels was investigated. First, multiwalled carbon nanotubes were oxidized with concentrated HNO3, then modified with 2-(5-bormo-2-pyridylazo)-5-diethylaminophenol reagent. The adsorption was achieved quantitatively on a modified carbon nanotubes column in a pH range of 6.5 to 8.5; the adsorbed Ni(II) ions were then desorbed by passing 5.0 mL of 1 M HNO3. The effects of analytical parameters, including pH of the solution, eluent type and volume, sample volume, flow rate of the eluent, and matrix ions, were investigated for optimization of the presented procedure. The enrichment factor was 180, and the LOD for Ni was 4.9 ng/L. The method was applied to the determination of Ni in water, food, and biological samples, and reproducible results were obtained. PMID:24672882

  5. Hydrogen adsorption on functionalized nanoporous activated carbons.

    PubMed

    Zhao, X B; Xiao, B; Fletcher, A J; Thomas, K M

    2005-05-12

    There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions. PMID:16852056

  6. Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin

    NASA Astrophysics Data System (ADS)

    Tsubouchi, Naoto; Nishio, Megumi; Mochizuki, Yuuki

    2016-05-01

    The present work focuses on the role of nitrogen in the development of pores in activated carbon produced from lignin by K2CO3 activation, employing a fixed bed reactor under a high-purity He stream at temperatures of 500-900 °C. The specific surface area and pore volume obtained by activation of lignin alone are 230 m2/g and 0.13 cm3/g at 800 °C, and 540 m2/g and 0.31 cm3/g at 900 °C, respectively. Activation of a mixture of lignin and urea provides a significant increase in the surface area and volume, respectively reaching 3300-3400 m2/g and 2.0-2.3 cm3/g after holding at 800-900 °C for 1 h. Heating a lignin/urea/K2CO3 mixture leads to a significant decrease in the yield of released N-containing gases compared to the results for urea alone and a lignin/urea mixture, and most of the nitrogen in the urea is retained in the solid phase. X-ray photoelectron spectroscopy and X-ray diffraction analyses clearly show that part of the remaining nitrogen is present in heterocyclic structures (for example, pyridinic and pyrrolic nitrogen), and the rest is contained as KOCN at ≤600 °C and as KCN at ≥700 °C, such that the latter two compounds can be almost completely removed by water washing. The fate of nitrogen during heating of lignin/urea/K2CO3 and role of nitrogen in pore development in activated carbon are discussed on the basis of the results mentioned above.

  7. Reprocessing of used tires into activated carbon and other products

    SciTech Connect

    Teng, H.; Serio, M.A.; Wojtowicz, M.A.; Bassilakis, R.; Solomon, P.R.

    1995-09-01

    Landfilling used tires which are generated each year in the US is increasingly becoming an unacceptable solution. A better approach, from an environmental and economic standpoint, is to thermally reprocess the tires into valuable products such as activated carbon, other solid carbon forms (carbon black, graphite, and carbon fibers), and liquid fuels. In this study, high surface area activated carbons (> 800 m{sup 2}/g solid product) were produced in relatively high yields by pyrolysis of tires at up to 900 C, followed by activation in CO{sub 2} at the same temperature. The surface areas of these materials are comparable with those of commercial activated carbons. The efficiency of the activation process (gain in specific surface area/loss in mass) was greatest (up to 138 m{sup 2}/g original tire) when large pieces of tire material were used ({approximately} 170 mg). Oxygen pretreatment of tires was found to enhance both the yield and the surface area of the carbon product. High-pressure treatment of tires at low temperatures (< 400 C) is an alternative approach if the recovery of carbon black or fuel oils is the primary objective.

  8. Absorption of carbon dioxide by solid hydroxide sorbent beds in closed-loop atmospheric revitalization system

    NASA Technical Reports Server (NTRS)

    Davis, S. H., Jr.; Kissinger, L. D.

    1982-01-01

    The reactions of carbon dioxide with various metals are discussed. The equations which govern the rates of CO2 removal from the atmosphere in spacecraft environmental control systems are discussed. Results from performance testing of various Space Shuttle environmental control systems are presented with the correlation of the equations to the performance given.

  9. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo

    PubMed Central

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M.; Specht, Christian G.; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-01

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling. PMID:26711992

  10. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo.

    PubMed

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M; Specht, Christian G; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-19

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling. PMID:26711992

  11. Broadening of the infrared absorption lines at reduced temperatures. II - Carbon monoxide in an atmosphere of carbon dioxide.

    NASA Technical Reports Server (NTRS)

    Tubbs, L. D.; Williams, D.

    1972-01-01

    The strengths of the rotational lines in the R branch of the CO fundamental have been determined at temperatures of 298, 202, and 132 K by means of a high-resolution spectrograph. The results can be used to determine line strengths at other temperatures by means of the Herman-Wallis relation or by considerations of the populations of the rotational levels in the ground vibrational state. Parameters describing the self-broadening and carbon dioxide broadening of CO lines have been determined at 298 and 202 K. The results are compared with other recent experimental and theoretical studies.

  12. Liquid-phase adsorption of organic compounds by granular activated carbon and activated carbon fibers

    SciTech Connect

    Lin, S.H.; Hsu, F.M.

    1995-06-01

    Liquid-phase adsorption of organic compounds by granular activated carbon (GAC) and activated carbon fibers (ACFs) is investigated. Acetone, isopropyl alcohol (IPA), phenol, and tetrahydrofuran (THF) were employed as the model compounds for the present study. It is observed from the experimental results that adsorption of organic compounds by GAC and ACF is influenced by the BET (Brunauer-Emmett-Teller) surface area of adsorbent and the molecular weight, polarity, and solubility of the adsorbate. The adsorption characteristics of GAC and ACFs were found to differ rather significantly. In terms of the adsorption capacity of organic compounds, the time to reach equilibrium adsorption, and the time for complete desorption, ACFs have been observed to be considerably better than GAC. For the organic compounds tested here, the GAC adsorptions were shown to be represented well by the Langmuir isotherm while the ACF adsorption could be adequately described by the Langmuir or the Freundlich isotherm. Column adsorption tests indicated that the exhausted ACFs can be effectively regenerated by static in situ thermal desorption at 150 C, but the same regeneration conditions do not do as well for the exhausted GAC.

  13. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    PubMed

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-01

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants. PMID:27214000

  14. Physicochemical and porosity characteristics of thermally regenerated activated carbon polluted with biological activated carbon process.

    PubMed

    Dong, Lihua; Liu, Wenjun; Jiang, Renfu; Wang, Zhansheng

    2014-11-01

    The characteristics of thermally regenerated activated carbon (AC) polluted with biological activated carbon (BAC) process were investigated. The results showed that the true micropore and sub-micropore volume, pH value, bulk density, and hardness of regenerated AC decreased compared to the virgin AC, but the total pore volume increased. XPS analysis displayed that the ash contents of Al, Si, and Ca in the regenerated AC respectively increased by 3.83%, 2.62% and 1.8%. FTIR spectrum showed that the surface functional groups of virgin and regenerated AC did not change significantly. Pore size distributions indicated that the AC regeneration process resulted in the decrease of micropore and macropore (D>10 μm) volume and the increase of mesopore and macropore (0.1 μm

  15. Inverse eigenvalue problems in vibration absorption: Passive modification and active control

    NASA Astrophysics Data System (ADS)

    Mottershead, John E.; Ram, Yitshak M.

    2006-01-01

    The abiding problem of vibration absorption has occupied engineering scientists for over a century and there remain abundant examples of the need for vibration suppression in many industries. For example, in the automotive industry the resolution of noise, vibration and harshness (NVH) problems is of extreme importance to customer satisfaction. In rotorcraft it is vital to avoid resonance close to the blade passing speed and its harmonics. An objective of the greatest importance, and extremely difficult to achieve, is the isolation of the pilot's seat in a helicopter. It is presently impossible to achieve the objectives of vibration absorption in these industries at the design stage because of limitations inherent in finite element models. Therefore, it is necessary to develop techniques whereby the dynamic of the system (possibly a car or a helicopter) can be adjusted after it has been built. There are two main approaches: structural modification by passive elements and active control. The state of art of the mathematical theory of vibration absorption is presented and illustrated for the benefit of the reader with numerous simple examples.

  16. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    SciTech Connect

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number

  17. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S

    2013-02-19

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  18. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S.

    2010-06-01

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  19. Wavelength Dependence of the Absorption of Black Carbon Particles: Predictions and Results from the TARFOX Experiment and Implications for the Aerosol Single Scattering Albedo

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.; Hignett, Phillip

    2002-01-01

    Measurements are presented of the wavelength dependence of the aerosol absorption coefficient taken during the Tropical Aerosol Radiative Forcing Observational Experiment (TARFOX) over the northern Atlantic. The data show an approximate lamda(exp -1) variation between 0.40 and 1.0 micrometers. The theoretical basis of the wavelength variation of the absorption of solar radiation by elemental carbon [or black carbon (BC)] is explored. For a wavelength independent refractive index the small particle absorption limit simplifies to a lambda(exp -1) variation in relatively good agreement with the data. This result implies that the refractive indices of BC were relatively constant in this wavelength region, in agreement with much of the data on refractive indices of BC. However, the result does not indicate the magnitude of the refractive indices. The implications of the wavelength dependence of BC absorption for the spectral behavior of the aerosol single scattering albedo are discussed. It is shown that the single scattering albedo for a mixture of BC and nonabsorbing material decreases with wavelength in the solar spectrum (i.e., the percentage amount of absorption increases). This decease in the single scattering albedo with wavelength for black carbon mixtures is different from the increase in single scattering allied for most mineral aerosols (dusts). This indicates that, if generally true, the spectral variation of the single- scattering albedo can be used to distinguish aerosol types. It also highlights the importance of measurements of the spectral variation of the aerosol absorption coefficient and single scattering albedo.

  20. Grafting of activated carbon cloths for selective adsorption

    NASA Astrophysics Data System (ADS)

    Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S.

    2016-05-01

    Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.

  1. Production and characterization of activated carbons from cereal grains

    SciTech Connect

    Venkatraman, A.; Walawender, W.P.; Fan, L.T.

    1996-12-31

    The term, activated carbon, is a generic name for a family of carbonaceous materials with well-developed porosities and consequently, large adsorptive capacities. Activated carbons are increasingly being consumed worldwide for environmental applications such as separation of volatiles from bulk gases and purification of water and waste-water streams. The global annual production is estimated to be around 300 million kilograms, with a rate of increase of 7% each year. Activated carbons can be prepared from a variety of raw materials. Approximately, 60% of the activated carbons generated in the United States is produced from coal; 20%, from coconut shells; and the remaining 20% from wood and other sources of biomass. The pore structure and properties of activated carbons are influenced by the nature of the starting material and the initial physical and chemical conditioning as well as the process conditions involved in its manufacture. The porous structures of charcoals and activated carbons obtained by the carbonization of kernels have been characterized.

  2. Microstructure and surface properties of lignocellulosic-based activated carbons

    NASA Astrophysics Data System (ADS)

    González-García, P.; Centeno, T. A.; Urones-Garrote, E.; Ávila-Brande, D.; Otero-Díaz, L. C.

    2013-01-01

    Low cost activated carbons have been produced via chemical activation, by using KOH at 700 °C, from the bamboo species Guadua Angustifolia and Bambusa Vulgaris Striata and the residues from shells of the fruits of Castanea Sativa and Juglans Regia as carbon precursors. The scanning electron microscopy micrographs show the conservation of the precursor shape in the case of the Guadua Angustifolia and Bambusa Vulgaris Striata activated carbons. Transmission electron microscopy analyses reveal that these materials consist of carbon platelet-like particles with variable length and thickness, formed by highly disordered graphene-like layers with sp2 content ≈ 95% and average mass density of 1.65 g/cm3 (25% below standard graphite). Textural parameters indicate a high porosity development with surface areas ranging from 850 to 1100 m2/g and average pore width centered in the supermicropores range (1.3-1.8 nm). The electrochemical performance of the activated carbons shows specific capacitance values at low current density (1 mA/cm2) as high as 161 F/g in the Juglans Regia activated carbon, as a result of its textural parameters and the presence of pseudocapacitance derived from surface oxygenated acidic groups (mainly quinones and ethers) identified in this activated carbon.

  3. Hydrogen storage on activated carbon. Final report

    SciTech Connect

    Schwarz, J.A.

    1994-11-01

    The project studied factors that influence the ability of carbon to store hydrogen and developed techniques to enhance that ability in naturally occurring and factory-produced commercial carbon materials. During testing of enhanced materials, levels of hydrogen storage were achieved that compare well with conventional forms of energy storage, including lead-acid batteries, gasoline, and diesel fuel. Using the best materials, an electric car with a modern fuel cell to convert the hydrogen directly to electricity would have a range of over 1,000 miles. This assumes that the total allowable weight of the fuel cell and carbon/hydrogen storage system is no greater than the present weight of batteries in an existing electric vehicle. By comparison, gasoline cars generally are limited to about a 450-mile range, and battery-electric cars to 40 to 60 miles. The project also developed a new class of carbon materials, based on polymers and other organic compounds, in which the best hydrogen-storing factors discovered earlier were {open_quotes}molecularly engineered{close_quotes} into the new materials. It is believed that these new molecularly engineered materials are likely to exceed the performance of the naturally occurring and manufactured carbons seen earlier with respect to hydrogen storage.

  4. Activated carbons from North Dakota lignite and leonardite

    SciTech Connect

    Young, B.C.; Olson, E.S.; Knudson, C.L.; Timpe, R.C.

    1995-12-01

    In a research and development program on carbon development, the EERC investigated key factors in the preparation of activated carbons from low-rank coals indigenous to North Dakota. The carbons were prepared for potential sorption applications with flue gas and waste liquid streams. Testing involved as-received, physically cleaned, and demineralized samples of a lignite and a leonardite. The following variables were examined: mineral matter content (7-19 wt%), carbonization temperature (350{degrees}-550{degrees}C), activation temperature (700{degrees}-1000{degrees}C), and activation time (10-60 minutes). Activated carbon samples were characterized by sorption of gaseous sulfur dioxide and liquid iodine. For both lignite and leonardite, sorption activity increased with lower mineral content and correlated with medium carbonization temperature and relatively high activation temperature but relatively short activation time. Steam activation did not significantly enhance the char`s sorptive capacity. Physically cleaned leonardite char had SO{sub 2} sorptive capacities as high as 10.9% of the sample weight at ambient temperatures.

  5. DESIGN AND CONSTRUCTION OF A MOBILE ACTIVATED CARBON REGENERATOR SYSTEM

    EPA Science Inventory

    Activated carbon adsorption has become a standard procedure for the cleanup of contaminated water streams. To facilitate such cleanup at hazardous waste and spill sites, mobile carbon adsorption units have been constructed and are now in use. Their primary drawback is the logisti...

  6. Activated carbon testing for the 200 area effluent treatment facility

    SciTech Connect

    Wagner, R.N.

    1997-01-17

    This report documents pilot and laboratory scale testing of activated carbon for use in the 200 Area Effluent Treatment Facility peroxide decomposer columns. Recommendations are made concerning column operating conditions and hardware design, the optimum type of carbon for use in the plant, and possible further studies.

  7. ACTIVATED CARBON PROCESS FOR TREATMENT OF WASTEWATERS CONTAINING HEXAVALENT CHROMIUM

    EPA Science Inventory

    The removal of hexavalent chromium, Cr(VI), from dilute aqueous solution by an activated carbon process has been investigated. Two removal mechanisms were observed; hexavalent chromium species were removed by adsorption onto the interior carbon surface and/or through reduction to...

  8. Chiral-index resolved length mapping of carbon nanotubes in solution using electric-field induced differential absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Wenshan; Hennrich, Frank; Flavel, Benjamin S.; Kappes, Manfred M.; Krupke, Ralph

    2016-09-01

    The length of single-walled carbon nanotubes (SWCNTs) is an important metric for the integration of SWCNTs into devices and for the performance of SWCNT-based electronic or optoelectronic applications. In this work we propose a rather simple method based on electric-field induced differential absorption spectroscopy to measure the chiral-index-resolved average length of SWCNTs in dispersions. The method takes advantage of the electric-field induced length-dependent dipole moment of nanotubes and has been verified and calibrated by atomic force microscopy. This method not only provides a low cost, in situ approach for length measurements of SWCNTs in dispersion, but due to the sensitivity of the method to the SWCNT chiral index, the chiral index dependent average length of fractions obtained by chromatographic sorting can also be derived. Also, the determination of the chiral-index resolved length distribution seems to be possible using this method.

  9. The detection of carbon dioxide leaks using quasi-tomographic laser absorption spectroscopy measurements in variable wind

    PubMed Central

    Levine, Zachary H.; Pintar, Adam L.; Dobler, Jeremy T.; Blume, Nathan; Braun, Michael; Scott Zaccheo, T.; Pernini, Timothy G.

    2016-01-01

    Laser absorption spectroscopy (LAS) has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from point-like sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constant rate giving rise to a plume with a concentration and distribution that depend on the wind velocity. We demonstrate the ability of our approach to detect a leak using numerical simulation and also present a preliminary measurement. PMID:27453761

  10. Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Minami, Nobutsugu; Kim, Yeji; Miyashita, Kanae; Kazaoui, Said; Nalini, Balakrishnan

    2006-02-01

    Sodium carboxymethylcellulose, an etherified derivative of cellulose, has been found to realize stable aqueous dispersion of single-wall carbon nanotubes (SWNTs) that is twenty times more concentrated than when a surfactant is used under the same condition. The dispersion as well as thin films prepared from it exhibits well-resolved near-infrared photoluminescence peaks originating from band-gap transitions in semiconducting SWNTs, a sign of isolated individual tubes. Mechanical stretching of the film strongly aligns the tubes, as demonstrated by considerable dichroism in their absorption spectra. Possessing high optical quality and uniformity, these densely dispersed SWNT films are expected to serve as an important platform for SWNTs' optical, electrical, and optoelectronic applications, especially because cellulose derivatives are cheap, mass-produced, safe, water-processable, and environmentally benign.

  11. The detection of carbon dioxide leaks using quasi-tomographic laser absorption spectroscopy measurements in variable wind

    DOE PAGESBeta

    Levine, Zachary H.; Pintar, Adam L.; Dobler, Jeremy T.; Blume, Nathan; Braun, Michael; Zaccheo, T. Scott; Pernini, Timothy G.

    2016-04-13

    Laser absorption spectroscopy (LAS) has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from point-like sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constant ratemore » giving rise to a plume with a concentration and distribution that depend on the wind velocity. Lastly, we demonstrate the ability of our approach to detect a leak using numerical simulation and also present a preliminary measurement.« less

  12. The detection of carbon dioxide leaks using quasi-tomographic laser absorption spectroscopy measurements in variable wind

    DOE PAGESBeta

    Levine, Zachary H.; Pintar, Adam L.; Dobler, Jeremy T.; Blume, Nathan; Braun, Michael; Zaccheo, T. Scott; Pernini, Timothy G.

