Sample records for activated carbon application

  1. An Examination of Issues Related to U.S. Lake Erie Natural Gas Development.

    DTIC Science & Technology

    1978-09-01

    37 pg/mL 27 pg/mL 27 pg/mL 27 pg/mL detergent Wac-8 Talc & guar Non-toxic to 10,000 pg/mL in 24 hours gum Wac-10 Talc, silica Non-toxic to 10,000 ug...mL in 24 hours guar gum Fr-10 High molecu- Bioassay Method not applicable lar weight synthetic Fr-19 Polymer Bioassay Method not applicable aData from...Adeorption None Activated carbon. Activated carbon Activated carbon Activated carbon Activated carbon powdered Filtration Sandb Activated carbon. Sand Sand

  2. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage.

    PubMed

    Tan, Xiao-Fei; Liu, Shao-Bo; Liu, Yun-Guo; Gu, Yan-Ling; Zeng, Guang-Ming; Hu, Xin-Jiang; Wang, Xin; Liu, Shao-Heng; Jiang, Lu-Hua

    2017-03-01

    There is a growing interest of the scientific community on production of activated carbon using biochar as potential sustainable precursors pyrolyzed from biomass wastes. Physical activation and chemical activation are the main methods applied in the activation process. These methods could have significantly beneficial effects on biochar chemical/physical properties, which make it suitable for multiple applications including water pollution treatment, CO 2 capture, and energy storage. The feedstock with different compositions, pyrolysis conditions and activation parameters of biochar have significant influences on the properties of resultant activated carbon. Compared with traditional activated carbon, activated biochar appears to be a new potential cost-effective and environmentally-friendly carbon materials with great application prospect in many fields. This review not only summarizes information from the current analysis of activated biochar and their multiple applications for further optimization and understanding, but also offers new directions for development of activated biochar. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Activated carbon from leather shaving wastes and its application in removal of toxic materials.

    PubMed

    Kantarli, Ismail Cem; Yanik, Jale

    2010-07-15

    In this study, utilization of a solid waste as raw material for activated carbon production was investigated. For this purpose, activated carbons were produced from chromium and vegetable tanned leather shaving wastes by physical and chemical activation methods. A detailed analysis of the surface properties of the activated carbons including acidity, total surface area, extent of microporosity and mesoporosity was presented. The activated carbon produced from vegetable tanned leather shaving waste produced has a higher surface area and micropore volume than the activated carbon produced from chromium tanned leather shaving waste. The potential application of activated carbons obtained from vegetable tanned shavings as adsorbent for removal of water pollutants have been checked for phenol, methylene blue, and Cr(VI). Adsorption capacities of activated carbons were found to be comparable to that of activated carbons derived from biomass. 2010 Elsevier B.V. All rights reserved.

  4. Proceedings of the 13th biennial conference on carbon. Extended abstracts and program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1977-01-01

    Properties of carbon are covered including: mechanical and frictional properties; chemical reactivity and surfaces; aerospace applications; carbonization and graphitization; industrial applications; electrical and thermal properties; biomaterials applications; fibers and composites; nuclear applications; activated carbon and adsorption; advances in carbon characterization; and micromechanics and modeling. (GHT)

  5. Developments in carbon materials

    NASA Technical Reports Server (NTRS)

    Burchell, Timothy D.

    1994-01-01

    The following carbon-based materials are reviewed and their applications discussed: fullerenes; graphite (synthetic and manufactured); activated carbon fibers; and carbon-carbon composites. Carbon R&D activities at ORNL are emphasized.

  6. Carbonate Precipitation through Microbial Activities in Natural Environment, and Their Potential in Biotechnology: A Review

    PubMed Central

    Zhu, Tingting; Dittrich, Maria

    2016-01-01

    Calcium carbonate represents a large portion of carbon reservoir and is used commercially for a variety of applications. Microbial carbonate precipitation, a by-product of microbial activities, plays an important metal coprecipitation and cementation role in natural systems. This natural process occurring in various geological settings can be mimicked and used for a number of biotechnologies, such as metal remediation, carbon sequestration, enhanced oil recovery, and construction restoration. In this study, different metabolic activities leading to calcium carbonate precipitation, their native environment, and potential applications and challenges are reviewed. PMID:26835451

  7. Preparation of activated carbon monolith by application of phenolic resins as carbon precursors

    NASA Astrophysics Data System (ADS)

    Sajad, Mehran; Kazemzad, Mahmood; Hosseinnia, Azarmidokht

    2014-04-01

    In the current work, activated carbon monoliths have been prepared by application of different phenolic hydrocarbons namely catechol and resorcinol as carbon precursors. For synthesis of carbon monolith, the precursors have been mixed with Genapol PF-10 as template and then polymerized in the presence of lysine as catalyst. Then the polymerized monolith carbonized in inert atmosphere at 700°C and activated by water steam at 550°C. It was found that resorcinol polymerization is easier than catechol and occurred at 90°C while for polymerization of catechol elevated temperature of 120°C at hydrothermal condition is necessary. The prepared activated carbon samples have been characterized by various analysis methods including scanning electron microscopy (SEM), surface area measurement, and transmission electron microscopy (TEM). The adsorptions of three different aromatic hydrocarbons by the prepared activated carbon samples have also been investigated by high performance liquid chromatography (HPLC) and UV-Vis spectroscopy. It was found that carbon monolith prepared by catechol as carbon precursor has higher adsorpability and strength in comparison with the other sample. The higher performance of carbon monolith prepared by catechol can be associated with its higher active sites in comparison with resorcinol.

  8. Joining and Integration of Advanced Carbon-Carbon Composites to Metallic Systems for Thermal Management Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2008-01-01

    Recent research and development activities in joining and integration of carbon-carbon (C/C) composites to metals such as Ti and Cu-clad-Mo for thermal management applications are presented with focus on advanced brazing techniques. A wide variety of carbon-carbon composites with CVI and resin-derived matrices were joined to Ti and Cu-clad Mo using a number of active braze alloys. The brazed joints revealed good interfacial bonding, preferential precipitation of active elements (e.g., Ti) at the composite/braze interface. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The chemical and thermomechanical compatibility between C/C and metals at elevated temperatures is assessed. The role of residual stresses and thermal conduction in brazed C/C joints is discussed. Theoretical predictions of the effective thermal resistance suggest that composite-to-metal brazed joints may be promising for lightweight thermal management applications.

  9. Assessment of the use of sorbent amendments for reduction of mercury methylation in wetland sediments at Acadia National Park, Maine

    USGS Publications Warehouse

    Huntington, Thomas G.; Lewis, Ariel; Amirbahman, Aria; Marvin-DiPasquale, Mark C.; Culbertson, Charles W.

    2015-01-01

    The results of field mesocosm experiments indicated that there was a decreasing trend in pore-water methylmercury concentration after application of granular activated carbon but methylation was not affected because there was no corresponding decrease in sediment methylmercury concentration. The application of granular activated carbon resulted in the sorption of methylmercury. The application of granular activated carbon resulted in an increase in the distribution coefficient for methylmercury indicating that this amendment caused a higher proportion of methylmercury to be associated with the sediment than the pore water in comparison to the reference (untreated) condition. Experiments to test whether zero-valent iron or granular activated carbon would reduce the biouptake of methylmercury in snails were inconsistent; zero-valent iron had no effect on uptake in one experiment but resulted in a significant decrease in uptake in a second experiment. Granular activated carbon did not affect biouptake in either experiment.

  10. Activated, coal-based carbon foam

    DOEpatents

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  11. Ternary carbon composite films for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Tran, Minh-Hai; Jeong, Hae Kyung

    2017-09-01

    A simple, binder-free, method of making supercapacitor electrodes is introduced, based on modification of activated carbon with graphite oxide and carbon nanotubes. The three carbon precursors of different morphologies support each other to provide outstanding electrochemical performance, such as high capacitance and high energy density. The ternary carbon composite shows six times higher specific capacitance compared to that of activated carbon itself with high retention. The excellent electrochemical properties of the ternary composite attribute to the high surface area of 1933 m2 g-1 and low equivalent series resistance of 2 Ω, demonstrating that it improve the electrochemical performance for supercapacitor applications.

  12. High-strength porous carbon and its multifunctional applications

    DOEpatents

    Wojtowicz, Marek A; Rubenstein, Eric P; Serio, Michael A; Cosgrove, Joseph E

    2013-12-31

    High-strength porous carbon and a method of its manufacture are described for multifunctional applications, such as ballistic protection, structural components, ultracapacitor electrodes, gas storage, and radiation shielding. The carbon is produced from a polymer precursor via carbonization, and optionally by surface activation and post-treatment.

  13. [Soil organic carbon fractionation methods and their applications in farmland ecosystem research: a review].

    PubMed

    Zhang, Guo; Cao, Zhi-ping; Hu, Chan-juan

    2011-07-01

    Soil organic carbon is of heterogeneity in components. The active components are sensitive to agricultural management, while the inert components play an important role in carbon fixation. Soil organic carbon fractionation mainly includes physical, chemical, and biological fractionations. Physical fractionation is to separate the organic carbon into active and inert components based on the density, particle size, and its spatial distribution; chemical fractionation is to separate the organic carbon into various components based on the solubility, hydrolizability, and chemical reactivity of organic carbon in a variety of extracting agents. In chemical fractionation, the dissolved organic carbon is bio-available, including organic acids, phenols, and carbohydrates, and the acid-hydrolyzed organic carbon can be divided into active and inert organic carbons. Simulated enzymatic oxidation by using KMnO4 can separate organic carbon into active and non-active carbon. Biological fractionation can differentiate microbial biomass carbon and potential mineralizable carbon. Under different farmland management practices, the chemical composition and pool capacity of soil organic carbon fractions will have different variations, giving different effects on soil quality. To identify the qualitative or quantitative relationships between soil organic carbon components and carbon deposition, we should strengthen the standardization study of various fractionation methods, explore the integrated application of different fractionation methods, and sum up the most appropriate organic carbon fractionation method or the appropriate combined fractionation methods for different farmland management practices.

  14. Applications for activated carbons from waste tires: Natural gas storage and air pollution control

    USGS Publications Warehouse

    Brady, T.A.; Rostam-Abadi, M.; Rood, M.J.

    1996-01-01

    Natural gas storage for natural gas vehicles and the separation and removal of gaseous contaminants from gas streams represent two emerging applications for carbon adsorbents. A possible precursor for such adsorbents is waste tires. In this study, activated carbon has been developed from waste tires and tested for its methane storage capacity and SO2 removal from a simulated flue-gas. Tire-derived carbons exhibit methane adsorption capacities (g/g) within 10% of a relatively expensive commercial activated carbon; however, their methane storage capacities (Vm/Vs) are almost 60% lower. The unactivated tire char exhibits SO2 adsorption kinetics similar to a commercial carbon used for flue-gas clean-up. Copyright ?? 1996 Elsevier Science Ltd.

  15. Effects of Natural Organic Matter on PCB-Activated Carbon Sorption Kinetics: Implications for Sediment Capping Applications

    EPA Science Inventory

    In-situ capping of polychlorinated biphenyl (PCB) contaminated sediments with layers of sorbents such as activated carbon has been proposed, but several technical questions remain regarding long-term effectiveness. An activated carbon amended sediment cap was mimicked in laborat...

  16. The Promoting Role of Different Carbon Allotropes Cocatalysts for Semiconductors in Photocatalytic Energy Generation and Pollutants Degradation

    PubMed Central

    Han, Weiwei; Li, Zhen; Li, Yang; Fan, Xiaobin; Zhang, Fengbao; Zhang, Guoliang; Peng, Wenchao

    2017-01-01

    Semiconductor based photocatalytic process is of great potential for solving the fossil fuels depletion and environmental pollution. Loading cocatalysts for the modification of semiconductors could increase the separation efficiency of the photogenerated hole-electron pairs, enhance the light absorption ability of semiconductors, and thus obtain new composite photocatalysts with high activities. Kinds of carbon allotropes, such as activated carbon, carbon nanotubes, graphene, and carbon quantum dots have been used as effective cocatalysts to enhance the photocatalytic activities of semiconductors, making them widely used for photocatalytic energy generation, and pollutants degradation. This review focuses on the loading of different carbon allotropes as cocatalysts in photocatalysis, and summarizes the recent progress of carbon materials based photocatalysts, including their synthesis methods, the typical applications, and the activity enhancement mechanism. Moreover, the cocatalytic effect among these carbon cocatalysts is also compared for different applications. We believe that our work can provide enriched information to harvest the excellent special properties of carbon materials as a platform to develop more efficient photocatalysts for solar energy utilization. PMID:29164101

  17. The Promoting Role of Different Carbon Allotropes Cocatalysts for Semiconductors in Photocatalytic Energy Generation and Pollutants Degradation

    NASA Astrophysics Data System (ADS)

    Han, Weiwei; Li, Zhen; Li, Yang; Fan, Xiaobin; Zhang, Fengbao; Zhang, Guoliang; Peng, Wenchao

    2017-10-01

    Semiconductor based photocatalytic process is of great potential for solving the fossil fuels depletion and environmental pollution. Loading cocatalysts for the modification of semiconductors could increase the separation efficiency of the photogenerated hole-electron pairs, enhance the light absorption ability of semiconductors, and thus obtain new composite photocatalysts with high activities. Kinds of carbon allotropes, such as activated carbon, carbon nanotubes, graphene, and carbon quantum dots have been used as effective cocatalysts to enhance the photocatalytic activities of semiconductors, making them widely used for photocatalytic energy generation and pollutants degradation. This review focuses on the loading of different carbon allotropes as cocatalysts in photocatalysis, and summarizes the recent progress of carbon materials based photocatalysts, including their synthesis methods, the typical applications and the activity enhancement mechanism. Moreover, the cocatalytic effect among these carbon cocatalysts is also compared for different applications. We believe that our work can provide enriched information to harvest the excellent special properties of carbon materials as a platform to develop more efficient photocatalysts for solar energy utilization.

  18. Activated carbons from waste of oil-palm kernel shells, sawdust and tannery leather scraps and application to chromium(VI), phenol, and methylene blue dye adsorption.

    PubMed

    Montoya-Suarez, Sergio; Colpas-Castillo, Fredy; Meza-Fuentes, Edgardo; Rodríguez-Ruiz, Johana; Fernandez-Maestre, Roberto

    2016-01-01

    Phenol, chromium, and dyes are continuously dumped into water bodies; the adsorption of these contaminants on activated carbon is a low-cost alternative for water remediation. We synthesized activated carbons from industrial waste of palm oil seed husks (kernel shells), sawdust, and tannery leather scraps. These materials were heated for 24 h at 600, 700 or 800°C, activated at 900°C with CO2 and characterized by proximate analysis and measurement of specific surface area (Brunauer-Emmett-Teller (BET) and Langmuir), and microporosity (t-plot). Isotherms showed micropores and mesopores in activated carbons. Palm seed activated carbon showed the highest fixed carbon content (96%), and Langmuir specific surface areas up to 1,268 m2/g, higher than those from sawdust (581 m2/g) and leather scraps (400 m2/g). The carbons were applied to adsorption of Cr(VI), phenol, and methylene blue dye from aqueous solutions. Phenol adsorption on activated carbons was 78-82 mg/g; on palm seed activated carbons, Cr(VI) adsorption at pH 7 was 0.35-0.37 mg/g, and methylene blue adsorption was 40-110 mg/g, higher than those from sawdust and leather scraps. Activated carbons from palm seed are promising materials to remove contaminants from the environment and represent an alternative application for vegetal wastes instead of dumping into landfills.

  19. A brief review on activated carbon derived from agriculture by-product

    NASA Astrophysics Data System (ADS)

    Yahya, Mohd Adib; Mansor, Muhammad Humaidi; Zolkarnaini, Wan Amani Auji Wan; Rusli, Nurul Shahnim; Aminuddin, Anisah; Mohamad, Khalidah; Sabhan, Fatin Aina Mohamad; Atik, Arif Abdallah Aboubaker; Ozair, Lailatun Nazirah

    2018-06-01

    A brief review focusing on preparation of the activated carbon derived from agriculture by-products is presented. The physical and chemical activation of activated carbon were also reviewed. The effects of various parameters including types of activating agents, temperature, impregnation ratio, were also discussed. The applications of activated carbon from agricultural by products were briefly reviewed. It is provenly evident in this review, the relatively inexpensive and renewable resources of the agricultural waste were found to be effectively being converted into wealth materials.

  20. The potential for increasing the use of catalytic carbons in commercial applications

    USGS Publications Warehouse

    Kruse, C.W.

    1996-01-01

    A carbon catalyst, prepared either by oxidizing activated carbon with air at 500-700??C or by oxidizing activated carbon with boiling nitric acid followed by heating it to 500-700??C, is the subject of this paper. This catalyst, designated OAC500-700, catalyzes the removal of hydrogen chloride from alkyl halides. Because OAC500-700 retains adsorptive properties of an activated carbon it can be used both to adsorb pollutants from liquid or gaseous streams and to convert them to recyclable products. A highly-developed micropore structure is not required for all uses of activated carbon or a catalyst produced from it. A comparatively inexpensive ($325/ton projected) low surface area (<300 m2/g) carbon has been developed at the Illinois State Geological Survey (ISGS) for cleaning incinerator flue gas. This grade of activated carbon is widely used in Europe for flue gas cleaning and for other applications. Activated carbon adsorbers of some type are required by recently passed U.S. Environmental Protection Agency (EPA) regulations for municipal waste combustors to control emission of cadmium, mercury, lead, dioxins, furans and acid gases (U.S. EPA, 1995). Similar regulations are expected for hospital and hazardous waste incinerators. The marketing of less costly activated carbons of the type used widely in Europe is expected in the United States. Low cost OAC500-700 made from less expensive grades of activated carbon may become available for large scale adsorbent/catalyst systems designed to both remove and decompose toxic pollutants found in liquid and gaseous streams, chlorinated organic compounds in particular.

  1. Application of green chemistry techniques to prepare electrocatalysts for direct methanol fuel cells.

    PubMed

    Shimizu, Kenichi; Wang, Joanna S; Wai, Chien M

    2010-03-25

    A series of green techniques for synthesizing carbon nanotube-supported platinum nanoparticles and their high electrocatalytic activity toward methanol fuel cell applications are reported. The techniques utilize either the supercritical fluid carbon dioxide or water as a medium for depositing platinum nanoparticles on surfaces of multiwalled or single-walled carbon nanotubes. The catalytic properties of the carbon nanotubes-supported Pt nanoparticle catalysts prepared by four different techniques are compared for anodic oxidation of methanol and cathodic reduction of oxygen using cyclic voltammetry. One technique using galvanic exchange of Pt(2+) in water with zerovalent iron present on the surfaces of as-grown single-walled carbon nanotubes produces a Pt catalyst that shows an unusually high catalytic activity for reduction of oxygen but a negligible activity for oxidation of methanol. This fuel-selective catalyst may have a unique application as a cathode catalyst in methanol fuel cells to alleviate the problems caused by crossover of methanol through the polymer electrolyte membrane.

  2. Adsorption of SO2 on bituminous coal char and activated carbon fiber prepared from phenol formaldehyde

    USGS Publications Warehouse

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1996-01-01

    Carbon-based materials are used commercially to remove SO2 from coal combustion flue gases. Historically, these materials have consisted of granular activated carbons prepared from lignite or bituminous coal. Recent studies have reported that activated carbon fibers (ACFs) may have potential in this application due to their relatively high SO2 adsorption capacity. In this paper, a comparison of SO2 adsorption for both coal-based carbons and ACFs is presented, as well as ideas on carbon properties that may influence SO2 adsorption

  3. An analysis of burn-off impact on the structure microporous of activated carbons formation

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Mirosław; Kopac, Türkan

    2017-12-01

    The paper presents the results on the application of the LBET numerical method as a tool for analysis of the microporous structure of activated carbons obtained from a bituminous coal. The LBET method was employed particularly to evaluate the impact of the burn-off on the obtained microporous structure parameters of activated carbons.

  4. Toxicity and biocompatibility of carbon nanoparticles.

    PubMed

    Fiorito, S; Serafino, A; Andreola, F; Togna, A; Togna, G

    2006-03-01

    A review is presented of the literature data concerning the effects induced by carbon nanoparticles on the biological environment and the importance of these effects in human and animal health. The discovery in 1985 of fullerenes, a novel carbon allotrope with a polygonal structure made up solely by 60 carbon atoms, and in 1991 of carbon nanotubes, thin carbon filaments (1-3 microm in length and 1-3 nm in diameter) with extraordinary mechanical properties, opened a wide field of activity in carbon research. During the last few years, practical applications of fullerenes as biological as well as pharmacological agents have been investigated. Various fullerene-based compounds were tested for biological activity, including antiviral, antioxidant, and chemiotactic activities. Nanotubes consist of carbon atoms arranged spirally to form concentric cylinders, that are perfect crystals and thinner than graphite whiskers. They are stronger than steel but very flexible and lightweight and transfer heat better than any other known material. These characteristics make them suitable for various potential applications such as super strong cables and tips for scanning probe microscopes, as well as biomedical devices for drug delivery, medical diagnostic, and therapeutic applications. The effects induced by these nanostructures on rat lung tissues, as well as on human skin and human macrophage and keratinocyte cells are presented.

  5. Application of activated carbon modified by acetic acid in adsorption and separation of CO2 and CH4

    NASA Astrophysics Data System (ADS)

    Song, Xue; Wang, Li'ao; Zeng, Yunmin; Zhan, Xinyuan; Gong, Jian; Li, Tong

    2018-03-01

    Compared with the methods to modify the activated carbons by alkalis for gas adsorption, fewer studies of that by organic acids have been reported. The acid modified activated carbons are usually utilized to treat wastewater, whereas the application in the separation of CO2/CH4 has less been studied. In this study, acetic acid was used to modify activated carbon. N2 adsorption/desorption isotherms and FT-IR were adopted to describe the properties of the samples. According to the adsorption data of pure gas component at 298 K, the gas adsorbed amount and the selectivity on the modified samples were larger than that on the raw sample. Besides, the adsorbed amount of CO2 and the selectivity on 15H-AC in the adsorption breakthrough experiments showed better performance. The results confirm that the method to modify the activated carbons with acetic acid is feasible to improve the adsorption capacity and the separation effect of CO2/CH4.

  6. Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

    PubMed Central

    2015-01-01

    Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 °C with record-high surface area (4073 m2 g–1), large pore volume (2.26 cm–3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium–sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications. PMID:27162953

  7. Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

    DOE PAGES

    To, John W. F.; Chen, Zheng; Yao, Hongbin; ...

    2015-05-18

    Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 °C with record-high surface area (4073 m 2 g –1),more » large pore volume (2.26 cm –3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium–sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications.« less

  8. Preparation and Characterization of Biomass-Derived Advanced Carbon Materials for Lithium-Ion Battery Applications

    NASA Astrophysics Data System (ADS)

    Hardiansyah, Andri; Chaldun, Elsy Rahimi; Nuryadin, Bebeh Wahid; Fikriyyah, Anti Khoerul; Subhan, Achmad; Ghozali, Muhammad; Purwasasmita, Bambang Sunendar

    2018-04-01

    In this study, carbon-based advanced materials for lithium-ion battery applications were prepared by using soybean waste-based biomass material, through a straightforward process of heat treatment followed by chemical modification processes. Various types of carbon-based advanced materials were developed. Physicochemical characteristics and electrochemical performance of the resultant materials were characterized systematically. Scanning electron microscopy observation revealed that the activated carbon and graphene exhibits wrinkles structures and porous morphology. Electrochemical impedance spectroscopy (EIS) revealed that both activated carbon and graphene-based material exhibited a good conductivity. For instance, the graphene-based material exhibited equivalent series resistance value of 25.9 Ω as measured by EIS. The graphene-based material also exhibited good reversibility and cyclic performance. Eventually, it would be anticipated that the utilization of soybean waste-based biomass material, which is conforming to the principles of green materials, could revolutionize the development of advanced material for high-performance energy storage applications, especially for lithium-ion batteries application.

  9. Preparation and Characterization of Biomass-Derived Advanced Carbon Materials for Lithium-Ion Battery Applications

    NASA Astrophysics Data System (ADS)

    Hardiansyah, Andri; Chaldun, Elsy Rahimi; Nuryadin, Bebeh Wahid; Fikriyyah, Anti Khoerul; Subhan, Achmad; Ghozali, Muhammad; Purwasasmita, Bambang Sunendar

    2018-07-01

    In this study, carbon-based advanced materials for lithium-ion battery applications were prepared by using soybean waste-based biomass material, through a straightforward process of heat treatment followed by chemical modification processes. Various types of carbon-based advanced materials were developed. Physicochemical characteristics and electrochemical performance of the resultant materials were characterized systematically. Scanning electron microscopy observation revealed that the activated carbon and graphene exhibits wrinkles structures and porous morphology. Electrochemical impedance spectroscopy (EIS) revealed that both activated carbon and graphene-based material exhibited a good conductivity. For instance, the graphene-based material exhibited equivalent series resistance value of 25.9 Ω as measured by EIS. The graphene-based material also exhibited good reversibility and cyclic performance. Eventually, it would be anticipated that the utilization of soybean waste-based biomass material, which is conforming to the principles of green materials, could revolutionize the development of advanced material for high-performance energy storage applications, especially for lithium-ion batteries application.

  10. Magnetic graphitic carbon nitride: its application in the C–H activation of amines

    EPA Science Inventory

    Magnetic graphitic carbon nitride, Fe@g-C3N4, has been synthesized by adorning graphitic carbon nitride (g-C3N4) support with iron oxide via non-covalent interaction. The magnetically recyclable catalyst showed excellent reactivity for expeditious C-H activation and cyanation of ...

  11. Conversion of agricultural residues into activated carbons for water purification: Application to arsenate removal.

    PubMed

    Torres-Perez, Jonatan; Gerente, Claire; Andres, Yves

    2012-01-01

    The conversion of two agricultural wastes, sugar beet pulp and peanut hulls, into sustainable activated carbons is presented and their potential application for the treatment of arsenate solution is investigated. A direct and physical activation is selected as well as a simple chemical treatment of the adsorbents. The material properties, such as BET surface areas, porous volumes, elemental analysis, ash contents and pH(PZC), of these alternative carbonaceous porous materials are determined and compared with a commercial granular activated carbon. An adsorption study based on experimental kinetic and equilibrium data is conducted in a batch reactor and completed by the use of different models (intraparticle diffusion, pseudo-second-order, Langmuir and Freundlich) and by isotherms carried out in natural waters. It is thus demonstrated that sugar beet pulp and peanut hulls are good precursors to obtain activated carbons for arsenate removal.

  12. Poultry manure as raw material for mercury adsorbents in gas applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klasson, K.T.; Lima, I.M.; Boihem, L.L.

    2009-09-30

    The quantity of poultry manure generated each year is large, and technologies that take advantage of the material should be explored. At the same time, increased emphasis on the reduction of mercury emissions from coal-fired electric power plants has resulted in environmental regulations that may, in the future, require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream, where they could adsorb the mercury. The sorbents (now containing mercury) would be removed via filtration or other means from the flue gas. Our preliminary work has demonstrated that activated carbon made from poultrymore » manure can adsorb mercury from air with good efficiency. In laboratory experiments, an activated carbon made from turkey cake manure removed the majority of elemental mercury from a hot air stream. Other activated carbons made from chicken and turkey litter manure were also efficient. In general, unwashed activated carbons made from poultry manure were more efficient in removing mercury than their acid-washed counterparts. The results suggest that the adsorption of mercury was mainly due to chemisorption on the surface of the carbon. Other potential uses for the activated carbons are the removal of mercury from air and natural gas.« less

  13. Field-scale reduction of PCB bioavailability with activated carbon amendment to river sediments.

    PubMed

    Beckingham, Barbara; Ghosh, Upal

    2011-12-15

    Remediation of contaminated sediments remains a technological challenge because traditional approaches do not always achieve risk reduction goals for human health and ecosystem protection and can even be destructive for natural resources. Recent work has shown that uptake of persistent organic pollutants such as polychlorinated biphenyls (PCBs) in the food web is strongly influenced by the nature of contaminant binding, especially to black carbon surfaces in sediments. We demonstrate for the first time in a contaminated river that application of activated carbon to sediments in the field reduces biouptake of PCBs in benthic organisms. After treatment with activated carbon applied at a dose similar to the native organic carbon of sediment, bioaccumulation in freshwater oligochaete worms was reduced compared to preamendment conditions by 69 to 99%, and concentrations of PCBs in water at equilibrium with the sediment were reduced by greater than 93% at all treatment sites for up to three years of monitoring. By comparing measured reductions in bioaccumulation of tetra- and penta-chlorinated PCB congeners resulting from field application of activated carbon to a laboratory study where PCBs were preloaded onto activated carbon, it is evident that equilibrium sorption had not been achieved in the field. Although other remedies may be appropriate for some highly contaminated sites, we show through this pilot study that PCB exposure from moderately contaminated river sediments may be managed effectively through activated carbon amendment in sediments.

  14. Sustainable development of tyre char-based activated carbons with different textural properties for value-added applications.

    PubMed

    Hadi, Pejman; Yeung, Kit Ying; Guo, Jiaxin; Wang, Huaimin; McKay, Gordon

    2016-04-01

    This paper aims at the sustainable development of activated carbons for value-added applications from the waste tyre pyrolysis product, tyre char, in order to make pyrolysis economically favorable. Two activation process parameters, activation temperature (900, 925, 950 and 975 °C) and residence time (2, 4 and 6 h) with steam as the activating agent have been investigated. The textural properties of the produced tyre char activated carbons have been characterized by nitrogen adsorption-desorption experiments at -196 °C. The activation process has resulted in the production of mesoporous activated carbons confirmed by the existence of hysteresis loops in the N2 adsorption-desorption curves and the pore size distribution curves obtained from BJH method. The BET surface area, total pore volume and mesopore volume of the activated carbons from tyre char have been improved to 732 m(2)/g, 0.91 cm(3)/g and 0.89 cm(3)/g, respectively. It has been observed that the BET surface area, mesopore volume and total pore volume increased linearly with burnoff during activation in the range of experimental parameters studied. Thus, yield-normalized surface area, defined as the surface area of the activated carbon per gram of the precursor, has been introduced to optimize the activation conditions. Accordingly, the optimized activation conditions have been demonstrated as an activation temperature of 975 °C and an activation time of 4 h. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Application of thermal analysis techniques in activated carbon production

    USGS Publications Warehouse

    Donnals, G.L.; DeBarr, J.A.; Rostam-Abadi, M.; Lizzio, A.A.; Brady, T.A.

    1996-01-01

    Thermal analysis techniques have been used at the ISGS as an aid in the development and characterization of carbon adsorbents. Promising adsorbents from fly ash, tires, and Illinois coals have been produced for various applications. Process conditions determined in the preparation of gram quantities of carbons were used as guides in the preparation of larger samples. TG techniques developed to characterize the carbon adsorbents included the measurement of the kinetics of SO2 adsorption, the performance of rapid proximate analyses, and the determination of equilibrium methane adsorption capacities. Thermal regeneration of carbons was assessed by TG to predict the life cycle of carbon adsorbents in different applications. TPD was used to determine the nature of surface functional groups and their effect on a carbon's adsorption properties.

  16. Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting

    PubMed Central

    Wang, Hong; Min, Shixiong; Ma, Chun; Liu, Zhixiong; Zhang, Weiyi; Wang, Qiang; Li, Debao; Li, Yangyang; Turner, Stuart; Han, Yu; Zhu, Haibo; Abou-hamad, Edy; Hedhili, Mohamed Nejib; Pan, Jun; Yu, Weili; Huang, Kuo-Wei; Li, Lain-Jong; Yuan, Jiayin; Antonietti, Markus; Wu, Tom

    2017-01-01

    Nanoporous graphitic carbon membranes with defined chemical composition and pore architecture are novel nanomaterials that are actively pursued. Compared with easy-to-make porous carbon powders that dominate the porous carbon research and applications in energy generation/conversion and environmental remediation, porous carbon membranes are synthetically more challenging though rather appealing from an application perspective due to their structural integrity, interconnectivity and purity. Here we report a simple bottom–up approach to fabricate large-size, freestanding and porous carbon membranes that feature an unusual single-crystal-like graphitic order and hierarchical pore architecture plus favourable nitrogen doping. When loaded with cobalt nanoparticles, such carbon membranes serve as high-performance carbon-based non-noble metal electrocatalyst for overall water splitting. PMID:28051082

  17. Production of sugarcane bagasse-based activated carbon for formaldehyde gas removal from potted plants exposure chamber.

    PubMed

    Mohamed, Elham F; El-Hashemy, Mohammed A; Abdel-Latif, Nasser M; Shetaya, Waleed H

    2015-12-01

    Agricultural wastes such as rice straw, sugar beet, and sugarcane bagasse have become a critical environmental issue due to growing agriculture demand. This study aimed to investigate the valorization possibility of sugarcane bagasse waste for activated carbon preparation. It also aimed to fully characterize the prepared activated carbon (BET surface area) via scanning electron microscope (SEM) and in terms of surface functional groups to give a basic understanding of its structure and to study the adsorption capacity of the sugarcane bagasse-based activated carbon using aqueous methylene blue (MB). The second main objective was to evaluate the performance of sugarcane bagasse-based activated carbon for indoor volatile organic compounds removal using the formaldehyde gas (HCHO) as reference model in two potted plants chambers. The first chamber was labeled the polluted chamber (containing formaldehyde gas without activated carbon) and the second was taken as the treated chamber (containing formaldehyde gas with activated carbon). The results indicated that the sugarcane bagasse-based activated carbon has a moderate BET surface area (557 m2/g) with total mesoporous volume and microporous volume of 0.310 and 0.273 cm3/g, respectively. The prepared activated carbon had remarkable adsorption capacity for MB. Formaldehyde removal rate was then found to be more than 67% in the treated chamber with the sugarcane bagasse-based activated carbon. The plants' responses for this application as dry weight, chlorophyll contents, and protein concentration were also investigated. Preparation of activated carbon from sugarcane bagasse (SCBAC) is a promising approach to produce cheap and efficient adsorbent for gas pollutants removal. It may be also a solution for the agricultural wastes problems in big cities, particularly in Egypt. MB adsorption tests suggest that the SCBAC have high adsorption capacity. Formaldehyde gas removal in the plant chambers indicates that the SCBAC have potential to recover volatile gases. The results confirmed that the activated carbon produced from sugarcane bagasse waste raw materials can be used as an applicable adsorbent for treating a variety of gas pollutants from the indoor environment.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatraman, A.; Walawender, W.P.; Fan, L.T.

    The term, activated carbon, is a generic name for a family of carbonaceous materials with well-developed porosities and consequently, large adsorptive capacities. Activated carbons are increasingly being consumed worldwide for environmental applications such as separation of volatiles from bulk gases and purification of water and waste-water streams. The global annual production is estimated to be around 300 million kilograms, with a rate of increase of 7% each year. Activated carbons can be prepared from a variety of raw materials. Approximately, 60% of the activated carbons generated in the United States is produced from coal; 20%, from coconut shells; and themore » remaining 20% from wood and other sources of biomass. The pore structure and properties of activated carbons are influenced by the nature of the starting material and the initial physical and chemical conditioning as well as the process conditions involved in its manufacture. The porous structures of charcoals and activated carbons obtained by the carbonization of kernels have been characterized.« less

  19. Hydrothermal carbonization: modeling, final properties design and applications: a review

    USDA-ARS?s Scientific Manuscript database

    Active research on biomass hydrothermal carbonization (HTC) continues to demonstrate its advantages over other thermochemical processes, in particular the interesting benefits associated with carbonaceous solid products called hydrochar (HC). The areas of applications of HC range from biofuel to dop...

  20. Facile synthesis of carbon dot and residual carbon nanobeads: Implications for ion sensing, medicinal and biological applications.

    PubMed

    Gaddam, Rohit Ranganathan; Mukherjee, Sudip; Punugupati, Neelambaram; Vasudevan, D; Patra, Chitta Ranjan; Narayan, Ramanuj; Vsn Kothapalli, Raju

    2017-04-01

    Synthesis of carbon dots (Cdots) via chemical route involves disintegration of carbon materials into nano-domains, wherein, after extraction of Cdots, the remaining carbon material is discarded. The present work focuses on studying even the leftover carbon residue namely, carbon nanobeads (CNBs) as an equally important material for applications on par with that of carbon dot. It employs oxidative treatment of carbonised gum olibanum resin (GOR) to produce the carbons namely Cdots and CNBs (as the residue). The Cdots (~5-10nm) exhibit blue-green fluorescence with an optical absorption at ~300nm unlike the CNBs (40-50nm) which fail to exhibit fluorescence. The fluorescence behaviour exhibited by Cdots were utilized for heavy metal ion sensing of Pb 2+ , Hg 2+ and Cd 2+ ions in aqueous media. Interestingly, both Cdots and CNBs are biocompatible to normal cell lines but cytotoxic to cancer cell lines, observed during several in vitro experiments (cell viability assay, cell cycle assay, apoptosis assay, ROS determination assay, caspase-9 activity assay). Additionally, Cdots exhibit bright green fluorescence in B16F10 cells. The Cdots and CNB's demonstrate multifunctional activities (sensor, cellular imaging and cancer therapy) in biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Carbon fiber reinforced thermoplastic composites for future automotive applications

    NASA Astrophysics Data System (ADS)

    Friedrich, K.

    2016-05-01

    After a brief introduction to polymer composite properties and markets, the state of the art activities in the field of manufacturing of advanced composites for automotive applications are elucidated. These include (a) long fiber reinforced thermoplastics (LFT) for secondary automotive components, and (b) continuous carbon fiber reinforced thermosetting composites for car body applications. It is followed by future possibilities of carbon fiber reinforced thermoplastic composites for e.g. (i) crash elements, (ii) racing car seats, and (iii) production and recycling of automotive fenders.

  2. Mycoextraction by Clitocybe maxima combined with metal immobilization by biochar and activated carbon in an aged soil.

    PubMed

    Wu, Bin; Cheng, Guanglei; Jiao, Kai; Shi, Wenjin; Wang, Can; Xu, Heng

    2016-08-15

    To develop an eco-friendly and efficient route to remediate soil highly polluted with heavy metals, the idea of mycoextraction combined with metal immobilization by carbonaceous sorbents (biochar and activated carbon) was investigated in this study. Results showed that the application of carbonaceous amendments decreased acid soluble Cd and Cu by 5.13-14.06% and 26.86-49.58%, respectively, whereas the reducible and oxidizable fractions increased significantly as the amount of carbonaceous amendments added increased. The biological activities (microbial biomass, soil enzyme activities) for treatments with carbonaceous sorbents were higher than those of samples without carbonaceous amendments. Clitocybe maxima (C. maxima) simultaneously increased soil enzyme activities and the total number of microbes. Biochar and activated carbon both showed a positive effect on C. maxima growth and metal accumulation. The mycoextraction efficiency of Cd and Cu in treatments with carbonaceous amendments enhanced by 25.64-153.85% and 15.18-107.22%, respectively, in response to that in non-treated soil, which showed positive correlation to the augment of biochar and activated carbon in soil. Therefore, this work suggested the effectiveness of mycoextraction by C. maxima combined the application of biochar and activated carbon in immobilising heavy metal in contaminated soil. Copyright © 2016. Published by Elsevier B.V.

  3. Carbon dots-decorated multiwalled carbon nanotubes nanocomposites as a high-performance electrochemical sensor for detection of H2O2 in living cells.

    PubMed

    Bai, Jing; Sun, Chunhe; Jiang, Xiue

    2016-07-01

    A novel enzyme-free hydrogen peroxide sensor composed of carbon dots (CDs) and multi-walled carbon nanotubes (MWCNTs) was prepared. It was found that the carbon dots-decorated multi-walled carbon nanotubes nanocomposites (CDs/MWCNTs) modified glassy carbon (GC) electrode (CDs/MWCNTs/GCE) exhibited a significant synergistic electrocatalytic activity towards hydrogen peroxide reduction as compared to carbon dots or multi-walled carbon nanotubes alone, and the CDs/MWCNTs/GCE has shown a low detection limit as well as excellent stability, selectivity, and reproducibility. These remarkable analytical advantages enable the practical application of CDs/MWCNTs/GCE for the real-time tracking of hydrogen peroxide (H2O2) released from human cervical cancer cells with satisfactory results. The enhanced electrochemical activity can be assigned to the edge plane-like defective sites and lattice oxygen in the CDs/MWCNTs nanocomposites due to the small amount of decoration of carbon dots on the multi-walled carbon nanotubes. Based on a facile preparation method and with good electrochemical properties, the CDs/MWCNTs nanocomposites represent a new class of carbon electrode for electrochemical sensor applications. Graphical Abstract CDs/MWCNTs exhibited good electrocatalytic activity and stability to H2O2 reduction and can be used for real-time detection of H2O2 released from living cells.

  4. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents.

    PubMed

    Sethupathi, Sumathi; Bashir, Mohammed Jk; Akbar, Zinatizadeh Ali; Mohamed, Abdul Rahman

    2015-04-01

    Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out. © The Author(s) 2015.

  5. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contescu, Cristian I.; Gallego, Nidia C.; Thibaud-Erkey, Catherine

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC formore » measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.« less

  6. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons.

    PubMed

    Hajizadeh, Yaghoub; Onwudili, Jude A; Williams, Paul T

    2011-06-01

    The application of activated carbons has become a commonly used emission control protocol for the removal or adsorption of persistent organic pollutants from the flue gas streams of waste incinerators. In this study, the 2378-substituted PCDD/F removal efficiency of three types of activated carbons derived from the pyrolysis of refuse derived fuel, textile waste and scrap tyre was investigated and compared with that of a commercial carbon. Experiments were carried out in a laboratory scale fixed-bed reactor under a simulated flue gas at 275°C with a reaction period of four days. The PCDD/F in the solid matrices and exhaust gas, were analyzed using gas chromatography coupled with a triple quadrupole mass spectrometer. In the absence of activated carbon adsorbent, there was a significant increase in the concentration of toxic PCDD/F produced in the reacted flyash, reaching up to 6.6 times higher than in the raw flyash. In addition, there was a substantial release of PCDD/F into the gas phase, which was found in the flue gas trapping system. By application of the different commercial, refuse derived fuel, textile and tyre activated carbons the total PCDD/F toxic equivalent removal efficiencies in the exhaust gas stream were 58%, 57%, 64% and 52%, respectively. In general, the removal of the PCDDs was much higher with an average of 85% compared to PCDFs at 41%. Analysis of the reacted activated carbons showed that there was some formation of PCDD/F, for instance, a total of 60.6 μg I-TEQ kg(-1) toxic PCDD/F was formed in the refuse derived fuel activated carbon compared to 34 μg I-TEQ kg(-1) in the commercial activated carbon. The activated carbons derived from the pyrolysis of waste, therefore, showed good potential as a control material for PCDD/F emissions in waste incinerator flue gases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. XPS and Raman studies of Pt catalysts supported on activated carbon

    NASA Astrophysics Data System (ADS)

    Tyagi, Deepak; Varma, Salil; Bharadwaj, S. R.

    2018-04-01

    Activated carbon is a widely used support for dispersing noble metals in addition to its many applications. We have prepared platinum catalyst supported on activated carbon for HI decomposition reaction of I-S thermochemical process of hydrogen generation. These catalysts were characterized by XPS and Raman before and after using for the reaction. It was observed that platinum is present in zero oxidation state, while carbon is present is both sp2 and sp3 hybridized forms along with some amount of it bonded to oxygen.

  8. Transition metal-catalyzed C-H activation reactions: diastereoselectivity and enantioselectivity.

    PubMed

    Giri, Ramesh; Shi, Bing-Feng; Engle, Keary M; Maugel, Nathan; Yu, Jin-Quan

    2009-11-01

    This critical review discusses historical and contemporary research in the field of transition metal-catalyzed carbon-hydrogen (C-H) bond activation through the lens of stereoselectivity. Research concerning both diastereoselectivity and enantioselectivity in C-H activation processes is examined, and the application of concepts in this area for the development of novel carbon-carbon and carbon-heteroatom bond-forming reactions is described. Throughout this review, an emphasis is placed on reactions that are (or may soon become) relevant in the realm of organic synthesis (221 references).

  9. Sorption studies of nickel ions onto activated carbon

    NASA Astrophysics Data System (ADS)

    Joshi, Parth; Vyas, Meet; Patel, Chirag

    2018-05-01

    Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. The use of low-cost activated carbon derived from azadirachta indica, an agricultural waste material, has been investigated as a replacement for the current expensive methods of removing nickel ions from wastewater. The temperature variation study showed that the nickel ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the nickel ion solutions. Therefore, this study revealed that azadirachta indica can serve as a good source of activated carbon with multiple and simultaneous metal ions removing potentials and may serve as a better replacement for commercial activated carbons in applications that warrant their use.

  10. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications

    DOE PAGES

    Jeon, Ju-Won; Zhang, Libing; Lutkenhaus, Jodie L.; ...

    2015-02-01

    Low-cost renewable lignin has been used as a precursor to produce porous carbons. However, to date, it has not been easy to obtain high surface area porous carbon without activation processes or templating agents. Here, we demonstrate that low molecular weight lignin yields highly porous carbon (1092 m² g⁻¹) with more graphitization through direct carbonization without additional activation processes or templating agents. We found that molecular weight and oxygen consumption during carbonization are critical factors to obtain high surface area, graphitized porous carbons. This highly porous carbon from low-cost renewable lignin sources is a good candidate for supercapacitor electrode materials.

  11. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Ju-Won; Zhang, Libing; Lutkenhaus, Jodie L.

    Low-cost renewable lignin has been used as a precursor to produce porous carbons. However, to date, it has not been easy to obtain high surface area porous carbon without activation processes or templating agents. Here, we demonstrate that low molecular weight lignin yields highly porous carbon (1092 m² g⁻¹) with more graphitization through direct carbonization without additional activation processes or templating agents. We found that molecular weight and oxygen consumption during carbonization are critical factors to obtain high surface area, graphitized porous carbons. This highly porous carbon from low-cost renewable lignin sources is a good candidate for supercapacitor electrode materials.

  12. Activation of structural carbon fibres for potential applications in multifunctional structural supercapacitors.

    PubMed

    Qian, Hui; Diao, Hele; Shirshova, Natasha; Greenhalgh, Emile S; Steinke, Joachim G H; Shaffer, Milo S P; Bismarck, Alexander

    2013-04-01

    The feasibility of modifying conventional structural carbon fibres via activation has been studied to create fibres, which can be used simultaneously as electrode and reinforcement in structural composite supercapacitors. Both physical and chemical activation, including using steam, carbon dioxide, acid and potassium hydroxide, were conducted and the resulting fibre properties compared. It was proven that the chemical activation using potassium hydroxide is an effective method to prepare activated structural carbon fibres that possess both good electrochemical and mechanical properties. The optimal activation conditions, such as the loading of activating agent and the burn-off of carbon fibres, was identified and delivered a 100-fold increase in specific surface area and 50-fold improvement in specific electrochemical capacitance without any degradation of the fibre mechanical properties. The activation process was successfully scaled-up, showing good uniformity and reproducibility. These activated structural carbon fibres are promising candidates as reinforcement/electrodes for multifunctional structural energy storage devices. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Application of Biofilm Covered Activated Carbon Particles as a Microbial Inoculum Delivery System for Enhanced Bioaugmentation of PCBs in Contaminated Sediment

    DTIC Science & Technology

    2013-09-01

    after anaerobic digestion at thermophilic conditions (60- 70C). Application of biofilm covered activated carbon particles as a microbial inoculum...Sludge Thickener; Sludge = Sludge after anaerobic digestion at thermophilic conditions (60- 70C). C3. Microscopic evaluation of dechlorinating...associated enzymes are capable of opening the biphenyl ring structure and transform the molecule into a linear structure, this changed structure was not

  14. Investigating effectiveness of activated carbons of natural sources on various supercapacitors

    NASA Astrophysics Data System (ADS)

    Faisal, Md. Shahnewaz Sabit; Rahman, Muhammad M.; Asmatulu, Ramazan

    2016-04-01

    Activated carbon can be produced from natural sources, such as pistachio and acorn shells, which can be an inexpensive and sustainable sources of natural wastes for the energy storage devices, such as supercapacitors. The carbonaceous materials used in this study were carbonized at the temperatures of 700°C and 900°C after the stabilization process at 240°C for two hours. These shells showed approximately 60% carbon yield. Carbonized nutshells were chemically activated using1wt% potassium hydroxide (KOH). Activated carbon powders with polyvinylidene fluoride (PVdF) were used to construct carbon electrodes. A 1M of tetraethylammonium tetrafluoroborate (TEABF4) and propylene carbonate (PC) were used as electrolytes. Electrochemical techniques, such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for the characterization of the supercapacitors. Scanning electron microscopy (SEM) was used to inspect the surface texture of the activated carbons. Activated pistachio shells carbonized at 700°C showed more porous surface texture than those carbonized at 900°C. Effects of the carbonization temperatures were studied for their electrochemical characteristics. The shells carbonized at 700°C showed better electrochemical characteristics compared to those carbonized at 900°C. The test results provided about 27,083 μF/g specific capacitance at a scan rate of 10mV/s. This study showed promising results for using these activated carbons produced from the natural wastes for supercapacitor applications.

  15. Benefit-cost analysis of commercially available activated carbon filters for indoor ozone removal in single-family homes.

    PubMed

    Aldred, J R; Darling, E; Morrison, G; Siegel, J; Corsi, R L

    2016-06-01

    This study involved the development of a model for evaluating the potential costs and benefits of ozone control by activated carbon filtration in single-family homes. The modeling effort included the prediction of indoor ozone with and without activated carbon filtration in the HVAC system. As one application, the model was used to predict benefit-to-cost ratios for single-family homes in 12 American cities in five different climate zones. Health benefits were evaluated using disability-adjusted life-years and included city-specific age demographics for each simulation. Costs of commercially available activated carbon filters included capital cost differences when compared to conventional HVAC filters of similar particle removal efficiency, energy penalties due to additional pressure drop, and regional utility rates. The average indoor ozone removal effectiveness ranged from 4 to 20% across the 12 target cities and was largely limited by HVAC system operation time. For the parameters selected in this study, the mean predicted benefit-to-cost ratios for 1-inch filters were >1.0 in 10 of the 12 cities. The benefits of residential activated carbon filters were greatest in cities with high seasonal ozone and HVAC usage, suggesting the importance of targeting such conditions for activated carbon filter applications. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Method for making carbon super capacitor electrode materials

    DOEpatents

    Firsich, D.W.; Ingersoll, D.; Delnick, F.M.

    1998-07-07

    A method is described for making near-net-shape, monolithic carbon electrodes for energy storage devices. The method includes the controlled pyrolysis and activation of a pressed shape of methyl cellulose powder with pyrolysis being carried out in two stages; pre-oxidation, preferably in air at a temperature between 200--250 C, followed by carbonization under an inert atmosphere. An activation step to adjust the surface area of the carbon shape to a value desirable for the application being considered, including heating the carbon shape in an oxidizing atmosphere to a temperature of at least 300 C, follows carbonization. 1 fig.

  17. Method for making carbon super capacitor electrode materials

    DOEpatents

    Firsich, David W.; Ingersoll, David; Delnick, Frank M.

    1998-01-01

    A method for making near-net-shape, monolithic carbon electrodes for energy storage devices. The method includes the controlled pyrolysis and activation of a pressed shape of methyl cellulose powder with pyrolysis being carried out in two stages; pre-oxidation, preferably in air at a temperature between 200.degree.-250.degree. C., followed by carbonization under an inert atmosphere. An activation step to adjust the surface area of the carbon shape to a value desirable for the application being considered, including heating the carbon shape in an oxidizing atmosphere to a temperature of at least 300.degree. C., follows carbonization.

  18. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    PubMed

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Functional Carbon Quantum Dots: A Versatile Platform for Chemosensing and Biosensing.

    PubMed

    Feng, Hui; Qian, Zhaosheng

    2018-05-01

    Carbon quantum dot has emerged as a new promising fluorescent nanomaterial due to its excellent optical properties, outstanding biocompatibility and accessible fabrication methods, and has shown huge application perspective in a variety of areas, especially in chemosensing and biosensing applications. In this personal account, we give a brief overview of carbon quantum dots from its origin and preparation methods, present some advance on fluorescence origin of carbon quantum dots, and focus on development of chemosensors and biosensors based on functional carbon quantum dots. Comprehensive advances on functional carbon quantum dots as a versatile platform for sensing from our group are included and summarized as well as some typical examples from the other groups. The biosensing applications of functional carbon quantum dots are highlighted from selective assays of enzyme activity to fluorescent identification of cancer cells and bacteria. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Brief review: Preparation techniques of biomass based activated carbon monolith electrode for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, Erman; Taslim, Rika

    2018-02-01

    The synthesis of activated carbon monolith electrode made from a biomass material using the hydrolytic pressure or the pelletization technique of pre-carbonized materials is one of standard reported methods. Several steps such as pre-carbonization, milling, chemical activation, hydraulic press, carbonization, physical activation, polishing and washing need to be accomplished in the production of electrodes by this method. This is relatively a long process that need to be simplified. In this paper we present the standard method and proceed with the introduction to several alternative methods in the synthesis of activated carbon monolith electrodes. The alternative methods were emphasized on the selection of suitable biomass materials. All of carbon electrodes prepared by different methods will be analyzed for physical and electrochemical properties. The density, degree of crystallinity, surface morphology are examples for physical study and specific capacitance was an electrochemical properties that has been analysed. This alternative method has offered a specific capacitance in the range of 10 to 171 F/g.

  1. An industrial application of the JPL ACTS with energy recovery

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; Wilson, G. E.; Schroepfer, T. W.

    1980-01-01

    The JPL Activated Carbon Treatment System (ACTS) uses sewage solids derived from municipal wastewater treatment systems as a source of organic material for powdered activated carbons (PAC). The PAC is used for the COD removal from wastewater and as a filter aid in the recovery of additional sewage solids.

  2. Acoustical Evaluation of Carbonized and Activated Cotton Nonwovens

    USDA-ARS?s Scientific Manuscript database

    An activated carbon fiber nonwoven (ACF) was manufactured from cotton nonowoven fabric. For the ACF acoustical application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glass fiber ...

  3. Activated carbon/Fe(3)O(4) nanoparticle composite: fabrication, methyl orange removal and regeneration by hydrogen peroxide.

    PubMed

    Do, Manh Huy; Phan, Ngoc Hoa; Nguyen, Thi Dung; Pham, Thi Thu Suong; Nguyen, Van Khoa; Vu, Thi Thuy Trang; Nguyen, Thi Kim Phuong

    2011-11-01

    In the water treatment field, activated carbons (ACs) have wide applications in adsorptions. However, the applications are limited by difficulties encountered in separation and regeneration processes. Here, activated carbon/Fe(3)O(4) nanoparticle composites, which combine the adsorption features of powdered activated carbon (PAC) with the magnetic and excellent catalytic properties of Fe(3)O(4) nanoparticles, were fabricated by a modified impregnation method using HNO(3) as the carbon modifying agent. The obtained composites were characterized by X-ray diffraction, scanning and transmission electron microscopy, nitrogen adsorption isotherms and vibrating sample magnetometer. Their performance for methyl orange (MO) removal by adsorption was evaluated. The regeneration of the composite and PAC-HNO(3) (powdered activated carbon modified by HNO(3)) adsorbed MO by hydrogen peroxide was investigated. The composites had a high specific surface area and porosity and a superparamagnetic property that shows they can be manipulated by an external magnetic field. Adsorption experiments showed that the MO sorption process on the composites followed pseudo-second order kinetic model and the adsorption isotherm date could be simulated with both the Freundlich and Langmuir models. The regeneration indicated that the presence of the Fe(3)O(4) nanoparticles is important for a achieving high regeneration efficiency by hydrogen peroxide. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Activated carbon prepared from yerba mate used as a novel adsorbent for removal of tannery dye from aqueous solution.

    PubMed

    Linhares, Bruno; Weber, Caroline Trevisan; Foletto, Edson Luiz; Paz, Diego Silva; Mazutti, Marcio A; Collazzo, Gabriela Carvalho

    2013-01-01

    Activated carbon prepared from yerba mate (Ilex paraguariensis) was used as adsorbent for the removal of tannery dye from aqueous solution. The activated carbon was characterized, and it showed a mesoporous texture, with surface area of 537.4 m2 g(-1). The initial dye concentration, contact time and pH influenced the adsorption capacity. The equilibrium data were in good agreement with both Langmuir and Freundlich isotherms. The adsorption kinetics of the tannery dye on activated carbon prepared from yerba mate followed a pseudo-second-order model. The adsorption process was found to be controlled by both external mass-transfer and intraparticle diffusion, but the external diffusion was the dominating process. This work highlights the potential application of activated carbon produced from yerba mate in the field of adsorption.

  5. Adsorption and Desorption of Carbon Dioxide and Water Mixtures on Synthetic Hydrophobic Carbonaceous Adsorbents

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    Several synthetic carbonaceous adsorbents produced through pyrolysis of polymeric materials are available commercially. Some appear to have advantages over activated carbon for certain adsorption applications. In particular, they can have tailored hydrophobicities that are significantly greater than that of activated carbon, while moderately high surfaces areas are retained. These sorbents are being investigated for possible use in removing trace contaminants and excess carbon dioxide from air in closed habitats, plant growth chambers, and other applications involving purification of humid gas streams. We have analyzed the characteristics of a few of these adsorbents through adsorption and desorption experiments and standard characterization techniques. This paper presents pure and multicomponent adsorption data collected for carbon dioxide and water on two synthetic carbonaceous adsorbents having different hydrophobicities and capillary condensation characteristics. The observations are interpreted through consideration of the pore structure and surface chemistry of the solids and interactions between adsorbed carbon dioxide, water, and the solvent gas.

  6. Characterization and electrochemical application of carbon materials based on poly(phenylene oxide)

    NASA Astrophysics Data System (ADS)

    Gray, Hunter

    Carbon materials possess excellent electrical and surface properties for the next generation of energy storage devices. Polymers provide a carbon rich and tailorable precursor for the production of carbon materials. Therefore, activated carbons were prepared from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) via a three step process: thermal oxidation, carbonization, and activation with KOH. The activated carbons are predominately microporous with BET specific surface areas up to 2638 m2/g. Impedance spectroscopy revealed these carbons possess electrical conductivities comparable to commercial carbon blacks and consequently were employed in thin-film composite electrodes in electrochemical double-layer capacitors. Cyclic voltammetry confirmed maximum specific capacitances of 13.23 F/g and 2.848 F/g for aqueous and organic electrolyte systems, respectively. Additionally, carbon nanotubes were synthesized from PPO and other polymers with a nickel catalyst via chemical vapor deposition as revealed by transmission electron microscopy. This is the first report of carbon nanotubes produced from PPO.

  7. Advanced Catalysts for the Ambient Temperature Oxidation of Carbon Monoxide and Formaldehyde

    NASA Technical Reports Server (NTRS)

    Nalette, Tim; Eldridge, Christopher; Yu, Ping; Alpetkin, Gokhan; Graf, John

    2010-01-01

    The primary applications for ambient temperature carbon monoxide (CO) oxidation catalysts include emergency breathing masks and confined volume life support systems, such as those employed on the Shuttle. While Hopcalite is typically used in emergency breathing masks for terrestrial applications, in the 1970s, NASA selected a 2% platinum (Pt) on carbon for use on the Shuttle since it is more active and also more tolerant to water vapor. In the last 10-15 years there have been significant advances in ambient temperature CO oxidation catalysts. Langley Research Center developed a monolithic catalyst for ambient temperature CO oxidation operating under stoichiometric conditions for closed loop carbon dioxide (CO2) laser applications which is also advertised as having the potential to oxidize formaldehyde (HCHO) at ambient temperatures. In the last decade it has been discovered that appropriate sized nano-particles of gold are highly active for CO oxidation, even at sub-ambient temperatures, and as a result there has been a wealth of data reported in the literature relating to ambient/low temperature CO oxidation. In the shorter term missions where CO concentrations are typically controlled via ambient temperature oxidation catalysts, formaldehyde is also a contaminant of concern, and requires specially treated carbons such as Calgon Formasorb as untreated activated carbon has effectively no HCHO capacity. This paper examines the activity of some of the newer ambient temperature CO and formaldehyde (HCHO) oxidation catalysts, and measures the performance of the catalysts relative to the NASA baseline Ambient Temperature Catalytic Oxidizer (ATCO) catalyst at conditions of interest for closed loop trace contaminant control systems.

  8. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon.

    PubMed

    Rivera-Utrilla, J; Prados-Joya, G; Sánchez-Polo, M; Ferro-García, M A; Bautista-Toledo, I

    2009-10-15

    The objective of the present study was to analyse the behaviour of activated carbon with different chemical and textural properties in nitroimidazole adsorption, also assessing the combined use of microorganisms and activated carbon in the removal of these compounds from waters and the influence of the chemical nature of the solution (pH and ionic strength) on the adsorption process. Results indicate that the adsorption of nitroimidazoles is largely determined by activated carbon chemical properties. Application of the Langmuir equation to the adsorption isotherms showed an elevated adsorption capacity (X(m)=1.04-2.04 mmol/g) for all contaminants studied. Solution pH and electrolyte concentration did not have a major effect on the adsorption of these compounds on activated carbon, confirming that the principal interactions involved in the adsorption of these compounds are non-electrostatic. Nitroimidazoles are not degraded by microorganisms used in the biological stage of a wastewater treatment plant. However, the presence of microorganisms during nitroimidazole adsorption increased their adsorption on the activated carbon, although it weakened interactions between the adsorbate and carbon surface. In dynamic regime, the adsorptive capacity of activated carbon was markedly higher in surface water and groundwater than in urban wastewaters.

  9. High electrochemical capacitor performance of oxygen and nitrogen enriched activated carbon derived from the pyrolysis and activation of squid gladius chitin

    NASA Astrophysics Data System (ADS)

    Raj, C. Justin; Rajesh, Murugesan; Manikandan, Ramu; Yu, Kook Hyun; Anusha, J. R.; Ahn, Jun Hwan; Kim, Dong-Won; Park, Sang Yeup; Kim, Byung Chul

    2018-05-01

    Activated carbon containing nitrogen functionalities exhibits excellent electrochemical property which is more interesting for several renewable energy storage and catalytic applications. Here, we report the synthesis of microporous oxygen and nitrogen doped activated carbon utilizing chitin from the gladius of squid fish. The activated carbon has large surface area of 1129 m2 g-1 with microporous network and possess ∼4.04% of nitrogen content in the form of pyridinic/pyrrolic-N, graphitic-N and N-oxide groups along with oxygen and carbon species. The microporous oxygen/nitrogen doped activated carbon is utilize for the fabrication of aqueous and flexible supercapacitor electrodes, which presents excellent electrochemical performance with maximum specific capacitance of 204 Fg-1 in 1 M H2SO4 electrolyte and 197 Fg-1 as a flexible supercapacitor. Moreover, the device displays 100% of specific capacitance retention after 25,000 subsequent charge/discharge cycles in 1 M H2SO4 electrolyte.

  10. Mimic Carbonic Anhydrase Using Metal-Organic Frameworks for CO2 Capture and Conversion.

    PubMed

    Jin, Chaonan; Zhang, Sainan; Zhang, Zhenjie; Chen, Yao

    2018-02-19

    Carbonic anhydrase (CA) is a zinc-containing metalloprotein, in which the Zn active center plays the key role to transform CO 2 into carbonate. Inspired by nature, herein we used metal-organic frameworks (MOFs) to mimic CA for CO 2 conversion, on the basis of the structural similarity between the Zn coordination in MOFs and CA active center. The biomimetic activity of MOFs was investigated by detecting the hydrolysis of para-nitrophenyl acetate, which is a model reaction used to evaluate CA activity. The biomimetic materials (e.g., CFA-1) showed good catalytic activity, and excellent reusability, and solvent and thermal stability, which is very important for practical applications. In addition, ZIF-100 and CFA-1 were used to mimic CA to convert CO 2 gas, and exhibited good efficiency on CO 2 conversion compared with those of other porous materials (e.g., MCM-41, active carbon). This biomimetic study revealed a novel CO 2 treatment method. Instead of simply using MOFs to absorb CO 2 , ZIF-100 and CFA-1 were used to mimic CA for in situ CO 2 conversion, which provides a new prospect in the biological and industrial applications of MOFs.

  11. Carbon materials as new nanovehicles in hot-melt drug deposition

    NASA Astrophysics Data System (ADS)

    Bielicka, Agnieszka; Wiśniewski, Marek; Terzyk, Artur P.; Gauden, Piotr A.; Furmaniak, Sylwester; Roszek, Katarzyna; Kowalczyk, Piotr; Bieniek, A.

    2013-09-01

    The application of commercially available carbon materials (nanotubes and porous carbons) for the preparation of drug delivery systems is studied. We used two types of carbon nanotubes (CNT) and two activated carbons as potential materials in so-called hot-melt drug deposition (HMDD). The materials were first studied using Raman spectroscopy. Paracetamol was chosen as a model drug. The performed thermal analysis, kinetics, and adsorption-desorption studies revealed that nanoaggregates are formed between carbon nanotubes. In contrast, in pores of activated carbon we do not observe this process and the drug adsorption phenomenon mechanism is simply the filling of small pores. The formation of nanoaggregates was confirmed by the results of GCMC (grand canonical Monte Carlo) simulations and the study of the surface area on nitrogen adsorption-desorption isotherms. The application of carbon nanotubes in HMDD offers the possibility of controlling the rate of drug delivery. Performed MTT tests of nanotubes and drug-loaded nanotubes show that the observed decrease in cell viability number is caused by the influence of the cytostatic properties of nanotubes—they inhibit the proliferation of cells. The carbon nanotubes studied in this paper are essentially nontoxic.

  12. Deposition of platinum nanoparticles on carbon nanotubes by supercritical fluid method.

    PubMed

    Yen, Clive H; Cui, Xiaoli; Pan, Horng-Bin; Wang, Shaofen; Lin, Yuehe; Wai, Chien M

    2005-11-01

    Carbon nanotube-supported platinum nanoparticles with a 5-15 nm diameter size range can be synthesized by hydrogen reduction of platinum(ll) acetylacetonate in methanol modified supercritical carbon dioxide. X-ray photoelectron spectroscopy and X-ray diffraction spectra indicate that the carbon nanotubes contain zero-valent platinum metal and high-resolution transmission electron microscopy images show that the visible lattice fringes of platinum nanoparticles are crystallites. Carbon nanotubes synthesized with 25% by weight of platinum nanoparticles exhibit a higher activity for hydrogenation of benzene compared with a commercial carbon black platinum catalyst. The carbon nanotube-supported platinum nanocatalyst can be reused at least six times for the hydrogenation reaction without losing activity. The carbon nanotube-supported platinum nanoparticles are also highly active for electrochemical oxidation of methanol and for reduction of oxygen suggesting their potential use as a new electrocatalyst for proton exchange membrane fuel cell applications.

  13. Formation of carbon nanosheets via simultaneous activation and catalytic carbonization of macroporous anion-exchange resin for supercapacitors application.

    PubMed

    Peng, Hui; Ma, Guofu; Sun, Kanjun; Mu, Jingjing; Zhang, Zhe; Lei, Ziqiang

    2014-12-10

    Two-dimensional mesoporous carbon nanosheets (CNSs) have been prepared via simultaneous activation and catalytic carbonization route using macroporous anion-exchange resin (AER) as carbon precursor and ZnCl2 and FeCl3 as activating agent and catalyst, respectively. The iron catalyst in the skeleton of the AER may lead to carburization to form a sheetlike structure during the carbonization process. The obtained CNSs have a large number of mesopores, a maximum specific surface area of 1764.9 m(2) g(-1), and large pore volume of 1.38 cm(3) g(-1). As an electrode material for supercapacitors application, the CNSs electrode possesses a large specific capacitance of 283 F g(-1) at 0.5 A g(-1) and excellent rate capability (64% retention ratio even at 50 A g(-1)) in 6 mol L(-1) KOH. Furthermore, CNSs symmetric supercapacitor exhibits specific energies of 17.2 W h kg(-1) at a power density of 224 W kg(-1) operated in the voltage range of 0-1.8 V in 0.5 mol L(-1) Na2SO4 aqueous electrolyte, and outstanding cyclability (retains about 96% initial capacitance after 5000 cycles).

  14. Utilization of biochar and activated carbon to reduce Cd, Pb and Zn phytoavailability and phytotoxicity for plants.

    PubMed

    Břendová, Kateřina; Zemanová, Veronika; Pavlíková, Daniela; Tlustoš, Pavel

    2016-10-01

    In the present study, the content of risk elements and content of free amino acids were studied in spinach (Spinacia oleracea L.) and mustard (Sinapis alba L.) subsequently grown on uncontaminated and contaminated soils (5 mg Cd/kg, 1000 mg Pb/kg and 400 mg Zn/kg) with the addition of activated carbon (from coconut shells) or biochar (derived from local wood residues planted for phytoextaction) in different seasons (spring, summer and autumn). The results showed that activated carbon and biochar increased biomass production on contaminated site. Application of amendments decreased Cd and Zn uptake by spinach plants. Mustard significantly increased Pb accumulation in the biomass as well in subsequently grown autumn spinach. Glutamic acid and glutamine were major free amino acids in leaves of all plants (15-34% and 3-45%) from total content. Application of activated carbon and biochar increased content of glutamic acid in all plants on uncontaminated and contaminated soils. Activated carbon and biochar treatments also induced an increase of aspartic acid in spinach plants. Biochar produced from biomass originated from phytoextraction technologies promoted higher spinach biomass yield comparing unamended control and showed a tendency to reduce accumulation of cadmium and zinc and thus it is promising soil amendment. Copyright © 2016. Published by Elsevier Ltd.

