Science.gov

Sample records for activated carbon adsorbent

  1. Monitoring by Control Technique - Activated Carbon Adsorber

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Activated Carbon Adsorber control techniques used to reduce pollutant emissions.

  2. Adsorbed natural gas storage with activated carbon

    SciTech Connect

    Sun, Jian; Brady, T.A.; Rood, M.J.

    1996-12-31

    Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

  3. Cellulose: A review as natural, modified and activated carbon adsorbent.

    PubMed

    Suhas; Gupta, V K; Carrott, P J M; Singh, Randhir; Chaudhary, Monika; Kushwaha, Sarita

    2016-09-01

    Cellulose is a biodegradable, renewable, non-meltable polymer which is insoluble in most solvents due to hydrogen bonding and crystallinity. Natural cellulose shows lower adsorption capacity as compared to modified cellulose and its capacity can be enhanced by modification usually by chemicals. This review focuses on the utilization of cellulose as an adsorbent in natural/modified form or as a precursor for activated carbon (AC) for adsorbing substances from water. The literature revealed that cellulose can be a promising precursor for production of activated carbon with appreciable surface area (∼1300m(2)g(-1)) and total pore volume (∼0.6cm(3)g(-1)) and the surface area and pore volume varies with the cellulose content. Finally, the purpose of review is to report a few controversies and unresolved questions concerning the preparation/properties of ACs from cellulose and to make aware to readers that there is still considerable scope for future development, characterization and utilization of ACs from cellulose.

  4. Activity of catalase adsorbed to carbon nanotubes: effects of carbon nanotube surface properties.

    PubMed

    Zhang, Chengdong; Luo, Shuiming; Chen, Wei

    2013-09-15

    Nanomaterials have been studied widely as the supporting materials for enzyme immobilization. However, the interactions between enzymes and carbon nanotubes (CNT) with different morphologies and surface functionalities may vary, hence influencing activities of the immobilized enzyme. To date how the adsorption mechanisms affect the activities of immobilized enzyme is not well understood. In this study the adsorption of catalase (CAT) on pristine single-walled carbon nanotubes (SWNT), oxidized single-walled carbon nanotubes (O-SWNT), and multi-walled carbon nanotubes (MWNT) was investigated. The adsorbed enzyme activities decreased in the order of O-SWNT>SWNT>MWNT. Fourier transforms infrared spectroscopy (FTIR) and circular dichrois (CD) analyses reveal more significant loss of α-helix and β-sheet of MWNT-adsorbed than SWNT-adsorbed CAT. The difference in enzyme activities between MWNT-adsorbed and SWNT-adsorbed CAT indicates that the curvature of surface plays an important role in the activity of immobilized enzyme. Interestingly, an increase of β-sheet content was observed for CAT adsorbed to O-SWNT. This is likely because as opposed to SWNT and MWNT, O-SWNT binds CAT largely via hydrogen bonding and such interaction allows the CAT molecule to maintain the rigidity of enzyme structure and thus the biological function.

  5. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.

    PubMed

    Zhang, Shujuan; Shao, Ting; Kose, H Selcen; Karanfil, Tanju

    2010-08-15

    Adsorption of three aromatic organic compounds (AOCs) by four types of carbonaceous adsorbents [a granular activated carbon (HD4000), an activated carbon fiber (ACF10), two single-walled carbon nanotubes (SWNT, SWNT-HT), and a multiwalled carbon nanotube (MWNT)] with different structural characteristics but similar surface polarities was examined in aqueous solutions. Isotherm results demonstrated the importance of molecular sieving and micropore effects in the adsorption of AOCs by carbonaceous porous adsorbents. In the absence of the molecular sieving effect, a linear relationship was found between the adsorption capacities of AOCs and the surface areas of adsorbents, independent of the type of adsorbent. On the other hand, the pore volume occupancies of the adsorbents followed the order of ACF10 > HD4000 > SWNT > MWNT, indicating that the availability of adsorption site was related to the pore size distributions of the adsorbents. ACF10 and HD4000 with higher microporous volumes exhibited higher adsorption affinities to low molecular weight AOCs than SWNT and MWNT with higher mesopore and macropore volumes. Due to their larger pore sizes, SWNTs and MWNTs are expected to be more efficient in adsorption of large size molecules. Removal of surface oxygen-containing functional groups from the SWNT enhanced adsorption of AOCs.

  6. Adsorbent-adsorbate interactions in the adsorption of Cd(II) and Hg(II) on ozonized activated carbons.

    PubMed

    Sánchez-Polo, M; Rivera-Utrilla, J

    2002-09-01

    The present work investigated the effect of surface oxygenated groups on the adsorption of Cd(II) and Hg(II) by activated carbon. A study was undertaken to determine the adsorption isotherms and the influence of the pH on the adsorption of each metallic ion by a series of ozonized activated carbons. In the case of Cd(II), the adsorption capacity and the affinity of the adsorbent augmented with the increase in acid-oxygenated groups on the activated carbon surface. These results imply that electrostatic-type interactions predominate in this adsorption process. The adsorption observed at solution pH values below the pH(PZC) of the carbon indicates that other forces also participate in this process. Ionic exchange between -C pi-H3O+ interaction protons and Cd(II) ions would account for these findings. In the case of Hg(II), the adsorption diminished with an increase in the degree of oxidation of the activated carbon. The presence of electron-withdrawing groups on oxidized carbons decreases the electronic density of their surface, producing a reduction in the adsorbent-adsorbate dispersion interactions and in their reductive capacity, thus decreasing the adsorption of Hg(II) on the activated carbon. At pH values above 3, the pH had no influence on the adsorption of Hg(II) by the activated carbon, confirming that electrostatic interactions do not have a determinant influence on Hg(II) adsorption.

  7. Adsorption capacities of activated carbons for geosmin and 2-methylisoborneol vary with activated carbon particle size: Effects of adsorbent and adsorbate characteristics.

    PubMed

    Matsui, Yoshihiko; Nakao, Soichi; Sakamoto, Asuka; Taniguchi, Takuma; Pan, Long; Matsushita, Taku; Shirasaki, Nobutaka

    2015-11-15

    The adsorption capacities of nine activated carbons for geosmin and 2-methylisoborneol (MIB) were evaluated. For some carbons, adsorption capacity substantially increased when carbon particle diameter was decreased from a few tens of micrometers to a few micrometers, whereas for other carbons, the increase of adsorption capacity was small for MIB and moderate for geosmin. An increase of adsorption capacity was observed for other hydrophobic adsorbates besides geosmin and MIB, but not for hydrophilic adsorbates. The parameter values of a shell adsorption model describing the increase of adsorption capacity were negatively correlated with the oxygen content of the carbon among other characteristics. Low oxygen content indicated low hydrophilicity. The increase of adsorption capacity was related to the hydrophobic properties of both adsorbates and activated carbons. For adsorptive removal of hydrophobic micropollutants such as geosmin, it is therefore recommended that less-hydrophilic activated carbons, such as coconut-shell-based carbons, be microground to a particle diameter of a few micrometers to enhance their equilibrium adsorption capacity. In contrast, adsorption by hydrophilic carbons or adsorption of hydrophilic adsorbates occur in the inner pores, and therefore adsorption capacity is unchanged by particle size reduction.

  8. Toward an effective adsorbent for polar pollutants: formaldehyde adsorption by activated carbon.

    PubMed

    Lee, Kyung Jin; Miyawaki, Jin; Shiratori, Nanako; Yoon, Seong-Ho; Jang, Jyongsik

    2013-09-15

    Due to increasing concerns about environmental pollutants, the development of an effective adsorbent or sensitive sensor has been pursued in recent years. Diverse porous materials have been selected as promising candidates for detecting and removing harmful materials, but the most appropriate pore structure and surface functional groups, both important factors for effective adsorbency, have not yet been fully elucidated. In particular, there is limited information relating to the use of activated carbon materials for effective adsorbent of specific pollutants. Here, the pore structure and surface functionality of polyacrylonitrile-based activated carbon fibers were investigated to develop an efficient adsorbent for polar pollutants. The effect of pore structure and surface functional groups on removal capability was investigated. The activated carbons with higher nitrogen content show a great ability to absorb formaldehyde because of their increased affinity with polar pollutants. In particular, nitrogen functional groups that neighbor oxygen atoms play an important role in maximizing adsorption capability. However, because there is also a similar increase in water affinity in adsorbents with polar functional groups, there is a considerable decrease in adsorption ability under humid conditions because of preferential adsorption of water to adsorbents. Therefore, it can be concluded that pore structures, surface functional groups and the water affinity of any adsorbent should be considered together to develop an effective and practical adsorbent for polar pollutants. These studies can provide vital information for developing porous materials for efficient adsorbents, especially for polar pollutants.

  9. Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers.

    PubMed

    Tsai, Jiun-Horng; Chiang, Hsiu-Mei; Huang, Guan-Yinag; Chiang, Hung-Lung

    2008-06-15

    The adsorption characteristics of chloroform, acetone, and acetonitrile on commercial activated carbon (C1), two types of activated carbon fibers (F1 and F2), and sludge adsorbent (S1) was investigated. The chloroform influent concentration ranged from 90 to 7800 ppm and the acetone concentration from 80 to 6900 ppm; the sequence of the adsorption capacity of chloroform and acetone on adsorbents was F2>F1 approximately C1 approximately S1. The adsorption capacity of acetonitrile ranged from 4 to 100 mg/g, corresponding to the influent range from 43 to 2700 ppm for C1, S1, and F1. The acetonitrile adsorption capacity of F2 was approximately 20% higher than that of the other adsorbents at temperatures<30 degrees C. The Freundlich equation fit the data better than the Langmuir and Dubinin-Radushkevich (D-R) equations. The adsorption rate of carbon fibers is higher than that of the other adsorbents due to their smaller fiber diameter and higher surface area. The micropore diffusion coefficient of VOC on activated carbon and sludge adsorbent was approximately 10(-4) cm2 s(-1). The diffusion coefficient of VOC on carbon fibers ranged from 10(-8) to 10(-7) cm2 s(-1). The small carbon fiber pore size corresponds to a smaller diffusion coefficient.

  10. Process for producing an activated carbon adsorbent with integral heat transfer apparatus

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Yavrouian, Andre H. (Inventor)

    1996-01-01

    A process for producing an integral adsorbent-heat exchanger apparatus useful in ammonia refrigerant heat pump systems. In one embodiment, the process wets an activated carbon particles-solvent mixture with a binder-solvent mixture, presses the binder wetted activated carbon mixture on a metal tube surface and thereafter pyrolyzes the mixture to form a bonded activated carbon matrix adjoined to the tube surface. The integral apparatus can be easily and inexpensively produced by the process in large quantities.

  11. PREDICTING THE ADSORPTION CAPACITY OF ACTIVATED CARBON FOR ORGANIC CONTAMINANTS FROM ADSORBENT AND ADSORBATE PROPERTIES

    EPA Science Inventory

    A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficients (βl

  12. Oxidative degradation of trichloroethylene adsorbed on active carbons: Use of microwave energy

    SciTech Connect

    Varma, R.; Nandi, S.P.

    1991-01-01

    Chlorinated hydrocarbon compounds (CHCl), such as chlorinated alkanes/alkenes, benzene and biphenyl etc, represent an important fraction of the industrial hazardous wastes produced. Trichloroethylene (TCE) can be removed from waste streams by adsorption on active carbons. The primary objective of the present work was to study the detoxification in air-stream of TCE adsorbed on different types of active carbons using in situ microwave heating. A secondary objective was to examine the regeneration of used carbons from the effects of repeated cyclic operations (adsorption- detoxification). The experimental study has shown that trichloroethylene adsorbed on active carbon can be oxidatively degradated in presence of microwave radiation. Energy can be transferred efficiently to the reaction sites without losing heat to the surrounding vessel. One of the decomposition product of trichloroethylene is free chlorine which is held very strongly on active carbon. Hydrochloric acid on the other hand seems to be less strongly held and appears in large concentration in the exit gas. Production of free chlorine can be avoided by using chlorohydrocarbon mixed with sufficient internal hydrogen. This is also expected to minimize the problem of carbon regeneration encountered in this study. The results obtained from studies on the oxidative degradation of TCE under microwave radiation are promising in a number of respects: (1) the detoxification of TCE adsorbed on active carbon can be conducted at moderate (<400{degree}C) temperatures, and (2) the used carbon bed can be regenerated. A patent on the process has been issued. 9 refs., 2 figs., 2 tabs.

  13. Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions.

    PubMed

    Osovsky, Ruth; Kaplan, Doron; Nir, Ido; Rotter, Hadar; Elisha, Shmuel; Columbus, Ishay

    2014-09-16

    Mild treatment with hydrogen peroxide solutions (3-30%) efficiently decomposes adsorbed chemical warfare agents (CWAs) on microporous activated carbons used in protective garments and air filters. Better than 95% decomposition of adsorbed sulfur mustard (HD), sarin, and VX was achieved at ambient temperatures within 1-24 h, depending on the H2O2 concentration. HD was oxidized to the nontoxic HD-sulfoxide. The nerve agents were perhydrolyzed to the respective nontoxic methylphosphonic acids. The relative rapidity of the oxidation and perhydrolysis under these conditions is attributed to the microenvironment of the micropores. Apparently, the reactions are favored due to basic sites on the carbon surface. Our findings suggest a potential environmentally friendly route for decontamination of adsorbed CWAs, using H2O2 without the need of cosolvents or activators.

  14. Decomposition of adsorbed VX on activated carbons studied by 31P MAS NMR.

    PubMed

    Columbus, Ishay; Waysbort, Daniel; Shmueli, Liora; Nir, Ido; Kaplan, Doron

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) {(DES)2}. Decomposition occurred irrespective of the phase from which VX was loaded, the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed.

  15. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents.

    PubMed

    Ji, Liangliang; Chen, Wei; Duan, Lin; Zhu, Dongqiang

    2009-04-01

    Significant concerns have been raised over the presence of antibiotics including tetracyclines in aquatic environments. We herein studied single-walled carbon nanotubes (SWNT) and multi-walled carbon nanotubes (MWNT) as potential effective adsorbents for removal of tetracycline from aqueous solution. In comparison, a nonpolar adsorbate, naphthalene, and two other carbonaceous adsorbents, pulverized activated carbon (AC) and nonporous graphite, were used. The observed adsorbent-to-solution distribution coefficient (Kd, L/kg) of tetracycline was in the order of 10(4)-10(6) L/kg for SWNT, 10(3)-10(4) L/kg for MWNT, 10(3)-10(4) L/kg for AC, and 10(3)-10(5) L/kg for graphite. Upon normalization for adsorbent surface area, the adsorption affinity of tetracycline decreased in the order of graphite/ SWNT > MWNT > AC. The weaker adsorption of tetracycline to AC indicates that for bulky adsorbates adsorption affinity is greatly affected by the accessibility of available adsorption sites. The remarkably strong adsorption of tetracycline to the carbon nanotubes and to graphite can be attributed to the strong adsorptive interactions (van der Waals forces, pi-pi electron-donor-acceptor interactions, cation-pi bonding) with the graphene surface. Complexation between tetracycline and model graphene compounds (naphthalene, phenanthrene, pyrene) in solution phase was verified by ring current-induced 1H NMR upfield chemical shifts of tetracycline moieties.

  16. Numerical Analysis on Adsorption Characteristics of Activated Carbon/Ethanol Pair in Finned Tube Type Adsorber

    NASA Astrophysics Data System (ADS)

    Makimoto, Naoya; Kariya, Keishi; Koyama, Shigeru

    The cycle performance of adsorption cooling system depends on the thermophysical properties of the adsorbent/refrigerant pair and configuration of the adsorber/desorber heat exchanger. In this study, a twodimensional analysis is carried out in order to clarify the performance of the finned tube type adsorber/desorber heat exchanger using a highly porous activated carbon powder (ACP)/ethanol pair. The simulation results show that the average cooling capacity per unit volume of adsorber/desorber heat exchanger and coefficient of performance (COP) can be improved by optimizing fin thickness, fin height, fin pitch and tube diameter. The performance of a single stage adsorption cooling system using ACP/ethanol pair is also compared with that of activated carbon fiber (ACF)/ethanol pair. It is found that the cooling capacities of each adsorbent/refrigerant pair increase with the decrease of adsorption/desorption time and the cooling capacity of ACP/ethanol pair is approximately 2.5 times as much as that of ACF/ethanol pair. It is also shown that COP of ACP/ethanol pair is superior to that of ACF/ethanol pair.

  17. Preparation of activated carbon from waste plastics polyethylene terephthalate as adsorbent in natural gas storage

    NASA Astrophysics Data System (ADS)

    Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Ramadhan, I. T.

    2017-02-01

    The main problem is the process of natural gas storage and distribution, because in normal conditions of natural gas in the gas phase causes the storage capacity be small and efficient to use. The technology is commonly used Compressed Natural Gas (CNG) and Liquefied Natural Gas (LNG). The weakness of this technology safety level is low because the requirement for high-pressure CNG (250 bar) and LNG requires a low temperature (-161°C). It takes innovation in the storage of natural gas using the technology ANG (Adsorbed Natural Gas) with activated carbon as an adsorbent, causing natural gas can be stored in a low pressure of about 34.5. In this research, preparation of activated carbon using waste plastic polyethylene terephthalate (PET). PET plastic waste is a good raw material for making activated carbon because of its availability and the price is a lot cheaper. Besides plastic PET has the appropriate characteristics as activated carbon raw material required for the storage of natural gas because the material is hard and has a high carbon content of about 62.5% wt. The process of making activated carbon done is carbonized at a temperature of 400 ° C and physical activation using CO2 gas at a temperature of 975 ° C. The parameters varied in the activation process is the flow rate of carbon dioxide and activation time. The results obtained in the carbonization process yield of 21.47%, while the yield on the activation process by 62%. At the optimum process conditions, the CO2 flow rate of 200 ml/min and the activation time of 240 minutes, the value % burn off amounted to 86.69% and a surface area of 1591.72 m2/g.

  18. Adsorption interference in mixtures of trace contaminants flowing through activated carbon adsorber beds

    NASA Technical Reports Server (NTRS)

    Madey, R.; Photinos, P. J.

    1980-01-01

    Adsorption interference in binary and ternary mixtures of trace contaminants in a helium carrier gas flowing through activated carbon adsorber beds are studied. The isothermal transmission, which is the ratio of the outlet to the inlet concentration, of each component is measured. Interference between co-adsorbing gases occurs when the components are adsorbed strongly. Displacement of one component by another is manifested by a transmission greater than unity for the displaced component over some range of eluted volume. Interference is evidenced not only by a reduction of the adsorption capacity of each component in the mixture in comparison with the value obtained in a single-component experiment, but also by a change in the slope of the transmission curve of each component experiment.

  19. Utilization of granular activated carbon adsorber for nitrates removal from groundwater of the Cluj region.

    PubMed

    Moşneag, Silvia C; Popescu, Violeta; Dinescu, Adrian; Borodi, George

    2013-01-01

    The level of nitrates from groundwater from Cluj County and other areas from Romania have increased values, exceeding or getting close to the allowed limit values, putting in danger human and animal heath. In this study we used granular activated carbon adsorbent (GAC) for nitrate (NO(-)3) removal for the production of drinking water from groundwater of the Cluj county. The influences of the contact time, nitrate initial concentration, and adsorbent concentration have been studied. We determined the equilibrium adsorption capacity of GAC, used for NO(-)3 removal and we applied the Langmuir and Freundlich isotherm models. Ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy, X ray diffraction (XRD), Scanning Electron Microscopy (SEM) were used for process characterization. We also determined: pH, conductivity, Total Dissolved Solids and Total Hardness. The GAC adsorbents have excellent capacities of removing nitrate from groundwater from Cluj County areas.

  20. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water.

    PubMed

    Zhang, Qiao Li; Lin, Y C; Chen, X; Gao, Nai Yun

    2007-09-30

    Iron oxide/activated carbon (FeO/AC) composite adsorbent material, which was used to modify the coal-based activated carbon (AC) 12 x 40, was prepared by the special ferric oxide microcrystal in this study. This composite can be used as the adsorbent to remove arsenic from drinking water, and Langmuir isotherm adsorption equation well describes the experimental adsorption isotherms. Then, the arsenic desorption can subsequently be separated from the medium by using a 1% aqueous NaOH solution. The apparent characters and physical chemistry performances of FeO/AC composite were investigated by X-ray diffraction (XRD), nitrogen adsorption, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Batch and column adsorption experiments were carried out to investigate and compare the arsenic removal capability of the prepared FeO/AC composite material and virgin activated carbon. It can be concluded that: (1) the main phase present in this composite are magnetite (Fe(3)O(4)), maghemite (gamma-Fe(2)O(3)), hematite (alpha-Fe(2)O(3)) and goethite (alpha-FeO(OH)); (2) the presence of iron oxides did not significantly affect the surface area or the pore structure of the activated carbon; (3) the comparisons between the adsorption isotherms of arsenic from aqueous solution onto the composite and virgin activated carbon showed that the FeO/AC composite behave an excellent capacity of adsorption arsenic than the virgin activated carbon; (4) column adsorption experiments with FeO/AC composite adsorbent showed that the arsenic could be removed to below 0.01 mg/L within 1250 mL empty bed volume when influent concentration was 0.5mg/L.

  1. Visualization and Measurement of Adsorption/Desorption Process of Ethanol in Activated Carbon Adsorber

    NASA Astrophysics Data System (ADS)

    Asano, Hitoshi; Murata, Kenta; Takenaka, Nobuyuki; Saito, Yasushi

    Adsorption refrigerator is one of the efficient tools for waste heat recovery, because the system is driven by heat at relative low temperature. However, the coefficient of performance is low due to its batch operation and the heat capacity of the adsorber. In order to improve the performance, it is important to optimize the configuration to minimize the amount of driving heat, and to clarify adsorption/desorption phenomena in transient conditions. Neutron radiography was applied to visualize and measure the adsorption amount distribution in an adsorber. The visualization experiments had been performed at the neutron radiography facility of E-2 port of Kyoto University Research Reactor. Activated carbon and ethanol were used as the adsorbent and refrigerant. From the acquired radiographs, adsorption amount was quantitatively measured by applying the umbra method using a checkered neutron absorber with boron powder. Then, transient adsorption and desorption processes of a rectangular adsorber with 84 mm in width, 50 mm in height and 20 mm in depth were visualized. As the result, the effect of fins in the adsorbent layer on the adsorption amount distribution was clearly visualized.

  2. Activated parthenium carbon as an adsorbent for the removal of dyes and heavy metal ions from aqueous solution.

    PubMed

    Rajeshwarisivaraj; Subburam, V

    2002-11-01

    Parthenium hysterophorous (L) is a perennial weed distributed all over the country. Carbonized parthenium activated with conc. H2SO4 and ammonium persulphate was effective in the removal of dyes, heavy metals and phenols. Variation in the percentage removal of adsorbates was observed with increase in the contact time. Among the adsorbates tested, the affinity of the activated parthenium carbon was highest for Hg2+, Methylene Blue and Malachite Green.

  3. Preparation of manganese dioxide loaded activated carbon adsorbents and their desulfurization performance

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaojing; Wang, Guojian; Wang, Wenyi; Song, Hua; Wang, Lu

    2016-12-01

    Manganese dioxide loaded activated carbon adsorbents (MnO2/AC) were prepared and characterized by N2 adsorption-desorption, BET method, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrometry (FT-IR) and scanning electron microscopy (SEM). Effects of preparation conditions and adsorption conditions on desulfurization performance of the adsorbents were studied in a fixed-bed adsorption apparatus. Experimental results show that the surface area and pore volume of MnO2/AC decreased compared with the unmodified activated carbon, but the adsorption capacity to H2S was improved greatly. A suitable H2S removal activity was obtained with manganese dioxide to activated carbon ratio of 1.1: 1 and the calcination temperature of 250°C. At the adsorption temperature of 40°C and gas flow rate of 20 mL/min, the H2S saturation capacity and H2S removal rate reached up to 713.25 mg/g and 89.9%, respectively.

  4. Magnesium oxide nanoparticles on green activated carbon as efficient CO2 adsorbent

    NASA Astrophysics Data System (ADS)

    Wan Isahak, Wan Nor Roslam; Ramli, Zatil Amali Che; Mohamed Hisham, Mohamed Wahab; Yarmo, Mohd Ambar

    2013-11-01

    This study was focused on carbon dioxide (CO2) adsorption ability using Magnesium oxide (MgO) nanoparticles and MgO nanoparticles supported activated carbon based bamboo (BAC). The suitability of MgO as a good CO2 adsorbent was clarified using Thermodynamic considerations (Gibbs-Helmholtz relationship). The ΔH and ΔG of this reaction were - 117.5 kJṡmol-1 and - 65.4 kJṡmol-1, respectively, at standard condition (298 K and 1 atm). The complete characterization of these adsorbent were conducted by using BET, XRD, FTIR, TEM and TPD-CO2. The surface areas for MgO nanoparticles and MgO nanoparticles supported BAC were 297.1 m2/g and 702.5 m2/g, respectively. The MgO nanoparticles supported BAC shown better physical and chemical adsorption ability with 39.8 cm3/g and 6.5 mmol/g, respectively. The combination of MgO nanoparticle and BAC which previously prepared by chemical method can reduce CO2 emissions as well as better CO2 adsorption behavior. Overall, our results indicate that nanoparticles of MgO on BAC posses unique surface chemistry and their high surface reactivity coupled with high surface area allowed them to approach the goal as an efficient CO2 adsorbent.

  5. Magnesium oxide nanoparticles on green activated carbon as efficient CO{sub 2} adsorbent

    SciTech Connect

    Wan Isahak, Wan Nor Roslam; Ramli, Zatil Amali Che; Mohamed Hisham, Mohamed Wahab; Yarmo, Mohd Ambar

    2013-11-27

    This study was focused on carbon dioxide (CO{sub 2}) adsorption ability using Magnesium oxide (MgO) nanoparticles and MgO nanoparticles supported activated carbon based bamboo (BAC). The suitability of MgO as a good CO{sub 2} adsorbent was clarified using Thermodynamic considerations (Gibbs-Helmholtz relationship). The ΔH and ΔG of this reaction were − 117.5 kJ⋅mol{sup −1} and − 65.4 kJ⋅mol{sup −1}, respectively, at standard condition (298 K and 1 atm). The complete characterization of these adsorbent were conducted by using BET, XRD, FTIR, TEM and TPD−CO{sub 2}. The surface areas for MgO nanoparticles and MgO nanoparticles supported BAC were 297.1 m{sup 2}/g and 702.5 m{sup 2}/g, respectively. The MgO nanoparticles supported BAC shown better physical and chemical adsorption ability with 39.8 cm{sup 3}/g and 6.5 mmol/g, respectively. The combination of MgO nanoparticle and BAC which previously prepared by chemical method can reduce CO{sub 2} emissions as well as better CO{sub 2} adsorption behavior. Overall, our results indicate that nanoparticles of MgO on BAC posses unique surface chemistry and their high surface reactivity coupled with high surface area allowed them to approach the goal as an efficient CO{sub 2} adsorbent.

  6. Treatment with activated carbon and other adsorbents as an effective method for the removal of volatile compounds in agricultural distillates.

    PubMed

    Balcerek, Maria; Pielech-Przybylska, Katarzyna; Patelski, Piotr; Dziekońska-Kubczak, Urszula; Jusel, Tomaš

    2017-02-08

    This study investigates the effect of treatment with activated carbon and other adsorbents on the chemical composition and organoleptics of a barley malt-based agricultural distillate. Contact with activated carbon is one of the methods by which the quality of raw distillates and spirit beverages can be improved. Samples placed in contact with 1 g activated carbon (SpiritFerm) per 100 ml distillate with ethanol content of 50% v/v for 1 h showed the largest reductions in the concentrations of most volatile compounds (aldehydes, alcohols, esters). Increasing the dose of adsorbent to over 1 g 100 ml(-1) did not improve the purity of the agricultural distillate significantly. Of the tested compounds, acetaldehyde and methanol showed the lowest adsorption on activated carbon. The lowest concentrations of these congeners (expressed in mg l(-1) alcohol 100% v/v) were measured in solutions with ethanol contents of 70-80% v/v, while solutions with an alcoholic strength by volume of 40% did not show statistically significant decreases in these compounds in relation the control sample. The reductions in volatile compounds were compared with those for other adsorbents based on silica or activated carbon and silica. An interesting alternative to activated carbon was found to be an adsorbent prepared from activated carbon and silica (Spiricol). Treatment with this adsorbent produced distillate with the lowest concentrations of acetaldehyde and isovaleraldehyde, and led to the greatest improvement in its organoleptics.

  7. Carbon fibers: Thermochemical recovery from advanced composite materials and activation to an adsorbent

    NASA Astrophysics Data System (ADS)

    Staley, Todd Andrew

    This research addresses an expanding waste disposal problem brought about by the increasing use of advanced composite materials, and the lack of technically and environmentally viable recycling methods for these materials. A thermochemical treatment process was developed and optimized for the recycling of advanced composite materials. Counter-current gasification was employed for the treatment of carbon fiber reinforced-epoxy resin composite wastes. These materials were treated, allowing the reclamation of the material's valuable components. As expected in gasification, the organic portion of the waste was thermochemically converted to a combustible gas with small amounts of organic compounds that were identified by GC/MS. These compounds were expected based on data in the literature. The composites contain 70% fiber reinforcement, and gasification yielded approximately 70% recovered fibers, representing nearly complete recovery of fibers from the waste. Through SEM and mechanical testing, the recovered carbon fibers were found to be structurally and mechanically intact, and amenable to re-use in a variety of applications, some of which were identified and tested. In addition, an application was developed for the carbon fiber component of the waste, as an activated carbon fiber adsorbent for the treatment of wastewaters. This novel class of adsorbent was found to have adsorption rates, for various organic molecules, up to a factor of ten times those of commercial granular activated carbon, and adsorption capacities similar to conventional activated carbons. Overall, the research addresses an existing environmental waste problem, employing a thermochemical technique to recycle and reclaim the waste. Components of the reclaimed waste material are then employed, after further modification, to address other existing and potential environmental waste problems.

  8. Manganese-modified activated carbon fiber (Mn-ACF): Novel efficient adsorbent for Arsenic

    NASA Astrophysics Data System (ADS)

    Sun, Zhumei; Yu, Yichang; Pang, Shiyu; Du, Dongyun

    2013-11-01

    In this paper, a novel adsorbent, manganese-modified activated carbon fiber (Mn-ACF), was prepared and used for removal of As(V) from aqueous solution. The adsorbent was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Adsorption of As(V) onto the as-prepared adsorbent from aqueous solutions was investigated and discussed. The adsorption kinetic data were modeled using the pseudo-first-order and pseudo-second order, respectively. The experimental results indicate that the pseudo-second-order kinetic equation can better describe the adsorption kinetics. Furthermore, adsorption equilibrium data of As(V) on the as-prepared adsorbent were analyzed by Langmuir and Freundlich models, which suggested that the Langmuir model provides a better correlation of the experimental data. The adsorption capacities (qmax) of As(V) on Mn-ACF at various temperatures, determined using the Langmuir equation, are 23.77, 33.23 and 36.53 mg g-1 at 303, 313 and 323 K, respectively. To the best of our knowledge, this adsorption capacity for As(V) is much larger than those reported in literatures (7.50-16.58 mg g-1). Notably, the qmax increases with increasing temperature, suggesting that adsorption of As(V) on Mn-ACF surface is an endothermic process, which is further confirmed by the calculated thermodynamic parameters including free energy, enthalpy, and entropy of adsorption process. The effect of experimental parameters such as pH and dosage of adsorbent on adsorption of As(V) were also studied. The present work will be useful in purification of groundwater.

  9. Almond shell activated carbon: adsorbent and catalytic support in the phenol degradation.

    PubMed

    Omri, Abdessalem; Benzina, Mourad

    2014-06-01

    In this work, two technologies are studied for the removal of phenol from aqueous solution: dynamic adsorption onto activated carbon and photocatalysis. Almond shell activated carbon (ASAC) was used as adsorbent and catalytic support in the phenol degradation process. The prepared catalyst by deposition of anatase TiO2 on the surface of activated carbon was characterized by scanning electron microscopy, sorption of nitrogen, X-ray diffraction, Fourier transform infrared (FT-IR) spectroscopy, and pHZPC point of zero charge. In the continuous adsorption experiments, the effects of flow rate, bed height, and solution temperature on the breakthrough curves have been studied. The breakthrough curves were favorably described by the Yoon-Nelson model. The photocatalytic degradation of phenol has been investigated at room temperature using TiO2-coated activated carbon as photocatalyst (TiO2/ASAC). The degradation reaction was optimized with respect to the phenol concentration and catalyst amount. The kinetics of disappearance of the organic pollutant followed an apparent first-order rate. The findings demonstrated the applicability of ASAC for the adsorptive and catalytic treatment of phenol.

  10. Ceria modified activated carbon: an efficient arsenic removal adsorbent for drinking water purification

    NASA Astrophysics Data System (ADS)

    Sawana, Radha; Somasundar, Yogesh; Iyer, Venkatesh Shankar; Baruwati, Babita

    2016-03-01

    Ceria (CeO2) coated powdered activated carbon was synthesized by a single step chemical process and demonstrated to be a highly efficient adsorbent for the removal of both As(III) and As(V) from water without any pre-oxidation process. The formation of CeO2 on the surface of powdered activated carbon was confirmed by X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy. The percentage of Ce in the adsorbent was confirmed to be 3.5 % by ICP-OES. The maximum removal capacity for As(III) and As(V) was found to be 10.3 and 12.2 mg/g, respectively. These values are comparable to most of the commercially available adsorbents. 80 % of the removal process was completed within 15 min of contact time in a batch process. More than 95 % removal of both As(III) and As(V) was achieved within an hour. The efficiency of removal was not affected by change in pH (5-9), salinity, hardness, organic (1-4 ppm of humic acid) and inorganic anions (sulphate, nitrate, chloride, bicarbonate and fluoride) excluding phosphate. Presence of 100 ppm phosphate reduced the removal significantly from 90 to 18 %. The equilibrium adsorption pattern of both As(III) and As(V) fitted well with the Freundlich model with R 2 values 0.99 and 0.97, respectively. The material shows reusability greater than three times in a batch process (arsenic concentration reduced below 10 ppb from 330 ppb) and a life of at least 100 L in a column study with 80 g material when tested under natural hard water (TDS 1000 ppm, pH 7.8, hardness 600 ppm as CaCO3) spiked with 330 ppb of arsenic.

  11. Adsorption characteristics of Orange II and Chrysophenine on sludge adsorbent and activated carbon fibers.

    PubMed

    Hsiu-Mei, Chiang; Ting-Chien, Chen; San-De, Pan; Chiang, Hung-Lung

    2009-01-30

    Sludge adsorbent (SA) and commercial activated carbon fibers (ACFC and ACFT) were applied to Orange II and Chrysophenine (CH) adsorption (BET surface area: ACFC>ACFT>SA). ACFT was primarily in the micropore range, while SA was approximately 500 A (macropore) and 80 A (mesopore). The ACFC pore volume was high in both the mesopore and micropore regions. Measurement of the oxygen surface functional groups of the adsorbents using Boehm's titration method showed a similar distribution on the carbon fibers (mainly in the carbonyl group), while SA was mainly in the carboxyl, lactone and phenolic groups. The SA, ACFC and ACFT adsorption capacities of Orange II (30-80 mg/l) ranged from 83 to 270, 209-438, and 25-185 mg/g at temperatures ranging from 10 to 60 degrees C, respectively. CH concentration ranged from 30 to 80 mg/l, corresponding to SA and ACFC adsorption capacities of 39-191 and 48-374 mg/g over the defined temperature range, from 10 to 60 degrees C. CH adsorption on ACFT was low. The adsorption capacity of Orange II on ACFT was lower than on SA at 10 degrees C, but at higher temperatures the Orange II molecules were transported into the ACFT, producing an adsorption capacity similar to that of SA. Mass transfer increased with temperature, overcoming the adsorption energy barrier. Overall, SA and ACFC were more effective than ACFT.

  12. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water.

    PubMed

    Mohan, Dinesh; Pittman, Charles U

    2006-09-21

    Hexavalent chromium is a well-known highly toxic metal, considered a priority pollutant. Industrial sources of Cr(VI) include leather tanning, cooling tower blowdown, plating, electroplating, anodizing baths, rinse waters, etc. The most common method applied for chromate control is reduction of Cr(VI) to its trivalent form in acid (pH approximately 2.0) and subsequent hydroxide precipitation of Cr(III) by increasing the pH to approximately 9.0-10.0 using lime. Existing overviews of chromium removal only cover selected technologies that have traditionally been used in chromium removal. Far less attention has been paid to adsorption. Herein, we provide the first review article that provides readers an overview of the sorption capacities of commercial developed carbons and other low cost sorbents for chromium remediation. After an overview of chromium contamination is provided, more than 300 papers on chromium remediation using adsorption are discussed to provide recent information about the most widely used adsorbents applied for chromium remediation. Efforts to establish the adsorption mechanisms of Cr(III) and Cr(VI) on various adsorbents are reviewed. Chromium's impact environmental quality, sources of chromium pollution and toxicological/health effects is also briefly introduced. Interpretations of the surface interactions are offered. Particular attention is paid to comparing the sorption efficiency and capacities of commercially available activated carbons to other low cost alternatives, including an extensive table.

  13. Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow.

    PubMed

    Ghaedi, M; Hekmati Jah, A; Khodadoust, S; Sahraei, R; Daneshfar, A; Mihandoost, A; Purkait, M K

    2012-05-01

    Adsorption is a promising technique for decolorization of effluents of textile dyeing industries but its application is limited due to requirement of high amounts of adsorbent required. The objective of this study was to assess the potential of cadmium telluride nanoparticles loaded onto activated carbon (CdTN-AC) for the removal of sunset yellow (SY) dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdTN-AC dose, and temperature. In order to investigate the efficiency of SY adsorption on CdTN-AC, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. Thermodynamic parameters such as enthalpy, entropy, activation energy, and sticking probability were also calculated. It was found that the sorption of SY onto CdTN-AC was spontaneous and endothermic in nature. The proposed adsorbent is applicable for SY removal from waste of real effluents including pea-shooter, orange drink and jelly banana with efficiency more than 97%.

  14. Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Hekmati Jah, A.; Khodadoust, S.; Sahraei, R.; Daneshfar, A.; Mihandoost, A.; Purkait, M. K.

    2012-05-01

    Adsorption is a promising technique for decolorization of effluents of textile dyeing industries but its application is limited due to requirement of high amounts of adsorbent required. The objective of this study was to assess the potential of cadmium telluride nanoparticles loaded onto activated carbon (CdTN-AC) for the removal of sunset yellow (SY) dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdTN-AC dose, and temperature. In order to investigate the efficiency of SY adsorption on CdTN-AC, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. Thermodynamic parameters such as enthalpy, entropy, activation energy, and sticking probability were also calculated. It was found that the sorption of SY onto CdTN-AC was spontaneous and endothermic in nature. The proposed adsorbent is applicable for SY removal from waste of real effluents including pea-shooter, orange drink and jelly banana with efficiency more than 97%.

  15. Comparisons of adsorbent cost for the removal of zinc (II) from aqueous solution by carbon nanotubes and activated carbon.

    PubMed

    Lu, Chungsying; Chiu, Huantsung; Bai, Hsunling

    2007-01-01

    The reversibility of Zn2+ sorption onto single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) and powdered activated carbon (PAC) was investigated to evaluate their repeated availability performance in water treatment. Under the same conditions, the Zn2+ sorption capacity of SWCNTs and MWCNTs was more than that of PAC and could be maintained after several cycles of water treatment and regeneration. A statistical analysis on the replacement cost of these adsorbents based on the best-fit regression of the measured equilibrium capacity of each water treatment cycle was also conducted. The results revealed that the SWCNTs and MWCNTs could be reused through a large number of water treatment cycles and thus appear cost-effective in spite of their high unit cost at the present time.

  16. pH-Uncontrolled lactic acid fermentation with activated carbon as an adsorbent.

    PubMed

    Gao, Min-Tian; Shimamura, Takashi; Ishida, Nobuhiro; Takahashi, Haruo

    2011-05-06

    In this paper, we presented a novel process involving activated carbon (AC) as an adsorbent for lactic acid fermentation, separation and oligomerization. It was found that pH has a significant effect on the adsorption of lactic acid on AC. The use of AC for in situ removal of lactic acid successfully decreased the inhibitory effect of lactic acid, resulting in significant increases in both productivity and yield. Acetone was used to desorb lactic acid and it was confirmed that the acetone treatment did not decrease the optical purity of the lactic acid, i.e., the optical purity was as high as 99.5% after desorption. Due to the presence of little materials influencing lactic acid oligomerization, oligomers with an optical purity of above 96% and a weight-average molecular weight (M(w)) of 2400 were obtained in the oligomerization process.

  17. Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue.

    PubMed

    Zhang, Xianlong; Cheng, Liping; Wu, Xueping; Tang, Yingzhao; Wu, Yucheng

    2015-07-01

    An activation process for developing the surface and porous structure of palygorskite/carbon (PG/C) nanocomposite using ZnCl2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (SEM), and Brunauer-Emmett-Teller analysis (BET) techniques. The effects of activation conditions were examined, including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of CC and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold (1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay.

  18. PREDICTING THE ADSORPTION CAPACITY OF ACTIVATED CARBON FOR EMERGING ORGANIC CONTAMINANTS FROM FUNDAMENTAL ADSORBENT AND ADSORBATE PROPERTIES - PRESENTATION

    EPA Science Inventory

    A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficients (βl

  19. Physical and chemical properties of selected agricultural byproduct-based activated carbons and their ability to adsorb geosmin.

    PubMed

    Ng, Chilton; Losso, Jack N; Marshall, Wayne E; Rao, Ramu M

    2002-09-01

    The objectives of this study were to evaluate selected physical and chemical properties of agricultural byproduct-based activated carbons made from pecan shells and sugarcane bagasse, and compare those properties to a commercial coal-based activated carbon as well as to compare the adsorption efficiency of these carbons for geosmin. Comparison of the physical and chemical properties of pecan shell- and bagasse-based carbons to the commercial carbon, Calgon Filtrasorb 400, showed that pecan shell carbon, but not the bagasse carbon, compared favorably to Filtrasorb 400, especially in terms of surface area, bulk density, ash and attrition. A carbon dosage study done in a model system showed the amount of geosmin adsorbed to be greater for Filtrasorb 400 and the bagasse-based carbon at low carbon concentrations than for the pecan shell carbons, but geosmin adsorption was similar in all carbons at higher carbon dosages. Application of the Freundlich isotherm model to the adsorption data showed that carbons made by steam activation of pecan shells or sugarcane bagasse had geosmin adsorption characteristics most like those of the commercial carbon. In terms of physical, chemical and adsorptive properties, steam-activated pecan shell carbon most resembled the commercial carbon and has the potential to replace Filtrasorb 400 in applications involving removal of geosmin from aqueous environments.

  20. Activated Carbons from Flax Shive and Cotton Gin Waste as Environmental Adsorbents for the Chlorinated Hydrocarbon Trichloroethylene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural by-products represent a considerable quantity of harvested commodity crops. The use of by-products as a starting material for the production of widely used adsorbents, such as activated carbons, may impart a value-added component of the overall biomass harvested. Our objective in this...

  1. Pore distribution effect of activated carbon in adsorbing organic micropollutants from natural water.

    PubMed

    Ebie, K; Li, F; Azuma, Y; Yuasa, A; Hagishita, T

    2001-01-01

    Adsorption isotherms of organic micropollutants in coexistence with natural organic matter (NOM) were analyzed to evaluate the impacts of pore size distribution of activated carbon (AC) on the competition effects of the NOM. Single solute adsorption experiments and simultaneous adsorption experiments with NOM contained in a coagulation-pretreated surface water were performed for four agricultural chemicals and three coal-based activated carbons (ACs) having different pore distributions. The results showed that, for all the carbons used, the adsorption capacity of the chemicals was reduced distinctly in the presence of NOM. Such a reduction was more apparent for AC with a larger portion of small pores suitable for the adsorption of small organic molecules and for the agricultural chemicals with a more hydrophilic nature. Ideal adsorbed solution theory (IAST) incorporated with the Freundlich isotherm expression (IAST-Freundlich model) could not interpret the impact of NOM on the adsorption capacity of the chemicals unless a pore blockage effect caused by the adsorption of NOM was also considered. By taking into account this effect, the adsorption isotherm of the chemicals in the presence of NOM was well described, and the capacity reduction caused by the NOM was quantitatively assessed from the viewpoints of the site competition and the pore blockage. Analytical results clearly indicated that pore blockage was an important competition mechanism that contributed to 10-99% of the total capacity reductions of the chemicals, the level depended greatly on the ACs, the chemicals and the equilibrium concentrations, and could possibly be alleviated by broadening the pore size distributions of the ACs to provide a large volume percentage for pores with sizes above 30 A.

  2. Activated carbons from flax shive and cotton gin waste as environmental adsorbents for the chlorinated hydrocarbon trichloroethylene.

    PubMed

    Klasson, K Thomas; Wartelle, Lynda H; Lima, Isabel M; Marshall, Wayne E; Akin, Danny E

    2009-11-01

    Agricultural by-products represent a considerable quantity of harvested commodity crops. The use of by-products as precursors for the production of widely used adsorbents, such as activated carbons, may impart a value-added component of the overall biomass harvested. Our objective in this paper is to show that flax shive and cotton gin waste can serve as a precursor for activated carbon that can be used for adsorption of trichloroethylene (TCE) from both the liquid and gas phases. Testing was conducted on carbon activated with phosphoric acid or steam. The results show that activated carbon made from flax shive performed better than select commercial activated carbons, especially at higher TCE concentrations. The activation method employed had little effect on TCE adsorption in gas or vapor phase studies but liquid phase studies suggested that steam activation is slightly better than phosphoric acid activation. As expected, the capacity for the activated carbons depended on the fluid phase equilibrium concentration. At a fluid concentration of 2 mg of TCE/L of fluid, the capacity of the steam activated carbon made from flax shive was similar at 64 and 80 mg TCE/g of carbon for the vapor and liquid phases, respectively. Preliminary cost estimates suggest that the production costs of such carbons are $1.50 to $8.90 per kg, depending on activation method and precursor material; steam activation was significantly less expensive than phosphoric acid activation.

  3. Effect of Polarity of Activated Carbon Surface, Solvent and Adsorbate on Adsorption of Aromatic Compounds from Liquid Phase.

    PubMed

    Goto, Tatsuru; Amano, Yoshimasa; Machida, Motoi; Imazeki, Fumio

    2015-01-01

    In this study, introduction of acidic functional groups onto a carbon surface and their removal were carried out through two oxidation methods and outgassing to investigate the adsorption mechanism of aromatic compounds which have different polarity (benzene and nitrobenzene). Adsorption experiments for these aromatics in aqueous solution and n-hexane solution were conducted in order to obtain the adsorption isotherms for commercial activated carbon (BAC) as a starting material, its two types of oxidized BAC samples (OXs), and their outgassed samples at 900 °C (OGs). Adsorption and desorption kinetics of nitrobenzene for the BAC, OXs and OGs in aqueous solution were also examined. The results showed that the adsorption of benzene molecules was significantly hindered by abundant acidic functional groups in aqueous solution, whereas the adsorbed amount of nitrobenzene on OXs gradually increased as the solution concentration increased, indicating that nitrobenzene can adsorb favourably on a hydrophilic surface due to its high dipole moment, in contrast to benzene. In n-hexane solution, it was difficult for benzene to adsorb on any sample owing to the high affinity between benzene and n-hexane solvent. On the other hand, adsorbed amounts of nitrobenzene on OXs were larger than those of OGs in n-hexane solution, implying that nitrobenzene can adsorb two adsorption sites, graphene layers and surface acidic functional groups. The observed adsorption and desorption rate constants of nitrobenzene on the OXs were lower than those on the BAC due to disturbance of diffusion by the acidic functional groups.

  4. [Removal of nitrate from aqueous solution using cetylpyridinium chloride (CPC)-modified activated carbon as the adsorbent].

    PubMed

    Zheng, Wen-Jing; Lin, Jian-Wei; Zhan, Yan-Hui; Fang, Qiao; Yang, Meng-Juan; Wang, Hong

    2013-11-01

    Surfactant-modified activated carbon (SMAC) was prepared by loading cetylpyridinium chloride (CPC) onto activated carbon and used as adsorbents to remove nitrate from aqueous solution. The SMAC was effective for removing nitrate from aqueous solution. The SMAC exhibited much higher nitrate adsorption capacity than that of the unmodified activated carbon. The nitrate adsorption capacity for SMAC increased with increasing the CPC loading. The adsorption kinetics of nitrate on SMAC followed a pseudo-second-order kinetic model. The equilibrium adsorption data of nitrate on SMAC could be described by the Langmuir isotherm model. Based on the Langmuir isotherm model, the maximum nitrate adsorption capacity for SMAC with CPC loading amount of444 mmol per 1 kg activated carbon was determined to be 16.1 mg x g(-1). The nitrate adsorption capacity for SMAC decreased with the increasing solution pH. The presence of competing anions such as chloride, sulfate and bicarbonate reduced the nitrate adsorption capacity. The nitrate adsorption capacity for SMAC slightly decreased with the increasing reaction temperature. Almost 95% of nitrate molecules adsorbed on SMAC could be desorbed in 1 mol x L(-1) NaCl solution. The main mechanisms for the adsorption of nitrate on SMAC are anionic exchange and electrostatic attraction. The results of this work indicate that SMAC is a promising adsorbent for removing nitrate from aqueous solution.

  5. Preparation of a new adsorbent from activated carbon and carbon nanofiber (AC/CNF) for manufacturing organic-vacbpour respirator cartridge

    PubMed Central

    2013-01-01

    In this study a composite of activated carbon and carbon nanofiber (AC/CNF) was prepared to improve the performance of activated carbon (AC) for adsorption of volatile organic compounds (VOCs) and its utilization for respirator cartridges. Activated carbon was impregnated with a nickel nitrate catalyst precursor and carbon nanofibers (CNF) were deposited directly on the AC surface using catalytic chemical vapor deposition. Deposited CNFs on catalyst particles in AC micropores, were activated by CO2 to recover the surface area and micropores. Surface and textural characterizations of the prepared composites were investigated using Brunauer, Emmett and Teller’s (BET) technique and electron microscopy respectively. Prepared composite adsorbent was tested for benzene, toluene and xylene (BTX) adsorption and then employed in an organic respirator cartridge in granular form. Adsorption studies were conducted by passing air samples through the adsorbents in a glass column at an adjustable flow rate. Finally, any adsorbed species not retained by the adsorbents in the column were trapped in a charcoal sorbent tube and analyzed by gas chromatography. CNFs with a very thin diameter of about 10-20 nm were formed uniformly on the AC/CNF. The breakthrough time for cartridges prepared with CO2 activated AC/CNF was 117 minutes which are significantly longer than for those cartridges prepared with walnut shell- based activated carbon with the same weight of adsorbents. This study showed that a granular form CO2 activated AC/CNF composite could be a very effective alternate adsorbent for respirator cartridges due to its larger adsorption capacities and lower weight. PMID:23369424

  6. Performance of magnetic activated carbon composite as peroxymonosulfate activator and regenerable adsorbent via sulfate radical-mediated oxidation processes.

    PubMed

    Oh, Wen-Da; Lua, Shun-Kuang; Dong, Zhili; Lim, Teik-Thye

    2015-03-02

    Magnetic activated carbon composite (CuFe2O4/AC, MACC) was prepared by a co-precipitation-calcination method. The MACC consisted of porous micro-particle morphology with homogeneously distributed CuFe2O4 and possessed high magnetic saturation moment (8.1 emu g(-1)). The performance of MACC was evaluated as catalyst and regenerable adsorbent via peroxymonosulfate (PMS, Oxone(®)) activation for methylene blue (MB) removal. Optimum CuFe2O4/AC w/w ratio was 1:1.5 giving excellent performance and can be reused for at least 3 cycles. The presence of common inorganic ions, namely Cl(-) and NO3(-) did not exert significant influence on MB degradation but humic acid decreased the MB degradation rate. As a regenerable adsorbent, negligible difference in regeneration efficiency was observed when a higher Oxone(®) dosage was employed but a better efficiency was obtained at a lower MACC loading. The factors hindering complete MACC regeneration are MB adsorption irreversibility and AC surface modification by PMS making it less favorable for subsequent MB adsorption. With an additional mild heat treatment (150 °C) after regeneration, 82% of the active sites were successfully regenerated. A kinetic model incorporating simultaneous first-order desorption, second-order adsorption and pseudo-first order degradation processes was numerically-solved to describe the rate of regeneration. The regeneration rate increased linearly with increasing Oxone(®):MACC ratio. The MACC could potentially serve as a catalyst for PMS activation and regenerable adsorbent.

  7. 2, 4 dichlorophenol (2, 4-DCP) sorption from aqueous solution using granular activated carbon and polymeric adsorbents and studies on effect of temperature on activated carbon adsorption.

    PubMed

    Ghatbandhe, A S; Yenkie, M K N

    2008-04-01

    Adsorption equilibrium, kinetics and thermodynamics of 2,4-dichlorophenol (2,4-DCP), one of the most commonly used chlorophenol, onto bituminous coal based Filtrasorb-400 grade granular activated carbon, were studied in aqueous solution in a batch system with respect to temperature. Uptake capacity of activated carbon found to increase with temperature. Langmuir isotherm models were applied to experimental equilibrium data of 2, 4-DCP adsorption and competitive studies with respect to XAD resin were carried out. Equilibrium data fitted very well to the Langmuir equilibrium model. Adsorbent monolayer capacity 'Q0, Langmuir constant 'b' and adsorption rate constant 'k(a)' were evaluated at different temperatures for activated carbon adsorption. This data was then used to calculate the energy of activation of adsorption and also the thermodynamic parameters, namely the free energy of adsorption, deltaG0, enthalpy of adsorption, deltaH0 and the entropy of adsorption deltaS0. The obtained results showed that the monolayer capacity increases with the increase in temperatures. The obtained values of thermodynamic parameters showed that adsorption of 2,4 DCP is an endothermic process. Synthetic resin was not found efficient to adsorb 2,4 DCP compared to activated carbon. The order of adsorption efficiencies of three resins used in the study found as XAD7HP > XAD4 > XAD1180.

  8. Relation Between the Adsorbed Quantity and the Immersion Enthalpy in Catechol Aqueous Solutions on Activated Carbons

    PubMed Central

    Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2012-01-01

    An activated carbon, CarbochemTM—PS230, was modified by chemical and thermal treatment in flow of H2, in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pKa. The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g−1 for catechol aqueous solutions in a range of 20 at 1500 mg·L−1. PMID:22312237

  9. Relation between the adsorbed quantity and the immersion enthalpy in catechol aqueous solutions on activated carbons.

    PubMed

    Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2012-01-01

    An activated carbon, Carbochem(TM)-PS230, was modified by chemical and thermal treatment in flow of H(2), in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pK(a). The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g(-1) for catechol aqueous solutions in a range of 20 at 1500 mg·L(-1).

  10. Sequential extraction study of stability of adsorbed mercury in chemically modified activated carbons.

    PubMed

    Tong, Shitang; Fan, Mingxia; Mao, Lei; Jia, Charles Q

    2011-09-01

    Activated carbons chemically modified with sulfur and bromine are known for their greater effectiveness in capturing vapor Hg from coal combustion and other industrial flue gases. The stability of captured Hg in spent activated carbons determines the final fate of Hg and is critical to devising Hg control strategy. However, it remains a subject that is largely unknown, particularly for Br-treated activated carbons. Using a six-step sequential extraction procedure, this work evaluated the leaching potential of Hg captured with four activated carbons, one lignite-derived activated carbon, and three chemically treated with Br(2), KClO(3), and SO(2). The results demonstrated clearly the positive effect of Br- and SO(2)-treatment on the stability of captured Hg. The Hg captured with brominated activated carbon was very stable and likely in the form of mercurous bromide complex. Sulfur added at high temperature with SO(2) was able to stabilize a majority of Hg by forming sulfide and possibly sulfonate chelate. The presence of sulfate however made a small fraction of captured Hg (<10%) labile under mild conditions. Treating activated carbon with KClO(3) lowered the overall stability of captured Hg. A positive dependence of Hg stability on Hg loading temperature was observed for the first time.

  11. Adsorbed natural gas storage with activated carbons made from Illinois coals and scrap tires

    USGS Publications Warehouse

    Sun, Jielun; Brady, T.A.; Rood, M.J.; Lehmann, C.M.; Rostam-Abadi, M.; Lizzio, A.A.

    1997-01-01

    Activated carbons for natural gas storage were produced from Illinois bituminous coals (IBC-102 and IBC-106) and scrap tires by physical activation with steam or CO2 and by chemical activation with KOH, H3PO4, or ZnCl2. The products were characterized for N2-BET area, micropore volume, bulk density, pore size distribution, and volumetric methane storage capacity (Vm/Vs). Vm/Vs values for Illinois coal-derived carbons ranged from 54 to 83 cm3/cm3, which are 35-55% of a target value of 150 cm3/cm3. Both granular and pelletized carbons made with preoxidized Illinois coal gave higher micropore volumes and larger Vm/Vs values than those made without preoxidation. This confirmed that preoxidation is a desirable step in the production of carbons from caking materials. Pelletization of preoxidized IBC-106 coal, followed by steam activation, resulted in the highest Vm/Vs value. With roughly the same micropore volume, pelletization alone increased Vm/Vs of coal carbon by 10%. Tire-derived carbons had Vm/Vs values ranging from 44 to 53 cm3/cm3, lower than those of coal carbons due to their lower bulk densities. Pelletization of the tire carbons increased bulk density up to 160%. However, this increase was offset by a decrease in micropore volume of the pelletized materials, presumably due to the pellet binder. As a result, Vm/Vs values were about the same for granular and pelletized tire carbons. Compared with coal carbons, tire carbons had a higher percentage of mesopores and macropores.

  12. Silver and zinc oxide nanostructures loaded on activated carbon as new adsorbents for removal of methylene green: a comparative study.

    PubMed

    Ghaedi, M; Karimi, H; Yousefi, F

    2014-09-01

    In this study, the removal of methylene green (MG) from aqueous solution based on two new adsorbents including silver nanoparticles and zinc oxide nanorods loaded on activated carbon (Ag-NP-AC and ZnO-NR-AC, respectively) has been carried out. The dependency of removal process to variables such as contact time, pH, amount of adsorbents, and initial MG concentration were examined and optimized. It was found that the maximum MG removal percentage was achieved at pH = 7.0 following stirring at 400 r min(-1) for 7 and 6 min for Ag-NP-AC and ZnO-NR-AC, respectively. Equilibrium data were well fitted with the Langmuir model having maximum adsorption capacity of 166.7 and 200 mg g(-1) for Ag-NP-AC and ZnO-NR-AC, respectively. Thermodynamic parameters of MG adsorption on Ag-NP-AC such as enthalpy and entropy changes, activation energy, sticking probability, and Gibbs free energy changes show the spontaneous and endothermic nature of the removal process. Among different conventional kinetic models, the pseudo second-order kinetics in addition to particle diffusion mechanism is the best and efficient model for the prediction and explanation of experimental data of MG adsorption onto both adsorbents.

  13. Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents.

    PubMed

    Saucier, Caroline; Adebayo, Matthew A; Lima, Eder C; Cataluña, Renato; Thue, Pascal S; Prola, Lizie D T; Puchana-Rosero, M J; Machado, Fernando M; Pavan, Flavio A; Dotto, G L

    2015-05-30

    Microwave-induced chemical activation process was used to prepare an activated carbon from cocoa shell for efficient removal of two anti-inflammatories, sodium diclofenac (DFC) and nimesulide (NM), from aqueous solutions. A paste was obtained from a mixture of cocoa shell and inorganic components; with a ratio of inorganic: organic of 1 (CSC-1.0). The mixture was pyrolyzed in a microwave oven in less than 10 min. The CSC-1.0 was acidified with a 6 mol L(-1) HCl under reflux to produce MWCS-1.0. The CSC-1.0 and MWCS-1.0 were characterized using FTIR, SEM, N2 adsorption/desorption curves, X-ray diffraction, and point of zero charge (pHpzc). Experimental variables such as initial pH of the adsorbate solutions and contact time were optimized for adsorptive characteristics of MWCS-1.0. The optimum pH for removal of anti-inflammatories ranged between 7.0 and 8.0. The kinetic of adsorption was investigated using general order, pseudo first-order and pseu do-second order kinetic models. The maximum amounts of DCF and NM adsorbed onto MWCS-1.0 at 25 °C are 63.47 and 74.81 mg g(-1), respectively. The adsorbent was tested on two simulated hospital effluents. MWCS-1.0 is capable of efficient removal of DCF and NM from a medium that contains high sugar and salt concentrations.

  14. Prevention of spontaneous and chemically induced carcinogenesis using activated carbon fiber adsorbent. II. Inhibitory effect of the activated carbon fiber adsorbent 'Aqualen' on N-methyl-N'-nitro-N-nitrosoguanidine-induced gastric carcinogenesis in rats.

    PubMed

    Anisimov, V N; Zabezhinski, M A; Popovich, I G; Lieberman, A I; Shmidt, J L

    1999-04-26

    Two-month-old female LIO rats were given N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) with tap water in a concentration of 100 mg/l for 12 months (groups 1 and 2) or were kept without the carcinogen treatment (groups 3 and 4). From the first day of exposure to MNNG rats from groups 2 and 3 were given activated carbon fiber adsorbent Aqualen in their diet five times per week together with lab chow in a daily dose of 100 mg/kg of body weight. The experiment was finalized 16 months after first exposure to the carcinogen. The total stomach adenocarcinoma incidence was 43% in group 1 and 39% in group 2, whereas invasive stomach adenocarcinomas occurred in 36% and 8% of rats from groups 1 and 2, respectively (P < 0.05). Tumors other then stomach sites (duodenum and liver) only developed in rats from group 1 (29%). No lesions were observed in rats exposed to Aqualen without MNNG. Thus, our results demonstrate the inhibitory effect of the activated carbon fiber adsorbent Aqualen on stomach carcinogenesis in rats.

  15. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    SciTech Connect

    Xiong, Yongliang; Wang, Yifeng

    2015-02-03

    Advanced, fire-resistant activated carbon compositions useful in adsorbing gases; and having vastly improved fire resistance are provided, and methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard. They also have superior performance to Mordenites in both adsorption capacities and kinetics. In addition, the advanced compositions do not pose the fibrous inhalation hazard that exists with use of Mordenites. The fire-resistant compositions combine activated carbon mixed with one or more hydrated and/or carbonate-containing minerals that release H.sub.2O and/or CO.sub.2 when heated. This effect raises the spontaneous ignition temperature to over 500.degree. C. in most examples, and over 800.degree. C. in some examples. Also provided are methods for removing and/or separating target gases, such as Krypton or Argon, from a gas stream by using such advanced activated carbons.

  16. Storage stability of ketones on carbon adsorbents.

    PubMed

    Prado, C; Alcaraz, M J; Fuentes, A; Garrido, J; Periago, J F

    2006-09-29

    Activated coconut carbon constitutes the more widely used sorbent for preconcentration of volatile organic compounds in sampling workplace air. Water vapour is always present in the air and its adsorption on the activated carbon surface is a serious drawback, mainly when sampling polar organic compounds, such as ketones. In this case, the recovery of the compounds diminishes; moreover, ketones can be decomposed during storage. Synthetic carbons contain less inorganic impurities and have a lower capacity for water adsorption than coconut charcoal. The aim of this work was to evaluate the storage stability of various ketones (acetone, 2-butanone, 4-methyl-2-pentanone and cyclohexanone) on different activated carbons and to study the effect of adsorbed water vapour under different storage conditions. The effect of storage temperature on extraction efficiencies was significant for each ketone in all the studied sorbents. Recovery was higher when samples were stored at 4 degrees C. The results obtained for storage stability of the studied ketones showed that the performance of synthetic carbons was better than for the coconut charcoals. The water adsorption and the ash content of the carbons can be a measure of the reactive sites that may chemisorb ketones or catalize their decomposition. Anasorb 747 showed good ketone stability at least for 7 days, except for cyclohexanone. After 30-days storage, the stability of the studied ketones was excellent on Carboxen 564. This sorbent had a nearly negligible ash content and the adsorbed water was much lower than for the other sorbents tested.

  17. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents.

    PubMed

    Sethupathi, Sumathi; Bashir, Mohammed Jk; Akbar, Zinatizadeh Ali; Mohamed, Abdul Rahman

    2015-04-01

    Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out.

  18. Enhanced therapeutic efficacy on lymph node metastasis by the use of peplomycin adsorbed on small activated carbon particles.

    PubMed

    Hagiwara, A; Takahashi, T; Ueda, T; Iwamoto, A; Yamashita, H; Maeda, T

    1988-01-01

    Mice into which 5 x 10(5) MH134 tumor cells had been inoculated subcutaneously opposite the foot-pad of the left hind paw on day 0, received subcutaneous injection of 0.25 mg/mouse of peplomycin in the form of PEP-CH (peplomycin adsorbed on activated carbon particles) or peplomycin aqueous solution into the foot-pad of the left hind paw on day 10. The left popliteal lymph nodes were transferred intraperitoneally to normal mice (the recipients) on day 14. In the PEP-CH group the survival time of the recipients was statistically significantly longer and the transferred tumor cell number estimated by calibration curve was markedly smaller in comparison with those in the other treatment groups.