    2016-04-13

    Laser absorption spectroscopy (LAS) has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from point-like sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constant ratemore » giving rise to a plume with a concentration and distribution that depend on the wind velocity. We demonstrate the ability of our approach to detect a leak using numerical simulation and also present a preliminary measurement.« less

  13. Electronic structure of the carbon nanotube tips studied by x-ray-absorption spectroscopy and scanning photoelectron microscopy

    NASA Astrophysics Data System (ADS)

    Chiou, J. W.; Yueh, C. L.; Jan, J. C.; Tsai, H. M.; Pong, W. F.; Hong, I.-H.; Klauser, R.; Tsai, M.-H.; Chang, Y. K.; Chen, Y. Y.; Wu, C. T.; Chen, K. H.; Wei, S. L.; Wen, C. Y.; Chen, L. C.; Chuang, T. J.

    2002-11-01

    Angle-dependent x-ray absorption near edge structure (XANES) and scanning photoelectron microscopy (SPEM) measurements have been performed to differentiate local electronic structures of the tips and sidewalls of highly aligned carbon nanotubes. The intensities of both π*- and σ*-band C K-edge XANES features are found to be significantly enhanced at the tip. SPEM results also show that the tips have a larger density of states and a higher C 1s binding energy than those of sidewalls. The increase of the tip XANES and SPEM intensities are quite uniform over an energy range wider than 10 eV in contrast to earlier finding that the enhancement is only near the Fermi level.

  14. Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere.

    PubMed

    Konopacky, Quinn M; Barman, Travis S; Macintosh, Bruce A; Marois, Christian

    2013-03-22

    Determining the atmospheric structure and chemical composition of an exoplanet remains a formidable goal. Fortunately, advancements in the study of exoplanets and their atmospheres have come in the form of direct imaging--spatially resolving the planet from its parent star--which enables high-resolution spectroscopy of self-luminous planets in jovian-like orbits. Here, we present a spectrum with numerous, well-resolved molecular lines from both water and carbon monoxide from a massive planet orbiting less than 40 astronomical units from the star HR 8799. These data reveal the planet's chemical composition, atmospheric structure, and surface gravity, confirming that it is indeed a young planet. The spectral lines suggest an atmospheric carbon-to-oxygen ratio that is greater than that of the host star, providing hints about the planet's formation. PMID:23493423

  15. Triple-Pulsed Two-Micron Integrated Path Differential Absorption Lidar: A New Active Remote Sensing Capability with Path to Space

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta; Yu, Jirong

    2016-06-01

    The two-micron wavelength is suitable for monitoring atmospheric water vapor and carbon dioxide, the two most dominant greenhouse gases. Recent advances in 2-μm laser technology paved the way for constructing state-of-the-art lidar transmitters for active remote sensing applications. In this paper, a new triple-pulsed 2-μm integrated path differential absorption lidar is presented. This lidar is capable of measuring either two species or single specie with two different weighting functions, simultaneously and independently. Development of this instrument is conducted at NASA Langley Research Center. Instrument scaling for projected future space missions will be discussed.

  16. Triple-Pulsed Two-Micron Integrated Path Differential Absorption Lidar: A New Active Remote Sensing Capability with Path to Space

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta; Yu, Jirong

    2015-01-01

    The two-micron wavelength is suitable for monitoring atmospheric water vapor and carbon dioxide, the two most dominant greenhouse gases. Recent advances in 2-micron laser technology paved the way for constructing state-of-the-art lidar transmitters for active remote sensing applications. In this paper, a new triple-pulsed 2-micron integrated path differential absorption lidar is presented. This lidar is capable of measuring either two species or single specie with two different weighting functions, simultaneously and independently. Development of this instrument is conducted at NASA Langley Research Center. Instrument scaling for projected future space missions will be discussed.

  17. Basis and reversal of Na-bentazon antagonism on sethoxydim absorption and activity

    SciTech Connect

    Wanamarta, G.

    1987-01-01

    Various experimental adjuvants, including surfactants, paraffinic oil and soybean oil based crop oil concentrates (COC), were tested to maximize the herbicidal activity of sethoxydim /2(1-(ethoxyimino)butyl)-5-/2-(ethylthio)-3-hydroxy-2-cyclohexen-1-one// and bentazon (3-isopropyl-1H-2,1,3-benzothiadiazine-4(/sup 3/H)-one 2,2- dioxide). Identification of superior adjuvants was done by measuring the effects of these experimental adjuvants on herbicide spray droplet spreadability and /sup 14/C-herbicide absorption on target weed leaves.

  18. Comment on "Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon"

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.

    2013-01-01

    Cappa et al. (Reports, 31 August 2012, p. 1078) suggest that black carbon (BC) in a mixture absorbs only ~6% more sunlight than when volatile chemicals are evaporated from the mixture, and state that "many climate models may overestimate warming by BC." However, the authors misinterpret at least some model results and omit optical focusing at high relative humidity and of involatile components. Thus, their conclusion about model error is not demonstrated.

  19. Development of an infrared absorption transducer to monitor partial pressure of carbon dioxide for space applications

    NASA Technical Reports Server (NTRS)

    Lutz, Glenn; Margiott, Victoria; Murray, Sean; Schaff, James

    1993-01-01

    An infrared (IR) carbon dioxide (CO2) transducers has been designed, developed, and produced for space applications. The transducer provides measurement of partial pressure of CO2 in life support applications, including the Extravehicular Mobility Unit (EMU), Space Shuttle Orbiter and Spacehab. The electrochemical sensor presently used for these applications has a slow reponse time and has reliability concerns due to the electrolyte. The new microprocessor based unit has a fast response time and can be tailored to other space applications.

  20. Diurnal and Interannual Variation in Absorption Lines of Isotopic Carbon Dioxide in Mars Atmosphere

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Kostiuk, Theodor; Hewagama, Tilak; Kolasinski, John R.; Henning, Wade G.

    2015-11-01

    Groundbased observations of Mars in 2003, 2007, 2012, and 2014 have detected transitions of carbon dioxide containing the stable minor isotopes of oxygen and carbon as well as the primary isotopes, using the ultrahigh resolution spectrometer HIPWAC at the NASA Infrared Telescope Facility. The most well characterized minor isotope is O-18, due to strong lines and observational opportunities. The average estimated O-18/O-16 isotope ratio is roughly consistent with other in situ and remote spectroscopic measurements but demonstrates an additional feature in that the retrieved ratio appears to increase with greater ground surface temperature. These conclusions primarily come from analyzing a subset of the 2007 data. Additional observations have been acquired over a broad range of local time and meridional position to evaluate variability with respect to ground surface temperature. These additional observations include one run of measurements with C-13. These observations can be compared to local in situ measurements by the Curiosity rover to narrow the uncertainty in absolute isotope ratio and extend isotopic measurements to other regions and seasons on Mars. The relative abundance of carbon dioxide heavy isotopes on Mars is central to estimating the primordial atmospheric inventory on Mars. Preferential freeze-distillation of heavy isotopes means that any measurement of the isotope ratio can be only a lower limit on heavy isotope enrichment due to past and current loss to space.

  1. Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.

    2014-07-01

    This paper examines the effects on climate and air pollution of open biomass burning (BB) when heat and moisture fluxes, gases and aerosols (including black and brown carbon, tar balls, and reflective particles), cloud absorption effects (CAEs) I and II, and aerosol semidirect and indirect effects on clouds are treated. It also examines the climate impacts of most anthropogenic heat and moisture fluxes (AHFs and AMFs). Transient 20 year simulations indicate BB may cause a net global warming of ~0.4 K because CAE I (~32% of BB warming), CAE II, semidirect effects, AHFs (~7%), AMFs, and aerosol absorption outweigh direct aerosol cooling and indirect effects, contrary to previous BB studies that did not treat CAEs, AHFs, AMFs, or brown carbon. Some BB warming can be understood in terms of the anticorrelation between instantaneous direct radiative forcing (DRF) changes and surface temperature changes in clouds containing absorbing aerosols. BB may cause ~250,000 (73,000-435,000) premature mortalities/yr, with >90% from particles. AHFs from all sources and AMFs + AHFs from power plants and electricity use each may cause a statistically significant +0.03 K global warming. Solar plus thermal-IR DRFs were +0.033 (+0.027) W/m2 for all AHFs globally without (with) evaporating cooling water, +0.009 W/m2 for AMFs globally, +0.52 W/m2 (94.3% solar) for all-source BC outside of clouds plus interstitially between cloud drops at the cloud relative humidity, and +0.06 W/m2 (99.7% solar) for BC inclusions in cloud hydrometeor particles. Modeled post-1850 biomass, biofuel, and fossil fuel burning, AHFs, AMFs, and urban surfaces accounted for most observed global warming.

  2. Effect of ambient humidity on the light absorption amplification of black carbon in Beijing during January 2013

    NASA Astrophysics Data System (ADS)

    Wu, Yunfei; Zhang, Renjian; Tian, Ping; Tao, Jun; Hsu, S.-C.; Yan, Peng; Wang, Qiyuan; Cao, Junji; Zhang, Xiaoling; Xia, Xiangao

    2016-01-01

    Black carbon (BC) and its mixing state were measured with a ground-based single particle soot photometer in urban Beijing during the extremely polluted winter of 2013. Up to 70 ± 14% of the BC-containing particles were thickly-coated during periods of haze, compared to 37 ± 9% on non-hazy days. The thickly-coated number fraction (NFBC-thick) increased with increasing BC, reaching a plateau at ˜80-90% when BC concentrations were ≥15 μg m-3 and visibility was ≤2 km. Regional inflows brought more aged, highly thickly-coated BC to Beijing during haze. The absorption coefficient showed a distinct linear correlation with BC concentration; the mass absorption efficiency (MAE) of BC was acquired, with an overall mean of 4.2 ± 0.01 m2 g-1 at 870 nm. The MAE of BC amplified with increasing ambient relative humidity. This was largely explained by the increase in NFBC-thick, which was likely due to the enhanced production of secondary aerosol under humid conditions.

  3. Calculations of Solar Shortwave Heating Rates due to Black Carbon and Ozone Absorption Using in Situ Measurements

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Hall, S. R.; Swartz, W. H.; Spackman, J. R.; Watts, L. A.; Fahey, D. W.; Aikin, K. C.; Shetter, R. E.; Bui, T. P.

    2008-01-01

    Results for the solar heating rates in ambient air due to absorption by black-carbon (BC) containing particles and ozone are presented as calculated from airborne observations made in the tropical tropopause layer (TTL) in January-February 2006. The method uses airborne in situ observations of BC particles, ozone and actinic flux. Total BC mass is obtained along the flight track by summing the masses of individually detected BC particles in the range 90 to 600-nm volume-equivalent diameter, which includes most of the BC mass. Ozone mixing ratios and upwelling and partial downwelling solar actinic fluxes were measured concurrently with BC mass. Two estimates used for the BC wavelength-dependent absorption cross section yielded similar heating rates. For mean altitudes of 16.5, 17.5, and 18.5 km (0.5 km) in the tropics, average BC heating rates were near 0.0002 K/d. Observed BC coatings on individual particles approximately double derived BC heating rates. Ozone heating rates exceeded BC heating rates by approximately a factor of 100 on average and at least a factor of 4, suggesting that BC heating rates in this region are negligible in comparison.

  4. Active differential optical absorption spectroscopy for NO2 gas pollution using blue light emitting diodes

    NASA Astrophysics Data System (ADS)

    Aljalal, Abdulaziz; Gasmi, Khaled; Al-Basheer, Watheq

    2015-05-01

    Availability of high intensity light emitting diodes in the blue region offer excellent opportunity for using them in active Differential Optical Absorption Spectroscopy (DOAS) to detect air pollution. Their smooth and relatively broad spectral emissions as well as their long life make them almost ideal light sources for active DOAS. In this study, we report the usage of a blue light emitting diode in an active DOAS setup to measure traces of NO2 gas and achieving few parts per billion detection limit for a path length of 300 m. Details of the setup will be presented along with the effects on measurement accuracy due to shifts in the measured spectra calibration and due to using theoretical instrument Gaussian function instead of the measured instrument function.

  5. Evaluation of activated carbon adsorbents for CO{sub 2} capture in gasification

    SciTech Connect

    Trevor C. Drage; James M. Blackman; Cova Pevida; Colin E. Snape

    2009-05-15

    Activated carbon adsorbents have been evaluated at high pressure, up to 4 MPa, to determine their applicability for the removal of CO{sub 2} from syngas generated from gasification. The CO{sub 2} adsorption capacity and diffusion mechanism were demonstrated to be dependent upon the adsorbent outgas conditions. Activated carbons have been demonstrated to have higher adsorption capacities than existing absorption systems up to 12 mmol g{sup -1} at 4 MPa, under strong outgas conditions. Adsorption capacities on a weight basis have been demonstrated to be correlated with the surface area and micropore volume of the materials. However, performance on a volumetric basis is less well-defined and is controlled by the form and bulk density of the adsorbent. Complete cyclic regeneration of the adsorbents has been demonstrated by pressure swing regeneration cycles. 37 refs., 8 figs., 3 tabs.

  6. Semi-active control of piezoelectric coating's underwater sound absorption by combining design of the shunt impedances

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Li, Zhaohui; Huang, Aigen; Li, Qihu

    2015-10-01

    Piezoelectric shunt damping technology has been applied in the field of underwater sound absorption in recent years. In order to achieve broadband echo reduction, semi-active control of sound absorption of multi-layered piezoelectric coating by shunt damping is significant. In this paper, a practical method is proposed to control the underwater sound absorption coefficients of piezoelectric coating layers by combining design of the shunt impedance that allows certain sound absorption coefficients at setting frequencies. A one-dimensional electro-acoustic model of the piezoelectric coating and the backing is established based on the Mason equivalent circuit theory. First, the shunt impedance of the coating is derived under the constraint of sound absorption coefficient at one frequency. Then, taking the 1-3 piezoelectric composite coating as an example, the sound absorption properties of the coating shunted to the designed shunt impedance are investigated. Next, on the basis of that, an iterative method for two constrained frequencies and an optimizing algorithm for multiple constrained frequencies are provided for combining design of the shunt impedances. At last, an experimental sample with four piezoelectric material layers is manufactured, of which the sound absorption coefficients are measured in an impedance tube. The experimental results show good agreement with the finite element simulation results. It is proved that a serial R-L circuit can control the peak frequency, maximum and bandwidth of the sound absorption coefficient and the combining R-L circuits shunted to multiple layers can control the sound absorption coefficients at multiple frequencies.

  7. Selection and preparation of activated carbon for fuel gas storage

    DOEpatents

    Schwarz, James A.; Noh, Joong S.; Agarwal, Rajiv K.

    1990-10-02

    Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

  8. Enzymatic digestive activity and absorption efficiency in Tagelus dombeii upon Alexandrium catenella exposure

    NASA Astrophysics Data System (ADS)

    Fernández-Reiriz, M. J.; Navarro, J. M.; Cisternas, B. A.; Babarro, J. M. F.; Labarta, U.

    2013-12-01

    We analyzed absorption efficiency (AE) and digestive enzyme activity (amylase, cellulase complex, and laminarinase) of the infaunal bivalve Tagelus dombeii originating from two geographic sites, Corral-Valdivia and Melinka-Aysén, which have different long-term paralytic shellfish poisoning (PSP) exposure rates. We report the effects of past feeding history (origin) on T. dombeii exposed to a mixed diet containing the toxic dinoflagellate Alexandrium catenella and another dinoflagellate-free control diet over a 12-day period in the laboratory. Absorption efficiency values of T. dombeii individuals that experienced PSP exposure in their habitat (Melinka-Aysén) remained unchanged during exposure to toxic food in the laboratory. In contrast, T. dombeii from a non-PSP exposure field site (Corral-Valdivia) showed a significant reduction in AE with toxic exposure time. This study established that the amylase and cellulase complexes were the most important enzymes in the digestive glands of Tagelus from both sites. The temporal evolution of enzymatic activity under toxic diet was fitted to exponential (amylase and cellulase) and to a logarithmic (laminarinase) models. In all fits, we found significant effect of origin in the model parameters. At the beginning of the experiment, higher enzymatic activity was observed for clams from Corral-Valdivia. The amylase activity decreased with time exposure for individuals from Corral and increased for individuals from Melinka. Cellulase activity did not vary over time for clams from Corral, but increased for individuals from Melinka and laminarinase activity decreased over time for individuals from Corral and remained unchanged over time for Melinka. A feeding history of exposure to the dinoflagellate A. catenella was reflected in the digestive responses of both T. dombeii populations.

  9. Natural gas storage with activated carbon from a bituminous coal

    USGS Publications Warehouse

    Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.

    1996-01-01

    Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (<0.044 mm). The increase in Vm/Vs is due to the increase in bulk density of the carbons. Volumetric methane adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.

  10. Sustainable Regeneration of Nanoparticle Enhanced Activated Carbon in Water

    EPA Science Inventory

    The regeneration and reuse of exhausted granular activated carbon (GAC) is an appropriate method for lowering operational and environmental costs. Advanced oxidation is a promising environmental friendly technique for GAC regeneration. The main objective of this research was to ...

  11. GRANULAR ACTIVATED CARBON ADSORPTION AND INFRARED REACTIVATION: A CASE STUDY

    EPA Science Inventory

    A study evaluated the effectiveness and cost of removing trace organic contaminants and surrogates from drinking water by granular activated carbon (GAC) adsorption. The effect of multiple reactivations of spent GAC was also evaluated. Results indicated that reactivated GAC eff...

  12. PREDICTING PREFERENTIAL ADSORPTION OF ORGANICS BY ACTIVATED CARBON

    EPA Science Inventory

    Preferential adsorption of organic compounds onto activated carbon from dilute aqueous solutions was studied to develop a comprehensive theoretical basis for predicting adsorption of multicomponent solutes. The research program investigates why some solutes are strong adsorbers, ...