  15. Electrochemical Ultracapacitors Using Graphitic Nanostacks

    NASA Technical Reports Server (NTRS)

    Marotta, Christopher

    2012-01-01

    Electrochemical ultracapacitors (ECs) have been developed using graphitic nanostacks as the electrode material. The advantages of this technology will be the reduction of device size due to superior power densities and relative powers compared to traditional activated carbon electrodes. External testing showed that these materials display reduced discharge response times compared to state-of-the-art materials. Such applications are advantageous for pulsed power applications such as burst communications (satellites, cell phones), electromechanical actuators, and battery load leveling in electric vehicles. These carbon nanostructures are highly conductive and offer an ordered mesopore network. These attributes will provide more complete electrolyte wetting, and faster release of stored charge compared to activated carbon. Electrochemical capacitor (EC) electrode materials were developed using commercially available nanomaterials and modifying them to exploit their energy storage properties. These materials would be an improvement over current ECs that employ activated carbon as the electrode material. Commercially available graphite nanofibers (GNFs) are used as precursor materials for the synthesis of graphitic nanostacks (GNSs). These materials offer much greater surface area than graphite flakes. Additionally, these materials offer a superior electrical conductivity and a greater average pore size compared to activated carbon electrodes. The state of the art in EC development uses activated carbon (AC) as the electrode material. AC has a high surface area, but its small average pore size inhibits electrolyte ingress/egress. Additionally, AC has a higher resistivity, which generates parasitic heating in high-power applications. This work focuses on fabricating EC from carbon that has a very different structure by increasing the surface area of the GNF by intercalation or exfoliation of the graphitic basal planes. Additionally, various functionalities to the GNS surface will be added that can exhibit pseudocapacitance. This pseudocapacitance exhibits faradaic (charge transfer) properties that can further increase the overall relative and volumetric capacitance of the material. A process is also proposed to use GNF as a precursor material to fabricate GNS that will be used as EC electrodes. This results in much better electrical conductivity than activated carbon. This is advantageous for high-pulsed-power applications to reduce parasitic heating. Larger average pore size allows more complete electrolyte wetting (faster charge transfer kinetics). These properties contribute to a lowered equivalent series resistance (ESR), increased specific power, shorter charging times, and decreased parasitic heating. The high density of basal plane edges provides nucleation sites for activation (addition of hydrophilic functional groups) that facilitate electrolyte wetting, and will contribute to pseudocapacitance.

  16. Fabrication and application of advanced functional materials from lignincellulosic biomass

    NASA Astrophysics Data System (ADS)

    Hu, Sixiao

    This dissertation explored the conversion of lignocellulosic biomass into advanced functional materials and their potential applications. Lignocellulosic biomass represents an as-of-yet underutilized renewable source for not only biofuel production but also functional materials fabrication. This renewable source is a great alternative for fossil fuel based chemicals, which could be one of the solutions to energy crisis. In this work, it was demonstrated a variety of advanced materials including functional carbons, metal and silica nanoparticles could be derived from lignocellulosic biomass. Chapter 1 provided overall reviewed of the lignin structures, productions and its utilizations as plastics, absorbents and carbons, as well as the preparation of nano-structured silver, silica and silicon carbide/nitride from biomass. Chapter 2, 3 and 4 discussed the fabrication of highly porous carbons from isolated lignin, and their applications as electric supercapacitors for energy storage. In chapter 2, ultrafine porous carbon fibers were prepared via electrospinning followed by simultaneous carbonization and activation. Chapter 3 covered the fabrication of supercapacitor based on the porous carbon fibers and the investigation of their electrochemical performances. In chapter 4, porous carbon particulates with layered carbon nano plates structures were produced by simple oven-drying followed by simultaneous carbonization and activation. The effects of heat processing parameters on the resulting carbon structures and their electrochemical properties were discussed in details. Chapter 5 and 6 addressed the preparation of silver nanoparticles using lignin. Chapter 5 reported the synthesis, underlying kinetics and mechanism of monodispersed silver nanospheres with diameter less than 25 nm in aqueous solutions using lignin as dual reducing and capping agents. Chapter 6 covered the preparation of silver nanoparticles on electrospun celluloses ultrafine fibers using lignin as both binding and reducing agents. The efficiency of this synthetic protocol and the properties of resulting particles were examined. Chapter 7 reported the streamlined extraction of lignin/hemicelluloses and silica from rice straw and their subsequent conversion to activated carbon and monodispersed silica particles.

  17. Comparison on pore development of activated carbon produced by chemical and physical activation from palm empty fruit bunch

    NASA Astrophysics Data System (ADS)

    Hidayat, A.; Sutrisno, B.

    2016-11-01

    It is well-known that activated carbon is considered to be the general adsorbent due to the large range of applications. Numerous works are being continuously published concerning its use as adsorbent for: treatment of potable water; purification of air; retention of toxins by respirators; removal of organic and inorganic pollutants from flue gases and industrial waste gases and water; recuperation of solvents and hydrocarbons volatilized from petroleum derivatives; catalysis; separation of gas mixtures (molecularsieve activated carbons); storage of natural gas and hydrogen; energy storage in supercapacitors; recovery of gold, silver and othernoble metals; etc. This work presents producing activated carbons from palm empty fruit bunch using both physical activation with CO2 and chemical activation with KOH. The resultant activated carbons were characterized by measuring their porosities and pore size distributions. A comparison of the textural characteristics and surface chemistry of the activated carbon from palm empty fruit bunch by the CO2 and the KOH activation leads to the following findings: An activated carbon by the CO2 activation under the optimum conditions has a BET surface area of 717 m2/g, while that by the KOH activation has a BET surface area of 613 m2/g. The CO2 activation generated a highly microporous carbon (92%) with a Type-I isotherm, while the KOH activation generated a mesoporous one (70%) with a type-IV isotherm, the pore volumes are 0.2135 and 0.7426 cm3.g-1 respectively. The average pore size of the activated carbons is 2.72 and 2.56 nm for KOH activation and CO2 activation, respectively. The FT-IR spectra indicated significant variation in the surface functional groups are quite different for the KOH activated and CO2 activated carbons.

  18. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    NASA Astrophysics Data System (ADS)

    Izquierdo, Mª Teresa; de Yuso, Alicia Martínez; Valenciano, Raquel; Rubio, Begoña; Pino, Mª Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation produced activated carbons with surface areas and micropore volumes as high as 1128 m2/g and 0.52 cm3/g, respectively. Moreover, the activated carbons exhibit mesoporosity, ranging from 64.6% to 89.1% the percentage of microporosity. The surface chemistry was characterized by TPD, FTIR and acid-base titration obtaining different values of surface groups from the different techniques because the limitation of each technique, but obtaining similar trends for the activated carbons studied. The exhaustive characterization of the activated carbons allows to state that the measured surface area does not explain the adsorption capacity for either toluene or n-hexane. On the other hand, the surface chemistry does not explain the adsorption results either. A compromise between physical and chemical characteristics can be obtained from the appropriate activation conditions, and the response surface methodology gives the optimal activated carbon to maximize adsorption capacity. Low activation temperature, intermediate impregnation ratio lead to high toluene and n-hexane adsorption capacities depending on the activation time, which a determining factor to maximize toluene adsorption.

  19. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2000-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  20. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2001-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  1. Improved Low-Temperature Performance of Li-Ion Cells Using New Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Buga, Ratnakumar V.; Gozdz, Antoni S.; Mani, Suresh

    2010-01-01

    As part of the continuing efforts to develop advanced electrolytes to improve the performance of lithium-ion cells, especially at low temperatures, a number of electrolyte formulations have been developed that result in improved low-temperature performance (down to 60 C) of 26650 A123Systems commercial lithium-ion cells. The cell type/design, in which the new technology has been demonstrated, has found wide application in the commercial sector (i.e., these cells are currently being used in commercial portable power tools). In addition, the technology is actively being considered for hybrid electric vehicle (HEV) and electric vehicle (EV) applications. In current work, a number of low-temperature electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed, which include the use of ternary mixtures of carbonates, the use of ester co-solvents [e.g., methyl butyrate (MB)], and optimized lithium salt concentrations (e.g., LiPF6), were compared with the commercial baseline electrolyte, as well as an electrolyte being actively considered for DoE HEV applications and previously developed by a commercial enterprise, namely LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC)(30:70%).

  2. Fully Screen-Printed, Large-Area, and Flexible Active-Matrix Electrochromic Displays Using Carbon Nanotube Thin-Film Transistors.

    PubMed

    Cao, Xuan; Lau, Christian; Liu, Yihang; Wu, Fanqi; Gui, Hui; Liu, Qingzhou; Ma, Yuqiang; Wan, Haochuan; Amer, Moh R; Zhou, Chongwu

    2016-11-22

    Semiconducting single-wall carbon nanotubes are ideal semiconductors for printed electronics due to their advantageous electrical and mechanical properties, intrinsic printability in solution, and desirable stability in air. However, fully printed, large-area, high-performance, and flexible carbon nanotube active-matrix backplanes are still difficult to realize for future displays and sensing applications. Here, we report fully screen-printed active-matrix electrochromic displays employing carbon nanotube thin-film transistors. Our fully printed backplane shows high electrical performance with mobility of 3.92 ± 1.08 cm 2 V -1 s -1 , on-off current ratio I on /I off ∼ 10 4 , and good uniformity. The printed backplane was then monolithically integrated with an array of printed electrochromic pixels, resulting in an entirely screen-printed active-matrix electrochromic display (AMECD) with good switching characteristics, facile manufacturing, and long-term stability. Overall, our fully screen-printed AMECD is promising for the mass production of large-area and low-cost flexible displays for applications such as disposable tags, medical electronics, and smart home appliances.

  3. Adsorption of iodine from COIL waste gas on soaked coal-based activated carbon

    NASA Astrophysics Data System (ADS)

    Zhou, Junbo; Hao, Shan; Gao, Liping

    2014-04-01

    The chemical oxygen-iodine laser (COIL) has wide application prospects in military, industrial and medical treatment fields as a second generation gas chemical laser to follow the first HF/DF chemical laser. However, a COIL releases large amounts of gas, such as helium, oxygen, chlorine and iodine. Chlorides have a serious corrosive effect on the system, especially iodine vapor crystallization, which seriously endangers the normal use of vacuum systems, and radioactive methyl iodide, which is hazardous to operators and pollutes the environment. The use of soaked coal-based activated carbon as an adsorbent for removing methyl iodine is proposed, while it is proposed that coal-based activated carbon is an effective adsorbent for removing stable iodine. The research conducted in this work shows that iodine residues are less than 0.5 μg ml-1 after the adsorption treatment and the decontamination factor of the coal-based activated carbon for removing stable iodine is more than 1000. Using this method can achieve the purpose of removing harmful iodine, satisfy the requirements for engineering applications, and also be applied to other nuclear power plant flue gas treatments.

  4. An analysis of the influence of production conditions on the development of the microporous structure of the activated carbon fibres using the LBET method

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Mirosław

    2017-12-01

    The paper presents the results of the research on the application of the new analytical models of multilayer adsorption on heterogeneous surfaces with the unique fast multivariant identification procedure, together called LBET method, as a tool for analysing the microporous structure of the activated carbon fibres obtained from polyacrylonitrile by chemical activation using potassium and sodium hydroxides. The novel LBET method was employed particularly to evaluate the impact of the used activator and the hydroxide to polyacrylonitrile ratio on the obtained microporous structure of the activated carbon fibres.

  5. Production of granular activated carbon from food-processing wastes (walnut shells and jujube seeds) and its adsorptive properties.

    PubMed

    Bae, Wookeun; Kim, Jongho; Chung, Jinwook

    2014-08-01

    Commercial activated carbon is a highly effective absorbent that can be used to remove micropollutants from water. As a result, the demand for activated carbon is increasing. In this study, we investigated the optimum manufacturing conditions for producing activated carbon from ligneous wastes generated from food processing. Jujube seeds and walnut shells were selected as raw materials. Carbonization and steam activation were performed in a fixed-bed laboratory electric furnace. To obtain the highest iodine number, the optimum conditions for producing activated carbon from jujube seeds and walnut shells were 2 hr and 1.5 hr (carbonization at 700 degrees C) followed by 1 hr and 0.5 hr (activation at 1000 degrees C), respectively. The surface area and iodine number of activated carbon made from jujube seeds and walnut shells were 1,477 and 1,184 m2/g and 1,450 and 1,200 mg/g, respectively. A pore-distribution analysis revealed that most pores had a pore diameter within or around 30-40 angstroms, and adsorption capacity for surfactants was about 2 times larger than the commercial activated carbon, indicating that waste-based activated carbon can be used as alternative. Implications: Wastes discharged from agricultural and food industries results in a serious environmental problem. A method is proposed to convert food-processing wastes such as jujube seeds and walnut shells into high-grade granular activated carbon. Especially, the performance of jujube seeds as activated carbon is worthy of close attention. There is little research about the application ofjujube seeds. Also, when compared to two commercial carbons (Samchully and Calgon samples), the results show that it is possible to produce high-quality carbon, particularly from jujube seed, using a one-stage, 1,000 degrees C, steam pyrolysis. The preparation of activated carbon from food-processing wastes could increase economic return and reduce pollution.

  6. Performance of Spent Mushroom Farming Waste (SMFW) Activated Carbon for Ni (II) Removal

    NASA Astrophysics Data System (ADS)

    Desa, N. S. Md; Ghani, Z. Ab; Talib, S. Abdul; Tay, C. C.

    2016-07-01

    The feasibility of a low cost agricultural waste of spent mushroom farming waste (SMFW) activated carbon for Ni(II) removal was investigated. The batch adsorption experiments of adsorbent dosage, pH, contact time, metal concentration, and temperature were determined. The samples were shaken at 125 rpm, filtered and analyzed using ICP-OES. The fifty percent of Ni(II) removal was obtained at 0.63 g of adsorbent dosage, pH 5-6 (unadjusted), 60 min contact time, 50 mg/L Ni(II) concentration and 25 °C temperature. The evaluated SMFW activated carbon showed the highest performance on Ni(II) removal compared to commercial Amberlite IRC86 resin and zeolite NK3. The result indicated that SMFW activated carbon is a high potential cation exchange adsorbent and suitable for adsorption process for metal removal. The obtained results contribute toward application of developed SMFW activated carbon in industrial pilot study.

  7. Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, E.; Iwantono, Yulita, M.; Taslim, R.; Subagio, A.; Salomo, Deraman, M.

    2013-09-01

    In this paper, a composite electrode was prepared from a mixture of activated carbon derived from precarbonization of cassava peel (CP) and carbon nanotubes (CNTs). The activated carbon was produced by pyrolysis process using ZnCl2 as an activation agent. A N2 adsorption-desorption analysis for the sample indicated that the BET surface area of the activated carbon was 1336 m2 g-1. Difference percentage of CNTs of 0, 5, 10, 15 and 20% with 5% of PVDF binder were added into CP based activated carbon in order to fabricate the composite electrodes. The morphology and structure of the composite electrodes were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM image observed that the distribution of CNTs was homogeneous between carbon particles and the XRD pattern shown the amorphous structure of the sample. The electrodes were fabricated for supercapacitor cells with 316L stainless steel as current collector and 1 M sulfuric acid as electrolyte. An electrochemical characterization was performed by using an electrochemical impedance spectroscopy (EIS) method using a Solatron 1286 instrument and the addition of CNTs revealed to improve the resistant and capacitive properties of supercapacitor cell.

  8. Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering

    PubMed Central

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali

    2013-01-01

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817

  9. Carbon-based nanomaterials: multifunctional materials for biomedical engineering.

    PubMed

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2013-04-23

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), and extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications.

  10. [Preparation of a novel activated carbon coating fiber for solid phase micro-extraction and its application for halocarbon compound analysis in water].

    PubMed

    Wang, Shutao; Wang, Yan; You, Hong; Liang, Zhihua

    2004-09-01

    A novel activated carbon coating fiber used for solid phase micro-extraction (SPME) was prepared using activated carbon powder and silica resin adhesive. The extraction properties of the novel activated carbon coating fiber were investigated. The results indicate that this coating fiber has high concentration ability, with enrichment factors for chloroform, carbon tetrachloride, trichloroethylene and tetrachloroethylene in the range of 13.8 to 18.7. The fiber is stable at temperature as high as 290 degrees C and it can be used for over 140 times at 250 degrees C. The activated carbon coating fiber was then applied to the analysis of the four halocarbon compounds mentioned above. A linear correlation with correlation coefficients between 0.995 2 and 0.999 4 and the detection limits between 0.008 and 0.05 microg/L were observed. The method was also applied to a real water sample analysis and the recoveries of these halocarbon compounds were from 95.5% to 104.6%.

  11. Preparation and Application of Electrodes in Capacitive Deionization (CDI): a State-of-Art Review.

    PubMed

    Jia, Baoping; Zhang, Wei

    2016-12-01

    As a promising desalination technology, capacitive deionization (CDI) have shown practicality and cost-effectiveness in brackish water treatment. Developing more efficient electrode materials is the key to improving salt removal performance. This work reviewed current progress on electrode fabrication in application of CDI. Fundamental principal (e.g. EDL theory and adsorption isotherms) and process factors (e.g. pore distribution, potential, salt type and concentration) of CDI performance were presented first. It was then followed by in-depth discussion and comparison on properties and fabrication technique of different electrodes, including carbon aerogel, activated carbon, carbon nanotubes, graphene and ordered mesoporous carbon. Finally, polyaniline as conductive polymer and its potential application as CDI electrode-enhancing materials were also discussed.

  12. Comparative study of CO2 and H2O activation in the synthesis of carbon electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Taer, E.; Apriwandi, Yusriwandi, Mustika, W. S.; Zulkifli, Taslim, R.; Sugianto, Kurniasih, B.; Agustino, Dewi, P.

    2018-02-01

    The physical activation for the comparative study of carbon electrode synthesized for supercapacitor applications made from rubber wood sawdust has been performed successfully. Comparison of physical activation used in this research is based on the different gas activation such as CO2 and H2O. The CO2 and H2O activation are made by using an integrated carbonization and activation system. The carbonization process is performed in N2 atmosphere followed by CO2 and H2O activation process. The carbonization process at temperature of 600°C, the CO2 and H2O activation process at a temperature of 900°C and maintained at this condition for 2 h and 3 h. The electrochemical properties were analyzed using cyclic voltammetric (CV) method. The CV results show that the carbon electrode with CO2 activation has better capacitive properties than H2O, the highest specific capacitance obtained is 93.22 F/g for 3 h of activation time. In addition, the analysis of physical properties such as surface morphology and degree of crystallinity was also performed.

  13. Study toward high-performance thermally driven air-conditioning systems

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takahiko; Miyawaki, Jin; Ohba, Tomonori; Yoon, Seong-Ho; Saha, Bidyut Baran; Koyama, Shigeru

    2017-01-01

    The Adsorption heat pump is a technology for cooling and heating by using hot water as a driving heat source. It will largely contribute to energy savings when it is driven by solar thermal energy or waste heat. The system is available in the market worldwide, and there are many examples of application to heat recovery in factories and to solar cooling systems. In the present system, silica gel and zeolite are popular adsorbents in combination with water refrigerant. Our study focused on activated carbon-ethanol pair for adsorption cooling system because of the potential to compete with conventional systems in terms of coefficient of performance. In addition, activated-ethanol pair can generally produce larger cooling effect by an adsorption-desorption cycle compared with that of the conventional pairs in terms of cooling effect per unit adsorbent mass. After the potential of a commercially available activated carbon with highest level specific surface area was evaluated, we developed a new activated carbon that has the optimum pore characteristics for the purpose of solar or waste heat driven cooling systems. In this paper, comparison of refrigerants for adsorption heat pump application is presented, and a newly developed activated carbon for ethanol adsorption heat pump is introduced.

  14. A highly active PtCu3 intermetallic core-shell, multilayered Pt-skin, carbon embedded electrocatalyst produced by a scale-up sol-gel synthesis.

    PubMed

    Bele, M; Jovanovič, P; Pavlišič, A; Jozinović, B; Zorko, M; Rečnik, A; Chernyshova, E; Hočevar, S; Hodnik, N; Gaberšček, M

    2014-11-07

    We present a novel, scaled-up sol-gel synthesis which enables one to produce 20 g batches of highly active and stable carbon supported PtCu3 nanoparticles as cathode materials for low temperature fuel cell application. We confirm the presence of an ordered intermetallic phase underneath a multilayered Pt-skin together with firm embedment of nanoparticles in the carbon matrix.

  15. Applications of Novel Carbon/AlPO4 Hybrid-Coated H2Ti12O25 as a High-Performance Anode for Cylindrical Hybrid Supercapacitors.

    PubMed

    Lee, Jeong-Hyun; Lee, Seung-Hwan

    2016-10-26

    The hybrid supercapacitor using carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 /activated carbon is fabricated as a cylindrical cell and investigated against electrochemical performances. The hybrid coating shows that the conductivity for the electron and Li ion is superior and it prevented active material from HF attack. Consequently, carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 shows enhanced rate capability and long-term cycle life. Also, the hybrid coating inhibits swelling phenomenon caused by gas generated as decomposition reaction of electrolyte. Therefore, the hybrid supercapacitor using carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 /activated carbon can be applied to an energy storage system that requires a long-term life.

  16. Production of granular activated carbon from waste walnut shell and its adsorption characteristics for Cu(2+) ion.

    PubMed

    Kim, J W; Sohn, M H; Kim, D S; Sohn, S M; Kwon, Y S

    2001-08-17

    Production of granular activated carbon by chemical activation has been attempted employing walnut shells as the raw material. The thermal characteristics of walnut shell were investigated by TG/DTA and the adsorption capacity of the produced activated carbon was evaluated using the titration method. As the activation temperature increased, the iodine value increased. However, a temperature higher than 400 degrees C resulted in a thermal degradation, which was substantiated by scanning electron microscopy (SEM) analysis, and the adsorption capacity decreased. Activation longer than 1h at 375 degrees C resulted in the destruction of the microporous structure of activated carbon. The iodine value increased with the increase in the concentration of ZnCl2 solution. However, excessive ZnCl2 in the solution decreased the iodine value. The extent of activation by ZnCl2 was compared with that by CaCl2 activation. Enhanced activation was achieved when walnut shell was activated by ZnCl2. Applicability of the activated carbon as adsorbent was examined for synthetic copper wastewater. Adsorption of copper ion followed the Freundlich model. Thermodynamic aspects of adsorption have been discussed based on experimental results. The adsorption capacity of the produced activated carbon met the conditions for commercialization and was found to be superior to that made from coconut shell.

  17. Microwave assisted synthesis of camellia oleifera shell-derived porous carbon with rich oxygen functionalities and superior supercapacitor performance

    NASA Astrophysics Data System (ADS)

    Liang, Jiyuan; Qu, Tingting; Kun, Xiang; Zhang, Yu; Chen, Shanyong; Cao, Yuan-Cheng; Xie, Mingjiang; Guo, Xuefeng

    2018-04-01

    Biomass-derived carbon (BDCs) materials are receiving extensive attention as electrode materials for energy storage because of the considerable economic value offering possibility for practical applications, but the electrochemical capacitance of BDCs are usually relatively low resulted from limited electric double layer capacitance. Herein, an oxygen-rich porous carbon (KMAC) was fabricated through a rapid and convenient microwave assisted carbonization and KOH activation of camellia oleifera shell. The obtained KMAC possesses three-dimensional porous architecture, large surface area (1229 m2/g) and rich oxygen functionalities (C/O ratio of 1.66). As the electrode materials for supercapacitor, KMAC exhibits superior supercapacitive performances as compared to the activated carbon (KAC) derived from direct carbonization/KOH activation method in 2.0 M H2SO4 (315 F/g vs. 202 F/g) and 6.0 M KOH (251 F/g vs. 214 F/g) electrolyte due to the rich oxygen-containing functional groups on the surface of porous carbon resulted from the developed microwave-assisted carbonization/activation approach.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wenqiang; School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003; Liu, Minmin

    We present the synthesis and multifunctional utilization of core-satellite carbon-Fe{sub 3}O{sub 4} nanoparticles to serve as the enabling platform for a range of applications including oxygen reduction reaction (ORR) and magnetic adsorbent. Starting from polydopamine (PDA) nanoparticles and Fe(NO{sub 3}){sub 3}, carbon-Fe{sub 3}O{sub 4} core–satellite nanospheres are synthesized through successive steps of impregnation, ammoniation and carbonization. The synergistic combination of Fe{sub 3}O{sub 4} and N-doped carbon endows the nanocomposite with high electrochemical activity in ORR and mainly four electrons transferred in reaction process. Furthermore, carbon-Fe{sub 3}O{sub 4} nanoparticles used as magnetic adsorbent exhibit the efficient removal of Rhodamine B frommore » an aqueous solution. The recovery and reuse of the adsorbent is demonstrated 5 times without any detectible loss in activity. - Graphical abstract: Starting from polydopamine (PDA) nanoparticles and Fe(NO{sub 3}){sub 3}, carbon-Fe{sub 3}O{sub 4} core–satellite nanospheres are synthesized through successive steps of impregnation, ammoniation and carbonization. The nanocomposites serve as the enabling platform for a range of applications including oxygen reduction reaction (ORR) and magnetic adsorbent. - Highlights: • Carbon-Fe{sub 3}O{sub 4} core–satellite nanospheres are synthesized through successive steps of impregnation, ammoniation and carbonization. • Polydopamine and Fe(NO{sub 3}){sub 3} are precursors for N-doped carbon source and Fe{sub 3}O{sub 4} nanoparticles, respectively. • The nanocomposites exhibit high electrochemical activity in ORR. • The nanocomposites effectively adsorb organic dyes with magnetic recovery and good recycle property.« less

  19. Pore size dependent molecular adsorption of cationic dye in biomass derived hierarchically porous carbon.

    PubMed

    Chen, Long; Ji, Tuo; Mu, Liwen; Shi, Yijun; Wang, Huaiyuan; Zhu, Jiahua

    2017-07-01

    Hierarchically porous carbon adsorbents were successfully fabricated from different biomass resources (softwood, hardwood, bamboo and cotton) by a facile two-step process, i.e. carbonization in nitrogen and thermal oxidation in air. Without involving any toxic/corrosive chemicals, large surface area of up to 890 m 2 /g was achieved, which is comparable to commercial activated carbon. The porous carbons with various surface area and pore size were used as adsorbents to investigate the pore size dependent adsorption phenomenon. Based on the density functional theory, effective (E-SSA) and ineffective surface area (InE-SSA) was calculated considering the geometry of used probing adsorbate. It was demonstrated that the adsorption capacity strongly depends on E-SSA instead of total surface area. Moreover, a regression model was developed to quantify the adsorption capacities contributed from E-SSA and InE-SSA, respectively. The applicability of this model has been verified by satisfactory prediction results on porous carbons prepared in this work as well as commercial activated carbon. Revealing the pore size dependent adsorption behavior in these biomass derived porous carbon adsorbents will help to design more effective materials (either from biomass or other carbon resources) targeting to specific adsorption applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The influence of ZnO-SnO2 nanoparticles and activated carbon on the photocatalytic degradation of toluene using continuous flow mode.

    PubMed

    Rangkooy, Hossein Ali; Tanha, Fatemeh; Jaafarzadeh, Neamat; Mohammadbeigi, Abolfazl

    2017-01-01

    The present study examined the gas-phase photocatalytic degradation of toluene using ZnO-SnO 2 nanocomposite supported on activated carbon in a photocatalytic reactor. Toluene was selected as a model pollutant from volatile organic compounds to determine the pathway of photocatalytic degradation and the factors influencing this degradation. The ZnO-SnO 2 nanocomposite was synthesized through co-precipitation method in a ratio of 2:1 and then supported on activated carbon. The immobilization of ZnO-SnO 2 nanocomposite on activated carbon was determined by the surface area and scanning electron micrograph technique proposed by Brunauer, Emmett, and Teller. The laboratory findings showed that the highest efficiency was 40% for photocatalytic degradation of toluene. The results also indicated that ZnO-SnO 2 nano-oxides immobilization on activated carbon had a synergic effect on photocatalytic degradation of toluene. Use of a hybrid photocatalytic system (ZnO/SnO 2 nano coupled oxide) and application of absorbent (activated carbon) may be efficient and effective technique for refinement of toluene from air flow.

  1. Adsorptive removal of antibiotics from aqueous solution using carbon materials.

    PubMed

    Yu, Fei; Li, Yong; Han, Sheng; Ma, Jie

    2016-06-01

    Antibiotics, an important type of environmental contamination, have attracted many researchers to the study of their removal from aqueous solutions. Adsorption technology is a fast, efficient, and economical physicochemical method that is extensively used in wastewater treatment. From original activated carbon and carbon nanotubes to the latest graphene-based materials, carbon-based materials have been widely used as highly effective adsorbents for contaminant removal from aqueous solution because of their large specific surface area, high porosity, and high reaction activity. In this article, adsorption removal methods for four major types of antibiotic (tetracyclines, sulfonamides, macrolides, and quinolones) are reviewed. We also provide an overview of the application development of carbon materials as adsorbents for antibiotic removal from aqueous solution. The most promising works are discussed, and the main challenges in preparing high-performance adsorbents and the development tendency of adsorbents are also analyzed. This work provides theoretical guidance for subsequent research in the design and modification of carbon materials for applications in the adsorption removal of antibiotics from aqueous solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China.

    PubMed

    Zhang, Man; Cheng, Gong; Feng, Hao; Sun, Benhua; Zhao, Ying; Chen, Haixin; Chen, Jing; Dyck, Miles; Wang, Xudong; Zhang, Jianguo; Zhang, Afeng

    2017-04-01

    Soil from the Loess Plateau of China is typically low in organic carbon and generally has poor aggregate stability. Application of organic amendments to these soils could help to increase and sustain soil organic matter levels and thus to enhance soil aggregate stability. A field experiment was carried out to evaluate the effect of the application of wheat straw and wheat straw-derived biochar (pyrolyzed at 350-550 °C) amendments on soil aggregate stability, soil organic carbon (SOC), and enzyme activities in a representative Chinese Loess soil during summer maize and winter wheat growing season from 2013 to 2015. Five treatments were set up as follows: no fertilization (CK), application of inorganic fertilizer (N), wheat straw applied at 8 t ha -1 with inorganic fertilizer (S8), and wheat straw-derived biochar applied at 8 t ha -1 (B8) and 16 t ha -1 (B16) with inorganic fertilizer, respectively. Compared to the N treatment, straw and straw-derived biochar amendments significantly increased SOC (by 33.7-79.6%), microbial biomass carbon (by 18.9-46.5%), and microbial biomass nitrogen (by 8.3-38.2%), while total nitrogen (TN) only increased significantly in the B16 plot (by 24.1%). The 8 t ha -1 straw and biochar applications had no significant effects on soil aggregation, but a significant increase in soil macro-aggregates (>2 mm) (by 105.8%) was observed in the B16 treatment. The concentrations of aggregate-associated SOC increased by 40.4-105.8% in macro-aggregates (>2 mm) under straw and biochar amendments relative to the N treatment. No significant differences in invertase and alkaline phosphatase activity were detected among different treatments. However, urease activity was greater in the biochar treatment than the straw treatment, indicating that biochar amendment improved the transformation of nitrogen in the soil. The carbon pool index and carbon management index were increased with straw and biochar amendments, especially in the B16 treatment. In conclusion, application of carbonized crop residue as biochar, especially at a rate of 16 t ha -1 , could be a potential solution to recover the depleted SOC and enhance the formation of macro-aggregates in Loess Plateau soils of China.

  3. Low temperature regeneration of activated carbons using microwaves: revising conventional wisdom.

    PubMed

    Calışkan, E; Bermúdez, J M; Parra, J B; Menéndez, J A; Mahramanlıoğlu, M; Ania, C O

    2012-07-15

    The purpose of this work was to explore the application of microwaves for the low temperature regeneration of activated carbons saturated with a pharmaceutical compound (promethazine). Contrary to expectations, microwave-assisted regeneration did not lead to better results than those obtained under conventional electric heating. At low temperatures the regeneration was incomplete either under microwave and conventional heating, being this attributed to the insufficient input energy. At mild temperatures, a fall in the adsorption capacity upon cycling was obtained in both devices, although this was much more pronounced for the microwave. These results contrast with previous studies on the benefits of microwaves for the regeneration of carbon materials. The fall in the adsorption capacity after regeneration was due to the thermal cracking of the adsorbed molecules inside the carbon porous network, although this effect applies to both devices. When microwaves are used, along with the thermal heating of the carbon bed, a fraction of the microwave energy seemed to be directly used in the decomposition of promethazine through the excitation of the molecular bonds by microwaves (microwave-lysis). These results point out that the nature of the adsorbate and its ability to interact with microwave are key factors that control the application of microwaves for regeneration of exhausted activated carbons. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Bifunctional Nitrogen-Doped Microporous Carbon Microspheres Derived from Poly(o-methylaniline) for Oxygen Reduction and Supercapacitors.

    PubMed

    He, Yanzhen; Han, Xijiang; Du, Yunchen; Song, Bo; Xu, Ping; Zhang, Bin

    2016-02-17

    Heteroatom-doped carbon materials have attracted significant attention because of their applications in oxygen reduction reaction (ORR) and supercapacitors. Here we demonstrate a facile poly(o-methylaniline)-derived fabrication of bifunctional microporous nitrogen-doped carbon microspheres (NCMSs) with high electrocatalytic activity and stability for ORR and energy storage in supercapacitors. At a pyrolysis temperature of 900 °C, the highly dispersed NCMSs present a high surface area (727.1 m(2) g(-1)), proper total content of doping N, and high concentration of quaternary N, which exhibit superior electrocatalytic activities for ORR to the commercial Pt/C catalysts, high specific capacitance (414 F g(-1)), and excellent durability, making them very promising for advanced energy conversion and storage. The presented conducting polymer-derived strategy may provide a new way for the fabrication of heteroatom-doped carbon materials for energy device applications.

  5. Nitrogen-doped carbon spheres: A new high-energy-density and long-life pseudo-capacitive electrode material for electrochemical flow capacitor.

    PubMed

    Hou, Shujin; Wang, Miao; Xu, Xingtao; Li, Yandong; Li, Yanjiang; Lu, Ting; Pan, Likun

    2017-04-01

    One of the most challenging issues in developing electrochemical flow capacitor (EFC) technology is the design and synthesis of active electrode materials with high energy density and long cycle life. However, in practical cases, the energy density and cycle ability obtained currently cannot meet the practical need. In this work, we propose a new active material, nitrogen-doped carbon spheres (NCSs), as flowable electrodes for EFC application. The NCSs were prepared via one-pot hydrothermal synthesis in the presence of resorcinol/formaldehyde as carbon precursors and melamine as nitrogen precursor, followed by carbonization in nitrogen flow at various temperatures. The results of EFC experiments demonstrate that NCSs obtained at 800°C exhibit a high energy density of 13.5Whkg -1 and an excellent cycle ability, indicating the superiority of NCSs for EFC application. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Biomineralization of calcium carbonates and their engineered applications: a review

    PubMed Central

    Dhami, Navdeep K.; Reddy, M. Sudhakara; Mukherjee, Abhijit

    2013-01-01

    Microbially induced calcium carbonate precipitation (MICCP) is a naturally occurring biological process in which microbes produce inorganic materials as part of their basic metabolic activities. This technology has been widely explored and promising with potential in various technical applications. In the present review, the detailed mechanism of production of calcium carbonate biominerals by ureolytic bacteria has been discussed along with role of bacteria and the sectors where these biominerals are being used. The applications of bacterially produced carbonate biominerals for improving the durability of buildings, remediation of environment (water and soil), sequestration of atmospheric CO2 filler material in rubbers and plastics etc. are discussed. The study also sheds light on benefits of bacterial biominerals over traditional agents and also the issues that lie in the path of successful commercialization of the technology of microbially induced calcium carbonate precipitation from lab to field scale. PMID:24194735

  7. Effects of organic carbon sequestration strategies on soil enzymatic activities

    NASA Astrophysics Data System (ADS)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  8. Production of activated carbon by using pyrolysis process in an ammonia atmosphere

    NASA Astrophysics Data System (ADS)

    Indayaningsih, N.; Destyorini, F.; Purawiardi, R. I.; Insiyanda, D. R.; Widodo, H.

    2017-04-01

    Activated carbon is materials that have wide applications, including supercapacitor materials, absorbent in chemical industry, and absorbent material in the chemical industry. This study has carried out for the manufacturing of activated carbon from inexpensive materials through efficient processes. Carbon material was made from coconut fibers through pyrolysis process at temperature of 650, 700, 750 and 800°C. Aim of this study was to obtain carbon material that has a large surface area. Pyrolysis process is carried out in an inert atmosphere (N2 gas) at a temperature of 450°C for 30 minutes, followed by pyrolysis process in an ammonia atmosphere at 800°C for 2 hours. The pyrolysis results showed that the etching process in ammonia is occurred; as it obtained some greater surface area when compared with the pyrolisis process in an atmosphere by inert gas only. The resulted activated carbon also showed to have good properties in surface area and total pore volume.

  9. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.

    PubMed

    Karnan, M; Subramani, K; Sudhan, N; Ilayaraja, N; Sathish, M

    2016-12-28

    Materials which possess high specific capacitance in device configuration with low cost are essential for viable application in supercapacitors. Herein, a flexible high-energy supercapacitor device was fabricated using porous activated high-surface-area carbon derived from aloe leaf (Aloe vera) as a precursor. The A. vera derived activated carbon showed mesoporous nature with high specific surface area of ∼1890 m 2 /g. A high specific capacitance of 410 and 306 F/g was achieved in three-electrode and symmetric two-electrode system configurations in aqueous electrolyte, respectively. The fabricated all-solid-state device showed a high specific capacitance of 244 F/g with an energy density of 8.6 Wh/kg. In an ionic liquid electrolyte, the fabricated device showed a high specific capacitance of 126 F/g and a wide potential window up to 3 V, which results in a high energy density of 40 Wh/kg. Furthermore, it was observed that the activation temperature has significant role in the electrochemical performance, as the activated sample at 700 °C showed best activity than the samples activated at 600 and 800 °C. The electron microscopic images (FE-SEM and HR-TEM) confirmed the formation of pores by the chemical activation. A fabricated supercapacitor device in ionic liquid with 3 V could power up a red LED for 30 min upon charging for 20s. Also, it is shown that the operation voltage and capacitance of flexible all-solid-state symmetric supercapacitors fabricated using aloe-derived activated carbon could be easily tuned by series and parallel combinations. The performance of fabricated supercapacitor devices using A. vera derived activated carbon in all-solid-state and ionic liquid indicates their viable applications in flexible devices and energy storage.

  10. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications.

    PubMed

    Benzigar, Mercy R; Talapaneni, Siddulu Naidu; Joseph, Stalin; Ramadass, Kavitha; Singh, Gurwinder; Scaranto, Jessica; Ravon, Ugo; Al-Bahily, Khalid; Vinu, Ajayan

    2018-04-23

    Functionalized nanoporous carbon materials have attracted the colossal interest of the materials science fraternity owing to their intriguing physical and chemical properties including a well-ordered porous structure, exemplary high specific surface areas, electronic and ionic conductivity, excellent accessibility to active sites, and enhanced mass transport and diffusion. These properties make them a special and unique choice for various applications in divergent fields such as energy storage batteries, supercapacitors, energy conversion fuel cells, adsorption/separation of bulky molecules, heterogeneous catalysts, catalyst supports, photocatalysis, carbon capture, gas storage, biomolecule detection, vapour sensing and drug delivery. Because of the anisotropic and synergistic effects arising from the heteroatom doping at the nanoscale, these novel materials show high potential especially in electrochemical applications such as batteries, supercapacitors and electrocatalysts for fuel cell applications and water electrolysis. In order to gain the optimal benefit, it is necessary to implement tailor made functionalities in the porous carbon surfaces as well as in the carbon skeleton through the comprehensive experimentation. These most appealing nanoporous carbon materials can be synthesized through the carbonization of high carbon containing molecular precursors by using soft or hard templating or non-templating pathways. This review encompasses the approaches and the wide range of methodologies that have been employed over the last five years in the preparation and functionalisation of nanoporous carbon materials via incorporation of metals, non-metal heteroatoms, multiple heteroatoms, and various surface functional groups that mostly dictate their place in a wide range of practical applications.

  11. Influence of carbon conductive additives on electrochemical double-layer supercapacitor parameters

    NASA Astrophysics Data System (ADS)

    Kiseleva, E. A.; Zhurilova, M. A.; Kochanova, S. A.; Shkolnikov, E. J.; Tarasenko, A. B.; Zaitseva, O. V.; Uryupina, O. V.; Valyano, G. V.

    2018-01-01

    Electrochemical double-layer capacitors (EDLC) offer energy storage technology, highly demanded for rapid transition processes in transport and stationary applications, concerned with fast power fluctuations. Rough structure of activated carbon, widely used as electrode material because of its high specific area, leads to poor electrode conductivity. Therefore there is the need for conductive additive to decrease internal resistance and to achieve high specific power and high specific energy. Usually carbon blacks are widely used as conductive additive. In this paper electrodes with different conductive additives—two types of carbon blacks and single-walled carbon nanotubes—were prepared and characterized in organic electrolyte-based EDLC cells. Electrodes are based on original wood derived activated carbon produced by potassium hydroxide high-temperature activation at Joint Institute for High Temperatures RAS. Electrodes were prepared from slurry by cold-rolling. For electrode characterization cyclic voltammetry, impedance spectra analysis, equivalent series resistance measurements and galvanostatic charge-discharge were used.

  12. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation.

    PubMed

    Tseng, Ru-Ling

    2007-08-25

    Activated carbon was prepared from plum kernels by NaOH activation at six different NaOH/char ratios. The physical properties including the BET surface area, the total pore volume, the micropore ratio, the pore diameter, the burn-off, and the scanning electron microscope (SEM) observation as well as the chemical properties, namely elemental analysis and temperature programmed desorption (TPD), were measured. The results revealed a two-stage activation process: stage 1 activated carbons were obtained at NaOH/char ratios of 0-1, surface pyrolysis being the main reaction; stage 2 activated carbons were obtained at NaOH/char ratios of 2-4, etching and swelling being the main reactions. The physical properties of stage 2 activated carbons were similar, and specific area was from 1478 to 1887m(2)g(-1). The results of reaction mechanism of NaOH activation revealed that it was apparently because of the loss ratio of elements C, H, and O in the activated carbon, and the variations in the surface functional groups and the physical properties. The adsorption of the above activated carbons on phenol and three kinds of dyes (MB, BB1, and AB74) were used for an isotherm equilibrium adsorption study. The data fitted the Langmuir isotherm equation. Various kinds of adsorbents showed different adsorption types; separation factor (R(L)) was used to determine the level of favorability of the adsorption type. In this work, activated carbons prepared by NaOH activation were evaluated in terms of their physical properties, chemical properties, and adsorption type; and activated carbon PKN2 was found to have most application potential.

  13. Activated Carbon Fibers For Gas Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchell, Timothy D; Contescu, Cristian I; Gallego, Nidia C

    The advantages of Activated Carbon Fibers (ACF) over Granular Activated Carbon (GAC) are reviewed and their relationship to ACF structure and texture are discussed. These advantages make ACF very attractive for gas storage applications. Both adsorbed natural gas (ANG) and hydrogen gas adsorption performance are discussed. The predicted and actual structure and performance of lignin-derived ACF is reviewed. The manufacture and performance of ACF derived monolith for potential automotive natural gas (NG) storage applications is reported Future trends for ACF for gas storage are considered to be positive. The recent improvements in NG extraction coupled with the widespread availability ofmore » NG wells means a relatively inexpensive and abundant NG supply in the foreseeable future. This has rekindled interest in NG powered vehicles. The advantages and benefit of ANG compared to compressed NG offer the promise of accelerated use of ANG as a commuter vehicle fuel. It is to be hoped the current cost hurdle of ACF can be overcome opening ANG applications that take advantage of the favorable properties of ACF versus GAC. Lastly, suggestions are made regarding the direction of future work.« less

  14. Preparation of hollow mesoporous carbon spheres and their performances for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Ariyanto, T.; Zhang, G. R.; Kern, A.; Etzold, B. J. M.

    2018-03-01

    Hollow carbon materials have received intensive attention for energy storage/conversion applications due to their attractive properties of high conductivity, high surface area, large void and short diffusion pathway. In this work, a novel hollow mesoporous material based on carbide-derived carbon (CDC) is presented. CDC is a new class of carbon material synthesized by the selective extraction of metals from metal carbides. With a two-stage extraction procedure of carbides with chlorine, firstly hybrid core-shell carbon particles were synthesized, i.e. mesoporous/graphitic carbon shells covering microporous/amorphous carbon cores. The amorphous cores were then selectively removed from particles by a careful oxidative treatment utilizing its low thermal characters while the more stable carbon shells remained, thus resulting hollow particles. The characterization methods (e.g. N2 sorption, Raman spectroscopy, temperature-programmed oxidation and SEM) proved the successful synthesis of the aspired material. In electric double-layer capacitor (EDLC) testing, this novel hollow core material showed a remarkable enhancement of EDLC’s rate handling ability (75% at a high scan rate) with respect to an entirely solid-mesoporous material. Furthermore, as a fuel cell catalyst support the material showed higher Pt mass activity (a factor of 1.8) compared to a conventional carbon support for methanol oxidation without noticeably decreasing activity in a long-term testing. Therefore, this carbon nanostructure shows great promises as efficient electrode materials for energy storage and conversion systems.

  15. A Biomedical Application of Activated Carbon Adsorption: An Experiment Using Acetaminophen and N-Acetylcysteine.

    ERIC Educational Resources Information Center

    Rybolt, Thomas R.; And Others

    1988-01-01

    Illustrates an interesting biomedical application of adsorption from solution and demonstrates some of the factors that influence the in vivo adsorption of drug molecules onto activated charcoal. Uses acetaminophen and N-acetylcysteine for the determination. Suggests several related experiments. (MVL)

  16. Activated carbon electrode from banana-peel waste for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, E.; Taslim, R.; Aini, Z.; Hartati, S. D.; Mustika, W. S.

    2017-01-01

    Seven types of activated carbon electrode (ACM) have been produced from the banana peel waste for supercapacitor application. The difference type of the electrode was synthesized by the various conditions of carbonization and activation. The production of the ACM was begun by the milling process and molded by a solution casting technique. The next step was followed by drying, carbonization and activation process. Physical properties of the ACM were studied by the N2 gas absorption-desorption method to characterize the specific surface area of the sample. On the other side, the electrochemical properties such as specific capacitance (Csp), specific energy (E) and specific power (P) were resulted by calculating the current (I) and voltage (V) data from the cyclic voltammetry testing. Based on the data obtained the surface area of the ACM has a significant relationship with the electrochemical properties. The specific surface area (SBET), Csp, E and P were found the maximum value as high as 581m2 / g, 68 F/g, 0.75 Wh/kg and 31 W/kg, respectively. Further more, this paper were also analyzed the relationship between electrochemical properties of supercapacitor with the degree of crystallization of the ACM.

  17. A novel integration of three-dimensional electro-Fenton and biological activated carbon and its application in the advanced treatment of biologically pretreated Lurgi coal gasification wastewater.

    PubMed

    Hou, Baolin; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Jia, Shengyong; Li, Kun

    2015-11-01

    A novel integrated process with three-dimensional electro-Fenton (3D EF) and biological activated carbon (BAC) was employed in advanced treatment of biologically pretreated Lurgi coal gasification wastewater. SAC-Fe (sludge deserved activated carbon from sewage and iron sludge) and SAC (sludge deserved activated carbon) were used in 3D EF as catalytic particle electrodes (CPEs) and in BAC as carriers respectively. Results indicated that 3D EF with SAC-Fe as CPEs represented excellent pollutants and COLOR removals as well as biodegradability improvement. The efficiency enhancement attributed to generating more H2O2 and OH. The integrated process exhibited efficient performance of COD, BOD5, total phenols, TOC, TN and COLOR removals at a much shorter retention time, with the corresponding concentrations in effluent of 31.18, 6.69, 4.29, 17.82, 13.88mg/L and <20 times, allowing discharge criteria to be met. The integrated system was efficient, cost-effective and ecological sustainable and could be a promising technology for engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. New Wind in Old Sails: Novel Applications of Triphos-based Transition Metal Complexes as Homogeneous Catalysts for Small Molecules and Renewables Activation.

    PubMed

    Mellone, Irene; Bertini, Federica; Gonsalvi, Luca; Guerriero, Antonella; Peruzzini, Maurizio

    2015-01-01

    Recent developments in the coordination chemistry and applications of Ru-triphos [triphos = 1,1,1-tris-(diphenylphosphinomethyl)ethane] systems are reviewed, highlighting their role as active and selective homogenous catalysts for small molecule activation, biomass conversions and in carbon dioxide utilization-related processes.

  19. The Aspergillus nidulans Pyruvate Dehydrogenase Kinases Are Essential To Integrate Carbon Source Metabolism.

    PubMed

    Ries, Laure Nicolas Annick; de Assis, Leandro José; Rodrigues, Fernando José Santos; Caldana, Camila; Rocha, Marina Campos; Malavazi, Iran; Bayram, Özgür; Goldman, Gustavo H

    2018-05-24

    The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilisation in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilisation in the reference filamentous fungus Aspergillus nidulans , in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localised to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilisation, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilisation of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications. Copyright © 2018, G3: Genes, Genomes, Genetics.

  20. Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue

    NASA Astrophysics Data System (ADS)

    Liu, Qing-Song; Zheng, Tong; Li, Nan; Wang, Peng; Abulikemu, Gulizhaer

    2010-03-01

    Modification of bamboo-based activated carbon was carried out in a microwave oven under N 2 atmosphere. The virgin and modified activated carbons were characterized by means of low temperature N 2 adsorption, acid-base titration, point of zero charge (pH pzc) measurement, FTIR and XPS spectra. A gradual decrease in the surface acidic groups was observed during the modification, while the surface basicity was enhanced to some extent, which gave rise to an increase in the pH pzc value. The species of the functional groups and relative content of various elements and groups were given further analysis using FTIR and XPS spectra. An increase in the micropores was found at the start, and the micropores were then extended into larger ones, resulting in an increase in the pore volume and average pore size. Adsorption studies showed enhanced adsorption of methylene blue on the modified activated carbons, caused mainly by the enlargement of the micropores. Adsorption isotherm fittings revealed that Langmuir and Freundlich models were applicable for the virgin and modified activated carbons, respectively. Kinetic studies exhibited faster adsorption rate of methylene blue on the modified activated carbons, and the pseudo-second-order model fitted well for all of the activated carbons.

  1. Characterization and organic electric-double-layer-capacitor application of KOH activated coal-tar-pitch-based carbons: Effect of carbonization temperature

    NASA Astrophysics Data System (ADS)

    Choi, Poo Reum; Lee, Eunji; Kwon, Soon Hyung; Jung, Ji Chul; Kim, Myung-Soo

    2015-12-01

    The present study reports the influence of pre-carbonization on the properties of KOH-activated coal tar pitch (CTP). The change of crystallinity and pore structure of pre-carbonized CTPs as well as their activated carbons (ACs) as function of pre-carbonization temperature are investigated. The crystallinity of pre-carbonized CTPs increases with increasing the carbonization temperature up to 600 °C, but a disorder occurs during the carbonization around 700 °C and an order happens gradually with increasing the carbonization temperatures in range of 800-1000 °C. The CTPs pre-carbonized at high temperatures are more difficult to be activated with KOH than those pre-carbonized at low temperatures due to the increase of micro-crystalline size and the decrease of surface functional groups. The micro-pores and meso-pores are well developed at around 1.0 nm and 2.4 nm, respectively, as the ACs are pre-carbonized at temperatures of 500-600 °C, exhibiting high specific capacitances as electrode materials for electric double layer capacitor (EDLC). Although the specific surface area (SSA) and pore volume of ACs pre-carbonized at temperatures of 900-1000 °C are extraordinary low (non-porous) as compared to those of AC pre-carbonized at 600 °C, their specific capacitances are comparable to each other. The large specific capacitances with low SSA ACs can be attributed to the structural change resulting from the electrochemical activation during the 1st charge above 2.0 V.

  2. Sulfurized activated carbon for high energy density supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Yunxia; Candelaria, Stephanie L.; Li, Yanwei; Li, Zhimin; Tian, Jianjun; Zhang, Lili; Cao, Guozhong

    2014-04-01

    Sulfurized activated carbon (SAC), made by coating the pore surface with thiophenic sulfur functional groups from the pyrolysis of sulfur flakes, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy (XPS), the sulfur content in the SAC was found to be 2.7 at%. Electrochemical properties from potentiostatic and galvanostatic measurements, and electrochemical impedance spectroscopy (EIS) were used to evaluate the effect of sulfur on porous carbon electrodes. The SAC electrode exhibits better conductivity, and an obvious increase in specific capacitance that is almost 40% higher than plain activated carbons (ACs) electrode at a high current density of 1.4 A g-1. The proposed mechanism for improved conductivity and capacitive performance due to the sulfur functional groups on ACs will be discussed.

  3. Citric acid functionalized carbon materials for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Poh, Chee Kok; Lim, San Hua; Pan, Hui; Lin, Jianyi; Lee, Jim Yang

    Carbon materials can be easily functionalized using citric acid (CA) treatment. The CA modification of carbon materials is both simple and effective. It requires no prolonged heating, filtration and washing, and produces more functional groups such as carboxyl and hydroxide on CA-modified carbon nanotubes and XC72 carbon blacks than on HNO 3-H 2SO 4 oxidized carbon nanotubes and as-purchased XC72. Platinum nanoparticles are deposited on these functionalized carbon materials by means of a microwave-assisted polyol process. The investigations using TEM, XRD, FTIR and TGA indicate that CA modification creates more functional groups and thus deposits more Pt nanoparticles with smaller average particle size on the surface of carbon materials. Electrochemical studies of the Pt/C samples for methanol oxidation reveal higher activity for Pt on CA-modified carbon materials. It is therefore considered that this method can find important applications in reducing the cost and improving performance of proton-exchange membrane fuel cells.

  4. Metal-Free Carbon-Based Materials: Promising Electrocatalysts for Oxygen Reduction Reaction in Microbial Fuel Cells

    PubMed Central

    Sawant, Sandesh Y.; Han, Thi Hiep; Cho, Moo Hwan

    2016-01-01

    Microbial fuel cells (MFCs) are a promising green approach for wastewater treatment with the simultaneous advantage of energy production. Among the various limiting factors, the cathodic limitation, with respect to performance and cost, is one of the main obstacles to the practical applications of MFCs. Despite the high performance of platinum and other metal-based cathodes, their practical use is limited by their high cost, low stability, and environmental toxicity. Oxygen is the most favorable electron acceptor in the case of MFCs, which reduces to water through a complicated oxygen reduction reaction (ORR). Carbon-based ORR catalysts possessing high surface area and good electrical conductivity improve the ORR kinetics by lowering the cathodic overpotential. Recently, a range of carbon-based materials have attracted attention for their exceptional ORR catalytic activity and high stability. Doping the carbon texture with a heteroatom improved their ORR activity remarkably through the favorable adsorption of oxygen and weaker molecular bonding. This review provides better insight into ORR catalysis for MFCs and the properties, performance, and applicability of various metal-free carbon-based electrocatalysts in MFCs to find the most appropriate cathodic catalyst for the practical applications. The approaches for improvement, key challenges, and future opportunities in this field are also explored. PMID:28029116

  5. Oxidative coupling of sp 2 and sp 3 carbon-hydrogen bonds to construct dihydrobenzofurans.

    PubMed

    Shi, Jiang-Ling; Wang, Ding; Zhang, Xi-Sha; Li, Xiao-Lei; Chen, Yu-Qin; Li, Yu-Xue; Shi, Zhang-Jie

    2017-08-10

    Metal-catalyzed cross-couplings provide powerful, concise, and accurate methods to construct carbon-carbon bonds from organohalides and organometallic reagents. Recent developments extended cross-couplings to reactions where one of the two partners connects with an aryl or alkyl carbon-hydrogen bond. From an economic and environmental point of view, oxidative couplings between two carbon-hydrogen bonds would be ideal. Oxidative coupling between phenyl and "inert" alkyl carbon-hydrogen bonds still awaits realization. It is very difficult to develop successful strategies for oxidative coupling of two carbon-hydrogen bonds owning different chemical properties. This article provides a solution to this challenge in a convenient preparation of dihydrobenzofurans from substituted phenyl alkyl ethers. For the phenyl carbon-hydrogen bond activation, our choice falls on the carboxylic acid fragment to form the palladacycle as a key intermediate. Through careful manipulation of an additional ligand, the second "inert" alkyl carbon-hydrogen bond activation takes place to facilitate the formation of structurally diversified dihydrobenzofurans.Cross-dehydrogenative coupling is finding increasing application in synthesis, but coupling two chemically distinct sites remains a challenge. Here, the authors report an oxidative coupling between sp 2 and sp 3 carbons by sequentially activating the more active aryl site followed by the alkyl position.

  6. Increase of porosity by combining semi-carbonization and KOH activation of formaldehyde resins to prepare high surface area carbons for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Heimböckel, Ruben; Kraas, Sebastian; Hoffmann, Frank; Fröba, Michael

    2018-01-01

    A series of porous carbon samples were prepared by combining a semi-carbonization process of acidic polymerized phenol-formaldehyde resins and a following chemical activation with KOH used in different ratios to increase specific surface area, micropore content and pore sizes of the carbons which is favourable for supercapacitor applications. Samples were characterized by nitrogen physisorption, powder X-ray diffraction, Raman spectroscopy and scanning electron microscopy. The results show that the amount of KOH, combined with the semi-carbonization step had a remarkable effect on the specific surface area (up to SBET: 3595 m2 g-1 and SDFT: 2551 m2 g-1), pore volume (0.60-2.62 cm3 g-1) and pore sizes (up to 3.5 nm). The carbons were tested as electrode materials for electrochemical double layer capacitors (EDLC) in a two electrode setup with tetraethylammonium tetrafluoroborate in acetonitrile as electrolyte. The prepared carbon material with the largest surface area, pore volume and pore sizes exhibits a high specific capacitance of 145.1 F g-1 at a current density of 1 A g-1. With a high specific energy of 31 W h kg-1 at a power density of 33028 W kg-1 and a short time relaxation constant of 0.29 s, the carbon showed high power capability as an EDLC electrode material.

  7. Electrocatalytic N-Doped Graphitic Nanofiber - Metal/Metal Oxide Nanoparticle Composites.

    PubMed

    Tang, Hongjie; Chen, Wei; Wang, Jiangyan; Dugger, Thomas; Cruz, Luz; Kisailus, David

    2018-03-01

    Carbon-based nanocomposites have shown promising results in replacing commercial Pt/C as high-performance, low cost, nonprecious metal-based oxygen reduction reaction (ORR) catalysts. Developing unique nanostructures of active components (e.g., metal oxides) and carbon materials is essential for their application in next generation electrode materials for fuel cells and metal-air batteries. Herein, a general approach for the production of 1D porous nitrogen-doped graphitic carbon fibers embedded with active ORR components, (M/MO x , i.e., metal or metal oxide nanoparticles) using a facile two-step electrospinning and annealing process is reported. Metal nanoparticles/nanoclusters nucleate within the polymer nanofibers and subsequently catalyze graphitization of the surrounding polymer matrix and following oxidation, create an interconnected graphite-metal oxide framework with large pore channels, considerable active sites, and high specific surface area. The metal/metal oxide@N-doped graphitic carbon fibers, especially Co 3 O 4 , exhibit comparable ORR catalytic activity but superior stability and methanol tolerance versus Pt in alkaline solutions, which can be ascribed to the synergistic chemical coupling effects between Co 3 O 4 and robust 1D porous structures composed of interconnected N-doped graphitic nanocarbon rings. This finding provides a novel insight into the design of functional electrocatalysts using electrospun carbon nanomaterials for their application in energy storage and conversion fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    NASA Astrophysics Data System (ADS)

    Islam, A. E.; Nikolaev, P.; Amama, P. B.; Zakharov, D.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Stach, E. A.; Maruyama, B.

    2015-09-01

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. With the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  9. [Effects of different fertilization patterns on soil enzyme activities in greenhouse vegetable field.

    PubMed

    Wang, Wen Feng; Li, Chun Hua; Huang, Shao Wen; Gao, Wei; Tang, Ji Wei

    2016-03-01

    A fixed-site greenhouse vegetable fertilization experiment was carried out to study effects of 6 fertilization patterns on soil enzyme activities in Tianjin City, Northern China. The results showed that during the growing stages of tomato, activities of soil α-glucosidase, β-xylosidase, β-glucosidase, β-cellobiosidase, chitinase and phosphatase in different treatments all increased first and then decreased, while soil urease activities increased first and then became flat. Compared with the chemical nitrogen fertilizer treatment, soil enzyme activities were much higher in treatments of combined application of organic materials with chemical fertilizers, and rose with the increasing input of pig manure and especially the application of straw. A significant positive correlation was found between soil enzyme activities, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) contents at different growing stages of tomato. Under the condition of same nutrient input, the combined application of inorganic fertilizers with organic materials, especially a certain amount of corn straw, was capable of increasing soil enzyme activities and keeping soil fertility and sustainability in greenhouse vegetable production.

  10. The influence of ZnO-SnO2 nanoparticles and activated carbon on the photocatalytic degradation of toluene using continuous flow mode

    PubMed Central

    Rangkooy, Hossein Ali; Tanha, Fatemeh; Jaafarzadeh, Neamat; Mohammadbeigi, Abolfazl

    2017-01-01

    The present study examined the gas-phase photocatalytic degradation of toluene using ZnO-SnO2 nanocomposite supported on activated carbon in a photocatalytic reactor. Toluene was selected as a model pollutant from volatile organic compounds to determine the pathway of photocatalytic degradation and the factors influencing this degradation. The ZnO-SnO2 nanocomposite was synthesized through co-precipitation method in a ratio of 2:1 and then supported on activated carbon. The immobilization of ZnO-SnO2 nanocomposite on activated carbon was determined by the surface area and scanning electron micrograph technique proposed by Brunauer, Emmett, and Teller. The laboratory findings showed that the highest efficiency was 40% for photocatalytic degradation of toluene. The results also indicated that ZnO-SnO2 nano-oxides immobilization on activated carbon had a synergic effect on photocatalytic degradation of toluene. Use of a hybrid photocatalytic system (ZnO/SnO2 nano coupled oxide) and application of absorbent (activated carbon) may be efficient and effective technique for refinement of toluene from air flow. PMID:29497487

  11. Nanoporous Carbons: Looking Beyond Their Perception as Adsorbents, Catalyst Supports and Supercapacitors.

    PubMed

    Bandosz, Teresa J

    2016-02-01

    The discovery of carbon nanoforms, and especially graphene, has opened up new directions of science and technology. Many applications are based on the unique properties of graphene, such as its high electrical and thermal conductivity, strength, flexibility, photoactivity and transparency. Inspired by the emerging graphene science, we directed our efforts to the exploration of new applications of nanoporous (microporous) carbons. Their matrix is built of distorted graphene layers, between which pores with sizes ranging from a fraction of a nanometer to hundreds of nanometers exist. This is a very unique feature of nanoporous carbons resulting in their developed surface areas. Moreover, there are vast possibilities to modify the surface chemistry of carbons and thus their surface properties. Even though the traditional applications of porous carbons focus mainly on adsorption and separation, we decided to explore them as photocatalysts, oxygen reduction catalysts and sensors. Related to their visible-light activity, their possible application in solar energy harvesting is also indicated. This Personal Account presents our paths leading to the exploration of these directions, describing the results collected and difficulties encountered, along with the challenges remaining to be addressed. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Lignin-Derived Advanced Carbon Materials

    DOE PAGES

    Chatterjee, Sabornie; Saito, Tomonori

    2015-11-16

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, it has been found that lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein, we discuss the lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure–property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templatedmore » carbon.« less

  13. Lignin-Derived Advanced Carbon Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sabornie; Saito, Tomonori

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, it has been found that lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein, we discuss the lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure–property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templatedmore » carbon.« less

  14. Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor

    NASA Astrophysics Data System (ADS)

    Liu, Simin; Cai, Yijin; Zhao, Xiao; Liang, Yeru; Zheng, Mingtao; Hu, Hang; Dong, Hanwu; Jiang, Sanping; Liu, Yingliang; Xiao, Yong

    2017-08-01

    Development of facile and scalable synthesis process for the fabrication of nanoporous carbon materials with large specific surface areas, well-defined nanostructure, and high electrochemical activity is critical for the high performance energy storage applications. The key issue is the dedicated balance between the ultrahigh surface area and highly porous but interconnected nanostructure. Here, we demonstrate the fabrication of new sulfur doped nanoporous carbon sphere (S-NCS) with the ultrahigh surface area up to 3357 m2 g-1 via a high-temperature hydrothermal carbonization and subsequent KOH activation process. The as-prepared S-NCS which integrates the advantages of ultrahigh porous structure, well-defined nanospherical and modification of heteroatom displays excellent electrochemical performance. The best performance is obtained on S-NCS prepared by the hydrothermal carbonization of sublimed sulfur and glucose, S-NCS-4, reaching a high specific capacitance (405 F g-1 at a current density of 0.5 A g-1) and outstanding cycle stability. Moreover, the symmetric supercapacitor is assembled by S-NCS-4 displays a superior energy density of 53.5 Wh kg-1 at the power density of 74.2 W kg-1 in 1.0 M LiPF6 EC/DEC. The synthesis method is simple and scalable, providing a new route to prepare highly porous and heteroatom-doped nanoporous carbon spheres for high performance energy storage applications.

  15. Activated Carbon Fibers with Hierarchical Nanostructure Derived from Waste Cotton Gloves as High-Performance Electrodes for Supercapacitors.

    PubMed

    Wei, Chao; Yu, Jianlin; Yang, Xiaoqing; Zhang, Guoqing

    2017-12-01

    One of the most challenging issues that restrict the biomass/waste-based nanocarbons in supercapacitor application is the poor structural inheritability during the activating process. Herein, we prepare a class of activated carbon fibers by carefully selecting waste cotton glove (CG) as the precursor, which mainly consists of cellulose fibers that can be transformed to carbon along with good inheritability of their fiber morphology upon activation. As prepared, the CG-based activated carbon fiber (CGACF) demonstrates a surface area of 1435 m 2  g -1 contributed by micropores of 1.3 nm and small mesopores of 2.7 nm, while the fiber morphology can be well inherited from the CG with 3D interconnected frameworks created on the fiber surface. This hierarchically porous structure and well-retained fiber-like skeleton can simultaneously minimize the diffusion/transfer resistance of the electrolyte and electron, respectively, and maximize the surface area utilization for charge accumulation. Consequently, CGACF presents a higher specific capacitance of 218 F g -1 and an excellent high-rate performance as compared to commercial activated carbon.

  16. Selective Aliphatic Carbon-Carbon Bond Activation by Rhodium Porphyrin Complexes.

    PubMed

    To, Ching Tat; Chan, Kin Shing

    2017-07-18

    The carbon-carbon bond activation of organic molecules with transition metal complexes is an attractive transformation. These reactions form transition metal-carbon bonded intermediates, which contribute to fundamental understanding in organometallic chemistry. Alternatively, the metal-carbon bond in these intermediates can be further functionalized to construct new carbon-(hetero)atom bonds. This methodology promotes the concept that the carbon-carbon bond acts as a functional group, although carbon-carbon bonds are kinetically inert. In the past few decades, numerous efforts have been made to overcome the chemo-, regio- and, more recently, stereoselectivity obstacles. The synthetic usefulness of the selective carbon-carbon bond activation has been significantly expanded and is becoming increasingly practical: this technique covers a wide range of substrate scopes and transition metals. In the past 16 years, our laboratory has shown that rhodium porphyrin complexes effectively mediate the intermolecular stoichiometric and catalytic activation of both strained and nonstrained aliphatic carbon-carbon bonds. Rhodium(II) porphyrin metalloradicals readily activate the aliphatic carbon(sp 3 )-carbon(sp 3 ) bond in TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl) and its derivatives, nitriles, nonenolizable ketones, esters, and amides to produce rhodium(III) porphyrin alkyls. Recently, the cleavage of carbon-carbon σ-bonds in unfunctionalized and noncoordinating hydrocarbons with rhodium(II) porphyrin metalloradicals has been developed. The absence of carbon-hydrogen bond activation in these systems makes the reaction unique. Furthermore, rhodium(III) porphyrin hydroxide complexes can be generated in situ to selectively activate the carbon(α)-carbon(β) bond in ethers and the carbon(CO)-carbon(α) bond in ketones under mild conditions. The addition of PPh 3 promotes the reaction rate and yield of the carbon-carbon bond activation product. Thus, both rhodium(II) porphyrin metalloradical and rhodium(III) porphyrin hydroxide are very reactive to activate the aliphatic carbon-carbon bonds. Recently, we successfully demonstrated the rhodium porphyrin catalyzed reduction or oxidation of aliphatic carbon-carbon bonds using water as the reductant or oxidant, respectively, in the absence of sacrificial reagents and neutral conditions. This Account presents our contribution in this domain. First, we describe the chemistry of equilibria among the reactive rhodium porphyrin complexes in oxidation states from Rh(I) to Rh(III). Then, we present the serendipitous discovery of the carbon-carbon bond activation reaction and subsequent developments in our laboratory. These aliphatic carbon-carbon bond activation reactions can generally be divided into two categories according to the reaction type: (i) homolytic radical substitution of a carbon(sp 3 )-carbon(sp 3 ) bond with a rhodium(II) porphyrin metalloradical and (ii) σ-bond metathesis of a carbon-carbon bond with a rhodium(III) porphyrin hydroxide. Finally, representative examples of catalytic carbon-carbon bond hydrogenation and oxidation through strategic design are covered. The progress in this area broadens the chemistry of rhodium porphyrin complexes, and these transformations are expected to find applications in organic synthesis.

  17. Study on the application of KOH to produce activated carbon to realize the utilization of distiller’s grains

    NASA Astrophysics Data System (ADS)

    Yang, H. M.; Zhang, D. H.; Chen, Y.; Ran, M. J.; Gu, J. C.

    2017-06-01

    The distiller’s grains in a liquor factory are selected as the main material to study the preparation of activated carbon with KOH activation. The solid-to-liquid ratio A, KOH concentration B, activation temperature C, activation time D are regarded as variables to produce single factor experiment. The results show that the best preparation conditions of various factors are: 50% KOH concentration, solid-liquid ratio of 1:4, activation temperature of 750°, activation time of 2.0h. The L9 (34) orthogonal experiment is carried out by selecting three levels from each single factor, showing that the importance order of the factors is: B > A > C > D. In addition, when KOH solution concentration is 60%, the solid-liquid ratio is 1:5, activation temperature is 700°, and activation time is 2.0h, the performance of the preparation of activated carbon is the best.

  18. Bacteria associated with granular activated carbon particles in drinking water.

    PubMed Central

    Camper, A K; LeChevallier, M W; Broadaway, S C; McFeters, G A

    1986-01-01

    A sampling protocol was developed to examine particles released from granular activated carbon filter beds. A gauze filter/Swinnex procedure was used to collect carbon fines from 201 granular activated carbon-treated drinking water samples over 12 months. Application of a homogenization procedure (developed previously) indicated that 41.4% of the water samples had heterotrophic plate count bacteria attached to carbon particles. With the enumeration procedures described, heterotrophic plate count bacteria were recovered at an average rate of 8.6 times higher than by conventional analyses. Over 17% of the samples contained carbon particles colonized with coliform bacteria as enumerated with modified most-probable-number and membrane filter techniques. In some instances coliform recoveries were 122 to 1,194 times higher than by standard procedures. Nearly 28% of the coliforms attached to these particles in drinking water exhibited the fecal biotype. Scanning electron micrographs of carbon fines from treated drinking water showed microcolonies of bacteria on particle surfaces. These data indicate that bacteria attached to carbon fines may be an important mechanism by which microorganisms penetrate treatment barriers and enter potable water supplies. PMID:3767356

  19. Ultramicroporous Carbon through an Activation-Free Approach for Li-S and Na-S Batteries in Carbonate-Based Electrolyte.