  19. A simple QSPR model for the prediction of the adsorbability of organic compounds onto activated carbon cloth.

    PubMed

    Xu, J; Zhu, L; Fang, D; Liu, L; Bai, Z; Wang, L; Xu, W

    2013-01-01

    A quantitative structure-property relationship (QSPR) model was proposed between the molecular descriptors representing the molecular structure and the Freundlich adsorbability parameter (K) for a set of 55 organic compounds onto activated carbon cloth. The best linear model was composed of three descriptors, which were selected by stepwise multiple linear regression (MLR) analysis. The statistical parameters provided by the linear model were r² = 0.7744, r²(adj) = 0.7551, s = 0.169 for the training set; and r² = 0.6725, r²(adj) = 0.6316, s = 0.196 for the external test set, respectively. The stability and predictive power of the proposed model were further verified using Y-randomization tests, five-fold cross-validation and leave-many-out cross-validation. The model may give some insight into the main structural features that affect the adsorption of the investigated compounds onto activated carbon cloth.

  20. Sorption and modeling of mass transfer of toxic chemical vapors in activated-carbon fiber-cloth adsorbers

    USGS Publications Warehouse

    Lordgooei, M.; Sagen, J.; Rood, M.J.; Rostam-Abadi, M.

    1998-01-01

    A new activated-carbon fiber-cloth (ACFC) adsorber coupled with an electrothermal regenerator and a cryogenic condenser was designed and developed to efficiently capture and recover toxic chemical vapors (TCVs) from simulated industrial gas streams. The system was characterized for adsorption by ACFC, electrothermal desorption, and cryogenic condensation to separate acetone and methyl ethyl ketone from gas streams. Adsorption dynamics are numerically modeled to predict system characteristics during scale-up and optimization of the process in the future. The model requires diffusivities of TCVs into an activated-carbon fiber (ACF) as an input. Effective diffusivities of TCVs into ACFs were modeled as a function of temperature, concentration, and pore size distribution. Effective diffusivities for acetone at 65 ??C and 30-60 ppmv were measured using a chromatography method. The energy factor for surface diffusion was determined from comparison between the experimental and modeled effective diffusivities. The modeled effective diffusivities were used in a dispersive computational model to predict mass transfer zones of TCVs in fixed beds of ACFC under realistic conditions for industrial applications.

  1. Effect of the adsorbate kinetic diameter on the accuracy of the Dubinin-Radushkevich equation for modeling adsorption of organic vapors on activated carbon.

    PubMed

    Jahandar Lashaki, Masoud; Fayaz, Mohammadreza; Niknaddaf, Saeid; Hashisho, Zaher

    2012-11-30

    This paper investigates the effect of the kinetic diameter (KD) of the reference adsorbate on the accuracy of the Dubinin-Radushkevich (D-R) equation for predicting the adsorption isotherms of organic vapors on microporous activated carbon. Adsorption isotherms for 13 organic compounds on microporous beaded activated carbon were experimentally measured, and predicted using the D-R model and affinity coefficients. The affinity coefficients calculated based on molar volumes, molecular polarizabilities, and molecular parachors were used to predict the isotherms based on four reference compounds (4.3≤KD≤6.8 Å). The results show that the affinity coefficients are independent of the calculation method if the reference and test adsorbates are from the same organic group. Choosing a reference adsorbate with a KD similar to that of the test adsorbate results in better prediction of the adsorption isotherm. The relative error between the predicted and the measured adsorption isotherms increases as the absolute difference in the kinetic diameters of the reference and test adsorbates increases. Finally, the proposed hypothesis was used to explain reports of inconsistent findings among published articles. The results from this study are important because they allow a more accurate prediction of adsorption capacities of adsorbents which allow for better design of adsorption systems.

  2. Prediction of multicomponent adsorption behavior in activated carbon adsorbers: kinetic aspects

    SciTech Connect

    Merk, W.

    1987-09-01

    Although the concentrations of solutes are very low in water treatment, it cannot be expected that the film-diffusion model predicts breakthrough behavior satisfactorily, for the following reasons: most of the solutes have less favorable isotherms than p-nitrophenol or p-chlorophenol; many solutes are much larger molecules and hence have a much higher internal diffusion resistance than p-nitrophenol or p-chlorophenol; and displacement effects cause a much higher internal resistance than expected from single-solute data. Therefore, internal diffusion resistance has to be incorporated into the film-homogeneous diffusion model. All parameters needed in this model can be obtained from batch reactor tests. Multi-solute systems may be regarded as a single-solute system or a bi-solute system, respectively, if all solutes except one or two are present in very different concentrations; and/or have a comparatively small affinity to activated carbon; and/or have a comparatively small internal diffusion coefficient.

  3. Adsorption and Electrothermal Desorption of Organic Vapors Using Activated Carbon Adsorbents With Novel Morphologies

    DTIC Science & Technology

    2006-01-01

    Principles of adsorption and adsorption processes. New York: Wiley; 1984. [5] Guerin P, Domine D. Process for separating a binary gas mixture by contact with...and ACFC electrothermal– swing adsorption systems are pro- vided below. The properties used to describe these systems include their pressure drop...Carbon 1996;34(7):851–6. [8] Petkovska M, Tondeur D, Grevillot G, Granger J, Mitrovic M. Temperature swing gas separation with electrothermal

  4. EFFECTS OF COVAPORS ON ADSORPTION RATE COEFFICIENTS OF ORGANIC VAPORS ADSORBED ONTO ACTIVATED CARBON FROM FLOWING AIR

    SciTech Connect

    G. WOOD

    2000-12-01

    Published breakthrough time, adsorption rate, and capacity data for components of organic vapor mixtures adsorbed from flows through fixed activated carbon beds have been analyzed. Capacities (as stoichiometric centers of constant pattern breakthrough curves) yielded stoichiometric times {tau}, which are useful for determining elution orders of mixture components. We also calculated adsorption rate coefficients k{sub v} of the Wheeler (or, more general Reaction Kinetic) breakthrough curve equation, when not reported, from breakthrough times and {tau}. Ninety-five k{sub v} (in mixture)/ k{sub v} (single vapor) ratios at similar vapor concentrations were calculated and averaged for elution order categories. For 43 first-eluting vapors the average ratio (1.07) was statistically no different (0.21 standard deviation) than unity, so that we recommend using the single-vapor k{sub v} for such. Forty-seven second-eluting vapor ratios averaged 0.85 (0.24 standard deviation), also not significantly different from unity; however, other evidence and considerations lead us recommend using k{sub v} (in mixture) = 0.85 k{sub v} (single vapor). Five third- and fourth-eluting vapors gave an average of 0.56 (0.16 standard deviation) for a recommended k{sub v} (in mixture) = 0.56 k{sub v} (single vapor) for such.

  5. Electron shuttle-mediated biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine adsorbed to granular activated carbon.

    PubMed

    Millerick, Kayleigh; Drew, Scott R; Finneran, Kevin T

    2013-08-06

    Granular activated carbon (GAC) effectively removes hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from groundwater but generates RDX-laden GAC that must be disposed of or regenerated. Batch reactors containing GAC to which RDX was preadsorbed were used in experiments to test the potential for adsorbed RDX reduction and daughter product formation using (i) chemically reduced anthrahydroquinone-2,6-disulfonate (AH2QDS), (ii) resting Geobacter metallireducens strain GS-15, and (iii) a combined system containing AQDS and GS-15. Approximately 97.0% of the adsorbed RDX was transformed in each of these experimental systems by 90 h. Chemically reduced AQDS (AH2QDS) transformed 99.2% of adsorbed RDX; formaldehyde was produced rapidly and was stoichiometric (3 mol HCHO per mol RDX). Geobacter metallireducens also reduced RDX with and without AQDS present. This is the first study to demonstrate biological transformation of RDX adsorbed to GAC. Formaldehyde increased and then decreased in biological systems, suggesting a previously unreported capacity for G. metallireducens to oxidize formaldehyde, which was confirmed with resting cell suspensions. These data suggest the masses of GAC waste currently produced by activated carbon at RDX remediation sites can be minimized, decreasing the carbon footprint of the treatment technology. Alternatively, this strategy may be used to develop a Bio-GAC system for ex situ RDX treatment.

  6. Physical and Chemical Properties of Pan-Derived Electrospun Activated Carbon Nanofibers and Their Potential for Use As An Adsorbent for Toxic Industrial Chemicals (Postprint)

    DTIC Science & Technology

    2012-09-14

    humid) environment. Activated carbons can be hydrophobic and have high micropore vol- ume (relative to zeolites ), are thermally stable, and are re...Brown et al. 1989). Impregnated ad- sorbents cannot be regenerated to initial capacity by thermal or pressure swing if the impregnants are consumed...detected in a series of traps and thermal con- ductivity cells. Oxygen in the sample is determined by mass difference—causing adsorbed water

  7. Facile preparation of magnetic separable powdered-activated-carbon/Ni adsorbent and its application in removal of perfluorooctane sulfonate (PFOS) from aqueous solution.

    PubMed

    Liang, Xuanqi; Gondal, Mohammed A; Chang, Xiaofeng; Yamani, Zain H; Li, Nianwu; Lu, Hongling; Ji, Guangbin

    2011-01-01

    The main aim of this study was to synthesize magnetic separable Nickel/powdered activated carbon (Ni/PAC) and its application as an adsorbent for removal of PFOS from aqueous solution. In this work, the synthesized adsorbent using simple method was characterized by using X-ray diffractionometer (XRD), surface area and pore size analyzer, vibrating sample magnetometer (VSM), and high resolution transmission electron microscope (HRTEM). The surface area, pore volume and pore size of synthesized PAC was 1521.8 m(2)g(-1), 0.96 cm(3)g(-1), 2.54 nm, respectively. Different kinetic models: the pseudo-first-order model, the pseudo-second-order model, and three adsorption isotherms--Langmuir, Freundlich and Temkin--were applied to study the sorption kinetics and isothermal behavior of PFOS onto the surface of an as-prepared adsorbent. The rate constant using the pseudo-second-order model for removal of 150 ppm PFOS was estimated as 8.82×10(-5) and 1.64×10(-4) for PAC and 40% Ni/PAC, respectively. Our results demonstrated that the composite adsorbents exhibited a clear magnetic hysteretic behavior, indicating the potential practical application in magnetic separation of adsorbents from aqueous solution phase as well.

  8. Prevention of spontaneous and chemically induced carcinogenesis using activated carbon fiber adsorbent. III. Inhibitory effect of the activated carbon fiber adsorbent 'Aqualen' on 1,2-dimethylhydrazine-induced intestinal carcinogenesis in rats.

    PubMed

    Anisimov, V N; Zabezhinski, M A; Popovich, I G; Berstein, L M; Kovalenko, I G; Lieberman, A I; Shmidt, J L

    1999-04-26

    Aqualen. There were no pathological changes observed in rats exposed to Aqualen without DMH. Carcinogen treatment resulted in an increase of serum glucose and cholesterol levels whereas Aqualen normalized these changes. Thus, our results demonstrate the inhibitory effect of activated carbon fiber adsorbent Aqualen on intestinal carcinogenesis in rats.

  9. Study of the adsorption of Cd and Zn onto an activated carbon: Influence of pH, cation concentration, and adsorbent concentration

    SciTech Connect

    Seco, A.; Marzal, P.; Gabaldon, C.; Ferrer, J.

    1999-06-01

    The single adsorption of Cd and Zn from aqueous solutions has been investigated on Scharlau Ca 346 granular activated carbon in a wide range of experimental conditions: pH, metal concentration, and carbon concentration. The results showed the efficiency of the activated carbon as sorbent for both metals. Metal removals increase on raising the pH and carbon concentration, and decrease on raising the initial metal concentration. The adsorption processes have been modeled using the surface complex formation (SCF) Triple Layer Model (TLM). The adsorbent TLM parameters were determined. Modeling has been performed assuming a single surface bidentate species or an overall surface species with fractional stoichiometry. The bidentate stoichiometry successfully predicted cadmium and zinc removals in all the experimental conditions. The Freundlich isotherm has been also checked.

  10. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    SciTech Connect

    Xiong, Yongliang; Wang, Yifeng

    2016-04-19

    A method of removing a target gas from a gas stream is disclosed. The method uses advanced, fire-resistant activated carbon compositions having vastly improved fire resistance. Methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard.

  11. Synthesis of nickel sulfide nanoparticles loaded on activated carbon as a novel adsorbent for the competitive removal of Methylene blue and Safranin-O.

    PubMed

    Ghaedi, M; Pakniat, M; Mahmoudi, Z; Hajati, S; Sahraei, R; Daneshfar, A

    2014-04-05

    Nickel sulfide nanoparticle-loaded activated carbon (NiS-NP-AC) were synthesized as a novel adsorbent for simultaneous and rapid adsorption of Methylene blue (MB) and Safranin-O (SO), as most together compounds in wastewater. NiS-NP-AC was characterized using different techniques such as UV-visible, Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and Brunauer-Emmett-Teller (BET). The surface area of the adsorbent was found to be very high (1018m(2)/g according BET). By using central composite design (CCD), the effects of variables such as pH, adsorbent dosage, MB concentration, SO concentration and contact time on binary dyes removal were examined and optimized values were found to be 8.1, 0.022g, 17.8mg/L, and 5mg/L and 5.46min, respectively. The very short time required for the dyes removal makes this novel adsorbent as a promising tool for wastewater treatment applications. Different models were applied to analyze experimental isotherm data. Modified-extended Langmuir model showed good fit to equilibrium data with maximum adsorption capacity at 0.022g of adsorbent. An empirical extension of competitive modified-extended Langmuir model was proposed to predict the simultaneous adsorption behavior of MB and SO. Kinetic models were applied to fit the experimental data at various adsorbent dosages and initial dyes concentrations. It was seen that pseudo-second-order equation is suitable to fit the experimental data. Individual removalof each dye was also studied.

  12. Phenolic resin-derived activated carbon-supported divalent metal as efficient adsorbents (M-C, M=Zn, Ni, or Cu) for dibenzothiophene removal.

    PubMed

    He, Chi; Men, Gaoshan; Xu, Bitao; Cui, Jin; Zhao, Jinglian

    2017-01-01

    The adsorption process and mechanism of dibenzothiophene (DBT) over metal-loaded phenolic resin-derived activated carbon (PR-AC) were firstly reported in this work. The metal component (Zn, Ni, or Cu) was respectively introduced to PR-AC support via an impregnation method. The effects of adsorbent component, initial DBT concentration, liquid hourly space velocity (LHSV), adsorption time, and adsorption temperature on the adsorption capacity of the adsorbents were systematically investigated. Furthermore, the adsorption mechanism was discussed by analyzing the properties of adsorption product and saturated adsorbent as well as adsorption kinetics. Experimental results indicate that the PR-AC-loaded metal adsorbents, especially with Zn, present much higher DBT adsorption capability than that of pure PR-AC support. The DBT removal rate over PR-AC-loaded Zn (Zn(2+) = 0.2 mol L(-1)) reaches 89.14 %, which is almost twice higher than that of pure PR-AC (45.6 %). This is due to the π-complexation between DBT and metal ions (dominating factor) and the weakening of the local hard acid sites over PR-AC. The multi-factor orthogonal experiment shows that the DBT removal rate over PR-AC-loaded Zn sample achieved 92.36 % in optimum conditions.

  13. Simulating the performance of fixed-bed granular activated carbon adsorbers: removal of synthetic organic chemicals in the presence of background organic matter.

    PubMed

    Jarvie, Michelle Edith; Hand, David W; Bhuvendralingam, Shanmugalingam; Crittenden, John C; Hokanson, Dave R

    2005-06-01

    Granular activated carbon (GAC) adsorption is an effective treatment technology for the removal of synthetic organic chemicals (SOCs) from drinking water supplies. This treatment process can be expensive if not properly designed. Application of mathematical models is an attractive method to evaluate the impact of process variables on process design and performance. Practical guidelines were developed to select an appropriate model framework and to estimate site-specific model parameters to predict GAC adsorber performance. Pilot plant and field-scale data from 11 different studies were utilized to investigate the effectiveness of this approach in predicting adsorber performance in the presence of background organic batter (BOM). These data represent surface and ground water sources from four different countries. The modeling approach was able to adequately describe fixed-bed adsorber performance for the purpose of determining the carbon usage rate and process design variables. This approach is more accurate at predicting bed life in the presence of BOM than the current methods commonly used by practicing engineers.

  14. Comparative studies on removal of Erythrosine using ZnS and AgOH nanoparticles loaded on activated carbon as adsorbents: Kinetic and isotherm studies of adsorption

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Rozkhoosh, Z.; Asfaram, A.; Mirtamizdoust, B.; Mahmoudi, Z.; Bazrafshan, A. A.

    2015-03-01

    Erythrosine adsorption (Er) onto ZnS and AgOH nanoparticle-loaded activated carbon (ZnS-NP-AC and AgOH-NP-AC) was studied and results were compared. Subsequent preparation were fully analyzed by different approach such as BET to obtain knowledge about surface area, pore volume, while FT-IR analysis give comprehensive information about functional group the dependency of removal percentage to adsorbent mass, initial Er concentration and contact time were investigated and optimum conditions for pH, adsorbent dosage, Er concentration and contact time was set as be 3.2, 0.016 g, 20 mg/L and 16 min and 3.2, 0.015 g, 19 mg/L and 2 min for ZnS-NP-AC and AgOH-NP-AC, respectively. The equilibrium data correspond to adsorption strongly follow Langmuir model by ZnS-NP-AC and Freundlich model for AgOH-NP-AC. High adsorption capacity for of 55.86-57.80 mg g-1 and 67.11-89.69 mg g-1 for ZnS-NP-AC and AgOH-NP-AC, respectively. The result of present study confirm the applicability of small amount of these adsorbent (<0.02 g) for efficient removal of Er (>95%) in short reasonable time (20 min).

  15. Comparative studies on removal of Erythrosine using ZnS and AgOH nanoparticles loaded on activated carbon as adsorbents: Kinetic and isotherm studies of adsorption.

    PubMed

    Ghaedi, M; Rozkhoosh, Z; Asfaram, A; Mirtamizdoust, B; Mahmoudi, Z; Bazrafshan, A A

    2015-03-05

    Erythrosine adsorption (Er) onto ZnS and AgOH nanoparticle-loaded activated carbon (ZnS-NP-AC and AgOH-NP-AC) was studied and results were compared. Subsequent preparation were fully analyzed by different approach such as BET to obtain knowledge about surface area, pore volume, while FT-IR analysis give comprehensive information about functional group the dependency of removal percentage to adsorbent mass, initial Er concentration and contact time were investigated and optimum conditions for pH, adsorbent dosage, Er concentration and contact time was set as be 3.2, 0.016g, 20mg/L and 16min and 3.2, 0.015g, 19mg/L and 2min for ZnS-NP-AC and AgOH-NP-AC, respectively. The equilibrium data correspond to adsorption strongly follow Langmuir model by ZnS-NP-AC and Freundlich model for AgOH-NP-AC. High adsorption capacity for of 55.86-57.80mgg(-1) and 67.11-89.69mgg(-1) for ZnS-NP-AC and AgOH-NP-AC, respectively. The result of present study confirm the applicability of small amount of these adsorbent (<0.02g) for efficient removal of Er (>95%) in short reasonable time (20min).

  16. Carbon Dioxide Capture Adsorbents: Chemistry and Methods.

    PubMed

    Patel, Hasmukh A; Byun, Jeehye; Yavuz, Cafer T

    2016-12-21

    Excess carbon dioxide (CO2 ) emissions and their inevitable consequences continue to stimulate hard debate and awareness in both academic and public spaces, despite the widespread lack of understanding on what really is needed to capture and store the unwanted CO2 . Of the entire carbon capture and storage (CCS) operation, capture is the most costly process, consisting of nearly 70 % of the price tag. In this tutorial review, CO2 capture science and technology based on adsorbents are described and evaluated in the context of chemistry and methods, after briefly introducing the current status of CO2 emissions. An effective sorbent design is suggested, whereby six checkpoints are expected to be met: cost, capacity, selectivity, stability, recyclability, and fast kinetics.

  17. Iron Impregnated Activated Carbon as an Efficient Adsorbent for the Removal of Methylene Blue: Regeneration and Kinetics Studies

    PubMed Central

    Shah, Irfan; Adnan, Rohana; Wan Ngah, Wan Saime; Mohamed, Norita

    2015-01-01

    In this study, iron impregnated activated carbon (FeAC) was synthesized following an oxidation and iron impregnation of activated carbon (AC). Both the AC and FeAC were characterized by pHZPC and FTIR spectroscopy. The removal of Methylene Blue (MB) by AC and FeAC was examined under various experimental conditions. The FeAC showed up to 95% (higher than AC) MB removal in the pH range of 7–10. Although the reaction kinetics was pseudo–second order, the overall rate was controlled by a number of processes such as film diffusion, pore diffusion and intraparticle diffusion. The activation energy values for the MB uptake by AC and FeAC (21.79 and 14.82 kJ/mol, respectively) revealed a physisorption process. In the regeneration study, FeAC has shown consistently ≥ 90% MB removal even up to 10 repeated cycles. The reusable characteristic of the spent FeAC improved the practical use of activated carbon and can be a breakthrough for continuous flow system applications where it can work effectively without any significant reduction in its performance. PMID:25849291

  18. Inorganic chemically active adsorbents (ICAAs)

    SciTech Connect

    Ally, M.R.; Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  19. Three-component competitive adsorption model for fixed-bed and moving-bed granular activated carbon adsorbers. Part II. Model parameterization and verification

    SciTech Connect

    Lance C. Schideman; Benito J. Marinas; Vernon L. Snoeyink; Carlos Campos

    2006-11-01

    COMPSORB-GAC is a 3-component competitive adsorption kinetic model for granular activated carbon (GAC) adsorbers that was developed in Part I of this study, including a proposed procedure for determining model parameters in natural water applications with background natural organic matter (NOM). Part II of this study demonstrates the proposed parameterization procedure and validates the modeling approach by comparing predictions with experimental breakthrough curves at multiple empty-bed contact times for both fixed-bed and moving-bed reactors. The parameterization procedure consists of a set of independent, short-term experimental tests with fresh and batch preloaded adsorbents (using F-400 GAC, a coal-based adsorbent) and then data fitting using both classic and recently developed theoretical expressions. The model and parameterization procedure simplifies NOM into two fictive fractions (pore-blocking and strongly competing) and incorporates three competitive effects that vary both temporally and axially in a GAC column (direct competition for sites, intraparticle pore blockage, and external surface pore blockage). With all three competitive mechanisms accounted for, the model could accurately predict breakthrough profiles for column lengths and durations that were much longer than those used for model parameterization. Model predictions that ignored one or more of the competitive mechanisms showed that each mechanism was important for different regions of the breakthrough curve. The external surface pore-blockage effect was predominant for the prediction of early breakthrough data, whereas direct competition for sites and intraparticle pore blockage were prevalent when predicting higher breakthrough levels and data later in the column run. 22 refs., 10 figs., 2 tabs.

  20. Heats of immersion of active carbon and carbon black in water and benzene as a function of the moisture content of the adsorbents

    SciTech Connect

    Dubinin, M.M.; Isirikyan, A.A.; Nikolaev, K.M.; Polyakov, N.S.; Tatarinova, L.I.

    1987-07-10

    Rehydration of the active sites of carbon and carbon black formed after vacuum heat treatment of the samples at high temperatures is reflected in the heats of their immersion in benzene and water: for carbon, the heat of immersion in benzene does not change, but the heat of immersion in water increases markedly, while the heat of immersion of carbon black in benzene decreases markedly and the heat of immersion in water almost does not change. All four basic stages of adsorption of water vapors on active carbon: (1) the formation of water clusters, (2) formation of a random monolayer, (3) volume filling of micropores, and (4) saturation with capillary condensation phenomena in the mesopores, are reflected in the curve of the dependence of the heats of immersion of carbon in benzene on the relative vapor pressure of the preadsorbed water. Based on the study of the heats of immersion of AC-47 active carbon in benzene as a function of the amount of preadsorbed water, the reality of the existence of a statistical monolayer or similarity of the monolayer of water in the micropores of nongraphitized active carbon not made chemically hydrophobic, formed in the narrow region of relative water vapor pressures from 0.45 to 0.6, was demonstrated.

  1. Effect of cation type, alkyl chain length, adsorbate size on adsorption kinetics and isotherms of bromide ionic liquids from aqueous solutions onto microporous fabric and granulated activated carbons.

    PubMed

    Hassan, Safia; Duclaux, Laurent; Lévêque, Jean-Marc; Reinert, Laurence; Farooq, Amjad; Yasin, Tariq

    2014-11-01

    The adsorption from aqueous solution of imidazolium, pyrrolidinium and pyridinium based bromide ionic liquids (ILs) having different alkyl chain lengths was investigated on two types of microporous activated carbons: a fabric and a granulated one, well characterized in terms of surface chemistry by "Boehm" titrations and pH of point of zero charge measurements and of porosity by N2 adsorption at 77 K and CO2 adsorption at 273 K. The influence of cation type, alkyl chain length and adsorbate size on the adsorption properties was analyzed by studying kinetics and isotherms of eight different ILs using conductivity measurements. Equilibrium studies were carried out at different temperatures in the range [25-55 °C]. The incorporation of ILs on the AC porosity was studied by N2 adsorption-desorption measurements at 77 K. The experimental adsorption isotherms data showed a good correlation with the Langmuir model. Thermodynamic studies indicated that the adsorption of ILs onto activated carbons was an exothermic process, and that the removal efficiency increased with increase in alkyl chain length, due to the increase in hydrophobicity of long chain ILs cations determined with the evolution of the calculated octanol-water constant (Kow). The negative values of free energies indicated that adsorption of ILs with long chain lengths having hydrophobic cations was more spontaneous at the investigated temperatures.

  2. Enhanced anti-cancer efficacy on lymph node metastasis using peplomycin adsorbed on small activated carbon particles.

    PubMed

    Ito, M; Hagiwara, A; Iwamoto, A; Shimotsuma, M; Yoneyama, C; Sasabe, T; Takahashi, T

    1991-07-01

    A new dosage form (PEP-CH) of peplomycin was tested for therapeutic efficacy against lymph node metastasis in mice. PEP-CH is a suspension comprising 4 mg/ml of activated carbon, 2 mg/ml of peplomycin and 1.6 mg/ml of polyvinylpyrrolidone in saline. Mice were subcutaneously inoculated with 3 x 10(5) MH134 tumor cells into the left hind paw. Drugs were given on day 10 when cancer had been metastasized in the left popliteal lymph node. Mice were killed on day 17 and the left popliteal lymph node and the left deep inguinal lymph node were extirpated. Since the degree of the metastatic lesion and the lymph node weight correlated with a statistically high probability with each other, the degree of metastatic lesion was evaluated through comparison of lymph node weight. The left popliteal lymph node and the deep inguinal lymph node were 10.5 mg and 4.5 mg in average weight, respectively, in the mice given PEP-CH containing 0.1 mg of peplomycin subcutaneously into the left hind foot-pad. The weights were significantly smaller than those in the mice given an identical dose of peplomycin aqueous solution subcutaneously into the left hind foot-pad or intraperitoneally.

  3. ZnS:Cu nanoparticles loaded on activated carbon as novel adsorbent for kinetic, thermodynamic and isotherm studies of Reactive Orange 12 and Direct yellow 12 adsorption.

    PubMed

    Ghaedi, Mehrorang; Ansari, Amin; Sahraei, Reza

    2013-10-01

    The objective of this work is the study of adsorption of Reactive Orange 12 (RO-12) and Direct yellow 12 (DY 12) by zinc sulfide:copper (ZnS-Cu-NP-AC) nanoparticles loaded on activated carbon. This new material with high efficiency in a routine manner was synthesized in our laboratory and its surface properties viz surface area, pore volume and functional groups was characterized with different techniques such FT-IR, SEM, and BET analysis. Generally, in batch adsorption procedure variables including amount of adsorbent, initial dyes concentration, contact time, temperature on dyes removal percentage has great effect on removal percentage that their influence was optimized. The kinetic of proposed adsorption processes efficiently followed, pseudo-second-order, and intra-particle diffusion kinetic models. The equilibrium data the removal strongly follow Langmuir monolayer adsorption with high adsorption capacity in short time. This novel adsorbent by small amount (0.08 g) really is applicable for removal of high amount of both dyes (RO 12 and DY 12) in short time (<20 min). Based on the calculated thermodynamic parameters such as enthalpy (ΔH), entropy (ΔS), activation energy (Ea), sticking probability (S*) and Gibb's free energy changes (ΔG), it is noticeable that the sorption of both dyes onto ZnS:Cu-AC was spontaneous and endothermic process. At optimum values all variables the effect of contact time on adsorption was investigated and the dependency of adsorption data to different kinetic model such as pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion was assessed and it was found that the removal processes follow pseudo second order kinetics and interparticle diffusion mechanism.

  4. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  5. Regenerable activated bauxite adsorbent alkali monitor probe

    SciTech Connect

    Lee, S.H.D.

    1991-01-22

    This invention relates to a regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor 5 concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC 10 exhaust gases.

  6. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  7. Adsorption and Desorption of Carbon Dioxide and Water Mixtures on Synthetic Hydrophobic Carbonaceous Adsorbents

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    Several synthetic carbonaceous adsorbents produced through pyrolysis of polymeric materials are available commercially. Some appear to have advantages over activated carbon for certain adsorption applications. In particular, they can have tailored hydrophobicities that are significantly greater than that of activated carbon, while moderately high surfaces areas are retained. These sorbents are being investigated for possible use in removing trace contaminants and excess carbon dioxide from air in closed habitats, plant growth chambers, and other applications involving purification of humid gas streams. We have analyzed the characteristics of a few of these adsorbents through adsorption and desorption experiments and standard characterization techniques. This paper presents pure and multicomponent adsorption data collected for carbon dioxide and water on two synthetic carbonaceous adsorbents having different hydrophobicities and capillary condensation characteristics. The observations are interpreted through consideration of the pore structure and surface chemistry of the solids and interactions between adsorbed carbon dioxide, water, and the solvent gas.

  8. Tea-industry waste activated carbon, as a novel adsorbent, for separation, preconcentration and speciation of chromium.

    PubMed

    Duran, Celal; Ozdes, Duygu; Gundogdu, Ali; Imamoglu, Mustafa; Senturk, Hasan Basri

    2011-02-28

    Activated carbon was produced from tea-industry wastes (TIWAC) and employed as a low cost and effective solid phase material for the separation, preconcentration and speciation of chromium species without using a complexing agent, prior to determination by flame atomic absorption spectrometry (FAAS). The characterization of TIWAC was performed by utilizing several techniques such as Fourier Transform Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM), and elemental analysis. The adsorption experiments were conducted in a batch adsorption technique. Under the experimental conditions, Cr(VI) adsorption amount was nearly equal to zero, however the adsorption percentage of Cr(III) was in the range of 95-100%. Therefore total chromium was determined after the reduction of Cr(VI) to Cr(III) and Cr(VI) was calculated by subtracting Cr(III) concentration from total chromium concentration. The suitable conditions for adsorption and speciation processes were evaluated in terms of pH, eluent type and volume, TIWAC concentration, adsorption and desorption contact time, etc. Adsorption capacity of TIWAC was found to be 61.0 mg g(-1). The detection limit for Cr(III) was found to be 0.27 μg L(-1) and the preconcentration factor was 50 for 200mL of sample volume. The procedure was applied to the determination and speciation of chromium in stream, tap and sea water. Also, the proposed method was applied to total chromium preconcentration in microwave digested tobacco and dried eggplant samples with satisfactory results. The method was validated by analyzing certified reference materials (CRM-TMDW-500 Drinking Water and CRM-SA-C Sandy Soil C) and the results were in good agreement with the certified values.

  9. Determination of imidazole derivatives by micellar electrokinetic chromatography combined with solid-phase microextraction using activated carbon-polymer monolith as adsorbent.

    PubMed

    Shih, Yung-Han; Lirio, Stephen; Li, Chih-Keng; Liu, Wan-Ling; Huang, Hsi-Ya

    2016-01-08

    In this study, an effective method for the separation of imidazole derivatives 2-methylimidazole (2-MEI), 4- methylimidazole (4-MEI) and 2-acetyl-4-tetrahydroxybutylimidazole (THI) in caramel colors using cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography (CSEI-sweeping-MEKC) was developed. The limits of detection (LOD) and quantitation (LOQ) for the CSEI-sweeping-MEKC method were in the range of 4.3-80μgL(-1) and 14-270μgL(-1), respectively. Meanwhile, a rapid fabrication activated carbon-polymer (AC-polymer) monolithic column as adsorbent for solid-phase microextraction (SPME) of imidazole colors was developed. Under the optimized SPME condition, the extraction recoveries for intra-day, inter-day and column-to-column were in the range of 84.5-95.1% (<6.3% RSDs), 85.6-96.1% (<4.9% RSDs), and 81.3-96.1% (<7.1% RSDs), respectively. The LODs and LOQs of AC-polymer monolithic column combined with CSEI-sweeping-MEKC method were in the range of 33.4-60.4μgL(-1) and 111.7-201.2μgL(-1), respectively. The use of AC-polymer as SPME adsorbent demonstrated the reduction of matrix effect in food samples such as soft drink and alcoholic beverage thereby benefiting successful determination of trace-level caramel colors residues using CSEI-sweeping-MEKC method. The developed AC-polymer monolithic column can be reused for more than 30 times without any significant loss in the extraction recovery for imidazole derivatives.

  10. Properties and potential environmental applications of carbon adsorbents from waste tire rubber

    USGS Publications Warehouse

    Lehmann, C.M.B.; Rameriz, D.; Rood, M.J.; Rostam-Abadi, M.

    2000-01-01

    The properties of tire-derived carbon adsorbents (TDCA) produced from select tire chars were compared with those derived from an Illinois coal and pistachio nut shells. Chemical analyses of the TDCA indicated that these materials contain metallic elements not present in coal-and nut shell-derived carbons. These metals, introduced during the production of tire rubber, potentially catalyze steam gasification reactions of tire char. TDCA carbons contained larger meso-and macopore volumes than their counterparts derived from coal and nut shell (on the moisture-and ash-free-basis). Adsorptive properties of the tire-derived adsorbent carbons for air separation, gas storage, and gas clean up were also evaluated and compared with those of the coal-and nut shell derived carbons as well as a commercial activated carbon. The results revealed that TDCA carbons are suitable adsorbents for removing vapor-phase mercury from combustion flue gases and hazardous organic compounds from industrial gas streams.

  11. Technique for surface oxidation of activated carbon

    SciTech Connect

    Sircar, S.; Golden, T.C.

    1987-10-27

    A method of activating a carbon adsorbent is described, which comprises oxidizing the surface of the carbon adsorbent with a mild oxidizing acid in the presence of a metal oxidation catalyst at an elevated temperature and boiling the mixture of the carbon adsorbent, mild oxidizing acid and metal oxidation catalyst to dryness. Then rinse the surface oxidizing carbon adsorbent with water; and dry the rinsed surface oxidized carbon adsorbent. In a process for the removal of water or carbon dioxide from a gas stream containing water or carbon dioxide of the type wherein the gas stream containing water or carbon dioxide is contacted with a solid phase adsorbent under pressure-swing adsorption or thermal-swing adsorption processing conditions, the improvement is described comprising utilizing an adsorbent produced by the activation of a carbon adsorbent. The activation comprises oxidizing the surface of the carbon adsorbent with a mold oxidizing acid in the presence of a metal oxidation catalyst at an elevated temperature and boiling the mixture of the carbon adsorbent, mild oxidizing acid and metal oxidation catalyst to dryness. Then rinse the surface oxidized carbon adsorbent with water; and dry the rinsed surface oxidized carbon adsorbent.

  12. Development of novel activated carbon-based adsorbents for the control of mercury emissions from coal-fired power plants

    SciTech Connect

    Radisav D. Vidic

    1999-03-01

    In addition to naturally occurring mercury sources, anthropogenic activities increase the mercury loading to the environment. Although not all produced mercury is dissipated directly into the environment, only minor portions of the total production are stocked or recycled, and the rest of the mercury and its compounds is finally released in some way into atmosphere, surface waters and soil, or ends in landfills dumps, and refuse. Since mercury and its compounds are highly toxic, their presence in the environment constitutes potential impact on all living organisms, including man. The first serious consequence of industrial mercury discharges causing neurological disorder even death occurred in Minimata, Japan in 1953. Systematic studies showed that mercury poisoning is mainly found in fish-eating populations. However, various levels of mercury are also found in food other than fish. During the past several decades, research has been conducted on the evaluation of risks due to exposure to mercury and the development of control technologies for mercury emissions. In 1990, the Clean Air Act Amendments listed mercury, along with 10 other metallic species, as a hazardous air pollutant (HAP). This has further stimulated research for mercury control during the past several years. The impact of mercury on humans, sources of mercury in the environment, current mercury control strategies and the objective of this research are discussed in this section.

  13. Determination of adsorbable organic fluorine from aqueous environmental samples by adsorption to polystyrene-divinylbenzene based activated carbon and combustion ion chromatography.

    PubMed

    Wagner, Andrea; Raue, Brigitte; Brauch, Heinz-Jürgen; Worch, Eckhard; Lange, Frank T

    2013-06-21

    A new method for the determination of trace levels of adsorbable organic fluorine (AOF) in water is presented. Even if the individual contributing target compounds are widely unknown, this surrogate parameter is suited to identify typical organofluorine contaminations, such as with polyfluorinated chemicals (PFCs), and represents a lower boundary of the organofluorine concentration in water bodies. It consists of the adsorption of organofluorine chemicals on a commercially available synthetic polystyrene-divinylbenzene based activated carbon (AC) followed by analysis of the loaded AC by hydropyrolysis combustion ion chromatography (CIC). Inorganic fluorine is displaced by excess nitrate during the extraction step and by washing the loaded activated carbon with an acidic sodium nitrate solution. Due to its high purity the synthetic AC had a very low and reproducible fluorine blank (0.3 μg/g) compared to natural ACs (up to approximately 9 μg/g). Using this AC, fluoride and the internal standard phosphate could be detected free of chromatographic interferences. With a sample volume of 100 mL and 2× 100 mg of AC packed into two extraction columns combined in series, a limit of quantification (LOQ), derived according to the German standard method DIN 32645, of 0.3 μg/L was achieved. The recoveries of six model PFCs were determined from tap water and a municipal wastewater treatment plant (WWTP) effluent. Except for the extremely polar perfluoroacetic acid (recovery of approximately 10%) the model substances showed fairly good (50% for perfluorobutanoic acid (PFBA)) to very good fluorine recoveries (100±20% for perfluorooctanoic acid (PFOA), perfluorobutanesulfonate (PFBS), 6:2 fluorotelomersulfonate (6:2 FTS)), both from tap water and wastewater matrix. This new analytical protocol was exemplarily applied to several surface water and groundwater samples. The obtained AOF values were compared to the fluorine content of 19 target PFCs analyzed by high performance

  14. Heavy metals and adsorbents effects on activated sludge microorganisms.

    PubMed

    Ong, S A; Lim, P E; Seng, C E

    2004-01-01

    The sorption of Cu(II) and Cd(II) from synthetic solution by powdered activated carbon (PAC), biomass, rice husk (RH) and activated rice husk (ARH) were investigate under batch conditions. After activated by concentrated nitric acid for 15 hours at 60-65 degrees C, the adsorption capacity for RH was increased. The adsorbents arranged in the increasing order of adsorption capacities to the Langmuir Q degree parameter were biomass > PAC > ARH > RH. The addition of adsorbents in base mix solution had increased the specific oxygen uptake rate (SOUR) activated sludge microorganisms with and without the presence of metals. The increased of SOUR were due to the ability of PAC and RH in reducing the inhibitory effect of metals on microorganisms and provide a reaction site between activated sludge microorganisms and substrates.

  15. Activated carbon from biomass

    NASA Astrophysics Data System (ADS)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  16. Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents.

    PubMed

    Tsai, Wen-Tien; Lai, Chi-Wei; Su, Ting-Yi

    2006-06-30

    The adsorption behaviors of bisphenol-A, which has been listed as one of endocrine disrupting chemicals, from aqueous solution onto four minerals including andesite, diatomaceous earth, titanium dioxide, and activated bleaching earth, and two activated carbons with coconut-based and coal-based virgins were examined in this work. Based on the adsorption results at the specified conditions, the adsorption capacities of activated carbons are significantly larger than those of mineral adsorbents, implying that the former is effective for removal of the highly hydrophobic adsorbate from the aqueous solution because of its high surface area and low surface polarity. The adsorption capacities of bisphenol-A onto these mineral adsorbents with different pore properties are almost similar in magnitude mainly due to the weakly electrostatic interaction between the mineral surface with negative charge and the target adsorbate with hydrophobic nature. Further, a simplified kinetic model, pseudo-second-order, was tested to investigate the adsorption behaviors of bisphenol-A onto the two common activated carbons at different solution conditions. It was found that the adsorption process could be well described with the pseudo-second-order model. The kinetic parameters of the model obtained in the present work are in line with the pore properties of the two adsorbents.

  17. Enhanced encapsulation of metoprolol tartrate with carbon nanotubes as adsorbent

    NASA Astrophysics Data System (ADS)

    Garala, Kevin; Patel, Jaydeep; Patel, Anjali; Dharamsi, Abhay

    2011-12-01

    A highly water-soluble antihypertensive drug, metoprolol tartrate (MT), was selected as a model drug for preparation of multi-walled carbon nanotubes (MWCNTs)-impregnated ethyl cellulose (EC) microspheres. The present investigation was aimed to increase encapsulation efficiency of MT with excellent adsorbent properties of MWCNTs. The unique surface area, stiffness, strength and resilience of MWCNTs have drawn much anticipation as carrier for highly water-soluble drugs. Carbon nanotubes drug adsorbate (MWCNTs:MT)-loaded EC microspheres were further optimized by the central composite design of the experiment. The effects of independent variables (MWCNTs:MT and EC:adsorbate) were evaluated on responses like entrapment efficiency (EE) and t 50 (time required for 50% drug release). The optimized batch was compared with drug alone EC microspheres. The results revealed high degree of improvement in encapsulation efficiency for MWCNTs:MT-loaded EC microspheres. In vitro drug release study exhibited complete release form drug alone microspheres within 15 h, while by the same time only 50-60% drug was released for MWCNTs-impregnated EC microspheres. The optimized batch was further characterized by various instrumental analyses such as scanning electron microscopy, powder X-ray diffraction and differential scanning calorimetry. The results endorse encapsulation of MWCNTs:MT adsorbate inside the matrix of EC microspheres, which might have resulted in enhanced encapsulation and sustained effect of MT. Hence, MWCNTs can be utilized as novel carriers for extended drug release and enhanced encapsulation of highly water-soluble drug, MT.

  18. Nanoporous-carbon adsorbers for chemical microsensors.

    SciTech Connect

    Overmyer, Donald L.; Siegal, Michael P.; Staton, Alan W.; Provencio, Paula Polyak; Yelton, William Graham

    2004-11-01

    Chemical microsensors rely on partitioning of airborne chemicals into films to collect and measure trace quantities of hazardous vapors. Polymer sensor coatings used today are typically slow to respond and difficult to apply reproducibly. The objective of this project was to produce a durable sensor coating material based on graphitic nanoporous-carbon (NPC), a new material first studied at Sandia, for collection and detection of volatile organic compounds (VOC), toxic industrial chemicals (TIC), chemical warfare agents (CWA) and nuclear processing precursors (NPP). Preliminary studies using NPC films on exploratory surface-acoustic-wave (SAW) devices and as a {micro}ChemLab membrane preconcentrator suggested that NPC may outperform existing, irreproducible coatings for SAW sensor and {micro}ChemLab preconcentrator applications. Success of this project will provide a strategic advantage to the development of a robust, manufacturable, highly-sensitive chemical microsensor for public health, industrial, and national security needs. We use pulsed-laser deposition to grow NPC films at room-temperature with negligible residual stress, and hence, can be deposited onto nearly any substrate material to any thickness. Controlled deposition yields reproducible NPC density, morphology, and porosity, without any discernable variation in surface chemistry. NPC coatings > 20 {micro}m thick with density < 5% that of graphite have been demonstrated. NPC can be 'doped' with nearly any metal during growth to provide further enhancements in analyte detection and selectivity. Optimized NPC-coated SAW devices were compared directly to commonly-used polymer coated SAWs for sensitivity to a variety of VOC, TIC, CWA and NPP. In every analyte, NPC outperforms each polymer coating by multiple orders-of-magnitude in detection sensitivity, with improvements ranging from 103 to 108 times greater detection sensitivity! NPC-coated SAW sensors appear capable of detecting most analytes tested to

  19. Citrus pectin derived porous carbons as a superior adsorbent toward removal of methylene blue

    NASA Astrophysics Data System (ADS)

    Zhang, Wenlin; Zhang, Lian Ying; Zhao, Xi Juan; Zhou, Zhiqin

    2016-11-01

    An adsorbent, citrus pectin derived porous carbons with ultra-high adsorption capacity, rapid adsorption rate and good reusability toward removal of methylene blue, was synthesized by a facile zinc chloride activation approach in this study. The materials hold a great potential for treatment of dye wastewater.

  20. REPEATED REDUCTIVE AND OXIDATIVE TREATMENTS ON GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Fenton oxidation and Fenton oxidation preceded by reduction solutions were applied to granular activated carbon (GAC) to chemically regenerate the adsorbent. No adsorbate was present on the GAC so physicochemical effects from chemically aggressive regeneration of the carbon coul...

  1. Surface properties of mesoporous carbon-silica gel adsorbents

    SciTech Connect

    Leboda, R.; Turov, V.V.; Charmas, B.; Skubiszewska-Zieba, J.; Gun'ko, V.M.

    2000-03-01

    Carbon/silica (carbosil) samples prepared utilizing mesoporous silica gel (Si-60) modified by methylene chloride pyrolysis were studied by nitrogen adsorption, quasi-isothermal thermogravimetry, p-nitrophenol adsorption from aqueous solution, and {sup 1}H NMR methods. The structural characteristics and other properties of carbosils depend markedly on the synthetic conditions and the amount of carbon deposited. The changes in the pore size distribution with increasing carbon concentration suggest grafting of carbon mainly in pores, leading to diminution of the mesopore radii. However, heating pure silica gel at the pyrolysis temperature of 550 C leads to an increase in the pore radii. The quasi-isothermal thermogravimetry and {sup 1}H NMR spectroscopy methods used to investigate the water layers on carbosils showed a significant capability of carbosils to adsorb water despite a relatively large content of the hydrophobic carbon deposit, which represents a nonuniform layer incompletely covering the oxide surface.

  2. Development Trends in Porous Adsorbents for Carbon Capture.

    PubMed

    Sreenivasulu, Bolisetty; Sreedhar, Inkollu; Suresh, Pathi; Raghavan, Kondapuram Vijaya

    2015-11-03

    Accumulation of greenhouse gases especially CO2 in the atmosphere leading to global warming with undesirable climate changes has been a serious global concern. Major power generation in the world is from coal based power plants. Carbon capture through pre- and post- combustion technologies with various technical options like adsorption, absorption, membrane separations, and chemical looping combustion with and without oxygen uncoupling have received considerable attention of researchers, environmentalists and the stake holders. Carbon capture from flue gases can be achieved with micro and meso porous adsorbents. This review covers carbonaceous (organic and metal organic frameworks) and noncarbonaceous (inorganic) porous adsorbents for CO2 adsorption at different process conditions and pore sizes. Focus is also given to noncarbonaceous micro and meso porous adsorbents in chemical looping combustion involving insitu CO2 capture at high temperature (>400 °C). Adsorption mechanisms, material characteristics, and synthesis methods are discussed. Attention is given to isosteric heats and characterization techniques. The options to enhance the techno-economic viability of carbon capture techniques by integrating with CO2 utilization to produce industrially important chemicals like ammonia and urea are analyzed. From the reader's perspective, for different classes of materials, each section has been summarized in the form of tables or figures to get a quick glance of the developments.

  3. Sustainable catalyst supports for carbon dioxide gas adsorbent

    NASA Astrophysics Data System (ADS)

    Mazlee, M. N.

    2016-07-01

    The adsorption of carbon dioxide (CO2) become the prime attention nowadays due to the fact that increasing CO2 emissions has been identified as a contributor to global climate change. Major sources of CO2 emissions are thermoelectric power plants and industrial plants which account for approximately 45% of global CO2 emissions. Therefore, it is an urgent need to develop an efficient CO2 reduction technology such as carbon capture and storage (CCS) that can reduce CO2 emissions particularly from the energy sector. A lot of sustainable catalyst supports have been developed particularly for CO2 gas adsorbent applications.

  4. Development of carbon dioxide adsorbent from rice husk char

    NASA Astrophysics Data System (ADS)

    Abang, S.; Janaun, J.; Anisuzzaman, S. M.; Ikhwan, F. S.

    2016-06-01

    This study was mainly concerned about the development of carbon dioxide (CO2) adsorbent from rice husk (RH). Several chemical treatments were used to produce activated rice husk char (RHAC) from RH. Initially the RH was refluxed with 3M of sodium hydroxide (NaOH) solution, activation followed by using 0.5M of zinc chloride (ZnCl2) solution and finally acidic treatment by using 0.1M of hydrochloric acid (HCl). Then, the RHAC was functionalized by using 3-chloropropylamine hydrochloride (3-CPA) and noted as RHN. RHN samples were characterized with scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), fourier transform infrared spectroscopy (FTIR). Based on the SEM, the RHN sample had a large pore diameter compared to RH sample after being treated. Based on MIP data, the average pore diameter between RH and RHAC samples were increased significantly from 0.928 microns to 1.017 microns. The RHN sample also had higher total porosity (%) compared to RHAC and RH (58.45%, 47.82% and 45.57% respectively). The total specific surface area of the sample was much increasing from RHO to RHAC (29.17 m2/g and 62.94 m2/g respectively) and slightly being decreasing from RHAC to RHN (58.88 m2/g). FTIR result showed the present of weak band at 1587 cm-1 which demonstrating of the amine group present on the sample. The CO2 capture result showed that the decreasing of operating temperature can increase the breakthrough time of CO2 capture. On the contrary decreasing of CO2 gas flow rate can increase the breakthrough time of CO2 capture. The highest total amount of CO2 adsorbed was 25338.57 mg of CO2/g of RHN sample by using 100 mL/min of gas flow rate at 30oC. Based on adsorption isotherm analysis, the Freundlich isotherm was the best isotherm to describe the CO2 adsorption on the sample.

  5. Comparison of nickel doped Zinc Sulfide and/or palladium nanoparticle loaded on activated carbon as efficient adsorbents for kinetic and equilibrium study of removal of Congo Red dye

    NASA Astrophysics Data System (ADS)

    Ahmadi, K.; Ghaedi, M.; Ansari, A.

    2015-02-01

    In this study, the efficiency of nickel doped Zinc Sulfide nanoparticle loaded on activated carbon (Ni-ZnS-NP-AC) and palladium nanoparticles loaded on activated carbon (Pd-NP-AC) for the removal of Congo Red (CR) from aqueous solution was investigated. These materials were fully identified and characterized in term of structure, surface area and pore volume with different techniques such XRD, FE-SEM and TEM analysis. The dependency of CR removal percentage to variables such as pH, contact time, amount of adsorbents, CR concentration was examined and optimum values were set as: 0.03 g Ni-ZnS-NP-AC and 0.04 g of Pd-NP-AC at pH of 3 and 2 after mixing for 22 and 26 min for Ni-ZnS-NP-AC and Pd-NP-AC, respectively. Subsequently, it was revealed that isotherm data efficiency can be correlated Langmuir with maximum monolayer adsorption capacities of 286 and 126.6 mg g-1 at room temperature for Ni-ZnS-NP-AC and Pd-NP-AC, respectively. Investigation of correlation between time and rate of adsorption reveal that the CR adsorption onto both adsorbents followed pseudo second order and interparticle diffusion simultaneously.

  6. Modeling adsorbate-induced property changes of carbon nanotubes.

    PubMed

    Groß, Lynn; Bahlke, Marc Philipp; Steenbock, Torben; Klinke, Christian; Herrmann, Carmen

    2017-05-05

    Because of their potential for chemical functionalization, carbon nanotubes (CNTs) are promising candidates for the development of devices such as nanoscale sensors or transistors with novel gating mechanisms. However, the mechanisms underlying the property changes due to functionalization of CNTs still remain subject to debate. Our goal is to reliably model one possible mechanism for such chemical gating: adsorption directly on the nanotubes. Within a Kohn-Sham density functional theory framework, such systems would ideally be described using periodic boundary conditions. Truncating the tube and saturating the edges in practice often offers a broader selection of approximate exchange-correlation functionals and analysis methods. By comparing the two approaches systematically for NH3 and NO2 adsorbates on semiconducting and metallic CNTs, we find that while structural properties are less sensitive to the details of the model, local properties of the adsorbate may be as sensitive to truncation as they are to the choice of exchange-correlation functional, and are similarly challenging to compute as adsorption energies. This suggests that these adsorbate effects are nonlocal. © 2017 Wiley Periodicals, Inc.

  7. Metal carbon bond energies for adsorbed hydrocarbons from calorimetric data

    NASA Astrophysics Data System (ADS)

    Gross, Heike; Campbell, Charles T.; King, David A.

    2004-11-01

    Single crystal adsorption calorimetry (SCAC) is a powerful new method for measuring adsorption and reaction energies. Particularly for hydrocarbons, where little or no information is available from either experiment or theory on well-defined surfaces, this method can provide crucially needed information. Assignment of the measured calorimetric heats to the appropriate surface reaction yields directly reaction heats and heats of formation of surface species. An important extension using these results is to derive values for metal-carbon bond energies in adsorbed hydrocarbon species. In this paper we review the definition of the bond dissociation energy for a surface species and discuss methodologies and limitations for calculating accurate values of this quantity from measured calorimetric data. As a step in establishing benchmark data for adsorbed hydrocarbons, we calculate a Pt-C σ bond strength, < D(Pt-C)>, of about 245 kJ/mol from data for ethylidyne on Pt{1 1 1}. Two independent methods, the quasiempirical valence bond (QVB) method and an average bond energy (ABE) method, were used to obtain this value, and the two values derived from these two approaches agree quite well. We also discuss the implications and applicability of this value of D(Pt-C) for other adsorbed hydrocarbons and on other Pt surfaces, and estimates of how this bond energy should differ when the C atom's ligands are different.

  8. Supercritical Carbon Dioxide Regeneration of Activated Carbon Loaded with Contaminants from Rocky Mountain Arsenal Well Water.

    DTIC Science & Technology

    1982-05-01

    15 111-7 GRANULAR ACTIVATED CARBON ADSORPTION ISOTHERMS THERMALLY REACTIVATED CARBON .............. 16 I IV-1 PROCESS FLOW DIAGRAM FOR... PROCESSING COST OF ACTIVATED CHARCOAL REGENERATION BY SUPERCRITICAL CARBON DIOXIDE PROCESS ........................... 25 l IV-4 SENSITIVITY OF GAC...regenerate adsorbents such as granular activated carbon loaded with a broad variety of organic adsorbates. This regeneration process uses a supercritical

  9. Highly regenerable carbon-Fe3O4 core-satellite nanospheres as oxygen reduction electrocatalyst and magnetic adsorbent

    NASA Astrophysics Data System (ADS)

    Zhou, Wenqiang; Liu, Minmin; Cai, Chao; Zhou, Haijun; Liu, Rui

    2017-02-01

    We present the synthesis and multifunctional utilization of core-satellite carbon-Fe3O4 nanoparticles to serve as the enabling platform for a range of applications including oxygen reduction reaction (ORR) and magnetic adsorbent. Starting from polydopamine (PDA) nanoparticles and Fe(NO3)3, carbon-Fe3O4 core-satellite nanospheres are synthesized through successive steps of impregnation, ammoniation and carbonization. The synergistic combination of Fe3O4 and N-doped carbon endows the nanocomposite with high electrochemical activity in ORR and mainly four electrons transferred in reaction process. Furthermore, carbon-Fe3O4 nanoparticles used as magnetic adsorbent exhibit the efficient removal of Rhodamine B from an aqueous solution. The recovery and reuse of the adsorbent is demonstrated 5 times without any detectible loss in activity.

  10. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources.

    PubMed

    Choi, Sunho; Drese, Jeffrey H; Jones, Christopher W

    2009-01-01

    Since the time of the industrial revolution, the atmospheric CO(2) concentration has risen by nearly 35 % to its current level of 383 ppm. The increased carbon dioxide concentration in the atmosphere has been suggested to be a leading contributor to global climate change. To slow the increase, reductions in anthropogenic CO(2) emissions are necessary. Large emission point sources, such as fossil-fuel-based power generation facilities, are the first targets for these reductions. A benchmark, mature technology for the separation of dilute CO(2) from gas streams is via absorption with aqueous amines. However, the use of solid adsorbents is now being widely considered as an alternative, potentially less-energy-intensive separation technology. This Review describes the CO(2) adsorption behavior of several different classes of solid carbon dioxide adsorbents, including zeolites, activated carbons, calcium oxides, hydrotalcites, organic-inorganic hybrids, and metal-organic frameworks. These adsorbents are evaluated in terms of their equilibrium CO(2) capacities as well as other important parameters such as adsorption-desorption kinetics, operating windows, stability, and regenerability. The scope of currently available CO(2) adsorbents and their critical properties that will ultimately affect their incorporation into large-scale separation processes is presented.

  11. Ear-like poly (acrylic acid)-activated carbon nanocomposite: A highly efficient adsorbent for removal of Cd(II) from aqueous solutions.

    PubMed

    Ge, Huacai; Wang, Jincui

    2017-02-01

    Poly (acrylic acid) modified activated carbon nanocomposite (PAA-AC) was synthesized. The structure and morphology of this nanocomposite were characterized by FTIR, SEM, TEM, XRD and Zeta potential. The adsorption of some heavy metal ions on PAA-AC was studied. The characterization results indicated that PAA-AC was a novel and ear-like nanosheet material with the thickness of about 40 nm and the diameter of about 300 nm. The adsorption results exhibited that the introduction of carboxyl groups into activated carbon evidently increased the uptake for heavy metal ions and the nanocomposite had maximum uptake for Cd(II). Various variables affecting adsorption of PAA-AC for Cd(II) were systematically explored. The maximum capacity and equilibrium time for adsorption of Cd(II) by PAA-AC were 473.2 mg g(-1) and 15 min. Moreover, the removal of Cd(II) for real electroplating wastewater by PAA-AC could reach 98.5%. These meant that the removal of Cd(II) by PAA-AC was highly efficient and fast. The sorption kinetics and isotherm fitted well with the pseudo-second-order model and Langmuir model, respectively. The adsorption mainly was a chemical process by chelation. Thermodynamic studies revealed that the adsorption was a spontaneous and endothermic process. The results revealed that PAA-AC could be considered as a potential candidate for Cd(II) removal.

  12. Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants.

    PubMed

    Fernandez, M E; Ledesma, B; Román, S; Bonelli, P R; Cukierman, A L

    2015-05-01

    Activated hydrochars obtained from the hydrothermal carbonization of orange peels (Citrus sinensis) followed by various thermochemical processing were assessed as adsorbents for emerging contaminants in water. Thermal activation under flows of CO2 or air as well as chemical activation with phosphoric acid were applied to the hydrochars. Their characteristics were analyzed and related to their ability to uptake three pharmaceuticals (diclofenac sodium, salicylic acid and flurbiprofen) considered as emerging contaminants. The hydrothermal carbonization and subsequent activations promoted substantial chemical transformations which affected the surface properties of the activated hydrochars; they exhibited specific surface areas ranging from 300 to ∼620 m(2)/g. Morphological characterization showed the development of coral-like microspheres dominating the surface of most hydrochars. Their ability to adsorb the three pharmaceuticals selected was found largely dependent on whether the molecules were ionized or in their neutral form and on the porosity developed by the new adsorbents.

  13. Fabrication and evaluation of magnetic activated carbon as adsorbent for ultrasonic assisted magnetic solid phase dispersive extraction of bisphenol A from milk prior to high performance liquid chromatographic analysis with ultraviolet detection.

    PubMed

    Filippou, Olga; Deliyanni, Eleni A; Samanidou, Victoria F

    2017-01-06

    In the present study, the impregnation of a micro - meso porous activated carbon with magnetite (Fe3O4) was successfully achieved by sonication and the magnetic activated carbon prepared (Bmi) was evaluated as a new adsorbent for ultrasonic assisted magnetic solid phase dispersive extraction of Bisphenol A (BPA) from cow milk and human breast milk samples, prior to the determination by HPLC with UV detection. The prepared Bmi was characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The effect of pH on adsorption, initial concentration, contact time and desorption were studied. The main experimental parameters influencing extraction efficiency of BPA, such as type and amount of the adsorbent, sample amount, type of desorption solvent, time of adsorption and desorption, type of precipitation solvent, were investigated and optimized. Under the optimal extraction conditions the absolute recovery of BPA was 81% and 95% in cow milk and human breast milk samples, respectively. Good linearity was observed in the investigated concentration range of 2.5μgkg(-1)-5000μgkg(-1) (R(2)=0.9997). Limit of detection (LOD) was 0.75μgL(-1), which is in accordance with the specific migration limit (SML) established by the European Union, and limit of quantification (LOQ) was 2.5μgL(-1). Within-day and between-day recoveries ranged from 91.4% to 98.6% and 89.1% to 99.4% respectively and the RSDs were less than 3.7%. Due to the excellent magnetic behavior of Bmi the proposed method was shown to be simple and rapid. Besides these, this method is sensitive, low cost, efficient and environmentally friendly.

  14. Fluoride removal in water by a hybrid adsorbent lanthanum-carbon.

    PubMed

    Vences-Alvarez, Esmeralda; Velazquez-Jimenez, Litza Halla; Chazaro-Ruiz, Luis Felipe; Diaz-Flores, Paola E; Rangel-Mendez, Jose Rene

    2015-10-01

    Various health problems associated with drinking water containing high fluoride levels, have motivated researchers to develop more efficient adsorbents to remove fluoride from water for beneficial concentrations to human health. The objective of this research was to anchor lanthanum oxyhydroxides on a commercial granular activated carbon (GAC) to remove fluoride from water considering the effect of the solution pH, and the presence of co-existing anions and organic matter. The activated carbon was modified with lanthanum oxyhydroxides by impregnation. SEM and XRD were performed in order to determine the crystal structure and morphology of the La(III) particles anchored on the GAC surface. FT-IR and pK(a)'s distribution were determined in order to elucidate both the possible mechanism of the lanthanum anchorage on the activated carbon surface and the fluoride adsorption mechanism on the modified material. The results showed that lanthanum ions prefer binding to carboxyl and phenolic groups on the activated carbon surface. Potentiometric titrations revealed that the modified carbon (GAC-La) possesses positive charge at a pH lower than 9. The adsorption capacity of the modified GAC increased five times in contrast to an unmodified GAC adsorption capacity at an initial F(-) concentration of 20 mg L(-1). Moreover, the presence of co-existing anions had no effect on the fluoride adsorption capacity at concentrations below 30 mg L(-1), that indicated high F(-) affinity by the modified adsorbent material (GAG-La).

  15. Adsorbed Methane Film Properties in Nanoporous Carbon Monoliths

    NASA Astrophysics Data System (ADS)

    Soo, Yuchoong; Chada, Nagaraju; Beckner, Matthew; Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter

    2013-03-01

    Carbon briquetting can increase methane storage capacity by reducing the useless void volume resulting in a better packing density. It is a robust and efficient space-filling form for an adsorbed natural gas vehicle storage tank. To optimize methane storage capacity, we studied three fabrication process parameters: carbon-to-binder ratio, compaction temperature, and pyrolysis temperature. We found that carbon-to-binder ratio and pyrolysis temperature both have large influences on monolith uptakes. We have been able to optimize these parameters for high methane storage. All monolith uptakes (up to 260 bar) were measured by a custom-built, volumetric, reservoir-type instrument. The saturated film density and the film thickness was determined using linear extrapolation on the high pressure excess adsorption isotherms. The saturated film density was also determined using the monolayer Ono-Kondo model. Film densities ranged from ca. 0.32 g/cm3 - 0.37 g/cm3.The Ono-Kondo model also determines the binding energy of methane. Binding energies were also determined from isosteric heats calculated from the Clausius-Clapeyron equation and compared with the Ono-Kondo model method. Binding energies from Ono-Kondo were ca. 7.8 kJ/mol - 10 kJ/mol. Work funded by California Energy Commission Contract #500-08-022.

  16. The Structure and Properties of Carbon Fiber Based Adsorbent Monoliths

    SciTech Connect

    Burchell, T.; Judkins, R.R.; Rogers, M.R.; Shaw, W.S.