  13. Comparison of the light absorption coefficient and carbon measures for remote aerosols: An independent analysis of data from the IMPROVE network—I

    NASA Astrophysics Data System (ADS)

    Huffman, H. Dale

    Using the IMPROVE network aerosol data from rural or remote sites across the United States, the ratio of the optically measured light absorption coefficient ( σa) to the elemental carbon measured by Thermal/Optical Reflectance (TOR) analysis consistently indicates an absorption efficiency that is twice the accepted value of 10m 2g -1. Correlations between σa and the TOR carbon strongly suggest that the discrepancy is due to an underevaluation of light-absorbing carbon rather than to an overestimation of σa or a real, higher value of the absorption efficiency. In particular, past doubts about the accuracy and precision of the IMPROVE σa measurement are here shown to be unsupported by the IMPROVE data. The large empirical correction that is applied to this σa measurement, for multiple scattering effects due to filter mass loading, is given a new explanation as the effect of an increasing forward scattering fraction as sample thickness increases. The old explanation of shadowing by overlying particles in the sample is rejected as having just the opposite effect to that needed to explain the correction. The use of a diffuse source rather than a laser beam is indicated as a way to avoid the large empirical correction of σa. Modelling of the light absorption by TOR carbon measurements, at twelve remote sites over a wide portion of the western United States, suggests the following errors in the current interpretation of TOR analysis for these sites: (1) The pyrolysis correction, based upon optical reflectance monitoring, appears to be largely wrong; and (2) The carbon evolving between 450 and 550°C in a pure helium atmosphere, currently interpreted as organic and therefore non-light-absorbing, appears to be as strongly light-absorbing as elemental carbon. However, the present analysis indicates that for a large majority (˜90%) of samples the light-absorbing carbons, as reinterpreted herein, are not only measured accurately by TOR, they are also reasonably well

  14. Preparation and characterization of activated carbon from sugarcane bagasse by physical activation with CO2 gas

    NASA Astrophysics Data System (ADS)

    Bachrun, Sutrisno; AyuRizka, Noni; Annisa, SolichaHidayat; Arif, Hidayat

    2016-01-01

    A series of experiments have been conducted to study the effects of different carbonization temperatures (400, 600, and 800oC) on characteristics of porosity in activated carbon derived from carbonized sugarcane bagassechar at activation temperature of 800oC. The results showed that the activated carbon derived from high carbonized temperature of sugarcane bagassechars had higher BET surface area, total volume, micropore volume and yield as compared to the activated carbon derived from low carbonized temperature. The BET surface area, total volume and micropore volume of activated carbon prepared from sugarcane bagassechars obtained at 800oC of carbonized temperature and activation time of 120 min were 661.46m2/g, 0.2455cm3/g and 0.1989cm3/g, respectively. The high carbonization temperature (800oC) generated a highly microporous carbonwith a Type-I nitrogen adsorption isotherm, while the low carbonization temperature (400 and 600oC) generated a mesoporous one with an intermediate between types I and IInitrogen adsorption isotherm.

  15. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds.

    PubMed

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-01-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen. PMID:25902034

  16. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-04-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen.

  17. Carbon Nanotube Materials for Substrate Enhanced Control of Catalytic Activity

    SciTech Connect

    Heben, M.; Dillon, A. C.; Engtrakul, C.; Lee, S.-H.; Kelley, R. D.; Kini, A. M.

    2007-05-01

    Carbon SWNTs are attractive materials for supporting electrocatalysts. The properties of SWNTs are highly tunable and controlled by the nanotube's circumferential periodicity and their surface chemistry. These unique characteristics suggest that architectures constructed from these types of carbon support materials would exhibit interesting and useful properties. Here, we expect that the structure of the carbon nanotube support will play a major role in stabilizing metal electrocatalysts under extreme operating conditions and suppress both catalyst and support degradation. Furthermore, the chemical modification of the carbon nanotube surfaces can be expected to alter the interface between the catalyst and support, thus, enhancing the activity and utilization of the electrocatalysts. We plan to incorporate discrete reaction sites into the carbon nanotube lattice to create intimate electrical contacts with the catalyst particles to increase the metal catalyst activity and utilization. The work involves materials synthesis, design of electrode architectures on the nanoscale, control of the electronic, ionic, and mass fluxes, and use of advanced optical spectroscopy techniques.

  18. Electroacoustic absorbers: bridging the gap between shunt loudspeakers and active sound absorption.

    PubMed

    Lissek, Hervé; Boulandet, Romain; Fleury, Romain

    2011-05-01

    The acoustic impedance at the diaphragm of an electroacoustic transducer can be varied using a range of basic electrical control strategies, amongst which are electrical shunt circuits. These passive shunt techniques are compared to active acoustic feedback techniques for controlling the acoustic impedance of an electroacoustic transducer. The formulation of feedback-based acoustic impedance control reveals formal analogies with shunt strategies, and highlights an original method for synthesizing electric networks ("shunts") with positive or negative components, bridging the gap between passive and active acoustic impedance control. This paper describes the theory unifying all these passive and active acoustic impedance control strategies, introducing the concept of electroacoustic absorbers. The equivalence between shunts and active control is first formalized through the introduction of a one-degree-of-freedom acoustic resonator accounting for both electric shunts and acoustic feedbacks. Conversely, electric networks mimicking the performances of active feedback techniques are introduced, identifying shunts with active impedance control. Simulated acoustic performances are presented, with an emphasis on formal analogies between the different control techniques. Examples of electric shunts are proposed for active sound absorption. Experimental assessments are then presented, and the paper concludes with a general discussion on the concept and potential improvements. PMID:21568400

  19. Determination of the geometric and electronic structure of activated bleomycin using X-ray absorption spectroscopy

    SciTech Connect

    Westre, T.E.; Loeb, K.E.; Zaleski, J.M.; Hedman, B.; Hodgson, K.O.; Solomon, E.I. )

    1995-02-01

    Activated Bleomycin (BLM) is the first mononuclear non-heme iron oxygen intermediate stable enough for detailed spectroscopic study. DNA degradation by activated BLM involves C-H bond cleavage at the C4[prime] position of deoxyribose moieties and results in the production of base propenals. It has been postulated that activated BLM is an oxo-ferryl intermediate on the basis of its reactivity and analogy with cytochrome P-450 chemistry. Alternatively, spectroscopic and model studies have indicated activated BLM to have an iron(III)-peroxide site. In this study, X-ray absorption spectroscopy (XAS) has been used to directly probe the oxidation and spin states of the iron in activated BLM and to determine if a short iron-oxo bond is present, which would be characteristic of the oxo-ferryl species of heme iron. Both the pre-edge and edge regions of the Fe K-edge spectra indicate that activated BLM is a low spin ferric complex. The pre-edge intensity of activated BLM is also similar to that of low spin ferric BLM and does not show the intensity enhancement which would be present if there were a short Fe-O bond. Furthermore, bond distances obtained from EXAFS are similar to those in low spin Fe[sup III]BLM and show no evidence for a short iron-oxo bond. 33 refs., 4 figs., 1 tab.

  20. Effects of CO 2 activation on porous structures of coconut shell-based activated carbons

    NASA Astrophysics Data System (ADS)

    Guo, Shenghui; Peng, Jinhui; Li, Wei; Yang, Kunbin; Zhang, Libo; Zhang, Shimin; Xia, Hongying

    2009-07-01

    In this paper, textural characterization of an activated carbon derived from carbonized coconut shell char obtained at carbonization temperature of 600 °C for 2 h by CO 2 activation was investigated. The effects of activation temperature, activation time and flow rate of CO 2 on the BET surface area, total volume, micropore volume and yield of activated carbons prepared were evaluated systematically. The results showed that: (i) enhancing activation temperature was favorable to the formation of pores, widening of pores and an increase in mesopores; (ii) increasing activation time was favorable to the formation of micropores and mesopores, and longer activation time would result in collapsing of pores; (iii) increasing flow rate of CO 2 was favorable to the reactions of all active sites and formation of pores, further increasing flow rate of CO 2 would lead carbon to burn out and was unfavorable to the formation of pores. The degree of surface roughness of activated carbon prepared was measured by the fractal dimension which was calculated by FHH (Frenkel-Halsey-Hill) theory. The fractal dimensions of activated carbons prepared were greater than 2.6, indicating the activated carbon samples prepared had very irregular structures, and agreed well with those of average micropore size.

  1. Black Nb2O5 nanorods with improved solar absorption and enhanced photocatalytic activity.

    PubMed

    Zhao, Wenli; Zhao, Wei; Zhu, Guilian; Lin, Tianquan; Xu, Fangfang; Huang, Fuqiang

    2016-03-01

    Black titania, with greatly improved solar absorption, has demonstrated its effectiveness in photocatalysis and photoelectrochemical cells (PEC), inspiring us to explore the blackening of other wide band-gap oxide materials for enhanced performance. Herein, we report the fabrication of black, reduced Nb2O5 nanorods (r-Nb2O5), with active exposed (001) surfaces, and their enhanced photocatalytic and PEC properties. Black r-Nb2O5 nanorods were obtained via reduction of pristine Nb2O5 by molten aluminum in a two-zone furnace. Unlike the black titania, r-Nb2O5 nanorods are well-crystallized, without a core-shell structure, which makes them outstanding in photocatalytic stability. Substantial Nb(4+) cation and oxygen vacancies (VO) were introduced into r-Nb2O5, resulting in the enhanced absorption in both the visible and near-infrared regions and improved charge separation and transport capability. The advantage of the r-Nb2O5 was also proved by its more efficient photoelectrochemical performance (138 times at 1.23 VRHE) and higher photocatalytic hydrogen-generation activity (13 times) than pristine Nb2O5. These results indicate that black r-Nb2O5 is a promising material for PEC application and photocatalysis. PMID:26906245

  2. Water vapor adsorption on activated carbon preadsorbed with naphtalene.

    PubMed

    Zimny, T; Finqueneisel, G; Cossarutto, L; Weber, J V

    2005-05-01

    The adsorption of water vapor on a microporous activated carbon derived from the carbonization of coconut shell has been studied. Preadsorption of naphthalene was used as a tool to determine the location and the influence of the primary adsorbing centers within the porous structure of active carbon. The adsorption was studied in the pressure range p/p0=0-0.95 in a static water vapor system, allowing the investigation of both kinetic and equilibrium experimental data. Modeling of the isotherms using the modified equation of Do and Do was applied to determine the effect of preadsorption on the mechanism of adsorption. PMID:15797395

  3. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2001-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  4. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2000-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  5. Absorption spectroscopy of oxygen, carbon dioxide and water species for applications in combustion diagnostics

    NASA Astrophysics Data System (ADS)

    Mei, Anhua

    Laser absorption spectroscopy has been a useful tool applied in combustion diagnostics because of its capability to measure the species' concentration, particularly to measure concentration, temperature, and pressure simultaneously. These measurements provide the necessary information for dynamic combustion control. Due to its advantages such as fast response, non-intrusive nature and applicability under harsh environment like high temperature and high pressure, absorption laser spectroscopy makes it possible to monitor combustion system on-line and in situ. Since its development for more than thirty years, laser spectroscopy has matured, and the novel and advanced laser sensors have pushed it to be applied fast. On the other hand, industry still needs cheaper and more operable spectroscopy, which becomes an important consideration in the development and application of modern laser spectroscopy. This study presents an instrumental structure including the algorithm of the spectrum computation and the hardware configuration. The algorithm applied the central maximum value of the spectrum to simplify the computation. The whole calculation was done extensively using Beer-Lambert theory and HITRAN database which makes it efficient and applicable. This research conducted the simulations of high temperature species, such as CO2, H2O to carry out the algorithm, which were compared with published data. Also, this research designed and performed the experiments of measuring oxygen and its mixture with Helium by using a 760 nm diode laser and a 655 nm Helium/Neon laser sensor with fixed wavelength structures. The results of this research also conclude the following: (1) extensive literature survey, field research and laboratory work; (2) studying the significant theories and experimental methods of the laser spectroscopy; (3) developing efficient and simplified algorithm for spectrum calculation; (4) simulating high temperature species H2O and CO2; (5) designing and building

  6. Gastrointestinal absorption and biological activities of serine and cysteine proteases of animal and plant origin: review on absorption of serine and cysteine proteases

    PubMed Central

    Lorkowski, Gerhard

    2012-01-01

    Research has confirmed that peptides and larger protein molecules pass through the mucosal barrier of the gastrointestinal tract. Orally administered serine and cysteine proteases of plant and animal origin also reach blood and lymph as intact, high molecular weight and physiologically active protein molecules. Their absorption may be supported by a self-enhanced paracellular transport mechanism resulting in sub-nanomolar concentration of transiently free protease molecules or, in a complex with anti-proteases, at higher concentrations. Data from pharmacokinetic investigations reveals dose linearity for maximum plasma levels of free proteases not unusual for body proteases and a high inter-individual variability. There is no interference with each other after oral administration of protease combinations, and absorption follows an unusual invasion and elimination kinetic due to slow velocity of absorption and a fast 100% protein binding to anti-proteases. Oral application of proteases leads to increased proteolytic serum activity and increased plasma concentrations of the corresponding anti-proteases. Their biological activity is determined by their proteolytic activity as free proteases on soluble peptides/proteins or cell surface receptors (e.g. protease activated receptors) and their activity in the complex formed with their specific and/or unspecific anti-proteases. The anti-protease-complexes, during immune reaction and injuries often loaded with different cytokines, are cleared from body fluids and tissue by receptor mediated endocytosis on hepatocytes and/or blood cells. Oral administration of enteric coated tablets containing proteolytic enzymes of plant and animal origin may be a safe method to stabilize, positively influence or enhance physiological and immunological processes during disease processes and in healthy consumers. PMID:22461953

  7. Carbon-carbon bond cleavage in activation of the prodrug nabumetone.

    PubMed

    Varfaj, Fatbardha; Zulkifli, Siti N A; Park, Hyoung-Goo; Challinor, Victoria L; De Voss, James J; Ortiz de Montellano, Paul R

    2014-05-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs. PMID:24584631

  8. Carbon-Carbon Bond Cleavage in Activation of the Prodrug Nabumetone

    PubMed Central

    Varfaj, Fatbardha; Zulkifli, Siti N. A.; Park, Hyoung-Goo; Challinor, Victoria L.; De Voss, James J.

    2014-01-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs. PMID:24584631

  9. Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon

    NASA Astrophysics Data System (ADS)

    Wang, X.; Heald, C. L.; Ridley, D. A.; Schwarz, J. P.; Spackman, J. R.; Perring, A. E.; Coe, H.; Liu, D.; Clarke, A. D.

    2014-10-01

    Atmospheric black carbon (BC) is a leading climate warming agent, yet uncertainties on the global direct radiative forcing (DRF) remain large. Here we expand a global model simulation (GEOS-Chem) of BC to include the absorption enhancement associated with BC coating and separately treat both the aging and physical properties of fossil-fuel and biomass-burning BC. In addition we develop a global simulation of brown carbon (BrC) from both secondary (aromatic) and primary (biomass burning and biofuel) sources. The global mean lifetime of BC in this simulation (4.4 days) is substantially lower compared to the AeroCom I model means (7.3 days), and as a result, this model captures both the mass concentrations measured in near-source airborne field campaigns (ARCTAS, EUCAARI) and surface sites within 30%, and in remote regions (HIPPO) within a factor of 2. We show that the new BC optical properties together with the inclusion of BrC reduces the model bias in absorption aerosol optical depth (AAOD) at multiple wavelengths by more than 50% at AERONET sites worldwide. However our improved model still underestimates AAOD by a factor of 1.4 to 2.8 regionally, with the largest underestimates in regions influenced by fire. Using the RRTMG model integrated with GEOS-Chem we estimate that the all-sky top-of-atmosphere DRF of BC is +0.13 Wm-2 (0.08 Wm-2 from anthropogenic sources and 0.05 Wm-2 from biomass burning). If we scale our model to match AERONET AAOD observations we estimate the DRF of BC is +0.21 Wm-2, with an additional +0.11 Wm-2 of warming from BrC. Uncertainties in size, optical properties, observations, and emissions suggest an overall uncertainty in BC DRF of -80%/+140%. Our estimates are at the lower end of the 0.2-1.0 Wm-2 range from previous studies, and substantially less than the +0.6 Wm-2 DRF estimated in the IPCC 5th Assessment Report. We suggest that the DRF of BC has previously been overestimated due to the overestimation of the BC lifetime (including the

  10. Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon

    NASA Astrophysics Data System (ADS)

    Wang, X.; Heald, C. L.; Ridley, D. A.; Schwarz, J. P.; Spackman, J. R.; Perring, A. E.; Coe, H.; Liu, D.; Clarke, A. D.

    2014-06-01

    Atmospheric black carbon (BC) is a leading climate warming agent, yet uncertainties on the global direct radiative forcing (DRF) remain large. Here we expand a global model simulation (GEOS-Chem) of BC to include the absorption enhancement associated with BC coating and separately treat both the aging and physical properties of fossil fuel and biomass burning BC. In addition we develop a global simulation of Brown Carbon (BrC) from both secondary (aromatic) and primary (biomass burning and biofuel) sources. The global mean lifetime of BC in this simulation (4.4 days) is substantially lower compared to the AeroCom I model means (7.3 days), and as a result, this model captures both the mass concentrations measured in near-source airborne field campaigns (ARCTAS, EUCAARI) and surface sites within 30%, and in remote regions (HIPPO) within a factor of two. We show that the new BC optical properties together with the inclusion of BrC reduces the model bias in Absorption Aerosol Optical Depth (AAOD) at multiple wavelengths by more than 50% at AERONET sites worldwide. However our improved model still underestimates AAOD by a factor of 1.4 to 2.8 regionally, with largest underestimates in regions influenced by fire. Using the RRTMG model integrated with GEOS-Chem we estimate that the all-sky top-of-atmosphere DRF of BC is +0.13 W m-2 (0.08 W m-2 from anthropogenic sources and 0.05 W m-2 from biomass burning). If we scale our model to match AERONET AAOD observations we estimate the DRF of BC is +0.21 W m-2, with an additional +0.11 W m-2 of warming from BrC. Uncertainties in size, optical properties, observations, and emissions suggest an overall uncertainty in BC DRF of -80% / +140%. Our estimates are at the lower end of the 0.2-1.0 W m-2 range from previous studies, and substantially less than the +0.6 W m-2 DRF estimated in the IPCC 5th Assessment Report. We suggest that the DRF of BC has previously been overestimated due to the overestimation of the BC lifetime and the

  11. Microwave absorption properties of cobalt ferrite-modified carbonized bacterial cellulose

    NASA Astrophysics Data System (ADS)

    Ren, Yong; Li, Shirong; Dai, Bo; Huang, Xiaohu

    2014-08-01

    A novel magnetic nanocomposite of carbonized bacterial cellulose (CBC) modified by CoFe2O4 nanocrystals with different contents were synthesized successfully using an effective solvothermal method. Scanning electron microscopy and transmission electron microscopy revealed that the CBC fibers were intertwined and networks were loaded with well-distributed CoFe2O4 nanoparticles. With a CBC/CoFe2O4 ratio of 10 wt%, the optimal reflection loss (RL) of -45 dB at 8.6 GHz with a thickness of 2.0 mm because of the enhanced interfacial polarization related to the developed ɛ″. This novel electromagnetic nanocomposite material is believed to have potential applications in terms of microwave-absorbing performance.

  12. Wet oxidative regeneration of activated carbon loaded with reactive dye.

    PubMed

    Shende, R V; Mahajani, V V

    2002-01-01

    Wet Oxidative Regeneration (WOR) of powdered activated carbon (PAC) and granular activated carbon (GAC) loaded with the reactive dyes, namely chemictive brilliant blue R and cibacron turquoise blue G, was studied. Attempts were made to regenerate the loaded carbons designated now as spent carbon. A slurry (10% w/v) of spent carbon in distilled water was oxidized by wet oxidation in the temperature range of 150-250 degrees C using oxygen partial pressures between 0.69-1.38 MPa in an 1 1 SS 316 autoclave. The percent regeneration was determined from a ratio, X(RC)/X(VC), corresponding to an equilibrium adsorption capacity of regenerated carbon/equilibrium adsorption capacity of virgin carbon from an initial adsorption period of 3 h. It was observed that the regeneration mainly occurred due to the oxidation of the adsorbates taking place on the surface of carbon. It was possible to regenerate the spent GAC and PAC to the extent of more than 98% (approximately X(RC)/X(VC) > 0.98) by wet oxidation. After four consecutive cycles of adsorption and regeneration using the same stocks of GAC, carbon weight loss observed at 200 degrees C was about 40%. SEM studies of the regenerated carbon showed widening of the pores and loss of structure between the adjacent pores as compared with the virgin carbon. PAC was found to be more suitable as compared with GAC for the adsorption and wet oxidative regeneration processes to treat the aqueous solution containing lower concentration of unhydrolyzed reactive dye. The suitability of wet oxidative regeneration is demonstrated at a bench scale to treat the synthetic reactive dye solution. PMID:11942707

  13. Dynamic mechanical analysis and high strain-rate energy absorption characteristics of vertically aligned carbon nanotube reinforced woven fiber-glass composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dynamic mechanical behavior and energy absorption characteristics of nano-enhanced functionally graded composites, consisting of 3 layers of vertically aligned carbon nanotube (VACNT) forests grown on woven fiber-glass (FG) layer and embedded within 10 layers of woven FG, with polyester (PE) and...