    PubMed

    Hu, Lei; Lu, Yue; Zhang, Tianwen; Huang, Tao; Zhu, Yongchun; Qian, Yitai

    2017-04-26

    We report an activation-free approach for fabricating ultramicroporous carbon as an accommodation of sulfur molecules for Li-S and Na-S batteries applications in carbonate-based electrolyte. Because of the high specific surface area of 967 m 2 g -1 , as well as 51.8% of the pore volume is contributed by ultramicropore with pore size less than 0.7 nm, sulfur cathode exhibits superior electrochemical behavior in carbonate-based electrolyte with a capacity of 507.9 mA h g -1 after 500 cycles at 2 C in Li-S batteries and 392 mA h g -1 after 200 cycles at 1 C in Na-S batteries, respectively.

  20. CoM(M=Fe,Cu,Ni)-embedded nitrogen-enriched porous carbon framework for efficient oxygen and hydrogen evolution reactions

    NASA Astrophysics Data System (ADS)

    Feng, Xiaogeng; Bo, Xiangjie; Guo, Liping

    2018-06-01

    Rational synthesis and development of earth-abundant materials with efficient electrocatalytic activity and stability for water splitting is a critical but challenging step for sustainable energy application. Herein, a family of bimetal (CoFe, CoCu, CoNi) embedded nitrogen-doped carbon frameworks is developed through a facile and simple thermal conversion strategy of metal-doped zeolitic imidazolate frameworks. Thanks to collaborative superiorities of abundant M-N-C species, modulation action of secondary metal, cobalt-based electroactive phases, template effect of MOFs and unique porous structure, bimetal embedded nitrogen-doped carbon frameworks materials manifest good oxygen and hydrogen evolution catalytic activity. Especially, after modulating the species and molar ratio of metal sources, optimal Co0.75Fe0.25 nitrogen-doped carbon framework catalyst just requires a low overpotential of 303 mV to achieve 10 mA cm-2 with a low Tafel slope (39.49 mV dec-1) for oxygen evolution reaction, which even surpasses that of commercial RuO2. In addition, the optimal catalyst can function as an efficient bifunctional electrocatalyst for overall water splitting with satisfying activity and stability. This development offers an attractive direction for the rational design and fabrication of porous carbon materials for electrochemical energy applications.

  1. Degradation-by-design: Surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes.

    PubMed

    Sureshbabu, Adukamparai Rajukrishnan; Kurapati, Rajendra; Russier, Julie; Ménard-Moyon, Cécilia; Bartolini, Isacco; Meneghetti, Moreno; Kostarelos, Kostas; Bianco, Alberto

    2015-12-01

    Biodegradation of carbon-based nanomaterials has been pursued intensively in the last few years, as one of the most crucial issues for the design of safe, clinically relevant conjugates for biomedical applications. In this paper it is demonstrated that specific functional molecules can enhance the catalytic activity of horseradish peroxidase (HRP) and xanthine oxidase (XO) for the degradation of carbon nanotubes. Two different azido coumarins and one cathecol derivative are linked to multi-walled carbon nanotubes (MWCNTs). These molecules are good reducing substrates and strong redox mediators to enhance the catalytic activity of HRP. XO, known to metabolize various molecules mainly in the mammalian liver, including human, was instead used to test the biodegradability of MWCNTs modified with an azido purine. The products of the biodegradation process are characterized by transmission electron microscopy and Raman spectroscopy. The results indicate that coumarin and catechol moieties have enhanced the biodegradation of MWCNTs compared to oxidized nanotubes, likely due to the capacity of these substrates to better interact with and activate HRP. Although azido purine-MWCNTs are degraded less effectively by XO than oxidized nanotubes, the data uncover the importance of XO in the biodegradation of carbon-nanomaterials leading to their better surface engineering for biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Magnetic activated carbon-Fe3O4 nanocomposites--synthesis and applications in the removal of acid yellow dye 17 from water.

    PubMed

    Ranjithkumar, V; Hazeen, A Nizarul; Thamilselvan, M; Vairam, S

    2014-07-01

    In this work, synthesis of activated carbon-Fe3O4 composites using activated carbon and iron benzoate/oxalate precursors by simple pyrolytic method and its utility for the removal of acid yellow dye from water are presented. Iron carboxylates held up into the pores of carbon dissociate at their decomposition temperatures form dispersed Fe3O4 nanoparticles in carbon matrix. The composites were characterized by FTIR, PXRD, SEM, TEM, EDX and magnetization measurements. The size of the nano iron oxides are in the range of 21-33 nm formed from iron benzoate precursor and 6-11 nm from iron oxalate precursor. The oxides are magnetic and their saturation magnetization in the range of 0.08-0.16 emu/g and Coercivity (H(c)) 474-600, being lower and higher than that of bare bulk Fe3O4 are due to the nano size of oxides. Composites find application in the removal of acid yellow dye 17 from the synthetic aqueous solution at pH 5. The adsorption data are found to fit well for Langmuir adsorption isotherm. Kinetics data of adsorption of dyes indicate that the adsorption follows pseudo-second order kinetic model.

  3. Removal of BrO₃⁻ from drinking water samples using newly developed agricultural waste-based activated carbon and its determination by ultra-performance liquid chromatography-mass spectrometry.

    PubMed

    Naushad, Mu; Khan, Mohammad R; ALOthman, Zeid A; AlSohaimi, Ibrahim; Rodriguez-Reinoso, Francisco; Turki, Turki M; Ali, Rahmat

    2015-10-01

    Activated carbon was prepared from date pits via chemical activation with H3PO4. The effects of activating agent concentration and activation temperature on the yield and surface area were studied. The optimal activated carbon was prepared at 450 °C using 55 % H3PO4. The prepared activated carbon was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric-differential thermal analysis, and Brunauer, Emmett, and Teller (BET) surface area. The prepared date pit-based activated carbon (DAC) was used for the removal of bromate (BrO3 (-)). The concentration of BrO3 (-) was determined by ultra-performance liquid chromatography-mass tandem spectrometry (UPLC-MS/MS). The experimental equilibrium data for BrO3 (-) adsorption onto DAC was well fitted to the Langmuir isotherm model and showed maximum monolayer adsorption capacity of 25.64 mg g(-1). The adsorption kinetics of BrO3 (-) adsorption was very well represented by the pseudo-first-order equation. The analytical application of DAC for the analysis of real water samples was studied with very promising results.

  4. Characteristic numbers of granular activated carbon for the elimination of micropollutants from effluents of municipal wastewater treatment plants.

    PubMed

    Benstoem, F; Pinnekamp, J

    2017-07-01

    Adsorption on granular activated carbon (GAC) is a promising step to extend existing treatment trains in municipal wastewater treatment plants (WWTPs) and, thus, to reduce the concentration of micropollutants (MPs) (e.g. pharmaceuticals) in wastewater. It is common practice to use characteristic numbers when choosing GAC for a specific application. In this study, characteristic numbers were correlated for five different GACs, with measured adsorption capacities of these carbons for three pharmaceutical MPs (carbamazepine, diclofenac and sulfamethoxazole) and dissolved organic carbon of a WWTP effluent. The adsorption capacities were measured using rapid small scale column tests. Density of GAC showed the highest correlation to adsorption of MP. All other characteristic numbers (iodine number, Brunauer-Emmett-Teller (BET) surface and methylene blue titre) are not suitable markers for choosing an appropriate activated carbon product for the elimination of MPs from municipal wastewater.

  5. Transition Metal-Mediated and -Catalyzed C-F Bond Activation via Fluorine Elimination.

    PubMed

    Fujita, Takeshi; Fuchibe, Kohei; Ichikawa, Junji

    2018-06-28

    Activation of carbon-fluorine (C-F) bonds is an important topic in synthetic organic chemistry recently. Among the methods for C-F bond cleavage, metal mediated and catalyzed β- or α-fluorine elimination proceeds under mild conditions compared with oxidative addition of C-F bond. The β- or α-fluorine elimination is initiated from organometallic intermediates having fluorine substituents on carbon atoms β or α to metal centers, respectively. Transformations via these elimination processes (C-F bond cleavage), which are typically preceded by carbon-carbon (or carbon-heteroatom) bond formation, have been remarkably developed as C-F bond activation methods in the past five years. In this minireview, we summarize the applications of transition metal-mediated and -catalyzed fluorine elimination to synthetic organic chemistry from a historical perspective for early studies and from a systematic perspective for recent studies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Review of the Science and Technology of Cathodes from the Viewpoint of Spacecraft TWT Applications

    DTIC Science & Technology

    1980-06-01

    thermionic emitters for various applications. Of the pure metals, only tungsten , rhenium , and tantalum have sufficiently high melting temperatures to yield...the activation process. These ele- ments, carbon , zirconium, magnesium, manganese, aluminum, silicon, and, perhaps, tungsten , were originally added to...in the cavity. The porous tungsten plug has a density between 73 to 83% of the maxi- mum theoretical density of tungsten . The carbonates are

  7. Active Salt/Silica-Templated 2D Mesoporous FeCo-Nx -Carbon as Bifunctional Oxygen Electrodes for Zinc-Air Batteries.

    PubMed

    Li, Shuang; Cheng, Chong; Zhao, Xiaojia; Schmidt, Johannes; Thomas, Arne

    2018-02-12

    Two types of templates, an active metal salt and silica nanoparticles, are used concurrently to achieve the facile synthesis of hierarchical meso/microporous FeCo-N x -carbon nanosheets (meso/micro-FeCo-N x -CN) with highly dispersed metal sites. The resulting meso/micro-FeCo-N x -CN shows high and reversible oxygen electrocatalytic performances for both ORR and OER, thus having potential for applications in rechargeable Zn-air battery. Our approach creates a new pathway to fabricate 2D meso/microporous structured carbon architectures for bifunctional oxygen electrodes in rechargeable Zn-air battery as well as opens avenues to the scale-up production of rationally designed heteroatom-doped catalytic materials for a broad range of applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Carbon-based layer-by-layer nanostructures: from films to hollow capsules

    NASA Astrophysics Data System (ADS)

    Hong, Jinkee; Han, Jung Yeon; Yoon, Hyunsik; Joo, Piljae; Lee, Taemin; Seo, Eunyong; Char, Kookheon; Kim, Byeong-Su

    2011-11-01

    Over the past years, the layer-by-layer (LbL) assembly has been widely developed as one of the most powerful techniques to prepare multifunctional films with desired functions, structures and morphologies because of its versatility in the process steps in both material and substrate choices. Among various functional nanoscale objects, carbon-based nanomaterials, such as carbon nanotubes and graphene sheets, are promising candidates for emerging science and technology with their unique physical, chemical, and mechanical properties. In particular, carbon-based functional multilayer coatings based on the LbL assembly are currently being actively pursued as conducting electrodes, batteries, solar cells, supercapacitors, fuel cells and sensor applications. In this article, we give an overview on the use of carbon materials in nanostructured films and capsules prepared by the LbL assembly with the aim of unraveling the unique features and their applications of carbon multilayers prepared by the LbL assembly.

  9. Effects of inherent/enhanced solid acidity and morphology of diatomite templates on the synthesis and porosity of hierarchically porous carbon.

    PubMed

    Liu, Dong; Yuan, Peng; Tan, Daoyong; Liu, Hongmei; Fan, Mingde; Yuan, Aihua; Zhu, Jianxi; He, Hongping

    2010-12-21

    The inherent or enhanced solid acidity of raw or activated diatomite is found to have significant effects on the synthesis of hierarchically porous diatomite-templated carbon with high surface area and special porous structure. The solid acidity makes raw/activated diatomite a catalyst for the generation of porous carbon, and the porous parameters of the carbon products are strongly dependent on the solid acidity of diatomite templates. The morphology of diatomite also dramatically affects the textural structure of porous carbon. Two types of macroporous structures in the carbon product, the partially solid pillars and the ordered hollow tubes, derive from the replication of the central and the edge pores of diatom shell, respectively. The hierarchically porous carbon shows good capability for the adsorption of solvent naphtha and H(2), enabling potential applications in adsorption and gas storage.

  10. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications.

    PubMed

    Zhao, Qingxia; Mao, Qiming; Zhou, Yaoyu; Wei, Jianhong; Liu, Xiaocheng; Yang, Junying; Luo, Lin; Zhang, Jiachao; Chen, Hong; Chen, Hongbo; Tang, Lin

    2017-12-01

    In recent years, advanced oxidation processes (AOPs), especially sulfate radical based AOPs have been widely used in various fields of wastewater treatment due to their capability and adaptability in decontamination. Recently, metal-free carbon materials catalysts in sulfate radical production has been more and more concerned because these materials have been demonstrated to be promising alternatives to conventional metal-based catalysts, but the review of metal-free catalysts is rare. The present review outlines the current state of knowledge on the generation of sulfate radical using metal-free catalysts including carbon nanotubes, graphene, mesoporous carbon, activated carbon, activated carbon fiber, nanodiamond. The mechanism such as the radical pathway and non-radical pathway, and factors influencing of the activation of sulfate radical was also be revealed. Knowledge gaps and research needs have been identified, which include the perspectives on challenges related to metal-free catalyst, heterogeneous metal-free catalyst/persulfate systems and their potential in practical environmental remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Progress Report on PICA Activities in Support of New Frontiers Missions

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret; Venkatapathy, Ethiraj; Violette, Steve

    2017-01-01

    Phenolic Impregnated Carbon Ablator (PICA) is a TPS material that has been used in a number of previous flight missions (Stardust, MSL) and is planned for a number of future missions (OSIRIS-Rex and Mars 2020) so it has substantial flight heritage, is applicable to a wide range of missions, and is often baselined as the TPS in future NASA proposal activities. As is common with a number of TPS materials, PICA faces a supply chain issue with the rayon precursor from which the carbon fibers used in the PICA preform are derived. PICA uses a non-woven form of the rayon, which once carbonized, is used in the low-density carbon FiberForm (carbon tile) preform utilized in PICA. Current PICA uses a NASA-qualified non-domestic rayon supplier (Sniace), however the qualified supplier is no longer manufacturing the rayon materials. This activity will address PICA sustainability, by initially carbonizing the remaining stockpile of Sniace rayon precursor. A additional FiberForm manufacturing task from alternate rayon sources is also in progress.

  12. Reprocessing and reuse of waste tire rubber to solve air-quality related problems

    USGS Publications Warehouse

    Lehmann, C.M.B.; Rostam-Abadi, M.; Rood, M.J.; Sun, Jielun

    1998-01-01

    There is a potential for using waste tire rubber to make activated-carbon adsorbents for air-quality control applications. Such an approach provides a recycling path for waste tires and the production of new adsorbents from a low-cost waste material. Tire-derived activated carbons (TDACs) were prepared from waste tires. The resulting products are generally mesoporous, with N2-BET specific surface areas ranging from 239 to 1031 m2/g. TDACs were tested for their ability to store natural gas and remove organic compounds and mercury species from gas streams. TDACs are able to achieve 36% of the recommended adsorbed natural gas (methane) storage capacity for natural-gas-fueled vehicles. Equilibrium adsorption capacities for CH4 achieved by TDACs are comparable to Calgon BPL, a commercially available activated-carbon adsorbent. The acetone adsorption capacity for a TDAC is 67% of the adsorption capacity achieved by BPL at 1 vol % acetone. Adsorption capacities of mercury in simulated flue-gas streams are, in general, larger than adsorption capacities achieved by coal-derived activated carbons (CDACs) and BPL. Although TDACs may not perform as well as commercial adsorbents in some air pollution control applications, the potential lower cost of TDACS should be considered when evaluating economics.

  13. Adsorption of steroid micropollutants on polymer-based spherical activated carbon (PBSAC).

    PubMed

    Tagliavini, Matteo; Engel, Fabio; Weidler, Peter Georg; Scherer, Torsten; Schäfer, Andrea Iris

    2017-09-05

    Removal and interaction mechanisms of four different steroid micropollutants, estrone (E1), estradiol (E2), progesterone (P) and testosterone (T) were determined for different types of polymer-based spherical activated carbon (PBSAC). Higher than 90% removal and significantly faster kinetics compared to conventional granular activated carbon (GAC) were observed, while performance was comparable with powdered activated carbon (PAC). No influence of pH in the range 2-12 was determined, while the presence of humic acid (HA) reduced both the removal and the kinetic by up to 20%. PBSAC was characterized in terms of morphology and material properties. The low oxygen content was identified as the main cause for the high performance observed. This was attributed to the enhancement of the hydrophobic effect between PBSAC and hormones and the reduced interactions between PBSAC and water. The ratio of micropollutant size (∼0.8nm) and average pore size (1-2nm) proved ideal for both micropollutant adsorption and HA exclusion. The homogenous size, spherical shape and surface smoothness of PBSAC did not influence adsorption negatively and make PBSAC a very promising sorbent for a vast range of applications, in particular for the removal of micropollutants in water treatment applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Application of hybrid supercapacitor using granule Li4Ti5O12/activated carbon with variation of current density

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Gwan; Lee, Seung-Hwan

    2017-03-01

    We report the electrochemical performance of asymmetric hybrid supercapacitors composed of granule Li4Ti5O12 as an anode and activated carbon as a cathode with different current densities. It is demonstrated that the hybrid supercapacitors show good initial discharge capacities were ranged from 39.8 to 46.4 F g-1 in the current densities range of 0.3-1 A g-1. The performance degradation is proportional to the current density due to quick gassing, resulting from H2O and HF formation. In particular, the hybrid supercapacitors show the pretty good cycling stability of 97.4%, even at the high current density of 0.8 A g-1, which are among most important performance in the real application for energy storage devices. Therefore, we believe that hybrid supercapacitors using granule Li4Ti5O12/activated carbon are eligible for the promising next generation energy devices.

  15. Three-dimensional porous activated carbon derived from loofah sponge biomass for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Su, Xiao-Li; Chen, Jing-Ran; Zheng, Guang-Ping; Yang, Jing-He; Guan, Xin-Xin; Liu, Pu; Zheng, Xiu-Cheng

    2018-04-01

    Biomass carbon source is generally cheap, environmentally friendly and readily available in high quality and quantity. In this work, a series of loofah sponge-derived activated carbon (SAC-x) with hierarchical porous structures are prepared by KOH chemical activation and used as electrode materials for supercapacitors. The pore size can be easily controllable by changing the dosage of KOH. The optimized material (SAC-4) exhibits a high specific capacitance of 309.6 F g-1 at 1 A g-1 in the three-electrode system using 6 M KOH electrolyte. More importantly, the as-assembled symmetric supercapacitor based on SAC-4 exhibits a high energy density of 16.1 Wh kg-1 at a power density of 160.0 W kg-1 using 1 M Na2SO4 electrolyte. These remarkable results demonstrate the exciting commercial potential of SAC-x for high-performance supercapacitor applications due to their high specific surface area, appropriately porous structure, and the trace heteroatom (O and N) functionalities.

  16. PERVAPORATION USING ADSORBENT-FILLED MEMBRANES

    EPA Science Inventory

    Membranes containing selective fillers, such as zeolites and activated carbon, can improve the separation by pervaporation. Applications of adsorbent-filled membranes in pervaporation have been demonstrated by a number of studies. These applications include removal of organic co...

  17. Hemolymph and gill carbonic anhydrase are more sensitive to aquatic contamination than mantle carbonic anhydrase in the mangrove oyster Crassostrea rhizophorae.

    PubMed

    Dos Santos, Matheus Barbosa; Monteiro Neto, Ignácio Evaristo; de Souza Melo, Sarah Rachel Candido; Amado, Enelise Marcelle

    2017-10-01

    Carbonic anhydrase (CA) is a ubiquitous metalloenzyme of great importance in several physiological processes. Due to its physiological importance and sensitivity to various pollutants, CA activity has been used as biomarker of aquatic contamination. Considering that in bivalves the sensitivity of CA to pollutants seems to be tissue-specific, we proposed here to analyze CA activity of hemolymph, gill and mantle of Crassostrea rhizophorae collected in two tropical Brazilian estuaries with different levels of anthropogenic impact, in dry and rainy season. We found increased carbonic anhydrase activity in hemolymph, gill and mantle of oysters collected in the Paraíba Estuary (a site of high anthropogenic impact) when compared to oysters from Mamanguape Estuary (inserted in an area of environmental preservation), especially in the rainy season. CA of hemolymph and gill were more sensitive than mantle CA to aquatic contamination. This study enhances the suitability of carbonic anhydrase activity for field biomarker applications with bivalves and brings new and relevant information on hemolymph carbonic anhydrase activity as biomarker of aquatic contamination. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors.

    PubMed

    Farma, R; Deraman, M; Awitdrus, A; Talib, I A; Taer, E; Basri, N H; Manjunatha, J G; Ishak, M M; Dollah, B N M; Hashmi, S A

    2013-03-01

    Fibres from oil palm empty fruit bunches, generated in large quantities by palm oil mills, were processed into self-adhesive carbon grains (SACG). Untreated and KOH-treated SACG were converted without binder into green monolith prior to N2-carbonisation and CO2-activation to produce highly porous binderless carbon monolith electrodes for supercapacitor applications. Characterisation of the pore structure of the electrodes revealed a significant advantage from combining the chemical and physical activation processes. The electrochemical measurements of the supercapacitor cells fabricated using these electrodes, using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge techniques consistently found that approximately 3h of activation time, achieved via a multi-step heating profile, produced electrodes with a high surface area of 1704m(2)g(-1) and a total pore volume of 0.889cm(3)g(-1), corresponding to high values for the specific capacitance, specific energy and specific power of 150Fg(-1), 4.297Whkg(-1) and 173Wkg(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Highly regenerable carbon-Fe3O4 core-satellite nanospheres as oxygen reduction electrocatalyst and magnetic adsorbent

    NASA Astrophysics Data System (ADS)

    Zhou, Wenqiang; Liu, Minmin; Cai, Chao; Zhou, Haijun; Liu, Rui

    2017-02-01

    We present the synthesis and multifunctional utilization of core-satellite carbon-Fe3O4 nanoparticles to serve as the enabling platform for a range of applications including oxygen reduction reaction (ORR) and magnetic adsorbent. Starting from polydopamine (PDA) nanoparticles and Fe(NO3)3, carbon-Fe3O4 core-satellite nanospheres are synthesized through successive steps of impregnation, ammoniation and carbonization. The synergistic combination of Fe3O4 and N-doped carbon endows the nanocomposite with high electrochemical activity in ORR and mainly four electrons transferred in reaction process. Furthermore, carbon-Fe3O4 nanoparticles used as magnetic adsorbent exhibit the efficient removal of Rhodamine B from an aqueous solution. The recovery and reuse of the adsorbent is demonstrated 5 times without any detectible loss in activity.

  20. Engineering Materials for Very High Temperatures: An ONRL Workshop

    DTIC Science & Technology

    1988-08-29

    solving various pro- blems related to high temperature applications in which thermostructural ( turbojet and motor engines) or special (electromagnetic wave...the carbon (glassy carbon, polycrystalline gra- phite, pyrolytic carbon...) and mainly upon the temperature range of use. For the 1000-20000C...Bundesministerium fir Forschung und Technologie, Federal Ministry for Research and Technology), no doubt scared by the oil crisis and encouraged by the activity

  1. A novel carbon electrode material for highly improved EDLC performance.

    PubMed

    Fang, Baizeng; Binder, Leo

    2006-04-20

    Porous materials, developed by grafting functional groups through chemical surface modification with a surfactant, represent an innovative concept in energy storage. This work reports, in detail, the first practical realization of a novel carbon electrode based on grafting of vinyltrimethoxysilane (vtmos) functional group for energy storage in electric double layer capacitor (EDLC). Surface modification with surfactant vtmos enhances the hydrophobisation of activated carbon and the affinity toward propylene carbonate (PC) solvent, which improves the wettability of activated carbon in the electrolyte solution based on PC solvent, resulting in not only a lower resistance to the transport of electrolyte ions within micropores of activated carbon but also more usable surface area for the formation of electric double layer, and accordingly, higher specific capacitance, energy density, and power capability available from the capacitor based on modified carbon. Especially, the effects from surface modification become superior at higher discharge rate, at which much better EDLC performance (i.e., much higher energy density and power capability) has been achieved by the modified carbon, suggesting that the modified carbon is a novel and very promising electrode material of EDLC for large current applications where both high energy density and power capability are required.

  2. APPLICATION OF FLUORESCENCE SPECTROSCOPIC TECHNIQUES AND PROBES TO THE DETECTION OF BIOPOLYMER DEGRADATION IN NATURAL ENVIRONMENTS. (R825159)

    EPA Science Inventory

    The activities and substrate specificities of extracellular enzymes in natural systems are not well understood, despite their critical role in microbial remineralization of organic carbon. These enzymes initiate organic carbon degradation by selectively hydrolyzing high molecular...

  3. Performance of the fixed-bed of granular activated carbon for the removal of pesticides from water supply.

    PubMed

    Alves, Alcione Aparecida de Almeida; Ruiz, Giselle Louise de Oliveira; Nonato, Thyara Campos Martins; Müller, Laura Cecilia; Sens, Maurício Luiz

    2018-02-26

    The application of a fixed bed adsorption column of granular activated carbon (FBAC-GAC), in the removal of carbaryl, methomyl and carbofuran at a concentration of 25 μg L -1 for each carbamate, from the public water supply was investigated. For the determination of the presence of pesticides in the water supply, the analytical technique of high-performance liquid chromatography with post-column derivatization was used. Under conditions of constant diffusivity, the FBAC-GAC was saturated after 196 h of operation on a pilot scale. The exhaust rate of the granular activated carbon (GAC) in the FBAC-GAC until the point of saturation was 0.02 kg GAC m -3 of treated water. By comparing a rapid small-scale column test and FBAC-GAC, it was confirmed that the predominant intraparticle diffusivity in the adsorption column was constant diffusivity. Based on the results obtained on a pilot scale, it was possible to estimate the values to be applied in the FBAC-GAC (full scale) to remove the pesticides, which are particle size with an average diameter of 1.5 mm GAC; relationship between the internal diameter of the column and the average diameter of GAC ≥50 in order to avoid preferential flow near the adsorption column wall; surface application rate 240 m 3  m -2  d -1 and an empty bed contact time of 3 min. BV: bed volume; CD: constant diffusivity; EBCT: empty bed contact time; FBAC-GAC: fixed bed adsorption column of granular activated carbon; GAC: granular activated carbon; MPV: maximum permitted values; NOM: natural organic matter; PD: proportional diffusivity; pH PCZ : pH of the zero charge point; SAR: surface application rate; RSSCT: rapid small-scale column test; WTCS: water treated conventional system.

  4. Carbon film electrodes for super capacitor applications

    DOEpatents

    Tan, Ming X.

    1999-01-01

    A microporous carbon film for use as electrodes in energy strorage devices is disclosed, which is made by the process comprising the steps of: (1) heating a polymer film material consisting essentially of a copolymer of polyvinylidene chloride and polyvinyl chloride in an inert atmosphere to form a carbon film; and (2) activating said carbon film to form said microporous carbon film having a density between about 0.7 g/cm.sup.2 and 1 g/cm.sup.2 and a gravimetric capacitance of about between 120 F/g and 315 F/g.

  5. Biochemical activity and chemical-structural properties of soil organic matter after 17 years of amendments with olive-mill pomace co-compost.

    PubMed

    Aranda, V; Macci, C; Peruzzi, E; Masciandaro, G

    2015-01-01

    This study evaluates soil fertility, biochemical activity and the soil's ability to stabilize organic matter after application of composted olive-mill pomace. This organic amendment was applied in two different olive groves in southern Spain having different soil typologies (carbonated and silicic). Olive grove soils after 17 years of organic management with application of olive-mill pomace co-compost were of higher quality than those with conventional management where no co-compost had been applied. The main chemical parameters studied (total organic carbon, total nitrogen, available phosphorus, exchangeable bases, cation exchange capacity, total extractable carbon (TEC), and humic-to-fulvic acids ratio), significantly increased in soils treated with the organic amendment. In particular, the more resistant pool of organic matter (TEC) enhanced by about six and eight fold in carbonated and silicic soils, respectively. Moreover, the amended silicic soils showed the most significant increases in enzyme activities linked to C and P cycles (β-glucosidase twenty-five fold higher and phosphatase seven fold higher). Organic management in both soils induced higher organic matter mineralization, as shown by the higher pyrrole/phenol index (increasing 40% and 150% in carbonated and silicic soils, respectively), and lower furfural/pyrrole index (decreasing 27% and 71% in carbonated and silicic soils, respectively). As a result of mineralization, organic matter incorporated was also more stable as suggested by the trend of the aliphatic/aromatic index (decreasing 36% and 30% in carbonated and silicic soils, respectively). Therefore, management system and soil type are key factors in increasing long-term C stability or sequestration in soils. Thus application of olive-oil extraction by-products to soils could lead to important mid-to -long-term agro-environmental benefits, and be a valuable alternative use for one of the most widespread polluting wastes in the Mediterranean region. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Ruthenium nanoparticles decorated curl-like porous carbons for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Lou, Bih-Show; Veerakumar, Pitchaimani; Chen, Shen-Ming; Veeramani, Vediyappan; Madhu, Rajesh; Liu, Shang-Bin

    2016-01-01

    The synthesis of highly dispersed and stable ruthenium nanoparticles (RuNPs; ca. 2-3 nm) on porous activated carbons derived from Moringa Oleifera fruit shells (MOC) is reported and were exploited for supercapacitor applications. The Ru/MOC composites so fabricated using the biowaste carbon source and ruthenium acetylacetonate as the co-feeding metal precursors were activated at elevated temperatures (600-900 oC) in the presence of ZnCl2 as the pore generating and chemical activating agent. The as-prepared MOC carbonized at 900 oC was found to possess a high specific surface area (2522 m2 g-1) and co-existing micro- and mesoporosities. Upon incorporating RuNPs, the Ru/MOC nanocomposites loaded with modest amount of metallic Ru (1.0-1.5 wt%) exhibit remarkable electrochemical and capacitive properties, achiving a maximum capacitance of 291 F g-1 at a current density of 1 A g-1 in 1.0 M H2SO4 electrolyte. These highly stable and durable Ru/MOC electrodes, which can be facily fabricated by the eco-friendly and cost-effective route, should have great potentials for practical applications in energy storage, biosensing, and catalysis.

  7. UV/TiO2 photocatalytic disinfection of carbon-bacteria complexes in activated carbon-filtered water: Laboratory and pilot-scale investigation.

    PubMed

    Zhao, Jin Hui; Chen, Wei; Zhao, Yaqian; Liu, Cuiyun; Liu, Ranbin

    2015-01-01

    The occurrence of carbon-bacteria complexes in activated carbon filtered water has posed a public health problem regarding the biological safety of drinking water. The application of combined process of ultraviolet radiation and nanostructure titanium dioxide (UV/TiO2) photocatalysis for the disinfection of carbon-bacteria complexes were assessed in this study. Results showed that a 1.07 Lg disinfection rate can be achieved using a UV dose of 20 mJ cm(-2), while the optimal UV intensity was 0.01 mW cm(-2). Particle sizes ≥8 μm decreased the disinfection efficiency, whereas variation in particle number in activated carbon-filtered water did not significantly affect the disinfection efficiency. Photoreactivation ratio was reduced from 12.07% to 1.69% when the UV dose was increased from 5 mJ cm(-2) to 20 mJ cm(-2). Laboratory and on-site pilot-scale experiments have demonstrated that UV/TiO2 photocatalytic disinfection technology is capable of controlling the risk posed by carbon-bacteria complexes and securing drinking water safety.

  8. In-Vivo Characterization of Glassy Carbon Micro-Electrode Arrays for Neural Applications and Histological Analysis of the Brain Tissue

    NASA Astrophysics Data System (ADS)

    Vomero, Maria

    The aim of this work is to fabricate and characterize glassy carbon Microelectrode Arrays (MEAs) for sensing and stimulating neural activity, and conduct histological analysis of the brain tissue after the implant to determine long-term performance. Neural applications often require robust electrical and electrochemical response over a long period of time, and for those applications we propose to replace the commonly used noble metals like platinum, gold and iridium with glassy carbon. We submit that such material has the potential to improve the performances of traditional neural prostheses, thanks to better charge transfer capabilities and higher electrochemical stability. Great interest and attention is given in this work, in particular, to the investigation of tissue response after several weeks of implants in rodents' brain motor cortex and the associated materials degradation. As part of this work, a new set of devices for Electrocorticography (ECoG) has been designed and fabricated to improve durability and quality of the previous generation of devices, designed and manufactured by the same research group in 2014. In-vivo long-term impedance measurements and brain activity recordings were performed to test the functionality of the neural devices. In-vitro electrical characterization of the carbon electrodes, as well as the study of the adhesion mechanisms between glassy carbon and different substrates is also part of the research described in this book.

  9. Optical and structural properties of carbon dots/TiO2 nanostructures prepared via DC arc discharge in liquid

    NASA Astrophysics Data System (ADS)

    Biazar, Nooshin; Poursalehi, Reza; Delavari, Hamid

    2018-01-01

    Synthesis and development of visible active catalysts is an important issue in photocatalytic applications of nanomaterials. TiO2 nanostructures coupled with carbon dots demonstrate a considerable photocatalytic activity in visible wavelengths. Extending optical absorption of a wide band gap semiconductor such as TiO2 with carbon dots is the origin of the visible activity of carbon dots modified semiconductor nanostructures. In addition, carbon dots exhibit high photostability, appropriate electron transport and chemical stability without considerable toxicity or environmental footprints. In this study, optical and structural properties of carbon dots/TiO2 nanostructures prepared via (direct current) DC arc discharge in liquid were investigated. Crystal structure, morphology and optical properties of the samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-visible spectroscopy respectively. SEM images show formation of spherical nanoparticles with an average size of 27 nm. In comparison with pristine TiO2, optical transmission spectrum of carbon dots/TiO2 nanostructures demonstrates an absorption edge at longer wavelengths as well a high optical absorption in visible wavelengths which is significant for visible activity of nanostructures as a photocatalyst. Finally, these results can provide a flexible and versatile pathway for synthesis of carbon dots/oxide semiconductor nanostructures with an appropriate activity under visible light.

  10. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    DOE PAGES

    Islam, A. E.; Zakharov, D.; Stach, E. A.; ...

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only inmore » the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.« less

  11. Treated carbon fibers with improved performance for electrochemical and chemical applications

    DOEpatents

    Chu, X.; Kinoshita, Kimio

    1999-02-23

    A treated mesophase carbon fiber is disclosed having a high density of exposed edges on the fiber surface, and a method is described for making such a treated fiber. A carbon electrode is also described which is constructed from such treated mesophase carbon fibers. The resulting electrode, formed from such treated flexible carbon fibers, is characterized by a high density of active sites formed from such exposed edges, low corrosion, and good mechanical strength, and may be fabricated into various shapes. The treated mesophase carbon fibers of the invention are formed by first loading the surface of the mesophase carbon fiber with catalytic metal particles to form catalytic etch sites on a hard carbon shell of the fiber. The carbon fiber is then subject to an etch step wherein portions of the hard carbon shell or skin are selectively removed adjacent the catalytic metal particles adhering to the carbon shell. This exposes the underlying radial edges of the graphite-like layers within the carbon shell of the mesophase carbon fiber, which exposed radial edges then act as active sites of a carbon electrode subsequently formed from the treated mesophase carbon fibers. 14 figs.

  12. Treated carbon fibers with improved performance for electrochemical and chemical applications

    DOEpatents

    Chu, Xi; Kinoshita, Kimio

    1999-01-01

    A treated mesophase carbon fiber is disclosed having a high density of exposed edges on the fiber surface, and a method of making such a treated fiber. A carbon electrode is also described which is constructed from such treated mesophase carbon fibers. The resulting electrode, formed from such treated flexible carbon fibers, is characterized by a high density of active sites formed from such exposed edges, low corrosion, and good mechanical strength, and may be fabricated into various shapes. The treated mesophase carbon fibers of the invention are formed by first loading the surface of the mesophase carbon fiber with catalytic metal particles to form catalytic etch sites on a hard carbon shell of the fiber. The carbon fiber is then subject to an etch step wherein portions of the hard carbon shell or skin are selectively removed adjacent the catalytic metal particles adhering to the carbon shell. This exposes the underlying radial edges of the graphite-like layers within the carbon shell of the mesophase carbon fiber, which exposed radial edges then act as active sites of a carbon electrode subsequently formed from the treated mesophase carbon fibers.

  13. The leaching of inorganic species from activated carbons produced from waste tyre rubber.

    PubMed

    San Miguel, G; Fowler, G D; Sollars, C J

    2002-04-01

    Waste tyre rubber can be used as a precursor for the production of high quality activated carbons. However, there is concern that inorganic impurities present in the rubber feed may restrict their use in liquid phase applications with high purity requirements. This paper presents an investigation of the presence and the leaching of inorganic species from activated carbons derived from waste tyre rubber. For the purpose of this work, a number of carbons were produced, characterised for their BET surface area and analysed for their inorganic composition. Subsequently, a number of tests were performed to evaluate the leaching of different inorganic species into solution at various pH values and carbon doses. Results showed that rubber-derived carbons contained elevated concentrations of sulphur and zinc, as well as traces of other metals such as lead, cadmium, chromium and molybdenum. Inorganic levels were significantly affected by production conditions, particularly degree of carbon activation and the nature of the gasification agent. However, leaching tests showed that the availability of these species in neutral pH conditions was very limited. Results demonstrated that, when using carbons doses comparable to those employed in water treatment works, only sulphur levels exceeded, in some occasions, health based quality standards proposed for drinking water.

  14. [Effects of long-term fertilization on pH buffer system of sandy loam calcareous fluvor-aquic soil].

    PubMed

    Wang, Ji-Dong; Qi, Bing-Jie; Zhang, Yong-Chun; Zhang, Ai-Jun; Ning, Yun-Wang; Xu, Xian-Ju; Zhang, Hui; Ma, Hong-Bo

    2012-04-01

    Soil samples (0-80 cm) were collected from a 30-year fertilization experimental site in Xuzhou, Jiangsu Province of East China to study the variations of the pH, calcium carbonate and active calcium carbonate contents, and pH buffer capacity of sandy loam calcareous fluvor-aquic soil under different fertilization treatments. Thirty-year continuous application of different fertilizers accelerated the acidification of topsoil (0-20 cm), with the soil pH decreased by 0.41-0.70. Under different fertilization, the soil pH buffer capacity (pHBC) varied from 15.82 to 21.96 cmol x kg(-1). As compared with no fertilization, single N fertilization decreased the pHBC significantly, but N fertilization combined with organic fertilization could significantly increase the pHBC. The soil pHBC had significant positive correlations with soil calcium carbonate and active calcium carbonate contents, but less correlation with soil organic matter content and soil cation exchange capacity, suggesting that after a long-term fertilization, the sandy loam calcareous fluvor-aquic soil was still of an elementary calcium carbonate buffer system, and soil organic matter and cation exchange capacity contributed little to the buffer system. The soil calcium carbonate and active calcium carbonate contents were greater in 0-40 cm than in 40-80 cm soil layer. Comparing with soil calcium carbonate, soil active calcium carbonate was more sensitive to reflect the changes of soil physical and chemical properties, suggesting that the calcium carbonate buffer system could be further classified as soil active calcium carbonate buffer system.

  15. Biopolymer protected silver nanoparticles on the support of carbon nanotube as interface for electrocatalytic applications

    NASA Astrophysics Data System (ADS)

    Satyanarayana, M.; Kumar, V. Sunil; Gobi, K. Vengatajalabathy

    2016-04-01

    In this research, silver nanoparticles (SNPs) are prepared on the surface of carbon nanotubes via chitosan, a biopolymer linkage. Here chitosan act as stabilizing agent for nanoparticles and forms a network on the surface of carbon nanotubes. Synthesized silver nanoparticles-MWCNT hybrid composite is characterized by UV-Visible spectroscopy, XRD analysis, and FESEM with EDS to evaluate the structural and chemical properties of the nanocomposite. The electrocatalytic activity of the fabricated SNP-MWCNT hybrid modified glassy carbon electrode has been evaluated by cyclic voltammetry and electrochemical impedance analysis. The silver nanoparticles are of size ˜35 nm and are well distributed on the surface of carbon nanotubes with chitosan linkage. The prepared nanocomposite shows efficient electrocatalytic properties with high active surface area and excellent electron transfer behaviour.

  16. Application of mixed based membrane technology from component materials bintaro, zeolite and bentonite to reduction of songket waste liquid cloth

    NASA Astrophysics Data System (ADS)

    Dahlan, Muhammad Hatta; Saleh, Abdullah; Asip, Faisol; Makmun, Akbar; Defi

    2017-11-01

    Application of membrane technology based on clay mixture, Activated Carbon from Bintaro, Zeolite and Bentonit to process the waste water of Songket cloth is Palembang traditionally cloth. The applied research is into the superior field of industrial and household waste processing with membrane ceramic technology. The objective of this research is to design the liquid waste separation tool of jumputan cloth using better and simpler ceramic membrane so that it can help the artisans of Palembang songket or songket in processing the waste in accordance with the standard of environmental quality standard (BML) and Pergub Sumsel no. 16 in 2005. The specific target to be achieved can decrease the waste of cloth jumputan in accordance with applicable environmental quality standards the method used in achieving the objectives of this study using 2 processes namely the adsorption process using activated carbon and the separation process using a ceramic membrane based on the composition of the mixture. The activated carbon from bintaro seeds is expected to decrease the concentration of liquid waste of Songket cloth. Bintaro seeds are non-edible fruits where the composition contains organic ingredients that can absorb because contains dyes and filler metals. The process of membranization in the processing is expected to decrease the concentration of waste better and clear water that can be used as recycled water for household use. With the composition of a mixture of clay-based materials: zeolite, bentonit, activated carbon from bintaro seeds are expected Find the solution and get the novelty value in the form of patent in this research

  17. Hydrothermal Synthesis and Biocompatibility Study of Highly Crystalline Carbonated Hydroxyapatite Nanorods

    NASA Astrophysics Data System (ADS)

    Xue, Caibao; Chen, Yingzhi; Huang, Yongzhuo; Zhu, Peizhi

    2015-08-01

    Highly crystalline carbonated hydroxyapatite (CHA) nanorods with different carbonate contents were synthesized by a novel hydrothermal method. The crystallinity and chemical structure of synthesized nanorods were studied by Fourier transform infrared spectroscopy (FTIR), X-ray photo-electronic spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The biocompatibility of synthesized CHA nanorods was evaluated by cell viability and alkaline phosphatase (ALP) activity of MG-63 cell line. The biocompatibility evaluation results show that these CHA nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopedic application.

  18. From carbon nanostructures to high-performance sorbents for chromatographic separation and preconcentration

    NASA Astrophysics Data System (ADS)

    Postnov, V. N.; Rodinkov, O. V.; Moskvin, L. N.; Novikov, A. G.; Bugaichenko, A. S.; Krokhina, O. A.

    2016-02-01

    Information on carbon nanostructures (fullerenes, nanotubes, graphene, nanodiamond and nanodispersed active carbon) used to develop high-performance sorbents of organics and heavy metal ions from aqueous solutions is collected and analyzed. The advantages in the synthesis of hybrid carbon nanostructures and the possibilities of surface modification of these systems in order to carry out fast sorption pre-concentration are considered. Prospects for application of these materials in sorption technologies and analytical chemistry are discussed. The bibliography includes 364 references.

  19. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- an overview.

    PubMed

    Gupta, Vinod K; Saleh, Tawfik A

    2013-05-01

    The quality of water is continuously deteriorating due to its increasing toxic threat to humans and the environment. It is imperative to perform treatment of wastewater in order to remove pollutants and to get good quality water. Carbon materials like porous carbon, carbon nanotubes and fullerene have been extensively used for advanced treatment of wastewaters. In recent years, carbon nanomaterials have become promising adsorbents for water treatment. This review attempts to compile relevant knowledge about the adsorption activities of porous carbon, carbon nanotubes and fullerene related to various organic and inorganic pollutants from aqueous solutions. A detailed description of the preparation and treatment methods of porous carbon, carbon nanotubes and fullerene along with relevant applications and regeneration is also included.

  20. Photocatalytic degradation of textile dye using TiO2-activated carbon nanocomposite

    NASA Astrophysics Data System (ADS)

    Ghosh, Gourab; Basu, Sankhadeep; Saha, Sudeshna

    2018-05-01

    Rapid industrialisation has extended the use of dyes in various industrial applications in order to meet the escalating demands on consumer products. The toxicity level of a particular dye is very important due to its diverse effects on the environment and living organisms. Among all the techniques for dye removal, adsorption and photocatalysis are two important processes which are gaining much attention in recent years. In the present study activated carbon (adsorbent), TiO2 nanoparticles (photocatalyst) and their composite were used for dye removal. Prepared samples were characterized using standard characterization techniques such as XRD and SEM. Activated carbon was prepared from waste shells of Sterculia foetida. Mixture of activated carbon (activation temperature 600°C) and titania (calcined at 500°C) in the ratio 1:1 displayed greater dye removal efficiency than its individual components. Reusability study indicated that the mixture could effectively be used without further regeneration as very little loss in efficiency was observed after single cycle use.

  1. Ionic liquids as transesterification catalysts: applications for the synthesis of linear and cyclic organic carbonates

    PubMed Central

    Perosa, Alvise; Guidi, Sandro; Cattelan, Lisa

    2016-01-01

    Summary The use of ionic liquids (ILs) as organocatalysts is reviewed for transesterification reactions, specifically for the conversion of nontoxic compounds such as dialkyl carbonates to both linear mono-transesterification products or alkylene carbonates. An introductory survey compares pros and cons of classic catalysts based on both acidic and basic systems, to ionic liquids. Then, innovative green syntheses of task-specific ILs and their representative applications are introduced to detail the efficiency and highly selective outcome of ILs-catalyzed transesterification reactions. A mechanistic hypothesis is discussed by the concept of cooperative catalysis based on the dual (electrophilic/nucleophilic) activation of reactants. PMID:27829898

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Siyu; Zhang, Xiao; Zhou, Wu

    Here, the water-gas shift (WGS) reaction (where carbon monoxide plus water yields dihydrogen and carbon dioxide) is an essential process for hydrogen generation and carbon monoxide removal in various energy-related chemical operations. This equilibrium-limited reaction is favored at a low working temperature. Potential application in fuel cells also requires a WGS catalyst to be highly active, stable, and energy-efficient and to match the working temperature of on-site hydrogen generation and consumption units. We synthesized layered gold (Au) clusters on a molybdenum carbide (α-MoC) substrate to create an interfacial catalyst system for the ultralow-temperature WGS reaction. Water was activated over α-MoCatmore » 303 kelvin, whereas carbon monoxide adsorbed on adjacent Au sites was apt to react with surface hydroxyl groups formed from water splitting, leading to a high WGS activity at low temperatures.« less

  3. Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications.

    PubMed

    Salunkhe, Rahul R; Kaneti, Yusuf Valentino; Kim, Jeonghun; Kim, Jung Ho; Yamauchi, Yusuke

    2016-12-20

    The future advances of supercapacitors depend on the development of novel carbon materials with optimized porous structures, high surface area, high conductivity, and high electrochemical stability. Traditionally, nanoporous carbons (NPCs) have been prepared by a variety of methods, such as templated synthesis, carbonization of polymer precursors, physical and chemical activation, etc. Inorganic solid materials such as mesoporous silica and zeolites have been successfully utilized as templates to prepare NPCs. However, the hard-templating methods typically involve several synthetic steps, such as preparation of the original templates, formation of carbon frameworks, and removal of the original templates. Therefore, these methods are not favorable for large-scale production. Metal-organic frameworks (MOFs) with high surface areas and large pore volumes have been studied over the years, and recently, enormous efforts have been made to utilize MOFs for electrochemical applications. However, their low conductivity and poor stability still present major challenges toward their practical applications in supercapacitors. MOFs can be used as precursors for the preparation of NPCs with high porosity. Their parent MOFs can be prepared with endless combinations of organic and inorganic constituents by simple coordination chemistry, and it is possible to control their porous architectures, pore volumes, surface areas, etc. These unique properties of MOF-derived NPCs make them highly attractive for many technological applications. Compared with carbonaceous materials prepared using conventional precursors, MOF-derived carbons have significant advantages in terms of a simple synthesis with inherent diversity affording precise control over porous architectures, pore volumes, and surface areas. In this Account, we will summarize our recent research developments on the preparation of three-dimensional (3-D) MOF-derived carbons for supercapacitor applications. This Account will be divided into three main sections: (1) useful background on carbon materials for supercapacitor applications, (2) the importance of MOF-derived carbons, and (3) potential future developments of MOF-derived carbons for supercapacitors. This Account focuses mostly on carbons derived from two types of MOFs, namely, zeolite imidazolate framework-8 (ZIF-8) and ZIF-67. By using examples from our previous works, we will show the uniqueness of these carbons for achieving high performance by control of the chemical reactions/conditions as well proper utilization in asymmetric/symmetric supercapacitor configurations. This Account will promote further developments of MOF-derived multifunctional carbon materials with controlled porous architectures for optimization of their electrochemical performance toward supercapacitor applications.

  4. Numerical analysis of the effect of the kind of activating agent and the impregnation ratio on the parameters of the microporous structure of the active carbons

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Mirosław

    2015-09-01

    The paper presents the results of the research on the application of the LBET class adsorption models with the fast multivariant identification procedure as a tool for analysing the microporous structure of the active carbons obtained by chemical activation using potassium and sodium hydroxides as an activator. The proposed technique of the fast multivariant fitting of the LBET class models to the empirical adsorption data was employed particularly to evaluate the impact of the used activator and the impregnation ratio on the obtained microporous structure of the carbonaceous adsorbents.

  5. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaofeng; Schimel, Joshua; Thornton, Peter E

    2014-01-01

    Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, amore » simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.« less

  6. Tuning Optical Properties and Photocatalytic Activities of Carbon-based "Quantum Dots" Through their Surface Groups.

    PubMed

    Hu, Shengliang

    2016-02-01

    We report recent progress in tuning optical properties and photocatalytic activities of carbon-based quantum dots (carbon-based QDs) through their surface groups. It is increasingly clear that the properties of carbon-based QDs are more dependent on their surface groups than on their size. The present challenge remains as to how to control the type, number, and conformation of the heterogeneous groups on the surface of carbon-based QDs when considering their target applications. By reviewing the related achievements, this personal account aims to help us understand the roles different surface groups play in tuning the properties of carbon-based QDs. A number of significant accomplishments have demonstrated that surface groups possess strong power in engineering electronic structure and controlling photogenerated charge behaviors of carbon-based QDs. However, effective strategies for modifying carbon-based QDs with diverse heterogeneous groups are still needed. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Carbon Nanotubes for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Files, Brad; Yowell, Leonard

    2003-01-01

    Single-wall carbon nanotubes offer the promise of a new class of revolutionary materials for space applications. The Carbon Nanotube Project at NASA Johnson Space Center has been actively researching this new technology by investigating nanotube production methods (arc, laser, and HiPCO) and gaining a comprehensive understanding of raw and purified material using a wide range of characterization techniques. After production and purification, single wall carbon nanotubes are processed into composites for the enhancement of mechanical, electrical, and thermal properties. This "cradle-to-grave" approach to nanotube composites has given our team unique insights into the impact of post-production processing and dispersion on the resulting material properties. We are applying our experience and lessons-learned to developing new approaches toward nanotube material characterization, structural composite fabrication, and are also making advances in developing thermal management materials and electrically conductive materials in various polymer-nanotube systems. Some initial work has also been conducted with the goal of using carbon nanotubes in the creation of new ceramic materials for high temperature applications in thermal protection systems. Human space flight applications such as advanced life support and fuel cell technologies are also being investigated. This discussion will focus on the variety of applications under investigation.

  8. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    NASA Astrophysics Data System (ADS)

    Abdullah, N.; Rinaldi, A.; Muhammad, I. S.; Hamid, S. B. Abd.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300° C for an hour in each step. The catalytic growth of nanocarbon in C2H4/H2 was carried out at temperature of 550° C for 2 hrs with different rotating angle in the fluidization system. SEM and N2 isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  9. Hydrothermally Driven Transformation of Oxygen Functional Groups at Multiwall Carbon Nanotubes for Improved Electrocatalytic Applications.

    PubMed

    Suryanto, Bryan H R; Chen, Sheng; Duan, Jingjing; Zhao, Chuan

    2016-12-28

    The role of carbon nanotubes in the advancement of energy conversion and storage technologies is undeniable. In particular, carbon nanotubes have attracted significant applications for electrocatalysis. However, one central issue related to the use of carbon nanotubes is the required oxidative pretreatment that often leads to significant damage of graphitic structures which deteriorates their electrochemical properties. Traditionally, the oxidized carbon nanomaterials are treated at high temperature under an inert atmosphere to repair the oxidation-induced defect sites, which simultaneously removes a significant number of oxygen functional groups. Nevertheless, recent studies have shown that oxygen functional groups on the surface of MWCNT are the essential active centers for a number of important electrocatalytic reactions such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Herein we first show that hydrothermal treatment as a mild method to improve the electrochemical properties and activities of surface-oxidized MWCNT for OER, HER, and ORR without significantly altering the oxygen content. The results indicate that hydrothermal treatment could potentially repair the defects without significantly reducing the pre-existing oxygen content, which has never been achieved before with conventional high-temperature annealing treatment.

  10. Nanoscale Electrochemistry of sp(2) Carbon Materials: From Graphite and Graphene to Carbon Nanotubes.

    PubMed

    Unwin, Patrick R; Güell, Aleix G; Zhang, Guohui

    2016-09-20

    Carbon materials have a long history of use as electrodes in electrochemistry, from (bio)electroanalysis to applications in energy technologies, such as batteries and fuel cells. With the advent of new forms of nanocarbon, particularly, carbon nanotubes and graphene, carbon electrode materials have taken on even greater significance for electrochemical studies, both in their own right and as components and supports in an array of functional composites. With the increasing prominence of carbon nanomaterials in electrochemistry comes a need to critically evaluate the experimental framework from which a microscopic understanding of electrochemical processes is best developed. This Account advocates the use of emerging electrochemical imaging techniques and confined electrochemical cell formats that have considerable potential to reveal major new perspectives on the intrinsic electrochemical activity of carbon materials, with unprecedented detail and spatial resolution. These techniques allow particular features on a surface to be targeted and models of structure-activity to be developed and tested on a wide range of length scales and time scales. When high resolution electrochemical imaging data are combined with information from other microscopy and spectroscopy techniques applied to the same area of an electrode surface, in a correlative-electrochemical microscopy approach, highly resolved and unambiguous pictures of electrode activity are revealed that provide new views of the electrochemical properties of carbon materials. With a focus on major sp(2) carbon materials, graphite, graphene, and single walled carbon nanotubes (SWNTs), this Account summarizes recent advances that have changed understanding of interfacial electrochemistry at carbon electrodes including: (i) Unequivocal evidence for the high activity of the basal surface of highly oriented pyrolytic graphite (HOPG), which is at least as active as noble metal electrodes (e.g., platinum) for outer-sphere redox processes. (ii) Demonstration of the high activity of basal plane HOPG toward other reactions, with no requirement for catalysis by step edges or defects, as exemplified by studies of proton-coupled electron transfer, redox transformations of adsorbed molecules, surface functionalization via diazonium electrochemistry, and metal electrodeposition. (iii) Rationalization of the complex interplay of different factors that determine electrochemistry at graphene, including the source (mechanical exfoliation from graphite vs chemical vapor deposition), number of graphene layers, edges, electronic structure, redox couple, and electrode history effects. (iv) New methodologies that allow nanoscale electrochemistry of 1D materials (SWNTs) to be related to their electronic characteristics (metallic vs semiconductor SWNTs), size, and quality, with high resolution imaging revealing the high activity of SWNT sidewalls and the importance of defects for some electrocatalytic reactions (e.g., the oxygen reduction reaction). The experimental approaches highlighted for carbon electrodes are generally applicable to other electrode materials and set a new framework and course for the study of electrochemical and interfacial processes.

  11. [Characteristic of the removal of 2,4-dichlorophenol by biological activated carbon].

    PubMed

    Liu, Hong; Li, An-jie; Quan, Xiang-chun; Kong, Xiang-hui; Yun, Ying

    2004-11-01

    The adsorption characteristics and kinetics of 2,4-Dichlorophenol (2,4-DCP) by biological activated carbon (BAC) was studied through contrast experiments with conventional activated sludge alone or quartz as the carrier. The advantage and disadvantage of removing 2,4-DCP using BAC and the mechanism of this process were investigated. The results show that the method of removing 2,4-DCP by BAC is applicable in practices, and the process of BAC demonstrates high removal rate than the process of suspended activated sludge and biofilm with quartz as the carrier. In addition, the BAC process showed high resistance to shock loadings, therefore, it is suitable to be utilized at high organic loading and under long-term operation. In BAC-system, activated carbon could not only adsorb 2,4-DCP but also oxidized 2,4-DCP.

  12. Networks of connected Pt nanoparticles supported on carbon nanotubes as superior catalysts for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Huang, Meihua; Zhang, Jianshuo; Wu, Chuxin; Guan, Lunhui

    2017-02-01

    The high cost and short lifetime of the Pt-based anode catalyst for methanol oxidation reaction (MOR) hamper the widespread commercialization of direct methanol fuel cell (DMFC). Therefore, improving the activity of Pt-based catalysts is necessary for their practical application. For the first time, we prepared networks of connected Pt nanoparticles supported on multi-walled carbon nanotubes with loading ratio as high as 91 wt% (Pt/MWCNTs). Thanks for the unique connected structure, the Pt mass activity of Pt/MWCNTs for methanol oxidation reaction is 4.4 times as active as that of the commercial Pt/C (20 wt%). When carbon support is considered, the total mass activity of Pt/MWCNTs is 20 times as active as that of the commercial Pt/C. The durability and anti-poisoning ability are also improved greatly.

  13. Review on the Antimicrobial Properties of Carbon Nanostructures

    PubMed Central

    Al-Jumaili, Ahmed; Alancherry, Surjith; Bazaka, Kateryna

    2017-01-01

    Swift developments in nanotechnology have prominently encouraged innovative discoveries across many fields. Carbon-based nanomaterials have emerged as promising platforms for a broad range of applications due to their unique mechanical, electronic, and biological properties. Carbon nanostructures (CNSs) such as fullerene, carbon nanotubes (CNTs), graphene and diamond-like carbon (DLC) have been demonstrated to have potent broad-spectrum antibacterial activities toward pathogens. In order to ensure the safe and effective integration of these structures as antibacterial agents into biomaterials, the specific mechanisms that govern the antibacterial activity of CNSs need to be understood, yet it is challenging to decouple individual and synergistic contributions of physical, chemical and electrical effects of CNSs on cells. In this article, recent progress in this area is reviewed, with a focus on the interaction between different families of carbon nanostructures and microorganisms to evaluate their bactericidal performance. PMID:28892011

  14. Nanotube-assisted protein deactivation

    NASA Astrophysics Data System (ADS)

    Joshi, Amit; Punyani, Supriya; Bale, Shyam Sundhar; Yang, Hoichang; Borca-Tasciuc, Theodorian; Kane, Ravi S.

    2008-01-01

    Conjugating proteins onto carbon nanotubes has numerous applications in biosensing, imaging and cellular delivery. However, remotely controlling the activity of proteins in these conjugates has never been demonstrated. Here we show that upon near-infrared irradiation, carbon nanotubes mediate the selective deactivation of proteins in situ by photochemical effects. We designed nanotube-peptide conjugates to selectively destroy the anthrax toxin, and also optically transparent coatings that can self-clean following either visible or near-infrared irradiation. Nanotube-assisted protein deactivation may be broadly applicable to the selective destruction of pathogens and cells, and will have applications ranging from antifouling coatings to functional proteomics.

  15. Pilot-scale removal of pharmaceuticals in municipal wastewater: Comparison of granular and powdered activated carbon treatment at three wastewater treatment plants.

    PubMed

    Kårelid, Victor; Larsson, Gen; Björlenius, Berndt

    2017-05-15

    Adsorption with activated carbon is widely suggested as an option for the removal of organic micropollutants including pharmaceutically active compounds (PhACs) in wastewater. In this study adsorption with granular activated carbon (GAC) and powdered activated carbon (PAC) was analyzed and compared in parallel operation at three Swedish wastewater treatment plants with the goal to achieve a 95% PhAC removal. Initially, mapping of the prevalence of over 100 substances was performed at each plant and due to low concentrations a final 22 were selected for further evaluation. These include carbamazepine, clarithromycin and diclofenac, which currently are discussed for regulation internationally. A number of commercially available activated carbon products were initially screened using effluent wastewater. Of these, a reduced set was selected based on adsorption characteristics and cost. Experiments designed with the selected carbons in pilot-scale showed that most products could indeed remove PhACs to the target level, both on total and individual basis. In a setup using internal recirculation the PAC system achieved a 95% removal applying a fresh dose of 15-20 mg/L, while carbon usage rates for the GAC application were much broader and ranged from <28 to 230 mg/L depending on the carbon product. The performance of the PAC products generally gave better results for individual PhACs in regards to carbon availability. All carbon products showed a specific adsorption for a specific PhAC meaning that knowledge of the target pollutants must be acquired before successful design of a treatment system. In spite of different configurations and operating conditions of the different wastewater treatment plants no considerable differences regarding pharmaceutical removal were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Study of storage capacity in various carbon/graphene-based solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Subramaniam, C. K.; Boopalan, G.

    2014-09-01

    Solid-state electrochemical double-layer capacitor (SEDLC) forms excellent energy storage device for high-power applications. They are highly reliable, with no electrolyte leaks, and can be packaged to suit various applications. The electrode material can be activated carbon to graphene. These can have a range of particle size, surface area, pore size and pore distribution for charge storage. The emphasis will be to optimize the graphene to carbon blend in the electrodes which would provide appreciable storage density of the SEDLC. We can use perfluorosulfonic acid polymer as the solid electrolyte in the SEDLC assembly. They have high ionic conductivity, good thermal stability, and mechanical strength. They also have excellent long-term chemical stability. Carbon is widely used for many practical applications, especially for the adsorption of ions and molecules, as it is possible to synthesize one-, two- or three-dimensional (1-, 2-, or 3-D) carbons. Some of the problems in activated carbon like varying micro or mesopores, poor ion mobility due to varying pore distribution, low electrical conductivity, can be overcome using graphene and blends of graphene with carbon of the right pore dimension and distribution. Graphene in various structural nomenclatures have been used by various groups for charge storage. Graphene nanoplates (GNP), with narrow mesopore distributions have been effectively used for SEDLCs. SEDLCs assembled with GNP and blends of GNP with Vulcan XC and solid polymer electrolyte like Nafion show exceptional performance. The cyclic voltammetric studies show that they support high scan rates with substantial smaller capacitance drop as we increase scan rates. Optimization of the electrode structure in terms of blend percentage, binder content and interface character in the frequency and time domain provides excellent insight into the double-layer interface.

  17. Antifeedant activity of xanthohumol and supercritical carbon dioxide extract of spent hops against stored product pests.

    PubMed

    Jackowski, J; Hurej, M; Rój, E; Popłoński, J; Kośny, L; Huszcza, E

    2015-08-01

    Xanthohumol, a prenylated flavonoid from hops, and a supercritical carbon dioxide extract of spent hops were studied for their antifeedant activity against stored product insect pests: Sitophilus granarius L., Tribolium confusum Duv. and Trogoderma granarium Everts. Xanthohumol exhibited medium deterrent activity against the adults of S. granarius L. and larvae of T. confusum Duv. The spent hops extract was more active than xanthohumol towards the adults of T. confusum Duv. The potential application of the crude spent hops extract as a feeding deterrent against the stored product pests is proposed.

  18. Fabrication of transition metal-containing nanostructures via polymer templates for a multitude of applications

    NASA Astrophysics Data System (ADS)

    Lu, Jennifer Qing

    Nanostructures such as carbon nanotubes and semiconducting nanowires offer great technological promise due to their remarkable properties. The lack of a rational synthesis method prevents fabricating these nanostructures with desirable and consistent properties at predefined locations for device applications. In this thesis, employing polymer templates, a variety of highly ordered catalytically active transition metal nanostructures, ranging from single metallic nanoparticles of Fe, Co, Ni, Au and bimetallic nanoparticles of Ni/Fe and Co/Mo to Fe-rich silicon oxide nanodomains with uniform and tunable size and spacing have been successfully synthesized. These nanostructures have been demonstrated to be excellent catalyst systems for the synthesis of carbon nanotube and silicon nanowire. High quality, small diameter carbon nanotubes and nanowires with narrow size distribution have been successfully attained. Because these catalytically active nanostructures are uniformly distributed and do not agglomerate at the growth temperatures, uniform, high density and high quality carbon nanotube mats have been obtained. Since this polymer template approach is fully compatible with conventional top-down photolithography, lithographically selective growth of carbon nanotubes on a surface or suspended carbon nanotubes across trenches have been produced by using existing semiconductor processing. We have also shown the feasibility of producing carbon nanotubes and silicon nanowires at predefined locations on a wafer format and established a wafer-level carbon nanotube based device fabrication process. The ability of the polymer template approach to control catalyst systems at the nano-, micro- and macro-scales paves a pathway for commercialization of these 1D nanostructure-enabled devices. Beside producing well-defined, highly ordered discrete catalytically active metal-containing nanostructures by the polymer template approach, Au and Ag nanotextured surfaces have also been attained by using a self-assembled ferrocenylsilane-based inorganic block copolymer template. These Au and Ag nanotextured surfaces exhibit different surface plasmon behavior than the nanotextured surface. Greatly enhanced and uniform Raman scattering have been observed on Ag nanotextured surfaces. Highly sensitive Au nanotextured surfaces suggest their potential application as sensing surfaces for SPR-based biodetection. This simple fabrication technique of producing inorganic nanostructures with adjustable properties such as size, spacing and composition offers great promise for both fundamental research and technological development.

  19. Changes in soil microbial functional diversity and biochemical characteristics of tree peony with amendment of sewage sludge compost.

    PubMed

    Huang, Xiangdong; Xue, Dong; Xue, Lian

    2015-08-01

    A greenhouse experiment was conducted to investigate the impact of sewage sludge compost application on functional diversity of soil microbial communities, based on carbon source utilization, and biochemical characteristics of tree peony (Paeonia suffruticosa). Functional diversity was estimated with incubations in Biolog EcoPlates and well color development was used as the functional trait for carbon source utilization. The average well color development and Shannon index based on the carbon source utilization pattern in Biolog EcoPlates significantly increased with the increasing sludge compost application in the range of 0-45%, with a decreasing trend above 45%. Principal component analysis of carbon source utilization pattern showed that sludge compost application stimulated the utilization rate of D-cellobiose and α-D-lactose, while the utilization rate of β-methyl-D-glucoside, L-asparagine, L-serine, α-cyclodextrin, γ-hydroxybutyric acid, and itaconic acid gradually increased up to a sludge compost amendment dosage of 45% and then decreased above 45%. The chlorophyll content, antioxidase (superoxide dismutase, catalase, and peroxidase) activities, plant height, flower diameter, and flower numbers per plant of tree peony increased significantly with sludge compost dosage, reaching a peak value at 45 %, and then decreased with the exception that activity of superoxide dismutase and catalase did not vary significantly.

  20. Brazing of Carbon Carbon Composites to Cu-clad Molybdenum for Thermal Management Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.; Shpargel, T> P.

    2007-01-01

    Advanced carbon carbon composites were joined to copper-clad molybdenum (Cu/Mo) using four active metal brazes containing Ti (Cu ABA, Cusin-1 ABA, Ticuni, and Ticusil) for potential use in thermal management applications. The brazed joints were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Knoop microhardness measurements across the joint region. Metallurgically sound C-C/Cu/Mo joints, devoid of interfacial cracks formed in all cases. The joint interfaces were preferentially enriched in Ti, with Cu ABA joints exhibiting the largest interfacial Ti concentrations. The microhardness measurements revealed hardness gradients across the joint region, with a peak hardness of 300-350 KHN in Cusin-1 ABA and Ticusil joints and 200-250 KHN in Cu ABA and Ticuni joints, respectively.

  1. Carbon Film Electrodes For Super Capacitor Applications

    DOEpatents

    Tan, Ming X.

    1999-07-20

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  2. Chemoselective Radical Dehalogenation and C-C Bond Formation on Aryl Halide Substrates Using Organic Photoredox Catalysts.

    PubMed

    Poelma, Saemi O; Burnett, G Leslie; Discekici, Emre H; Mattson, Kaila M; Treat, Nicolas J; Luo, Yingdong; Hudson, Zachary M; Shankel, Shelby L; Clark, Paul G; Kramer, John W; Hawker, Craig J; Read de Alaniz, Javier

    2016-08-19

    Despite the number of methods available for dehalogenation and carbon-carbon bond formation using aryl halides, strategies that provide chemoselectivity for systems bearing multiple carbon-halogen bonds are still needed. Herein, we report the ability to tune the reduction potential of metal-free phenothiazine-based photoredox catalysts and demonstrate the application of these catalysts for chemoselective carbon-halogen bond activation to achieve C-C cross-coupling reactions as well as reductive dehalogenations. This procedure works both for conjugated polyhalides as well as unconjugated substrates. We further illustrate the usefulness of this protocol by intramolecular cyclization of a pyrrole substrate, an advanced building block for a family of natural products known to exhibit biological activity.

  3. Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury.

    PubMed

    Ghorishi, S Behrooz; Keeney, Robert M; Serre, Shannon D; Gullett, Brian K; Jozewicz, Wojciech S

    2002-10-15

    Efforts to discern the role of an activated carbon's surface functional groups on the adsorption of elemental mercury (Hg0) and mercuric chloride demonstrated that chlorine (Cl) impregnation of a virgin activated carbon using dilute solutions of hydrogen chloride leads to increases (by a factor of 2-3) in fixed-bed capture of these mercury species. A commercially available activated carbon (DARCO FGD, NORITAmericas Inc. [FGD])was Cl-impregnated (Cl-FGD) [5 lb (2.3 kg) per batch] and tested for entrained-flow, short-time-scale capture of Hg0. In an entrained flow reactor, the Cl-FGD was introduced in Hg0-laden flue gases (86 ppb of Hg0) of varied compositions with gas/solid contact times of about 3-4 s, resulting in significant Hg0 removal (80-90%), compared to virgin FGD (10-15%). These levels of Hg0 removal were observed across a wide range of very low carbon-to-mercury weight ratios (1000-5000). Variation of the natural gas combustion flue gas composition, by doping with nitrogen oxides and sulfur dioxide, and the flow reactor temperature (100-200 degrees C) had minimal effects on Hg0 removal bythe Cl-FGD in these carbon-to-mercury weight ratios. These results demonstrate significant enhancement of activated carbon reactivity with minimal treatment and are applicable to combustion facilities equipped with downstream particulate matter removal such as an electrostatic precipitator.