    1998-11-06

    Carbon fiber monoliths manufactured by a novel slurry molding process from isotropic pitch-derived fibers are being developed at ORNL for gas separation and storage applications [1]. Low density (p = 0.2 - 0,3 g/cm3) monoliths have been successfully demonstrated to have an acceptable pressure drop for gas separation applications and are currently being developed for C02/CH4 separations, whereas monoliths with densities in the range p = 0.4 - 0.6 g/cm3 have been "shown to have natural gas storage capacities of >100 VIV at 500 psi pressure and room temperature. Thermal conductivity, as a function of temperature, was measured using the LASER flash, thermal- pulse method. Another approach to minimizing the temperature gradients that develop in a storage bed is to increase the thermal conductivity of the adsorbent carbon. To this end, we have developed hybrid monoliths that contain small fractions of mesophase pitch- derived carbon fibers. Our hybrid monoliths exhibit thermal conductivities in the range 0.2-0.9 W/m.K depending on the blend and density of the monolith. In comparison, a packed bed of granular carbon at comparable density would have a thermal conductivity of approximately 0.1 W/m.K [ 1 ]. The thermal conductivities of several of the hybrid The improved thermal conductivity of our monoliths is attributed to the bonding between the fibers and the incorporation of high thermal conductivity, mesophase pitch-derived carbon fibers. These features are visible in the SEM micrograph in Fig. 4.

  17. Carbonized material adsorbents for the removal of mercury from aqueous solutions

    SciTech Connect

    Ishihara, S.; Pulido, L.L.; Kajimoto, T.

    1996-12-31

    Although wood has essentially been excluded as a starting material for the production of granular activated carbon because of the poor strength and friability of the products, powdered wood based activated carbons are still being used in water treatment and other liquid phase applications. However, the capability of powdered wood-based charcoal which in itself porous has not been fully known. Few studies have been conducted in harnessing its potential for adsorption purposes especially in water treatment. This study was conducted to investigate the possibility of using wood based carbonized materials from Sugi (Cryptomeria japonica D. Don) as adsorption materials in aqueous solutions of heavy metals like mercury, zinc, lead, cadmium and arsenic. However, of all the heavy metals investigated, mercury is considered to be the most toxic so this paper describes only the adsorption ability of the carbonized materials in adsorbing this metal from aqueous solutions of different concentrations.

  18. Adsorbed Natural Gas Storage in Optimized High Surface Area Microporous Carbon

    NASA Astrophysics Data System (ADS)

    Romanos, Jimmy; Rash, Tyler; Nordwald, Erik; Shocklee, Joshua Shawn; Wexler, Carlos; Pfeifer, Peter

    2011-03-01

    Adsorbed natural gas (ANG) is an attractive alternative technology to compressed natural gas (CNG) or liquefied natural gas (LNG) for the efficient storage of natural gas, in particular for vehicular applications. In adsorbants engineered to have pores of a few molecular diameters, a strong van der Walls force allows reversible physisorption of methane at low pressures and room temperature. Activated carbons were optimized for storage by varying KOH:C ratio and activation temperature. We also consider the effect of mechanical compression of powders to further enhance the volumetric storage capacity. We will present standard porous material characterization (BET surface area and pore-size distribution from subcritical N2 adsorption) and methane isotherms up to 250 bar at 293K. At sufficiently high pressure, specific surface area, methane binding energy and film density can be extracted from supercritical methane adsorption isotherms. Research supported by the California Energy Commission (500-08-022).

  19. Biomass waste carbon materials as adsorbents for CO2 capture under post-combustion conditions

    NASA Astrophysics Data System (ADS)

    Calvo-Muñoz, Elisa; García-Mateos, Francisco José; Rosas, Juana; Rodríguez-Mirasol, José; Cordero, Tomás

    2016-05-01

    A series of porous carbon materials obtained from biomass waste have been synthesized, with different morphologies and structural properties, and evaluated as potential adsorbents for CO2 capture in post-combustion conditions. These carbon materials present CO2 adsorption capacities, at 25 ºC and 101.3 kPa, comparable to those obtained by other complex carbon or inorganic materials. Furthermore, CO2 uptakes under these conditions can be well correlated to the narrow micropore volume, derived from the CO2 adsorption data at 0 ºC (VDRCO2). In contrast, CO2 adsorption capacities at 25 ºC and 15 kPa are more related to only pores of sizes lower than 0.7 nm. The capacity values obtained in column adsorption experiments were really promising. An activated carbon fiber obtained from Alcell lignin, FCL, presented a capacity value of 1.3 mmol/g (5.7 %wt). Moreover, the adsorption capacity of this carbon fiber was totally recovered in a very fast desorption cycle at the same operation temperature and total pressure and, therefore, without any additional energy requirement. Thus, these results suggest that the biomass waste used in this work could be successfully valorized as efficient CO2 adsorbent, under post-combustion conditions, showing excellent regeneration performance.

  20. Dynamics of benzene vapor adsorption on carbon adsorbents having different volumes of transporting pores

    SciTech Connect

    Ivakhnyuk, G.K.; Fedorov, N.F.; Babkin, O.E.; Smetanin, G.N.; Belotserkovskii, G.M.

    1986-08-20

    To ascertain the effect of the porosity peculiarities on the benzene vapor adsorption process under dynamic conditions, a series of adsorbents was synthesized in this work from zirconium carbide. Their porous structure was studied by a traditional set of methods, viz., pycnometric, porometric, and sorption. Carbon adsorbents derived from zirconium carbide have an open-pore system of adsorbing pores which communicate directly with the outer surface. Transporting porosity of carbon adsorbents derived from zirconium carbide does not affect the mass transport processes during adsorption of benzene vapors on them under the conditions of a dynamic experiment.

  1. Hydrogen storage using carbon adsorbents: past, present and future

    NASA Astrophysics Data System (ADS)

    Dillon, A. C.; Heben, M. J.

    2001-03-01

    Interest in hydrogen as a fuel has grown dramatically since 1990, and many advances in hydrogen production and utilization technologies have been made. However, hydrogen storage technologies must be significantly advanced if a hydrogen based energy system, particularly in the transportation sector, is to be established. Hydrogen can be made available on-board vehicles in containers of compressed or liquefied H2, in metal hydrides, via chemical storage or by gas-on-solid adsorption. Although each method possesses desirable characteristics, no approach satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. Gas-on-solid adsorption is an inherently safe and potentially high energy density hydrogen storage method that could be extremely energy efficient. Consequently, the hydrogen storage properties of high surface area ``activated'' carbons have been extensively studied. However, activated carbons are ineffective in storing hydrogen because only a small fraction of the pores in the typically wide pore-size distribution are small enough to interact strongly with hydrogen molecules at room temperatures and moderate pressures. Recently, many new carbon nanostructured absorbents have been produced including graphite nanofibers and carbon multi-wall and single-wall nanotubes. The following review provides a brief history of the hydrogen adsorption studies on activated carbons and comments on the recent experimental and theoretical investigations of the hydrogen adsorption properties of the new nanostructured carbon materials.

  2. 40 CFR 65.152 - Carbon adsorbers used as control devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cycle, and a carbon-bed temperature monitoring device capable of recording the carbon bed temperature... regeneration stream flow per regeneration cycle and the temperature of the carbon-bed determined within 15... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Carbon adsorbers used as...

  3. 40 CFR 65.152 - Carbon adsorbers used as control devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cycle, and a carbon-bed temperature monitoring device capable of recording the carbon bed temperature... regeneration stream flow per regeneration cycle and the temperature of the carbon-bed determined within 15... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Carbon adsorbers used as...

  4. 40 CFR 65.152 - Carbon adsorbers used as control devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cycle, and a carbon-bed temperature monitoring device capable of recording the carbon bed temperature... regeneration stream flow per regeneration cycle and the temperature of the carbon-bed determined within 15... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Carbon adsorbers used as...

  5. 40 CFR 65.152 - Carbon adsorbers used as control devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cycle, and a carbon-bed temperature monitoring device capable of recording the carbon bed temperature... regeneration stream flow per regeneration cycle and the temperature of the carbon-bed determined within 15... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Carbon adsorbers used as...

  6. 40 CFR 65.152 - Carbon adsorbers used as control devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cycle, and a carbon-bed temperature monitoring device capable of recording the carbon bed temperature... regeneration stream flow per regeneration cycle and the temperature of the carbon-bed determined within 15... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Carbon adsorbers used as...

  7. Selective adsorption for removal of nitrogen compounds from hydrocarbon streams over carbon-based adsorbents

    NASA Astrophysics Data System (ADS)

    Almarri, Masoud S.

    The ultimate goal of this thesis is to develop a fundamental understanding of the role of surface oxygen functional groups on carbon-based adsorbents in the adsorption of nitrogen compounds that are known to be present in liquid fuels. N2 adsorption was used to characterize pore structures. The surface chemical properties of the adsorbents were characterized by X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD) techniques with a mass spectrometer to identify and quantify the type and concentration of oxygen functional groups on the basis of CO2 and CO evolution profiles. It was found that although surface area and pore size distribution are important for the adsorption process, they are not primary factors in the adsorption of nitrogen compounds. On the other hand, both the type and concentration of surface oxygen-containing functional groups play an important role in determining adsorptive denitrogenation performance. Higher concentrations of the oxygen functional groups on the adsorbents resulted in a higher adsorption capacity for the nitrogen compounds. A fundamental insight was gained into the contributions of different oxygen functional groups by analyzing the changes in the monolayer maximum adsorption capacity, qm, and the adsorption constant, K, for nitrogen compounds on different activated carbons. Acidic functional groups such as carboxylic acids and carboxylic anhydrides appear to contribute more to the adsorption of quinoline, while the basic oxygen functional groups such as carbonyls and quinones enhance the adsorption of indole. Despite the high number of publications on the adsorptive desulfurization of liquid hydrocarbon fuels, these studies did not consider the presence of coexisting nitrogen compounds. It is well-known that, to achieve ultraclean diesel fuel, sulfur must be reduced to a very low level, where the concentrations of nitrogen and sulfur compounds are comparable. The adsorptive denitrogenation and

  8. Carbon-Based Adsorbents for Postcombustion CO2 Capture: A Critical Review.

    PubMed

    Creamer, Anne Elise; Gao, Bin

    2016-07-19

    The persistent increase in atmospheric CO2 from anthropogenic sources makes research directed toward carbon capture and storage imperative. Current liquid amine absorption technology has several drawbacks including hazardous byproducts and a high-energy requirement for regeneration; therefore, research is ongoing to develop more practical methods for capturing CO2 in postcombustion scenarios. The unique properties of carbon-based materials make them specifically promising for CO2 adsorption at low temperature and moderate to high partial pressure. This critical review aims to highlight the development of carbon-based solid sorbents for postcombustion CO2 capture. Specifically, it provides an overview of postcombustion CO2 capture processes with solid adsorbents and discusses a variety of carbon-based materials that could be used. This review focuses on low-cost pyrogenic carbon, activated carbon (AC), and metal-carbon composites for CO2 capture. Further, it touches upon the recent progress made to develop metal organic frameworks (MOFs) and carbon nanomaterials and their general CO2 sorption potential.

  9. Activation volumes of enzymes adsorbed on silica particles.

    PubMed

    Schuabb, Vitor; Czeslik, Claus

    2014-12-30

    The immobilization of enzymes on carrier particles is useful in many biotechnological processes. In this way, enzymes can be separated from the reaction solution by filtering and can be reused in several cycles. On the other hand, there is a series of examples of free enzymes in solution that can be activated by the application of pressure. Thus, a potential loss of enzymatic activity upon immobilization on carrier particles might be compensated by pressure. In this study, we have determined the activation volumes of two enzymes, α-chymotrypsin (α-CT) and horseradish peroxidase (HRP), when they are adsorbed on silica particles and free in solution. The experiments have been carried out using fluorescence assays under pressures up to 2000 bar. In all cases, activation volumes were found to depend on the applied pressure, suggesting different compressions of the enzyme-substrate complex and the transition state. The volume profiles of free and adsorbed HRP are similar. For α-CT, larger activation volumes are found in the adsorbed state. However, up to about 500 bar, the enzymatic reaction of α-CT, which is adsorbed on silica particles, is characterized by a negative activation volume. This observation suggests that application of pressure might indeed be useful to enhance the activity of enzymes on carrier particles.

  10. Free-standing carbon nanotube/graphene hybrid papers as next generation adsorbents.

    PubMed

    Dichiara, Anthony B; Sherwood, Tyler J; Benton-Smith, Jared; Wilson, Jonathan C; Weinstein, Steven J; Rogers, Reginald E

    2014-06-21

    The adsorption of a series of aromatic compounds from aqueous solution onto purified, free-standing single-walled carbon nanotube/graphene nanoplatelet hybrid papers is studied both experimentally and theoretically. Experimental data is obtained via changes in optical absorption spectra of the aqueous solutions and is used to extract all parameters required to implement a semi-empirical mass-transfer model. Agreement between experiment and theory is excellent and data from all compounds can be cast on a universal adsorption curve. Results indicate that the rate of adsorption and long-time capacity of many aromatic compounds on hybrid paper adsorbent significantly exceeds that of activated carbon by at least an order of magnitude. The combination of carbon nanotubes and graphene also promotes on the order of a 25% improvement in adsorption rates and capacities than either component alone. Hybrid nanocomposites show significant promise as adsorption materials used for environmental remediation efforts.

  11. Carbonized material adsorbents for the removal of mercury from aqueous solutions

    SciTech Connect

    1996-10-01

    Charcoal in itself is porous making it an excellent material for activated charcoal manufacture. However, few studies have been conducted in harnessing its potential for adsorption purposes, especially in water treatment. This paper describes the possibility of utilizing charcoal materials from Sugi (Cryptomeria japonica) for adsorbing heavy metals like mercury from aqueous solutions of different concentrations. The effect of soaking time, pore analyses and chemical properties on the adsorption capabilities of the carbonized materials were discussed. The pH value and chemical oxygen demand (COD) monitored during the soaking period were also described.

  12. Evidence for Adsorbate-Enhanced Field Emission from Carbon Nanotube Fibers (Postprint)

    DTIC Science & Technology

    2013-07-31

    microscopy from single wall nanotube ( SWNT ) caps,9 and by current satura- tion measurements10 from adsorbate-covered SWNTs , were consistent with this...assertion. Comparison of the FE electron energy distributions acquired from clean and adsorbate- covered SWNTs led11 to the conclusion that enhancement...Residual Gas Analysis FE Field Emission CNT Carbon Nanotube SWNT Single Wall Nanotube CSA Chlorosulfonic Acid

  13. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents

    DOEpatents

    Gaffney, T.R.; Golden, T.C.; Mayorga, S.G.; Brzozowski, J.R.; Taylor, F.W.

    1999-06-29

    A pressure swing adsorption process for absorbing CO[sub 2] from a gaseous mixture containing CO[sub 2] comprises introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100 C and 500 C to adsorb CO[sub 2] to provide a CO[sub 2] laden alumina adsorbent and a CO[sub 2] depleted gaseous mixture and contacting the CO[sub 2] laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO[sub 2] from the CO[sub 2] laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100 C and 600 C, is not degraded by high concentrations of water under process operating conditions. 1 fig.

  14. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents

    DOEpatents

    Gaffney, Thomas Richard; Golden, Timothy Christopher; Mayorga, Steven Gerard; Brzozowski, Jeffrey Richard; Taylor, Fred William

    1999-01-01

    A pressure swing adsorption process for absorbing CO.sub.2 from a gaseous mixture containing CO.sub.2 comprising introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100.degree. C. and 500.degree. C. to adsorb CO.sub.2 to provide a CO.sub.2 laden alumina adsorbent and a CO.sub.2 depleted gaseous mixture and contacting the CO.sub.2 laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO.sub.2 from the CO.sub.2 laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100.degree. C. and 600.degree. C., is not degraded by high concentrations of water under process operating conditions.

  15. Interaction between adsorbed hydrogen and potassium on a carbon nanocone containing material as studied by photoemission

    SciTech Connect

    Yu, Xiaofeng; Raaen, Steinar

    2015-09-14

    Hydrogen adsorption on a potassium doped carbon nanocone containing material was studied by photoelectron spectroscopy and work function measurement. The valence band spectra indicate that there is charge transfer from potassium to carbon. Upon deposition on carbon potassium is in its ionic state for lower doping and shows both ionic and metallic behavior at higher doping. Adsorption of hydrogen facilitates diffusion of potassium on the carbon material as seen by changes in the K{sub 2p} core level spectrum. Variations in the measured sample work function indicate that hydrogen initially adsorb on the K dopants and subsequently adsorb on the carbon cone containing material.

  16. Preparation and characterization of novel carbon dioxide adsorbents based on polyethylenimine-modified Halloysite nanotubes.

    PubMed

    Cai, Haohao; Bao, Feng; Gao, Jie; Chen, Tao; Wang, Si; Ma, Rui

    2015-01-01

    New nano-sized carbon dioxide (CO2) adsorbents based on Halloysite nanotubes impregnated with polyethylenimine (PEI) were designed and synthesized, which were excellent adsorbents for the capture of CO2 at room temperature and had relatively high CO2 adsorption capacity. The prepared adsorbents were characterized by various techniques such as Fourier transform infrared spectrometry, gel permeation chromatography, dynamic light scattering, thermogravimetry, thermogravimetry-Fourier transform-infrared spectrometry, scanning electron microscopy and transmission electron microscopy. The adsorption characteristics and capacity were studied at room temperature, the highest CO2 adsorption capacity of 156.6 mg/g-PEI was obtained and the optimal adsorption capacity can reach a maximum value of 54.8 mg/g-adsorbent. The experiment indicated that this kind of adsorbent has a high stability at 80°C and PEI-impregnated adsorbents showed good reversibility and stability during cyclic adsorption-regeneration tests.

  17. Mesoporous carbon adsorbents from melamine-formaldehyde resin using nanocasting technique for CO2 adsorption.

    PubMed

    Goel, Chitrakshi; Bhunia, Haripada; Bajpai, Pramod K

    2015-06-01

    Mesoporous carbon adsorbents, having high nitrogen content, were synthesized via nanocasting technique with melamine-formaldehyde resin as precursor and mesoporous silica as template. A series of adsorbents were prepared by varying the carbonization temperature from 400 to 700°C. Adsorbents were characterized thoroughly by nitrogen sorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), elemental (CHN) analysis, Fourier transform infrared (FTIR) spectroscopy and Boehm titration. Carbonization temperature controlled the properties of the synthesized adsorbents ranging from surface area to their nitrogen content, which play major role in their application as adsorbents for CO2 capture. The nanostructure of these materials was confirmed by XRD and TEM. Their nitrogen content decreased with an increase in carbonization temperature while other properties like surface area, pore volume, thermal stability and surface basicity increased with the carbonization temperature. These materials were evaluated for CO2 adsorption by fixed-bed column adsorption experiments. Adsorbent synthesized at 700°C was found to have the highest surface area and surface basicity along with maximum CO2 adsorption capacity among the synthesized adsorbents. Breakthrough time and CO2 equilibrium adsorption capacity were investigated from the breakthrough curves and were found to decrease with increase in adsorption temperature. Adsorption process for carbon adsorbent-CO2 system was found to be reversible with stable adsorption capacity over four consecutive adsorption-desorption cycles. From three isotherm models used to analyze the equilibrium data, Temkin isotherm model presented a nearly perfect fit implying the heterogeneous adsorbent surface.

  18. Extraction of palladium from acidic solutions with the use of carbon adsorbents

    SciTech Connect

    O.N. Kononova; N.G. Goryaeva; N.B. Dostovalova; S.V. Kachin; A.G. Kholmogorov

    2007-08-15

    We studied the sorption of palladium(II) on LKAU-4, LKAU-7, and BAU carbon adsorbents from model hydrochloric acid solutions and the solutions of spent palladium-containing catalysts. It was found that sorbents based on charcoal (BAU) and anthracite (LKAU-4) were characterized by high sorption capacities for palladium. The kinetics of the saturation of carbon adsorbents with palladium(II) ions was studied, and it was found that more than 60% of the initial amount of Pd(II) was recovered in a 1-h contact of an adsorbent with a model solution. This value for the solutions of spent catalysts was higher than 35%.

  19. Activity of alkaline phosphatase adsorbed and grafted on "polydopamine" films.

    PubMed

    Ball, Vincent

    2014-09-01

    The oxidation of dopamine in slightly basic solutions and in the presence of oxygen as an oxidant allows for the deposition of dopamine-eumelanin ("polydopamine") films on almost all kinds of materials allowing for an easy secondary functionalization. Molecules carrying nucleophilic groups like thiols and amines can be easily grafted on those films. Herein we show that alkaline phosphatase (ALP), as a model enzyme, adsorbs to "polydopamine" films and part of the adsorbed enzyme is rapidly desorbed in contact with Tris buffer. However a significant part of the enzyme remains irreversibly adsorbed and keeps some enzymatic activity for at least 2 weeks whereas ALP adsorbed on quartz slides is rapidly and quantitatively deactivated. In addition we estimated the Michaelis constant Km of the enzyme irreversibly bound to the "polydopamine" film. The Michaelis constant, and hence the affinity constant between paranitrophenol phosphate and ALP are almost identical between the enzyme bound on the film and the free enzyme in solution. Complementarily, it was found that "polydopamine" films display some phosphatase like catalytic activity.

  20. Adsorption of Single and Binary Gases on Polystyrene and Carbon Adsorbents

    NASA Astrophysics Data System (ADS)

    Rothstein, Daniel P.

    Time-dependent transmissions of light organic gases at low concentrations through crosslinked polystyrene and activated carbon adsorbents were measured and analyzed to extract kinetic and equilibrium parameters and to evaluate these parameters in terms of several models of adsorption. Mass -balance in the adsorber bed allows calculation of the equilibrium adsorbed-phase concentration and the model-independent adsorption capacity. Adsorption isotherms are calculated from transmission curves for eight light organic gases adsorbed on polystyrene at several temperatures. The power-law forms of the Freundlich and Chakravarti-Dhar isotherms and the concentration-dependent adsorption capacities indicate heterogeneous adsorption well below monolayer coverage. The effects of heterogeneity increase as non-linearity of the isotherm increases. A mesopore structure is indicated for polystyrene. Characteristic curves are independent of temperature, but the use of an affinity coefficient is not able to demonstrate their independence of adsorbate. Isosteric hearts of adsorption are larger than the heats of vaporization and decrease with increasing surface coverage for three alkanes adsorbed on polystyrene. The transmission curves of several binary mixtures of gases with non-linear isotherms reveal adsorption interference, with adsorption capacities smaller than those from single -component experiments. The pairs with unequal adsorption capacities exhibit displacement, in qualitative agreement with adsorption interference models. The equilibrium adsorption of the binary mixtures cannot be reproduced by single-component isotherm parameters alone, but are described by modified Freundlich isotherms requiring binary experiments. Adsorption in a porous medium is described by a model including four dynamic processes: gas- and solid -phase diffusion, interfacial mass-transfer resistance, and a first-order chemical reaction. A new time-dependent solution to the differential equations of

  1. Adlayer structure dependent ultrafast desorption dynamics in carbon monoxide adsorbed on Pd (111)

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Young; Xu, Pan; Camillone, Nina R.; White, Michael G.; Camillone, Nicholas

    2016-07-01

    We report our ultrafast photoinduced desorption investigation of the coverage dependence of substrate-adsorbate energy transfer in carbon monoxide adlayers on the (111) surface of palladium. As the CO coverage is increased, the adsorption site population shifts from all threefold hollows (up to 0.33 ML), to bridge and near bridge (>0.5 to 0.6 ML) and finally to mixed threefold hollow plus top site (at saturation at 0.75 ML). We show that between 0.24 and 0.75 ML this progression of binding site motifs is accompanied by two remarkable features in the ultrafast photoinduced desorption of the adsorbates: (i) the desorption probability increases roughly two orders magnitude, and (ii) the adsorbate-substrate energy transfer rate observed in two-pulse correlation experiments varies nonmonotonically, having a minimum at intermediate coverages. Simulations using a phenomenological model to describe the adsorbate-substrate energy transfer in terms of frictional coupling indicate that these features are consistent with an adsorption-site dependent electron-mediated energy coupling strength, ηel, that decreases with binding site in the order: three-fold hollow > bridge and near bridge > top site. This weakening of ηel largely counterbalances the decrease in the desorption activation energy that accompanies this progression of adsorption site motifs, moderating what would otherwise be a rise of several orders of magnitude in the desorption probability. Within this framework, the observed energy transfer rate enhancement at saturation coverage is due to interadsorbate energy transfer from the copopulation of molecules bound in three-fold hollows to their top-site neighbors.

  2. Removal performance of elemental mercury by low-cost adsorbents prepared through facile methods of carbonisation and activation of coconut husk.

    PubMed

    Johari, Khairiraihanna; Alias, Afidatul Shazwani; Saman, Norasikin; Song, Shiow Tien; Mat, Hanapi

    2015-01-01

    The preparation of chars and activated carbon as low-cost elemental mercury adsorbents was carried out through the carbonisation of coconut husk (pith and fibre) and the activation of chars with potassium hydroxide (KOH), respectively. The synthesised adsorbents were characterised by using scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption/desorption analysis. The elemental mercury removal performance was measured using a conventional flow type packed-bed adsorber. The physical and chemical properties of the adsorbents changed as a result of the carbonisation and activation process, hence affecting on the extent of elemental mercury adsorption. The highest elemental mercury (Hg°) adsorption capacity was obtained for the CP-CHAR (3142.57 µg g(-1)), which significantly outperformed the pristine and activated carbon adsorbents, as well as higher than some adsorbents reported in the literature.

  3. Application of a novel magnetic carbon nanotube adsorbent for removal of mercury from aqueous solutions.

    PubMed

    Homayoon, Farshid; Faghihian, Hossein; Torki, Firoozeh

    2017-04-01

    In this research, multiwall carbon nanotube was magnetized and subsequently functionalized by thiosemicarbazide. After characterization by FTIR, BET, SEM, EDAX, and VSM techniques, the magnetized adsorbent (multi-walled carbon nanotubes (MWCNTs)/Fe3O4) was used for removal of Hg(2+) from aqueous solutions and the experimental conditions were optimized. The adsorption capacity of 172.83 mg g(-1) was obtained at 25 °C and pH = 3 which was superior to the value obtained for initial multiwall carbon nanotube, magnetized sample, and many previously reported values. In the presence of Pb(+2) and Cd(+2), the adsorbent was selective towards mercury when their concentration was respectively below 50 and 100 mg L(-1). The adsorption process was kinetically fast and the equilibration was attained within 60 min with 69.5% of the capacity obtained within 10 min. The used adsorbent was regenerated by HNO3 solution, and the regenerated adsorbent retained 92% of its initial capacity. The magnetic sensitivity of the adsorbent allowed the simple separation of the used adsorbent from the solution by implying an appropriate external magnetic field. The adsorption data was well fitted to the Langmuir isotherm model, indicating homogeneous and monolayer adsorption of mercury by the adsorbent.

  4. Food wastes derived adsorbents for carbon dioxide and benzene gas sorption.

    PubMed

    Opatokun, Suraj Adebayo; Prabhu, Azhagapillai; Al Shoaibi, Ahmed; Srinivasakannan, C; Strezov, Vladimir

    2017-02-01

    Food wastes are produced worldwide in large quantities that could have potential to produce higher value products, including industrial adsorbents. The present work attempts valorization of food waste by CO2 activation and functionalization through nitric acid and melamine treatment. The prepared porous materials were subjected to gas phase adsorption of CO2 and benzene gases. The resultant highly porous carbon materials with surface area range from 797 to 1025 m(2)/g were synthesized showing uptake capacities of 4.41, 4.07, 4.18 and 4.36 mmol/g of CO2 and 345, 305, 242.5 and 380.7 mg/g of C6H6 respectively for PyF515, PyF520, PyF715 and PyF720 in the absence of doped carbon matrix. Differential thermogravimetric (DTG) analysis showed the thermostability of the precursors to validate selected initial pyrolysis temperatures (500 and 700 °C). C6H6 sorption lies mainly in the physisorption region for all adsorbents ensuring re-generation potential. PyF720 and PyF520 recorded the highest isosteric enthalpy of 64.4 kJ/mol and 48.7 kJ/mol respectively, despite the low degree of coverage of the latter. Thus, PyF515 and PyF720 demonstrated the potential for use as sustainable and cost effective adsorbents for benzene gas containment suitable for swing adsorption system.

  5. Development of nitrogen enriched nanostructured carbon adsorbents for CO2 capture.

    PubMed

    Goel, Chitrakshi; Bhunia, Haripada; Bajpai, Pramod K

    2015-10-01

    Nanostructured carbon adsorbents containing high nitrogen content were developed by templating melamine-formaldehyde resin in the pores of mesoporous silica by nanocasting technique. A series of adsorbents were prepared by altering the carbonization temperature from 400 to 700 °C and characterized in terms of their textural and morphological properties. CO2 adsorption performance was investigated at various temperatures from 30 to 100 °C by using a thermogravimetric analyzer under varying CO2 concentrations. Multiple adsorption-desorption experiments were also carried out to investigate the adsorbent regenerability. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the development of nanostructured materials. Fourier transform infrared spectroscopy (FTIR) and elemental analysis indicated the development of carbon adsorbents having high nitrogen content. The surface area and pore volume of the adsorbent carbonized at 700 °C were found to be 266 m(2) g(-1) and 0.25 cm(3) g(-1) respectively. CO2 uptake profile for the developed adsorbents showed that the maximum CO2 adsorption occurred within ca. 100 s. CO2 uptake of 0.792 mmol g(-1) at 30 °C was exhibited by carbon obtained at 700 °C with complete regenerability in three adsorption-desorption cycles. Furthermore, kinetics of CO2 adsorption on the developed adsorbents was studied by fitting the experimental data of CO2 uptake to three kinetic models with best fit being obtained by fractional order kinetic model with error% within range of 5%. Adsorbent surface was found to be energetically heterogeneous as suggested by Temkin isotherm model. Also the isosteric heat of adsorption for CO2 was observed to increase from ca. 30-44 kJ mol(-1) with increase in surface coverage.

  6. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption

    PubMed Central

    Choi, Woosung; Min, Kyungmin; Kim, Chaehoon; Ko, Young Soo; Jeon, Jae Wan; Seo, Hwimin; Park, Yong-Ki; Choi, Minkee

    2016-01-01

    Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g−1) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation. PMID:27572662

  7. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption.

    PubMed

    Choi, Woosung; Min, Kyungmin; Kim, Chaehoon; Ko, Young Soo; Jeon, Jae Wan; Seo, Hwimin; Park, Yong-Ki; Choi, Minkee

    2016-08-30

    Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g(-1)) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation.

  8. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption

    NASA Astrophysics Data System (ADS)

    Choi, Woosung; Min, Kyungmin; Kim, Chaehoon; Ko, Young Soo; Jeon, Jae Wan; Seo, Hwimin; Park, Yong-Ki; Choi, Minkee

    2016-08-01

    Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g-1) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation.

  9. Solvent-regenerated activated carbon

    SciTech Connect

    McLaughlin, H. )

    1988-07-01

    This report summarizes the results of a University/Industry research project, sponsored by the New York State Energy Research and Development Authority and Fluids Design Corporation. The research project studied the solvent regeneration of activated carbon. Activate carbon was used to remove trace organics from aqueous streams, then regenerated by desorbing the adsorbates with organic solvents. The project included a survey of the potential applications in New York State industries, fundamental research on the adsorption/desorption phenomena, and design of a full-scale process. The economics of the full-scale process were evaluated and compared to alternate available technologies. The result of this work is a versatile process with attractive economics. A wide range of adsorbates and solvents were found to be acceptable for this process. The design methodologies are developed and the techniques for evaluating a new application are delineated. 13 refs., 12 figs., 4 tabs.

  10. Hydration level dependence of the microscopic dynamics of water adsorbed in ultramicroporous carbon

    SciTech Connect

    Mamontov, Eugene; Yue, Yanfeng; Bahadur, Jitendra; Guo, Junjie; Contescu, Cristian I.; Gallego, Nidia C.; Melnichenko, Yuri B.

    2016-10-20

    Even when not functionalized intentionally, most carbon materials are not hydrophobic and readily adsorb water molecules from atmospheric water vapor. We have equilibrated an ultramicroporous carbon at several levels of relative humidity, thereby attaining various hydration levels. The water molecules were adsorbed on the pore walls (but did not fill completely the pore volume) and thus could be better described as hydration, or surface, rather than confined, water. We used quasielastic neutron scattering to perform a detailed investigation of the dependence of microscopic dynamics of these adsorbed water species on the hydration level and temperature. The behavior of hydration water in ultramicroporous carbon clearly demonstrates the same universal traits that characterize surface (hydration) water in other materials that are surface-hydrated. In addition, unless special treatment is intentionally applied to ultramicroporous carbon, the species filling its pores in various applications, ranging from hydrogen molecules to electrolytes, likely find themselves in contact with non-freezing water molecules characterized by rich microscopic dynamics.

  11. Adsorption of carbon monoxide on activated carbon tin ligand

    NASA Astrophysics Data System (ADS)

    Mohamad, A. B.; Iyuke, S. E.; Daud, W. R. W.; Kadhum, A. A. H.; Fisal, Z.; Al-Khatib, M. F.; Shariff, A. M.

    2000-09-01

    Activated carbon was impregnated with 34.57% SnCl 2·2H 2O salt and then dried at 180°C to produce AC-SnO 2 to improve its adsorptive interaction with CO. Besides the fact that activated carbon has its original different pore sizes for normal gas phase CO adsorption (as in the case of pure carbon), the impregnated carbon has additional CO adsorption ability due to the presence of O -(ads) on the active sites. AC-SnO 2 proved to be a superior adsorber of CO than pure carbon when used for H 2 purification in a PSA system. Discernibly, the high adsorptive selectivity of AC-SnO 2 towards gas phase CO portrays a good future for the applicability of this noble adsorbent, since CO has become a notorious threat to the global ecosystem due to the current level of air pollution.

  12. Chemical characterization of organic carbon dissolved in natural waters using inorganic adsorbents.

    PubMed

    Sugiyama, Y; Kumagai, T

    2001-01-01

    Dissolved organic carbon (DOC) in water samples from Lake Biwa was chemically characterized by two inorganic adsorbents with completely different surface characteristics. The two adsorbents were HIO (hydrous iron oxide) and SG (silica gel). Solutions of reference standard materials were analyzed concerning their adsorption behavior to HIO and SG for bovine serum albumin (BSA), fulvic acid extracted from the bottom sediments of Lake Biwa, phthalic acid, and starch. The adsorption of DOC to HIO was mainly controlled by ligand exchange and electrostatic interaction; that of SG was by electrostatic interaction. It was found that in a weak acid solution of around pH 5, BSA adsorbs to both HIO and SG, but that fulvic acid, phthalic acid and starch only show adsorption to HIO. Using these characteristics, DOC samples in natural water samples were characterized into pro-DOC, which adsorbs to both HIO and SG at pH 5, and car-DOC, which only adsorbs to HIO at pH 5. The DOC samples in Lake Biwa on October 7, 1997, at sampling sites Nb-2 and Nb-5 (south basin of Lake Biwa, the depths were about 2 and 4 m), and Ie-1 (north basin of Lake Biwa, the depth was about 75 m) were characterized. The pro-DOC has different values, depending on their sampling sites and depths, and had the maximum value of 0.42 mg C l(-1) at the surface water of Ie-1, and had the lowest values at middle to deeper water depths (0.18-0.27 mg C l(-1)). The car-DOC showed a relatively stable value at Ie-1 regardless of the depth (0.63-0.83 mg C l(-1)), and the maximum value was observed in Nb-2 and Nb-5 (1.2 and 1.3 mg C l(-1)). The ratios between car-DOC and pro-DOC concentrations were 0.2-0.5, and had different values for different sampling sites and depths. The ratios were significantly different for surface water samples where the biological activities are high and for bottom water samples where decomposition predominates.

  13. Tamarind (Tamarindus indica) fruit shell carbon: A calcium-rich promising adsorbent for fluoride removal from groundwater.

    PubMed

    Sivasankar, V; Rajkumar, S; Murugesh, S; Darchen, A

    2012-07-30

    Tamarindus indica fruit shells (TIFSs) are naturally calcium rich compounds. They were impregnated with ammonium carbonate and then carbonized, leading to ammonium carbonate activated ACA-TIFS carbon. The resulting materials and carbon arising from virgin fruit shells V-TIFS were characterized and assayed as adsorbent for the removal of fluoride anions from groundwater. The fluoride scavenging ability of TIFS carbons was due to naturally dispersed calcium compounds. X-ray diffraction (XRD) showed that TIFS carbon contained a mixture of calcium oxalate and calcium carbonate. Batch studies on the fluoride removal efficiency of TIFS carbons with respect to contact time, pH, initial fluoride concentration, and co-ion interference were conducted. Applicability of various kinetic models (viz., pseudo-first-order, pseudo-second-order, intra-particle diffusion and Elovich) and sorption isotherms were tested for batch techniques. The fluoride removal capacity of TIFS carbons was found to be 91% and 83% at a pH of 7.05 for V-TIFS and ACA-TIFS carbons, respectively. The practical applicability of TIFS carbons using groundwater samples was approved. The fluoride removal was greater in groundwater without hydrogen carbonate ions than those containing these ions. The characterizations of fluoride unloaded and loaded TIFS carbons were done by SEM and XRD studies.

  14. Copper ions removal from water using functionalized carbon nanotubes–mullite composite as adsorbent

    SciTech Connect

    Tofighy, Maryam Ahmadzadeh; Mohammadi, Toraj

    2015-08-15

    Highlights: • CNTs–mullite composite was prepared via chemical vapor deposition (CVD) method. • The prepared composite was modified with concentrated nitric acid and chitosan. • The modified CNTs–mullite composites were used as novel adsorbents. • Copper ion removal from water by the prepared adsorbents was performed. • Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. - Abstract: Carbon nanotubes–mullite composite was synthesized by direct growth of carbon nanotubes on mullite particles via chemical vapor deposition method using cyclohexanol and ferrocene as carbon precursor and catalyst, respectively. The carbon nanotubes–mullite composite was oxidized with concentrated nitric acid and functionalized with chitosan and then used as a novel adsorbent for copper ions removal from water. The results demonstrated that modification with concentrated nitric acid and chitosan improves copper ions adsorption capacity of the prepared composite, significantly. Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. The carbon nanotubes growth on mullite particles to form the carbon nanotubes–mullite composite with further modification is an inherently safe approach for many promising environmental applications to avoid some concerns regarding environment, health and safety. It was found that the modified carbon nanotubes–mullite composite can be considered as an excellent adsorbent for copper ions removal from water.

  15. Sensitive voltammetric and amperometric responses of respiratory toxins at hemin-adsorbed carbon-felt.

    PubMed

    Hasebe, Yasushi; Wang, Yue

    2013-06-01

    A hemin [iron-Fe(III) protoporphyrin IX chloride] was adsorbed onto a carbon-felt (CF), which is a microelectrode ensemble of micro carbon fiber (ca. 7 microm diameter). The resulting hemin-adsorbed-CF (hemin-CF) showed a well-defined redox wave based on the hemin-Fe(III)/Fe(II) redox process with the formal potential of -0.225 V vs. Ag/AgCl in deoxygenated phosphate/citrate buffer solution (0.1 mol/L, pH 5.0). The apparent heterogenous electron transfer rate constant was estimated to be 8.6 sec(-1). In air-saturated electrolyte solution, the hemin-CF exhibited an excellent electrocatalytic activity for the reduction of dioxygen (O2). This activity was reversibly inhibited by respiratory toxins such as cyanide and azide, which bind sixth coordination position of iron active center of hemin. The electrocatalytic 02 reduction current at the hemin-CF was modulated by the toxins in a concentration-depending manner. Based on the relationship between the %inhibition and the toxin concentration, apparent inhibition constants of cyanide and azide were evaluated to be 4.52 and 1.98 micromol/L, respectively. When the hemin-CF was used as a working electrode unit of the CF-based electrochemical flow-through detector with air-saturated carrier, the injection of the azide induced peak-shape current responses, which allowed rapid and continuous flow-amperometric determination of azide with high sensitivity.

  16. Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures

    DOEpatents

    Mayorga, Steven Gerard; Weigel, Scott Jeffrey; Gaffney, Thomas Richard; Brzozowski, Jeffrey Richard

    2001-01-01

    Adsorption of carbon dioxide from gas streams at temperatures in the range of 300 to 500.degree. C. is carried out with a solid adsorbent containing magnesium oxide, preferably promoted with an alkali metal carbonate or bicarbonate so that the atomic ratio of alkali metal to magnesium is in the range of 0.006 to 2.60. Preferred adsorbents are made from the precipitate formed on addition of alkali metal and carbonate ions to an aqueous solution of a magnesium salt. Atomic ratios of alkali metal to magnesium can be adjusted by washing the precipitate with water. Low surface area adsorbents can be made by dehydration and CO.sub.2 removal of magnesium hydroxycarbonate, with or without alkali metal promotion. The process is especially valuable in pressure swing adsorption operations.

  17. Chemisorption on surfaces — an historical look at a representative adsorbate: carbon monoxide

    NASA Astrophysics Data System (ADS)

    Yates, John T.

    1994-01-01

    The study of the interaction of molecules with clean surfaces extends back to the work of Irving Langmuir. In this historical account, the development of selected experimental methods for the study of molecular adsorption will be discussed. This will be done by historically reviewing research on one of the most well-studied adsorbate molecules, carbon monoxide. Many of the modern surface science techniques have first been used to study chemisorbed carbon monoxide, and the CO molecule is employed even today as a test molecule for currently developing surface measurement instruments such as the low temperature STM. In addition to being a good test molecule for new surface measurement techniques, adsorbed carbon monoxide is one of the centrally important molecules in the field of heterogeneous catalysis where the production of synthetic fuels and useful organic molecules often depends on the catalytic behavior of the adsorbed CO molecule. Interestingly, the carbon monoxide molecule also serves as a bridge between surface chemistry on the transition metals and the field of organometallic chemistry. Concepts about the chemical bonding and the reactive behavior of CO chemisorbed on transition metal surfaces and CO bound in transition metal carbonyls link these two fields together in a significant manner. The carbon monoxide molecule has been the historical focal point of many endeavors in surface chemistry and surface physics, and research on adsorbed carbon monoxide well represents many of the key advances which characterize the first thirty years of the development of surface science.

  18. Microstructure analysis of complex CuO/ZnO@carbon adsorbers: what are the limits of powder diffraction methods?

    PubMed

    Tseng, J C; Schmidt, W; Sager, U; Däuber, E; Pommerin, A; Weidenthaler, C

    2015-05-14

    Activate carbon impregnated with a mixture of copper oxide and zinc oxide performs well as active adsorber for NO2 removal in automotive cabin air filters. The oxide-loaded activated carbon exhibits superior long-term stability in comparison to pure activated carbon as has been shown in previous studies. The carbon material was loaded only with 2.5 wt% of each metal oxide. Characterization of the oxide nanoparticles within the pores of the activated carbon is difficult because of the rather low concentration of the oxides. Therefore, a systematic study was performed to evaluate the limits of line profile analysis of X-ray powder diffraction patterns. The method allows evaluation of crystalline domain size distributions, crystal defect concentrations and twinning probabilities of nanoscopic materials. Here, the analysis is hampered by the presence of several phases including more or less amorphous carbon. By using physical mixtures of defined copper oxide and zinc oxide particles with activated carbon, potential errors and limits could be identified. The contribution of the activated carbon to the scattering curve was modeled with a convolution of an exponential decay curve, a Chebyshev polynomial, and two Lorentzian peaks. With this approach, domain size distributions can be calculated that are shifted only by about 0.5-1.0 nm for very low loadings (≤4 wt%). Oxide loadings of 4 wt% and 5 wt% allow very reliable analyses from diffraction patterns measured in Bragg-Brentano and Debye-Scherrer geometry, respectively. For the real adsorber material, mean domain sizes have been calculated to be 2.8 nm and 2.4 nm before and after the NO2 removal tests.

  19. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium.

    PubMed

    Hu, Baiyang; Fugetsu, Bunshi; Yu, Hongwen; Abe, Yoshiteru

    2012-05-30

    We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent.

  20. OZONE REACTION WITH N-ALDEHYDES (N=4-10), BENZALDEHYDE, ETHANOL, ISOPROPANOL, AND N-PROPANOL ADSORBED ON A DUAL-BED GRAPHITIZED CARBON/CARBON MOLECULAR SIEVE ADSORBENT CARTRIDGE

    EPA Science Inventory

    Ozone reacts with n-aldehydes (n = 4 - 10), benzaldehyde, ethanol, isopropanol, and n-propanol adsorbed on a dual-bed graphitized carbon/carbon molecular sieve adsorbent cartridge. Destruction of n-aldehydes increases with n number and with ozone concentration. In some samp...

  1. Remediation of anionic dye from aqueous system using bio-adsorbent prepared by microwave activation.

    PubMed

    Sharma, Arush; Sharma, Gaurav; Naushad, Mu; Ghfar, Ayman A; Pathania, Deepak

    2017-04-07

    The present study was attempted to ascertain the possible application of activated carbon as cost effective and eco-friendly adsorbent prepared via microwave (MW) assisted chemical activation. The activated carbon was characterized using different techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and field-emission scanning electron microscope (FESEM). The various adsorption parameters have been optimized to examine the viability of activated carbon as a plausible sorbent for the remediation of Congo red (CR) dye from aquatic system. The adsorption equilibrium was interpreted using Langmuir, Freundlich and Tempkin isotherms. The equilibrium data adequately fitted to Langmuir isotherm with stronger R(2) (0.994). The maximum adsorption capacity (qm) of activated carbon was recorded to be 68.96 mg/g. Additionally, sorptional kinetic data were examined by reaction based and diffusion based models such as pseudo-first-order, pseudo-second-order, Elovich model and intra-particle diffusion, Dumwald-Wagner models, respectively. The experimental results indicated that pseudo-second-order equation and Elovich model better discuss the adsorption kinetics. The computed values of thermodynamic parameters such as free energy change (ΔG(0)), enthalpy change (ΔH(0)) and entropy change (ΔS(0)) were recorded as -3.63 kJ/mol, 42.47 kJ/mol, 152.07 J/mol K, respectively at 30°C, which accounted for favorable, spontaneous and endothermic process. The regeneration study emphasized that percentage uptake declined from 90.35 to 83.45% after 6cycles of testing. So, our findings implied that activated carbon produced from biomass must be cost-effectively used as an adsorbent for detoxifying the CR dye from industrial effluents.

  2. Fabrication of a novel magnetic carbon nanocomposite adsorbent via pyrolysis of sugar.

    PubMed

    Cho, Dong-Wan; Lee, Jechan; Ok, Yong Sik; Kwon, Eilhann E; Song, Hocheol

    2016-11-01

    A new-fashioned fabrication recipe for a magnetic carbon nanocomposite (Fe3O4@C) via pyrolysis of sugar with magnetite (Fe3O4) nanoparticles was developed for the practical environmental application as an adsorbent. In order to synthesize Fe3O4@C, the thermal degradation of sugar was firstly investigated via thermo-gravimetric analysis (TGA) to explore the optimal pyrolytic conditions for fabricating Fe3O4@C. This study laid a great emphasis on the physicochemical characterization of pyrogenic Fe3O4@C through various analytical techniques, which experimentally validated that Fe3O4@C retained thin graphitic carbon layers containing carboxyl groups on the surface with the point of zero charge (pHpzc) of 7.5. Based on adsorption tests of methylene blue (MB), it was found the optimal mass ratio of sugar to Fe3O4 was 0.15 with pyrolysis temperature of 500 °C. The adsorption capacity of Fe3O4@C for MB was 52.6 mg g(-1) and MB adsorption showed a strong pH dependence, which implies an active role of electrostatic interactions in the adsorption process. In regeneration experiments, Fe3O4@C retained 84% of its initial adsorption capacity after completing four consecutive adsorption cycles.

  3. Electrochemical behavior of flavin adenine dinucleotide adsorbed onto carbon nanotube and nitrogen-doped carbon nanotube electrodes.

    PubMed

    Goran, Jacob M; Stevenson, Keith J

    2013-11-05

    Flavin adenine dinucleotide (FAD) is a cofactor for many enzymes, but also an informative redox active surface probe for electrode materials such as carbon nanotubes (CNTs) and nitrogen-doped CNTs (N-CNTs). FAD spontaneously adsorbs onto the surface of CNTs and N-CNTs, displaying Langmuir adsorption characteristics. The Langmuir adsorption model provides a means of calculating the electroactive surface area (ESA), the equilibrium constant for the adsorption and desorption processes (K), and the Gibbs free energy of adsorption (ΔG°). Traditional ESA measurements based on the diffusional flux of a redox active molecule to the electrode surface underestimate the ESA of porous materials because pores are not penetrated. Techniques such as gas adsortion (BET) overestimate the ESA because it includes both electroactive and inactive areas. The ESA determined by extrapolation of the Langmuir adsorption model with the electroactive surface probe FAD will penetrate pores and only include electroactive areas. The redox activity of adsorbed FAD also displays a strong dependency on pH, which provides a means of determining the pKa of the surface confined species. The pKa of FAD decreases as the nitrogen content in the CNTs increases, suggesting a decreased hydrophobicity of the N-CNT surface. FAD desorption at N-CNTs slowly transforms the main FAD surface redox reaction with E1/2 at -0.84 V into two new, reversible, surface confined redox reactions with E1/2 at -0.65 and -0.76 V (vs Hg/Hg2SO4), respectively (1.0 M sodium phosphate buffer pH = 6.75). This is the first time these redox reactions have been observed. The new surface confined redox reactions were not observed during FAD desorption from nondoped CNTs.

  4. Electron transport in HBr adsorbed boron doped carbon nanotube

    NASA Astrophysics Data System (ADS)

    Srivastava, Reena; Shahzad Khan, Md.; Shrivastava, Sadhna; Srivastava, Anurag

    2017-01-01

    A 10,0 pristine as well as boron doped zigzag single walled carbon nanotube has been analyzed as possible HBr sensor using DFT based ab-initio approach. The variation in band structures, Mulliken charge, NBO charge, binding energy and conductance variation has been analyzed. The CNT observes a lowering of bandgap in presence of HBr molecule near its surface and reduces the metallicity of Boron doped CNT. The B-CNT shows semiconducting to metallic transition and on introducing the HBr molecule near the surface, changes its conductance drastically. Strong physisorption is observed for HBr over B-CNT surface as a consequence of electrostatic interaction.

  5. Novel deep eutectic solvent-functionalized carbon nanotubes adsorbent for mercury removal from water.

    PubMed

    AlOmar, Mohamed Khalid; Alsaadi, Mohammed Abdulhakim; Jassam, Taha M; Akib, Shatirah; Ali Hashim, Mohd

    2017-07-01

    Due to the interestingly tolerated physicochemical properties of deep eutectic solvents (DESs), they are currently in the process of becoming widely used in many fields of science. Herein, we present a novel Hg(2+) adsorbent that is based on carbon nanotubes (CNTs) functionalized by DESs. A DES formed from tetra-n-butyl ammonium bromide (TBAB) and glycerol (Gly) was used as a functionalization agent for CNTs. This novel adsorbent was characterized using Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, XRD, FESEM, EDX, BET surface area, and Zeta potential. Later, Hg(2+) adsorption conditions were optimized using response surface methodology (RSM). A pseudo-second order model accurately described the adsorption of Hg(2+). The Langmuir and Freundlich isotherm models described the absorption of Hg(2+) on the novel adsorbent with acceptable accuracy. The maximum adsorption capacity was found to be 177.76mg/g.

  6. Absence of superfluidity in a quasi-one-dimensional parahydrogen fluid adsorbed inside carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Del Maestro, Adrian; Boninsegni, Massimo

    2017-02-01

    A recent claim of superfluid behavior of parahydrogen adsorbed inside armchair carbon nanotubes [M. Rossi and F. Ancilotto, Phys. Rev. B 94, 100502 (2016), 10.1103/PhysRevB.94.100502] is disproven by means of first-principles computer simulations. Conclusive numerical evidence shows that the low-temperature equilibrium thermodynamic phase of parahydrogen adsorbed inside a (10 ,10 ) armchair nanotube features a crystalline shell adsorbed on the inner surface of the tube, and a well-separated quasi-one-dimensional central column showing no evidence of possible fluid or superfluid behavior. Rather, the system is quasicrystalline and nonsuperfluid; its physical character is qualitatively identical to that observed in similar confined settings extensively studied in the past. The incorrect prediction of superfluidity stems from the erroneous use of an effective one-dimensional interaction potential that does not describe parahydrogen at the center of the nanotube.

  7. Adlayer structure dependent ultrafast desorption dynamics in carbon monoxide adsorbed on Pd (111)

    DOE PAGES

    Hong, Sung -Young; Xu, Pan; Camillone, Nina R.; ...

    2016-07-01

    Here, we report our ultrafast photoinduced desorption investigation of the coverage dependence of substrate–adsorbate energy transfer in carbon monoxide adlayers on the (111) surface of palladium. As the CO coverage is increased, the adsorption site population shifts from all threefold hollows (up to 0.33 ML), to bridge and near bridge (>0.5 to 0.6 ML) and finally to mixed threefold hollow plus top site (at saturation at 0.75 ML). We show that between 0.24 and 0.75 ML this progression of binding site motifs is accompanied by two remarkable features in the ultrafast photoinduced desorption of the adsorbates: (i) the desorption probabilitymore » increases roughly two orders magnitude, and (ii) the adsorbate–substrate energy transfer rate observed in two-pulse correlation experiments varies nonmonotonically, having a minimum at intermediate coverages. Simulations using a phenomenological model to describe the adsorbate–substrate energy transfer in terms of frictional coupling indicate that these features are consistent with an adsorption-site dependent electron-mediated energy coupling strength, ηel, that decreases with binding site in the order: three-fold hollow > bridge and near bridge > top site. This weakening of ηel largely counterbalances the decrease in the desorption activation energy that accompanies this progression of adsorption site motifs, moderating what would otherwise be a rise of several orders of magnitude in the desorption probability. Within this framework, the observed energy transfer rate enhancement at saturation coverage is due to interadsorbate energy transfer from the copopulation of molecules bound in three-fold hollows to their top-site neighbors.« less

  8. Adlayer structure dependent ultrafast desorption dynamics in carbon monoxide adsorbed on Pd (111)

    SciTech Connect

    Hong, Sung -Young; Xu, Pan; Camillone, Nina R.; White, Michael G.; Camillone, III, Nicholas

    2016-07-01

    Here, we report our ultrafast photoinduced desorption investigation of the coverage dependence of substrate–adsorbate energy transfer in carbon monoxide adlayers on the (111) surface of palladium. As the CO coverage is increased, the adsorption site population shifts from all threefold hollows (up to 0.33 ML), to bridge and near bridge (>0.5 to 0.6 ML) and finally to mixed threefold hollow plus top site (at saturation at 0.75 ML). We show that between 0.24 and 0.75 ML this progression of binding site motifs is accompanied by two remarkable features in the ultrafast photoinduced desorption of the adsorbates: (i) the desorption probability increases roughly two orders magnitude, and (ii) the adsorbate–substrate energy transfer rate observed in two-pulse correlation experiments varies nonmonotonically, having a minimum at intermediate coverages. Simulations using a phenomenological model to describe the adsorbate–substrate energy transfer in terms of frictional coupling indicate that these features are consistent with an adsorption-site dependent electron-mediated energy coupling strength, ηel, that decreases with binding site in the order: three-fold hollow > bridge and near bridge > top site. This weakening of ηel largely counterbalances the decrease in the desorption activation energy that accompanies this progression of adsorption site motifs, moderating what would otherwise be a rise of several orders of magnitude in the desorption probability. Within this framework, the observed energy transfer rate enhancement at saturation coverage is due to interadsorbate energy transfer from the copopulation of molecules bound in three-fold hollows to their top-site neighbors.

  9. Lignin-based microporous materials as selective adsorbents for carbon dioxide separation.

    PubMed

    Meng, Qing Bo; Weber, Jens

    2014-12-01

    Suitable solid adsorbents are demanded for carbon capture and storage (CCS) processes. In this work, a novel microporous polymer is developed by hypercrosslinking of organosolv lignin, which is a renewable resource. Reaction with formaldehyde dimethyl acetal (FDA) via Friedel-Crafts reaction gives microporous networks, with moderate capacity of carbon dioxide but excellent selectivity towards CO2 /N2 mixture as predicted on the basis of ideal adsorption-solution theory (IAST). Pyrolysis of pure organosolv lignin results in microporous carbon powders, while pyrolysis of hypercrosslinked organosolv lignin yields shape-persistent materials with increased CO2 capacity while maintaining very good selectivity.

  10. ENGINEERING BULLETIN: GRANULAR ACTIVATED CARBON TREATMENT

    EPA Science Inventory

    Granular activated carbon (GAC) treatment is a physicochemical process that removes a wide variety of contaminants by adsorbing them from liquid and gas streams [1, p. 6-3]. This treatment is most commonly used to separate organic contaminants from water or air; however, it can b...

  11. Hydration level dependence of the microscopic dynamics of water adsorbed in ultramicroporous carbon

    DOE PAGES

    Mamontov, Eugene; Yue, Yanfeng; Bahadur, Jitendra; ...

    2016-10-20

    Even when not functionalized intentionally, most carbon materials are not hydrophobic and readily adsorb water molecules from atmospheric water vapor. We have equilibrated an ultramicroporous carbon at several levels of relative humidity, thereby attaining various hydration levels. The water molecules were adsorbed on the pore walls (but did not fill completely the pore volume) and thus could be better described as hydration, or surface, rather than confined, water. We used quasielastic neutron scattering to perform a detailed investigation of the dependence of microscopic dynamics of these adsorbed water species on the hydration level and temperature. The behavior of hydration watermore » in ultramicroporous carbon clearly demonstrates the same universal traits that characterize surface (hydration) water in other materials that are surface-hydrated. In addition, unless special treatment is intentionally applied to ultramicroporous carbon, the species filling its pores in various applications, ranging from hydrogen molecules to electrolytes, likely find themselves in contact with non-freezing water molecules characterized by rich microscopic dynamics.« less

  12. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent.

    PubMed

    Gong, Ji-Lai; Wang, Bin; Zeng, Guang-Ming; Yang, Chun-Ping; Niu, Cheng-Gang; Niu, Qiu-Ya; Zhou, Wen-Jin; Liang, Yi

    2009-05-30

    A magnetic multi-wall carbon nanotube (MMWCNT) nanocomposite was synthesized and was used as an adsorbent for removal of cationic dyes from aqueous solutions. The MMWCNT nanocomposite was composed of commercial multi-wall carbon nanotubes and iron oxide nanoparticles. The properties of this magnetic adsorbent were characterized by scanning electron microscopy, X-ray diffraction and BET surface area measurements. Adsorption characteristics of the MMWCNT nanocomposite adsorbent were examined using methylene blue, neutral red and brilliant cresyl blue as adsorbates. Experiments were carried out to investigate adsorption kinetics, adsorption capacity of the adsorbent and the effect of adsorption dosage and solution pH values on the removal of cationic dyes. Kinetic data were well fitted by a pseudo second-order model. Freundlich model was used to study the adsorption isotherms. The prepared MMWCNT adsorbent displayed the main advantage of separation convenience compared to the present adsorption treatment.

  13. Capturing the Local Adsorption Structures of Carbon Dioxide in Polyamine-Impregnated Mesoporous Silica Adsorbents.

    PubMed

    Huang, Shing-Jong; Hung, Chin-Te; Zheng, Anmin; Lin, Jen-Shan; Yang, Chun-Fei; Chang, Yu-Chi; Deng, Feng; Liu, Shang-Bin

    2014-09-18

    Interactions between amines and carbon dioxide (CO2) are essential to amine-functionalized solid adsorbents for carbon capture, and an in-depth knowledge of these interactions is crucial to adsorbent design and fabrication as well as adsorption/desorption processes. The local structures of CO2 adsorbed on a tetraethylenepentamine-impregnated mesoporous silica SBA-15 were investigated by solid-state (13)C{(14)N} S-RESPDOR MAS NMR technique and theoretical DFT calculations. Two types of adsorption species, namely, secondary and tertiary carbamates as well as distant ammonium groups were identified together with their relative concentrations and relevant (14)N quadrupolar parameters. Moreover, a dipolar coupling of 716 Hz was derived, corresponding to a (13)C-(14)N internuclear distance of 1.45 Å. These experimental data are in excellent agreement with results obtained from DFT calculations, revealing that the distribution of surface primary and secondary amines readily dictates the CO2 adsorption/desorption properties of the adsorbent.

  14. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.

    PubMed

    Liu, Fengling; Xu, Zhaoyi; Wan, Haiqin; Wan, Yuqiu; Zheng, Shourong; Zhu, Dongqiang

    2011-04-01

    Humic acids are ubiquitous in surface and underground waters and may pose potential risk to human health when present in drinking water sources. In this study, ordered mesoporous carbon was synthesized by means of a hard template method and further characterized by X-ray diffraction, N2 adsorption, transition electron microscopy, elemental analysis, and zeta-potential measurement. Batch experiments were conducted to evaluate adsorption of two humic acids from coal and soil, respectively, on the synthesized carbon. For comparison, a commercial microporous activated carbon and nonporous graphite were included as additional adsorbents; moreover, phenol was adopted as a small probe adsorbate. Pore size distribution characterization showed that the synthesized carbon had ordered mesoporous structure, whereas the activated carbon was composed mainly of micropores with a much broader pore size distribution. Accordingly, adsorption of the two humic acids was substantially lower on the activated carbon than on the synthesized carbon, because of the size-exclusion effect. In contrast, the synthesized carbon and activated carbon showed comparable adsorption for phenol when the size-exclusion effect was not in operation. Additionally, we verified by size-exclusion chromatography studies that the synthesized carbon exhibited greater adsorption for the large humic acid fraction than the activated carbon. The pH dependence of adsorption on the three carbonaceous adsorbents was also compared between the two test humic acids. The findings highlight the potential of using ordered mesoporous carbon as a superior adsorbent for the removal of humic acids.

  15. The Impact of Adsorbed Triethylene Glycol on Water Wettability of the {1014} Calcium Carbonate Surface

    NASA Astrophysics Data System (ADS)

    Olsen, R.

    2015-12-01

    Water flooding is increasingly being used as a method of enhanced oil recovery and frequently involves calcium carbonate reservoirs. Very often, thermodynamic conditions in the upper few hundred meters allow for hydrate formation. One possible method of preventing hydrates is to inject hydrate inhibitors such as triethylene glycol (TEG) into the reservoir. Thus, it is of importance to know how such glycols affect water wettability, which is an important factor defining the oil behavior in such reservoirs. Wettability of a surface is defined by the contact angle of a liquid drop on the surface. The stronger the liquid is attracted to the surface, the smaller the wetting angle becomes, implying an increased degree of wetting. Therefore, it is possible to gain qualitative knowledge of the change in wetting properties with respect to external influences by studying corresponding changes in free energy of adsorption of the liquid. In our work [1], we used molecular dynamics (MD) and Born-Oppenheimer molecular dynamics (BOMD) to study how adsorbed TEG on the {1014} calcium carbonate surface affected adsorbed water. We used the changes in density profiles of water to estimate changes in adsorption free energy of water. The adaptive biasing force (ABF) method was applied to TEG to calculate the adsorption free energy of TEG on the calcium carbonate surface. We found that water wetting of the calcium carbonate surface decreased in the presence of adsorbed TEG. [1] - Olsen, R.; Leirvik, K.; Kvamme, B.; Kuznetsova, T. Adsorption Properties of Triethylene Glycol on a Hydrated {1014} Calcite Surface and Its Effect on Adsorbed Water, Langmuir 2015, DOI: 10.1021/acs.langmuir.5b02228

  16. Surface area of vermiculite with nitrogen and carbon dioxide as adsorbates

    USGS Publications Warehouse

    Thomas, J.; Bohor, B.F.

    1969-01-01

    Surface-area studies were made on several homoionic vermiculites with both nitrogen and carbon dioxide as adsorbates. These studies show that only very slight penetration occurs between individual vermiculite platelets. This is in contrast to an earlier investigation of montmorillonite where it was found that the degree of penetration between layers is quite high, particularly for carbon dioxide, and is governed by the size and charge of the interlayer cation. The inability of these adsorbates to penetrate substantially between vermiculite platelets is due primarily to this mineral's high surface-charge density. The extent of penetration of nitrogen and carbon dioxide at the edges of vermiculite platelets, though slight, is influenced by the coordinated water retained within the sample at a given degassing temperature. Forces between layers are weakened with increasing water content, which permits slightly greater penetration by adsorbate gases. Thus, the surface area of vermiculite, as determined by gas adsorption, is larger than the calculated external surface area based upon particle size and shape considerations. In addition, "extra" surface is provided by the lifting and scrolling of terminal platelets. These morphological features are shown in scanning electron micrographs of a naturally occuring vermiculite. ?? 1969.

  17. Rotary adsorbers for continuous bulk separations

    DOEpatents

    Baker, Frederick S [Oak Ridge, TN

    2011-11-08

    A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.

