Science.gov

Sample records for activated carbon column

  1. Mercury (II) removal from water by coconut shell based activated carbon: batch and column studies.

    PubMed

    Goel, Jyotsna; Kadirvelu, K; Rajagopal, C

    2004-02-01

    This study was undertaken to investigate adsorption behavior of Hg (II) from aqueous systems on activated carbon in static and dynamic mode by varying initial Hg (II) concentration, adsorbent dose and pH. Langmuir and Freundlich adsorption isotherm were applied to model the adsorption data. Removal of mercury obeyed the Langmuir and Freundlich adsorption isotherm models. The extent of removal of Hg (II) was found to be dependent on sorbent dose, pH and initial Hg (II) concentration. Mercury uptake increased from 72 to 100 percent with increasing pH from 2 to 10. A set of desorption studies was also performed for the metal ions with the aim of investigating the mechanism involved. Moreover, the competing effects of various ions like Pb (II) and Cu (II) is also described. The column capacity for a column diameter of 20 mm, bed height of 0.4 m, hydraulic loading rate of 7.5 m3 h(-1) m(-2) and a feed concentration of 3 mg l(-1) were found to be 3.02 mg g(-1). Breakthrough curves were plotted for the adsorption of mercury on the adsorbent using continuous-flow column operation by varying different operating parameters like hydraulic loading rate (3-10.5 m3 h(-1) m(-2)), bed height (0.3-0.5 m), and feed concentrations (2-6 mg l(-1)). The aim was to assess the effect of bed height, hydraulic loading rate and initial feed concentration on breakthrough time and adsorption capacity, which helped in ascertaining the practical applicability of the adsorbent. At the end an attempt has been made to develop empirical relationship from the data generated from column studies for designing the adsorption column, based on the Bohart-Adams model.

  2. Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column.

    PubMed

    Sulaymon, Abbas H; Ahmed, Kawther W

    2008-01-15

    For a multicomponent competitive adsorption of furfural and phenolic compounds, a mathematical model was builtto describe the mass transfer kinetics in a fixed bed column with activated carbon. The effects of competitive adsorption equilibrium constant, axial dispersion, external mass transfer, and intraparticle diffusion resistance on the breakthrough curve were studied for weakly adsorbed compound (furfural) and strongly adsorbed compounds (parachlorophenol and phenol). Experiments were carried out to remove the furfural and phenolic compound from aqueous solution. The equilibrium data and intraparticle diffusion coefficients obtained from separate experiments in a batch adsorber, by fitting the experimental data with theoretical model. The results show that the mathematical model includes external mass transfer and pore diffusion using nonlinear isotherms and provides a good description of the adsorption process for furfural and phenolic compounds in a fixed bed adsorber.

  3. Adsorption of ciprofloxacin and norfloxacin from aqueous solution onto granular activated carbon in fixed bed column.

    PubMed

    Darweesh, Teeba M; Ahmed, Muthanna J

    2017-04-01

    Carbonization of Phoenix dactylifera L stones followed by microwave K2CO3 activation was adopted for preparation of granular activated carbon (KAC). High yield and favorable pore characteristics in terms of surface area and pore volume were reported for KAC as follows: 44%, 852m(2)/g, and 0.671cm(3)/g, respectively. The application of KAC as adsorbent for attraction of ciprofloxacin (CIP) and norfloxacin (NOR) was investigated using fixed bed systems. The effect of flow rate (0.5-1.5ml/min), bed height (15-25cm), and initial drug concentration (75-225mg/l) on the behavior of breakthrough curves was explained. The fixed bed analysis showed the better correlation of breakthrough data by both Thomas and Yoon-Nelson models. Inlet drug concentration was of greatest effect on breakthrough data compared to other fixed bed variables. Experimental and calculated breakthrough data were obtained for CIP and NOR adsorption on KAC, thus being important for design of fixed bed column.

  4. Equilibrium and column adsorption studies of 2,4-dinitroanisole (DNAN) on surface modified granular activated carbons.

    PubMed

    Boddu, V M; Abburi, K; Fredricksen, A J; Maloney, S W; Damavarapu, R

    2009-02-01

    2,4-Dinitroanisole (DNAN) is used as a component extensively in the development of insensitive munitions. This may result in release of DNAN into the environment. Here, the results are reported of a study on the removal characteristics of DNAN through adsorption on granular activated carbon (GAC), chitosan coated granular activated carbon (CGAC), acid treated granular activated carbon (AGAC) and alkali treated granular activated carbon (BGAC) under equilibrium and column flow conditions. The effect of pH, contact time, concentration of DNAN, and presence of electrolytes on the uptake of DNAN by the adsorbents was investigated. The equilibrium data were fitted to different types of adsorption isotherms. The data were further analysed on the basis of Lagergren first-order, pseudo second-order and intraparticle diffusion kinetic models. Breakthrough curves were obtained based on column flow results. All the adsorbents were capable of removing about 99% of DNAN from aqueous media, except CGAC which adsorbed about 87% of DNAN.

  5. Dynamic interactions between cyclodextrin, an organic pollutant, and granular activated carbon in column studies.

    PubMed

    Blanford, William J; Gao, Heng

    2012-11-01

    In this study, the dynamic interactions between cyclodextrin (CD), an organic chemical and granular activated carbon (GAC) were investigated using column studies. Breakthrough curves of a chlorinated solvent, trichloroethylene (TCE) were obtained over a range of concentrations of 2-hydroxypropyl-beta-cyclodextrin (HPCD) (0, 20, and 50 g L(-1)) and flow velocities (1.0, 4.0, and 10.2 mL min(-1)). Important transport parameters (i.e. residence time, dispersion coefficient, retardation factor) were estimated using truncated temporal moment analysis. Our result shows that increasing CD concentration resulted in earlier TCE breakthrough, demonstrated by decreasing residence times which are 306.23, 151.26, and 102.24 pore volumes for 0, 20, and 50 g L(-1) CD respectively. Comparison of the original breakthrough curves (BTCs) under different CD concentrations to the solubility-enhancement-rescaled BTCs showed (1) the presence of CD decreases the relative degree of TCE sorption to GAC and (2) all 3 curves exhibited similar rescaled times at which they reach 50% of the input concentration. The lowest flow rate, (1.0 mL min(-1)), resulted in a more symmetrical BTC, indicating more ideal conditions were achieved under the longer exposure time provided by this flow rate. As the flow rate increases the first appearance of TCE in the eluent occurs relatively earlier and exhibits comparatively greater delay in achieving full breakthrough, suggesting non-equilibrium processes are more significant at higher flow rates.

  6. Measuring and modeling reduction of DDT availability to the water column and mussels following activated carbon amendment of contaminated sediment.

    PubMed

    Tomaszewski, Jeanne E; McLeod, Pamela B; Luthy, Richard G

    2008-10-01

    A 28-day accumulation study demonstrated the use of mussel uptake, passive samplers, and biodynamic modeling to measure the reduction of dichlorodiphenyltrichloroethane (DDT) availability in the water column after the addition of activated carbon to contaminated sediment. Sediment collected from Lauritzen Channel, Richmond, California (16.5mg total DDT/kg) was mixed with either virgin activated carbon or a reactivated carbon for one month, after which a 28-day laboratory exposure study was completed. Mussels (Mytilus edulis) suspended above activated carbon-treated sediment accumulated significantly less total DDT in soft tissue, 91% and 84% for virgin and reactivated carbon, respectively, as compared to untreated sediment. Mussel tissue concentrations correlated to concentrations in semipermeable membrane devices (SPMDs) and polyethylene devices (PEDs) suspended over the same sediments. A biodynamic model that incorporated DDT water concentrations, either analytically measured or estimated from PED uptake, described mussel accumulation over time. Thus, passive samplers in combination with biodynamic modeling may provide an important screening tool for assessment of filter-feeding uptake and ecological risk to water-dwelling organisms exposed to aqueous phase hydrophobic organic contaminants.

  7. Penetration of polar brominated DBPs through the activated carbon columns during total organic bromine analysis.

    PubMed

    Li, Yao; Zhang, Xiangru; Krasner, Stuart W; Shang, Chii; Zhai, Hongyan; Liu, Jiaqi; Yang, Mengting

    2011-10-01

    Total organic bromine (TOBr) is a collective parameter representing all the brominated organic disinfection byproducts (DBPs) in water samples. TOBr can be measured using the adsorption-pyrolysis method according to Standard Method 5320B. This method involves that brominated organic DBPs are separated from inorganic halides and concentrated from aqueous solution by adsorption onto the activated carbon (AC). Previous studies have reported that some commonly known brominated DBPs can partially penetrate through the AC during this adsorption step. In this work, the penetration of polar brominated DBPs through AC and ozone-modified AC was explored with two simulated drinking water samples and one chlorinated wastewater effluent sample. Polar brominated DBPs were selectively detected with a novel precursor ion scan method using electrospray ionization-triple quadrupole mass spectrometry. The results show that 3.4% and 10.4% of polar brominated DBPs (in terms of total ion intensity) in the chlorinated Suwannee River fulvic acid and humic acid samples, respectively, penetrated through the AC, and 19.6% of polar brominated DBPs in the chlorinated secondary wastewater effluent sample penetrated through the AC. The ozone-modification of AC minimized the penetration of polar brominated DBPs during the TOBr analysis.

  8. Aqueous phase adsorption of cephalexin by walnut shell-based activated carbon: A fixed-bed column study

    NASA Astrophysics Data System (ADS)

    Nazari, Ghadir; Abolghasemi, Hossein; Esmaieli, Mohamad; Sadeghi Pouya, Ehsan

    2016-07-01

    The walnut shell was used as a low cost adsorbent to produce activated carbon (AC) for the removal of cephalexin (CFX) from aqueous solution. A fixed-bed column adsorption was carried out using the walnut shell AC. The effect of various parameters like bed height (1.5, 2 and 2.5 cm), flow rate (4.5, 6 and 7.5 mL/min) and initial CFX concentration (50, 100 and 150 mg/L) on the breakthrough characteristics of the adsorption system was investigated at optimum pH 6.5. The highest bed capacity of 211.78 mg/g was obtained using 100 mg/L inlet drug concentration, 2 cm bed height and 4.5 mL/min flow rate. Three kinetic models, namely Adam's-Bohart, Thomas and Yoon-Nelson were applied for analysis of experimental data. The Thomas and Yoon-Nelson models were appropriate for walnut shell AC column design under various conditions. The experimental adsorption capacity values were fitted to the Bangham and intra-particle diffusion models in order to propose adsorption mechanisms. The effect of temperature on the degradation of CFX was also studied.

  9. Activated carbon adsorptive removal of azo dye and peroxydisulfate regeneration: from a batch study to continuous column operation.

    PubMed

    Li, Jing; Du, Yue; Deng, Bin; Zhu, Kangmeng; Zhang, Hui

    2016-12-17

    The performance of activated carbon (AC) for the adsorption of Acid Orange 7 (AO7) was investigated in both batch and column studies. The optimal conditions for adsorption process in batch study were found to be a stirring speed of 500 rpm, AC dosage of 5 g/L, and initial AO7 concentration of 100 mg/L. The spent AC was then treated with peroxydisulfate (PDS), and the regenerated AC was used again to adsorb AO7. Both pseudo-first-order and pseudo-second-order rate models for adsorption kinetics were investigated, and the results showed that the latter model was more appropriate. The effects of regeneration time, PDS concentration, and stirring speed on AO7-spent AC regeneration were investigated in batch studies, and the optimal conditions were time 2 h, stirring speed 700 rpm, and PDS concentration 10 g/L. Under the same adsorption conditions, 89% AO7 could be decolorized by adsorption using regenerated AC. In the column studies, the effect of flow rate was investigated and the adsorption capacity was nearly the same when the flow rate rose from 7.9 to 11.4 mL/min, but it decreased significantly when the flow rate was increased to 15.2 mL/min. The performance of regenerated AC in the column was also investigated, and a slight increase in the adsorption capacity was observed in the second adsorption cycle. However, the adsorption capacity decreased to some extent in the third cycle due to the consumption of C-OH group on the AC surface during PDS regeneration.

  10. Batch and column adsorption of herbicide fluroxypyr on different types of activated carbons from water with varied degrees of hardness and alkalinity.

    PubMed

    Pastrana-Martínez, L M; López-Ramón, M V; Fontecha-Cámara, M A; Moreno-Castilla, C

    2010-02-01

    There has been little research into the effects of the water hardness and alkalinity of surface waters on the adsorption of herbicides on activated carbons. The aim of this study was to determine the influence of these water characteristics on fluroxypyr adsorption on different activated carbons. At low fluroxypyr surface concentrations, the amount adsorbed from distilled water was related to the surface hydrophobicity. Surface area of carbons covered by fluroxypyr molecules ranged from 60 to 65%. Variations in fluroxypyr solubility with water hardness and alkalinity showed a salting-in effect. Calcium, magnesium and bicarbonate ions were adsorbed to a varied extent on the activated carbons. The presence of fluroxypyr in solution decreased their adsorption due to a competition effect. K(F) from the Freundlich equation linearly increased with water hardness due to salt-screened electrostatic repulsions between charged fluroxypyr molecules. The amount adsorbed from distilled water was largest at high fluroxypyr solution concentrations, because there was no competition between inorganic ions and fluroxypyr molecules. The column breakthrough volume and the amount adsorbed at breakthrough were smaller in tap versus distilled water. Carbon consumption was lower with activated carbon cloth than with the use of granular activated carbon.

  11. Colloidal activated carbon for in-situ groundwater remediation--Transport characteristics and adsorption of organic compounds in water-saturated sediment columns.

    PubMed

    Georgi, Anett; Schierz, Ariette; Mackenzie, Katrin; Kopinke, Frank-Dieter

    2015-08-01

    Colloidal activated carbon can be considered as a versatile adsorbent and carrier material for in-situ groundwater remediation. In analogy to other nanoremediation approaches, activated carbon colloids (ACC) can be injected into the subsurface as aqueous suspensions. Deposition of ACC on the sediment creates a sorption barrier against further spreading of hydrophobic pollutants. This study deals with the optimization of ACC and their suspensions with a focus on suspension stability, ACC mobility in saturated porous media and sorption efficiency towards organic contaminants. ACC with an appropriate particle size range (d50=0.8μm) were obtained from a commercial powdered activated carbon product by means of wet-grinding. Among the various methods tested for stabilization of ACC suspensions, addition of humic acid (HA) and carboxymethyl cellulose (CMC) showed the best results. Due to electrosteric stabilization by adsorption of CMC, suspensions remained stable even at high ACC concentrations (11gL(-1)) and conditions typical of very hard water (5mM divalent cations). Furthermore, CMC-stabilized ACC showed high mobility in a water-saturated sandy sediment column (filter coefficient λ=0.2m(-1)). Such mobility is a pre-requisite for in-situ installation of sorption or reaction barriers by simple injection-well or direct-push application of ACC suspensions. Column experiments with organic model compounds proved the efficacy of ACC deposits on sediment for contaminant adsorption and retardation under flow-through conditions.

  12. Equilibrium uptake, sorption dynamics, process optimization, and column operations for the removal and recovery of malachite green from wastewater using activated carbon and activated slag

    SciTech Connect

    Gupta, V.K.; Srivastava, S.K.; Mohan, D.

    1997-06-01

    The waste slurry generated in fertilizer plants and slag (blast furnace waste) have been converted into low-cost adsorbents, activated carbon and activated slag, respectively, and these are utilized for the removal of malachite green (a basic dye) from wastewater. In the batch experiments, parameters studied include the effect of pH, sorbent dosage, adsorbate concentration, temperature, and contact time. Kinetic studies have been performed to have an idea of the mechanistic aspects and to obtain the thermodynamic parameters of the process. The uptake of the dye is greater on carbonaceous material than on activated slag. Sorption data have been correlated with both Langmuir and Freundlich adsorption models. The presence of anionic surfactants does not affect the uptake of dye significantly. The mass transfer kinetic approach has been applied for the determination of various parameters necessary for the designing of fixed-bed contactors. Chemical regeneration has been achieved with acetone in order to recover the loaded dye and restore the column to its original capacity without dismantling the same.

  13. Performance evaluation of granular activated carbon system at Pantex: Rapid small-scale column tests to simulate removal of high explosives from contaminated groundwater

    SciTech Connect

    Henke, J.L.; Speitel, G.E.

    1998-08-01

    A granular activated carbon (GAC) system is now in operation at Pantex to treat groundwater from the perched aquifer that is contaminated with high explosives. The main chemicals of concern are RDX and HMX. The system consists of two GAC columns in series. Each column is charged with 10,000 pounds of Northwestern LB-830 GAC. At the design flow rate of 325 gpm, the hydraulic loading is 6.47 gpm/ft{sup 2}, and the empty bed contact time is 8.2 minutes per column. Currently, the system is operating at less than 10% of its design flow rate, although flow rate increases are expected in the relatively near future. This study had several objectives: Estimate the service life of the GAC now in use at Pantex; Screen several GACs to provide a recommendation on the best GAC for use at Pantex when the current GAC is exhausted and is replaced; Determine the extent to which natural organic matter in the Pantex groundwater fouls GAC adsorption sites, thereby decreasing the adsorption capacity for high explosives; and Determine if computer simulation models could match the experimental results, thereby providing another tool to follow system performance.

  14. Preparation of tamarind fruit seed activated carbon by microwave heating for the adsorptive treatment of landfill leachate: A laboratory column evaluation.

    PubMed

    Foo, K Y; Lee, L K; Hameed, B H

    2013-04-01

    The preparation of tamarind fruit seed granular activated carbon (TSAC) by microwave induced chemical activation for the adsorptive treatment of semi-aerobic landfill leachate has been attempted. The chemical and physical properties of TSAC were examined. A series of column tests were performed to determine the breakthrough characteristics, by varying the operational parameters, hydraulic loading rate (5-20 mL/min) and adsorbent bed height (15-21 cm). Ammonical nitrogen and chemical oxygen demand (COD), which provide a prerequisite insight into the prediction of leachate quality was quantified. Results illustrated an encouraging performance for the adsorptive removal of ammonical nitrogen and COD, with the highest bed capacity of 84.69 and 55.09 mg/g respectively, at the hydraulic loading rate of 5 mL/min and adsorbent bed height of 21 cm. The dynamic adsorption behavior was satisfactory described by the Thomas and Yoon-Nelson models. The findings demonstrated the applicability of TSAC for the adsorptive treatment of landfill leachate.

  15. INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED SALT BRINE TO MAKE BICARBONATE OF SODA. - Solvay Process Company, SA Wetside Building, Between Willis & Milton Avenue, Solvay, Onondaga County, NY

  16. Solid-phase extraction of polar pesticides from environmental water samples on graphitized carbon and Empore-activated carbon disks and on-line coupling to octadecyl-bonded silica analytical columns.

    PubMed

    Slobodník, J; Oztezkizan, O; Lingeman, H; Brinkman, U A

    1996-10-25

    The suitability of Empore-activated carbon disks (EACD), Envi-Carb graphitized carbon black (GCB) and CPP-50 graphitized carbon for the trace enrichment of polar pesticides from water samples was studied by means of off-line and on-line solid-phase extraction (SPE). In the off-line procedure, 0.5-2 l samples spiked with a test mixture of oxamyl, methomyl and aldicarb sulfoxide were enriched on EnviCarb SPE cartridges or 47 mm diameter EACD and eluted with dichloromethane-methanol. After evaporation, a sample was injected onto a C18-bonded silica column and analysed by liquid chromatography with ultraviolet (LC-UV) detection. EACD performed better than EnviCarb cartridges in terms of breakthrough volumes (> 2 l for all test analytes), reproducibility (R.S.D. of recoveries, 4-8%, n = 3) and sampling speed (100 ml/min); detection limits in drinking water were 0.05-0.16 microgram/l. In the on-line experiments, 4.6 mm diameter pieces cut from original EACD and stacked onto each other in a 9 mm long precolumn, and EnviCarb and CPP-50 packed in 10 x 2.0 mm I.D. precolumn, were tested, and 50-200 ml spiked water samples were preconcentrated. Because of the peak broadening caused by the strong sorption of the analytes on carbon, the carbon-packed precolumns were eluted by a separate stream of 0.1 ml/min acetonitrile which was mixed with the gradient LC eluent in front of the C18 analytical column. The final on-line procedure was also applied for the less polar propoxur, carbaryl and methiocarb. EnviCarb could not be used due to its poor pressure resistance. CPP-50 provided less peak broadening than EACD: peak widths were 0.1-0.3 min and R.S.D. of peak heights 4-14% (n = 3). In terms of analyte trapping efficiency on-line SPE-LC-UV with a CPP-50 precolumn also showed better performance than when Bondesil C18/OH or polymeric PLRP-S was used, but chromatographic resolution was similar. With the CPP-50-based system, detection limits of the test compounds were 0.05-1 microgram

  17. Total Carbon Column Observing Network (TCCON) Data Archive

    DOE Data Explorer

    Total Carbon Column Observing Network (TCCON) Team

    2017-03-28

    The Total Carbon Column Observing Network (TCCON) is a network of ground-based Fourier Transform Spectrometers that record direct solar absorption spectra of the atmosphere in the near-infrared. From these spectra, accurate and precise column-averaged abundances of atmospheric constituents including CO2, CH4, N2O, HF, CO, H2O, and HDO, are retrieved. This is the entire TCCON Data Archive which contains multiple iterations (e.g., GGG2014) of the data sets from the individual TCCON stations.

  18. The Total Carbon Column Observing Network (TCCON): overview and update

    NASA Astrophysics Data System (ADS)

    Griffith, David; Wennberg, Paul; Notholt, Justus

    2014-05-01

    The Total Carbon Column Observing Network (TCCON) is a network of ground-based Fourier Transform Spectrometers that record direct solar absorption spectra of the atmosphere in the near-infrared. From these spectra, accurate and precise column-averaged abundances of atmospheric constituents including CO2, CH4, N2O, HF, CO, H2O, and HDO, are retrieved. TCCON measurements are linked to WMO calibration scales by comparisons with co-incident in situ profiles measured from aircraft. For CO2, TCCON achieves 1-sigma precision of typically 0.2 ppm for single measurements, and a network wide comparability of better than 0.1 In this paper we present an overview and the current status of the network, ongoing efforts to improve network coverage, precision and accuracy, and examples of TCCON data and their application. Further information about TCCON and a full list of sites and TCCON partners is available from the TCCON wiki, https://tccon-wiki.caltech.edu/ and Wunch et al. (2011). Wunch, D., G.C. Toon, J.-F. Blavier, R. Washenfelder, J. Notholt, B. Connor, D.W.T. Griffith and P.O. Wennberg, The Total Carbon Column Observing Network (TCCON). Philosophical Transactions of the Royal Society A 2011. 369: p. 2087-2112.

  19. Measurement of Carbon Dioxide Column via Space Borne Laser Absorption

    NASA Technical Reports Server (NTRS)

    Heaps, WIlliam S.

    2007-01-01

    In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. In order to uncover the 'missing sink that is responsible for the large discrepancies in the budget as we presently understand it calculation has indicated that measurement accuracy on the order of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of .25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget in order to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong requirements on the laser system used for the measurement. This work presents an analysis of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics Several systems for meeting these requirements that are under investigation at various institutions in the US as well as Europe will be discussed.

  20. Evaluation of carbonization as a thermal pretreatment method for landfilling by column leaching tests.

    PubMed

    Hwang, I H; Matsuto, T

    2008-01-01

    To evaluate carbonization as a thermal pretreatment method for landfilling, the releasing characteristics of organic and inorganic constituents from carbonization residue derived from shredded residue of bulky waste was investigated by means of batch and column leaching tests. Shredded residue of bulky waste itself and its incineration ash were tested together to compare pretreatment methods. In batch leaching tests at a liquid/solid ratio of 10, the release of organic carbon from carbonization residue was at a remarkably low level. Besides, carbonization contributed to immobilize heavy metals such as chromium, cadmium, and lead within its residue. In column tests, the discharges of organic constituents were lowest from carbonization residue under aerobic conditions due to microbial activity. The leaching of Cd, Cr, Pb, and Cu from carbonization residue was suppressed under anaerobic conditions; however, this suppression effect tended to be weaker under aerobic conditions. From the results showing that the total releasing amounts of organic and inorganic constituents from carbonization residue are so low as to be comparable to that of incineration ash, carbonization can be considered as one of the thermal pretreatment methods of organic wastes.

  1. Separating proteins with activated carbon.

    PubMed

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon.

  2. Carbon monoxide total column retrievals from TROPOMI shortwave infrared measurements

    NASA Astrophysics Data System (ADS)

    Landgraf, Jochen; aan de Brugh, Joost; Scheepmaker, Remco; Borsdorff, Tobias; Hu, Haili; Houweling, Sander; Butz, Andre; Aben, Ilse; Hasekamp, Otto

    2016-10-01

    The Tropospheric Monitoring Instrument (TROPOMI) spectrometer is the single payload of the Copernicus Sentinel 5 Precursor (S5P) mission. It measures Earth radiance spectra in the shortwave infrared spectral range around 2.3 µm with a dedicated instrument module. These measurements provide carbon monoxide (CO) total column densities over land, which for clear sky conditions are highly sensitive to the tropospheric boundary layer. For cloudy atmospheres over land and ocean, the column sensitivity changes according to the light path through the atmosphere. In this study, we present the physics-based operational S5P algorithm to infer atmospheric CO columns satisfying the envisaged accuracy ( < 15 %) and precision ( < 10 %) both for clear sky and cloudy observations with low cloud height. Here, methane absorption in the 2.3 µm range is combined with methane abundances from a global chemical transport model to infer information on atmospheric scattering. For efficient processing, we deploy a linearized two-stream radiative transfer model as forward model and a profile scaling approach to adjust the CO abundance in the inversion. Based on generic measurement ensembles, including clear sky and cloudy observations, we estimated the CO retrieval precision to be ≤ 11 % for surface albedo ≥ 0.03 and solar zenith angle ≤ 70°. CO biases of ≤ 3 % are introduced by inaccuracies in the methane a priori knowledge. For strongly enhanced CO concentrations in the tropospheric boundary layer and for cloudy conditions, CO errors in the order of 8 % can be introduced by the retrieval of cloud parameters of our algorithm. Moreover, we estimated the effect of a distorted spectral instrument response due to the inhomogeneous illumination of the instrument entrance slit in the flight direction to be < 2 % with pseudo-random characteristics when averaging over space and time. Finally, the CO data exploitation is demonstrated for a TROPOMI orbit of simulated shortwave infrared

  3. Biogeochemistry of Two Types of Permeable Reafctive Barriers, Organic Carbon and Iron-bearing Organic Carbon for Mine Drainage treatment: Column experiments

    SciTech Connect

    Guo, Q.; Blowes, D

    2009-01-01

    Permeable reactive barriers (PRBs) are an alternative technology to treat mine drainage containing sulfate and heavy metals. Two column experiments were conducted to assess the suitability of an organic carbon (OC) based reactive mixture and an Fe{sup 0}-bearing organic carbon (FeOC) based reactive mixture, under controlled groundwater flow conditions. The organic carbon mixture contains about 30% (volume) organic carbon (composted leaf mulch) and 70% (volume) sand and gravel. The Fe{sup 0}-bearing organic carbon mixture contains 10% (volume) zero-valent iron, 20% (volume) organic carbon, 10% (volume) limestone, and 60% (volume) sand and gravel. Simulated groundwater containing 380 ppm sulfate, 5 ppm As, and 0.5 ppm Sb was passed through the columns at flow rates of 64 (the OC column) and 62 (the FeOC column) ml d{sup -1}, which are equivalent to 0.79 (the OC column) and 0.78 (the FeOC column) pore volumes (PVs) per week or 0.046 m d{sup -1} for both columns. The OC column showed an initial sulfate reduction rate of 0.4 {mu}mol g (OC){sup -1} d{sup -1} and exhausted its capacity to promote sulfate reduction after 30 PVs, or 9 months of flow. The FeOC column sustained a relatively constant sulfate reduction rate of 0.9 {mu}mol g (OC){sup -1} d{sup -1} for at least 65 PVs (17 months). In the FeOC column, the {delta}34S values increase with the decreasing sulfate concentration. The {delta}34S fractionation follows a Rayleigh fractionation model with an enrichment factor of 21.6%. The performance decline of the OC column was caused by the depletion of substrate or electron donor. The cathodic production of H{sub 2} by anaerobic corrosion of Fe probably sustained a higher level of SRB activity in the FeOC column. These results suggest that zero-valent iron can be used to provide an electron donor in sulfate reducing PRBs. A sharp increase in the {delta}13C value of the dissolved inorganic carbon and a decrease in the concentration of HCO{sub 3}{sup -} indicate that

  4. Sunlight Controls Water Column Processing of Carbon in Arctic Freshwaters

    NASA Astrophysics Data System (ADS)

    Cory, R. M.; Ward, C. P.; Crump, B. C.; Kling, G. W.