  4. Rationally Designed Hierarchically Structured Tungsten Nitride and Nitrogen-Rich Graphene-Like Carbon Nanocomposite as Efficient Hydrogen Evolution Electrocatalyst.

    PubMed

    Zhu, Yanping; Chen, Gao; Zhong, Yijun; Zhou, Wei; Shao, Zongping

    2018-02-01

    Practical application of hydrogen production from water splitting relies strongly on the development of low-cost and high-performance electrocatalysts for hydrogen evolution reaction (HER). The previous researches mainly focused on transition metal nitrides as HER catalysts due to their electrical conductivity and corrosion stability under acidic electrolyte, while tungsten nitrides have reported poorer activity for HER. Here the activity of tungsten nitride is optimized through rational design of a tungsten nitride-carbon composite. More specifically, tungsten nitride (WN x ) coupled with nitrogen-rich porous graphene-like carbon is prepared through a low-cost ion-exchange/molten-salt strategy. Benefiting from the nanostructured WN x , the highly porous structure and rich nitrogen dopant (9.5 at%) of the carbon phase with high percentage of pyridinic-N (54.3%), and more importantly, their synergistic effect, the composite catalyst displays remarkably high catalytic activity while maintaining good stability. This work highlights a powerful way to design more efficient metal-carbon composites catalysts for HER.

  5. Nitrogen-doped carbon nanospheres derived from cocoon silk as metal-free electrocatalyst for glucose sensing.

    PubMed

    Li, Tongtong; Li, Yahang; Wang, Chunyu; Gao, Zhi-Da; Song, Yan-Yan

    2015-11-01

    Nitrogen-doped carbon materials have attracted tremendous attention because of their high activity in electrocatalysis. In the present work, cocoon silk -- a biomass material is used to prepare porous carbon fibers due to its abundant nitrogen content. The as-prepared carbon microfibers have been activated and disintegrated into carbon nanospheres (CNS) with a diameter of 20--60 nm by a simple nitric acid refluxing process. Considering their excellent electrocatalytic activity towards the reduction of oxygen, the CNS modified electrodes are further applied in the construction of glucose amperometric biosensor using glucose oxidase as a model. The proposed biosensor exhibits fast response, high sensitivity, good stability and selectivity for glucose detection with a wide linear range from 79.7 to 2038.9 μM, and a detection limit of 39.1 μM. The performance is comparable to leading literature results indicating a great potential for electrochemical sensing application. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Biopolymer protected silver nanoparticles on the support of carbon nanotube as interface for electrocatalytic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satyanarayana, M.; Kumar, V. Sunil; Gobi, K. Vengatajalabathy, E-mail: drkvgobi@gmail.com, E-mail: satyam.nitw@gmail.com

    In this research, silver nanoparticles (SNPs) are prepared on the surface of carbon nanotubes via chitosan, a biopolymer linkage. Here chitosan act as stabilizing agent for nanoparticles and forms a network on the surface of carbon nanotubes. Synthesized silver nanoparticles-MWCNT hybrid composite is characterized by UV-Visible spectroscopy, XRD analysis, and FESEM with EDS to evaluate the structural and chemical properties of the nanocomposite. The electrocatalytic activity of the fabricated SNP-MWCNT hybrid modified glassy carbon electrode has been evaluated by cyclic voltammetry and electrochemical impedance analysis. The silver nanoparticles are of size ∼35 nm and are well distributed on the surface ofmore » carbon nanotubes with chitosan linkage. The prepared nanocomposite shows efficient electrocatalytic properties with high active surface area and excellent electron transfer behaviour.« less

  7. Molten-salt treatment of waste biomass for preparation of carbon with enhanced capacitive properties and electrocatalytic activity towards oxygen reduction.

    PubMed

    Lu, Beihu; Zhou, Jing; Song, Yuqiao; Wang, Hailong; Xiao, Wei; Wang, Dihua

    2016-08-15

    Carbon powders are building blocks for electrochemical energy storage/conversion devices. Green, cost-affordable and facile preparation of carbon with applicable electrochemical properties is therefore essential for effective utilization of fluctuating renewable energy. Herein, the preparation of carbon nanoflakes via impregnation of waste biomass i.e. boiled coffee beans in molten Na2CO3-K2CO3 (with equal mass) at 800 °C and molten CaCl2 at 850 °C is reported. The microstructure and surface chemistry of the obtained carbons are specified. The correlations between synthetic conditions and microstructure/surface chemistry of the obtained carbons are rationalized. The derived carbon nanosheets are tested and compared as active materials for supercapacitors in a configuration of symmetric full cells in 1 M MeEt3NBF4 in acetonitrile and electrocatalysts towards the oxygen reduction reaction (ORR) in O2-saturated 0.1 M aqueous KOH. Despite the lower surface area, the carbon nanosheets derived in molten Na2CO3-K2CO3 exhibit enhanced capacitive properties and electrocatalytic ORR activity. The present study highlights the importance of thermal media on the microstructure, surface chemistry and electrochemistry of carbon from biomass.

  8. Production of Polyhydroxyalkanoates Using Hydrolyzates of Spruce Sawdust: Comparison of Hydrolyzates Detoxification by Application of Overliming, Active Carbon, and Lignite

    PubMed Central

    Kucera, Dan; Benesova, Pavla; Ladicky, Peter; Pekar, Miloslav; Sedlacek, Petr; Obruca, Stanislav

    2017-01-01

    Polyhydroxyalkanoates (PHAs) are bacterial polyesters which are considered biodegradable alternatives to petrochemical plastics. PHAs have a wide range of potential applications, however, the production cost of this bioplastic is several times higher. A major percentage of the final cost is represented by the price of the carbon source used in the fermentation. Burkholderia cepacia and Burkholderia sacchari are generally considered promising candidates for PHA production from lignocellulosic hydrolyzates. The wood waste biomass has been subjected to hydrolysis. The resulting hydrolyzate contained a sufficient amount of fermentable sugars. Growth experiments indicated a strong inhibition by the wood hydrolyzate. Over-liming and activated carbon as an adsorbent of inhibitors were employed for detoxification. All methods of detoxification had a positive influence on the growth of biomass and PHB production. Furthermore, lignite was identified as a promising alternative sorbent which can be used for detoxification of lignocellulose hydrolyzates. Detoxification using lignite instead of activated carbon had lower inhibitor removal efficiency, but greater positive impact on growth of the bacterial culture and overall PHA productivity. Moreover, lignite is a significantly less expensive adsorbent in comparison with activated charcoal and; moreover, used lignite can be simply utilized as a fuel to, at least partially, cover heat and energetic demands of fermentation, which should improve the economic feasibility of the process. PMID:28952532

  9. Carbon Footprint Calculations: An Application of Chemical Principles

    ERIC Educational Resources Information Center

    Treptow, Richard S.

    2010-01-01

    Topics commonly taught in a general chemistry course can be used to calculate the quantity of carbon dioxide emitted into the atmosphere by various human activities. Each calculation begins with the balanced chemical equation for the reaction that produces the CO[subscript 2] gas. Stoichiometry, thermochemistry, the ideal gas law, and dimensional…

  10. Application of the 2-cyanoacetamide method for spectrophotometric assay of cellulase enzyme activity

    USDA-ARS?s Scientific Manuscript database

    Cellulose is the most abundant form of carbon on the planet. Breakdown of cellulose microfibrils in the plant cell wall is a means by which microbes gain ingress into their respective hosts. Cellulose degradation is also important for global carbon recycling and is the primary substrate for producti...

  11. Carbon nanotubes buckypaper radiation studies for medical physics applications.

    PubMed

    Alanazi, Abdulaziz; Alkhorayef, Mohammed; Alzimami, Khalid; Jurewicz, Izabela; Abuhadi, Nouf; Dalton, Alan; Bradley, D A

    2016-11-01

    Graphite ion chambers and semiconductor diode detectors have been used to make measurements in phantoms but these active devices represent a clear disadvantage when considered for in vivo dosimetry. In such circumstance, dosimeters with atomic number similar to human tissue are needed. Carbon nanotubes have properties that potentially meet the demand, requiring low voltage in active devices and an atomic number similar to adipose tissue. In this study, single-wall carbon nanotubes (SWCNTs) buckypaper has been used to measure the beta particle dose deposited from a strontium-90 source, the medium displaying thermoluminescence at potentially useful sensitivity. As an example, the samples show a clear response for a dose of 2Gy. This finding suggests that carbon nanotubes can be used as a passive dosimeter specifically for the high levels of radiation exposures used in radiation therapy. Furthermore, the finding points towards further potential applications such as for space radiation measurements, not least because the medium satisfies a demand for light but strong materials of minimal capacitance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Production of carbon molecular sieves from Illinois coal

    USGS Publications Warehouse

    Lizzio, A.A.; Rostam-Abadi, M.

    1993-01-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for application in the separation of gas molecules that vary in size and shape. A study is in progress at the Illinois State Geological Survey to determine whether Illinois basin coals are suitable feedstocks for the production of CMS and to evaluate their potential application in gas separation processes of commercial importance. Chars were prepared from Illinois coal in a fixed-bed reactor under a wide range of heat treatment and activation conditions. The effects of various coal/char pretreatments, including coal demineralization, preoxidation, char activation, and carbon deposition, on the molecular sieve properties of the chars were also investigated. Chars with commercially significant BET surface areas of 1500 m2/g were produced by chemical activation using potassium hydroxide as the activant. These high-surface-area (HSA) chars had more than twice the adsorption capacity of commercial carbon and zeolite molecular sieves. The kinetics of adsorption of various gases, e.g., N2, O2, CO2, CH4, CO and H2, on these chars at 25??C was measured. The O2/N2 molecular sieve properties of one char prepared without chemical activation were similar to those of a commercial CMS. On the other hand, the O2/N2 selectivity of the HSA char was comparable to that of a commercial activated carbon, i.e., essentially unity. Carbon deposition, using methane as the cracking gas, increased the O2/N2 selectivity of the HSA char, but significantly decreased its adsorption capacity. Several chars showed good potential for efficient CO2/CH4 separation; both a relatively high CO2 adsorption capacity and CO2/CH4 selectivity were achieved. The micropore size distribution of selected chars was estimated by equilibrium adsorption of carbon dioxide, n-butane and iso-butane at O??C. The extent of adsorption of each gas corresponded to the effective surface area contained in pores with diameters greater than 3.3, 4.3 and 5.0 A??, respectively. Kinetic and equilibrium adsorption data provided complementary information on the molecular sieving capabilities and microstructure of the prepared chars. ?? 1993.

  13. Heterogeneity of activated carbons in adsorption of phenols from aqueous solutions—Comparison of experimental isotherm data and simulation predictions

    NASA Astrophysics Data System (ADS)

    Podkościelny, P.; Nieszporek, K.

    2007-01-01

    Surface heterogeneity of activated carbons is usually characterized by adsorption energy distribution (AED) functions which can be estimated from the experimental adsorption isotherms by inverting integral equation. The experimental data of phenol adsorption from aqueous solution on activated carbons prepared from polyacrylonitrile (PAN) and polyethylene terephthalate (PET) have been taken from literature. AED functions for phenol adsorption, generated by application of regularization method have been verified. The Grand Canonical Monte Carlo (GCMC) simulation technique has been used as verification tool. The definitive stage of verification was comparison of experimental adsorption data and those obtained by utilization GCMC simulations. Necessary information for performing of simulations has been provided by parameters of AED functions calculated by regularization method.

  14. Porosity control in nanoporous carbide-derived carbon by oxidation in air and carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osswald, S.; Portet, C.; Gogotsi, Y., E-mail: gogotsi@drexel.ed

    2009-07-15

    Carbide-derived carbons (CDC) allow a precise control over the pore size through the selection of the carbide precursor and varying of the synthesis conditions. However, their pore volume is limited by the carbide stoichiometry. While activation of carbons derived from various organic precursors has been widely studied, this process may similarly be able to increase the pore volume and specific surface area of CDC. Oxidation of carbide-derived carbon in air and CO{sub 2} at different temperatures and times allows for significant increase in pore volume and specific surface area as well as control over average pore size with subnanometer accuracy.more » The effect of activation and associated changes in the pore volume and surface area on the hydrogen uptake are also discussed. - Graphical abstract: Carbide-derived carbons (CDC) provide great potential for sorption of toxicants and gas storage applications. Activation of CDC in air and CO{sub 2} at different temperatures and times is applied in order to maximize pore volume and specific surface area, and control the average pore size with subnanometer accuracy.« less

  15. Interstitial Hardening of Stainless Steel for Enhanced Corrosion Resistance for Naval Applications

    DTIC Science & Technology

    2016-12-01

    Fortunately, it is straightforward to nitride at lower nitrogen activities by mixing NH3 with hydrogen (H2) gas and a systematic study of nitridation...prior work had been concerned with carburization, mostly using carbon monoxide (CO) as the carbon somce. Inasmuch as many commercial hardening processes...using nitrogen in isolation, or in combination with carbon , could likewise enhance corrosion resistance of austenitic stainless steels, and if so, to

  16. Fabrication of hierarchical porous hollow carbon spheres with few-layer graphene framework and high electrochemical activity for supercapacitor

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Hong, Min; Chen, Jiafu; Hu, Tianzhao; Xu, Qun

    2018-06-01

    Porous amorphous carbons with large number of defects and dangling bonds indicate great potential application in energy storage due to high specific surface area and strong adsorption properties, but poor conductivity and pore connection limit their practical application. Here few-layer graphene framework with high electrical conductivity is embedded and meanwhile hierarchical porous structure is constructed in amorphous hollow carbon spheres (HCSs) by catalysis of Fe clusters of angstrom scale, which are loaded in the interior of crosslinked polystyrene via a novel method. These unique HCSs effectively integrate the inherent properties from two-dimensional sp2-hybridized carbon, porous amorphous carbon, hierarchical pore structure and thin shell, leading to high specific capacitance up to 561 F g-1 at a current density of 0.5 A g-1 as an electrode of supercapacitor with excellent recyclability, which is much higher than those of other reported porous carbon materials up to present.

  17. Imine-Linked Polymer Based Nitrogen-Doped Porous Activated Carbon for Efficient and Selective CO2 Capture.

    PubMed

    Alabadi, Akram; Abbood, Hayder A; Li, Qingyin; Jing, Ni; Tan, Bien

    2016-12-13

    The preparation of nitrogen-doped activated carbon (NACs) has received significant attention because of their applications in CO 2 capture and sequestration (CCS) owing to abundant nitrogen atoms on their surface and controllable pore structures by carefully controlled carbonization. We report high-surface-area porous N-doped activated carbons (NAC) by using soft-template-assisted self-assembly followed by thermal decomposition and KOH activation. The activation process was carried out under different temperature conditions (600-800 °C) using polyimine as precursor. The NAC-800 was found to have a high specific surface area (1900 m 2  g -1 ), a desirable micropore size below 1 nm and, more importantly, a large micropore volume (0.98 cm 3  g -1 ). NAC-800 also exhibits a significant capacity of CO 2 capture i.e., over 6. 25 and 4.87 mmol g -1 at 273 K and 298 K respectively at 1.13 bar, which is one of among the highest values reported for porous carbons so far. Moreover, NAC also shows an excellent separation selectivity for CO 2 over N 2 .

  18. Imine-Linked Polymer Based Nitrogen-Doped Porous Activated Carbon for Efficient and Selective CO2 Capture

    PubMed Central

    Alabadi, Akram; Abbood, Hayder A.; Li, Qingyin; Jing, Ni; Tan, Bien

    2016-01-01

    The preparation of nitrogen-doped activated carbon (NACs) has received significant attention because of their applications in CO2 capture and sequestration (CCS) owing to abundant nitrogen atoms on their surface and controllable pore structures by carefully controlled carbonization. We report high-surface-area porous N-doped activated carbons (NAC) by using soft-template-assisted self-assembly followed by thermal decomposition and KOH activation. The activation process was carried out under different temperature conditions (600–800 °C) using polyimine as precursor. The NAC-800 was found to have a high specific surface area (1900 m2 g−1), a desirable micropore size below 1 nm and, more importantly, a large micropore volume (0.98 cm3 g−1). NAC-800 also exhibits a significant capacity of CO2 capture i.e., over 6. 25 and 4.87 mmol g−1 at 273 K and 298 K respectively at 1.13 bar, which is one of among the highest values reported for porous carbons so far. Moreover, NAC also shows an excellent separation selectivity for CO2 over N2. PMID:27958305

  19. Characteristic of betel nuts activated carbon and its application to Jumputan wastewater treatment

    NASA Astrophysics Data System (ADS)

    Cundari, L.; Sari, K. F.; Anggraini, L.

    2018-04-01

    Wastewater from Jumputan production contains synthetic dye which is harmful to the environment. The contaminant can be reduced by adsorption process using activated carbon. The activated carbon was prepared from betel nuts with carbonization temperature of 500°C and 0.5 M HCl as an activator. Batch mode experiments were conducted to study the effect of various factors, such as the size particle of adsorbent, the dosage of adsorbent, and the contact time on Jumputan’s dye adsorption. The volume of treated solution was 200 mL. This solution agitated using a Jar Test at 150 rpm. The objectives of this work were to analyze the characteristic of the betel nuts, to analyze the characteristic of the activated carbon and to determine adsorbent’s ability to dye adsorption. Betel nuts compositions were analyzed with proximate analysis method. The adsorbents were carried out by SEM-EDS analysis. The dye adsorptions were analyzed with a portable spectrophotometer. The result shows betel nuts contains 60.86% carbohydrate, 32.56% water, 2.17% fat, 3.35% protein, and 1.06% ash. The major component of the activated carbon is carbon (C) of 86.27%, and the rest is Oxygen (9.18%) and Aurum (4.55%). The best condition is the adsorbent that has a particle size of 250 pm (60 mesh), the dosage of 20 grams, and the contact time of 15 minutes with dye removal of 76.4%.

  20. Magnetic cobaltic nanoparticle-anchored carbon nanocomposite derived from cobalt-dipicolinic acid coordination polymer: An enhanced catalyst for environmental oxidative and reductive reactions.

    PubMed

    Wu, Chang-Hsun; Lin, Jyun-Ting; Lin, Kun-Yi Andrew

    2018-05-01

    Direct carbonization of cobalt complexes represents as a convenient approach to prepare magnetic carbon/cobalt nanocomposites (MCCNs) as heterogeneous environmental catalysts. However, most of MCCNs derived from consist of sheet-like carbon matrices with very sparse cobaltic nanoparticles (NPs), making them exhibit relatively low catalytic activities, porosity and magnetism. In this study, dipicolinic acid (DPA) is selected to prepare a 3-dimensional cobalt coordination polymer (CoDPA). MCCN derived from CoDPA can consist of a porous carbon matrix embedded with highly-dense Co 0 and Co 3 O 4 NPs. This magnetic Co 0 /Co 3 O 4 NP-anchored carbon composite (MCNC) appears as a promising heterogeneous catalyst for oxidative and reductive environmental catalytic reactions. As peroxymonosulfate (PMS) activation is selected as a model catalytic oxidative reaction, MCNC exhibits a much higher catalytic activity than Co 3 O 4 , a benchmark catalyst for PMS activation. The reductive catalytic activity of MCNC is demonstrated through 4-nitrophenol (4-NP) reduction in the presence of NaBH 4 . MCNC could rapidly react with NaBH 4 to generate H 2 for hydrogenation of 4-NP to 4-aminophenol (4-AP). In comparison with other precious metallic catalysts, MCNC also shows a relatively high catalytic activity. These results indicate that MCNC is a conveniently prepared and highly effective and stable carbon-supported cobaltic heterogeneous catalyst for versatile environmental catalytic applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Computational study of ibuprofen removal from water by adsorption in realistic activated carbons.

    PubMed

    Bahamon, Daniel; Carro, Leticia; Guri, Sonia; Vega, Lourdes F

    2017-07-15

    Molecular simulations using the Grand Canonical Monte Carlo (GCMC) method have been performed in order to obtain physical insights on how the interaction between ibuprofen (IBP) and activated carbons (ACs) in aqueous mixtures affects IBP removal from water by ACs. A nanoporous carbon model based on units of polyaromatic molecules with different number of rings, defects and polar-oxygenated sites is described. Individual effects of factors such as porous features and chemical heterogeneities in the adsorbents are investigated and quantified. Results are in good agreement with experimental adsorption data, highlightening the ability of GCMC simulation to describe the macroscopic adsorption performance in drug removal applications, while also providing additional insights into the IBP/water adsorption mechanism. The simulation results allow finding the optimal type of activated carbon material for separating this pollutant in water treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction

    DOE PAGES

    Yao, Siyu; Zhang, Xiao; Zhou, Wu; ...

    2017-06-22

    Here, the water-gas shift (WGS) reaction (where carbon monoxide plus water yields dihydrogen and carbon dioxide) is an essential process for hydrogen generation and carbon monoxide removal in various energy-related chemical operations. This equilibrium-limited reaction is favored at a low working temperature. Potential application in fuel cells also requires a WGS catalyst to be highly active, stable, and energy-efficient and to match the working temperature of on-site hydrogen generation and consumption units. We synthesized layered gold (Au) clusters on a molybdenum carbide (α-MoC) substrate to create an interfacial catalyst system for the ultralow-temperature WGS reaction. Water was activated over α-MoCmore » at 303 kelvin, whereas carbon monoxide adsorbed on adjacent Au sites was apt to react with surface hydroxyl groups formed from water splitting, leading to a high WGS activity at low temperatures.« less

  3. Electro-peroxone degradation of diethyl phthalate: Cathode selection, operational parameters, and degradation mechanisms.

    PubMed

    Hou, Meifang; Chu, Yaofei; Li, Xiang; Wang, Huijiao; Yao, Weikun; Yu, Gang; Murayama, Seiichi; Wang, Yujue

    2016-12-05

    This study compares the degradation of diethyl phthalate (DEP) by the electro-peroxone (E-peroxone) process with three different carbon-based cathodes, namely, carbon-polytetrafluorethylene (carbon-PTFE), carbon felt, and reticulated vitreous carbon (RVC). Results show that the three cathodes had different electrocatalytic activity for converting sparged O2 to H2O2, which increased in order of carbon felt, RVC, and carbon-PTFE. The in-situ generated H2O2 then reacts with sparged O3 to yield OH, which can in turn oxidize ozone-refractory DEP toward complete mineralization. In general, satisfactory total organic carbon removal yields (76.4-91.8%) could be obtained after 60min of the E-peroxone treatment with the three carbon-based cathodes, and the highest yield was obtained with the carbon-PTFE cathode due to its highest activity for H2O2 generation. In addition, the carbon-PTFE and carbon felt cathodes exhibited excellent stability over six cycles of the E-peroxone treatment of DEP solutions. Based on the intermediates (e.g., monoethyl phthalate, phthalic acid, phenolics, and carboxylic acids) identified by HPLC-UV, plausible reaction pathways were proposed for DEP mineralization by the E-peroxone process. The results of this study indicate that carbon-based cathodes generally have good electrocatalytic activity and stability for application in extended E-peroxone operations to effectively remove phthalates from water. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Nanoporous active carbons at ambient conditions: a comparative study using X-ray scattering and diffraction, Raman spectroscopy and N2 adsorption

    NASA Astrophysics Data System (ADS)

    Shiryaev, A. A.; Voloshchuk, A. M.; Volkov, V. V.; Averin, A. A.; Artamonova, S. D.

    2017-05-01

    Furfural-derived sorbents and activated carbonaceous fibers were studied using Small- and Wide-angle X-ray scattering (SWAXS), X-ray diffraction and multiwavelength Raman spectroscopy after storage at ambient conditions. Correlations between structural features with degree of activation and with sorption parameters are observed for samples obtained from a common precursor and differing in duration of activation. However, the correlations are not necessarily applicable to the carbons obtained from different precursors. Using two independent approaches we show that treatment of SWAXS results should be performed with careful analysis of applicability of the Porod law to the sample under study. In general case of a pore with rough/corrugated surface deviations from the Porod law may became significant and reflect structure of the pore-carbon interface. Ignorance of these features may invalidate extraction of closed porosity values. In most cases the pore-matrix interface in the studied samples is not atomically sharp, but is characterized by 1D or 2D fluctuations of electronic density responsible for deviations from the Porod law. Intensity of the pores-related small-angle scattering correlates positively with SBET values obtained from N2 adsorption.

  5. Activation and characterization of waste coffee grounds as bio-sorbent

    NASA Astrophysics Data System (ADS)

    Mariana; Marwan; Mulana, F.; Yunardi; Ismail, T. A.; Hafdiansyah, M. F.

    2018-03-01

    As the city well known for its culture of coffee drinkers, modern and traditional coffee shops are found everywhere in Banda Aceh, Indonesia. High number of coffee shops in the city generates large quantities of spent coffee grounds as waste without any effort to convert them as other valuable products. In an attempt to reduce environmental problems caused by used coffee grounds, this research was conducted to utilize waste coffee grounds as an activated carbon bio-sorbent. The specific purpose of this research is to improve the performance of coffee grounds bio-sorbent through chemical and physical activation, and to characterize the produced bio-sorbent. Following physical activation by carbonization, a chemical activation was achieved by soaking the carbonized waste coffee grounds in HCl solvent and carbonization process. The activated bio-sorbent was characterized for its morphological properties using Scanning Electron Microscopy (SEM), its functional groups by Fourier Transform Infra-Red Spectrophotometer (FTIR), and its material characteristics using X-Ray Diffraction (XRD). Characterization of the activated carbon prepared from waste coffee grounds shows that it meets standard quality requirement in accordance with Indonesian National Standard, SNI 06-3730-1995. Activation process has modified the functional groups of the waste coffee grounds. Comparing to natural waste coffee grounds, the resulted bio-sorbent demonstrated a more porous surface morphology following activation process. Consequently, such bio-sorbent is a potential source to be used as an adsorbent for various applications.

  6. Preparation and characterization of functional material based on hybrid polymer composites

    NASA Astrophysics Data System (ADS)

    Agusu, La; Amiruddin; Taswito, Chen Chen; Herdianto; Zamrun, Muh.

    2016-08-01

    The microstructures and properties of hybrid polymer composites based on polyaniline (PANi)/γ-Fe2O3 nanoparticles/TiO2/carbon have been investigated for multifunctional applications such as heavy metal removal and initial study for radar absorbing material application. γ-Fe2O3 nanoparticles with spherical shape were synthetized by a coprecipitation method from iron sand. By activating the polyethylene glycol (PEG-400) coated carbon of coconut shell, the homogenous shape and size of carbon was achieved. Then, γ- Fe2O3, TiO2, and carbon were mixed with PANi by an in situ polymerization method at low temperature 0-5 oC. Characterization process involved XRD, SEM, FTIR, VSM, and DC conductivity measurements. For radar absorber application, the functionalized polymer composites showed good electrical conductivity 0.45 S/cm to absorb the incoming electromagnetic energy. An efficient and effective reduction of Pb2+ ion from the water has been achieved by using this material.

  7. 700 F hybrid capacitors cells composed of activated carbon and Li4Ti5O12 microspheres with ultra-long cycle life

    NASA Astrophysics Data System (ADS)

    Ruan, Dianbo; Kim, Myeong-Seong; Yang, Bin; Qin, Jun; Kim, Kwang-Bum; Lee, Sang-Hyun; Liu, Qiuxiang; Tan, Lei; Qiao, Zhijun

    2017-10-01

    To address the large-scale application demands of high energy density, high power density, and long cycle lifetime, 700-F hybrid capacitor pouch cells have been prepared, comprising ∼240-μm-thick activated carbon cathodes, and ∼60-μm-thick Li4Ti5O12 anodes. Microspherical Li4Ti5O12 (M-LTO) synthesized by spray-drying features 200-400 nm primary particles and interconnected nanopore structures. M-LTO half-cells exhibits high specific capacities (175 mAhh g-1), good rate capabilities (148 mAhh g-1 at 20 C), and ultra-long cycling stabilities (90% specific capacity retention after 10,000 cycles). In addition, the obtained hybrid capacitors comprising activated carbon (AC) and M-LTO shows excellent cell performances, achieving a maximum energy density of 51.65 Wh kg-1, a maximum power density of 2466 W kg-1, and ∼92% capacitance retention after 10,000 cycles, thus meeting the demands for large-scale applications such as trolleybuses.

  8. Adjusted active carbon fibers for solid phase microextraction.

    PubMed

    Jia, Jinping; Feng, Xue; Fang, Nenghu; Wang, Yalin; Chen, Hongjin; Dan, Wu

    2002-01-01

    Adjusted active carbon fiber (AACF) was evaluated for Solid Phase Microextraction (SPME), which showed higher sensitivity and stability than traditional coating fibers. The characteristics of AACF result from two different activation methods (chemical and water vapor) and from variable activation conditions (temperature and time). The fiber treated by water vapor appears to have stronger affinity to polar compounds, while that treated by chemical activation appears to have stronger affinity to non-polar compounds. For different target compounds ranged from non-polar to polar, AACF design could be effective with specific selections and sensitivities. As applications in this paper, benzoic acid in soy sauce was extracted onto water-vapor-activated-fiber, then analyzed using gas chromatograph-mass spectrometer (GC-MS). The chemical-activated-fiber SPME was applied in the analysis of benzene series compounds (BTEX) in water matrix. Compared with standard carbon disulfide extraction method, chemical-activated-fiber SPME is more convenient due to its simple process and turns to be of relative low detection limits.

  9. Seasonal-related effects on ammonium removal in activated carbon filter biologically enhanced by heterotrophic nitrifying bacteria for drinking water treatment.

    PubMed

    Qin, Wen; Li, Wei-Guang; Gong, Xu-Jin; Huang, Xiao-Fei; Fan, Wen-Biao; Zhang, Duoying; Yao, Peng; Wang, Xiao-Ju; Song, Yang

    2017-08-01

    To determine the potential effects of seasonal changes on water temperature and water quality upon removal of ammonium and organic carbon pollutants and to characterize the variations in microbial characteristics, a pilot-scale activated carbon filter biologically enhanced with heterotrophic nitrifying bacteria was investigated for 528 days. The results show that 69.2 ± 28.6% of ammonium and 23.1 ± 11.6% of the dissolved organic carbon were removed by the biologically enhanced activated carbon (BEAC) reactor. It is shown that higher biodegradable dissolved organic carbon enhances ammonium removal, even at low temperatures. The C/N ratio consumed by the BEAC reactor reached a steady value (i.e., 3.3) after 2 months of operation. Despite seasonal fluctuations and competition of the indigenous community, the heterotrophic nitrifying bacteria (Acinetobacter sp. HRBLi 16 and Acinetobacter harbinensis strain HITLi 7) remained relatively stable. The amount of carbon source was the most significant environmental parameter and dramatically affected the microbial community compositions in the BEAC reactor. The present study provides new insights into the application of a BEAC reactor for ammonium removal from drinking water, resisting strong seasonal changes.

  10. Characterization of coal gasification slag-based activated carbon and its potential application in lead removal.

    PubMed

    Xu, Yiting; Chai, Xiaoli

    2018-02-01

    Highly porous activated carbons were prepared from a coal gasification slag (CGS) precursor, by KOH activation to remove Pb 2+ from aqueous solution. The effects of pretreatment methods and activation parameters on the properties of the activated carbon were investigated, such as KOH/CGS mass ratio, activation temperature and activation time. The results showed that the maximum Brunauer-Emmett-Teller surface area and total pore volume with the value of 2481 m 2  g -1 and of 1.711 cc g -1 were obtained at a KOH/CGS ratio of 3.0 by physical mixing, an activation temperature of 750°C and an activation time of 80 min. SEM, FTIR and EA analyses indicated that pronounced pores existed on the exterior surface of the activated samples, and the contents of H and O decreased due to the loss of surface chemical groups during activation. Experimental data for the Pb 2+ adsorption were fitted well by Freundlich equation and a pseudo-second-order model with a maximum experimental adsorption capacity of 141 mg/g. All of the results indicated that CGS could be a promising material to prepare porous activated carbon for Pb 2+ removal from wastewater.

  11. Monodisperse Mesoporous Carbon Nanoparticles from Polymer/Silica Self-Aggregates and Their Electrocatalytic Activities.

    PubMed

    Huang, Xiaoxi; Zhou, Li-Jing; Voiry, Damien; Chhowalla, Manish; Zou, Xiaoxin; Asefa, Tewodros

    2016-07-27

    In our quest to make various chemical processes sustainable, the development of facile synthetic routes and inexpensive catalysts can play a central role. Herein we report the synthesis of monodisperse, polyaniline (PANI)-derived mesoporous carbon nanoparticles (PAMCs) that can serve as efficient metal-free electrocatalysts for the hydrogen peroxide reduction reaction (HPRR) as well as the oxygen reduction reaction (ORR) in fuel cells. The materials are synthesized by polymerization of aniline with the aid of (NH4)2S2O8 as oxidant and colloidal silica nanoparticles as templates, then carbonization of the resulting PANI/silica composite material at different high temperatures, and finally removal of the silica templates from the carbonized products. The PAMC materials that are synthesized under optimized synthetic conditions possess monodisperse mesoporous carbon nanoparticles with an average size of 128 ± 12 nm and an average pore size of ca. 12 nm. Compared with Co3O4, a commonly used electrocatalyst for HPRR, these materials show much better catalytic activity for this reaction. In addition, unlike Co3O4, the PAMCs remain relatively stable during the reaction, under both basic and acidic conditions. The nanoparticles also show good electrocatalytic activity toward ORR. Based on the experimental results, PAMCs' excellent electrocatalytic activity is attributed partly to their heteroatom dopants and/or intrinsic defect sites created by vacancies in their structures and partly to their high porosity and surface area. The reported synthetic method is equally applicable to other polymeric precursors (e.g., polypyrrole (PPY)), which also produces monodisperse, mesoporous carbon nanoparticles in the same way. The resulting materials are potentially useful not only for electrocatalysis of HPRR and ORR in fuel cells but also for other applications where high surface area, small sized, nanostructured carbon materials are generally useful for (e.g., adsorption, supercapacitors, etc.).

  12. Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications

    PubMed Central

    Zainal, Zulkarnain; Yusof, Nor Azah

    2018-01-01

    Carbon in its single entity and various forms has been used in technology and human life for many centuries. Since prehistoric times, carbon-based materials such as graphite, charcoal and carbon black have been used as writing and drawing materials. In the past two and a half decades or so, conjugated carbon nanomaterials, especially carbon nanotubes, fullerenes, activated carbon and graphite have been used as energy materials due to their exclusive properties. Due to their outstanding chemical, mechanical, electrical and thermal properties, carbon nanostructures have recently found application in many diverse areas; including drug delivery, electronics, composite materials, sensors, field emission devices, energy storage and conversion, etc. Following the global energy outlook, it is forecasted that the world energy demand will double by 2050. This calls for a new and efficient means to double the energy supply in order to meet the challenges that forge ahead. Carbon nanomaterials are believed to be appropriate and promising (when used as energy materials) to cushion the threat. Consequently, the amazing properties of these materials and greatest potentials towards greener and environment friendly synthesis methods and industrial scale production of carbon nanostructured materials is undoubtedly necessary and can therefore be glimpsed as the focal point of many researchers in science and technology in the 21st century. This is based on the incredible future that lies ahead with these smart carbon-based materials. This review is determined to give a synopsis of new advances towards their synthesis, properties, and some applications as reported in the existing literatures. PMID:29438327

  13. Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Sun, Fei; Gao, Jihui; Liu, Xin; Pi, Xinxin; Yang, Yuqi; Wu, Shaohua

    2016-11-01

    Large surface area and good structural stability, for porous carbons, are two crucial requirements to enable the constructed supercapacitors with high capacitance and long cycling lifespan. Herein, we successfully prepare porous carbon with a large surface area (3175 m2 g-1) and an ultrahigh carbon purity (carbon atom ratio of 98.25%) via templating carbonization coupling with KOH activation. As-synthesized MTC-KOH exhibits excellent performances as supercapacitor electrode materials in terms of high specific capacitance and ultrahigh cycling stability. In a three electrode system, MTC-KOH delivers a high capacitance of 275 F g-1 at 0.5 A g-1 and still 120 F g-1 at a high rate of 30 A g-1. There is almost no capacitance decay even after 10,000 cycles, demonstrating outstanding cycling stability. In comparison, pre-activated MTC with a hierarchical pore structure shows a better rate capability than microporous MTC-KOH. Moreover, the constructed symmetric supercapacitor using MTC-KOH can achieve high energy densities of 8.68 Wh kg-1 and 4.03 Wh kg-1 with the corresponding power densities of 108 W kg-1 and 6.49 kW kg-1, respectively. Our work provides a simple design strategy to prepare highly porous carbons with high carbon purity for supercapacitors application.

  14. Popcorn-Derived Porous Carbon for Energy Storage and CO2 Capture.

    PubMed

    Liang, Ting; Chen, Chunlin; Li, Xing; Zhang, Jian

    2016-08-16

    Porous carbon materials have drawn tremendous attention due to its applications in energy storage, gas/water purification, catalyst support, and other important fields. However, producing high-performance carbons via a facile and efficient route is still a big challenge. Here we report the synthesis of microporous carbon materials by employing a steam-explosion method with subsequent potassium activation and carbonization of the obtained popcorn. The obtained carbon features a large specific surface area, high porosity, and doped nitrogen atoms. Using as an electrode material in supercapacitor, it displays a high specific capacitance of 245 F g(-1) at 0.5 A g(-1) and a remarkable stability of 97.8% retention after 5000 cycles at 5 A g(-1). The product also exhibits a high CO2 adsorption capacity of 4.60 mmol g(-1) under 1066 mbar and 25 °C. Both areal specific capacitance and specific CO2 uptake are directly proportional to the surface nitrogen content. This approach could thus enlighten the batch production of porous nitrogen-doped carbons for a wide range of energy and environmental applications.

  15. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF{sub 6} electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azam, M.A., E-mail: asyadi@utem.edu.my; Jantan, N.H.; Dorah, N.

    2015-09-15

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF{sub 6} non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g{sup −1}. - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, amongmore » others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g{sup −1} at a scan rate of 1 mV s{sup −1}.« less

  16. Nonenzymetic glucose sensing using carbon functionalized carbon doped ZnO nanorod arrays

    NASA Astrophysics Data System (ADS)

    Chakraborty, Pinak; Majumder, Tanmoy; Dhar, Saurab; Mondal, Suvra Prakash

    2018-04-01

    Fabrication of highly sensitive, long stability and low cost glucose sensors are attractive for biomedical applications and food industries. Most of the commercial glucose sensors are based on enzymatic detection which suffers from problems underlying in enzyme activities. Development of high sensitive, enzyme free sensors is a great challenge for next generation glucose sensing applications. In our study Zinc oxide nanorod sensing electrodes have been grown using low cost hydrothermal route and their nonenzymatic glucose sensing properties have been demonstrated with carbon functionalized, carbon doped ZnO nanorods (C-ZnO NRs) in neutral medium (0.1M PBS, pH 7.4) using cyclic voltammetry and amperometry measurements. The C-ZnO NRs electrodes demonstrated glucose sensitivity˜ 13.66 µAmM-1cm-2 in the concentration range 0.7 - 14 mM.

  17. Converting Corncob to Activated Porous Carbon for Supercapacitor Application.

    PubMed

    Yang, Shaoran; Zhang, Kaili

    2018-03-21

    Carbon materials derived from biomass are promising electrode materials for supercapacitor application due to their specific porosity, low cost and electrochemical stability. Herein, a hierarchical porous carbon derived from corncob was developed for use as electrodes. Benefitting from its hierarchical porosity, inherited from the natural structure of corncob, high BET surface area (1471.4 m²·g -1 ) and excellent electrical conductivity, the novel carbon material exhibited a specific capacitance of 293 F·g -1 at 1 A·g -1 in 6 M KOH electrolyte and maintained at 195 F·g -1 at 5 A·g -1 . In addition, a two-electrode device was assembled and delivered an energy density of 20.15 Wh·kg -1 at a power density of 500 W·kg -1 and an outstanding stability of 99.9% capacitance retention after 4000 cycles.

  18. Adsorption of SOx and NOx in activated viscose fibers.

    PubMed

    Plens, Ana Carolina O; Monaro, Daniel L G; Coutinho, Aparecido R

    2015-01-01

    SOx and NOx are emissions resulting from combustion processes and are the main agents that contribute to the formation of acid rain, which causes harm to humans and the environment. Several techniques for removing these pollutants are applied in i.e. oil refineries, thermoelectric that use petroleum oils and vehicular pollution. Among these, highlight the adsorption of contaminants by the usage of activated carbon fibers and activated carbon, which are characterized by high surface area and uniform distribution of pores, providing appropriate conditions for application in processes of removing environmental contaminants. In the present work, activated viscose fibers (AVF) were prepared and applied in adsorption experiments of NO and SO2. The materials produced showed high values of surface area, with a predominance of micro pores with diameters in the range of 1.0 nm. The AVF had satisfactory performance in the removal of contaminants and are compatible with other synthetic fibers. Thus, the formation of active sites of carbon provides contaminants adsorption, demonstrating that carbon fibers cloth can be applied for the removal of pollutants.

  19. Lithium Titanate Confined in Carbon Nanopores for Asymmetric Supercapacitors.

    PubMed

    Zhao, Enbo; Qin, Chuanli; Jung, Hong-Ryun; Berdichevsky, Gene; Nese, Alper; Marder, Seth; Yushin, Gleb

    2016-04-26

    Porous carbons suffer from low specific capacitance, while intercalation-type active materials suffer from limited rate when used in asymmetric supercapacitors. We demonstrate that nanoconfinement of intercalation-type lithium titanate (Li4Ti5O12) nanoparticles in carbon nanopores yielded nanocomposite materials that offer both high ion storage density and rapid ion transport through open and interconnected pore channels. The use of titanate increased both the gravimetric and volumetric capacity of porous carbons by more than an order of magnitude. High electrical conductivity of carbon and the small size of titanate crystals allowed the composite electrodes to achieve characteristic charge and discharge times comparable to that of the electric double-layer capacitors. The proposed composite synthesis methodology is simple, scalable, and applicable for a broad range of active intercalation materials, while the produced composite powders are compatible with commercial electrode fabrication processes.

  20. Adsorption of CO2 on KOH activated, N-enriched carbon derived from urea formaldehyde resin: kinetics, isotherm and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K.

    2018-05-01

    High surface area nitrogen enriched carbon adsorbents were prepared from a low cost and widely available urea-formaldehyde resin using a standard chemical activation with KOH and characterized using different characterization techniques for their porous structure and surface functional groups. Maximum surface area and total pore volume of 4547 m2 g-1 and 4.50 cm3 g-1 were found by controlling the activation conditions. Nitrogen content of this sample was found to be 5.62%. Adsorption of CO2 uptake for the prepared carbon adsorbents was studied using a dynamic fixed bed adsorption system at different adsorption temperatures (30-100 °C) and at different CO2 concentrations (5-12.5%), relevant from the flue gas point application. Maximum CO2 uptake of 1.40 mmol g-1 for UFA-3-700 at 30 °C under 12.5% CO2 flow was obtained. Complete regenerability of the adsorbents over multiple adsorption-desorption cycles was obtained. Fractional order kinetic model provided best description over all adsorption temperatures and CO2 concentrations. Heterogeneity of the adsorbent surface was confirmed from Temkin adsorption isotherm model fit and isosteric heat of adsorption values. Negative value of ΔG° and ΔH° confirms spontaneous, feasible nature and exothermic nature of adsorption process. Overall, very high surface area of carbon adsorbent makes this adsorbent a new promising carbon material for CO2 capture from power plant flue gas and for other relevant applications.

  1. The ADESORB Process for Economical Production of Sorbents for Mercury Removal from Coal Fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robin Stewart

    The DOE's National Energy Technology Laboratory (NETL) currently manages the largest research program in the country for controlling coal-based mercury emissions. NETL has shown through various field test programs that the determination of cost-effective mercury control strategies is complex and highly coal- and plant-specific. However, one particular technology has the potential for widespread application: the injection of activated carbon upstream of either an electrostatic precipitator (ESP) or a fabric filter baghouse. This technology has potential application to the control of mercury emissions on all coal-fired power plants, even those with wet and dry scrubbers. This is a low capital costmore » technology in which the largest cost element is the cost of sorbents. Therefore, the obvious solutions for reducing the costs of mercury control must focus on either reducing the amount of sorbent needed or decreasing the cost of sorbent production. NETL has researched the economics and performance of novel sorbents and determined that there are alternatives to the commercial standard (NORIT DARCO{reg_sign} Hg) and that this is an area where significant technical improvements can still be made. In addition, a key barrier to the application of sorbent injection technology to the power industry is the availability of activated carbon production. Currently, about 450 million pounds ($250 million per year) of activated carbon is produced and used in the U.S. each year - primarily for purification of drinking water, food, and beverages. If activated carbon technology were to be applied to all 1,100 power plants, EPA and DOE estimate that it would require an additional $1-$2 billion per year, which would require increasing current capacity by a factor of two to eight. A new facility to produce activated carbon would cost approximately $250 million, would increase current U.S. production by nearly 25%, and could take four to five years to build. This means that there could be significant shortages in supply if response to new demand is not well-timed.« less

  2. Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: A critical review.

    PubMed

    Qin, Yaxin; Li, Guiying; Gao, Yanpeng; Zhang, Lizhi; Ok, Yong Sik; An, Taicheng

    2018-06-15

    With the increased concentrations and kinds of refractory organic contaminants (ROCs) in aquatic environments, many previous reviews systematically summarized the applications of carbon-based materials in the adsorption and catalytic degradation of ROCs for their economically viable and environmentally friendly behavior. Interestingly, recent studies indicated that carbon-based materials in natural environment can also mediate the transformation of ROCs directly or indirectly due to their abundant persistent free radicals (PFRs). Understanding the formation mechanisms of PFRs in carbo-based materials and their interactions with ROCs is essential to develop their further applications in environment remediation. However, there is no comprehensive review so far about the direct and indirect removal of ROCs mediated by PFRs in amorphous, porous and crystalline carbon-based materials. The review aims to evaluate the formation mechanisms of PFRs in carbon-based materials synthesized through pyrolysis and hydrothermal carbonization processes. The influence of synthesis conditions (temperature and time) and carbon sources on the types as well as the concentrations of PFRs in carbon-based materials are also discussed. In particular, the effects of metals on the concentrations and types of PFRs in carbon-based materials are highlighted because they are considered as the catalysts for the formation of PFRs. The formation mechanisms of reactive species and the further transformation mechanisms of ROCs are briefly summarized, and the surface properties of carbon-based materials including surface area, types and number of functional groups, etc. are found to be the key parameters controlling their activities. However, due to diversity and complexity of carbon-based materials, the exact relationships between the activities of carbon-based materials and PFRs are still uncertain. Finally, the existing problems and current challenges for the ROCs transformation with carbon-based materials are also pointed out. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Low-Dimensional Nanomaterials as Active Layer Components in Thin-Film Photovoltaics

    NASA Astrophysics Data System (ADS)

    Shastry, Tejas Attreya

    Thin-film photovoltaics offer the promise of cost-effective and scalable solar energy conversion, particularly for applications of semi-transparent solar cells where the poor absorption of commercially-available silicon is inadequate. Applications ranging from roof coatings that capture solar energy to semi-transparent windows that harvest the immense amount of incident sunlight on buildings could be realized with efficient and stable thin-film solar cells. However, the lifetime and efficiency of thin-film solar cells continue to trail their inorganic silicon counterparts. Low-dimensional nanomaterials, such as carbon nanotubes and two-dimensional metal dichalcogenides, have recently been explored as materials in thin-film solar cells due to their exceptional optoelectronic properties, solution-processability, and chemical inertness. Thus far, issues with the processing of these materials has held back their implementation in efficient photovoltaics. This dissertation reports processing advances that enable demonstrations of low-dimensional nanomaterials in thin-film solar cells. These low-dimensional photovoltaics show enhanced photovoltaic efficiency and environmental stability in comparison to previous devices, with a focus on semiconducting single-walled carbon nanotubes as an active layer component. The introduction summarizes recent advances in the processing of carbon nanotubes and their implementation through the thin-film photovoltaic architecture, as well as the use of two-dimensional metal dichalcogenides in photovoltaic applications and potential future directions for all-nanomaterial solar cells. The following chapter reports a study of the interaction between carbon nanotubes and surfactants that enables them to be sorted by electronic type via density gradient ultracentrifugation. These insights are utilized to construct of a broad distribution of carbon nanotubes that absorb throughout the solar spectrum. This polychiral distribution is then shown to result in record breaking performance in a carbon nanotube solar cell, and subsequent chapters study the mechanisms behind charge transfer in the polychiral carbon nanotube / fullerene solar cell. Further processing advances, chiral distribution tailoring, and solvent additives are shown to enable more uniform and larger area carbon nanotube solar cells while maintaining record-breaking performance. In order to increase overall photovoltaic performance of a carbon nanotube active layer solar cell, this dissertation also demonstrates a ternary polymer-carbon nanotube-small molecule photovoltaic with high efficiency and stability enabled by the nanomaterial. Finally, the use of the two-dimensional metal dichalcogenide molybdenum disulfide as a photovoltaic material is explored in an ultrathin solar cell with higher efficiency per thickness than leading organic and inorganic thin-film photovoltaics. Overall, this work demonstrates breakthroughs in utilizing low-dimensional nanomaterials as active layer components in photovoltaics and will inform ongoing research in making ultrathin, stable, efficient solar cells.

  4. Carbon activation process for increased surface accessibility in electrochemical capacitors

    DOEpatents

    Doughty, Daniel H.; Eisenmann, Erhard T.

    2001-01-01

    A process for making carbon film or powder suitable for double capacitor electrodes having a capacitance of up to about 300 F/cm.sup.3 is disclosed. This is accomplished by treating in aqueous nitric acid for a period of about 5 to 15 minutes thin carbon films obtained by carbonizing carbon-containing polymeric material having a high degree of molecular directionality, such as polyimide film, then heating the treated carbon film in a non-oxidizing atmosphere at a non-graphitizing temperature of at least 350.degree. C. for about 20 minutes, and repeating alternately the nitric acid step and the heating step from 7 to 10 times. Capacitors made with this carbon may find uses ranging from electronic devices to electric vehicle applications.

  5. Nitrogen Cycling Considerations for Low-Disturbance, High-Carbon Soil Management in Climate-Adaptive Agriculture

    NASA Astrophysics Data System (ADS)

    Bruns, M. A.; Dell, C. J.; Karsten, H.; Bhowmik, A.; Regan, J. M.

    2016-12-01

    Agriculturists are responding to climate change concerns by reducing tillage and increasing organic carbon inputs to soils. Although these management practices are intended to enhance soil carbon sequestration and improve water retention, resulting soil conditions (moister, lower redox, higher carbon) are likely to alter nitrogen cycling and net greenhouse gas (GHG) emissions. Soils are particularly susceptible to denitrification losses of N2O when soils are recently fertilized and wet. It is paradoxical that higher N2O emissions may occur when farmers apply practices intended to make soils more resilient to climate change. As an example, the application of animal manures to increase soil organic matter and replace fossil fuel-based fertilizers could either increase or decrease GHGs. The challenges involved with incorporating manures in reduced-tillage soils often result in N2O emission spikes immediately following manure application. On the other hand, manures enrich soils with bacteria capable of dissimilatory nitrate reduction to ammonium (DNRA), a process that could counter N2O production by denitrification. Since bacterial DNRA activity is enhanced by labile forms of carbon, the forms of carbon in soils may play a role in determining the predominant N cycling processes and the extent and duration of DNRA activity. A key question is how management can address the tradeoff of higher N2O emissions from systems employing climate-adaptive practices. Management factors such as timing and quality of carbon inputs therefore may be critical considerations in minimizing GHG emissions from low-disturbance, high-carbon cropping systems.

  6. Graphitic Carbon-Based Nanostructures for Energy and Environmental Applications

    NASA Astrophysics Data System (ADS)

    Chan, Ka Long Donald

    This thesis focuses on the synthesis and characterization of graphitic carbonbased photocatalytic nanostructures for energy and environmental applications. The preparation of carbon- and oxygen-rich graphitic carbon nitride with enhanced photocatalytic hydrogen evolution property was investigated. Composite materials based on graphene quantum dots were also prepared. These composites were used for photocatalytic degradation of organic pollutants and photoelectrocatalytic disinfection. The first part of this thesis describes a facile method for the preparation of carbon- and oxygen-rich graphitic carbon nitride by thermal condensation. Incorporation of carbon and oxygen enhanced the photoresponse of carbon nitride in the visible-light region. After exfoliation, the product was c.a. 45 times more active than bulk graphitic carbon nitride in photocatalytic hydrogen evolution under visible-light irradiation. In the second part, a simple approach to enhance the photocatalytic activity of red phosphorus was developed. Mechanical ball milling was applied to reduce the size of red phosphorus and to deposit graphene quantum dots (GQDs) onto red phosphorus. The product exhibited high visible-light-driven photocatalytic performance in the photodegradation of Rhodamine B. The incorporation of GQDs in titanium dioxide could also extend the absorption spectrum of TiO2 into the visible-light range. The third part of this thesis reports on the fabrication of a visible-light-driven composite photocatalyst of TiO2 nanotube arrays (TNAs) and GQDs. Carboxyl-containing GQDs were covalently coupled to amine-modified TNAs. The product exhibited enhanced photocurrent and high photoelectrocatalytic performance in the inactivation of E. coli under visible-light irradiation. The role of various reactive species in the photoelectrocatalytic process was investigated.

  7. MIL-100 derived nitrogen-embodied carbon shells embedded with iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Mao, Chengyu; Kong, Aiguo; Wang, Yuan; Bu, Xianhui; Feng, Pingyun

    2015-06-01

    The use of metal-organic frameworks (MOFs) as templates and precursors to synthesize new carbon materials with controllable morphology and pre-selected heteroatom doping holds promise for applications as efficient non-precious metal catalysts. Here, we report a facile pyrolysis pathway to convert MIL-100 into nitrogen-doped carbon shells encapsulating Fe nanoparticles in a comparative study involving multiple selected nitrogen sources. The hierarchical porous architecture, embedded Fe nanoparticles, and nitrogen decoration endow this composite with a superior oxygen reduction activity. Furthermore, the excellent durability and high methanol tolerance even outperform the commercial Pt-C catalyst.The use of metal-organic frameworks (MOFs) as templates and precursors to synthesize new carbon materials with controllable morphology and pre-selected heteroatom doping holds promise for applications as efficient non-precious metal catalysts. Here, we report a facile pyrolysis pathway to convert MIL-100 into nitrogen-doped carbon shells encapsulating Fe nanoparticles in a comparative study involving multiple selected nitrogen sources. The hierarchical porous architecture, embedded Fe nanoparticles, and nitrogen decoration endow this composite with a superior oxygen reduction activity. Furthermore, the excellent durability and high methanol tolerance even outperform the commercial Pt-C catalyst. Electronic supplementary information (ESI) available: Material synthesis and elemental analysis, electrochemistry measurements, and additional figures. See DOI: 10.1039/c5nr02346g

  8. Thermal properties of alkali-activated aluminosilicates

    NASA Astrophysics Data System (ADS)

    Florian, Pavel; Valentova, Katerina; Fiala, Lukas; Zmeskal, Oldrich

    2017-07-01

    The paper is focused on measurements and evaluation of thermal properties of alkali-activated aluminosilicates (AAA) with various carbon admixtures. Such composites consisting of blast-furnace slag, quartz sand, water glass as alkali activator and small amount of electrically conductive carbon admixture exhibit better electric and thermal properties than the reference material. Such enhancement opens up new practical applications, such as designing of snow-melting, de-icing or self-sensing systems that do not need any external sensors to detect current condition of building material. Thermal properties of the studied materials were measured by the step-wise transient method and mutually compared.

  9. Activated Carbon-hydrogen based Continuous Sorption Cooling in Single Adsorbent Bed with LN2 Heat Sink

    NASA Astrophysics Data System (ADS)

    Koley, Susmita; Ghosh, Indranil

    Quick and periodic inflow-outflow of adsorbate in an adsorbent column createsa differential temperature between the two ends of it, allowing for the generation of continuous sorption cooling in a single adsorbent tube. The concept has been proven experimentally and theoretically for near room temperature applications using activated carbon-nitrogen. The feasibility of generating continuous solid sorption cooling in a single adsorbent tube in the cryogenic domainhas been studied theoretically with a different adsorbent-adsorbate pair, namely, activated carbon-hydrogen. Precooling of gaseous hydrogen (before it enters the adsorbent column) and removal of the heat of adsorption has been achieved using liquid nitrogen. Theoretical estimation shows nearly 20 K temperature difference between the two ends under no load condition. Finally, parametric variations have been performed.

  10. Factors Controlling Carbon Metabolism and Humification in Different Soil Agroecosystems

    PubMed Central

    Doni, S.; Macci, C.; Peruzzi, E.; Ceccanti, B.; Masciandaro, G.

    2014-01-01

    The aim of this study was to describe the processes that control humic carbon sequestration in soil. Three experimental sites differing in terms of management system and climate were selected: (i) Abanilla-Spain, soil treated with municipal solid wastes in Mediterranean semiarid climate; (ii) Puch-Germany, soil under intensive tillage and conventional agriculture in continental climate; and (iii) Alberese-Italy, soil under organic and conventional agriculture in Mediterranean subarid climate. The chemical-structural and biochemical soil properties at the initial sampling time and one year later were evaluated. The soils under organic (Alberese, soil cultivated with Triticum durum Desf.) and nonintensive management practices (Puch, soil cultivated with Triticum aestivum L. and Avena sativa L.) showed higher enzymatically active humic carbon, total organic carbon, humification index (B/E3s), and metabolic potential (dehydrogenase activity/water soluble carbon) if compared with conventional agriculture and plough-based tillage, respectively. In Abanilla, the application of municipal solid wastes stimulated the specific β-glucosidase activity (extracellular β-glucosidase activity/extractable humic carbon) and promoted the increase of humic substances with respect to untreated soil. The evolution of the chemical and biochemical status of the soils along a climatic gradient suggested that the adoption of certain management practices could be very promising in increasing SOC sequestration potential. PMID:25614887

  11. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taer, E.; Awitdrus,; Farma, R.

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H{sub 2}SO{sub 4} electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance ofmore » the AC electrodes from 3 to 7, 17, 32 F g{sup −1} respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g{sup −1}, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.« less

  12. Liquefaction of oak tree bark with different biomass/phenol mass ratios and utilizing bio-based polyols for carbon foam production

    NASA Astrophysics Data System (ADS)

    Ozbay, N.; Yargic, A. S.

    2017-02-01

    Carbon foam is sponge like carbonaceous material with low density, high conductivity and high strength; which is used in various applications such as catalyst supports, membrane separations, high thermally conductive heat sinks, energy absorption materials, high temperature thermal insulation. Coal or fossil oils are conventionally used to fabricate pitch, phenolic resin and polyurethane as carbon foam precursor. Biomass liquefaction is a developing technique to convert biomass resources into the industrial chemicals. In this study, oak tree bark was liquefied under mild conditions with different mass ratio of biomass/phenol; and the liquefaction product was used as polyol to produce porous resin foams. Obtained resin foams were carbonized at 400 °C, and then activated at 800 °C under nitrogen atmosphere. Structure evaluation of resin foams, carbonized foams and activated carbon foams from liquefied oak tree bark was investigated by using elemental analysis, x-ray diffraction, nitrogen adsorption/desorption isotherms, scanning electron microscopy, bulk density and compressive strength tests.

  13. Development and characterization of a rechargeable carbon foam electrode containing nickel oxyhydroxide active mass

    NASA Astrophysics Data System (ADS)

    Chye, Matthew B.

    2011-12-01

    Batteries and asymmetric electrochemical capacitors using nickel-based positive electrodes can provide high currents due to their defect structure and low internal resistance. Nickel-based positive electrodes, therefore, are ideal for high current applications such as power tools and electric vehicles (EVs). The positive electrodes prepared in this research are monolithic graphitic foams electrochemically impregnated with nickel oxyhydroxide active mass and select additives that enhance electrode performance. Carbon foam is a good current collector due to its light-weight, porous, and graphitic nature, which give its good electrical properties and the ability to be used as a current collector. Replacing sintered nickel current collectors in nickel-based batteries with a low cost, readily available material, carbon foam, can reduce the mass of a rechargeable battery. The goal of this research has been to contribute to fundamental science through better understanding of optimizing the deposition and formation processes of the active mass onto carbon foams as well as investigating the active mass behavior under deposition, formation, and cycling conditions. Flooded cells and a PFA sealed asymmetric capacitor have been used. The effects of carbon foam surface pretreatments and how they affect the active material/carbon foam performance are demonstrated. Also the feasibility of this positive electrode as a component in nickel-based batteries, a Ni-Zn cells and an asymmetric capacitor pouch cell, is demonstrated.

  14. Effect of carbonization temperatures on biochar formation of bamboo leaves

    NASA Astrophysics Data System (ADS)

    Pattnaik, D.; Kumar, S.; Bhuyan, S. K.; Mishra, S. C.

    2018-03-01

    Bamboo is a typical plant native in Asia, been used in many sectors, which also produces a large volume of leaves which goes waste and not find its application for any useful purposes; is often considered as a bio-waste and normally incinerated or dumped; as its applications are not yet fully explored. However, some research work done on bamboo fibers for use as a reinforcement in making polymer matrix composite. In the present piece of research work, the influence of burning/carbonization of bamboo leaves (at different temperatures) have been studied and characterized. Proximate analysis gave the fixed carbon content (of ~nearly21%). X-Ray diffraction results revealed the presence of various phases viz. cristobalite (SiO2), Calcite (Ca2O3) etc. accompanied with changes in crystal structures. Fourier transform infrared spectroscopy results showed various modes of vibrations viz. O-H stretching bending of other bonds; (for aromatic benzene derivatives) etc. Scanning Electron Microscopic observation (of morphology) showed irregular stacking arrangements between the randomly spaced lamellae structure, with variation in carbonizing temperature. Results revealed the advantages of pyrolysis process in biochar production/formation. It appears that, the bamboo biochar can have suitable properties for its use as an alternative energy source and also for agricultural applications. Its high porosity and carbon content suggest its application as activated carbon also; after physical or chemical treatments. The present research focuses on extending the frontiers of use of bamboo leaves from being an unutilized biowaste to its conversion into a value added product, which can be compassed in terms of sustainable applications.

  15. Remediation of anionic dye from aqueous system using bio-adsorbent prepared by microwave activation.

    PubMed

    Sharma, Arush; Sharma, Gaurav; Naushad, Mu; Ghfar, Ayman A; Pathania, Deepak

    2018-04-01

    The present study was attempted to ascertain the possible application of activated carbon as a cost-effective and eco-friendly adsorbent prepared via microwave-assisted chemical activation. The activated carbon was characterized using different techniques. The various adsorption parameters have been optimized to examine the viability of activated carbon as a plausible sorbent for the remediation of Congo red (CR) dye from the aquatic system. The equilibrium data adequately fitted to the Langmuir isotherm with better R 2 (0.994). The maximum adsorption capacity (q m ) of activated carbon was recorded to be 68.96 mg/g. Additionally, sorptional kinetic data were examined by reaction-based and diffusion-based models such as pseudo-first-order and pseudo-second-order equations, and Elovich, intra-particle diffusion, and Dumwald-Wagner models, respectively. The computed values of thermodynamic parameters such as free energy change (ΔG 0 ), enthalpy change (ΔH 0 ) and entropy change (ΔS 0 ) were recorded as -3.63, 42.47 and 152.07 J/mol K, respectively, at 30°C, which accounted for a favorable, spontaneous and endothermic process. The regeneration study emphasized that the percentage uptake declined from 90.35% to 83.45% after six cycles of testing. So, our findings implied that activated carbon produced from biomass must be cost-effectively used as an adsorbent for detoxifying the CR dye from industrial effluents.

  16. Immobilization of a Metal-Nitrogen-Carbon Catalyst on Activated Carbon with Enhanced Cathode Performance in Microbial Fuel Cells.

    PubMed

    Yang, Wulin; Logan, Bruce E

    2016-08-23

    Applications of microbial fuel cells (MFCs) are limited in part by low power densities mainly due to cathode performance. Successful immobilization of an Fe-N-C co-catalyst on activated carbon (Fe-N-C/AC) improved the oxygen reduction reaction to nearly a four-electron transfer, compared to a twoelectron transfer achieved using AC. With acetate as the fuel, the maximum power density was 4.7±0.2 W m(-2) , which is higher than any previous report for an air-cathode MFC. With domestic wastewater as a fuel, MFCs with the Fe-N-C/AC cathode produced up to 0.8±0.03 W m(-2) , which was twice that obtained with a Pt-catalyzed cathode. The use of this Fe-N-C/AC catalyst can therefore substantially increase power production, and enable broader applications of MFCs for renewable electricity generation using waste materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Honeycomb-like Porous Carbon-Cobalt Oxide Nanocomposite for High-Performance Enzymeless Glucose Sensor and Supercapacitor Applications.

    PubMed

    Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming; Manikandan, Arumugam; Lo, An-Ya; Chueh, Yu-Lun

    2015-07-29

    Herein, we report the preparation of Pongam seed shells-derived activated carbon and cobalt oxide (∼2-10 nm) nanocomposite (PSAC/Co3O4) by using a general and facile synthesis strategy. The as-synthesized PSAC/Co3O4 samples were characterized by a variety of physicochemical techniques. The PSAC/Co3O4-modified electrode is employed in two different applications such as high performance nonenzymatic glucose sensor and supercapacitor. Remarkably, the fabricated glucose sensor is exhibited an ultrahigh sensitivity of 34.2 mA mM(-1) cm(-2) with a very low detection limit (21 nM) and long-term durability. The PSAC/Co3O4 modified stainless steel electrode possesses an appreciable specific capacitance and remarkable long-term cycling stability. The obtained results suggest the as-synthesized PSAC/Co3O4 is more suitable for the nonenzymatic glucose sensor and supercapacitor applications outperforming the related carbon based modified electrodes, rendering practical industrial applications.

  18. Microporosity development in phenolic resin-based mesoporous carbons for enhancing CO2 adsorption at ambient conditions

    NASA Astrophysics Data System (ADS)

    Choma, Jerzy; Jedynak, Katarzyna; Fahrenholz, Weronika; Ludwinowicz, Jowita; Jaroniec, Mietek

    2014-01-01

    Soft-templating method was used to prepare mesoporous carbons. The synthesis in the presence of hydrochloric and citric acids involved resorcinol and formaldehyde as carbon precursors and triblock copolymer Pluronic F127 as a template. The as-synthesized samples underwent carbonization in flowing nitrogen at various temperatures; namely 600 °C, 700 °C and 800 °C. Two routes were used to develop microporosity in the mesoporous carbons studied. The first one involved introduction of tetraethyl orthosilicate to the reaction system. After silica dissolution with NaOH, an increase in microporosity was observed. The second method, chemical activation with KOH at 700 °C, was explored as an alternative approach to create microporosity. It is noteworthy that the TEOS addition not only led to the development of microporosity but also to some improvement of mesoporosity. The post-synthesis KOH activation resulted in more significant increase in the microporosity as compared to the samples obtained by TEOS-assisted synthesis. The mesopore volume was somewhat lower for activated carbons as compared to that in mesoporous carbons. Both methods resulted in micro-mesoporous carbons with good adsorption properties; for instance, in the case of carbons prepared in the presence of TEOS, the best sample exhibited BET surface area of 1463 m2/g and the total pore volume of 1.31 cm3/g. For the KOH activated carbons the best adsorption parameters were as follows: the specific surface area = 1906 m2/g, and the total pore volume = 0.98 cm3/g. Both procedures used for microporosity development afforded carbons with good adsorption properties that can be useful for applications such as CO2 adsorption, air and water purification.

  19. Low-Temperature Synthesis of Hierarchical Amorphous Basic Nickel Carbonate Particles for Water Oxidation Catalysis.

    PubMed

    Yang, Yisu; Liang, Fengli; Li, Mengran; Rufford, Thomas E; Zhou, Wei; Zhu, Zhonghua

    2015-07-08

    Amorphous nickel carbonate particles are catalysts for the oxygen evolution reaction (OER), which plays a critical role in the electrochemical splitting of water. The amorphous nickel carbonate particles can be prepared at a temperature as low as 60 °C by an evaporation-induced precipitation (EIP) method. The products feature hierarchical pore structures. The mass-normalized activity of the catalysts, measured at an overpotential of 0.35 V, was 55.1 A g(-1) , with a Tafel slope of only 60 mV dec(-1) . This catalytic activity is superior to the performance of crystalline NiOx particles and β-Ni(OH)2 particles, and compares favorably to state-of-the-art RuO2 catalysts. The activity of the amorphous nickel carbonate is remarkably stable during a 10 000 s chronoamperometry test. Further optimization of synthesis parameters reveals that the amorphous structure can be tuned by adjusting the H2 O/Ni ratio in the precursor mixture. These results suggest the potential application of easily prepared hierarchical basic nickel carbonate particles as cheap and robust OER catalysts with high activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Create a Consortium and Develop Premium Carbon Products from Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank Rusinko; John Andresen; Jennifer E. Hill

    2006-01-01

    The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuelmore » industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the projects funded did not meet their original goals, the overall objectives of the CPCPC were completed as many new applications for coal-derived feedstocks have been researched. Future research in many of these areas is necessary before implementation into industry.« less

  1. Metal-organic-framework-derived carbons: Applications as solid-base catalyst and support for Pd nanoparticles in tandem catalysis

    DOE PAGES

    Li, Xinle; Zhang, Biying; Fang, Yuhui; ...

    2017-02-11

    Here, the facile pyrolysis of a bipyridyl metal-organic framework, MOF-253, produces N-doped porous carbons (Cz-MOF-253), which exhibit excellent catalytic activity in the Knoevenagel condensation reaction and outperform other nitrogen-containing MOF-derived carbons. More importantly, by virtue of their high Lewis basicity and porous nature, Cz-MOF-253-supported Pd nanoparticles (Pd/Cz-MOF-253-800) show excellent performance in a one-pot sequential Knoevenagel condensation-hydrogenation reaction.