  14. Short timescale inkjet ink component diffusion: an active part of the absorption mechanism into inkjet coatings.

    PubMed

    Lamminmäki, T T; Kettle, J P; Puukko, P J T; Ridgway, C J; Gane, P A C

    2012-01-01

    The structures of inkjet coatings commonly contain a high concentration of fine diameter pores together with a large pore volume capacity. To clarify the interactive role of the porous structure and the coincidentally occurring swelling of binder during inkjet ink vehicle imbibition, coating structures were studied in respect to their absorption behaviour for polar and non-polar liquid. The absorption measurement was performed using compressed pigment tablets, based on a range of pigment types and surface charge polarity, containing either polyvinyl alcohol (PVOH) or styrene acrylic latex (SA) as the binder, by recording the liquid uptake with a microbalance. The results indicate that, at the beginning of liquid uptake, at times less than 2 s, the small pores play the dominant role with respect to the inkjet ink vehicle imbibition. Simultaneously, water molecules diffuse into and within the hydrophilic PVOH binder causing binder swelling, which diminishes the number of active small pores and reduces the diameter of remaining pores, thus slowing the capillary flow as a function of time. The SA latex does not absorb the vehicle, and therefore the dominating phenomenon is then capillary absorption. However, the diffusion coefficient of the water vapour across separately prepared PVOH and SA latex films seems to be quite similar. In the PVOH, the polar liquid diffuses into the polymer network, whereas in the SA latex the hydrophobic nature prevents the diffusion into the polymer matrix and there exists surface diffusion. At longer timescale, permeation flow into the porous coating dominates as the resistive term controlling the capillary driven liquid imbibition rate. PMID:21981972

  15. Detecting Extracellular Carbonic Anhydrase Activity Using Membrane Inlet Mass Spectrometry

    PubMed Central

    Delacruz, Joannalyn; Mikulski, Rose; Tu, Chingkuang; Li, Ying; Wang, Hai; Shiverick, Kathleen T.; Frost, Susan C.; Horenstein, Nicole A.; Silverman, David N.

    2010-01-01

    Current research into the function of carbonic anhydrases in cell physiology emphasizes the role of membrane-bound carbonic anhydrases, such as carbonic anhydrase IX that has been identified in malignant tumors and is associated with extracellular acidification as a response to hypoxia. We present here a mass spectrometric method to determine the extent to which total carbonic anhydrase activity is due to extracellular carbonic anhydrase in whole cell preparations. The method is based on the biphasic rate of depletion of 18O from CO2 measured by membrane inlet mass spectrometry. The slopes of the biphasic depletion are a sensitive measure of the presence of carbonic anhydrase outside and inside of the cells. This property is demonstrated here using suspensions of human red cells in which external carbonic anhydrase was added to the suspending solution. It is also applied to breast and prostate cancer cells which both express exofacial carbonic anhydrase IX. Inhibition of external carbonic anhydrase is achieved by use of a membrane impermeant inhibitor that was synthesized for this purpose, p-aminomethylbenzenesulfonamide attached to a polyethyleneglycol polymer. PMID:20417171

  16. Monosaccharide absorption activity of Arabidopsis roots depends on expression profiles of transporter genes under high salinity conditions.

    PubMed

    Yamada, Kohji; Kanai, Motoki; Osakabe, Yuriko; Ohiraki, Haruka; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2011-12-16

    Plant roots are able to absorb sugars from the rhizosphere but also release sugars and other metabolites that are critical for growth and environmental signaling. Reabsorption of released sugar molecules could help reduce the loss of photosynthetically fixed carbon through the roots. Although biochemical analyses have revealed monosaccharide uptake mechanisms in roots, the transporters that are involved in this process have not yet been fully characterized. In the present study we demonstrate that Arabidopsis STP1 and STP13 play important roles in roots during the absorption of monosaccharides from the rhizosphere. Among 14 STP transporter genes, we found that STP1 had the highest transcript level and that STP1 was a major contributor for monosaccharide uptake under normal conditions. In contrast, STP13 was found to be induced by abiotic stress, with low expression under normal conditions. We analyzed the role of STP13 in roots under high salinity conditions where membranes of the epidermal cells were damaged, and we detected an increase in the amount of STP13-dependent glucose uptake. Furthermore, the amount of glucose efflux from stp13 mutants was higher than that from wild type plants under high salinity conditions. These results indicate that STP13 can reabsorb the monosaccharides that are released by damaged cells under high salinity conditions. Overall, our data indicate that sugar uptake capacity in Arabidopsis roots changes in response to environmental stresses and that this activity is dependent on the expression pattern of sugar transporters. PMID:22041897

  17. Tributyl phosphate as a sensitivity-enhancing solvent for organotin in carbon furnace atomic absorption spectrometry.

    PubMed

    Li, H; Gong, B; Matsumoto, K

    1996-07-01

    Tributyl phosphate (TBP) has been found to be a sensitivity-enhancing solvent for organotin compounds in graphite furnace atomic absorption spectrometry; (C(4)H(9))(2)Sn(O(2)CCH(3))(2), (C(4)H(9))(2)Sn(O(2)CC(11)H(23))(2), (C(4)H(9))(3)SnCl, and (C(4)H(9))(4)Sn all give 1 order of magnitude higher sensitivities in TBP than in toluene or ethyl acetate. The sensitivities are enhanced further 1-2 orders of magnitude in TBP, when PdCl(2)(CH(3)CN)(2) is added as a matrix modifier in the organic solvent. Among the four organotin compounds, (C(4)H(9))(2)Sn(O(2)CCH(3))(2) and (C(4)H(9))(2)Sn(O(2)CC(11)H(23))(2) give better sensitivities than (C(4)H(9))(3)SnCl and (C(4)H(9))(4)Sn in the absence of palladium in any organic solvent, which suggests that the oxygen atom in the tin compound might form tin oxides that are resistant to volatilization loss during ashing. Scanning electron microscopic, electrothermal vaporization ICPMS, and powder X-ray diffraction studies show that the final products before atomization include phosphorus-containing compounds Sn(2)P(2)O(7), SnP(2)O(7), and Pd(9)P(2), besides tin-palladium alloys, PdSn, Pd(3)Sn, Pd(2)Sn, Pd(3)Sn(2), and PdSn(3). These phosphorus-containing compounds would more efficiently stabilize tin and suppress tin vaporization loss during ashing, to give higher sensitivity. PMID:21619315

  18. Adsorption of dissolved natural organic matter by modified activated carbons.

    PubMed

    Cheng, Wei; Dastgheib, Seyed A; Karanfil, Tanju

    2005-06-01

    Adsorption of dissolved natural organic matter (DOM) by virgin and modified granular activated carbons (GACs) was studied. DOM samples were obtained from two water treatment plants before (i.e., raw water) and after coagulation/flocculation/sedimentation processes (i.e., treated water). A granular activated carbon (GAC) was modified by high temperature helium or ammonia treatment, or iron impregnation followed by high temperature ammonia treatment. Two activated carbon fibers (ACFs) were also used, with no modification, to examine the effect of carbon porosity on DOM adsorption. Size exclusion chromatography (SEC) and specific ultraviolet absorbance (SUVA(254)) were employed to characterize the DOMs before and after adsorption. Iron-impregnated (HDFe) and ammonia-treated (HDN) activated carbons showed significantly higher DOM uptakes than the virgin GAC. The enhanced DOM uptake by HDFe was due to the presence of iron species on the carbon surface. The higher uptake of HDN was attributed to the enlarged carbon pores and basic surface created during ammonia treatment. The SEC and SUVA(254) results showed no specific selectivity in the removal of different DOM components as a result of carbon modification. The removal of DOM from both raw and treated waters was negligible by ACF10, having 96% of its surface area in pores smaller than 1 nm. Small molecular weight (MW) DOM components were preferentially removed by ACF20H, having 33% of its surface area in 1--3 nm pores. DOM components with MWs larger than 1600, 2000, and 2700 Da of Charleston raw, Charleston-treated, and Spartanburg-treated waters, respectively, were excluded from the pores of ACF20H. In contrast to carbon fibers, DOM components from entire MW range were removed from waters by virgin and modified GACs. PMID:15927230

  19. [Intestinal absorption of different combinations of active compounds from Gegenqinlian decoction by rat single pass intestinal perfusion in situ].

    PubMed

    An, Rui; Zhang, Hua; Zhang, Yi-Zhu; Xu, Ran-Chi; Wang, Xin-Hong

    2012-12-01

    The aim is to study the intestinal absorption of different combinations of active compounds out of Gegenqinlian decoction. Rat single pass intestinal perfusion model with jugular vein cannulated was used. Samples were obtained continuously from the outlet perfusate and the mesenteric vein. The levels of puerarin, daidzin, liquilitin, baicalin, wogonoside, jatrorrhizine, berberine and palmatine were determined by LC-MS/MS and their permeability coefficients were calculated. The results showed that Glycyrrhiza could promote the absorption of the active ingredients in Pueraria which is the monarch herb; meanwhile, Pueraria also played a role in promoting the absorption of liquilitin. Based on the Gegenqinlian decoction and the different combinations experiments, the results concerning the absorption of baicalin and wogonoside were as follows. For baicalin, Pueraria and Glycyrrhiza could promote its absorption and the effect of Pueraria was more obvious. For wogonoside, Pueraria could also promote its absorption, while Glycyrrhiza played a opposite role. Pueraria and Glycyrrhiza both played a part in promoting the absorption of jateorhizine, berberine and palmatine, the effective compounds in Coptis. PMID:23460978

  20. Preparation of activated carbons from bituminous coals with zinc chloride activation

    SciTech Connect

    Teng, H.; Yeh, T.S.

    1998-01-01

    Activated carbons were prepared by chemical activation from two Australian bituminous coals in this study. The preparation process consisted of zinc chloride impregnation followed by carbonization in nitrogen. The carbonization temperature ranges from 400 to 700 C. Experimental results reveal that an acid-washing process following the carbonization with ZnCl{sub 2} is necessary for preparing high-porosity carbons. Surface area, pore volume, and average pore diameter of the resulting carbons increase with the carbonization temperature to a maximum at 500 C and then begin to decrease. The maximum values of surface area and pore volume are larger for the carbon prepared from the coal with a lower O/C atomic ratio, while earlier findings from physical activation with CO{sub 2} have shown an opposite trend. An increase in particle size of the coal precursor leads to a reduction in porosity of the resulting carbons. The duration of the carbonization period affects the porosity of the resulting carbons, and the influence varies with the activation temperature.

  1. Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, E.; Iwantono, Yulita, M.; Taslim, R.; Subagio, A.; Salomo, Deraman, M.

    2013-09-01

    In this paper, a composite electrode was prepared from a mixture of activated carbon derived from precarbonization of cassava peel (CP) and carbon nanotubes (CNTs). The activated carbon was produced by pyrolysis process using ZnCl2 as an activation agent. A N2 adsorption-desorption analysis for the sample indicated that the BET surface area of the activated carbon was 1336 m2 g-1. Difference percentage of CNTs of 0, 5, 10, 15 and 20% with 5% of PVDF binder were added into CP based activated carbon in order to fabricate the composite electrodes. The morphology and structure of the composite electrodes were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM image observed that the distribution of CNTs was homogeneous between carbon particles and the XRD pattern shown the amorphous structure of the sample. The electrodes were fabricated for supercapacitor cells with 316L stainless steel as current collector and 1 M sulfuric acid as electrolyte. An electrochemical characterization was performed by using an electrochemical impedance spectroscopy (EIS) method using a Solatron 1286 instrument and the addition of CNTs revealed to improve the resistant and capacitive properties of supercapacitor cell.

  2. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    NASA Astrophysics Data System (ADS)

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  3. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.

    PubMed

    Brooks, A J; Lim, Hyung-nam; Kilduff, James E

    2012-07-27

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  4. Survival of selected bacterial species in sterilized activated carbon filters and biological activated carbon filters.

    PubMed Central

    Rollinger, Y; Dott, W

    1987-01-01

    The survival of selected hygienically relevant bacterial species in activated carbon (AC) filters on a bench scale was investigated. The results revealed that after inoculation of the test strains the previously sterilized AC absorbed all bacteria (10(6) to 10(7)). After a period of 6 to 13 days without countable bacteria in the effluent, the numbers of Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas putida increased up to 10(4) to 10(5) CFU/ml of effluent and 10(6) to 10(7) CFU/g of AC. When Klebsiella pneumoniae and Streptococcus faecalis were used, no growth in filters could be observed. The numbers of E. coli, P. aeruginosa, and P. putida, however, decreased immediately and showed no regrowth in nonsterile AC from a filter which had been continuously connected to running tap water for 2 months. Under these conditions an autochthonous microflora developed on the carbon surface which could be demonstrated by scanning electron microscopy and culturing methods (heterotrophic plate count). These bacteria reduced E. coli, P. aeruginosa, and P. putida densities in the effluent by a factor of more than 10(5) within 1 to 5 days. The hypothesis that antagonistic substances of the autochthonous microflora were responsible for the elimination of the artificial contamination could not be confirmed because less than 1% of the isolates of the autochthonous microflora were able to produce such substances as indicated by in vitro tests. Competition for limiting nutrients was thought to be the reason for the observed effects. PMID:3579281

  5. H I 21 cm ABSORPTION AND UNIFIED SCHEMES OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Curran, S. J.; Whiting, M. T.

    2010-03-20

    In a recent study of z >= 0.1 active galactic nuclei (AGNs), we found that 21 cm absorption has never been detected in objects in which the ultraviolet luminosity exceeds L{sub UV} {approx} 10{sup 23} W Hz{sup -1}. In this paper, we further explore the implications that this has for the currently popular consensus that it is the orientation of the circumnuclear obscuring torus, invoked by unified schemes of AGNs, which determines whether absorption is present along our sight line. The fact that at L{sub UV} {approx}< 10{sup 23} W Hz{sup -1}, both type-1 and type-2 objects exhibit a 50% probability of detection, suggests that this is not the case and that the bias against detection of H I absorption in type-1 objects is due purely to the inclusion of the L{sub UV} {approx}> 10{sup 23} W Hz{sup -1} sources. Similarly, the ultraviolet luminosities can also explain why the presence of 21 cm absorption shows a preference for radio galaxies over quasars and the higher detection rate in compact sources, such as compact steep spectrum or gigahertz peaked spectrum sources, may also be biased by the inclusion of high-luminosity sources. Being comprised of all 21 cm searched sources at z >= 0.1, this is a necessarily heterogeneous sample, the constituents of which have been observed by various instruments. By this same token, however, the dependence on the UV luminosity may be an all encompassing effect, superseding the unified schemes model, although there is the possibility that the exclusive 21 cm non-detections at high UV luminosities could be caused by a bias toward gas-poor ellipticals. Additionally, the high UV fluxes could be sufficiently exciting/ionizing the H I above 21 cm detection thresholds, although the extent to which this is related to the neutral gas deficit in ellipticals is currently unclear. Examining the moderate UV luminosity (L{sub UV} {approx}< 10{sup 23} W Hz{sup -1}) sample further, from the profile widths and offsets from the systemic velocities

  6. A Synthesis of Light Absorption Properties of the Arctic Ocean: Application to Semi-analytical Estimates of Dissolved Organic Carbon Concentrations from Space

    NASA Technical Reports Server (NTRS)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Belanger, S.; Bricaud, A.

    2014-01-01

    The light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean [e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012], the datasets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database at the pan-Arctic scale by pooling the majority of published datasets and merging new datasets. Our results showed that the total non-water absorption coefficients measured in the Eastern Arctic Ocean (EAO; Siberian side) are significantly higher 74 than in the Western Arctic Ocean (WAO; North American side). This higher absorption is explained 75 by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian 76 side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off 77 North America. In contrast, the relationship between the phytoplankton absorption (a()) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semi-analytical CDOM absorption algorithm is based on chl a-specific a() values [Matsuoka et al., 2013], this result indirectly suggests that CDOM absorption can be appropriately erived not only for the WAO but also for the EAO using ocean color data. Derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semi-analytical algorithm for estimating DOC concentrations for coastal waters at the Pan-Arctic scale is presented and applied to satellite ocean color data.

  7. Activated Carbon Composites for Air Separation

    SciTech Connect

    Contescu, Cristian I; Baker, Frederick S; Tsouris, Costas; McFarlane, Joanna

    2008-03-01

    In continuation of the development of composite materials for air separation based on molecular sieving properties and magnetic fields effects, several molecular sieve materials were tested in a flow system, and the effects of temperature, flow conditions, and magnetic fields were investigated. New carbon materials adsorbents, with and without pre-loaded super-paramagnetic nanoparticles of Fe3O4 were synthesized; all materials were packed in chromatographic type columns which were placed between the poles of a high intensity, water-cooled, magnet (1.5 Tesla). In order to verify the existence of magnetodesorption effect, separation tests were conducted by injecting controlled volumes of air in a flow of inert gas, while the magnetic field was switched on and off. Gas composition downstream the column was analyzed by gas chromatography and by mass spectrometry. Under the conditions employed, the tests confirmed that N2 - O2 separation occurred at various degrees, depending on material's intrinsic properties, temperature and flow rate. The effect of magnetic fields, reported previously for static conditions, was not confirmed in the flow system. The best separation was obtained for zeolite 13X at sub-ambient temperatures. Future directions for the project include evaluation of a combined system, comprising carbon and zeolite molecular sieves, and testing the effect of stronger magnetic fields produced by cryogenic magnets.

  8. The Infrared Spectra and Absorption Intensities of Amorphous Ices: Methane and Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry A.; Hudson, Reggie L.; Loeffler, Mark J.

    2015-11-01

    Our research group is carrying out new IR measurements of icy solids relevant to the outer solar system and the interstellar medium, with an emphasis on amorphous and crystalline ices below ~70 K. Our goal is to add to the relatively meager literature on this subject and to provide electronic versions of state-of-the-art data, since the abundances of such molecules cannot be deduced without accurate reference spectra and IR band strengths. In the past year, we have focused on two of the simplest and most abundant components of icy bodies in the solar system - methane (CH4) and carbon dioxide (CO2). Infrared spectra from ˜ 4500 to 500 cm-1 have been measured for each of these molecules in μm-thick films at temperatures from 10 to 70 K. All known amorphous and crystalline phases have been reproduced and, for some, presented for the first time. We also report measurements of the index of refraction at 670 nm and the mass densities for each ice phase. Comparisons are made to earlier work where possible. Electronic versions of our new results are available at http://science.gsfc.nasa.gov/691/cosmicice/ constants.html.