  18. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    SciTech Connect

    Abdullah, N.; Muhammad, I. S.; Hamid, S. B. Abd.; Rinaldi, A.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300 deg. C for an hour in each step. The catalytic growth of nanocarbon in C{sub 2}H{sub 4}/H{sub 2} was carried out at temperature of 550 deg. C for 2 hrs with different rotating angle in the fluidization system. SEM and N{sub 2} isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  19. Adsorption of copper cyanide on chemically active adsorbents

    SciTech Connect

    Lee, J.S.; Deorkar, N.V.; Tavlarides, L.L.

    1998-07-01

    An inorganic chemically active adsorbent (ICAA), SG(1)-TEPA (tetraethylenepentaamine)-propyl, is developed for removal, recovery, and recycling of copper cyanide from industrial waste streams. Equilibrium studies are executed to determine and model adsorption of the copper cyanide complex from aqueous solutions in a batch and packed column. It appears that adsorption is dependent on anionic copper cyanide species and the basicity of the ligand. Aqueous-phase equilibrium modeling shows that monovalent (Cu(CN){sub 2}{sup {minus}}), divalent (Cu(CN){sub 3}{sup 2{minus}}), and trivalent (Cu(CN){sub 4}{sup 3{minus}}) species of copper cyanide exist in the solution, depending on the pH and the concentration of total cyanide ions. Batch adsorption data are modeled using a modified multicomponent Langmuir isotherm which includes aqueous-phase speciation and basicity of the SG(1)-TEPA-propyl. This developed model is applied with a mass balance equation to describe the adsorption of copper cyanide complexes in a packed column.

  20. Modelling the relative stability of carbon nanotubes exposed to environmental adsorbates and air.

    PubMed

    Barnard, Amanda S

    2009-04-08

    In parallel with the development of technological applications for carbon nanotubes, issues related to toxicology and environmental impact are also under increased scrutiny. It is clear from the available literature that the integrity of future carbon nanotube-based devices, our ability to anticipate failure of these devices, and our ability to manage the toxicological and environmental impacts require a detailed understanding of the stability of pure and functionalized carbon nanotubes under a full range of environmental conditions. Motivated by this endeavour, the present study uses a general thermodynamic model to predict the relative stability of carbon nanotubes exposed to a variety of atmospheric adsorbates, and uses them to examine the stability of nanotubes in air, as a function of the relative humidity. In general the results indicate that the adsorption of a sparse coverage of air is thermodynamically favoured, depending on the humidity, and the stability of small diameter nanotubes may be improved by exposure to humid air.

  1. 40 CFR 63.993 - Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Absorbers, condensers, carbon... Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices. (a)...

  2. 40 CFR 63.993 - Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Absorbers, condensers, carbon... Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices. (a)...

  3. 40 CFR 63.993 - Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Absorbers, condensers, carbon... Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices. (a)...

  4. Nanoclay-Based Solid-Amine Adsorbents for Carbon Dioxide Capture

    NASA Astrophysics Data System (ADS)

    Roth, Elliot A.

    The objective of this research was to develop an efficient, low cost, recyclable solid sorbent for carbon dioxide adsorption from large point sources, such as coal-fired power plants. The current commercial way to adsorb CO 2 is to use a liquid amine or ammonia process. These processes are used in industry in the "sweetening" of natural gas, but liquid based technologies are not economically viable in the adsorption of CO2 from power plants due to the extremely large volume of CO2 and the inherent high regeneration costs of cycling the sorbent. Therefore, one of the main objectives of this research was to develop a novel sorbent that can be cycled and uses very little energy for regeneration. The sorbent developed here is composed of a nanoclay (montmorillonite), commonly used in the production of polymer nanocomposites, grafted with commercially available amines. (3-aminopropyl) trimethoxysilane (APTMS) was chemically grafted to the edge hydroxyl groups of the clay. While another amine, polyethylenimine (PEI), was attached to the surface of the clay by electrostatic interactions. To confirm the attachment of amines to the clay, the samples were characterized using FTIR and the corresponding peaks for amines were observed. The amount of amine loaded onto the support was determined by TGA techniques. The treated clay was initially analyzed for CO2 adsorption in a pure CO 2 stream. The adsorption temperatures that had the highest adsorption capacity were determined to be between 75°C and 100°C for all of the samples tested at atmospheric pressure. The maximum CO2 adsorption capacity observed was with nanoclay treated with both APTMS and PEI at 85°C. In a more realistic flue gas of 10% CO2 and 90% N2, the adsorbents had essentially the same overall CO2 adsorption capacity indicating that the presence of nitrogen did not hinder the adsorption of CO2. Adsorption studies in pure CO2 at room temperature under pressure from 40-300 PSI were also conducted. The average

  5. Effects of welding fumes on nuclear air cleaning system carbon adsorber banks

    SciTech Connect

    Roberson, P.W.

    1997-08-01

    Standard Technical Specifications for nuclear air cleaning systems include requirements for surveillance tests following fire, painting, or chemical release in areas communicating with the affected system. To conservatively implement this requirement, many plants categorize welding as a chemical release process, and institute controls to ensure that welding fumes do not interact with carbon adsorbers in a filter system. After reviewing research data that indicated welding had a minimal impact on adsorber iodine removal efficiency, further testing was performed with the goal of establishing a welding threshold. It was anticipated that some quantity of weld electrodes could be determined that had a corresponding detrimental impact on iodine removal efficiency for the exposed adsorber. This value could be used to determine a conservative sampling schedule that would allow the station to perform laboratory testing to ensure system degradation did not occur without a full battery of surveillance tests. A series of tests was designed to demonstrate carbon efficiency versus cumulative welding fume exposure. Three series of tests were performed, one for each of three different types of commonly used weld electrodes. Carbon sampling was performed at baseline conditions, and every five pounds of electrode thereafter. Two different laboratory tests were performed for each sample; one in accordance with ASTM 3803/1989 at 95% relative humidity and 30 degrees C, and another using the less rigorous conditions of 70% relative humidity and 80 degrees C. Review of the test data for all three types of electrodes failed to show a significant correlation between carbon efficiency degradation and welding fume exposure. Accordingly, welding is no longer categorized as a `chemical release process` at McGuire Nuclear Station, and limits on welding fume interaction with ventilation systems have been eliminated. 4 refs., 3 figs., 1 tab.

  6. Hybrid magnetic amphiphilic composites based on carbon nanotube/nanofibers and layered silicates fragments as efficient adsorbent for ethynilestradiol.

    PubMed

    Purceno, Aluir D; Teixeira, Ana Paula C; de Souza, Nubia Janaína; Fernandez-Outon, Luis E; Ardisson, José D; Lago, Rochel M

    2012-08-01

    In this work, hybrid magnetic amphiphilic composites were prepared by the catalytic growth of carbon nanotubes (CNTs) and nanofibers CNF on layered silicates fragments. SEM, TEM, Raman, XRD, Mössbauer, TG/DTA showed that CVD with CH(4) at 800°C produced CNF and magnetic Fe cores fixed on the surface of microfragments of silicates layers. Due to the amphiphilic character, the composites can be easily dispersed in water and efficiently adsorb hydrophobic contaminant molecules. For example, the composites showed remarkable adsorption capacities for the hormone ethinylestradiol, e.g. 2-4 mg m(-2), compared to ca. 0.1 mg m(-2) obtained for high surface area activated carbon and multiwall CNT. These results are discussed in terms of a high hydrophobic exposed surface area of the CNT and CNF fixed on the layered silicates fragments surface. Moreover, the composites can be easily removed from water by a simple magnetic separation process.

  7. Nickel adsorption by sodium polyacrylate-grafted activated carbon.

    PubMed

    Ewecharoen, A; Thiravetyan, P; Wendel, E; Bertagnolli, H

    2009-11-15

    A novel sodium polyacrylate grafted activated carbon was produced by using gamma radiation to increase the number of functional groups on the surface. After irradiation the capacity for nickel adsorption was studied and found to have increased from 44.1 to 55.7 mg g(-1). X-ray absorption spectroscopy showed that the adsorbed nickel on activated carbon and irradiation-grafted activated carbon was coordinated with 6 oxygen atoms at 2.04-2.06 A. It is proposed that this grafting technique could be applied to other adsorbents to increase the efficiency of metal adsorption.

  8. Synthesis of porous sulfonated carbon as a potential adsorbent for phenol wastewater.

    PubMed

    Prabhu, Azhagapillai; Al Shoaibi, Ahmed; Srinivasakannan, C

    2015-01-01

    The work reports a facile synthesis procedure for preparation of porous sulfonated carbons and its suitability for adsorption of phenol. The sulfonated carbon was synthesized utilizing a simplified, single-step, shorter duration process by sulfonation, dehydration and carbonization of sucrose in sulfuric acid and tetraethylorthosilicate. The surface and internal structures of the adsorbents were characterized utilizing various characterization techniques to understand the porous nature and surface functional groups of the porous matrix. Adsorption capacity was found to be highest for the sample heat treated at 600 °C, with the maximum adsorption capacity of 440 mg/g at 30 °C. The adsorption isotherms were tested with the Freundlich and Langmuir adsorption isotherms models to identify the appropriate adsorption mechanism.

  9. Forsterite Carbonation in Wet-scCO2: Dependence on Adsorbed Water Concentration

    NASA Astrophysics Data System (ADS)

    Loring, J.; Benezeth, P.; Qafoku, O.; Thompson, C.; Schaef, T.; Bonneville, A.; McGrail, P.; Felmy, A.; Rosso, K.

    2013-12-01

    Capturing and storing CO2 in basaltic formations is one of the most promising options for mitigating atmospheric CO2 emissions resulting from the burning of fossil fuels. These geologic reservoirs have high reactive potential for CO2-mineral trapping due to an abundance of divalent-cation containing silicates, such as forsterite (Mg2SiO4). Recent studies have shown that carbonation of these silicates under wet scCO2 conditions, e. g. encountered near a CO2 injection well, proceeds along a different pathway and is more effective than in CO2-saturated aqueous fluids. The presence of an adsorbed water film on the forsterite surface seems to be key to reactivity towards carbonation. In this study, we employed in situ high pressure IR spectroscopy to investigate the dependence of adsorbed water film thickness on forsterite carbonation chemistry. Post reaction ex situ SEM, TEM, TGA, XRD, and NMR measurements will also be discussed. Several IR titrations were performed of forsterite with water at 50 °C and 90 bar scCO2. Aliquots of water were titrated at 4-hour reaction-time increments. Once a desired total water concentration was reached, data were collected for about another 30 hours. One titration involved 10 additions, which corresponds to 6.8 monolayers of adsorbed water. Clearly, a carbonate was precipitating, and its spectral signature matched magnesite. Another titration involved 8 aliquots, or up to 4.4 monolayers of water. The integrated absorbance under the CO stretching bands of carbonate as a function of time after reaching 4.4 monolayers showed an increase and then a plateau. We are currently unsure of the identity of the carbonate that precipitated, but it could be an amorphous anhydrous phase or magnesite crystals with dimensions of only several nanometers. A third titration only involved 3 additions, or up to 1.6 monolayers of water. The integrated absorbance under the CO stretching bands of carbonate as a function of time after reaching 1.6 monolayers

  10. In situ infrared study of adsorbed species during catalytic oxidation and carbon dioxide adsorption

    NASA Astrophysics Data System (ADS)

    Khatri, Rajesh A.

    2005-11-01

    of the Ni-Re/CeO2 catalyst was reduced by only 20% in the presence of sulfur compared to a 50% reduction with the Ni/CeO 2 catalyst. These results show that Re not only promotes the water-gas shift reaction but also enhances the sulfur tolerance of the Ni/CeO2 catalyst. Novel amine based solid sorbents have been developed to capture CO 2 reversibly using temperature-swing adsorption process. The IR study shows that CO2 adsorbs on amine grafted SBA-15 to form carbonates and bicarbonates. Comparison of monoamine and diamine-grafted SBA-15 showed that diamine grafted SBA-15 provides almost twice the active sites for CO 2 adsorption. The adsorption of SO2 on the amine-grafted SBA-15 revealed that SO2 adsorbs irreversibly and the sorbent cannot be regenerated under normal operating conditions. Results of these studies can be used to enhance the overall conversion of CH4 to H2 thus lowering the cost of H2 product.

  11. First-principles study of the dielectric functions of carbon nanotubes with adsorbed water

    NASA Astrophysics Data System (ADS)

    Iwasaki, Daisuke; Suzuki, Yasumitsu; Watanabe, Kazuyuki

    2017-04-01

    A recent study demonstrated adsorption of water molecules on the surfaces of carbon nanotubes (CNTs). Importantly, it was reported that the peak positions in the absorption and photoluminescence spectra of the CNTs were shifted to lower energy as the number of adsorbed water molecules increased. Here, we investigated the mechanism by which this redshift occurs by calculating the dielectric functions of CNTs following water adsorption using density functional theory. Our calculations reproduced the redshifts and demonstrated that they can be attributed to decreases in the band gaps, which result from electronic coupling between the CNTs and the water molecules.

  12. Quantum dynamics of hydrogen interacting with single-walled carbon nanotubes: multiple H-atom adsorbates.

    PubMed

    McAfee, Jason L; Poirier, Bill

    2011-02-21

    In a previous paper [J. L. McAfee and B. Poirier, J. Chem. Phys. 130, 064701 (2009)], using spin-polarized density functional theory (DFT), the authors reported a binding energy of 0.755 eV, for a single hydrogen atom adsorbed on a pristine (unrelaxed) (5,5) single-walled carbon nanotube (SWNT) substrate. A full three-dimensional (3D) potential energy surface (PES) for the SWNT-H system was also developed, and used in a quantum dynamics calculation to compute all rovibrational bound states, and associated equatorial and longitudinal adsorbate migration rates. A highly pronounced preference for the latter migration pathway at ambient temperatures was observed. In this work, we extend the aforementioned study to include multiple H-atom adsorbates. Extensive DFT calculations are performed, in order to ascertain the most relevant dynamical pathways. For two adsorbates, the SWNT-H-H system is found to exhibit highly site-specific binding, as well as long-range correlation and pronounced binding energy enhancement. The latter effect is even more pronounced in the full-hydrogenation limit, increasing the per-adsorbate binding energy to 2.6 eV. To study migration dynamics, a single-hole model is developed, for which the binding energy drops to 2.11 eV. A global 3D PES is developed for the hole migration model, using 40 radial × 18 cylindrical ab initio geometries, fit to a Fourier basis with radially dependent expansion coefficients (rms error 4.9 meV). As compared with the single-adsorbate case, the hole migration PES does not exhibit separate chemisorption and physisorption wells. The barrier to longitudinal migration is also found to be much lower. Quantum dynamics calculations for all rovibrational states are then performed (using a mixed spectral basis/phase-space optimized discrete variable representation), and used to compute longitudinal migration rates. Ramifications for the use of SWNTs as potential hydrogen storage materials are discussed.

  13. Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2).

    PubMed

    Chew, Thiam-Leng; Ahmad, Abdul L; Bhatia, Subhash

    2010-01-15

    Separation of carbon dioxide (CO(2)) from gaseous mixture is an important issue for the removal of CO(2) in natural gas processing and power plants. The ordered mesoporous silicas (OMS) with uniform pore structure and high density of silanol groups, have attracted the interest of researchers for separation of carbon dioxide (CO(2)) using adsorption process. These mesoporous silicas after functionalization with amino groups have been studied for the removal of CO(2). The potential of functionalized ordered mesoporous silica membrane for separation of CO(2) is also recognized. The present paper reviews the synthesis of mesoporous silicas and important issues related to the development of mesoporous silicas. Recent studies on the CO(2) separation using ordered mesoporous silicas (OMS) as adsorbent and membrane are highlighted. The future prospectives of mesoporous silica membrane for CO(2) adsorption and separation are also presented and discussed.

  14. Ultra-Thin Optically Transparent Carbon Electrodes Produced from Layers of Adsorbed Proteins

    PubMed Central

    Alharthi, Sarah A.; Benavidez, Tomas E.; Garcia, Carlos D.

    2013-01-01

    This work describes a simple, versatile, and inexpensive procedure to prepare optically transparent carbon electrodes, using proteins as precursors. Upon adsorption, the protein-coated substrates were pyrolyzed under reductive conditions (5% H2) to form ultra-thin, conductive electrodes. Because proteins spontaneously adsorb to interfaces forming uniform layers, the proposed method does not require a precise control of the preparation conditions, specialized instrumentation, or expensive precursors. The resulting electrodes were characterized by a combination of electrochemical, optical, and spectroscopic means. As a proof-of-concept, the optically-transparent electrodes were also used as substrate for the development of an electrochemical glucose biosensor. The proposed films represent a convenient alternative to more sophisticated, and less available, carbon-based nanomaterials. Furthermore, these films could be formed on a variety of substrates, without classical limitations of size or shape. PMID:23421732

  15. Carbon nanotube clusters as universal bacterial adsorbents and magnetic separation agents.

    PubMed

    Moon, Hyung-Mo; Kim, Jin-Woo

    2010-01-01

    The magnetic susceptibility and high bacterial affinity of carbon nanotube (CNT) clusters highlight their great potential as a magnetic bio-separation agent. This article reports the CNT clusters' capability as "universal" bacterial adsorbents and magnetic separation agents by designing and testing a multiwalled carbon nanotube (MWNT) cluster-based process for bacterial capturing and separation. The reaction system consisted of large clusters of MWNTs for bacterial capture and an external magnet for bio-separation. The designed system was tested and optimized using Escherichia coli as a model bacterium, and further generalized by testing the process with other representative strains of both gram-positive and gram-negative bacteria. For all strains tested, bacterial adsorption to MWNT clusters occurred spontaneously, and the estimated MWNT clusters' adsorption capacities were nearly the same regardless of the types of strains. The bacteria-bound MWNT clusters also responded almost instantaneously to the magnetic field by a rare-earth magnet (0.68 Tesla), and completely separated from the bulk aqueous phase and retained in the system. The results clearly demonstrate their excellent potential as highly effective "universal" bacterial adsorbents for the spontaneous adsorption of any types of bacteria to the clusters and as paramagnetic complexes for the rapid and highly effective magnetic separations.

  16. Mechanistic characterization and inhibition of sphingomyelinase C over substituted Iron Schiff bases of chitosan adsorbed on glassy carbon electrode.

    PubMed

    Caro, Claudia A; Lillo, Luis; Valenzuela, Francisco J; Cabello, Gerardo

    2017-02-01

    The medical treatment of laxoscelisms is based solely on supportive measures. Although equine antiserum for Sphingomyelinase C (SMASE) and D isomers are available, it is not used due to the risk of an anaphylactic reaction and its unproven efficacy. As potential enzyme inhibitors, derivatives of Iron chitosan complexes were studied (Shiff base having -R = -H, -Cl, -Br, -F, -OCH3, -CH3, -NO2). These chitosan complexes were chosen because they have revealed good results in medicine and catalysis due to their biodegradable characteristics and bioavailability. Besides considering that these complexes have not been studied in relation to this toxin. The mechanisms underlying the catalytic and catcher effects of Iron chitosan complexes were studied using electrochemistry, UV-Vis spectroscopy and microscopic assay at physiological pH. The electrochemical studies showed that one of seven Schiff bases of chitosan adsorbed on glassy carbon electrode was electrocatalytically active for the oxidation of sphingomyelinase at 1.27 V, and that allowed proposing a reaction scheme for SMASE oxidation by adsorbed Iron complexes. On the other hand, even though the spectroscopic studies indicated that there was no chemical bond formation between the complex and SMASE in solution, the microscopic studies showed that this complex proved to be a remarkable cellular protector in presence of the enzyme. In conclusion, Shiff base of chitosan with R = -CH3 was the only active complex in front of sphingomyelinase C, protecting red blood cells, according to our electrochemical and microscopic studies.

  17. Activated carbon material

    DOEpatents

    Evans, A. Gary

    1978-01-01

    Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

  18. The adsorption of sympathomimetic agents by activated carbon hemoperfusion.

    PubMed

    Horres, C R; Hill, J B; Ellis, F W

    1976-01-01

    Sympathomimetic agents with mixed and pure alpha and beta adrenergic activity are adsorbed by coconut shell activated carbon from blood, sufficiently rapidly to markedly reduce the activity of these agents. The results of this study suggest that the site of injection of sympathomimetic agents being considered for correcting hypotension during activated carbon hemoperfusion be selected to permit systemic mixing before circulation into the adsorption device.

  19. Kinetics and isotherm analysis of Tropaeoline 000 adsorption onto unsaturated polyester resin (UPR): a non-carbon adsorbent.

    PubMed

    Jain, Rajeev; Sharma, Pooja; Sikarwar, Shalini

    2013-03-01

    The presence of dyes in water is undesirable due to the toxicological impact of their entrance into the food chain. Owing to the recalcitrant nature of dyes to biological oxidation, a tertiary treatment like adsorption is required. In the present study, unsaturated polyester resin (UPR) has been used as a sorbent in the treatment of dye-contaminated water. Different concentrations of Tropaeoline 000 containing water were treated with UPR. The preliminary investigations were carried out by batch adsorption to examine the effects of pH, adsorbate concentration, adsorbent dosage, contact time, and temperature. A plausible mechanism for the ongoing adsorption process and thermodynamic parameters have also been obtained from Langmuir and Freundlich adsorption isotherm models. Thermodynamic parameter showed that the sorption process of Tropaeoline 000 onto activated carbon (AC) and UPR were feasible, spontaneous, and endothermic under studied conditions. The estimated values for (ΔG) are -10.48 × 10(3) and -6.098 × 10(3) kJ mol(-1) over AC and UPR at 303 K (30 °C), indicating towards a spontaneous process. The adsorption process followed pseudo-first-order model. The mass transfer property of the sorption process was studied using Lagergren pseudo-first-order kinetic models. The values of % removal and k (ad) for dye systems were calculated at different temperatures (303-323 K). The mechanism of the adsorption process was determined from the intraparticle diffusion model.

  20. Ozone reaction with n-aldehydes (n=4-10), benzaldehyde, ethanol, isopropanol, and n-propanol adsorbed on a dual-bed graphitized carbon-carbon molecular sieve adsorbent cartridge.

    PubMed

    McClenny, W A; Colón, M; Oliver, K D

    2001-09-21

    Ozone reacts with n-aldehydes (n=4-10), benzaldehyde, ethanol, isopropanol and n-propanol adsorbed on a dual-bed graphitized carbon-carbon molecular sieve adsorbent cartridge. Destruction of n-aldehydes increases with n number and with ozone concentration. In some sampling experiments both generation and destruction of n-aldehydes by ozone are observed. In field experiments the results of sample analysis for n-aldehydes and benzaldehyde are frequently not proportional to sample volume whereas results for toluene and isoprene, and sometimes for total carbon, are. A simple theory is developed to simulate the net result of three processes: the adsorption of compounds from an air stream onto a solid adsorbent, the generation of compounds by reaction of ozone with materials upstream of or on the adsorbent, and the destruction by ozone of pre-existing compounds and compounds adsorbed from the sample stream. The use of distributed volume pairs is recommended as a way to identify loss of sample integrity during air monitoring experiments.

  1. Nitrogen-Doped Porous Carbons from Ionic Liquids@MOF: Remarkable Adsorbents for Both Aqueous and Nonaqueous Media.

    PubMed

    Ahmed, Imteaz; Panja, Tandra; Khan, Nazmul Abedin; Sarker, Mithun; Yu, Jong-Sung; Jhung, Sung Hwa

    2017-03-22

    Porous carbons were prepared from a metal-organic framework (MOF, named ZIF-8), with or without modification, via high-temperature pyrolysis. Porous carbons with high nitrogen content were obtained from the calcination of MOF after introducing an ionic liquid (IL) (IL@MOF) via the ship-in-bottle method. The MOF-derived carbons (MDCs) and IL@MOF-derived carbons (IMDCs) were characterized using various techniques and used for liquid-phase adsorptions in both water and hydrocarbon to understand the possible applications in purification of water and fuel, respectively. Adsorptive performances for the removal of organic contaminants, atrazine (ATZ), diuron, and diclofenac, were remarkably enhanced with the modification/conversion of MOFs to MDC and IMDC. For example, in the case of ATZ adsorption, the maximum adsorption capacity of IMDC (Q0 = 208 m(2)/g) was much higher than that of activated carbon (AC, Q0 = 60 m(2)/g) and MDC (Q0 = 168 m(2)/g) and was found to be the highest among the reported results so far. The results of adsorptive denitrogenation and desulfurization of fuel were similar to that of water purification. The IMDCs are very useful in the adsorptions since these new carbons showed remarkable performances in both the aqueous and nonaqueous phases. These results are very meaningful because hydrophobic and hydrophilic adsorbents are usually required for the adsorptions in the water and fuel phases, respectively. Moreover, a plausible mechanism, H-bonding, was also suggested to explain the remarkable performance of the IMDCs in the adsorptions. Therefore, the IMDCs derived from IL@MOF might have various applications, especially in adsorptions, based on high porosity, mesoporosity, doped nitrogen, and functional groups.

  2. Formation and composition of adsorbates on hydrophobic carbon surfaces from aqueous laccase-maltodextrin mixture suspension

    NASA Astrophysics Data System (ADS)

    Corrales Ureña, Yendry Regina; Lisboa-Filho, Paulo Noronha; Szardenings, Michael; Gätjen, Linda; Noeske, Paul-Ludwig Michael; Rischka, Klaus

    2016-11-01

    A robust procedure for the surface bio-functionalization of carbon surfaces was developed. It consists on the modification of carbon materials in contact with an aqueous suspension of the enzyme laccase from Trametes versicolor and the lyophilization agent maltodextrin, with the pH value adjusted close to the isoelectric point of the enzyme. We report in-situ investigations applying Quartz Crystal Microbalance with Dissipation (QCM-D) for carbon-coated sensor surfaces and, moreover, ex-situ measurements with static contact angle measurements, X-ray Photoelectron Spectroscopy (XPS) and Scanning Force Microscopy (SFM) for smooth Highly Oriented Pyrolytic Graphite (HOPG) substrates, for contact times between the enzyme formulation and the carbon material surface ranging from 20 s to 24 h. QCM-D studies reveals the formation of rigid layer of biomaterial, a few nanometers thin, which shows a strongly improved wettability of the substrate surface upon contact angle measurements. Following spectroscopic characterization, these layers are composed of mixtures of laccase and maltodextrin. The formation of these adsorbates is attributed to attractive interactions between laccase, the maltodextrin-based lyophilization agent and the hydrophobic carbon surfaces; a short-term contact between the aqueous laccase mixture suspension and HOPG surfaces is shown to merely result in de-wetting patterns influencing the results of contact angle measurements. The new enzyme-based surface modification of carbon-based materials is suggested to be applicable for the improvement of not only the wettability of low energy substrate surfaces with fluid formulations like coatings or adhesives, but also their adhesion in contact with hardened polymers.

  3. The effects of adsorbing organic pollutants from super heavy oil wastewater by lignite activated coke.

    PubMed

    Tong, Kun; Lin, Aiguo; Ji, Guodong; Wang, Dong; Wang, Xinghui

    2016-05-05

    The adsorption of organic pollutants from super heavy oil wastewater (SHOW) by lignite activated coke (LAC) was investigated. Specifically, the effects of LAC adsorption on pH, BOD5/COD(Cr)(B/C), and the main pollutants before and after adsorption were examined. The removed organic pollutants were characterized by Fourier transform infrared spectroscopy (FTIR), Boehm titrations, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography with organic carbon detection (LC-OCD). FTIR spectra indicated that organic pollutants containing -COOH and -NH2 functional groups were adsorbed from the SHOW. Boehm titrations further demonstrated that carboxyl, phenolic hydroxyl, and lactonic groups on the surface of the LAC increased. GC-MS showed that the removed main organic compounds are difficult to be degraded or extremely toxics to aquatic organisms. According to the results of LC-OCD, 30.37 mg/L of dissolved organic carbons were removed by LAC adsorption. Among these, hydrophobic organic contaminants accounted for 25.03 mg/L. Furthermore, LAC adsorption was found to increase pH and B/C ratio of the SHOW. The mechanisms of adsorption were found to involve between the hydrogen bonding and the functional groups of carboxylic, phenolic, and lactonic on the LAC surface. In summary, all these results demonstrated that LAC adsorption can remove bio-refractory DOCs, which is beneficial for biodegradation.

  4. Easily regenerable solid adsorbents based on polyamines for carbon dioxide capture from the air.

    PubMed

    Goeppert, Alain; Zhang, Hang; Czaun, Miklos; May, Robert B; Prakash, G K Surya; Olah, George A; Narayanan, S R

    2014-05-01

    Adsorbents prepared easily by impregnation of fumed silica with polyethylenimine (PEI) are promising candidates for the capture of CO2 directly from the air. These inexpensive adsorbents have high CO2 adsorption capacity at ambient temperature and can be regenerated in repeated cycles under mild conditions. Despite the very low CO2 concentration, they are able to scrub efficiently all CO2 out of the air in the initial hours of the experiments. The influence of parameters such as PEI loading, adsorption and desorption temperature, particle size, and PEI molecular weight on the adsorption behavior were investigated. The mild regeneration temperatures required could allow the use of waste heat available in many industrial processes as well as solar heat. CO2 adsorption from the air has a number of applications. Removal of CO2 from a closed environment, such as a submarine or space vehicles, is essential for life support. The supply of CO2-free air is also critical for alkaline fuel cells and batteries. Direct air capture of CO2 could also help mitigate the rising concerns about atmospheric CO2 concentration and associated climatic changes, while, at the same time, provide the first step for an anthropogenic carbon cycle.

  5. Easily Regenerable Solid Adsorbents Based on Polyamines for Carbon Dioxide Capture from the Air

    SciTech Connect

    Goeppert, A; Zhang, H; Czaun, M; May, RB; Prakash, GKS; Olah, GA; Narayanan, SR

    2014-03-18

    Adsorbents prepared easily by impregnation of fumed silica with polyethylenimine (PEI) are promising candidates for the capture of CO2 directly from the air. These inexpensive adsorbents have high CO2 adsorption capacity at ambient temperature and can be regenerated in repeated cycles under mild conditions. Despite the very low CO2 concentration, they are able to scrub efficiently all CO2 out of the air in the initial hours of the experiments. The influence of parameters such as PEI loading, adsorption and desorption temperature, particle size, and PEI molecular weight on the adsorption behavior were investigated. The mild regeneration temperatures required could allow the use of waste heat available in many industrial processes as well as solar heat. CO2 adsorption from the air has a number of applications. Removal of CO2 from a closed environment, such as a submarine or space vehicles, is essential for life support. The supply of CO2-free air is also critical for alkaline fuel cells and batteries. Direct air capture of CO2 could also help mitigate the rising concerns about atmospheric CO2 concentration and associated climatic changes, while, at the same time, provide the first step for an anthropogenic carbon cycle.

  6. Isotope tracer study of hydrogen spillover on carbon-based adsorbents for hydrogen storage.

    PubMed

    Lachawiec, Anthony J; Yang, Ralph T

    2008-06-17

    A composite material comprising platinum nanoparticles supported on molecular sieve templated carbon was synthesized and found to adsorb 1.35 wt % hydrogen at 298 K and 100 atm. The isosteric heat of adsorption for the material at low coverage was approximately 14 kJ/mol, and it approached a value of 10.6 kJ/mol as coverage increased for pressures at and above 1 atm. The increase in capacity is attributed to spillover, which is observed with the use of isotopic tracer TPD. IRMOF-8 bridged to Pt/C, a material known to exhibit hydrogen spillover at room temperature, was also studied with the hydrogen-deuterium scrambling reaction for comparison. The isotherms were reversible. For desorption, sequential doses of H2 and D2 at room temperature and subsequent TPD yield product distributions that are strong indicators of the surface diffusion controlled reverse spillover process.

  7. Accuracy of density functional theory in the prediction of carbon dioxide adsorbent materials.

    PubMed

    Cazorla, Claudio; Shevlin, Stephen A

    2013-04-07

    Density functional theory (DFT) has become the computational method of choice for modeling and characterization of carbon dioxide adsorbents, a broad family of materials which at present are urgently sought after for environmental applications. The description of polar carbon dioxide (CO(2)) molecules in low-coordinated environments like surfaces and porous materials, however, may be challenging for local and semi-local DFT approximations. Here, we present a thorough computational study in which the accuracy of DFT methods in describing the interactions of CO(2) with model alkali-earth-metal (AEM, Ca and Li) decorated carbon structures, namely anthracene (C(14)H(10)) molecules, is assessed. We find that gas-adsorption energies and equilibrium structures obtained with standard (i.e. LDA and GGA), hybrid (i.e. PBE0 and B3LYP) and van der Waals exchange-correlation functionals of DFT dramatically differ from the results obtained with second-order Møller-Plesset perturbation theory (MP2), an accurate computational quantum chemistry method. The major disagreements found can be mostly rationalized in terms of electron correlation errors that lead to wrong charge-transfer and electrostatic Coulomb interactions between CO(2) and AEM-decorated anthracene molecules. Nevertheless, we show that when the concentration of AEM atoms in anthracene is tuned to resemble as closely as possible the electronic structure of AEM-decorated graphene (i.e. an extended two-dimensional material), hybrid exchange-correlation DFT and MP2 methods quantitatively provide similar results.

  8. Making Activated Carbon by Wet Pressurized Pyrolysis

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark

    2006-01-01

    A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb

  9. Reuse performance of granular-activated carbon and activated carbon fiber in catalyzed peroxymonosulfate oxidation.

    PubMed

    Yang, Shiying; Li, Lei; Xiao, Tuo; Zhang, Jun; Shao, Xueting

    2017-03-01

    Recently, activated carbon was investigated as an efficient heterogeneous metal-free catalyst to directly activate peroxymonosulfate (PMS) for degradation of organic compounds. In this paper, the reuse performance and the possible deactivation reasons of granular-activated carbon (GAC) and activated carbon fiber (ACF) in PMS activation were investigated. As results indicated, the reusability of GAC, especially in the presence of high PMS dosage, was relatively superior to ACF in catalyzed PMS oxidation of Acid Orange 7 (AO7), which is much more easily adsorbed by ACF than by GAC. Pre-oxidation experiments were studied and it was demonstrated that PMS oxidation on ACF would retard ACF's deactivation to a big extent. After pre-adsorption with AO7, the catalytic ability of both GAC and ACF evidently diminished. However, when methanol was employed to extract the AO7-spent ACF, the catalytic ability could recover quite a bit. GAC and ACF could also effectively catalyze PMS to degrade Reactive Black 5 (RB5), which is very difficult to be adsorbed even by ACF, but both GAC and ACF have poor reuse performance for RB5 degradation. The original organic compounds or intermediate products adsorbed by GAC or ACF would be possibly responsible for the deactivation.

  10. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth.

    PubMed

    Mohan, Dinesh; Singh, Kunwar P; Singh, Vinod K

    2006-07-31

    An efficient adsorption process is developed for the decontamination of trivalent chromium from tannery effluents. A low cost activated carbon (ATFAC) was prepared from coconut shell fibers (an agricultural waste), characterized and utilized for Cr(III) removal from water/wastewater. A commercially available activated carbon fabric cloth (ACF) was also studied for comparative evaluation. All the equilibrium and kinetic studies were conducted at different temperatures, particle size, pHs, and adsorbent doses in batch mode. The Langmuir and Freundlich isotherm models were applied. The Langmuir model best fit the equilibrium isotherm data. The maximum adsorption capacities of ATFAC and ACF at 25 degrees C are 12.2 and 39.56 mg/g, respectively. Cr(III) adsorption increased with an increase in temperature (10 degrees C: ATFAC--10.97 mg/g, ACF--36.05 mg/g; 40 degrees C: ATFAC--16.10 mg/g, ACF--40.29 mg/g). The kinetic studies were conducted to delineate the effect of temperature, initial adsorbate concentration, particle size of the adsorbent, and solid to liquid ratio. The adsorption of Cr(III) follows the pseudo-second-order rate kinetics. From kinetic studies various rate and thermodynamic parameters such as effective diffusion coefficient, activation energy and entropy of activation were evaluated. The sorption capacity of activated carbon (ATFAC) and activated carbon fabric cloth is comparable to many other adsorbents/carbons/biosorbents utilized for the removal of trivalent chromium from water/wastewater.

  11. Activated carbon monoliths for methane storage

    NASA Astrophysics Data System (ADS)

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  12. Catalase-like activity studies of the manganese(II) adsorbed zeolites

    NASA Astrophysics Data System (ADS)

    ćiçek, Ekrem; Dede, Bülent

    2013-12-01

    Preparation of manganese(II) adsorbed on zeolite 3A, 4A, 5A. AW-300, ammonium Y zeolite, organophilic, molecular sieve and catalase-like enzyme activity of manganese(II) adsorbed zeolites are reported herein. Firstly zeolites are activated at 873 K for two hours before contact manganese(II) ions. In order to observe amount of adsorption, filtration process applied for the solution. The pure zeolites and manganese(II) adsorbed zeolites were analysed by FT-IR. As a result according to the FT-IR spectra, the incorporation of manganese(II) cation into the zeolite structure causes changes in the spectra. These changes are expected particularly in the pseudolattice bands connected with the presence of alumino and silicooxygen tetrahedral rings in the zeolite structure. Furthermore, the catalytic activities of the Mn(II) adsorbed zeolites for the disproportionation of hydrogen peroxide were investigated in the presence of imidazole. The Mn(II) adsorbed zeolites display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen in catalase-like activity.

  13. Kinetics of dodecanoic acid adsorption from caustic solution by activated carbon.

    PubMed

    Pendleton, Phillip; Wu, Sophie Hua

    2003-10-15

    This study examines the influences of adsorbent porosity and surface chemistry and of carbon dosage on dodecanoic acid adsorption kinetics from aqueous and 2 M NaOH solutions as batch adsorption processes. Both adsorbents are steam-activated carbons prepared from either coconut or coal precursors. Prior to use the adsorbents were washed in deionized water or 2 M NaOH. Mass transfer coefficients and effective overall diffusion coefficients indicate a minor contribution from adsorbent porosity. In contrast, high surface oxygen content impedes transport to and into the adsorbent structure. Carbon dosage shows a proportional increase in transport coefficients with increasing mass; these coefficients are constant when normalized per unit mass. Neither water nor NaOH treatment of the adsorbents has a significant influence on dodecanoic acid adsorption kinetics. Molecular and Knudsen diffusion coefficients are defined to demonstrate that the overall effective diffusion coefficient values and the diffusion process are controlled by surface diffusion.

  14. Adsorption of perfluoroalkyl acids by carbonaceous adsorbents: Effect of carbon surface chemistry.

    PubMed

    Zhi, Yue; Liu, Jinxia

    2015-07-01

    Adsorption by carbonaceous sorbents is among the most feasible processes to remove perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) from drinking and ground waters. However, carbon surface chemistry, which has long been recognized essential for dictating performance of such sorbents, has never been considered for PFOS and PFOA adsorption. Thus, the role of surface chemistry was systematically investigated using sorbents with a wide range in precursor material, pore structure, and surface chemistry. Sorbent surface chemistry overwhelmed physical properties in controlling the extent of uptake. The adsorption affinity was positively correlated carbon surface basicity, suggesting that high acid neutralizing or anion exchange capacity was critical for substantial uptake of PFOS and PFOA. Carbon polarity or hydrophobicity had insignificant impact on the extent of adsorption. Synthetic polymer-based Ambersorb and activated carbon fibers were more effective than activated carbon made of natural materials in removing PFOS and PFOA from aqueous solutions.

  15. The Dispersion Properties of Precipitated Calcium Carbonate Suspensions Adsorbed with Alkyl Polyglycoside in Aqueous Medium.

    PubMed

    Song, Myung-Geun; Kim, Jong-Yun; Kim, Jong-Duk

    2000-06-01

    The zeta potentials and dispersion properties of precipitated calcium carbonate suspensions adsorbed with alkyl polyglycosides in aqueous medium were investigated. Within the investigated pH ranges, the adsorption curves of alkyl polyglycosides on calcium carbonates show sigmoidal shapes, and the zeta potential decreases as the amount of adsorption increases. At positively charged surfaces of low pH, the adsorption amounts were greater than those at negatively charged surfaces, indicating that alkyl polyglycosides were negatively charged in aqueous solutions. At low concentrations of alkyl polyglycosides, the dispersion stabilities of suspensions were very poor and showed no linearity with zeta potentials over the entire range of pHs, which may be attributed to the onset of hydrophobic interaction between particles due to the adsorption of surfactant molecules. This destabilization continued until monolayer coverage by the surfactant layer was complete. Based on the classical DLVO theory, there may be a strong hydrophobic interaction between particles. Beyond monolayer adsorption, the dispersion stability increases, probably by the formation of hemimicelle or admicelle. Therefore, it is believed that ionization of alkyl polyglycosides and admicelles of surfactants on particle surface plays a key role in the stability of dispersions and the abrupt increase in adsorption. Copyright 2000 Academic Press.

  16. PERVAPORATION USING ADSORBENT-FILLED MEMBRANES

    EPA Science Inventory

    Membranes containing selective fillers, such as zeolites and activated carbon, can improve the separation by pervaporation. Applications of adsorbent-filled membranes in pervaporation have been demonstrated by a number of studies. These applications include removal of organic co...

  17. Water and ion transport in ultra-adsorbing porous magnesium carbonate studied by dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Pochard, Isabelle; Frykstrand, Sara; Ahlström, Olle; Forsgren, Johan; Strømme, Maria

    2014-01-01

    Porous materials are used in application areas ranging from drug and vaccine delivery, medical implants, molecular sieves and cosmetics to catalysis and humidity control. In the present work, we employed an alternative approach to gain in-depth understanding about water interaction properties in such materials by the use of dielectric spectroscopy and thereby show that it is possible to obtain information that is not accessible from the more commonly employed water interaction analysis techniques. Specifically, the complex dielectric response of Upsalite, a novel, super-hydroscopic, high-surface area, porous magnesium carbonate material was measured in isothermal frequency scans between 10-3 and 106 Hz at controlled relative humidity (RH). We found the dielectric constant of the dry material to be 1.82. The ratio of bound to free water present in Upsalite after adsorption at room temperature was found to be high irrespective of the surrounding humidity with values ranging from ˜67% to ˜90%. We further found that OH- ions are the charge carriers responsible for the electrode polarization observed in the dielectric response and that the amount of these ions that are free to move in the material corresponds to a concentration of the order of 1-10 μmol l-1 independent of RH. Finally, the OH- diffusion coefficient displayed a drastic decrease with decreasing RH, typical of transport in unsaturated conditions. The presented results provide detailed insight about water interactions in the novel water adsorbing material under study and it is foreseen that the employed analysis methods can be used to evaluate other types of moisture adsorbing materials as well as the movement of functional species in the pores of inorganic drug delivery materials and materials tailored for adsorption of harmful charged species.

  18. Adsorption of dichlorodifluoromethane, chlorodifluoromethane, and chloropentafluoroethane on activated carbon

    SciTech Connect

    Berlier, K.; Frere, M.; Bougard, J.

    1995-09-01

    The CFCs (chlorofluorocarbons) are used as working refrigerant fluids. Recent concerns of the effects of CFCs on the ozone layer requires the development of efficient recovery methods. One technique is to adsorb the fluids onto a porous medium such as silica gel or activated carbon. Isotherms and enthalpies of adsorption curves of dichlorodifluoromethane (R12), chlorodifluoromethane (R22), and chloropentafluoroethane (R115) on three different activated carbons have been obtained at 303 K and at pressures to 602 kPa.

  19. Use of industrial by-products and natural media to adsorb nutrients, metals and organic carbon from drinking water.

    PubMed

    Grace, Maebh A; Healy, Mark G; Clifford, Eoghan

    2015-06-15

    Filtration technology is well established in the water sector but is limited by inability to remove targeted contaminants, found in surface and groundwater, which can be damaging to human health. This study optimises the design of filters by examining the efficacy of seven media (fly ash, bottom ash, Bayer residue, granular blast furnace slag (GBS), pyritic fill, granular activated carbon (GAC) and zeolite), to adsorb nitrate, ammonium, total organic carbon (TOC), aluminium, copper (Cu) and phosphorus. Each medium and contaminant was modelled to a Langmuir, Freundlich or Temkin adsorption isotherm, and the impact of pH and temperature (ranging from 10 °C to 29 °C) on their performance was quantified. As retention time within water filters is important in contaminant removal, kinetic studies were carried out to observe the adsorption behaviour over a 24h period. Fly ash and Bayer residue had good TOC, nutrient and Cu adsorption capacity. Granular blast furnace slag and pyritic fill, previously un-investigated in water treatment, showed adsorption potential for all contaminants. In general, pH or temperature adjustment was not necessary to achieve effective adsorption. Kinetic studies showed that at least 60% of adsorption had occurred after 8h for all media. These media show potential for use in a multifunctional water treatment unit for the targeted treatment of specific contaminants.

  20. Application of carbon foam for heavy metal removal from industrial plating wastewater and toxicity evaluation of the adsorbent.

    PubMed

    Lee, Chang-Gu; Song, Mi-Kyung; Ryu, Jae-Chun; Park, Chanhyuk; Choi, Jae-Woo; Lee, Sang-Hyup

    2016-06-01

    Electroplating wastewater contains various types of toxic substances, such as heavy metals, solvents, and cleaning agents. Carbon foam was used as an adsorbent for the removal of heavy metals from real industrial plating wastewater. Its sorption capacity was compared with those of a commercial ion-exchange resin (BC258) and a heavy metal adsorbent (CupriSorb™) in a batch system. The experimental carbon foam has a considerably higher sorption capacity for Cr and Cu than commercial adsorbents for acid/alkali wastewater and cyanide wastewater. Additionally, cytotoxicity test showed that the newly developed adsorbent has low cytotoxic effects on three kinds of human cells. In a pilot plant, the carbon foam had higher sorption capacity for Cr (73.64 g kg(-1)) than for Cu (14.86 g kg(-1)) and Ni (7.74 g kg(-1)) during 350 h of operation time. Oxidation pretreatments using UV/hydrogen peroxide enhance heavy metal removal from plating wastewater containing cyanide compounds.

  1. Comparative study of calcium alginate, activated carbon, and their composite beads on methylene blue adsorption.

    PubMed

    Hassan, A F; Abdel-Mohsen, A M; Fouda, Moustafa M G

    2014-02-15

    Three adsorbents, calcium alginate beads (AB), sodium hydroxide activated carbon based coconut shells (C), and calcium alginate/activated carbon composite beads (ACB) were prepared. Their textural properties were characterized by N2-adsorption at -196°C and scanning electron microscopy. The porosity, surface area and total pore volume of C>ACB>AB, but AB adsorbent was more acidic function groups more than the other adsorbents. Adsorption experiments were conducted to examine the effects of adsorbent dosage, pH, time, temperature and initial concentration of methylene blue. Methylene blue adsorption on C, AB and ACB was observed at pH>6 to avoid the competition of H(+). The amount of dye adsorbed increases as the adsorbent dosage increase. Adsorption of dye follows pseudo-second order mechanism. Thermodynamic studies show spontaneous and endothermic nature of the overall adsorption process.

  2. Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon.

    PubMed

    Matsui, Yoshihiko; Ando, Naoya; Yoshida, Tomoaki; Kurotobi, Ryuji; Matsushita, Taku; Ohno, Koichi

    2011-02-01

    The capacity to adsorb natural organic matter (NOM) and polystyrene sulfonates (PSSs) on small particle-size activated carbon (super-powdered activated carbon, SPAC) is higher than that on larger particle-size activated carbon (powdered-activated carbon, PAC). Increased adsorption capacity is likely attributable to the larger external surface area because the NOM and PSS molecules do not completely penetrate the adsorbent particle; they preferentially adsorb near the outer surface of the particle. In this study, we propose a new isotherm equation, the Shell Adsorption Model (SAM), to explain the higher adsorption capacity on smaller adsorbent particles and to describe quantitatively adsorption isotherms of activated carbons of different particle sizes: PAC and SPAC. The SAM was verified with the experimental data of PSS adsorption kinetics as well as equilibrium. SAM successfully characterized PSS adsorption isotherm data for SPACs and PAC simultaneously with the same model parameters. When SAM was incorporated into an adsorption kinetic model, kinetic decay curves for PSSs adsorbing onto activated carbons of different particle sizes could be simultaneously described with a single kinetics parameter value. On the other hand, when SAM was not incorporated into such an adsorption kinetic model and instead isotherms were described by the Freundlich model, the kinetic decay curves were not well described. The success of the SAM further supports the adsorption mechanism of PSSs preferentially adsorbing near the outer surface of activated carbon particles.

  3. Adsorption onto fluidized powdered activated carbon flocs-pACF.

    PubMed

    Serpa, Ana Lídia; Schneider, Ivo André H; Rubio, Jorge

    2005-02-01

    This work presents a new adsorption technique where the adsorbent (powdered activated carbon-PAC) is in the form of suspended flocs formed with water-soluble polymer flocculants. Thus, the adsorption of a typical dye, methylene blue (MB), was studied onto polyacrylamide flocs of PAC (PACF) in a fluidized bed reactor. The technique is based on the fact that the adsorption capacity of PAC does not decrease after flocculation because the adsorbed polymer occupies only a few surface sites, in the form of trains, loops, and tails. Moreover, the adsorption was found to proceed through a rapid mass transfer of MB to the adsorbing PAC flocs, in the same extent as onto PAC. Because of the rapid settling characteristics of the aggregates formed, the two phase separations, loaded PAC and solution, become easier. Thus, the technique offers the advantages of conducting simultaneously both adsorption and solid/liquid separation all in one single stage. Results obtained showed that high MB removal values can be attained in a fluidized bed reactor (>90%) and that PACF presents a much higher adsorption capacity (breakthrough points) than granulated activated carbon (GAC) in the same adsorbing bed. It is believed that this technique highly broadens the potential of the use of powdered activated carbon or other similar ultrafine adsorbents.

  4. Hydrogasification of carbon adsorbed on sulfur-poisoned dispersed metal catalysts. Final report

    SciTech Connect

    McCarty, J.G.; Wood, B.J.

    1993-12-01

    The temperature programmed reaction of 1- to 10-atom hydrogen (TPRH) with carbon deposited on alumina supported Ni, Ru, and Co and on fused Fe catalysts has been developed to examine the effect of sulfur poisoning on coking rates and the nature of the deposited carbon. A new procedure, passivation by carbon deposition on clean reduced metals and low temperature (20--50 C) exposure to recirculate dilute H{sub 2}S with moderate 0.1 atm partial pressure of CO{sub 2} was used to slow the rate of sulfur chemisorption. This method facilitated slow uniform sulfur chemisorption to fractional saturation coverages. Fractional sulfur poisoning generally blocked sites of active surface carbon (or hydrocarbon fragments) while suppressing rates of hydrogasification as shown by the increasing temperatures in the TPRH hydrogasification rate versus temperature spectra. Fractional sulfur poisoning (e.g., half saturation) appears to inhibit H{sub 2} gasification with surface carbon surprisingly without strongly affecting catalytic activity. Sulfur poisoning to saturation levels (defined here as {approximately}1 ppm H{sub 2}S in 1-atm H{sub 2} at 500 C) always results in complete loss of activity and is also marked by the growth of a very unreactive form of carbon.

  5. Decolorization/Deodorization of Zein via Activated Carbons and Molecular Sieves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of commercial activated carbons generated from different media and selective microporous zeolites with different pore sizes were used in a batch system to sequester the low molecular weight odor and color contaminants in commercial zein products. Because the adsorbents can also adsorb prot...

  6. Investigation of Mesoporous Graphitic Carbon Nitride as the Adsorbent to Remove Ni (II) Ions.

    PubMed

    Xin, Gang; Xia, Yuanjiao; Lv, Yuhua; Liu, Luman; Yu, Bei

    2016-04-01

    The mesoporous graphitic carbon nitride (mpg-C3N4/r, r was defined as the initial silica/dicyandiamide mass ratio) was successfully synthesized by heating the mixture of silica and dicyandiamide in a nitrogen atmosphere. The morphology and structure of mpg-C3N4/r were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller surface area measurement (BET), X-ray powder diffraction (XRD), and Fourier Transform Infrared spectroscopy (FT-IR). The adsorption performances of Ni (II) ions by mpg-C3N4/r were investigated. With increasing of r value, the BET specific surface area of the synthesized mpg-C3N4/r increased; the highest specific surface area of mpg-C3N4/1.5 increased up to 169.3 m2/g. This work shows that mpg-C3N4/1.5 is a promising, high-efficiency adsorbent that can be used to purify the water of a low Ni (II) ions concentration. The maximum adsorption capacity of Ni(II) ions by mpg-C3N4/1.5 was 15.26 mg/g. The adsorption properties of Ni (II) ions by mpg-C3N4/r complied well with pseudo-second-order kinetics and Langmuir isotherm model.

  7. Ionic liquids adsorbed cellulose electro active paper actuator

    NASA Astrophysics Data System (ADS)

    Mahadeva, Suresha K.; Nayak, Jyoti; Kim, Jaehwan

    2009-03-01

    Cellulose has been reported as a smart material that can be used as sensors and actuators. The cellulose smart material is termed as Electro-active paper (EAPap), which is made by regenerating cellulose. However, regeneration of cellulose resulted in reduced performance output of actuators at low humidity levels. To solve this drawback, EAPap bending actuators were made by activating wet cellulose films in three different room temperature ionic liquids BMIPF6, BMICL and BMIBF4. Results showed that the actuator performance was dependent on the type of anions in the ionic liquids and it was in the order of BF4 > Cl > PF6Â. BMIBF4 activated actuator showed the maximum displacement of 3.8 mm with low electrical power consumption at relatively low humidity level. Also, it found that, although size of PF6 anion is larger than BF4 anion it showed the low displacement output due to poor adsorption as indicated the FTIR analysis.

  8. Comparison of toluene adsorption among granular activated carbon and different types of activated carbon fibers (ACFs).

    PubMed

    Balanay, Jo Anne G; Crawford, Shaun A; Lungu, Claudiu T

    2011-10-01

    Activated carbon fiber (ACF) has been demonstrated to be a good adsorbent for the removal of organic vapors in air. Some ACF has a comparable or larger surface area and higher adsorption capacity when compared with granular activated carbon (GAC) commonly used in respiratory protection devices. ACF is an attractive alternative adsorbent to GAC because of its ease of handling, light weight, and decreasing cost. ACF may offer the potential for short-term respiratory protection for first responders and emergency personnel. This study compares the critical bed depths and adsorption capacities for toluene among GAC and ACF of different forms and surface areas. GAC and ACF in cloth (ACFC) and felt (ACFF) forms were challenged in stainless steel chambers with a constant concentration of 500 ppm toluene via conditioned air at 25°C, 50% RH, and constant airflow (7 L/min). Breakthrough data were obtained for each adsorbent using gas chromatography with flame ionization detector. Surface areas of each adsorbent were determined using a physisorption analyzer. Results showed that the critical bed depth of GAC is 275% higher than the average of ACFC but is 55% lower than the average of ACFF. Adsorption capacity of GAC (with a nominal surface area of 1800 m(2)/g) at 50% breakthrough is 25% higher than the average of ACF with surface area of 1000 m(2)/g, while the rest of ACF with surface area of 1500 m(2)/g and higher have 40% higher adsorption capacities than GAC. ACFC with higher surface area has the smallest critical bed depth and highest adsorption capacity, which makes it a good adsorbent for thinner and lighter respirators. We concluded that ACF has great potential for application in respiratory protection considering its higher adsorption capacity and lower critical bed depth in addition to its advantages over GAC, particularly for ACF with higher surface area.

  9. Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon.

    PubMed

    Aktaş, Ozgür; Ceçen, Ferhan

    2007-03-22

    This study aims to clarify the effect of activated carbon type on the extent of adsorbability, desorbability, and bioregenerability in the treatment of 2-chlorophenol. Four different activated carbon types; thermally activated and chemically activated powdered carbons (PAC), and their granular countertypes (GAC) with similar physical characteristics were used. Thermally activated carbons adsorbed 2-chlorophenol much better than chemically activated ones. However, adsorption was more reversible in the case of chemically activated ones. The use of powdered and granular activated carbon countertypes resulted in comparable adsorption and desorption characteristics. For each activated carbon type, 2-chlorophenol exhibited higher adsorbability and lower desorbability than phenol. Biodegradation of 2-chlorophenol took place very slowly when it was used as the sole carbon source in acclimated and non-acclimated activated sludges. Bioregeneration occurred only via desorption due to an initial concentration gradient and no further desorption took place due to low biodegradability. Bioregeneration of activated carbon loaded with 2-chlorophenol was not a suitable option when 2-chlorophenol was the only carbon source. It is suggested to remove 2-chlorophenol via adsorption onto activated carbon rather than applying biological treatment. Also in such cases, the use of thermally activated carbons with higher adsorption and lower desorption capacities is recommended rather than chemically activated carbons.

  10. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    SciTech Connect

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  11. Adsorbed Proteins Influence the Biological Activity and Molecular Targeting of Nanomaterials

    SciTech Connect

    Dutta, Debamitra; Sundaram, S. K.; Teeguarden, Justin G.; Riley, Brian J.; Fifield, Leonard S.; Jacobs, Jon M.; Addleman, Raymond S.; Kaysen, George A.; Moudgil, Brij M.; Weber, Thomas J.

    2007-11-01

    The possible combination of unique physicochemical properties operating at unique sites of action within cells and tissues has led to considerable uncertainty surrounding nanomaterial toxic potential. Here we have investigated the relative importance of proteins adsorbed onto nanomaterial surfaces in guiding uptake and toxicity to determine whether a priori identification of adsorbed proteins will contribute to nanomaterial toxicity assessment. Albumin was identified as the major protein adsorbed onto single walled carbon nanotubes (SWCNTs) following incubation with fetal bovine or human serum/plasma, but not when plasma from the Nagase Analbuminemic Rat (NAR) was used, and precoating SWCNTs with a non-ionic surfactant (Pluronic F127) inhibited albumin adsorption. Damaged or structurally altered albumin is rapidly cleared by scavenger receptors. In the RAW 264.7 macrophage-like model, we observed that SWCNTs inhibited the induction of cyclooxygenase-2 (Cox-2) by lipopolysaccharide (LPS; 1 ng/ml, 6 hr) and this anti-inflammatory response was inhibited by fucoidan (scavenger receptor antagonist) and by precoating SWCNTs with Pluronic F127. Fucoidan also reduced the uptake of fluorescent SWCNTs (Alexa647) in RAW 264.7 cells. Albumin-coated SWCNTs reduced LPS-mediated Cox-2 induction. SWCNTs did not appear to reduce binding of a fluorescent LPS (Alexa488) to RAW 264.7 cells. The profile of proteins adsorbed onto amorphous silica (50 – 1000 nm) was qualitatively different, relative to SWCNTs, and coating amorphous silica with Pluronic F127 dramatically reduced protein binding and toxicity. Collectively, these observations are consistent with an important role for adsorbed proteins in guiding nanomaterial disposition and toxicity.

  12. Adsorption of metal ions by pecan shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-09-01

    The present investigation was undertaken to evaluate the adsorption effectiveness of pecan shell-based granular activated carbons (GACs) in removing metal ions (Cu(2+), Pb(2+), Zn(2+)) commonly found in municipal and industrial wastewater. Pecan shells were activated by phosphoric acid, steam or carbon dioxide activation methods. Metal ion adsorption of shell-based GACs was compared to the metal ion adsorption of a commercial carbon, namely, Calgon's Filtrasorb 200. Adsorption experiments were conducted using solutions containing all three metal ions in order to investigate the competitive effects of the metal ions as would occur in contaminated wastewater. The results obtained from this study showed that acid-activated pecan shell carbon adsorbed more lead ion and zinc ion than any of the other carbons, especially at carbon doses of 0.2-1.0%. However, steam-activated pecan shell carbon adsorbed more copper ion than the other carbons, particularly using carbon doses above 0.2%. In general, Filtrasorb 200 and carbon dioxide-activated pecan shell carbons were poor metal ion adsorbents. The results indicate that acid- and steam-activated pecan shell-based GACs are effective metal ion adsorbents and can potentially replace typical coal-based GACs in treatment of metal contaminated wastewater.

  13. Solid / solution interaction: The effect of carbonate alkalinity on adsorbed thorium

    NASA Astrophysics Data System (ADS)

    LaFlamme, Brian D.; Murray, James W.

    1987-02-01

    Elevated activities of dissolved Th have been found in Soap Lake, an alkaline lake in Eastern Washington. Dissolved 232Th ranges from less than 0.001 to 4.9 dpm/L compared to about 1.3 × 10 -5 dpm/ L in sea water. The enhanced activity in the lake coincides with an increase in carbonate alkalinity. Experiments were conducted to evaluate the effect of pH, ionic strength and carbonate alkalinity on Th adsorption on goethite. Thorium (10 -13 M total) in the presence of 5.22 mg/L α-FeOOH and 0.1 M NaNO 3 has an adsorption edge from pH 2-5. At pH 9.0 ± 0.6 the percent Th absorbed on the solid began to decrease from 100% at 100 meq/L carbonate alkalinity and exhibited no adsorption above 300 meq/L. The experimental data were modeled to obtain the intrinsic adsorption equilibrium constants for Th hydrolysis species. These adsorption constants were incorporated in the model to interpret the observed effect of carbonate alkalinity on Th adsorption. There are two main effects of the alkalinity. To a significant degree the decrease in Th adsorption is due to competition of HCO -3 and CO 2-3 ions for surface sites. Dissolved Th carbonate complexes also contribute to the increase of Th in solution.

  14. Adsorption of pharmaceuticals to microporous activated carbon treated with potassium hydroxide, carbon dioxide, and steam.

    PubMed

    Fu, Heyun; Yang, Liuyan; Wan, Yuqiu; Xu, Zhaoyi; Zhu, Dongqiang

    2011-01-01

    Adsorption of sulfapyridine, tetracycline, and tylosin to a commercial microporous activated carbon (AC) and its potassium hydroxide (KOH)-, CO-, and steam-treated counterparts (prepared by heating at 850°C) was studied to explore efficient adsorbents for the removal of selected pharmaceuticals from water. Phenol and nitrobenzene were included as additional adsorbates, and nonporous graphite was included as a model adsorbent. The activation treatments markedly increased the specific surface area and enlarged the pore sizes of the mesopores of AC (with the strongest effects shown on the KOH-treated AC). Adsorption of large-size tetracycline and tylosin was greatly enhanced, especially for the KOH-treated AC (more than one order of magnitude), probably due to the alleviated size-exclusion effect. However, the treatments had little effect on adsorption of low-size phenol and nitrobenzene due to the predominance of micropore-filling effect in adsorption and the nearly unaffected content of small micropores causative to such effect. These hypothesized mechanisms on pore-size dependent adsorption were further tested by comparing surface area-normalized adsorption data and adsorbent pore size distributions with and without the presence of adsorbed antibiotics. The findings indicate that efficient adsorption of bulky pharmaceuticals to AC can be achieved by enlarging the adsorbent pore size through suitable activation treatments.

  15. Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon.

    PubMed

    Apul, Onur Guven; Wang, Qiliang; Zhou, Yang; Karanfil, Tanju

    2013-03-15

    Adsorption of two synthetic organic compounds (SOCs; phenanthrene and biphenyl) by two pristine graphene nanosheets (GNS) and one graphene oxide (GO) was examined and compared with those of a coal base activated carbon (HD4000), a single-walled carbon nanotube (SWCNT), and a multi-walled carbon nanotube (MWCNT) in distilled and deionized water and in the presence of natural organic matter (NOM). Graphenes exhibited comparable or better adsorption capacities than carbon nanotubes (CNTs) and granular activated carbon (GAC) in the presence of NOM. The presence of NOM reduced the SOC uptake of all adsorbents. However, the impact of NOM on the SOC adsorption was smaller on graphenes than CNTs and activated carbons. Furthermore, the SOC with its flexible molecular structure was less impacted from NOM preloading than the SOC with planar and rigid molecular structure. The results indicated that graphenes can serve as alternative adsorbents for removing SOCs from water. However, they will also, if released to environment, adsorb organic contaminants influencing their fate and impact in the environment.

  16. Nanoporous Carbons: Looking Beyond Their Perception as Adsorbents, Catalyst Supports and Supercapacitors.

    PubMed

    Bandosz, Teresa J

    2016-02-01

    The discovery of carbon nanoforms, and especially graphene, has opened up new directions of science and technology. Many applications are based on the unique properties of graphene, such as its high electrical and thermal conductivity, strength, flexibility, photoactivity and transparency. Inspired by the emerging graphene science, we directed our efforts to the exploration of new applications of nanoporous (microporous) carbons. Their matrix is built of distorted graphene layers, between which pores with sizes ranging from a fraction of a nanometer to hundreds of nanometers exist. This is a very unique feature of nanoporous carbons resulting in their developed surface areas. Moreover, there are vast possibilities to modify the surface chemistry of carbons and thus their surface properties. Even though the traditional applications of porous carbons focus mainly on adsorption and separation, we decided to explore them as photocatalysts, oxygen reduction catalysts and sensors. Related to their visible-light activity, their possible application in solar energy harvesting is also indicated. This Personal Account presents our paths leading to the exploration of these directions, describing the results collected and difficulties encountered, along with the challenges remaining to be addressed.