    2014-12-01

    Carbon (C) in thawing permafrost soils may have global impacts on climate change, yet controls on its processing and fate are poorly understood. The dominant fate of dissolved organic C (DOC) released from soils to inland waters is either complete oxidation to CO2 or partial oxidation and river export to oceans. Both processes are most often attributed to bacterial respiration, but we recently showed that photochemical oxidation exceeds rates of respiration and accounts for 70-95% of total DOC processed in the water column of arctic lakes and rivers. While the overall dominance of photochemical processing in streams and lakes remained, the fate of DOC varied consistently by water type. In small streams DOC was mainly mineralized by sunlight to CO2, while in lakes the main fate of DOC was partial photo-oxidation. Large rivers were intermediate between these end members, and photo-mineralization to CO2 was about equal to or less than partial photo-oxidation. We suggest this pattern is a result of light-exposure history, where DOC leached from soils into headwater streams has little prior light exposure and is labile to complete photo-oxidation, but as light exposure increases moving downstream and into lakes with longer residence times the DOC photo-lability declines. Thus as easily photo-mineralized moieties are removed, DOC fate shifts toward partial photo-oxidation and downstream export in rivers and lakes. At the basin scale, photochemical processing of DOC is about one third of the total CO2 released from surface waters, and is thus an important, newly measured component of the Arctic C budget. We also suggest that these photochemical transformations of DOC will occur in any shallow surface water, and could be important for better understanding inland water carbon cycling.

  5. Calculating carbon mass balance from unsaturated soil columns treated with CaSO₄₋minerals: test of soil carbon sequestration.

    PubMed

    Han, Young-Soo; Tokunaga, Tetsu K

    2014-12-01

    Renewed interest in managing C balance in soils is motivated by increasing atmospheric concentrations of CO2 and consequent climate change. Here, experiments were conducted in soil columns to determine C mass balances with and without addition of CaSO4-minerals (anhydrite and gypsum), which were hypothesized to promote soil organic carbon (SOC) retention and soil inorganic carbon (SIC) precipitation as calcite under slightly alkaline conditions. Changes in C contents in three phases (gas, liquid and solid) were measured in unsaturated soil columns tested for one year and comprehensive C mass balances were determined. The tested soil columns had no C inputs, and only C utilization by microbial activity and C transformations were assumed in the C chemistry. The measurements showed that changes in C inventories occurred through two processes, SOC loss and SIC gain. However, the measured SOC losses in the treated columns were lower than their corresponding control columns, indicating that the amendments promoted SOC retention. The SOC losses resulted mostly from microbial respiration and loss of CO2 to the atmosphere rather than from chemical leaching. Microbial oxidation of SOC appears to have been suppressed by increased Ca(2+) and SO4(2)(-) from dissolution of CaSO4 minerals. For the conditions tested, SIC accumulation per m(2) soil area under CaSO4-treatment ranged from 130 to 260 g C m(-1) infiltrated water (20-120 g C m(-1) infiltrated water as net C benefit). These results demonstrate the potential for increasing C sequestration in slightly alkaline soils via CaSO4-treatment.

  6. Removal of carbon constituents from hospital solid waste incinerator fly ash by column flotation.

    PubMed

    Liu, Hanqiao; Wei, Guoxia; Zhang, Rui

    2013-01-01

    Hospital solid waste incinerator (HSWI) fly ash contains a large number of carbon constituents including powder activated carbon and unburned carbon, which are the major source of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in fly ash. Therefore, the removal of carbon constituents could reduce PCDD/Fs in fly ash greatly. In this study, the effects of the main flotation parameters on the removal of carbon constituents were investigated, and the characteristics of the final product were evaluated. The results showed that loss on ignition (LOI) of fly ash increased from 11.1% to 31.6% during conditioning process. By optimizing the flotation parameters at slurry concentration 0.05 kg/l, kerosene dosage 12 kg/t, frother dosage 3 kg/t and air flow rate 0.06 m(3)/h, 92.7% of the carbon constituents were removed from the raw fly ash. Under these conditions, the froth product has LOI of 56.35% and calorific values of 12.5 MJ/kg, LOI in the tailings was below 5%, and the total toxic equivalent (TEQ) of PCDD/Fs decreased from 5.61 ng-TEQ/g in the raw fly ash to 1.47 ng-TEQ/g in the tailings. The results show that column flotation is a potential technology for simultaneous separation of carbon constituents and PCDD/Fs from HSWI fly ash.

  7. Activated carbon testing for the 200 area effluent treatment facility

    SciTech Connect

    Wagner, R.N.

    1997-01-17

    This report documents pilot and laboratory scale testing of activated carbon for use in the 200 Area Effluent Treatment Facility peroxide decomposer columns. Recommendations are made concerning column operating conditions and hardware design, the optimum type of carbon for use in the plant, and possible further studies.

  8. Carbon cycle. Sunlight controls water column processing of carbon in arctic fresh waters.

    PubMed

    Cory, Rose M; Ward, Collin P; Crump, Byron C; Kling, George W

    2014-08-22

    Carbon in thawing permafrost soils may have global impacts on climate change; however, the factors that control its processing and fate are poorly understood. The dominant fate of dissolved organic carbon (DOC) released from soils to inland waters is either complete oxidation to CO2 or partial oxidation and river export to oceans. Although both processes are most often attributed to bacterial respiration, we found that photochemical oxidation exceeds rates of respiration and accounts for 70 to 95% of total DOC processed in the water column of arctic lakes and rivers. At the basin scale, photochemical processing of DOC is about one-third of the total CO2 released from surface waters and is thus an important component of the arctic carbon budget.

  9. Activated carbon from biomass

    NASA Astrophysics Data System (ADS)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  10. Planar gas chromatography column on aluminum plate with multi-walled carbon nanotubes as stationary phase

    NASA Astrophysics Data System (ADS)

    Platonov, I. A.; Platonov, V. I.; Pavelyev, V. S.

    2016-04-01

    The high selectivity of the adsorption layer for low-boiling alkanes is shown, the separation factor (α) couple iso-butane / butane is 1.9 at a column temperature of 50 °C.The paper presents sorption and selective properties of planar gas chromatography column on aluminum plate with multi-walled carbon nanotubes as the stationary phase.

  11. Sediment-water column fluxes of carbon, oxygen and nutrients in Bedford Basin, Nova Scotia, inferred from 224Ra measurements

    NASA Astrophysics Data System (ADS)

    Burt, W. J.; Thomas, H.; Fennel, K.; Horne, E.

    2012-07-01

    Exchanges between sediment pore waters and the overlying water column play a significant role in the chemical budgets of many important chemical constituents. Quantification of such benthic fluxes requires explicit knowledge of the sediment properties and biogeochemistry. Alternatively, changes in water column properties near the sediment-water column interface can be exploited to gain insight into the sediment biogeochemistry and benthic fluxes. Here, we apply a 1-D diffusive mixing model to near-bottom water column profiles of 224Ra activity in order to yield vertical eddy diffusivities (KZ), based upon which we assess the diffusive exchange of inorganic carbon (DIC), nutrients and oxygen (O2), across the sediment-water interface in a coastal inlet, Bedford Basin, Nova Scotia, Canada. Near-bottom observations of DIC, O2 and nutrients provide flux ratios similar to Redfield values, suggesting that benthic respiration of primarily marine organic matter is the dominant driver. Furthermore, we did not observe any significant release of alkalinity (AT) from the sediments to the overlying water column, providing further insight into the dominant reactions taking place within sediments: the respiration of organic matter occurs largely under aerobic conditions or products of anaerobic processes are reoxidized quickly in oxygenated layers of the sediments. Finally, comparison with other carbon sources reveal the observed benthic DIC release as a significant contributor to the Bedford Basin carbon system.

  12. Active damping of capillary oscillations on liquid columns

    NASA Astrophysics Data System (ADS)

    Thiessen, David B.; Wei, Wei; Marston, Philip L.

    2002-05-01

    Active control of acoustic radiation pressure and of electrostatic stresses on liquid columns has been demonstrated to overcome the Rayleigh-Plateau instability that normally causes long liquid columns to break [M. J. Marr-Lyon et al., J. Fluid Mech. 351, 345 (1997); Phys. Fluids 12, 986-995 (2000)]. Though originally demonstrated for liquid-liquid systems in plateau tanks, the electrostatic method also works on columns in air in reduced gravity [D. B. Thiessen, M. J. Marr-Lyon, and P. L. Marston, ``Active electrostatic stabilization of liquid bridges in low gravity,'' J. Fluid Mech. (in press)]. In new research, the electrostatic stresses are applied in proportion to the velocity of the surface of the column so as to actively dampen capillary oscillations of the surface. The mode amplitude is optically sensed and the rate-of-change is electronically determined. Plateau tank measurements and theory both show that the change in damping rate is proportional to the feedback gain. The results suggest that either active control of electrostatic stresses or of acoustic radiation stresses can be used to suppress the response of interfaces to vibration. [Work supported by NASA.

  13. Validation of Carbon Monoxide Vertical Column Densities Retrieved from SCIAMACHY InfraRed Nadir Observations

    NASA Astrophysics Data System (ADS)

    Hochstaffl, P.; Gimeno Garcia, S.; Schreier, F.; Hamidouche, M.; Lichtenberg, G.

    2016-08-01

    This validation study examines the accuracy of carbon monoxide (CO) total columns derived from nadir measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). Therefore, an intercomparison of the CO columns estimated from SCIAMACHY measurements with coincidented and colocated retrievals provided by several ground-based (g-b) stations affiliated to the Network for the Detection of Atmospheric Composition Change (NDACC) and the Total Carbon Column Observing Network (TCCON) had been performed. The study demonstrated that the SCIAMACHY CO total column validation results depend on many aspects. The results indicate particularly the importance of appropriate post- processing of the BIRRA retrievals (esp. filtering). It shows that the CO product is sensitive to settings in retrieval algorithm. Furthermore, the analysis gives evidence of a degrading channel 8 detector in later years. In conclusion, for most cases monthly mean SCIAMACHY CO total columns agree within the standard deviation when compared to g-b measurements.

  14. Multiphase Carbon-14 Transport in a Near-Field-Scale Unsaturated Column of Natural Sediments

    SciTech Connect

    D. T. Fox; Mitchell A. Plummer; Larry C. Hull; D. Craig Cooper

    2004-03-01

    Wastes buried at the Subsurface Disposal Area (SDA) of the Idaho National Engineering and Environmental Laboratory include activated metals that release radioactive carbon-14 (14C) as they corrode. To better understand 14C phase partitioning and transport in the SDA sediments, we conducted a series of transport experiments using 14C (radio-labeled sodium carbonate) and nonreactive gas (sulfur hexafluoride) and aqueous (bromide and tritiated water) tracers in a large (2.6-m high by 0.9-m diameter) column of sediments similar to those used as cover material at the SDA. We established steady-state unsaturated flow prior to injecting tracers into the column. Tracer migration was monitored using pore-water and pore-gas samples taken from co-located suction lysimeters and gas ports inserted at ~0.3-m intervals along the column’s length. Measurements of 14C discharged from the sediment to the atmosphere (i.e., 14CO2 flux) indicate a positive correlation between CO2 partial pressure (pCO2) in the column and changes in 14CO2 flux. Though 14CO2 diffusion is expected to be independent of pCO2, changes of pCO2 affect pore water chemistry sufficiently to affect aqueous/gas phase 14C partitioning and consequently 14C2 flux. Pore-water and -gas 14C activity measurements provide an average aqueous/gas partitioning ratio, Kag, of 4.5 (±0.3). This value is consistent with that calculated using standard carbonate equilibrium expressions with measured pH, suggesting the ability to estimate Kag from carbonate equilibrium. One year after the 14C injection, the column was cored and solid-phase 14C activity was measured. The average aqueous/solid partition coefficient, Kd, (1.6 L kg-1) was consistent with those derived from small-scale and short-term batch and column experiments using SDA sediments, suggesting that bench-scale measurements are a valid means of estimating aqueous/solid partitioning at the much larger spatial scale considered in these meso-scale experiments. However

  15. Activated carbon material

    DOEpatents

    Evans, A. Gary

    1978-01-01

    Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

  16. Hydrothermal preparation of hybrid carbon/silica monolithic capillary column for liquid chromatography.

    PubMed

    Yang, Peiling; Wang, Wentao; Xiao, Xing; Jia, Li

    2014-08-01

    A simple, easy and economical approach for the preparation of a hybrid carbon/silica monolithic capillary column was described for the first time by using silica monolith as framework in combination with hydrothermal carbonization at 180°C. During the preparation process, formamide was introduced to the reaction solutions to reduce the dissolution rate of monolithic silica skeleton and its optimal concentration was 1.5 M. Fourier transform infrared spectrometry, scanning electron microscopy, energy dispersive X-ray spectrometry, and inverse size exclusion chromatography were carried out to characterize the as-prepared column. The results demonstrated that carbon spheres ranging from 150 to 1000 nm were successfully attached to the surface of silica skeleton. The prepared hybrid carbon/silica column had a permeability of 4.4 × 10(-14) m(2). Chromatographic performance of the column was evaluated by separation of various compounds including alkylbenzenes, nucleosides and bases, and aromatic acids. The column exhibited an efficiency of 75,000 plates/m for butylbenzene at the optimal linear velocity of 0.23 mm/s. The successful separation of these compounds and the study on mechanism indicated that the column can be applied in mixed-mode chromatography.

  17. Chromatographic determination of cyanoglycosides prunasin and amygdalin in plant extracts using a porous graphitic carbon column.

    PubMed

    Berenguer-Navarro, V; Giner-Galván, R M; Grané-Teruel, N; Arrazola-Paternina, G

    2002-11-20

    The determination of cyanogenic compounds in plants is often performed by HPLC. However, in this analysis, interferences due to compounds in the matrix, such as tannins and other pigments, are encountered, especially in roots and leaves. A new method is proposed for determining the cyanogenic glycosides amygdalin (D-mandelonitrile beta-D-gentiobioside) and prunasin (D-mandelonitrile beta-D-glucoside) in almond tree tissues, using poly(vinylpyrrolidone) or active carbon as scavengers for extracting cyanogenic compounds from roots or leaves, respectively. A new chromatographic approach for conducting the analysis is also discussed herein. The advantages of a Hypercarb column for the analysis of prunasin in roots are shown. The correlation coefficient with a reference method is high (>0.99), and statistical tests prove that the two methods are equivalent. In addition, the results provide evidence that prunasin is the only cyanoglycoside present in almond tree roots.

  18. Carbon nanotube-based separation columns for microchip electrochromatography.

    PubMed

    Mogensen, K B; Delacourt, B; Kutter, J P

    2015-01-01

    Fabrication of the stationary phase for microchip chromatography is most often done by packing of the individual separation channel after fabrication of the microfluidic chip, which is a very time-consuming and costly process (Kutter. J Chromatogr A 1221:72-82, 2012). Here, we describe in detail the fabrication and operation protocols for devices with microfabricated carbon nanotube stationary phases for reverse-phase chromatography. In this protocol, the lithographically defined stationary phase is fabricated in the channel before bonding of a lid, thereby circumventing the difficult packaging procedures used in more conventional protocols.

  19. Purification of SoyScreen using critical carbon dioxide in a counter-current fractionation column

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research evaluated the use of critical carbon dioxide (CO2) in a counter-current fractionation column for purifying SoyScreen, a mixture of feruloylated glycerides. The process concept was tested using a mixture consisting of triacylglycerides (TAGs), ethyl ferulate and fatty acid ethyl esters...

  20. Validation of Carbon Monoxide and Methane Vertical Column Densities Retrieved from SCIAMACHY Infrared Nadir Observations

    NASA Astrophysics Data System (ADS)

    Hochstaffl, Philipp; Hamidouche, Mourad; Schreier, Franz; Gimeno Garcia, Sebastian; Lichtenberg, Günter

    2016-04-01

    Carbon monoxide and methane are key species of Earth's atmosphere, highly relevant for climate and air quality. Accordingly, a large number of spaceborne sensors are observing these species in the microwave, thermal and near infrared. For the analysis of short wave infrared spectra measured by SCIAMACHY aboard the ENVISAT satellite and similar instrument(s) we had developed the Beer InfraRed Retrieval Algorithm: BIRRA is a separable least squares fit of the measured radiance with respect to molecular column densities and auxiliary parameters (optional: surface albedo, baseline, slit function width, and wavenumber shift). BIRRA has been implemented in the operational SCIAMACHY L1 to 2 processor for the retrieval of CO and CH4 from channel 8 (2.3 mue) and 6 (1.6 mue), respectively. Our tests are based on separate comparisons with existing space or ground-based measurements of carbon monoxide and methane column densities. In this poster intercomparisons of CO and CH4 columns estimated from SCIAMACHY with coincident and co-located retrievals provided by ground-based Fourier transform infrared spectroscopy are provided. More specifically, we have used data from several NDACC (Network for the Detection of Atmospheric Composition Change) and TCCON (Total Carbon Column Observing Network) stations. Our strategy for quality check of these products and the selection of specific geographical areas will be discussed.

  1. Sediment-water column fluxes of carbon, oxygen and nutrients in Bedford Basin, Nova Scotia, inferred from 224Ra measurements

    NASA Astrophysics Data System (ADS)

    Burt, W. J.; Thomas, H.; Fennel, K.; Horne, E.

    2013-01-01

    Exchanges between sediment pore waters and the overlying water column play a significant role in the chemical budgets of many important chemical constituents. Direct quantification of such benthic fluxes requires explicit knowledge of the sediment properties and biogeochemistry. Alternatively, changes in water-column properties near the sediment-water interface can be exploited to gain insight into the sediment biogeochemistry and benthic fluxes. Here, we apply a 1-D diffusive mixing model to near-bottom water-column profiles of 224Ra activity in order to yield vertical eddy diffusivities (KZ), based upon which we assess the diffusive exchange of dissolved inorganic carbon (DIC), nutrients and oxygen (O2), across the sediment-water interface in a coastal inlet, Bedford Basin, Nova Scotia, Canada. Numerical model results are consistent with the assumptions regarding a constant, single benthic source of 224Ra, the lack of mixing by advective processes, and a predominantly benthic source and sink of DIC and O2, respectively, with minimal water-column respiration in the deep waters of Bedford Basin. Near-bottom observations of DIC, O2 and nutrients provide flux ratios similar to Redfield values, suggesting that benthic respiration of primarily marine organic matter is the dominant driver. Furthermore, a relative deficit of nitrate in the observed flux ratios indicates that denitrification also plays a role in the oxidation of organic matter, although its occurrence was not strong enough to allow us to detect the corresponding AT fluxes out of the sediment. Finally, comparison with other carbon sources reveal the observed benthic DIC release as a significant contributor to the Bedford Basin carbon system.

  2. The spatial distribution of eubacteria and archaea in sand clay columns degrading carbon tetrachloride and methanol

    NASA Astrophysics Data System (ADS)

    Lima, Gláucia da P.; Sleep, Brent E.

    2007-10-01

    The spatial distribution of microbial communities was investigated in anaerobic sand-clay columns fed methanol and carbon tetrachloride (CT). Microbial communities were characterized through analysis of soil samples with denaturing gradient gel electrophoresis (DGGE) and quantitative polymerase chain reaction (qPCR) for archaea and eubacteria. Increasing CT inlet concentrations to 29 μM lead to complete inhibition of methanol consumption in both columns. Although low levels of eubacteria and archaea were initially present in the clay soils in both columns, there was no significant microbial growth over 400 days in the clays beyond the interface with the sand zone. Thus, the potential for increased contaminant attenuation in heterogeneous sand-clay systems through biodegradation in the clay matrix zones may be limited in many systems.

  3. Measurement of molecular diffusion coefficients in supercritical carbon dioxide using a coated capillary column

    SciTech Connect

    Lai, C.C.; Tan, C.S. . Dept. of Chemical Engineering)

    1995-02-01

    Molecular diffusion coefficients of ethyl acetate, toluene, phenol, and caffeine in supercritical carbon dioxide were measured by a chromatographic peak broadening technique in a coated capillary column at temperatures of 308, 318, and 328 K and pressures up to 145 bar. A linear adsorption in the polymer layer coated on the inner wall of the capillary column was observed. The experimentally determined diffusion coefficients showed substantial agreement with those reported in the literature. The diffusion coefficients were in the order of 10[sup [minus]4] cm[sup 2]/s and decreased with increasing carbon dioxide density. Based on the molecular diffusion coefficient data reported here and those published elsewhere, an empirically modified Wilke-Chang equation was proposed which was found to be more quantitative than some existing equations such as the Stokes-Einstein and Wilke-Chang equations.

  4. Optical isomer separation of single-chirality carbon nanotubes using gel column chromatography.

    PubMed

    Liu, Huaping; Tanaka, Takeshi; Kataura, Hiromichi

    2014-11-12

    We report a gel column chromatography method for easily separating the optical isomers (i.e., left- and right-handed structures) of single-chirality carbon nanotubes. This method uses the difference in the interactions of the two isomers of a chiral single-wall carbon nanotube (SWCNT) with an allyl dextran-based gel, which result from the selective interaction of the chiral moieties of the gel with the isomers. Using this technique, we sorted optical isomers of nine distinct (n, m) single-chirality species from HiPco SWCNTs, which is the maximum number of isolable species of SWCNTs reported to date. Because of its advantages of technical simplicity, low cost, and high efficiency, gel column chromatography allows researchers to prepare macroscopic ensembles of single-structure SWCNTs and enables the complete discovery of intrinsic properties of SWCNTs and advances their application.

  5. Molecular column densities in selected model atmospheres. [chemical analysis of carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Beebe, R. F.; Sneden, C.

    1974-01-01

    From an examination of predicted column densities, the following conclusions were drawn: (1) The SiO ought to be visible in carbon stars which were generated from triple alpha burning, but absent from carbon stars generated from the CNO bi-cycle. (2) Variation in the observed relative strengths of TiO and ZrO is indicative of real differences in the ratio Ti/Zr. (3) The TiO/ZrO ratio shows a small variation as C/O and effective temperature is changed. (4) Column density of silicon dicarbide (SiC2) is sensitive to abundance, temperature, and gravity; hence all relationships between the strength of SiC2 and other stellar parameters will show appreciable scatter. There is however, a substantial luminosity effect present in the SiC2 column densities. (5) Unexpectedly, SiC2 is anti-correlated with C2. (6) The presence of SiC2 in a carbon star eliminates the possibility of these stars having temperatures greater than or equal to 3000 K, or being produced through the CNO bi-cycle.

  6. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments

    USGS Publications Warehouse

    He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Quensen, John; Tiedje, James M.; Leigh, Mary Beth

    2012-01-01

    Methane (CH4) emitted from high-latitude lakes accounts for 2–6% of the global atmospheric CH4 budget. Methanotrophs in lake sediments and water columns mitigate the amount of CH4 that enters the atmosphere, yet their identity and activity in arctic and subarctic lakes are poorly understood. We used stable isotope probing (SIP), quantitative PCR (Q-PCR), pyrosequencing and enrichment cultures to determine the identity and diversity of active aerobic methanotrophs in the water columns and sediments (0–25 cm) from an arctic tundra lake (Lake Qalluuraq) on the north slope of Alaska and a subarctic taiga lake (Lake Killarney) in Alaska's interior. The water column CH4 oxidation potential for these shallow (~2m deep) lakes was greatest in hypoxic bottom water from the subarctic lake. The type II methanotroph, Methylocystis, was prevalent in enrichment cultures of planktonic methanotrophs from the water columns. In the sediments, type I methanotrophs (Methylobacter, Methylosoma and Methylomonas) at the sediment-water interface (0–1 cm) were most active in assimilating CH4, whereas the type I methanotroph Methylobacter and/or type II methanotroph Methylocystis contributed substantially to carbon acquisition in the deeper (15–20 cm) sediments. In addition to methanotrophs, an unexpectedly high abundance of methylotrophs also actively utilized CH4-derived carbon. This study provides new insight into the identity and activity of methanotrophs in the sediments and water from high-latitude lakes.

  7. Mobilization and Release of colloidal Carbon from a Soil Column Under Redox Oscillation Condition

    NASA Astrophysics Data System (ADS)

    Afsar, M. Z.; Jin, Y.

    2015-12-01

    Dissolved organic matter (DOM), the most mobile form of carbon (C), strongly influences the cycling, distribution and behavior of C in soil. In wetlands, the reductive dissolution of iron and manganese oxy-hydroxides releases large quantities of DOM into the soil solution. The objective of this study is to quantify the changes in aqueous organic carbon concentration in different sized fractions induced by reduction of iron and increase in pH. Twenty four cm long soil columns were prepared. Columns were run under oxic (as control) and anoxic conditions. Two platinum redox probes were inserted at 10 and 17 cm depths from the soil surface to monitor the redox status of the column. Anoxic and oxic conditions were maintained by flushing with either nitrogen or oxygen gas through the soil. No additional organic sources were added. After 35 days of anoxic environment, column leachate samples were separated by differential centrifugation into five colloidal sized fractions (<450 nm, <220 nm, <100 nm, <50 nm and <2.3 nm). Immediately after the 1st reduction half cycle, the leachate samples were collected inside the glove box and the soil columns were flushed with oxygen to prepare for 2nd reduction half cycle. After 1st reduction half cycle, the pH, ionic strength and aqueous (Fe2+) concentration of the column extracts were increased whereas the Eh value was decreased. The range of pH, Eh, ionic strength and concentration of Fe2+ was 6.38 to 6.91, -219 to -275 mV, 13.74 to 18.84 mM and 1.8 to 3.41 mg L-1, respectively. Following the anoxic incubation, the total desorbed C was increased up to 139 mg L-1. The distribution of C across the five particle size fractions was 3.68-11.73% (> 450 nm), 0.59-5.12% (450-220 nm), 0.45-4.91% (220-100 nm), 0.18-2.91% (100-50 nm), 15.48-35.23% (50 nm - 2.3 nm) and 49.15-63.94% (<2.3 nm). The preliminary results confirmed the release of more nanoparticulate (50-2.3 nm) and truly dissolved (<2.3 nm) organic matter from the anoxic soil column

  8. Removal of unburned carbon from municipal solid waste fly ash by column flotation.

    PubMed

    Huang, Ying; Takaoka, Masaki; Takeda, Nobuo

    2003-01-01

    Unburned carbon (UC) is the major source of organic contaminants in municipal solid waste (MSW) fly ash. So most organic contaminants can be removed by the removal of the UC from the MSW fly ash. In this paper, we first used a technique of column flotation to remove UC from MSW fly ash. The influences of column flotation parameters on the recovery efficiency of UC were systematically studied. It was found that the UC recovery efficiency was greatly influenced by the gas flow rate, pH value, collector kerosene's concentration and the types of fly ash. By optimizing the above parameters, we have successfully removed 61.2% of the UC from MSW fly ash having 5.24% UC content. The removal mechanism was well accounted for the kinetic theory of column flotation and surface-chemistry theory. The results indicate that the column flotation technique is effective in removing the UC from MSW fly ash, and show that there is a strong possibility for practical application of this technique in removing the organic contaminants from MSW fly ash.

  9. Calibration of the total carbon column observing network using aircraft profile data

    NASA Astrophysics Data System (ADS)

    Wunch, D.; Toon, G. C.; Wennberg, P. O.; Wofsy, S. C.; Stephens, B. B.; Fischer, M. L.; Uchino, O.; Abshire, J. B.; Bernath, P.; Biraud, S. C.; Blavier, J.-F. L.; Boone, C.; Bowman, K. P.; Browell, E. V.; Campos, T.; Connor, B. J.; Daube, B. C.; Deutscher, N. M.; Diao, M.; Elkins, J. W.; Gerbig, C.; Gottlieb, E.; Griffith, D. W. T.; Hurst, D. F.; Jiménez, R.; Keppel-Aleks, G.; Kort, E.; Macatangay, R.; Machida, T.; Matsueda, H.; Moore, F.; Morino, I.; Park, S.; Robinson, J.; Roehl, C. M.; Sawa, Y.; Sherlock, V.; Sweeney, C.; Tanaka, T.; Zondlo, M. A.