  2. Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wu, Feng-Chin; Tseng, Ru-Ling; Hu, Chi-Chang; Wang, Chen-Ching

    Four kinds of activated carbons (denoted as ACs) with specific surface area of ca. 1050 m 2 g -1 were fabricated from fir wood and pistachio shell by means of steam activation or chemical activation with KOH. Pore structures of ACs were characterized by a t-plot method based on N 2 adsorption isotherms. The amount of mesopores within KOH-activated carbons ranged from 9.2 to 15.3% while 33.3-49.5% of mesopores were obtained for the steam-activated carbons. The pore structure, surface functional groups, and raw materials of ACs, as well as pH and the supporting electrolyte were also found to be significant factors determining the capacitive characteristics of ACs. The excellent capacitive characteristics in both acidic and neutral media and the weak dependence of the specific capacitance on the scan rate of cyclic voltammetry (CV) for the ACs derived from the pistachio shell with steam activation (denoted as P-H 2O-AC) revealed their promising potential in the application of supercapacitors. The ACs derived from fir wood with KOH activation (denoted as F-KOH-AC), on the other hand, showed the best capacitive performance in H 2SO 4 due to excellent reversibility and high specific capacitance (180 F g -1 measured at 10 mV s -1), which is obviously larger than 100 F g -1 (a typical value of activated carbons with specific surface areas equal to/above 1000 m 2 g -1).

  3. In-situ evaluation of the degradable carbon influence for industrial waste water treatment

    NASA Astrophysics Data System (ADS)

    Fayomi, O. S. I.; Olukanni, D. O.; Fayomi, G. U.; Joseph, O. O.; Popoola, A. P. I.

    2016-07-01

    A photochemical investigation and synergetic blend for wastewater purification was carried out. Blends of different peels: Potato-, Apple and Pineapples-peals (PAP-peals) were impregnated with aqueous solutions of ZnCl2 following the variant of the incipient wetness method for activation of activated carbon (AC). Different concentrations were used to produce impregnation ratios. Activation was carried out in a tube furnace by heating to 700°C with 1 hour soaking time. Scanning Electron Microscopic with attached energy dispersive spectrometer (SEM/EDS), Atomic Adsorption Spectrometry (AAS) and Fourier Transform Infrared spectrometer (FTIS) equipments were used for the characterization of the AC produced. The result shows that PAP-peals derived activated carbons had micro porous characteristics. The study revealed that these new combined adsorbents materials are inexpensive, easily available and they have applications for the removal of Cu, Pb and Cr contained in industrial effluents.

  4. In-situ evaluation of the degradable carbon influence for industrial waste water treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fayomi, O. S. I., E-mail: ojo.fayomi@covenantuniversity.edu.ng, E-mail: fayomio@tut.ac.za, E-mail: ojosundayfayomi3@gmail.com; Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, P.M.B. X680, Pretoria; Olukanni, D. O.

    A photochemical investigation and synergetic blend for wastewater purification was carried out. Blends of different peels: Potato-, Apple and Pineapples-peals (PAP-peals) were impregnated with aqueous solutions of ZnCl{sub 2} following the variant of the incipient wetness method for activation of activated carbon (AC). Different concentrations were used to produce impregnation ratios. Activation was carried out in a tube furnace by heating to 700°C with 1 hour soaking time. Scanning Electron Microscopic with attached energy dispersive spectrometer (SEM/EDS), Atomic Adsorption Spectrometry (AAS) and Fourier Transform Infrared spectrometer (FTIS) equipments were used for the characterization of the AC produced. The result showsmore » that PAP-peals derived activated carbons had micro porous characteristics. The study revealed that these new combined adsorbents materials are inexpensive, easily available and they have applications for the removal of Cu, Pb and Cr contained in industrial effluents.« less

  5. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery.

    PubMed

    Li, Duo; Han, Fei; Wang, Shuai; Cheng, Fei; Sun, Qiang; Li, Wen-Cui

    2013-03-01

    Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium-sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm(3) g(-1)) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium-sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt %, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li(+) insertion. Moreover, the thin carbon walls (3-4 nm) of carbon matrix not only are able to shorten the pathway of Li(+) transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapodlike carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites.

  6. Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits

    NASA Astrophysics Data System (ADS)

    Ajuria, Jon; Redondo, Edurne; Arnaiz, Maria; Mysyk, Roman; Rojo, Teófilo; Goikolea, Eider

    2017-08-01

    In this work, we are presenting both lithium and sodium ion capacitors (LIC and NIC) entirely based on electrodes designed from recycled olive pit bio-waste derived carbon materials. On the one hand, olive pits were pyrolized to obtain a low specific surface area semigraphitic hard carbon to be used as the ion intercalation (battery-type) negative electrode. On the other hand, the same hard carbon was chemically activated with KOH to obtain a high specific surface area activated carbon that was further used as the ion-adsorption (capacitor-type) positive electrode. Both electrodes were custom-made to be assembled in a hybrid cell to either build a LIC or NIC in the corresponding Li- and Na-based electrolytes. For comparison purposes, a symmetric EDLC supercapacitor cell using the same activated carbon in 1.5 M Et4NBF4/acetonitrile electrolyte was also built. Both LIC and NIC systems demonstrate remarkable energy and power density enhancement over its EDLC counterpart while showing good cycle life. This breakthrough offers the possibility to easily fabricate versatile hybrid ion capacitors, covering a wide variety of applications where different requirements are demanded.

  7. Impact of oxy-fuel combustion gases on mercury retention in activated carbons from a macroalgae waste: effect of water.

    PubMed

    Lopez-Anton, M A; Ferrera-Lorenzo, N; Fuente, E; Díaz-Somoano, M; Suarez-Ruíz, I; Martínez-Tarazona, M R; Ruiz, B

    2015-04-01

    The aim of this study is to understand the different sorption behaviors of mercury species on activated carbons in the oxy-fuel combustion of coal and the effect of high quantities of water vapor on the retention process. The work evaluates the interactions between the mercury species and a series of activated carbons prepared from a macroalgae waste (algae meal) from the agar-agar industry in oxy-combustion atmospheres, focussing on the role that the high concentration of water in the flue gases plays in mercury retention. Two novel aspects are considered in this work (i) the impact of oxy-combustion gases on the retention of mercury by activated carbons and (ii) the performance of activated carbons prepared from biomass algae wastes for this application. The results obtained at laboratory scale indicate that the effect of the chemical and textural characteristics of the activated carbons on mercury capture is not as important as that of reactive gases, such as the SOx and water vapor present in the flue gas. Mercury retention was found to be much lower in the oxy-combustion atmosphere than in the O2+N2 (12.6% O2) atmosphere. However, the oxidation of elemental mercury (Hg0) to form oxidized mercury (Hg2+) amounted to 60%, resulting in an enhancement of mercury retention in the flue gas desulfurization units and a reduction in the amalgamation of Hg0 in the CO2 compression unit. This result is of considerable importance for the development of technologies based on activated carbon sorbents for mercury control in oxy-combustion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Multi-wall carbon nanotube@zeolite imidazolate framework composite from a nanoscale zinc oxide precursor

    DOE PAGES

    Yue, Yanfeng; Guo, Bingkun; Qiao, Zhenan; ...

    2014-07-24

    Nanocomposite of multi-walled carbon nanotube@zeolite imidazolate frameworks (MWNT@ZIF) was prepared through a nanotube-facilitated growth based on a nanosized ZnO precursor. The electrically conductive nanocomposite displays a capacity of 380 mAh/g at 0.1 °C in Li–sulfur battery, transforming electrically inactive ZIF into the active one for battery applications.

  9. Comparison of ultrasonic with stirrer performance for removal of sunset yellow (SY) by activated carbon prepared from wood of orange tree: artificial neural network modeling.

    PubMed

    Ghaedi, A M; Ghaedi, M; Karami, P

    2015-03-05

    The present work focused on the removal of sunset yellow (SY) dye from aqueous solution by ultrasound-assisted adsorption and stirrer by activated carbon prepared from wood of an orange tree. Also, the artificial neural network (ANN) model was used for predicting removal (%) of SY dye based on experimental data. In this study a green approach was described for the synthesis of activated carbon prepared from wood of an orange tree and usability of it for the removal of sunset yellow. This material was characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The impact of variables, including initial dye concentration (mg/L), pH, adsorbent dosage (g), sonication time (min) and temperature (°C) on SY removal were studied. Fitting the experimental equilibrium data of different isotherm models such as Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models display the suitability and applicability of the Langmuir model. Analysis of experimental adsorption data by different kinetic models including pseudo-first and second order, Elovich and intraparticle diffusion models indicate the applicability of the second-order equation model. The adsorbent (0.5g) is applicable for successful removal of SY (>98%) in short time (10min) under ultrasound condition. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Titania carbon nanotube composites for enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Pyrgiotakis, Georgios

    Photocatalytic composites have been used for the past few decades in a wide range of applications. The most common application is the purification of air and water by removing toxic compounds. There is limited use however towards biocidal applications. Despite their high efficiency, photocatalytic materials are not comparable to the effectiveness of conventional biocidal compounds such as chlorine and alcoholic disinfectants. On the other hand, nearly a decade ago with the discovery of the carbon nanotubes a new vibrant scientific field emerged. Nanotubes are unique structures of carbon that posse amazing electrical, mechanical and thermal properties. In this research carbon nanotubes are used as photocatalytic enhancers. They were coated with anatase titania to form a composite material. Two different types of nanotubes (metallic versus non-metallic) were used and the photocatalytic activity was measured. The metallic tubes demonstrated exceptional photocatalytic properties, while non-metallic tubes had low photocatalytic efficiency. The reason for that difference was investigated and was the major focus of this research. The research concluded that the reasons for the high efficiency of the carbon nanotubes were (i) the metallic nature of the tubes and (ii) the possible bond between the titania coating and the underlying graphite layers (C-O-Ti). Since both composites had the same indications regarding the C-O-Ti bond, the metallic nature of the carbon nanotubes is believed to be the most dominant factor contributing to the enhancement of the photocatalysis. The composite material may have other potential applications such as for sensing and photovoltaic uses.

  11. New applications of carbon nanostructures in microbial fuel cells (MFC)

    NASA Astrophysics Data System (ADS)

    Kaca, W.; Żarnowiec, P.; Keczkowska, Justyna; Suchańska, M.; Czerwosz, E.; Kozłowski, M.

    2014-11-01

    In the studies presented we proposed a new application for nanocomposite carbon films (C-Pd). These films were evaluated as an anode material for Microbial Fuel Cells (MFCs) used for electrical current generation. The results of characterization of C-Pd films composed of carbon and palladium nanograins were obtained using the Physical Vapor Deposition (PVD) method. The film obtained by this method exhibits a multiphase structure composed of fullerene nanograins, amorphous carbon and palladium nanocrystals. Raman Spectroscopy (RS) and scanning electron microscopy (SEM) are used to characterize the chemical composition, morphology and topography of these films. We observed, for MFC with C-Pd anode, the highest electrochemical activity and maximal voltage density - 458 mV (20,8 mV/cm2) for Proteus mirabilis, 426 mV (19,4 mV/cm2) for Pseudomonas aeruginosa and 652 mV (29,6 mV/cm2) for sewage bacteria as the microbial catalyst.

  12. Amending the Structure of Renewable Carbon from Biorefinery Waste-Streams for Energy Storage Applications.

    PubMed

    Ho, Hoi Chun; Goswami, Monojoy; Chen, Jihua; Keum, Jong K; Naskar, Amit K

    2018-05-29

    Biorefineries produce impure sugar waste streams that are being underutilized. By converting this waste to a profitable by-product, biorefineries could be safeguarded against low oil prices. We demonstrate controlled production of useful carbon materials from the waste concentrate via hydrothermal synthesis and carbonization. We devise a pathway to producing tunable, porous spherical carbon materials by modeling the gross structure formation and developing an understanding of the pore formation mechanism utilizing simple reaction principles. Compared to a simple hydrothermal synthesis from sugar concentrate, emulsion-based synthesis results in hollow spheres with abundant microporosity. In contrast, conventional hydrothermal synthesis produces solid beads with micro and mesoporosity. All the carbonaceous materials show promise in energy storage application. Using our reaction pathway, perfect hollow activated carbon spheres can be produced from waste sugar in liquid effluence of biomass steam pretreatment units. The renewable carbon product demonstrated a desirable surface area of 872 m 2 /g and capacitance of up to 109 F/g when made into an electric double layer supercapacitor. The capacitor exhibited nearly ideal capacitive behavior with 90.5% capacitance retention after 5000 cycles.

  13. Not just graphene: The wonderful world of carbon and related nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gogotsi, Yury

    2015-11-27

    Carbon, with its variety of allotropes and forms, is the most versatile material, and virtually any combination of mechanical, optical, electrical, and chemical properties can be achieved with carbon by controlling its structure and surface chemistry. The goal of this article is to help readers appreciate the variety of carbon nanomaterials and to describe some engineering applications of the most important of these. Many different materials are needed to meet a variety of performance requirements, but they can all be built of carbon. Considering the example of supercapacitor electrodes, zero- and one-dimensional nanoparticles, such as carbon onions and nanotubes, respectively,more » deliver very high power because of fast ion sorption/desorption on their outer surfaces. Two-dimensional (2D) graphene offers higher charge/discharge rates than porous carbons and a high volumetric energy density. Three-dimensional porous activated, carbide-derived, and templated carbon networks, with high surface areas and porosities in the angstrom or nanometer range, can provide high energy densities if the pore size is matched with the electrolyte ion size. Finally, carbon-based nanostructures further expand the range of available nanomaterials: Recently discovered 2D transition-metal carbides (MXenes) have already grown into a family with close to 20 members in about four years and challenge graphene in some applications.« less

  14. Characterization of single-walled carbon nanotubes for environmental implications

    USGS Publications Warehouse

    Agnihotri, S.; Rostam-Abadi, M.; Rood, M.J.

    2004-01-01

    Adsorption capacities of N2 and various organic vapors (methyl-ethyl ketone (MEK), toluene, and cyclohexane) on select electric-arc and HiPco produced single walled carbon nanotubes (SWNT) were measured at 77 and 298 K, respectively. The amount of N2 adsorbed on a SWNT sample depended on the sample purity, methodology, and on the sample age. Adsorption capacities of organic vapors (100-1000 ppm vol) on SWNT in humid conditions were much higher than those for microporous activated carbons. These results established a foundation for additional studies related to potential environmental applications of SWNT. The MEK adsorption capacities of samples EA95 and CVD80 and mesoporous tire-derived activated carbon in humid conditions were lower than in dry conditions. This is an abstract of a paper presented at the AIChE Annual Meeting (Austin, TX 11/7-12/2004).

  15. Agricultural Waste as Sources for Mercury Adsorbents in Gas Applications

    USDA-ARS?s Scientific Manuscript database

    Increased emphasis on reduction of mercury emissions from coal fired electric power plants have resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream where it adsorbs the mer...

  16. PERFORMANCE AND COST OF MERCURY EMISSION CONTROL TECHNOLOGY APPLICATIONS ON ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The report presents estimates of the performance and cost of powdered activated carbon (PAC) injection-based mercury control technologies and projections of costs for future applications. (NOTE: Under the Clean Air Act Amendments of 1990, the U.S. EPA has to determine whether mer...

  17. Influence of support material on the electrocatalytic activity of nickel oxide nanoparticles for urea electro-oxidation reaction.

    PubMed

    Abdel Hameed, R M; Medany, Shymaa S

    2018-03-01

    Nickel oxide nanoparticles were deposited on different carbon supports including activated Vulcan XC-72R carbon black (NiO/AC), multi-walled carbon nanotubes (NiO/MWCNTs), graphene (NiO/Gr) and graphite (NiO/Gt) through precipitation step followed by calcination at 400 °C. To determine the crystalline structure and morphology of prepared electrocatalysts, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed. The electrocatalytic activity of NiO/carbon support electrocatalysts was investigated towards urea electro-oxidation reaction in NaOH solution using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Urea oxidation peak current density was increased in the following order: NiO/AC < NiO/MWCNTs < NiO/Gr < NiO/Gt. Chronoamperometry test also showed an increased steady state oxidation current density for NiO/Gt in comparison to other electrocatalysts. The increased activity and stability of NiO/Gt electrocatalyst encourage the application of graphite as an efficient and cost-saving support to carry metal nanoparticles for urea electro-oxidation reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density

    NASA Astrophysics Data System (ADS)

    Hao, Pin; Zhao, Zhenhuan; Li, Liyi; Tuan, Chia-Chi; Li, Haidong; Sang, Yuanhua; Jiang, Huaidong; Wong, C. P.; Liu, Hong

    2015-08-01

    Current applications of carbon-based supercapacitors are limited by their low energy density. One promising strategy to enhance the energy density is to couple metal oxides with carbon materials. In this study, a porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized by assembling MnCo2O4.5 nanoneedle arrays on the surface of channel walls of hierarchical porous carbon aerogels derived from chitosan for the supercapacitor application. The synthetic process of the hybrid nanostructure involves two steps, i.e. the growth of Mn-Co precursors on carbon aerogel by a hydrothermal process and the conversion of the precursor into MnCo2O4.5 nanoneedles by calcination. The carbon aerogel exhibits a high electrical conductivity, high specific surface area and porous structure, ensuring high electrochemical performance of the hybrid nanostructure when coupled with the porous MnCo2O4.5 nanoneedles. The symmetric supercapacitor using the MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure as the active electrode material exhibits a high energy density of about 84.3 Wh kg-1 at a power density of 600 W kg-1. The voltage window is as high as 1.5 V in neutral aqueous electrolytes. Due to the unique nanostructure of the electrodes, the capacitance retention reaches 86% over 5000 cycles.Current applications of carbon-based supercapacitors are limited by their low energy density. One promising strategy to enhance the energy density is to couple metal oxides with carbon materials. In this study, a porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized by assembling MnCo2O4.5 nanoneedle arrays on the surface of channel walls of hierarchical porous carbon aerogels derived from chitosan for the supercapacitor application. The synthetic process of the hybrid nanostructure involves two steps, i.e. the growth of Mn-Co precursors on carbon aerogel by a hydrothermal process and the conversion of the precursor into MnCo2O4.5 nanoneedles by calcination. The carbon aerogel exhibits a high electrical conductivity, high specific surface area and porous structure, ensuring high electrochemical performance of the hybrid nanostructure when coupled with the porous MnCo2O4.5 nanoneedles. The symmetric supercapacitor using the MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure as the active electrode material exhibits a high energy density of about 84.3 Wh kg-1 at a power density of 600 W kg-1. The voltage window is as high as 1.5 V in neutral aqueous electrolytes. Due to the unique nanostructure of the electrodes, the capacitance retention reaches 86% over 5000 cycles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04421a

  19. KOH-based porous carbon from date palm seed: preparation, characterization, and application to phenol adsorption.

    PubMed

    Suresh Kumar Reddy, K; Kannan, Pravin; Al Shoaibi, Ahmed; Srinivasakannan, C

    2014-01-01

    The date palm seed being one of the major forms of biomass produced from the date industry in UAE, its potential to be an appropriate precursor for the preparation of porous carbon utilizing KOH as an activating agent is assessed in the present work. The porous carbon is prepared at an activation temperature of 600 °C, impregnation ratio of 2, and activation duration of 1 hour, in an inert atmosphere using a conventional horizontal furnace. The resultant porous carbon has a Brunauer-Emmett-Teller surface area of 892 m(2)/g, pore volume of 0.45 cm(3)/g, and an average pore diameter of 1.97 nm. This porous carbon was used for adsorption studies at different initial concentrations (100-400 mg/l) and temperatures (30-50 °C). The adsorption isotherm parameters for the Langmuir and Freundlich models were determined using experimental adsorption data and it was found that both Langmuir and Freundlich isotherms described well the adsorption behavior of phenol on porous carbon. The mono layer adsorption capacity was observed to be 333 mg/g, which is highest for the reported date pam seed biomass-based porous carbon. From the data obtained, it was concluded that the removal of phenol from aqueous solution by porous carbon prepared from data palm seed is a low-cost process with an extremely high performance.

  20. Electric Pulse Discharge Activated Carbon Supercapacitors for Transportation Application

    NASA Astrophysics Data System (ADS)

    Nayak, Subhadarshi; Agrawal, Jyoti

    2012-03-01

    ScienceTomorrow is developing a high-speed, low-cost process for synthesizing high-porosity electrodes for electrochemical double-layer capacitors. Four types of coal (lignite, subbituminous, bituminous, and anthracite) were used as precursor materials for spark discharge activation with multiscale porous structure. The final porosity and pore distribution depended, among other factors, on precursor type. The high gas content in low-grade carbon resulted in mechanical disintegration, whereas high capacitance was attained in higher-grade coal. The properties, including capacitance, mechanical robustness, and internal conductivity, were excellent when the cost is taken into consideration.

  1. Facile preparation of nitrogen-doped porous carbon from waste tobacco by a simple pre-treatment process and their application in electrochemical capacitor and CO{sub 2} capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sha, Yunfei; Lou, Jiaying; Bai, Shizhe

    2015-04-15

    Highlights: • A pre-treatment process is used to prepared N-doped carbon from waste biomass. • Waste tobaccos, which are limited for the disposal, are used as the raw materials. • The product shows a specific surface area and nitrogen content. • Its electrochemical performance is better than commercial activated carbon. • Its CO{sub 2} sorption performance is also better than commercial activated carbon. - Abstract: Preparing nitrogen-doped porous carbons directly from waste biomass has received considerable interest for the purpose of realizing the atomic economy. In this study, N-doped porous carbons have been successfully prepared from waste tobaccos (WT) bymore » a simple pre-treatment process. The sample calcinated at 700 °C (WT-700) shows a micro/meso-porous structures with a BET surface area of 1104 m{sup 2} g{sup −1} and a nitrogen content of ca. 19.08 wt.% (EDS). Performance studies demonstrate that WT-700 displays 170 F g{sup −1} electrocapacitivity at a current density of 0.5 A g{sup −1} (in 6 M KOH), and a CO{sub 2} capacity of 3.6 mmol g{sup −1} at 0 °C and 1 bar, and a selectivity of ca. 32 for CO{sub 2} over N{sub 2} at 25 °C. Our studies indicate that it is feasible to prepare N-enriched porous carbons from waste natural crops by a pre-treatment process for potential industrial application.« less

  2. Comprehensive Utilization of Biomass Process Residues Rich in Cellulose

    NASA Astrophysics Data System (ADS)

    Zhong, Mei; Li, Qiang; Yu, Jian; Dong, Li; Wang, Yin; Xu, Guangwen

    2010-11-01

    This article investigated the method preparing porous material (PM) with VL and SL. Applications of the prepared material was tested in removal aqueous phenol and COD in tarry water and as the catalyst support for selective catalytic reduction (SCR) of NO in flue gas. The results showed that the optimal activation condition in CO2 for the carbonized VL at 800° C was at 875° C for 1 h, which provided large BET surface area and micropore volume. This material exhibited the highest adsorption to aqueous phenol among all the tested materials including a commercial activated carbon made from coconut shell, showing the potential application of the VL-base porous material in wastewater treatment. The study demonstrated also that the vanadium-base selective catalytic reduction (SCR) catalyst supported on the VL-base porous material (V2O5/VL-PM) provided fairly good activity as well SO2 resistance at temperatures round 200° C for SCR of NO. The activation of the carbonized SL material in H2O was better than that in CO2 for developing the pore structure of the porous material. Steam can improve the formation of mesopore than CO2. This was confirmed by the conclusion that higher COD removal rate was occurred on the PM-1 from SL when H2O was used as an activator.

  3. Improving the corrosion resistance of proton exchange membrane fuel cell carbon supports by pentafluorophenyl surface functionalization

    NASA Astrophysics Data System (ADS)

    Forouzandeh, Farisa; Li, Xiaoan; Banham, Dustin W.; Feng, Fangxia; Joseph Kakanat, Abraham; Ye, Siyu; Birss, Viola

    2018-02-01

    In this study, the effect of surface functionalization on the electrochemical corrosion resistance of a high surface area, mesoporous colloid imprinted carbon powder (CIC), as well as microporous Vulcan carbon (VC, serving as the benchmark), was demonstrated, primarily for PEM fuel cell applications. CIC-22, which is highly hydrophilic and was synthesized with 22 nm silica colloid templates, and as-received, mildly hydrophobic, VC powders, were functionalized with 2,3,4,5,6-pentafluorophenyl (-PhF5) surface groups using a straightforward diazonium reduction reaction. These carbons were then subjected to corrosion testing, involving a potential cycling-step sequence in room temperature 0.5 M H2SO4. Using cyclic voltammetry and charge/time analysis, the double layer and pseudo-capacitive gravimetric charges of the carbons, prior to and after the application of these potential steps, were tracked in order to obtain information about surface area changes and the extent of carbon oxidation, respectively. It is shown that the corrosion resistance was improved by ca. 50-80% by surface functionalization, likely due to a combination of surface passivation (loss of carbon active sites) and increased surface hydrophobicity.

  4. Carbon Monitoring System Applications Framework: Lessons Learned from Stakeholder Engagement Activities

    NASA Astrophysics Data System (ADS)

    Sepulveda Carlo, E.; Escobar, V. M.; Delgado Arias, S.; Forgotson, C.

    2017-12-01

    The NASA Carbon Monitoring System initiated by U.S. Congress in 2010 is developing products that characterize and quantify carbon sources and sinks in the United States and the global tropics. In 2013, an applications effort was selected to engage potential end users and gather feedback about their data needs. For the past four years the CMS applications efforts has expanded and implemented a number of strategies to connect carbon scientists to decision-makers, contributing to the societal benefits of CMS data products. The applications efforts use crowd sourcing to collects feedback from stakeholders on challenges and lessons learned in the use of CMS data products. Some of the most common data needs from engaged organizations include above and below-ground biomass and fluxes in forestlands and wetlands, and greenhouse gas (GHG) emissions across all land use/cover and land use changes. Stakeholder organizations' needs for CMS data products support national GHG inventories following the Paris Agreement, carbon markets, and sub-national natural resources management and policies. The lessons learned report presents stakeholder specific applications, challenges, and successes from using CMS data products. To date, the most common uses of CMS products include: conservation efforts, emissions inventory, forestry and land cover applications, and carbon offset projects. The most common challenges include: the need for familiar and consistent products over time, budget constraints, and concern with uncertainty of modeled results. Recurrent recommendations from stakeholder indicate that CMS should provide high resolution (30m) and frequent data products updates (annually). The applications efforts have also helped identified success stories from different CMS projects, including the development of the GHG emissions inventory from Providence, RI, the improvement of the U.S. GHG Inventory though the use of satellite data, and the use of high resolution canopy cover maps for forestry, conservation, and ecosystem services applications in the tristate area of Maryland, Delaware and Pennsylvania. The presentation will discuss the applications framework methodology and strategy, as well as highlight some of the results and lessons learned from these applications efforts.

  5. Ultrafine Pt Nanoparticles and Amorphous Nickel Supported on 3D Mesoporous Carbon Derived from Cu-Metal-Organic Framework for Efficient Methanol Oxidation and Nitrophenol Reduction.

    PubMed

    Wu, Xue-Qian; Zhao, Jun; Wu, Ya-Pan; Dong, Wen-Wen; Li, Dong-Sheng; Li, Jian-Rong; Zhang, Qichun

    2018-04-18

    The development of novel strategy to produce new porous carbon materials is extremely important because these materials have wide applications in energy storage/conversion, mixture separation, and catalysis. Herein, for the first time, a novel 3D carbon substrate with hierarchical pores derived from commercially available Cu-MOF (metal-organic framework) (HKUST-1) through carbonization and chemical etching has been employed as the catalysts' support. Highly dispersed Pt nanoparticles and amorphous nickel were evenly dispersed on the surface or embedded within carbon matrix. The corresponding optimal composite catalyst exhibits a high mass-specific peak current of 1195 mA mg -1 Pt and excellent poison resistance capacity ( I F / I B = 1.58) for methanol oxidation compared to commercial Pt/C (20%). Moreover, both composite catalysts manifest outstanding properties in the reduction of nitrophenol and demonstrate diverse selectivities for 2/3/4-nitrophenol, which can be attributed to different integrated forms between active species and carbon matrix. This attractive route offers broad prospects for the usage of a large number of available MOFs in fabricating functional carbon materials as well as highly active carbon-based electrocatalysts and heterogeneous organic catalysts.

  6. Iron Impregnated Activated Carbon as an Efficient Adsorbent for the Removal of Methylene Blue: Regeneration and Kinetics Studies

    PubMed Central

    Shah, Irfan; Adnan, Rohana; Wan Ngah, Wan Saime; Mohamed, Norita

    2015-01-01

    In this study, iron impregnated activated carbon (FeAC) was synthesized following an oxidation and iron impregnation of activated carbon (AC). Both the AC and FeAC were characterized by pHZPC and FTIR spectroscopy. The removal of Methylene Blue (MB) by AC and FeAC was examined under various experimental conditions. The FeAC showed up to 95% (higher than AC) MB removal in the pH range of 7–10. Although the reaction kinetics was pseudo–second order, the overall rate was controlled by a number of processes such as film diffusion, pore diffusion and intraparticle diffusion. The activation energy values for the MB uptake by AC and FeAC (21.79 and 14.82 kJ/mol, respectively) revealed a physisorption process. In the regeneration study, FeAC has shown consistently ≥ 90% MB removal even up to 10 repeated cycles. The reusable characteristic of the spent FeAC improved the practical use of activated carbon and can be a breakthrough for continuous flow system applications where it can work effectively without any significant reduction in its performance. PMID:25849291

  7. Heterogeneous fenton catalysts based on activated carbon and related materials.

    PubMed

    Navalon, Sergio; Dhakshinamoorthy, Amarajothi; Alvaro, Mercedes; Garcia, Hermenegildo

    2011-12-16

    The Fenton reaction is widely used for remediation of waste water and for the degradation of organic pollutants in water. Currently, there is considerable interest to convert the classical Fenton reaction, which consumes stoichiometric amounts of iron(II) salts, into a catalytic process that is promoted by a solid. This review describes the work that has used carbonaceous materials either directly as catalysts or, more frequently, as a large-area support for catalytically activated transition metals or metal-oxide nanoparticles. The interest in this type of catalyst derives from the wide use of carbon in conventional water treatments and the wide applicability of the Fenton reaction. After two general sections that illustrate the scope and background of Fenton chemistry, the review describes the activity of activated carbon in the absence or presence of metal-containing particles. The last sections of the review focus on different types of carbonaceous materials, such as carbon nanotubes and diamond nanoparticles. The review concludes with a section that anticipates future developments in this area, which are aimed at overcoming the current limitations of low activity and occurrence of metal leaching. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Bonding and Integration of C-C Composite to Cu-Clad-Molybdenum for Thermal Management Applications

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Singh, M.; Shpargel, T.P.

    2008-01-01

    Two- and three-dimensional carbon-carbon composites with either resin-derived matrix or CVI matrix were joined to Cu-clad-Mo using active Ag-Cu braze alloys for thermal management applications. The joint microstructure and composition were examined using Field-Emission Scanning Electron Microscopy and Energy-Dispersive Spectroscopy, and the joint hardness was characterized using the Knoop microhardness testing. Observations on the infiltration of the composite with molten braze, dissolution of metal substrate, and solute segregation at the C-C surface have been discussed. The thermal response of the integrated assembly is also briefly discussed.

  9. The review of recent carbonate minerals processing technology

    NASA Astrophysics Data System (ADS)

    Solihin

    2018-02-01

    Carbonate is one of the groups of minerals that can be found in relatively large amount in the earth crust. The common carbonate minerals are calcium carbonate (calcite, aragonite, depending on its crystal structure), magnesium carbonate (magnesite), calcium-magnesium carbonate (dolomite), and barium carbonate (barite). A large amount of calcite can be found in many places in Indonesia such as Padalarang, Sukabumi, and Tasikmalaya (West Java Provence). Dolomite can be found in a large amount in Gresik, Lamongan, and Tuban (East Java Provence). Magnesite is quite rare in Indonesia, and up to the recent years it can only be found in Padamarang Island (South East Sulawesi Provence). The carbonate has been being exploited through open pit mining activity. Traditionally, calcite can be ground to produce material for brick production, be carved to produce craft product, or be roasted to produce lime for many applications such as raw materials for cement, flux for metal smelting, etc. Meanwhile, dolomite has traditionally been used as a raw material to make brick for local buildings and to make fertilizer for coconut oil plant. Carbonate minerals actually consist of important elements needed by modern application. Calcium is one of the elements needed in artificial bone formation, slow release fertilizer synthesis, dielectric material production, etc. Magnesium is an important material in automotive industry to produce the alloy for vehicle main parts. It is also used as alloying element in the production of special steel for special purpose. Magnesium oxide can be used to produce slow release fertilizer, catalyst and any other modern applications. The aim of this review article is to present in brief the recent technology in processing carbonate minerals. This review covers both the technology that has been industrially proven and the technology that is still in research and development stage. One of the industrially proven technologies to process carbonate mineral is the production of magnesium metals from dolomite. The discussion is emphasized to the requirements of certain aspects prior to the application of this technology in Indonesia. Other technologies that are still in research and development stage are also presented and discussed. The discussion is aimed to find further possible research and development in carbonate processing.

  10. Electricity generation from real industrial wastewater using a single-chamber air cathode microbial fuel cell with an activated carbon anode.

    PubMed

    Mohamed, Hend Omar; Obaid, M; Sayed, Enas Taha; Liu, Yang; Lee, Jinpyo; Park, Mira; Barakat, Nasser A M; Kim, Hak Yong

    2017-08-01

    This study introduces activated carbon (AC) as an effective anode for microbial fuel cells (MFCs) using real industrial wastewater without treatment or addition of external microorganism mediators. Inexpensive activated carbon is introduced as a proper electrode alternative to carbon cloth and carbon paper materials, which are considered too expensive for the large-scale application of MFCs. AC has a porous interconnected structure with a high bio-available surface area. The large surface area, in addition to the high macro porosity, facilitates the high performance by reducing electron transfer resistance. Extensive characterization, including surface morphology, material chemistry, surface area, mechanical strength and biofilm adhesion, was conducted to confirm the effectiveness of the AC material as an anode in MFCs. The electrochemical performance of AC was also compared to other anodes, i.e., Teflon-treated carbon cloth (CCT), Teflon-treated carbon paper (CPT), untreated carbon cloth (CC) and untreated carbon paper (CP). Initial tests of a single air-cathode MFC display a current density of 1792 mAm -2 , which is approximately four times greater than the maximum value of the other anode materials. COD analyses and Coulombic efficiency (CE) measurements for AC-MFC show the greatest removal of organic compounds and the highest CE efficiency (60 and 71%, respectively). Overall, this study shows a new economical technique for power generation from real industrial wastewater with no treatment and using inexpensive electrode materials.

  11. Ni0 encapsulated in N-doped carbon nanotubes for catalytic reduction of highly toxic hexavalent chromium

    NASA Astrophysics Data System (ADS)

    Yao, Yunjin; Zhang, Jie; Chen, Hao; Yu, Maojing; Gao, Mengxue; Hu, Yi; Wang, Shaobin

    2018-05-01

    N-doped carbon nanotubes encapsulating Ni0 nanoparticles (Ni@N-C) were fabricated via thermal reduction of dicyandiamide and NiCl2·6H2O, and used to remove CrVI in polluted water. The resultant products present an excellent catalytic activity for CrVI reduction using formic acid under relatively mild conditions. The CrVI reduction efficiency of Ni@N-C was significantly affected by the preparation conditions including the mass of nickel salt and synthesis temperatures. The impacts of several reaction parameters, such as initial concentrations of CrVI and formic acid, solution pH and temperatures, as well as inorganic anions in solution on CrVI reduction efficiency were also evaluated in view of scalable industrial applications. Owing to the synergistic effects amongst tubes-coated Ni0, doped nitrogen, oxygen containing groups, and the configuration of carbon nanotubes, Ni@N-C catalysts exhibit excellent catalytic activity and recyclable capability for CrVI reduction. Carbon shell can efficiently protect inner Ni0 core and N species from corrosion and subsequent leaching, while Ni0 endows the Ni@N-C catalysts with ferromagnetism, so that the composites can be easily separated via a permanent magnet. This study opens up an avenue for design of N-doped carbon nanotubes encapsulating Ni0 nanoparticles with high CrVI removal efficiency and magnetic recyclability as low-cost catalysts for industrial applications.

  12. A smart strategy to fabricate Ru nanoparticle inserted porous carbon nanofibers as highly efficient levulinic acid hydrogenation catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Sun, Cheng-Jun; Brown, Dennis E.

    2016-01-01

    Herein, we first put forward a smart strategy to in situ fabricate Ru nanoparticle (NP) inserted porous carbon nanofibers by one-pot conversion of Ru-functionalized metal organic framework fibers. Such fiber precursors are skillfully constructed by cooperative assembly of different proportional RuCl3 and Zn(Ac)2·2H2O along with trimesic acid (H3BTC) in the presence of N,N-dimethylformamide. The following high-temperature pyrolysis affords uniform and evenly dispersed Ru NPs (ca. 12-16 nm), which are firmly inserted into the hierarchically porous carbon nanofibers formed simultaneously. The resulting Ru-carbon nanofiber (Ru-CNF) catalysts prove to be active towards the liquid-phase hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL),more » a biomass-derived platform molecule with wide applications in the preparation of renewable chemicals and liquid transportation fuels. The optimal GVL yield of 96.0% is obtained, corresponding to a high activity of 9.23 molLAh–1gRu–1, 17 times of that using the commercial Ru/C catalyst. Moreover, the Ru-CNF catalyst is extremely stable, and can be cycled up to 7 times without significant loss of reactivity. Our strategy demonstrated here reveals new possibilities to make proficient metal catalysts, and provides a general way to fabricate metal-carbon nanofiber composites available for other applications.« less

  13. Cauliflower-derived porous carbon without activation for electrochemical capacitor and CO2 capture applications

    NASA Astrophysics Data System (ADS)

    Du, Juan; Yu, Yifeng; Lv, Haijun; Chen, Chunlin; Zhang, Jian; Chen, Aibing

    2018-01-01

    Carbon materials have attracted great attention in CO2 capture and energy storage due to their excellent characteristics such as tunable pore structure, modulated surface properties and superior bulk conductivities, etc. Biomass, provided by nature with non-toxic, widespread, abundant, and sustainable advantages, is considered to be a very promising precursor of carbons for the view of economic, environmental, and societal issues. However, the preparation of high-performance biomass-derived carbons is still a big challenge because of the multistep process for their synthesis and subsequent activation. Herein, hierarchically porous structured carbon materials have been prepared by directly carbonizing dried cauliflowers without any addition of agents and activation process, featuring with large specific surface area, hierarchically porous structure and improved pore volume, as well as suitable nitrogen content. Being used as a solid-state CO2 adsorbent, the obtained product exhibited a high CO2 adsorption capacity of 3.1 mmol g-1 under 1 bar and 25 °C and a remarkable reusability of 96.7% retention after 20 adsorption/regeneration cycles. Our study reveals that choosing a good biomass source was significant as the unique structure of precursor endows the carbonized product with abundant pores without the need of any post-treatment. Used as an electrode material in electrochemical capacitor, the non-activated porous carbon displayed a fairly high specific capacitance of 228.9 F g-1 at 0.5 A g-1 and an outstanding stability of 99.2% retention after 5000 cycles at 5 A g-1. [Figure not available: see fulltext.

  14. Preparation and characterizations of activated carbon monolith from rubber wood and its effect on supercapacitor performances

    NASA Astrophysics Data System (ADS)

    Taer, E.; Taslim, R.; Deraman, M.

    2016-02-01

    Preparation of activated carbon monolith (ACM) from rubber wood was investigated. Two kind of preparation method were carried out by pre-carbonized of rubber wood saw dust and rubber wood material as it is naturally. The samples were prepared with pelletizing method and small cutting of rubber wood in cross sectional method. Both of samples were characterized by physical and electrochemical technique. The physical properties such as morphology and porosity were investigated. The electrochemical properties of both samples such as equivalent series resistances (ESR) and specific capacitances were also compared. In conclusion, this study showed that both of different preparation method would propose a simple method of ACM electrode preparation technique for supercapacitor applications.

  15. Fabrication of Te and Te-Au Nanowires-Based Carbon Fiber Fabrics for Antibacterial Applications

    PubMed Central

    Chou, Ting-Mao; Ke, Yi-Yun; Tsao, Yu-Hsiang; Li, Ying-Chun; Lin, Zong-Hong

    2016-01-01

    Pathogenic bacteria that give rise to diseases every year remain a major health concern. In recent years, tellurium-based nanomaterials have been approved as new and efficient antibacterial agents. In this paper, we developed the approach to directly grow tellurium nanowires (Te NWs) onto commercial carbon fiber fabrics and demonstrated their antibacterial activity. Those Te NWs can serve as templates and reducing agents for gold nanoparticles (Au NPs) to deposit. Three different Te-Au NWs with varied concentration of Au NPs were synthesized and showed superior antibacterial activity and biocompability. These results indicate that the as-prepared carbon fiber fabrics with Te and Te-Au NWs can become antimicrobial clothing products in the near future. PMID:26861380

  16. Current challenges and future directions for bacterial self-healing concrete.

    PubMed

    Lee, Yun Suk; Park, Woojun

    2018-04-01

    Microbially induced calcium carbonate precipitation (MICP) has been widely explored and applied in the field of environmental engineering over the last decade. Calcium carbonate is naturally precipitated as a byproduct of various microbial metabolic activities. This biological process was brought into practical use to restore construction materials, strengthen and remediate soil, and sequester carbon. MICP has also been extensively examined for applications in self-healing concrete. Biogenic crack repair helps mitigate the high maintenance costs of concrete in an eco-friendly manner. In this process, calcium carbonate precipitation (CCP)-capable bacteria and nutrients are embedded inside the concrete. These bacteria are expected to increase the durability of the concrete by precipitating calcium carbonate in situ to heal cracks that develop in the concrete. However, several challenges exist with respect to embedding such bacteria; harsh conditions in concrete matrices are unsuitable for bacterial life, including high alkalinity (pH up to 13), high temperatures during manufacturing processes, and limited oxygen supply. Additionally, many biological factors, including the optimum conditions for MICP, the molecular mechanisms involved in MICP, the specific microorganisms suitable for application in concrete, the survival characteristics of the microorganisms embedded in concrete, and the amount of MICP in concrete, remain unclear. In this paper, metabolic pathways that result in conditions favorable for calcium carbonate precipitation, current and potential applications in concrete, and the remaining biological challenges are reviewed.

  17. Heteroatom-enriched and renewable banana-stem-derived porous carbon for the electrochemical determination of nitrite in various water samples.

    PubMed

    Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming

    2014-04-23

    For the first time, high-surface-area (approximately 1465 m(2) g(-1)), highly porous and heteroatom-enriched activated carbon (HAC) was prepared from banana stems (Musa paradisiaca, Family: Musaceae) at different carbonization temperatures of 700, 800 and 900 °C (HAC) using a simple and eco-friendly method. The amounts of carbon, hydrogen, nitrogen and sulfur in the HAC are 61.12, 2.567, 0.4315, and 0.349%, respectively. Using X-ray diffraction (XRD), CHNS elemental analysis, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, the prepared activated carbon appears amorphous and disordered in nature. Here, we used HAC for an electrochemical application of nitrite (NO2(-)) sensor to control the environmental pollution. In addition, HAC exhibits noteworthy performance for the highly sensitive determination of nitrite. The limit of detection (LODs) of the nitrite sensor at HAC-modified GCE is 0.07 μM. In addition, the proposed method was applied to determine nitrite in various water samples with acceptable results.

  18. Heteroatom-enriched and renewable banana-stem-derived porous carbon for the electrochemical determination of nitrite in various water samples

    NASA Astrophysics Data System (ADS)

    Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming

    2014-04-01

    For the first time, high-surface-area (approximately 1465 m2 g-1), highly porous and heteroatom-enriched activated carbon (HAC) was prepared from banana stems (Musa paradisiaca, Family: Musaceae) at different carbonization temperatures of 700, 800 and 900°C (HAC) using a simple and eco-friendly method. The amounts of carbon, hydrogen, nitrogen and sulfur in the HAC are 61.12, 2.567, 0.4315, and 0.349%, respectively. Using X-ray diffraction (XRD), CHNS elemental analysis, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, the prepared activated carbon appears amorphous and disordered in nature. Here, we used HAC for an electrochemical application of nitrite (NO2-) sensor to control the environmental pollution. In addition, HAC exhibits noteworthy performance for the highly sensitive determination of nitrite. The limit of detection (LODs) of the nitrite sensor at HAC-modified GCE is 0.07 μM. In addition, the proposed method was applied to determine nitrite in various water samples with acceptable results.

  19. A porous carbon material from pyrolysis of fructus cannabis’s shells for supercapacitor electrode application

    NASA Astrophysics Data System (ADS)

    Li, Kai; Zhang, Wei-Bin; Zhao, Zhi-Yun; Zhao, Yue; Chen, Xi-Wen; Kong, Ling-Bin

    2018-02-01

    The porous carbon material is obtained via pyrolysis and activation of fructus cannabis’s shells, an easy-to-get biomass source, and is used as an active electrode material for supercapacitors. The obtained carbon exhibit a high specific surface area of 2389 m2 g-1. And the result of x-ray photoelectron spectroscopy (XPS) shows that the obtained porous carbon possess numerous oxygen groups, which can facilitate the wettability of the electrode. The prepared porous carbon also exhibit remarkable electrochemical properties, such as high specific capacitance of 357 F g-1 at a current density of 0.5 A g-1 in 6 mol L-1 aqueous KOH electrolyte, good rate capability of 77% capacitance retention as the current density increase from 0.5 A g-1 to 10 A g-1. In addition, it also presents a superior cycling stability of 100% capacitance retention after 10 000 cycles at the current density of 1 A g-1.

  20. Carbonic anhydrase immobilized on hollow fiber membranes using glutaraldehyde activated chitosan for artificial lung applications

    PubMed Central

    Kimmel, J. D.; Arazawa, D. T.; Ye, S.-H.; Shankarraman, V.; Wagner, W. R.

    2013-01-01

    Extracorporeal CO2 removal from circulating blood is a promising therapeutic modality for the treatment of acute respiratory failure. The enzyme carbonic anhydrase accelerates CO2 removal within gas exchange devices by locally catalyzing HCO3− into gaseous CO2 within the blood. In this work, we covalently immobilized carbonic anhydrase on the surface of polypropylene hollow fiber membranes using glutaraldehyde activated chitosan tethering to amplify the density of reactive amine functional groups for enzyme immobilization. XPS and a colorimetric amine assay confirmed higher amine densities on the chitosan coated fiber compared to control fiber. Chitosan/CA coated fibers exhibited accelerated CO2 removal in scaled-down gas exchange devices in buffer and blood (115 % enhancement vs. control, 37 % enhancement vs. control, respectively). Carbonic anhydrase immobilized directly on hollow fiber membranes without chitosan tethering resulted in no enhancement in CO2 removal. Additionally, fibers coated with chitosan/carbonic anhydrase demonstrated reduced platelet adhesion when exposed to blood compared to control and heparin coated fibers. PMID:23888352

  1. Three-dimensional Nitrogen-Doped Reduced Graphene Oxide/Carbon Nanotube Composite Catalysts for Vanadium Flow Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua

    The development of vanadium redox flow battery is limited by the sluggish kinetics of the reaction, especially the cathodic VO2+/VO2+ redox couples. Therefore, it is vital to develop new electrocatalyst with enhanced activity to improve the battery performance. Herein, we first synthesized the hydrogel precursor by a facile hydrothermal method. After the following carbonization, nitrogen-doped reduced graphene oxide/carbon nanotube composite was obtained. By virtue of the large surface area and good conductivey, which are ensured by the unique hybrid structure, as well as the proper nitrogen doping, the as-prepared composite presents enhanced catalytic performance toward the VO2+/VO2+ redox reaction. Wemore » also demonstrated the composite with carbon nanotube loading of 2 mg/mL exhibits the highest activity and remarkable stability in aqueous solution due to the strong synergy between reduced graphene oxide and carbon nanotubes, indicating that this composite might show promising applications in vanadium redox flow battery.« less

  2. Application of the IAS theory combining to a three compartments description of natural organic matter to the adsorption of atrazine or diuron on activated carbon.

    PubMed

    Baudu, M; Raveau, D; Guibaud, G

    2004-07-01

    The study of natural organic matter (NOM) adsorption on an activated carbon showed that equilibrium cannot be described according to a simple model such as a Freundlich isotherm and confirms the need for a closer description of the organic matter to simulate the competitive adsorption with micropollutants. A representation of the organic matter in three fractions is chosen: non-adsorbable, weak and strong adsorbable. The Ideal Adsorbed Solution Theory (IAST) can, under restrictive conditions, be used to effectively predict the competition between the pesticides and the organic matter. Therefore, it was noted that the model simulated with good precision the competition between atrazine or diuron and natural organic matter in aqueous solution for two activated carbons (A and B). The same parameters for the modeling of organic matter adsorption (Freudlich constants for two absorbable fractions) are used with the two pesticides. However, IAST does not allow correct modeling of pesticide adsorption onto two other (C and D) activated carbons in solution in natural water to be described. IAS theory does not reveal competition between diuron and NOM and pore blockage mechanism by the NOM is proposed as the major effect for the adsorption capacity reduction. However, the difference observed between the two pesticides could be due to in addition to the pore blockage effect, a particular phenomenon with the diuron, especially with D activated carbon. We can suppose specific interactions between the diuron and the adsorbed organic matter and a competition between adsorption sites of NOM and activated carbon surface.

  3. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    PubMed

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive.

  4. The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes.

    PubMed

    Zhang, Shujuan; Shao, Ting; Karanfil, Tanju

    2011-01-01

    Understanding the influence of natural organic matter (NOM) on synthetic organic contaminant (SOC) adsorption by carbon nanotubes (CNTs) is important for assessing the environmental implications of accidental CNT release and spill to natural waters, and their potential use as adsorbents in engineered systems. In this study, adsorption of two SOCs by three single-walled carbon nanotubes (SWNTs), one multi-walled carbon nanotube (MWNT), a microporous activated carbon fiber (ACF) [i.e., ACF10] and a bimodal porous granular activated carbon (GAC) [i.e., HD4000] was compared in the presence and absence of NOM. The NOM effect was found to depend strongly on the pore size distribution of carbons. Minimal NOM effect occurred on the macroporous MWNT, whereas severe NOM effects were observed on the microporous HD4000 and ACF10. Although the single-solute adsorption capacities of the SWNTs were much lower than those of HD4000, in the presence of NOM the SWNTs exhibited adsorption capacities similar to those of HD4000. Therefore, if released into natural waters, SWNTs can behave like an activated carbon, and will be able to adsorb, carry, and transfer SOCs to other systems. However, from an engineering application perspective, CNTs did not exhibit a major advantage, in terms of adsorption capacities, over the GAC and ACF. The NOM effect was also found to depend on molecular properties of SOCs. NOM competition was more severe on the adsorption of 2-phenylphenol, a nonplanar and hydrophilic SOC, than phenanthrene, a planar and hydrophobic SOC, tested in this study. In terms of surface chemistry, both adsorption affinity to SOCs and NOM effect on SOC adsorption were enhanced with increasing hydrophobicity of the SWNTs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Qiu, Xueqing; Liu, Weifeng; Yang, Dongjie

    2017-12-01

    In this work, a novel lignin-based carbon/ZnO (LC/ZnO) hybrid composite with excellent photocatalytic performance was prepared through a convenient and environment friendly method using alkali lignin (AL) as carbon source. The morphological, microstructure and optical properties of the as-prepared LC/ZnO hybrid composite was characterized with scanning electron microscope (SEM), X-ray diffraction (XRD), Raman and UV-vis. The resulting LC/ZnO hybrid is composed of highly dispersed ZnO nanoparticles embedded on a lignin-based carbon nanosheet, showing excellent photogenerated electrons and holes separation and migration efficiency. The photocatalytic activity of LC/ZnO was much higher than the pure ZnO. The LC/ZnO hybrid composite showed different photocatalytic mechanism for degradation of negative methyl orange (MO) and positive Rhodamine B (RhB). It showed that h+ was the main photocatalytic active group during the degradation of MO, ·O2- and ·OH were the photocatalytic active groups during degradation of RhB. This reported photocatalyst with selective degradation of positive and negative organic dyes may have a great application prospect for photoelectric conversion and catalytic materials. Results of this work were of practical importance for high-valued utilization of lignin for carbon materials.

  6. Synergistic interaction and controllable active sites of nitrogen and sulfur co-doping into mesoporous carbon sphere for high performance oxygen reduction electrocatalysts

    NASA Astrophysics Data System (ADS)

    Oh, Taeseob; Kim, Myeongjin; Park, Dabin; Kim, Jooheon

    2018-05-01

    Nitrogen and sulfur co-doped mesoporous carbon sphere (NSMCS) was prepared as a metal-free catalyst by an economical and facile pyrolysis process. The mesoporous carbon spheres were derived from sodium carboxymethyl cellulose as the carbon source and the nitrogen and sulfur dopants were derived from urea and p-benzenedithiol, respectively. The doping level and chemical states of nitrogen and sulfur in the prepared NSMCS can be easily adjusted by controlling the pyrolysis temperature. The NSMCS pyrolyzed at 900 °C (NSMCS-900) exhibited higher oxygen reduction reaction activity than the mesoporous carbon sphere doped solely with nitrogen or sulfur, due to the synergistic effect of co-doping. Among all the NSMCS samples, NSMCS-900 exhibited excellent ORR catalytic activity owing to the presence of a highly active site, consisting of pyridinic N, graphitic N, and thiophene S. Remarkably, the NSMCS-900 catalyst was comparable with commercial Pt/C, in terms of the onset and the half-wave potentials and showed better durability than Pt/C for ORR in an alkaline electrolyte. The approach demonstrated in this work could be used to prepare promising metal-free electrocatalysts for application in energy conversion and storage.

  7. Preparation of porous carbon spheres from 2-keto-l-gulonic acid mother liquor by oxidation and activation for electric double-layer capacitor application.

    PubMed

    Hao, Zhi-Qiang; Cao, Jing-Pei; Zhao, Xiao-Yan; Wu, Yan; Zhu, Jun-Sheng; Dang, Ya-Li; Zhuang, Qi-Qi; Wei, Xian-Yong

    2018-03-01

    A novel strategy is proposed for the increase of specific surface area (SSA) of porous carbon sphere (PCS) by oxidation and activation. 2-keto-l-gulonic acid mother liquor (GAML) as a high-pollution waste has a relatively high value of reutilization. For its high value-added utilization, GAML is used as the precursor for preparation of PCS as carbon-based electrode materials for electric double-layer capacitor. PCS is prepared by hydrothermal carbonization, carbonization and KOH activation, and Fe(NO 3 ) 3 9H 2 O is used as an oxidizing agent during carbonization. The as-prepared PCS has excellent porosity and high SSA of 2478 m 2  g -1 . Meanwhile, the pore structure of PCS can be controlled by the adjustment of carbonization parameters (carbonization temperature and the loading of Fe(NO 3 ) 3 9H 2 O). Besides, the SSA and specific capacitance of PCS can be increased remarkably when Fe(NO 3 ) 3 9H 2 O is added in carbonization. The specific capacitance of PCS can reach 303.7 F g -1 at 40 mA g -1 . PCSs as electrode material have superior electrochemical stability. After 8000 cycles, the capacitance retention is 98.3% at 2 A g -1 . The electric double-layer capacitance of PCS is improved when CS is carbonized with Fe(NO 3 ) 3 9H 2 O, and the economic and environmental benefits are achieved by the effective recycle of GAML. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Agricultural Residues and Other Carbon-Based Resources as Feedstocks for Supercapacitor Electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Yong

    Agricultural residues are generally considered as renewable, economical and environmental-friendly sources to produce carbon-based nanomaterials with many advanced applications. Agricultural residues and by-products generated from the agricultural industry, such as distiller's dried grains with solubles (DDGS), are produced every year on a large scale but lack of proper utilization. As a result, seeking high-value applications based on agricultural residues is essential for the promotion of the economy in agricultural producing states like North Dakota, USA. With the fast development of nanotechnology in recent years, carbon-based nanomaterials have attracted intense research interests in the fields of chemistry, materials science and condensed matter physics due to many unique properties (e.g., chemical and thermal stability, electrical conductivity, mechanical strength, etc.). The development of low-cost nanomaterials using agricultural residues as feedstocks can be a promising route for the sustainable development of the agricultural industry. In this dissertation, the preparation of carbon-based materials from agricultural residues is explored. Many advanced applications are investigated, especially in the field of energy storage devices. The development of porous activate carbons were investigated in detail, and their application as electrode materials of supercapacitors was demonstrated. Hydrothermal carbonization of biomass to produce carbonaceous materials was also covered in this dissertation. In addition to traditional raw materials such as cellulose produced from wood industry, novel material sources such as bacterial cellulose were used to prepare nanocomposites that can be used for the electrodes of supercapacitors. This dissertation contributes to the sustainable development of the agricultural industry in North Dakota.

  9. Facile Synthesis of Nitrogen and Oxygen Co-Doped Clews of Carbon Nanobelts for Supercapacitors with Excellent Rate Performance.

    PubMed

    Yu, Liang; Zeng, Shaozhong; Zeng, Xierong; Li, Xiaohua; Wu, Hongliang; Yao, Yuechao; Tu, Wenxuan; Zou, Jizhao

    2018-04-04

    Facile synthesis of carbon materials with high heteroatom content, large specific surface area (SSA) and hierarchical porous structure is critical for energy storage applications. In this study, nitrogen and oxygen co-doped clews of carbon nanobelts (NCNBs) with hierarchical porous structures are successfully prepared by a carbonization and subsequent activation by using ladder polymer of hydroquinone and formaldehyde (LPHF) as the precursor and ammonia as the activating agent. The hierarchical porous structures and ultra-high SSA (up to 2994 m² g −1 ) can effectively facilitate the exchange and transportation of electrons and ions. Moreover, suitable heteroatom content is believed to modify the wettability of the carbon material. The as-prepared activated NCNBs-60 (the NCNBs activated by ammonia at 950 °C for 60 min) possess a high capacitance of 282 F g −1 at the current density of 0.25 A g −1 , NCNBs-45 (the NCNBs are activated by ammonia at 950 °C for 45 min) and show an excellent capacity retention of 50.2% when the current density increase from 0.25 to 150 A g −1 . Moreover, the NCNBs-45 electrode exhibits superior electrochemical stability with 96.2% capacity retention after 10,000 cycles at 5.0 A g −1 . The newly prepared NCNBs thus show great potential in the field of energy storage.

  10. Facile Synthesis of Nitrogen and Oxygen Co-Doped Clews of Carbon Nanobelts for Supercapacitors with Excellent Rate Performance

    PubMed Central

    Yu, Liang; Zeng, Shaozhong; Zeng, Xierong; Li, Xiaohua; Wu, Hongliang; Yao, Yuechao; Tu, Wenxuan; Zou, Jizhao

    2018-01-01

    Facile synthesis of carbon materials with high heteroatom content, large specific surface area (SSA) and hierarchical porous structure is critical for energy storage applications. In this study, nitrogen and oxygen co-doped clews of carbon nanobelts (NCNBs) with hierarchical porous structures are successfully prepared by a carbonization and subsequent activation by using ladder polymer of hydroquinone and formaldehyde (LPHF) as the precursor and ammonia as the activating agent. The hierarchical porous structures and ultra-high SSA (up to 2994 m2 g−1) can effectively facilitate the exchange and transportation of electrons and ions. Moreover, suitable heteroatom content is believed to modify the wettability of the carbon material. The as-prepared activated NCNBs-60 (the NCNBs activated by ammonia at 950 °C for 60 min) possess a high capacitance of 282 F g−1 at the current density of 0.25 A g−1, NCNBs-45 (the NCNBs are activated by ammonia at 950 °C for 45 min) and show an excellent capacity retention of 50.2% when the current density increase from 0.25 to 150 A g−1. Moreover, the NCNBs-45 electrode exhibits superior electrochemical stability with 96.2% capacity retention after 10,000 cycles at 5.0 A g−1. The newly prepared NCNBs thus show great potential in the field of energy storage. PMID:29617315

  11. Determinants of the Thrombogenic Potential of Multiwalled Carbon Nanotubes

    PubMed Central

    Burke, Andrew; Singh, Ravi; Carroll, David L.; Owen, John; Kock, Nancy D.; D’Agostino, Ralph; Torti, Frank M.; Torti, Suzy V.

    2011-01-01

    Multiwalled carbon nanotubes (MWCNTs) are cylindrical tubes of graphitic carbon with unique physical and electrical properties. MWCNTs are being explored for a variety of diagnostic and therapeutic applications. Successful biomedical application of MWCNTs will require compatibility with normal circulatory components, including constituents of the hemostatic cascades. In this manuscript, we compare the thrombotic activity of MWCNTs in vitro and in vivo. We also assess the influence of functionalization of MWCNTs on thrombotic activity. In vitro, MWCNT activate the intrinsic pathway of coagulation as measured by activated partial thromboplastin time (aPTT) assays. Functionalization by amidation or carboxylation enhances this procoagulant activity. Mechanistic studies demonstrate that MWCNTs enhance propagation of the intrinsic pathway via a non-classical mechanism strongly dependent on factor IX. MWCNTs preferentially associate with factor IXa and may provide a platform for its activation. In addition to their effects on the coagulation cascade, MWCNTs activate platelets in vitro, with amidated MWCNTs exhibiting greater platelet activation than carboxylated or pristine MWCNTs. However, contrasting trends are obtained in vivo, where functionalization tends to diminish rather than enhance pro-coagulant activity. Thus, following systemic injection of MWCNTs in mice, pristine MWCNTs decreased platelet counts, increased vWF, and increased D-dimers. In contrast, carboxylated MWCNTS exhibited little procoagulant tendency in vivo, eliciting only a mild and transient decrease in platelets. Amidated MWCNTs elicited no statistically significant change in platelet count. Further, neither carboxylated nor amidated MWCNTs increased vWF or D-dimers in mouse plasma. We conclude that the pro-coagulant tendencies of MWCNTs observed in vitro are not necessarily recapitulated in vivo. Further, functionalization can markedly attenuate the procoagulant activity of MWCNTs in vivo. This work will inform the rational development of biocompatible MWCNTs for systemic delivery. PMID:21663954

  12. Properties and potential environmental applications of carbon adsorbents from waste tire rubber

    USGS Publications Warehouse

    Lehmann, C.M.B.; Rameriz, D.; Rood, M.J.; Rostam-Abadi, M.

    2000-01-01

    The properties of tire-derived carbon adsorbents (TDCA) produced from select tire chars were compared with those derived from an Illinois coal and pistachio nut shells. Chemical analyses of the TDCA indicated that these materials contain metallic elements not present in coal-and nut shell-derived carbons. These metals, introduced during the production of tire rubber, potentially catalyze steam gasification reactions of tire char. TDCA carbons contained larger meso-and macopore volumes than their counterparts derived from coal and nut shell (on the moisture-and ash-free-basis). Adsorptive properties of the tire-derived adsorbent carbons for air separation, gas storage, and gas clean up were also evaluated and compared with those of the coal-and nut shell derived carbons as well as a commercial activated carbon. The results revealed that TDCA carbons are suitable adsorbents for removing vapor-phase mercury from combustion flue gases and hazardous organic compounds from industrial gas streams.

  13. Spherical nitrogen-doped hollow mesoporous carbon as an efficient bifunctional electrocatalyst for Zn-air batteries

    NASA Astrophysics Data System (ADS)

    Hadidi, Lida; Davari, Elaheh; Iqbal, Muhammad; Purkait, Tapas K.; Ivey, Douglas G.; Veinot, Jonathan G. C.

    2015-12-01

    Materials based upon porous carbon have gained considerable attention due to their high surface area, electric conductivity, thermal and chemical stability, low density, and availability. These superior properties make them ideal for diverse applications. Doping these carbon nanostructures holds promise of designing the properties of these structures and opening the door to practical applications. Herein, we report the preparation of hollow N-doped mesoporous carbon (HMC) spheres fabricated via polymerization and carbonization of dopamine on a sacrificial spherical SiO2 template that is removed upon hydrofluoric acid etching. The morphology and structural features of these HMCs were evaluated using scanning electron microscopy and transmission electron microscopy and the N-doping (7.1 at%) was confirmed by X-ray photoelectron spectroscopy (XPS). The oxygen reduction/evolution reaction (ORR/OER) performance of N-doped HMC was evaluated using rotating disk electrode (RDE) voltammetry in an alkaline electrolyte. N-doped HMC demonstrated a high ORR onset potential of -0.055 V (vs. Hg/HgO) and excellent stability. The outstanding bifunctional activity was implemented in a practical Zn-air battery (ZAB), which exhibited a small charge-discharge voltage polarization of 0.89 V and high stability over repeated cycling.Materials based upon porous carbon have gained considerable attention due to their high surface area, electric conductivity, thermal and chemical stability, low density, and availability. These superior properties make them ideal for diverse applications. Doping these carbon nanostructures holds promise of designing the properties of these structures and opening the door to practical applications. Herein, we report the preparation of hollow N-doped mesoporous carbon (HMC) spheres fabricated via polymerization and carbonization of dopamine on a sacrificial spherical SiO2 template that is removed upon hydrofluoric acid etching. The morphology and structural features of these HMCs were evaluated using scanning electron microscopy and transmission electron microscopy and the N-doping (7.1 at%) was confirmed by X-ray photoelectron spectroscopy (XPS). The oxygen reduction/evolution reaction (ORR/OER) performance of N-doped HMC was evaluated using rotating disk electrode (RDE) voltammetry in an alkaline electrolyte. N-doped HMC demonstrated a high ORR onset potential of -0.055 V (vs. Hg/HgO) and excellent stability. The outstanding bifunctional activity was implemented in a practical Zn-air battery (ZAB), which exhibited a small charge-discharge voltage polarization of 0.89 V and high stability over repeated cycling. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06028a

  14. One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature.

    PubMed

    Hwang, Tae Hoon; Jung, Dae Soo; Kim, Joo-Seong; Kim, Byung Gon; Choi, Jang Wook

    2013-09-11

    Na-S batteries are one type of molten salt battery and have been used to support stationary energy storage systems for several decades. Despite their successful applications based on long cycle lives and low cost of raw materials, Na-S cells require high temperatures above 300 °C for their operations, limiting their propagation into a wide range of applications. Herein, we demonstrate that Na-S cells with solid state active materials can perform well even at room temperature when sulfur-containing carbon composites generated from a simple thermal reaction were used as sulfur positive electrodes. Furthermore, this structure turned out to be robust during repeated (de)sodiation for ~500 cycles and enabled extraordinarily high rate performance when one-dimensional morphology is adopted using scalable electrospinning processes. The current study suggests that solid-state Na-S cells with appropriate atomic configurations of sulfur active materials could cover diverse battery applications where cost of raw materials is critical.

  15. Preparation of hierarchical porous carbon from waste printed circuit boards for high performance electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Du, Xuan; Wang, Li; Zhao, Wei; Wang, Yi; Qi, Tao; Li, Chang Ming

    2016-08-01

    Renewable clean energy and resources recycling have become inevitable choices to solve worldwide energy shortages and environmental pollution problems. It is a great challenge to recycle tons of waste printed circuit boards (PCB) produced every year for clean environment while creating values. In this work, low cost, high quality activated carbons (ACs) were synthesized from non-metallic fractions (NMF) of waste PCB to offer a great potential for applications of electrochemical double-layer capacitors (EDLCs). After recovering metal from waste PCB, hierarchical porous carbons were produced from NMF by carbonization and activation processes. The experimental results exhibit that some pores were formed after carbonization due to the escape of impurity atoms introduced by additives in NMF. Then the pore structure was further tailored by adjusting the activation parameters. Roles of micropores and non-micropores in charge storage were investigated when the hierarchical porous carbons were applied as electrode of EDLCs. The highest specific capacitance of 210 F g-1 (at 50 mA g-1) and excellent rate capability were achieved when the ACs possessing a proper micropores/non-micropores ratio. This work not only provides a promising method to recycle PCB, but also investigates the structure tailoring arts for a rational hierarchical porous structure in energy storage/conversion.

  16. Synthesis of biomass derived carbon materials for environmental engineering and energy storage applications

    NASA Astrophysics Data System (ADS)

    Huggins, Mitchell Tyler

    Biomass derived carbon (BC) can serve as an environmentally and cost effective material for both remediation and energy production/storage applications. The use of locally derived biomass, such as unrefined wood waste, provides a renewable feedstock for carbon material production compared to conventional unrenewable resources like coal. Additionally, energy and capital cost can be reduced through the reduction in transport and processing steps and the use of spent material as a soil amendment. However, little work has been done to evaluate and compare biochar to conventional materials such as granular activated carbon or graphite in advanced applications of Environmental Engineering. In this work I evaluated the synthesis and compared the performance of biochar for different applications in wastewater treatment, nutrient recovery, and energy production and storage. This includes the use of biochar as an electrode and filter media in several bioelectrochemical systems (BES) treating synthetic and industrial wastewater. I also compared the treatment efficiency of granular biochar as a packed bed adsorbent for the primary treatment of high strength brewery wastewater. My studies conclude with the cultivation of fungal biomass to serve as a template for biochar synthesis, controlling the chemical and physical features of the feedstock and avoiding some of the limitations of waste derived materials.

  17. Urea adsorption by activated carbon prepared from palm kernel shell

    NASA Astrophysics Data System (ADS)

    Ooi, Chee-Heong; Sim, Yoke-Leng; Yeoh, Fei-Yee

    2017-07-01

    Dialysis treatment is crucial for patients suffer from renal failure. The dialysis system removes the uremic toxin to a safe level in a patient's body. One of the major limitations of the current hemodialysis system is the capability to efficiently remove uremic toxins from patient's body. Nanoporous materials can be applied to improve the treatment. Palm kernel shell (PKS) biomass generated from palm oil mills can be utilized to prepare high quality nanoporous activated carbon (AC) and applied for urea adsorption in the dialysis system. In this study, AC was prepared from PKS via different carbonization temperatures and followed by carbon dioxide gas activation processes. The physical and chemical properties of the samples were studied. The results show that the porous AC with BET surface areas ranging from 541 to 622 m2g-1 and with total pore volumes varying from 0.254 to 0.297 cm3g-1, are formed with different carbonization temperatures. The equilibrium constant for urea adsorption by AC samples carbonized at 400, 500 and 600 °C are 0.091, 0.287 and 0.334, respectively. The increase of carbonization temperatures from 400 to 600 °C resulted in the increase in urea adsorption by AC predominantly due to increase in surface area. The present study reveals the feasibility of preparing AC with good porosity from PKS and potentially applied in urea adsorption application.