  17. Properties of adsorbents prepared by the alkali activation of Aleksandriisk brown coal

    SciTech Connect

    Yu.V. Tamarkina; V.G. Kolobrodov; T.G. Shendrik; V.A. Kucherenko

    2009-07-01

    Highly microporous adsorbents (micropore fraction of about 70%) were prepared by the alkali activation-thermolysis (800{sup o}C, 1 h) of brown coal (C{sup daf} = 70.4%) in the presence of potassium hydroxide at the KOH/coal weight ratio R{sub KOH} {le} 2.0 g/g. The dependences of the specific surface areas and adsorption capacities of the adsorbents for methylene blue (A{sub MB}, mg/g), iodine (A{sub I}, mg/g), and hydrogen (A{sub H{sub 2}} wt %) on R{sub KOH} were determined. The adsorbents obtained at R{sub KOH}{ge} 1.0 g/g exhibited developed specific surface areas and good adsorption characteristics (A{sub I} = 1000-1200 mg/g, A{sub MB} = 200-250 mg/g, and A{sub H{sub 2}} {le} 3.16 wt % at 0.33 MPa). The high capacity for hydrogen allowed us to consider brown coal adsorbents as promising materials for use as hydrogen accumulators.

  18. Synthesis of an attapulgite clay@carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water.

    PubMed

    Chen, Li-Feng; Liang, Hai-Wei; Lu, Yang; Cui, Chun-Hua; Yu, Shu-Hong

    2011-07-19

    A new kind of attapulgite clay@carbon (ATP@C) nanocomposite adsorbent has been synthesized by a one-pot hydrothermal carbonization process under mild conditions using two cheap, ecofriendly materials (i.e., attapulgite clay (ATP), which is a magnesium aluminum silicate that is abundant in nature, and glucose, which is a green chemical obtained from biomass). Compared to carbon-based materials, this new ATP@C nanocomposite exhibits a high adsorption ability for Cr(VI) and Pb(II) ions with maximum adsorption capacities of 177.74 and 263.83 mg·g(-1), respectively. The results demonstrate that this nanocomposite is an exceptionally promising candidate as a low-cost, sustainable, and effective adsorbent for the removal of toxic ions from water.

  19. Decomposition degree of chlorofluorocarbon (CFC) and CFC replacements during recovery with surface-modified activated carbon

    SciTech Connect

    Tanada, Seiki; Kawasaki, Naohito; Nakamura, Takeo; Abe, Ikuo

    1996-02-10

    The recovery efficiency of 1,1,2-trichloro-1,2,2-trifluoroethane (CFC113) and three CFC replacements (1,1-dichloro-1-fluoroethane, HCFC141b; 1,3-dichloro-1,1,2,2,3-pentafluoro-propane, HCFC225cb; and 2,2,3,3,3-pentafluoro-1-propanol, 5FP) were investigated on the basis of their degree of decomposition and adsorption isotherms. The authors prepared activated carbons with various surface polarities to elucidate the recovery efficiency, the amount adsorbed, and the degree of decomposition. The amount of CFC113 adsorbed onto untreated activated carbon was the largest of all. That of HCFC225cb adsorbed onto activated carbon treated with hydrogen gas was larger than that adsorbed onto untreated activated carbon and activated carbon treated with 6 N nitric acid. The amount of 5FP and HCFC141b adsorbed on the various activated carbons was not substantial. The degree of decomposition of CFC replacements using the untreated activated carbon except for HCFC225cb was the largest of all. In the case without the activated carbon, that of CFC and the CFC replacements increased in the order 5FP, CFC113 or HCFC225cb, and HCFC141b. It is concluded that the recovery of CFC replacements was possible using the surface-modified activated carbons rather than the untreated activated carbon. The degree of decomposition of the CFC replacements during recovery using the activated carbon depends on the relationship between the adsorption site of the surface of the activated carbon and the polarity, hydrophilic site, or hydrophobic site of the CFC replacement molecule.

  20. Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors

    DOEpatents

    Johnson, Jr., Alan T.; Gelperin, Alan; Staii, Cristian

    2011-07-12

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  1. Water vapor adsorption on activated carbon preadsorbed with naphtalene.

    PubMed

    Zimny, T; Finqueneisel, G; Cossarutto, L; Weber, J V

    2005-05-01

    The adsorption of water vapor on a microporous activated carbon derived from the carbonization of coconut shell has been studied. Preadsorption of naphthalene was used as a tool to determine the location and the influence of the primary adsorbing centers within the porous structure of active carbon. The adsorption was studied in the pressure range p/p0=0-0.95 in a static water vapor system, allowing the investigation of both kinetic and equilibrium experimental data. Modeling of the isotherms using the modified equation of Do and Do was applied to determine the effect of preadsorption on the mechanism of adsorption.

  2. Influence of gold nanoparticle size on the orientation and activity of adsorbed proteins

    NASA Astrophysics Data System (ADS)

    Kaur, Kanwarjeet; Forrest, James

    2010-03-01

    We used UV-visible extinction spectroscopy to study the orientation and activity of rabbit immunoglobulin G and Protein A from Staphylococcus aureus adsorbed onto gold nanoparticles of various sizes (10-60nm). There is a shift in the localised surface plasmon resonance peak due to the interaction of proteins with the nanoparticles. The proteins adopt different orientations on smaller spheres as compared to larger spheres. IgG adopts end-on orientation on bigger spheres with the Fc domain directed towards the spheres. It displays no activity towards Protein A. This study shows that the curvature of nanoparticles strongly influences the orientation of adsorbed proteins. This could be useful in the designing of colloidal drug carriers.

  3. Mesocarbon Microbead Carbon-Supported Magnesium Hydroxide Nanoparticles: Turning Spent Li-ion Battery Anode into a Highly Efficient Phosphate Adsorbent for Wastewater Treatment.

    PubMed

    Zhang, Yan; Guo, Xingming; Wu, Feng; Yao, Ying; Yuan, Yifei; Bi, Xuanxuan; Luo, Xiangyi; Shahbazian-Yassar, Reza; Zhang, Cunzhong; Amine, Khalil

    2016-08-24

    Phosphorus in water eutrophication has become a serious problem threatening the environment. However, the development of efficient adsorbents for phosphate removal from water is lagging. In this work, we recovered the waste material, graphitized carbon, from spent lithium ion batteries and modified it with nanostructured Mg(OH)2 on the surface to treat excess phosphate. This phosphate adsorbent shows one of the highest phosphate adsorption capacities to date, 588.4 mg/g (1 order of magnitude higher than previously reported carbon-based adsorbents), and exhibits decent stability. A heterogeneous multilayer adsorption mechanism was proposed on the basis of multiple adsorption results. This highly efficient adsorbent from spent Li-ion batteries displays great potential to be utilized in industry, and the mechanism study paved a way for further design of the adsorbent for phosphate adsorption.

  4. Mesocarbon Microbead Carbon-Supported Magnesium Hydroxide Nanoparticles: Turning Spent Li-ion Battery Anode into a Highly Efficient Phosphate Adsorbent for Wastewater Treatment

    SciTech Connect

    Zhang, Yan; Guo, Xingming; Wu, Feng; Yao, Ying; Yuan, Yifei; Bi, Xuanxuan; Luo, Xiangyi; Shahbazian-Yassar, Reza; Zhang, Cunzhong; Amine, Khalil

    2016-08-24

    Phosphorus in water eutrophication has become a serious problem threatening the environment. However, the development of efficient adsorbents for phosphate removal from water is lagging. In this work, we recovered the waste material, graphitized carbon, from spent lithium ion batteries and modified it with nanostructured Mg(OH)2 on the surface to treat excess phosphate. This phosphate adsorbent shows one of the highest phosphate adsorption capacities to date, 588.4 mg/g (1 order of magnitude higher than previously reported carbon-based adsorbents), and exhibits decent stability. A heterogeneous multilayer adsorption mechanism was proposed on the basis of multiple adsorption results. This highly efficient adsorbent from spent Li-ion batteries displays great potential to be utilized in industry, and the mechanism study paved a way for further design of the adsorbent for phosphate adsorption.

  5. Novel adsorbent based on multi-walled carbon nanotubes bonding on the external surface of porous silica gel particulates for trapping volatile organic compounds.

    PubMed

    Wang, Li; Liu, Jiemin; Zhao, Peng; Ning, Zhanwu; Fan, Huili

    2010-09-10

    A novel adsorbent, 3-amino-propylsilica gel-multi-walled carbon nanotubes (APSG-MW), was prepared by chemical bonding multi-walled carbon nanotubes on silica gel. The surface area of APSG-MW was 98 m(2)/g, and the particle size was between 60 and 80 mesh with the average size of 215.0 microm. The adsorption capability of the new adsorbent to volatile organic compounds (VOCs) was measured. The effect of water to the adsorbent and its stability during storage were also investigated. Duplicate precision (DP) and distributed volume pair (DVP) on the basis of the EPA TO-17 criteria were estimated. The results showed that the sampling precision of the adsorbent was more superior compared to the MWCNTs because of the better air permeability. The new adsorbent was successfully applied in the determination of VOCs in ambient indoor air.

  6. Dewatering Peat With Activated Carbon

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1984-01-01

    Proposed process produces enough gas and carbon to sustain itself. In proposed process peat slurry is dewatered to approximately 40 percent moisture content by mixing slurry with activated carbon and filtering with solid/liquid separation techniques.

  7. Activated carbon briquettes from biomass materials.

    PubMed

    Amaya, Alejandro; Medero, Natalia; Tancredi, Néstor; Silva, Hugo; Deiana, Cristina

    2007-05-01

    Disposal of biomass wastes, produced in different agricultural activities, is frequently an environmental problem. A solution for such situation is the recycling of these residues for the production of activated carbon, an adsorbent which has several applications, for instance in the elimination of contaminants. For some uses, high mechanical strength and good adsorption characteristics are required. To achieve this, carbonaceous materials are conformed as pellets or briquettes, in a process that involves mixing and pressing of char with adhesive materials prior to activation. In this work, the influence of the operation conditions on the mechanical and surface properties of briquettes was studied. Eucalyptus wood and rice husk from Uruguay were used as lignocellulosic raw materials, and concentrated grape must from Cuyo Region-Argentina, as a binder. Different wood:rice and solid:binder ratios were used to prepare briquettes in order to study their influence on mechanical and surface properties of the final products.

  8. Adsorption of a Textile Dye on Commercial Activated Carbon: A Simple Experiment to Explore the Role of Surface Chemistry and Ionic Strength

    ERIC Educational Resources Information Center

    Martins, Angela; Nunes, Nelson

    2015-01-01

    In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…

  9. Studies on the removal of Pb(II) from wastewater by activated carbon developed from Tamarind wood activated with sulphuric acid.

    PubMed

    Singh, C K; Sahu, J N; Mahalik, K K; Mohanty, C R; Mohan, B Raj; Meikap, B C

    2008-05-01

    The low-cost activated carbon were prepared from Tamarind wood material by chemical activation with sulphuric acid for the adsorption of Pb(II) from dilute aqueous solution. The activated carbon developed shows substantial capacity to adsorb Pb(II) from dilute aqueous solutions. The parameters studied include physical and chemical properties of adsorbent, pH, adsorbent dose, contact time and initial concentrations. The kinetic data were best fitted to the Lagergren pseudo-first-order and pseudo-second order models. The isotherm equilibrium data were well fitted by the Langmuir and Freundlich models. The maximum removal of lead(II) was obtained 97.95% (experimental) and 134.22 mg/g (from Langmuir isotherm model) at initial concentration 40 mg/l, adsorbent dose 3g/l and pH 6.5. This high uptake showed Tamarind wood activated carbon as among the best adsorbents for Pb(II).

  10. Copper (II) Adsorption by Activated Carbons from Pecan Shells: Effect of Oxygen Level During Activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural by-products represent a considerable quantity of harvested commodity crops. The use of by-products as precursors for the production of widely used adsorbents, such as activated carbons, may impart a value-added component of the overall biomass harvested. Our objective in this paper is...

  11. Metal Ion Adsorption by Activated Carbons Made from Pecan Shells: Effect of Oxygen Level During Activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural by-products represent a considerable quantity of harvested commodity crops. The use of by-products as precursors for the production of widely used adsorbents, such as activated carbons, may impart a value-added component of the overall biomass harvested. Our objective in this presenta...

  12. Kinetic, equilibrium isotherm and thermodynamic studies of Cr(VI) adsorption onto low-cost adsorbent developed from peanut shell activated with phosphoric acid.

    PubMed

    ALOthman, Zeid A; Naushad, Mu; Ali, Rahmat

    2013-05-01

    A particular agricultural waste, peanut shell, has been used as precursor for activated carbon production by chemical activation with H₃PO₄. Unoxidized activated carbon was prepared in nitrogen atmosphere which was then heated in air at a desired temperature to get oxidized activated carbon. The prepared carbons were characterized for surface area, surface morphology, and pore volume and utilized for the removal of Cr(VI) from aqueous solution. Batch mode experiments were conducted to study the effects of pH, contact time, particle size, adsorbent dose, initial concentration of adsorbate, and temperature on the adsorption of Cr(VI). Cr(VI) adsorption was significantly dependent on solution pH, and the optimum adsorption was observed at pH 2. Pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were used to analyze the kinetic data obtained at different initial Cr(VI) concentrations. The adsorption kinetic data were described very well by the pseudo-second-order model. Equilibrium isotherm data were analyzed by the Langmuir, Freundlich, and Temkin models. The results showed that the Langmuir adsorption isotherm model fitted the data better in the temperature range studied. The adsorption capacity which was found to increase with temperature showed the endothermic nature of Cr(VI) adsorption. The thermodynamic parameters, such as Gibb's Free energy change (ΔG°), standard enthalpy change (ΔH°), and standard entropy change (ΔS°) were evaluated.

  13. Degradation characteristics of 17beta-estradiol by ozone treatment with activated carbon.

    PubMed

    Kawasaki, Naohito; Ogata, Fumihiko; Yamaguchi, Isao; Tominaga, Hisato

    2009-01-01

    The present study investigates (1) ozone treatment, (2) adsorption treatment using activated carbon treatment, and (3) ozone treatment with activated carbon for their efficacy in removing 17beta-estradiol (E2) present in an aqueous solution. Both ozone and activated carbon treatments for 20 min were effective in removing E2 (initial concentration, 100 mg/L). However, both treatments have been used for two processes, and the disposal time with these treatments is more than that of another treatment. In this study, ozone treatment with activated carbon was investigated with regard to the percentage of E2 removal, pH, and chemical oxygen demand (COD). The physical and chemical characteristics of the activated carbon surface were modified due to the ozone treatment: the surface was oxidized by ozone. The surface of activated carbon exhibited polarity groups and became porous after ozone treatment. The amount of E2 adsorbed onto the ozone-treated activated carbon surface was similar to that adsorbed onto the untreated activated carbon surface. The percentage of E2 removal by ozone treatment with activated carbon was greater than that by ozone treatment alone. Moreover, the rate of E2 removal by ozone treatment with activated carbon was higher than that by ozone or activated carbon treatments alone. Ozone with activated carbon treatment may be used for the removal of E2. However, this ozone treatment for the degradation of E2 may have a greater COD than that in the case of activated carbon treatment alone.

  14. Irreversible adsorption of phenolic compounds by activated carbons

    SciTech Connect

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  15. Structural characteristics of modified activated carbons and adsorption of explosives.

    PubMed

    Tomaszewski, W; Gun'ko, V M; Skubiszewska-Zieba, J; Leboda, R

    2003-10-15

    Several series of activated carbons prepared by catalytic and noncatalytic gasification and subsequent deposition of pyrocarbon by pyrolysis of methylene chloride or n-amyl alcohol were studied by FTIR, chromatography, and adsorption methods using nitrogen and probe organics (explosives). The relationships between the textural characteristics of carbon samples and the recovery rates (eta) of explosives on solid-phase extraction (SPE) using different solvents for their elution after adsorption were analyzed using experimental and quantum chemical calculation results. The eta values for nitrate esters, cyclic nitroamines, and nitroaromatics only partially correlate with different adsorbent parameters (characterizing microporosity, mesoporosity, pore size distributions, etc.), polarity of eluting solvents, or characteristics of probe molecules, since there are many factors strongly affecting the recovery rates. Some of the synthesized carbons provide higher eta values than those for such commercial adsorbents as Hypercarb and Envicarb.

  16. Performance of Spent Mushroom Farming Waste (SMFW) Activated Carbon for Ni (II) Removal

    NASA Astrophysics Data System (ADS)

    Desa, N. S. Md; Ghani, Z. Ab; Talib, S. Abdul; Tay, C. C.

    2016-07-01

    The feasibility of a low cost agricultural waste of spent mushroom farming waste (SMFW) activated carbon for Ni(II) removal was investigated. The batch adsorption experiments of adsorbent dosage, pH, contact time, metal concentration, and temperature were determined. The samples were shaken at 125 rpm, filtered and analyzed using ICP-OES. The fifty percent of Ni(II) removal was obtained at 0.63 g of adsorbent dosage, pH 5-6 (unadjusted), 60 min contact time, 50 mg/L Ni(II) concentration and 25 °C temperature. The evaluated SMFW activated carbon showed the highest performance on Ni(II) removal compared to commercial Amberlite IRC86 resin and zeolite NK3. The result indicated that SMFW activated carbon is a high potential cation exchange adsorbent and suitable for adsorption process for metal removal. The obtained results contribute toward application of developed SMFW activated carbon in industrial pilot study.

  17. Anaerobic microbial mobilization and biotransformation of arsenate adsorbed onto activated alumina.

    PubMed

    Sierra-Alvarez, Reyes; Field, Jim A; Cortinas, Irail; Feijoo, Gumersindo; Teresa Moreira, Maria; Kopplin, Mike; Jay Gandolfi, A

    2005-01-01

    Due to the enactment of a stricter drinking water standard for arsenic in the United States, larger quantities of arsenic will be treated resulting in larger volumes of treatment residuals. The current United States Environmental Protection Agency recommendation is to dispose spent adsorbent residuals from arsenic treatment into non-hazardous municipal solid waste (MSW) landfills. The potential of microorganisms to alter the speciation affecting the mobility of arsenic in the disposal environment is therefore a concern. The purpose of this paper was to evaluate the potential of an anaerobic microbial consortium to biologically mobilize arsenate (As(V)) adsorbed onto activated alumina (AA), a common adsorbent used for treating arsenic in drinking water. Three anaerobic columns (0.27 l) packed with 100 g dry weight of AA containing 0.657 mg adsorbed As(V) (expressed as arsenic) per gram dry weight were continuously flushed with synthetic landfill leachate for 257 days. The fully biologically active column was inoculated with methanogenic anaerobic sludge (10 g volatile suspended solids l(-1) column) and was operated with a mixture of volatile fatty acids (VFA) in the feed (2.5 g chemical oxygen demand l(-1) feed). At the end of the experiment, 37% of the arsenic was removed from the column, of which 48% was accounted for by arsenical species identified in the column effluent. The most important form of arsenic eluted was arsenite (As(III)), accounting for nearly all of the identified arsenic in periods of high mobilization. Additionally, two methylated metabolites, methylarsonic acid and dimethylarsinic acid were observed. Mobilization of arsenic is attributed to the biological reduction of As(V) to As(III) since literature data indicates that As(III) is more weakly adsorbed to AA compared to As(V). Batch and continuous assays confirmed that VFA, present in landfill leachates, served as an electron donating substrate supporting enhanced rates of As(V) reduction to As

  18. Single walled carbon nanotubes with functionally adsorbed biopolymers for use as chemical sensors

    DOEpatents

    Johnson, Jr., Alan T

    2013-12-17

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA or RNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  19. Carboxylated carbon nanotubes as an efficient and cost-effective adsorbent for sustainable removal of insecticide fenvalerate from contaminated solutions

    NASA Astrophysics Data System (ADS)

    Naeimi, Atena; Saeidi, Mahboubeh; Baroumand, Naser

    2016-10-01

    In this study, carboxylic multiwall carbon nanotubes (CMNTs) were used as an adsorbent for removing fenvalerate as a toxic insecticide from solution through batch experiments. The influence of four independent parameters of HCl, initial fenvalerate concentration, CMNTs dosage, and contact time on the fenvalerate adsorption process was investigated. Raman spectroscopy and thermogravimetric analysis confirmed that the adsorption and maximum adsorption capacity (40.0 mg g-1) showed high adsorption potential of the proposed sorbent. The kinetic, isothermic, and thermodynamic of fenvalerate adsorptionon CMNTs were evaluated to better understand this environmental friendly adsorption strategy. A pseudo-first-order kinetic described very well the experimental data of the adsorption kinetics. The experimental data found to be properly fitted to Freundlich model, which indicates that the sorption takes place on a heterogeneous material. The thermodynamic results showed the negative value of the standard free energy (Δ G0) and standard enthalpy change (Δ H0) showing an exothermic and spontaneous system. Repeated availability of adsorbent investigated and SEM and HRTEM of reused adsorbent showed stability and non-aggregatable attributes of CMNTs.

  20. MTBE adsorption on alternative adsorbents and packed bed adsorber performance.

    PubMed

    Rossner, Alfred; Knappe, Detlef R U

    2008-04-01

    Widespread use of the fuel additive methyl tertiary-butyl ether (MTBE) has led to frequent MTBE detections in North American and European drinking water sources. The overall objective of this research was to evaluate the effectiveness of a silicalite zeolite, a carbonaceous resin, and a coconut-shell-based granular activated carbon (GAC) for the removal of MTBE from water. Isotherm and short bed adsorber tests were conducted in ultrapure water and river water to obtain parameters describing MTBE adsorption equilibria and kinetics and to quantify the effect of natural organic matter (NOM) on MTBE adsorption. Both the silicalite zeolite and the carbonaceous resin exhibited larger MTBE adsorption uptakes than the tested GAC. Surface diffusion coefficients describing intraparticle MTBE mass transfer rates were largest for the GAC and smallest for the carbonaceous resin. Pilot tests were conducted to verify MTBE breakthrough curve predictions obtained with the homogeneous surface diffusion model and to evaluate the effect of NOM preloading on packed bed adsorber performance. Results showed that GAC was the most cost-competitive adsorbent when considering adsorbent usage rate only; however, the useful life of an adsorber containing silicalite zeolite was predicted to be approximately 5-6 times longer than that of an equally sized adsorber containing GAC. Pilot column results also showed that NOM preloading did not impair the MTBE removal efficiency of the silicalite zeolite. Thus, it may be possible to regenerate spent silicalite with less energy-intensive methods than those required to regenerate GAC.

  1. Magnetic spherical carbon as an efficient adsorbent for the magnetic extraction of phthalate esters from lake water and milk samples.

    PubMed

    Wu, Juanjuan; Wang, Chenhuan; Liang, Xinyu; Yang, Xiumin; Wang, Chun; Wu, Qiuhua; Wang, Zhi

    2017-03-29

    Magnetic spherical carbon was synthesized by a facile hydrothermal carbonization procedure with biomass glucose as the carbon precursor and nanoclusters iron colloid as magnetic precursor. The textures of the as-prepared magnetic spherical carbon were characterized by nitrogen adsorption-desorption isotherms, X-ray diffraction, transmission electron microscopy, scanning electron microscopy and vibration sample magnetometry. Results indicated that the magnetic spherical carbon possessed high surface area as well as strong magnetism, which endows the material with good adsorption capability and easy separation property. To assess its absorption performance, the magnetic spherical carbon was employed as adsorbent for the extraction and preconcentration of phthalate esters from lake water and milk samples before high-performance liquid chromatographic analysis. Some key parameters that could influence the enrichment efficiency were investigated. Under the optimum conditions, a good linearity was achieved with the linear correlation coefficients higher than 0.9973. The limits of detection (S/N = 3) were 0.05-0.08 ng mL(-1) for lake water and 0.1-0.2 ng mL(-1) for milk samples. The recoveries of the analytes for the method were in the range 80.1-112.6%. This article is protected by copyright. All rights reserved.

  2. An Investigation into Techniques for the Determination of Moisture Content on Activated Carbon

    DTIC Science & Technology

    1991-09-01

    Activated carbon (or charcoal ) is a universal adsorbent for the removal of a variety of organic/inorganic contaminants, in both gaseous and aqueous phase...AD-A245 938 i * *~fl Nadoni Waren AN INVESTIGATION INTO TECHNIQUES FOR THE DETERMNATION OF MOISTURE CONTENT ON ACTIVATED CARBON (U) by L.E. Cameron...INVESTIGATION INTO TECHNIQUES FOR THE DETERMINATION OF MOISTURE CONTENT ON ACTIVATED CARBON (U) by L.E. Cameron and S.H.C. Liang Chemical Protecti

  3. Hexavalent chromium adsorption on impregnated palm shell activated carbon with polyethyleneimine.

    PubMed

    Owlad, Mojdeh; Aroua, Mohamed Kheireddine; Wan Daud, Wan Mohd Ashri

    2010-07-01

    Removal of Cr(VI) ions from aqueous solution was investigated using modified palm shell activated carbon. Low Molecular Weight Polyethyleneimine (LMW PEI) was used for impregnation purpose. The maximum amount of LMW PEI adsorbed on activated carbon was determined to be approximately 228.2mg/g carbon. The adsorption experiments were carried out in a batch system using potassium dichromate K(2)Cr(2)O(7) as the source of Cr(VI) in the synthetic waste water and modified palm shell activated carbon as the adsorbent. The effects of pH, concentration of Cr(VI) and PEI loaded on activated carbon were studied. The adsorption data were found to fit well with the Freundlich isotherm model. This modified Palm shell activated carbon showed high adsorption capacity for chromium ions.

  4. The origin of the low efficiency of carbon removal from the Nickel/Yttrium-Stabilized Zirconia triple-phase boundary by adsorbed water

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxing; Yang, Zongxian

    2015-04-01

    Carbon removal from the anode triple-phase boundary (TPB) of solid oxide fuel cells (SOFCs) by adsorbed water molecule was studied using the density functional calculations, and a detailed dynamic picture was presented. It is found that the adsorbed H2O molecule can dissociate easily at the Ni/YSZ interface and on the YSZ part compared with the Ni part and react with the interface carbon to form the CHO species. The dissociation process of CHO to CH and O is more favorable as compared with that of CHO to CO and H. The CH fragment can easily diffuse to the O vacancy formed in the dynamic reaction processes and dissociate into C and H, which regenerates carbon at the interface. This might be the main reasons for the low efficiency of carbon removal from the TPB of Ni/YSZ by adsorbed water.

  5. Selective electrochemical reduction of CO2 to CO with a cobalt chlorin complex adsorbed on multi-walled carbon nanotubes in water.

    PubMed

    Aoi, Shoko; Mase, Kentaro; Ohkubo, Kei; Fukuzumi, Shunichi

    2015-06-25

    Electrocatalytic reduction of CO2 occurred efficiently using a glassy carbon electrode modified with a cobalt(II) chlorin complex adsorbed on multi-walled carbon nanotubes at an applied potential of -1.1 V vs. NHE to yield CO with a Faradaic efficiency of 89% with hydrogen production accounting for the remaining 11% at pH 4.6.

  6. A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye--Acid Blue 113.

    PubMed

    Gupta, V K; Gupta, Bina; Rastogi, Arshi; Agarwal, Shilpi; Nayak, Arunima

    2011-02-15

    A mesoporous carbon developed from waste tire rubber, characterized by chemical analysis, FTIR, and SEM studies, was used as an adsorbent for the removal and recovery of a hazardous azo dye, Acid Blue 113. Surface area, porosity, and density were determined. The adsorption of the dye over the prepared adsorbent and a commercial activated carbon was achieved under different pH, adsorbate concentration, sieve size, adsorbent dosage, contact time and temperature conditions. Langmuir and Freundlich adsorption isotherm models were applied and thermodynamic parameters were calculated. Kinetic studies indicated that the adsorption process follow first order kinetics and particle diffusion mechanisms are operative. By percolating the dye solution through fixed-bed columns the bulk removal of the Acid Blue 113 was carried out and necessary parameters were determined to find out the percentage saturation of both the columns. Recovery of the dye was made by eluting 0.1 M NaOH through the column.

  7. Water/carbonate stripping for CO.sub.2 capture adsorber regeneration and CO.sub.2 delivery to photoautotrophs

    DOEpatents

    Chance, Ronald; Koros, William J.; McCool, Benjamin; Noel, James

    2015-08-11

    The invention provides systems and methods for the delivery of carbon to photoautotrophs. The invention utilizes low energy regeneration of adsorbent for CO.sub.2 capture and provides for effective CO.sub.2 loading into liquids useful for photoautotroph growth and/or production of photosynthetic products, such as biofuels, via photoautotrophic culture media. The inventive system comprises a fluid/membrane/fluid contactor that provides selective transfer of molecular CO.sub.2 via a dense (non-porous) membrane from a carbonate-based CO.sub.2 snipping solution to a culture medium where the CO.sub.2 is consumed by a photoautotroph for the production of biofuels, biofuel precursors or other commercial products.

  8. Quantification of the effects of organic and carbonate buffers on arsenate and phosphate adsorption on a goethite-based granular porous adsorbent.

    PubMed

    Kanematsu, Masakazu; Young, Thomas M; Fukushi, Keisuke; Sverjensky, Dimitri A; Green, Peter G; Darby, Jeannie L

    2011-01-15

    Interest in the development of oxide-based materials for arsenate removal has led to a variety of experimental methods and conditions for determining arsenate adsorption isotherms, which hinders comparative evaluation of their adsorptive capacities. Here, we systematically investigate the effects of buffer (HEPES or carbonate), adsorbent dose, and solution pH on arsenate and phosphate adsorption isotherms for a previously well characterized goethite-based adsorbent (Bayoxide E33 (E33)). All adsorption isotherms obtained at different adsorbate/adsorbent concentrations were identical when 1 mM of HEPES (96 mg C/L) was used as a buffer. At low aqueous arsenate and phosphate concentration (∼1.3 μM), however, adsorption isotherms obtained using 10 mM of NaHCO(3) buffer, which is a reasonable carbonate concentration in groundwater, are significantly different from those obtained without buffer or with HEPES. The carbonate competitive effects were analyzed using the extended triple layer model (ETLM) with the adsorption equilibrium constant of carbonate calibrated using independent published carbonate adsorption data for pure goethite taking into consideration the different surface properties. The successful ETLM calculations of arsenate adsorption isotherms for E33 under various conditions allowed quantitative comparison of the arsenate adsorption capacity between E33 and other major adsorbents initially tested under varied experimental conditions in the literature.

  9. Sludge from paper mill effluent treatment as raw material to produce carbon adsorbents: An alternative waste management strategy.

    PubMed

    Jaria, Guilaine; Silva, Carla Patrícia; Ferreira, Catarina I A; Otero, Marta; Calisto, Vânia

    2017-03-01

    Pulp and paper industry produces massive amounts of sludge from wastewater treatment, which constitute an enormous environmental challenge. A possible management option is the conversion of sludge into carbon-based adsorbents to be applied in water remediation. For such utilization it is important to investigate if sludge is a consistent raw material originating reproducible final materials (either over time or from different manufacturing processes), which is the main goal of this work. For that purpose, different primary (PS) and biological sludge (BS) batches from two factories with different operation modes were sampled and subjected to pyrolysis (P materials) and to pyrolysis followed by acid washing (PW materials). All the materials were characterized by proximate analysis, total organic carbon (TOC) and inorganic carbon (IC), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and N2 adsorption isotherms (specific surface area (SBET)and porosity determination). Sludge from the two factories proved to have distinct physicochemical properties, mainly in what concerns IC. After pyrolysis, the washing step was essential to reduce IC and to considerably increase SBET, yet with high impact in the final production yield. Among the materials here produced, PW materials from PS were those having the highest SBET values (387-488 m(2) g(-1)). Overall, it was found that precursors from different factories might originate final materials with distinct characteristics, being essential to take into account this source of variability when considering paper mill sludge as a raw material. Nevertheless, for PS, low variability was found between batches, which points out to the reliability of such residues to be used as precursors of carbon adsorbents.

  10. Screening of active metals for reactive adsorption desulfurization adsorbent using density functional theory

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhao, Liang; Xu, Chunming; Wang, Yuxian; Gao, Jinsen

    2017-03-01

    To explore characteristics of active metals for reactive adsorption desulfurization (RADS) technology, the adsorption of thiophene on M (100) (M = Cr, Mo, Co, Ni, Cu, Au, and Ag) surfaces was systematically studied by density functional theory with vdW correction (DFT + D3). We found that, in all case, the most stable molecular adsorption site was the hollow site and adsorptive capabilities of thiophene followed the order: Cr > Mo > Co ≈ Ni > Cu > Au ≈ Ag. By analyzing the nature of binding between thiophene and corresponding metals and the electronic structure of metals, the excessive activities of Cr and Mo were found to have a negative regeneration, the passive activities of Au and Ag were found to have an inactive adsorption for RADS adsorbent alone, while Ni and Co have appropriate characteristics as the active metals for RADS, followed by Cu.

  11. 40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Absorbers, condensers, and carbon..., Recovery Devices and Routing to a Fuel Gas System or a Process § 63.990 Absorbers, condensers, and...

  12. 40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Absorbers, condensers, and carbon..., Recovery Devices and Routing to a Fuel Gas System or a Process § 63.990 Absorbers, condensers, and...

  13. 40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Absorbers, condensers, and carbon..., Recovery Devices and Routing to a Fuel Gas System or a Process § 63.990 Absorbers, condensers, and...

  14. 40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Absorbers, condensers, and carbon..., Recovery Devices and Routing to a Fuel Gas System or a Process § 63.990 Absorbers, condensers, and...

  15. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    NASA Astrophysics Data System (ADS)

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  16. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.

    PubMed

    Brooks, A J; Lim, Hyung-nam; Kilduff, James E

    2012-07-27

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  17. Effects of adsorbents and copper(II) on activated sludge microorganisms and sequencing batch reactor treatment process.

    PubMed

    Ong, S A; Lim, P E; Seng, C E

    2003-10-31

    Wastewater treatment systems employing simultaneous adsorption and biodegradation processes have proven to be effective in treating toxic pollutants present in industrial wastewater. The objective of this study is to evaluate the effect of Cu(II) and the efficacy of the powdered activated carbon (PAC) and activated rice husk (ARH) in reducing the toxic effect of Cu(II) on the activated sludge microorganisms. The ARH was prepared by treatment with concentrated nitric acid for 15 h at 60-65 degrees C. The sequencing batch reactor (SBR) systems were operated with FILL, REACT, SETTLE, DRAW and IDLE modes in the ratio of 0.5:3.5:1:0.75:0.25 for a cycle time of 6 h. The Cu(II) and COD removal efficiency were 90 and 85%, respectively, in the SBR system containing 10 mg/l Cu(II) with the addition of 143 mg/l PAC or 1.0 g PAC per cycle. In the case of 715 mg/l ARH or 5.0 g ARH per cycle addition, the Cu(II) and COD removal efficiency were 85 and 92%, respectively. ARH can be used as an alternate adsorbent to PAC in the simultaneous adsorption and biodegradation wastewater treatment process for the removal of Cu(II). The specific oxygen uptake rate (SOUR) and kinetic studies show that the addition of PAC and ARH reduce the toxic effect of Cu(II) on the activated sludge microorganisms.

  18. Hydrogen adsorption on functionalized nanoporous activated carbons.

    PubMed

    Zhao, X B; Xiao, B; Fletcher, A J; Thomas, K M

    2005-05-12

    There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions.

  19. Selecting activated carbon for water and wastewater treatability studies

    SciTech Connect

    Zhang, W.; Chang, Q.G.; Liu, W.D.; Li, B.J.; Jiang, W.X.; Fu, L.J.; Ying, W.C.

    2007-10-15

    A series of follow-up investigations were performed to produce data for improving the four-indicator carbon selection method that we developed to identify high-potential activated carbons effective for removing specific organic water pollutants. The carbon's pore structure and surface chemistry are dependent on the raw material and the activation process. Coconut carbons have relatively more small pores than large pores; coal and apricot nutshell/walnut shell fruit carbons have the desirable pore structures for removing adsorbates of all sizes. Chemical activation, excessive activation, and/or thermal reactivation enlarge small pores, resulting in reduced phenol number and higher tannic acid number. Activated carbon's phenol, iodine, methylene blue, and tannic acid numbers are convenient indicators of its surface area and pore volume of pore diameters < 10, 10-15, 15-28, and > 28 angstrom, respectively. The phenol number of a carbon is also a good indicator of its surface acidity of oxygen-containing organic functional groups that affect the adsorptive capacity for aromatic and other small polar organics. The tannic acid number is an indicator of carbon's capacity for large, high-molecular-weight natural organic precursors of disinfection by-products in water treatment. The experimental results for removing nitrobenzene, methyl-tert-butyl ether, 4,4-bisphenol, humic acid, and the organic constituents of a biologically treated coking-plant effluent have demonstrated the effectiveness of this capacity-indicator-based method of carbon selection.

  20. Electroadsorption of Arsenic from natural water in granular activated carbon

    NASA Astrophysics Data System (ADS)

    Beralus, Jean-Mackson; Ruiz Rosas, Ramiro; Cazorla-Amoros, Diego; Morallon, Emilia

    2014-11-01

    The adsorption and electroadsorption of arsenic from a natural water has been studied in a filter-press electrochemical cell using a commercial granular activated carbon as adsorbent and Pt/Ti and graphite as electrodes. A significant reduction of the arsenic concentration is achieved when current is imposed between the electrodes, especially when the activated carbon was located in the vicinity of the anode. This enhancement can be explained in terms of the presence of electrostatic interactions between the polarized carbon surface and the arsenic ions, and changes in the distribution of most stable species of arsenic in solution due to As(III) to As(V) oxidation. In summary, electrochemical adsorption on a filter press cell can be used for enhancement the arsenic remediation with activated carbon in the treatment of a real groundwater.

  1. Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides.

    PubMed

    Abdel daiem, Mahmoud M; Rivera-Utrilla, José; Sánchez-Polo, Manuel; Ocampo-Pérez, Raúl

    2015-12-15

    The main aim of this study was to investigate the single, competitive, and dynamic adsorption of phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) on two activated carbons with different chemical natures and similar textural characteristics. The adsorption mechanism was also elucidated by analyzing the influence of solution pH and ionic strength. The activated carbons demonstrated high adsorption capacity to remove all micropollutants due to the presence of active sites on their surfaces, which increase dispersive interactions between the activated carbon graphene layers and the aromatic ring of pollutants. The adsorption capacity of the activated carbons increased in the order: DPAadsorbents. In most cases, the adsorption of contaminants is favored at acid pH (pH<5) due to the establishment of attractive electrostatic interactions. In dynamic regime, the amount of pollutant adsorbed was much higher for PA, followed by DPA, and was approximately similar for BPA, 2,4-D, and MCPA. Finally, the amount of BPA and DPA adsorbed on activated carbon decreased by around 50% and 70% in the presence of DPA and BPA, respectively, indicating that both compounds are adsorbed on the same adsorption sites of the activated carbon.

  2. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B

    2011-09-15

    Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment.

  3. Removal of acutely hazardous pharmaceuticals from water using multi-template imprinted polymer adsorbent.

    PubMed

    Venkatesh, Avinash; Chopra, Nikita; Krupadam, Reddithota J

    2014-05-01

    Molecularly imprinted polymer adsorbent has been prepared to remove a group of recalcitrant and acutely hazardous (p-type) chemicals from water and wastewaters. The polymer adsorbent exhibited twofold higher adsorption capacity than the commercially used polystyrene divinylbenzene resin (XAD) and powdered activated carbon adsorbents. Higher adsorption capacity of the polymer adsorbent was explained on the basis of high specific surface area formed during molecular imprinting process. Freundlich isotherms drawn showed that the adsorption of p-type chemicals onto polymer adsorbent was kinetically faster than the other reference adsorbents. Matrix effect on adsorption of p-type chemicals was minimal, and also polymer adsorbent was amenable to regeneration by washing with water/methanol (3:1, v/v) solution. The polymer adsorbent was unaltered in its adsorption capacity up to 10 cycles of adsorption and desorption, which will be more desirable in cost reduction of treatment compared with single-time-use activated carbon.

  4. Facile and scalable synthesis of magnetite/carbon adsorbents by recycling discarded fruit peels and their potential usage in water treatment.

    PubMed

    Ma, Ji; Sun, Shuangshuang; Chen, Kezheng

    2017-02-20

    In this study, apple, banana and orange peels were used as precursor compounds for the mass production of magnetite/carbon adsorbents. A so-called "soak-calcination" procedure was employed by firstly soaking these waste fruit peels in FeCl3 aqueous solutions and secondly calcining these precursors in the nitrogen atmosphere to yield final magnetite/carbon composites. This approach is quite simple and effective to synthesize carbon-based adsorbents on an industrial scale. The as-produced adsorbents feature the merits of appropriate ferromagnetism (>4emug(-1)), high adsorption capacity (several hundreds of milligrams per gram for adsorption of methyl blue, Congo red, rhodamine B and Cr(6+) ions), and good regenerability (>85%).

  5. Isotope microscopy visualization of the adsorption profile of 2-methylisoborneol and geosmin in powdered activated carbon.

    PubMed

    Matsui, Yoshihiko; Sakamoto, Asuka; Nakao, Soichi; Taniguchi, Takuma; Matsushita, Taku; Shirasaki, Nobutaka; Sakamoto, Naoya; Yurimoto, Hisayoshi

    2014-09-16

    Decreasing the particle size of powdered activated carbon may enhance its equilibrium adsorption capacity for small molecules and micropollutants, such as 2-methylisoborneol (MIB) and geosmin, as well as for macromolecules and natural organic matter. Shell adsorption, in which adsorbates do not completely penetrate the adsorbent but instead preferentially adsorb near the outer surface of the adsorbent, may explain this enhancement in equilibrium adsorption capacity. Here, we used isotope microscopy and deuterium-doped MIB and geosmin to directly visualize the solid-phase adsorbate concentration profiles of MIB and geosmin in carbon particles. The deuterium/hydrogen ratio, which we used as an index of the solid-phase concentration of MIB and geosmin, was higher in the shell region than in the inner region of carbon particles. Solid-phase concentrations of MIB and geosmin obtained from the deuterium/hydrogen ratio roughly agreed with those predicted by shell adsorption model analyses of isotherm data. The direct visualization of the localization of micropollutant adsorbates in activated carbon particles provided direct evidence of shell adsorption.

  6. Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-11-01

    The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.

  7. Separating proteins with activated carbon.

    PubMed

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon.

  8. Magnetic nanoporous carbon as an adsorbent for the extraction of phthalate esters in environmental water and aloe juice samples.

    PubMed

    Liu, Li; Hao, Yunhui; Ren, Yiqian; Wang, Chun; Wu, Qiuhua; Wang, Zhi

    2015-05-01

    In this work, magnetic nanoporous carbon with high surface area and ordered structure was synthesized using cheap commercial silica gel as template and sucrose as the carbon source. The prepared magnetic nanoporous carbon was firstly used as an adsorbent for the extraction of phthalate esters, including diethyl phthalate, diallyl phthalate, and di-n-propyl-phthalate, from lake water and aloe juice samples. Several parameters that could affect the extraction efficiency were optimized. Under the optimum conditions, the limit of detection of the method (S/N = 3) was 0.10 ng/mL for water sample and 0.20 ng/mL for aloe juice sample. The linearity was observed over the concentration range of 0.50-150.0 and 1.0-200.0 ng/mL for water and aloe juice samples, respectively. The results showed that the magnetic nanoporous carbon has a high adsorptive capability toward the target phthalate esters in water and aloe juice samples.

  9. Carbon 1s photoemission line analysis of C-based adsorbate on (111)In2O3 surface: The influence of reducing and oxidizing conditions

    NASA Astrophysics Data System (ADS)

    Brinzari, V.; Cho, B. K.; Korotcenkov, G.

    2016-12-01

    Synchrotron radiation photoemission study of C 1s line of (111) In2O3 surface was carried out under HV (high vacuum) doses of oxygen, carbon monoxide and water. Gas interaction with the surface was activated by heating of In2O3 monocrystalline film at temperatures of 160 or 250 °C. The study of complex structure of C 1 s line and evolution of its fine components allowed to establish their nature and to propose possible surface adsorbed species and reactions, including a direct chemisorption and dissociation of CO molecules. Reduction or oxidation of the surface determines whether the first (chemisorption) or the second (dissociation) process takes place. The latter is responsible for additional formation of ionosorbed oxygen. Both processes have not been previously reported for In2O3 and for conductive metal oxides.

  10. Grain-based activated carbons for natural gas storage.

    PubMed

    Zhang, Tengyan; Walawender, Walter P; Fan, L T

    2010-03-01

    Natural gas has emerged as a potential alternative to gasoline due to the increase in global energy demand and environmental concerns. An investigation was undertaken to explore the technical feasibility of implementing the adsorbed natural gas (ANG) storage in the fuel tanks of motor vehicles with activated carbons from biomass, e.g., sorghum and wheat. The grain-based activated carbons were prepared by chemical activation; the experimental parameters were varied to identify the optimum conditions. The porosity of the resultant activated carbons was evaluated through nitrogen adsorption; and the storage capacity, through methane adsorption. A comparative study was also carried out with commercial activated carbons from charcoal. The highest storage factor attained was 89 for compacted grain-based activated carbons from grain sorghum with a bulk density of 0.65 g/cm(3), and the highest storage factor attained is 106 for compacted commercial activated carbons (Calgon) with a bulk density of 0.70 g/cm(3). The storage factor was found to increase approximately linearly with increasing bulk density and to be independent of the extent of compaction. This implies that the grain-based activated carbons are the ideal candidates for the ANG storage.

  11. High adsorption capacity NaOH-activated carbon for dye removal from aqueous solution.

    PubMed

    Wu, Feng-Chin; Tseng, Ru-Ling

    2008-04-15

    In this study, the surface coverage ratio (Sc/Sp) and monolayer cover adsorption amount per unit surface area (qmon/Sp) were employed to investigate the adsorption isotherm equilibrium of the adsorption of dyes (AB74, BB1 and MB) on NaOH-activated carbons (FWNa2, FWNa3 and FWNa4); the adsorption rate of the Elovich equation (1/b) and the ratio of 1min adsorption amount of adsorbate to the monolayer cover amount of adsorbate (q1/qmon) were employed to investigate adsorption kinetics. The qmon/Sp of NaOH-activated carbons was better than that of KOH-activated carbons prepared from the same raw material (fir wood). The Sc/Sp values of the adsorption of all adsorbates on adsorbent FWNa3 in this study were found to be higher than those in related literature. Parameters 1/b and q1 of the adsorption of dyes on activated carbons in this study were higher than those on KOH-activated carbons; the q1/qmon value of FWNa3 was the highest. The pore structure and the TPD measurement of the surface oxide groups were employed to explain the superior adsorption performance of FWNa3. A high surface activated carbon (FWNa3) with excellent adsorption performance on dyes with relation to adsorption isotherm equilibrium and kinetics was obtained in this study. Several adsorption data processing methods were employed to describe the adsorption performance.

  12. Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture

    SciTech Connect

    Bae, TH; Hudson, MR; Mason, JA; Queen, WL; Dutton, JJ; Sumida, K; Micklash, KJ; Kaye, SS; Brown, CM; Long, JR

    2013-01-01

    A series of zeolite adsorbents has been evaluated for potential application in post-combustion CO2 capture using a new high-throughput gas adsorption instrument capable of measuring 28 samples in parallel. Among the zeolites tested, Ca-A exhibits the highest CO2 uptake (3.72 mmol g(-1) and 5.63 mmol cm(-3)) together with an excellent CO2 selectivity over N-2 under conditions relevant to capture from the dry flue gas stream of a coal-fired power plant. The large initial isosteric heat of adsorption of -58 kJ mol(-1) indicates the presence of strong interactions between CO2 and the Ca-A framework. Neutron and X-ray powder diffraction studies reveal the precise location of the adsorption sites for CO2 in Ca-A and Mg-A. A detailed study of CO2 adsorption kinetics further shows that the performance of Ca-A is not limited by slow CO2 diffusion within the pores. Significantly, Ca-A exhibited a higher volumetric CO2 uptake and CO2/N-2 selectivity than Mg-2(dobdc) (dobdc(4-) = 1,4-dioxido-2,5-benzenedicarboxylate; Mg-MOF-74, CPO-27-Mg), one of the best performing adsorbents. The exceptional performance of Ca-A was maintained in CO2 breakthrough simulations.

  13. Critical review of existing nanomaterial adsorbents to capture carbon dioxide and methane.

    PubMed

    Alonso, Amanda; Moral-Vico, J; Abo Markeb, Ahmad; Busquets-Fité, Martí; Komilis, Dimitrios; Puntes, Victor; Sánchez, Antoni; Font, Xavier

    2017-04-01

    Innovative gas capture technologies with the objective to mitigate CO2 and CH4 emissions are discussed in this review. Emphasis is given on the use of nanoparticles (NP) as sorbents of CO2 and CH4, which are the two most important global warming gases. The existing NP sorption processes must overcome certain challenges before their implementation to the industrial scale. These are: i) the utilization of the concentrated gas stream generated by the capture and gas purification technologies, ii) the reduction of the effects of impurities on the operating system, iii) the scale up of the relevant materials, and iv) the retrofitting of technologies in existing facilities. Thus, an innovative design of adsorbents could possibly address those issues. Biogas purification and CH4 storage would become a new motivation for the development of new sorbent materials, such as nanomaterials. This review discusses the current state of the art on the use of novel nanomaterials as adsorbents for CO2 and CH4. The review shows that materials based on porous supports that are modified with amine or metals are currently providing the most promising results. The Fe3O4-graphene and the MOF-117 based NPs show the greatest CO2 sorption capacities, due to their high thermal stability and high porosity. Conclusively, one of the main challenges would be to decrease the cost of capture and to scale-up the technologies to minimize large-scale power plant CO2 emissions.

  14. A novel adsorbent obtained by inserting carbon nanotubes into cavities of diatomite and applications for organic dye elimination from contaminated water.

    PubMed

    Yu, Hongwen; Fugetsu, Bunshi

    2010-05-15

    A novel approach is described for establishing adsorbents for elimination of water-soluble organic dyes by using multi-walled carbon nanotubes (MWCNTs) as the adsorptive sites. Agglomerates of MWCNTs were dispersed into individual tubes (dispersed-MWCNTs) using sodium n-dodecyl itaconate mixed with 3-(N,N-dimethylmyristylammonio)-propanesulfonate as the dispersants. The resultant dispersed-MWCNTs were inserted into cavities of diatomite to form composites of diatomite/MWCNTs. These composites were finally immobilized onto the cell walls of flexible polyurethane foams (PUF) through an in situ PUF formation process to produce the foam-like CNT-based adsorbent. Ethidium bromide, acridine orange, methylene blue, eosin B, and eosin Y were chosen to represent typical water-soluble organic dyes for studying the adsorptive capabilities of the foam-like CNT-based adsorbent. For comparisons, adsorptive experiments were also carried out by using agglomerates of the sole MWCNTs as adsorbents. The foam-like CNT-based adsorbents were found to have higher adsorptive capacities than the CNT agglomerates for all five dyes; in addition, they are macro-sized, durable, flexible, hydrophilic and easy to use. Adsorption isotherms plotted based on the Langmuir equation gave linear results, suggesting that the foam-like CNT-based adsorbent functioned in the Langmuir adsorption manner. The foam-like CNT-based adsorbents are reusable after regeneration with aqueous ethanol solution.

  15. Discriminating between Metallic and Semiconducting Single-Walled Carbon Nanotubes Using Physisorbed Adsorbates: Role of Wavelike Charge-Density Fluctuations

    NASA Astrophysics Data System (ADS)

    Gao, Wang; Chen, Yun; Jiang, Qing

    2016-12-01

    Discriminating between metallic (M ) and semiconducting (S ) single-walled carbon nanotubes (SWNTs) remains a fundamental challenge in the field of nanotechnology. We address this issue by studying the adsorption of the isotropic atoms Xe, Kr, and a highly anisotropic molecule n heptane on M - and S -SWNTs with density functional theory that includes many-body dispersion forces. We find that the distinct polarizabilities of M - and S -SWNTs exhibit significantly different physisorption properties, which are also strongly controlled by the SWNT's diameter, adsorption site, adsorbate coverage, and the adsorbate's anisotropy. These findings stem from the wavelike nature of charge-density fluctuations in SWNTs. Particularly, these results allow us to rationalize the unusual √{3 }×√{3 }R 3 00 phase of Kr atoms on small gap M -SWNTs and the double desorption peak temperatures of n heptane on M -SWNTs in experiments, and also propose the n heptane as an effective sensor for experimentally discriminating M - and S -SWNTs.

  16. Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid.

    PubMed

    Celik, Z Ceylan; Can, B Z; Kocakerim, M Muhtar

    2008-03-21

    In this study, the removal of boric acid from aqueous solution by activated carbon impregnated with salicylic acid was studied in batch system. pH, adsorbent amount, initial boron concentration, temperature, shaking rate and salicylic acid film thickness were chosen as parameters. Boron removal efficiencies increased with increasing adsorbent amount, temperature and pH, decreasing initial boron concentration. As thickness of salicylic acid film on activated carbon becomes thin up to 0.088nm, the efficiency increased, and then, the efficiency decreased with becoming thinner than 0.088nm of salicylic acid film. Shaking rate was no effect on removal efficiency. In result, it was determined that the use of salicylic acid as an impregnant for activated carbon led to the increase of the amount of boron adsorbed. A lactone ring, being the most appropriate conformation, forms between boric acid and -COOH and -OH groups of salicylic acid.

  17. Adsorption of binary mixtures of ethane and acetylene on activated carbon

    SciTech Connect

    Lee, T.V.; Huang, J.C.; Rothstein, D.; Madey, R.

    1984-01-01

    Dynamic measurement of the adsorption of binary mixtures of ethane and acetylene (and also of each gas alone) in a helium carrier gas were made on an (Columbia 4LXC 12/28) activated carbon adsorber bed at 25/sup 0/C. The adsorption capacities of the activated carbon for the pure gases and for each component in the mixtures are extracted from the transmission curves by the use of a mass balance equation. Transmission is the ratio of the concentration at the outlet of the adsorber bed to that at the inlet. The adsorption isotherms for pure ethane and acetylene can be presented by a modified Langmuir isotherm known as the Chakravarti-Dhar isotherm at gas concentrations up to at least 4.2 X 19/sup -7/ mol/cm/sup 3/ (viz., 7.8 mmHg). The gas-adsorbate equilibrium composition and the adsorption capacity of each component in the binary mixture of ethane and acetylene are estimated from the corresponding single-component isotherms by applying ideal adsorbed solution theory (IAST). The fact that the estimated values of the adsorption capacities and the gas-adsorbate equilibrium compositions are in good agreement with those extracted from the measurements for the binary mixtures of ethane and acetylene confirms that the ethane-acetylene system forms an ideal adsorbed phase on activated carbon at a pressure of about 7.3 mmHg and a temperature of 25/sup 0/C. 20 references, 4 figures, 4 tables.

  18. Preparation and characterization of activated carbon from marine macro-algal biomass.

    PubMed

    Aravindhan, R; Raghava Rao, J; Unni Nair, B

    2009-03-15

    Activated carbons prepared from two macro-algal biomass Sargassum longifolium (SL) and Hypnea valentiae (HV) have been examined for the removal of phenol from aqueous solution. The activated carbon has been prepared by zinc chloride activation. Experiments have been carried out at different activating agent/precursor ratio and carbonization temperature, which had significant effect on the pore structure of carbon. Developed activated carbon has been characterized by BET surface area (S(BET)) analysis and iodine number. The carbons, ZSLC-800 and ZHVC-800, showed surface area around 802 and 783 m(2)g(-1), respectively. The activated carbon developed showed substantial capability to adsorb phenol from aqueous solutions. The kinetic data were fitted to the models of pseudo-first-order, pseudo-second-order and intraparticle diffusion models. Column studies have also been carried out with ZSLC-800 activated carbon.

  19. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  20. TESTING GUIDELINES FOR TECHNETIUM-99 ABSORPTION ON ACTIVATED CARBON

    SciTech Connect

    BYRNES ME

    2010-09-08

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs) will

  1. Adsorption of basic dyes on granular activated carbon and natural zeolite.

    PubMed

    Meshko, V; Markovska, L; Mincheva, M; Rodrigues, A E

    2001-10-01

    The adsorption of basic dyes from aqueous solution onto granular activated carbon and natural zeolite has been studied using an agitated batch adsorber. The influence of agitation, initial dye concentration and adsorbent mass has been studied. The parameters of Langmuir and Freundlich adsorption isotherms have been determined using the adsorption data. Homogeneous diffusion model (solid diffusion) combined with external mass transfer resistance is proposed for the kinetic investigation. The dependence of solid diffusion coefficient on initial concentration and mass adsorbent is represented by the simple empirical equations.

  2. Activated Carbon Fibers For Gas Storage

    SciTech Connect

    Burchell, Timothy D; Contescu, Cristian I; Gallego, Nidia C

    2017-01-01

    The advantages of Activated Carbon Fibers (ACF) over Granular Activated Carbon (GAC) are reviewed and their relationship to ACF structure and texture are discussed. These advantages make ACF very attractive for gas storage applications. Both adsorbed natural gas (ANG) and hydrogen gas adsorption performance are discussed. The predicted and actual structure and performance of lignin-derived ACF is reviewed. The manufacture and performance of ACF derived monolith for potential automotive natural gas (NG) storage applications is reported Future trends for ACF for gas storage are considered to be positive. The recent improvements in NG extraction coupled with the widespread availability of NG wells means a relatively inexpensive and abundant NG supply in the foreseeable future. This has rekindled interest in NG powered vehicles. The advantages and benefit of ANG compared to compressed NG offer the promise of accelerated use of ANG as a commuter vehicle fuel. It is to be hoped the current cost hurdle of ACF can be overcome opening ANG applications that take advantage of the favorable properties of ACF versus GAC. Lastly, suggestions are made regarding the direction of future work.

  3. Hybridization of poly(rI) with poly(rC) adsorbed to the carbon nanotube surface

    PubMed Central

    2014-01-01

    Hybridization of homopolynucleotide poly(rC) adsorbed to the carbon nanotube surface with poly(rI) free in solution has been studied by absorption spectroscopy and molecular dynamics method. It was found that hybridization on the nanotube surface has a slow kinetics, the behavior of which differs essentially from fast hybridization of free polymers. The duplex obtained is characterized with the reduced thermostability and a lower hyperchromic coefficient than it was observed when the duplex was formed in the absence of the nanotube. These features point to the imperfectness in the structure of the duplex hybridized on the nanotube surface. Computer simulation showed that the strong interaction of nitrogen bases with the nanotube surface weakens significantly hybridization of two complementary oligomers, as the surface prevents the necessary conformational mobility of the polymer to be hybridized. PMID:24690381

  4. Hybridization of poly(rI) with poly(rC) adsorbed to the carbon nanotube surface.

    PubMed

    Karachevtsev, Maksym V; Gladchenko, Galyna O; Leontiev, Victor S; Karachevtsev, Victor A

    2014-04-01

    Hybridization of homopolynucleotide poly(rC) adsorbed to the carbon nanotube surface with poly(rI) free in solution has been studied by absorption spectroscopy and molecular dynamics method. It was found that hybridization on the nanotube surface has a slow kinetics, the behavior of which differs essentially from fast hybridization of free polymers. The duplex obtained is characterized with the reduced thermostability and a lower hyperchromic coefficient than it was observed when the duplex was formed in the absence of the nanotube. These features point to the imperfectness in the structure of the duplex hybridized on the nanotube surface. Computer simulation showed that the strong interaction of nitrogen bases with the nanotube surface weakens significantly hybridization of two complementary oligomers, as the surface prevents the necessary conformational mobility of the polymer to be hybridized.

  5. Hybridization of poly(rI) with poly(rC) adsorbed to the carbon nanotube surface

    NASA Astrophysics Data System (ADS)

    Karachevtsev, Maksym V.; Gladchenko, Galyna O.; Leontiev, Victor S.; Karachevtsev, Victor A.

    2014-04-01

    Hybridization of homopolynucleotide poly(rC) adsorbed to the carbon nanotube surface with poly(rI) free in solution has been studied by absorption spectroscopy and molecular dynamics method. It was found that hybridization on the nanotube surface has a slow kinetics, the behavior of which differs essentially from fast hybridization of free polymers. The duplex obtained is characterized with the reduced thermostability and a lower hyperchromic coefficient than it was observed when the duplex was formed in the absence of the nanotube. These features point to the imperfectness in the structure of the duplex hybridized on the nanotube surface. Computer simulation showed that the strong interaction of nitrogen bases with the nanotube surface weakens significantly hybridization of two complementary oligomers, as the surface prevents the necessary conformational mobility of the polymer to be hybridized.

  6. Single-walled carbon nanohorn as new solid-phase extraction adsorbent for determination of 4-nitrophenol in water sample.

    PubMed

    Zhu, Shuyun; Niu, Wenxin; Li, Haijuan; Han, Shuang; Xu, Guobao

    2009-10-15

    Single-walled carbon nanohorn (SWCNH) was developed as new adsorbent for solid-phase extraction using 4-nitrophenol as representative. The unique exoteric structures and high surface area of SWCNH allow extracting a large amount of 4-nitrophenol over a short time. Highly sensitive determination of 4-nitrophenol was achieved by linear sweep voltammetry after only 120s extraction. The calibration plot for 4-nitrophenol determination is linear in the range of 5.0x10(-8) M-1.0x10(-5) M under optimum conditions. The detection limit is 1.1x10(-8) M. The proposed method was successfully employed to determine 4-nitrophenol in lake water samples, and the recoveries of the spiked 4-nitrophenol were excellent (92-106%).

  7. Selective binding of single-stranded DNA-binding proteins onto DNA molecules adsorbed on single-walled carbon nanotubes.

    PubMed

    Nii, Daisuke; Hayashida, Takuya; Yamaguchi, Yuuki; Ikawa, Shukuko; Shibata, Takehiko; Umemura, Kazuo

    2014-09-01

    Single-stranded DNA-binding (SSB) proteins were treated with hybrids of DNA and single-walled carbon nanotubes (SWNTs) to examine the biological function of the DNA molecules adsorbed on the SWNT surface. When single-stranded DNA (ssDNA) was used for the hybridization, significant binding of the SSB molecules to the ssDNA-SWNT hybrids was observed by using atomic force microscopy (AFM) and agarose gel electrophoresis. When double-stranded DNA (dsDNA) was used, the SSB molecules did not bind to the dsDNA-SWNT hybrids in most of the conditions that we evaluated. A specifically modified electrophoresis procedure was used to monitor the locations of the DNA, SSB, and SWNT molecules. Our results clearly showed that ssDNA/dsDNA molecules on the SWNT surfaces retained their single-stranded/double-stranded structures.

  8. Experimental selectivity curves of gaseous binary mixtures of hydrocarbons and carbon dioxide on activated carbon and silica gel

    SciTech Connect

    Olivier, M.G.; Jadot, R.

    1998-07-01

    The selectivity curves of gaseous binary mixtures of ethane + ethylene, methane + carbon dioxide at 303 K and 700 kPa and butane + 2 methylpropane at 318 K and 200 kPa have been determined on activated carbon and silica gel using an original apparatus. In this paper, a brief description of this apparatus is given. The difference in behavior of these two adsorbents is discussed.

  9. Simple template-free synthesis of high surface area mesoporous ceria and its new use as a potential adsorbent for carbon dioxide capture.

    PubMed

    Kamimura, Yoshihiro; Shimomura, Marie; Endo, Akira

    2014-12-15

    The development of an efficient technique for carbon dioxide (CO2) capture from a variety of large stationary sources is in important global issue. If we are to achieve an energy-efficient and effectively higher CO2 capture process based on an adsorption approach, we need new adsorbent materials realistic enough to provide higher CO2 loading on a volumetric basis. For this reason we have focused on the practical use of high surface area mesoporous ceria as a new application in the field of CO2 capture. In this regard, we demonstrate the simple and inexpensive template-free synthesis of mesoporous ceria with a high surface area up to 200 m(2) g(-1), and characterize it as an effective CO2 adsorbent for the first time. The mesoporous ceria is prepared based on sol-gel chemistry, where the product is simply precipitated by the self-assembly of ceria nanoparticles within a short reaction period at room temperature under highly alkaline conditions with optimized chemical compositions. The results of CO2 adsorption-desorption measurement at 298 K show that the obtained ceria with an enhanced surface area exhibits a noticeably higher CO2 adsorption capacity per volume than commercially available non-porous ceria, activated carbon and zeolite 13X over a wide pressure range with robust stability as well as regenerability. This work enables us to prepare promising new materials for the CO2 capture process based on an easy-to-handle synthesis system, and this effective material will have a broad applicability to the efficient CO2 separation from variety of industrial emission sources. The features of the obtained mesoporous ceria are reported and discussed.