    2010-06-01

    The Total Carbon Column Observing Network (TCCON) produces precise measurements of the column average dry-air mole fractions of CO2, CO, CH4, N2O and H2O at a variety of sites worldwide. These observations rely on spectroscopic parameters that are not known with sufficient accuracy to compute total columns that can be used in combination with in situ measurements. The TCCON must therefore be calibrated to World Meteorological Organization (WMO) in situ trace gas measurement scales. We present a calibration of TCCON data using WMO-scale instrumentation aboard aircraft that measured profiles over four TCCON stations during 2008 and 2009. The aircraft campaigns are the Stratosphere-Troposphere Analyses of Regional Transport 2008 (START-08), which included a profile over the Park Falls site, the HIAPER Pole-to-Pole Observations (HIPPO-1) campaign, which included profiles over the Lamont and Lauder sites, a series of Learjet profiles over the Lamont site, and a Beechcraft King Air profile over the Tsukuba site. These calibrations are compared with similar observations made during the INTEX-NA (2004), COBRA-ME (2004) and TWP-ICE (2006) campaigns. A single, global calibration factor for each gas accurately captures the TCCON total column data within error.

  10. Calibration of the Total Carbon Column Observing Network using Aircraft Profile Data

    SciTech Connect

    Wunch, Debra; Toon, Geoffrey C.; Wennberg, Paul O.; Wofsy, Steven C.; Stephens, Britton B.; Fischer, Marc L.; Uchino, Osamu; Abshire, James B.; Bernath, Peter; Biraud, Sebastien C.; Blavier, Jean-Francois L.; Boone, Chris; Bowman, Kenneth P.; Browell, Edward V.; Campos, Teresa; Connor, Brian J.; Daube, Bruce C.; Deutscher, Nicholas M.; Diao, Minghui; Elkins, James W.; Gerbig, Christoph; Gottlieb, Elaine; Griffith, David W. T.; Hurst, Dale F.; Jimenez, Rodrigo; Keppel-Aleks, Gretchen; Kort, Eric; Macatangay, Ronald; Machida, Toshinobu; Matsueda, Hidekazu; Moore, Fred; Morino, Isamu; Park, Sunyoung; Robinson, John; Roehl, Coleen M.; Sawa, Yusuke; Sherlock, Vanessa; Sweeney, Colm; Tanaka, Tomoaki; Zondlo, Mark A.

    2010-03-26

    The Total Carbon Column Observing Network (TCCON) produces precise measurements of the column average dry-air mole fractions of CO{sub 2}, CO, CH{sub 4}, N{sub 2}O and H{sub 2}O at a variety of sites worldwide. These observations rely on spectroscopic parameters that are not known with sufficient accuracy to compute total columns that can be used in combination with in situ measure ments. The TCCON must therefore be calibrated to World Meteorological Organization (WMO) in situ trace gas measurement scales. We present a calibration of TCCON data using WMO-scale instrumentation aboard aircraft that measured profiles over four TCCON stations during 2008 and 2009. The aircraft campaigns are the Stratosphere-Troposphere Analyses of Regional Transport 2008 (START-08), which included a profile over the Park Falls site, the HIAPER Pole-to-Pole Observations (HIPPO-1) campaign, which included profiles over the Lamont and Lauder sites, a series of Learjet profiles over the Lamont site, and a Beechcraft King Air profile over the Tsukuba site. These calibrations are compared with similar observations made during the INTEX-NA (2004), COBRA-ME (2004) and TWP-ICE (2006) campaigns. A single, global calibration factor for each gas accurately captures the TCCON total column data within error.

  11. Dewatering Peat With Activated Carbon

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1984-01-01

    Proposed process produces enough gas and carbon to sustain itself. In proposed process peat slurry is dewatered to approximately 40 percent moisture content by mixing slurry with activated carbon and filtering with solid/liquid separation techniques.

  12. Sorption of cadmium in columns of sand-supported hydrothermally carbonized particles.

    PubMed

    Minani, J M V; Foppen, J W; Lens, P N L

    2014-01-01

    Sanitation in urban slums, especially in countries in Sub-Saharan Africa, is a challenge. One of the solutions to sanitation is to valorize waste, and to convert bio-waste present in the slum in a cheap and affordable way into lignite via hydrothermal carbonization (HTC). HTC is simple, cheap, converts all carbon (100%), eliminates pathogens completely, and requires wet starting products/biomass, thereby avoiding complicated drying schemes. In this research, we investigated the effectiveness of removing a divalent metal-ion, cadmium, using equilibrium batch experiments and columns of sand-supported hydrothermally carbonized colloidal lignite (HTCCL) derived from sugar, maize, and grass. Our results indicated that equilibrium sorption could be best described by a Langmuir isotherm. The uptake capacity varied from 0.11 to 0.21 mg Cd/g HTC, dependent on the type of HTC used. These values were relatively low compared to other carbonaceous sorbents. However, removal efficiencies in column experiments were remarkably high: 70-100% during 20-24 pore volumes or bed volumes of flushing. We concluded that HTCCL is a promising sorbent that can be used to treat heavily polluted water and/or wastewater.

  13. Modeling water column partitioning of polychlorinated biphenyls to natural organic matter and black carbon.

    PubMed

    Greene, Richard W; Di Toro, Dominic M; Farley, Kevin J; Phillips, Kathy L; Tomey, Cynthia

    2013-06-18

    High volume in situ surface water samples were collected from a tidal tributary of the Delaware Estuary using an Infiltrex sampling system equipped with a 1 μm particle filter and a XAD-2 resin column. Particulate and dissolved phase polychlorinated biphenyl (PCB) congeners were analyzed using high resolution gas chromatography/high resolution mass spectrometry to obtain detection levels in the femtograms per liter range. The data were fit to a four-phase equilibrium partitioning model including freely dissolved PCB, PCB bound to particulate organic carbon (POC), PCB bound to dissolved organic carbon (DOC), and PCB bound to black carbon (BC). Isotherms were assumed to be linear for POC and DOC and nonlinear for BC. The partition coefficient between BC and dissolved PCB was assumed to depend on the dihedral angle between the phenyl rings. Following parameter optimization, the correlation coefficient between the log of the modeled and measured apparent distribution coefficient Kp,app was 0.94, and the RMSE was 0.189 log units. Including BC in the model reduces the dissolved PCB phase concentration in the water column for all congeners, especially for the non-ortho and mono-ortho substituted congeners.

  14. Bacterial production in the water column of small streams highly depends on terrestrial dissolved organic carbon

    NASA Astrophysics Data System (ADS)

    Graeber, Daniel; Poulsen, Jane R.; Rasmussen, Jes J.; Kronvang, Brian; Zak, Dominik; Kamjunke, Norbert

    2016-04-01

    In the recent years it has become clear that the largest part of the terrestrial dissolved organic carbon (DOC) pool is removed on the way from the land to the ocean. Yet it is still unclear, where in the freshwater systems terrestrial DOC is actually taken up, and for streams DOC uptake was assumed to happen mostly at the stream bottom (benthic zone). However, a recent monitoring study implies that water column but not benthic bacteria are strongly affected by the amount and composition of DOM entering streams from the terrestrial zone. We conducted an experiment to compare the reaction of the bacterial production and heterotrophic uptake in the water column and the benthic zone to a standardized source of terrestrial DOC (leaf leachate from Beech litter). In detail, we sampled gravel and water from eight streams with a gradient in stream size and land use. For each stream four different treatments were incubated at 16°C for three days and each stream: filtered stream water with gravel stones (representing benthic zone bacteria) or unfiltered stream water (representing water column bacteria), both either with (n = 5) or, without (n = 3) leaf leachate. We found that the bacterial uptake of leaf litter DOC was higher for the benthic zone likely due to the higher bacterial production compared to the water column. In contrast, the bacterial production per amount of leaf leachate DOC taken up was significantly higher for the bacteria in the water column than for those in the benthic zone. This clearly indicates a higher growth efficiency with the leaf leachate DOC for the bacteria in the water column than in the benthic zone. We found a high variability for the growth efficiency in the water column, which was best explained by a negative correlation of the DOC demand with stream width (R² = 0.86, linear correlation of log-transformed data). This was not the case for the benthic zone bacteria (R² = 0.02). This implies that water column bacteria in very small streams

  15. An automated HPLC method for the fractionation of polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans in fish tissue on a porous graphitic carbon column

    USGS Publications Warehouse

    Echols, Kathy R.; Gale, Robert W.; Tillitt, Donald E.; Schwartz, Ted R.; O'Laughlin, Jerome

    1997-01-01

    The Ah (aryl-hydrocarbon) hydroxylase-receptor active polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were fractionated by an automated high-performance liquid chromatography (HPLC) system using the Hypercarb™ porous graphitic carbon (PGC) column. This commercially available column was used to fractionate the di-, mono-, and non-ortho PCBs into three fractions for gas chromatography (GC)/electron capture detection analysis, and a fourth fraction containing the PCDDs/PCDFs for GC/mass spectrometry analysis. The recoveries of the PCBs ranged from 68 to 96%, and recoveries of the PCDDs/PCDFs ranged from 74 to 123%. The PGC column has the advantage of faster separations (110 min versus 446 min) and less solvent use (275 ml versus 1,100 ml) compared with automated fractionation of these compounds on activated carbon (PX-21), while still affording good separation of the classes. The PGC column may have an advantage over the pyrenyl-based HPLC method because it has a greater loading capacity (400 μg total PCBs versus 250 μg). Overall, the PGC is a standard column that provides reproducible fractionation of PCDD/PCDFs and PCBs for analytical measurement in environmental samples.

  16. Secular increase of the total vertical column abundance of carbon monoxide above central Europe since 1950

    NASA Technical Reports Server (NTRS)

    Zander, R.; Demoulin, PH.; Ehhalt, D. H.; Schmidt, U.; Rinsland, C. P.

    1989-01-01

    The secular increase of the total vertical column abundance of carbon monoxide has been derived from sets of infrared solar spectra recorded from an altitude of 3.58 km at the Jungfraujoch Station, Switzerland, in 1950-1951 and in 1985-1987. The results are based on equivalent width measurements of the R3 line of the 1-0 vibration-rotation band of (C-12)(0-16) at 2159.30/cm. The set of 1985-1987 observations indicates a strong seasonal cycle in the total column abundance of CO, with a + or - 25 percent modulation between minimum values in late summer and the maximum values in late winter. Variability on shorter time scales is also present in both the old and recent data sets. The mean cumulative rate of increase of the total column abundance of CO above the Jungfraujoch is found to be (0.85 + or - 0.20) percent/yr between 1950-1951 and 1985-1987. The present findings are compared with trends reported in earlier studies.

  17. Loading capacity and chromatographic behavior of a porous graphitic carbon column for polychlorinated biphenyls

    USGS Publications Warehouse

    Echols, K.R.; Gale, R.W.; Feltz, K.; O'Laughlin, J.; Tillitt, D.E.; Schwartz, T.R.

    1998-01-01

    A porous graphitic carbon column (Hypercarb) was used for the fractionation of polychlorinated biphenyls (PCBs) into classes of 2-4 ortho chlorines, 1 ortho chlorine and 0 ortho chlorine congeners. A method was developed that combined the fractionation of PCBs, polychlorinated dibenzo- p-dioxins and dibenzofurans in a variety of biotic environmental samples. Many of these samples have high concentrations of PCBs which cause fractionation problems as adsorption sites on the graphitic surface are occupied. The loading capacity of the column for PCBs was determined by injecting up to 1 mg of total PCBs and monitoring changes in chromatographic behavior of tetra-/di-ortho, mono-ortho and non-ortho substituted PCBs. Effective loading capacities were 1 mg for tetra-/di-ortho PCBs, but only 3- 5 ??g for non-ortho PCBs and about 2 ??g for mono-ortho PCBs. Loading capacity of the PGC column for environmental fish and avian egg samples was determined to depend on the mono-ortho and non-ortho PCB levels found in these samples.

  18. Transport of surfactant-facilitated multiwalled carbon nanotube suspensions in columns packed with sized soil particles.

    PubMed

    Lu, Yinying; Yang, Kun; Lin, Daohui

    2014-09-01

    Transport of carbon nanotubes (CNTs) in soil/sediment matrixes can regulate their potential eco-effects and has been however rarely studied. Herein, column experiments were conducted to investigate mobility of CNT suspensions stabilized by dodecylbenzenesulfonic acid sodium salt (SDBS), octyl-phenol-ethoxylate (TX-100) and cetylpyridinium chloride (CPC) in four soil samples with certain particle sizes. Humic acid was extracted from a soil sample and was coated on quartz sands to explore the effect of soil organic matter (SOM) on the mobility. Results showed that the positively-charged CPC-CNT was entirely retained in the columns while the negatively-charged SDBS-CNT and TX-100-CNT more or less broke through the columns. Pearson correlation analyses revealed that soil texture rather than SOM controlled the mobility. Electrostatic attraction to and/or precipitation on the grain surfaces together with the straining effect could explain the CNT retention. These novel results will help to understand the eco-effects of CNTs.

  19. A Miniaturized Laser Heterodyne Radiometer for a Global Ground-Based Column Carbon Monitoring Network

    NASA Technical Reports Server (NTRS)

    Wilson, Emily L.; Melroy, Hilary R.; Miller, J. Houston; McLinden, Matthew L.; Ott, Lesley E.; Holben, Brent

    2012-01-01

    We present progress in the development of a passive, miniaturized Laser Heterodyne Radiometer (mini-LHR) that will measure key greenhouse gases (C02, CH4, CO) in the atmospheric column as well as their respective altitude profiles, and O2 for a measure of atmospheric pressure. Laser heterodyne radiometry is a spectroscopic method that borrows from radio receiver technology. In this technique, a weak incoming signal containing information of interest is mixed with a stronger signal (local oscillator) at a nearby frequency. In this case, the weak signal is sunlight that has undergone absorption by a trace gas of interest and the local oscillator is a distributive feedback (DFB) laser that is tuned to a wavelength near the absorption feature of the trace gas. Mixing the sunlight with the laser light, in a fast photoreceiver, results in a beat signal in the RF. The amplitude of the beat signal tracks the concentration of the trace gas in the atmospheric column. The mini-LHR operates in tandem with AERONET, a global network of more than 450 aerosol sensing instruments. This partnership simplifies the instrument design and provides an established global network into which the mini-LHR can rapidly expand. This network offers coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern as well as an uninterrupted data record that will both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3, and ASCENDS. Currently, the only ground global network that routinely measures multiple greenhouse gases in the atmospheric column is TCCON (Total Column Carbon Observing Network) with 18 operational sites worldwide and two in the US. Cost and size of TCCON installations will limit the potential for expansion, We offer a low-cost $30Klunit) solution to supplement these measurements with the added benefit of an established aerosol optical depth

  20. A Miniaturized Laser Heterodyne Radiometer for a Global Ground-Based Column Carbon Monitoring Network

    NASA Astrophysics Data System (ADS)

    Wilson, E. L.; Melroy, H.; Miller, J. H.; McLinden, M. L.; Ott, L.; Holben, B. N.

    2012-12-01

    We present progress in the development of a passive, miniaturized Laser Heterodyne Radiometer (mini-LHR) that will measure key greenhouse gases (CO2, CH4, CO) in the atmospheric column as well as their respective altitude profiles, and O2 for a measure of atmospheric pressure. Laser heterodyne radiometry is a spectroscopic method that borrows from radio receiver technology. In this technique, a weak incoming signal containing information of interest is mixed with a stronger signal (local oscillator) at a nearby frequency. In this case, the weak signal is sunlight that has undergone absorption by a trace gas of interest and the local oscillator is a distributive feedback (DFB) laser that is tuned to a wavelength near the absorption feature of the trace gas. Mixing the sunlight with the laser light, in a fast photo-receiver, results in a beat signal in the RF. The amplitude of the beat signal tracks the concentration of the trace gas in the atmospheric column. The mini-LHR operates in tandem with AERONET, a global network of more than 450 aerosol sensing instruments. This partnership simplifies the instrument design and provides an established global network into which the mini-LHR can rapidly expand. This network offers coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern as well as an uninterrupted data record that will both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3, and ASCENDS. Currently, the only ground global network that routinely measures multiple greenhouse gases in the atmospheric column is TCCON (Total Column Carbon Observing Network) with 18 operational sites worldwide and two in the US. Cost and size of TCCON installations will limit the potential for expansion. We offer a low-cost (<$30K/unit) solution to supplement these measurements with the added benefit of an established aerosol optical depth

  1. Carbon Dioxide Effects on Soil-Chemical Weathering: Laboratory Column Studies with Saprolite Materials

    NASA Astrophysics Data System (ADS)

    Oh, N.; Richter, D. D.

    2001-12-01

    Column leaching experiments have evaluated effects of sulfuric, nitric, and hydrochloric acids on chemical weathering in soils and rocks. In contrast, research to investigate effects of carbonic acid on chemical weathering is notably absent. Given that rising aboveground CO2 may increase photosynthesis and may enhance soil respiration, elevated soil CO2 and carbonic acid may enhance cation leaching via a combination of cation exchange and mineral dissolution. Column leaching studies were conducted using deep soil materials of the southern Piedmont (Enon, Tarrus, and Cecil series soils). Deionized water equilibrated with CO2 (at 1, 10, and 100%) was used as eluent and soluble products from exchangeable and mineral-bound sources were estimated. Results demonstrated that elevated CO2 accelerated cation release by both cation exchange and mineral dissolution. Highest cation release rates were from the Enon C horizon, a smectite-rich material from diabase with 23cmol(+)/kg ECEC and 98% base saturation. Lowest releases were from the Cecil Cr horizon, a kaolin-micaceous material derived from granitic gneiss with 1.2cmol(+)/kg ECEC and 40% B.S. Cation exchange was the predominant source of cations released, although mineral dissolution occurred in all three soils in response to elevated CO2. Remarkably, upto 35% of the cations released by the Cecil Cr horizon was attributed to weathering dissolution, probably from micaceous minerals.

  2. Sensitivity Studies for Space-based Measurements of Atmospheric Total Column Carbon Dioxide Using Reflected Sunlight

    NASA Technical Reports Server (NTRS)

    Mao, Jianping; Kawa, S. Randolph

    2003-01-01

    A series of sensitivity studies is carried out to explore the feasibility of space-based global carbon dioxide (CO2) measurements for global and regional carbon cycle studies. The detection method uses absorption of reflected sunlight in the CO2 vibration-rotation band at 1.58 micron. The sensitivities of the detected radiances are calculated using the line-by-line model (LBLRTM), implemented with the DISORT (Discrete Ordinates Radiative Transfer) model to include atmospheric scattering in this band. The results indicate that (a) the small (approx.1%) changes in CO2 near the Earth's surface are detectable in this CO2 band provided adequate sensor signal-to-noise ratio and spectral resolution are achievable; (b) the effects of other interfering constituents, such as water vapor, aerosols and cirrus clouds, on the radiance are significant but the overall effects of the modification of light path length on total back-to-space radiance sensitivity to CO2 change are minor for general cases, which means that generally the total column CO2 can be derived in high precision from the ratio of the on-line center to off-line radiances; (c) together with CO2 gas absorption aerosol/cirrus cloud layer has differential scattering which may result in the modification of on-line to off-line radiance ratio which could lead a large bias in the total column CO2 retrieval. Approaches to correct such bias need further investigation. (d) CO2 retrieval requires good knowledge of the atmospheric temperature profile, e.g. approximately 1K RMS error in layer temperature, which is achievable from new atmospheric sounders in the near future; (e) the atmospheric path length, over which the CO2 absorption occurs, should be known in order to correctly interpret horizontal gradients of CO2 from the total column CO2 measurement; thus an additional sensor for surface pressure measurement needs to be attached for a complete measurement package.

  3. Linking Water Table Dynamics to Carbon Cycling in Artificial Soil Column Incubations

    NASA Astrophysics Data System (ADS)

    Geertje, Pronk; Adrian, Mellage; Tatjana, Milojevic; Fereidoun, Rezanezhad; Cappellen Philippe, Van

    2016-04-01

    The biogeochemistry of wetlands soils is closely tied to their hydrology. Water table fluctuations that cause flooding and drying of these systems may lead to enhanced degradation of organic matter and release of greenhouse gasses (e.g. CO2, CH4) to the atmosphere. However, predicting the influence of water table fluctuations on the biogeochemical functioning of soils requires an understanding of the interactions of soil hydrology with biogeochemical and microbial processes. To determine the effects of water table dynamics on carbon cycling, we are carrying out state-of-the-art automated soil column experiments with fully integrated monitoring of hydro-bio-geophysical process variables under both constant and oscillating water table conditions. An artificial, homogeneous mixture consisting of minerals and organic matter is used to provide a well-defined starting material. The artificial soils are composed of quartz sand, montmorillonite, goethite and humus from a forested riparian zone, from which we also extracted the microbial inoculum added to the soil mixture. The artificial soils are packed into 60 cm high, 7.5 cm wide columns. In the currently ongoing experiment, three replicate columns are incubated while keeping the water table constant water at mid-depth, while another three columns alternate between drained and saturated conditions. Micro-sensors installed at different depths below the soil surface record time-series redox potentials (Eh) varying between oxidizing (~+700 mV) and reducing (~-200 mV) conditions. Continuous O2 levels throughout the soil columns are monitored using high-resolution, luminescence-based, Multi Fiber Optode (MuFO) microsensors. Pore waters are collected periodically with MicroRhizon samplers from different depths, and analyzed for pH, EC, dissolved inorganic and organic carbon and ion/cation compositions. These measurements allow us to track the changes in pore water geochemistry and relate them to differences in carbon cycling

  4. Methane and carbon dioxide total column retrievals from cloudy GOSAT soundings over the oceans

    NASA Astrophysics Data System (ADS)

    Schepers, D.; Butz, A.; Hu, H.; Hasekamp, O. P.; Arnold, S. G.; Schneider, M.; Feist, D. G.; Morino, I.; Pollard, D.; Aben, I.; Landgraf, J.

    2016-05-01

    We present a novel physics-based retrieval method to infer total column mixing ratios of methane (XCH4) and carbon dioxide (XCO2) from space-borne short-wavelength infrared (SWIR) Earth radiance observations over the cloud-covered ocean. In nadir observing geometry in the SWIR spectral range, backscattering at the ocean surface is negligible. Hence, space-borne radiance measurements of ocean scenes generally do not provide sufficient level to retrieve XCO2 and XCH4. Our approach specifically targets cloudy GOSAT ocean soundings to provide sufficient radiance signal in nadir soundings in ocean areas. Currently, exploiting space-borne SWIR soundings over oceans relies on soundings in Sun glint geometry, observing the specular solar reflection at the ocean surface. The glint observation mode requires cloud-free conditions and a suitable observation geometry, severely limiting their number and geographical coverage. The proposed method is based on the existing RemoTeC algorithm that is extensively used to retrieve CH4 and CO2 columns from GOSAT SWIR measurements over land. For ocean pixels, we describe light scattering by clouds and aerosols by a single-layer water cloud with Gaussian height distribution. We infer the height and the geometrical thickness of the cloud layer jointly with the droplet size and the number density and the column abundances of CO2, CH4, and H2O. The CO2 and CH4 column product is validated with ground-based total column measurements performed at eight stations from the TCCON network that are geographically close to an ocean coastline. For the TCCON site with the most robust statistics (Lauder, New Zealand), we find a retrieval bias of 0.36% for XCH4 combined with a standard deviation of retrieval errors of 1.12%. For XCO2, the bias is 0.51% combined with a standard deviation of 1.03%. Averaged over all TCCON sites, our retrievals are biased -0.01% for XCO2 and -0.32% for XCH4. The standard deviation of station biases amounts to 0.45% for XCO2

  5. High-accuracy measurements of total column water vapor from the Orbiting Carbon Observatory-2

    NASA Astrophysics Data System (ADS)

    Nelson, Robert R.; Crisp, David; Ott, Lesley E.; O'Dell, Christopher W.

    2016-12-01

    Accurate knowledge of the distribution of water vapor in Earth's atmosphere is of critical importance to both weather and climate studies. Here we report on measurements of total column water vapor (TCWV) from hyperspectral observations of near-infrared reflected sunlight over land and ocean surfaces from the Orbiting Carbon Observatory-2 (OCO-2). These measurements are an ancillary product of the retrieval algorithm used to measure atmospheric carbon dioxide concentrations, with information coming from three highly resolved spectral bands. Comparisons to high-accuracy validation data, including ground-based GPS and microwave radiometer data, demonstrate that OCO-2 TCWV measurements have maximum root-mean-square deviations of 0.9-1.3mm. Our results indicate that OCO-2 is the first space-based sensor to accurately and precisely measure the two most important greenhouse gases, water vapor and carbon dioxide, at high spatial resolution (1.3 × 2.3 km2) and that OCO-2 TCWV measurements may be useful in improving numerical weather predictions and reanalysis products.

  6. Transport and attenuation of metal(loid)s in mine tailings amended with organic carbon: Column experiments

    NASA Astrophysics Data System (ADS)

    Lindsay, Matthew B. J.; Blowes, David W.; Ptacek, Carol J.; Condon, Peter D.

    2011-07-01

    A laboratory-scale column experiment was conducted to evaluate the effect of organic carbon amendments on the mobility of As, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Tl and Zn in mine tailings. Three columns were packed with sulfide- and carbonate-rich tailings, which were amended with a 1:1 (vol.) mixture of peat and spent brewing grain at proportions of 0, 2 and 5 vol. %. A simulated input solution characterized by circumneutral pH and elevated concentrations of SO 4 and S 2O 3 was passed through the columns for 540 days. The input solution contained low concentrations of metal(loid)s during the initial 300 days and elevated concentrations thereafter. Decreases in mass transport of S 2O 3 were observed in all columns; with increased attenuation observed at 5 vol. % organic carbon content. Removal of Mn, Ni, Cu, Sb and Mo was observed in all columns during the initial 300 days. However, during this time, mobilization of Fe, As, Zn and Pb was observed, with the greatest increases in concentration observed at the higher organic carbon content. During the final 240 days, S 2O 3 removal was enhanced in columns containing organic carbon, and Fe, Mn, Ni, Tl, As and Sb removal also was observed. This study demonstrates the influence of organic carbon amendments on metal(loid) mobility in mine tailings. Decreases in mass discharge of metal(loid)s may be achieved using this technique; however, site-specific geochemical conditions must be considered before field-scale implementation.

  7. The breakthrough curve combination for xenon sampling dynamics in a carbon molecular sieve column.

    PubMed

    Shu-jiang, Liu; Zhan-ying, Chen; Yin-zhong, Chang; Shi-lian, Wang; Qi, Li; Yuan-qing, Fan; Huai-mao, Jia; Xin-jun, Zhang; Yun-gang, Zhao

    2015-01-21

    In the research of xenon sampling and xenon measurements, the xenon breakthrough curve plays a significant role in the xenon concentrating dynamics. In order to improve the theoretical comprehension of the xenon concentrating procedure from the atmosphere, the method of the breakthrough curve combination for sampling techniques should be developed and investigated under pulse injection conditions. In this paper, we describe a xenon breakthrough curve in a carbon molecular sieve column, the combination curve method for five conditions is shown and debated in detail; the fitting curves and the prediction equations are derived in theory and verified by the designed experiments. As a consequence, the curves of the derived equations are in good agreement with the fitting curves by tested. The retention times of the xenon in the column are 61.2, 42.2 and 23.5 at the flow rate of 1200, 1600 and 2000 mL min(-1), respectively, but the breakthrough times are 51.4, 38.6 and 35.1 min.

  8. Parametric uncertainties in global model simulations of black carbon column mass concentration

    NASA Astrophysics Data System (ADS)

    Pearce, Hana; Lee, Lindsay; Reddington, Carly; Carslaw, Ken; Mann, Graham

    2016-04-01

    Previous studies have deduced that the annual mean direct radiative forcing from black carbon (BC) aerosol may regionally be up to 5 W m-2 larger than expected due to underestimation of global atmospheric BC absorption in models. We have identified the magnitude and important sources of parametric uncertainty in simulations of BC column mass concentration from a global aerosol microphysics model (GLOMAP-Mode). A variance-based uncertainty analysis of 28 parameters has been performed, based on statistical emulators trained on model output from GLOMAP-Mode. This is the largest number of uncertain model parameters to be considered in a BC uncertainty analysis to date and covers primary aerosol emissions, microphysical processes and structural parameters related to the aerosol size distribution. We will present several recommendations for further research to improve the fidelity of simulated BC. In brief, we find that the standard deviation around the simulated mean annual BC column mass concentration varies globally between 2.5 x 10-9 g cm-2 in remote marine regions and 1.25 x 10-6 g cm-2 near emission sources due to parameter uncertainty Between 60 and 90% of the variance over source regions is due to uncertainty associated with primary BC emission fluxes, including biomass burning, fossil fuel and biofuel emissions. While the contributions to BC column uncertainty from microphysical processes, for example those related to dry and wet deposition, are increased over remote regions, we find that emissions still make an important contribution in these areas. It is likely, however, that the importance of structural model error, i.e. differences between models, is greater than parametric uncertainty. We have extended our analysis to emulate vertical BC profiles at several locations in the mid-Pacific Ocean and identify the parameters contributing to uncertainty in the vertical distribution of black carbon at these locations. We will present preliminary comparisons of

  9. Transport of surface-modified carbon nanotubes through a soil column.

    PubMed

    Sharma, Prabhakar; Fagerlund, Fritjof

    2015-04-02

    Carbon nanotubes (CNTs) are widely manufactured nanoparticles, which are being utilized in a number of consumer products, such as sporting goods, electronics and biomedical applications. Due to their accelerating production and use, CNTs constitute a potential environmental risk if they are released to soil and groundwater systems. It is therefore essential to improve the current understanding of environmental fate and transport of CNTs. The transport and retention of CNTs in both natural and artificial media have been reported in literature, but the findings widely vary and are thus not conclusive. There are a number of physical and chemical parameters responsible for variation in retention and transport. In this study, a complete procedure of selected multiwalled carbon nanotubes (MWCNTs) is presented starting from their surface modification to a complete set of laboratory column experiments at critical physical and chemical scenarios. Results indicate that the stability of the commercially available MWCNTs are critical with their attached surface functional group which can also influence the transport and retention of MWCNT through the surrounding medium.