  18. Activated carbon derived from melaleuca barks for outstanding high-rate supercapacitors

    NASA Astrophysics Data System (ADS)

    Luo, Qiu-Ping; Huang, Liang; Gao, Xiang; Cheng, Yongliang; Yao, Bin; Hu, Zhimi; Wan, Jun; Xiao, Xu; Zhou, Jun

    2015-07-01

    Activated carbon (AC) was prepared via carbonizing melaleuca bark in an argon atmosphere at 600 °C followed with KOH activation for high-rate supercapacitors. This AC electrode has a high capacitance of 233 F g-1 at a scan rate of 2 mV s-1 and an excellent rate capability of ˜80% when increasing the sweep rate from 2 to 500 mV s-1. The symmetric supercapacitor assembled by the above electrode can deliver a high energy density of 4.2 Wh kg-1 with a power density of 1500 W kg-1 when operated in the voltage range of 0-1 V in 1 M H2SO4 aqueous electrolyte while maintaining great cycling stability (less than 5% capacitance loss after 10 000 cycles at sweep rate of 100 mV s-1). All the outstanding electrochemical performances make this AC electrode a promising candidate for potential energy storage application.

  19. Does powder and granular activated carbon perform equally in immobilizing chlorobenzenes in soil?

    PubMed

    Song, Yang; Wang, Fang; Kengara, Fredrick Orori; Bian, Yongrong; Yang, Xinglun; Gu, Chenggang; Ye, Mao; Jiang, Xin

    2015-01-01

    The objective of this study is to compare the efficacies of powder activated carbon (PAC) and granular activated carbon (GAC) as amendments for the immobilization of volatile compounds in soil. Soil artificially-spiked with chlorobenzenes (CBs) was amended with either PAC or GAC to obtain an application rate of 1%. The results showed that the dissipation and volatilization of CBs from the amended soil significantly decreased compared to the unamended soil. The bioavailabilities of CBs, which is expressed as butanol extraction and earthworm accumulation, were significantly reduced in PAC and GAC amended soils. The lower chlorinated and hence more volatile CBs experienced higher reductions in both dissipation and bioavailability in the amended soils. The GAC and PAC equally immobilized more volatile CBs in soil. Therefore, it could be concluded that along with environmental implication, applying GAC was the more promising approach for the effective immobilization of volatile compounds in soil.

  20. Correlating N2 and CH4 adsorption on microporous carbon using a new analytical model

    USGS Publications Warehouse

    Sun, Jielun; Chen, S.; Rood, M.J.; Rostam-Abadi, M.

    1998-01-01

    A new pore size distribution (PSD) model is developed to readily describe PSDs of microporous materials with an analytical expression. Results from this model can be used to calculate the corresponding adsorption isotherm to compare the calculated isotherm to the experimental isotherm. This aspect of the model provides another check on the validity of the model's results. The model is developed on the basis of a 3-D adsorption isotherm equation that is derived from statistical mechanical principles. Least-squares error minimization is used to solve the PSD without any preassumed distribution function. In comparison with several well-accepted analytical methods from the literature, this 3-D model offers a relatively realistic PSD description for select reference materials, including activated-carbon fibers. N2 and CH4 adsorption is correlated using the 3-D model for commercial carbons BPL and AX-21. Predicted CH4 adsorption isotherms at 296 K based on N2 adsorption at 77 K are in reasonable agreement with experimental CH4 isotherms. Use of the model is also described for characterizing PSDs of tire-derived activated carbons and coal-derived activated carbons for air-quality control applications.

  1. Electrocatalytic activity of spots of electrodeposited noble-metal catalysts on carbon nanotubes modified glassy carbon.

    PubMed

    Chen, Xingxing; Eckhard, Kathrin; Zhou, Min; Bron, Michael; Schuhmann, Wolfgang

    2009-09-15

    A strategy for the screening of the electrocatalytic activity of electrocatalysts for possible application in fuel cells and other devices is presented. In this approach, metal nanoclusters (Pt, Au, Ru, and Rh and their codeposits) were prepared using a capillary-based droplet-cell by pulsed electrodeposition in a diffusion-restricted viscous solution. A glassy carbon surface was modified with carbon nanotubes (CNTs) by electrophoretic accumulation and was used as substrate for metal nanoparticle deposition. The formed catalyst spots on the CNT-modified glassy carbon surface were investigated toward their catalytic activity for oxygen reduction as a test reaction employing the redox competition mode of scanning electrochemical microscopy (RC-SECM). Qualitative information on the electrocatalytic activity of the catalysts was obtained by varying the potential applied to the substrate; semiquantitative evaluation was based on the determination of the electrochemically deposited catalyst loading by means of the charge transferred during the metal nanoparticle deposition. Qualitatively, Au showed the highest electrocatalytic activity toward the oxygen reduction reaction (ORR) in phosphate buffer among all investigated single metal catalysts which was attributed to the much higher loading of Au achieved during electrodeposition. Coelectrodeposited Au-Pt catalysts showed a more positive onset potential (-150 mV in RC-SECM experiments) of the ORR in phosphate buffer at pH 6.7. After normalizing the SECM image by the charge during the metal nanocluster deposition which represents the mass loading of the catalyst, Ru showed a higher electrocatalytic activity toward the ORR than Au.

  2. Toward lithium ion batteries with enhanced thermal conductivity.

    PubMed

    Koo, Bonil; Goli, Pradyumna; Sumant, Anirudha V; dos Santos Claro, Paula Cecilia; Rajh, Tijana; Johnson, Christopher S; Balandin, Alexander A; Shevchenko, Elena V

    2014-07-22

    As batteries become more powerful and utilized in diverse applications, thermal management becomes one of the central problems in their application. We report the results on thermal properties of a set of different Li-ion battery electrodes enhanced with multiwalled carbon nanotubes. Our measurements reveal that the highest in-plane and cross-plane thermal conductivities achieved in the carbon-nanotube-enhanced electrodes reached up to 141 and 3.6 W/mK, respectively. The values for in-plane thermal conductivity are up to 2 orders of magnitude higher than those for conventional electrodes based on carbon black. The electrodes were synthesized via an inexpensive scalable filtration method, and we demonstrate that our approach can be extended to commercial electrode-active materials. The best performing electrodes contained a layer of γ-Fe2O3 nanoparticles on carbon nanotubes sandwiched between two layers of carbon nanotubes and had in-plane and cross-plane thermal conductivities of ∼50 and 3 W/mK, respectively, at room temperature. The obtained results are important for thermal management in Li-ion and other high-power-density batteries.

  3. UV254 absorbance as real-time monitoring and control parameter for micropollutant removal in advanced wastewater treatment with powdered activated carbon.

    PubMed

    Altmann, Johannes; Massa, Lukas; Sperlich, Alexander; Gnirss, Regina; Jekel, Martin

    2016-05-01

    This study investigates the applicability of UV absorbance measurements at 254 nm (UVA254) to serve as a simple and reliable surrogate parameter to monitor and control the removal of organic micropollutants (OMPs) in advanced wastewater treatment applying powdered activated carbon (PAC). Correlations between OMP removal and corresponding UVA254 reduction were determined in lab-scale adsorption batch tests and successfully applied to a pilot-scale PAC treatment stage to predict OMP removals in aggregate samples with good accuracy. Real-time UVA254 measurements were utilized to evaluate adapted PAC dosing strategies and proved to be effective for online monitoring of OMP removal. Furthermore, active PAC dosing control according to differential UVA254 measurements was implemented and tested. While precise removal predictions based on real-time measurements were not accurate for all OMPs, UVA254-controlled dynamic PAC dosing was capable of achieving stable OMP removals. UVA254 can serve as an effective surrogate parameter for OMP removal in technical PAC applications. Even though the applicability as control parameter to adjust PAC dosing to water quality changes might be limited to applications with fast response between PAC adjustment and adsorptive removal (e.g. direct filtration), UVA254 measurements can also be used to monitor the adsorption efficiency in more complex PAC applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Preparation and characterization of nanostructured metal oxides for application to biomass upgrading Polar (111) metal oxide surfaces for pyrolysis oil upgrading and lignin depolymerization

    NASA Astrophysics Data System (ADS)

    Finch, Kenneth

    2013-01-01

    Pyrolysis oil, or bio-oil, is one of the most promising methods to upgrade a variety of biomass to transportation fuels. Moving toward a more "green" catalytic process requires heterogeneous catalysis over homogeneous catalysis to avoid extraction solvent waste. Nanoscale catalysts are showing great promise due to their high surface area and unusual surfaces. Base catalyzed condensation reactions occur much quicker than acid catalyzed condensation reactions. However, MgO is slightly soluble in water and is susceptible to degradation by acidic environments, similar to those found in fast-pyrolysis oil. Magnesium oxide (111) has a highly active Lewis base surface, which can catalyze Claisen-Schmidt condensation reactions in the organic phase. It has been shown previously that carbon coating a catalyst, such as a metal oxide, provides integrity while leaving the catalytic activity intact. Here, carbon-coated MgO(111) will be discussed with regards to synthesis, characterization and application to bio-oil upgrading through model compounds. Raman spectroscopy and HR-TEM are used to characterize the thickness and carbon-bonding environment of the carbon coating. Propanal self-condensation reactions have been conducted in the aqueous phase with varying amounts of acetic acid present. Quantitative analysis by gas chromatography was completed to determine the catalytic activity of CC-MgO(111). ICP-OES analysis has been conducted to measure the magnesium concentration in the product solution and give insight into the leaching of the catalyst into the reaction solution.

  5. Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications.

    PubMed

    Cirillo, Giuseppe; Hampel, Silke; Klingeler, Rüdiger; Puoci, Francesco; Iemma, Francesca; Curcio, Manuela; Parisi, Ortensia Ilaria; Spizzirri, Umile Gianfranco; Picci, Nevio; Leonhardt, Albrecht; Ritschel, Manfred; Büchner, Bernd

    2011-02-01

    To prove the possibility of covalently functionalizing multi-walled carbon nanotubes (CNTs) by free radical grafting of gallic acid on their surface with the subsequent synthesis of materials with improved biological properties evaluated by specific in-vitro assays. Antioxidant CNTs were synthesized by radical grafting of gallic acid onto pristine CNTs. The synthesis of carbon nanotubes was carried out in a fixed-bed reactor and, after the removal of the amorphous carbon, the grafting process was performed. The obtained materials were characterized by fluorescence and Fourier transform infrared spectroscopy (FT-IR) analyses. After assessment of the biocompatibility and determination of the disposable phenolic group content, the antioxidant properties were evaluated in terms of total antioxidant activity and scavenger ability against 2,2'-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl and peroxyl radicals. Finally the inhibition activity on acetylcholinesterase was evaluated.   The covalent functionalization of CNTs with gallic acid was confirmed and the amount of gallic acid bound per g of CNTs was found to be 2.1±0.2 mg. Good antioxidant and scavenging properties were recorded in the functionalized CNTs, which were found to be able to inhibit the acetylcholinesterase with potential improved activity for biomedical and pharmaceutical applications. For the first time, a free radical grafting procedure was proposed as a synthetic approach for the covalent functionalization of CNTs with an antioxidant polyphenol. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society.

  6. Amending the Structure of Renewable Carbon from Biorefinery Waste-Streams for Energy Storage Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Hoi Chun; Goswami, Monojoy; Chen, Jihua

    Biorefineries produce impure sugar waste streams that are being underutilized. By converting this waste to a profitable by-product, biorefineries could be safeguarded against low oil prices. We demonstrate controlled production of useful carbon materials from the waste concentrate via hydrothermal synthesis and carbonization. We devise a pathway to producing tunable, porous spherical carbon materials by modeling the gross structure formation and developing an understanding of the pore formation mechanism utilizing simple reaction principles. Compared to a simple hydrothermal synthesis from sugar concentrate, emulsion-based synthesis results in hollow spheres with abundant microporosity. In contrast, conventional hydrothermal synthesis produces solid beads withmore » micro and mesoporosity. All the carbonaceous materials show promise in energy storage application. Using our reaction pathway, perfect hollow activated carbon spheres can be produced from waste sugar in liquid effluence of biomass steam pretreatment units. As a result, the renewable carbon product demonstrated a desirable surface area of 872 m 2/g and capacitance of up to 109 F/g when made into an electric double layer supercapacitor. The capacitor exhibited nearly ideal capacitive behavior with 90.5% capacitance retention after 5000 cycles.« less

  7. Amending the Structure of Renewable Carbon from Biorefinery Waste-Streams for Energy Storage Applications

    DOE PAGES

    Ho, Hoi Chun; Goswami, Monojoy; Chen, Jihua; ...

    2018-05-29

    Biorefineries produce impure sugar waste streams that are being underutilized. By converting this waste to a profitable by-product, biorefineries could be safeguarded against low oil prices. We demonstrate controlled production of useful carbon materials from the waste concentrate via hydrothermal synthesis and carbonization. We devise a pathway to producing tunable, porous spherical carbon materials by modeling the gross structure formation and developing an understanding of the pore formation mechanism utilizing simple reaction principles. Compared to a simple hydrothermal synthesis from sugar concentrate, emulsion-based synthesis results in hollow spheres with abundant microporosity. In contrast, conventional hydrothermal synthesis produces solid beads withmore » micro and mesoporosity. All the carbonaceous materials show promise in energy storage application. Using our reaction pathway, perfect hollow activated carbon spheres can be produced from waste sugar in liquid effluence of biomass steam pretreatment units. As a result, the renewable carbon product demonstrated a desirable surface area of 872 m 2/g and capacitance of up to 109 F/g when made into an electric double layer supercapacitor. The capacitor exhibited nearly ideal capacitive behavior with 90.5% capacitance retention after 5000 cycles.« less

  8. Tobacco Stem-Based Activated Carbons for High Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohong; Liu, Hongbo; Shi, Lei; He, Yuede

    2012-09-01

    Tobacco stem-based activated carbons (TS-ACs) were prepared by simple KOH activation and their application as electrodes in the electrical double layer capacitor (EDLC) performed successfully. The BET surface area, pore volume, and pore size distribution of the TS-ACs were evaluated based on N2 adsorption isotherms at 77 K. The surface area of the obtained activated carbons varies over a wide range (1472.8-3326.7 m2/g) and the mesoporosity was enhanced significantly as the ratio of KOH to tobacco stem (TS) increased. The electrochemical behaviors of series TS-ACs were characterized by means of galvanostatic charging/discharging, cyclic voltammetry, and impedance spectroscopy. The correlation between electrochemical properties and pore structure was investigated. A high specific capacitance value as 190 F/g at 1 mA/cm2 was obtained in 1 M LiPF6-EC/DMC/DEC electrolyte solution. Furthermore, good performance is also achieved even at high current densities. A development of new use for TS into a valuable energy storage material is explored.

  9. Design of hybrid two-dimensional and three-dimensional nanostructured arrays for electronic and sensing applications

    NASA Astrophysics Data System (ADS)

    Ko, Hyunhyub

    This dissertation presents the design of organic/inorganic hybrid 2D and 3D nanostructured arrays via controlled assembly of nanoscale building blocks. Two representative nanoscale building blocks such as carbon nanotubes (one-dimension) and metal nanoparticles (zero-dimension) are the core materials for the study of solution-based assembly of nanostructured arrays. The electrical, mechanical, and optical properties of the assembled nanostructure arrays have been investigated for future device applications. We successfully demonstrated the prospective use of assembled nanostructure arrays for electronic and sensing applications by designing flexible carbon nanotube nanomembranes as mechanical sensors, highly-oriented carbon nanotubes arrays for thin-film transistors, and gold nanoparticle arrays for SERS chemical sensors. In first section, we fabricated highly ordered carbon nanotube (CNT) arrays by tilted drop-casting or dip-coating of CNT solution on silicon substrates functionalized with micropatterned self-assembled monolayers. We further exploited the electronic performance of thin-film transistors based on highly-oriented, densely packed CNT micropatterns and showed that the carrier mobility is largely improved compared to randomly oriented CNTs. The prospective use of Raman-active CNTs for potential mechanical sensors has been investigated by studying the mechano-optical properties of flexible carbon nanotube nanomembranes, which contain freely-suspended carbon nanotube array encapsulated into ultrathin (<50 nm) layer-by-layer (LbL) polymer multilayers. In second section, we fabricated 3D nano-canal arrays of porous alumina membranes decorated with gold nanoparticles for prospective SERS sensors. We showed extraordinary SERS enhancement and suggested that the high performance is associated with the combined effects of Raman-active hot spots of nanoparticle aggregates and the optical waveguide properties of nano-canals. We demonstrated the ability of this SERS substrate for trace level sensing of nitroaromatic explosives by detecting down to 100 zeptogram (˜330 molecules) of DNT.

  10. Application of sodium carbonate prevents sulphur poisoning of catalysts in automated total mercury analysis

    NASA Astrophysics Data System (ADS)

    McLagan, David S.; Huang, Haiyong; Lei, Ying D.; Wania, Frank; Mitchell, Carl P. J.

    2017-07-01

    Analysis of high sulphur-containing samples for total mercury content using automated thermal decomposition, amalgamation, and atomic absorption spectroscopy instruments (USEPA Method 7473) leads to rapid and costly SO2 poisoning of catalysts. In an effort to overcome this issue, we tested whether the addition of powdered sodium carbonate (Na2CO3) to the catalyst and/or directly on top of sample material increases throughput of sulphur-impregnated (8-15 wt%) activated carbon samples per catalyst tube. Adding 5 g of Na2CO3 to the catalyst alone only marginally increases the functional lifetime of the catalyst (31 ± 4 g of activated carbon analyzed per catalyst tube) in relation to unaltered catalyst of the AMA254 total mercury analyzer (17 ± 4 g of activated carbon). Adding ≈ 0.2 g of Na2CO3 to samples substantially increases (81 ± 17 g of activated carbon) catalyst life over the unaltered catalyst. The greatest improvement is achieved by adding Na2CO3 to both catalyst and samples (200 ± 70 g of activated carbon), which significantly increases catalyst performance over all other treatments and enables an order of magnitude greater sample throughput than the unaltered samples and catalyst. It is likely that Na2CO3 efficiently sequesters SO2, even at high furnace temperatures to produce Na2SO4 and CO2, largely negating the poisonous impact of SO2 on the catalyst material. Increased corrosion of nickel sampling boats resulting from this methodological variation is easily resolved by substituting quartz boats. Overall, this variation enables an efficient and significantly more affordable means of employing automated atomic absorption spectrometry instruments for total mercury analysis of high-sulphur matrices.

  11. Development of chemically activated N-enriched carbon adsorbents from urea-formaldehyde resin for CO2 adsorption: Kinetics, isotherm, and thermodynamics.

    PubMed

    Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K

    2018-07-15

    Nitrogen enriched carbon adsorbents with high surface areas were successfully prepared by carbonizing the low-cost urea formaldehyde resin, followed by KOH activation. Different characterization techniques were used to determine the structure and surface functional groups. Maximum surface area and total pore volume of 4547 m 2  g -1 and 4.50 cm 3  g -1 were found by controlling activation conditions. The optimized sample denoted as UFA-3-973 possesses a remarkable surface area, which is found to be one of the best surface areas achieved so far. Nitrogen content of this sample was found to be 22.32%. Dynamic CO 2 uptake capacity of the carbon adsorbents were determined thermogravimetrically at different CO 2 concentrations (6-100%) and adsorption temperatures (303-373 K) which have a much more relevance for the flue gas application. Highest adsorption capacity of 2.43 mmol g -1 for this sample was obtained at 303 K under pure CO 2 flow. Complete regenerability of the adsorbent over four adsorption-desorption cycles was obtained. Fractional order kinetic model provided best description of adsorption over all adsorption temperatures and CO 2 concentrations. Heterogeneity of the adsorbent surface was confirmed from the Langmuir and Freundlich isotherms fits and isosteric heat of adsorption values. Exothermic, spontaneous and feasible nature of adsorption process was confirmed from thermodynamic parameter values. The combination of high surface area and large pore volume makes the adsorbent a new promising carbon material for CO 2 capture from power plant flue gas and for other relevant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Synthesis and Catalytic Applications of Multi-Walled Carbon Nanotube-Polyamidoamine Dendrimer Hybrids.

    PubMed

    Desmecht, Antonin; Steenhaut, Timothy; Pennetreau, Florence; Hermans, Sophie; Riant, Olivier

    2018-06-20

    Polyamidoamine (PAMAM) dendrimers were covalently immobilized on multi-walled carbon nanotubes (MWNT) via two 'grafting to' strategies. We demonstrate the existence of non-covalent interactions between the two components but outline the superiority of our two grafting approaches, namely xanthate and click chemistry. MWNT surfaces were functionalized with activated ester and propargylic moieties prior to their reaction with PAMAM or azido-PAMAM dendrimers, respectively. The grafting of PAMAM generations 0 to 3 was evaluated with X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). The versatility of our hybrids was demonstrated by post-functionalization sequences involving copper alkyne-azide cycloaddition (CuAAC). We synthesized homogeneous supported iridium complexes at the extremities of the dendrimers. In addition, our materials were used as template for the encapsulation of Pd nanoparticles (NP), validating our nanocomposites for catalytic applications. The palladium-based catalyst was active for carbonylative coupling during 5 consecutive runs without loss of activity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Carbon Nanomaterials Interfacing with Neurons: An In vivo Perspective

    PubMed Central

    Baldrighi, Michele; Trusel, Massimo; Tonini, Raffaella; Giordani, Silvia

    2016-01-01

    Developing new tools that outperform current state of the art technologies for imaging, drug delivery or electrical sensing in neuronal tissues is one of the great challenges in neurosciences. Investigations into the potential use of carbon nanomaterials for such applications started about two decades ago. Since then, numerous in vitro studies have examined interactions between these nanomaterials and neurons, either by evaluating their compatibility, as vectors for drug delivery, or for their potential use in electric activity sensing and manipulation. The results obtained indicate that carbon nanomaterials may be suitable for medical therapies. However, a relatively small number of in vivo studies have been carried out to date. In order to facilitate the transformation of carbon nanomaterial into practical neurobiomedical applications, it is essential to identify and highlight in the existing literature the strengths and weakness that different carbon nanomaterials have displayed when probed in vivo. Unfortunately the current literature is sometimes sparse and confusing. To offer a clearer picture of the in vivo studies on carbon nanomaterials in the central nervous system, we provide a systematic and critical review. Hereby we identify properties and behavior of carbon nanomaterials in vivo inside the neural tissues, and we examine key achievements and potentially problematic toxicological issues. PMID:27375413

  14. Reverse osmosis followed by activated carbon filtration for efficient removal of organic micropollutants from river bank filtrate.

    PubMed

    Kegel, F Schoonenberg; Rietman, B M; Verliefde, A R D

    2010-01-01

    Drinking water utilities in Europe are faced with a growing presence of organic micropollutants in their water sources. The aim of this research was to assess the robustness of a drinking water treatment plant equipped with reverse osmosis and subsequent activated carbon filtration for the removal of these pollutants. The total removal efficiency of 47 organic micropollutants was investigated. Results indicated that removal of most organic micropollutants was high for all membranes tested. Some selected micropollutants were less efficiently removed (e.g. the small and polar NDMA and glyphosate, and the more hydrophobic ethylbenzene and napthalene). Very high removal efficiencies for almost all organic micropollutants by the subsequent activated carbon, fed with the permeate stream of the RO element were observed except for the very small and polar NDMA and 1,4-dioxane. RO and subsequent activated carbon filtration are complementary and their combined application results in the removal of a large part of these emerging organic micropollutants. Based on these experiments it can be concluded that the robustness of a proposed treatment scheme for the drinking water treatment plant Engelse Werk is sufficiently guaranteed.

  15. Voltammetric Determination of Ferulic Acid Using Polypyrrole-Multiwalled Carbon Nanotubes Modified Electrode with Sample Application

    PubMed Central

    Abdel-Hamid, Refat; Newair, Emad F.

    2015-01-01

    A polypyrrole-multiwalled carbon nanotubes modified glassy carbon electrode-based sensor was devised for determination of ferulic acid (FA). The fabricated sensor was prepared electrochemically using cyclic voltammetry (CV) and characterized using CV and scanning electron microscope (SEM). The electrode shows an excellent electrochemical catalytic activity towards FA oxidation. Under optimal conditions, the anodic peak current correlates linearly to the FA concentration throughout the range of 3.32 × 10−6 to 2.59 × 10−5 M with a detection limit of 1.17 × 10−6 M (S/N = 3). The prepared sensor is highly selective towards ferulic acid without the interference of ascorbic acid. The sensor applicability was tested for total content determination of FA in a commercial popcorn sample and showed a robust functionality. PMID:28347090

  16. Tartrazine modified activated carbon for the removal of Pb(II), Cd(II) and Cr(III).

    PubMed

    Monser, Lotfi; Adhoum, Nafaâ

    2009-01-15

    A two in one attempt for the removal of tartrazine and metal ions on activated carbon has been developed. The method was based on the modification of activated carbon with tartrazine then its application for the removal of Pb(II), Cd(II) and Cr(III) ions at different pH values. Tartrazine adsorption data were modelled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacities qm were 121.3, 67 and 56.7mgg(-1) at initial pH values of 1.0, 6.0 and 10, respectively. The adsorption of tartrazine onto activated carbon followed second-order kinetic model. The equilibrium time was found to be 240min at pH 1.0 and 120min at pH 10 for 500mgL(-1) tartrazine concentration. A maximum removal of 85% was obtained after 1h of contact time. The presence of tartrazine as modifier enhances attractive electrostatic interactions between metal ions and carbon surface. The adsorption capacity for Pb(II), Cd(II) and Cr(III) ions has been improved with respect to non-modified carbon reaching a maximum of 140%. The adsorption capacity was found to be a pH dependent for both modified and non-modified carbon with a greater adsorption at higher pH values except for Cr(III). The enhancement percent of Pb(II), Cd(II) and Cr(III) at different pH values was varied from 28% to 140% with respect to non-modified carbon. The amount of metal ions adsorbed using static regime was 11-40% higher than that with dynamic mode. The difference between adsorption capacities could be attributed to the applied flow rate.

  17. Understanding Function and Performance of Carbon Additives in Lead-Acid Batteries

    DOE PAGES

    Enos, D. G.; Ferreira, S. R.; Barkholtz, H. M.; ...

    2017-10-31

    While the low cost and strong safety record of lead-acid batteries make them an appealing option compared to lithium-ion technologies for stationary storage, they can be rapidly degraded by the extended periods of high rate, partial state-of-charge operation required in such applications. Degradation occurs primarily through a process called hard sulfation, where large PbSO 4 crystals are formed on the negative battery plates, hindering charge acceptance and reducing battery capacity. Various researchers have found that the addition of some forms of excess carbon to the negative active mass in lead-acid batteries can mitigate hard sulfation, but the mechanism through whichmore » this is accomplished is unclear. In this work, the effect of carbon composition and morphology was explored by characterizing four discrete types of carbon additives, then evaluating their effect when added to the negative electrodes within a traditional valve-regulated lead-acid battery design. The cycle life for the carbon modified cells was significantly larger than an unmodified control, with cells containing a mixture of graphitic carbon and carbon black yielding the greatest improvement. The carbons also impacted other electrochemical aspects of the battery (e.g., float current, capacity, etc.) as well as physical characteristics of the negative active mass, such as the specific surface area.« less

  18. Understanding Function and Performance of Carbon Additives in Lead-Acid Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enos, D. G.; Ferreira, S. R.; Barkholtz, H. M.

    While the low cost and strong safety record of lead-acid batteries make them an appealing option compared to lithium-ion technologies for stationary storage, they can be rapidly degraded by the extended periods of high rate, partial state-of-charge operation required in such applications. Degradation occurs primarily through a process called hard sulfation, where large PbSO 4 crystals are formed on the negative battery plates, hindering charge acceptance and reducing battery capacity. Various researchers have found that the addition of some forms of excess carbon to the negative active mass in lead-acid batteries can mitigate hard sulfation, but the mechanism through whichmore » this is accomplished is unclear. In this work, the effect of carbon composition and morphology was explored by characterizing four discrete types of carbon additives, then evaluating their effect when added to the negative electrodes within a traditional valve-regulated lead-acid battery design. The cycle life for the carbon modified cells was significantly larger than an unmodified control, with cells containing a mixture of graphitic carbon and carbon black yielding the greatest improvement. The carbons also impacted other electrochemical aspects of the battery (e.g., float current, capacity, etc.) as well as physical characteristics of the negative active mass, such as the specific surface area.« less

  19. Investigating permeability and carbonation behavior of sustainable cements

    NASA Astrophysics Data System (ADS)

    White, C.; Blyth, A.; Scherer, G. W.; Morandeau, A. E.

    2015-12-01

    The durability of new sustainable cementitious materials is intimately linked with the ability for these materials to prevent the ingress of aggressive ions through their percolated pore networks. However, it is also important to be able to control and limit the detrimental chemical degradation mechanisms that occur to the cement binder once the ions have diffused through the pore network. Here, alkali-activated materials will be discussed, and recent research on measuring the permeability of this class of cements using the beam-bending method will be presented. It will be shown that the permeability can be controlled by tailoring the activator chemistry, and that the addition of free silica in the activator has a strong (favorable) influence on the resulting percolated pore network. Carbonation is one type of chemical degradation process that is known to severely shorten the service life of concrete, especially in environments containing elevated CO­2 levels. However, the exact atomic structural changes that occur to the main binder phase (calcium-silicate-hydrate gel) during carbonation remain largely unknown. Here, X-ray pair distribution function analysis is used to elucidate the local atomic structural changes that occur during carbonation of calcium-silicate-hydrate gel and calcium-aluminosilicate-hydrate gel (alkali-activated slag binder), where distinct differences in the extent of gel decalcification are measured according to the chemistry of the starting precursor material. The results will be discussed in the context of limiting the extent of carbonation in cementitious materials, with potential applications of alkali-activated materials in geological storage of CO2 due to their increased resistance to carbonation.

  20. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst

    NASA Astrophysics Data System (ADS)

    Chung, Hoon T.; Cullen, David A.; Higgins, Drew; Sneed, Brian T.; Holby, Edward F.; More, Karren L.; Zelenay, Piotr

    2017-08-01

    Platinum group metal-free (PGM-free) metal-nitrogen-carbon catalysts have emerged as a promising alternative to their costly platinum (Pt)-based counterparts in polymer electrolyte fuel cells (PEFCs) but still face some major challenges, including (i) the identification of the most relevant catalytic site for the oxygen reduction reaction (ORR) and (ii) demonstration of competitive PEFC performance under automotive-application conditions in the hydrogen (H2)-air fuel cell. Herein, we demonstrate H2-air performance gains achieved with an iron-nitrogen-carbon catalyst synthesized with two nitrogen precursors that developed hierarchical porosity. Current densities recorded in the kinetic region of cathode operation, at fuel cell voltages greater than ~0.75 V, were the same as those obtained with a Pt cathode at a loading of 0.1 milligram of Pt per centimeter squared. The proposed catalytic active site, carbon-embedded nitrogen-coordinated iron (FeN4), was directly visualized with aberration-corrected scanning transmission electron microscopy, and the contributions of these active sites associated with specific lattice-level carbon structures were explored computationally.

  1. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B

    2011-09-15

    Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Liquid Phase Plasma Synthesis of Iron Oxide Nanoparticles on Nitrogen-Doped Activated Carbon Resulting in Nanocomposite for Supercapacitor Applications.

    PubMed

    Lee, Heon; Lee, Won-June; Park, Young-Kwon; Ki, Seo Jin; Kim, Byung-Joo; Jung, Sang-Chul

    2018-03-25

    Iron oxide nanoparticles supported on nitrogen-doped activated carbon powder were synthesized using an innovative plasma-in-liquid method, called the liquid phase plasma (LPP) method. Nitrogen-doped carbon (NC) was prepared by a primary LPP reaction using an ammonium chloride reactant solution, and an iron oxide/NC composite (IONCC) was prepared by a secondary LPP reaction using an iron chloride reactant solution. The nitrogen component at 3.77 at. % formed uniformly over the activated carbon (AC) surface after a 1 h LPP reaction. Iron oxide nanoparticles, 40~100 nm in size, were impregnated homogeneously over the NC surface after the LPP reaction, and were identified as Fe₃O₄ by X-ray photoelectron spectroscopy and X-ray diffraction. NC and IONCCs exhibited pseudo-capacitive characteristics, and their specific capacitance and cycling stability were superior to those of bare AC. The nitrogen content on the NC surface increased the compatibility and charge transfer rate, and the composites containing iron oxide exhibited a lower equivalent series resistance.

  3. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst

    DOE PAGES

    Chung, Hoon T.; Cullen, David A.; Higgins, Drew; ...

    2017-08-04

    Platinum group metal–free (PGM-free) metal-nitrogen-carbon catalysts have emerged as a promising alternative to their costly platinum (Pt)–based counterparts in polymer electrolyte fuel cells (PEFCs) but still face some major challenges, including (i) the identification of the most relevant catalytic site for the oxygen reduction reaction (ORR) and (ii) demonstration of competitive PEFC performance under automotive-application conditions in the hydrogen (H 2)–air fuel cell. We demonstrate H 2-air performance gains achieved with an iron-nitrogen-carbon catalyst synthesized with two nitrogen precursors that developed hierarchical porosity. In current densities recorded in the kinetic region of cathode operation, at fuel cell voltages greater thanmore » ~0.75 V, were the same as those obtained with a Pt cathode at a loading of 0.1 milligram of Pt per centimeter squared. The catalytic active site we proposed, carbon-embedded nitrogen-coordinated iron (FeN 4), was directly visualized with aberration-corrected scanning transmission electron microscopy, and the contributions of these active sites associated with specific lattice-level carbon structures were explored computationally.« less

  4. Feasibility of mercury removal from simulated flue gas by activated chars made from poultry manures

    USDA-ARS?s Scientific Manuscript database

    Increased emphasis on reduction of mercury emissions from coal fired electric power plants has resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents for mercury removal. At the same time, the quantity of poultry manure generated eac...

  5. Studies on activated carbon derived from neem (azadirachta indica) bio-waste, and its application as supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Ahmed, Sultan; Parvaz, M.; Johari, Rahul; Rafat, M.

    2018-04-01

    The present study reports the preparation of quasi solid-state supercapacitor employing activated carbon (AC) electrodes and gel polymer electrolyte (GPE). AC was derived from Neem leaves by means of chemical activation using zinc chloride as activating agent. GPE was prepared using solution-cast technique and comprises of LiClO 4 salt, dispersed in EC:PC (1:1 vol.) and entrapped in PVdF-HFP solution. Extensive physical and electrochemical characterization of synthesized AC and GPE was done. AC was characterized using the techniques of SEM, TEM, XRD, Raman spectroscopy, TGA and BET tests while GPE was characterized by electrochemical stability window (ESW) and conductivity test. The fabricated supercapacitor cell was tested using standard electrochemical characterization techniques. It was found that the fabricated cell offers high values of specific capacitance (74.41 F g‑1), specific energy (10.33 Wh kg‑1) and specific power (4.66 kW kg‑1). These results demonstrate the suitability of prepared AC as promising electrode material for supercapacitor applications.

  6. [Effects of different straw recycling and tillage methods on soil respiration and microbial activity].

    PubMed

    Li, Xiao-sha; Wu, Ning; Liu, Ling; Feng, Yu-peng; Xu, Xu; Han, Hui-fang; Ning, Tang-yuan; Li, Zeng-jia

    2015-06-01

    To explore the effects of different tillage methods and straw recycling on soil respiration and microbial activity in summer maize field during the winter wheat and summer maize double cropping system, substrate induced respiration method and CO2 release method were used to determine soil microbial biomass carbon, microbial activity, soil respiration, and microbial respiratory quotient. The experiment included 3 tillage methods during the winter wheat growing season, i.e., no-tillage, subsoiling and conventional tillage. Each tillage method was companied with 2 straw management patterns, i.e., straw recycling and no straw. The results indicated that the conservation tillage methods and straw recycling mainly affected 0-10 cm soil layer. Straw recycling could significantly improve the microbial biomass carbon and microbial activity, while decrease microbial respiratory quotient. Straw recycling could improve the soil respiration at both seedling stage and anthesis, however, it could reduce the soil respiration at filling stage, wax ripeness, and harvest stage. Under the same straw application, compared with conventional tillage, the soil respiration and microbial respiratory quotient in both subsoiling and no-tillage were reduced, while the microbial biomass carbon and microbial activity were increased. During the summer maize growing season, soil microbial biomass carbon and microbial activity were increased in straw returning with conservation tillage, while the respiratory quotient was reduced. In 0-10 cm soil layer, compared with conventional tillage, straw recycling with subsoiling and no-tillage significantly increased soil microbial biomass carbon by 95.8% and 74.3%, and increased soil microbial activity by 97.1% and 74.2%, respectively.

  7. Oxidation Kinetics and Strength Degradation of Carbon Fibers in a Cracked Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.

    2003-01-01

    Experimental results and oxidation modeling will be presented to discuss carbon fiber susceptibility to oxidation, the oxidation kinetics regimes and composite strength degradation and failure due to oxidation. Thermogravimetric Analysis (TGA) was used to study the oxidation rates of carbon fiber and of a pyro-carbon interphase. The analysis was used to separately obtain activation energies for the carbon constituents within a C/SiC composite. TGA was also conducted on C/SiC composite material to study carbon oxidation and crack closure as a function of temperature. In order to more closely match applications conditions C/SiC tensile coupons were also tested under stressed oxidation conditions. The stressed oxidation tests show that C/SiC is much more susceptible to oxidation when the material is under an applied load where the cracks are open and allow for oxygen ingress. The results help correlate carbon oxidation with composite strength reduction and failure.

  8. More than a decade of experience of landfill leachate treatment with a full-scale anammox plant combining activated sludge and activated carbon biofilm.

    PubMed

    Azari, Mohammad; Walter, Uwe; Rekers, Volker; Gu, Ji-Dong; Denecke, Martin

    2017-05-01

    The performance of biological treatment for high ammonium removal from landfill leachate has been demonstrated. The plant was upgraded combining the activated sludge process followed by activated carbon reactor. Based on a long-term analysis of data collected from 2006 to 2015, the average total nitrogen removal efficiency of 94% was achieved for wastewaters with a C: N ratio varying from 1 to 5 kg-COD kg-TN -1 . But without the presence of activated carbon reactor, the average of biological removal efficiency for total nitrogen was only 82% ± 6% for the activated sludge stage. It means that up to 20% of the nitrogen in the influent can only be eliminated by microorganisms attached to granular activated carbon. After upgrades of the plant, the energy efficiency showed a reduction in the specific energy demand from 1.6 to less than 0.2 kWh m -3 . Methanol consumption and sludge production was reduced by 91% and 96%, respectively. Fluorescent in situ Hybridization was used for microbial diversity analysis on floccular sludge and granular biofilm samples. Anaerobic ammonium oxidation (anammox) bacteria and nitrifiers were detected and Candidatus Scalindua was found in two forms of flocs and biofilms. Due to stochastic risk assessment based on the long-term data analysis given in this research, the treatment criteria were achieved and the combination of granular activated carbon biofilm process and activated sludge can be a novel and sought approach to better enrich anammox biomass for full-scale treatment applications to reduce operating costs and promote nutrient removal stability and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fabrication of Semiordered Nanopatterned Diamond-like Carbon and Titania Films for Blood Contacting Applications.

    PubMed

    Nandakumar, Deepika; Bendavid, Avi; Martin, Philip J; Harris, Kenneth D; Ruys, Andrew J; Lord, Megan S

    2016-03-23

    Biomaterials with the ability to interface with, but not activate, blood components are essential for a multitude of medical devices. Diamond-like carbon (DLC) and titania (TiO2) have shown promise for these applications; however, both support platelet adhesion and activation. This study explored the fabrication of nanostructured DLC and TiO2 thin film coatings using a block copolymer deposition technique that produced semiordered nanopatterns with low surface roughness (5-8 nm Rrms). These surfaces supported fibrinogen and plasma protein adsorption that predominantly adsorbed between the nanofeatures and reduced the overall surface roughness. The conformation of the adsorbed fibrinogen was altered on the nanopatterned surfaces as compared with the planar surfaces to reveal higher levels of the platelet binding region. Planar DLC and TiO2 coatings supported less platelet adhesion than nanopatterned DLC and TiO2. However, platelets on the nanopatterned DLC coatings were less spread indicating a lower level of platelet activation on the nanostructured DLC coatings compared with the planar DLC coatings. These data indicated that nanostructured DLC coatings may find application in blood contacting medical devices in the future.

  10. Carbon nanotube macroelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Jialu

    In this dissertation, I discuss the application of carbon nanotubes in macroelectronis. Due to the extraordinary electrical properties such as high intrinsic carrier mobility and current-carrying capacity, single wall carbon nanotubes are very desirable for thin-film transistor (TFT) applications such as flat panel display, transparent electronics, as well as flexible and stretchable electronics. Compared with other popular channel material for TFTs, namely amorphous silicon, polycrystalline silicon and organic materials, nanotube thin-films have the advantages of low-temperature processing compatibility, transparency, and flexibility, as well as high device performance. In order to demonstrate scalable, practical carbon nanotube macroelectroncis, I have developed a platform to fabricate high-density, uniform separated nanotube based thin-film transistors. In addition, many other essential analysis as well as technology components, such as nanotube film density control, purity and diameter dependent semiconducting nanotube electrical performance study, air-stable n-type transistor fabrication, and CMOS integration platform have also been demonstrated. On the basis of the above achievement, I have further demonstrated various kinds of applications including AMOLED display electronics, PMOS and CMOS logic circuits, flexible and transparent electronics. The dissertation is structured as follows. First, chapter 1 gives a brief introduction to the electronic properties of carbon nanotubes, which serves as the background knowledge for the following chapters. In chapter 2, I will present our approach of fabricating wafer-scale uniform semiconducting carbon nanotube thin-film transistors and demonstrate their application in display electronics and logic circuits. Following that, more detailed information about carbon nanotube thin-film transistor based active matrix organic light-emitting diode (AMOLED) displays is discussed in chapter 3. And in chapter 4, a technology to fabricate air-stable n-type semiconducting nanotube thin-film transistor is developed and complementary metal--oxide--semiconductor (CMOS) logic circuits are demonstrated. Chapter 5 discusses the application of carbon nanotubes in transparent and flexible electronics. After that, in chapter 6, a simple and low cost nanotube separation method is introduced and the electrical performance of separated nanotubes with different diameter is studied. Finally, in chapter 7 a brief summary is drawn and some future research directions are proposed with preliminary results.

  11. Natural sisal fibers derived hierarchical porous activated carbon as capacitive material in lithium ion capacitor

    NASA Astrophysics Data System (ADS)

    Yang, Zhewei; Guo, Huajun; Li, Xinhai; Wang, Zhixing; Yan, Zhiliang; Wang, Yansen

    2016-10-01

    Lithium-ion capacitor (LIC) is a novel advanced electrochemical energy storage (EES) system bridging gap between lithium ion battery (LIB) and electrochemical capacitor (ECC). In this work, we report that sisal fiber activated carbon (SFAC) was synthesized by hydrothermal treatment followed by KOH activation and served as capacitive material in LIC for the first time. Different particle structure, morphology, specific surface area and heteroatoms affected the electrochemical performance of as-prepared materials and corresponding LICs. When the mass ratio of KOH to char precursor was 2, hierarchical porous structured SFAC-2 was prepared and exhibited moderate specific capacitance (103 F g-1 at 0.1 A g-1), superior rate capability and cyclic stability (88% capacity retention after 5000 cycles at 1 A g-1). The corresponding assembled LIC (LIC-SC2) with optimal comprehensive electrochemical performance, displayed the energy density of 83 Wh kg-1, the power density of 5718 W kg-1 and superior cyclic stability (92% energy density retention after 1000 cycles at 0.5 A g-1). It is worthwhile that the source for activated carbon is a natural and renewable one and the synthesis method is eco-friendly, which facilitate that hierarchical porous activated carbon has potential applications in the field of LIC and other energy storage systems.

  12. Physiological responses to cadmium stress in strawberry treated with pomegranate peel-activated carbon.

    PubMed

    Naderi, Somayeh; Gholami, Mahdiyeh; Baninasab, Bahram; Afyuni, Majid

    2018-05-12

    Many reports have already been published regarding the removal of heavy metals from aqueous solutions onto activated carbon. However, the biosorbents' effect on the plant response still needs further investigation. In this study, activated carbon derived from the pomegranate peel [pomegranate activated carbons (PAC)] was used to see the effects of the addition of PAC on growing strawberry in Cd-contaminated sand. Cd accumulation and toxicity to strawberry was investigated by measuring the concentration of Cd in plant tissues and various biochemical activities of plant. Our results suggested that PAC had a high sorption capacity for Cd. Strawberry plant tried to deal with the Cd-induced oxidative stress by strengthening its antioxidant competences and decreasing Cd absorption. In comparison with the control, PAC applied to the sand decreased the level of lipid peroxidation and enhanced the carotenoid content. The greater tolerance of strawberry toward the level of Cd due to the application of PAC was associated with improving the physical conditions of the soil, increasing the amounts of some essential elements and decreasing the level of Cd absorption. Gaviota strawberry cultivar exposed to 5 or 10 mg kg -1 Cd was able to adopt a new metabolic equilibrium, allowing the plant to cope with this metal.

  13. Condiment-Derived 3D Architecture Porous Carbon for Electrochemical Supercapacitors.

    PubMed

    Qian, Wenjing; Zhu, Jingyue; Zhang, Ye; Wu, Xiao; Yan, Feng

    2015-10-07

    The one-step synthesis of porous carbon nanoflakes possessing a 3D texture is achieved by cooking (carbonization) a mixture containing two condiments, sodium glutamate (SG) and sodium chloride, which are commonly used in kitchens. The prepared 3D porous carbons are composed of interconnected carbon nanoflakes and possess instinct heteroatom doping such as nitrogen and oxygen, which furnishes the electrochemical activity. The combination of micropores and mesopores with 3D configurations facilitates persistent and fast ion transport and shorten diffusion pathways for high-performance supercapacitor applications. Sodium glutamate carbonized at 800 °C exhibits high charge storage capacity with a specific capacitance of 320 F g(-1) in 6 m KOH at a current density of 1 A g(-1) and good stability over 10,000 cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Nitrogen-enriched carbon sheets derived from egg white by using expanded perlite template and its high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Jiucun; Liu, Yinqin; Li, Wenjun; Xu, Liqun; Yang, Huan; Li, Chang Ming

    2015-08-01

    Nitrogen-enriched carbon sheets were synthesized using egg white as a unique carbon source and expanded perlite as a novel template. The as-prepared material was further used as an electrode material for supercapacitor applications, demonstrating excellent supercapacitance with a maximum gravimetric specific capacitance of 302 F g-1 at 0.5 A g-1 in a 3-electrode setup for a sample carbonized at 850 °C and activated for 6 h. Moreover, the carbon sheet-based capacitor with 2-symmetric electrodes showed an excellent cycle life (2% loss at 0.1 A g-1 after 10 000 cycles). The excellent performance may be attributed to the combination of the 3D carbon structure and the highly concentrated doped nitrogen component from the natural egg source for superior pseudocapacitance.

  15. The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density.

    PubMed

    Hao, Pin; Zhao, Zhenhuan; Li, Liyi; Tuan, Chia-Chi; Li, Haidong; Sang, Yuanhua; Jiang, Huaidong; Wong, C P; Liu, Hong

    2015-09-14

    Current applications of carbon-based supercapacitors are limited by their low energy density. One promising strategy to enhance the energy density is to couple metal oxides with carbon materials. In this study, a porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized by assembling MnCo2O4.5 nanoneedle arrays on the surface of channel walls of hierarchical porous carbon aerogels derived from chitosan for the supercapacitor application. The synthetic process of the hybrid nanostructure involves two steps, i.e. the growth of Mn-Co precursors on carbon aerogel by a hydrothermal process and the conversion of the precursor into MnCo2O4.5 nanoneedles by calcination. The carbon aerogel exhibits a high electrical conductivity, high specific surface area and porous structure, ensuring high electrochemical performance of the hybrid nanostructure when coupled with the porous MnCo2O4.5 nanoneedles. The symmetric supercapacitor using the MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure as the active electrode material exhibits a high energy density of about 84.3 Wh kg(-1) at a power density of 600 W kg(-1). The voltage window is as high as 1.5 V in neutral aqueous electrolytes. Due to the unique nanostructure of the electrodes, the capacitance retention reaches 86% over 5000 cycles.

  16. Dynamic Changes of Soil Surface Organic Carbon under Different Mulching Practices in Citrus Orchards on Sloping Land

    PubMed Central

    Gu, Chiming; Liu, Yi; Mohamed, Ibrahim; Zhang, Runhua; Wang, Xiao; Nie, Xinxin; Jiang, Min; Brooks, Margot; Chen, Fang; Li, Zhiguo

    2016-01-01

    Mulching management has been used in many places all over the world to improve agricultural sustainability. However, the cycling of carbon in the soil under applications of mulch on sloping arable land is not yet fully understood. A four-year field experiment was carried out in Xiaofuling watershed of Danjiangkou reservoir in China. The object was to evaluate the effects of the application of straw mulch (ST) and grass mulch (GT) on dynamic changes in soil organic carbon and its fractions. Results showed that mulch applied on the soil surface increased the contents of SOC and its active fractions in the soil. Compared to the control without cover (CK), ST and GT treatments increased the contents of SOC, LOC, DOC, POC and EOC by 14.73%, 16.5%, 22.5%, 41.5% and 21%, respectively, in the 0–40 cm soil layer, and by 17%, 14%, 19%, and 30%, respectively, in the 0–100 cm soil layer. The contents of organic carbon and its active fractions decreased with increasing soil depth in all of the treatments. SOC was accumulated in the period of December to the following March. The contents of soil DOC and LOC were high in January to March, while the contents of soil POC and EOC were high in June to September. The relative contents of soil organic carbon fractions were POC > EOC > LOC > DOC over the four years. Straw mulching had no significant effect on the changes in soil organic carbon active fractions during the different periods. Based on this long-term field experiment in Danjiangkou reservoir, we found that straw mulching had a significant effect on soil, increasing SOC content and stock in slopping arable land, and that live grass mulching was more effective than rice straw mulching. We discuss possible optimal periods for the implementation of mulching practices on sloping land. PMID:28030551

  17. Dynamic Changes of Soil Surface Organic Carbon under Different Mulching Practices in Citrus Orchards on Sloping Land.

    PubMed

    Gu, Chiming; Liu, Yi; Mohamed, Ibrahim; Zhang, Runhua; Wang, Xiao; Nie, Xinxin; Jiang, Min; Brooks, Margot; Chen, Fang; Li, Zhiguo

    2016-01-01

    Mulching management has been used in many places all over the world to improve agricultural sustainability. However, the cycling of carbon in the soil under applications of mulch on sloping arable land is not yet fully understood. A four-year field experiment was carried out in Xiaofuling watershed of Danjiangkou reservoir in China. The object was to evaluate the effects of the application of straw mulch (ST) and grass mulch (GT) on dynamic changes in soil organic carbon and its fractions. Results showed that mulch applied on the soil surface increased the contents of SOC and its active fractions in the soil. Compared to the control without cover (CK), ST and GT treatments increased the contents of SOC, LOC, DOC, POC and EOC by 14.73%, 16.5%, 22.5%, 41.5% and 21%, respectively, in the 0-40 cm soil layer, and by 17%, 14%, 19%, and 30%, respectively, in the 0-100 cm soil layer. The contents of organic carbon and its active fractions decreased with increasing soil depth in all of the treatments. SOC was accumulated in the period of December to the following March. The contents of soil DOC and LOC were high in January to March, while the contents of soil POC and EOC were high in June to September. The relative contents of soil organic carbon fractions were POC > EOC > LOC > DOC over the four years. Straw mulching had no significant effect on the changes in soil organic carbon active fractions during the different periods. Based on this long-term field experiment in Danjiangkou reservoir, we found that straw mulching had a significant effect on soil, increasing SOC content and stock in slopping arable land, and that live grass mulching was more effective than rice straw mulching. We discuss possible optimal periods for the implementation of mulching practices on sloping land.

  18. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging.

    PubMed

    Wen, Jia; Xu, Yongqian; Li, Hongjuan; Lu, Aiping; Sun, Shiguo

    2015-07-21

    Carbon-based nanomaterials as important agents for biological applications have emerged in the past few years due to their unique optical, electronic, mechanical, and chemical properties. Many of these applications rely on successful surface modifications. This review article comprises two main parts. In the first part, we briefly review the properties and surface modifications of several classes of carbon nanomaterials, mainly carbon nanotubes (CNTs), graphene and its derivatives, carbon dots (CDs) and graphene quantum dots (GQDs), as well as some other forms of carbon-based nanomaterials such as fullerene, carbon nanohorns (CNHs) and carbon nanoonions (CNOs). In the second part, we focus on the biological applications of these carbon nanomaterials, in particular their applications for fluorescence biosensing as well as bioimaging.

  19. Comparative studies of electrochemical properties of carbon nanotubes and nanostructured boron carbide

    NASA Astrophysics Data System (ADS)

    Singh, Paviter; Kaur, Gurpreet; Singh, Kulwinder; Singh, Bikramjeet; Kaur, Manjot; Kumar, Manjeet; Bala, Rajni; Kumar, Akshay

    2018-05-01

    Boron carbide (B4C) and carbon nanotubes (CNTs) have the potential to act as electrocatalyst as these material show bifunctional behavior. B4C and CNTs were synthesized using solvothermal method. B4C display great catalytic activity as compared to CNTs. Raman spectra confirmed the formation of nanostructured carbon nanotubes. The observed onset potential was smaller 1.58 V in case of B4C as compared to CNTs i.e. 1.96 V in cyclic voltammetry. B4C material can emerge as a promising bifunctional electrocatalyst for battery applications.

  20. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, and classroom materials/activities. These include: experiments on colloids, processing of uranium ore, action of heat on carbonates; color test for phenols and aromatic amines; solvent properties of non-electrolytes; stereoscopic applications/methods; a valency balance;…

  1. Optimum BET surface areas for activated carbon produced from textile sewage sludges and its application as dye removal.

    PubMed

    Kacan, Erdal

    2016-01-15

    The purpose of this experimental study is to determine optimum preparation conditions for activated carbons obtained from textile sewage sludge (TSS) for removal of dyes from aqueous solutions. The textile sewage sludge activated carbon (TSSAC) was prepared by chemical activation with potassium hydroxide using Response Surface Methodology (RSM). The most influential factor on each experimental design responses was identified via ANNOVA analysis. Based on the central composite design (CCD), quadratic model was developed to correlate the preparation variables for one response which is the Brunauer-Emmelt-Teller (BET) surface area. RSM based on a three-variable CCD was used to determine the effect of pyrolyzed temperature (400-700 °C), carbonization time (45-180 min) and KOH: weight of TSS (wt%) impregnation ratio (0.5:1-1.5:1) on BET surface area. According to the results, pyrolyzed temperature and impregnation ratio were found as the significant factors for maximizing the BET surface area. The major effect which influences the BET surface area was found as pyrolyzed temperature. Both carbonization time and impregnation ratio of KOH had no significant effect. The optimum conditions for preparing TSSAC, based on response surface and contour plots, were found as follows: pyrolyzed temperature 700 °C, carbonization time of 45 min and chemical impregnation ratio of 0.5. The maximum and optimum BET surface area of TSSAC were found as 336 m(2)/g and 310.62 m(2)/g, respectively. Synozol Blue reactive (RSB) and Setapers Yellow-Brown (P2RFL) industrial textile dyes adsorption capacities were investigated. As expected the TSSAC which has the biggest BET surface area (336 m(2)/g) adsorbed dye best. The maximum (RSB) and (P2RFL) uptake capacities were found as 8.5383 mg/g and 5.4 mg/g, respectively. The results of this study indicated the applicability of TSSAC for removing industrial dyes from aqueous solution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Preparation and characterization of graphene/turbostratic carbon derived from chitosan film for supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Hanappi, M. F. Y. M.; Deraman, M.; Suleman, M.; Othman, M. A. R.; Basri, N. H.; Nor, N. S. M.; Hamdan, E.; Sazali, N. E. S.; Tajuddin, N. S. M.

    2018-04-01

    Electrochemical capacitors or supercapacitors are the potential energy storage devices which are known for having higher specific capacitance and specific energy than electrolytic capacitors. Electric double-layer capacitors (EDLCs) also referred as ultracapacitors is a class of supercapacitors that employ different forms of carbon like activated carbon, CNT, graphene etc., as electrodes. The performance of the supercapacitors is determined by its components namely electrolyte, electrode, etc. Carbon electrodes with high surface area and desired pore size distribution are always preferred and which can be tailored by varying the precursor and method of preparation. In recent years, owing to their low cost, ease of synthesis, high stability and conductivity, the activated carbons derived from biomass precursors have been investigated as potential electrode material for the EDLCs. In this report, we present the preparation and characterization of graphene/turbostratic carbon monolith (CM) electrodes from the carbon grains (CGs) obtained by carbonization (under the flow of nitrogen, N2 gas and over a temperature range from 600 °C to 1000 °C) of biomass precursor chitosan film. The procedure to prepare the chitosan film is described elsewhere. The carbon grains are characterized using Raman spectroscopy (RS) and X-ray diffraction (XRD). We expect that the CGs would have the similar characteristics as graphene and would be a potential electrode material for EDLCs application.

  3. Highly stretchable strain sensor based on SWCNTs/CB synergistic conductive network for wearable human-activity monitoring and recognition

    NASA Astrophysics Data System (ADS)

    Guo, Xiaohui; Huang, Ying; Zhao, Yunong; Mao, Leidong; Gao, Le; Pan, Weidong; Zhang, Yugang; Liu, Ping

    2017-09-01

    Flexible, stretchable, and wearable strain sensors have attracted significant attention for their potential applications in human movement detection and recognition. Here, we report a highly stretchable and flexible strain sensor based on a single-walled carbon nanotube (SWCNTs)/carbon black (CB) synergistic conductive network. The fabrication, synergistic conductive mechanism, and characterization of the sandwich-structured strain sensor were investigated. The experimental results show that the device exhibits high stretchability (120%), excellent flexibility, fast response (˜60 ms), temperature independence, and superior stability and reproducibility during ˜1100 stretching/releasing cycles. Furthermore, human activities such as the bending of a finger or elbow and gestures were monitored and recognized based on the strain sensor, indicating that the stretchable strain sensor based on the SWCNTs/CB synergistic conductive network could have promising applications in flexible and wearable devices for human motion monitoring.

  4. Highly dispersed Pt-Ni nanoparticles on nitrogen-doped carbon nanotubes for application in direct methanol fuel cells.

    PubMed

    Jiang, Shujuan; Ma, Yanwen; Tao, Haisheng; Jian, Guoqiang; Wang, Xizhang; Fan, Yining; Zhu, Jianmin; Hu, Zheng

    2010-06-01

    Binary Pt-Ni alloyed nanoparticles supported on nitrogen-doped carbon nanotubes (NCNTs) have been facilely constructed without pre-modification by making use of the active sites in NCNTs due to the N-participation. So-obtained binary Pt-Ni alloyed nanoparticles have been highly dispersed on the outer surface of the support with the size of about 3-4 nm. The electrochemical properties of the catalysts for methanol oxidation have been systematically evaluated. Binary Pt-Ni alloyed composites with molar ratio (Pt:Ni) of 3:2 and 3:1 present enhanced electrocatalytic activities and improved tolerance to CO poisoning as well as the similar stability, in comparison with the commercial Pt/C catalyst and the monometallic Pt/NCNTs catalysts. These results imply that so-constructed nanocomposite catalysts have the potential for applications in direct methanol fuel cells.

  5. Metal-free hybrids of graphitic carbon nitride and nanodiamonds for photoelectrochemical and photocatalytic applications.

    PubMed

    Zhou, Li; Zhang, Huayang; Guo, Xiaochen; Sun, Hongqi; Liu, Shaomin; Tade, Moses O; Wang, Shaobin

    2017-05-01

    Graphitic carbon nitride (g-C 3 N 4 ) has been considered as a metal-free, cost-effective, eco-friendly and efficient catalyst for various photoelectrochemical applications. However, compared to conventional metal-based photocatalysts, its photocatalytic activity is still low because of the low mobility of carriers restricted by the polymer nature. Herein, a series of hybrids of g-C 3 N 4 (GCN) and nanodiamonds (NDs) were synthesized using a solvothermal method. The photoelectrochemical performance and photocatalytic efficiency of the GCN/NDs were investigated by means of the generation of photocurrent and photodegradation of methylene blue (MB) solutions under UV-visible light irradiations. In this study, the sample of GCN/ND-33% derived from 0.1g GCN and 0.05g NDs displayed the highest photocatalytic activity and the strongest photocurrent density. The mechanism of enhanced photoelectrochemical and photocatalytic performances was also discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The role of beaded activated carbon's pore size distribution on heel formation during cyclic adsorption/desorption of organic vapors.

    PubMed

    Jahandar Lashaki, Masoud; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2016-09-05

    The effect of activated carbon's pore size distribution (PSD) on heel formation during adsorption of organic vapors was investigated. Five commercially available beaded activated carbons (BAC) with varying PSDs (30-88% microporous) were investigated. Virgin samples had similar elemental compositions but different PSDs, which allowed for isolating the contribution of carbon's microporosity to heel formation. Heel formation was linearly correlated (R(2)=0.91) with BAC micropore volume; heel for the BAC with the lowest micropore volume was 20% lower than the BAC with the highest micropore volume. Meanwhile, first cycle adsorption capacities and breakthrough times correlated linearly (R(2)=0.87 and 0.93, respectively) with BAC total pore volume. Micropore volume reduction for all BACs confirmed that heel accumulation takes place in the highest energy pores. Overall, these results show that a greater portion of adsorbed species are converted into heel on highly microporous adsorbents due to higher share of high energy adsorption sites in their structure. This differs from mesoporous adsorbents (low microporosity) in which large pores contribute to adsorption but not to heel formation, resulting in longer adsorbent lifetime. Thus, activated carbon with high adsorption capacity and high mesopore fraction is particularly desirable for organic vapor application involving extended adsorption/regeneration cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Electrophilic activation and cycloisomerization of enynes: a new route to functional cyclopropanes.

    PubMed

    Bruneau, Christian

    2005-04-15

    Transformations of enynes in the presence of transition-metal catalysts have played an important role in the preparation of a variety of cyclic compounds. Recent developments in the activation of triple carbon-carbon bonds by electrophilic metal centers have provided a new entry to the selective synthesis of cyclopropane derivatives from enynes. The mechanisms of these reactions involve catalytic species with both ionic and cyclopropylcarbenoid character. This type of activation will undoubtedly be further developed for application to other unsaturated hydrocarbons and inspire new catalytic cascade reaction sequences. This Minireview discusses the recent developments in electrophilic activation of enynes and shows that simple catalysts such as [Ru(3)(CO)(12)], PtCl(2), and cationic gold complexes are efficient precursors to promote the formation of functional polyclic compounds.

  8. Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies.

    PubMed

    Goel, Jyotsna; Kadirvelu, Krishna; Rajagopal, Chitra; Kumar Garg, Vinod

    2005-10-17

    In the present study, a deeper understanding of adsorption behavior of Pb(II) from aqueous systems onto activated carbon and treated activated carbon has been attempted via static and column mode studies under various conditions. It probes mainly two adsorbents that is, activated carbon (AC) and modified activated carbon (AC-S). Characterization of both the adsorbents was one of the key focal areas of the present study. This has shown a clear change or demarcation in the various physical and chemical properties of the modified adsorbent from its precursor activated carbon. Both the adsorbents are subjected to static mode adsorption studies and then after a comparison based on isotherm analysis; more efficient adsorbent is screened for column mode adsorption studies. The lead removal increased for sample of treated carbon. The extent of Pb(II) removal was found to be higher in the treated activated carbon. The aim of carrying out the continuous-flow studies was to assess the effect of various process variables, viz., of bed height, hydraulic loading rate and initial feed concentration on breakthrough time and adsorption capacity. This has helped in ascertaining the practical applicability of the adsorbent. Breakthrough curves were plotted for the adsorption of lead on the adsorbent using continuous-flow column operation by varying different operating parameters like hydraulic loading rate (3.0-10.5 m3/(hm2)), bed height (0.3-0.5 m) and feed concentrations (2.0-6.0 mg/l). At the end, an attempt has also been made to model the data generated from column studies using the empirical relationship based on Bohart-Adams model. This model has provided an objective framework to the subjective interpretation of the adsorption system and the model constant obtained here can be used to achieve the ultimate objective of our study that is, up scaling and designing of adsorption process at the pilot plant scale level. AC-S column regeneration using 0.5 and 1.0M concentration of HNO3 has been investigated. It has shown a regeneration efficiency of 52.0% with 0.5 M HNO3.

  9. The application of prepared porous carbon materials: Effect of different components on the heavy metal adsorption.

    PubMed

    Song, Min; Wei, Yuexing; Yu, Lei; Tang, Xinhong

    2016-06-01

    In this study, five typical municipal solid waste (MSW) components (tyres, cardboard, polyvinyl chloride (PVC), acrylic textile, toilet paper) were used as raw materials to prepare four kinds of MSW-based carbon materials (paperboard-based carbon materials (AC1); the tyres and paperboard-based carbon materials (AC2); the tyres, paperboard and PVC-based carbon materials (AC3); the tyres, paperboard, toilet paper, PVC and acrylic textile-based carbon materials (AC4)) by the KOH activation method. The characteristic results illustrate that the prepared carbon adsorbents exhibited a large pore volume, high surface area and sufficient oxygen functional groups. Furthermore, the application of AC1, AC2, AC3, AC4 on different heavy metal (Cu(2+), Zn(2+), Pb(2+), Cr(3+)) removals was explored to investigate their adsorption properties. The effects of reaction time, pH, temperature and adsorbent dosage on the adsorption capability of heavy metals were investigated. Comparisons of heavy metal adsorption on carbon of different components were carried out. Among the four samples, AC1 exhibits the highest adsorption capacity for Cu(2+); the highest adsorption capacities of Pb(2+) and Zn(2+) are obtained for AC2; that of Cr(3+) are obtained for AC4. In addition, the carbon materials exhibit better adsorption capability of Cu(2+) and Pb(2+) than the other two kind of metal ions (Zn(2+) and Cr(3+)). © The Author(s) 2016.

  10. From Allergens to Battery Anodes: Nature-Inspired, Pollen Derived Carbon Architectures for Room- and Elevated- Temperature Li-ion Storage

    PubMed Central

    Tang, Jialiang; Pol, Vilas G.

    2016-01-01

    The conversion of allergic pollen grains into carbon microstructures was carried out through a facile, one-step, solid-state pyrolysis process in an inert atmosphere. The as-prepared carbonaceous particles were further air activated at 300 °C and then evaluated as lithium ion battery anodes at room (25 °C) and elevated (50 °C) temperatures. The distinct morphologies of bee pollens and cattail pollens are resembled on the final architecture of produced carbons. Scanning Electron Microscopy images shows that activated bee pollen carbon (ABP) is comprised of spiky, brain-like, and tiny spheres; while activated cattail pollen carbon (ACP) resembles deflated spheres. Structural analysis through X-ray diffraction and Raman spectroscopy confirmed their amorphous nature. X-ray photoelectron spectroscopy analysis of ABP and ACP confirmed that both samples contain high levels of oxygen and small amount of nitrogen contents. At C/10 rate, ACP electrode delivered high specific lithium storage reversible capacities (590 mAh/g at 50 °C and 382 mAh/g at 25 °C) and also exhibited excellent high rate capabilities. Through electrochemical impedance spectroscopy studies, improved performance of ACP is attributed to its lower charge transfer resistance than ABP. Current studies demonstrate that morphologically distinct renewable pollens could produce carbon architectures for anode applications in energy storage devices. PMID:26846311

  11. From Allergens to Battery Anodes: Nature-Inspired, Pollen Derived Carbon Architectures for Room- and Elevated- Temperature Li-ion Storage

    NASA Astrophysics Data System (ADS)

    Tang, Jialiang; Pol, Vilas G.

    2016-02-01

    The conversion of allergic pollen grains into carbon microstructures was carried out through a facile, one-step, solid-state pyrolysis process in an inert atmosphere. The as-prepared carbonaceous particles were further air activated at 300 °C and then evaluated as lithium ion battery anodes at room (25 °C) and elevated (50 °C) temperatures. The distinct morphologies of bee pollens and cattail pollens are resembled on the final architecture of produced carbons. Scanning Electron Microscopy images shows that activated bee pollen carbon (ABP) is comprised of spiky, brain-like, and tiny spheres; while activated cattail pollen carbon (ACP) resembles deflated spheres. Structural analysis through X-ray diffraction and Raman spectroscopy confirmed their amorphous nature. X-ray photoelectron spectroscopy analysis of ABP and ACP confirmed that both samples contain high levels of oxygen and small amount of nitrogen contents. At C/10 rate, ACP electrode delivered high specific lithium storage reversible capacities (590 mAh/g at 50 °C and 382 mAh/g at 25 °C) and also exhibited excellent high rate capabilities. Through electrochemical impedance spectroscopy studies, improved performance of ACP is attributed to its lower charge transfer resistance than ABP. Current studies demonstrate that morphologically distinct renewable pollens could produce carbon architectures for anode applications in energy storage devices.

  12. From Allergens to Battery Anodes: Nature-Inspired, Pollen Derived Carbon Architectures for Room- and Elevated-Temperature Li-ion Storage.

    PubMed

    Tang, Jialiang; Etacheri, Vinodkumar; Pol, Vilas G

    2016-02-05

    The conversion of allergic pollen grains into carbon microstructures was carried out through a facile, one-step, solid-state pyrolysis process in an inert atmosphere. The as-prepared carbonaceous particles were further air activated at 300 °C and then evaluated as lithium ion battery anodes at room (25 °C) and elevated (50 °C) temperatures. The distinct morphologies of bee pollens and cattail pollens are resembled on the final architecture of produced carbons. Scanning Electron Microscopy images shows that activated bee pollen carbon (ABP) is comprised of spiky, brain-like, and tiny spheres; while activated cattail pollen carbon (ACP) resembles deflated spheres. Structural analysis through X-ray diffraction and Raman spectroscopy confirmed their amorphous nature. X-ray photoelectron spectroscopy analysis of ABP and ACP confirmed that both samples contain high levels of oxygen and small amount of nitrogen contents. At C/10 rate, ACP electrode delivered high specific lithium storage reversible capacities (590 mAh/g at 50 °C and 382 mAh/g at 25 °C) and also exhibited excellent high rate capabilities. Through electrochemical impedance spectroscopy studies, improved performance of ACP is attributed to its lower charge transfer resistance than ABP. Current studies demonstrate that morphologically distinct renewable pollens could produce carbon architectures for anode applications in energy storage devices.