  10. Breakthrough CO₂ adsorption in bio-based activated carbons.

    PubMed

    Shahkarami, Sepideh; Azargohar, Ramin; Dalai, Ajay K; Soltan, Jafar

    2015-08-01

    In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide (KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25-65°C and inlet CO2 concentration range of 10-30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively. Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm(3)/g and surface area of 1400 m(2)/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after 50 cycles with low temperature (160°C) regeneration.

  11. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation.

    PubMed

    Angın, Dilek; Altintig, Esra; Köse, Tijen Ennil

    2013-11-01

    Activated carbons were produced from biochar obtained through pyrolysis of safflower seed press cake by chemical activation with zinc chloride. The influences of process variables such as the activation temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons were investigated. Also, the adsorptive properties of activated carbons were tested using methylene blue dye as the targeted adsorbate. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 128.21 mg g(-1) and carbon content 76.29%, while the BET surface area and total pore volume corresponded to 801.5m(2)g(-1) and 0.393 cm(3)g(-1), respectively. This study demonstrated that high surface area activated carbons can be prepared from the chemical activation of biochar with zinc chloride as activating agents.

  12. Biological activation of carbon filters.

    PubMed

    Seredyńska-Sobecka, Bozena; Tomaszewska, Maria; Janus, Magdalena; Morawski, Antoni W

    2006-01-01

    To prepare biological activated carbon (BAC), raw surface water was circulated through granular activated carbon (GAC) beds. Biological activity of carbon filters was initiated after about 6 months of filter operation and was confirmed by two methods: measurement of the amount of biomass attached to the carbon and by the fluorescein diacetate (FDA) test. The effect of carbon pre-washing on WG-12 carbon properties was also studied. For this purpose, the nitrogen adsorption isotherms at 77K and Fourier transform-infrared (FT-IR) spectra analyses were performed. Moreover, iodine number, decolorizing power and adsorption properties of carbon in relation to phenol were studied. Analysis of the results revealed that after WG-12 carbon pre-washing its BET surface increased a little, the pH value of the carbon water extract decreased from 11.0 to 9.4, decolorizing power remained at the same level, and the iodine number and phenol adsorption rate increased. In preliminary studies of the ozonation-biofiltration process, a model phenol solution with concentration of approximately 10mg/l was applied. During the ozonation process a dose of 1.64 mg O(3)/mg TOC (total organic carbon) was employed and the contact time was 5 min. Four empty bed contact times (EBCTs) in the range of 2.4-24.0 min were used in the biofiltration experiment. The effectiveness of purification was measured by the following parameters: chemical oxygen demand (COD(Mn)), TOC, phenol concentration and UV(254)-absorbance. The parameters were found to decrease with EBCT.

  13. Activated boron nitride as an effective adsorbent for metal ions and organic pollutants

    PubMed Central

    Li, Jie; Xiao, Xing; Xu, Xuewen; Lin, Jing; Huang, Yang; Xue, Yanming; Jin, Peng; Zou, Jin; Tang, Chengchun

    2013-01-01

    Novel activated boron nitride (BN) as an effective adsorbent for pollutants in water and air has been reported in the present work. The activated BN was synthesized by a simple structure-directed method that enabled us to control the surface area, pore volume, crystal defects and surface groups. The obtained BN exhibits an super high surface area of 2078 m2/g, a large pore volume of 1.66 cm3/g and a special multimodal microporous/mesoporous structure located at ~ 1.3, ~ 2.7, and ~ 3.9 nm, respectively. More importantly, the novel activated BN exhibits an excellent adsorption performance for various metal ions (Cr3+, Co2+, Ni2+, Ce3+, Pb2+) and organic pollutants (tetracycline, methyl orange and congo red) in water, as well as volatile organic compounds (benzene) in air. The excellent reusability of the activated BN has also been confirmed. All the features render the activated BN a promising material suitable for environmental remediation. PMID:24220570

  14. Activated boron nitride as an effective adsorbent for metal ions and organic pollutants

    NASA Astrophysics Data System (ADS)

    Li, Jie; Xiao, Xing; Xu, Xuewen; Lin, Jing; Huang, Yang; Xue, Yanming; Jin, Peng; Zou, Jin; Tang, Chengchun

    2013-11-01

    Novel activated boron nitride (BN) as an effective adsorbent for pollutants in water and air has been reported in the present work. The activated BN was synthesized by a simple structure-directed method that enabled us to control the surface area, pore volume, crystal defects and surface groups. The obtained BN exhibits an super high surface area of 2078 m2/g, a large pore volume of 1.66 cm3/g and a special multimodal microporous/mesoporous structure located at ~ 1.3, ~ 2.7, and ~ 3.9 nm, respectively. More importantly, the novel activated BN exhibits an excellent adsorption performance for various metal ions (Cr3+, Co2+, Ni2+, Ce3+, Pb2+) and organic pollutants (tetracycline, methyl orange and congo red) in water, as well as volatile organic compounds (benzene) in air. The excellent reusability of the activated BN has also been confirmed. All the features render the activated BN a promising material suitable for environmental remediation.

  15. [Effects of ginkgo diterpene lactones meglumine injection's activated carbon adsorption technology on officinal components].

    PubMed

    Zhou, En-li; Wang, Ren-jie; Li, Miao; Wang, Wei; Xu, Dian-hong; Hu, Yang; Wang, Zhen-zhong; Bi, Yu-an; Xiao, Wei

    2015-10-01

    With the diversion rate of ginkgolide A, B, K as comprehensive evaluation indexes, the amount of activated carbon, ad- sorption time, mix rate, and adsorption temperature were selected as factors, orthogonal design which based on the evaluation method of information entropy was used to optimize activated carbon adsorption technology of ginkgo diterpene lactones meglumine injection. Opti- mized adsorption conditions were as follows: adsorbed 30 min with 0.2% activated carbon in 25 °C, 40 r ·min⁻¹, validation test re- sult display. The optimum extraction condition was stable and feasible, it will provide a basis for ginkgo diterpene lactone meglumine injection' activated carbon adsorption process.

  16. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons.

    PubMed

    Rakić, Vesna; Rac, Vladislav; Krmar, Marija; Otman, Otman; Auroux, Aline

    2015-01-23

    In this study, the adsorption of pharmaceutically active compounds - salicylic acid, acetylsalicylic acid, atenolol and diclofenac-Na onto activated carbons has been studied. Three different commercial activated carbons, possessing ∼650, 900 or 1500m(2)g(-1) surface areas were used as solid adsorbents. These materials were fully characterized - their textural, surface features and points of zero charge have been determined. The adsorption was studied from aqueous solutions at 303K using batch adsorption experiments and titration microcalorimetry, which was employed in order to obtain the heats evolved as a result of adsorption. The maximal adsorption capacities of investigated solids for all target pharmaceuticals are in the range of 10(-4)molg(-1). The obtained maximal retention capacities are correlated with the textural properties of applied activated carbon. The roles of acid/base features of activated carbons and of molecular structures of adsorbate molecules have been discussed. The obtained results enabled to estimate the possibility to use the activated carbons in the removal of pharmaceuticals by adsorption.

  17. Improved direct electrochemistry for proteins adsorbed on a UV/ozone-treated carbon nanofiber electrode.

    PubMed

    Xue, Qiang; Kato, Dai; Kamata, Tomoyuki; Guo, Qiaohui; You, Tianyan; Niwa, Osamu

    2013-01-01

    We studied the direct electron transfer (DET) of proteins on a carbon nanofiber (CNF) modified carbon film electrode by employing the one-step UV/ozone treatment of CNF. This treatment changed the CNF surface from hydrophobic to hydrophilic because a sufficient quantity of oxygen functional groups was introduced onto the CNF surface. Furthermore, this simple approach increased both the effective surface area and the number of edge-plane defect sites. As a result, the reversibility of redox species, such as ferrocyanide and dopamine, was greatly improved on the treated electrode surface. We obtained on efficient DET of bilirubin oxidase (BOD) and cytochrome c (cyt c) at the treated CNF electrode, which exhibited 38 (for BOD) and 6 (for cyt c) times higher than that at untreated CNF modified electrode. These results indicate that the combination of nanostructured carbon and this UV/ozone treatment process can efficiently create a functionalized surface for the electron transfer of proteins.

  18. Optical and electrical characterizations of nanocomposite film of titania adsorbed onto oxidized multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Feng, Yiyu; Wu, Zigang; Fujii, Akihiko; Ozaki, Masanori; Yoshino, Katsumi

    2005-07-01

    Composite film containing titania electrostatically linked to oxidized multiwalled carbon nanotubes (TiO2-s-MWNTs) was prepared from a suspension of TiO2 nanoparticles in soluble carbon nanotubes. The structure of the film was analysed principally by Fourier transform infrared spectroscopy, scanning electron micrography and x-ray diffraction. The optical and electrical characterizations of the film were investigated by UV-vis spectrum, photoluminescence and photoconductivity. The enhancement of photocurrent in the TiO2-s-MWNT film is discussed by taking the photoinduced charge transfer between the MWNT and TiO2 into consideration.

  19. Adsorption of ethanol onto activated carbon: Modeling and consequent interpretations based on statistical physics treatment

    NASA Astrophysics Data System (ADS)

    Bouzid, Mohamed; Sellaoui, Lotfi; Khalfaoui, Mohamed; Belmabrouk, Hafedh; Lamine, Abdelmottaleb Ben

    2016-02-01

    In this work, we studied the adsorption of ethanol on three types of activated carbon, namely parent Maxsorb III and two chemically modified activated carbons (H2-Maxsorb III and KOH-H2-Maxsorb III). This investigation has been conducted on the basis of the grand canonical formalism in statistical physics and on simplified assumptions. This led to three parameter equations describing the adsorption of ethanol onto the three types of activated carbon. There was a good correlation between experimental data and results obtained by the new proposed equation. The parameters characterizing the adsorption isotherm were the number of adsorbed molecules (s) per site n, the density of the receptor sites per unit mass of the adsorbent Nm, and the energetic parameter p1/2. They were estimated for the studied systems by a non linear least square regression. The results show that the ethanol molecules were adsorbed in perpendicular (or non parallel) position to the adsorbent surface. The magnitude of the calculated adsorption energies reveals that ethanol is physisorbed onto activated carbon. Both van der Waals and hydrogen interactions were involved in the adsorption process. The calculated values of the specific surface AS, proved that the three types of activated carbon have a highly microporous surface.

  20. Removing lead in drinking water with activated carbon

    SciTech Connect

    Taylor, R.M.; Kuennen, R.W. )

    1994-02-01

    A point-of-use (POU) granular activated carbon (GAC) fixed bed adsorber (FBA) was evaluated for reduction of soluble and insoluble lead from drinking water. Some of the factors which affect lead removal by GAC were evaluated, such as carbon type, solution pH, and a limited amount of work on competitive interactions. The design criteria for lead reduction by a POU device are also addressed. Minicolumns were used to evaluate the capacity of carbon for lead under a variety of conditions. The importance of surface chemistry of the carbon and the relationship with the pH of the water for lead reduction was demonstrated. Results indicate that a properly designed POU-GAC-FBA can reduce lead in drinking water to below the EPA action level of 15 ppb while being tested under a variety of conditions as specified under the National Sanitation Foundation (NSF) International Standard 53 test protocol. 37 refs., 9 figs., 1 tab.

  1. EFFECT OF MOLECULAR OXYGEN ON ADSORPTIVE CAPACITY AND EXTRACTION EFFICIENCY OF GRANULATED ACTIVATED CARBON FOR THREE ORTHO-SUBSTITUTED PHENOLS

    EPA Science Inventory

    Adsorptive capacity of activated carbon for several organic compounds was found to be strongly influenced by the presence of molecular oxygen. This influence is manifested by the polymerization of adsorbate on the surface of activated carbon. As a result, GAC exhibits much high...

  2. Microporous activated carbons prepared from palm shell by thermal activation and their application to sulfur dioxide adsorption.

    PubMed

    Guo, Jia; Lua, Aik Chong

    2002-07-15

    Textural characterization of activated carbons prepared from palm shell by thermal activation with carbon dioxide (CO(2)) gas is reported in this paper. Palm shell (endocarp) is an abundant agricultural solid waste from palm-oil processing mills in many tropical countries such as Malaysia, Indonesia, and Thailand. The effects of activation temperature on the textural properties of the palm-shell activated carbons, namely specific surface area (BET method), porosity, and microporosity, were investigated. The activated carbons prepared from palm shell possessed well-developed porosity, predominantly microporosity, leading to potential applications in gas-phase adsorption for air pollution control. Static and dynamic adsorption tests for sulfur dioxide (SO(2)), a common gaseous pollutant, were carried out in a thermogravimetric analyzer and a packed column configuration respectively. The effects of adsorption temperature, adsorbate inlet concentration, and adsorbate superficial velocity on the adsorptive performance of the prepared activated carbons were studied. The palm-shell activated carbon was found to have substantial capability for the adsorption of SO(2), comparable to those of some commercial products and an adsorbent derived from another biomass.

  3. Cryogenic adsorber design in a helium refrigeration system

    NASA Astrophysics Data System (ADS)

    Hu, Zhongjun; Zhang, Ning; Li, Zhengyu; Li, Q.

    2012-06-01

    The cryogenic adsorber is specially designed to eliminate impurities in gaseous helium such as O2, and N2 which is normally difficult to remove, based on the reversible cryotrapping of impurities on an activated carbon bed. The coconut shell activated carbon is adopted because of its developed micropore structure and specific surface area. This activated carbon adsorption is mostly determined by the micropore structure, and the adsorption rate of impurities is inversely proportional to the square of the particle sizes. The active carbon absorber's maximum permissible flow velocity is 0.25 m/s. When the gas flow velocity increases, the adsorption diffusion rate of the adsorbent is reduced, because an increase in the magnitude of the velocity resulted in a reduced amount of heat transfer to a unit volume of impure gas. According to the numerical simulation of N2 adsorption dynamics, the appropriate void tower link speed and the saturated adsorption capacity are determined. Then the diameter and height of the adsorber are designed. The mass transfer length should be taken into account in the adsorber height design. The pressure decrease is also calculated. The important factors that influence the adsorber pressure decrease are the void tower speed, the adsorbed layer height, and the active carbon particle shape and size.

  4. Adsorbent 2D and 3D carbon matrices with protected magnetic iron nanoparticles.

    PubMed

    Carreño, N L V; Escote, M T; Valentini, A; McCafferty, L; Stolojan, V; Beliatis, M; Mills, C A; Rhodes, R; Smith, C T G; Silva, S R P

    2015-11-07

    We report on the synthesis of two and three dimensional carbonaceous sponges produced directly from graphene oxide (GO) into which functionalized iron nanoparticles can be introduced to render it magnetic. This simple, low cost procedure, wherein an iron polymeric resin precursor is introduced into the carbon framework, results in carbon-based materials with specific surface areas of the order of 93 and 66 m(2) g(-1), compared to approx. 4 m(2) g(-1) for graphite, decorated with ferromagnetic iron nanoparticles giving coercivity fields postulated to be 216 and 98 Oe, values typical for ferrite magnets, for 3.2 and 13.5 wt% Fe respectively. The strongly magnetic iron nanoparticles are robustly anchored to the GO sheets by a layer of residual graphite, on the order of 5 nm, formed during the pyrolysis of the precursor material. The applicability of the carbon sponges is demonstrated in their ability to absorb, store and subsequently elute an organic dye, Rhodamine B, from water as required. It is possible to regenerate the carbon-iron hybrid material after adsorption by eluting the dye with a solvent to which it has a high affinity, such as ethanol. The use of a carbon framework opens the hybrid materials to further chemical functionalization, for enhanced chemical uptake of contaminants, or co-decoration with, for example, silver nanoparticles for bactericidal properties. Such analytical properties, combined with the material's magnetic character, offer solutions for environmental decontamination at land and sea, wastewater purification, solvent extraction, and for the concentration of dilute species.

  5. Adsorbent 2D and 3D carbon matrices with protected magnetic iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Carreño, N. L. V.; Escote, M. T.; Valentini, A.; McCafferty, L.; Stolojan, V.; Beliatis, M.; Mills, C. A.; Rhodes, R.; Smith, C. T. G.; Silva, S. R. P.

    2015-10-01

    We report on the synthesis of two and three dimensional carbonaceous sponges produced directly from graphene oxide (GO) into which functionalized iron nanoparticles can be introduced to render it magnetic. This simple, low cost procedure, wherein an iron polymeric resin precursor is introduced into the carbon framework, results in carbon-based materials with specific surface areas of the order of 93 and 66 m2 g-1, compared to approx. 4 m2 g-1 for graphite, decorated with ferromagnetic iron nanoparticles giving coercivity fields postulated to be 216 and 98 Oe, values typical for ferrite magnets, for 3.2 and 13.5 wt% Fe respectively. The strongly magnetic iron nanoparticles are robustly anchored to the GO sheets by a layer of residual graphite, on the order of 5 nm, formed during the pyrolysis of the precursor material. The applicability of the carbon sponges is demonstrated in their ability to absorb, store and subsequently elute an organic dye, Rhodamine B, from water as required. It is possible to regenerate the carbon-iron hybrid material after adsorption by eluting the dye with a solvent to which it has a high affinity, such as ethanol. The use of a carbon framework opens the hybrid materials to further chemical functionalization, for enhanced chemical uptake of contaminants, or co-decoration with, for example, silver nanoparticles for bactericidal properties. Such analytical properties, combined with the material's magnetic character, offer solutions for environmental decontamination at land and sea, wastewater purification, solvent extraction, and for the concentration of dilute species.

  6. Activated carbon to the rescue

    SciTech Connect

    Sen, S.

    1996-03-01

    This article describes the response to pipeline spill of ethylene dichloride (EDC) on the property of an oil company. Activated carbon cleanup proceedure was used. During delivery, changeout, transport, storage, thermal reactivation, and return delivery to the site, the carbon never came into direct contact with operating personnel or the atmosphere. More than 10,000 tones of dredge soil and 50 million gallons of surface water were processed during the emergency response.

  7. Activated carbons from potato peels: The role of activation agent and carbonization temperature of biomass on their use as sorbents for bisphenol A uptake from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Arampatzidou, An; Deliyanni, Eleni A.

    2015-04-01

    Activated carbons prepared from potato peels, a solid waste by product, and activated with different activating chemicals, have been studied for the adsorption of an endocrine disruptor (Bisphenol-A) from aqueous solutions. The potato peels biomass was activated with phosphoric acid, KOH and ZnCl2. The different activating chemicals were tested in order the better activation agent to be found. The carbons were carbonized by pyrolysis, in one step procedure, at three different temperatures in order the role of the temperature of carbonization to be pointed out. The porous texture and the surface chemistry of the prepared activated carbons were characterized by Nitrogen adsorption (BET), Scanning Electron Microscope (SEM), thermal analysis (DTA) and Fourier Transform Infrared Spectroscopy (FTIR). Batch experiments were performed to investigate the effect of pH, the adsorbent dose, the initial bisphenol A concentration and temperature. Equilibrium adsorption data were analyzed by Langmuir and Freundlich isotherms. The thermodynamic parameters such as the change of enthalpy (ΔH0), entropy (ΔS0) and Gibb's free energy (ΔG0) of adsorption systems were also evaluated. The adsorption capacity calculated from the Langmuir isotherm was found to be 450 mg g-1 at an initial pH 3 at 25 °C for the phosphoric acid activated carbon, that make the activated carbon a promising adsorbent material.

  8. Two-way Valorization of Blast Furnace Slag: Synthesis of Precipitated Calcium Carbonate and Zeolitic Heavy Metal Adsorbent.

    PubMed

    Georgakopoulos, Evangelos; Santos, Rafael M; Chiang, Yi Wai; Manovic, Vasilije

    2017-02-21

    The aim of this work is to present a zero-waste process for storing CO2 in a stable and benign mineral form while producing zeolitic minerals with sufficient heavy metal adsorption capacity. To this end, blast furnace slag, a residue from iron-making, is utilized as the starting material. Calcium is selectively extracted from the slag by leaching with acetic acid (2 M CH3COOH) as the extraction agent. The filtered leachate is subsequently physico-chemically purified and then carbonated to form precipitated calcium carbonate (PCC) of high purity (<2 wt% non-calcium impurities, according to ICP-MS analysis). Sodium hydroxide is added to neutralize the regenerated acetate. The morphological properties of the resulting calcitic PCC are tuned for its potential application as a filler in papermaking. In parallel, the residual solids from the extraction stage are subjected to hydrothermal conversion in a caustic solution (2 M NaOH) that leads to the predominant formation of a particular zeolitic mineral phase (detected by XRD), namely analcime (NaAlSi2O6∙H2O). Based on its ability to adsorb Ni(2+), as reported from batch adsorption experiments and ICP-OES analysis, this product can potentially be used in wastewater treatment or for environmental remediation applications.

  9. Adsorption of phenol onto activated carbon from Rhazya stricta: determination of the optimal experimental parameters using factorial design

    NASA Astrophysics Data System (ADS)

    Hegazy, A. K.; Abdel-Ghani, N. T.; El-Chaghaby, G. A.

    2014-09-01

    A novel activated carbon was prepared from Rhazya stricta leaves and was successfully used as an adsorbent for phenol removal from aqueous solution. The prepared activated carbon was characterized by FTIR and SEM analysis. Three factors (namely, temperature, pH and adsorbent dose) were screened to study their effect on the adsorption of phenol by R. stricta activated carbon. A 23 full factorial design was employed for optimizing the adsorption process. The removal of phenol by adsorption onto R. stricta carbon reached 85 % at a solution pH of 3, an adsorbent dose of 0.5 g/l and a temperature of 45 °C. The temperature and adsorbent weight had a positive effect on phenol removal percentage, when both factors were changed from low to high and the opposite is true for the initial solution pH. The results of the main effects showed that the three studied factors significantly affected phenol removal by R. stricta carbon with 95 % confidence level. The interaction effects revealed that the interaction between the temperature and pH had the most significant effect on the removal percentage of phenol by R. stricta activated carbon. The present work showed that the carbon prepared from a low-cost and natural material which is R. stricta leaves is a good adsorbent for the removal of phenol from aqueous solution.

  10. Molecular simulation study of water--methanol mixtures in activated carbon pores

    SciTech Connect

    Shevade, Abhijit V.; Jiang, Shaoyi; Gubbins, Keith E.

    2000-10-22

    We report a theoretical study of the adsorption behavior of water--methanol mixtures in slit activated carbon micropores. The adsorption isotherms are obtained for a pore of width 2 nm at a temperature of 298 K from grand canonical ensemble Monte Carlo simulations. The water molecules are modeled using the four point transferable intermolecular potential functions (TIP4P) and methanol by the optimized potentials for liquid simulations (OPLS). Carboxyl (COOH) groups are used as active sites on a structured carbon surface. The effect of the relative contributions from dispersion and hydrogen bonding interactions of adsorbates, and of the chemical activation of adsorbents on adsorption behavior is investigated. The adsorption of the mixture components in activated carbon pores occurs by continuous filling, without the sharp capillary condensation observed in graphite pores. Water is preferentially adsorbed over methanol in activated carbon pores for a wide range of pressures, except at lower pressures. The hydrophilic nature of activated carbon pores results in the complexation of both water and methanol molecules with the active sites on the surfaces, leading to bulklike water behavior over the entire pore width. Solvation forces are also calculated as a function of pore size. The negative values found for the solvation force for all pore sizes reflect the hydrophilic interactions of the mixtures with the activated carbon surfaces. {copyright} 2000 American Institute of Physics [S0021-9606(00)51339-7

  11. Carbon dioxide removal from natural gas using amine surface bonded adsorbents

    SciTech Connect

    Leal, O.; Bolivar, C.; Ovalles, C.; Urbina, A.

    1996-12-31

    The results of research on the greenhouse effect have shown, among other things, that the concentration of trace gases occurring in the atmosphere such as carbon dioxide, methane, nitrous oxide, ozone and halocarbons have grown significantly since the ore-industrial times. During this period, the CO{sub 2} level has risen 30% to nearly 360 ppm from a pre-industrial era level of 280 ppm. On the basis of a variety of evidence a consensus is emerging among researchers that humans beings, primarily through their burning of fossil fuels, are already perturbing Earth`s climate. All specialists agree that without drastic steps to curb greenhouse gas emissions, the average global temperature will increase 1 to 3.5{degrees}C during the next century because effective level of carbon dioxide are expected to double sometime between the years 2050 to 2100. It may be that human-generated emissions of carbon dioxide will have to be reduced by as much as 50-80% to avoid major climate changes. Such a reduction in the CO{sub 2} emissions rate probably cannot be accomplished without a massive switch to non-fossil energy sources. However, it has been proposed that emissions from fossil fuels can be moderated by three strategies: exploiting the fuels more efficiently, replacing coal by natural gas and by recovering and sequestering CO{sub 2} emissions. A rough analysis, based on the use of currently accepted values, shows that natural gas is preferable to other fossil fuels in consideration of the greenhouse effect and improvements can be obtained if natural gas is upgrading by scrubbing the carbon dioxide out of it.

  12. Removal of arsenic(V) from aqueous solutions using iron-oxide-coated modified activated carbon.

    PubMed

    Zhang, Q L; Gao, Nai-Yun; Lin, Y C; Xu, Bin; Le, Lin-sheng

    2007-08-01

    Removal of arsenic(V) from aqueous solutions was evaluated with the following three different sorption materials: coal-based activated carbon 12 x 40 (activated carbon), iron(II) oxide (FeO)/activated carbon-H, and iron oxide. The apparent characteristics and physical chemistry performances of these adsorbents were investigated by X-ray diffraction, nitrogen adsorption, and scanning electronic microscope. Also, batch experiments for arsenic removal were performed, and the effects of pH value on arsenic(V) removal were studied. The results suggest that the main phases of the iron oxide surface are magnetite, maghemite, hematite, and goethite; fine and uniform iron oxide particles can cover activated carbon surfaces and affect the surface area or pore structures of activated carbon; adsorption kinetics obey a pseudo-first-order rate equation; and adsorption capacities of adsorbents are affected by the values of pH. The optimum value of pH for iron oxide lies in a narrow range between 4.0 and 5.5, and arsenic(V) removal by FeO/activated carbon-H is ideal and stable in the pH range 3 to 7, while activated carbon has the lowest adsorption capacity in the entire pH range. Also, the adsorption characteristics of FeO/activated carbon-H composites and virgin activated carbon match well the Langmuir adsorption model, while those of iron oxide fit well the Freundlich adsorption model.

  13. Adsorption characteristics of SO2 on activated carbon prepared from coconut shell with potassium hydroxide activation.

    PubMed

    Lee, Young-Whan; Park, Jin-Won; Choung, Jae-Hoon; Choi, Dae-Ki

    2002-03-01

    The adsorption characteristics of SO2 were studied with KOH-impregnated granular activated carbon (K-IAC). To confirm selective SO2 adsorptivity of K-IAC using a fixed bed adsorption column, experiments were conducted on the effects of KOH and of linear velocity, temperature, and concentration. In addition, changes in features before and after adsorption were observed by utilizing FTIR, XRD, ToF-SIMS, and AES/SAM, examining the surface chemistry. K-IAC adsorbed 13.2 times more SO2 than did general activated carbon (GAC). The amount of SO2 adsorbed increased as linear velocity and concentration increased and as temperature decreased. At lower temperature, the dominant reaction between KOH and SO2 produces K2-SO3 and H2O. Any H2O remaining on the surface is converted into H2SO4 as SO2 and O2 are introduced. Then, the KOH and SO2 reaction produces K2SO4 and H2O. The surface characterization results proved that adsorption occurred through chemical reaction between KOH and SO2. The SO2 adsorbed K-IAC exists in the form of stable oxide crystal, K2SO3 and K2SO4, due to potassium. The basic feature given to the surface of activated carbon by KOH impregnation was confirmed to be acting as the main factor in enhancing SO2 adsorptivity.

  14. Applications for activated carbons from waste tires: Natural gas storage and air pollution control

    USGS Publications Warehouse

    Brady, T.A.; Rostam-Abadi, M.; Rood, M.J.

    1996-01-01

    Natural gas storage for natural gas vehicles and the separation and removal of gaseous contaminants from gas streams represent two emerging applications for carbon adsorbents. A possible precursor for such adsorbents is waste tires. In this study, activated carbon has been developed from waste tires and tested for its methane storage capacity and SO2 removal from a simulated flue-gas. Tire-derived carbons exhibit methane adsorption capacities (g/g) within 10% of a relatively expensive commercial activated carbon; however, their methane storage capacities (Vm/Vs) are almost 60% lower. The unactivated tire char exhibits SO2 adsorption kinetics similar to a commercial carbon used for flue-gas clean-up. Copyright ?? 1996 Elsevier Science Ltd.

  15. Equilibrium and column adsorption studies of 2,4-dinitroanisole (DNAN) on surface modified granular activated carbons.

    PubMed

    Boddu, V M; Abburi, K; Fredricksen, A J; Maloney, S W; Damavarapu, R

    2009-02-01

    2,4-Dinitroanisole (DNAN) is used as a component extensively in the development of insensitive munitions. This may result in release of DNAN into the environment. Here, the results are reported of a study on the removal characteristics of DNAN through adsorption on granular activated carbon (GAC), chitosan coated granular activated carbon (CGAC), acid treated granular activated carbon (AGAC) and alkali treated granular activated carbon (BGAC) under equilibrium and column flow conditions. The effect of pH, contact time, concentration of DNAN, and presence of electrolytes on the uptake of DNAN by the adsorbents was investigated. The equilibrium data were fitted to different types of adsorption isotherms. The data were further analysed on the basis of Lagergren first-order, pseudo second-order and intraparticle diffusion kinetic models. Breakthrough curves were obtained based on column flow results. All the adsorbents were capable of removing about 99% of DNAN from aqueous media, except CGAC which adsorbed about 87% of DNAN.

  16. The desorption and reactivity of butanol adsorbed on lithium iron phosphate (LISICON) activated in a hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Pylinina, A. I.; Mikhalenko, I. I.; Yagodovskaya, T. V.; Yagodovskii, V. D.

    2010-12-01

    The reactivity and desorption of butanol-2 adsorbed on Li3Fe2(PO4)3 not subjected and subjected to treatment in a glow discharge hydrogen plasma were studied under flow conditions with a gas chromatographic analysis of products. X-ray photoelectron spectroscopy data showed that the number of phosphate groups on the surface of the phosphate was two times larger than the stoichiometric number and increased after plasma chemical treatment. The strength of butanol-phosphate bonds also increased, and the selectivity of alcohol decomposition with the formation of an olefin (dehydration) and ketone (dehydrogenation) changed. After plasma treatment, dehydrogenation centers were deactivated. The selectivities of alcohol transformations in the adsorbed state and under vapor phase conditions were different. Ketone was formed from adsorbed alcohol because the activation energies of dehydrogenation were equal for the two reaction variants.

  17. Application of thermal analysis techniques in activated carbon production

    USGS Publications Warehouse

    Donnals, G.L.; DeBarr, J.A.; Rostam-Abadi, M.; Lizzio, A.A.; Brady, T.A.

    1996-01-01

    Thermal analysis techniques have been used at the ISGS as an aid in the development and characterization of carbon adsorbents. Promising adsorbents from fly ash, tires, and Illinois coals have been produced for various applications. Process conditions determined in the preparation of gram quantities of carbons were used as guides in the preparation of larger samples. TG techniques developed to characterize the carbon adsorbents included the measurement of the kinetics of SO2 adsorption, the performance of rapid proximate analyses, and the determination of equilibrium methane adsorption capacities. Thermal regeneration of carbons was assessed by TG to predict the life cycle of carbon adsorbents in different applications. TPD was used to determine the nature of surface functional groups and their effect on a carbon's adsorption properties.

  18. Surface heterogeneity effects of activated carbons on the kinetics of paracetamol removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Ruiz, B.; Cabrita, I.; Mestre, A. S.; Parra, J. B.; Pires, J.; Carvalho, A. P.; Ania, C. O.

    2010-06-01

    The removal of a compound with therapeutic activity (paracetamol) from aqueous solutions using chemically modified activated carbons has been investigated. The chemical nature of the activated carbon material was modified by wet oxidation, so as to study the effect of the carbon surface chemistry and composition on the removal of paracetamol. The surface heterogeneity of the carbon created upon oxidation was found to be a determinant in the adsorption capability of the modified adsorbents, as well as in the rate of paracetamol removal. The experimental kinetic data were fitted to the pseudo-second order and intraparticle diffusion models. The parameters obtained were linked to the textural and chemical features of the activated carbons. After oxidation the wettability of the carbon is enhanced, which favors the transfer of paracetamol molecules to the carbon pores (smaller boundary layer thickness). At the same time the overall adsorption rate and removal efficiency are reduced in the oxidized carbon due to the competitive effect of water molecules.

  19. Adsorption-desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires.

    PubMed

    Tanthapanichakoon, W; Ariyadejwanich, P; Japthong, P; Nakagawa, K; Mukai, S R; Tamon, H

    2005-04-01

    Liquid-phase adsorption-desorption characteristics and ethanol regeneration efficiency of an activated carbon prepared from waste tires and a commercial activated carbon were investigated. Water vapor adsorption experiments reveal that both activated carbons showed hydrophobic surface characteristics. Adsorption experiments reveal that the prepared activated carbon possessed comparable phenol adsorption capacity as the commercial one but clearly larger adsorption capacity of two reactive dyes, Black 5 and Red 31. It was ascertained that the prepared activated carbon exhibited less irreversible adsorption of phenol and the two dyes than its commercial counterpart. Moreover, ethanol regeneration efficiency of the prepared AC saturated with either dye was higher than that of the commercial AC. Because of its superior liquid-phase adsorption-desorption characteristics as well as higher ethanol regeneration efficiency, the prepared activated carbon is more suitable for wastewater treatment, especially for adsorbing similarly bulky adsorbates.

  20. Electron paramagnetic resonance study of paramagnetic centers in carbon-fumed silica adsorbent

    SciTech Connect

    Savchenko, D. V.; Shanina, B. D.; Kalabukhova, E. N.; Sitnikov, A. A.; Lysenko, V. S.; Tertykh, V. A.

    2014-04-07

    Fumed silica A-300 was carbonized by means of pyrolysis of CH{sub 2}Cl{sub 2}. The obtained initial SiO{sub 2}:C nanopowders of black color, with an average diameter of 14–16 nm and carbon (C) concentration 7 wt. %, subjected to the oxidation and passivation treatment were studied by electron paramagnetic resonance (EPR) in the temperature range 4–400 K. Two EPR signals of Lorentzian lineshape with nearly equal g-factors and different linewidth were observed in the initial, oxidized, and passivated SiO{sub 2}:C nanopowders. The two-component EPR spectrum was explained by the presence of C in two electronic states. The intensive narrow EPR signal, which has a temperature-dependent intensity, linewidth, and resonance field position, was attributed to the carbon-related defect with non-localized electron hopping between neighboring C-dangling bonds. The striking effect is that the temperature dependence of the EPR linewidth demonstrates the motional narrowing of the EPR signal at very low temperatures from 4 K to 20 K, which is not typically for nonmetallic materials and was explained by the quantum character of C layer conductivity in the SiO{sub 2}:C. The observed peaks in the temperature dependence of the conduction electron EPR signal integral intensity in the high-temperature range 200–440 K was explained by the presence of the C nanodots at the surface of SiO{sub 2} nanoparticles and the ejection of electrons from the confinement energy levels of C quantum dot when the temperature becomes comparable to the confinement energy.

  1. Dependence of cellular activity at protein adsorbed biointerfaces with nano- to microscale dimensionality.

    PubMed

    Nune, C; Misra, R D K; Somani, M C; Karjalainen, L P

    2014-06-01

    Protein adsorption is one of the first-few events that occur when a biomedical device comes in contact with the physiological system. The adsorption process is subsequently followed by communication with cells and formation of tissue. Given the strong interest in nanostructured surfaces, we describe here the impact of grain structure from nanograined (NG) regime to coarse-grained (CG) regime on the self-assembly of proteins (bovine serum albumin) and consequent functional response of osteoblasts. The objective is accomplished using the innovative concept of "phase reversion" that enables a wide range of grain size (from NG to CG regime) to be obtained using an identical set of parameters, besides additional attributes of high strength/weight ratio and wear resistance. Depending on the grain structure a consistent and significant change in the adsorption characteristics of protein was observed at biointerface, such that the cell density was statistically different. The high surface coverage and leaf-like conformation of adsorbed protein on NG surface as compared to bare branch-like structure with low surface coverage on the CG surface, was beneficial in favorably modulating cellular activity (osteoblast functions: cell attachment, proliferation, actin, vinculin, and fibronectin expression). This is the first report that elucidates the impact of grain structure from NG to CG regime on cellular activity.

  2. Evaluation of heavy crude oil from a water-oil model system as starting material for the preparation of adsorbents type NaY zeolite-templated carbon.

    PubMed

    Elles-Pérez, Cindy J; Muñoz-Acevedo, Amner; Guzmán, Andrés; Camargo, Hernando; Henao, José

    2017-03-22

    In this work, NaY zeolite is explored as a possible "template" to obtain porous materials type ZTC from the adsorption of heavy crude oil in a water-oil model system (emulsion). In order to produce the adsorbents, a cationic surfactant is selected to facilitate the adsorption of the crude oil into the pores of the zeolite and to get the composite, which was activated with controlled thermal treatments (T: 700-800 °C and t: 0.5-1 h) in inert conditions (N2 gaseous). The starting materials, composite and porous carbons were characterized using structural/surface analysis techniques (API Gravity, SARA, IR, XRD, XRF, TGA, Langmuir isotherms, BET and SEM). The results showed that four types of mesoporous carbons were produced with specific surface areas between 70 ± 1 m(2)/g and 220 ± 3 m(2)/g, average pore volumes between 0.144 cm(3)/g and 0.40 cm(3)/g and average pore widths between 4.9 nm and 8.3 nm. The activation conditions of 800 °C and 1 h allowed to make the carbonaceous material with the best surface characteristics (220 ± 3 m(2)/g, 0.27 cm(3)/g, and 4.9 nm). Therefore, it is concluded that under assay conditions employed, the heavy crude oil, as a mixed model (water-oil), from an aqueous environment is a starting material suitable for preparation of "mesoporous" carbons.

  3. Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes.

    PubMed

    Zhang, Jingqing; Landry, Markita P; Barone, Paul W; Kim, Jong-Ho; Lin, Shangchao; Ulissi, Zachary W; Lin, Dahua; Mu, Bin; Boghossian, Ardemis A; Hilmer, Andrew J; Rwei, Alina; Hinckley, Allison C; Kruss, Sebastian; Shandell, Mia A; Nair, Nitish; Blake, Steven; Şen, Fatih; Şen, Selda; Croy, Robert G; Li, Deyu; Yum, Kyungsuk; Ahn, Jin-Ho; Jin, Hong; Heller, Daniel A; Essigmann, John M; Blankschtein, Daniel; Strano, Michael S

    2013-12-01

    Understanding molecular recognition is of fundamental importance in applications such as therapeutics, chemical catalysis and sensor design. The most common recognition motifs involve biological macromolecules such as antibodies and aptamers. The key to biorecognition consists of a unique three-dimensional structure formed by a folded and constrained bioheteropolymer that creates a binding pocket, or an interface, able to recognize a specific molecule. Here, we show that synthetic heteropolymers, once constrained onto a single-walled carbon nanotube by chemical adsorption, also form a new corona phase that exhibits highly selective recognition for specific molecules. To prove the generality of this phenomenon, we report three examples of heteropolymer-nanotube recognition complexes for riboflavin, L-thyroxine and oestradiol. In each case, the recognition was predicted using a two-dimensional thermodynamic model of surface interactions in which the dissociation constants can be tuned by perturbing the chemical structure of the heteropolymer. Moreover, these complexes can be used as new types of spatiotemporal sensors based on modulation of the carbon nanotube photoemission in the near-infrared, as we show by tracking riboflavin diffusion in murine macrophages.

  4. Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Jingqing; Landry, Markita P.; Barone, Paul W.; Kim, Jong-Ho; Lin, Shangchao; Ulissi, Zachary W.; Lin, Dahua; Mu, Bin; Boghossian, Ardemis A.; Hilmer, Andrew J.; Rwei, Alina; Hinckley, Allison C.; Kruss, Sebastian; Shandell, Mia A.; Nair, Nitish; Blake, Steven; Şen, Fatih; Şen, Selda; Croy, Robert G.; Li, Deyu; Yum, Kyungsuk; Ahn, Jin-Ho; Jin, Hong; Heller, Daniel A.; Essigmann, John M.; Blankschtein, Daniel; Strano, Michael S.

    2013-12-01

    Understanding molecular recognition is of fundamental importance in applications such as therapeutics, chemical catalysis and sensor design. The most common recognition motifs involve biological macromolecules such as antibodies and aptamers. The key to biorecognition consists of a unique three-dimensional structure formed by a folded and constrained bioheteropolymer that creates a binding pocket, or an interface, able to recognize a specific molecule. Here, we show that synthetic heteropolymers, once constrained onto a single-walled carbon nanotube by chemical adsorption, also form a new corona phase that exhibits highly selective recognition for specific molecules. To prove the generality of this phenomenon, we report three examples of heteropolymer-nanotube recognition complexes for riboflavin, L-thyroxine and oestradiol. In each case, the recognition was predicted using a two-dimensional thermodynamic model of surface interactions in which the dissociation constants can be tuned by perturbing the chemical structure of the heteropolymer. Moreover, these complexes can be used as new types of spatiotemporal sensors based on modulation of the carbon nanotube photoemission in the near-infrared, as we show by tracking riboflavin diffusion in murine macrophages.

  5. Production of activated carbons from waste tyres for low temperature NOx control.

    PubMed

    Al-Rahbi, Amal S; Williams, Paul T

    2016-03-01

    Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons.

  6. Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes.

    PubMed

    Szlachta, M; Wójtowicz, P

    2013-01-01

    This study was conducted to determine the adsorption removal of dyes by powdered activated carbon (PAC, Norit) and multi-walled carbon nanotubes (MWCNTs, Chinese Academy of Science) from an aqueous solution. Methylene blue (MB) and Congo red (CR) were selected as model compounds. The adsorbents tested have a high surface area (PAC 835 m(2)/g, MWCNTs 358 m(2)/g) and a well-developed porous structure which enabled the effective treatment of dye-contaminated waters and wastewaters. To evaluate the capacity of PAC and MWCNTs to adsorb dyes, a series of batch adsorption experiments was performed. Both adsorbents exhibited a high adsorptive capacity for MB and CR, and equilibrium data fitted well with the Langmuir model, with the maximum adsorption capacity up to 400 mg/g for MB and 500 mg/g for CR. The separation factor, RL, revealed the favorable nature of the adsorption process under experimental conditions. The kinetics of adsorption was studied at various initial dye concentrations and solution temperatures. The pseudo-second-order model was used for determining the adsorption kinetics of MB and CR. The data obtained show that adsorption of both dyes was rapid in the initial stage and followed by slower processing to reach the plateau. The uptake of dyes increased with contact time, irrespective of their initial concentration and solution temperature. However, changes in the solution temperature did not significantly influence dye removal.

  7. Comparing graphene, carbon nanotubes, and superfine powdered activated carbon as adsorptive coating materials for microfiltration membranes.

    PubMed

    Ellerie, Jaclyn R; Apul, Onur G; Karanfil, Tanju; Ladner, David A

    2013-10-15

    Multi-walled carbon nanotubes (MWCNTs), nano-graphene platelets (NGPs), and superfine powdered activated carbon (S-PAC) were comparatively evaluated for their applicability as adsorptive coatings on microfiltration membranes. The objective was to determine which materials were capable of contaminant removal while causing minimal flux reduction. Methylene blue and atrazine were the model contaminants. When applied as membrane coatings, MWCNTs had minimal retention capabilities for the model contaminants, and S-PAC had the fastest removal. The membrane coating approach was also compared with a stirred vessel configuration, in which the adsorbent was added to a stirred flask preceding the membrane cell. Direct application of the adsorbent to the membrane constituted a greater initial reduction in permeate concentrations of the model contaminants than with the stirred flask setup. All adsorbents except S-PAC showed flux reductions less than 5% after application as thin-layer membrane coatings, and flux recovery after membrane backwashing was greater than 90% for all materials and masses tested.

  8. Equilibrium and heat of adsorption for organic vapors and activated carbons

    SciTech Connect

    David Ramirez; Shaoying Qi; Mark J. Rood; K. James Hay

    2005-08-01

    Determination of the adsorption properties of novel activated carbons is important to develop new air quality control technologies that can solve air quality problems in a more environmentally sustainable manner. Equilibrium adsorption capacities and heats of adsorption are important parameters for process analysis and design. Experimental adsorption isotherms were thus obtained for relevant organic vapors with activated carbon fiber cloth (ACFC) and coal-derived activated carbon adsorbents (CDAC). The Dubinin-Astakhov (DA) equation was used to describe the adsorption isotherms. The DA parameters were analytically and experimentally shown to be temperature independent. The resulting DA equations were used with the Clausius-Clapeyron equation to analytically determine the isosteric heat of adsorption ({Delta}H{sub s}) of the adsorbate-adsorbent systems studied here. ACFC showed higher adsorption capacities for organic vapors than CDAC. {Delta}H{sub s} values for the adsorbates were independent of the temperature for the conditions evaluated. {Delta}H{sub s} values for acetone and benzene obtained in this study are comparable with values reported in the literature. This is the first time that {Delta}H{sub s} values for organic vapors and these adsorbents are evaluated with an expression based on the Polanyi adsorption potential and the Clausius-Clapeyron equation. 28 refs., 5 figs., 5 tabs., 3 appends.

  9. Effects of surface curvature and surface chemistry on the structure and activity of proteins adsorbed in nanopores.

    PubMed

    Sang, Lung-Ching; Coppens, Marc-Olivier

    2011-04-14

    The interactions of proteins with the surface of cylindrical nanopores are systematically investigated to elucidate how surface curvature and surface chemistry affect the conformation and activity of confined proteins in an aqueous, buffered environment. Two globular proteins, lysozyme and myoglobin, with different catalytic functions, were used as model proteins to analyze structural changes in proteins after adsorption on ordered mesoporous silica SBA-15 and propyl-functionalized SBA-15 (C(3)SBA-15) with carefully controlled pore size. Liquid phase ATR-FTIR spectroscopy was used to study the amide I and II bands of the adsorbed proteins. The amide I bands showed that the secondary structures of free and adsorbed protein molecules differ, and that the secondary structure of the adsorbed protein is influenced by the local geometry as well as by the surface chemistry of the nanopores. The conformation of the adsorbed proteins inside the nanopores of SBA-15 and C(3)SBA-15 is strongly correlated with the local geometry and the surface properties of the nanoporous materials, which results in different catalytic activities. Adsorption by electrostatic interaction of proteins in nanopores of an optimal size provides a favorably confining and protecting environment, which may lead to considerably enhanced structural stability and catalytic activity.

  10. Low-cost adsorbent derived and in situ nitrogen/iron co-doped carbon as efficient oxygen reduction catalyst in microbial fuel cells.

    PubMed

    Cao, Chun; Wei, Liling; Su, Min; Wang, Gang; Shen, Jianquan

    2016-08-01

    A novel low-cost adsorbent derived and in situ nitrogen/iron co-doped carbon (N/Fe-C) with three-dimensional porous structure is employed as efficient oxygen reduction catalyst in microbial fuel cells (MFCs). The electrochemical active area is significantly improved to 617.19m(2)g(-1) in N/Fe-C by Fe-doping. And N/Fe-C (4.21at.% N, 0.11at.% Fe) exhibits excellent electrocatalytic activity with the oxygen reduction potential of -0.07V (vs. Ag/AgCl) which is comparable to commercial Pt/C. In MFCs tests, the maximum power density and output voltage with N/Fe-C are enhanced to 745mWm(-2) and 562mV (external resistance 1kΩ), which are 11% and 0.72% higher than Pt/C (0.5mgPtcm(-2)), respectively. Besides, the long-term stability of N/Fe-C retains better for more than one week. Moreover, the charge transfer resistance (Rct) values are recorded by the impedance measurements, and the low Rct of N/Fe-C is also result in better catalytic activity.

  11. Using microwave heating to improve the desorption efficiency of high molecular weight VOC from beaded activated carbon.

    PubMed

    Fayaz, Mohammadreza; Shariaty, Pooya; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2015-04-07

    Incomplete regeneration of activated carbon loaded with organic compounds results in heel build-up that reduces the useful life of the adsorbent. In this study, microwave heating was tested as a regeneration method for beaded activated carbon (BAC) loaded with n-dodecane, a high molecular weight volatile organic compound. Energy consumption and desorption efficiency for microwave-heating regeneration were compared with conductive-heating regeneration. The minimum energy needed to completely regenerate the adsorbent (100% desorption efficiency) using microwave regeneration was 6% of that needed with conductive heating regeneration, owing to more rapid heating rates and lower heat loss. Analyses of adsorbent pore size distribution and surface chemistry confirmed that neither heating method altered the physical/chemical properties of the BAC. Additionally, gas chromatography (with flame ionization detector) confirmed that neither regeneration method detectably altered the adsorbate composition during desorption. By demonstrating improvements in energy consumption and desorption efficiency and showing stable adsorbate and adsorbent properties, this paper suggests that microwave heating is an attractive method for activated carbon regeneration particularly when high-affinity VOC adsorbates are present.

  12. Adsorption properties of CFC and CFC replacements on activated carbon containing introduced ionic fluoride and chloride

    SciTech Connect

    Tanada, Seiki; Kawasaki, Naohito; Nakamura, Takeo; Abe, Ikuo

    1996-10-15

    Plasma technology has been available for the chlorofluorocarbon (CFC) decomposition or etching of silicone. The adsorption properties of CFC (CFC113) and CFC replacements (HCFC141b, HCFC225cb, and 5FP) on several kinds of plasma-treated activated carbons (P-ACs) prepared under different treatment gases were investigated using the adsorption isotherms, the limiting pore volume and the affinity coefficient and energy of adsorption calculated by the Dubinin-Radushkevich plot, and the quality and kinds of introduced fluoride and chloride. The dissolved fluoride and chloride atoms were introduced to the surface of activated carbon by CFC113, HCFC141b, and HCFC225cb, while the dissolved fluoride atoms were those from 5FP and tetrafluoromethane. The adsorbed amount of CFC and CFC replacements, except for 5FP, on P-ACs was larger than that on U-AC. The specific adsorption site on plasma-treated activated carbon of the CFC and CFC replacements was the fluoride atoms which were introduced by plasma treatment. It is concluded that the plasma-treated activated carbon was suitable for the recovery of CFC and CFC replacements, because the adsorbed amount of CFC and CFC replacements was larger than that on untreated activated carbon, and the adsorbed CFC and CFC replacements on activated carbon were decomposed by the plasma treatment.

  13. Characterization of mesoporous activated carbons prepared by pyrolysis of sewage sludge with pyrolusite.

    PubMed

    Liu, Chen; Tang, Zhengguang; Chen, Yao; Su, Shijun; Jiang, Wenju

    2010-02-01

    Activated carbons were prepared from sewage sludge by chemical activation. Pyrolusite was added as a catalyst during activation and carbonization. The influence of the mineral addition on the properties of the activated carbons produced was evaluated. The results show that activated carbons from pyrolusite-supplemented sewage sludge had up to a 75% higher BET surface area and up to a 66% increase in mesoporosity over ordinary sludge-based activated carbons. Batch adsorption experiments applying the prepared adsorbents to synthetic dye wastewater treatment yielded adsorption data well fitted to the Langmuir isotherm. The adsorbents from pyrolusite-supplemented sludges performed better in dye removal than those without mineral addition, with the carbon from pyrolusite-augmented sludge T2 presenting a significant increase in maximum adsorption capacity of 50mg/g. The properties of the adsorbents were improved during pyrolusite-catalyzed pyrolysis via enhancement of mesopore production, thus the mesopore channels may provide fast mass transfer for large molecules like dyes.

  14. Study on the removal of pesticide in agricultural run off by granular activated carbon.

    PubMed

    Jusoh, Ahmad; Hartini, W J H; Ali, Nora'aini; Endut, A

    2011-05-01

    In this batch study, the adsorption of malathion by using granular activated carbon with different parameters due to the particle size, dosage of carbons, as well as the initial concentration of malathion was investigated. Batch tests were carried out to determine the potential and the effectiveness of granular activated carbon (GAC) in removal of pesticide in agricultural run off. The granular activated carbon; coconut shell and palm shells were used and analyzed as the adsorbent material. The Langmuir and Freundlich adsorption isotherms models were applied to describe the characteristics of adsorption behavior. Equilibrium data fitted well with the Langmuir model and Freundlich model with maximum adsorption capacity of 909.1mg/g. The results indicate that the GAC could be used to effectively adsorb pesticide (malathion) from agricultural runoff.

  15. The profile of adsorbed plasma and serum proteins on methacrylic acid copolymer beads: Effect on complement activation.

    PubMed

    Wells, Laura A; Guo, Hongbo; Emili, Andrew; Sefton, Michael V

    2017-02-01

    Polymer beads made of 45% methacrylic acid co methyl methacrylate (MAA beads) promote vascular regenerative responses in contrast to control materials without methacrylic acid (here polymethyl methacrylate beads, PMMA). In vitro and in vivo studies suggest that MAA copolymers induce differences in macrophage phenotype and polarization and inflammatory responses, presumably due to protein adsorption differences between the beads. To explore differences in protein adsorption in an unbiased manner, we used high resolution shotgun mass spectrometry to identify and compare proteins that adsorb from human plasma or serum onto MAA and PMMA beads. From plasma, MAA beads adsorbed many complement proteins, such as C1q, C4-related proteins and the complement inhibitor factor H, while PMMA adsorbed proteins, such as albumin, C3 and apolipoproteins. Because of the differences in complement protein adsorption, follow-up studies focused on using ELISA to assess complement activation. When incubated in serum, MAA beads generated significantly lower levels of soluble C5b9 and C3a/C3adesarg in comparison to PMMA beads, indicating a decrease in complement activation with MAA beads. The differences in adsorbed protein on the two materials likely alter subsequent cell-material interactions that ultimately result in different host responses and local vascularization.

  16. Efficient and versatile fibrous adsorbent based on magnetic amphiphilic composites of chrysotile/carbon nanostructures for the removal of ethynilestradiol.

    PubMed

    Teixeira, Ana Paula C; Purceno, Aluir D; de Paula, Camila C A; da Silva, Julio César C; Ardisson, José D; Lago, Rochel M

    2013-03-15

    In this work, chrysotile was used as support to grow carbon nanotubes and nanofibers to produce fibrous amphiphilic magnetic nanostructured composites. Iron impregnated on the chrysotile surface at 1, 5 and 15 wt% was used as catalyst to grow carbon nanostructures by CVD (chemical vapor deposition) with ethanol at 800°C. Raman, TG/DTA, Mössbauer, XRD, BET, SEM, TEM, elemental analyses and contact angle measurements suggested the formation of a complex amphiphilic material containing up to 21% of nanostructured hydrophobic carbon supported on hydrophilic Mg silicate fibers with magnetic Fe cores protected by carbon coating. Adsorption tests for the hormone ethynilestradiol (EE), a hazardous water contaminant, showed remarkable adsorption capacities even compared to high surface area activated carbon and multiwall carbon nanotubes. These results are discussed in terms of the hydrophobic surface of the carbon nanotubes and nanofibers completely exposed and accessible for the adsorption of the EE molecules combined with the hydrophilic Mg silicate surface which allows good dispersion in water. The composites are magnetic and after adsorption the dispersed particles can be removed by a simple magnetic process. Moreover, the fibrous composites can be conformed as threads, screens and pellets to produce different filtering media.

  17. Sorption of metal ions from multicomponent aqueous solutions by activated carbons produced from waste

    SciTech Connect

    Tikhonova, L.P.; Goba, V.E.; Kovtun, M.F.; Tarasenko, Y.A.; Khavryuchenko, V.D.; Lyubchik, S.B.; Boiko, A.N.

    2008-08-15

    Activated carbons produced by thermal treatment of a mixture of sunflower husks, low-grade coal, and refinery waste were studied as adsorbents of transition ion metals from aqueous solutions of various compositions. The optimal conditions and the mechanism of sorption, as well as the structure of the sorbents, were studied.

  18. Solid-state NMR and ESR studies of activated carbons produced from pecan shells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Activated carbon from pecan shells has shown promise as an adsorbent in water treatment and sugar refining. However, the chemistry of the material is complex and not fully understood. We report here the application of solid state NMR and ESR to study the chemical structure, mobility, and pore volu...

  19. Combined fenton oxidation and biological activated carbon process for recycling of coking plant effluent.

    PubMed

    Jiang, Wen-xin; Zhang, Wei; Li, Bing-jing; Duan, Jun; Lv, Yan; Liu, Wan-dong; Ying, Wei-chi

    2011-05-15

    Fenton oxidation and coagulation-flocculation-sedimentation (CFS) were both effective in removing many organic constituents of the biotreated coking plant effluent before the final treatment in an activated carbon adsorber. Fenton oxidation broke down most persistent organic pollutants and complex cyanides present in the feed stream and caused the eventual biodegradation of the organic residues in the adsorber. The results of Fenton oxidation followed by adsorption and biodegradation in two biological activated carbon (BAC) adsorbers show that the combined treatment consistently produced a high quality final effluent of <50mg/L in COD(Cr) and <0.5mg/L in total cyanide during the 70-d study without replacing any activated carbon. The BAC function of the adsorber substantially reduced the need for replacing activated carbon making the combined Fenton oxidation-BAC treatment process a cost effective treatment process to recycle the final effluent for many beneficial reuses while meeting the much more stringent discharge limits of the future.

  20. Kinetic and isotherm modeling of Cd (II) adsorption by L-cysteine functionalized multi-walled carbon nanotubes as adsorbent.

    PubMed

    Taghavi, Mahmoud; Zazouli, Mohammad Ali; Yousefi, Zabihollah; Akbari-adergani, Behrouz

    2015-11-01

    In this study, multi-walled carbon nanotubes were functionalized by L-cysteine to show the kinetic and isotherm modeling of Cd (II) ions onto L-cysteine functionalized multi-walled carbon nanotubes. The adsorption behavior of Cd (II) ion was studied by varying parameters including dose of L-MWCNTs, contact time, and cadmium concentration. Equilibrium adsorption isotherms and kinetics were also investigated based on Cd (II) adsorption tests. The results showed that an increase in contact time and adsorbent dosage resulted in increase of the adsorption rate. The optimum condition of the Cd (II) removal process was found at pH=7.0, 15 mg/L L-MWCNTs dosage, 6 mg/L cadmium concentration, and contact time of 60 min. The removal percent was equal to 89.56 at optimum condition. Langmuir and Freundlich models were employed to analyze the experimental data. The data showed well fitting with the Langmuir model (R2=0.994) with q max of 43.47 mg/g. Analyzing the kinetic data by the pseudo-first-order and pseudo-second-order equations revealed that the adsorption of cadmium using L-MWSNTs following the pseudo-second-order kinetic model with correlation coefficients (R2) equals to 0.998, 0.992, and 0.998 for 3, 6, and 9 mg/L Cd (II) concentrations, respectively. The experimental data fitted very well with the pseudo-second-order. Overall, treatment of polluted solution to Cd (II) by adsorption process using L-MWCNT can be considered as an effective technology.

  1. Novel electro-fenton approach for regeneration of activated carbon.

    PubMed

    Bañuelos, Jennifer A; Rodríguez, Francisco J; Manríquez Rocha, Juan; Bustos, Erika; Rodríguez, Adrián; Cruz, Julio C; Arriaga, L G; Godínez, Luis A

    2013-07-16

    An electro-Fenton-based method was used to promote the regeneration of granular activated carbon (GAC) previously adsorbed with toluene. Electrochemical regeneration experiments were carried out using a standard laboratory electrochemical cell with carbon paste electrodes and a batch electrochemical reactor. For each system, a comparison was made using FeSO4 as a precursor salt in solution (homogeneous system) and an Fe-loaded ion-exchange resin (Purolite C-100, heterogeneous system), both in combination with electrogenerated H2O2 at the GAC cathode. In the two cases, high regeneration efficiencies were obtained in the presence of iron using appropriate conditions of applied potential and adsorption-polarization time. Consecutive loading and regeneration cycles of GAC were performed in the reactor without great loss of the adsorption properties, only reducing the regeneration efficiency by 1% per cycle during 10 cycles of treatment. Considering that, in the proposed resin-containing process, the use of Fe salts is avoided and that GAC cathodic polarization results in efficient cleaning and regeneration of the adsorbent material, this novel electro-Fenton approach could constitute an excellent alternative for regenerating activated carbon when compared to conventional methods.

  2. [Preparation and optimum process of walnut peel activated carbon by zinc chloride as activating agent].

    PubMed

    Liu, Xiao-hong; Wang, Xing-wei; Zhao, Bo; Lü, Jun-fang; Kang, Ni-na; Zhang, Yao-jun

    2014-12-01

    Walnut peel as raw material, zinc chloride was used as activating agent for preparation walnut peel activated carbon in the muffle furnace in this experiment, using orthogonal design. Yield, the specific surface area and iodine number of walnut peel activated carbon were determined at all designed experimental conditions and the optimum technological condition of preparation was obtained. By analysis of aperture, infrared spectra and the content of acidic group in surface with Boehm, walnut peel activated carbon of prepared at the optimum condition was characterized. The results showed the optimum technological parameters of preparation: activation temperature (600 °C), activation time (1 h), the concentration of zinc chloride (50%), the particle size (60 mesh). The specific surface area of walnut peel activated carbon obtained at optimum condition was mounting to 1258.05 m2 · g(-1), the ratio of medium porous 32.18%. Therefore, walnut peel can be used in the preparation of the high-quality activated carbon of large surface area. Agricultural wastes, as walnut peel, not only were implemented recycle, but also didn't make any pollution. Meanwhile, a cheap adsorbent was provided and it was of great significance to open a new source of activated carbon.

  3. Physicochemical effect of activation temperature on the sorption properties of pine shell activated carbon.

    PubMed

    Wasim, Agha Arslan; Khan, Muhammad Nasiruddin

    2017-03-01

    Activated carbons produced from a variety of raw materials are normally selective towards a narrow range of pollutants present in wastewater. This study focuses on shifting the selectivity of activated carbon from inorganic to organic pollutants using activation temperature as a variable. The material produced from carbonization of pine shells substrate was activated at 250°C and 850°C. Both adsorbents were compared with commercial activated carbon for the sorption of lead, cadmium, methylene blue, methyl blue, xylenol orange, and crystal violet. It was observed that carbon activated at 250°C was selective for lead and cadmium whereas the one activated at 850°C was selective for the organic dyes. The Fourier transform infrared spectroscopy study revealed that AC850 had less surface functional groups as compared to AC250. Point of zero charge and point of zero salt effect showed that AC250 had acidic groups at its surface. Scanning electron microscopy depicted that increase in activation temperature resulted in an increase in pore size of activated carbon. Both AC250 and AC850 followed pseudo-second-order kinetics. Temkin isotherm model was a best fit for empirical data obtained at equilibrium. The model also showed that sorption process for both AC250 and AC850 was physisorption.

  4. Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column.

    PubMed

    Sulaymon, Abbas H; Ahmed, Kawther W

    2008-01-15

    For a multicomponent competitive adsorption of furfural and phenolic compounds, a mathematical model was builtto describe the mass transfer kinetics in a fixed bed column with activated carbon. The effects of competitive adsorption equilibrium constant, axial dispersion, external mass transfer, and intraparticle diffusion resistance on the breakthrough curve were studied for weakly adsorbed compound (furfural) and strongly adsorbed compounds (parachlorophenol and phenol). Experiments were carried out to remove the furfural and phenolic compound from aqueous solution. The equilibrium data and intraparticle diffusion coefficients obtained from separate experiments in a batch adsorber, by fitting the experimental data with theoretical model. The results show that the mathematical model includes external mass transfer and pore diffusion using nonlinear isotherms and provides a good description of the adsorption process for furfural and phenolic compounds in a fixed bed adsorber.

  5. Resistively-Heated Microlith-based Adsorber for Carbon Dioxide and Trace Contaminant Removal

    NASA Technical Reports Server (NTRS)

    Roychoudhury, S.; Walsh, D.; Perry, J.

    2005-01-01

    An integrated sorber-based Trace Contaminant Control System (TCCS) and Carbon Dioxide Removal Assembly (CDRA) prototype was designed, fabricated and tested. It corresponds to a 7-person load. Performance over several adsorption/regeneration cycles was examined. Vacuum regenerations at effective time/temperature conditions, and estimated power requirements were experimentally verified for the combined CO2/trace contaminant removal prototype. The current paper details the design and performance of this prototype during initial testing at CO2 and trace contaminant concentrations in the existing CDRA, downstream of the drier. Additional long-term performance characterization is planned at NASA. Potential system design options permitting associated weight, volume savings and logistic benefits, especially as relevant for long-duration space flight, are reviewed. The technology consisted of a sorption bed with sorbent- coated metal meshes, trademarked and patented as Microlith by Precision Combustion, Inc. (PCI). By contrast the current CO2 removal system on the International Space Station employs pellet beds. Preliminary bench scale performance data (without direct resistive heating) for simultaneous CO2 and trace contaminant removal was reviewed in SAE 2004-01-2442. In the prototype, the meshes were directly electrically heated for rapid response and accurate temperature control. This allowed regeneration via resistive heating with the potential for shorter regeneration times, reduced power requirement, and net energy savings vs. conventional systems. A novel flow arrangement, for removing both CO2 and trace contaminants within the same bed, was demonstrated. Thus, the need for a separate trace contaminant unit was eliminated resulting in an opportunity for significant weight savings. Unlike the current disposable charcoal bed, zeolites for trace contaminant removal are amenable to periodic regeneration.