  10. Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments.

    PubMed

    Wang, Liqun; Yang, Qi; Wang, Dongbo; Li, Xiaoming; Zeng, Guangming; Li, Zhijun; Deng, Yongchao; Liu, Jun; Yi, Kaixin

    2016-11-15

    A novel hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor was proposed for the pretreatment of mature landfill leachate. This reactor, combining microelectrolysis with Fenton process, revealed high treatment efficiency. The operating variables, including Fe-C dosage, H2O2 concentration and initial pH, were optimized by the response surface methodology (RSM), regarding the chemical oxygen demand (COD) removal efficiency and biochemical oxygen demand: chemical oxygen demand (BOD5/COD) as the responses. The highest COD removal (74.59%) and BOD5/COD (0.50) was obtained at optimal conditions of Fe-C dosage 55.72g/L, H2O2 concentration 12.32mL/L and initial pH 3.12. Three-dimensional excitation and emission matrix (3D-EEM) fluorescence spectroscopy and molecular weight (MW) distribution demonstrated that high molecular weight fractions such as refractory fulvic-like substances in leachate were effectively destroyed during the combined processes, which should be attributed to the combination oxidative effect of microelectrolysis and Fenton. The fixed-bed column experiments were performed and the breakthrough curves at different flow rates were evaluated to determine the practical applicability of the combined process. All these results show that the hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor is a promising and efficient technology for the treatment of mature landfill leachate.

  11. Biological activation of carbon filters.

    PubMed

    Seredyńska-Sobecka, Bozena; Tomaszewska, Maria; Janus, Magdalena; Morawski, Antoni W

    2006-01-01

    To prepare biological activated carbon (BAC), raw surface water was circulated through granular activated carbon (GAC) beds. Biological activity of carbon filters was initiated after about 6 months of filter operation and was confirmed by two methods: measurement of the amount of biomass attached to the carbon and by the fluorescein diacetate (FDA) test. The effect of carbon pre-washing on WG-12 carbon properties was also studied. For this purpose, the nitrogen adsorption isotherms at 77K and Fourier transform-infrared (FT-IR) spectra analyses were performed. Moreover, iodine number, decolorizing power and adsorption properties of carbon in relation to phenol were studied. Analysis of the results revealed that after WG-12 carbon pre-washing its BET surface increased a little, the pH value of the carbon water extract decreased from 11.0 to 9.4, decolorizing power remained at the same level, and the iodine number and phenol adsorption rate increased. In preliminary studies of the ozonation-biofiltration process, a model phenol solution with concentration of approximately 10mg/l was applied. During the ozonation process a dose of 1.64 mg O(3)/mg TOC (total organic carbon) was employed and the contact time was 5 min. Four empty bed contact times (EBCTs) in the range of 2.4-24.0 min were used in the biofiltration experiment. The effectiveness of purification was measured by the following parameters: chemical oxygen demand (COD(Mn)), TOC, phenol concentration and UV(254)-absorbance. The parameters were found to decrease with EBCT.

  12. The STRATegy COLUMN for Precollege Science Teachers: Volcanic Activity.

    ERIC Educational Resources Information Center

    Metzger, Ellen Pletcher

    1995-01-01

    Describes resources for information and activities involving volcanoes. Includes an activity that helps students become familiar with the principal types of volcanoes and explores how the viscosity of magma affects the way a volcano erupts. (MKR)

  13. Activated carbon to the rescue

    SciTech Connect

    Sen, S.

    1996-03-01

    This article describes the response to pipeline spill of ethylene dichloride (EDC) on the property of an oil company. Activated carbon cleanup proceedure was used. During delivery, changeout, transport, storage, thermal reactivation, and return delivery to the site, the carbon never came into direct contact with operating personnel or the atmosphere. More than 10,000 tones of dredge soil and 50 million gallons of surface water were processed during the emergency response.

  14. Simultaneous anaerobic transformation of tetrachloroethene and carbon tetrachloride in a continuous flow column

    NASA Astrophysics Data System (ADS)

    Azizian, Mohammad F.; Semprini, Lewis

    2016-07-01

    Tetrachloroethene (PCE) and carbon tetrachloride (CT) were simultaneously transformed in a packed column that was bioaugmented with the Evanite culture (EV). The data presented here have been obtained over a period of 1930 days. Initially the column was continuously fed synthetic groundwater with PCE (0.1 mM), sulfate (SO42 -) (0.2 mM) and formate (2.1 mM) or lactate (1.1 mM), but not CT. In these early stages of the study the effluent H2 concentrations ranged from 7 to 19 nM, and PCE was transformed to ethene (ETH) (81 to 85%) and vinyl chloride (VC) (11 to 17%), and SO42 - was completely reduced when using either lactate or formate as electron donors. SO42 - reduction occurred concurrently with cis-DCE and VC dehalogenation. Formate was a more effective substrate for promoting dehalogenation based on electron donor utilization efficiency. Simultaneous PCE and CT tests found CT (0.015 mM) was completely transformed with 20% observed as chloroform (CF) and trace amounts of chloromethane (CM) and dichloromethane (DCM), but no methane (CH4) or carbon disulfide (CS2). PCE transformation to ETH improved with CT addition in response to increases in H2 concentrations to 160 nM that resulted from acetate formation being inhibited by either CT or CF. Lactate fermentation was negatively impacted after CT transformation tests, with propionate accumulating, and H2 concentrations being reduced to below 1 nM. Under these conditions both SO42 - reduction and dehalogenation were negatively impacted, with sulfate reduction not occurring and PCE being transformed to cis-dichloroethene (c-DCE) (52%) and VC (41%). Upon switching to formate, H2 concentrations increased to 40 nM, and complete SO42 - reduction was achieved, while PCE was transformed to ETH (98%) and VC (1%), with no acetate detected. Throughout the study PCE dehalogenation to ethene was positively correlated with the effluent H2 concentrations.

  15. Core-shell column Tanaka characterization and additional tests using active pharmaceutical ingredients.

    PubMed

    Ludvigsson, Jufang Wu; Karlsson, Anders; Kjellberg, Viktor

    2016-12-01

    In the last decade, core-shell particles have gained more and more attention in fast liquid chromatography separations due to their comparable performance with fully porous sub-2 μm particles and their significantly lower back pressure. Core-shell particles are made of a solid core surrounded by a shell of classic fully porous material. To embrace the developed core-shell column market and use these columns in pharmaceutical analytical applications, 17 core-shell C18 columns purchased from various vendors with various dimensions (50 mm × 2.1 mm to 100 mm × 3 mm) and particle sizes (1.6-2.7 μm) were characterized using Tanaka test protocols. Furthermore, four selected active pharmaceutical ingredients were chosen as test probes to investigate the batch to batch reproducibility for core-shell columns of particle size 2.6-2.7 μm, with dimension of 100 × 3 mm and columns of particle size 1.6 μm, with dimension 100 × 2.1 mm under isocratic elution. Columns of particle size 2.6-2.7 μm were also tested under gradient elution conditions. To confirm the claimed comparable efficiency of 2.6 μm core-shell particles as sub-2 μm fully porous particles, column performances of the selected core-shell columns were compared with BEH C18 , 1.7 μm, a fully porous column material as well.

  16. Single-walled carbon nanotubes exhibit limited transport in soil columns.

    PubMed

    Jaisi, Deb P; Elimelech, Menachem

    2009-12-15

    The increased production and commercial use of nanomaterials combined with a lack of regulation to govern their disposal may result in their introduction to soils and ultimately into groundwater systems. In this study, we investigated the transport behavior of carboxyl-functionalized single-walled carbon nanotubes (SWNTs) in columns packed with a natural soil. In general, SWNT deposition (filtration) rate increased with increasing solution ionic strength, with divalent cations (Ca(2+)) being more effective in increasing SWNT retention than monovalent cations (K(+)). However, SWNT deposition rate over a very wide range of monovalent and divalent cation concentrations (0.03 to 100 mM) was relatively high and changed only slightly above 0.3 mM KCl or 0.1 mM CaCl(2). In contrast, filtration of another type of engineered carbon-based nanomaterial, namely aqueous fullerene (C(60)) nanoparticles (radius of 51 nm), was more sensitive to solution ionic strength, displaying lower deposition rate and more effective transport in soil than SWNTs. These observations indicate that physical straining governs SWNT filtration and transport under all the solution chemistries investigated in the present study. It is proposed that SWNT shape and structure, particularly the very large aspect ratio and its highly bundled (aggregated) state in aqueous solutions, as well as the heterogeneity in soil particle size, porosity, and permeability, collectively contribute to straining in flow through soil media. Our results suggest that SWNTs of comparable properties to those used in the present study will not exhibit substantial transport and infiltration in soils because of effective retention by the soil matrix.

  17. Sensitivity Studies for Space-based Measurement of Atmospheric Total Column Carbon Dioxide Using Reflected Sunlight

    NASA Technical Reports Server (NTRS)

    Mao, Jianping; Kawa, S. Randolph

    2003-01-01

    A series of sensitivity studies is carried out to explore the feasibility of space-based global carbon dioxide (CO2) measurements for global and regional carbon cycle studies. The detection method uses absorption of reflected sunlight in the CO2 vibration-rotation band at 1.58 microns. The sensitivities of the detected radiances are calculated using the line-by-line model (LBLRTM), implemented with the DISORT (Discrete Ordinates Radiative Transfer) model to include atmospheric scattering in this band. The results indicate that (a) the small (approx.1%) changes in CO2 near the Earth's surface are detectable in this CO2 band provided adequate sensor signal-to-noise ratio and spectral resolution are achievable; (b) the radiance signal or sensitivity to CO2 change near the surface is not significantly diminished even in the presence of aerosols and/or thin cirrus clouds in the atmosphere; (c) the modification of sunlight path length by scattering of aerosols and cirrus clouds could lead to large systematic errors in the retrieval; therefore, ancillary aerosol/cirrus cloud data are important to reduce retrieval errors; (d) CO2 retrieval requires good knowledge of the atmospheric temperature profile, e.g. approximately 1K RMS error in layer temperature; (e) the atmospheric path length, over which the CO2 absorption occurs, must be known in order to correctly interpret horizontal gradients of CO2 from the total column CO2 measurement; thus an additional sensor for surface pressure measurement needs to be attached for a complete measurement package.

  18. How do Biomass Burning Carbon Monixide Emissions from South America influence Satellite Observed Columns over Africa?

    NASA Astrophysics Data System (ADS)

    Krol, M. C.; van Leeuwen, T. T.; Aouizerats, B.; van der Werf, G.

    2015-12-01

    Large amounts of Carbon Monoxide (CO) are emitted during biomass burning events. These emissions severely perturb the atmospheric composition. For this reason, satellite observations of CO can help to constrain emissions from biomass burning. Other sources of CO, such as the production of CO from naturally emitted non-methane hydrocarbons, may interfere with CO from biomass burning and inverse modeling efforts to estimate biomass burning emissions have to account for these CO sources. The atmospheric lifetime of CO varies from weeks to months, depending on the availability of atmospheric OH for atmospheric oxidation of CO to carbon dioxide. This means that CO can be transported over relatively long distances. It also implies that satellite-observed CO does not necessarily originate from the underlying continent, but may be caused by distant emissions transported to the observation location. In this presentation we focus on biomass burning emissions from South America and Southern Africa during 2010. This year was particularly dry over South America with a large positive anomaly in biomass burning in the 2010 burning season (July-October). We will adress the question how CO plumes from South America biomass burning influence satellite observations from the Infrared Atmospheric Sounding Interferometer (IASI) instrument over Southern Africa. For this we employ the TM5 atmospheric chemistry model, with 1x1 degree zoom resolutions over Africa and South America. Also, we use the TM5-4DVAR code to estimate CO biomass burning emissions using IASI CO observations. The accompanying image shows IASI CO oberservations over Africa on August 27, 2010, compared to the columns simulated with TM5. Clear signs of intercontinental transport from South America are visible over the Southermost region.

  19. Impact of Spectroscopic Line Parameters on Carbon Monoxide Column Density Retrievals from Shortwave Infrared Nadir Observations

    NASA Astrophysics Data System (ADS)

    Schmidt, Denise; Gimeno Garcia, Sebastian; Schreier, Franz; Lichtenberg, Gunter

    2015-11-01

    Among the various input data required for the retrieval of atmospheric state parameters from infrared remote sensing observations molecular spectroscopy line data have a central role, because their quality is critical for the quality of the final product. Here we discuss the impact of the line parameters on vertical column densities (VCD) estimated from short wave infrared nadir observations. Using BIRRA (the Beer InfraRed Retrieval Algorithm) comprising a line-by-line radiative transfer code (forward model) and a separable nonlinear least squares solver for inversion we retrieve carbon monoxide from observations of SCIAMACHY aboard Envisat. Retrievals using recent versions of HITRAN und GEISA have been performed and the results are compared in terms of residual norms, molecular density scaling factors, their corresponding errors, and the final VCD product. The retrievals turn out to be quite similar for all three databases, so a definite recommendation in favor of one of these databases is difficult for the considered spectral range around 2.3 μm. Nevertheless, HITRAN 2012 appears to be advantageous when evaluating the different quality criteria.

  20. Removal of benzocaine from water by filtration with activated carbon

    USGS Publications Warehouse

    Howe, G.E.; Bills, T.D.; Marking, L.L.

    1990-01-01

    Benzocaine is a promising candidate for registration with the U.S. Food and Drug Administration for use as an anesthetic in fish culture, management, and research. A method for the removal of benzocaine from hatchery effluents could speed registration of this drug by eliminating requirements for data on its residues, tolerances, detoxification, and environmental hazards. Carbon filtration effectively removes many organic compounds from water. This study tested the effectiveness of three types of activated carbon for removing benzocaine from water by column filtration under controlled laboratory conditions. An adsorptive capacity was calculated for each type of activated carbon. Filtrasorb 400 (12 x 40 mesh; U.S. standard sieve series) showed the greatest capacity for benzocaine adsorption (76.12 mg benzocaine/g carbon); Filtrasorb 300 (8 x 30 mesh) ranked next (31.93 mg/g); and Filtrasorb 816 (8 x 16 mesh) absorbed the least (1.0 mg/g). Increased adsorptive capacity was associated with smaller carbon particle size; however, smaller particle size also impeded column flow. Carbon filtration is a practical means for removing benzocaine from treated water.

  1. Preparation and characterization of activated carbon from marine macro-algal biomass.

    PubMed

    Aravindhan, R; Raghava Rao, J; Unni Nair, B

    2009-03-15

    Activated carbons prepared from two macro-algal biomass Sargassum longifolium (SL) and Hypnea valentiae (HV) have been examined for the removal of phenol from aqueous solution. The activated carbon has been prepared by zinc chloride activation. Experiments have been carried out at different activating agent/precursor ratio and carbonization temperature, which had significant effect on the pore structure of carbon. Developed activated carbon has been characterized by BET surface area (S(BET)) analysis and iodine number. The carbons, ZSLC-800 and ZHVC-800, showed surface area around 802 and 783 m(2)g(-1), respectively. The activated carbon developed showed substantial capability to adsorb phenol from aqueous solutions. The kinetic data were fitted to the models of pseudo-first-order, pseudo-second-order and intraparticle diffusion models. Column studies have also been carried out with ZSLC-800 activated carbon.

  2. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column.

    PubMed

    Biswas, Swarup; Mishra, Umesh

    2016-01-01

    The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater.

  3. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column

    PubMed Central

    Biswas, Swarup; Mishra, Umesh

    2016-01-01

    The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater. PMID:26904681

  4. Removal of dissolved organic carbon by aquifer material: Correlations between column parameters, sorption isotherms and octanol-water partition coefficient.

    PubMed

    Pradhan, Snigdhendubala; Boernick, Hilmar; Kumar, Pradeep; Mehrotra, Indu

    2016-07-15

    The correlation between octanol-water partition coefficient (KOW) and the transport of aqueous samples containing single organic compound is well documented. The concept of the KOW of river water containing the mixture of organics was evolved by Pradhan et al. (2015). The present study aims at determining the KOW and sorption parameters of synthetic aqueous samples and river water to finding out the correlation, if any. The laboratory scale columns packed with aquifer materials were fed with synthetic and river water samples. Under the operating conditions, the compounds in the samples did not separate, and all the samples that contain more than one organic compound yielded a single breakthrough curve. Breakthrough curves simulated from sorption isotherms were compared with those from the column runs. The sorption parameters such as retardation factor (Rf), height of mass transfer zone (HMTZ), rate of mass transfer zone (RMTZ), breakpoint column capacity (qb) and maximum column capacity (qx) estimated from column runs, sorption isotherms and models developed by Yoon-Nelson, Bohart-Adam and Thomas were in agreement. The empirical correlations were found between the KOW and sorption parameters. The transport of the organics measured as dissolved organic carbon (DOC) through the aquifer can be predicted from the KOW of the river water and other water samples. The novelty of the study is to measure KOW and to envisage the fate of the DOC of the river water, particularly during riverbank filtration. Statistical analysis of the results revealed a fair agreement between the observed and computed values.

  5. Subtropical cloud response to increased carbon dioxide in single-column models

    NASA Astrophysics Data System (ADS)

    Medeiros, B.; Bretherton, C. S.; Zhang, M.; Blossey, P. N.

    2015-12-01

    The CGILS (CFMIP-GASS Intercomparison of LES and SCMs) initiative brings together large-eddy simulations (LES) and single-column models to investigate and compare cloud feedbacks under idealized conditions. The first phase applied a surface warming of 2K for each of three cloud regimes: coastal stratus, decoupled stratocumulus, and shallow cumulus. The regimes cover the transition from overcast conditions near subtropical west coasts to the broken, fair-weather trade-wind conditions through the subtropical stratocumulus decks. The LES results generally support a positive cloud feedback in cumulus and stratocumulus conditions and negative feedback for coastal stratus. The SCMs, on the other hand, showed both positive and negative responses in all regimes, controlled by subtle balances among processes within each model's parameterized physics. Here we present the SCM results from the second phase of CGILS, which investigates the cloud response to a change in atmospheric carbon dioxide (in the absence of surface warming) as a parallel to similar experiments with global models in CMIP5. The LES results have been previously reported, and are largely consistent across models, showing a lower inversion and less cloud in all regimes. In the SCMs, a robust decrease in cloud cover is found for the coastal stratus regime, in agreement with the LES results. As was the case for the warming experiments, however, the SCMs show more diversity than the LES in the other regimes, exhibiting both positive and negative cloud responses. We present these results along with additional sensitivity experiments with the SCMs that remove cloud radiative effects or turn off parameterized convection help to understand the mechanisms controlling the different cloud responses.

  6. Photoconductivity of activated carbon fibers

    SciTech Connect

    Kuriyama, K.; Dresselhaus, M.S. )

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity. 54 refs., 11 figs., 3 tabs.

  7. Photoconductivity of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  8. Solvent-regenerated activated carbon

    SciTech Connect

    McLaughlin, H. )

    1988-07-01

    This report summarizes the results of a University/Industry research project, sponsored by the New York State Energy Research and Development Authority and Fluids Design Corporation. The research project studied the solvent regeneration of activated carbon. Activate carbon was used to remove trace organics from aqueous streams, then regenerated by desorbing the adsorbates with organic solvents. The project included a survey of the potential applications in New York State industries, fundamental research on the adsorption/desorption phenomena, and design of a full-scale process. The economics of the full-scale process were evaluated and compared to alternate available technologies. The result of this work is a versatile process with attractive economics. A wide range of adsorbates and solvents were found to be acceptable for this process. The design methodologies are developed and the techniques for evaluating a new application are delineated. 13 refs., 12 figs., 4 tabs.

  9. Modified Activated Carbon Perchlorate Sorbents

    DTIC Science & Technology

    2007-01-25

    nitrosodimethylamine precursors in municipal wastewater treatment plants. Environ. Sci. Technol., 2004. 38: p. 1445-1454. 15. Shmidt, V., K. Rybakov...Engineering and Management, 1994. 141: p. 12. 33. Walker, G. and L. Weatherley, Biological Activated Carbon Treatment of Industrial Wastewater in... Treatment with Ammonia (NAC), Urea-formaldehyde Resin (UAC), and Hydrogen (HAC). Data are Indicated by the Symbol and Least Squares Fit of the Langmuir

  10. TUMOR NECROSIS FACTOR α: ACTIVITY DEPENDENT EXPRESSION AND PROMOTION OF CORTICAL COLUMN SLEEP IN RATS

    PubMed Central

    Churchill, L.; Rector, D.M.; Yasuda, K.; Fix, C.; Rojas, M.J.; Yasuda, T.; Krueger, J.M.

    2008-01-01

    Cortical surface evoked potentials (SEPs) are larger during sleep and characterize a sleep-like state in cortical columns. Since tumor necrosis factor alpha (TNF) may be involved in sleep regulation and is produced as a consequence of waking activity, we tested the hypothesis that direct application of TNF to the cortex will induce a sleep-like state within cortical columns and enhance SEP amplitudes. We found that microinjection of TNF onto the surface of the somatosensory cortex enhanced whisker stimulation-induced SEP amplitude relative to a control heat-inactivated TNF microinjection. We also determined if whisker stimulation enhanced endogenous TNF expression. TNF immunoreactivity (IR) was visualized after 2 h of bilateral deflection of a single whisker bilaterally. The number of TNF-IR cells increased in layers II–IV of the activated somatosensory barrel column. In two separate studies, unilateral deflection of multiple whiskers for 2 h increased the number of TNF-IR cells in layers II–V in columns that also exhibited enhanced Fos-IR. TNF-IR also colocalized with NeuN-IR suggesting that TNF expression was in neurons. Collectively these data are consistent with the hypotheses that TNF is produced in response to neural activity and in turn enhances the probability of a local sleep-like state as determined by increases in SEP amplitudes. PMID:18694809

  11. A large column analog experiment of stable isotope variations during reactive transport: II. Carbon mass balance, microbial community structure and predation

    NASA Astrophysics Data System (ADS)

    Druhan, Jennifer L.; Bill, Markus; Lim, HsiaoChien; Wu, Cindy; Conrad, Mark E.; Williams, Kenneth H.; DePaolo, Donald J.; Brodie, Eoin L.

    2014-01-01

    partitioning of carbon isotopes. This study demonstrates evidence for predator-prey relationships that impact subsurface microbial community dynamics and provides a novel indication of the impact of this relationship on the flux of carbon through a system via the microbial biomass pool. Overall, our approach provides high temporal and spatial sampling resolution at field relevant flow rates, while minimizing effects of mixing and transverse dispersion. The result is a quantitative carbon budget accounting for a diversity of processes that should be considered for inclusion in reactive transport models that aim to predict carbon turnover, nutrient flux, and redox reactions in natural and stimulated subsurface systems. the mobilization of previously stabilized, sediment-bound carbon; a carbon mass balance for a through-flowing sediment column over the course of a 43-day amendment using 13C-labeled acetate; a phylogenetic microbial community structure at <20 cm sampling resolution with distance away from the organic carbon source weekly over the 43-day amendment; protozoan grazing on the active Geobacteraceae population and the rapid turnover of microbial biomass carbon as a secondary cycling pathway. Such a high resolution, combined analysis of microbial populations and the associated carbon mass balance in a through-flowing system at field relevant flow rates provides novel, quantitative insights into the interface between biogeochemical cycling and bulk carbon fluxes in the near-surface environment.

  12. Inorganic carbon fixation by sulfate-reducing bacteria in the Black Sea water column.

    PubMed

    Neretin, Lev N; Abed, Raeid M M; Schippers, Axel; Schubert, Carsten J; Kohls, Katharina; Kuypers, Marcel M M

    2007-12-01

    The Black Sea is the largest anoxic water basin on Earth and its stratified water column comprises an upper oxic, middle suboxic and a lower permanently anoxic, sulfidic zone. The abundance of sulfate-reducing bacteria (SRB) in water samples was determined by quantifying the copy number of the dsrA gene coding for the alpha subunit of the dissimilatory (bi)sulfite reductase using real-time polymerase chain reaction. The dsrA gene was detected throughout the whole suboxic and anoxic zones. The maximum dsrA copy numbers were 5 x 10(2) and 6.3 x 10(2) copies ml(-1) at 95 m in the suboxic and at 150 m in the upper anoxic zone, respectively. The proportion of SRB to total Bacteria was 0.1% in the oxic, 0.8-1.9% in the suboxic and 1.2-4.7% in the anoxic zone. A phylogenetic analysis of 16S rDNA clones showed that most clones from the anoxic zone formed a coherent cluster within the Desulfonema-Desulfosarcina group. A similar depth profile as for dsrA copy numbers was obtained for the concentration of non-isoprenoidal dialkyl glycerol diethers (DGDs), which are most likely SRB-specific lipid biomarkers. Three different DGDs were found to be major components of the total lipid fractions from the anoxic zone. The DGDs were depleted in (13)C relative to the delta(13)C values of dissolved CO(2) (delta(13)C(CO2)) by 14-19 per thousand. Their delta(13)C values [delta(13)C(DGD(II-III))] co-varied with depth showing the least (13)C-depleted values in the top of the sulfidic, anoxic zone and the most (13)C-depleted values in the deep anoxic waters at 1500 m. This co-variation provides evidence for CO(2) incorporation by the DGD(II-III)-producing SRB, while the 1:2 relationship between delta(13)C(CO2) and delta(13)C(DGD(II-III)) indicates the use of an additional organic carbon source.

  13. Incorporation of carbon nanotubes in a silica HPLC column to enhance the chromatographic separation of peptides: theoretical and practical aspects.

    PubMed

    André, Claire; Aljhani, Rania; Gharbi, Tijani; Guillaume, Yves C

    2011-06-01

    The retention mechanism of a series of peptides on a single-wall carbon nanotube (SWCNT) stationary phase inside an HPLC column was investigated over a wide range of mobile phase compositions. While the similar size C18 column exhibited an efficiency of 11.5 μm, the SWCNT column increased the efficiency, i.e. 7.10 μm at a flow rate of 0.8 mL/min, and significantly affected the separation quality of the peptides. The values of enthalpy (ΔH) and entropy (ΔS(*)) of transfer of the peptides from the mobile to the SWCNT stationary phase were determined. The method studied each factor, i.e. ACN fraction x in the ACN/water mixture and column temperature. The changes in retention factor, ΔH and ΔS(*) as a function of the ACN fraction in the mobile phase were examined. These variations are explained using the organization of ACN in clusters in the ACN/water mixture and on the steric and electronic forces implied in the retention process. The information obtained in this work makes this SWCNT stationary phase useful for peptide research and demonstrated the role of ACN to improve the separation quality.

  14. Multiresidue analysis of pesticides in vegetables and fruits using two-layered column with graphitized carbon and water absorbent polymer.

    PubMed

    Obana, H; Akutsu, K; Okihashi, M; Hori, S

    2001-09-01

    A high-throughput multiresidue analysis of pesticides in non-fatty vegetables and fruits was developed. The method consisted of a single extraction and a single clean-up procedure. Food samples were extracted with ethyl acetate and the mixture of extract and food dregs were poured directly into the clean-up column. The clean-up column consisted of two layers of water-absorbent polymer (upper) and graphitized carbon (lower), which were packed in a reservoir (75 ml ) of a cartridge column. The polymer removed water in the extract while the carbon performed clean-up. In a recovery test, 110 pesticides were spiked and average recoveries were more than 95% from spinach and orange. Most pesticides were recovered in the range 70-115% with RSD usually < 10% for five experiments. The residue analyses were performed by the extraction of 12 pesticides from 13 samples. The two methods resulted in similar residue levels except chlorothalonil in celery, for which the result was lower with the proposed method. The results confirmed that the proposed method could be applied to monitoring of pesticide residue in foods.