  13. A simple and green pathway toward nitrogen and sulfur dual doped hierarchically porous carbons from ionic liquids for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Cui, Zhentao; Wang, Shuguang; Zhang, Yihe; Cao, Minhua

    2014-08-01

    We for the first time demonstrate a simple and green approach to heteroatom (N and S) co-doped hierarchically porous carbons (N-S-HC) with high surface area by using one organic ionic liquid as nitrogen, sulfur and carbon sources and the eutectic salt as templating. The resultant dual-doped N-S-HC catalysts exhibit significantly enhanced electrocatalytic activity, long-term operation stability, and tolerance to crossover effect compared to commercial Pt/C for oxygen reduction reactions (ORR) in alkaline environment. The excellent electrocatalytic performance may be attributed to the synergistic effects, which includes more catalytic sites for ORR provided by N-S heteroatom doping and high electron transfer rate provided by hierarchically porous structure. The DFT calculations reveal that the dual doping of S and N atoms lead to the redistribution of spin and charge densities, which may be responsible for the formation of a large number of carbon atom active sites. This newly developed approach may supply an efficient platform for the synthesis of a series of heteroatom doped carbon materials for fuel cells and other applications.

  14. Two-Dimensional N,S-Codoped Carbon/Co 9 S 8 Catalysts Derived from Co(OH) 2 Nanosheets for Oxygen Reduction Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua

    Investigation of highly active and cost-efficient electrocatalysts for oxygen reduction reaction is of great importance in a wide range of clean energy devices, including fuel cells and metal-air batteries. Herein, the simultaneous formation of Co9S8 and N,S-codoped carbon was achieved in a dual templates system. First, Co(OH)2 nanosheets and tetraethyl orthosilicate were utilized to direct the formation of two-dimensional carbon precursors, which were then dispersed into thiourea solution. After subsequent pyrolysis and templates removal, N/S-codoped porous carbon sheets confined Co9S8 catalysts (Co9S8/NSC) were obtained. Owing to the morphological and compositional advantages as well as the synergistic effects, the resultant Co9S8/NSCmore » catalysts with modified doping level and pyrolysis degree exhibit superior ORR catalytic activity and long-term stability compared with the state-of-the-art Pt/C catalyst in alkaline media. Remarkably, the as-prepared carbon composites also reveal exceptional tolerance of methanol, indicating their potential applications in fuel cells.« less

  15. Heteroatom-enriched and renewable banana-stem-derived porous carbon for the electrochemical determination of nitrite in various water samples

    PubMed Central

    Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming

    2014-01-01

    For the first time, high-surface-area (approximately 1465 m2 g−1), highly porous and heteroatom-enriched activated carbon (HAC) was prepared from banana stems (Musa paradisiaca, Family: Musaceae) at different carbonization temperatures of 700, 800 and 900°C (HAC) using a simple and eco-friendly method. The amounts of carbon, hydrogen, nitrogen and sulfur in the HAC are 61.12, 2.567, 0.4315, and 0.349%, respectively. Using X-ray diffraction (XRD), CHNS elemental analysis, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, the prepared activated carbon appears amorphous and disordered in nature. Here, we used HAC for an electrochemical application of nitrite (NO2−) sensor to control the environmental pollution. In addition, HAC exhibits noteworthy performance for the highly sensitive determination of nitrite. The limit of detection (LODs) of the nitrite sensor at HAC-modified GCE is 0.07 μM. In addition, the proposed method was applied to determine nitrite in various water samples with acceptable results. PMID:24755990

  16. In situ application of activated carbon and biochar to PCB-contaminated soil and the effects of mixing regime.

    PubMed

    Denyes, Mackenzie J; Rutter, Allison; Zeeb, Barbara A

    2013-11-01

    The in situ use of carbon amendments such as activated carbon (AC) and biochar to minimize the bioavailability of organic contaminants is gaining in popularity. In the first in situ experiment conducted at a Canadian PCB-contaminated Brownfield site, GAC and two types of biochar were statistically equal at reducing PCB uptake into plants. PCB concentrations in Cucurbita pepo root tissue were reduced by 74%, 72% and 64%, with the addition of 2.8% GAC, Burt's biochar and BlueLeaf biochar, respectively. A complementary greenhouse study which included a bioaccumulation study of Eisenia fetida (earthworm), found mechanically mixing carbon amendments with PCB-contaminated soil (i.e. 24 h at 30 rpm) resulted in shoot, root and worm PCB concentrations 66%, 59% and 39% lower than in the manually mixed treatments (i.e. with a spade and bucket). Therefore, studies which mechanically mix carbon amendments with contaminated soil may over-estimate the short-term potential to reduce PCB bioavailability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A hierarchically honeycomb-like carbon via one-step surface and pore adjustment with superior capacity for lithium-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Li, Jing; Zhang, Yining; Zhou, Wei; Nie, Hongjiao; Zhang, Huamin

    2014-09-01

    Li-O2 batteries have attracted considerable attention due to their high energy density. The critical challenges that limit the practical applications include effective utilization of electrode space for solid products deposition and acceptable cycling performance. In the present work, a nitrogen-doped micron-sized honeycomb-like carbon is developed for use as a cathode material for Li-O2 batteries. This novel material is obtained by using nano-CaCO3 particles as hard template and sucrose as the carbon source, followed by thermal annealing at 800 °C in ammonia. With one-step ammonia activation, surface nitrogenation and further pore structure optimization are realized simultaneously. The material exhibits enhanced activity for oxygen reduction reaction and oxygen transfer ability. Surprisingly, an improved cycling stability is also obtained. As a result, a superior discharge capacity up to 12,600 mAh g-1 is achieved, about 4 times that of commercial Ketjenblack carbon. The results provide a novel route to construct effective non-metal carbon-based cathodes for high performance of Li-O2 batteries.

  18. Synthesis, characterization and photocatalytic activity of neodymium carbonate and neodymium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Aghazadeh, Mustafa; Ganjali, Mohammad Reza; Karimi, Meisam Sadeghpour; Norouzi, Parviz

    2017-12-01

    This work focuses on the application of an orthogonal array design to the optimization of the facile direct carbonization reaction for the synthesis of neodymium carbonate nanoparticles, were the product particles are prepared based on the direct precipitation of their ingredients. To optimize the method the influences of the major operating conditions on the dimensions of the neodymium carbonate particles were quantitatively evaluated through the analysis of variance (ANOVA). It was observed that the crystalls of the carbonate salt can be synthesized by controlling neodymium concentration and flow rate, as well as reactor temperature. Based on the results of ANOVA, 0.03 M, 2.5 mL min-1 and 30 °C are the optimum values for the above-mentioend parameters and controlling the parameters at these values yields nanoparticles with the sizes of about of 31 ± 2 nm. The product of this former stage was next used as the feed for a thermal decomposition procedure which yielding neodymium oxide nanoparticles. The products were studied through X-ray diffraction (XRD), SEM, TEM, FT-IR and thermal analysis techniques. In addition, the photocatalytic activity of dyspersium carbonate and dyspersium oxide nanoparticles were investigated using degradation of methyl orange (MO) under ultraviolet light.

  19. Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals

    NASA Astrophysics Data System (ADS)

    Murphy, John J.; Bastida, David; Paria, Suva; Fagnoni, Maurizio; Melchiorre, Paolo

    2016-04-01

    An important goal of modern organic chemistry is to develop new catalytic strategies for enantioselective carbon-carbon bond formation that can be used to generate quaternary stereogenic centres. Whereas considerable advances have been achieved by exploiting polar reactivity, radical transformations have been far less successful. This is despite the fact that open-shell intermediates are intrinsically primed for connecting structurally congested carbons, as their reactivity is only marginally affected by steric factors. Here we show how the combination of photoredox and asymmetric organic catalysis enables enantioselective radical conjugate additions to β,β-disubstituted cyclic enones to obtain quaternary carbon stereocentres with high fidelity. Critical to our success was the design of a chiral organic catalyst, containing a redox-active carbazole moiety, that drives the formation of iminium ions and the stereoselective trapping of photochemically generated carbon-centred radicals by means of an electron-relay mechanism. We demonstrate the generality of this organocatalytic radical-trapping strategy with two sets of open-shell intermediates, formed through unrelated light-triggered pathways from readily available substrates and photoredox catalysts—this method represents the application of iminium ion activation (a successful catalytic strategy for enantioselective polar chemistry) within the realm of radical reactivity.

  20. Effects of natural organic matter on PCB-activated carbon sorption kinetics: implications for sediment capping applications.

    PubMed

    Fairey, Julian L; Wahman, David G; Lowry, Gregory V

    2010-01-01

    In situ capping of polychlorinated biphenyl (PCB)-contaminated sediments with a layer of activated carbon has been proposed, but several questions remain regarding the long-term effectiveness of this remediation strategy. Here, we assess the degree to which kinetic limitations, size exclusion effects, and electrostatic repulsions impaired PCB sorption to activated carbon. Sorption of 11 PCB congeners with activated carbon was studied in fixed bed reactors with organic-free water (OFW) and Suwannee River natural organic matter (SR-NOM), made by reconstituting freeze-dried SR-NOM at a concentration of 10 mg L(-1) as carbon. In the OFW test, no PCBs were detected in the column effluent over the 390-d study, indicating that PCB-activated carbon equilibrium sorption capacities may be achieved before breakthrough even at the relatively high hydraulic loading rate (HLR) of 3.1 m h(-1). However, in the SR-NOM fixed-bed test, partial PCB breakthrough occurred over the entire 320-d test (HLRs of 3.1-, 1.5-, and 0.8 m h(-1)). Simulations from a modified pore and surface diffusion model indicated that external (film diffusion) mass transfer was the dominant rate-limiting step but that internal (pore diffusion) mass transfer limitations were also present. The external mass transfer limitation was likely caused by formation of PCB-NOM complexes that reduced PCB sorption through a combination of (i) increased film diffusion resistance; (ii) size exclusion effects; and (iii) electrostatic repulsive forces between the PCBs and the NOM-coated activated carbon. However, the seepage velocities in the SR-NOM fixed bed test were about 1000 times higher than would be expected in a sediment cap. Therefore, additional studies are needed to assess whether the mass transfer limitations described here would be likely to manifest themselves at the lower seepage velocities observed in practice.

  1. Design, fabrication, and evaluation of on-chip micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Beidaghi, Majid

    Due to the increasing demand for high power and reliable miniaturized energy storage devices, the development of micro-supercapacitors or electrochemical micro-capacitors have attracted much attention in recent years. This dissertation investigates several strategies to develop on-chip micro-supercapacitors with high power and energy density. Micro-supercapacitors based on interdigitated carbon micro-electrode arrays are fabricated through carbon microelectromechanical systems (C-MEMS) technique which is based on carbonization of patterned photoresist. To improve the capacitive behavior, electrochemical activation is performed on carbon micro-electrode arrays. The developed micro-supercapacitors show specific capacitances as high as 75 mFcm-2 at a scan rate of 5 mVs -1 after electrochemical activation for 30 minutes. The capacitance loss is less than 13% after 1000 cyclic voltammetry (CV) cycles. These results indicate that electrochemically activated C-MEMS micro-electrode arrays are promising candidates for on-chip electrochemical micro-capacitor applications. The energy density of micro-supercapacitors was further improved by conformal coating of polypyrrole (PPy) on C-MEMS structures. In these types of micro-devices the three dimensional (3D) carbon microstructures serve as current collectors for high energy density PPy electrodes. The electrochemical characterizations of these micro-supercapacitors show that they can deliver a specific capacitance of about 162.07 mFcm-2 and a specific power of 1.62mWcm -2 at a 20 mVs-1 scan rate. Addressing the need for high power micro-supercapacitors, the application of graphene as electrode materials for micro-supercapacitor was also investigated. The present study suggests a novel method to fabricate graphene-based micro-supercapacitors with thin film or in-plane interdigital electrodes. The fabricated micro-supercapacitors show exceptional frequency response and power handling performance and could effectively charge and discharge at rates as high as 50 Vs-1. CV measurements show that the specific capacitance of the micro-supercapacitor based on reduced graphene oxide and carbon nanotube composites is 6.1 mFcm -2 at scan rate of 0.01Vs-1. At a very high scan rate of 50 Vs-1, a specific capacitance of 2.8 mFcm-2 (stack capacitance of 3.1 Fcm-3) is recorded. This unprecedented performance can potentially broaden the future applications of micro-supercapacitors.

  2. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications

    PubMed Central

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan

    2016-01-01

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications. PMID:27472335

  3. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications.

    PubMed

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan

    2016-07-26

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.

  4. Solar Probe thermal shield design and testing

    NASA Technical Reports Server (NTRS)

    Millard, Jerry M.; Miyake, Robert N.; Rainen, Richard A.

    1992-01-01

    This paper discusses the major thermal shield subsystem development activities in support of the Solar Probe study being conducted at JPL. The Solar Probe spacecraft will travel to within 4 solar radii of the sun's center to perform fundamental experiments in space physics. Exposure to 2900 earth suns at perihelion requires the spacecraft to be protected within the shadow envelope of a protective shield. In addition, the mass loss rate off of the shield at elevated temperature must comply with plasma instrument requirements and has become the driver of the shield design. This paper will focus on the analytical design work to size the shield and control the shield mass loss rate for the various spacecraft options under study, the application of carbon-carbon materials for shield components, development and preparation of carbon-carbon samples for materials testing, and a materials testing program for carbon-carbon and tungsten alloys to investigate thermal/optical properties, mass loss (carbon-carbon only), material integrity, and high velocity impact behavior.

  5. Ultrahigh surface area carbon from carbonated beverages: Combining self-templating process and in situ activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua

    Ultrahigh surface area carbons (USACs, e.g., >2000 m2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. This strategy coversmore » various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, and Fanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g-1) even at a scan rate of 1000 mV s-1. Thus, a simple and efficient strategy to USACs has been presented.« less

  6. Ultrahigh surface area carbon from carbonated beverages. Combining self-templaing process and in situ activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua

    Ultrahigh surface area carbons (USACs, e.g., >2000 m 2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m 2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. Thismore » strategy covers various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, andFanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m 2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g -1) even at a scan rate of 1000 mV s -1. Thus, a simple and efficient strategy to USACs has been presented.« less

  7. Ultrahigh surface area carbon from carbonated beverages. Combining self-templaing process and in situ activation

    DOE PAGES

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua; ...

    2015-05-11

    Ultrahigh surface area carbons (USACs, e.g., >2000 m 2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m 2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. Thismore » strategy covers various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, andFanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m 2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g -1) even at a scan rate of 1000 mV s -1. Thus, a simple and efficient strategy to USACs has been presented.« less

  8. Reversible Assembly of Graphitic Carbon Nitride 3D Network for Highly Selective Dyes Absorption and Regeneration.

    PubMed

    Zhang, Yuye; Zhou, Zhixin; Shen, Yanfei; Zhou, Qing; Wang, Jianhai; Liu, Anran; Liu, Songqin; Zhang, Yuanjian

    2016-09-27

    Responsive assembly of 2D materials is of great interest for a range of applications. In this work, interfacial functionalized carbon nitride (CN) nanofibers were synthesized by hydrolyzing bulk CN in sodium hydroxide solution. The reversible assemble and disassemble behavior of the as-prepared CN nanofibers was investigated by using CO2 as a trigger to form a hydrogel network at first. Compared to the most widespread absorbent materials such as active carbon, graphene and previously reported supramolecular gel, the proposed CN hydrogel not only exhibited a competitive absorbing capacity (maximum absorbing capacity of methylene blue up to 402 mg/g) but also overcame the typical deficiencies such as poor selectivity and high energy-consuming regeneration. This work would provide a strategy to construct a 3D CN network and open an avenue for developing smart assembly for potential applications ranging from environment to selective extraction.

  9. C-MEMS for bio-sensing applications

    NASA Astrophysics Data System (ADS)

    Song, Yin; Agrawal, Richa; Wang, Chunlei

    2015-05-01

    Developing highly sensitive, selective, and reproducible miniaturized bio-sensing platforms require reliable biointerface which should be compatible with microfabrication techniques. In this study, we have fabricated pyrolyzed carbon arrays with high surface area as a bio-sensing electrode, and developed the surface functionalization methods to increase biomolecules immobilization efficiency and further understand electrochemical phenomena at biointerfaces. The carbon microelectrode arrays with high aspect ratio have been fabricated by carbon microelectromechanical systems (C-MEMS) and nanomaterials such as graphene have been integrated to further increase surface area. To achieve the efficient covalent immobilization of biomolecules, various oxidation and reduction functionalization methods have been investigated. The oxidation treatment in this study includes vacuum ultraviolet, electrochemical activation, UV/Ozone and oxygen RIE. The reduction treatment includes direct amination and diazonium grafting. The developed bio-sensing platform was then applied for several applications, such as: DNA sensor; H2O2 sensor; aptamer sensor and HIV sensor.

  10. First Principles Investigations of Technologically and Environmentally Important Nano-structured Materials and Devices

    NASA Astrophysics Data System (ADS)

    Paul, Sujata

    In the course of my PhD I have worked on a broad range of problems using simulations from first principles: from catalysis and chemical reactions at surfaces and on nanostructures, characterization of carbon-based systems and devices, and surface and interface physics. My research activities focused on the application of ab-initio electronic structure techniques to the theoretical study of important aspects of the physics and chemistry of materials for energy and environmental applications and nano-electronic devices. A common theme of my research is the computational study of chemical reactions of environmentally important molecules (CO, CO2) using high performance simulations. In particular, my principal aim was to design novel nano-structured functional catalytic surfaces and interfaces for environmentally relevant remediation and recycling reactions, with particular attention to the management of carbon dioxide. We have studied the carbon-mediated partial sequestration and selective oxidation of carbon monoxide (CO), both in the presence and absence of hydrogen, on graphitic edges. Using first-principles calculations we have studied several reactions of CO with carbon nanostructures, where the active sites can be regenerated by the deposition of carbon decomposed from the reactant (CO) to make the reactions self-sustained. Using statistical mechanics, we have also studied the conditions under which the conversion of CO to graphene and carbon dioxide is thermodynamically favorable, both in the presence and in the absence of hydrogen. These results are a first step toward the development of processes for the carbon-mediated partial sequestration and selective oxidation of CO in a hydrogen atmosphere. We have elucidated the atomic scale mechanisms of activation and reduction of carbon dioxide on specifically designed catalytic surfaces via the rational manipulation of the surface properties that can be achieved by combining transition metal thin films on oxide substrates. We have analyzed the mechanisms of the molecular reactions on the class of catalytic surfaces so designed in an effort to optimize materials parameters in the search of optimal catalytic materials. All these studies are likely to bring new perspectives and substantial advancement in the field of high-performance simulations in catalysis and the characterization of nanostructures for energy and environmental applications. Moving to novel materials for electronics applications, I have studied the structural and vibrational properties of mono and bi-layer graphene. I have characterized the lattice thermal conductivity of ideal monolayer and bi-layer graphene, demonstrating that their behavior is similar to that observed in graphite and indicating that the intra-layer coupling does not affect significantly the thermal conductance. I have also calculated the electron-phonon interaction in monolayer graphene and obtained electron scattering rates associated with all phonon modes and the intrinsic resistivity/mobility of monolayer graphene is estimated as a function of temperature. On another project, I have worked on ab initio molecular dynamic studies of novel Phase Change Materials (PCM) for memory and 3D-integration. We characterized high-temperature, sodium | nickel chloride, rechargeable batteries. These batteries are under consideration for hybrid drive systems in transportation applications. As part of our activities to improve performance and reliability of these batteries, we developed an engineering transport model of the component electrochemical cell. To support that model, we have proposed a reaction kinetics expression for the REDOX (reduction-oxidation) reaction at the porous positive electrode. We validate the kinetics expression with electrochemical measurements. A methodology based on the transistor body effect is used to estimate inversion oxide thicknesses (Tinv) in high-kappa/metal gate, undoped, ultra-thin body SOI FINFETs. The extracted Tinvs are compared to independent capacitance voltage (CV) measurements.

  11. Laser-induced forward transfer of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Palla-Papavlu, A.; Dinescu, M.; Wokaun, A.; Lippert, T.

    2014-10-01

    The objective of this work is the application of laser-induced forward transfer (LIFT) for the fabrication of chemiresistor sensors. The receiver substrate is an array with metal electrodes and the active materials placed by LIFT are single-walled carbon nanotubes (SWCNT). The functionality of such sensors depends on the geometry of the active material onto the metallic electrodes. First the best geometry for the sensing materials and electrodes was determined, including the optimization of the process parameters for printing uniform pixels of SWCNT onto the sensor electrodes. The sensors were characterized in terms of their sensing characteristics, i.e., upon exposure to ammonia, proving the feasibility of LIFT.

  12. Novel Acid Catalysts from Waste-Tire-Derived Carbon: Application in Waste-to-Biofuel Conversion

    DOE PAGES

    Hood, Zachary D.; Adhikari, Shiba P.; Li, Yunchao; ...

    2017-06-21

    Many inexpensive biofuel feedstocks, including those containing free fatty acids (FFAs) in high concentrations, are typically disposed of as waste due to our inability to efficiently convert them into usable biofuels. Here we demonstrate that carbon derived from waste tires could be functionalized with sulfonic acid (-SO 3H) to effectively catalyze the esterification of oleic acid or a mixture of fatty acids to usable biofuels. Waste tires were converted to hard carbon, then functionalized with catalytically active -SO 3H groups on the surface through an environmentally benign process that involved the sequential treatment with L-cysteine, dithiothreitol, and H 2O 2.more » In conclusion, when benchmarked against the same waste-tire derived carbon material treated with concentrated sulfuric acid at 150 °C, similar catalytic activity was observed. Both catalysts could also effectively convert oleic acid or a mixture of fatty acids and soybean oil to usable biofuels at 65 °C and 1 atm without leaching of the catalytic sites.« less

  13. Carbon-neutral energy cycles using alcohols.

    PubMed

    Fukushima, Takashi; Kitano, Sho; Hata, Shinichi; Yamauchi, Miho

    2018-01-01

    We demonstrated carbon-neutral (CN) energy circulation using glycolic acid ( GC )/oxalic acid ( OX ) redox couple. Here, we report fundamental studies on both catalyst search for power generation process, i.e. GC oxidation, and elemental steps for fuel generation process, i.e. OX reduction, in CN cycle. The catalytic activity test on various transition metals revealed that Rh, Pd, Ir, and Pt have preferable features as a catalyst for electrochemical oxidation of GC . A carbon-supported Pt catalyst in alkaline conditions exhibited higher activity, durability, and product selectivity for electrooxidation of GC rather than those in acidic media. The kinetic study on OX reduction clearly indicated that OX reduction undergoes successive two-electron reductions to form GC . Furthermore, application of TiO 2 catalysts with large specific area for electrochemical reduction of OX facilitates the selective formation of GC .

  14. Carbon-neutral energy cycles using alcohols

    PubMed Central

    Fukushima, Takashi; Kitano, Sho; Hata, Shinichi; Yamauchi, Miho

    2018-01-01

    Abstract We demonstrated carbon-neutral (CN) energy circulation using glycolic acid (GC)/oxalic acid (OX) redox couple. Here, we report fundamental studies on both catalyst search for power generation process, i.e. GC oxidation, and elemental steps for fuel generation process, i.e. OX reduction, in CN cycle. The catalytic activity test on various transition metals revealed that Rh, Pd, Ir, and Pt have preferable features as a catalyst for electrochemical oxidation of GC. A carbon-supported Pt catalyst in alkaline conditions exhibited higher activity, durability, and product selectivity for electrooxidation of GC rather than those in acidic media. The kinetic study on OX reduction clearly indicated that OX reduction undergoes successive two-electron reductions to form GC. Furthermore, application of TiO2 catalysts with large specific area for electrochemical reduction of OX facilitates the selective formation of GC. PMID:29511392

  15. Artificial neural network and particle swarm optimization for removal of methyl orange by gold nanoparticles loaded on activated carbon and Tamarisk.

    PubMed

    Ghaedi, M; Ghaedi, A M; Ansari, A; Mohammadi, F; Vafaei, A

    2014-11-11

    The influence of variables, namely initial dye concentration, adsorbent dosage (g), stirrer speed (rpm) and contact time (min) on the removal of methyl orange (MO) by gold nanoparticles loaded on activated carbon (Au-NP-AC) and Tamarisk were investigated using multiple linear regression (MLR) and artificial neural network (ANN) and the variables were optimized by partial swarm optimization (PSO). Comparison of the results achieved using proposed models, showed the ANN model was better than the MLR model for prediction of methyl orange removal using Au-NP-AC and Tamarisk. Using the optimal ANN model the coefficient of determination (R2) for the test data set were 0.958 and 0.989; mean squared error (MSE) values were 0.00082 and 0.0006 for Au-NP-AC and Tamarisk adsorbent, respectively. In this study a novel and green approach were reported for the synthesis of gold nanoparticle and activated carbon by Tamarisk. This material was characterized using different techniques such as SEM, TEM, XRD and BET. The usability of Au-NP-AC and activated carbon (AC) Tamarisk for the methyl orange from aqueous solutions was investigated. The effect of variables such as pH, initial dye concentration, adsorbent dosage (g) and contact time (min) on methyl orange removal were studied. Fitting the experimental equilibrium data to various isotherm models such as Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show the suitability and applicability of the Langmuir model. Kinetic models such as pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion models indicate that the second-order equation and intraparticle diffusion models control the kinetic of the adsorption process. The small amount of proposed Au-NP-AC and activated carbon (0.015 g and 0.75 g) is applicable for successful removal of methyl orange (>98%) in short time (20 min for Au-NP-AC and 45 min for Tamarisk-AC) with high adsorption capacity 161 mg g(-1) for Au-NP-AC and 3.84 mg g(-1) for Tamarisk-AC. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Artificial neural network and particle swarm optimization for removal of methyl orange by gold nanoparticles loaded on activated carbon and Tamarisk

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Ghaedi, A. M.; Ansari, A.; Mohammadi, F.; Vafaei, A.

    2014-11-01

    The influence of variables, namely initial dye concentration, adsorbent dosage (g), stirrer speed (rpm) and contact time (min) on the removal of methyl orange (MO) by gold nanoparticles loaded on activated carbon (Au-NP-AC) and Tamarisk were investigated using multiple linear regression (MLR) and artificial neural network (ANN) and the variables were optimized by partial swarm optimization (PSO). Comparison of the results achieved using proposed models, showed the ANN model was better than the MLR model for prediction of methyl orange removal using Au-NP-AC and Tamarisk. Using the optimal ANN model the coefficient of determination (R2) for the test data set were 0.958 and 0.989; mean squared error (MSE) values were 0.00082 and 0.0006 for Au-NP-AC and Tamarisk adsorbent, respectively. In this study a novel and green approach were reported for the synthesis of gold nanoparticle and activated carbon by Tamarisk. This material was characterized using different techniques such as SEM, TEM, XRD and BET. The usability of Au-NP-AC and activated carbon (AC) Tamarisk for the methyl orange from aqueous solutions was investigated. The effect of variables such as pH, initial dye concentration, adsorbent dosage (g) and contact time (min) on methyl orange removal were studied. Fitting the experimental equilibrium data to various isotherm models such as Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show the suitability and applicability of the Langmuir model. Kinetic models such as pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion models indicate that the second-order equation and intraparticle diffusion models control the kinetic of the adsorption process. The small amount of proposed Au-NP-AC and activated carbon (0.015 g and 0.75 g) is applicable for successful removal of methyl orange (>98%) in short time (20 min for Au-NP-AC and 45 min for Tamarisk-AC) with high adsorption capacity 161 mg g-1 for Au-NP-AC and 3.84 mg g-1 for Tamarisk-AC.

  17. Nanostructured nonprecious metal catalysts for oxygen reduction reaction.

    PubMed

    Wu, Gang; Zelenay, Piotr

    2013-08-20

    Platinum-based catalysts represent a state of the art in the electrocatalysis of oxygen reduction reaction (ORR) from the point of view of their activity and durability in harnessing the chemical energy via direct electrochemical conversion. However, because platinum is both expensive and scarce, its widespread implementation in such clean energy applications is limited. Recent breakthroughs in the synthesis of high-performance nonprecious metal catalysts (NPMCs) make replacement of Pt in ORR electrocatalysts with earth-abundant elements, such as Fe, Co, N, and C, a realistic possibility. In this Account, we discuss how we can obtain highly promising M-N-C (M: Fe and/or Co) catalysts by simultaneously heat-treating precursors of nitrogen, carbon, and transition metals at 800-1000 °C. The activity and durability of resulting catalysts depend greatly on the selection of precursors and synthesis chemistry. In addition, they correlate quite well with the catalyst nanostructure. While chemists have presented no conclusive description of the active catalytic site for this class of NPMCs, they have developed a designed approach to making active and durable materials, focusing on the catalyst nanostructure. The approach consists of nitrogen doping, in situ carbon graphitization, and the usage of graphitic structures (possibly graphene and graphene oxides) as carbon precursors. Various forms of nitrogen, particularly pyridinic and quaternary, can act as n-type carbon dopants in the M-N-C catalysts, assisting in the formation of disordered carbon nanostructures and donating electrons to the carbon. The CNx structures are likely a crucial part of the ORR active site(s). Noteworthy, the ORR activity is not necessarily governed by the amount of nitrogen, but by how the nitrogen is incorporated into the nanostructures. Apart from the possibility of a direct participation in the active site, the transition metal often plays an important role in the in situ formation of various carbon nanostructures by catalyzing the decomposition of the nitrogen/carbon precursor. We can control the formation of different nanostructures during the synthesis of M-N-C catalysts. For example, in situ formed nitrogen-doped graphene-sheets can only be derived from polyaniline (PANI), probably due to structural similarities between the aromatic structures of PANI and graphene. Highly-graphitized carbon nanostructures may serve as a matrix for the formation of ORR-active groups with improved catalytic activity and durability, containing nitrogen and most probably also metal atoms. In the future, we will likely focus NPMC synthesis approaches on precise control of interactions between precursors of the metal and carbon/nitrogen during the heat treatment. The main purposes will be to maximize the number of active sites, optimize nitrogen doping levels, and generate morphologies capable of hosting active and stable ORR sites.

  18. Electrochemical reduction of CO2 to CO over Zn in propylene carbonate/tetrabutylammonium perchlorate

    NASA Astrophysics Data System (ADS)

    Shen, Feng-xia; Shi, Jin; Chen, Tian-you; Shi, Feng; Li, Qing-yuan; Zhen, Jian-zheng; Li, Yun-fei; Dai, Yong-nian; Yang, Bin; Qu, Tao

    2018-02-01

    Developing low cost and high efficient electrode for carbon dioxide (CO2) reduction in organic media is essential for practical application. Zn is a cheap metal and has high catalytic effects on CO2 reduction to carbon monoxide (CO) in aqueous solution. However, little attention has been given to investigate the performance of Zn in organic media for CO2 reduction. In present work, we have conducted CO2 reduction in propylene carbonate/tetrabutylammonium perchlorate on Zn due to that propylene carbonate is a widely used industrial absorber, and tetrabutylammonium perchlorate is a commonly used organic supporting electrolyte. In addition, because electrochemical reduction of CO2 to CO naturally produces H2O, we have discussed water effects on CO2 reduction in propylene carbonate/tetrabutylammonium perchlorate+6.8 wt % H2O. Our experiment results reveal that the faradaic efficiency for CO formation reaches to 83%, and the current density remains stable at 6.72 mA/cm2 at voltage -2.3 V for 4 h. Interestingly, Zn presents higher catalytic activity than Ag, and slightly lower than Au. X-ray photoelectron spectroscopy results confirm that no poisonous species is formed and absorbed on the cathode, which is an important advantage in practical application.

  19. Nanostructured Electrocatalysts for All-Vanadium Redox Flow Batteries.

    PubMed

    Park, Minjoon; Ryu, Jaechan; Cho, Jaephil

    2015-10-01

    Vanadium redox reactions have been considered as a key factor affecting the energy efficiency of the all-vanadium redox flow batteries (VRFBs). This redox reaction determines the reaction kinetics of whole cells. However, poor kinetic reversibility and catalytic activity towards the V(2+)/V(3+) and VO(2+)/VO2(+) redox couples on the commonly used carbon substrate limit broader applications of VRFBs. Consequently, modified carbon substrates have been extensively investigated to improve vanadium redox reactions. In this Focus Review, recent progress on metal- and carbon-based nanomaterials as an electrocatalyst for VRFBs is discussed in detail, without the intention to provide a comprehensive review on the whole components of the system. Instead, the focus is mainly placed on the redox chemistry of vanadium ions at a surface of various metals, different dimensional carbons, nitrogen-doped carbon nanostructures, and metal-carbon composites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis of metal free ultrathin graphitic carbon nitride sheet for photocatalytic dye degradation of Rhodamine B under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Rahman, Shakeelur; Momin, Bilal; Higgins M., W.; Annapure, Uday S.; Jha, Neetu

    2018-04-01

    In recent times, low cost and metal free photocatalyts driven under visible light have attracted a lot of interest. One such photo catalyst researched extensively is bulk graphitic carbon nitride sheets. But the low surface area and weak mobility of photo generated electrons limits its photocatalytic performance in the visible light spectrum. Here we present the facile synthesis of ultrathin graphitic carbon nitride using a cost effective melamine precursor and its application in highly efficient photocatalytic dye degradation of Rhodamine B molecules. Compared to bulk graphitic carbon nitride, the synthesized ultrathin graphitic carbon nitride shows an increase in surface area, a a decrease in optical band gap and effective photogenerated charge separation which facilitates the harvest of visible light irradiation. Due to these optimal properties of ultrathin graphitic carbon nitride, it shows excellent photocatalytic activity with photocatalytic degradation of about 95% rhodamine B molecules in 1 hour.

  1. Vertically aligned carbon nanotubes/carbon fiber paper composite to support Pt nanoparticles for direct methanol fuel cell application

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Yi, Xi-bin; Liu, Shuo; Fan, Hui-Li; Ju, Wei; Wang, Qi-Chun; Ma, Jie

    2017-03-01

    Vertically aligned carbon nanotubes (VACNTs) grown on carbon fiber paper (CFP) by plasma enhanced chemical vapor deposition is introduced as a catalyst support material for direct methanol fuel cells (DMFCs). Well dispersed Pt nanoparticles on VACNTs surface are prepared by impregnation-reduction method. The VACNTs on CFP possess well-maintained alignment, large surface area and good electrical conductivity, which leading to the formation of Pt particles with a smaller size and enhance the Pt utilization rate. The structure and nature of resulting Pt/VACNTs/CFP catalysts for methanol oxidation are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD) and scanning electron microscope (SEM). With the aid of VACNTs, well-dispersed Pt catalysts enable the reversibly rapid redox kinetic since electron transport efficiently passes through a one-dimensional pathway, which leads to enhance the catalytic activity and Pt utilization rate. Compared with the Pt/XC-72/CFP electrode, the electrochemical measurements results display that the Pt/VACNTs/CFP catalyst shows much higher electrocatalytic activity and better stability for methanol oxidation. In addition, the oxidation current from 200 to 1200 s decayed more slowly for the Pt/VACNTs/CFP than that of the Pt/XC-72/CFP catalysts, indicating less accumulation of adsorbed CO species. All those results imply that the Pt/VACNTs/CFP has a great potential for applications in DMFCs.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfillmore » gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.« less

  3. Chemical characterization and antioxidant activities comparison in fresh, dried, stir-frying and carbonized ginger.

    PubMed

    Li, Yuxin; Hong, Yan; Han, Yanquan; Wang, Yongzhong; Xia, Lunzhu

    2016-02-01

    Ginger (Zingiber officinale Rosc.) is a common dietary adjunct that contributes to the taste and flavor of foods, and is also an important Traditional Chinese medicine (TCM). Different processing methods can produce different processed gingers with dissimilar chemical constituents and pharmacological activities. In this study, an ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/QTOF-MS) was applied to identify the complicated components from fresh, dried, stir-frying and carbonized ginger extracts. All of the 27 compounds were identified from four kinds of ginger samples (fresh, dried, stir-frying and carbonized ginger). Five main constituents (zingerone, 6-gingerol, 8-gingerol, 6-shogaol and 10-gingerol) in these four kinds of ginger sample extracts were simultaneously determined by UPLC-PDA. Meanwhile, the antioxidant effect of fresh, dried, stir-frying and carbonized gingers were evaluated by three assays (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzthiazolinesulfonic acid) diammonium salt (ABTS), and ferric reducing antioxidant power (FRAP)). The results demonstrated that antioxidant activity of dried ginger was the highest, for its phenolic contents are 5.2-, 1.1- and 2.4-fold higher than that of fresh, stir-frying and carbonized ginger, respectively, the antioxidant activities' results indicated a similar tendency with phenolic contents: dried ginger>stir-frying ginger>fresh ginger>carbonized ginger. The processing contributed to the decreased concentration of gingerols and the increased levels of shogaols, which reducing the antioxidant effects in pace with processing. This study elucidated the relationship of the heating process with the constituents and antioxidant activity, and provided a guide for choosing different kinds of ginger samples on clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. [Greenhouse gas emissions, carbon leakage and net carbon sequestration from afforestation and forest management: A review.

    PubMed

    Liu, Bo Jie; Lu, Fei; Wang, Xiao Ke; Liu, Wei Wei

    2017-02-01

    Forests play an important role in climate change mitigation and concentration of CO 2 reduction in the atmosphere. Forest management, especially afforestation and forest protection, could increase carbon stock of forests significantly. Carbon sequestration rate of afforestation ranges from 0.04 to 7.52 t C·hm -2 ·a -1 , while that of forest protection is 0.33-5.20 t C·hm -2 ·a -1 . At the same time, greenhouse gas (GHG) is generated within management boundary due to the production and transportation of the materials consumed in relevant activities of afforestation and forest management. In addition, carbon leakage is also generated outside boundary from activity shifting, market effects and change of environments induced by forest management. In this review, we summarized the definition of emission sources of GHG, monitoring methods, quantity and rate of greenhouse gas emissions within boundary of afforestation and forest management. In addition, types, monitoring methods and quantity of carbon leakage outside boundary of forest management were also analyzed. Based on the reviewed results of carbon sequestration, we introduced greenhouse gas emissions within boundary and carbon leakage, net carbon sequestration as well as the countervailing effects of greenhouse gas emissions and carbon leakage to carbon sequestration. Greenhouse gas emissions within management boundary counteract 0.01%-19.3% of carbon sequestration, and such counteraction could increase to as high as 95% considering carbon leakage. Afforestation and forest management have substantial net carbon sequestration benefits, when only taking direct greenhouse gas emissions within boundary and measurable carbon leakage from activity shifting into consideration. Compared with soil carbon sequestration measures in croplands, afforestation and forest management is more advantageous in net carbon sequestration and has better prospects for application in terms of net mitigation potential. Along with the implementation of the new stage of key ecological stewardship projects in China as well as the concern on carbon benefits brought by projects, it is necessary to make efforts to increase net carbon sequestration via reducing greenhouse gas emissions and carbon leakage. Rational planning before start-up of the projects should be promoted to avoid carbon emissions due to unnecessary consumption of materials and energy. Additionally, strengthening the control and monitoring on greenhouse gas emissions and carbon leakage during the implementation of projects are also advocated.

  5. Sea urchin-likeNiCoO2@C nanocompositesforLi-ionbatteries and supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Jin; Xi, Kai; Tan, Guoqiang

    The rational construction of battery electrode architecture that offers both high energy and power densities on a gravimetric and volumetric basis is a critical concern but achieving this aim is beset by many fundamental and practical challenges. Here we report a new sea urchin-like NiCoO2@C composite electrode architecture composed of NiCoO2 nanosheets grown on hollow concave carbon disks. Such a unique structural design not only preserves all the advantages of hollow structures but also increases the packing density of the active materials. NiCoO2 nanosheets grown on carbon disks promote a high utilization of active materials in redox reactions by reducingmore » the path length for Li+ ions and for electron transfer. Meanwhile, the hollow concave carbon not only reduces the volume change, but also improves the volumetric energy density of the entire composite electrode. As a result, the nanocomposites exhibit superior electrochemical performance measured in terms of high capacity/capacitance, stable cycling performance and good rate capability in both Li-ion battery and supercapacitor applications. Such nanostructured composite electrode may also have great potential for application in other electrochemical devices.« less

  6. Metrological traceability of carbon dioxide measurements in atmosphere and seawater

    NASA Astrophysics Data System (ADS)

    Rolle, F.; Pessana, E.; Sega, M.

    2017-05-01

    The accurate determination of gaseous pollutants is fundamental for the monitoring of the trends of these analytes in the environment and the application of the metrological concepts to this field is necessary to assure the reliability of the measurement results. In this work, an overview of the activity carried out at Istituto Nazionale di Ricerca Metrologica to establish the metrological traceability of the measurements of gaseous atmospheric pollutants, in particular of carbon dioxide (CO2), is presented. Two primary methods, the gravimetry and the dynamic dilution, are used for the preparation of reference standards for composition which can be used to calibrate sensors and analytical instrumentation. At present, research is carried out to lower the measurement uncertainties of the primary gas mixtures and to extend their application to the oceanic field. The reason of such investigation is due to the evidence of the changes occurring in seawater carbonate chemistry, connected to the rising level of CO2 in the atmosphere. The well established activity to assure the metrological traceability of CO2 in the atmosphere will be applied to the determination of CO2 in seawater, by developing suitable reference materials for calibration and control of the sensors during their routine use.

  7. Microwave-assisted preparation of carbon nanofiber-functionalized graphite felts as electrodes for polymer-based redox-flow batteries

    NASA Astrophysics Data System (ADS)

    Schwenke, A. M.; Janoschka, T.; Stolze, C.; Martin, N.; Hoeppener, S.; Schubert, U. S.

    2016-12-01

    A simple and fast microwave-assisted protocol to functionalize commercially available graphite felts (GFs) with carbon nanofibers (CNFs) for the application as electrode materials in redox-flow batteries (RFB) is demonstrated. As catalyst for the CNF synthesis nickel acetate is applied and ethanol serves as the carbon source. By the in-situ growth of CNFs, the active surface of the electrodes is increased by a factor of 50, which is determined by the electrochemical double layer capacities of the obtained materials. Furthermore, the morphology of the CNF-coating is investigated by scanning electron microscopy. Subsequently, the functionalized electrodes are applied in a polymer-based redox-flow battery (pRFB) using a TEMPO- and a viologen polymer as active materials. Due to the increased surface area as compared to an untreated graphite felt electrode, the current rating is improved by about 45% at 80 mA cm-2 and, furthermore, a decrease in overpotentials is observed. Thus, using this microwave-assisted synthesis approach, CNF-functionalized composite electrodes are prepared with a very simple protocol suitable for real life applications and an improvement of the overall performance of the polymer-based redox-flow battery is demonstrated.

  8. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Hu, Shengliang; Wei, Zhijia; Chang, Qing; Trinchi, Adrian; Yang, Jinlong

    2016-08-01

    One of the most widely used methods for exfoliating crystalline nanocarbon is via strong oxidizing acid treatment of bulk carbon sources, such as graphite, carbon black and coal. Not only is such method dangerous and accompanied by the liberation of toxic gases, it is also plagued by issues of purity, requiring the thorough and costly removal of the excess oxidizing acids and salts formed during the process. Herein we report a facile, green and inexpensive top-down strategy towards fluorescent carbon dots (CDs) from coal without incurring the burden of tedious or inefficient post-processing steps and facing the danger of highly toxic gas liberation. The presented approach shows a high yield and great potential for carbon dot production scale-up using coal, one of our most abundant and low-cost resources. The prepared CDs demonstrate photocatalytic behavior capable of rapidly degrading organic dyes under visible light. Our findings may lead to alternative uses of coal, particularly for applications including the treatment of environmental pollution, solar energy conversion or storage, and highlight coal's applicability in areas other than energy producing via burning of this great resource.

  9. Innate immune humoral factors, C1q and factor H, with differential pattern recognition properties, alter macrophage response to carbon nanotubes.

    PubMed

    Pondman, Kirsten M; Pednekar, Lina; Paudyal, Basudev; Tsolaki, Anthony G; Kouser, Lubna; Khan, Haseeb A; Shamji, Mohamed H; Ten Haken, Bennie; Stenbeck, Gudrun; Sim, Robert B; Kishore, Uday

    2015-11-01

    Interaction between the complement system and carbon nanotubes (CNTs) can modify their intended biomedical applications. Pristine and derivatised CNTs can activate complement primarily via the classical pathway which enhances uptake of CNTs and suppresses pro-inflammatory response by immune cells. Here, we report that the interaction of C1q, the classical pathway recognition molecule, with CNTs involves charge pattern and classical pathway activation that is partly inhibited by factor H, a complement regulator. C1q and its globular modules, but not factor H, enhanced uptake of CNTs by macrophages and modulated the pro-inflammatory immune response. Thus, soluble complement factors can interact differentially with CNTs and alter the immune response even without complement activation. Coating CNTs with recombinant C1q globular heads offers a novel way of controlling classical pathway activation in nanotherapeutics. Surprisingly, the globular heads also enhance clearance by phagocytes and down-regulate inflammation, suggesting unexpected complexity in receptor interaction. Carbon nanotubes (CNTs) maybe useful in the clinical setting as targeting drug carriers. However, it is also well known that they can interact and activate the complement system, which may have a negative impact on the applicability of CNTs. In this study, the authors functionalized multi-walled CNT (MWNT), and investigated the interaction with the complement pathway. These studies are important so as to gain further understanding of the underlying mechanism in preparation for future use of CNTs in the clinical setting. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Optimization of Microporous Carbon Structures for Lithium-Sulfur Battery Applications in Carbonate-Based Electrolyte.

    PubMed

    Hu, Lei; Lu, Yue; Li, Xiaona; Liang, Jianwen; Huang, Tao; Zhu, Yongchun; Qian, Yitai

    2017-03-01

    Developing appropriate sulfur cathode materials in carbonate-based electrolyte is an important research subject for lithium-sulfur batteries. Although several microporous carbon materials as host for sulfur reveal the effect, methods for producing microporous carbon are neither easy nor well controllable. Moreover, due to the complexity and limitation of microporous carbon in their fabrication process, there has been rare investigation of influence on electrochemical behavior in the carbonate-based electrolyte for lithium-sulfur batteries by tuning different micropore size(0-2 nm) of carbon host. Here, we demonstrate an immediate carbonization process, self-activation strategy, which can produce microporous carbon for a sulfur host from alkali-complexes. Besides, by changing different alkali-ion in the previous complex, the obtained microporous carbon exhibits a major portion of ultramicropore (<0.7 nm, from 54.9% to 25.8%) and it is demonstrated that the micropore structure of the host material plays a vital role in confining sulfur molecule. When evaluated as cathode materials in a carbonate-based electrolyte for Li-S batteries, such microporous carbon/sulfur composite can provide high reversible capacity, cycling stability and good rate capability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Supramolecular gel-assisted synthesis of double shelled Co@CoO@N-C/C nanoparticles with synergistic electrocatalytic activity for the oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zexing; Wang, Jie; Han, Lili

    2016-01-19

    Investigating active, stable, and low-cost materials for the oxygen reduction reaction is one of the key challenges in fuel-cell research. In this work, we describe the formation of N-doped carbon shell coated Co@CoO nanoparticles supported on Vulcan XC-72 carbon materials (Co@CoO@N–C/C) based on a simple supramolecular gel-assisted method. The double-shelled Co@CoO@N–C/C core–shell nanoparticles exhibit superior electrocatalytic activities for the oxygen reduction reaction compared to N-doped carbon and cobalt oxides, demonstrating the synergistic effect of the hybrid nanomaterials. Notably, the Co@CoO@N–C/C nanoparticles give rise to a comparable four-electron selectivity, long-term stability, and high methanol tolerance; all show a multi-fold improvement overmore » the commercial Pt/C catalyst. As a result, the progress is of great importance in exploring advanced non-precious metal-based electrocatalysts for fuel cell applications.« less

  12. Preparation of Carbon-Platinum-Ceria and Carbon-Platinum-Cerium catalysts and its application in Polymer Electrolyte Fuel Cell: Hydrogen, Methanol, and Ethanol

    NASA Astrophysics Data System (ADS)

    Guzman Blas, Rolando Pedro

    This thesis is focused on fuel cells using hydrogen, methanol and ethanol as fuel. Also, in the method of preparation of catalytic material for the anode: Supercritical Fluid Deposition (SFD) and impregnation method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The first part of the thesis describes the general knowledge about Hydrogen Polymer Exchange Membrane Fuel Cell (HPEMFC),Direct Methanol Fuel Cell (DMFC) and Direct Ethanol Fuel Cell (DEFC), as well as the properties of Cerium and CeO2 (Ceria). The second part of the thesis describes the preparation of catalytic material by Supercritical Fluid Deposition (SFD). SFD was utilized to deposit Pt and ceria simultaneously onto gas diffusion layers. The Pt-ceria catalyst deposited by SFD exhibited higher methanol oxidation activity compared to the platinum catalyst alone. The linear sweep traces of the cathode made for the methanol cross over study indicate that Pt-Ceria/C as the anode catalyst, due to its better activity for methanol, improves the fuel utilization, minimizing the methanol permeation from anode to cathode compartment. The third and fourth parts of the thesis describe the preparation of material catalytic material Carbon-Platinum-Cerium by a simple and cheap impregnation method using EDTA as a chelating agent to form a complex with cerium (III). This preparation method allows the mass production of the material catalysts without additional significant cost. Fuel cell polarization and power curves experiments showed that the Carbon-Platinum-Cerium anode materials exhibited better catalytic activity than the only Vulcan-Pt catalysts for DMFC, DEFC and HPEMFC. In the case of Vulcan-20%Pt-5%w Cerium, this material exhibits better catalytic activity than the Vulcan-20%Pt in DMFC. In the case of Vulcan-40% Pt-doped Cerium, this material exhibits better catalytic activity than the Vulcan-40% Pt in DMFC, DEFC and HPEMFC. Finally, I propose a theory that explains the reason why the carbon-platinum-cerium has better catalytic activity than platinum-carbon. Due to the hybridization behavior of C and Ce could arise charge transfer, both carbon and cerium to the Platinum. Ce-C→Pt charge transfer could occur at the Ce-C/Pt interface. Thus, results in an increase in the catalytic activity of platinum-cerium-carbon when compared with carbon-platinum.

  13. A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Xu, Jingjing; Lu, Shiyao; Chen, Xu; Wang, Jianan; Zhang, Bo; Zhang, Xinyu; Xiao, Chunhui; Ding, Shujiang

    2017-12-01

    Investigating low-cost and highly active electrocatalysts for oxygen reduction reactions (ORR) is of crucial importance for energy conversion and storage devices. Herein, we design and prepare mesoporous carbon supported nitrogen-doped carbon by pyrolysis of polyaniline coated on CMK-3. This electrocatalyst exhibits excellent performance towards ORR in alkaline media. The optimized nitrogen-doped mesoporous electrocatalyst show an onset potential (E onset) of 0.95 V (versus reversible hydrogen electrode (RHE)) and half-wave potential (E 1/2) of 0.83 V (versus RHE) in 0.1 M KOH. Furthermore, the as-prepared catalyst presents superior durability and methanol tolerance compared to commercial Pt/C indicating its potential applications in fuel cells and metal-air batteries.

  14. Intracellular and Extracellular Carbonic Anhydrases Cooperate Non-enzymatically to Enhance Activity of Monocarboxylate Transporters*

    PubMed Central

    Klier, Michael; Andes, Fabian T.; Deitmer, Joachim W.; Becker, Holger M.

    2014-01-01

    Proton-coupled monocarboxylate transporters (MCTs) are carriers of high-energy metabolites such as lactate, pyruvate, and ketone bodies and are expressed in most tissues. It has previously been shown that transport activity of MCT1 and MCT4 is enhanced by the cytosolic carbonic anhydrase II (CAII) independent of its catalytic activity. We have now studied the influence of the extracellular, membrane-bound CAIV on transport activity of MCT1/4, heterologously expressed in Xenopus oocytes. Coexpression of CAIV with MCT1 and MCT4 resulted in a significant increase in MCT transport activity, even in the nominal absence of CO2/HCO3−. CAIV-mediated augmentation of MCT activity was independent of the CAIV catalytic function, since application of the CA-inhibitor ethoxyzolamide or coexpression of the catalytically inactive mutant CAIV-V165Y did not suppress CAIV-mediated augmentation of MCT transport activity. The interaction required CAIV at the extracellular surface, since injection of CAIV protein into the oocyte cytosol did not augment MCT transport function. The effects of cytosolic CAII (injected as protein) and extracellular CAIV (expressed) on MCT transport activity, were additive. Our results suggest that intra- and extracellular carbonic anhydrases can work in concert to ensure rapid shuttling of metabolites across the cell membrane. PMID:24338019

  15. A Nanoporous Carbon/Exfoliated Graphite Composite For Supercapacitor Electrodes

    NASA Astrophysics Data System (ADS)

    Rosi, Memoria; Ekaputra, Muhamad P.; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal

    2010-12-01

    Nanoporous carbon was prepared from coconut shells using a simple heating method. The nanoporous carbon is subjected to different treatments: without activation, activation with polyethylene glycol (PEG), and activation with sodium hydroxide (NaOH)-PEG. The exfoliated graphite was synthesized from graphite powder oxidized with zinc acetate (ZnAc) and intercalated with polyvinyl alcohol (PVA) and NaOH. A composite was made by mixing the nanoporous carbon with NaOH-PEG activation, the exfoliated graphite and a binder of PVA solution, grinding the mixture, and annealing it using ultrasonic bath for 1 hour. All of as-synthesized materials were characterized by employing a scanning electron microscope (SEM), a MATLAB's image processing toolbox, and an x-ray diffractometer (XRD). It was confirmed that the composite is crystalline with (002) and (004) orientations. In addition, it was also found that the composite has a high surface area, a high distribution of pore sizes less than 40 nm, and a high porosity (67%). Noting that the pore sizes less than 20 nm are significant for ionic species storage and those in the range of 20 to 40 nm are very accessible for ionic clusters mobility across the pores, the composite is a promising material for the application as supercapacitor electrodes.

  16. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 2. Model prediction.

    PubMed

    Yu, Zirui; Peldszus, Sigrid; Huck, Peter M

    2009-03-01

    The adsorption of two representative pharmaceutically active compounds (PhACs)-naproxen and carbamazepine and one endocrine disrupting compound (EDC)-nonylphenol was studied in pilot-scale granular activated carbon (GAC) adsorbers using post-sedimentation (PS) water from a full-scale drinking water treatment plant. Acidic naproxen broke through fastest while nonylphenol was removed best, which was consistent with the degree to which fouling affected compound removals. Model predictions and experimental data were generally in good agreement for all three compounds, which demonstrated the effectiveness and robustness of the pore and surface diffusion model (PSDM) used in combination with the time-variable parameter approach for predicting removals at environmentally relevant concentrations (i.e., ng/L range). Sensitivity analyses suggested that accurate determination of film diffusion coefficients was critical for predicting breakthrough for naproxen and carbamazepine, in particular when high removals are targeted. Model simulations demonstrated that GAC carbon usage rates (CURs) for naproxen were substantially influenced by the empty bed contact time (EBCT) at the investigated conditions. Model-based comparisons between GAC CURs and minimum CURs for powdered activated carbon (PAC) applications suggested that PAC would be most appropriate for achieving 90% removal of naproxen, whereas GAC would be more suitable for nonylphenol.

  17. Nitrogen and Phosphorus Codoped Mesoporous Carbon Derived from Polypyrrole as Superior Metal-Free Electrocatalyst toward the Oxygen Reduction Reaction.

    PubMed

    Zhang, Zhengping; Sun, Junting; Dou, Meiling; Ji, Jing; Wang, Feng

    2017-05-17

    To replace high-cost platinum group metal (PGM) electrocatalysts for oxygen reduction reaction (ORR) that is the crucial cathode reaction in fuel cell technology and metal-air battery, the development of low-cost and high-efficiency non-PGM catalysts for ORR has attracted much attention during the past decades. As one of the promising candidates, N-doped carbon is highly desirable for its strong designability and outstanding catalytic activity and stability. In this work, a facile and rational strategy is demonstrated for preparation of N,P-codoped mesoporous carbon (N,P-MC) for ORR by the direct pyrolysis treatment of polypyrrole with phytic acid as P-dopant and polystyrene sphere as template. The resultant N,P-MC exhibits a mesoporous structure with the optimized ORR active sites originating from the N,P-codoping. Owing to these features, N,P-MC exhibits excellent ORR activity, remarkable electrochemical stability, and superior methanol tolerance, comparable or even better than that of commercial Pt/C catalyst. The origin of enhanced ORR performance can be attributed to both the increased active sites and the mesoporous structure, which is expected to guide the future preparation of more capable carbon-based electrocatalysts for oxygen reduction and other electrocatalytic application.

  18. Titania modified activated carbon prepared from sugarcane bagasse: adsorption and photocatalytic degradation of methylene blue under visible light irradiation.

    PubMed

    El-Salamony, R A; Amdeha, E; Ghoneim, S A; Badawy, N A; Salem, K M; Al-Sabagh, A M

    2017-12-01

    Activated carbon (AC), prepared from sugarcane bagasse waste through a low-temperature chemical carbonization treatment, was used as a support for nano-TiO 2 . TiO 2 supported on AC (xTiO 2 -AC) catalysts (x = 10, 20, 50, and 70 wt.%) were prepared through a mechano-mixing method. The photocatalysts were characterized by Raman, X-ray diffraction analysis, FTIR, S BET , field emission scanning electron microscope, and optical technique. The adsorption and photo-activity of the prepared catalysts (xTiO 2 -AC) were evaluated using methylene blue (MB) dye. The photocatalytic degradation of MB was evaluated under UVC irradiation and visible light. The degradation percentage of the 100 ppm MB at neutral pH using 20TiO 2 -AC reaches 96 and 91 after 180 min under visible light and UV irradiation, respectively. In other words, these catalysts are more active under visible light than under UV light irradiation, opening the possibility of using solar light for this application.

  19. Novel application of thermally expanded graphite as the support of catalysts for direct synthesis of DMC from CH3OH and CO2.

    PubMed

    Bian, J; Xiao, M; Wang, S J; Lu, Y X; Meng, Y Z

    2009-06-01

    Novel Cu-Ni bimetallic catalysts supported on thermally expanded graphite (TEG) were prepared as an example to show the particular characteristics of TEG as a carbon support material. The structures of TEG and the synthesized Cu-Ni/TEG catalysts were characterized using BET, FTIR, TG, SEM, TEM, XRD and TPR techniques. The catalytic activities of the prepared catalysts were investigated by performing micro-reaction in the direct synthesis of dimethyl carbonate (DMC) from CH3OH and CO2. The experimental results indicated that the prepared Cu-Ni/TEG catalysts exhibited highly catalytic activity. Under the optimal catalytic conditions at 100 degrees C and under 1.2 MPa, the highest conversion of CH3OH of 4.97% and high selectivity of DMC of 89.3% can be achieved. The highly catalytic activity of Cu-Ni/TEG in DMC synthesis can be attributed to the synergetic effects of metal Cu, Ni and Cu-Ni alloy in the activation of CH3OH and CO2 and the particular characteristics of TEG as a carbon support material.

  20. Overview of the SMAP Applications and the SMAP Early Adopters Program - NASA's First Mission-Directed Outreach Effort

    NASA Technical Reports Server (NTRS)

    Escobar, V. M.; Delgado Arias, S.; Nearing, G.; Entekhabi, D.; Njoku, E.; Yueh, S.; Doorn, B.; Reichle, R.

    2016-01-01

    Satellite data provide global observations of many of the earths system processes and features. These data are valuable for developing scientific products that increase our understanding of how the earths systems are integrated. The water, energy and carbon cycle exchanges between the land and atmosphere are linked by soil moisture. NASAs Soil Moisture Active Passive (SMAP) mission provides soil moisture and freeze thaw measurements from space and allows scientists to link the water energy and carbon cycles. In order for SMAP data to be best integrated into decision support systems, the mission has engaged with the stakeholder community since 2009 and has attempted to scale the utility of the data to the thematic societal impacts of the satellite product applications. The SMAP Mission, which launched on January 31, 2015, has actively grown an Early Adopter (EA) community as part of its applications effort and worked with these EAs to demonstrate a scaled thematic impact of SMAP data product in societally relevant decision support applications. The SMAP mission provides global observations of the Earths surface soil moisture, providing high accuracy, resolution and continuous global coverage. Through the Early Adopters Program, the SMAP Applications Team will spend the next 2 years after launch documenting and evaluating the use of SMAP science products in applications related to weather forecasting, drought, agriculture productivity, floods, human health and national security.

  1. Metallic State FeS Anchored (Fe)/Fe3O4/N-Doped Graphitic Carbon with Porous Spongelike Structure as Durable Catalysts for Enhancing Bioelectricity Generation.

    PubMed

    Xu, Xin; Dai, Ying; Yu, Jia; Hao, Liang; Duan, Yaqiang; Sun, Ye; Zhang, Yanhong; Lin, Yuhui; Zou, Jinlong

    2017-03-29

    The critical issues in practical application of microbial fuel cells (MFCs) for wastewater treatment are the high cost and poor activity and durability of precious metal catalysts. To alleviate the activity loss and kinetic barriers for oxygen reduction reaction (ORR) on cathode, (Fe)/Fe 3 O 4 /FeS/N-doped graphitic carbon ((Fe)/Fe 3 O 4 /FeS/NGC) is prepared as ORR catalyst through a one-step method using waste pomelo skins as carbon source. Various characterization techniques and electrochemical analyses are conducted to illustrate the correlation between structural characteristics and catalytic activity. MFCs with Fe/Fe 3 O 4 /FeS/NGC (900 °C) cathode produces the maximum power density of 930 ± 10 mW m -2 (Pt/C of 489 mW m -2 ) and maintains a good long-term durability, which only declines 18% after 90 day operation. Coulombic efficiency (22.2%) obtained by Fe/Fe 3 O 4 /FeS/NGC (900 °C) cathode is significantly higher than that of Pt/C (17.3%). Metallic state FeS anchored in porous NGC skeleton can boost electron transport through the interconnected channels in spongelike structure to improve catalytic activity. Charge delocalization of C atoms can be strengthened by N atoms incorporation into carbon skeleton, which correspondingly contributes to the O 2 chemisorptions and O-O bond weakening during ORR. Energetically existed active components (Fe and N species) are more efficient than Pt to trap and consume electrons in catalyzing ORR in wastewater containing Pt-poisoning substances (bacterial metabolites). (Fe)/Fe 3 O 4 /FeS/NGC catalysts with the advantages of durable power outputs and environmental-friendly raw material can cover the shortages of Pt/C and provide an outlook for further applications of these catalysts.

  2. Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing.

    PubMed

    Wang, Jianyun; Mignon, Arn; Snoeck, Didier; Wiktor, Virginie; Van Vliergerghe, Sandra; Boon, Nico; De Belie, Nele

    2015-01-01

    Self-healing concrete holds promising benefits to reduce the cost for concrete maintenance and repair as cracks are autonomously repaired without any human intervention. In this study, the application of a carbonate precipitating bacterium Bacillus sphaericus was explored. Regarding the harsh condition in concrete, B. sphaericus spores were first encapsulated into a modified-alginate based hydrogel (AM-H) which was proven to have a good compatibility with the bacteria and concrete regarding the influence on bacterial viability and concrete strength. Experimental results show that the spores were still viable after encapsulation. Encapsulated spores can precipitate a large amount of CaCO3 in/on the hydrogel matrix (around 70% by weight). Encapsulated B. sphaericus spores were added into mortar specimens and bacterial in situ activity was demonstrated by the oxygen consumption on the mimicked crack surface. While specimens with free spores added showed no oxygen consumption. This indicates the efficient protection of the hydrogel for spores in concrete. To conclude, the AM-H encapsulated carbonate precipitating bacteria have great potential to be used for crack self-healing in concrete applications.

  3. Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing

    PubMed Central

    Wang, Jianyun; Mignon, Arn; Snoeck, Didier; Wiktor, Virginie; Van Vliergerghe, Sandra; Boon, Nico; De Belie, Nele

    2015-01-01

    Self-healing concrete holds promising benefits to reduce the cost for concrete maintenance and repair as cracks are autonomously repaired without any human intervention. In this study, the application of a carbonate precipitating bacterium Bacillus sphaericus was explored. Regarding the harsh condition in concrete, B. sphaericus spores were first encapsulated into a modified-alginate based hydrogel (AM-H) which was proven to have a good compatibility with the bacteria and concrete regarding the influence on bacterial viability and concrete strength. Experimental results show that the spores were still viable after encapsulation. Encapsulated spores can precipitate a large amount of CaCO3 in/on the hydrogel matrix (around 70% by weight). Encapsulated B. sphaericus spores were added into mortar specimens and bacterial in situ activity was demonstrated by the oxygen consumption on the mimicked crack surface. While specimens with free spores added showed no oxygen consumption. This indicates the efficient protection of the hydrogel for spores in concrete. To conclude, the AM-H encapsulated carbonate precipitating bacteria have great potential to be used for crack self-healing in concrete applications. PMID:26528254

  4. Degradation of Acid Orange 7 by peroxymonosulfate activated with the recyclable nanocomposites of g-C3N4 modified magnetic carbon.

    PubMed

    Guo, Furong; Lu, Jiahua; Liu, Qing; Zhang, Ping; Zhang, Aiqing; Cai, Yingjie; Wang, Qiang

    2018-08-01

    Carbon-based catalysts have attracted high attention since they are greener and cheaper, while magnetic nanomaterials are very useful in environmental application because of the easy recovery and operation given by the magnetic separability. Therefore, graphitic carbon nitride modified magnetic carbon nanocomposites Fe 3 O 4 @C/g-C 3 N 4 was prepared herein for the first time as a new carbon-based catalyst for the activation of peroxymonosulfate (PMS). The catalytic properties of Fe 3 O 4 @C/g-C 3 N 4 in activating PMS for the degradation of Acid Orange 7 (AO 7), a model organic pollutant, were investigated. AO 7 degradation efficiency was significantly enhanced after modification of Fe 3 O 4 @C with g-C 3 N 4 , and the composite Fe 3 O 4 @C/g-C 3 N 4 from loading of 5 wt% g-C 3 N 4 and calcined at 300 °C for 30 min exhibited the best performance. AO 7 could be efficiently decolorized using the "Fe 3 O 4 @C/C 3 N 4 (5%) + PSM" system within the pH range of 2-6, and 97% of AO 7 could be removed in 20 min without pH adjustment (pH = 4). Radical quenching and EPR studies confirmed that both sulfate and hydroxyl radicals produced from PMS activation were the active species responsible for the oxidation of AO 7. The degradation mechanism was suggested based on the experimental results and XPS analyses. It was proposed that the CO groups on the carbon surface of Fe 3 O 4 @C rather than the CO in g-C 3 N 4 played a key role as the active sites for PMS activation. The catalyst was magnetically separable and displayed good stability and reusability, thus providing a potentially green catalyst for sustainable remediation of organic pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Systematic Conversion of Single Walled Carbon Nanotubes into n-type Thermoelectric Materials by Molecular Dopants

    PubMed Central

    Nonoguchi, Yoshiyuki; Ohashi, Kenji; Kanazawa, Rui; Ashiba, Koji; Hata, Kenji; Nakagawa, Tetsuya; Adachi, Chihaya; Tanase, Tomoaki; Kawai, Tsuyoshi

    2013-01-01

    Thermoelectrics is a challenging issue for modern and future energy conversion and recovery technology. Carbon nanotubes are promising active thermoelectic materials owing to their narrow bandgap energy and high charge carrier mobility, and they can be integrated into flexible thermoelectrics that can recover any waste heat. We here report air-stable n-type single walled carbon nanotubes with a variety of weak electron donors in the range of HOMO level between ca. −4.4 eV and ca. −5.6 eV, in which partial uphill electron injection from the dopant to the conduction band of single walled carbon nanotubes is dominant. We display flexible films of the doped single walled carbon nanotubes possessing significantly large thermoelectric effect, which is applicable to flexible ambient thermoelectric modules. PMID:24276090

  6. Sustainable Applications of Magnetic Nano-catalysts and Graphitic Carbon Nitrides (presentation)

    EPA Science Inventory

    Homogeneous catalysts, known for chemo-, regio- and enantioselectivity, have better contact with the reactants but the catalyst separation creates barriers. Heterogeneous systems enable better separation although at the cost of reduction in the availability of active sites. Becau...

  7. ZnO@C (core@shell) microspheres derived from spent coffee grounds as applicable non-precious electrode material for DMFCs.

    PubMed

    Ghouri, Zafar Khan; Al-Meer, Saeed; Barakat, Nasser A M; Kim, Hak Yong

    2017-05-11

    Although numerous reports have introduced non precious electrocatalysts for methanol oxidation, most of those studies did not consider the corresponding high onset potential which restricts utilization in real fuel cells. In this study, an -90 mV [vs. Ag/AgCl] onset potential non-precious electrocatalyst is introduced as an applicable anode material for the direct methanol fuel cells. Moreover, the proposed material was prepared from a cheap and abundantly existing resource; the spent coffee grounds. Typically, the spent coffee grounds were facilely converted to core@shell (ZnO@C) microspheres through a two-step approach, involving chemical activation and a subsequent calcination at temperature of 700 °C. Activation of the carbon derived from the spent coffee grounds was performed with ZnCl 2 which acts as pore-forming agent as well as a precursor for the ZnO. The structure and morphology were characterized by (XRD), (SEM), and (TEM) analyses while the electrochemical characterizations was evaluated by cyclic voltammetry (CV) technique. Besides the comparatively very low onset potential, the introduced microspheres exhibited relatively high current density; 17 mA/cm 2 . Overall, based on the advantages of the green source of carbon and the good electrocatalytic activity, the spent coffee grounds-derived carbon can be considered a promise anode material for the DMFCs.