  6. Comparison on pore development of activated carbon produced by chemical and physical activation from palm empty fruit bunch

    NASA Astrophysics Data System (ADS)

    Hidayat, A.; Sutrisno, B.

    2016-11-01

    It is well-known that activated carbon is considered to be the general adsorbent due to the large range of applications. Numerous works are being continuously published concerning its use as adsorbent for: treatment of potable water; purification of air; retention of toxins by respirators; removal of organic and inorganic pollutants from flue gases and industrial waste gases and water; recuperation of solvents and hydrocarbons volatilized from petroleum derivatives; catalysis; separation of gas mixtures (molecularsieve activated carbons); storage of natural gas and hydrogen; energy storage in supercapacitors; recovery of gold, silver and othernoble metals; etc. This work presents producing activated carbons from palm empty fruit bunch using both physical activation with CO2 and chemical activation with KOH. The resultant activated carbons were characterized by measuring their porosities and pore size distributions. A comparison of the textural characteristics and surface chemistry of the activated carbon from palm empty fruit bunch by the CO2 and the KOH activation leads to the following findings: An activated carbon by the CO2 activation under the optimum conditions has a BET surface area of 717 m2/g, while that by the KOH activation has a BET surface area of 613 m2/g. The CO2 activation generated a highly microporous carbon (92%) with a Type-I isotherm, while the KOH activation generated a mesoporous one (70%) with a type-IV isotherm, the pore volumes are 0.2135 and 0.7426 cm3.g-1 respectively. The average pore size of the activated carbons is 2.72 and 2.56 nm for KOH activation and CO2 activation, respectively. The FT-IR spectra indicated significant variation in the surface functional groups are quite different for the KOH activated and CO2 activated carbons.

  7. Desorption kinetics of N,N-dimethylformamide vapor from granular activated carbon and hydrophobic zeolite

    SciTech Connect

    Ching-Yuan Chang; Wen-Tien Tsai; Horng-Chia Lee

    1996-07-01

    Such thermodynamic properties as enthalpy, free energy, and entropy of adsorption have been computed for N,N-dimethylformamide (DMF) vapor on two commercial adsorbents: coconut shell Type PCB of activated carbon and Type DAY of hydrophobic zeolite. The computation is based on the Langmuir adsorption isotherms obtained at 293, 303, and 313 K as reported by Tsai et al. The laden adsorbents were regenerated with hot inert nitrogen gas and studied by thermal gravimetric analysis at three different heating rates. The apparent activation energies (E{sub des}) of thermal desorption were determined by using the Friedman method. The zeolite DAY has an adsorption potential higher than that of activated carbon PCB as indicated by the more negative value of the adsorption enthalpy of DMF vapor. The average value of E{sub des} of zeolite DAY is larger than that of activated carbon PCB.

  8. Preparation and characterization of a novel adsorbent from Moringa oleifera leaf

    NASA Astrophysics Data System (ADS)

    Bello, Olugbenga Solomon; Adegoke, Kayode Adesina; Akinyunni, Opeyemi Omowumi

    2015-10-01

    A new and novel adsorbent was obtained by impregnation of Moringa oleifera leaf in H2SO4 and NaOH, respectively. Prepared adsorbents were characterized using elemental analysis, FT-IR, SEM, TGA and EDX analyses, respectively. The effects of operational parameters, such as pH, moisture content, ash content, porosity and iodine number on these adsorbents were investigated and compared with those of commercial activated carbon (CAC). EDX results of acid activated M. oleifera leaf have the highest percentage of carbon by weight (69.40 %) and (76.11 %) by atom, respectively. Proximate analysis showed that the fixed carbon content of acid activated M. oleifera leaf (69.14 ± 0.01) was the highest of all adsorbents studied. Conclusively, the present investigation shows that acid activated M. oleifera leaf is a good alternative adsorbent that could be used in lieu of CAC for recovery of dyes and heavy metal from aqueous solutions and other separation techniques.

  9. Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: Effect of activation conditions.

    PubMed

    Nayak, Arunima; Bhushan, Brij; Gupta, Vartika; Sharma, P

    2017-05-01

    Chemical activation is known to induce specific surface features of porosity and functionality which play a definite role in enhancing the adsorptive potential of the developed activated carbons. Different conditions of temperature, time, reagent type and impregnation ratio were applied on sawdust precursor and their effect on the physical, surface chemical features and finally on the adsorption potential of the developed activated carbons were analysed. Under activation conditions of 600°C, 1hr, 1:0.5 ratio, ZnCl2 impregnated carbon (CASD_ZnCl2) resulted in microporosity while KOH impregnation (CASD_KOH) yielded a carbon having a wider pore size distribution. The surface chemistry revealed similar functionalities. At same pH, temperature and adsorbate concentrations, CASD_KOH demonstrated better adsorption potential (1.06mmoles/g for Cd(2+) and 1.61mmoles/g for Ni(2+)) in comparison to CASD_ZnCl2 (0.23mmoles/g and 0.33mmoles/g for Cd(2+) and Ni(2+) respectively). Other features were a short equilibrium time of 60mins and an adsorbent dose of 0.2g/L for the CASD_KOH in comparison to CASD_ZnCl2 (equilibrium time of 150min and dosage of 0.5g/L). The nature of interactions was physical for both adsorbents and pore diffusion mechanisms were operative. The results reveal the potentiality of chemical activation so as to achieve the best physico-chemical properties suited for energy efficient, economical and eco-friendly water treatment.

  10. Photoconductivity of activated carbon fibers

    SciTech Connect

    Kuriyama, K.; Dresselhaus, M.S. )

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity. 54 refs., 11 figs., 3 tabs.

  11. Photoconductivity of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  12. Thick-Film Carbon Dioxide Sensor via Anodic Adsorbate Stripping Technique and Its Structural Dependence.

    PubMed

    Photinon, Kanokorn; Wang, Shih-Han; Liu, Chung-Chiun

    2009-01-01

    A three-electrode based CO(2) sensor was fabricated using thick-film technology. The performance of this sensor was further enhanced by incorporating platinum nanoparticles onto the working electrode surface. An eight-fold increase in the signal output was obtained from the electrode with the platinum nanoparticles. The sensing output was linearly related to the CO(2) presented. Stability measurements demonstrated that the decline of the active surface area and the sensitivity of the sensor were 8% and 13%, respectively, over a two week period of time. The sensor response appeared to be a structural dependence of the crystallographic orientation of platinum electrode.

  13. Activated carbon treatment of municipal solid waste incineration flue gas.

    PubMed

    Lu, Shengyong; Ji, Ya; Buekens, Alfons; Ma, Zengyi; Jin, Yuqi; Li, Xiaodong; Yan, Jianhua

    2013-02-01

    Activated carbon injection is widely used to control dioxins and mercury emissions. Surprisingly little attention has been paid to its modelling. This paper proposes an expansion of the classical Everaerts-Baeyens model, introducing the expression of fraction of free adsorption sites, f (s), and asserting the significant contribution of fly ash to dioxins removal. Moreover, the model monitors dioxins partitioning between vapour and particulate phase, as well as removal efficiency for each congener separately. The effects of the principal parameters affecting adsorption are analysed according to a semi-analytical, semi-empirical model. These parameters include temperature, contact time during entrained-flow, characteristics (grain-size, pore structure, specific surface area) and dosage of activated carbon, lignite cokes or mineral adsorbent, fly ash characteristics and concentration, and type of incinerator plant.

  14. Preparation of sodium dodecyl sulphate-functionalized activated carbon from Gnetum gnemon shell for dye adsorption

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Yahya, Amri; Sasti, Rilis Akista Tria

    2017-03-01

    Preparation of functionalized activated carbon from Gnetum gnemon shell was investigated. This work aimed to prepare highly active adsorbent for dye adsorption process by carbonization of Gnetum gnemon shell followed by functionalization using sodium dodecyl sulphate (SDS) to form SDS-modified activated carbon (SDS-AC). The study of physicochemical character change was performed by SEM and FTIR analysis while the adsorptivity of the materials was tested in methylene blue adsorption. According to the results, it is found that SDS-AC exhibits the greater adsorptivity compared to AC.

  15. Active carbons and clean briquettes from the modified Kansk-Achinsk brown coal

    SciTech Connect

    Kuznetsov, P.N.; Kuznetsova, L.I.; Kontzevoi, A.A.; Pozharnikov, V.A.

    1996-12-31

    The effect of modification of Kansk Achinsk Brown coal by means of chemical and mechanical pretreatments as well as by hydrolyzed lignin addition on coal briquetting was studied. Coal briquettes were then pyrolyzed and steam activated at 700--800 C to prepare the active carbons. The main focus was to analyze how macromolecular structure of brown coal affect the properties of briquettes and the sorption and mechanical properties of activated carbons and to investigate the potential for the production of clean briquetted fuel and high performance carbon adsorbents through the directive modification of coal.

  16. Modified Activated Carbon Perchlorate Sorbents

    DTIC Science & Technology

    2007-01-25

    nitrosodimethylamine precursors in municipal wastewater treatment plants. Environ. Sci. Technol., 2004. 38: p. 1445-1454. 15. Shmidt, V., K. Rybakov...Engineering and Management, 1994. 141: p. 12. 33. Walker, G. and L. Weatherley, Biological Activated Carbon Treatment of Industrial Wastewater in... Treatment with Ammonia (NAC), Urea-formaldehyde Resin (UAC), and Hydrogen (HAC). Data are Indicated by the Symbol and Least Squares Fit of the Langmuir

  17. Evaluation of magnetic- and carbon-based nano-adsorbents application in pre-purification of paclitaxel from needles of Taxus baccata

    NASA Astrophysics Data System (ADS)

    Naghavi, M. R.; Motamedi, E.; Nasiri, J.; Alizadeh, H.; Fattahi Moghadam, M. R.; Mashouf, A.

    2015-01-01

    In this investigation, the proficiency of a number of magnetic carbon-based nano-adsorbents is evaluated in pre-purification process of the crude paclitaxel extract obtained from fresh needles of yew tree ( Taxus baccata L.). The effectiveness and removal ability of color and impurities from crude extracts, for three novel candidate nano-adsorbents (i.e., Fe3O4 nanoparticles (Fe3O4Nps), graphite oxide (GO), and their hybrids Fe3O4Nps/GO) are compared with commercial graphite in three different solvents. In general, both HPLC and UV-Vis spectroscopy results demonstrate that in less polar solvent (i.e., dichloromethane), the adsorption is greatly affected by the electrostatic attractions, while in more polar solvents (i.e., acetone and ethanol) π-π electron interactions taking place between adsorbent and adsorbate are the most dominant factors in sorption. Considering decolorization efficiency, purity of taxol, recovery and reusability of adsorbents, Fe3O4Nps/GO (50 g/L) in dichloromethane is selected as the best medium for pre-purification of paclitaxel. Additionally, in kinetic studies the sorption equilibrium can be reached within 120 min, and the experimental data are well fitted by the pseudo-second-order model. The Langmuir sorption isotherm model correlates well with the sorption equilibrium data for the crude extract concentration (500-2,000 mg/L). Our findings display promising applications of Fe3O4Nps/GO, as a cost-effective nano-adsorbent, to provide a suitable vehicle toward improvement of paclitaxel pre-purification.

  18. Single-walled carbon nanotubes as solid-phase microextraction adsorbent for the determination of low-level concentrations of butyltin compounds in seawater.

    PubMed

    Rastkari, Noushin; Ahmadkhaniha, Reza; Samadi, Nasrin; Shafiee, Abbas; Yunesian, Masud

    2010-03-03

    Carbon nanotubes are a kind of new carbon-based nanomaterials, which have drawn great attention in many application fields. The potential of single-walled carbon nanotubes (SWCNTs) as solid-phase microextraction (SPME) adsorbent for the preconcentration of environmental pollutants has been investigated in recent years. In the present study, the feasibility of SWCNTs as SPME adsorbent for the determination of monobutyltin, dibutyltin and tributyltin in seawater samples was studied. To achieve this aim, the potential factors affecting the SPME efficiency, including extraction time, extraction temperature, desorption time, desorption temperature, and salinity were optimized. The developed method showed good performance according to the ICH (International Conference on Harmonization of Technical Requirements for Analytical Methods) criteria. The acquired calibration curves were linear (r > or = 0.992) over the concentration range from < or = 12 to 2000 ng L(-1). For all of the analytes, the limit of detection at signal-to-noise ratio of 3 was below 5 ng L(-1). Furthermore, in comparison with the commercial carboxen/polydimethylsiloxane fiber, the developed SWCNT fiber showed better thermal stability (over 350 degrees C) and longer life span (over 150 times). The application of the proposed method in environmental analyses was shown by analyzing seawater samples from the harbors on the Persian Gulf for butyltin residues. Some of the butyltins were detected in the analyzed samples. Results of the present study demonstrate the feasibility of the SWCNTs as SPME adsorbent for the determination of butyltins in seawater samples.

  19. Removal of Disperse Red dye by bamboo-based activated carbon: optimisation, kinetics and equilibrium.

    PubMed

    Wang, Lianggui

    2013-07-01

    This research involved the use of response surface methodology (RSM) to investigate the adsorption of Disperse Red 167 dye onto the bamboo-based activated carbon activated with H3PO4 (PBAC) in a batch process. F400, a commercially available activated carbon, was used in parallel for comparison. Analysis of variance showed that input variables such as the contact time, temperature, adsorbent dosage and the interaction between the temperature and the contact time had a significant effect on the dye removal for both adsorbents. RSM results show that the optimal contact time, temperature, initial dye concentration and adsorbent dosage for both adsorbents were found to be 15.4 h, 50 °C, 50.0 mg L(-1) and 12.0 g L(-1), respectively. Under these optimal conditions, the removal efficiencies reached 90.23% and 92.13% for PBAC and F400, respectively, with a desirability of 0.937. The validation of the experimental results confirmed the prediction of the models derived from RSM. The adsorption followed a nonlinear pseudo-first-order model and agreed well with the Freundlich and Temkin isotherm as judged by the levels of the AICc and the Akaike weight. Furthermore, the thermodynamics analysis indicated that, for both adsorbents, the adsorption was a physical process that was spontaneous, entropy-increasing and endothermic.

  20. Gemcitabine adsorbed onto carbon particles increases drug concentrations at the injection site and in the regional lymph nodes in an animal experiment and a clinical study.

    PubMed

    Guo, F; Mao, X; Wang, J; Luo, F; Wang, Z

    2011-01-01

    This study investigated whether gemcitabine, adsorbed onto activated carbon particles (GEM-AC), increased the concentration of gemcitabine at the injection site and in the regional lymph nodes in an experimental animal model and a clinical study. The adsorption isotherm for GEM-AC was defined, and the concentration and distribution of gemcitabine in rats (n = 50) and in patients with pancreatic cancer (n = 8) was investigated. Drug concentrations in plasma, tumour samples, lymph nodes and at the injection site were measured after GEM-AC or gemcitabine solution (GEM-Sol) were subcutaneously injected into the left hind foot pad in rats, or into pancreatic tumours in patients. These experiments showed that GEM-AC was selectively delivered to the regional lymph nodes and the injection site, from which it slowly released greater amounts of gemcitabine to maintain the free concentration of gemcitabine at a relatively high level for a long period of time. The administration of GEM-AC might enhance the anticancer effects of gemcitabine.

  1. Quantitative evaluation of the effect of moisture contents of coconut shell activated carbon used for respirators on adsorption capacity for organic vapors.

    PubMed

    Abiko, Hironobu; Furuse, Mitsuya; Takano, Tsuguo

    2010-01-01

    Activated carbon is an elemental material used for hygienic applications, particularly as an adsorbent for harmful gases and vapors. In Japanese industrial and occupational hygiene, activated carbon produced from coconut shell is a traditional and popular adsorbent material due to its excellent adsorption ability and cost advantage. In this research, in order to clarify the effect of the preliminary content of moisture on the adsorption capacity in detail, we prepared several coconut shell activated carbons which were preconditioned by equilibration with moisture at different relative humidities. We measured their adsorption capacities as breakthrough times for 6 kinds of organic vapor, and attempted to determine the relationships between the relative weight increase of water adsorption and the decrease of adsorption capacities of the activated carbon specimens for the organic vapors. The procedure of the quantitative evaluation of the effect of moisture and the results are useful for practical applications of activated carbon, particularly those used as adsorbents in workplaces.

  2. Atypical Hydrogen Uptake on Chemically Activated, Ultramicroporous Carbon

    SciTech Connect

    Bhat, Vinay V; Contescu, Cristian I; Gallego, Nidia C; Baker, Frederick S

    2010-01-01

    Hydrogen adsorption at near-ambient temperatures on ultramicroporous carbon (UMC), derived through secondary chemical activation from a wood-based activated carbon was studied using volumetric and gravimetric methods. The results showed that physisorption is accompanied by a process of different nature that causes slow uptake at high pressures and hysteresis on desorption. In combination, this results in unusually high levels of hydrogen uptake at near-ambient temperatures and pressures (e.g. up to 0.8 wt % at 25 oC and 2 MPa). The heat of adsorption corresponding to the slow process leading to high uptake (17 20 kJ/mol) is higher than usually reported for carbon materials, but the adsorption kinetics is slow, and the isotherms exhibit pronounced hysteresis. These unusual properties were attributed to contributions from polarization-enhanced physisorption caused by traces of alkali metals residual from chemical activation. The results support the hypothesis that polarization-induced physisorption in high surface area carbons modified with traces of alkali metal ions is an alternate route for increasing the hydrogen storage capacity of carbon adsorbents.

  3. Study on the preparation of straw activated carbon and its phenol adsorption properties

    NASA Astrophysics Data System (ADS)

    Chen, Liping

    2017-01-01

    Using sunflower straw as raw materials to manufacture straw activated carbon-modified by phosphoric acidand adsorption isotherm of phenol on straw activated carbon was studied in a batch reactor. The physical properties of the prepared straw activated carbons were characterized by scanning electron microscopy. The effect of various parameters, adsorbent dose, pH and temperature, were studied on optimum conditions. The results have shown that the absorbent was efficient, the removal ratio of phenol up to 99.36% with an adsorbent dosage of 16 g·L-1, a pH of 6.0-8.0, at 25 °C. The experimental adsorption data fitted reasonably well to the Langmuir isotherm, the maximum adsorption capacity was 109.89 mg/g. The process of adsorption is a exothermic process.

  4. Sewage sludge-derived materials as efficient adsorbents for removal of hydrogen sulfide.

    PubMed

    Bagreev, A; Bashkova, S; Locke, D C; Bandosz, T J

    2001-04-01

    Sewage sludge-derived materials were used as adsorbents of hydrogen sulfide from moist air. The adsorbent obtained by carbonization at 950 degrees C has a capacity twice of that of coconut-shell-based activated carbon. The capacity of the sludge-derived materials increases with increasing carbonization temperature. It is likelythatduring carbonization at 950 degrees C a mineral-like phase is formed that consists of such catalytically active metals as iron, zinc, and copper. The results obtained demonstrate that the presence of iron oxide significantly increases the capacity of commercial carbon and activated alumina. The sludge-derived adsorbents are efficient for hydrogen sulfide removal until the pore entrances are blocked with sulfur as the product of oxidation reaction. For materials in which the catalytic effect is predominant, hydrogen sulfide is adsorbed until all pores are filled with sulfur. There is also indication that chemisorption plays a significant role in the removal of hydrogen sulfide from moist air.

  5. Tailoring fly ash activated with bentonite as adsorbent for complex wastewater treatment

    NASA Astrophysics Data System (ADS)

    Visa, Maria

    2012-12-01

    Used as adsorbent, alkali fly ash represents a low cost solution for advanced wastewater treatment. The alkali treatment raises sustainability issues therefore, in this research we aim to replace alkali fly ash with washed fly ash (FAw). For improving the adsorption capacity of washed fly ash, bentonite powder (B) was added, as a natural adsorbent with a composition almost identical to the fly ash. The new adsorbent was characterized by AFM, XRD, FTIR, SEM, EDS and the surface energy was evaluated by contact angle measurements. For understanding the complex adsorption process on this mixed substrate, preliminary tests were developed on synthetic wastewaters containing a single pollutant system (heavy metal), binary (two-heavy metals) and ternary (dye and two heavy metals) systems. Experiments were done on synthetic wastewaters containing methylene blue, cadmium and copper, using FAw, B and their powder mixtures. The pseudo-second order kinetics could well model all the processes, indicating a good adsorbent material which can be used for the pollutants removal from wastewater. After adsorption the substrates loaded with pollutants, annealed at 500 °C can be reused for padding in stone blocks.

  6. CO2 adsorption on chemically modified activated carbon.

    PubMed

    Caglayan, Burcu Selen; Aksoylu, A Erhan

    2013-05-15

    CO2 adsorption capacity of a commercial activated carbon was improved by using HNO3 oxidation, air oxidation, alkali impregnation and heat treatment under helium gas atmosphere. The surface functional groups produced were investigated by diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). CO2 adsorption capacities of the samples were determined by gravimetric analyses for 25-200°C temperature range. DRIFTS studies revealed the formation of carboxylic acid groups on the HNO3 oxidized adsorbents. Increased aromatization and uniform distribution of the Na particles were observed on the samples prepared by Na2CO3 impregnation onto HNO3 oxidized AC support. The adsorption capacities of the nonimpregnated samples were increased by high temperature helium treatments or by increasing the adsorption temperature; both leading to decomposition of surface oxygen groups, forming sites that can easily adsorb CO2. The adsorption capacity loss due to cyclic adsorption/desorption procedures was overcome with further surface stabilization of Na2CO3 modified samples with high temperature He treatments. With Na2CO3 impregnation the mass uptakes of the adsorbents at 20 bars and 25 °C were improved by 8 and 7 folds and at 1 bar were increased 15 and 16 folds, on the average, compared to their air oxidized and nitric acid oxidized supports, respectively.

  7. Selection and evaluation of adsorbents for the removal of anionic surfactants from laundry rinsing water.

    PubMed

    Schouten, Natasja; van der Ham, Louis G J; Euverink, Gert-Jan W; de Haan, André B

    2007-10-01

    Low-cost adsorbents were tested to remove anionic surfactants from laundry rinsing water to allow re-use of water. Adsorbents were selected corresponding to the different surfactant adsorption mechanisms. Equilibrium adsorption studies of linear alkyl benzene sulfonate (LAS) show that ionic interaction results in a high maximum adsorption capacity on positively charged adsorbents of 0.6-1.7 gLAS/g. Non-ionic interactions, such as hydrophobic interactions of LAS with non-ionic resins or activated carbons, result in a lower adsorption capacity of 0.02-0.6 gLAS/g. Negatively charged materials, such as cation exchange resins or bentonite clay, have negligible adsorption capacities for LAS. Similar results are obtained for alpha olefin sulfonate (AOS). Cost comparison of different adsorbents shows that an inorganic anion exchange material (layered double hydroxide) and activated carbons are the most cost-effective materials in terms of the amount of surfactant adsorbed per dollar worth of adsorbent.

  8. Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones - an agricultural waste.

    PubMed

    Soleimani, Mansooreh; Kaghazchi, Tahereh

    2008-09-01

    In this study, hard shell of apricot stones was selected from agricultural solid wastes to prepare effective and low cost adsorbent for the gold separation from gold-plating wastewater. Different adsorption parameters like adsorbent dose, particle size of activated carbon, pH and agitation speed of mixing on the gold adsorption were studied. The results showed that under the optimum operating conditions, more than 98% of gold was adsorbed onto activated carbon after only 3h. The equilibrium adsorption data were well described by the Freundlich and Langmuir isotherms. Isotherms have been used to obtain thermodynamic parameters. Gold desorption studies were performed with aqueous solution mixture of sodium hydroxide and organic solvents at ambient temperatures. Quantitative recovery of gold ions is possible by this method. As hard shell of apricot stones is a discarded as waste from agricultural and food industries, the prepared activated carbon is expected to be an economical product for gold ion recovery from wastewater.

  9. Studies on characterization and removal of methylene blue with Delonix regia plant litters activated carbon encapsulated nano metal oxide.

    PubMed

    Daniel, S; Syed Shabudeen, P S; Basker, A

    2015-07-01

    An advanced adsorbent material prepared by encapsulating nano-metaloxide on an activated carbon of Delonix regia plant litters was tested for its efficiency and superiority as an improved, advanced activated carbon material. It was subjected to modern instrumental techniques to evolve its morphology and its structure by FTIR, SEM, TEM, XRD, EDAX and BET studies. The size of MgO particles was in the range of 20 nm-25 nm. The surface area of nano composite was 632 m2 g(-1). Experimental results, based on batch mode of experiments, indicated that the adsorbent could remove 90% dye for the adsorbent dosage of 100 mg, at pH 7.0 and contact time of 120 min. The adsorption equilibrium data were well correlated for both, Langmuir and Freundlich isotherms. The monolayer adsorption capacity Qo was found to be 14.425 mg g(-1) for the composite. The kinetic adsorption data fitted the pseudo first order modeled by Lagergren and also intra particle diffusion. Removal efficiency of the composite adsorbent was higher than the uncoated adsorbents. Regeneration of exhausted adsorbent showed considerable improved variation in comparison to normal activated carbon materials.

  10. Methane Recovery from Gaseous Mixtures Using Carbonaceous Adsorbents

    NASA Astrophysics Data System (ADS)

    Buczek, Bronisław

    2016-06-01

    Methane recovery from gaseous mixtures has both economical and ecological aspect. Methane from different waste gases like mine gases, nitrogenated natural gases and biogases can be treated as local source for production electric and heat energy. Also occurs the problem of atmosphere pollution with methane that shows over 20 times more harmful environmental effect in comparison to carbon dioxide. One of the ways utilisation such gases is enrichment of methane in the PSA technique, which requires appropriate adsorbents. Active carbons and carbon molecular sieve produced by industry and obtained in laboratory scale were examined as adsorbent for methane recuperation. Porous structure of adsorbents was investigated using densimetry measurements and adsorption of argon at 77.5K. On the basis of adsorption data, the Dubinin-Radushkevich equation parameters, micropore volume (Wo) and characteristics of energy adsorption (Eo) as well as area micropores (Smi) and BET area (SBET) were determined. The usability of adsorbents in enrichment of the methane was evaluated in the test, which simulate the basic stages of PSA process: a) adsorbent degassing, b) pressure raise in column by feed gas, c) cocurrent desorption with analysis of out flowing gas. The composition of gas phase was accepted as the criterion of the suitability of adsorbent for methane separation from gaseous mixtures. The relationship between methane recovery from gas mixture and texture parameters of adsorbents was found.

  11. Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Prola, Lizie D T; Machado, Fernando M; Bergmann, Carlos P; de Souza, Felipe E; Gally, Caline R; Lima, Eder C; Adebayo, Matthew A; Dias, Silvio L P; Calvete, Tatiana

    2013-11-30

    Multi-walled carbon nanotubes (MWCNT) and powder activated carbon (PAC) were used as adsorbents for adsorption of Direct Blue 53 dye (DB-53) from aqueous solutions. The adsorbents were characterised using Raman spectroscopy, N2 adsorption/desorption isotherms, and scanning and transmission electron microscopy. The effects of initial pH, contact time and temperature on adsorption capacity of the adsorbents were investigated. At pH 2.0, optimum adsorption of the dye was achieved by both adsorbents. Equilibrium contact times of 3 and 4 h were achieved by MWCNT and PAC adsorbents, respectively. The general order kinetic model provided the best fit of the experimental data compared to pseudo-first order and pseudo-second order kinetic adsorption models. For DB-53 dye, the equilibrium data (298-323 K) were best fitted to the Sips isotherm model. The maximum sorption capacity for adsorption of the dye occurred at 323 K, with the values of 409.4 and 135.2 mg g(-1) for MWCNT and PAC, respectively. Studies of adsorption/desorption were conducted and the results showed that DB-53 loaded MWCNT could be regenerated (97.85%) using a mixture 50% acetone + 50% of 3 mol L(-1) NaOH. Simulated dye house effluents were used to evaluate the application of the adsorbents for effluent treatment (removal of 99.87% and 97.00% for MWCNT and PAC, respectively, were recorded).

  12. Application of a High-Throughput Analyzer in Evaluating Solid Adsorbents for Post-Combustion Carbon Capture via Multicomponent Adsorption of CO2, N-2, and H2O

    SciTech Connect

    Mason, JA; McDonald, TM; Bae, TH; Bachman, JE; Sumida, K; Dutton, JJ; Kaye, SS; Long, JR

    2015-04-15

    Despite the large number of metal-organic frameworks that have been studied in the context of post-combustion carbon capture, adsorption equilibria of gas mixtures including CO2, N-2, and H2O, which are the three biggest components of the flue gas emanating from a coal- or natural gas-fired power plant, have never been reported. Here, we disclose the design and validation of a high-throughput multicomponent adsorption instrument that can measure equilibrium adsorption isotherms for mixtures of gases at conditions that are representative of an actual flue gas from a power plant. This instrument is used to study 15 different metal-organic frameworks, zeolites, mesoporous silicas, and activated carbons representative of the broad range of solid adsorbents that have received attention for CO2 capture. While the multicomponent results presented in this work provide many interesting fundamental insights, only adsorbents functionalized with alkylamines are shown to have any significant CO2 capacity in the presence of N-2 and H2O at equilibrium partial pressures similar to those expected in a carbon capture process. Most significantly, the amine-appended metal organic framework mmen-Mg-2(dobpdc) (mmen = N,N'-dimethylethylenediamine, dobpdc (4-) = 4,4'-dioxido-3,3'-biphenyldicarboxylate) exhibits a record CO2 capacity of 4.2 +/- 0.2 mmol/g (16 wt %) at 0.1 bar and 40 degrees C in the presence of a high partial pressure of H2O.

  13. Effect of calcium on adsorption capacity of powdered activated carbon.

    PubMed

    Li, Gang; Shang, Junteng; Wang, Ying; Li, Yansheng; Gao, Hong

    2013-12-01

    We investigated the effect of calcium ion on the adsorption of humic acid (HA) (as a target pollutant) by powered activated carbon. The HA adsorption isotherms at different pH and kinetics of two different solutions including HA alone and HA doped Ca(2+), were performed. It was showed that the adsorption capacity of powdered activated carbon (PAC) for HA was markedly enhanced when Ca(2+) was doped into HA. Also, HA and Ca(2+) taken as nitrate were tested on the uptake of each other respectively and it was showed that the adsorbed amounts of both of them were significantly promoted when HA and calcium co-existed. Furthermore, the adsorbed amount of HA slightly decreased with the increasing of Ca(2+) concentration, whereas the amount of calcium increased with the increasing of HA concentration, but all above the amounts without addition. Finally, the change of pH before and after adsorption process is studied. In the two different solutions including HA alone and HA doped Ca(2+), pH had a small rise, but the extent of pH of later solution was bigger.

  14. Adsorbent phosphates

    NASA Technical Reports Server (NTRS)

    Watanabe, S.

    1983-01-01

    An adsorbent which uses as its primary ingredient phosphoric acid salts of zirconium or titanium is presented. Production methods are discussed and several examples are detailed. Measurements of separating characteristics of some gases using the salts are given.

  15. Activated, coal-based carbon foam

    DOEpatents

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  16. Activated, coal-based carbon foam

    SciTech Connect

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2009-06-09

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  17. Adsorption of arsenic by activated carbon, calcium alginate and their composite beads.

    PubMed

    Hassan, A F; Abdel-Mohsen, A M; Elhadidy, H

    2014-07-01

    The present investigation deals with preparation of three different adsorbent materials namely; potassium hydroxide activated carbon based apricot stone (C), calcium alginate beads (G) and calcium alginate/activated carbon composite beads (GC) were used for the removal of arsenic. The prepared adsorbent materials were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), N2-adsorption at -196°C and point of zero charge. From the obtained results, it was found that the porosity, surface area and total pore volume of the adsorbent material C>GC>G respectively, however, the G adsorbent has more acidic function group than the other adsorbents. The influence of pH, time, temperature and initial concentration of arsenic(V) were studied and optimized. GC exhibits the maximum As(V) adsorption (66.7mg/g at 30°C). The adsorption of arsenic ions was observed to follow pseudo-second order mechanism as well as the thermodynamic parameters confirm also the endothermic spontaneous and a physisorption process.

  18. Preparation and characterization of activated carbon from demineralized tyre char

    NASA Astrophysics Data System (ADS)

    Manocha, S.; Prasad, Guddu R.; Joshi, Parth.; Zala, Ranjitsingh S.; Gokhale, Siddharth S.; Manocha, L. M.

    2013-06-01

    Activated carbon is the most adsorbing material for industrial waste water treatment. For wider applications, the main consideration is to manufacture activated carbon from low cost precursors, which are easily available and cost effective. One such source is scrap tyres. Recently much effort has been devoted to the thermal degradation of tyres into gaseous and liquid hydrocarbons and solid char residue, all of which have the potential to be processed into valuable products. As for solid residue, char can be used either as low-grade reinforcing filler or as activated carbon. The product recovered by a typical pyrolysis of tyres are usually, 33-38 wt% pyrolytic char, 38-55 wt% oil and 10-30 wt% solid fractions. In the present work activated carbon was prepared from pyrolyzed tyre char (PC). Demineralization involves the dissolution of metal into acids i.e. HCl, HNO3 and H2SO4 and in base i.e. NaOH. Different concentration of acid and base were used. Sodium hydroxide showed maximum amount of metal oxide removal. Further the concentration of sodium hydroxide was varied from 1N to 6N. As the concentration of acid are increased demineralization increases. 6N Sodium hydroxide is found to be more effective demineralising agent of tyre char.

  19. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    PubMed

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics.

  20. Adsorption studies on wastewaters from cypermethrin manufacturing process using activated coconut shell carbon.

    PubMed

    Bhuvaneswari, K; Ravi Prasad, P; Sarma, P N

    2007-10-01

    Cypermethrin is a pyrethroid pesticide and is used in the control of a wide range of insects on crops like vegetables, cereals, maize etc. In the present study, the adsorption efficiency of coconut shell based activated carbon for the removal of color and organic matter from cypermethrin pesticide manufacturing industrial wastewater was investigated. Effect of carbon dosage, pH and contact time on the removal of COD was also studied. Equilibrium and kinetic studies were carried out and the data was fitted in Freundlich and Langmuir models. The study proved that activated coconut shell carbon (acc) is an efficient adsorbent for treatment of cypermethrin industrial wastewaters under study.

  1. Activation of carbon dioxide on metal and metal oxide surfaces

    SciTech Connect

    Tan, C.D.; Chuang, S.S.C.

    1995-12-31

    The environmental concern about the impact of CO{sub 2} has grown recently due to its rapidly increasing concentration. Deforestation strongly affects the natural reduction of CO{sub 2} by water into carbohydrates by photosynthesis. Industrial utilization of CO{sub 2} by heterogeneous catalytic reactions can be one of the effective ways to cut the CO{sub 2} level. The first step in catalytic reaction of CO{sub 2} is the adsorption. The objective of this study is to investigate the adsorption of CO{sub 2} on the Rh/Al{sub 2}O{sub 3} surfaces. Rh is selected for this study because of its unique activity to catalyze a number of CO{sub 2} related reactions. In situ infrared results show that CO{sub 2} adsorbed on the alumina oxide support as bidentate carbonate and non-coordinated carbon which are the dominant species during the CO{sub 2} adsorption.

  2. Quantification of bioregeneration of activated carbon and activated rice husk loaded with phenolic compounds.

    PubMed

    Ng, S L; Seng, C E; Lim, P E

    2009-06-01

    The bioregeneration efficiencies of powdered activated carbon (PAC) and pyrolyzed rice husk loaded with phenol and p-nitrophenol were quantified by oxygen uptake measurements using the respirometry technique in two approaches: (i) simultaneous adsorption and biodegradation and (ii) sequential adsorption and biodegradation. It was found that the applicability of the simultaneous adsorption and biodegradation approach was constrained by the requirement of adsorption preceding biodegradation in order to determine the initial adsorbent loading accurately. The sequential adsorption and biodegradation approach provides a good estimate of the upper limit of the bioregeneration efficiency for the loaded adsorbent in the simultaneous adsorption and biodegradation processes. The results showed that the mean bioregeneration efficiencies for PAC loaded with phenol and p-nitrophenol, respectively, obtained using the two approaches were in good agreement.

  3. Carbon coated magnetic nanoparticles as a novel magnetic solid phase extraction adsorbent for simultaneous extraction of methamphetamine and ephedrine from urine samples.

    PubMed

    Taghvimi, Arezou; Hamishehkar, Hamed

    2017-01-15

    This paper develops a highly selective, specific and efficient method for simultaneous determination of ephedrine and methamphetamine by a new carbon coated magnetic nanoparticles (C/MNPs) as a magnetic solid phase extraction (MSPE) adsorbent in biological urine medium. The characterization of synthesized magnetic nano adsorbent was completely carried out by various characterization techniques like Fourier transform infrared (FT-IR) spectroscopy, powder x-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). Nine important parameters influencing extraction efficiency including amount of adsorbent, amounts of sample volume, pH, type and amount of extraction organic solvent, time of extraction and desorption, agitation rate and ionic strength of extraction medium, were studied and optimized. Under optimized extraction conditions, a good linearity was observed in the concentration range of 100-2000ng/mL for ephedrine and 100-2500ng/mL for methamphetamine. Analysis of positive urine samples was carried out by proposed method with the recovery of 98.71 and 97.87% for ephedrine and methamphetamine, respectively. The results indicated that carbon coated magnetic nanoparticles could be applied in clinical and forensic laboratories for simultaneous determination of abused drugs in urine media.

  4. Activation and micropore structure determination of activated carbon-fiber composites

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.

    1997-09-05

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. These novel monolithic adsorbents can be produced in single pieces to a given size and shape. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The carbon fiber composites are produced at the ORNL and activated at the CAER using different methods, with the aims of producing a uniform degree of activation, and of closely controlling pore structure and adsorptive properties. The main focus of the present work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites and produce controlled pore structures. Several environmental applications have been explored for the activated carbon fiber composites. One of these was to evaluate the activated composites for the separation of CH{sub 4}-CO{sub 2} mixtures, and an apparatus was constructed specifically for this purpose. The composites were further evaluated in the cyclic recovery of volatile organics. The activated carbon fiber composites have also been tested for possible water treatment applications by studying the adsorption of sodium pentachlorophenolate, PCP.

  5. Adsorption of indoor toxic gas by ionic liquid impregnated activated carbons

    NASA Astrophysics Data System (ADS)

    Rahman, Noraisyah Azeezah Abdul; Leveque, Jean Marc; Mutalib, Mohamed Ibrahim Abdul; Ghani, Noraini Abdul; Thangarajoo, Nanthinie; Mazlan, Faizureen Afzal; Farooq, Amjad; Irfan, Naseem; Duclaux, Laurent; Reinert, Laurence; Ondarts, Michel

    2016-11-01

    Butylpyridinium thiocyanate [BuPyr]SCN ionic liquid was synthesized by metathesis and characterized. NMR spectrum has shown the [BuPyr] cation while FTIR has shown the SCN anion peak which confirms the structure of the synthesized ionic liquid. The ionic liquid was impregnated on activated carbon in order to enhance performance of sulfur dioxide adsorption compared to the non-impregnated raw activated carbon. Two types of activated carbons were used; activated carbon cylindrical granules and cloth. Different percentages of ionic liquid loading (1%, 10% and 20%) were applied. The capacity of the adsorbent for treatment of 10 ppm and 50 ppm SO2 was determined by breakthrough curve analysis whereby optimum breakthrough time was obtained. [BuPyr]SCN impregnated on activated carbon cloth have shown higher adsorption performance.

  6. Henry`s law gas-solid chromatography and correlations of virial coefficients for hydrocarbons, chlorofluorocarbons, ethers, and sulfur hexafluoride adsorbed onto carbon

    SciTech Connect

    Rybolt, T.R.; Epperson, M.T.; Weaver, H.W.; Thomas, H.E.; Clare, S.E.; Manning, B.M.; McClung, J.T.

    1995-07-01

    Gas-solid chromatography was used to determine the Henry`s law second gas-solid virial coefficients within the temperature range of 314--615 K for ethane, propane, butane, isobutane, pentane, hexane, heptane, chloromethane, dichloromethane, trichloromethane, tetrachloromethane, trichlorofluoromethane (Freon 11), chlorodifluoromethane (Freon 22), dichlorodifluoromethane (Freon 12), methyl ether, ethyl ether, and sulfur hexafluoride with Carbopack B, a microporous carbon adsorbent. The temperature dependence of the second gas-solid virial coefficients of these adsorbates was used in conjunction with analyses based on a graphical method, a single-surface numeric integration method, a single-surface analytic expression method, and a two-surface analytic expression method to determine the gas-solid interaction energies and other parameters. The interaction energies were correlated with a ratio of the critical temperature divided by the square root of the critical pressure. The four methods were compared in their abilities to successfully calculate second gas-solid virial coefficient values.

  7. Fast determination of sulfonamides from egg samples using magnetic multiwalled carbon nanotubes as adsorbents followed by liquid chromatography-tandem mass spectrometry.

    PubMed

    Xu, Yang; Ding, Jie; Chen, Haiyan; Zhao, Qi; Hou, Juan; Yan, Jin; Wang, Hui; Ding, Lan; Ren, Nanqi

    2013-09-01

    A simple and effective method based on magnetic separation has been developed for the extraction of sulfonamides (SAs) from egg samples using magnetic multiwalled carbon nanotubes (MMWCNTs) as an adsorbent. The MMWCNTs were simply prepared by depositing Fe3O4 onto MWCNTs that had been previously oxidised. The extraction procedure was carried out in a single step by blending and subsequently stirring the mixture of MMWCNTs and aqueous egg samples. The SAs were first extracted as described above, adsorbed onto the MMWCNTs directly and finally analysed by liquid chromatography-tandem mass spectrometry. The limits of detection obtained are in the range of 1.4-2.8 ng g(-1). The proposed method was successfully applied in determining SAs in the eggs obtained from laying hens fed with SA standards, and compared to eggs purchased from local markets. The results demonstrate that SAs were detectable in the incurred egg samples.

  8. Aqueous phase adsorption of different sized molecules on activated carbon fibers: Effect of textural properties.

    PubMed

    Prajapati, Yogendra N; Bhaduri, Bhaskar; Joshi, Harish C; Srivastava, Anurag; Verma, Nishith

    2016-07-01

    The effect that the textural properties of rayon-based activated carbon fibers (ACFs), such as the BET surface area and pore size distribution (PSD), have on the adsorption of differently sized molecules, namely, brilliant yellow (BY), methyl orange (MO) and phenol (PH), was investigated in the aqueous phase. ACF samples with different BET areas and PSDs were produced by steam-activating carbonized fibers for different activation times (0.25, 0.5, and 1 h). The samples activated for 0.25 h were predominantly microporous, whereas those activated for relatively longer times contained hierarchical micro-mesopores. The adsorption capacities of the ACFs for the adsorbate increased with increasing BET surface area and pore volume, and ranged from 51 to 1306 mg/g depending on the textural properties of the ACFs and adsorbate size. The adsorption capacities of the hierarchical ACF samples followed the order BY > MO > PH. Interestingly, the number of molecules adsorbed by the ACFs followed the reverse order: PH > MO > BY. This anomaly was attributed to the increasing molecular weight of the PH, MO and BY molecules. The equilibrium adsorption data were described using the Langmuir isotherm. This study shows that suitable textural modifications to ACFs are required for the efficient aqueous phase removal of an adsorbate.

  9. Adsorption of direct dye onto activated carbon prepared from areca nut pod--an agricultural waste.

    PubMed

    Gopalswami, P; Sivakumar, N; Ponnuswamy, S; Venkateswaren, V; Kavitha, G

    2010-10-01

    Activated carbons are made from various agricultural wastes by physical and chemical activation. The preparation of activated carbon from agricultural waste could increase economic return and also provides an excellent method for the solid waste disposal thereby reduce pollution. Areca nut pod, which is an agricultural waste, has been used as a raw material to produce activated carbon (AAC) by four different methods. The adsorption of Direct blue dye used in textile industry on the porous areca nut pod activated carbon was investigated. The activated carbon AAC has an average surface area of 502 m2/g. CAC, the commercial reference was mainly micro porous with a surface area of 1026 m2/g .The study investigated the removal of direct dye from simulated water. The effects of adsorbent dosage, initial dye concentration, pH and contact time were studied. The results showed that as the amount of the adsorbent was increased, the percentage of dye removal increased accordingly. The results indicate that AAC could be employed as low-cost alternative to commercial activated carbon in wastewater treatment for the removal of acid dyes.

  10. Bioregeneration of granular activated carbon in simultaneous adsorption and biodegradation of chlorophenols.

    PubMed

    Oh, Wen-Da; Lim, Poh-Eng; Seng, Chye-Eng; Sujari, Amat Ngilmi Ahmad

    2011-10-01

    The objectives of this study are to obtain the time courses of the amount of chlorophenol adsorbed onto granular activated carbon (GAC) in the simultaneous adsorption and biodegradation processes involving 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP), respectively, and to quantify the bioregeneration efficiency of GAC loaded with 4-CP and 2,4-DCP by direct measurement of the amount of chlorophenol adsorbed onto GAC. Under abiotic and biotic conditions, the time courses of the amount of chlorophenol adsorbed onto GAC at various GAC dosages for the initial 4-CP and 2,4-DCP concentrations below and above the biomass acclimated concentrations of 300 and 150 mg/L, respectively, were determined. The results show that the highest bioregeneration efficiency was achieved provided that the initial adsorbate concentration was lower than the acclimated concentration. When the initial adsorbate concentration was higher than the acclimated concentration, the highest bioregeneration efficiency was achieved if excess adsorbent was used.

  11. Application of activated carbon derived from scrap tires for adsorption of Rhodamine B.

    PubMed

    Li, Li; Liu, Shuangxi; Zhu, Tan

    2010-01-01

    Activated carbon derived from solid hazardous waste scrap tires was evaluated as a potential adsorbent for cationic dye removal. The adsorption process with respect to operating parameters was investigated to evaluate the adsorption characteristics of the activated pyrolytic tire char (APTC) for Rhodamine B (RhB). Systematic research including equilibrium, kinetics and thermodynamic studies was performed. The results showed that APTC was a potential adsorbent for RhB with a higher adsorption capacity than most adsorbents. Solution pH and temperature exert significant influence while ionic strength showed little effect on the adsorption process. The adsorption equilibrium data obey Langmuir isotherm and the kinetic data were well described by the pseudo second-order kinetic model. The adsorption process followed intra-particle diffusion model with more than one process affecting the adsorption process. Thermodynamic study confirmed that the adsorption was a physisorption process with spontaneous, endothermic and random characteristics.

  12. Application of carbon adsorbents prepared from Brazilian-pine fruit shell for the removal of reactive orange 16 from aqueous solution: Kinetic, equilibrium, and thermodynamic studies.

    PubMed

    Calvete, Tatiana; Lima, Eder C; Cardoso, Natali F; Vaghetti, Júlio C P; Dias, Silvio L P; Pavan, Flavio A

    2010-08-01

    Activated (AC-PW) and non-activated (C-PW) carbonaceous materials were prepared from the Brazilian-pine fruit shell (Araucaria angustifolia) and tested as adsorbents for the removal of reactive orange 16 dye (RO-16) from aqueous effluents. The effects of shaking time, adsorbent dosage and pH on the adsorption capacity were studied. RO-16 uptake was favorable at pH values ranging from 2.0 to 3.0 and from 2.0 to 7.0 for C-PW and AC-PW, respectively. The contact time required to obtain the equilibrium using C-PW and AC-PW as adsorbents was 5 and 4h at 298 K, respectively. The fractionary-order kinetic model provided the best fit to experimental data compared with other models. Equilibrium data were better fit to the Sips isotherm model using C-PW and AC-PW as adsorbents. The enthalpy and entropy of adsorption of RO-16 were obtained from adsorption experiments ranging from 298 to 323 K.

  13. Adsorption of cadmium from aqueous solutions on sulfurized activated carbon prepared from nut shells.

    PubMed

    Fouladi Tajar, Amir; Kaghazchi, Tahereh; Soleimani, Mansooreh

    2009-06-15

    Low-cost activated carbon, derived from nut shells, and its modified sample have been used as replacements for the current expensive methods of removing cadmium from aqueous solutions and waste waters. Adsorption of cadmium onto four kinds of activated carbons has been studied; prepared activated carbon (PAC), commercial activated carbon (CAC), and the sulfurized ones (SPAC & SCAC). The activated carbon has been derived, characterized, treated with sulfur and then utilized for the removal of Cd(2+). Sulfurizing agent (SO(2) gas) was successfully used in adsorbents' modification process at the ambient temperature. Samples were then characterized and tested as adsorbents of cadmium. Effect of some parameters such as contact time, initial concentration and pH were examined. With increasing pH, the adsorption of cadmium ions was increased and maximum removal, 92.4% for SPAC, was observed in pH>8.0 (C(0)=100mg/L). The H-type adsorption isotherms, obtained for the adsorbents, indicated a favorable process. Adsorption data on both prepared and commercial activated carbon, before and after sulfurization, followed both the Frendlich and Langmuir models. They were better fitted by Frendlich isotherm as compared to Langmuir. The maximum adsorption capacities were 90.09, 104.17, 126.58 and 142.86 mg/g for CAC, PAC, SCAC and SPAC, respectively. Accordingly, surface modification of activated carbons using SO(2) greatly enhanced cadmium removal. The reversibility of the process has been studied in a qualitative manner and it shows that the spent SPAC can be effectively regenerated for further use easily.

  14. On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds.

    PubMed

    Bandosz, Teresa J; Petit, Camille

    2009-10-15

    Ammonia adsorption was studied under dynamic conditions, at room temperature, on activated carbons of different origins (coal-based, wood-based and coconut-shell-based carbons) before and after their impregnation with various inorganic compounds including metal chlorides, metal oxides and polycations. The role of humidity was evaluated by running tests in both dry and moist conditions. Adsorbents were analyzed before and after exposure to ammonia by thermal analyses, sorption of nitrogen, potentiometric titration, X-ray diffraction and FTIR spectroscopy. Results of breakthrough tests show significant differences in terms of adsorption capacity depending on the parent carbon, the impregnates and the experimental conditions. It is found that surface chemistry governs ammonia adsorption on the impregnated carbons. More precisely, it was demonstrated that a proper combination of the surface pH, the strength, type and amount of functional groups present on the adsorbents' surface is a key point in ammonia uptake. Water can have either positive or negative effects on the performance of adsorbents. It can enhance NH(3) adsorption capacity since it favors ammonia dissolution and thus enables reaction between ammonium ions and carboxylic groups from the carbons' surface. On the other hand, water can also reduce the performance from the strength of adsorption standpoint. It promotes dissolution of ammonia and that ammonia is first removed from the system when the adsorbent bed is purged with air. Ammonia, besides adsorption by van der Waals forces and dissolution in water, is also retained on the surface via reactive mechanisms such as acid-base reactions (Brønsted and Lewis) or complexation. Depending on the materials used and the experimental conditions, 6-47% ammonia adsorbed is strongly retained on the surface even when the bed is purged with air.

  15. On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds

    SciTech Connect

    Bandosz, T.J.; Petit, C.

    2009-10-15

    Ammonia adsorption was studied under dynamic conditions, at room temperature, on activated carbons of different origins (coal-based, wood-based and coconut-shell-based carbons) before and after their impregnation with various inorganic compounds including metal chlorides, metal oxides and polycations. The role of humidity was evaluated by running tests in both dry and moist conditions. Adsorbents were analyzed before and after exposure to ammonia by thermal analyses, sorption of nitrogen, potentiometric titration, X-ray diffraction and FTIR spectroscopy. Results of breakthrough tests show significant differences in terms of adsorption capacity depending on the parent carbon, the impregnates and the experimental conditions. It is found that surface chemistry governs ammonia adsorption on the impregnated carbons. More precisely, it was demonstrated that a proper combination of the surface pH, the strength, type and amount of functional groups present on the adsorbents' surface is a key point in ammonia uptake. Water can have either positive or negative effects on the performance of adsorbents. It can enhance NH{sub 3} adsorption capacity since it favors ammonia dissolution and thus enables reaction between ammonium ions and carboxylic groups from the carbons' surface. On the other hand, water can also reduce the performance from the strength of adsorption standpoint. It promotes dissolution of ammonia and that ammonia is first removed from the system when the adsorbent bed is purged with air. Ammonia, besides adsorption by van der Waals forces and dissolution in water, is also retained on the surface via reactive mechanisms such as acid-base reactions (Bronsted and Lewis) or complexation. Depending on the materials used and the experimental conditions, 6-47% ammonia adsorbed is strongly retained on the surface even when the bed is purged with air.

  16. Sorption performance and mechanism of a sludge-derived char as porous carbon-based hybrid adsorbent for benzene derivatives in aqueous solution.

    PubMed

    Kong, Lingjun; Xiong, Ya; Sun, Lianpeng; Tian, Shuanghong; Xu, Xianyan; Zhao, Cunyuan; Luo, Rongshu; Yang, Xin; Shih, Kaimin; Liu, Haiyang

    2014-06-15

    A porous sludge-derived char was prepared by a new one-step pyrolytic process with citric acid-ZnCl2 mixed fabricating-pore agents. The sludge-derived char was confirmed to be a hierarchically porous hybrid adsorbent containing-elemental carbon, -highly carbonized organic species and -inorganic ash with a great surface area of 792.4m(2)g(-1). It was used as a carbon-based hybrid adsorbent for four benzene derivatives including 4-chlorophenol, phenol, benzoic acid and 4-hydroxylbenzoic acid in aqueous solution. Results showed that their sorption isotherms were nonlinear at low concentrations and linear at high concentrations. The sorption performance could be described by a multiple sorption model (QT=QA+KPCe). The order of these partition sorption coefficients (KP) of these benzene derivatives was consistent with their octanol-water partition coefficients (logKow), but those saturated amounts (QA) were inconsistent with their logKow. The inconstancy was found to be considerably dependent on the preferential interaction of benzoic acid with SiO2 in the sludge-derived char. Quantum theoretical calculation confirmed that the preferential interaction was attributed to the formation of hydrogen bonds (1.61 and 1.69Å) and new Si-O bonds (1.83 and 1.87Å) between the carboxyl of benzoic acid and the SiO2 surface in the sorption process.

  17. Insight into the adsorption of PPCPs by porous adsorbents: Effect of the properties of adsorbents and adsorbates.

    PubMed

    Zhu, Zengyin; Xie, Jiawen; Zhang, Mancheng; Zhou, Qing; Liu, Fuqiang

    2016-07-01

    Adsorption is an efficient method for removal of pharmaceuticals and personal care products (PPCPs). Magnetic resins are efficient adsorbents for water treatment and exhibit potential for PPCP removal. In this study, the magnetic hypercrosslinked resin Q100 was used for adsorption of PPCPs. The adsorption behavior of this resin was compared with those of two activated carbons, namely, Norit and F400D. Norit exhibited the fastest adsorption kinetics, followed by Q100. Norit featured a honeycomb shape and long-range ordered pore channels, which facilitated the diffusion of PPCPs. Moreover, the large average pore size of Q100 reduced diffusion resistance. The adsorbed amounts of 11 PPCPs on the three adsorbents increased with increasing adsorbate hydrophobicity. For Q100, a significant linear correlation was observed between the adsorption performance for PPCPs and hydrophobicity (logD value) of adsorbates (R(2) = 0.8951); as such, PPCPs with high logD values (>1.69) could be efficiently removed. Compared with those of Norit and F400D, the adsorption performance of Q100 was less affected by humic acid because of the dominant hydrophobic interaction. Furthermore, Q100 showed improved regeneration performance, which renders it promising for PPCP removal in practical applications.

  18. Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation.

    PubMed

    Sun, Yuanyuan; Li, Hong; Li, Guangci; Gao, Baoyu; Yue, Qinyan; Li, Xuebing

    2016-10-01

    As biomass wastes, Arundo donax Linn and pomelo peel were used as precursors for activated carbons (ALAC and PPAC) preparation by phosphoric acid activation. The pore structure and surface acidic functional groups of both carbons were characterized by nitrogen adsorption/desorption experiment, NH3-temperature-programmed desorption (NH3-TPD) and Fourier transform infrared spectroscopy (FTIR). A batch of experiments was carried out to investigate the adsorption performances of ciprofloxacin under different conditions. Results showed that PPAC exhibited larger surface area (1252m(2)/g) and larger portion of mesoporous, while ALAC was typical of microporous materials. Results from NH3-TPD suggested that ALAC was characteristic of more acidic functional group than PPAC. The maximum monolayer adsorption capability was 244mg/g for ALAC and 400mg/L for PPAC. Kinetics studies showed intra-particle diffusion was not the unique rate-controlling step. Boundary layer resistance existed between adsorbent and adsorbate.

  19. Is there a difference in van der Waals interactions between rare gas atoms adsorbed on metallic and semiconducting single-walled carbon nanotubes?

    PubMed

    Chen, De-Li; Mandeltort, Lynn; Saidi, Wissam A; Yates, John T; Cole, Milton W; Johnson, J Karl

    2013-03-29

    The differences in the polarizabilities of metallic (M) and semiconducting (S) single-walled carbon nanotubes (SWNTs) might give rise to differences in adsorption potentials. We show from experiments and van der Waals--corrected density functional theory that the binding energies of Xe adsorbed on M- and S-SWNTs are nearly identical. Temperature programed desorption experiments of Xe on purified M- and S-SWNTs give similar peak temperatures, indicating that desorption kinetics and binding energies are independent of the type of SWNT. Binding energies computed from vdW-corrected density functional theory are in good agreement with experiments.

  20. Is there a Difference in Van Der Waals Interactions between Rare Gas Atoms Adsorbed on Metallic and Semiconducting Single-Walled Carbon Nanotubes?

    SciTech Connect

    Chen, De-Li; Mandeltort, Lynn; Saidi, Wissam A.; Yates, John T.; Cole, Milton W.; Johnson, J. Karl

    2013-03-01

    Differences in polarizabilities of metallic (M) and semiconducting (S) single-walled carbon nanotubes (SWNTs) might give rise to differences in adsorption potentials. We show from experiments and van der Waals-corrected density functional theory (DFT) that binding energies of Xe adsorbed on M- and S-SWNTs are nearly identical. Temperature programmed desorption of Xe on purified M- and S-SWNTs give similar peak temperatures, indicating that desorption kinetics and binding energies are independent of the type of SWNT. Binding energies computed from vdW-corrected DFT are in good agreement with experiments.

  1. Kinetic Assembly of Near-IR Active Gold Nanoclusters using Weakly Adsorbing Polymers to Control Size

    PubMed Central

    Tam, Jasmine M.; Murthy, Avinash K.; Ingram, Davis R.; Nguyen, Robin; Sokolov, Konstantin V.; Johnston, Keith P.

    2013-01-01

    Clusters of metal nanoparticles with an overall size less than 100 nm and high metal loadings for strong optical functionality, are of interest in various fields including microelectronics, sensors, optoelectronics and biomedical imaging and therapeutics. Herein we assemble ~5 nm gold particles into clusters with controlled size, as small as 30 nm and up to 100 nm, which contain only small amounts of polymeric stabilizers. The assembly is kinetically controlled with weakly adsorbing polymers, PLA(2K)-b-PEG(10K)-b-PLA(2K) or PEG (MW = 3350), by manipulating electrostatic, van der Waals (VDW), steric, and depletion forces. The cluster size and optical properties are tuned as a function of particle volume fractions and polymer/gold ratios to modulate the interparticle interactions. The close spacing between the constituent gold nanoparticles and high gold loadings (80–85% w/w gold) produce a strong absorbance cross section of ~9×10−15 m2 in the NIR at 700 nm. This morphology results from VDW and depletion attractive interactions that exclude the weakly adsorbed polymeric stabilizer from the cluster interior. The generality of this kinetic assembly platform is demonstrated for gold nanoparticles with a range of surface charges from highly negative to neutral, with the two different polymers. PMID:20361735

  2. Synthesis of magnetic oxidized multiwalled carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic Methylene Blue dye adsorption.

    PubMed

    Duman, Osman; Tunç, Sibel; Polat, Tülin Gürkan; Bozoğlan, Bahar Kancı

    2016-08-20

    In this study, magnetic oxidized multiwalled carbon nanotube (OMWCNT)-Fe3O4 and OMWCNT-κ-carrageenan-Fe3O4 nanocomposites were synthesized and used as adsorbent for the removal of Methylene Blue (MB) from aqueous solution. Magnetic nanocomposites were characterized by using of specific surface area, Fourier transform infrared, X-ray diffraction, vibrating sample magnetometry, thermal gravimetric analysis, scanning electron microscope and transmission electron microscope measurements. The results of characterization analyses exhibited that OMWCNT was successfully modified with κ-carrageenan. Furthermore, OMWCNT-Fe3O4 and OMWCNT-κ-carrageenan-Fe3O4 nanocomposites were of a super-paramagnetic property. Adsorption studies revealed that the data of adsorption kinetics and isotherm were well fitted by the pseudo second-order kinetic model and Langmuir isotherm model, respectively. The adsorption amounts of magnetic adsorbents increased with contact time and initial dye concentration. Compared with magnetic OMWCNT-Fe3O4 nanocomposite, magnetic OMWCNT-κ-carrageenan-Fe3O4 nanocomposite showed a better adsorption performance for the removal of MB from aqueous solution. Therefore, OMWCNT-κ-carrageenan-Fe3O4 nanocomposite may be used as a magnetic adsorbent to remove the cationic dyes from wastewaters.

  3. Magnetic multi-wall carbon nanotube nanocomposite as an adsorbent for preconcentration and determination of lead (II) and manganese (II) in various matrices.

    PubMed

    Daneshvar Tarigh, Ghazale; Shemirani, Farzaneh

    2013-10-15

    Magnetic multi-wall carbon nanotube (MMWCNT) nanocomposite was synthesized and used as an adsorbent for preconcentration and determination of lead (II) and manganese (II). The properties of MMWCNT were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Energy dispersive X-ray spectrometry (EDS) and fourier transform infrared spectrophotometer (FT-IR). This adsorbent was found to be advantageous over conventional solid phase extraction (SPE) in terms of operational simplicity and low time-consuming. MMWCNT, carrying target metals, was easily separated from the aqueous solutions with the help of an external magnet; so, no filtration or centrifugation was necessary. After extraction and collection of MMWCNT, the adsorbed analytes were eluted and analyzed by flame atomic absorption spectrometry (FAAS). Experiments were carried out to investigate the influence of different sorption/desorption parameters. Under the optimized conditions, detection limits and enhancement factors of the proposed method for Pb and Mn were 1.0 and 0.6 µg L(-1), 390 and 697 respectively. The presented procedure was successfully applied for determination of Pb(II) and Mn (II) contents in lipstick, rice samples and accuracy was evaluated analyzing a certified reference material Seronorm(™) Urine LOT NO2525.

  4. Quick, easy, cheap, effective, rugged and safe method with magnetic graphitized carbon black and primary secondary amine as adsorbent and its application in pesticide residue analysis.

    PubMed

    Zheng, Hao-Bo; Zhao, Qin; Mo, Jie-Zhen; Huang, Yun-Qing; Luo, Yan-Bo; Yu, Qiong-Wei; Feng, Yu-Qi

    2013-07-26

    By using magnetic graphitized carbon black and primary secondary amine (GCB/PSA/MNPs) as adsorbent, a modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method was proposed for pesticide residue analysis in vegetables. The magnetic adsorbent was fabricated via simple co-mixing method based on an "aggregate warp" mechanism. To achieve the optimum conditions of modified QuEChERS toward target analytes, several parameters, including the composition of analyte protectants and the amount of the adsorbents were investigated. Under the optimized conditions, a simple, rapid and effective method for the determination of 10 pesticide residues in vegetables was established by coupling modified QuEChERS to gas chromatography/mass spectrometry analysis. The detection limits of the proposed method for 10 pesticides ranged from 0.39 to 8.6ng/g. Good linearity (R value≥0.990) was achieved at concentration levels of 10-200ng/g, and acceptable method reproducibility was found as intra- and inter-day precisions, yielding the relative standard deviations less than 10.7% and 13.4%, respectively. The recoveries were in the range of 69.9-125.0% at different concentrations for real samples. Compared with the reported methods for the determination of a large number of samples, the proposed method has the advantage of less time-consuming in clean-up procedure.

  5. Adsorption of basic dyes onto activated carbon using microcolumns

    SciTech Connect

    El Qada, E.N.; Allen, S.J.; Walker, G.M.