  9. Synthesis of Multi-Walled Carbon Nanotubes/TiO2 Composite and Its Photocatalytic Activity.

    PubMed

    Dong, Hongying; Qu, Caifeng; Zhang, Tingting; Zhu, Liwei; Ma, Wen

    2016-03-01

    TiO2 particles coated Multi-walled carbon nanotubes (MWCNT/TiO2 composite) were prepared via a sol-gel method using Multi-walled carbon nanotubes (MWCNT) and tetrabutyl titanate as raw materials. The phase constitutes and microstructures of the prepared composite were analyzed by XRD and TEM, respectively. Their photocatalytic activities were investigated under simulated ultra-violet light and visible-light irradiation for the degradation of methyl orange (MO) and methylene blue (MB) aqueous solution, respectively. The experimental results indicated that TiO2 calcined at temperatures of 400-600 degrees C in the MWCNT/TiO2 composite was mainly composed of nanometric anatase. The composite exhibited enhanced absorption properties in the visible-light region compared to pure TiO2, which was attributed to the enhanced light electron-hole separation by adding MWCNTs. PMID:27455683

  10. Reduced mass absorption cross section of black carbon under an extremely polluted condition in southern suburb of Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, S.; Hua, Y.; Jiang, J.; Zhao, B.; Xing, J.; Jiang, S.; Cai, R.; Hao, J.

    2015-12-01

    Black carbon (BC), as one of the most important climate-warming agent, has been the focus of extensive studies in recent years. Mass absorption cross section (MAC) is a key parameter to assess the radiative forcing by linking the mass concentration with the radiation effect. In this study, we conducted a two-month field campaign in Beijing, the capital city of China, in a October and November, a period that severe PM2.5 pollution occurred. PM2.5 offline samples were collected daily onto quartz fiber filters by a Partisol 2300 Speciation Sampler. Size-segregated aerosol samples of the size ranged from 0.056 - 10 µm with 11 bins were collected onto quartz fiber filters by a cascade impactor developed by National Chiao Tung University (NCTU). A DRI Model 2001 thermal/optical carbon analyzer were used to analyze the samples. The MAC of BC is measured by a thermal-optical carbon analyzer. In contrast to previous studies, we found that after "shadow effect" has been corrected, the MAC is reduced from 14 m2/g to 5 m2/g with the increase of BC concentrations. There was no significant correlation between MAC with secondary inorganic aerosols. Such unexpected reduction in MAC of BC is possibly associated with the microphysical property of BC modulated under serious pollution condition. The study of size-segregated species concentrations shows that the size distribution of BC is unimodal, with the peak around 0.56-1.8 µm. The results also show the proportion of BC larger than 0.56 µm is significant increased. Additionally, "soot superaggregate", as distinct from conventional sub-micron aggregates, was found in the bins of BC with size ranged from 1 to1.8 µm. Such high carbon aerosol proportion and large BC size distribution suggests that emissions from residential biomass burning is dominant during this episode. This study suggests that the optical property for BC from different emission sectors should be considered in the estimation of radiative forcing.

  11. Preparation and characterization of activated carbon aerogel spheres

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Liu, Fengshou

    2014-03-01

    Activated carbon aerogel spheres (A-CAS) were successfully prepared by imposing KOH activation on aerogel spheres. It was found that the activation treatment did not destroy the order of the surface of the carbon aerogel spheres (CAS), but it improved the pore structure and adsorption performance of the products. With increasing burn-off, the amount of mesopores first decreased and then increased, with the amount of micropores continuously increasing. The highest measured BET surface area and micropore surface area reached 1198 and 786 m2/g, respectively. The adsorption capacity of benzene organic vapour on the A-CAS is more than eight times as large as that on CAS.

  12. Porous texture evolution in Nomex-derived activated carbon fibers.

    PubMed

    Villar-Rodil, S; Denoyel, R; Rouquerol, J; Martínez-Alonso, A; Tascón, J M D

    2002-08-01

    In the present work, the textural evolution of a series of activated carbon fibers with increasing burn-off degree, prepared by the pyrolysis and steam activation of Nomex aramid fibers, is followed by measurements of physical adsorption of N(2) (77 K) and CO(2) (273 K) and immersion calorimetry into different liquids (dichloromethane, benzene, cyclohexane). The immersion calorimetry results are discussed in depth, paying special attention to the choice of the reference material. The activated carbon fibers studied possess an essentially homogeneous microporous texture, which suggests that these materials may be applied in gas separation, either directly or with additional CVD treatment. PMID:16290775

  13. Thermochemically activated carbon as an electrode material for supercapacitors.

    PubMed

    Ostafiychuk, Bogdan K; Budzulyak, Ivan M; Rachiy, Bogdan I; Vashchynsky, Vitalii M; Mandzyuk, Volodymyr I; Lisovsky, Roman P; Shyyko, Lyudmyla O

    2015-01-01

    The results of electrochemical studies of nanoporous carbon as electrode material for electrochemical capacitors (EC) are presented in this work. Nanoporous carbon material (NCM) was obtained from the raw materials of plant origin by carbonization and subsequent activation in potassium hydroxide. It is established that there is an optimal ratio of 1:1 between content of KOH and carbon material at chemical activation, while the maximum specific capacity of NCM is 180 F/g. An equivalent electrical circuit, which allows modeling of the impedance spectra in the frequency range of 10(-2) to 10(5) Hz, is proposed, and a physical interpretation of each element of the electrical circuit is presented. PMID:25852362

  14. Measured Enthalpies of Adsorption of Boron-Doped Activated Carbons

    NASA Astrophysics Data System (ADS)

    Beckner, M.; Romanos, J.; Dohnke, E.; Singh, A.; Schaeperkoetter, J.; Stalla, D.; Burress, J.; Jalisatgi, S.; Suppes, G.; Hawthorne, M. F.; Yu, P.; Wexler, C.; Pfeifer, P.

    2012-02-01

    There is significant interest in the properties of boron-doped activated carbons for their potential to improve hydrogen storage.ootnotetextMultiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage, P. Pfeifer et al. DOE Hydrogen Program 2011 Annual Progress Report, IV.C.3, 444-449 (2011). Boron-doped activated carbons have been produced using a process involving the pyrolysis of decaborane (B10H14) and subsequent high-temperature annealing. In this talk, we will present a systematic study of the effect of different boron doping processes on the samples' structure, hydrogen sorption, and surface chemistry. Initial room temperature experiments show a 20% increase in the hydrogen excess adsorption per surface area compared to the undoped material. Experimental enthalpies of adsorption will be presented for comparison to theoretical predictions for boron-doped carbon materials. Additionally, results from a modified version of the doping process will be presented.

  15. FENTON-DRIVEN REGENERATION OF GRANULAR ACTIVATED CARBON: A TECHNOLOGY OVERVIEW

    EPA Science Inventory

    A Fenton-driven mechanism for regenerating spent granular activated carbon (GAC) involves the combined, synergistic use of two reliable and well established treatment technologies - adsorption onto activated carbon and Fenton oxidation. During carbon adsorption treatment, enviro...

  16. Treatment of activated carbon to enhance catalytic activity for reduction of nitric oxide with ammonia

    SciTech Connect

    Ku, B.J.; Rhee, H.K. . Dept. of Chemical Engineering); Lee, J.K.; Park, D. )

    1994-11-01

    Catalytic activity of activated carbon treated with various techniques was examined in a fixed bed reactor for the reduction of nitric oxide with ammonia at 150 C. Activated carbon derived from coconut shell impregnated with an aqueous solution of ammonium sulfate, further treated with sulfuric acid, dried at 120 C, and then heated in an inert gas stream at 400 C, showed the highest catalytic activity within the range of experimental conditions. The enhancement of catalytic activity of modified activated carbon could be attributed to the increase in the amount of oxygen function groups which increased the adsorption site for ammonia. Catalytic activity of activated carbons depended on the surface area and the oxygen content as well.

  17. A novel method of carbon dioxide clumped isotope analysis with tunable infra-red laser direct absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Prokhorov, Ivan; Kluge, Tobias; Janssen, Christof

    2016-04-01

    Precise clumped isotopes analysis of carbon dioxide opens up new horizons of atmospheric and biogeochemical research. Recent advances in laser and spectroscopic techniques provides us necessary instrumentation to access extremely low sub-permill variations of multiply-substituted isotopologues. We present an advanced analysis method of carbon dioxide clumped isotopes using direct absorption spectroscopy. Our assessments predict the ultimate precision of the new method on the sub-permill level comparable to state of the art mass spectrometry. Among the most auspicious intrinsic properties of this method we highlight genuine Δ16O13C18O and Δ16O13C18O measurements without isobaric interference, measurement cycle duration of several minutes versus hours for mass spectrometric analysis, reduced sample size of ˜ 10 μmol and high flexibility, allowing us to perform in-situ measurements. The pilot version of the instrument is being developed in an international collaboration framework between Heidelberg University, Germany and Pierre and Marie Curie University, Paris, France. It employs two continuous interband quantum cascade lasers tuned at 4.439 μm and 4.329 μm to measure doubly ( 16O13C18O, 16O13C17O) and singly ( 16O12C16O, 16O13C16O, 16O12C17O, 16O12C18O) substituted isotopologues, respectively. Two identical Herriot cells are filled with dry pure CO2 sample and reference gas at working pressure of 1 ‑ 10 mbar. Cells provide optical path lengths of ˜ 17 m for the laser tuned at doubly substituted isotopologues lines and use a single pass for the laser tuned at the stronger lines of singly substituted isotopologues. Light outside of the gas cells is coupled into optical fiber to avoid absorption by ambient air CO2. Simulations predict sub-permill precision at working pressure of 1 mbar and room temperature stabilised at the ±10 mK level. Our prime target is to apply the proposed method for continuous in-situ analysis of CO2. We are foreseeing potential

  18. Development of an Eye-Safe Micro-Pulse Differential Absorption Lidar (DIAL) for Carbon Dioxide Profilings

    NASA Astrophysics Data System (ADS)

    Johnson, W.; Repasky, K. S.; Nehrir, A. R.; Carlsten, J.

    2011-12-01

    A differential absorption lidar (DIAL) for monitoring carbon dioxide (CO2) is under development at Montana State University using commercially available parts. Two distributed feedback (DFB) lasers, one at the on-line wavelength and one at the off-line wavelength are used to injection seed a fiber amplifier. The DIAL operates in the 1.57 micron carbon dioxide absorption band at an on-line wavelength of 1.5714060 microns. The laser transmitter produces 40 μJ pulses with a pulse duration of 1 μs and a pulse repetition frequency of 20 kHz. The scattered light from the laser transmitter is collected using a 28 cm diameter Schmidt-Cassegrain telescope. The light collected by the telescope is collimated and then filtered using a 0.8 nm FWHM narrowband interference filter. After the optical filter, the light is coupled into a multimode optical fiber with a 1000 μm core diameter. The output from the optical fiber is coupled into a photomultiplier tube (PMT) used to monitor the return signal. The analog output from the PMT is next incident on a discriminator producing TTL logic pulses for photon counting. The output from the PMT and discriminator is monitored using a multichannel scalar card allowing the counting of the TTL pulses as a function of range. Data from the DIAL instrument is collected in the following manner. The fiber amplifier is injection seeded first with the on-line DFB laser. The return signal as a function of range is integrated using the multichannel scalar for a user defined time, typically set at 6 s. The off-line DFB laser is then used to injection seed the fiber amplifier and the process is repeated. This process is repeated for a user defined period. The CO2 concentration as a function of range is calculated using the on-line and off-line return signals with the DIAL equation. A comparison of the CO2 concentration measured using the DIAL instrument at 1.5 km and a Li-Cor LI-820 in situ sensor located at 1.5 km from the DIAL over a 2.5 hour period

  19. Bacteria associated with granular activated carbon particles in drinking water.

    PubMed Central

    Camper, A K; LeChevallier, M W; Broadaway, S C; McFeters, G A

    1986-01-01

    A sampling protocol was developed to examine particles released from granular activated carbon filter beds. A gauze filter/Swinnex procedure was used to collect carbon fines from 201 granular activated carbon-treated drinking water samples over 12 months. Application of a homogenization procedure (developed previously) indicated that 41.4% of the water samples had heterotrophic plate count bacteria attached to carbon particles. With the enumeration procedures described, heterotrophic plate count bacteria were recovered at an average rate of 8.6 times higher than by conventional analyses. Over 17% of the samples contained carbon particles colonized with coliform bacteria as enumerated with modified most-probable-number and membrane filter techniques. In some instances coliform recoveries were 122 to 1,194 times higher than by standard procedures. Nearly 28% of the coliforms attached to these particles in drinking water exhibited the fecal biotype. Scanning electron micrographs of carbon fines from treated drinking water showed microcolonies of bacteria on particle surfaces. These data indicate that bacteria attached to carbon fines may be an important mechanism by which microorganisms penetrate treatment barriers and enter potable water supplies. PMID:3767356

  20. Case study of absorption aerosol optical depth closure of black carbon over the East China Sea

    NASA Astrophysics Data System (ADS)

    Koike, M.; Moteki, N.; Khatri, P.; Takamura, T.; Takegawa, N.; Kondo, Y.; Hashioka, H.; Matsui, H.; Shimizu, A.; Sugimoto, N.

    2014-01-01

    aerosol optical depth (AAOD) measurements made by sun-sky photometers are currently the only constraint available for estimates of the global radiative forcing of black carbon (BC), but their validation studies are limited. In this paper, we report the first attempt to compare AAODs derived from single-particle soot photometer (SP2) and ground-based sun-sky photometer (sky radiometer, SKYNET) measurements. During the Aerosol Radiative Forcing in East Asia (A-FORCE) experiments, BC size distribution and mixing state vertical profiles were measured using an SP2 on board a research aircraft near the Fukue Observatory (32.8°N, 128.7°E) over the East China Sea in spring 2009 and late winter 2013. The aerosol extinction coefficients (bext) and single scattering albedo (SSA) at 500 nm were calculated based on aerosol size distribution and detailed BC mixing state information. The calculated aerosol optical depth (AOD) agreed well with the sky radiometer measurements (2 ± 6%) when dust loadings were low (lidar-derived nonspherical particle contribution to AOD less than 20%). However, under these low-dust conditions, the AAODs obtained from sky radiometer measurements were only half of the in situ estimates. When dust loadings were high, the sky radiometer measurements showed systematically higher AAODs even when all coarse particles were assumed to be dust for in situ measurements. These results indicate that there are considerable uncertainties in AAOD measurements. Uncertainties in the BC refractive index, optical calculations from in situ data, and sky radiometer retrieval analyses are discussed.

  1. Biofuel intercropping effects on soil carbon and microbial activity.

    PubMed

    Strickland, Michael S; Leggett, Zakiya H; Sucre, Eric B; Bradford, Mark A

    2015-01-01

    Biofuels will help meet rising demands for energy and, ideally, limit climate change associated with carbon losses from the biosphere to atmosphere. Biofuel management must therefore maximize energy production and maintain ecosystem carbon stocks. Increasingly, there is interest in intercropping biofuels with other crops, partly because biofuel production on arable land might reduce availability and increase the price of food. One intercropping approach involves growing biofuel grasses in forest plantations. Grasses differ from trees in both their organic inputs to soils and microbial associations. These differences are associated with losses of soil carbon when grasses become abundant in forests. We investigated how intercropping switchgrass (Panicum virgalum), a major candidate for cellulosic biomass production, in loblolly pine (Pinus taeda) plantations affects soil carbon, nitrogen, and microbial dynamics. Our design involved four treatments: two pine management regimes where harvest residues (i.e., biomass) were left in place or removed, and two switchgrass regimes where the grass was grown with pine under the same two biomass scenarios (left or removed). Soil variables were measured in four 1-ha replicate plots in the first and second year following switchgrass planting. Under switchgrass intercropping, pools of mineralizable and particulate organic matter carbon were 42% and 33% lower, respectively. These declines translated into a 21% decrease in total soil carbon in the upper 15 cm of the soil profile, during early stand development. The switchgrass effect, however, was isolated to the interbed region where switchgrass is planted. In these regions, switchgrass-induced reductions in soil carbon pools with 29%, 43%, and 24% declines in mineralizable, particulate, and total soil carbon, respectively. Our results support the idea that grass inputs to forests can prime the activity of soil organic carbon degrading microbes, leading to net reductions in stocks

  2. Carbon dioxide-activated carbons from almond tree pruning: Preparation and characterization

    NASA Astrophysics Data System (ADS)

    Gañán, J.; González, J. F.; González-García, C. M.; Ramiro, A.; Sabio, E.; Román, S.

    2006-06-01

    Activated carbons were prepared from almond tree pruning by non-catalytic and catalytic gasification with carbon dioxide and their surface characteristics were investigated. In both series a two-stage activation procedure (pyrolysis at 800 °C in nitrogen atmosphere, followed by carbon dioxide activation) was used for the production of activated samples. In non-catalytic gasification, the effect of the temperature (650-800 °C for 1 h) and the reaction time (1-12 h at 650 °C) on the surface characteristics of the prepared samples was investigated. Carbons were characterized by means of nitrogen adsorption isotherms at 77 K. The textural parameters of the carbons present a linear relation with the conversion degree until a value of approximately 40%, when they come independent from both parameters studied. The highest surface area obtained for this series was 840 m 2 g -1. In the catalytic gasification the effect of the addition of one catalyst (K and Co) and the gasification time (2-4 h) on the surface and porosity development of the carbons was also studied. At the same conditions, Co leads to higher conversion values than K but this last gives a better porosity development.

  3. A comparison of the electrochemical behavior of carbon aerogels and activated carbon fiber cloths

    SciTech Connect

    Tran, T.D.; Alviso, C.T.; Hulsey, S.S.; Nielsen, J.K.; Pekala, R.W.

    1996-05-10

    Electrochemical capacitative behavior of carbon aerogels and commercial carbon fiber cloths was studied in 5M KOH, 3M sulfuric acid, and 0.5M tetrethylammonium tetrafluoroborate/propylene carbonate electrolytes. The resorcinol-formaldehyde based carbon aerogels with a range of denisty (0.2-0.85 g/cc) have open-cell structures with ultrafine pore sizes (5-50 nm), high surface area (400-700 m{sup 2}/g), and a solid matrix composed of interconnected particles or fibers with characteristic diameters of 10 nm. The commercial fiber cloths in the density range 0.2-04g/cc have high surface areas (1000-2500 m{sup 2}/g). The volumetric capacitances of high-density aerogels are shown to be comparable to or exceeding those from activated carbon fibers. Electrochemical behavior of these materials in various electrolytes is compared and related to their physical properties.