  15. Evaluation of fructooligosaccharides separation using a fixed-bed column packed with activated charcoal.

    PubMed

    Kuhn, Raquel Cristine; Mazutti, Marcio A; Albertini, Lilian Buoro; Filho, Francisco Maugeri

    2014-05-25

    Recent studies have shown that the chromatographic separation of mixtures of saccharides may be improved by making use of activated charcoal, a promising low cost material for the separation of sugars, including fructooligosaccharides. In this work, the development of a methodology to separate fructooligosaccharides from glucose, fructose and sucrose, using a fixed bed column packed with activated charcoal is proposed. The influence of temperature, eluant concentration and step gradients were evaluated to increase the separation efficiency and fructooligosaccharide purity. The final degree of fructooligosaccharide purification and separation efficiency were about 94% and 3.03 respectively, using ethanol gradient concentration ranging from 3.5% to 15% (v/v) at 40°C. The fixed bed column packed with the activated charcoal was shown to be a promising alternative for sugar separation, mainly those rich in fructooligosaccharides, leading to solutions of acceptable degrees of purification.

  16. Activated, coal-based carbon foam

    DOEpatents

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  17. Activated, coal-based carbon foam

    SciTech Connect

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2009-06-09

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  18. Direct extraction of tetracyclines from bovine milk using restricted access carbon nanotubes in a column switching liquid chromatography system.

    PubMed

    de Faria, Henrique Dipe; Rosa, Mariana Azevedo; Silveira, Alberto Thalison; Figueiredo, Eduardo Costa

    2017-06-15

    This paper describes, for the first time, the use of restricted access carbon nanotubes (RACNTs) in the analysis of tetracyclines from milk samples, in a multidimensional liquid chromatographic system. Milk samples were initially acidified and centrifuged, and then the supernatant was directly analyzed in a column switching system in backflush configuration employing an extraction column of RACNTs. The sorbent was able to exclude all the remained proteins in less than 2.0min. The method was linear from 50 to 200μgL(-1) and the coefficients of determination (r(2)) were 0.997, 0.992, 0.994 and 0.998 for oxytetracycline (OXI), tetracycline (TC), chlortetracycline (CTC) and doxycycline (DOX), respectively. The analytical range included the maximum residue limits established by the regulatory agency.

  19. Analysis of trace amounts of carbon dioxide, oxygen and carbon monoxide in nitrogen using dual capillary columns and a pulsed discharge helium ionisation detector.

    PubMed

    Janse van Rensburg, M; Botha, A; Rohwer, E

    2007-10-05

    Gas mixtures of trace amounts of carbon dioxide (CO(2)), dioxygen (O(2)), and carbon monoxide (CO) in dinitrogen (N(2)) were separated and quantified using parallel dual capillary columns and pulsed discharge helium ionisation detection (PDHID). The detection limits (9 x 10(-9) mol mol(-1) for CO(2), 7 x 10(-9) mol mol(-1) for O(2) and 37 x 10(-9) mol mol(-1) for CO) were lower than those reported previously for similar methods. Uncertainties were calculated and results were validated by comparison of the CO and CO(2) results with those obtained using conventional methods. The method was also used to analyse nitrogen, carbon dioxide and carbon monoxide in oxygen.

  20. Mathematical modelling of postbuckling in a slender beam column for active stabilisation control with respect to uncertainty

    NASA Astrophysics Data System (ADS)

    Enss, Georg C.; Platz, Roland; Hanselka, Holger

    2012-04-01

    Buckling is an important design constraint in light-weight structures as it may result in the collapse of an entire structure. When a mechanical beam column is loaded above its critical buckling load, it may buckle. In addition, if the actual loading is not fully known, stability becomes highly uncertain. To control uncertainty in buckling, an approach is presented to actively stabilise a slender flat column sensitive to buckling. For this purpose, actively controlled forces applied by piezoelectric actuators located close to the column's clamped base stabilise the column against buckling at critical loading. In order to design a controller to stabilise the column, a mathematical model of the postcritically loaded system is needed. Simulating postbuckling behaviour is important to study the effect of axial loads above the critical axial buckling load within active buckling control. Within this postbuckling model, different kinds of uncertainty may occur: i) error in estimation of model parameters such as mass, damping and stiffness, ii) non-linearities e. g. in the assumption of curvature of the column's deflection shapes and many more. In this paper, numerical simulations based on the mathematical model for the postcritically axially loaded column are compared to a mathematical model based on experiments of the actively stabilised postcritically loaded real column system using closed loop identification. The motivation to develop an experimentally validated mathematical model is to develop of a model based stabilising control algorithm for a real postcritically axially loaded beam column.

  1. Enzyme activities in the water column and in shallow permeable sediments from the northeastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Arnosti, C.; Ziervogel, K.; Ocampo, L.; Ghobrial, S.

    2009-09-01

    The activities of extracellular enzymes that initiate the microbial remineralization of high molecular weight organic matter were investigated in the water column and sandy surface sediments at two sites in the northeastern Gulf of Mexico. Six fluorescently labeled polysaccharides were hydrolyzed rapidly in the water column as well as in permeable sediments. This result contrasts with previous studies carried out in environments dominated by fine-grained muds, in which the spectrum of enzymes active in the water column is quite limited compared to that of the underlying sediments. Extracts of Spirulina, Isochrysis, and Thalassiosira were also used to measure hydrolysis rates in water from one of the sites. Rates of hydrolysis of the three plankton extracts were comparable to those of the purified polysaccharides. The broad spectrum and rapid rates of hydrolysis observed in the water column at both sites in the northeastern Gulf of Mexico may be due to the permeable nature of the sediments. Fluid flux through the sediments is sufficiently high that the entire 1.5 m deep water column could filter though the sediments on timescales of a few days to two weeks. Movement of water through sediments may also transport dissolved enzymes from the sediment into the water column, enhancing the spectrum as well as the rate of water column enzymatic activities. Such interaction between the sediments and water column would permit water column microbial communities to access high molecular weight substrates that might otherwise remain unavailable as substrates.

  2. Explanation for the enhanced dissolution of silica column packing in high pH phosphate and carbonate buffers.

    PubMed

    Tindall, G W; Perry, R L

    2003-02-28

    It has been reported that at high pH, the rate of bonded phase packing degradation in methanol/water mobile phases is greater for carbonate and phosphate buffers than for amine buffers. This conclusion was based on buffer pH determined in the aqueous buffer before dilution with methanol. Changes in buffer species pKa, and therefore buffer pH, upon methanol dilution are consistent with the observed degradation results. Measurements of pH in the methanol/water solutions confirm that the carbonate and phosphate buffers were considerably more basic than the amine buffer, even though all the buffers were pH 10 before dilution with methanol. These results demonstrate that it can be misleading to extrapolate aqueous pH data to partially aqueous solutions. Measurements of pH in the mixed solvent provide more reliable predictions of column and sample stability.

  3. Removal of toxic chemicals from water with activated carbon

    USGS Publications Warehouse

    Dawson, V.K.; Marking, L.L.; Bills, T.D.

    1976-01-01

    Activated carbon was effective in removing fish toxicants and anesthetics from water solutions. Its capacity to adsorb 3-trifluoromethyl-4-nitrophenol (TFM), antimycin, NoxfishA? (5% rotenone), Dibrorms, juglone, MSa??222, and benzocaine ranged from 0.1 to 64 mg per gram of carbon. The adsorptive capacity (end point considered as a significant discharge) of activated carbon for removal of TFM was determined at column depths of 15, 30, and 60 cm; temperatures of 7, 12, 17, and 22 C; pH's of 6.5, 7.5, 8.5, and 9.5; and flow rates of 50, 78, 100, 200, and 940 ml/min. Adsorptive capacity increased when the contact time was increased by reducing the flow rate or increasing the column depth. The adsorptive capacity was not significantly influenced by temperature but was substantially higher at pH 6.5 than at the other pH's tested. A practical and efficient filter for purifying chemically treated water was developed.

  4. Gas chromatography for in situ analysis of a cometary nucleus. II. Analysis of permanent gases and light hydrocarbons with a carbon molecular sieve porous layer open tubular column.

    PubMed

    Szopa, C; Sternberg, R; Coscia, D; Raulin, F; Vidal-Madjar, C

    2000-12-22

    Considering the severe constraints of space instrumentation, a great improvement for the in situ gas chromatographic (GC) determination of permanent and noble gases in a cometary nucleus is the use of a new carbon molecular sieve porous layer open tubular (PLOT) column called Carbobond. No exhaustive data dealing with this column being available, studies were carried out to entirely characterize its analytical performances, especially when used under the operating conditions of the cometary sampling and composition (COSAC) experiment of the European Space Agency (ESA) Rosetta space mission to be launched in 2003 for a rendezvous with comet 46 P/Wirtanen in 2011. The high efficiency and speed of analysis of this column at both atmospheric and vacuum outlet column pressure is demonstrated, and the kinetic mass transfer contribution of this carbon molecular sieve adsorbent is calculated. Besides, differential adsorption enthalpies of several gases and light hydrocarbons were determined from the variation of retention volume with temperature. The data indicate close adsorption behaviors on the Carbobond porous layer adsorbent and on the carbon molecular sieve Carboxen support used to prepare the packed columns. Moreover, taking into account the in situ operating conditions of the experiment, a study of two columns with different porous layer thicknesses allowed one to optimize the separation of the target components and to select the column parameters compatible with the instrument constraints. Comparison with columns of similar selectivity shows that these capillary columns are the first ones able to perform the same work as the packed and micro-packed columns dedicated to the separation of this range of compounds in GC space exploration.

  5. Technique for surface oxidation of activated carbon

    SciTech Connect

    Sircar, S.; Golden, T.C.

    1987-10-27

    A method of activating a carbon adsorbent is described, which comprises oxidizing the surface of the carbon adsorbent with a mild oxidizing acid in the presence of a metal oxidation catalyst at an elevated temperature and boiling the mixture of the carbon adsorbent, mild oxidizing acid and metal oxidation catalyst to dryness. Then rinse the surface oxidizing carbon adsorbent with water; and dry the rinsed surface oxidized carbon adsorbent. In a process for the removal of water or carbon dioxide from a gas stream containing water or carbon dioxide of the type wherein the gas stream containing water or carbon dioxide is contacted with a solid phase adsorbent under pressure-swing adsorption or thermal-swing adsorption processing conditions, the improvement is described comprising utilizing an adsorbent produced by the activation of a carbon adsorbent. The activation comprises oxidizing the surface of the carbon adsorbent with a mold oxidizing acid in the presence of a metal oxidation catalyst at an elevated temperature and boiling the mixture of the carbon adsorbent, mild oxidizing acid and metal oxidation catalyst to dryness. Then rinse the surface oxidized carbon adsorbent with water; and dry the rinsed surface oxidized carbon adsorbent.

  6. Adsorption of carbon monoxide on activated carbon tin ligand

    NASA Astrophysics Data System (ADS)

    Mohamad, A. B.; Iyuke, S. E.; Daud, W. R. W.; Kadhum, A. A. H.; Fisal, Z.; Al-Khatib, M. F.; Shariff, A. M.

    2000-09-01

    Activated carbon was impregnated with 34.57% SnCl 2·2H 2O salt and then dried at 180°C to produce AC-SnO 2 to improve its adsorptive interaction with CO. Besides the fact that activated carbon has its original different pore sizes for normal gas phase CO adsorption (as in the case of pure carbon), the impregnated carbon has additional CO adsorption ability due to the presence of O -(ads) on the active sites. AC-SnO 2 proved to be a superior adsorber of CO than pure carbon when used for H 2 purification in a PSA system. Discernibly, the high adsorptive selectivity of AC-SnO 2 towards gas phase CO portrays a good future for the applicability of this noble adsorbent, since CO has become a notorious threat to the global ecosystem due to the current level of air pollution.

  7. Modulation of neuronal activity in dorsal column nuclei by upper cervical spinal cord stimulation in rats

    PubMed Central

    Qin, Chao; Yang, Xiaoli; Wu, Mingyuan; Farber, Jay P.; Linderoth, Bengt; Foreman, Robert D.

    2009-01-01

    Clinical human and animal studies show that upper cervical spinal cord stimulation (cSCS) has beneficial effects in treatment of some cerebral disorders, including those due to deficient cerebral circulation. However, the underlying mechanisms and neural pathways activated by cSCS using clinical parameters remain unclear. We have shown that a cSCS-induced increase in cerebral blood flow is mediated via rostral spinal dorsal column fibers implying that the dorsal column nuclei (DCNs) are involved. The aim of this study was to examine how cSCS modulated neuronal activity of DCNs.. A spring-loaded unipolar ball electrode was placed on the left dorsal column at cervical (C2) spinal cord in pentobarbital anesthetized, ventilated and paralyzed male rats. Stimulation with frequencies of 1, 10, 20, 50 Hz (0.2 ms, 10 s) and an intensity of 90% of motor threshold was applied. Extracellular potentials of single neurons in DCNs were recorded and examined for effects of cSCS. In total, 109 neurons in DCNs were isolated and tested for effects of cSCS. Out of these, 56 neurons were recorded from the cuneate nucleus and 53 from the gracile nucleus. Mechanical somatic stimuli altered activity of 87/109 (83.2%) examined neurons. Of the neurons receiving somatic input, 62 were classified as low-threshold and 25 as wide dynamic range. The cSCS at 1 Hz changed the activity of 96/109 (88.1%) of the neurons. Neuronal responses to cSCS exhibited multiple patterns of excitation and/or inhibition: excitation (E, n=21), inhibition (I, n=19), E-I (n=37), I-E (n=8) and E-I-E (n=11). Furthermore, cSCS with high-frequency (50 Hz) altered the activity of 92.7% (51/55) of tested neurons, including 30 E, 24 I, and 2 I-E responses to cSCS. These data suggested that cSCS significantly modulates neuronal activity in dorsal column nuclei. These nuclei might serve as a neural relay for cSCS-induced effects on cerebral dysfunction and diseases. PMID:19665525

  8. Water column distribution and carbon isotopic signal of cholesterol, brassicasterol and particulate organic carbon in the Atlantic sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Cavagna, A.-J.; Dehairs, F.; Bouillon, S.; Woule-Ebongué, V.; Planchon, F.; Delille, B.; Bouloubassi, I.

    2013-04-01

    The combination of concentrations and δ13C signatures of Particulate Organic Carbon (POC) and sterols provides a powerful approach to study ecological and environmental changes in both the modern and ancient ocean. We applied this tool to study the biogeochemical changes in the modern ocean water column during the BONUS-GoodHope survey (February-March 2008) from Cape Basin to the northern part of the Weddell Gyre. Cholesterol and brassicasterol were chosen as ideal biomarkers of the heterotrophic and autotrophic carbon pools, respectively, because of their ubiquitous and relatively refractory nature. We document depth distributions of concentrations (relative to bulk POC) and δ13C signatures of cholesterol and brassicasterol combined with CO2 aq. surface concentration variation. While the relationship between CO2 aq. and δ13C of bulk POC and biomarkers have been reported by others for the surface water, our data show that this persists in mesopelagic and deep waters, suggesting that δ13C signatures of certain biomarkers in the water column could be applied as proxies for surface water CO2 aq. We observed a general increase in sterol δ13C signatures with depth, which is likely related to a combination of particle size effects, selective feeding on larger cells by zooplankton, and growth rate related effects. Our data suggest a key role of zooplankton fecal aggregates in carbon export for this part of the Southern Ocean (SO). Additionally, in the southern part of the transect south of the Polar Front (PF), the release of sea-ice algae during the ice demise in the Seasonal Ice Zone (SIZ) is hypothesized to influence the isotopic signature of sterols in the open ocean. Overall, the combined use of δ13C values and concentrations measurements of both bulk organic C and specific sterols throughout the water column offers the promising potential to explore the recent history of plankton and the fate of organic matter in the SO.

  9. A model of microbial activity in lake sediments in response to periodic water-column mixing.

    PubMed

    Gantzer, Charles J; Stefan, Heinz G

    2003-07-01

    Under stagnant conditions, the mass transport of a soluble substrate from a lake's water column to the sediment/water interface is limited by molecular diffusion. Stagnant conditions coupled with a continuing sediment biological demand create a substrate depletion zone above the sediment/water interface. The frequency at which the substrate depletion zone is destroyed by internal seiches and other intermittent flow phenomena influences the time-averaged substrate concentration at the sediment/water interface. A more frequent mixing results in a greater time-averaged interface concentration and consequently affects the amount of microbial biomass that can be supported in the lake sediments and the flux of the substrate into the sediment. A one-dimensional, two-substrate model is used to examine the impact of mixing frequency on the activity of sulfate-reducing bacteria (SRB) in lake sediments. In the model, sulfate is supplied from the water column, while acetate is generated within the sediments. Mass transport to and within the sediments is by molecular diffusion except for instantaneous mixing events. Between mixing events, sulfate concentration gradients form above the sediment/water interface in the diffusive boundary layer. Sulfate depletion zones can be centimeters thick. When typical biological rate and diffusion coefficients for sulfate and acetate are used as inputs, the model indicates that a more frequent water-column mixing results in greater SRB concentrations. For an assumed bulk water-column sulfate concentration of 4.8 mg x l(-1), the sediment SRB concentrations for the modeled hourly, 6-hourly, daily, and weekly mixing frequencies were 175, 136, 91, and 30 mg x m(-2), respectively. The model also predicts higher time-averaged sulfate flux rates at more frequent water-column mixing. The time-averaged sulfate flux rates for the hourly, 6-hourly, daily, and weekly mixing frequencies were 1.26, 1.13, 0.78, and 0.30 mg x m(-2)h(-1), respectively. Thus

  10. A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye--Acid Blue 113.

    PubMed

    Gupta, V K; Gupta, Bina; Rastogi, Arshi; Agarwal, Shilpi; Nayak, Arunima

    2011-02-15

    A mesoporous carbon developed from waste tire rubber, characterized by chemical analysis, FTIR, and SEM studies, was used as an adsorbent for the removal and recovery of a hazardous azo dye, Acid Blue 113. Surface area, porosity, and density were determined. The adsorption of the dye over the prepared adsorbent and a commercial activated carbon was achieved under different pH, adsorbate concentration, sieve size, adsorbent dosage, contact time and temperature conditions. Langmuir and Freundlich adsorption isotherm models were applied and thermodynamic parameters were calculated. Kinetic studies indicated that the adsorption process follow first order kinetics and particle diffusion mechanisms are operative. By percolating the dye solution through fixed-bed columns the bulk removal of the Acid Blue 113 was carried out and necessary parameters were determined to find out the percentage saturation of both the columns. Recovery of the dye was made by eluting 0.1 M NaOH through the column.

  11. [Study on influence between activated carbon property and immobilized biological activated carbon purification effect].

    PubMed

    Wang, Guang-zhi; Li, Wei-guang; He, Wen-jie; Han, Hong-da; Ding, Chi; Ma, Xiao-na; Qu, Yan-ming

    2006-10-01

    By means of immobilizing five kinds of activated carbon, we studied the influence between the chief activated carbon property items and immobilized bioactivated carbon (IBAC) purification effect with the correlation analysis. The result shows that the activated carbon property items which the correlation coefficient is up 0.7 include molasses, abrasion number, hardness, tannin, uniform coefficient, mean particle diameter and effective particle diameter; the activated carbon property items which the correlation coefficient is up 0.5 include pH, iodine, butane and tetrachloride. In succession, the partial correlation analysis shows that activated carbon property items mostly influencing on IBAC purification effect include molasses, hardness, abrasion number, uniform coefficient, mean particle diameter and effective particle diameter. The causation of these property items bringing influence on IBAC purification is that the activated carbon holes distribution (representative activated carbon property item is molasses) provides inhabitable location and adjust food for the dominance bacteria; the mechanical resist-crash property of activated carbon (representative activated carbon property items: abrasion number and hardness) have influence on the stability of biofilm; and the particle diameter size and distribution of activated carbon (representative activated carbon property items: uniform coefficient, mean particle diameter and effective particle diameter) can directly affect the force of water in IBAC filter bed, which brings influence on the dominance bacteria immobilizing on activated carbon.

  12. Pressure, temperature and density drops along supercritical fluid chromatography columns. I. Experimental results for neat carbon dioxide and columns packed with 3- and 5-micron particles.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2012-08-10

    The pressure drop and temperature drop on columns packed with 3- and 5-micron particles were measured using neat CO(2) at a flow rate of 5 mL/min, at temperatures from 20°C to 100°C, and outlet pressures from 80 to 300 bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath either bare or covered with foam insulation. The results show that the pressure drop depends on the outlet pressure, the operating temperature, and the thermal environment. A temperature drop was observed for all conditions studied. The temperature drop was relatively small (less than 3°C) for combinations of low temperature and high pressure. Larger temperature drops and density drops occurred at higher temperatures and low to moderate pressures. Covering the column with thermal insulation resulted in larger temperature drops and corresponding smaller density drops. At 20°C the temperature drop was never more than a few degrees. The largest temperature drops occurred for both columns when insulated at 80°C and 80 bar, reaching a maximum value of 21°C for the 5-micron column, and 26°C for the 3-micron column. For an adiabatic column, the temperature drop depends on the pressure drop, the thermal expansion coefficient, and the density and the heat capacity of the mobile phase fluid, and can be described by a simple mathematical relationship. For a fixed operating temperature and outlet pressure, the temperature drop increases monotonically with the pressure drop.

  13. Microbially induced carbonate precipitation (MICP) by denitrification as ground improvement method - Process control in sand column experiments

    NASA Astrophysics Data System (ADS)

    Pham, Vinh; van Paassen, Leon; Nakano, Akiko; Kanayama, Motohei; Heimovaara, Timo

    2013-04-01

    Calcite precipitation induced by microbes has been proven to be efficient in stabilizing granular soils, especially with urea hydrolysis, as it has been successfully demonstrated in a pilot application 2010. However, as a byproduct highly concentrated ammonium chloride (NH4Cl) solution is produced, which has to be removed and disposed and forms a significant disadvantage of the technique that makes an alternative process like denitrification preferred. The proof of principle of microbially induced calcite precipitation (MICP) by denitrification has been demonstrated by Van Paassen et al (2010) who suggested that instead of producing waste as a byproduct, different pre-treated waste streams could be used as substrates for in situ growth of denitrifying bacteria and simultaneous cementation without producing waste to be removed. In this study sand column experiments are performed in which calcium carbonate was successfully precipitated by indigenous denitrifying micro-organisms, which were supplied weekly with a pulse of a substrate solution containing calcium acetate and calcium nitrate. Besides the production of calcite and the growth of bacteria in biofilms, the reduction of nitrate resulted in the production of (nitrogen) gas. It was observed that this gas partly fills up the pore space and consequently contributed to a reduction of the permeability of the treated sand. The presence of gas in the pore space affected the flow of the injected substrates and influenced to the distribution of calcium carbonate. The effect of the mean particle size (D50) on the flow and transport of solutes and gas in the porous media has been evaluated by treating several columns with varying grain size distribution and comparing the change in permeability after each incubation period and analyzing the distribution of the gas throughout the columns using X-ray computed tomography (CT) scanning. The present results show that there is a considerable decrease of permeability - a

  14. An investigation on a semi-active magnetorheological tuned liquid column damper (MR-TLCD)

    NASA Astrophysics Data System (ADS)

    Sun, H. X.; Wang, X. Y.

    2016-04-01

    this paper, a novel semi-active magnetorheological tuned liquid column damper (MR-TLCD) device combining tuned liquid column damper (TLCD) and magnetorheological damper (MRD) is devised for wind or earthquake vibration control of civil structures. In this device, a traditional moving head loss in the TLCD is replaced with a controlled MRD in the bottom or one side of the vertical column, which can easily and rapidly adjust the damping of the device. A semi-active experimental prototype MR-TLCD consisting of a shear rotary MRD and a TLCD is built. Based on the four basic presumptions, a dynamic model of the devised MR-TLCD is established using the Lagrange equation. In this equation, the formula of MRD employs the Bingham Boltzmann model. The natural frequency of the MR-TLCD is determined by the total central length and spring stiffness. It is worth noting that the natural frequency differs with the simple TLCD, because the device adds a joint spring. An equivalent linear damping expression is developed under harmonic excitation, and its mechanical model is developed using the equivalent period displacement and the coulomb friction force of MRD. At the same time, the equivalent damping can be adjusted by the real-time applied current, which can achieve the semi-active control performance. To validate the proposed frequency and damping model, Experimental test is conducted on a section area 150mm × 150mm and a total length 2.24m of the MR-TLCD dimensions. Comparisons are made between predicted and measured TLCD liquid surface displacement motion. The result shows the error of its nature frequency is only 2.29%.

  15. Resveratrol protects spinal cord dorsal column from hypoxic injury by activating Nrf-2.

    PubMed

    Kesherwani, V; Atif, F; Yousuf, S; Agrawal, S K

    2013-06-25

    Damage from oxidative stress plays a critical role in spinal cord injury. Nuclear factor erythroid 2-related factor (Nrf-2) signaling pathway can be activated by cellular oxidative stress. Resveratrol, a plant-derived polyphenolic compound found in red wine, has antioxidant properties. In the present study, we have examined the neuroprotective effect of resveratrol and the role of Nrf-2 in spinal cord hypoxic injury. The spinal cord was removed from adult male Wistar rats from T2-T10 and the dorsal column was used to induce hypoxic injury in vitro with and without treatment with resveratrol (50μM). Significant changes were found in the compound action potential (CAP) of spinal cord dorsal column, and hematoxyline and eosin (H&E) staining showed that resveratrol significantly improved neuronal injury. The biochemical assays showed significant changes in lipid peroxidase (LPO), reduced glutathione (GSH), superoxide dismutase (SOD), protein carbonyl (PC), mitochondrial ATP content, and mitochondrial Ca(++). Furthermore, using immunohistochemistry and Western blot, we found that after resveratrol treatment during hypoxic injury there was a significant activation of NrF-2 and down regulation of the glial fibrillary acidic protein (GFAP) content. The results show that resveratrol treatment has neuroprotective effects on CAP, Ca(++) loading, and biochemical parameters after hypoxic injury. The neuroprotective effect is likely to be exerted by increased activation of transcription factor Nrf-2 by resveratrol along with its direct antioxidant effect to ameliorate the oxidative damage and preserve mitochondrial function.

  16. Fenton-Driven Chemical Regeneration of MTBE-Spent Granular Activated Carbon -- A Pilot Study

    EPA Science Inventory

    MTBE-spent granular activated carbon (GAC) underwent 3 adsorption/oxidation cycles. Pilot-scale columns were intermittently placed on-line at a ground water pump and treat facility, saturated with MTBE, and regenerated with H2O2 under different chemical, physical, and operational...

  17. Detection and projection of carbonate dissolution in the water column and deep-sea sediments due to ocean acidification

    NASA Astrophysics Data System (ADS)

    Ilyina, Tatiana; Zeebe, Richard E.

    2012-03-01

    Dissolution of fossil fuel CO2 in seawater results in decreasing carbonate ion concentration and lowering of seawater pH with likely negative impacts for many marine organisms. We project detectable changes in carbonate dissolution and evaluate their potential to mitigate atmospheric CO2 and ocean acidification with a global biogeochemistry model HAMOCC forced by different CO2 emission scenarios. Our results suggest that as the anthropogenic CO2 signal penetrates into ocean interior, the saturation state of carbonate minerals will drop drastically - with undersaturation extending from the ocean floor up to 100-150 m depth in the next century. This will induce massive dissolution of CaCO3 in the water column as well as the sediment, increasing the Total Alkalinity (TA) by up to 180 μmol kg-1 at the surface and in the ocean interior over the next 2500 years. Model results indicate an inhomogeneous response among different ocean basins: Atlantic carbonate chemistry responds faster and starts recovering two millennia after CO2 emissions cease, which is not the case in the Pacific. CaCO3 rain stops in the Pacific Ocean around 2230. Using an observation-derived detection threshold for TA, we project detectable dissolution-driven changes only by the year 2070 in the surface ocean and after 2230 and 2500 in the deep Atlantic and Pacific respectively. We show that different model assumptions regarding dissolution and calcification rates have little impact on future projections. Instead, anthropogenic CO2 emissions overwhelmingly control the degree of perturbation in ocean chemistry. In conclusion, ocean carbonate dissolution has insignificant potential in mitigating atmospheric CO2 and ocean acidification in the next millennia.

  18. PCDD/F and PCB water column partitioning examination using natural organic matter and black carbon partition coefficient models.