  8. Foldable and High Sulfur Loading 3D Carbon Electrode for High-performance Li-S Battery Application

    PubMed Central

    He, Na; Zhong, Lei; Xiao, Min; Wang, Shuanjin; Han, Dongmei; Meng, Yuezhong

    2016-01-01

    Sulfur is a promising cathode material with a high theoretical capacity of 1672 mAh g−1, however, the practical energy density of Li-S battery is far away from such promising due to its low active material utilization and low sulfur loading. Moreover, the challenges of the low electrical conductivity of sulfur and the high solubility of polysulfide intermediates still hinder its practical application. Here, we report a kind of free-standing and foldable cathodes consisting of 3D activated carbon fiber matrix and sulfur cathode. The 3D activated carbon fiber matrix (ACFC) has continuous conductive framework and sufficient internal space to provide a long-distance and continuous high-speed electron pathway. It also gives a very larger internal space and tortuous cathode region to ACFC accommodate a highly sulfur loading and keeps polysulfide within the cathode. The unique structured 3D foldable sulfur cathode using a foldable ACFC as matrix delivers a reversible capacity of about 979 mAh g−1 at 0.2C, a capacity retention of 98% after 100 cycles, and 0.02% capacity attenuation per cycle. Even at an areal capacity of 6 mAh cm−2, which is 2 times higher than the values of Li-ion battery, it still maintains an excellent rate capability and cycling performance. PMID:27677602

  9. B4C as a stable non-carbon-based oxygen electrode material for lithium-oxygen batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Shidong; Xu, Wu; Cao, Ruiguo

    Lithium-oxygen (Li-O 2) batteries have extremely high theoretical specific capacities and energy densities when compared with Li-ion batteries. However, the instability of both electrolyte and carbon-based oxygen electrode related to the nucleophilic attack of reduced oxygen species during oxygen reduction reaction and the electrochemical oxidation during oxygen evolution reaction are recognized as the major challenges in this field. Here we report the application of boron carbide (B 4C) as the non-carbon based oxygen electrode material for aprotic Li-O 2 batteries. B 4C has high resistance to chemical attack, good conductivity, excellent catalytic activity and low density that are suitable formore » battery applications. The electrochemical activity and chemical stability of B4C are systematically investigated in aprotic electrolyte. Li-O 2 cells using B4C based air electrodes exhibit better cycling stability than those used TiC based air electrode in 1 M LiTf-Tetraglyme electrolyte. The degradation of B 4C based electrode is mainly due to be the loss of active sites on B 4C electrode during cycles as identified by the structure and composition characterizations. These results clearly demonstrate that B 4C is a very promising alternative oxygen electrode material for aprotic Li-O 2 batteries. It can also be used as a standard electrode to investigate the stability of electrolytes.« less

  10. MOF-Templated Fabrication of Hollow Co4N@N-Doped Carbon Porous Nanocages with Superior Catalytic Activity.

    PubMed

    Sheng, Jianping; Wang, Liqiang; Deng, Liu; Zhang, Min; He, Haichuan; Zeng, Ke; Tang, Feiying; Liu, You-Nian

    2018-02-28

    Metallic Co 4 N catalysts have been considered as one of the most promising non-noble materials for heterogeneous catalysis because of their high electrical conductivity, great magnetic property, and high intrinsic activity. However, the metastable properties seriously limit their applications for heterogeneous water phase catalysis. In this work, a novel Co-metal-organic framework (MOF)-derived hollow porous nanocages (PNCs) composed of metallic Co 4 N and N-doped carbon (NC) were synthesized for the first time. This hollow three-dimensional (3D) PNC catalyst was synthesized by taking advantage of Co-MOF as a precursor for fabricating 3D hollow Co 3 O 4 @C PNCs, along with the NH 3 treatment of Co-oxide frames to promote the in situ conversion of Co-MOF to Co 4 N@NC PNCs, benefiting from the high intrinsic activity and electron conductivity of the metallic Co 4 N phase and the good permeability of the hollow porous nanostructure as well as the efficient doping of N into the carbon layer. Besides, the covalent bridge between the active Co 4 N surface and PNC shells also provides facile pathways for electron and mass transport. The obtained Co 4 N@NC PNCs exhibit excellent catalytic activity and stability for 4-nitrophenol reduction in terms of low activation energy (E a = 23.53 kJ mol -1 ), high turnover frequency (52.01 × 10 20 molecule g -1 min -1 ), and high apparent rate constant (k app = 2.106 min -1 ). Furthermore, its magnetic property and stable configuration account for the excellent recyclability of the catalyst. It is hoped that our finding could pave the way for the construction of other hollow transition metal-based nitride@NC PNC catalysts for wide applications.

  11. The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems

    PubMed Central

    Gougoulias, Christos; Clark, Joanna M; Shaw, Liz J

    2014-01-01

    It is well known that atmospheric concentrations of carbon dioxide (CO2) (and other greenhouse gases) have increased markedly as a result of human activity since the industrial revolution. It is perhaps less appreciated that natural and managed soils are an important source and sink for atmospheric CO2 and that, primarily as a result of the activities of soil microorganisms, there is a soil-derived respiratory flux of CO2 to the atmosphere that overshadows by tenfold the annual CO2 flux from fossil fuel emissions. Therefore small changes in the soil carbon cycle could have large impacts on atmospheric CO2 concentrations. Here we discuss the role of soil microbes in the global carbon cycle and review the main methods that have been used to identify the microorganisms responsible for the processing of plant photosynthetic carbon inputs to soil. We discuss whether application of these techniques can provide the information required to underpin the management of agro-ecosystems for carbon sequestration and increased agricultural sustainability. We conclude that, although crucial in enabling the identification of plant-derived carbon-utilising microbes, current technologies lack the high-throughput ability to quantitatively apportion carbon use by phylogentic groups and its use efficiency and destination within the microbial metabolome. It is this information that is required to inform rational manipulation of the plant–soil system to favour organisms or physiologies most important for promoting soil carbon storage in agricultural soil. PMID:24425529

  12. Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications.

    PubMed

    Du, Xuan; Zhao, Wei; Wang, Yi; Wang, Chengyang; Chen, Mingming; Qi, Tao; Hua, Chao; Ma, Mingguo

    2013-12-01

    Activated carbon hollow fibers (ACHFs) with high surface area were prepared from inexpensive, renewable ramie fibers (RFs) by a single-step activation method under lower temperature than that of other reports. The effects of activation conditions on the pore structure and turbostratic structure of ACHFs were investigated systematically. The results show that ACHFs surface area decreased but micropore volume and conductivity increased as the increase of activation temperature and activation time. The electrochemical measurements of supercapacitors fabricated from these ACHFs electrodes reveal that the electrochemical properties improved with the enhancing of activation degree. However, too high activation temperature can make the ion diffusion resistance increase. It suggests that pore structure and conductivity are as important as surface area to decide the electrochemical performances of ACHFs electrode materials. A maximum capacity of 287 F g(-1) at 50 mA g(-1) was obtained for the ACHFs electrode prepared under suitable conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Molecular switches in carbon-rich organometallic compounds: Theoretical aspects

    NASA Astrophysics Data System (ADS)

    Costuas, Karine

    2015-01-01

    Organometallic complexes associated with an appropriate choice of ancillary ligands reveal to have a wide range of physical properties leading to promising applications when incorporated in nano-size devices. The challenge is to design innovative multifunctional compounds based on redox active carbon-rich organometallics associated with spin carriers and/or photochromic units. A multidisciplinary approach in this area has proved to be efficient in a series a systems combining carbon-rich bridging ligands and redox metallic moieties. In this domain, the role of theoretical investigations based on quantum mechanics tools have a crucial role in rationalizing and in helping designing systems possessing target properties.

  14. Characterization of C-PDMS electrodes for electrokinetic applications in microfluidic systems

    NASA Astrophysics Data System (ADS)

    Deman, A.-L.; Brun, M.; Quatresous, M.; Chateaux, J.-F.; Frenea-Robin, M.; Haddour, N.; Semet, V.; Ferrigno, R.

    2011-09-01

    This paper reports on the integration of thick carbon-polydimethylsiloxane (C-PDMS) electrodes in microfluidic systems for electrokinetic operations. The C-PDMS material, obtained by mixing carbon nanopowder and PDMS, preserves PDMS processing properties such as O2 plasma activation and soft-lithography patternability in thick or 3D electrodes. Conductivity in the order of 10 S m-1 was reached for a carbon concentration of 25 wt%. To evaluate the adhesion between PDMS and C-PDMS, we prepared bi-material strips and carried out a manual pull test. The cohesion and robustness of C-PDMS were also evaluated by applying a large range of electric field conditions from dc to ac (300 kHz). No damage to the electrodes or release of carbon was noticed. The use of such a material for electrokinetic manipulation was validated on polystyrene particles and cells. Here, we demonstrate that C-PDMS seems to be a valuable technological solution for electrokinetic in microfluidic and particularly for biological applications such as cell electrofusion, lysis and trapping, which are favored by uniform lateral electric fields across the microchannel section.

  15. The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review.

    PubMed

    Inyang, Mandu; Dickenson, Eric

    2015-09-01

    In this work, the potential benefits, economics, and challenges of applying biochar in water treatment operations to remove organic and microbial contaminants was reviewed. Minimizing the use of relatively more expensive traditional sorbents in water treatment is a motivating aspect of biochar production, e.g., $246/ton non-activated biochar to $1500/ton activated carbon. Biochar can remove organic contaminants in water, such as some pesticides (0.02-23 mg g(-1)), pharmaceutical and personal care products (0.001-59 mg g(-1)), dyes (2-104 mg g(-1)), humic acid (60 mg g(-1)), perfluorooctane sulfonate (164 mg g(-1)), and N-nitrosomodimethylamine (3 mg g(-1)). Including adsorption/filtration applications, biochar can potentially be used to inactivate Escherichia coli via disinfection, and transform 95% of 2-chlorobiphenyl via advanced oxidation processes. However, more sorption data using biochar especially at demonstration-scale, for treating potable and reuse water in adsorption/filtration applications will help establish the potential of biochars to serve as surrogates for activated carbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor.

    PubMed

    Ma, Guofu; Yang, Qian; Sun, Kanjun; Peng, Hui; Ran, Feitian; Zhao, Xiaolong; Lei, Ziqiang

    2015-12-01

    High capacitance property and low cost are the pivotal requirements for practical application of supercapacitor. In this paper, a low cost and high capacitance property nitrogen-doped porous carbon with high specific capacitance is prepared. The as-prepared nitrogen-doped porous carbon employing potato waste residue (PWR) as the carbon source, zinc chloride (ZnCl2) as the activating agent and melamine as nitrogen doping agent. The morphology and structure of the carbon materials are studied by scanning electron microscopy (SEM), N2 adsorption/desorption, X-ray diffraction (XRD) and Raman spectra. The surface area of the nitrogen-doped carbon which prepared under 700°C is found to be 1052m(2)/g, and the specific capacitance as high as 255Fg(-1) in 2M KOH electrolyte is obtained utilize the carbon as electrode materials. The electrode materials also show excellent cyclability with 93.7% coulombic efficiency at 5Ag(-1) current density of for 5000cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Micropore engineering of carbonized porous aromatic framework (PAF-1) for supercapacitors application.

    PubMed

    Li, Yanqiang; Roy, Soumyajit; Ben, Teng; Xu, Shixian; Qiu, Shilun

    2014-07-07

    Micropore engineering of porous carbons on the effect of capacitance was explored using a carbonized porous aromatic framework (PAF-1). The porous carbons obtained through different carbonization methods show different pore structures enabling us to do this. The capacitance was measured both in aqueous electrolyte and different organic electrolytes. The porous carbons prepared by KOH activation show both high microporous volume, which is beneficial for charge storage, and mesoporous volume, which is devoted to fast ion diffusion in the pores; properties which are highly desirable. It shows a capacitance as high as 280 F g(-1) and 203 F g(-1) at a current density of 1 A g(-1) in 6.0 M KOH and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMImTFSI), respectively. We also demonstrate the effect of diffusion and that of geometric packing of the electrolyte ions in the pores, where a commensurate match of the electrolyte ions with the pores of carbonized materials control and influence significantly the capacitance of these materials.

  18. Inhibition of the archaeal beta-class (Cab) and gamma-class (Cam) carbonic anhydrases.

    PubMed

    Zimmerman, Sabrina A; Ferry, James G; Supuran, Claudiu T

    2007-01-01

    Five independently evolved classes (alpha-, beta-, gamma-, delta-, zeta-) of carbonic anhydrases facilitate the reversible hydration of carbon dioxide to bicarbonate of which the alpha-class is the most extensively studied. Detailed inhibition studies of the alpha-class with the two main classes of inhibitors, sulfonamides and metal-complexing anions, revealed many inhibitors that are used as therapeutic agents to prevent and treat many diseases. Recent inhibitor studies of the archaeal beta-class (Cab) and the gamma-class (Cam) carbonic anhydrases show differences in inhibition response to sulfonamides and metal-complexing anions, when compared to the alpha-class carbonic anhydrases. In addition, inhibition between Cab and Cam differ. These inhibition patterns are consistent with the idea that although, alpha-, beta-, and gamma-class carbonic anhydrases participate in the same two-step isomechanism, diverse active site architecture among these classes predicts variations on the catalytic mechanism. These inhibitor studies of the archaeal beta- and gamma-class carbonic anhydrases give insight to new applications of current day carbonic anhydrase inhibitors, as well as direct research to develop new compounds that may be specific inhibitors of prokaryotic carbonic anhydrases.

  19. Carbon Nanotropes: A Contemporary Paradigm in Drug Delivery

    PubMed Central

    Tripathi, Avinash C.; Saraf, Shubhini A.; Saraf, Shailendra K.

    2015-01-01

    Discovery of fullerenes and other nanosized carbon allotropes has opened a vast new field of possibilities in nanotechnology and has become one of the most promising research areas. Carbon nanomaterials have drawn interest as carriers of biologically pertinent molecules due to their distinctive physical, chemical and physiological properties. We have assigned the nomenclature “Carbon Nanotropes” to the nanosized carbon allotropes. Carbon nanotropes such as fullerenes, carbon nanotubes (CNTs) and graphenes, have exhibited wide applicability in drug delivery, owing to their small size and biological activity. The nanotherapeutics/diagnostics will allow a deeper understanding of human ills including cancer, neurodegenerative diseases, genetic disorders and various other complications. Recently, nanomaterials with multiple functions, such as drug carrier, MRI, optical imaging, photothermal therapy, etc., have become more and more popular in the domain of cancer and other areas of research. This review is an endeavor to bring together the usefulness of the carbon nanomaterials in the field of drug delivery. The last section of the review encompasses the recent patents granted on carbon nanotropes at United State Patent Trademark Office (USPTO) in the related field.

  20. Highly Enhanced Raman Scattering on Carbonized Polymer Films.

    PubMed

    Yoon, Jong-Chul; Hwang, Jongha; Thiyagarajan, Pradheep; Ruoff, Rodney S; Jang, Ji-Hyun

    2017-06-28

    We have discovered a carbonized polymer film to be a reliable and durable carbon-based substrate for carbon enhanced Raman scattering (CERS). Commercially available SU8 was spin coated and carbonized (c-SU8) to yield a film optimized to have a favorable Fermi level position for efficient charge transfer, which results in a significant Raman scattering enhancement under mild measurement conditions. A highly sensitive CERS (detection limit of 10 -8 M) that was uniform over a large area was achieved on a patterned c-SU8 film and the Raman signal intensity has remained constant for 2 years. This approach works not only for the CMOS-compatible c-SU8 film but for any carbonized film with the correct composition and Fermi level, as demonstrated with carbonized-PVA (poly(vinyl alcohol)) and carbonized-PVP (polyvinylpyrollidone) films. Our study certainly expands the rather narrow range of Raman-active material platforms to include robust carbon-based films readily obtained from polymer precursors. As it uses broadly applicable and cheap polymers, it could offer great advantages in the development of practical devices for chemical/bio analysis and sensors.

  1. Biofiltration technology for the removal of toluene from polluted air using Streptomyces griseus.

    PubMed

    Mohamed, Elham F; Awad, Gamal; Andriantsiferana, Caroline; El-Diwany, Ahmed I

    2016-01-01

    Biofiltration technology has been recognized as a promising biotechnology for treating the volatile organic compounds (VOCs) present in polluted air. This study aims to investigate the performance of a biofiltration system of Streptomyces griseus sp. DSM-40759 immobilized on activated carbon (PICA S23) towards the adsorption and degradation of toluene vapour as well as to regenerate the activated carbon in situ. The batch studies were performed using nutrient agar medium and basal salt medium (BSM) for microbial growth. Initially the pre-cultures were incubated at a temperature of 28°C on a rotary shaker at 150 rpm. After two days, the strain S. griseus DSM-40759 was immobilized on a known weight of activated carbon (12 g). The results of biofilter performance showed three different stages with a quick adsorption phase with approximately 95% of toluene removal after 70 min, a slow biotransformation phase by immobilized cells. In the later, the removal efficiency decreased significantly with the extension of time and reached 60% during this stage. Moreover, a final quick removal phase by the immobilized cells had an average removal efficiency of toluene around 95% after 500 min. The toluene degradation was found to be more than 84% after the second cycle and the biofilter was still capable of removing additional toluene. Thus, the results demonstrated the feasibility and reusability of a new biofilter system for toluene removal as well as extending the activated carbon's capacity and this could be a potential solution to reuse the activated carbon in industrial application.

  2. Spiroacetal formation through telescoped cycloaddition and carbon-hydrogen bond functionalization: total synthesis of bistramide A.

    PubMed

    Han, Xun; Floreancig, Paul E

    2014-10-06

    Spiroacetals can be formed through a one-pot sequence of a hetero-Diels-Alder reaction, an oxidative carbon-hydrogen bond cleavage, and an acid treatment. This convergent approach expedites access to a complex molecular subunit which is present in numerous biologically active structures. The utility of the protocol is demonstrated through its application to a brief synthesis of the actin-binding cytotoxin bistramide A. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A Cu-Zn nanoparticle promoter for selective carbon dioxide reduction and its application in visible-light-active Z-scheme systems using water as an electron donor.

    PubMed

    Yin, Ge; Sako, Hiroshi; Gubbala, Ramesh V; Ueda, Shigenori; Yamaguchi, Akira; Abe, Hideki; Miyauchi, Masahiro

    2018-04-17

    Selective carbon dioxide photoreduction to produce formic acid was achieved under visible light irradiation using water molecules as electron donors, similar to natural plants, based on the construction of a Z-scheme light harvesting system modified with a Cu-Zn alloy nanoparticle co-catalyst. The faradaic efficiency of our Z-scheme system for HCOOH generation was over 50% under visible light irradiation.

  4. Application of Spaceborne Scatterometer for Mapping Freeze-Thaw State in Northern Landscapes as a Measure of Ecological and Hydrological Processes

    NASA Technical Reports Server (NTRS)

    McDonald, Kyle; Kimball, John; Zimmermann, Reiner; Way, JoBea; Frolking, Steve; Running, Steve

    1994-01-01

    Landscape freeze/thaw transitions coincide with marked shifts in albedo, surface energy and mass exchange, and associated snow dynamics. monitoring landscape freeze/thaw dynamics would improve our ability to quantify the interannual variability of boreal hydrology and river runoff/flood dynamics, The annual duration of frost-free period also bounds the period of photosynthetic activity in borel and arctic regions thus affecting the carbon budget and the interannual variability fo regional carbon fluxes.

  5. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.300 Applicability; description of the calcium carbonate production subcategory. The provisions of this subpart are applicable to discharges...

  6. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.300 Applicability; description of the calcium carbonate production subcategory. The provisions of this subpart are applicable to discharges...

  7. 40 CFR 415.450 - Applicability; description of the lithium carbonate production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... lithium carbonate production subcategory. 415.450 Section 415.450 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Lithium Carbonate Production Subcategory § 415.450 Applicability; description of the lithium carbonate production subcategory. The provisions of this subpart are applicable to discharges...

  8. 40 CFR 415.450 - Applicability; description of the lithium carbonate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... lithium carbonate production subcategory. 415.450 Section 415.450 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Lithium Carbonate Production Subcategory § 415.450 Applicability; description of the lithium carbonate production subcategory. The provisions of this subpart are applicable to discharges...

  9. 40 CFR 415.450 - Applicability; description of the lithium carbonate production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... lithium carbonate production subcategory. 415.450 Section 415.450 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Lithium Carbonate Production Subcategory § 415.450 Applicability; description of the lithium carbonate production subcategory. The provisions of this subpart are applicable to discharges...

  10. 40 CFR 415.450 - Applicability; description of the lithium carbonate production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... lithium carbonate production subcategory. 415.450 Section 415.450 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Lithium Carbonate Production Subcategory § 415.450 Applicability; description of the lithium carbonate production subcategory. The provisions of this subpart are applicable to discharges...

  11. 40 CFR 415.450 - Applicability; description of the lithium carbonate production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... lithium carbonate production subcategory. 415.450 Section 415.450 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Lithium Carbonate Production Subcategory § 415.450 Applicability; description of the lithium carbonate production subcategory. The provisions of this subpart are applicable to discharges...

  12. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.300 Applicability; description of the calcium carbonate production subcategory. The provisions of this subpart are applicable to discharges...

  13. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.300 Applicability; description of the calcium carbonate production subcategory. The provisions of this subpart are applicable to discharges...

  14. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.300 Applicability; description of the calcium carbonate production subcategory. The provisions of this subpart are applicable to discharges...

  15. Carbon-Nanotube-Based Electrodes for Biomedical Applications

    NASA Technical Reports Server (NTRS)

    Li, Jun; Meyyappan, M.

    2008-01-01

    A nanotube array based on vertically aligned nanotubes or carbon nanofibers has been invented for use in localized electrical stimulation and recording of electrical responses in selected regions of an animal body, especially including the brain. There are numerous established, emerging, and potential applications for localized electrical stimulation and/or recording, including treatment of Parkinson s disease, Tourette s syndrome, and chronic pain, and research on electrochemical effects involved in neurotransmission. Carbon-nanotube-based electrodes offer potential advantages over metal macroelectrodes (having diameters of the order of a millimeter) and microelectrodes (having various diameters ranging down to tens of microns) heretofore used in such applications. These advantages include the following: a) Stimuli and responses could be localized at finer scales of spatial and temporal resolution, which is at subcellular level, with fewer disturbances to, and less interference from, adjacent regions. b) There would be less risk of hemorrhage on implantation because nano-electrode-based probe tips could be configured to be less traumatic. c) Being more biocompatible than are metal electrodes, carbon-nanotube-based electrodes and arrays would be more suitable for long-term or permanent implantation. d) Unlike macro- and microelectrodes, a nano-electrode could penetrate a cell membrane with minimal disruption. Thus, for example, a nanoelectrode could be used to generate an action potential inside a neuron or in proximity of an active neuron zone. Such stimulation may be much more effective than is extra- or intracellular stimulation via a macro- or microelectrode. e) The large surface area of an array at a micron-scale footprint of non-insulated nanoelectrodes coated with a suitable electrochemically active material containing redox ingredients would make it possible to obtain a pseudocapacitance large enough to dissipate a relatively large amount of electric charge, so that a large stimulation current could be applied at a micron-scale region without exhausting the redox ingredients. f) Carbon nanotube array is more compatible with the three-dimensional network of tissues. Particularly, a better electrical-neural interface can be formed. g) A carbon nanotube array inlaid in insulating materials with only the ends exposed is an extremely sensitive electro-analysis tool that can measure the local neurotransmitter signal at extremely high sensitivity and temporal resolution.

  16. Nanomaterials for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Moloney, Padraig G.

    2006-01-01

    Nano-engineered materials are multi-functional materials with superior mechanical, thermal and electrical properties. Nanomaterials may be used for a variety of space exploration applications, including ultracapacitors, active/passive thermal management materials, and nanofiltration for water recovery. Additional applications include electrical power/energy storage systems, hybrid systems power generation, advanced proton exchange membrane fuel cells, and air revitalization. The need for nanomaterials and their growth, characterization, processing and space exploration applications is discussed. Data is presented for developing solid-supported amine adsorbents based on carbon nanotube materials and functionalization of nanomaterials is examined.

  17. Biodegradation of carbon nanohorns in macrophage cells

    NASA Astrophysics Data System (ADS)

    Zhang, Minfang; Yang, Mei; Bussy, Cyrill; Iijima, Sumio; Kostarelos, Kostas; Yudasaka, Masako

    2015-02-01

    With the rapid developments in the medical applications of carbon nanomaterials such as carbon nanohorns (CNHs), carbon nanotubes, and graphene based nanomaterials, understanding the long-term fate, health impact, excretion, and degradation of these materials has become crucial. Herein, the in vitro biodegradation of CNHs was determined using a non-cellular enzymatic oxidation method and two types of macrophage cell lines. Approximately 60% of the CNHs was degraded within 24 h in a phosphate buffer solution containing myeloperoxidase. Furthermore, approximately 30% of the CNHs was degraded by both RAW 264.7 and THP-1 macrophage cells within 9 days. Inflammation markers such as pro-inflammatory cytokines interleukin 6 and tumor necrosis factor α were not induced by exposure to CNHs. However, reactive oxygen species were generated by the macrophage cells after uptake of CNHs, suggesting that these species were actively involved in the degradation of the nanomaterials rather than in an inflammatory pathway induction.With the rapid developments in the medical applications of carbon nanomaterials such as carbon nanohorns (CNHs), carbon nanotubes, and graphene based nanomaterials, understanding the long-term fate, health impact, excretion, and degradation of these materials has become crucial. Herein, the in vitro biodegradation of CNHs was determined using a non-cellular enzymatic oxidation method and two types of macrophage cell lines. Approximately 60% of the CNHs was degraded within 24 h in a phosphate buffer solution containing myeloperoxidase. Furthermore, approximately 30% of the CNHs was degraded by both RAW 264.7 and THP-1 macrophage cells within 9 days. Inflammation markers such as pro-inflammatory cytokines interleukin 6 and tumor necrosis factor α were not induced by exposure to CNHs. However, reactive oxygen species were generated by the macrophage cells after uptake of CNHs, suggesting that these species were actively involved in the degradation of the nanomaterials rather than in an inflammatory pathway induction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06175f

  18. Fiber and fabric solar cells by directly weaving carbon nanotube yarns with CdSe nanowire-based electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Luhui; Shi, Enzheng; Ji, Chunyan; Li, Zhen; Li, Peixu; Shang, Yuanyuan; Li, Yibin; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai; Cao, Anyuan

    2012-07-01

    Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications of semiconducting nanowires and carbon nanotubes in woven photovoltaics.Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications of semiconducting nanowires and carbon nanotubes in woven photovoltaics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr31440a

  19. Interaction among multiple microorganisms and effects of nitrogen and carbon supplementations on lignin degradation.

    PubMed

    Lv, Yuancai; Chen, Yuancai; Sun, Shiying; Hu, Yongyou

    2014-03-01

    The mutual interactions among the consortium constructed by four indigenous bacteria and five inter-kingdom fusants and the effects of nitrogen and carbon supplementations on lignin degradation and laccase activity were investigated. Analyzed by Plackett-Burman and central composite design, the microbial consortium were optimized, Bacillus sp. (B) and PE-9 and Pseudomonas putida (Pp) and PE-9 had significant interactions on lignin degradation based on a 5% level of significance. The nitrogen and carbon supplementations played an important role in lignin degradation and laccase production. The ultimate lignin degradation efficiency of 96.0% and laccase activity of 268U/L were obtained with 0.5g/L of ammonium chloride and 2g/L of sucrose. Results suggested that a stable and effective microbial consortium in alkalescent conditions was successfully achieved through the introduction of fusants, which was significant for its industrial application. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Well-dispersed NiO nanoparticles supported on nitrogen-doped carbon nanotube for methanol electrocatalytic oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Wang, Pengcheng; Zhou, Yingke; Hu, Min; Chen, Jian

    2017-01-01

    Nitrogen-doped carbon nanotube supporting NiO nanoparticles were synthesized by a chemical precipitation process coupled with subsequent calcination. The morphology and structure of the composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performance was evaluated using cyclic voltammetry and chronoamperometric technique. The effects of nitrogen doping, calcination temperature and content of NiO nanoparticles on the electrocatalytic activity toward methanol oxidation were systematically studied. The results show that the uniformly dispersed ultrafine NiO nanoparticles supported on nitrogen-doped carbon nanotube are obtained after calcination at 400 °C. The optimized composite catalysts present high electrocatalytic activity, fast charge-transfer process, excellent accessibility and stability for methanol oxidation reaction, which are promising for application in the alkaline direct methanol fuel cells.

  1. Nitrogen-doped Carbon Derived from ZIF-8 as a High-performance Metal-free Catalyst for Acetylene Hydrochlorination

    NASA Astrophysics Data System (ADS)

    Chao, Songlin; Zou, Fang; Wan, Fanfan; Dong, Xiaobin; Wang, Yanlin; Wang, Yuxuan; Guan, Qingxin; Wang, Guichang; Li, Wei

    2017-01-01

    Acetylene hydrochlorination is a major industrial technology for manufacturing vinyl chloride monomer in regions with abundant coal resources; however, it is plagued by the use of mercury(II) chloride catalyst. The development of a nonmercury catalyst has been extensively explored. Herein, we report a N-doped carbon catalyst derived from ZIF-8 with both high activity and quite good stability. The acetylene conversion reached 92% and decreased slightly during a 200 h test at 220 °C and atmospheric pressure. Experimental studies and theoretical calculations indicate that C atoms adjacent to the pyridinic N are the active sites, and coke deposition covering pyridinic N is the main reason for catalyst deactivation. The performance of those N-doped carbons makes it possible for practical applications with further effort. Furthermore, the result also provides guidance for designing metal-free catalysts for similar reactions.

  2. Microwave-assisted regeneration of activated carbons loaded with pharmaceuticals.

    PubMed

    Ania, C O; Parra, J B; Menéndez, J A; Pis, J J

    2007-08-01

    The purpose of this work was to explore the application of microwaves for the regeneration of activated carbons spent with salicylic acid, a metabolite of a common analgesic frequently found in wastewater from the pharmaceutical industry. The exhausted carbon was treated in a quartz reactor by microwave irradiation at 2450 MHz at different temperatures and atmospheres, the regeneration efficiency being highly dependent on the operating conditions. Quantitative desorption of the pollutant was achieved at high temperature and oxidizing atmosphere, with regeneration efficiencies as high as 99% after six cycles. The stripping efficiency was superior to 95% at high temperatures and decreased at 450 degrees C. The incomplete desorption of the adsorbate at low temperature was further confirmed by the changes in the porosity observed by N2 and CO2 adsorption isotherms. Hence, micropores remain blocked which results in a reduction in loading capacities in successive cycles.

  3. Carbon nanocages: a new support material for Pt catalyst with remarkably high durability.

    PubMed

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-03-24

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for "real world" application.

  4. Nano-adsorbents for the removal of metallic pollutants from water and wastewater.

    PubMed

    Sharma, Y C; Srivastava, V; Singh, V K; Kaul, S N; Weng, C H

    2009-05-01

    Of the variety of adsorbents available for the removal of heavy and toxic metals, activated carbon has been the most popular. A number of minerals, clays and waste materials have been regularly used for the removal of metallic pollutants from water and industrial effluents. Recently there has been emphasis on the application of nanoparticles and nanostructured materials as efficient and viable alternatives to activated carbon. Carbon nanotubes also have been proved effective alternatives for the removal of metallic pollutants from aqueous solutions. Because of their importance from an environmental viewpoint, special emphasis has been given to the removal of the metals Cr, Cd, Hg, Zn, As, and Cu. Separation of the used nanoparticles from aqueous solutions and the health aspects of the separated nanoparticles have also been discussed. A significant number of the latest articles have been critically scanned for the present review to give a vivid picture of these exotic materials for water remediation.

  5. Tandem Nitrogen Functionalization of Porous Carbon: Toward Immobilizing Highly Active Palladium Nanoclusters for Dehydrogenation of Formic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhangpeng; Yang, Xinchun; Tsumori, Nobuko

    2017-03-10

    Highly dispersed palladium nanoclusters (Pd NCs) immobilized by a nitrogen (N)-functionalized porous carbon support (N-MSC-30) are synthesized by a wet chemical reduction method, wherein the N-MSC-30 prepared by a tandem low temperature heat-treatment approach proved to be a distinct support for stabilizing the Pd NCs. The prepared Pd/N-MSC-30 shows extremely high catalytic activity and recyclability for the dehydrogenation of formic acid (FA), affording the highest turnover frequency (TOF = 8414 h -1) at 333 K, which is much higher than that of the Pd catalyst supported on the N-MSC-30 prepared via a one-step process. This tandem heat treatment strategy providesmore » a facile and effective synthetic methodology to immobilize ultrafine metal NPs on N-functionalized carbon materials, which have tremendous application prospects in various catalytic fields.« less

  6. Evaluating the effectiveness of mulch application to store carbon belowground: Short-term effects of mulch application on soluble soil and microbial C and N in agricultural soils with low and high organic matter

    NASA Astrophysics Data System (ADS)

    Chen, Janet; Heiling, Maria; Resch, Christian; Gruber, Roman; Dercon, Gerd

    2017-04-01

    Agricultural soils have the potential to contain a large pool of carbon and, depending on the farming techniques applied, can either effectively store carbon belowground, or further release carbon, in the form of CO2, into the atmosphere. Farming techniques, such as mulch application, are frequently proposed to increase carbon content belowground and improve soil quality and can be used in efforts to reduce greenhouse gas levels, such as in the "4 per 1000" Initiative. To test the effectiveness of mulch application to store carbon belowground in the short term and improve soil nutrient quality, we maintained agricultural soils with low and high organic carbon content (disturbed top soil from local Cambisols and Chernozems) in greenhouse mesocosms (70 cm deep with a radius of 25 cm) with controlled moisture for 4 years. Over the 4 years, maize and soybean were grown yearly in rotation and mulch was removed or applied to soils once plant material was harvested at 2 ton/ha dry matter. In addition, soil disturbance was kept to a minimum, with only surface disturbance of a few centimeters to keep soil free from weeds. After 4 years, we measured effects of mulch application on soluble soil and microbial carbon and nitrogen in the mesocosms and compared effects of mulch application versus no mulch on soils from 0-5 cm and 5-15 cm with low and high organic matter. We predicted that mulch would increase soil carbon and nitrogen content and mulch application would have a greater effect on soils with low organic matter than soils with high organic matter. In soils with low organic carbon content and larger predicted potential to increase soil carbon, mulch application did not increase soluble soil or microbial carbon or nitrogen compared to the treatments without mulch application. However, mulch application significantly increased the δ13C of both microbial and soluble soil carbon in these soils by 1 ‰ each, indicating a shift in belowground processes, such as increased decomposition coupled with increased carbon inputs. In soils with more organic content and lower potential to increase soil carbon, mulch application decreased microbial carbon by 0.01 mg C g soil-1 and increased soluble soil nitrogen by 0.01 mg N g soil-1. Soluble soil carbon also decreased by 0.04 mg C g soil-1 and microbial nitrogen increased with mulch application by 0.006 mg N g soil-1, but only in 5-15 cm soil. Mulch application only decreased δ13C of soluble soil carbon by 1.5 ‰, likely indicating a decrease in decomposition. Contrary to our initial predictions, mulch did not increase soil carbon content and only increased nitrogen content in soils that already had relatively higher organic matter content. These results suggest that mulch application (with only soil surface disturbance) may not play a significant role in increasing soil carbon content and overall soil quality, at least in a short 4-year term.

  7. Electrochemical pretreatment of amino-carbon nanotubes on graphene support as a novel platform for bilirubin oxidase with improved bioelectrocatalytic activity towards oxygen reduction.

    PubMed

    Navaee, Aso; Salimi, Abdollah; Jafari, Fereydoon

    2015-03-23

    The electrochemical conditioning of amino-carbon nanotubes (CNTs) on a graphene support in an alkaline solution is used to produce -NHOH as hydrophilic functional groups for the efficient immobilization of bilirubin oxidase enzyme. The application of the immobilized enzyme for the direct electrocatalytic reduction of O2 is investigated. The onset potential of 0.81 V versus NHE and peak current density of 2.3 mA cm(-2) for rotating modified electrode at 1250 rpm, indicate improved biocatalytic activity of the proposed system for O2 reduction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Application of activated carbons from coal and coconut shell for removing free residual chlorine.

    PubMed

    Ogata, Fumihiko; Tominaga, Hisato; Ueda, Ayaka; Tanaka, Yuko; Iwata, Yuka; Kawasaki, Naohito

    2013-01-01

    This study investigated the removal of free residual chlorine by activated carbon (AC). ACs were prepared from coal (AC1) and coconut shell (AC2). The specific surface area of AC1 was larger than that of AC2. The removal of free residual chlorine increased with elapsed time and amount of adsorbent. The removal mechanism of free residual chlorine was the dechlorination reaction between hypochlorous acid or hypochlorite ion and AC. Moreover, AC1 was useful in the removal of free residual chlorine in tap water. The optimum condition for the removal of free residual chlorine using a column is space velocity 306 1/h; liner velocity 6.1 m/h.

  9. Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okoli, Celest U.; Kuttiyiel, Kurian A.; Cole, Jesse

    Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. In this paper, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show thatmore » carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. Finally, the metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.« less

  10. Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts

    DOE PAGES

    Okoli, Celest U.; Kuttiyiel, Kurian A.; Cole, Jesse; ...

    2017-10-03

    Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. In this paper, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show thatmore » carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. Finally, the metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.« less

  11. Internal Active Thermal Control System (IATCS) Sodium Bicarbonate/Carbonate Buffer in an Open Aqueous Carbon Dioxide System and Corollary Electrochemical/Chemical Reactions Relative to System pH Changes

    NASA Technical Reports Server (NTRS)

    Stegman, Thomas W.; Wilson, Mark E.; Glasscock, Brad; Holt, Mike

    2014-01-01

    The International Space Station (ISS) Internal Active Thermal Control System (IATCS) experienced a number of chemical changes driven by system absorption of CO2 which altered the coolant’s pH. The natural effects of the decrease in pH from approximately 9.2 to less than 8.4 had immediate consequences on system corrosion rates and corrosion product interactions with specified coolant constituents. The alkalinity of the system was increased through the development and implementation of a carbonate/bicarbonate buffer that would increase coolant pH to 9.0 – 10.0 and maintain pH above 9.0 in the presence of ISS cabin concentrations of CO2 up to twenty times higher than ground concentrations. This paper defines how a carbonate/bicarbonate buffer works in an open carbon dioxide system and summarizes the analyses performed on the buffer for safe and effective application in the on-orbit system. The importance of the relationship between the cabin environment and the IATCS is demonstrated as the dominant factor in understanding the system chemistry and pH trends before and after addition of the carbonate/bicarbonate buffer. The paper also documents the corollary electrochemical and chemical reactions the system has experienced and the rationale for remediation of these effects with the addition of the carbonate/bicarbonate buffer.

  12. Carbon Nanotube Networks as Nanoscaffolds for Fabricating Ultrathin Carbon Molecular Sieve Membranes.

    PubMed

    Hou, Jue; Zhang, Huacheng; Hu, Yaoxin; Li, Xingya; Chen, Xiaofang; Kim, Seungju; Wang, Yuqi; Simon, George P; Wang, Huanting

    2018-06-13

    Carbon molecular sieve (CMS) membranes have shown great potential for gas separation owing to their low cost, good chemical stability, and high selectivity. However, most of the conventional CMS membranes exhibit low gas permeance due to their thick active layer, which limits their practical applications. Herein, we report a new strategy for fabricating CMS membranes with a 100 nm-thick ultrathin active layer using poly(furfuryl alcohol) (PFA) as a carbon precursor and carbon nanotubes (CNTs) as nanoscaffolds. CNT networks are deposited on a porous substrate as nanoscaffolds, which guide PFA solution to effectively spread over the substrate and form a continuous layer, minimizing the penetration of PFA into the pores of the substrate. After pyrolysis process, the CMS membranes with 100-1000 nm-thick active layer can be obtained by adjusting the CNT loading. The 322 nm-thick CMS membrane exhibits the best trade-off between the gas permeance and selectivity, a H 2 permeance of 4.55 × 10 -8 mol m -2 s -1 Pa -1 , an O 2 permeance of 2.1 × 10 -9 mol m -2 s -1 Pa -1 , and an O 2 /N 2 ideal selectivity of 10.5, which indicates the high quality of the membrane produced by this method. This work provides a simple, efficient strategy for fabricating ultrathin CMS membranes with high selectivity and improved gas flux.

  13. Enhanced Fenton-like removal of nitrobenzene via internal microelectrolysis in nano zerovalent iron/activated carbon composite.

    PubMed

    Hu, Sihai; Wu, Yaoguo; Yao, Hairui; Lu, Cong; Zhang, Chengjun

    2016-01-01

    The efficiency of Fenton-like catalysis using nano zerovalent iron (nZVI) is limited by nZVI aggregation and activity loss due to inactive ferric oxide forming on the nZVI surface, which hinders electron transfer. A novel iron-carbon composite catalyst consisting of nZVI and granular activated carbon (GAC), which can undergo internal iron-carbon microelectrolysis spontaneously, was successfully fabricated by the adsorption-reduction method. The catalyst efficiency was evaluated in nitrobenzene (NB) removal via the Fenton-like process (H2O2-nZVI/GAC). The results showed that nZVI/GAC composite was good for dispersing nZVI on the surface of GAC, which permitted much better removal efficiency (93.0%) than nZVI (31.0%) or GAC (20.0%) alone. Moreover, iron leaching decreased from 1.28 to 0.58 mg/L after reaction of 240 min and the oxidation kinetic of the Fenton-like reaction can be described well by the second-order reaction kinetic model (R2=0.988). The composite catalyst showed sustainable catalytic ability and GAC performed as a medium for electron transfer in internal iron-carbon microelectrolysis to promote Fe2+ regeneration and Fe3+/Fe2+ cycles. Therefore, this study represents an important method to design a low cost and high efficiency Fenton-like catalyst in practical application.

  14. Improvement of nitrogen utilization and soil properties by addition of a mineral soil conditioner: mechanism and performance.

    PubMed

    Yan, Xiaodan; Shi, Lin; Cai, Rumeng

    2018-01-01

    A mineral soil conditioner (MSC) composed of activated potash feldspar, gypsum, and calcium carbonate and containing an amount of available mineral nutrients, is shown to be effective for plant growth and acidic soil amelioration. In this study, a field test was conducted over four rice seasons by examining treatment with control check (CK), MSC, biological active carbon, and lime to investigate the nitrogen-use efficiency and mechanism of soil characteristic variations due to the desilicification and allitization of soil as well as the unrestrained use of nitrogen (N) fertilizer in recent years. Influences of MSC on the xylem sap intensity and mean rice yields were evaluated, and the soil type was also analyzed using the FactSage 6.1 Reaction, phase diagram, and Equilib modules. The results of the field trial showed that MSC application increased the xylem sap intensity and nitrogen export intensity by 37.33-39.85% and 31.40-51.20%, respectively. A significant increase (5.63-15.48%) in mean grain yields was achieved with MSC application over that with biological active carbon and lime application. The effects of MSC had a tendency to increase with time in the field experiment results, and grain yields increased after the initial application. The new formation of clay minerals exhibits a significant influence on [Formula: see text] fixation, especially for 2:1 phyllosilicates with illite, owing to the interlayers of the clay minerals. Our preliminary results showed that kaolinite, the main 1:1 phyllosilicate clay mineral in ferralsol, transformed to illite at room temperature as a consequence of the presence of H 4 SiO 4 and available K + supplied by MSC. This indicated that improving the soil quality combined with reducing N losses from soils is an efficient way to control non-point source pollution from agriculture without the risk of decreased in grain yield.

  15. NASA's Carbon Monitoring System (CMS) Applications and Application Readiness Levels (ARLs)-An assessment of how all CMS ARLs provide societal benefit.

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.; Sepulveda Carlo, E.; Delgado Arias, S.

    2016-12-01

    During the past six years, the NASA Carbon Monitoring System (CMS) Applications effort has been engaging with stakeholders in an effort to make the 52 CMS project user friendly and policy relevant. Congressionally directed, the CMS initiative is a NASA endeavor providing carbon data products that help characterize and understand carbon sources and sinks at local and international scales. All data are freely available, and scaled for local, state, regional, national and international-level resource management. To facilitate user feedback during development, as well as understanding for the type of use and application the CMS data products can provide, the Applications project utilizes the NASA Applied Sciences Program nine step Application Readiness Level (ARL) indices. These are used to track and manage the progression and distribution of funded projects. ARLs are an adaptation of NASA's technology readiness levels (TRLs) used for managing technology and risk and reflects the three main tiers of a project: research, development and deployment. The ARLs are scaled from 1 to 9, research and development (ARL1) to operational and/or decision making ready products (ARL9). The ARLS can be broken up into three phases: Phase 1, discovery and feasibility (ARL 1-3); Phase 2, development testing and validation (ARL 4-6); and Phase 3, integration into Partner's systems (ARL 7-9). The ARLs are designed to inform both scientist and end user of the product maturity and application capability. The CMS initiative has products that range across all ARLs, providing societal benefit at multiple scales. Lower ARLs contribute to formal documents such as the IPCC while others at higher levels provide decision support quantifying the value of carbon data for greenhouse gas (GHG) reduction planning. Most CMS products have an ARL 5, (validation of a product in a relevant environment), meaning the CMS carbon science is actively in a state of science-user engagement. For the user community, ARLs are a litmus test for knowing the type of user feedback and advocacy that can be implemented into the product design. For the scientist, ARLS help communicate (1) the maturity of their science to users who would like to use it for decision making and (2) the intended use of the product.

  16. Investigation of the medical applications of the unique biocarbons developed by NASA. [compatibility of percutaneous prosthetic carbon devices

    NASA Technical Reports Server (NTRS)

    Mooney, V.

    1973-01-01

    The biocompatibility of percutaneous endoskeletal fixation devices made from carbon compounds, and their applications are considered. The clinical application of these carbons to solve human problems is demonstrated and the nature of myoelectric simulation by carbon implants is studied.

  17. 78 FR 35603 - Foreign-Trade Zone 83-Huntsville, Alabama; Application for Production Authority; Toray Carbon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ..., Alabama; Application for Production Authority; Toray Carbon Fibers America, Inc.; (Polyacrylonitrile Fiber/Carbon Fiber Production), Decatur, Alabama An application has been submitted to the Foreign-Trade Zones... authority on behalf of Toray Carbon Fibers America, Inc. (Toray), located in Decatur, Alabama. The...

  18. 40 CFR 458.40 - Applicability; description of the carbon black lamp process subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carbon black lamp process subcategory. 458.40 Section 458.40 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.40 Applicability; description of the carbon black lamp process subcategory. The provisions of this subpart are applicable to discharges resulting...

  19. 40 CFR 458.40 - Applicability; description of the carbon black lamp process subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carbon black lamp process subcategory. 458.40 Section 458.40 Protection of Environment ENVIRONMENTAL... CATEGORY Carbon Black Lamp Process Subcategory § 458.40 Applicability; description of the carbon black lamp process subcategory. The provisions of this subpart are applicable to discharges resulting from the...

  20. Functionalized carbon nanotubes for potential medicinal applications.

    PubMed

    Zhang, Yi; Bai, Yuhong; Yan, Bing

    2010-06-01

    Functionalized carbon nanotubes display unique properties that enable a variety of medicinal applications, including the diagnosis and treatment of cancer, infectious diseases and central nervous system disorders, and applications in tissue engineering. These potential applications are particularly encouraged by their ability to penetrate biological membranes and relatively low toxicity. High aspect ratio, unique optical property and the likeness as small molecule make carbon nanotubes an unusual allotrope of element carbon. After functionalization, carbon nanotubes display potentials for a variety of medicinal applications, including the diagnosis and treatment of cancer, infectious diseases and central nervous system disorders, and applications in tissue engineering. These potential applications are particularly encouraged by their ability to penetrate biological membranes and relatively low toxicity. (c) 2010 Elsevier Ltd. All rights reserved.

  1. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification.

    PubMed

    Yang, Hui Ying; Han, Zhao Jun; Yu, Siu Fung; Pey, Kin Leong; Ostrikov, Kostya; Karnik, Rohit

    2013-01-01

    Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications. Conventional desalination methods are energy and operationally intensive, whereas adsorption-based techniques are simple and easy to use for point-of-use water purification, yet their capacity to remove salts is limited. Here we report that plasma-modified ultralong carbon nanotubes exhibit ultrahigh specific adsorption capacity for salt (exceeding 400% by weight) that is two orders of magnitude higher than that found in the current state-of-the-art activated carbon-based water treatment systems. We exploit this adsorption capacity in ultralong carbon nanotube-based membranes that can remove salt, as well as organic and metal contaminants. These ultralong carbon nanotube-based membranes may lead to next-generation rechargeable, point-of-use potable water purification appliances with superior desalination, disinfection and filtration properties.

  2. Nitrogen-doped micropore-dominant carbon derived from waste pine cone as a promising metal-free electrocatalyst for aqueous zinc/air batteries

    NASA Astrophysics Data System (ADS)

    Lei, Xiaoke; Wang, Mengran; Lai, Yanqing; Hu, Langtao; Wang, Hao; Fang, Zhao; Li, Jie; Fang, Jing

    2017-10-01

    The exploitation for highly effective and low-cost metal-free catalysts with facile and environmental friendly method for oxygen reduction reaction is still a great challenge. To find an effective method for catalyst synthesis, in this manuscript, waste biomass pine cone is employed as raw material and nitrogen-doped micropore-dominant carbon material with excellent ORR catalytic activity is successfully synthesized. The as-prepared N-doped micropore-dominant carbon possesses a high surface area of 1556 m2 g-1. In addition, this carbon electrocatalyst loaded electrode exhibits a high discharge voltage 1.07 V at the current density of 50 mA cm-2, which can be ascribed to the rich micropores and high content of pyridinic N of the prepared carbon, indicative of great potential in the application of zinc/air batteries.

  3. Method for making carbon films

    DOEpatents

    Tan, M.X.

    1999-07-29

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.

  4. Method for making carbon films

    DOEpatents

    Tan, Ming X.

    1999-01-01

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  5. Carbon deposition behaviour in metal-infiltrated gadolinia doped ceria electrodes for simulated biogas upgrading in solid oxide electrolysis cells

    NASA Astrophysics Data System (ADS)

    Duboviks, V.; Lomberg, M.; Maher, R. C.; Cohen, L. F.; Brandon, N. P.; Offer, G. J.

    2015-10-01

    One of the attractive applications for reversible Solid Oxide Cells (SOCs) is to convert CO2 into CO via high temperature electrolysis, which is particularly important for biogas upgrading. To improve biogas utility, the CO2 component can be converted into fuel via electrolysis. A significant issue for SOC operation on biogas is carbon-induced catalyst deactivation. Nickel is widely used in SOC electrodes for reasons of cost and performance, but it has a low tolerance to carbon deposition. Two different modes of carbon formation on Ni-based electrodes are proposed in the present work based on ex-situ Raman measurements which are in agreement with previous studies. While copper is known to be resistant towards carbon formation, two significant issues have prevented its application in SOC electrodes - namely its relatively low melting temperature, inhibiting high temperature sintering, and low catalytic activity for hydrogen oxidation. In this study, the electrodes were prepared through a low temperature metal infiltration technique. Since the metal infiltration technique avoids high sintering temperatures, Cu-Ce0.9Gd0.1O2-δ (Cu-CGO) electrodes were fabricated and tested as an alternative to Ni-CGO electrodes. We demonstrate that the performance of Cu-CGO electrodes is equivalent to Ni-CGO electrodes, whilst carbon formation is fully suppressed when operated on biogas mixture.

  6. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.

    PubMed

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin

    2016-04-01

    Adsorption onto granular activated carbon (GAC) is an established technology in water and advanced wastewater treatment for the removal of organic substances from the liquid phase. Besides adsorption, the removal of particulate matter by filtration and biodegradation of organic substances in GAC contactors has frequently been reported. The application of GAC as both adsorbent for organic micropollutant (OMP) removal and filter medium for solids retention in tertiary wastewater filtration represents an energy- and space saving option, but has rarely been considered because high dissolved organic carbon (DOC) and suspended solids concentrations in the influent of the GAC adsorber put a significant burden on this integrated treatment step and might result in frequent backwashing and unsatisfactory filtration efficiency. This pilot-scale study investigates the combination of GAC adsorption and deep-bed filtration with coagulation as a single advanced treatment step for simultaneous removal of OMPs and phosphorus from secondary effluent. GAC was assessed as upper filter layer in dual-media downflow filtration and as mono-media upflow filter with regard to filtration performance and OMP removal. Both filtration concepts effectively removed suspended solids and phosphorus, achieving effluent concentrations of 0.1 mg/L TP and 1 mg/L TSS, respectively. Analysis of grain size distribution and head loss within the filter bed showed that considerable head loss occurred in the topmost filter layer in downflow filtration, indicating that most particles do not penetrate deeply into the filter bed. Upflow filtration exhibited substantially lower head loss and effective utilization of the whole filter bed. Well-adsorbing OMPs (e.g. benzotriazole, carbamazepine) were removed by >80% up to throughputs of 8000-10,000 bed volumes (BV), whereas weakly to medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) showed removals <80% at <5,000 BV. In addition, breakthrough behavior was also determined for gabapentin, an anticonvulsant drug recently detected in drinking water resources for which suitable removal technologies are still largely unknown. Gabapentin showed poor adsorptive removal, resulting in rapid concentration increases. Whereas previous studies classified gabapentin as not readily biodegradable, sustained removal was observed after prolonged operation and points at biological elimination of gabapentin within the GAC filter. The application of GAC as filter medium was compared to direct addition of powdered activated carbon (PAC) to deep-bed filtration as a direct process alternative. Both options yielded comparable OMP removals for most compounds at similar carbon usage rates, but GAC achieved considerably higher removals for biodegradable OMPs. Based on the results, the application of GAC in combination with coagulation/filtration represents a promising alternative to powdered activated carbon and ozone for advanced wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Synthesis of Olive-Like Nitrogen-Doped Carbon with Embedded Ge Nanoparticles for Ultrahigh Stable Lithium Battery Anodes.

    PubMed

    Ma, Xiaomei; Zhou, Yongning; Chen, Min; Wu, Limin

    2017-05-01

    The development of environment-friendly and high-performance carbon materials for energy applications has remained a great challenge. Here, a novel and facile method for synthesis of olive-like nitrogen-doped carbon embedded with germanium (Ge) nanoparticles using widespread and nontoxic dopamine as carbon and nitrogen precursors is demonstrated, especially by understanding the tendency of pure GeO 2 nanoparticles forming ellipsoidal aggregation, and the chelating reaction of the catechol structure in dopamine with metal ions. The as-synthesized Ge/N-C composites show an olive-like porous carbon structure with a loading weight of as high as 68.5% Ge nanoparticles. A lithium ion battery using Ge/N-C as the anode shows 1042 mAh g -1 charge capacity after 2000 cycles (125 d) charge/discharge at C/2 (1C = 1600 mA g -1 ) with a capacity maintaining efficiency of 99.6%, significantly exceeding those of the previously reported Ge/C-based anode materials. This prominent cyclic charge/discharge performance of the Ge/N-C anode is attributed to the well-dispersed Ge nanoparticles in graphitic N-doped carbon matrix, which facilitates high rates (0.5-15 C) of charge/discharge and increases the anode structure integrity. The synthesis strategy presented here may be a very promising approach to prepare a series of active nanoparticle-carbon hybrid materials with nitrogen doping for more and important applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Activated Carbon-Supported Palladized Iron Nanoparticles: Applications to Contaminated Site Remediation

    EPA Science Inventory

    This chapter describes the potential of nanotechnology to provide new solutions to managing and cleaning our contaminated water and soil and improving the performance of conventional technologies used in cleanup efforts. Our initial efforts have been focused on key pollutants of ...

  9. Business Applications of Typewriting Skills; Business Education: 7704.21.

    ERIC Educational Resources Information Center

    Hallock, Dorothy

    The course described in this pamphlet is for the student interested in typewriting for vocational use, and includes activity-oriented exercises concerning carbon copies, envelopes, postal cards, announements, memoranda, and two styles of business letters. Contents include occupational relationships, enrollment guidelines, performance objectives…

  10. 2D Metal Chalcogenides Incorporated into Carbon and their Assembly for Energy Storage Applications.

    PubMed

    Deng, Zongnan; Jiang, Hao; Li, Chunzhong

    2018-05-01

    2D metal chalcogenides have become a popular focus in the energy storage field because of their unique properties caused by their single-atom thicknesses. However, their high surface energy and van der Waals attraction easily cause serious stacking and restacking, leading to the generation of more inaccessible active sites with rapid capacity fading. The hybridization of 2D metal chalcogenides with highly conductive materials, particularly, incorporating ultrasmall and few-layered metal chalcogenides into carbon frameworks, can not only maximize the exposure of active sites but also effectively avoid their stacking and aggregation during the electrochemical reaction process. Therefore, a satisfactory specific capacity will be achieved with a long cycle life. In this Concept, the representative progress on such intriguing nanohybrids and their applications in energy storage devices are mainly summarized. Finally, an outlook of the future development and challenges of such nanohybrids for achieving an excellent energy storage capability is also provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Deposition of amorphous carbon nitride films on flexible substrates by reactive sputtering for applications in light-driven active devices

    NASA Astrophysics Data System (ADS)

    Aono, Masami; Harata, Tomo; Odawara, Taku; Asai, Shinnosuke; Orihara, Dai; Nogi, Masaya

    2018-01-01

    Amorphous carbon nitride (a-CN x ) thin films deposited by reactive sputtering have great potential for driving source applications of light-driven active devices. We demonstrate, for the first time, the photoinduced deformation of a-CN x deposited on flexible substrates, namely, poly(ethylene naphthalate) (PEN) films and transparent cellulose nanopaper. a-CN x films without delamination were obtained on both substrates. By decreasing the thickness of PEN films, the photoinduced deformation became extremely large. A light-driven pump was fabricated using a-CN x -coated PEN films, and then the pumping motion was observed up to 10 Hz. When a He-Ne laser traced the surface of a-CN x films deposited on the nanopaper, the sample moved to the opposite side of the laser spot. The motion involved repeated expansions and contractions similar to the motion of caterpillars occurring owing to the temporary photoinduced deformation of a-CN x films.

  12. Novel biomaterials: plasma-enabled nanostructures and functions

    NASA Astrophysics Data System (ADS)

    Levchenko, Igor; Keidar, Michael; Cvelbar, Uroš; Mariotti, Davide; Mai-Prochnow, Anne; Fang, Jinghua; (Ken Ostrikov, Kostya

    2016-07-01

    Material processing techniques utilizing low-temperature plasmas as the main process tool feature many unique capabilities for the fabrication of various nanostructured materials. As compared with the neutral-gas based techniques and methods, the plasma-based approaches offer higher levels of energy and flux controllability, often leading to higher quality of the fabricated nanomaterials and sometimes to the synthesis of the hierarchical materials with interesting properties. Among others, nanoscale biomaterials attract significant attention due to their special properties towards the biological materials (proteins, enzymes), living cells and tissues. This review briefly examines various approaches based on the use of low-temperature plasma environments to fabricate nanoscale biomaterials exhibiting high biological activity, biological inertness for drug delivery system, and other features of the biomaterials make them highly attractive. In particular, we briefly discuss the plasma-assisted fabrication of gold and silicon nanoparticles for bio-applications; carbon nanoparticles for bioimaging and cancer therapy; carbon nanotube-based platforms for enzyme production and bacteria growth control, and other applications of low-temperature plasmas in the production of biologically-active materials.

  13. Strategies for Enhancing the Catalytic Performance of Metal-Organic Frameworks in the Fixation of CO2 into Cyclic Carbonates.

    PubMed

    Taherimehr, Masoumeh; Van de Voorde, Ben; Wee, Lik H; Martens, Johan A; De Vos, Dirk E; Pescarmona, Paolo P

    2017-03-22

    Metal-organic frameworks (MOFs) with accessible Lewis acid sites are finding increasing application in the field of heterogeneous catalysis. However, the structural instability of MOFs when they are exposed to high temperature and/or high pressure often limits their applicability. In this study, two strategies were applied to achieve a MOF catalyst with high stability, activity and selectivity in the reaction of CO 2 with styrene oxide to produce styrene carbonate. In the first approach, a MOF with linkers with high connectivity as MIL-100(Cr) was studied, leading to promising activity and recyclability in consecutive catalytic runs without loss of activity. In the second strategy, a MOF with linkers with lower connectivity but with encapsulated Keggin phosphotungstic acid (MIL-101(Cr)[PTA]) was prepared. However, the activity of this catalyst decreased upon reuse as a consequence of deterioration of the MOF. Further investigations were dedicated to the enhancement of the catalytic performance of MIL-100 and included the variation of the metal centre as well as the type and loading of organic salt acting as nucleophile source. This allowed tuning the nature of the organic halide to the specific porous structure of MIL-100(Cr) to prevent diffusion limitations. The best catalytic performance was obtained for MIL-100(Cr) in combination with EMIMBr ionic liquid, which gave very high styrene carbonate yield (94 %) with complete selectivity after 18 h of reaction at mild temperature (60 °C). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. SERS activity of Ag decorated nanodiamond and nano-β-SiC, diamond-like-carbon and thermally annealed diamond thin film surfaces.

    PubMed

    Kuntumalla, Mohan Kumar; Srikanth, Vadali Venkata Satya Siva; Ravulapalli, Satyavathi; Gangadharini, Upender; Ojha, Harish; Desai, Narayana Rao; Bansal, Chandrahas

    2015-09-07

    In the recent past surface enhanced Raman scattering (SERS) based bio-sensing has gained prominence owing to the simplicity and efficiency of the SERS technique. Dedicated and continuous research efforts have been made to develop SERS substrates that are not only stable, durable and reproducible but also facilitate real-time bio-sensing. In this context diamond, β-SiC and diamond-like-carbon (DLC) and other related thin films have been promoted as excellent candidates for bio-technological applications including real time bio-sensing. In this work, SERS activities of nanodiamond, nano-β-SiC, DLC, thermally annealed diamond thin film surfaces were examined. DLC and thermally annealed diamond thin films were found to show SERS activity without any metal nanostructures on their surfaces. The observed SERS activities of the considered surfaces are explained in terms of the electromagnetic enhancement mechanism and charge transfer resonance process.

  15. Carbon-Hydrogen (C-H) Bond Activation at PdIV: A Frontier in C-H Functionalization Catalysis.

    PubMed

    Topczewski, Joseph J; Sanford, Melanie S

    2015-01-01

    The direct functionalization of carbon-hydrogen (C-H) bonds has emerged as a versatile strategy for the synthesis and derivatization of organic molecules. Among the methods for C-H bond activation, catalytic processes that utilize a Pd II /Pd IV redox cycle are increasingly common. The C-H activation step in most of these catalytic cycles is thought to occur at a Pd II centre. However, a number of recent reports have suggested the feasibility of C-H cleavage occurring at Pd IV complexes. Importantly, these latter processes often result in complementary reactivity and selectivity relative to analogous transformations at Pd II . This Mini Review highlights proposed examples of C-H activation at Pd IV centres. Applications of this transformation in catalysis as well as mechanistic details obtained from stoichiometric model studies are discussed. Furthermore, challenges and future perspectives for the field are reviewed.

  16. Carbon Nanotube Thin Films for Active Noise Cancellation, Solar Energy Harvesting, and Energy Storage in Building Windows

    NASA Astrophysics Data System (ADS)

    Hu, Shan

    This research explores the application of carbon nanotube (CNT) films for active noise cancellation, solar energy harvesting and energy storage in building windows. The CNT-based components developed herein can be integrated into a solar-powered active noise control system for a building window. First, the use of a transparent acoustic transducer as both an invisible speaker for auxiliary audio playback and for active noise cancellation is accomplished in this work. Several challenges related to active noise cancellation in the window are addressed. These include secondary path estimation and directional cancellation of noise so as to preserve auxiliary audio and internal sounds while preventing transmission of external noise into the building. Solar energy can be harvested at a low rate of power over long durations while acoustic sound cancellation requires short durations of high power. A supercapacitor based energy storage system is therefore considered for the window. Using CNTs as electrode materials, two generations of flexible, thin, and fully solid-state supercapacitors are developed that can be integrated into the window frame. Both generations consist of carbon nanotube films coated on supporting substrates as electrodes and a solid-state polymer gel layer for the electrolyte. The first generation is a single-cell parallel-plate supercapacitor with a working voltage of 3 Volts. Its energy density is competitive with commercially available supercapacitors (which use liquid electrolyte). For many applications that will require higher working voltage, the second-generation multi-cell supercapacitor is developed. A six-cell device with a working voltage as high as 12 Volts is demonstrated here. Unlike the first generation's 3D structure, the second generation has a novel planar (2D) architecture, which makes it easy to integrate multiple cells into a thin and flexible supercapacitor. The multi-cell planar supercapacitor has energy density exceeding that of other planar supercapacitors in literature by more than one order of magnitude. All-solution fabrication processes were developed for both generations to achieve economical and scalable production. In addition to carbon nanotubes, nickel/nickel oxide core-shell nanowires were also studied as electrode materials for supercapacitors, for which high specific capacitance but low working voltage were obtained. Semi-transparent solar cells with carbon nanotube counter electrodes are developed to power the active noise cancellation system. They can be directly mounted on the glass panes and become part of the home window. The 2.67% efficiency achieved is higher than the 1.8% efficiency required for harvesting adequate energy to cancel noise of 70dB Day-Night-Level, which impacts on a north-facing window. In summary, this project develops several fundamental technologies that together can contribute to a solar-powered active noise cancellation system for a building window. At the same time, since the component technologies being developed are fundamental, it is also likely that they will have wider applications in other domains beyond building windows.

  17. Why does carbon increase in highly weathered soil under no-till upon lime and gypsum use?

    PubMed

    Inagaki, Thiago Massao; de Moraes Sá, João Carlos; Caires, Eduardo Fávero; Gonçalves, Daniel Ruiz Potma

    2017-12-01

    Field experiments have been used to explain how soil organic carbon (SOC) dynamics is affected by lime and gypsum applications, however, how SOC storage occurs is still debatable. We hypothesized that although many studies conclude that Ca-based soil amendments such as lime and gypsum may lead to SOC depletion due to the enhancement of microbial activity, the same does not occur under conservation agriculture conditions. Thus, the objective of this study was to elucidate the effects of lime and gypsum applications on soil microbial activity and SOC stocks in a no-till field and in a laboratory incubation study simulating no-till conditions. The field experiment was established in 1998 in a clayey Oxisol in southern Brazil following a completely randomized blocks design with a split-plot arrangement and three replications. Lime and gypsum were surface applied in 1998 and reapplied in 2013. Undisturbed soil samples were collected before the treatments reapplications, and one year after. The incubation experiment was carried out during 16months using these samples adding crop residues on the soil surface to simulate no-till field conditions. Lime and gypsum applications significantly increased the labile SOC stocks, microbial activity and soil fertility attributes in both field and laboratory experiments. Although the microbial activity was increased, no depletion of SOC stocks was observed in both experiments. Positive correlations were observed between microbial activity increase and SOC gains. Labile SOC and Ca 2+ content increase leads to forming complex with mineral soil fractions. Gypsum applications performed a higher influence on labile SOC pools in the field than in the laboratory experiment, which may be related to the presence of active root system in the soil profile. We conclude that incubation experiments using lime and gypsum in undisturbed samples confirm that soil microbial activity increase does not deplete SOC stocks under conservation agriculture. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effects of Biochar Amendment on Soil Properties and Soil Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Zhu, S.

    2015-12-01

    Biochar addition to soils potentially affects various soil properties and soil carbon sequestration, and these effects are dependent on biochars derived from different feedstock materials and pyrolysis processes. The objective of this study was to investigate the effects of amendment of different biochars on soil physical and biological properties as well as soil carbon sequestration. Biochars were produced with dairy manure and woodchip at temperatures of 300, 500, and 700°C, respectively. Each biochar was mixed at 5% (w/w) with a forest soil and the mixture was incubated for 180 days, during which soil physical and biological properties, and soil respiration rates were measured. Results showed that the biochar addition significantly enhanced the formation of soil macroaggregates at the early incubation time. The biochar application significantly reduced soil bulk density, increased the amount of soil organic matter, and stimulated microbial activity and soil respiration rates at the early incubation stage. Biochar applications improved water retention capacity, with stronger effects by biochars produced at higher pyrolysis temperatures. At the same suction, the soil with woodchip biochars possessed higher water content than with the dairy manure biochars. Biochar addition significantly affected the soil physical and biological properties, which resulted in different soil carbon mineralization rates and the amount of soil carbon storage.

  19. A facile construction of Au nanoparticles stabilized by thermo-responsive polymer-tethered carbon dots for enhanced catalytic performance

    NASA Astrophysics Data System (ADS)

    Li, Li; Zhang, Tianyi; Lü, Jianhua; Lü, Changli

    2018-10-01

    Carbon dots (CDs), the youngest member in the carbon nanomaterial family, have drawn considerable attention due to their interesting optical, physicochemical and electronic properties as well as broad promising applications. Here, we developed a facile and effective strategy for the preparation of Au nanoparticles stabilized by thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) functionalized carbon dots (Au@CD@P) under the gentle water media. The as-designed dopamine(DA)-terminated PNIPAM can be easily anchored to CDs via mussel-inspired chemistry route. Both CD@P and CDs could well stabilize the Au nanoparticles with interesting assembled structure. The as-prepared Au@CD and Au@CD@P nanohybrids with good dispersibility and stability exhibited the intriguing catalytic activity for reduction of p-nitrophenol (p-NP). Especially, Au@CD@P as catalyst also played a switching role in regulating the catalytic rate by temperature. In addition, Au@CD@P exhibited excellent recyclability which may have potential in green chemical industry for developing high-activity catalysts and easy production methods.

  20. Critical evaluation and comparison of enrichment efficiency of multi-walled carbon nanotubes, C18 silica and activated carbon towards some pesticides from environmental waters.

    PubMed

    El-Sheikh, Amjad H; Sweileh, Jamal A; Al-Degs, Yahya S; Insisi, Ahmad A; Al-Rabady, Nancy

    2008-02-15

    In this work, optimization of multi-residue solid phase extraction (SPE) procedures coupled with high-performance liquid chromatography for the determination of Propoxur, Atrazine and Methidathion from environmental waters is reported. Three different sorbents were used in this work: multi-walled carbon nanotubes (MWCNTs), C18 silica and activated carbon (AC). The three optimized SPE procedures were compared in terms of analytical performance, application to environmental waters, cartridge re-use, adsorption capacity and cost of adsorbent. Although the adsorption capacity of MWCNT was larger than AC and C18, however, the analytical performance of AC could be made close to the other sorbents by appropriate optimization of the SPE procedures. A sample of AC was then oxidized with various oxidizing agents to show that ACs of various surface properties has different enrichment efficiencies. Thus researchers are advised to try AC of various surface properties in SPE of pollutants prior to using expensive sorbents (such as MWCNT and C18 silica).

Top