  4. Photon-photon absorption and the uniqueness of the spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    1984-01-01

    The effects of the feedback of e(+)-e(-) pair reinjection in a plasma due to photon-photon absorption of its own radiation was examined. Under the assumption of continuous electron injection with a power law spectrum E to the minus gamma power and Compton losses only, it is shown that for gamma 2 the steady state electron distribution function has a unique form independent of the primary injection spectrum. This electron distribution function can, by synchrotron emission, reproduce the general characteristics of the observed radio to optical active galactic nuclei spectra. Inverse Compton scattering of the synchrotron photons by the same electron distribution can account for their X-ray spectra, and also implies gamma ray emission from these objects. This result is invoked to account for the similarity of these spectra, and it is consistent with observations of the diffuse gamma ray background.

  5. Magnetically Active Carbon Nanotubes at Work.

    PubMed

    Stopin, Antoine; Pineux, Florent; Marega, Riccardo; Bonifazi, Davide

    2015-06-22

    Endohedral and exohedral assembly of magnetic nanoparticles (MNPs) and carbon nanotubes (CNTs) recently gave birth to a large body of new hybrid nanomaterials (MNPs-CNTs) featuring properties that are otherwise not in reach with only the graphitic or metallic cores themselves. These materials feature enhanced magnetically guided motions (rotation and translation), magnetic saturation and coercivity, large surface area, and thermal stability. By guiding the reader through the most significant examples in this Concept paper, we describe how researchers in the field engineered and exploited the synergistic combination of these two types of nanoparticles in a large variety of current and potential applications, such as magnetic fluid hyperthermia therapeutics and in magnetic resonance imaging to name a few. PMID:26017389

  6. Breakthrough CO₂ adsorption in bio-based activated carbons.

    PubMed

    Shahkarami, Sepideh; Azargohar, Ramin; Dalai, Ajay K; Soltan, Jafar

    2015-08-01

    In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide (KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25-65°C and inlet CO2 concentration range of 10-30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively. Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm(3)/g and surface area of 1400 m(2)/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after 50 cycles with low temperature (160°C) regeneration. PMID:26257348

  7. Experimental studies of selective acid gas removal: Absorption of hydrogen sulfide and carbon dioxide into aqueous methyldiethanolamine using packed columns

    SciTech Connect

    Schubert, C.N.

    1988-01-01

    The use of aqueous methyldiethanolamine (MDEA) for selective removal of hydrogen sulfide from acid gas streams has been studied in a 2 inch column packed with 1/4 inch ceramic Intalox saddles. The column was operated in a counter-current, steady state fashion. The feed gas composition varied between 1 and 5 mole % hydrogen sulfide and between 0 and 50 mole % carbon dioxide. In order to assist the development of packed column absorption models, the rate at which pure carbon dioxide absorbs into 2 M MDEA was measured as a function of pressure, liquid flow rate and packed bed length. The importance of end effects was carefully evaluated. In addition, draining and tracer methods were used to estimate the amount of static holdup present in the column. Using classical draining methods, as much as 50 % of the total holdup was found to be static. However, according to the step decrease in tracer method, less than 5 % of the total holdup was static. Since the step decrease in tracer method measures the amount of static holdup present in the bed under irrigated conditions, it seems likely that the draining method provides an unrealistic estimate of static holdup. Thus, although the notion of static holdup may be useful as a means of correlating mass transfer coefficients, the data indicate that very little static holdup exists in the column under irrigated conditions. Hence, in the absence of a mechanistically sound model, the choice of whether to use static holdup or dispersion as a means of accounting for deviations from plug flow in the liquid phase should be made on the basis of computational convenience.

  8. Restricted access carbon nanotubes for direct extraction of cadmium from human serum samples followed by atomic absorption spectrometry analysis.

    PubMed

    Barbosa, Adriano F; Barbosa, Valéria M P; Bettini, Jefferson; Luccas, Pedro O; Figueiredo, Eduardo C

    2015-01-01

    In this paper, we propose a new sorbent that is able to extract metal ions directly from untreated biological fluids, simultaneously excluding all proteins from these samples. The sorbent was obtained through the modification of carbon nanotubes (CNTs) with an external bovine serum albumin (BSA) layer, resulting in restricted access carbon nanotubes (RACNTs). The BSA layer was fixed through the interconnection between the amine groups of the BSA using glutaraldehyde as cross-linker. When a protein sample is percolated through a cartridge containing RACNTs and the sample pH is higher than the isoelectric point of the proteins, both proteins from the sample and the BSA layer are negatively ionized. Thus, an electrostatic repulsion prevents the interaction between the proteins from the sample on the RACNTs surface. At the same time, metal ions are adsorbed in the CNTs (core) after their passage through the chains of proteins. The Cd(2+) ion was selected for a proof-of-principle case to test the suitability of the RACNTs due to its toxicological relevance. RACNTs were able to extract Cd(2+) and exclude almost 100% of the proteins from the human serum samples in an online solid-phase extraction system coupled with thermospray flame furnace atomic absorption spectrometry. The limits of detection and quantification were 0.24 and 0.80 μg L(-1), respectively. The sampling frequency was 8.6h(-1), and the intra- and inter-day precisions at the 0.80, 15.0, and 30.0 μg L(-1) Cd(2+) levels were all lower than 10.1% (RSD). The recoveries obtained for human blood serum samples fortified with Cd(2+) ranged from 85.0% to 112.0%. The method was successfully applied to analyze Cd(2+) directly from six human blood serum samples without any pretreatment, and the observed concentrations ranged from

  9. A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits

    SciTech Connect

    Klasson, KT

    2002-12-23

    A general methodology was developed for evaluation of carbon sequestration technologies. In this document, we provide a method that is quantitative, but is structured to give qualitative comparisons despite changes in detailed method parameters, i.e., it does not matter what ''grade'' a sequestration technology gets but a ''better'' technology should receive a better grade. To meet these objectives, we developed and elaborate on the following concepts: (1) All resources used in a sequestration activity should be reviewed by estimating the amount of greenhouse gas emissions for which they historically are responsible. We have done this by introducing a quantifier we term Full-Cycle Carbon Emissions, which is tied to the resource. (2) The future fate of sequestered carbon should be included in technology evaluations. We have addressed this by introducing a variable called Time-adjusted Value of Carbon Sequestration to weigh potential future releases of carbon, escaping the sequestered form. (3) The Figure of Merit of a sequestration technology should address the entire life-cycle of an activity. The figures of merit we have developed relate the investment made (carbon release during the construction phase) to the life-time sequestration capacity of the activity. To account for carbon flows that occur during different times of an activity we incorporate the Time Value of Carbon Flows. The methodology we have developed can be expanded to include financial, social, and long-term environmental aspects of a sequestration technology implementation. It does not rely on global atmospheric modeling efforts but is consistent with these efforts and could be combined with them.

  10. Application of multiwall carbon nanotubes impregnated with 5-dodecylsalicylaldoxime for on-line copper preconcentration and determination in water samples by flame atomic absorption spectrometry.

    PubMed

    Tobiasz, Anna; Walas, Stanisław; Soto Hernández, Arlene; Mrowiec, Halina

    2012-07-15

    The paper presents application of multiwall carbon nanotubes (MWCNTs) modified with 5-dodecylsalicylaldoxime to copper(II) flow-injection on-line preconcentration and flame atomic absorption spectrometric (FAAS) determination. Two new sorbents were obtained by impregnation of MWCNTs with Cu(II)-LIX 622(®) complex, however in the first case modification was preceded by carbon wall activation via oxidization (Cu-LIX-CNT-A sorbent), and in the second one no surface activation was performed (Cu-LIX-CNT sorbent). It was found that effective leaching of initially introduced copper and Cu(II) retained in preconcentration process could be realized with the use 7% and 5% (v/v) nitric acid, for particular sorbents. Testing the influence of loading solution pH and rate of loading on sorption it was found out that optimal range of loading solution pH was about 4.5-6.3 for activated and 6.15-6.25 for non-activated CNT. Investigation of sorption kinetics showed that the process can be described by pseudo-second order reaction model. Sorption equilibrium conditions (90% sorption) for LIX-CNT-A and LIX-CNT were obtained after 8-15min, respectively and maximum sorption capacity for the new sorbents amounted to 18.1mgg(-1) and 31.6mgg(-1), respectively. For the examined sorbents enrichment factors increased with extension of loading time up to 180s: linearly for activated and non-linearly for non-activated MWCNTs. Influence of potential interferents such as Cd(II), Zn(II), Fe(III), Mg(II) and Ca(II) ions on copper(II) sorption on the new CNT materials was examined individually and with the use of 2(5-2) factorial design. The study revealed significant interference from iron, magnesium and calcium ions at relatively high concentrations. Applicability of the proposed sorbents was tested for Cu(II) determination in various kinds of water samples and the results were compared with those obtained with the use of ICP MS as a reference technique. Copper(II) determination in two certified

  11. Influence of Water Activated by Far infrared Porous Ceramics on Nitrogen Absorption in the Pig Feed.

    PubMed

    Meng, Junping; Liu, Jie; Liang, Jinsheng; Zhang, Hongchen; Ding, Yan

    2016-04-01

    Under modern and, intensive feeding livestock and poultry density has increased, and brought a deterioration of the farm environment. The livestock and their excrement generate harmful gases such as ammonia, etc. which restricted the sustainable development and improvement of production efficiency of animal husbandry. In this paper, a new kind of far infrared porous ceramics was prepared to activate, the animal drinking water. The activated water and common water were then supplied to pigs, and the fresh pig feces of experimental group and:control group were collected on a regular basis. The residual protein content in feces was tested by Kjeldahl nitrogen method to study the influence law of the porous ceramics on absorbing nitrogen element in animal feces. The results showed that compared with the control group, the protein content in the experimental group decreased on average by 39.2%. The activated drinking water was conducive to the absorption of nitrogen in pig feed. The clusters of water molecules became smaller under the action of the porous ceramics. Hence, they were easy to pass through the water protein channel on the cell membrane for speeding up the metabolism. PMID:27451750

  12. Development of a portable active long-path differential optical absorption spectroscopy system for volcanic gas measurements

    USGS Publications Warehouse

    Vita, Fabio; Kern, Christoph; Inguaggiato, Salvatore

    2014-01-01

    Active long-path differential optical absorption spectroscopy (LP-DOAS) has been an effective tool for measuring atmospheric trace gases for several decades. However, instruments were large, heavy and power-inefficient, making their application to remote environments extremely challenging. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes (UV-LEDS) have now allowed us to design and construct a lightweight, portable, low-power LP-DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. The LP-DOAS was used to measure sulfur dioxide (SO2) emissions from La Fossa crater, Vulcano, Italy, where column densities of up to 1.2 × 1018 molec cm−2 (~ 500 ppmm) were detected along open paths of up to 400 m in total length. The instrument's SO2 detection limit was determined to be 2 × 1016 molec cm−2 (~ 8 ppmm), thereby making quantitative detection of even trace amounts of SO2 possible. The instrument is capable of measuring other volcanic volatile species as well. Though the spectral evaluation of the recorded data showed that chlorine monoxide (ClO) and carbon disulfide (CS2) were both below the instrument's detection limits during the experiment, the upper limits for the X / SO2 ratio (X = ClO, CS2) could be derived, and yielded 2 × 10−3 and 0.1, respectively. The robust design and versatility of the instrument make it a promising tool for monitoring of volcanic degassing and understanding processes in a range of volcanic systems.

  13. Chars pyrolyzed from oil palm wastes for activated carbon preparation

    SciTech Connect

    Lua, A.C.; Guo, J.

    1999-01-01

    Chars pyrolyzed from extracted oil palm fibers for the preparation of activated carbons were studied. The effects of pyrolysis temperature and hold time on density, porosity, yield, BET and micropore surface areas, total pore volume, and pore size distributions of chars were investigated. The optimum conditions for pyrolysis were found to be at a pyrolysis temperature of 850 C for a hold time of 3.5 h. Scanning electron micrographs of the char surfaces verified the presence of porosities. The experimental results showed that it was feasible to produce chars with high BET and micropore surface areas from extracted oil palm fibers. The resulting chars will be subjected to steam or carbon dioxide activation to prepare activated carbons for use as gas adsorbents for air pollution control.

  14. Modified Activated Carbon to be Used in Clinical Applications

    NASA Astrophysics Data System (ADS)

    Fernando, M. S.; de Silva, W. R. M.; de Silva, K. M. N.

    2014-11-01

    In this study a novel nano composite of hydroxyapatite nano particles impregnated activated carbon (C-HAp), which was synthesized in our own method, was used in iron adsorption studies. The study was conducted in order to investigate the potential of using C-HAp nanocomposite to be used in clinical detoxifications such as acute iron toxicity where the use of Activated carbon (GAC) is not very effective. Adsorption studies were conducted for synthetic solutions of Fe2+, Fe3+ and iron syrup using GAC, C-HAp and neat HAp as adsorbents. According to the results C-HAp nano composite showed improved properties than GAC in adsorbing Fe2+, Fe3+ and also Fe ions in iron syrup solutions. Thus the results of the in-vitro studies of iron adsorption studies indicated the potential of using C-HAp as an alternative to activated carbon in such clinical applications.

  15. A carbon monoxide detection device based on mid-infrared absorption spectroscopy at 4.6 μm

    NASA Astrophysics Data System (ADS)

    Li, Guo-Lin; Sui, Yue; Dong, Ming; Ye, Wei-Lin; Zheng, Chuan-Tao; Wang, Yi-Ding

    2015-05-01

    We present a differential carbon monoxide (CO) concentration sensing device using a self-fabricated spherical mirror (e.g., light collector) and a multi-pass gas chamber. Single-source dual-channel detection method is adopted to suppress the interferences from light source, optical path, and environmental changes. The detection principle of the device is described, and both the optical part and the electrical part are designed and developed. Experiments are carried out to evaluate the sensing performances on CO concentration. The results indicate that the limit of detection is about 10 ppm with an absorption length of 40 cm. As the gas concentration gets larger than 100 ppm, the relative detection error falls into the range of -1.7 to +1.9 %. Based on 12-h long-term measurements on the 100 and 1000 ppm CO samples, the maximum detection errors are about 0.9 and 5.5 %, respectively. Benefit from low cost and competitive characteristics, the proposed device shows potential applications in CO detection under the circumstances of coal-mine production and environmental protection.

  16. Excellent improvement in the static and dynamic magnetic properties of carbon coated iron nanoparticles for microwave absorption

    NASA Astrophysics Data System (ADS)

    Khani, Omid; Shoushtari, Morteza Zargar; Farbod, Mansoor

    2015-11-01

    Carbon coated iron nanoparticles were synthesized, using a simple arc-discharge method. The morphology and the internal structure of the core/shell nanoparticles were studied, using field emission scanning electron microscopy and transmission electron microscopy. X-ray diffraction analysis showed that both magnetic α-Fe and nonmagnetic γ-Fe phases existed in the as-prepared particles. In order to improve the static and dynamic magnetic properties of the core/shell nanoparticles, the produced nanocapsules were annealed in argon atmosphere at two different temperatures. Hysteresis loops revealed that the value of the saturation magnetization (MS) increased more than 4.1 times of its original value by annealing and this led to 70% increase in the imaginary part of the permeability. Phase analysis showed that heat treatment eliminated the nonmagnetic γ-Fe phase completely. The reflection loss plots were studied for composite layers containing 20 vol% of the annealed and not annealed nanocapsules. One of the absorber layers which contained annealed nanocapsules showed at least -10 dB loss in the whole G, C, X and Ku frequency bands and the optimal absorption exceeded -37 dB at 5.8 GHz for the as-prepared sample with a thickness of 3.2 mm. The results revealed that the magnetic properties of the arc-made Fe/C core/shell nanoparticle can be improved significantly by annealing in argon.

  17. X-Ray absorption spectroscopy of LiBF4 in propylene carbonate: a model lithium ion battery electrolyte.

    PubMed

    Smith, Jacob W; Lam, Royce K; Sheardy, Alex T; Shih, Orion; Rizzuto, Anthony M; Borodin, Oleg; Harris, Stephen J; Prendergast, David; Saykally, Richard J

    2014-11-21

    Since their introduction into the commercial marketplace in 1991, lithium ion batteries have become increasingly ubiquitous in portable technology. Nevertheless, improvements to existing battery technology are necessary to expand their utility for larger-scale applications, such as electric vehicles. Advances may be realized from improvements to the liquid electrolyte; however, current understanding of the liquid structure and properties remains incomplete. X-ray absorption spectroscopy of solutions of LiBF4 in propylene carbonate (PC), interpreted using first-principles electronic structure calculations within the eXcited electron and Core Hole (XCH) approximation, yields new insight into the solvation structure of the Li(+) ion in this model electrolyte. By generating linear combinations of the computed spectra of Li(+)-associating and free PC molecules and comparing to the experimental spectrum, we find a Li(+)-solvent interaction number of 4.5. This result suggests that computational models of lithium ion battery electrolytes should move beyond tetrahedral coordination structures. PMID:25175723

  18. First measurements of a carbon dioxide plume from an industrial source using a ground based mobile differential absorption lidar.

    PubMed

    Robinson, R A; Gardiner, T D; Innocenti, F; Finlayson, A; Woods, P T; Few, J F M

    2014-08-01

    The emission of carbon dioxide (CO2) from industrial sources is one of the main anthropogenic contributors to the greenhouse effect. Direct remote sensing of CO2 emissions using optical methods offers the potential for the identification and quantification of CO2 emissions. We report the development and demonstration of a ground based mobile differential absorption lidar (DIAL) able to measure the mass emission rate of CO2 in the plume from a power station. To our knowledge DIAL has not previously been successfully applied to the measurement of emission plumes of CO2 from industrial sources. A significant challenge in observing industrial CO2 emission plumes is the ability to discriminate and observe localised concentrations of CO2 above the locally observed background level. The objectives of the study were to modify our existing mobile infrared DIAL system to enable CO2 measurements and to demonstrate the system at a power plant to assess the feasibility of the technique for the identification and quantification of CO2 emissions. The results of this preliminary study showed very good agreement with the expected emissions calculated by the site. The detection limit obtained from the measurements, however, requires further improvement to provide quantification of smaller emitters of CO2, for example for the detection of fugitive emissions. This study has shown that in principle, remote optical sensing technology will have the potential to provide useful direct data on CO2 mass emission rates. PMID:24933364

  19. Novel shortcut estimation method for regeneration energy of amine solvents in an absorption-based carbon capture process.

    PubMed

    Kim, Huiyong; Hwang, Sung June; Lee, Kwang Soon

    2015-02-01

    Among various CO2 capture processes, the aqueous amine-based absorption process is considered the most promising for near-term deployment. However, the performance evaluation of newly developed solvents still requires complex and time-consuming procedures, such as pilot plant tests or the development of a rigorous simulator. Absence of accurate and simple calculation methods for the energy performance at an early stage of process development has lengthened and increased expense of the development of economically feasible CO2 capture processes. In this paper, a novel but simple method to reliably calculate the regeneration energy in a standard amine-based carbon capture process is proposed. Careful examination of stripper behaviors and exploitation of energy balance equations around the stripper allowed for calculation of the regeneration energy using only vapor-liquid equilibrium and caloric data. Reliability of the proposed method was confirmed by comparing to rigorous simulations for two well-known solvents, monoethanolamine (MEA) and piperazine (PZ). The proposed method can predict the regeneration energy at various operating conditions with greater simplicity, greater speed, and higher accuracy than those proposed in previous studies. This enables faster and more precise screening of various solvents and faster optimization of process variables and can eventually accelerate the development of economically deployable CO2 capture processes. PMID:25602643

  20. X-ray absorption spectroscopy of LiBF 4 in propylene carbonate. A model lithium ion battery electrolyte

    DOE PAGESBeta

    Smith, Jacob W.; Lam, Royce K.; Sheardy, Alex T.; Shih, Orion; Rizzuto, Anthony M.; Borodin, Oleg; Harris, Stephen J.; Prendergast, David; Saykally, Richard J.