    PubMed

    Howell, Nathan L; Rifai, Hanadi S

    2016-04-01

    A 9-year water dataset from the Houston Ship Channel (HSC) was analyzed to understand partitioning in polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/Fs). Total PCBs had more mass as dissolved (74%) whereas total PCDD/Fs did not (11%). Generally, the limited number of PCDD/Fs (only 2378 substituted) explained these differences though differences in chemical behavior beyond log K ow also likely influence partitioning. The particular fractionation seen in the HSC also seemed related to a wide variation in particulate organic carbon (POC)/dissolved organic carbon (DOC) ratio (0.42-180%). Published and unaltered linear free energy and linear solvation energy relationships for DOC, POC, and particulate black carbon (BC) resulted in predictions that were at best 27% (PCB) and 25% root-mean-square error (RMSE) (PCDD/F) partition fraction compared to observed (using estimated BC/POC fractions of 10 and 25%, respectively). These results show, at least in light of the uncertainties in this data (e.g., precise fraction of BC), that a 25% accuracy in model prediction of operationally dissolved or suspended fraction for any one PCB or PCDD/F congener is the best prediction that may be expected. It is therefore recommended that site-specific data be used to calibrate most any water column-partitioning model if it is to be expected to describe what actually occurs in field conditions.

  19. HPLC determination of cyanuric acid in swimming pool waters using phenyl and confirmatory porous graphitic carbon columns.

    PubMed

    Cantú, R; Evans, O; Kawahara, F K; Wymer, L J; Dufour, A P

    2001-07-15

    The chlorinated salts of cyanuric acid have found an important role in recreational swimming pool waters across the United States. Upon application to pool water, they can (1) release disinfectant chlorine or (2) stabilize the free available chlorine by acting as chlorine reservoirs in the form of cyanuric acid, preventing the photolytic destruction of residual chlorine by sunlight. Recommended levels of the cyanuric acid stabilizer are in the 10-100 mg/L concentration range according to the National Swimming Pool Foundation (San Antonio, TX). Two isocratic HPLC methods with UV detection (213 nm) employing phenyl and porous graphitic carbon (PGC) columns and phosphate buffer eluents (pH 6.7 and pH 9.1, respectively) were developed to accurately measure cyanuric acid in swimming pools. The two methods allowed fast separation and detection of the stabilizer in 4 (phenyl) and 8 (PGC) min. Both methods offered practical sensitivities with method detection limits of 0.07 (phenyl) and 0.02 mg/L (PGC). Neither one of the two methods required the use of sample cleanup cartridges. They exhibit chromatograms with excellent baseline stability enabling low-level quantitation. Most important, the PGC column had a useful lifetime of five months and 500 sample analyses/column. Eleven pool water samples were fortified with 4.8-50.0 mg/L stabilizer, and the average recovery was 99.8%. Finally, statistical analysis on the relative precisions of the two methods indicated equivalence at the 0.05 critical level.

  20. Evaluation of uncertainty in experimental active buckling control of a slender beam-column with disturbance forces using Weibull analysis

    NASA Astrophysics Data System (ADS)

    Enss, Georg C.; Platz, Roland

    2016-10-01

    Buckling of slender load-bearing beam-columns is a crucial failure scenario in light-weight structures as it may result in the collapse of the entire structure. If axial load and load capacity are unknown, stability becomes uncertain. To compensate this uncertainty, the authors successfully developed and evaluated an approach for active buckling control for a slender beam-column, clamped at the base and pinned at the upper end. Active lateral forces are applied with two piezoelectric stack actuators in opposing directions near the beam-column' clamped base to prevent buckling. A Linear Quadratic Regulator is designed and implemented on the experimental demonstrator and statistical tests are conducted to prove effectivity of the active approach. The load capacity of the beam-column could be increased by 40% and scatter of buckling occurrences for increasing axial loads is reduced. Weibull analysis is used to evaluate the increase of the load capacity and its related uncertainty compensation.

  1. Sorption of boron trifluoride by activated carbons

    SciTech Connect

    Polevoi, A.S.; Petrenko, A.E.

    1988-01-10

    The sorption of born trifluoride on AG-3, SKT, SKT-3, SKT-7, SKT-4A, SKT-6A, and SKT-2B carbons was investigated. The sorption isotherms for both vapors and gas were determined volumetrically. The coefficients of two equations described the sorption of BF/sub 3/ in the sorption of BF/sub 3/ on active carbons. Heats of sorption of BF/sub 3/ on the activated carbons are shown and the sorption isotherms and temperature dependences of the equilibrium pressure of BF/sub 3/ for activated carbons were presented. The values of the heats of sorption indicated the weak character of the reaction of BF/sub 3/ with the surface of the carbons. The equations can be used for calculating the phase equilibrium of BF/sub 3/ on carbons in a wider range of temperatures and pressures.

  2. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    SciTech Connect

    Abdullah, N.; Muhammad, I. S.; Hamid, S. B. Abd.; Rinaldi, A.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300 deg. C for an hour in each step. The catalytic growth of nanocarbon in C{sub 2}H{sub 4}/H{sub 2} was carried out at temperature of 550 deg. C for 2 hrs with different rotating angle in the fluidization system. SEM and N{sub 2} isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  3. The effects of surfactants and solution chemistry on the transport of multiwalled carbon nanotubes in quartz sand-packed columns.

    PubMed

    Lu, Yinying; Xu, Xiaopan; Yang, Kun; Lin, Daohui

    2013-11-01

    The effect of different surfactants on the transport of multiwalled carbon nanotubes (MWCNTs) in quartz sand-packed columns was firstly investigated under various conditions. The stable plateau values (C(max)) of the breakthrough curves (BTCs), critical PVs (the number of pore volumes of infusions needed to reach the C(max)), maximum transport distances (L(max)), deposition rate coefficients (kd) and retention rates were calculated to compare the transport and retention of MWCNTs under various conditions. Stability of the MWCNT suspensions as a function of the influencing factors was examined to reveal the underlying mechanism of the MWCNT retention. Results showed that MWCNTs suspended by different surfactants presented different BTCs; the MWCNT transport increased with increasing sand size and MWCNT concentration; high flow velocity was favorable for the MWCNT transport, while high Ca(2+) concentration and low pH were unfavorable for the transport; hetero-aggregation, straining and site blocking occurred during the transport.

  4. Dielectrophoretic Assembly of Semiconducting Carbon Nanotubes Separated and Enriched by Spin Column Chromatography and Its Application to Gas Sensing

    NASA Astrophysics Data System (ADS)

    Nakano, Michihiko; Fujioka, Masahiro; Mai, Kaori; Watanabe, Hideaki; Martin, Yul; Suehiro, Junya

    2012-04-01

    The present authors have previously demonstrated the electrokinetic fabrication of a single-walled carbon nanotube (SWCNT) gas sensor by employing dielectrophoresis. Because this method employs mass-produced SWCNTs, it can realize cheaper and more flexible SWCNT gas sensor fabrication than that based on the on-site synthesis of SWCNTs. In this study, a new protocol was proposed and tested for the separation and enrichment of semiconducting SWCNTs, aiming to improve the SWCNT gas sensor sensitivity. The protocol employed a spin column filled with size-exclusion dextran-based gel beads as well as two surfactants (sodium dodecyl sulfate and sodium deoxycholate), which had different affinities to metallic and semiconducting SWCNTs. The separation and enrichment of the semiconducting SWCNTs were confirmed by measuring their optical and electrical properties. The CNT gas sensor fabricated using enriched semiconducting SWCNTs was highly sensitive to nitrogen dioxide (NO2) gas, - more sensitive by 10 times than that fabricated using the pristine SWCNT mixture.

  5. Carbon monoxide total column retrievals by use of the measurements of pollution in the troposphere airborne test radiometer.

    PubMed

    Niu, Jianguo; Deeter, Merritt N; Gille, John C; Edwards, David P; Ziskin, Daniel C; Francis, Gene L; Hills, Alan J; Smith, Mark W

    2004-08-20

    The Measurements of Pollution in the Troposphere (MOPITT) Airborne Test Radiometer (MATR) uses gas correlation filter radiometry from high-altitude aircraft to measure tropospheric carbon monoxide. This radiometer is used in support of the ongoing validation campaign for the MOPITT instrument aboard the Earth Observation System Terra satellite. A recent study of MATR CO retrievals that used data from the autumn of 2001 in the western United States is presented. Retrievals of the CO total column were performed and compared to in situ sampling with less than 10% retrieval error. Effects that influence retrieval, such as instrument sensitivity, retrieval sensitivity, and the bias between observations and the radiative transfer model, are discussed. Comparisons of MATR and MOPITT retrievals show promising consistency. A preliminary interpretation of MATR results is also presented.

  6. Extraction of squalene from shark liver oil in a packed column using supercritical carbon dioxide

    SciTech Connect

    Catchpole, O.J.; Kamp, J.C. von; Grey, J.B.

    1997-10-01

    Continuous extraction of squalene from shark liver oil using supercritical carbon dioxide was carried out in both laboratory and pilot scale plant. The shark liver oil contained around 50% by weight squalene, which was recovered as the main extract stream. The other major components in the oil were triglycerides, which were recovered as raffinate, and pristane, which was recovered as a second extract stream. Separation performance was determined as a function of temperature; pressure; oil to carbon dioxide flow rate ratio, packed height and type of packing; and reflux ratio. The pressure, temperature, and feed oil concentration of squalene determined the maximum loading of oil in carbon dioxide. The oil to carbon dioxide ratio determined the squalene concentration in both the product stream and raffinate stream. The ratio of oil flow rate to the flow rate of squalene required to just saturate carbon dioxide was found to be a useful correlating parameter for the oil loadings and product compositions. Of the three packings investigated, wire wool gave the best separation efficiency and Raschig rings the worst efficiency. Mass transfer correlations from the literature were used to estimate the number of transfer units (NTU) from experimental data and literature correlations. NTU`s from the experimental data were comparable to predictions at a pilot scale but were underpredicted at the laboratory scale. The use of reflux at the pilot scale enabled the concentration of squalene in the product stream to be increased from 92% by mass to a maximum of 99% by mass at fractionation conditions of 250 bar and 333 K.

  7. Evidence of intense archaeal and bacterial methanotrophic activity in the Black Sea water column.

    PubMed

    Durisch-Kaiser, Edith; Klauser, Lucia; Wehrli, Bernhard; Schubert, Carsten

    2005-12-01

    In the northwestern Black Sea, methane oxidation rates reveal that above shallow and deep gas seeps methane is removed from the water column as efficiently as it is at sites located off seeps. Hence, seeps should not have a significant impact on the estimated annual flux of approximately 4.1 x 10(9) mol methane to the atmosphere [W. S. Reeburgh, B. B. Ward, S. C. Wahlen, K. A. Sandbeck, K. A. Kilatrick, and L. J. Kerkhof, Deep-Sea Res. 38(Suppl. 2):S1189-S1210, 1991]. Both the stable carbon isotopic composition of dissolved methane and the microbial community structure analyzed by fluorescent in situ hybridization provide strong evidence that microbially mediated methane oxidation occurs. At the shelf, strong isotope fractionation was observed above high-intensity seeps. This effect was attributed to bacterial type I and II methanotrophs, which on average accounted for 2.5% of the DAPI (4',6'-diamidino-2-phenylindole)-stained cells in the whole oxic water column. At deep sites, in the oxic-anoxic transition zone, strong isotopic fractionation of methane overlapped with an increased abundance of Archaea and Bacteria, indicating that these organisms are involved in the oxidation of methane. In underlying anoxic water, we successfully identified the archaeal methanotrophs ANME-1 and ANME-2, eachof which accounted for 3 to 4% of the total cell counts. ANME-1 and ANME-2 appear as single cells in anoxicwater, compared to the sediment, where they may form cell aggregates with sulfate-reducing bacteria (A. Boetius, K. Ravenschlag, C. J. Schubert, D. Rickert, F. Widdel, A. Giesecke, R. Amann, B. B. Jørgensen, U. Witte, and O. Pfannkuche, Nature 407:623-626, 2000; V. J. Orphan, C. H. House, K.-U. Hinrichs, K. D. McKeegan, and E. F. DeLong, Proc. Natl. Acad. Sci. USA 99:7663-7668, 2002).

  8. Catalytic activation of carbon-carbon bonds in cyclopentanones.

    PubMed

    Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin

    2016-11-24

    In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon-carbon single bonds (C-C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds. The challenge in achieving such activation is the kinetic inertness of C-C bonds and the relative weakness of newly formed carbon-metal bonds. The most common tactic starts with a three- or four-membered carbon-ring system, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C-C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C-C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C-C bond can be activated; this is followed by activation of a carbon-hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones-a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate.

  9. Making Activated Carbon by Wet Pressurized Pyrolysis

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark

    2006-01-01

    A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb

  10. Use of 13C Labeled Carbon Tetrachloride to Demonstrate the Transformation to Carbon Dioxide under Anaerobic Conditions in a Continuous Flow Column

    NASA Astrophysics Data System (ADS)

    Semprini, L.; Azizian, M.

    2012-12-01

    The demonstration of transformation of chlorinated aliphatic compounds (CAHs) in the subsurface is a challenge, especially when the products are carbon dioxide (CO2) and chloride ion. The groundwater contaminant carbon tetrachloride (CT) is of particular interest since a broad range of transformation products can be potentially formed under anaerobic conditions. The ability to demonstrate the transformation of CT to CO2 as a non toxic endproduct, is also of great interest. Results will be presented from a continuous flow column study where 13C labeled CT was used to demonstrate its transformation to CO2. The column was packed with a quartz sand and bioaugmented the Evanite Culture (EV) that is capable of transforming tetrachloroethene (PCE) to ethene. The column was continously fed a synthetic groundwater that was amended with PCE (0.10 mM) and either formate (1.5 mM) or lactate (1.1 mM), which ferments to produce hydrogen (H2) as the ultimate electron donor. Earlier CT transformation studies with the column, in the absence of sulfate reduction, and with formate added as a donor found CT (0.015 mM) was over 98% transformed with about 20% converted to chloroform (CF) (0.003 mM) and with a transient detection of chloromethane (CM). Methane and carbon disulfide, as potential products, were not detected. Neither CT nor CF inhibited the reductive dehalogenation of PCE to ethene. A series of transient studies conducted after these initial CT transformation tests, but in the absence of CT, showed formate remained an effective substrate for maintaining sulfate reduction and PCE transformation. Lactate, which was effectively fermented prior to CT addition, was not effectively fermented, with propionate accumulating as a fermentation product. When lactate was added, PCE was mainly transformed to cis-dichloroethene (cis-DCE) and VC, and sulfate reduction did not occur. In order to restore effective lactate fermentation the column was then bioaugmented with an EV culture that

  11. Activated Carbon Composites for Air Separation

    SciTech Connect

    Contescu, Cristian I; Baker, Frederick S; Tsouris, Costas; McFarlane, Joanna

    2008-03-01

    In continuation of the development of composite materials for air separation based on molecular sieving properties and magnetic fields effects, several molecular sieve materials were tested in a flow system, and the effects of temperature, flow conditions, and magnetic fields were investigated. New carbon materials adsorbents, with and without pre-loaded super-paramagnetic nanoparticles of Fe3O4 were synthesized; all materials were packed in chromatographic type columns which were placed between the poles of a high intensity, water-cooled, magnet (1.5 Tesla). In order to verify the existence of magnetodesorption effect, separation tests were conducted by injecting controlled volumes of air in a flow of inert gas, while the magnetic field was switched on and off. Gas composition downstream the column was analyzed by gas chromatography and by mass spectrometry. Under the conditions employed, the tests confirmed that N2 - O2 separation occurred at various degrees, depending on material's intrinsic properties, temperature and flow rate. The effect of magnetic fields, reported previously for static conditions, was not confirmed in the flow system. The best separation was obtained for zeolite 13X at sub-ambient temperatures. Future directions for the project include evaluation of a combined system, comprising carbon and zeolite molecular sieves, and testing the effect of stronger magnetic fields produced by cryogenic magnets.

  12. The transport properties of activated carbon fibers

    SciTech Connect

    di Vittorio, S.L. . Dept. of Materials Science and Engineering); Dresselhaus, M.S. . Dept. of Electrical Engineering and Computer Science Massachusetts Inst. of Tech., Cambridge, MA . Dept. of Physics); Endo, M. . Dept. of Electrical Engineering); Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons. 19 refs., 4 figs.

  13. Solvent recovery improved with activated carbon fibers

    SciTech Connect

    Not Available

    1982-11-01

    A non-woven net of activated carbon fibers as absorbing media, representing a major advancement in vapor recovery technology, is presented. The carbon fiber exhibits mass transfer coefficients for adsorption description of up to 100 times that of conventional systems.

  14. The Transport Properties of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  15. Chemical activation of carbon mesophase pitches.

    PubMed

    Mora, E; Blanco, C; Pajares, J A; Santamaría, R; Menéndez, R

    2006-06-01

    This paper studies the chemical activation of mesophase pitches of different origins in order to obtain activated carbons suitable for use as electrodes in supercapacitors. The effect that the activating agent (NaOH, LiOH, and KOH), the alkaline hydroxide/pitch ratio, and the activation temperature had on the characteristics of the resultant activated carbons was studied. LiOH was found to be a noneffective activating agent, while activation with NaOH and KOH yielded activated carbons with high apparent surface areas and pore volumes. The increase of the KOH/pitch ratio caused an increase of the chemical attack on the carbon, producing higher burnoffs and development of porosity. Extremely high apparent surface areas were obtained when the petroleum pitch was activated with 5:1 KOH/carbon ratio. The increase of the activation temperature caused an increase of the burnoff, although the differences were not as significant as those derived from the use of different proportions of activating agent.

  16. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2014-01-03

    The pressure, temperature and density drops along SFC columns eluted with a CO2/methanol mobile phase were measured and compared with theoretical values. For columns packed with 3- and 5-μm particles the pressure and temperature drops were measured using a mobile phase of 95% CO2 and 5% methanol at a flow rate of 5mL/min, at temperatures from 20 to 100°C, and outlet pressures from 80 to 300bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath, either bare or covered with foam insulation. The experimental measurements were compared to theoretical results obtained by numerical simulation. For the convective air condition at outlet pressures above 100bar the average difference between the experimental and calculated temperature drops and pressure drops were 0.1°C and 0.7% for the bare 3-μm column, respectively, and were 0.6°C and 4.1% for the insulated column. The observed temperature drops for the insulated columns are consistent with those predicted by the Joule-Thomson coefficients for isenthalpic expansion. The dependence of the temperature and the pressure drops on the Joule-Thomson coefficient and kinematic viscosity are described for carbon dioxide mobile phases containing up to 20% methanol.

  17. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    SciTech Connect

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  18. Biofiltration of benzene contaminated air streams using compost-activated carbon filter media

    SciTech Connect

    Zhu, L.; Kocher, W.M.; Abumaizar, R.J.

    1998-12-31

    Three laboratory-scale biofilter columns were operated for 81 days to investigate the removal of benzene from a waste gas stream. The columns contain a mixture of yard waste and sludge compost as biomedia. Different amounts of granular activated carbon (GAC) are mixed with the compost in two of the three columns to evaluate the extent to which biofilter performance can be enhanced. The effects of different operating conditions on the performance of the removal of benzene from air were evaluated. More than 90% removal efficiency was observed for an influent benzene concentration of about 75 ppm and an air flow rate of 0.3 L/min. in all 3 columns under steady-state conditions. Under most cases of shock loading conditions, such as a sudden increase in the air flow rate, or the benzene concentration in the influent, the biofilters containing GAC provided higher removal efficiencies and more stable operation than the biofilter containing compost only.

  19. Sedimentary record of water column trophic conditions and sediment carbon fluxes in a tropical water reservoir (Valle de Bravo, Mexico).

    PubMed

    Carnero-Bravo, Vladislav; Merino-Ibarra, Martín; Ruiz-Fernández, Ana Carolina; Sanchez-Cabeza, Joan Albert; Ghaleb, Bassam

    2015-03-01

    Valle de Bravo (VB) is the main water reservoir of the Cutzamala hydraulic system, which provides 40% of the drinking water consumed in the Mexico City Metropolitan Area and exhibits symptoms of eutrophication. Nutrient (C, N and P) concentrations were determined in two sediment cores to reconstruct the water column trophic evolution of the reservoir and C fluxes since its creation in 1947. Radiometric methods ((210)Pb and (137)Cs) were used to obtain sediment chronologies, using the presence of pre-reservoir soil layers in one of the cores as an independent chronological marker. Mass accumulation rates ranged from 0.12 to 0.56 g cm(-2) year(-1) and total organic carbon (TOC) fluxes from 122 to 380 g m(-2) year(-1). Total N ranged 4.9-48 g m(-2) year(-1), and total P 0.6-4.2 g m(-2) year(-1). The sedimentary record shows that all three (C, N and P) fluxes increased significantly after 1991, in good agreement with the assessed trophic evolution of VB and with historic and recent real-time measurements. In the recent years (1992-2006), the TOC flux to the bottom of VB (average 250 g m(-2) year(-1), peaks 323 g m(-2) year(-1)) is similar to that found in highly eutrophic reservoirs and impoundments. Over 1/3 of the total C burial since dam construction, circa 70,000 t, has occurred in this recent period. These results highlight the usefulness of the reconstruction of carbon and nutrient fluxes from the sedimentary record to assess carbon burial and its temporal evolution in freshwater ecosystems.

  20. Water column profiles of particulate inorganic carbon in the northeast subarctic Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Sutton, J. N.; Bishop, J. K.; Martinez, E. J.; Weiss, G. A.; Weiss, A.; Derr, A.; Strubhar, W.; Robert, M.; Wood, T.

    2013-12-01

    High resolution and real-time measurement of particulate inorganic carbon (PIC) content in seawater is necessary to improve our spatial and temporal understanding of marine carbon flux and the possible effects of ocean acidification on the biological pump. On four occasions since August 2012, we have mapped PIC distribution from surface to bottom at 26 stations along the IOS-Canada Line P transect from western Vancouver Island, BC, Canada to Ocean Station PAPA, 50N 145W using a prototype (PIC001) and a near-commercial quality (PIC008) optical birefringence sensor. The sensors are highly modified 6000m-rated WETLabs C-star transmissometers, which use a polarized laser beam and a cross-polarized receiver to measure photons emitted after passing through birefringent solids. At major stations along Line P (P2, P4, P8, P12, P16, P20, P26), one-liter rosette-collected calibration water samples were filtered through 0.45 μm Supor filters using a small-volume direct filtration system. These samples were analysed for acid-leachable particulate elements (with emphasis on Ca, Na, and Mg) by inductively coupled plasma mass spectrometry (ICPMS). ICPMS PIC was calculated as residual Ca after correction for seawater Ca using Na data. Here we report results for late summer (Aug. 2012) and winter (Feb. 2013). As expected, high levels of PIC (> 100 nmol L-1 to > 2000 nmol L-1) were found in surface waters but rapidly declined at depths greater than 200m and increased again in the nepheloid layer (>50 nmol L-1). Striking seasonal differences in PIC content and PIC profile shape were observed particularly at near shore stations P2, P4, P8 and P12. The results from this research, including sensor evolution and calibration performance, will be presented.

  1. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    SciTech Connect

    Keppel-Aleks, G; Wennberg, PO; Washenfelder, RA; Wunch, D; Schneider, T; Toon, GC; Andres, Robert Joseph; Blavier, J-F; Connor, B; Davis, K. J.; Desai, Desai Ankur R.; Messerschmidt, J; Notholt, J; Roehl, CM; Sherlock, V; Stephens, BB; Vay, SA; Wofsy, Steve

    2012-01-01

    New observations of the vertically integrated CO{sub 2} mixing ratio, , from ground-based remote sensing show that variations in are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both and CO{sub 2} concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO{sub 2}, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in from covariations in and potential temperature, {theta}, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45-65{sup o} N) by {approx}40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.

  2. Monitoring by Control Technique - Activated Carbon Adsorber

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Activated Carbon Adsorber control techniques used to reduce pollutant emissions.

  3. Adsorption of basic dyes onto activated carbon using microcolumns

    SciTech Connect

    El Qada, E.N.; Allen, S.J.; Walker, G.M.

    2006-08-16

    Column studies for the adsorption of basic dyes (methylene blue, basic red, and basic yellow) onto PAC2 (activated carbon produced from bituminous coal using steam activation) and F400 were undertaken in fixed-bed microcolumns. Experimental data were correlated using the bed depth service time (BDST) model. The effect of bisolute interactions on the performance of microcolumn fixed beds was studied. The BDST model was successful in describing the breakthrough curves for the adsorption of MB onto PAC2 and predicts the experimental data with a good degree of accuracy. The results emphasized that the interactions and competition for the available binding sites have considerable influence on the efficiency of adsorbents to remove dyes from the solution.

  4. Sensitivity of Active Remotely Sensed Total Column Observations to Atmospheric State Estimation Errors

    NASA Astrophysics Data System (ADS)

    Crowell, S.; Rayner, P. J.; Moore, B.

    2013-12-01

    The proposed Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) mission will retrieve total column CO2 using a laser-based measurement. The differential absorption lidar (DIAL) approach utilizes the difference in absorption between neighboring spectral lines to effectively determine the difference in absorption due to CO2. The actual measured quantity is equivalent to the differential absorption, defined by Δτ = ∫ q(p) Δξ(p) dp / g m, where m is the molar mass of air and Δξ is the differential absorption cross section. The main use of the measurement is the characterization of sources and sinks using atmospheric inverse methods. Changes in surface pressure or Δξ can change Δτ independent of sources and sinks and are, thus "nuisance variables". Δξ is strongly dependent on variations in temperature (T) and water vapor (w), which are usually taken from numerical models as estimates of the local atmospheric state. The authors seek to determine observable that contains the most information on the model column of CO2, which will provide the best estimates of sources and sinks in a transport model inversion. Three candidate observables are the differential optical depth on a CO2 line, the ratio of this to the differential optical depth on an O2 line, the weighting function averaged column CO2. Each of these observables will have different sensitivities to surface pressure and spectroscopy by virtue of the functional form that defines them. For example, the O2 measurement should be less sensitive to surface pressure fluctuations due to the near constancy of O2 in the atmosphere. The information contained in the observation about the model state is encapsulated in the quantity HTR-1H, where R is the observation error covariance and H is the Jacobian of the observation operator with respect to the model mixing ratio of CO2. We can decompose the error variance for a particular observation into contributions from the surface pressure errors

  5. Antimicrobial Activity of Carbon-Based Nanoparticles

    PubMed Central

    Maleki Dizaj, Solmaz; Mennati, Afsaneh; Jafari, Samira; Khezri, Khadejeh; Adibkia, Khosro

    2015-01-01

    Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs) (especially single-walled carbon nanotubes (SWCNTs)) and graphene oxide (GO) nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery. PMID:25789215

  6. Mathematical modeling and numerical simulation of an actively stabilized beam-column with circular cross-section

    NASA Astrophysics Data System (ADS)

    Schaeffner, Maximilian; Enss, Georg C.; Platz, Roland

    2014-04-01

    Buckling of axially loaded beam-columns represents a critical design constraint for light-weight structures. Besides passive solutions to increase the critical buckling load, active buckling control provides a possibility to stabilize slender elements in structures. So far, buckling control by active forces or bending moments has been mostly investigated for beam-columns with rectangular cross-section and with a preferred direction of buckling. The proposed approach investigates active buckling control of a beam-column with circular solid cross-section which is fixed at its base and pinned at its upper end. Three controlled active lateral forces are applied near the fixed base with angles of 120° to each other to stabilize the beam-column and allow higher critical axial loads. The beam-column is subject to supercritical static axial loads and lateral disturbance forces with varying directions and offsets. Two independent modal state space systems are derived for the bending planes in the lateral y- and z-directions of the circular cross-section. These are used to design two linear-quadratic regulators (LQR) that determine the necessary control forces which are transformed into the directions of the active lateral forces. The system behavior is simulated with a finite element model using one-dimensional beam elements with six degrees of freedom at each node. With the implemented control, it is possible to actively stabilize a beam-column with circular cross-section in arbitrary buckling direction for axial loads significantly above the critical axial buckling load.

  7. Regeneration of barium carbonate from barium sulphide in a pilot-scale bubbling column reactor and utilization for acid mine drainage.