    2006-08-16

    Column studies for the adsorption of basic dyes (methylene blue, basic red, and basic yellow) onto PAC2 (activated carbon produced from bituminous coal using steam activation) and F400 were undertaken in fixed-bed microcolumns. Experimental data were correlated using the bed depth service time (BDST) model. The effect of bisolute interactions on the performance of microcolumn fixed beds was studied. The BDST model was successful in describing the breakthrough curves for the adsorption of MB onto PAC2 and predicts the experimental data with a good degree of accuracy. The results emphasized that the interactions and competition for the available binding sites have considerable influence on the efficiency of adsorbents to remove dyes from the solution.

  6. Comparison of adsorption behavior of PCDD/Fs on carbon nanotubes and activated carbons in a bench-scale dioxin generating system.

    PubMed

    Zhou, Xujian; Li, Xiaodong; Xu, Shuaixi; Zhao, Xiyuan; Ni, Mingjiang; Cen, Kefa

    2015-07-01

    Porous carbon-based materials are commonly used to remove various organic and inorganic pollutants from gaseous and liquid effluents and products. In this study, the adsorption of dioxins on both activated carbons and multi-walled carbon nanotube was internally compared, via series of bench scale experiments. A laboratory-scale dioxin generator was applied to generate PCDD/Fs with constant concentration (8.3 ng I-TEQ/Nm(3)). The results confirm that high-chlorinated congeners are more easily adsorbed on both activated carbons and carbon nanotubes than low-chlorinated congeners. Carbon nanotubes also achieved higher adsorption efficiency than activated carbons even though they have smaller BET-surface. Carbon nanotubes reached the total removal efficiency over 86.8 % to be compared with removal efficiencies of only 70.0 and 54.2 % for the two other activated carbons tested. In addition, because of different adsorption mechanisms, the removal efficiencies of carbon nanotubes dropped more slowly with time than was the case for activated carbons. It could be attributed to the abundant mesopores distributed in the surface of carbon nanotubes. They enhanced the pore filled process of dioxin molecules during adsorption. In addition, strong interactions between the two benzene rings of dioxin molecules and the hexagonal arrays of carbon atoms in the surface make carbon nanotubes have bigger adsorption capacity.

  7. Nitration of benzo[a]pyrene adsorbed on coal fly ash particles by nitrogen dioxide: role of thermal activation.

    PubMed

    Kristovich, Robert L; Dutta, Prabir K

    2005-09-15

    Nitration of benzo[a]pyrene (BaP) by nitrogen dioxide (NO2) adsorbed on the surface of thermally activated coal fly ash and model aluminosilicate particles led to the formation of nitrobenzo[a]pyrenes as verified by extraction and gas chromatography/mass spectrometry (GC/MS). In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was utilized to follow the nitration reaction on the surface of zeolite Y. Nitrobenzo[a]pyrene formation was observed along with the formation of nitrous acid and nitrate species. The formation of the BaP radical cation was also observed on thermally activated aluminosilicate particles by electron spin resonance (ESR) spectroscopy. On the basis of GC/MS, DRIFTS, and ESR spectroscopy results, a mechanism of nitration involving intermediate BaP radical cations generated on thermally activated aluminosilicate particles is proposed. These observations have led to the hypothesis that nitration of adsorbed polyaromatic hydrocarbons on coal fly ash by reaction with nitrogen oxides can occur in the smokestack, but with the aging of the fly ash particles, the extent of the nitration reaction will be diminished.

  8. Nitration of benzo(a)pyrene adsorbed on coal fly ash particles by nitrogen dioxide: role of thermal activation

    SciTech Connect

    Robert L. Kristovich; Prabir K. Dutta

    2005-09-15

    Nitration of benzo(a)pyrene (BaP) by nitrogen dioxide (NO{sub 2}) adsorbed on the surface of thermally activated coal fly ash and model aluminosilicate particles led to the formation of nitrobenzo(2)pyrenes as verified by extraction and gas chromatography/mass spectrometry (GC/MS). Temperatures of up to 500{sup o}C were used. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was utilized to follow the nitration reaction on the surface of zeolite Y. Nitrobenzo(a)pyrene formation was observed along with the formation of nitrous acid and nitrate species. The formation of the BaP radical cation was also observed on thermally activated aluminosilicate particles by electron spin resonance (ESR) spectroscopy. On the basis of GC/MS, DRIFTS, and ESR spectroscopy results, a mechanism of nitration involving intermediate BaP radical cations generated on thermally activated aluminosilicate particles is proposed. These observations have led to the hypothesis that nitration of adsorbed polyaromatic hydrocarbons on coal fly ash by reaction with nitrogen oxides can occur in the smokestack, but with the aging of the fly ash particles, the extent of the nitration reaction will be diminished. 52 refs., 6 figs., 3 tabs.

  9. Characterization of Sodium Carbonate (Na2CO3) Treated Rice Husk Activated Carbon and Adsorption of Lead from Car Battery Wastewater

    NASA Astrophysics Data System (ADS)

    Hanum, F.; Bani, O.; Izdiharo, A. M.

    2017-03-01

    The use of rice husk as adsorbent would not only reduce its disposal problems, but would also produce value-added products, such as activated carbon derived from rice husk. This study aimed to determine the optimum carbonization temperature for activated carbon production from rice husk and its adsorption performance on Pb in car battery wastewater. In this study, activated carbon was produced by carbonizing rice husk 400–600 °C for 90–150 minutes followed by chemical activation using 5% Na2CO3 and sieving to 100 meshes. Lead adsorption was measured using atomic absorption spectroscopy (AAS). Results suggested that highest carbon yield of 47.75% was obtained for carbonization at 500 °C for 150 minutes. At that condition, produced activated carbon contained 3.35% moisture, 30.86% ash, 18.04% volatile matter. The adsorption capacity was found to be 0.6007 mg lead/g adsorbent with % adsorpsi 58.08%

  10. Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon.

    PubMed

    Demirbas, E; Kobya, M; Sulak, M T

    2008-09-01

    The preparation of activated carbon from apricot stone with H(2)SO(4) activation and its ability to remove a basic dye, astrazon yellow 7 GL, from aqueous solutions were reported in this study. The adsorbent was characterized by FTIR, BET and SEM, respectively. The effects of various experimental parameters, such as initial dye concentration, pH, adsorbent dosage and temperature were investigated in a batch-adsorption technique. The optimum conditions for removal of the basic dye were found to be pH 10, 6g/l of adsorbent dosage and equilibrium time of 35 min, respectively. A comparison of three kinetic models, the pseudo first-order, second-order and diffusion controlled kinetic models, on the basic dye-adsorbent system showed that the removal rate was heavily dependent on diffusion controlled kinetic models. The adsorption isotherm data were fitted well to Langmuir and Freundlich isotherms. The adsorption capacity was calculated as 221.23 mg/g at 50 degrees C. Thermodynamics parameters were also evaluated. The values of enthalpy and entropy were 49.87 kJ/mol and 31.93 J/mol K, respectively, indicating that this process was spontaneous and endothermic. The experimental studies were indicated that ASC had the potential to act as an alternative adsorbent to remove the basic dye from aqueous solutions.

  11. [Study on influence between activated carbon property and immobilized biological activated carbon purification effect].

    PubMed

    Wang, Guang-zhi; Li, Wei-guang; He, Wen-jie; Han, Hong-da; Ding, Chi; Ma, Xiao-na; Qu, Yan-ming

    2006-10-01

    By means of immobilizing five kinds of activated carbon, we studied the influence between the chief activated carbon property items and immobilized bioactivated carbon (IBAC) purification effect with the correlation analysis. The result shows that the activated carbon property items which the correlation coefficient is up 0.7 include molasses, abrasion number, hardness, tannin, uniform coefficient, mean particle diameter and effective particle diameter; the activated carbon property items which the correlation coefficient is up 0.5 include pH, iodine, butane and tetrachloride. In succession, the partial correlation analysis shows that activated carbon property items mostly influencing on IBAC purification effect include molasses, hardness, abrasion number, uniform coefficient, mean particle diameter and effective particle diameter. The causation of these property items bringing influence on IBAC purification is that the activated carbon holes distribution (representative activated carbon property item is molasses) provides inhabitable location and adjust food for the dominance bacteria; the mechanical resist-crash property of activated carbon (representative activated carbon property items: abrasion number and hardness) have influence on the stability of biofilm; and the particle diameter size and distribution of activated carbon (representative activated carbon property items: uniform coefficient, mean particle diameter and effective particle diameter) can directly affect the force of water in IBAC filter bed, which brings influence on the dominance bacteria immobilizing on activated carbon.

  12. Surface-Enhanced Raman Scattering for Redox-Active Adsorbates: Pentaammineosmium(III)/(II) and Pentaammineruthenium(II) Containing Nitrogen Heterocycle Ligands.

    DTIC Science & Technology

    1984-04-01

    electrode reactions involving simple one- electron transfer for which both redox states are detectably adsorbed and structurally similar. Although... Taube at Stanford University. We also thank Henry Taube for his advice and encouragement. The research program of M.J.W. is supported in part by the...k AD-Ai42 418 SURFACE-ENHANCED RAMAN SCATTERING FOR REDOX -ACTIVE ii ADSORBATES: PENTRNIN..(U) PURDUE UNIV LAFAYETTE IN DEPT OF CHEMISTRY S

  13. The usage of activated carbon from teak sawdust (tectona grandis l.f.) and zeolite for the adsorption of Cr(VI) and its analysis using solid-phase spectrophotometry (sps)

    NASA Astrophysics Data System (ADS)

    Saputro, S.; Masykuri, M.; Mahardiani, L.; Mulyani, B.; Qorina, I.; Yoshimura, K.; Takehara, K.; Matsuoka, S.

    2017-02-01

    This study aims to evaluate the usage of teak sawdust and zeolite as an adsorbent of Cr(VI) ion; optimal composition ratio of the composite adsorbent; and the sensitivity of solid-phase spectrophotometry (SPS) as a method to determine the levels of Cr(VI) ion as an adsorption results of adsorbents. The adsorbent used were teak sawdust activated carbon and zeolite as a single and composite adsorbents. The teak sawdust carbonization using muffle furnace and then activated with H3PO4 10% while the zeolite with H2SO4 10%. The contacting process of the adsorbents with Cr(VI) was done by varying the compositions. Analysis of Cr(VI) level was done using SPS method. Characterization of adsorbent before and after being activated is done using a FTIR. The results showed that teak sawdust and zeolite can be used as adsorbents to adsorb Cr(VI) in the simulated liquid waste with the adsorption capacity 1.19 µg/g the optimum composition ratio of teak sawdust activated carbon and zeolite was 75%:25% with the percentage of adsorption was 62.72%. Solid-phase spectrophotometry is a sensitive method to analyze the decreased levels of Cr(VI) as an adsorption results in µg/L level with the limit of detection (LOD) was 0.03 µg/L.

  14. Non-dissociative activation of chemisorbed dinitrogen on Ni(110) by co-adsorbed lithium

    SciTech Connect

    Liu, Tao Temprano, Israel; Jenkins, Stephen J.; King, David A.

    2013-11-14

    Weakening the intramolecular N–N bond is essential to promote direct hydrogenation of adsorbed N{sub 2} on catalyst surfaces. The interaction of N{sub 2} with Li on Ni(110) surfaces has been investigated. We show that the N–N bond is significantly weakened with increasing Li coverage, evidenced by large redshifts in N–N stretch frequency of up to 380 cm{sup −1} compared to the gas phase. Some increased thermal stability of the most weakened N{sub 2,ads} states is also observed. We speculate that the various observed redshifts in N–N stretch frequency are associated with an enhanced backfilling of the 2π* antibonding orbital of N{sub 2} due to both the Li-induced surface electrostatic field, and the formation of Li{sub x}(N{sub 2}){sub y} surface complexes.

  15. Partitioning and removal of dioxin-like congeners in flue gases treated with activated carbon adsorption.

    PubMed

    Chi, Kai Hsien; Chang, Shu Hao; Huang, Chia Hua; Huang, Hung Chi; Chang, Moo Been

    2006-08-01

    Activated carbon adsorption is commonly used to control dioxin-like congener (PCDD/Fs and PCBs) emissions. Partitioning of PCDD/Fs and PCBs between vapor and solid phases and their removal efficiencies achieved with existing air pollution control devices (APCDs) at a large-scale municipal waste incinerator (MWI) and an industrial waste incinerator (IWI) are evaluated via intensive stack sampling and analysis. Those two facilities investigated are equipped with activated carbon injection (ACI) with bag filter (BF) and fixed activated carbon bed (FACB) as major PCDD/F control devices, respectively. Average PCDD/F and PCB concentrations of stack gas with ACI+BF as APCDs are 0.031 and 0.006ng-TEQ/Nm(3), and that achieved with FACB are 1.74 and 0.19ng-TEQ/Nm(3) in MWI and IWI, respectively. The results show that FACB could reduce vapor-phase PCDD/Fs and PCBs concentrations in flue gas, while the ACI+BF can effectively adsorb the vapor-phase dioxin-like congener and collect the solid-phase PCDD/Fs and PCBs in the meantime. Additionally, the results of the pilot-scale adsorption system (PAS) experimentation indicate that each gram activated carbon adsorbs 105-115ng-PCDD/Fs and each surface area (m(2)) of activated carbon adsorbs 10-25ng-PCDD/Fs. Based on the results of PAS experimentation, this study confirms that the surface area of mesopore+macropore (20-200A) of the activated carbon is a critical factor affecting PCDD/F adsorption capacity.

  16. Production of a new adsorbent from Moroccan oil shale by chemical activation and its adsorption characteristics for U and Th bearing species

    NASA Astrophysics Data System (ADS)

    Khouya, E.; Fakhi, S.; Hannache, H.; Ichcho, S.; Pailler, R.; Naslain, R.; Abbe, J. C.

    2005-03-01

    New adsorbents were prepared from Moroccan oil shale of Tarfaya (layer R3) by chemical activation with sulphuric acid diluted at 80%. The influence of activation temperature, atmosphere gas, holding time in oven and weight ratio of sulphuric acid to precursor was investigated by determination of yield of adsorbents and adsorption capacity of methylene blue. The best adsorbent properties were found for a particular combination of the chosen parameters: temperature and time of activation respectively equal to 250° C and 2 hours, the gas vector being nitrogen (N{2}). The adsorption capacity for methylene blue and specific surface (SBET) of the new adsorbent were equal to 300 mg/g and 270 m2/g respectively. The batch mode experiment was used to explore the feasibility of this adsorbent for removal of radionuclides (U and Th) from aqueous solution. Applicability of the adsorbent was examined for synthetic solution prepared from hydrated uranyl nitrate (UO{2}(NO{3})2.6H{2}O) and hydrated thorium nitrate (Th(NO{3})4.5H{2}O). The parameters of adsorption for the two radioelements were determined by application of the Langmuir, Freundlich and Elovich models.

  17. Recent studies on activated carbons and fly ashes from Turkish resources

    SciTech Connect

    Ayhan Demirbas; Gulsin Arslan; Erol Pehlivan

    2006-05-15

    This article deals with adsorptive properties of activated carbons (ACs) and fly ashes from Turkish coal and biomass resources. ACs because of their high surface area, microporous character and the chemical nature of their surface have been considered potential adsorbents for the removal of heavy metals from industrial wastewater. Pyrolysis is an established process method for preparation of activated carbon from biomass. The bio-char is can be used as AC. The adsorption properties of ACs were strictly defined by the physicochemical nature of their surface and their texture, i.e., pore volume, pore size distribution, surface area. It is well known that the pH of the solution-adsorbant mixture is an important variable in the adsorption process. Fly ash has the highest adsorption capacity (198.2 mg/g for Cd(II)). Almond shell AC has the lowest adsorption capacity (2.7 mg/g).

  18. Dynamic adsorption of organic solvent vapors onto a packed bed of activated carbon cloth

    SciTech Connect

    Huang, C.C.; Lin, Y.C.; Lu, F.C.

    1999-02-01

    The adsorption behavior of organic compound vapors onto a packed bed of activated carbon cloth (ACC) has been investigated. Three types of ACCs have been employed: KF1500, FT200-20, and E-ACC. The volatile organic compounds (VOCs) used in this study are acetone, dichloromethane, acrylonitrile, and n-hexane. The operating parameters studied are temperature of adsorber, weight of ACC, relative humidity of fluid, inlet concentration of VOCs, and total volumetric flow rate of gas stream. A simple theoretical model, originally introduced by Yoon and Nelson, has been utilized to simulate the breakthrough curve of VOC vapor on an adsorption column packed with activated carbon cloth. A modified model is proposed to predict the adsorption behavior of an adsorber at different temperatures.

  19. Removal of Ni (II) from aqueous solutions by adsorption onto Ricinus communis seed shell activated carbons.

    PubMed

    Thamilarasu, P; Karunakaran, K

    2011-01-01

    The adsorption studies on the removal of Ni(II) from aqueous solution using Ricinus communis seed shells activated carbon and polypyrrole coated Ricinus communis seed shells activated carbon were carried out under various experimental conditions. The effects of various process parameters have been investigated by following the batch adsorption technique. Adsorption data was modeled with Freundlich, Langmuir and tempkin adsorption isotherms. Thermodynamics parameters such as DeltaH0, DeltaS0, and DeltaG0 were calculated indicating that the adsorption was spontaneous and endothermic nature. A mechanism, involving intra particle diffusion and surface adsorption, has been proposed for the adsorption of Ni(II) onto the adsorbent. Adsorbent used in this study is characterized by FTIR and SEM before and after the adsorption of metal ions.

  20. Chromium removal from water by activated carbon developed from waste rubber tires.

    PubMed

    Gupta, Vinod Kumar; Ali, Imran; Saleh, Tawfik A; Siddiqui, M N; Agarwal, Shilpi

    2013-03-01

    Because of the continuous production of large amount of waste tires, the disposal of waste tires represents a major environmental issue throughout the world. This paper reports the utilization of waste tires (hard-to-dispose waste) as a precursor in the production of activated carbons (pollution-cleaning adsorbent). In the preparation of activated carbon (AC), waste rubber tire (WRT) was thermally treated and activated. The tire-derived activated carbon was characterized by means of scanning electron microscope, energy-dispersive X-ray spectroscopy, FTIR spectrophotometer, and X-ray diffraction. In the IR spectrum, a number of bands centred at about 3409, 2350, 1710, 1650, and 1300-1000 cm(-1) prove the present of hydroxyl and carboxyl groups on the surface of AC in addition to C═C double bonds. The developed AC was tested and evaluated as potential adsorbent removal of chromium (III). Experimental parameters, such as contact time, initial concentration, adsorbent dosage and pH were optimized. A rapid uptake of chromium ions was observed and the equilibrium is achieved in 1 h. It was also found that the adsorption process is pH dependent. This work adds to the global discussion of the cost-effective utilization of waste rubber tires for waste water treatment.

  1. Analysis of Adsorbed Natural Gas Tank Technology

    NASA Astrophysics Data System (ADS)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  2. Technology for the Recovery of Fuel and Adsorbent Carbons from Coal Burning Utility Ash Ponds and Landfills

    SciTech Connect

    J.G. Groppo; T.L. Robl

    2005-09-30

    lightweight aggregate and recover a high-grade fuel product. Spiral concentration provided acceptable grade lightweight aggregate with yields of only 10 to 20%. Incorporating a sieve bend into the process to recover coarse, porous ash particles from the outside race of the spirals increased aggregate yield to as high as 75%, however, the carbon content of the aggregate also increased. An opening size of 28 mesh on the sieve bend appeared to be sufficient. Lightweight concrete blocks (28 to 32 lbs) were produced from bottom ash and results show that acceptable strength could be attained with a cement/concrete ratio as low as 1/4. A mobile Proof-of-Concept (POC) field unit was designed and fabricated to meet the processing objectives of the project. The POC plant consisted of two trailer-mounted modules and was completely self sufficient with respect to power and water requirements. The POC unit was hauled to Coleman Station and operated at a feed rate of 2 tph. Results showed that the spirals operated similarly to previous pilot-scale operations and a 500 lb composite sample of coarse carbon was collected with a grade of 51.7% C or 7279 Btu/lb. Flotation results compared favorably with release analysis and 500 lbs of composite froth product was collected with a grade of 35% C or 4925 Btu/lb. The froth product was dewatered to 39% moisture with vacuum filtration. Pan pelletization and briquetting were evaluated as a means of minimizing handling concerns. Rotary pan pelletization produced uniform pellets with a compressive strength of 4 lbf without the use of any binder. Briquettes were produced by blending the coarse and fine carbon products at a ratio of 1:10, which is the proportion that the two products would be produced in a commercial operation. Using 3% lime as a binder produced the most desirable briquettes with respect to strength, attrition and drop testing. Additionally, the POC carbon products compared favorably with commercial activated carbon when used for removal

  3. Removal of Trichloroethylene by Activated Carbon in the Presence and Absence of TiO2 Nanoparticles

    EPA Science Inventory

    Nanoparticles (NPs) are emerging as a new type of contaminant in water and wastewater. The fate of titanium dioxide nanoparticles (TiO2NPs) in a granular activated carbon (GAC) adsorber and their impact on the removal of trichloroethylene (TCE) by GAC was investigated...

  4. The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes.

    PubMed

    Zhang, Shujuan; Shao, Ting; Karanfil, Tanju

    2011-01-01

    Understanding the influence of natural organic matter (NOM) on synthetic organic contaminant (SOC) adsorption by carbon nanotubes (CNTs) is important for assessing the environmental implications of accidental CNT release and spill to natural waters, and their potential use as adsorbents in engineered systems. In this study, adsorption of two SOCs by three single-walled carbon nanotubes (SWNTs), one multi-walled carbon nanotube (MWNT), a microporous activated carbon fiber (ACF) [i.e., ACF10] and a bimodal porous granular activated carbon (GAC) [i.e., HD4000] was compared in the presence and absence of NOM. The NOM effect was found to depend strongly on the pore size distribution of carbons. Minimal NOM effect occurred on the macroporous MWNT, whereas severe NOM effects were observed on the microporous HD4000 and ACF10. Although the single-solute adsorption capacities of the SWNTs were much lower than those of HD4000, in the presence of NOM the SWNTs exhibited adsorption capacities similar to those of HD4000. Therefore, if released into natural waters, SWNTs can behave like an activated carbon, and will be able to adsorb, carry, and transfer SOCs to other systems. However, from an engineering application perspective, CNTs did not exhibit a major advantage, in terms of adsorption capacities, over the GAC and ACF. The NOM effect was also found to depend on molecular properties of SOCs. NOM competition was more severe on the adsorption of 2-phenylphenol, a nonplanar and hydrophilic SOC, than phenanthrene, a planar and hydrophobic SOC, tested in this study. In terms of surface chemistry, both adsorption affinity to SOCs and NOM effect on SOC adsorption were enhanced with increasing hydrophobicity of the SWNTs.

  5. Magnetic N-doped mesoporous carbon as an adsorbent for the magnetic solid-phase extraction of phthalate esters from soft drinks.

    PubMed

    Li, Menghua; Jiao, Caina; Yang, Xiumin; Wang, Chun; Wu, Qiuhua; Wang, Zhi

    2017-02-13

    A new kind of magnetic N-doped mesoporous carbon was prepared by the one-step carbonization of a hybrid precursor (glucose, melamine, and iron chloride) in a N2 atmosphere with a eutectic salt (KCl/ZnCl2 ) as the porogen. The obtained magnetic N-doped mesoporous carbon showed excellent characteristics, such as strong magnetic response, high surface area, large pore volume, and abundant π-electron system, which endow it with a great potential as a magnetic solid-phase extraction adsorbent. To evaluate its adsorption performance, the magnetic N-doped mesoporous carbon was used for the extraction of three phthalate esters from soft drink samples followed by high-performance liquid chromatographic analysis. Under the optimum conditions, the developed method showed a good linearity (1.0-120.0 ng/mL), low limit of detection (0.1-0.3 ng/mL, S/N = 3), and good recoveries (83.2-119.0%) in soft drink samples. The results indicated that the magnetic N-doped mesoporous carbon has an excellent adsorption capacity for phthalate esters and the present method is simple, accurate, and highly efficient for the extraction and determination of phthalate esters in complex matrix samples.

  6. Properties of pyrolytic chars and activated carbons derived from pilot-scale pyrolysis of used tires.

    PubMed

    Li, S Q; Yao, Q; Wen, S E; Chi, Y; Yan, J H

    2005-09-01

    Used tires were pyrolyzed in a pilot-scale quasi-inert rotary kiln. Influences of variables, such as time, temperature, and agent flow, on the activation of obtained char were subsequently investigated in a laboratory-scale fixed bed. Mesoporous pores are found to be dominant in the pore structures of raw char. Brunauer-Emmett-Teller (BET) surfaces of activated chars increased linearly with carbon burnoff. The carbon burnoff of tire char achieved by carbon dioxide (CO2) under otherwise identical conditions was on average 75% of that achieved by steam, but their BET surfaces are almost the same. The proper activation greatly improved the aqueous adsorption of raw char, especially for small molecular adsorbates, for example, phenol from 6 to 51 mg/g. With increasing burnoff, phenol adsorption exhibited a first-stage linear increase followed by a rapid drop after 30% burnoff. Similarly, iodine adsorption first increased linearly, but it held as the burnoff exceeded 40%, which implied that the reduction of iodine adsorption due to decreasing micropores was partially made up by increasing mesopores. Both raw chars and activated chars showed appreciable adsorption capacity of methylene-blue comparable with that of commercial carbons. Thus, tire-derived activated carbons can be used as an excellent mesoporous adsorbent for larger molecular species.

  7. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling.

    PubMed

    Shan, Danna; Deng, Shubo; Zhao, Tianning; Wang, Bin; Wang, Yujue; Huang, Jun; Yu, Gang; Winglee, Judy; Wiesner, Mark R

    2016-03-15

    Ball milling was used to prepare two ultrafine magnetic biochar/Fe3O4 and activated carbon (AC)/Fe3O4 hybrid materials targeted for use in pharmaceutical removal by adsorption and mechanochemical degradation of pharmaceutical compounds. Both hybrid adsorbents prepared after 2h milling exhibited high removal of carbamazepine (CBZ), and were easily separated magnetically. These adsorbents exhibited fast adsorption of CBZ and tetracycline (TC) in the initial 1h. The biochar/Fe3O4 had a maximum adsorption capacity of 62.7mg/g for CBZ and 94.2mg/g for TC, while values obtained for AC/Fe3O4 were 135.1mg/g for CBZ and 45.3mg/g for TC respectively when data were fitted using the Langmuir expression. Solution pH values slightly affected the sorption of TC on the adsorbents, while CBZ sorption was almost pH-independent. The spent adsorbents with adsorbed CBZ and TC were milled to degrade the adsorbed pollutants. The adsorbed TC itself was over 97% degraded after 3h of milling, while about half of adsorbed CBZ were remained. The addition of quartz sand was found to improve the mechanochemical degradation of CBZ on biochar/Fe3O4, and its degradation percent was up to 98.4% at the dose of 0.3g quarts sand/g adsorbent. This research provided an easy method to prepare ultrafine magnetic adsorbents for the effective removal of typical pharmaceuticals from water or wastewater and degrade them using ball milling.

  8. Removal of toxic chemicals from water with activated carbon

    USGS Publications Warehouse

    Dawson, V.K.; Marking, L.L.; Bills, T.D.

    1976-01-01

    Activated carbon was effective in removing fish toxicants and anesthetics from water solutions. Its capacity to adsorb 3-trifluoromethyl-4-nitrophenol (TFM), antimycin, NoxfishA? (5% rotenone), Dibrorms, juglone, MSa??222, and benzocaine ranged from 0.1 to 64 mg per gram of carbon. The adsorptive capacity (end point considered as a significant discharge) of activated carbon for removal of TFM was determined at column depths of 15, 30, and 60 cm; temperatures of 7, 12, 17, and 22 C; pH's of 6.5, 7.5, 8.5, and 9.5; and flow rates of 50, 78, 100, 200, and 940 ml/min. Adsorptive capacity increased when the contact time was increased by reducing the flow rate or increasing the column depth. The adsorptive capacity was not significantly influenced by temperature but was substantially higher at pH 6.5 than at the other pH's tested. A practical and efficient filter for purifying chemically treated water was developed.

  9. Comprehensive study of pore evolution, mesostructural stability, and simultaneous surface functionalization of ordered mesoporous carbon (FDU-15) by wet oxidation as a promising adsorbent.

    PubMed

    Wu, Zhangxiong; Webley, Paul A; Zhao, Dongyuan

    2010-06-15

    Fuctionalization of porous carbon materials through chemical methods orientates the development of new hybrid materials with specific functions. In this paper, a comprehensive study of pore evolution, mesostructural oxidation resistance, and simultaneous surface functionalization of ordered mesoporous carbon FDU-15 under various oxidation conditions is presented for the first time. The mesostructure and pore evolution with increasing oxidative strength are retrieved from XRD, TEM, and N(2) sorption techniques. The textural properties can be conveniently manipulated by changing the oxidation parameters, including different oxidative solution, temperature, and duration. It is revealed that the mesoporous carbon FDU-15 shows excellent structural stability under severe oxidation treatments by acidic (NH(4))(2)S(2)O(8), HNO(3), and H(2)O(2) solutions, much more stable than the mesostructural analogue CMK-3 carbon prepared by the nanocasting method. The surface area and porosity deteriorate to a large extent compared to the pristine carbon, with the micropores/small mesopores as the major contribution to the deterioration. The micropore/small mesopore can be blocked by the attached surface oxides under mild oxidation, while reopened with more carbon layer dissolution under more severe conditions. Simultaneously, high densities of surface oxygen complexes, especially carboxylic groups, can be generated. The contents and properties of the surface oxygen-containing groups are extensively studied by FTIR, TG, elemental analyses, and water and ammonia adsorption techniques. Such surface-functionalized mesoporous carbons can be used as a highly efficient adsorbent for immobilization of heavy metal ions as well as functional organic and biomolecules, with high capacities and excellent binding capabilities. Thus, we believe that the functionalized mesoporous carbon materials can be utilized as a promising solid and stable support for water treatment and organic

  10. Adsorption of Paraquat dichloride from aqueous solution by activated carbon derived from used tires.

    PubMed

    Hamadi, Nadhem K; Sri Swaminathan; Chen, Xiao Dong

    2004-08-09

    The removal of pesticide from wastewater under different batch experimental conditions, using a car tire derived activated carbon was investigated. The pesticide utilized in the study was Paraquat dichloride (1,1-dimethyl-4,4-bipyridyl dichloride), which is a well known herbicide. The adsorbent was produced from the pyrolysis and activation of used tires (TAC). The performances of this adsorbent and a commercial activated carbon F300 (CAC) have been compared. It was determined that the adsorption of Paraquat was weakly pH dependent. The effects of particle size, carbon dosage, temperature and the initial concentration of the Paraquat were studied. Further experiments investigating the regeneration capabilities of the tire-supplied carbon were performed. The regenerated carbons that were washed with basic pH solution were found to have the best sorption capacity recovery. It was found that the rate of sorption of Paraquat onto the carbon is very fast with almost 90% of the maximum possible adsorption taking place in the first 5 min. Nevertheless, the batch sorption kinetics was fitted for a first-order reversible reaction, a pseudo-first-order reaction and a pseudo-second-order reaction. The pseudo-second-order chemical reaction model appears to provide the best correlation. The applicability of the Langmuir isotherm for the present system has been evaluated at different temperatures. The isotherms show that the sorption capacity of CAC decreases with temperature and the dominant mechanism of CAC adsorption is physical sorption.

  11. Removal of gadolinium-based contrast agents: adsorption on activated carbon.

    PubMed

    Elizalde-González, María P; García-Díaz, Esmeralda; González-Perea, Mario; Mattusch, Jürgen

    2017-01-31

    Three carbon samples were employed in this work, including commercial (1690 m(2) g(-1)), activated carbon prepared from guava seeds (637 m(2) g(-1)), and activated carbon prepared from avocado kernel (1068 m(2) g(-1)), to study the adsorption of the following gadolinium-based contrast agents (GBCAs): gadoterate meglumine Dotarem®, gadopentetate dimeglumine Magnevist®, and gadoxetate disodium Primovist®. The activation conditions with H3PO4 were optimized using a Taguchi methodology to obtain mesoporous materials. The best removal efficiency by square meter in a batch system in aqueous solution and model urine was achieved by avocado kernel carbon, in which mesoporosity prevails over microporosity. The kinetic adsorption curves were described by a pseudo-second-order equation, and the adsorption isotherms in the concentration range 0.5-6 mM fit the Freundlich equation. The chemical characterization of the surfaces shows that materials with a greater amount of phenolic functional groups adsorb the GBCA better. Adsorption strongly depends on the pH due to the combination of the following factors: contrast agent protonated forms and carbon surface charge. The tested carbon samples were able to adsorb 70-90% of GBCA in aqueous solution and less in model urine. This research proposes a method for the elimination of GBCA from patient urine before its discharge into wastewater.

  12. Magnetite decorated activated carbon composites for water purification

    NASA Astrophysics Data System (ADS)

    Barala, Sunil Kumar; Arora, Manju; Saini, Parveen

    2013-06-01

    Activated carbon decorated with magnetite (ACMG) nanoparticles composites have been prepared by facile method via impregnation of AC with stable dispersion of superparamagnetic MG nanoparticles followed by drying. These composites exhibit both magnetic and porosity behavior which can be easily optimized by controlling the weight ratio of two phases. The structural, magnetic, thermal and morphological properties of these as synthesized ACMG samples were characterized by powder XRD, FTIR, VSM and SEM techniques. The ACMG powder has been used for water purification having methylene blue (MB) dye as an impurity. The nanoporosity of these composites allow rapid adsorption of MB and their magnetic behavior helps in single step separation of MB adsorbed ACMG particles by the application of external magnetic field.

  13. Sorption of boron trifluoride by activated carbons

    SciTech Connect

    Polevoi, A.S.; Petrenko, A.E.

    1988-01-10

    The sorption of born trifluoride on AG-3, SKT, SKT-3, SKT-7, SKT-4A, SKT-6A, and SKT-2B carbons was investigated. The sorption isotherms for both vapors and gas were determined volumetrically. The coefficients of two equations described the sorption of BF/sub 3/ in the sorption of BF/sub 3/ on active carbons. Heats of sorption of BF/sub 3/ on the activated carbons are shown and the sorption isotherms and temperature dependences of the equilibrium pressure of BF/sub 3/ for activated carbons were presented. The values of the heats of sorption indicated the weak character of the reaction of BF/sub 3/ with the surface of the carbons. The equations can be used for calculating the phase equilibrium of BF/sub 3/ on carbons in a wider range of temperatures and pressures.

  14. Activation and Micropore Structure Determination of Activated Carbon-Fiber Composites

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.

    1999-04-23

    Previous work focused on the production of carbon fiber composites and subsequently activating them to induce adsorbent properties. One problem related to this approach is the difficulty of uniformly activating large composites. In order to overcome this problem, composites have been made from pre-activated fibers. The loss of surface area upon forming the composites after activation of the fibers was investigated. The electrical resistivity and strength of these composites were compared to those made by activation after forming. It was found that the surface area is reduced by about 35% by forming the composite from pre-activated fibers. However, the properties of the activated sample are very uniform: the variation in surface area is less than {+-}0.5%. So, although the surface area is somewhat reduced, it is believed that making composites from pre-activated fibers could be useful in applications where the BET surface area is not required to be very high. The strength of the composites produced from pre-activated fibers is lower than for composites activated after forming when the carbon burnoff is below 45%. For higher burnoffs, the strength of composites made with pre-activated fibers is as good or better. In both cases, there is a dramatic decrease in strength when the fiber:binder ratio is reduced below 4:1. The electrical resistivity is slightly higher for composites made from pre-activated fibers than for composites that are activated after forming, other parameters being constant (P-200 fibers, similar carbon burnoffs). For both types of composite the resistivity was also found to increase with carbon burnoff. This is attributed to breakage of the fiber causing shorter conductive paths. The electrical resistivity also increases when the binder content is lowered, which suggests that there are fewer solid contact points between the fibers.

  15. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon.

    PubMed

    Deng, Shubo; Nie, Yao; Du, Ziwen; Huang, Qian; Meng, Pingping; Wang, Bin; Huang, Jun; Yu, Gang

    2015-01-23

    A bamboo-derived granular activated carbon with large pores was successfully prepared by KOH activation, and used to remove perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from aqueous solution. The granular activated carbon prepared at the KOH/C mass ratio of 4 and activation temperature of 900°C had fast and high adsorption for PFOS and PFOA. Their adsorption equilibrium was achieved within 24h, which was attributed to their fast diffusion in the micron-sized pores of activated carbon. This granular activated carbon exhibited the maximum adsorbed amount of 2.32mmol/g for PFOS and 1.15mmol/g for PFOA at pH 5.0, much higher than other granular and powdered activated carbons reported. The activated carbon prepared under the severe activation condition contained many enlarged pores, favorable for the adsorption of PFOS and PFOA. In addition, the spent activated carbon was hardly regenerated in NaOH/NaCl solution, while the regeneration efficiency was significantly enhanced in hot water and methanol/ethanol solution, indicating that hydrophobic interaction was mainly responsible for the adsorption. The regeneration percent was up to 98% using 50% ethanol solution at 45°C.

  16. Characteristic and mercury adsorption of activated carbon produced by CO2 of chicken waste.

    PubMed

    Huang, Yaji; Jin, Baosheng; Zhong, Zhaoping; Zhong, Wenqi; Xiao, Rui

    2008-01-01

    Preparation of activated carbon from chicken waste is a promising way to produce a useful adsorbent for Hg removal. A three-stage activation process (drying at 200 degrees C, pyrolysis in N2 atmosphere, followed by CO2 activation) was used for the production of activated samples. The effects of carbonization temperature (400-600 degrees C), activation temperature (700-900 degrees C), and activation time (1-2.5 h) on the physicochemical properties (weight-loss and BET surface) of the prepared carbon were investigated. Adsorptive removal of mercury from real flue gas onto activated carbon has been studied. The activated carbon from chicken waste has the same mercury capacity as commercial activated carbon (Darco LH) (Hg(v): 38.7% vs. 53.5%, Hg(0): 50.5% vs. 68.8%), although its surface area is around 10 times smaller, 89.5 m2/g vs. 862 m2/g. The low cost activated carbon can be produced from chicken waste, and the procedure is suitable.

  17. Adsorption equilibria of chlorinated organic solvents onto activated carbon

    SciTech Connect

    Yun, J.H.; Choi, D.K.; Kim, S.H.

    1998-04-01

    Adsorption equilibria of dichloromethane, 1,1,1-trichloroethane, and trichloroethylene on activated carbon were obtained by a static volumetric technique. Isotherms were measured for the pure vapors in the temperature range from 283 to 363 K and pressures up to 60 kPa for dichloromethane, 16 kPa for 1,1,1-trichloroethane, and 7 kPa for trichloroethylene, respectively. The Toth and Dubinin-Radushkevich equations were used to correlate experimental isotherms. Thermodynamic properties such as the isosteric heat of adsorption and the henry`s constant were calculated. It was found that the values of isosteric heat of adsorption were varied with surface loading. Also, the Henry`s constant showed that the order of adsorption affinity is 1,1,1-trichloroethane, trichloroethylene, and dichloromethane. By employing the Dubinin-Radushkevich equation, the limiting volume of the adsorbed space, which equals micropore volume, was determined, and its value was found to be approximately independent of adsorbates.

  18. The influence of activating agents on the performance of rice husk-based carbon for sodium lauryl sulfate and chrome (Cr) metal adsorptions

    NASA Astrophysics Data System (ADS)

    Arneli; Safitri, Z. F.; Pangestika, A. W.; Fauziah, F.; Wahyuningrum, V. N.; Astuti, Y.

    2017-02-01

    This research aims to study the influence of activating agents to produce rice husk based-carbon with high adsorption capacity and efficiency for either hazardous organic molecules or heavy metals which are unfriendly for the environment. Firstly, rice husk was burned by pyrolysis at different temperatures to produce rice husk-based carbon. To improve its ability as an adsorbent, carbon was treated with activating agents, namely, H3PO4 and KOH at room and high temperature (420 °C). The performance of carbon was then tested by contacting it with surfactant (SLS). Finally, the surfactant-modified active carbon was applied for chrome metal removal. The result shows that activation of carbon using phosphate acid (H3PO4) was more effective than potassium hydroxide (KOH) conducted at high temperature to adsorb sodium lauryl sulfate (SLS) and chrome metal with the adsorption capacity 1.50 mgg-1 and 0.375 mgg-1, respectively.

  19. Synthesis of high surface area carbon adsorbents prepared from pine sawdust-Onopordum acanthium L. for nonsteroidal anti-inflammatory drugs adsorption.

    PubMed

    Álvarez-Torrellas, S; Muñoz, M; Zazo, J A; Casas, J A; García, J

    2016-12-01

    Chemically activated carbon materials prepared from pine sawdust-Onopordum acanthium L. were studied for the removal of diclofenac and naproxen from aqueous solution. Several carbons, using different proportions of precursors were obtained (carbon C1 to carbon C5) and the chemical modification by liquid acid and basic treatments of C1 were carried out. The textural properties of the carbons, evaluated by N2 adsorption-desorption isotherms, revealed that the treatments with nitric acid and potassium hydroxide dramatically reduced the specific surface area and the pore volume of the carbon samples. The surface chemistry characterization, made by thermal programmed decomposition studies, determination of isoelectric point and Boehm's titration, showed the major presence of lactone and phenol groups on the activated carbons surface, being higher the content when the acidic strength of the carbon increased. Diclofenac and naproxen kinetic data onto C1 carbon followed pseudo-second order model. The adsorption equilibrium isotherms of C1 and the modified carbons were well described by both Sips and GAB isotherm equations. The highest adsorption capacity was found for naproxen onto C1 activated carbon, 325 mg g(-1), since the liquid acid and basic functionalization of the carbon led to a severe decreasing in the adsorption removal of the target compounds.

  20. Effect of surface characteristics of wood-based activated carbons on adsorption of hydrogen sulfide

    SciTech Connect

    Adib, F.; Bagreev, A.; Bandosz, T.J.

    1999-06-15

    Three wood-based commercial activated carbons supplied by Westvaco were studied as adsorbents of hydrogen sulfide. The initial materials were characterized using sorption of nitrogen, Boehm titration, potentiometric titration, water sorption, thermal analysis, and temperature-programmed desorption. The breakthrough tests were done at low concentrations of H{sub 2}S in the input gas to simulate conditions in water pollution control plants where carbon beds are used as odor adsorbents. In spite of apparent general similarities in the origin of the materials, method of activation, surface chemistry, and porosity, significant differences in their performance as hydrogen sulfide adsorbents were observed. Results show that the combined effect of the presence of pores large enough to accommodate surface functional groups and small enough to have the film of water at relatively low pressure contributes to oxidation of hydrogen sulfide. Moreover, there are features of activated carbon surfaces such as local environment of acidic/basic groups along with the presence of alkali metals which are important to the oxidation process.

  1. Arsenic removal from aqueous solutions by adsorption onto iron oxide/activated carbon magnetic composite

    PubMed Central

    2014-01-01

    In this work the adsorption features of activated carbon and the magnetic properties of iron oxides were combined in a composite to produce magnetic adsorbent. Batch experiments were conducted to study the adsorption behavior of arsenate onto the synthetic magnetic adsorbent. The effects of initial solution pH, contact time, adsorbent dosage and co-existing anionic component on the adsorption of arsenate were investigated. The results showed that the removal percentage of arsenate could be over 95% in the conditions of adsorbent dosage 5.0 g/L, initial solution pH 3.0-8.0, and contact time 1 h. Under the experimental conditions, phosphate and silicate caused greater decrease in arsenate removal percentage among the anions, and sulfate had almost no effect on the adsorption of arsenate. Kinetics study showed that the overall adsorption rate of arsenate was illustrated by the pseudo-second-order kinetic model. The applicability of the Langmuir and Freundlich models for the arsenate adsorption data was tested. Both the models adequately describe the experimental data. Moreover, the magnetic composite adsorbent could be easily recovered from the medium by an external magnetic field. It can therefore be potentially applied for the treatment of water contaminated by arsenate. PMID:24602339

  2. Temperature control during regeneration of activated carbon fiber cloth with resistance-feedback.

    PubMed

    Johnsen, David L; Rood, Mark J

    2012-10-16

    Electrothermal swing adsorption (ESA) of organic compounds from gas streams with activated carbon fiber cloth (ACFC) reduces emissions to the atmosphere and recovers feedstock for reuse. Local temperature measurement (e.g., with a thermocouple) is typically used to monitor/control adsorbent regeneration cycles. Remote electrical resistance measurement is evaluated here as an alternative to local temperature measurement. ACFC resistance that was modeled based on its physical properties was within 10.5% of the measured resistance values during electrothermal heating. Resistance control was developed based on this measured relationship and used to control temperature to within 2.3% of regeneration set-point temperatures. Isobutane-laden adsorbent was then heated with resistance control. After 2 min of heating, the temperature of the adsorbent with isobutane was 13% less than the adsorbent without isobutane. This difference decreased to 2.1% after 9 min of heating, showing desorption of isobutane. An ACFC cartridge was also heated to 175 °C for 900 cycles with its resistance and adsorption capacity values remaining within 3% and 2%, respectively. This new method to control regeneration power application based on rapid sensing of the adsorbent's resistance removes the need for direct-contact temperature sensors providing a simple, cost-efficient, and long-term regeneration technique for ESA systems.

  3. Effect of temperature on the desorption and decomposition of mustard from activated carbon

    SciTech Connect

    Karwacki, C.J.; Buchanan, J.H.; Mahle, J.J.; Buettner, L.C.; Wagner, G.W.

    1999-12-07

    Experimental data are reported for the desorption of bis-2-chloroethyl sulfide, (a sulfur mustard or HD) and its decomposition products from activated coconut shell carbon (CSC). The results show that under equilibrium conditions changes in the HD partial pressure are affected primarily by its loading and temperature of the adsorbent. The partial pressure of adsorbed HD is found to increase by about a decade for each 25 C increase in temperature for CSC containing 0.01--0.1 g/g HD. Adsorption equilibria of HD appear to be little affected by coadsorbed water. Although complicated by its decomposition, the distribution of adsorbed HD (of known amount) appears to occupy pores of similar energy whether dry or in the presence of adsorbed water. On dry CSC adsorbed HD appears stable, while in the presence of water its decomposition is marked by hydrolysis at low temperature and thermal decomposition at elevated temperatures. The principal volatile products desorbed are 1,4-thioxane, 2-chloroethyl vinyl sulfide and 1,4-dithiane, with the latter favoring elevated temperatures.

  4. Preparation of Granular Red Mud Adsorbent using Different Binders by Microwave Pore - Making and Activation Method

    NASA Astrophysics Data System (ADS)

    Le, Thiquynhxuan; Wang, Hanrui; Ju, Shaohua; Peng, Jinhui; Zhou, Liexing; Wang, Shixing; Yin, Shaohua; Liu, Chao

    2016-04-01

    In this work, microwave energy is used for preparing a granular red mud (GRM) adsorbent made of red mud with different binders, such as starch, sodium silicate and cement. The effects of the preparation parameters, such as binder type, binder addition ratio, microwave heating temperature, microwave power and holding time, on the absorption property of GRM are investigated. The BET surface area, strength, pore structure, XRD and SEM of the GRM absorbent are analyzed. The results show that the microwave roasting has a good effect on pore-making of GRM, especially when using organic binder. Both the BET surface area and the strength of GRM obtained by microwave heating are significantly higher than that by conventional heating. The optimum conditions are obtained as follows: 6:100 (w/w) of starch to red mud ratio, microwave roasting with a power of 2.6 kW at 500℃ for holding time of 30 min. The BET surface area, pore volume and average pore diameter of GRM prepared at the optimum conditions are 15.58 m2/g, 0.0337 cm3/g and 3.1693 A0, respectively.

  5. Agricultural Waste as Sources for Mercury Adsorbents in Gas Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased emphasis on reduction of mercury emissions from coal fired electric power plants have resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream where it adsorbs the mer...

  6. Agricultural By-products as Mercury Adsorbents in Gas Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased emphasis on reduction of mercury emissions from coal fired electric power plans have resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream where is adsorbs the merc...

  7. Catalytic activation of carbon-carbon bonds in cyclopentanones.

    PubMed

    Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin

    2016-11-24

    In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon-carbon single bonds (C-C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds. The challenge in achieving such activation is the kinetic inertness of C-C bonds and the relative weakness of newly formed carbon-metal bonds. The most common tactic starts with a three- or four-membered carbon-ring system, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C-C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C-C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C-C bond can be activated; this is followed by activation of a carbon-hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones-a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate.

  8. Activated carbon adsorption of PAHs from vegetable oil used in soil remediation.

    PubMed

    Gong, Zongqiang; Alef, Kassem; Wilke, Berndt-Michael; Li, Peijun

    2007-05-08

    Vegetable oil has been proven to be advantageous as a non-toxic, cost-effective and biodegradable solvent to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated soils for remediation purposes. The resulting vegetable oil contained PAHs and therefore required a method for subsequent removal of extracted PAHs and reuse of the oil in remediation processes. In this paper, activated carbon adsorption of PAHs from vegetable oil used in soil remediation was assessed to ascertain PAH contaminated oil regeneration. Vegetable oils, originating from lab scale remediation, with different PAH concentrations were examined to study the adsorption of PAHs on activated carbon. Batch adsorption tests were performed by shaking oil-activated carbon mixtures in flasks. Equilibrium data were fitted with the Langmuir and Freundlich isothermal models. Studies were also carried out using columns packed with activated carbon. In addition, the effects of initial PAH concentration and activated carbon dosage on sorption capacities were investigated. Results clearly revealed the effectiveness of using activated carbon as an adsorbent to remove PAHs from the vegetable oil. Adsorption equilibrium of PAHs on activated carbon from the vegetable oil was successfully evaluated by the Langmuir and Freundlich isotherms. The initial PAH concentrations and carbon dosage affected adsorption significantly. The results indicate that the reuse of vegetable oil was feasible.

  9. Adsorption of malachite green on groundnut shell waste based powdered activated carbon

    SciTech Connect

    Malik, R.; Ramteke, D.S. Wate, S.R.

    2007-07-01

    In the present technologically fast changing situation related to waste management practices, it is desirable that disposal of plant waste should be done in a scientific manner by keeping in view economic and pollution considerations. This is only possible when the plant waste has the potential to be used as raw material for some useful product. In the present study, groundnut shell, an agricultural waste, was used for the preparation of an adsorbent by chemical activation using ZnCl{sub 2} under optimized conditions and its comparative characterisation was conducted with commercially available powdered activated carbon (CPAC) for its physical, chemical and adsorption properties. The groundnut shell based powdered activated carbon (GSPAC) has a higher surface area, iodine and methylene blue number compared to CPAC. Both of the carbons were used for the removal of malachite green dye from aqueous solution and the effect of various operating variables, viz. adsorbent dose (0.1-1 g l{sup -1}), contact time (5-120 min) and adsorbate concentrations (100-200 mg l{sup -1}) on the removal of dye, has been studied. The experimental results indicate that at a dose of 0.5 g l{sup -1} and initial concentration of 100 mg l{sup -1}, GSPAC showed 94.5% removal of the dye in 30 min equilibrium time, while CPAC removed 96% of the dye in 15 min. The experimental isotherm data were analyzed using the linearized forms of Freundlich, Langmuir and BET equations to determine maximum adsorptive capacities. The equilibrium data fit well to the Freundlich isotherm, although the BET isotherm also showed higher correlation for both of the carbons. The results of comparative adsorption capacity of both carbons indicate that groundnut shell can be used as a low-cost alternative to commercial powdered activated carbon in aqueous solution for dye removal.

  10. Preparation, characterization, and dye removal study of activated carbon prepared from palm kernel shell.

    PubMed

    García, Juan Rafael; Sedran, Ulises; Zaini, Muhammad Abbas Ahmad; Zakaria, Zainul Akmar

    2017-04-08

    Palm oil mill wastes (palm kernel shell (PKS)) were used to prepare activated carbons, which were tested in the removal of colorants from water. The adsorbents were prepared by 1-h impregnation of PKS with ZnCl2 as the activating agent (PKS:ZnCl2 mass ratios of 1:1 and 2:1), followed by carbonization in autogenous atmosphere at 500 and 550 °C during 1 h. The characterization of the activated carbons included textural properties (porosity), surface chemistry (functional groups), and surface morphology. The dye removal performance of the different activated carbons was investigated by means of the uptake of methylene blue (MB) in solutions with various initial concentrations (25-400 mg/L of MB) at 30 °C, using a 0.05-g carbon/50-mL solution relationship. The sample prepared with 1:1 PKS:ZnCl2 and carbonized at 550 °C showed the highest MB adsorption capacity (maximum uptake at the equilibrium, q max = 225.3 mg MB / g adsorbent), resulting from its elevated specific surface area (BET, 1058 m(2)/g) and microporosity (micropore surface area, 721 m(2)/g). The kinetic experiments showed that removals over 90% of the equilibrium adsorptions were achieved after 4-h contact time in all the cases. The study showed that palm oil mill waste biomass could be used in the preparation of adsorbents efficient in the removal of colorants in wastewaters.

  11. Batch and column adsorption of herbicide fluroxypyr on different types of activated carbons from water with varied degrees of hardness and alkalinity.

    PubMed

    Pastrana-Martínez, L M; López-Ramón, M V; Fontecha-Cámara, M A; Moreno-Castilla, C

    2010-02-01

    There has been little research into the effects of the water hardness and alkalinity of surface waters on the adsorption of herbicides on activated carbons. The aim of this study was to determine the influence of these water characteristics on fluroxypyr adsorption on different activated carbons. At low fluroxypyr surface concentrations, the amount adsorbed from distilled water was related to the surface hydrophobicity. Surface area of carbons covered by fluroxypyr molecules ranged from 60 to 65%. Variations in fluroxypyr solubility with water hardness and alkalinity showed a salting-in effect. Calcium, magnesium and bicarbonate ions were adsorbed to a varied extent on the activated carbons. The presence of fluroxypyr in solution decreased their adsorption due to a competition effect. K(F) from the Freundlich equation linearly increased with water hardness due to salt-screened electrostatic repulsions between charged fluroxypyr molecules. The amount adsorbed from distilled water was largest at high fluroxypyr solution concentrations, because there was no competition between inorganic ions and fluroxypyr molecules. The column breakthrough volume and the amount adsorbed at breakthrough were smaller in tap versus distilled water. Carbon consumption was lower with activated carbon cloth than with the use of granular activated carbon.

  12. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  13. Preparation of activated carbons from raw and biotreated agricultural residues for removal of volatile organic compounds.

    PubMed

    Hsi, Hsing-Cheng; Horng, Richard S; Pan, Tai-An; Lee, Shin-Ku

    2011-05-01

    Activated carbons with diverse physical and chemical properties were produced from four agriculture residues, including raw barley husk, biotreated barley husk, rice husk, and pistachio shell. Results showed that with adequate steam activation (30-90 min, 50% H2O(g),/50% N2), activated carbons with surface areas between 360 and 950 m2 g(-1) were developed. Further increases in the activation time destroyed the pore structure of activated carbons, which resulted in a decrease in the surface area and pore volume. Biotreated agricultural residues were found to be suitable precursors for producing mesoporous activated carbons. The oxygen content of activated carbons increased with increasing activation time. Results from X-ray photoelectron spectroscopy examination further suggested that H2O molecules react with the carbon surface, enhancing the deconvoluted peak area of carbonyl and carboxyl groups. Equilibrium adsorption of toluene indicated that the adsorption capacities increased with an increase in the inlet toluene concentration and a decrease in temperature. The adsorption isotherms were successfully fitted with Freundlich, Langmuir, and Dubinin-Radushkevich equations. Activated carbons derived from agricultural residues appear to be more applicable to adsorb volatile organic compounds at a low concentration and high-temperature environment.

  14. Structural characteristics of activated carbons and ibuprofen adsorption affected by bovine serum albumin.

    PubMed

    Melillo, M; Gun'ko, V M; Tennison, S R; Mikhalovska, L I; Phillips, G J; Davies, J G; Lloyd, A W; Kozynchenko, O P; Malik, D J; Streat, M; Mikhalovsky, S V

    2004-03-30

    Structural characteristics of a series of MAST carbons were studied using scanning electron microscopy images and the nitrogen adsorption isotherms analyzed with several models of pores and different adsorption equations. A developed model of pores as a mixture of gaps between spherical nanoparticles and slitlike pores was found appropriate for MAST carbons. Adsorption of ibuprofen [2-(4-isobutylphenyl)propionic acid] on activated carbons possessing different pore size distributions in protein-free and bovine serum albumin (BSA)-containing aqueous solutions reveals the importance of the contribution of mesopores to the total porosity of adsorbents. The influence of the mesoporosity increases when considering the removal of the drug from the protein-containing solution. Cellulose-coated microporous carbon Norit RBX adsorbs significantly smaller amounts of ibuprofen than uncoated micro/mesoporous MAST carbons whose adsorption capability increases with increasing mesoporosity and specific surface area, burnoff dependent variable. A similar effect of broad pores is observed on adsorption of fibrinogen on the same carbons. Analysis of the ibuprofen adsorption data using Langmuir and D'Arcy-Watt equations as the kernel of the Fredholm integral equation shows that the nonuniformity of ibuprofen adsorption complexes diminishes with the presence of BSA. This effect may be explained by a partial adsorption of ibuprofen onto protein molecules immobilized on carbon particles and blocking of a portion of narrow pores.

  15. Adsorption of cadmium ions on oxygen surface sites in activated carbon

    SciTech Connect

    Jia, Y.F.; Thomas, K.M.

    2000-02-08

    Various types of oxygen functional groups were introduced onto the surface of coconut shell derived activated carbon by oxidation using nitric acid. Fourier-transform infrared spectroscopy (FTIR), temperature-programmed desorption (TPD), and selective neutralization were used to characterize the surface oxygen functional groups. The oxidized carbons were also heat treated to provide a suite of carbons where the oxygen functional groups of various thermal stabilities were varied progressively. The adsorption of cadmium ions was enhanced dramatically by oxidation of the carbon. The ratio of released protons to adsorbed cadmium ions on oxidized carbon was approximately 2, indicating cation exchange was involved in the process of adsorption. Na{sup +} exchange studies with the oxidized carbon gave a similar ratio. After heat treatment of the oxidized carbons to remove oxygen functional groups, the ratio of H{sup +} released to Cd{sup 2+} adsorbed and the adsorption capacity decreased significantly. Both reversible and irreversible processes were involved in cadmium ion adsorption with reversible adsorption having higher enthalpy. The irreversible adsorption resulted from cation exchange with carboxylic acid groups, whereas the reversible adsorption probably involved physisorption of the partially hydrated cadmium ion.

  16. Oil palm biomass-based adsorbents for the removal of water pollutants--a review.

    PubMed

    Ahmad, Tanweer; Rafatullah, Mohd; Ghazali, Arniza; Sulaiman, Othman; Hashim, Rokiah

    2011-07-01

    This article presents a review on the role of oil palm biomass (trunks, fronds, leaves, empty fruit bunches, shells, etc.) as adsorbents in the removal of water pollutants such as acid and basic dyes, heavy metals, phenolic compounds, various gaseous pollutants, and so on. Numerous studies on adsorption properties of various low-cost adsorbents, such as agricultural wastes and its based activated carbons, have been reported in recent years. Studies have shown that oil palm-based adsorbent, among the low-cost adsorbents mentioned, is the most promising adsorbent for removing water pollutants. Further, these bioadsorbents can be chemically modified for better efficiency and can undergo multiple reuses to enhance their applicability at an industrial scale. It is evident from a literature survey of more than 100 recent papers that low-cost adsorbents have demonstrated outstanding removal capabilities for various pollutants. The conclusion is been drawn from the reviewed literature, and suggestions for future research are proposed.

  17. Removal of CO2 in a multistage fluidized bed reactor by diethanol amine impregnated activated carbon.

    PubMed

    Das, Dipa; Samal, Debi Prasad; Meikap, Bhim C

    2016-07-28

    To mitigate the emission of carbon dioxide (CO2), we have developed and designed a four-stage fluidized bed reactor. There is a counter current exchange between solid adsorbent and gas flow. In this present investigation diethanol amine (DEA) impregnated activated carbon made from green coconut shell was used as adsorbent. This type of adsorbent not only adsorbs CO2 due to the presence of pore but also chemically reacts with CO2 and form secondary zwitterions. Sampling and analysis of CO2 was performed using Orsat apparatus. The effect of initial CO2 concentration, gas velocity, solid rate, weir height etc. on removal efficiency of CO2 have been investigated and presented. The percentage removal of CO2 has been found close to 80% under low gas flow rate (0.188 m/s), high solid flow rate (4.12 kg/h) and weir height of 50 mm. From this result it has been found out that multistage fluidized bed reactor may be a suitable equipment for removal of CO2 from flue gas.

  18. Enhanced Raman spectroscopy of molecules adsorbed on carbon-doped TiO₂ obtained from titanium carbide: a visible-light-assisted renewable substrate.

    PubMed

    Kiran, Vankayala; Sampath, Srinivasan

    2012-08-01

    Titanium carbide (TiC) is an electrically conducting material with favorable electrochemical properties. In the present studies, carbon-doped TiO(2) (C-TiO(2)) has been synthesized from TiC particles, as well as TiC films coated on stainless steel substrate via thermal annealing under various conditions. Several C-TiO(2) substrates are synthesized by varying experimental conditions and characterized by UV-visible spectroscopy, photoluminescence, X-ray diffraction, and X-ray photoelectron spectroscopic techniques. C-TiO(2) in the dry state (in powder form as well as in film form) is subsequently used as a substrate for enhancing Raman signals corresponding to 4-mercaptobenzoic acid and 4-nitrothiophenol by utilizing chemical enhancement based on charge-transfer interactions. Carbon, a nonmetal dopant in TiO(2), improves the intensities of Raman signals, compared to undoped TiO(2). Significant dependence of Raman intensity on carbon doping is observed. Ameliorated performance obtained using C-TiO(2) is attributed to the presence of surface defects that originate due to carbon as a dopant, which, in turn, triggers charge transfer between TiO(2) and analyte. The C-TiO(2) substrates are subsequently regenerated for repetitive use by illuminating an analyte-adsorbed substrate with visible light for a period of 5 h.

  19. Sustainable conversion of agro-wastes into useful adsorbents

    NASA Astrophysics Data System (ADS)

    Bello, Olugbenga Solomon; Owojuyigbe, Emmanuel Seun; Babatunde, Monsurat Abiodun; Folaranmi, Folasayo Eunice

    2016-11-01

    Preparation and characterization of raw and activated carbon derived from three different selected agricultural wastes: kola nut pod raw and activated (KNPR and KNPA), bean husk raw and activated (BHR and BHA) and coconut husk raw and activated (CHR and CHA) were investigated, respectively. Influences of carbonization and acid activation on the activated carbon were investigated using SEM, FTIR, EDX, pHpzc and Boehm titration techniques, respectively. Carbonization was done at 350 °C for 2 h followed by activation with 0.3 M H3PO4 (ortho-phosphoric acid). Results obtained from SEM, FTIR, and EDX revealed that, carbonization followed by acid activation had a significant influence on morphology and elemental composition of the samples. SEM showed well-developed pores on the surface of the precursors after acid treatment, FTIR spectra revealed reduction, broadening, disappearance or appearance of new peaks after acid activation. EDX results showed highest percentage of carbon by atom respectively in the order BHA > KNPA > CHA respectively. The pHpzc was found to be 5.32, 4.57 and 3.69 for KNPA, BHA and CHA, respectively. Boehm titration result compliments that of pHpzc, indicating that the surfaces of the prepared adsorbents are predominantly acidic. This study promotes a sustainable innovative use of agro-wastes in the production of cheap and readily available activated carbons, thereby ensuring more affordable water and effluent treatment adsorbents.

  20. Optimization of nickel adsorption from aqueous solution by using activated carbon prepared from waste apricot by chemical activation

    NASA Astrophysics Data System (ADS)

    Erdoğan, S.; Önal, Y.; Akmil-Başar, C.; Bilmez-Erdemoğlu, S.; Sarıcı-Özdemir, Ç.; Köseoğlu, E.; İçduygu, G.

    2005-12-01

    Waste apricot supplied by Malatya apricot plant (Turkey) was activated by using chemical activation method and K 2CO 3 was chosen for this purpose. Activation temperature was varied over the temperature range of 400-900 °C and N 2 atmosphere was used with 10 °C/min heat rate. The maximum surface area (1214 m 2/g) and micropore volume (0.355 cm 3/g) were obtained at 900 °C, but activated carbon was predominantly microporous at 700 °C. The resulting activated carbons were used for removal of Ni(II) ions from aqueous solution and adsorption properties have been investigated under various conditions such as pH, activation temperature, adsorbent dosage and nickel concentration. Adsorption parameters were determined by using Langmuir model. Optimal condition was determined as; pH 5, 0.7 g/10 ml adsorbent dosage, 10 mg/l Ni(II) concentration and 60 min contact time. The results indicate that the effective uptake of Ni(II) ions was obtained by activating the carbon at 900 °C.