    2014-08-20

    Since their introduction into the commercial marketplace in 1991, lithium ion batteries have become increasingly ubiquitous in portable technology. Nevertheless, improvements to existing battery technology are necessary to expand their utility for larger-scale applications, such as electric vehicles. Advances may be realized from improvements to the liquid electrolyte; however, current understanding of the liquid structure and properties remains incomplete. X-ray absorption spectroscopy of solutions of LiBF4 in propylene carbonate (PC), interpreted using first-principles electronic structure calculations within the eXcited electron and Core Hole (XCH) approximation, yields new insight into the solvation structure of the Li+ ion in this model electrolyte.more » By generating linear combinations of the computed spectra of Li+-associating and free PC molecules and comparing to the experimental spectrum, we find a Li+–solvent interaction number of 4.5. This result suggests that computational models of lithium ion battery electrolytes should move beyond tetrahedral coordination structures.« less

  1. Impact of sulfur oxides on mercury capture by activated carbon.

    PubMed

    Presto, Albert A; Granite, Evan J

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACl, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface. PMID:17948811

  2. Impact of sulfur oxides on mercury capture by activated carbon

    SciTech Connect

    Albert A. Presto; Evan J. Granite

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACI, mercury capture was tested under varying conditions of SO{sub 2} and SO{sub 3} concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO{sub 2} concentration in the SFG, but the presence of SO{sub 3} inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H{sub 2}SO{sub 4} impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface. 30 refs., 3 figs., 2 tabs.

  3. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: Application to black carbon particles

    NASA Astrophysics Data System (ADS)

    Lehmann, Johannes; Liang, Biqing; Solomon, Dawit; Lerotic, Mirna; LuizãO, Flavio; Kinyangi, James; SchäFer, Thorsten; Wirick, Sue; Jacobsen, Chris

    2005-03-01

    Small-scale heterogeneity of organic carbon (C) forms in soils is poorly quantified since appropriate analytical techniques were not available up to now. Specifically, tools for the identification of functional groups on the surface of micrometer-sized black C particles were not available up to now. Scanning Transmission X-ray Microscopy (STXM) using synchrotron radiation was used in conjunction with Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy to investigate nano-scale distribution (50-nm resolution) of C forms in black C particles and compared to synchrotron-based FTIR spectroscopy. A new embedding technique was developed that did not build on a C-based embedding medium and did not pose the risk of heat damage to the sample. Elemental sulfur (S) was melted to 220°C until it polymerized and quenched with liquid N2 to obtain a very viscous plastic S in which the black C could be embedded until it hardened to a noncrystalline state and was ultrasectioned. Principal component and cluster analysis followed by singular value decomposition was able to resolve distinct areas in a black carbon particle. The core of the studied biomass-derived black C particles was highly aromatic even after thousands of years of exposure in soil and resembled the spectral characteristics of fresh charcoal. Surrounding this core and on the surface of the black C particle, however, much larger proportions of carboxylic and phenolic C forms were identified that were spatially and structurally distinct from the core of the particle. Cluster analysis provided evidence for both oxidation of the black C particle itself as well as adsorption of non-black C. NEXAFS spectroscopy has great potential to allow new insight into black C properties with important implications for biogeochemical cycles such as mineralization of black C in soils and sediments, and adsorption of C, nutrients, and pollutants as well as transport in the geosphere, hydrosphere, and atmosphere.

  4. Adsorption of naphthenic acids on high surface area activated carbons.

    PubMed

    Iranmanesh, Sobhan; Harding, Thomas; Abedi, Jalal; Seyedeyn-Azad, Fakhry; Layzell, David B

    2014-01-01

    In oil sands mining extraction, water is an essential component; however, the processed water becomes contaminated through contact with the bitumen at high temperature, and a portion of it cannot be recycled and ends up in tailing ponds. The removal of naphthenic acids (NAs) from tailing pond water is crucial, as they are corrosive and toxic and provide a substrate for microbial activity that can give rise to methane, which is a potent greenhouse gas. In this study, the conversion of sawdust into an activated carbon (AC) that could be used to remove NAs from tailings water was studied. After producing biochar from sawdust by a slow-pyrolysis process, the biochar was physically activated using carbon dioxide (CO2) over a range of temperatures or prior to producing biochar, and the sawdust was chemically activated using phosphoric acid (H3PO4). The physically activated carbon had a lower surface area per gram than the chemically activated carbon. The physically produced ACs had a lower surface area per gram than chemically produced AC. In the adsorption tests with NAs, up to 35 mg of NAs was removed from the water per gram of AC. The chemically treated ACs showed better uptake, which can be attributed to its higher surface area and increased mesopore size when compared with the physically treated AC. Both the chemically produced and physically produced AC provided better uptake than the commercially AC. PMID:24766592

  5. Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements.

    PubMed

    Menzies, Robert T; Tratt, David M

    2003-11-20

    We discuss the spectroscopic requirements for a laser absorption spectrometer (LAS) approach to high-precision carbon dioxide (CO2) measurements in the troposphere. Global-scale, high-precision CO2 measurements are highly desirable in an effort to improve understanding and quantification of the CO2 sources and sinks and their impact on global climate. We present differential absorption sounding characteristics for selected LAS transmitter laser wavelengths, emphasizing the effects of atmospheric temperature profile uncertainties. Candidate wavelengths for lower-troposphere measurements are identified in the CO2 bands centered near 1.57, 1.60, and 2.06 microm. PMID:14658457

  6. A New Search for Carbon Monoxide Absorption in the Transmission Spectrum of the Extrasolar Planet HD 209458b

    NASA Astrophysics Data System (ADS)

    Deming, Drake; Brown, Timothy M.; Charbonneau, David; Harrington, Joseph; Richardson, L. Jeremy

    2005-04-01

    We have revisited the search for carbon monoxide absorption features in transmission during the transit of the extrasolar planet HD 209458b. In 2002 August-September we acquired a total of 1077 high-resolution spectra (λ/δλ~25,000) in the K-band (2 μm) wavelength region using NIRSPEC on the Keck II telescope during three transits. These data are more numerous and of better quality than the data analyzed in an initial search by Brown et al. Our analysis achieves a sensitivity sufficient to test the degree of CO absorption in the first-overtone bands during transit on the basis of plausible models of the planetary atmosphere. We analyze our observations by comparison with theoretical tangent geometry absorption spectra, computed by adding height-invariant ad hoc temperature perturbations to the model atmosphere of Sudarsky et al. and by treating cloud height as an adjustable parameter. We do not detect CO absorption. The strong 2-0 R-branch lines between 4320 and 4330 cm-1 have depths during transit less than 1.6 parts in 104 in units of the stellar continuum (3 σ limit) at a spectral resolving power of 25,000. Our analysis indicates a weakening similar to that found in the case of sodium, suggesting that a general masking mechanism is at work in the planetary atmosphere. Under the interpretation that this masking is provided by high clouds, our analysis defines the maximum cloud-top pressure (i.e., minimum height) as a function of the model atmospheric temperature. For the relatively hot model used by Charbonneau et al. to interpret their sodium detection, our CO limit requires cloud tops at or above 3.3 mbar, and these clouds must be opaque at a wavelength of 2 μm. High clouds comprised of submicron-sized particles are already present in some models but may not provide sufficient opacity to account for our CO result. Cooler model atmospheres, having smaller atmospheric scale heights and lower CO mixing ratios, may alleviate this problem to some extent

  7. Low temperature fabrication & photocatalytical activity of carbon fiber-supported TiO2 with different phase compositions.

    PubMed

    Wang, Zhifeng; Yoshinaga, Kohji; Bu, Xiu R; Zhang, Ming

    2015-06-15

    Crystalline TiO2 nanoparticles with different phase compositions were fabricated on carbon fibers. The fabrication is achieved at low temperature. The process includes the treatment of Ti(OH)4 with hydrogen peroxide in the presence of carbon fibers. Neither additional acids nor bases, or additives are used during the process. Carbon fibers prior to and after TiO2 loading are characterized by FE-SEM, XRD, and UV-vis absorption spectroscopy. The photocatalytic activity was assessed via photocatalytic degradation of methyl orange solution, and found to be phase composition-dependent & pH dependent. Carbon fibers loaded with mixed-phase TiO2 led to the best photocatalytic performance. HRTEM reveals the anatase/rutile heterojunction which helps explain the high efficiency of photocatalysis. They have been demonstrated to be re-usable in the continuous photocatalytic degradation process. PMID:25791498

  8. AS-924, a novel, orally active, bifunctional prodrug of ceftizoxime: physicochemical properties, oral absorption in animals, and antibacterial activity.

    PubMed

    Mori, N; Kodama, T; Sakai, A; Suzuki, T; Sugihara, T; Yamaguchi, S; Nishijima, T; Aoki, A; Toriya, M; Kasai, M; Hatano, S; Kitagawa, M; Yoshimi, A; Nishimura, K

    2001-11-01

    AS-924 is an oral prodrug of the antibiotic ceftizoxime (CTIZ), a parenteral use cephalosporin. This novel prodrug, produced by esterifying CTIZ with a lipophilic pivaloyloxymethyl (POM) group and introducing a water soluble L-alanyl group, is expected to increase the bioavailability and thereby, augment the antibacterial activity of CTIZ in vivo compared with existing prodrugs. To study the effect of the L-alanyl group in AS-924 on its bioavailability, the plasma concentration profiles of CTIZ in dogs were examined following the dosing of AS-924 and CTIZ-POM, in powder form, after pretreatment with the antacid ranitidine, and following the dosing of AS-924 after pretreatment with a gastrointestinal motility stimulant metoclopramide or suppressant scopolamine butylbromide. The absorption rate of AS-924 was constant under these different conditions due to its unique balance of lipophilicity and water solubility. CTIZ is as antibacterially active as pre-existing oral cephalosporins against Gram-positive clinical isolates, while being more active against all Gram-negative isolates-particularly Enterobacteriaceae and Haemophilus influenzae. A simulation model for the eradication profile of bacteria in computer programmed pharmacokinetic (PK) system was carried out to study the antibacterial action of CTIZ in human. CTIZ was proven to eradicate Streptococcus pneumoniae and H. influenzae effectively, while cefpodoxime (CPOD), the active moiety of CPOD proxetil, eradicated S. pneumoniae, but not H. influenzae. These results confirm that, AS-924 is a potent oral antibiotic and would be expected to be clinically effective and efficient. PMID:11711261

  9. Removal of benzocaine from water by filtration with activated carbon

    USGS Publications Warehouse

    Howe, G.E.; Bills, T.D.; Marking, L.L.

    1990-01-01

    Benzocaine is a promising candidate for registration with the U.S. Food and Drug Administration for use as an anesthetic in fish culture, management, and research. A method for the removal of benzocaine from hatchery effluents could speed registration of this drug by eliminating requirements for data on its residues, tolerances, detoxification, and environmental hazards. Carbon filtration effectively removes many organic compounds from water. This study tested the effectiveness of three types of activated carbon for removing benzocaine from water by column filtration under controlled laboratory conditions. An adsorptive capacity was calculated for each type of activated carbon. Filtrasorb 400 (12 x 40 mesh; U.S. standard sieve series) showed the greatest capacity for benzocaine adsorption (76.12 mg benzocaine/g carbon); Filtrasorb 300 (8 x 30 mesh) ranked next (31.93 mg/g); and Filtrasorb 816 (8 x 16 mesh) absorbed the least (1.0 mg/g). Increased adsorptive capacity was associated with smaller carbon particle size; however, smaller particle size also impeded column flow. Carbon filtration is a practical means for removing benzocaine from treated water.

  10. Improved granular activated carbon for the stabilization of wastewater PH

    SciTech Connect

    Farmer, R.W.; Dussert, B.W.; Kovacic, S.L.

    1996-12-31

    Laboratory studies have identified the cause of the pH rise, which occurs during water treatment with activated carbon, as an interaction between the naturally occurring anions and protons in the water and the carbon surface. The interaction can be described as an ion exchange type of phenomenon, in which the carbon surface sorbs the anions and corresponding hydronium ions from the water. These studies have shown that the anion sorption and resulting pH increase is independent of the raw material used for the activated carbon production, e.g. bituminous or subbituminous coal, peat, wood or coconut. Also, the pH excursions occur with virgin, reactivated, and acid washed granular carbons. Current pH control technologies focus on adjustment of the wastewater pH prior to discharge or recycle of the initial effluent water until the pH increase abates. However, improved water pH control options have been realized by altering the carbon surface through controlled oxidation rather than the water chemistry or extended preprocessing at the treatment site.

  11. Carbon-Based Supercapacitors Produced by Activation of Graphene

    SciTech Connect

    Zhu, Y.; Su, D.; Murali, S.; Stoller, M.D.; Ganesh, K.J.; Cai, W.; Ferreira, P.J.; Pirkle, A.; Wallace, R.M.; Cychosz, K.A., Thommes, M.; Stach, E.A.; Ruoff, R.S.

    2011-06-24

    Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp{sup 2}-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

  12. Carbon-based Supercapacitors Produced by Activation of Graphene

    SciTech Connect

    Y Zhu; S Murali; M Stoller; K Ganesh; W Cai; P Ferreira; A Pirkle; R Wallace; K Cychosz; et al.

    2011-12-31

    Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp{sup 2}-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

  13. Adsorptive removal of Zn(II) ion from aqueous solution using rice husk-based activated carbon

    NASA Astrophysics Data System (ADS)

    Taha, Mohd F.; Ibrahim, Muhammad H. C.; Shaharun, Maizatul S.; Chong, F. K.

    2012-09-01

    The study of rice husk-based activated carbon as a potential low-cost adsorbent for the removal of Zn(II) ion from aqueous solution was investigated. Rice husk, an agricultural waste, is a good alternative source for cheap precursor of activated carbon due to its abundance and constant availability. In this work, rice husk-based activated carbon was prepared via chemical treatment using NaOH as an activation agent prior the carbonization process. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon carbonized at 650°C, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). Other analyses were also conducted on these samples using fourier transmitter infrared spectroscopy (FTIR), CHN elemental analyzer and X-ray diffraction (XRD) for characterization study. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were found to be 255 m2/g and 0.17 cm2/g, respectively. The adsorption studies for the removal of Zn(II) ion from aqueous solution were carried out as a function of varied contact time at room temperature. The concentration of Zn(II) ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Zn(II) ion from aqueous solution.

  14. Pore structure of the activated coconut shell charcoal carbon

    NASA Astrophysics Data System (ADS)

    Budi, E.; Nasbey, H.; Yuniarti, B. D. P.; Nurmayatri, Y.; Fahdiana, J.; Budi, A. S.

    2014-09-01

    The development of activated carbon from coconut shell charcoal has been investigated by using physical method to determine the influence of activation parameters in term of temperature, argon gas pressure and time period on the pore structure of the activated carbon. The coconut shell charcoal was produced by pyrolisis process at temperature of about 75 - 150 °C for 6 hours. The charcoal was activated at various temperature (532, 700 and 868 °C), argon gas pressure (6.59, 15 and 23.4 kgf/cm2) and time period of (10, 60 and 120 minutes). The results showed that the pores size were reduced and distributed uniformly as the activation parameters are increased.

  15. Percutaneous absorption of herbicides derived from 2,4-dichlorophenoxyacid: structure-activity relationship.

    PubMed

    Beydon, Dominique; Payan, Jean-Paul; Ferrari, Elisabeth; Grandclaude, Marie-Christine

    2014-08-01

    Ethyl to octyl esters of 2,4-dichlorophenoxy-acetic acids (2,4DAA), 2,4-dichlorophenoxy-propionic acids (2,4DPA) or 2,4-dichlorophenoxy-butyric acids (2,4DBA) are present in the most commonly used herbicides. Their use involves a significant risk of skin exposure, but little is known about the percutaneous flux of these substances. Studies have shown that percutaneous transition of esters may be dependent on their hydrolysis by esterases present in the skin. In this study, we describe ex vivo percutaneous absorption of seven pure esters (methyl to decyl) with a 2,4DA structure for rats (n=6) and humans (n=7). Esters were applied at 50 μL cm(-2) to dermatomed skin (approximately 0.5 mm thick) for 24 h. The enzymatic constants for hydrolysis of each ester by skin esterases were determined in vitro using skin homogenates from both species. Structure-activity relationships linking the evolution of the ex vivo percutaneous flux of esters and the 2,4D structure with enzymatic (Vmax; Km) and/or physical parameters (molecular weight, molecular volume, size of the ester, log(kow)) were examined to develop a good flux estimation model. Although the percutaneous penetration of all of the esters of the 2,4D family are "esterase-dependent", the decreasing linear relationship between percutaneous penetration and hyrophobicity defined by the logarithm for the octanol-water partition coefficient (log(kow)) is the most pertinent model for estimating the percutaneous absorption of esters for both species. The mean flux of the free acid production by the esterases of the skin is not the limiting factor for percutaneous penetration. The rate of hydrolysis of the esters in the skin decreases linearly with log(kow), which would suggest that either the solubility of the esters in the zones of the skin that are rich in esterases or the accessibility to the active sites of the enzyme is the key factor. The structure-activity relationship resulting from this study makes it possible, in

  16. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  17. Atypical Hydrogen Uptake on Chemically Activated, Ultramicroporous Carbon

    SciTech Connect

    Bhat, Vinay V; Contescu, Cristian I; Gallego, Nidia C; Baker, Frederick S

    2010-01-01

    Hydrogen adsorption at near-ambient temperatures on ultramicroporous carbon (UMC), derived through secondary chemical activation from a wood-based activated carbon was studied using volumetric and gravimetric methods. The results showed that physisorption is accompanied by a process of different nature that causes slow uptake at high pressures and hysteresis on desorption. In combination, this results in unusually high levels of hydrogen uptake at near-ambient temperatures and pressures (e.g. up to 0.8 wt % at 25 oC and 2 MPa). The heat of adsorption corresponding to the slow process leading to high uptake (17 20 kJ/mol) is higher than usually reported for carbon materials, but the adsorption kinetics is slow, and the isotherms exhibit pronounced hysteresis. These unusual properties were attributed to contributions from polarization-enhanced physisorption caused by traces of alkali metals residual from chemical activation. The results support the hypothesis that polarization-induced physisorption in high surface area carbons modified with traces of alkali metal ions is an alternate route for increasing the hydrogen storage capacity of carbon adsorbents.

  18. Effects of organic carbon sequestration strategies on soil enzymatic activities

    NASA Astrophysics Data System (ADS)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  19. Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements.