    PubMed

    Mulopo, J; Zvimba, J N; Swanepoel, H; Bologo, L T; Maree, J

    2012-01-01

    Batch regeneration of barium carbonate (BaCO(3)) from barium sulphide (BaS) slurries by passing CO(2) gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO(3) recovery in the Alkali Barium Calcium (ABC) desalination process and its use for sulphate removal from high sulphate Acid Mine Drainage (AMD). The effect of key process parameters, such as BaS slurry concentration and CO(2) flow rate on the carbonation, as well as the extent of sulphate removal from AMD using the recovered BaCO(3) were investigated. It was observed that the carbonation reaction rate for BaCO(3) regeneration in a bubbling column reactor significantly increased with increase in carbon dioxide (CO(2)) flow rate whereas the BaS slurry content within the range 5-10% slurry content did not significantly affect the carbonation rate. The CO(2) flow rate also had an impact on the BaCO(3) morphology. The BaCO(3) recovered from the pilot-scale bubbling column reactor demonstrated effective sulphate removal ability during AMD treatment compared with commercial BaCO(3).

  8. Activated coconut shell charcoal carbon using chemical-physical activation

    NASA Astrophysics Data System (ADS)

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  9. Temporal and Water Column Variability in Particulate Organic Carbon Composition on the Amazon River Main-stem

    NASA Astrophysics Data System (ADS)

    Rosengard, S.; Galy, V.; Spencer, R. G.; McNichol, A. P.

    2015-12-01

    The Amazon River exports ~14 teragrams (0.014 gigatons) of particulate organic carbon (POC) to the Atlantic coast each year, ~15% of the global riverine carbon source to the oceans. Understanding the source and fate of this exported POC is complicated by (1) hydrodynamic sorting of suspended particles in the river cross-section, and (2) seasonality in discharge over the hydrological cycle. Here, we characterize suspended POC composition down the water column (surface-to-bed) and through time (rising discharge in April 2014, falling discharge in July 2014) to assess the extent of and mechanism underlying this variability. Depth-specific sampling of the river cross-section took place at Óbidos, the most downstream gauging station on the main-stem, and was coupled to an Acoustic Doppler Current Profiler to calculate export fluxes at both times. Between April and July, raw water discharge increased from 150,000 to 250,000 m3/s. Bulk compositional features (e.g., % OC, δ13C, C/N) varied with both hydrodynamic sorting and seasonality, while thermal stability, derived from ramped oxidation of the suspended sediments, did not differ with depth or season. Compound-specific δ 13C of extracted lipids varied seasonally, as well. We plan to supplement these preliminary data with measurements of POC 14C content across space and time. The observations thus far suggest that the variability in suspended POC composition with depth and season is dominated by physical changes in source. Moreover, the similarities in thermal stability suggest that POC reactivity, and relatedly, its fate downstream and ultimately in the coastal ocean, is relatively invariant across these variable sources.

  10. A porous graphitized carbon column HPLC method for the quantification of paracetamol, pseudoephedrine, and chlorpheniramine in a pharmaceutical formulation.

    PubMed

    Kalogria, Eleni; Koupparis, Michael; Panderi, Irene

    2010-01-01

    A simple, rapid, and stability-indicating HPLC method has been developed, fully validated, and applied to the quantification of paracetamol, pseudoephedrine hydrochloride, and chlorpheniramine maleate in a pharmaceutical formulation, using hydrochlorothiazide as an internal standard. Chromatographic separation was achieved isocratically on an RP porous graphitized carbon analytical column (125 x 2.1 mm id, particle size 5 microm) using 5.0 mM ammonium acetate-acetonitrile (35 + 65, v/v) mobile phase at a flow rate of 0.50 mL/min. UV spectrophotometric detection at 220 nm was used. The method had linear calibration curves over the range of 30-70 microg/mL for paracetamol, 1.8-4.2 microg/mL for pseudoephedrine hydrochloride, and 120-280 ng/mL for chlorpheniramine maleate. The intraday and interday RSD values were less than 3.2% for all compounds, while the relative error was less than 2.9%. Accelerated stability studies performed under various stress conditions proved the selectivity of the method. The developed method was applied successfully to QC and content uniformity tests of commercial tablets.

  11. Semi-active tuned liquid column damper implementation with real-time hybrid simulations

    NASA Astrophysics Data System (ADS)

    Riascos, Carlos; Marulanda Casas, Johannio; Thomson, Peter

    2016-04-01

    Real-time hybrid simulation (RTHS) is a modern cyber-physical technique used for the experimental evaluation of complex systems, that treats the system components with predictable behavior as a numerical substructure and the components that are difficult to model as an experimental substructure. Therefore it is an attractive method for evaluation of the response of civil structures under earthquake, wind and anthropic loads. In this paper, the response of three-story shear frame controlled by a tuned liquid column damper (TLCD) and subject to base excitation is considered. Both passive and semi-active control strategies were implemented and are compared. While the passive TLCD achieved a reduction of 50% in the acceleration response of the main structure in comparison with the structure without control, the semi-active TLCD achieved a reduction of 70%, and was robust to variations in the dynamic properties of the main structure. In addition, a RTHS was implemented with the main structure modeled as a linear, time-invariant (LTI) system through a state space representation and the TLCD, with both control strategies, was evaluated on a shake table that reproduced the displacement of the virtual structure. Current assessment measures for RTHS were used to quantify the performance with parameters such as generalized amplitude, equivalent time delay between the target and measured displacement of the shake table, and energy error using the measured force, and prove that the RTHS described in this paper is an accurate method for the experimental evaluation of structural control systems.

  12. Activated carbon adsorption of PAHs from vegetable oil used in soil remediation.

    PubMed

    Gong, Zongqiang; Alef, Kassem; Wilke, Berndt-Michael; Li, Peijun

    2007-05-08

    Vegetable oil has been proven to be advantageous as a non-toxic, cost-effective and biodegradable solvent to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated soils for remediation purposes. The resulting vegetable oil contained PAHs and therefore required a method for subsequent removal of extracted PAHs and reuse of the oil in remediation processes. In this paper, activated carbon adsorption of PAHs from vegetable oil used in soil remediation was assessed to ascertain PAH contaminated oil regeneration. Vegetable oils, originating from lab scale remediation, with different PAH concentrations were examined to study the adsorption of PAHs on activated carbon. Batch adsorption tests were performed by shaking oil-activated carbon mixtures in flasks. Equilibrium data were fitted with the Langmuir and Freundlich isothermal models. Studies were also carried out using columns packed with activated carbon. In addition, the effects of initial PAH concentration and activated carbon dosage on sorption capacities were investigated. Results clearly revealed the effectiveness of using activated carbon as an adsorbent to remove PAHs from the vegetable oil. Adsorption equilibrium of PAHs on activated carbon from the vegetable oil was successfully evaluated by the Langmuir and Freundlich isotherms. The initial PAH concentrations and carbon dosage affected adsorption significantly. The results indicate that the reuse of vegetable oil was feasible.

  13. Converting Poultry Litter into Activated Carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disposal of animal manure is one of the biggest problems facing agriculture today. Now new technology has been designed to covert manure into environmentally friendly and highly valued activated carbon. When pelletized and activated under specific conditions, the litter becomes a highly porous mat...

  14. Deposition of Magnetite Nanoparticles in Activated Carbons and Preparation of Magnetic Activated Carbons

    NASA Astrophysics Data System (ADS)

    Kahani, S. A.; Hamadanian, M.; Vandadi, O.

    2007-08-01

    Magnetic activated carbons (MACs) for gold recovery from alkaline cyanide solutions have been developed by mixing a magnetic precursor with a carbon source, and treating the mixture under controlled conditions. As would be expected, these activated carbons have high specific surface areas due to their microporous structure. In addition, the small particle size of the MACs produced allows rapid adsorption of gold in solution, and the magnetic character of these MACs enables recovery from suspension by magnetic separation.

  15. CarbonSat - Quantification of natural and man-made greenhouse gas surface fluxes from satellite observations of atmospheric CO2 and CH4 column amounts

    NASA Astrophysics Data System (ADS)

    Bovensmann, Heinrich; Buchwitz, Michael

    2010-05-01

    Surprisingly and in spite of their exceptional driving role in climate change, our knowledge about the variable sources and sinks of the greenhouse gases CO2 and CH4 is currently inadequate. For example, the ability of the Earth-atmosphere system to buffer increasing anthropogenic emissions into the atmosphere has large uncertainties and emissions from many sources (geologic, anthropogenic, biogenic) are to a large degree uncertain. An adequate knowledge of the sources and sinks of CO2 and CH4 and their response to a changing climate is a pre-requisite for the accurate prediction of the regional variation of the climate of our planet. CarbonSat is a new mission concept to quantify and monitor CO2 and CH4 sources and sinks at the regional to local scale. The data will allow a better understanding of the processes that control the Carbon Cycle dynamics and an independent estimate of local greenhouse gas emissions (fossil fuel, geological CO2 and CH4, etc.). This will be achieved by a unique combination of high spatial resolution passive and active compact remote sensing with inverse modeling techniques. CarbonSat will accurately measure column-averaged mixing ratios of CO2 and CH4, i.e., XCO2 and XCH4, at a spatial resolution of 2 x 2 km2 (500 km continuous swath) with 0.5% goal (1%, threshold) single measurement precision and global coverage within 3-6 days. Beside the quantification of sources and sinks on the regional scale, one key and innovative aim of the CarbonSat mission is to go a step forward towards quantifying local emission hot spots (fossil fuel emissions by power plants, gas/oil production, geological sources etc.). The core sensor will be a compact Imaging NIR/SWIR spectrometer (SCIAMACHY, OCO heritage) whose measurements yield global data sets of XCO2 and XCH4 with at least one order of magnitude higher number of cloud free measurements than GOSAT and OCO and one order of magnitude better spatial coverage than OCO, due to CarbonSat's 500 km swath

  16. CarbonSat -Quantification of natural and man-made greenhouse gas surface fluxes from satellite observations of atmospheric CO2 and CH4 column amounts

    NASA Astrophysics Data System (ADS)

    Bovensmann, Heinrich; Buchwitz, M.; Burrows, J. P.; Notholt, J.; Bovensmann, H.; Reuter, M.; Trautmann, T.; Ehret, G.; Heimann, M.; Monks, P.; B&Ü, H.; Sch; Harding, R.; Quegan, S.; Rayner, P.; Breon, F. M.; Bergam-O Aschi, P.; Dittus, H. J.; Erzinger, J.; Crisp, D.

    Surprisingly and in spite of their exceptional driving role in climate change, our knowledge about the variable sources and sinks of the greenhouse gases CO2 and CH4 is currently inadequate. For example, the ability of the Earth-atmosphere system to buffer increasing anthropogenic emissions into the atmosphere has large uncertainties and emissions from many sources (geo-logic, anthropogenic, biogenic) are to a large degree uncertain. An adequate knowledge of the sources and sinks of CO2 and CH4 and their response to a changing climate is a pre-requisite for the accurate prediction of the regional variation of the climate of our planet. CarbonSat is a new mission concept to quantify and monitor CO2 and CH4 sources and sinks at the regional to local scale. The data will allow a better understanding of the processes that control the Carbon Cycle dynamics and an independent estimate of local greenhouse gas emissions (fossil fuel, geological CO2 and CH4, etc.). This will be achieved by a unique combination of high spatial resolution passive and active compact remote sensing with inverse modeling techniques. CarbonSat will accurately measure column-averaged mixing ratios of CO2 and CH4, i.e., XCO2 and XCH4, at a spatial resolution of 2 x 2 km2 (500 km continuous swath) with 0.5 percent goal (1 percent threshold) single measurement precision and global coverage within 3-6 days. Beside the quantification of sources and sinks on the regional scale, one key and innovative aim of the CarbonSat mission is to go a step forward towards quantifying local emission hot spots (fossil fuel emissions by power plants, gas/oil production, geological sources etc.). The core sensor will be a compact Imaging NIR/SWIR spectrometer (SCIAMACHY, OCO her-itage) whose measurements yield global data sets of XCO2 and XCH4 with at least one order of magnitude higher number of cloud free measurements than GOSAT and OCO and one order of magnitude better spatial coverage than OCO, due to Carbon

  17. Comparison of Surface and Column Variations of CO2 Over Urban Areas for Future Active Remote CO2 Sensors

    NASA Technical Reports Server (NTRS)

    Choi, Yonghoon; Yang, Melissa; Kooi, Susan; Browell, Edward

    2015-01-01

    High resolution in-situ CO2 measurements were recorded onboard the NASA P-3B during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Field Campaign, to investigate the ability of space-based observations to accurately assess near surface conditions related to air quality. This campaign includes, Washington DC/Baltimore, MD (July 2011), San Joaquin Valley, CA (January - February 2013), Houston, TX (September 2013), and Denver, CO (July-August 2014). Each of these campaigns consisted of missed approaches and approximately two hundred vertical soundings of CO2 within the lower troposphere (surface to about 5 km). In this study, surface (0 - 1 km) and column-averaged (0 - 3.5 km) CO2 mixing ratio values from the vertical soundings in the four geographically different urban areas are used to investigate the temporal and spatial variability of CO2 within the different urban atmospheric emission environments. Tracers such as CO, CH2O, NOx, and NMHCs are used to identify the source of CO2 variations in the urban sites. Additionally, we apply nominal CO2 column weighting functions for potential future active remote CO2 sensors operating in the 1.57-microns and 2.05-microns measurement regions to convert the in situ CO2 vertical mixing ratio profiles to variations in CO2 column optical depths, which is what the active remote sensors actually measure. Using statistics calculated from the optical depths at each urban site measured during the DISCOVER-AQ field campaign and for each nominal weighting function, we investigate the natural variability of CO2 columns in the lower troposphere; relate the CO2 column variability to the urban surface emissions; and show the measurement requirements for the future ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) in the continental U.S. urban areas.

  18. Removal of tinidazole from waters by using ozone and activated carbon in dynamic regime.

    PubMed

    Rivera-Utrilla, J; Sánchez-Polo, M; Prados-Joya, G; Ferro-García, M A; Bautista-Toledo, I

    2010-02-15

    The main objective of the present study was to analyze the efficacy of technologies based on ozone and activated carbon in dynamic regime to remove organic micropollutants from waters, using the antibiotic tinidazole (TNZ) as a model compound. Results obtained in static regime show that the presence of activated carbon (GAC) during tinidazole ozonation: (i) increases its removal rate, (ii) reduces oxidation by-product toxicity, and (iii) reduces the concentration of dissolved organic matter. Study of the ozone/activated carbon system in dynamic regime showed that ozonation of tinidazole before the adsorption process considerably improves column performance, increasing the volume of water treated. It was observed that the efficacy of the treatment considerably increased with a shorter contact time between TNZ and O(3) streams before entering the column allowing a much higher volume of TNZ solution to be treated compared with the use of activated carbon alone, and reducing by 75% the amount of activated carbon required per unit of treated water volume. TNZ removal by the O(3)/GAC system is lower in natural waters and especially in wastewaters, than in ultrapure water. The toxicity results obtained during TNZ treatment with O(3)/GAC system showed that toxicity was directly proportional to the concentration of TNZ in the effluent, verifying that oxidation of the organic matter in the natural waters did not increase the toxicity of the system.

  19. Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids.

    PubMed

    Appleman, Timothy D; Dickenson, Eric R V; Bellona, Christopher; Higgins, Christopher P

    2013-09-15

    Perfluoroalkyl acids (PFAAs) are of concern because of their persistence in the environment and the potential toxicological effects on humans exposed to PFAAs through a variety of possible exposure routes, including contaminated drinking water. This study evaluated the efficacy of nanofiltration (NF) and granular activated carbon (GAC) adsorption in removing a suite of PFAAs from water. Virgin flat-sheet NF membranes (NF270, Dow/Filmtec) were tested at permeate fluxes of 17-75 Lm(-2)h(-1) using deionized (DI) water and artificial groundwater. The effects of membrane fouling by humic acid on PFAA rejection were also tested under constant permeate flux conditions. Both virgin and fouled NF270 membranes demonstrated >93% removal for all PFAAs under all conditions tested. GAC efficacy was tested using rapid small-scale columns packed with Calgon Filtrasorb300 (F300) carbon and DI water with and without dissolved organic matter (DOM). DOM effects were also evaluated with F600 and Siemens AquaCarb1240C. The F300 GAC had <20% breakthrough of all PFAAs in DI water for up to 125,000 bed volumes (BVs). When DOM was present, >20% breakthrough of all PFAAs by 10,000 BVs was observed for all carbons.

  20. A novel activated carbon for supercapacitors

    SciTech Connect

    Shen, Haijie; Liu, Enhui; Xiang, Xiaoxia; Huang, Zhengzheng; Tian, Yingying; Wu, Yuhu; Wu, Zhilian; Xie, Hui

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer A novel activated carbon was prepared from phenol-melamine-formaldehyde resin. Black-Right-Pointing-Pointer The carbon has large surface area with microporous, and high heteroatom content. Black-Right-Pointing-Pointer Heteroatom-containing functional groups can improve the pseudo-capacitance. Black-Right-Pointing-Pointer Physical and chemical properties lead to the good electrochemical properties. -- Abstract: A novel activated carbon has been prepared by simple carbonization and activation of phenol-melamine-formaldehyde resin which is synthesized by the condensation polymerization method. The morphology, thermal stability, surface area, elemental composition and surface chemical composition of samples have been investigated by scanning electron microscope, thermogravimetry and differential thermal analysis, Brunauer-Emmett-Teller measurement, elemental analysis and X-ray photoelectron spectroscopy, respectively. Electrochemical properties have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol L{sup -1} potassium hydroxide. The activated carbon shows good capacitive behavior and the specific capacitance is up to 210 F g{sup -1}, which indicates that it may be a promising candidate for supercapacitors.

  1. A Rapid Screening Analysis of Antioxidant Compounds in Native Australian Food Plants Using Multiplexed Detection with Active Flow Technology Columns.

    PubMed

    Rupesinghe, Emmanuel Janaka Rochana; Jones, Andrew; Shalliker, Ross Andrew; Pravadali-Cekic, Sercan

    2016-01-20

    Conventional techniques for identifying antioxidant and phenolic compounds in native Australian food plants are laborious and time-consuming. Here, we present a multiplexed detection technique that reduces analysis time without compromising separation performance. This technique is achieved using Active Flow Technology-Parallel Segmented Flow (AFT-PSF) columns. Extracts from cinnamon myrtle (Backhousia myrtifolia) and lemon myrtle (Backhousia citriodora) leaves were analysed via multiplexed detection using an AFT-PSF column with underivatised UV-VIS, mass spectroscopy (MS), and the 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) derivatisation for antioxidants as detection methods. A number of antioxidant compounds were detected in the extracts of each leaf extract.

  2. Activated carbon monoliths for methane storage

    NASA Astrophysics Data System (ADS)

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  3. Carbon Dioxide and Methane Column Abundances Retrieved from Ground-Based Near-Infrared Solar Spectra and Comparison with In Situ Aircraft Profiles

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Toon, G. C.; Blavier, J.; Wennberg, P. O.; Yang, Z.; Vay, S. A.; Sachse, G. W.; Blake, D. R.; Matross, D. M.; Gerbig, C.

    2004-12-01

    We have developed an automated observatory for measuring ground-based column abundances of CO2, CH4, CO, N2O, O2, H2O, and HF. Near-infrared spectra of the direct sun are measured between 3,900 - 15,600 cm-1 (0.67 - 2.56 μ m) by a Bruker 125HR Fourier Transform Spectrometer. This is the first laboratory in a proposed network of ground-based solar observatories that will be used for carbon cycle studies and validation of spaceborne column measurements of greenhouse gases. The laboratory was assembled in Pasadena, California and then permanently deployed to northern Wisconsin during May 2004. It is located in the heavily forested Chequamegon National Forest at the WLEF Tall Tower site, 14 km east of Park Falls, Wisconsin. This site was chosen because NOAA CMDL and other groups conduct intensive measurements in the area, including continuous monitoring of CO2 at six heights on the 447-m tall tower. CO2 and CH4 column abundances for May - November 2004 demonstrate ˜0.1% precision. The seasonal drawdown of CO2 is recognizable within the late-May column abundances. As part of the INTEX and COBRA campaigns, the DC-8 or King Air recorded in situ measurements during profiles over the WLEF site during five dates in July and August 2004. We will compare the column abundances of CO2, CH4, and CO with these in situ aircraft measurements.

  4. Carbon and oxygen dynamics on the Louisiana continental shelf: role of water column primary production and respiration

    EPA Science Inventory

    We conducted a multi-year study of the Louisiana continental shelf (LCS) to better understand the linkages between water column net metabolism and the formation of hypoxia (dissolved oxygen <2 ml O2 L-1) in the region. Rates of water column community respiration (R) and primary p...

  5. The effect of feed water dissolved organic carbon concentration and composition on organic micropollutant removal and microbial diversity in soil columns simulating river bank filtration.

    PubMed

    Bertelkamp, C; van der Hoek, J P; Schoutteten, K; Hulpiau, L; Vanhaecke, L; Vanden Bussche, J; Cabo, A J; Callewaert, C; Boon, N; Löwenberg, J; Singhal, N; Verliefde, A R D

    2016-02-01

    This study investigated organic micropollutant (OMP) biodegradation rates in laboratory-scale soil columns simulating river bank filtration (RBF) processes. The dosed OMP mixture consisted of 11 pharmaceuticals, 6 herbicides, 2 insecticides and 1 solvent. Columns were filled with soil from a RBF site and were fed with four different organic carbon fractions (hydrophilic, hydrophobic, transphilic and river water organic matter (RWOM)). Additionally, the effect of a short-term OMP/dissolved organic carbon (DOC) shock-load (e.g. quadrupling the OMP concentrations and doubling the DOC concentration) on OMP biodegradation rates was investigated to assess the resilience of RBF systems. The results obtained in this study imply that - in contrast to what is observed for managed aquifer recharge systems operating on wastewater effluent - OMP biodegradation rates are not affected by the type of organic carbon fraction fed to the soil column, in case of stable operation. No effect of a short-term DOC shock-load on OMP biodegradation rates between the different organic carbon fractions was observed. This means that the RBF site simulated in this study is resilient towards transient higher DOC concentrations in the river water. However, a temporary OMP shock-load affected OMP biodegradation rates observed for the columns fed with the river water organic matter (RWOM) and the hydrophilic fraction of the river water organic matter. These different biodegradation rates did not correlate with any of the parameters investigated in this study (cellular adenosine triphosphate (cATP), DOC removal, specific ultraviolet absorbance (SUVA), richness/evenness of the soil microbial population or OMP category (hydrophobicity/charge).

  6. Preparation of activated carbons with mesopores by use of organometallics

    SciTech Connect

    Yamada, Yoshio; Yoshizawa, Noriko; Furuta, Takeshi

    1996-12-31

    Activated carbons are commercially produced by steam or CO{sub 2} activation of coal, coconut shell and so on. In general the carbons obtained give pores with a broad range of distribution. The objective of this study was to prepare activated carbons from coal by use of various organometallic compounds. The carbons were evaluated for pore size by nitrogen adsorption experiments.

  7. Microporous activated carbons prepared from palm shell by thermal activation and their application to sulfur dioxide adsorption.

    PubMed

    Guo, Jia; Lua, Aik Chong

    2002-07-15

    Textural characterization of activated carbons prepared from palm shell by thermal activation with carbon dioxide (CO(2)) gas is reported in this paper. Palm shell (endocarp) is an abundant agricultural solid waste from palm-oil processing mills in many tropical countries such as Malaysia, Indonesia, and Thailand. The effects of activation temperature on the textural properties of the palm-shell activated carbons, namely specific surface area (BET method), porosity, and microporosity, were investigated. The activated carbons prepared from palm shell possessed well-developed porosity, predominantly microporosity, leading to potential applications in gas-phase adsorption for air pollution control. Static and dynamic adsorption tests for sulfur dioxide (SO(2)), a common gaseous pollutant, were carried out in a thermogravimetric analyzer and a packed column configuration respectively. The effects of adsorption temperature, adsorbate inlet concentration, and adsorbate superficial velocity on the adsorptive performance of the prepared activated carbons were studied. The palm-shell activated carbon was found to have substantial capability for the adsorption of SO(2), comparable to those of some commercial products and an adsorbent derived from another biomass.

  8. Supercritical Carbon Dioxide Regeneration of Activated Carbon Loaded with Contaminants from Rocky Mountain Arsenal Well Water.

    DTIC Science & Technology

    1982-05-01

    15 111-7 GRANULAR ACTIVATED CARBON ADSORPTION ISOTHERMS THERMALLY REACTIVATED CARBON .............. 16 I IV-1 PROCESS FLOW DIAGRAM FOR... PROCESSING COST OF ACTIVATED CHARCOAL REGENERATION BY SUPERCRITICAL CARBON DIOXIDE PROCESS ........................... 25 l IV-4 SENSITIVITY OF GAC...regenerate adsorbents such as granular activated carbon loaded with a broad variety of organic adsorbates. This regeneration process uses a supercritical

  9. Making Activated Carbon for Storing Gas

    NASA Technical Reports Server (NTRS)

    Wojtowicz, Marek A.; Serio, Michael A.; Suuberg, Eric M.

    2005-01-01

    Solid disks of microporous activated carbon, produced by a method that enables optimization of pore structure, have been investigated as means of storing gas (especially hydrogen for use as a fuel) at relatively low pressure through adsorption on pore surfaces. For hydrogen and other gases of practical interest, a narrow distribution of pore sizes <2 nm is preferable. The present method is a variant of a previously patented method of cyclic chemisorption and desorption in which a piece of carbon is alternately (1) heated to the lower of two elevated temperatures in air or other oxidizing gas, causing the formation of stable carbon/oxygen surface complexes; then (2) heated to the higher of the two elevated temperatures in flowing helium or other inert gas, causing the desorption of the surface complexes in the form of carbon monoxide. In the present method, pore structure is optimized partly by heating to a temperature of 1,100 C during carbonization. Another aspect of the method exploits the finding that for each gas-storage pressure, gas-storage capacity can be maximized by burning off a specific proportion (typically between 10 and 20 weight percent) of the carbon during the cyclic chemisorption/desorption process.

  10. Adsorption of Hydantoins on Activated Carbon,

    DTIC Science & Technology

    1985-05-01

    performed for single solute, bisolute, and trisolute solutions as well as an undiluted coal gasification wastewater containing predominantly hydantoin...hydantoin, 5,5-dimethylhydantoin, and 5-ethyl-5-methylhydantoin. Absorption using activated carbon did not appear to be an effective treatment process for the removal of hydantoins from the coal gasification wastewater.

  11. ENGINEERING BULLETIN: GRANULAR ACTIVATED CARBON TREATMENT

    EPA Science Inventory

    Granular activated carbon (GAC) treatment is a physicochemical process that removes a wide variety of contaminants by adsorbing them from liquid and gas streams [1, p. 6-3]. This treatment is most commonly used to separate organic contaminants from water or air; however, it can b...

  12. USING POWDERED ACTIVATED CARBON: A CRITICAL REVIEW

    EPA Science Inventory

    Because the performance of powdered activated carbon (PAC) for uses other than taste and odor control is poorly documented, the purpose of this article is to critically review uses that have been reported (i.e., pesticides and herbicides, synthetic organic chemicals, and trihalom...

  13. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    EPA Science Inventory

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  14. Active buckling control of an imperfect beam-column with circular cross-section using piezo-elastic supports and integral LQR control

    NASA Astrophysics Data System (ADS)

    Schaeffner, Maximilian; Platz, Roland

    2016-09-01

    For slender beam-columns loaded by axial compressive forces, active buckling control provides a possibility to increase the maximum bearable axial load above that of a purely passive structure. In this paper, the potential of active buckling control of an imperfect beam-column with circular cross-section using piezo-elastic supports is investigated numerically. Imperfections are given by an initial deformation of the beam-column caused by a constant imperfection force. With the piezo-elastic supports, active bending moments in arbitrary directions orthogonal to the beam-column's longitudinal axis can be applied at both beam- column's ends. The imperfect beam-column is loaded by a gradually increasing axial compressive force resulting in a lateral deformation of the beam-column. First, a finite element model of the imperfect structure for numerical simulation of the active buckling control is presented. Second, an integral linear-quadratic regulator (LQR) that compensates the deformation via the piezo-elastic supports is derived for a reduced modal model of the ideal beam-column. With the proposed active buckling control it is possible to stabilize the imperfect beam-column in arbitrary lateral direction for axial loads above the theoretical critical buckling load and the maximum bearable load of the passive structure.