    PubMed

    Kern, Christoph; Trick, Sebastian; Rippel, Bernhard; Platt, Ulrich

    2006-03-20

    We present what is to our knowledge the first use of light-emitting diodes (LEDs) as light sources for long-path differential optical absorption spectroscopy (LP-DOAS) measurements of trace gases in the open atmosphere. Modern LEDs represent a potentially advantageous alternative to thermal light sources, in particular to xenon arc lamps, which are the most common active DOAS light sources. The radiative properties of a variety of LEDs were characterized, and parameters such as spectral shape, spectral range, spectral stability, and ways in which they can be influenced by environmental factors were analyzed. The spectra of several LEDs were found to contain Fabry-Perot etalon-induced spectral structures that interfered with the DOAS evaluation, in particular when a constant temperature was not maintained. It was shown that LEDs can be used successfully as light sources in active DOAS experiments that measure NO2 and NO3 near 450 and 630 nm, respectively. Average detection limits of 0.3 parts in 10(9) and 16 parts in 10(12) respectively, were obtained by use of a 6 km light path in the open atmosphere. PMID:16579579

  20. Determination of nickel in active pharmaceutical ingredients by electrothermal atomic absorption spectrometry.

    PubMed

    Bubnič, Zoran; Urleb, Uroš; Kreft, Katjuša; Veber, Marjan

    2010-03-01

    An electrothermal atomic absorption spectrometric procedure for the determination of nickel in active pharmaceutical ingredients was developed. Since the recoveries of nickel by the direct dissolution of samples in diluted nitric acid were low and caused errors in the determination of Ni in pharmaceutical samples, different approaches for sample pre-treatment were examined. It was found that the microwave digestion was the most suitable way for sample preparation. Various combinations of digestion agents and different microwave conditions were tested. The combination of nitric acid and hydrogen peroxide was found to be the most appropriate. The validity of the method was evaluated by recovery studies of spiked samples and by the comparison of the results obtained by inductively coupled plasma mass spectrometry (ICP-MS). The recovery ranged from 87.5 to 104.0% and a good agreement was achieved between both methods. The detection limit and the limit of quantification were 0.6 and 2.1 µg g-1 respectively. The precision of the method was confirmed by the determination of Ni in the spiked samples and was below 4%, expressed in terms of a relative standard deviation. The method was applied to the determination of nickel in production samples of active pharmaceutical ingredients and intermediates. PMID:24061653

  1. Production Scale-Up or Activated Carbons for Ultracapacitors

    SciTech Connect

    Dr. Steven D. Dietz

    2007-01-10

    Transportation use accounts for 67% of the petroleum consumption in the US. Electric and hybrid vehicles are promising technologies for decreasing our dependence on petroleum, and this is the objective of the FreedomCAR & Vehicle Technologies Program. Inexpensive and efficient energy storage devices are needed for electric and hybrid vehicle to be economically viable, and ultracapacitors are a leading energy storage technology being investigated by the FreedomCAR program. The most important parameter in determining the power and energy density of a carbon-based ultracapacitor is the amount of surface area accessible to the electrolyte, which is primarily determined by the pore size distribution. The major problems with current carbons are that their pore size distribution is not optimized for liquid electrolytes and the best carbons are very expensive. TDA Research, Inc. (TDA) has developed methods to prepare porous carbons with tunable pore size distributions from inexpensive carbohydrate based precursors. The use of low-cost feedstocks and processing steps greatly lowers the production costs. During this project with the assistance of Maxwell Technologies, we found that an impurity was limiting the performance of our carbon and the major impurity found was sulfur. A new carbon with low sulfur content was made and found that the performance of the carbon was greatly improved. We also scaled-up the process to pre-production levels and we are currently able to produce 0.25 tons/year of activated carbon. We could easily double this amount by purchasing a second rotary kiln. More importantly, we are working with MeadWestvaco on a Joint Development Agreement to scale-up the process to produce hundreds of tons of high quality, inexpensive carbon per year based on our processes.

  2. [Preparation and optimum process of walnut peel activated carbon by zinc chloride as activating agent].

    PubMed

    Liu, Xiao-hong; Wang, Xing-wei; Zhao, Bo; Lü, Jun-fang; Kang, Ni-na; Zhang, Yao-jun

    2014-12-01

    Walnut peel as raw material, zinc chloride was used as activating agent for preparation walnut peel activated carbon in the muffle furnace in this experiment, using orthogonal design. Yield, the specific surface area and iodine number of walnut peel activated carbon were determined at all designed experimental conditions and the optimum technological condition of preparation was obtained. By analysis of aperture, infrared spectra and the content of acidic group in surface with Boehm, walnut peel activated carbon of prepared at the optimum condition was characterized. The results showed the optimum technological parameters of preparation: activation temperature (600 °C), activation time (1 h), the concentration of zinc chloride (50%), the particle size (60 mesh). The specific surface area of walnut peel activated carbon obtained at optimum condition was mounting to 1258.05 m2 · g(-1), the ratio of medium porous 32.18%. Therefore, walnut peel can be used in the preparation of the high-quality activated carbon of large surface area. Agricultural wastes, as walnut peel, not only were implemented recycle, but also didn't make any pollution. Meanwhile, a cheap adsorbent was provided and it was of great significance to open a new source of activated carbon. PMID:25881437

  3. Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed

    2016-05-20

    Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15  ppm with 1.02% uncertainty and

  4. THE FAR-ULTRAVIOLET 'CONTINUUM' IN PROTOPLANETARY DISK SYSTEMS. II. CARBON MONOXIDE FOURTH POSITIVE EMISSION AND ABSORPTION

    SciTech Connect

    France, Kevin; Schindhelm, Eric; Burgh, Eric B.; Brown, Alexander; Green, James C.; Herczeg, Gregory J.; Brown, Joanna M.; Harper, Graham M.; Linsky, Jeffrey L.; Yang Hao; Abgrall, Herve; Ardila, David R.; Bergin, Edwin; Bethell, Thomas; Calvet, Nuria; Ingleby, Laura; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne A.; Hussain, Gaitee

    2011-06-10

    We exploit the high sensitivity and moderate spectral resolution of the Hubble Space Telescope Cosmic Origins Spectrograph to detect far-ultraviolet (UV) spectral features of carbon monoxide (CO) present in the inner regions of protoplanetary disks for the first time. We present spectra of the classical T Tauri stars HN Tau, RECX-11, and V4046 Sgr, representative of a range of CO radiative processes. HN Tau shows CO bands in absorption against the accretion continuum. The CO absorption most likely arises in warm inner disk gas. We measure a CO column density and rotational excitation temperature of N(CO) = (2 {+-} 1) x 10{sup 17} cm{sup -2} and T{sub rot}(CO) 500 {+-} 200 K for the absorbing gas. We also detect CO A-X band emission in RECX-11 and V4046 Sgr, excited by UV line photons, predominantly H I Ly{alpha}. All three objects show emission from CO bands at {lambda} > 1560 A, which may be excited by a combination of UV photons and collisions with non-thermal electrons. In previous observations these emission processes were not accounted for due to blending with emission from the accretion shock, collisionally excited H{sub 2}, and photo-excited H{sub 2}, all of which appeared as a 'continuum' whose components could not be separated. The CO emission spectrum is strongly dependent upon the shape of the incident stellar Ly{alpha} emission profile. We find CO parameters in the range: N(CO) {approx} 10{sup 18}-10{sup 19} cm{sup -2}, T{sub rot}(CO) {approx}> 300 K for the Ly{alpha}-pumped emission. We combine these results with recent work on photo-excited and collisionally excited H{sub 2} emission, concluding that the observations of UV-emitting CO and H{sub 2} are consistent with a common spatial origin. We suggest that the CO/H{sub 2} ratio ({identical_to} N(CO)/N(H{sub 2})) in the inner disk is {approx}1, a transition between the much lower interstellar value and the higher value observed in solar system comets today, a result that will require future

  5. Synthesis and characterization of activated carbon from asphalt

    NASA Astrophysics Data System (ADS)

    Kandah, Munther Issa; Shawabkeh, Reyad; Al-Zboon, Mahmoud Ar'ef

    2006-11-01

    Asphalt (cheap and available in huge amount in Jordan) was converted into activated carbon powder by chemical treatment with sulphuric and nitric acids at 450 °C. The final product was characterized and found effective as adsorbent material. Its cation exchange capacity reaches 191.2 meq/100-g carbons when treated with 30 wt% acid/asphalt ratio without airflow rate injection and 208 meq/100-g carbons when 6.5 ml air/min was injected into the surface of the asphalt during activation at the same acid/asphalt weight ratio of 30 and temperature 450 °C. The zero point of charge for this product was found to be stable at pH value around 3 in the range of initial pH between 3 and 10.

  6. Carbon Beam Radio-Therapy and Research Activities at HIMAC

    NASA Astrophysics Data System (ADS)

    Kanazawa, Mitsutaka

    2007-05-01

    Radio-therapy with carbon ion beam has been carried out since 1994 at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences). Now, many types of tumors can be treated with carbon beam with excellent local controls of the tumors. Stimulated with good clinical results, requirement of the dedicated compact facility for carbon beam radio-therapy is increased. To realize this requirement, design study of the facility and the R&D's of the key components in this design are promoted by NIRS. According successful results of these activities, the dedicated compact facility will be realized in Gunma University. In this facility, the established irradiation method is expected to use, which is passive irradiation method with wobbler magnets and ridge filter. In this presentation, above R&D's will be presented together with clinical results and basic research activities at HIMAC.

  7. 40 CFR 60.1820 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... activated carbon? 60.1820 Section 60.1820 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet three requirements: (a) Select a carbon injection system...

  8. Nitrogen-Containing Carbon Nanotube Synthesized from Polymelem and Activated Carbon Derived from Polymer Blend

    NASA Astrophysics Data System (ADS)

    Qin, Nan

    Polymelem possesses a polymeric structure of heptazine (C6N 7) rings connected by amine bridges and our study has demonstrated that it is a promising precursor for the synthesis of nitrogen-containing carbon materials. Nitrogen-containing carbon nanotube (NCNT) was produced by pyrolyzing polymelem as a dual source of carbon and nitrogen with Raney nickel in a high pressure stainless steel cell. Activated carbon was produced from poly(ether ether ketone)/poly(ether imide) (PEEK/PEI blend) and incorporated with polymelem to enhance the hydrogen adsorption. Polymelem was successfully synthesized by pyrolyzing melamine at 450--650 °C and its structure was elucidated by 13C solid state NMR, FTIR, and XRD. The molecular weight determined by a novel LDI MS equipped with a LIFT mode illuminated that polymelem has both linear and cyclic connectivity with a degree of polymerization of 2--5 depending on the synthesis temperature. The decomposition products of polymelem were determined to be cyanoamide, dicyanoamide, and tricyanoamine. Tricyanoamine is the smallest carbon nitride molecule and has been experimentally confirmed for the first time in this study. When polymelem was decomposed in the presence of Raney nickel, homogenous NCNT with nitrogen content of ˜ 4--19 atom% was produced. A mechanism based on a detail analysis of the TEM images at different growth stages proposed that the NCNT propagated via a tip-growth mechanism originating at the nano-domains within the Raney nickel, and was accompanied with the aggregation of the nickel catalysts. Such NCNT exhibited a cup-stack wall structure paired with a compartmental feature. The nitrogen content, tube diameter and wall thickness greatly depended on synthesis conditions. The activated carbon derived from PEEK/PEI blend demonstrated a surface area up to ˜3000 m2/g, and average pore size of < 20 A. Such activated carbon exhibited a hydrogen storage capacity of up to 6.47 wt% at 40 bar, 77 K. The activated carbon has

  9. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    PubMed

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive. PMID:25531980

  10. Selective determination of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone by atomic-absorption spectrometry with a carbon-tube atomizer.

    PubMed

    Kamada, T; Yamamoto, Y

    1977-05-01

    The extraction behaviour of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of frameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of antimony(III) and differential determination of antimony(III) and antimony(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone, when the aqueous phase/solvent volume ratio is 50 ml/10 ml and the injection volume in the carbon tube is 20 mul, the sensitivity for antimony is 0.2 ng/ml for 1% absorption. The relative standard deviations are ca. 2%. Interferences by many metal ions can be prevented by masking with EDTA. The proposed methods have been applied satisfactorily to determination of antimony(III) and antimony(V) in various types of water. PMID:18962096

  11. Hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites: synthesis and microwave absorption performance.

    PubMed

    Wang, Lei; Huang, Ying; Li, Chao; Chen, Junjiao; Sun, Xu

    2015-02-28

    The fabrication of novel hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites has been successfully carried out for the first time. The fabrication process involves the deposition of Fe3O4 nanoclusters on graphene's surface using a simple in situ hydrothermal method, subsequent introduction of carbon on the surface of graphene@Fe3O4 nanoclusters by combining the hydrothermal reaction and thermal treatment process, and finally formation of the hierarchical composites via a simple in situ redox replacement reaction between potassium permanganate (KMnO4) and carbon on the surface of graphene@Fe3O4 nanoclusters. Moreover, the microwave absorption properties of both graphene@Fe3O4 nanoclusters and hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites were investigated between 2 and 18 GHz microwave frequency bands. The electromagnetic data demonstrate that graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array hierarchical composites exhibit significantly enhanced microwave absorption properties compared with graphene@Fe3O4 nanoclusters, which probably originate from the unique hierarchical structure and larger surface area. PMID:25630384

  12. Electric-Field Induced Activation of Dark Excitonic States in Carbon Nanotubes.

    PubMed

    Uda, T; Yoshida, M; Ishii, A; Kato, Y K

    2016-04-13

    Electrical activation of optical transitions to parity-forbidden dark excitonic states in individual carbon nanotubes is reported. We examine electric-field effects on various excitonic states by simultaneously measuring photocurrent and photoluminescence. As the applied field increases, we observe an emergence of new absorption peaks in the excitation spectra. From the diameter dependence of the energy separation between the new peaks and the ground state of E11 excitons, we attribute the peaks to the dark excited states which became optically active due to the applied field. Field-induced exciton dissociation can explain the photocurrent threshold field, and the edge of the E11 continuum states has been identified by extrapolating to zero threshold. PMID:26999284

  13. Tunable growth of silver nanobelts on monolithic activated carbon with size-dependent plasmonic response

    PubMed Central

    Zhao, Hong; Ning, Yuesheng; Zhao, Binyuan; Yin, Fujun; Du, Cuiling; Wang, Fei; Lai, Yijian; Zheng, Junwei; Li, Shuan; Chen, Li

    2015-01-01

    Silver is one of the most important materials in plasmonics. Tuning the size of various silver nanostructures has been actively pursued in the last decade. However, silver nanobelt, a typical one-dimensional silver nanostructure, has not been systematically studied as to tuning its size for controllable plasmonic response. Here we show that silver nanobelts, with mean width ranging from 45 to 105 nm and thickness at ca. 13 nm, can grow abundantly on monolithic activated carbon (MAC) through a galvanic-cell reaction mechanism. The widths of silver nanobelts are positively correlated to the growth temperatures. The width/thickness ratio of the silver nanobelts can be adjusted so that their transversal plasmonic absorption peaks can nearly span the whole visible light band, which endows them with different colours. This work demonstrates the great versatility of a simple, green and conceptually novel approach in controlled synthesis of noble metal nanostructures. PMID:26337008

  14. Tunable growth of silver nanobelts on monolithic activated carbon with size-dependent plasmonic response

    NASA Astrophysics Data System (ADS)

    Zhao, Hong; Ning, Yuesheng; Zhao, Binyuan; Yin, Fujun; Du, Cuiling; Wang, Fei; Lai, Yijian; Zheng, Junwei; Li, Shuan; Chen, Li

    2015-09-01

    Silver is one of the most important materials in plasmonics. Tuning the size of various silver nanostructures has been actively pursued in the last decade. However, silver nanobelt, a typical one-dimensional silver nanostructure, has not been systematically studied as to tuning its size for controllable plasmonic response. Here we show that silver nanobelts, with mean width ranging from 45 to 105 nm and thickness at ca. 13 nm, can grow abundantly on monolithic activated carbon (MAC) through a galvanic-cell reaction mechanism. The widths of silver nanobelts are positively correlated to the growth temperatures. The width/thickness ratio of the silver nanobelts can be adjusted so that their transversal plasmonic absorption peaks can nearly span the whole visible light band, which endows them with different colours. This work demonstrates the great versatility of a simple, green and conceptually novel approach in controlled synthesis of noble metal nanostructures.

  15. Tunable growth of silver nanobelts on monolithic activated carbon with size-dependent plasmonic response.

    PubMed

    Zhao, Hong; Ning, Yuesheng; Zhao, Binyuan; Yin, Fujun; Du, Cuiling; Wang, Fei; Lai, Yijian; Zheng, Junwei; Li, Shuan; Chen, Li

    2015-01-01

    Silver is one of the most important materials in plasmonics. Tuning the size of various silver nanostructures has been actively pursued in the last decade. However, silver nanobelt, a typical one-dimensional silver nanostructure, has not been systematically studied as to tuning its size for controllable plasmonic response. Here we show that silver nanobelts, with mean width ranging from 45 to 105 nm and thickness at ca. 13 nm, can grow abundantly on monolithic activated carbon (MAC) through a galvanic-cell reaction mechanism. The widths of silver nanobelts are positively correlated to the growth temperatures. The width/thickness ratio of the silver nanobelts can be adjusted so that their transversal plasmonic absorption peaks can nearly span the whole visible light band, which endows them with different colours. This work demonstrates the great versatility of a simple, green and conceptually novel approach in controlled synthesis of noble metal nanostructures. PMID:26337008

  16. Activation and micropore structure of carbon-fiber composites

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.

    1997-12-01

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The main focus of recent work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites to produce controlled pore structures. Processes have been developed using activation in steam and CO{sub 2}, and a less conventional method involving oxygen chemisorption and subsequent heat treatment. Another objective has been to explore applications for the activated composites in environmental applications related to fossil energy production.

  17. CONSIDERATIONS IN GRANULAR ACTIVATED CARBON TREATMENT OF COMBINED INDUSTRIAL WASTEWATERS

    EPA Science Inventory

    The objective of this project was to examine the use of activated carbon in reducing the content of biologically resistant organic compounds in a combined industrial wastewater treatment system. The invvestigation was conducted in two stages: (1) characterize organic priority pol...

  18. ACTIVATED CARBON TREATMENT OF INDUSTRIAL WASTEWATERS: SELECTED TECHNICAL PAPERS

    EPA Science Inventory

    Because of the tremendous interest in the organic constituent removal by activated carbon, the two industrial categories displaying the most interest are the petroleum refining and petrochemical industries. EPA's Office of Research and Development has co-sponsored two technical s...

  19. Acoustical Evaluation of Carbonized and Activated Cotton Nonwovens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An activated carbon fiber nonwoven (ACF) was manufactured from cotton nonowoven fabric. For the ACF acoustical application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glass fiber ...

  20. Overview of EPA activities and research related to black carbon

    EPA Science Inventory

    The purpose of this international presentation is to give an overview of EPA activities related to black carbon (BC). This overview includes some summary information on how EPA defines BC, current knowledge on United States emissions and forecasted emission reductions, and ongoin...