  15. Field Results from Three Campaigns to Validate the Performance of the Miniaturized Laser Heterodyne Radiometer (Mini-LHR) for Measuring Carbon Dioxide and Methane in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Miller, J. Houston; Clarke, Greg B.; Melroy, Hilary; Ott, Lesley; Steel, Emily Wilson

    2014-01-01

    In a collaboration between NASA GSFC and GWU, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrallyresolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. In the last year, the instrument was deployed for field measurements at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument has been observed. In the latest work the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. An overview of the measurement campaigns and the data retrieval algorithm for the calculation of column concentrations will be presented. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. For temperature, pressure, and humidity profiles with altitude we use the Modern-Era Retrospective Analysis for Research and Applications (MERRA) data. Spectral simulation is accomplished by integrating short-path segments along the trajectory using the SpecSyn spectral simulation suite developed at GW. Column concentrations are extracted by minimizing residuals between observed and modeled spectrum using the Nelder-Mead simplex algorithm. We will also present an assessment of uncertainty in the reported concentrations from assumptions made in the meteorological data, LHR instrument and tracker noise, and radio

  16. Application of activated carbon impregnated with metal oxides to the treatment of multi-contaminants.

    PubMed

    Yu, Mok-Ryun; Chang, Yoon-Young; Yang, Jae-Kyu

    2012-01-01

    In this study, as a novel technique for the simultaneous treatment of As(III) and phenol in a single column reactor, different ratios of manganese-impregnated activated carbon (Mn-AC) and iron-impregnated activated carbon (Fe-AC) were applied in a bench-scale column reactor. In this bench-scale test, the column system packed with both Mn-AC and Fe-AC (binary system) was identified as the best system due to the good oxidation efficiency of As(III) to As(V) by Mn-AC, which reasonably controlled the mobility of total arsenic through adsorption of As(V), along with efficient removal of phenol . When the pilot-scale column reactor, packed with equal amounts of Mn-AC and Fe-AC, was applied for the removal of As(III) and phenol, the oxidation of As(III) by 1 g of Mn-AC for up to 110 days and the removal of phenol by total 1 g of Mn-AC and Fe-AC for up to 100 days were 1.81 x 10(-4) g and 8.20 x 10(-4) g, respectively. Based on this work, Fe-AC and Mn-AC can be regarded as a promising filter material in the treatment of wastewater contaminated with organic compounds, such as phenol, and redox-sensitive ions, such as As(III).

  17. Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns.

    PubMed

    Almutairi, Azel; Weatherley, Laurence R

    2015-09-01

    The use of nitrification filters for the removal of ammonium ion from waste-water is an established technology deployed extensively in municipal water treatment, in industrial water treatment and in applications such as fish farming. The process involves the development of immobilized bacterial films on a solid packing support, which is designed to provide a suitable host for the film, and allow supply of oxygen to promote aerobic action. Removal of ammonia and nitrite is increasingly necessary to meet drinking water and discharge standards being applied in the US, Europe and other places. Ion-exchange techniques are also effective for removal of ammonia (as the ammonium ion) from waste water and have the advantage of fast start-up times compared to biological filtration which in some cases may take several weeks to be fully operational. Here we explore the performance of ion exchange columns in which nitrifying bacteria are cultivated, with the goal of a "combined" process involving simultaneous ion-exchange and nitrification, intensified by in-situ aeration with a novel membrane module. There were three experimental goals. Firstly, ion exchange zeolites were characterized and prepared for comparative column breakthrough studies for ammonia removal. Secondly effective in-situ aeration for promotion of nitrifying bacterial growth was studied using a number of different membranes including polyethersulfone (PES), polypropylene (PP), nylon, and polytetra-fluoroethylene (PTFE). Thirdly the breakthrough performance of ion exchange columns filled with zeolite in the presence of aeration and in the presence of nitrifying bacteria was determined to establish the influence of biomass, and aeration upon breakthrough during ammonium ion uptake. The methodology adopted included screening of two types of the naturally occuring zeolite clinoptilolite for effective ammonia removal in continuous ion-exchange columns. Next, the performance of fixed beds of clinoptilolite in the

  18. Supercapacitor Electrodes from Activated Carbon Monoliths and Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Dolah, B. N. M.; Othman, M. A. R.; Deraman, M.; Basri, N. H.; Farma, R.; Talib, I. A.; Ishak, M. M.

    2013-04-01

    Binderless monoliths of supercapacitor electrodes were prepared by the carbonization (N2) and activation (CO2) of green monoliths (GMs). GMs were made from mixtures of self-adhesive carbon grains (SACG) of fibers from oil palm empty fruit bunches and a combination of 5 & 6% KOH and 0, 5 & 6% carbon nanotubes (CNTs) by weight. The electrodes from GMs containing CNTs were found to have lower specific BET surface area (SBET). The electrochemical behavior of the supercapacitor fabricated using the prepared electrodes were investigated by electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD). In general an addition of CNTs into the GMs reduces the equivalent series resistance (ESR) value of the cells. A cell fabricated using electrodes from GM with 5% CNT and 5% KOH was found to have the largest reduction of ESR value than that from the others GMs containing CNT. The cell has steeper Warburg's slope than that from its respective non-CNT GM, which reflect the smaller resistance for electrolyte ions to move into pores of electrodes despite these electrodes having largest reduction in specific BET surface area. The cell also has the smallest reduction of specific capacitance (Csp) and maintains the specific power range despite a reduction in the specific energy range due to the CNT addition.

  19. QUANTITATIVE STRUCTURE—PROPERTY RELATIONSHIPS FOR ENHANCING PREDICTIONS OF SYNTHETIC ORGANIC CHEMICAL REMOVAL FROM DRINKING WATER BY GRANULAR ACTIVATED CARBON

    EPA Science Inventory


    A number of mathematical models have been developed to predict activated carbon column performance using single-solute isotherm data as inputs. Many assumptions are built into these models to account for kinetics of adsorption and competition for adsorption sites. This work...

  20. Adsorption characteristics of SO2 on activated carbon prepared from coconut shell with potassium hydroxide activation.

    PubMed

    Lee, Young-Whan; Park, Jin-Won; Choung, Jae-Hoon; Choi, Dae-Ki

    2002-03-01

    The adsorption characteristics of SO2 were studied with KOH-impregnated granular activated carbon (K-IAC). To confirm selective SO2 adsorptivity of K-IAC using a fixed bed adsorption column, experiments were conducted on the effects of KOH and of linear velocity, temperature, and concentration. In addition, changes in features before and after adsorption were observed by utilizing FTIR, XRD, ToF-SIMS, and AES/SAM, examining the surface chemistry. K-IAC adsorbed 13.2 times more SO2 than did general activated carbon (GAC). The amount of SO2 adsorbed increased as linear velocity and concentration increased and as temperature decreased. At lower temperature, the dominant reaction between KOH and SO2 produces K2-SO3 and H2O. Any H2O remaining on the surface is converted into H2SO4 as SO2 and O2 are introduced. Then, the KOH and SO2 reaction produces K2SO4 and H2O. The surface characterization results proved that adsorption occurred through chemical reaction between KOH and SO2. The SO2 adsorbed K-IAC exists in the form of stable oxide crystal, K2SO3 and K2SO4, due to potassium. The basic feature given to the surface of activated carbon by KOH impregnation was confirmed to be acting as the main factor in enhancing SO2 adsorptivity.

  1. Influence of water column anoxia and sediment supply on the burial and preservation of organic carbon in marine shales

    NASA Astrophysics Data System (ADS)

    Calvert, S. E.; Bustin, R. M.; Ingall, E. D.

    1996-05-01

    Previous work has suggested that the laminated, organic-rich and bioturbated, organic-poor shales of the Camp Run Member of the Late Devonian-Early Mississippian New Albany Shale formed under anoxic and oxygenated bottomwater conditions, respectively, and that the interbedding of the two faciès was due to the vertical oscillation of a water-column anoxic/oxic boundary where it impinged on the basin margin. We have extended this analysis by examining the chemical and mineralogical differences between the two shale facies in a single borehole core, by seeking evidence for deposition of the laminated shales under bottom-water oxia or anoxia, and by determining whether the laminated shales formed when the carbon supply to the sea floor was higher. The results of this study show that the laminated and bioturbated shales are mineralogically and chemically distinct; relative to Al, an index of the aluminosilicate content, Si, Ti, Fe, P, Na, Ba, Co, Cr, Cu, Mo, Ni, V, Zn, and Zr are all higher, whereas Mn, Ca, Mg, and Sr are lower in the laminated compared with the bioturbated shales. The differences are due to a higher quartz, feldspar, titanite/ilmenite, and zircon content in the laminated shales, probably indicating a coarser grain-size, and the greater abundance of manganoan calcite in the bioturbated shales. Dissolved oxygen was present in bottom waters during the deposition of some of the laminated shale intervals because of the presence of manganoan calcite, a phase that can only form in sediments with an oxic surface. In addition, the organic matter preserved in the two shale types is isotopically different; δ 13C organic values are 1.9z.permil; lighter on average in the laminated compared with bioturbated intervals, possibly indicating a larger fraction of terrestrial organic matter in the latter. δ 15N values are 1.9z.permil; lighter on average in laminated compared with bioturbated intervals, possibly indicating a larger fraction of terrestrial organic matter

  2. Cooperative redox activation for carbon dioxide conversion

    NASA Astrophysics Data System (ADS)

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.; Daasbjerg, Kim; Skrydstrup, Troels

    2016-12-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing `waste', produced through oxygen insertion into the Si-Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2.

  3. The biomass derived activated carbon for supercapacitor

    NASA Astrophysics Data System (ADS)

    Senthilkumar, S. T.; Selvan, R. Kalai; Melo, J. S.

    2013-06-01

    In this work, the activated carbon was prepared from biowaste of Eichhornia crassipes by chemical activation method using KOH as the activating agent at various carbonization temperatures (600 °C, 700 °C and 800 °C). The disordered nature, morphology and surface functional groups of ACs were examined by XRD, SEM and FT-IR. The electrochemical properties of AC electrodes were studied in 1M H2SO4 in the potential range of -0.2 to 0.8 V using cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) techniques in a three electrode system. Subsequently, the fabricated supercapacitor using AC electrode delivered the higher specific capacitance and energy density of 509 F/g at current density of 1 mA/cm2 and 17 Wh/kg at power density of 0.416 W/g.

  4. Adsorption performance of coconut shell activated carbon for the removal of chlorate from chlor-alkali brine stream.

    PubMed

    Lakshmanan, Shyam; Murugesan, Thanapalan

    2016-12-01

    Activated carbon from coconut shell was used to investigate the adsorption of chlorate from a chlor-alkali plant's brine stream. The effect of pH, flowrate, chlorate and chloride concentration on the breakthrough curves were studied in small-scale column trials. The results obtained show enhanced adsorption at low flowrates, higher chlorate concentrations, and at a pH of 10. These studies show that introducing an activated carbon adsorption column just before the saturator would remove sufficient quantities of chlorate to allow more of the chlor-alkali plant's brine stream to be reused. From column dynamic studies, the Thomas model showed close approximation when the chlorate in the effluent was higher than breakthrough concentrations and there was close correlation at high influent concentration. The qo (maximum adsorption capacity) values were close to those obtained experimentally, indicating close representation of the breakthrough curve by the Thomas model.

  5. Carbon nanomaterials: Biologically active fullerene derivatives.

    PubMed

    Bogdanović, Gordana; Djordjević, Aleksandar

    2016-01-01

    Since their discovery, fullerenes, carbon nanotubes, and graphene attract significant attention of researches in various scientific fields including biomedicine. Nano-scale size and a possibility for diverse surface modifications allow carbon nanoallotropes to become an indispensable nanostructured material in nanotechnologies, including nanomedicine. Manipulation of surface chemistry has created diverse populations of water-soluble derivatives of fullerenes, which exhibit different behaviors. Both non-derivatized and derivatized fullerenes show various biological activities. Cellular processes that underline their toxicity are oxidative, genotoxic, and cytotoxic responses.The antioxidant/cytoprotective properties of fullerenes and derivatives have been considered in the prevention of organ oxidative damage and treatment. The same unique physiochemical properties of nanomaterials may also be associated with potential health hazards. Non-biodegradability and toxicity of carbon nanoparticles still remain a great concern in the area of biomedical application. In this review, we report on basic physical and chemical properties of carbon nano-clusters--fullerenes, nanotubes, and grapheme--their specificities, activities, and potential application in biological systems. Special emphasis is given to our most important results obtained in vitro and in vivo using polyhydroxylated fullerene derivative C₆₀(OH)₂₄.

  6. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates

    NASA Astrophysics Data System (ADS)

    Lu, Beihu; Xiao, Zuoan; Zhu, Hua; Xiao, Wei; Wu, Wenlong; Wang, Dihua

    2015-12-01

    Simple, affordable and green methods to improve capacitive properties of commercial activated carbon (AC) are intriguing since ACs possess a predominant role in the commercial supercapacitor market. Herein, we report a green reactivation of commercial ACs by soaking ACs in molten Na2CO3-K2CO3 (equal in mass ratios) at 850 °C combining the merits of both physical and chemical activation strategies. The mechanism of molten carbonate treatment and structure-capacitive activity correlations of the ACs are rationalized. Characterizations show that the molten carbonate treatment increases the electrical conductivity of AC without compromising its porosity and wettability of electrolytes. Electrochemical tests show the treated AC exhibited higher specific capacitance, enhanced high-rate capability and excellent cycle performance, promising its practical application in supercapacitors. The present study confirms that the molten carbonate reactivation is a green and effective method to enhance capacitive properties of ACs.

  7. Kinetics of adsorption with granular, powdered, and fibrous activated carbon

    SciTech Connect

    Shmidt, J.L.; Pimenov, A.V.; Lieberman, A.I.; Cheh, H.Y.

    1997-08-01

    The properties of three different types of activated carbon, fibrous, powdered, and granular, were investigated theoretically and experimentally. The adsorption rate of the activated carbon fiber was found to be two orders of magnitude higher than that of the granular activated carbon, and one order of magnitude higher than that of the powdered activated carbon. Diffusion coefficients of methylene blue in the fibrous, powdered, and granular activated carbons were determined experimentally. A new method for estimating the meso- and macropore surface areas in these carbons was proposed.

  8. Robust IR Remote Sensing Technique of the Total Column of Trace Gases Including Carbon Dioxide and Methane

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Heaps, W. S.

    2011-01-01

    Progress on the development of a differential radiometer based upon the Fabry-Perot interferometer (FPI) for methane (CH4) and carbon dioxide (C02) detection in the atmosphere is presented. Methane measurements are becoming increasingly important as a component of NASA's programs to understand the global carbon cycle and quantifY the threat of global warming. Methane is the third most important greenhouse gas in the Earth's radiation budget (after water vapor and carbon dioxide) and the second most important anthropogenic contributor to global warming. The importance of global warming and air quality to society caused the National Research Council to recommend that NASA develop the following missions [1]: ASCENDS (Active Sensing of C02 Emissions over Nights, Days, and Seasons), GEOCAPE (Geostationary Coastal and Air Pollution Events), and GACM (Global Atmosphere Composition Mission). Though methane measurements are not specifically called out in these missions, ongoing environmental changes have raised the importance of understanding the methane budget. In the decadal survey is stated that "to close the carbon budget, we would also address methane, but the required technology is not obvious at this time. If appropriate and cost-effective methane technology becomes available, we strongly recommend adding a methane capability". In its 2007 report the International Panel on Climate Change identified methane as a key uncertainty in our understanding saying that the causes of recent changes in the growth rate of atmospheric CH4 are not well understood. What we do know is that methane arises from a number of natural sources including wet lands and the oceans plus man made sources from agriculture, as well as coal and petroleum production and distribution. It has recently been pointed out that large amount of methane are frozen in the permafrost of Canada and Siberia. There is a fear that melting of this permafrost driven by global warming may release large amounts of

  9. Aqueous mercury adsorption by activated carbons.

    PubMed

    Hadi, Pejman; To, Ming-Ho; Hui, Chi-Wai; Lin, Carol Sze Ki; McKay, Gordon

    2015-04-15

    Due to serious public health threats resulting from mercury pollution and its rapid distribution in our food chain through the contamination of water bodies, stringent regulations have been enacted on mercury-laden wastewater discharge. Activated carbons have been widely used in the removal of mercuric ions from aqueous effluents. The surface and textural characteristics of activated carbons are the two decisive factors in their efficiency in mercury removal from wastewater. Herein, the structural properties and binding affinity of mercuric ions from effluents have been presented. Also, specific attention has been directed to the effect of sulfur-containing functional moieties on enhancing the mercury adsorption. It has been demonstrated that surface area, pore size, pore size distribution and surface functional groups should collectively be taken into consideration in designing the optimal mercury removal process. Moreover, the mercury adsorption mechanism has been addressed using equilibrium adsorption isotherm, thermodynamic and kinetic studies. Further recommendations have been proposed with the aim of increasing the mercury removal efficiency using carbon activation processes with lower energy input, while achieving similar or even higher efficiencies.

  10. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water.

    PubMed

    Zhang, Qiao Li; Lin, Y C; Chen, X; Gao, Nai Yun

    2007-09-30

    Iron oxide/activated carbon (FeO/AC) composite adsorbent material, which was used to modify the coal-based activated carbon (AC) 12 x 40, was prepared by the special ferric oxide microcrystal in this study. This composite can be used as the adsorbent to remove arsenic from drinking water, and Langmuir isotherm adsorption equation well describes the experimental adsorption isotherms. Then, the arsenic desorption can subsequently be separated from the medium by using a 1% aqueous NaOH solution. The apparent characters and physical chemistry performances of FeO/AC composite were investigated by X-ray diffraction (XRD), nitrogen adsorption, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Batch and column adsorption experiments were carried out to investigate and compare the arsenic removal capability of the prepared FeO/AC composite material and virgin activated carbon. It can be concluded that: (1) the main phase present in this composite are magnetite (Fe(3)O(4)), maghemite (gamma-Fe(2)O(3)), hematite (alpha-Fe(2)O(3)) and goethite (alpha-FeO(OH)); (2) the presence of iron oxides did not significantly affect the surface area or the pore structure of the activated carbon; (3) the comparisons between the adsorption isotherms of arsenic from aqueous solution onto the composite and virgin activated carbon showed that the FeO/AC composite behave an excellent capacity of adsorption arsenic than the virgin activated carbon; (4) column adsorption experiments with FeO/AC composite adsorbent showed that the arsenic could be removed to below 0.01 mg/L within 1250 mL empty bed volume when influent concentration was 0.5mg/L.

  11. Assessment of the bacteriological activity associated with granular activated carbon treatment of drinking water.

    PubMed

    Stewart, M H; Wolfe, R L; Means, E G

    1990-12-01

    Bacteriological analyses were performed on the effluent from a conventional water treatment pilot plant in which granular activated carbon (GAC) had been used as the final process to assess the impact of GAC on the microbial quality of the water produced. Samples were collected twice weekly for 160 days from the effluents of six GAC columns, each of which used one of four different empty-bed contact times (7.5, 15, 30, and 60 min). The samples were analyzed for heterotrophic plate counts and total coliforms. Effluent samples were also exposed to chloramines and free chlorine for 60 min (pH 8.2, 23 degrees C). Bacterial identifications were performed on the disinfected and nondisinfected effluents. Additional studies were conducted to assess the bacteriological activity associated with released GAC particles. The results indicated that heterotrophic plate counts in the effluents from all columns increased to 10(5) CFU/ml within 5 days and subsequently stabilized at 10(4) CFU/ml. The heterotrophic plate counts did not differ at different empty-bed contact times. Coliforms (identified as Enterobacter spp.) were recovered from the nondisinfected effluent on only two occasions. The disinfection results indicated that 1.5 mg of chloramines per liter inactivated approximately 50% more bacteria than did 1.0 mg of free chlorine per liter after 1 h of contact time. Chloramines and chlorine selected for the development of different bacterial species--Pseudomonas spp. and Flavobacterium spp., respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Less-costly activated carbon for sewage treatment

    NASA Technical Reports Server (NTRS)

    Ingham, J. D.; Kalvinskas, J. J.; Mueller, W. A.

    1977-01-01

    Lignite-aided sewage treatment is based on absorption of dissolved pollutants by activated carbon. Settling sludge is removed and dried into cakes that are pyrolyzed with lignites to yield activated carbon. Lignite is less expensive than activated carbon previously used to supplement pyrolysis yield.

  13. 78 FR 13894 - Certain Activated Carbon From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... COMMISSION Certain Activated Carbon From China Determination On the basis of the record \\1\\ developed in the... antidumping duty order on certain activated carbon from China would be likely to lead to continuation or... USITC Publication 4381 (February 2013), entitled Certain Activated Carbon from China: Investigation...

  14. Carbon Monoxide Dehydrogenase Activity in Bradyrhizobium japonicum

    PubMed Central

    Lorite, María J.; Tachil, Jörg; Sanjuán, Juán; Meyer, Ortwin; Bedmar, Eulogio J.

    2000-01-01

    Bradyrhizobium japonicum strain 110spc4 was capable of chemolithoautotrophic growth with carbon monoxide (CO) as a sole energy and carbon source under aerobic conditions. The enzyme carbon monoxide dehydrogenase (CODH; EC 1.2.99.2) has been purified 21-fold, with a yield of 16% and a specific activity of 58 nmol of CO oxidized/min/mg of protein, by a procedure that involved differential ultracentrifugation, anion-exchange chromatography, hydrophobic interaction chromatography, and gel filtration. The purified enzyme gave a single protein and activity band on nondenaturing polyacrylamide gel electrophoresis and had a molecular mass of 230,000 Da. The 230-kDa enzyme was composed of large (L; 75-kDa), medium (M; 28.4-kDa), and small (S; 17.2-kDa) subunits occurring in heterohexameric (LMS)2 subunit composition. The 75-kDa polypeptide exhibited immunological cross-reactivity with the large subunit of the CODH of Oligotropha carboxidovorans. The B. japonicum enzyme contained, per mole, 2.29 atoms of Mo, 7.96 atoms of Fe, 7.60 atoms of labile S, and 1.99 mol of flavin. Treatment of the enzyme with iodoacetamide yielded di(carboxamidomethyl)molybdopterin cytosine dinucleotide, identifying molybdopterin cytosine dinucleotide as the organic portion of the B. japonicum CODH molybdenum cofactor. The absorption spectrum of the purified enzyme was characteristic of a molybdenum-containing iron-sulfur flavoprotein. PMID:10788353

  15. Carbon monoxide dehydrogenase activity in Bradyrhizobium japonicum.

    PubMed

    Lorite, M J; Tachil, J; Sanjuán, J; Meyer, O; Bedmar, E J

    2000-05-01

    Bradyrhizobium japonicum strain 110spc4 was capable of chemolithoautotrophic growth with carbon monoxide (CO) as a sole energy and carbon source under aerobic conditions. The enzyme carbon monoxide dehydrogenase (CODH; EC 1.2.99.2) has been purified 21-fold, with a yield of 16% and a specific activity of 58 nmol of CO oxidized/min/mg of protein, by a procedure that involved differential ultracentrifugation, anion-exchange chromatography, hydrophobic interaction chromatography, and gel filtration. The purified enzyme gave a single protein and activity band on nondenaturing polyacrylamide gel electrophoresis and had a molecular mass of 230,000 Da. The 230-kDa enzyme was composed of large (L; 75-kDa), medium (M; 28.4-kDa), and small (S; 17.2-kDa) subunits occurring in heterohexameric (LMS)(2) subunit composition. The 75-kDa polypeptide exhibited immunological cross-reactivity with the large subunit of the CODH of Oligotropha carboxidovorans. The B. japonicum enzyme contained, per mole, 2.29 atoms of Mo, 7.96 atoms of Fe, 7.60 atoms of labile S, and 1.99 mol of flavin. Treatment of the enzyme with iodoacetamide yielded di(carboxamidomethyl)molybdopterin cytosine dinucleotide, identifying molybdopterin cytosine dinucleotide as the organic portion of the B. japonicum CODH molybdenum cofactor. The absorption spectrum of the purified enzyme was characteristic of a molybdenum-containing iron-sulfur flavoprotein.

  16. Hierarchically structured activated carbon for ultracapacitors

    PubMed Central

    Kim, Mok-Hwa; Kim, Kwang-Bum; Park, Sun-Min; Roh, Kwang Chul

    2016-01-01

    To resolve the pore-associated bottleneck problem observed in the electrode materials used for ultracapacitors, which inhibits the transport of the electrolyte ions, we designed hierarchically structured activated carbon (HAC) by synthesizing a mesoporous silica template/carbon composite and chemically activating it to simultaneously remove the silica template and increase the pore volume. The resulting HAC had a well-designed, unique porous structure, which allowed for large interfaces for efficient electric double-layer formation. Given the unique characteristics of the HAC, we believe that the developed synthesis strategy provides important insights into the design and fabrication of hierarchical carbon nanostructures. The HAC, which had a specific surface area of 1,957 m2 g−1, exhibited an extremely high specific capacitance of 157 F g−1 (95 F cc−1), as well as a high rate capability. This indicated that it had superior energy storage capability and was thus suitable for use in advanced ultracapacitors. PMID:26878820

  17. Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses

    NASA Astrophysics Data System (ADS)

    Kang, Jin-Kyu; Yi, In-Geol; Park, Jeong-Ann; Kim, Song-Bae; Kim, Hyunjung; Han, Yosep; Kim, Pil-Je; Eom, Ig-Chun; Jo, Eunhye

    2015-06-01

    The aim of this study was to investigate the transport behavior of carboxyl-functionalized carbon black nanoparticles (CBNPs) in porous media including quartz sand, iron oxide-coated sand (IOCS), and aluminum oxide-coated sand (AOCS). Two sets of column experiments were performed under saturated flow conditions for potassium chloride (KCl), a conservative tracer, and CBNPs. Breakthrough curves were analyzed to obtain mass recovery and one-dimensional transport model parameters. The first set of experiments was conducted to examine the effects of metal (Fe, Al) oxides and flow rate (0.25 and 0.5 mL min- 1) on the transport of CBNPs suspended in deionized water. The results showed that the mass recovery of CBNPs in quartz sand (flow rate = 0.5 mL min- 1) was 83.1%, whereas no breakthrough of CBNPs (mass recovery = 0%) was observed in IOCS and AOCS at the same flow rate, indicating that metal (Fe, Al) oxides can play a significant role in the attachment of CBNPs to porous media. In addition, the mass recovery of CBNPs in quartz sand decreased to 76.1% as the flow rate decreased to 0.25 mL min- 1. Interaction energy profiles for CBNP-porous media were calculated using DLVO theory for sphere-plate geometry, demonstrating that the interaction energy for CBNP-quartz sand was repulsive, whereas the interaction energies for CBNP-IOCS and CBNP-AOCS were attractive with no energy barriers. The second set of experiments was conducted in quartz sand to observe the effect of ionic strength (NaCl = 0.1 and 1.0 mM; CaCl2 = 0.01 and 0.1 mM) and pH (pH = 4.5 and 5.4) on the transport of CBNPs suspended in electrolyte. The results showed that the mass recoveries of CBNPs in NaCl = 0.1 and 1.0 mM were 65.3 and 6.4%, respectively. The mass recoveries of CBNPs in CaCl2 = 0.01 and 0.1 mM were 81.6 and 6.3%, respectively. These results demonstrated that CBNP attachment to quartz sand can be enhanced by increasing the electrolyte concentration. Interaction energy profiles demonstrated that

  18. Stable isotope evidence for carbon transformations in the water column and the sediments of the tropical Beibu Gulf, South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Zijun; Kowalski, Nicole; Dellwig, Olaf; Escher, Peter; Endler, Michael; Böttcher, Michael E.

    2013-04-01

    The depositional environment of the Beibu Gulf is highly complex, and sediments are formed under dynamic changes in hydrodynamics and sediment sources. It is an ideal natural laboratory to study biogeochemical transformation processes and its responses to changes in hydrography and depositional conditions in a tropical shelf environment. In the present study, several water column profiles and a number of short (MUC) and long (GC) sediment cores were taken during a joint German-Chinese expedition with R/V Sonne (Cruise 219; December 2011) in the Beibu Gulf. The sampling stations may be separated into three different depositional zones, namely Northern Coastal Beibu Gulf with sandy sediment, Delta Deposits in Vicinity to Qiongzhou Strait affected by strong currents, and Central Beibu Gulf with stable depositional environments. We measured the geochemical composition and carbon isotope composition of DIC in the water column and pore waters. In the sediments, the TOC, TIC, TN and TS contents, the C isotope composition of organic matter (OM), and the C and O isotope composition of carbonates were analyzed to follow the fate of organic matter during pelagic and benthic transformations. Pelagic OM transformations are already demonstrated by stable isotopes in the water column. The carbon isotopic composition of pore water DIC give further evidence for the mineralization of mainly marine OM with minor or no contributions from methane at most sites. The coupled pore water profiles indicate that sulfate reduction is the most important source for the DIC added to the pore waters. No correlation was observed between TOC contents and net sulfate reduction rates for the investigated sites. Lithostratigraphic marker and 14C age in different depositional zones indicated sedimentation rate plays an important role in determining the preservation and pathway of organic decomposition. In the central Beibu Gulf, where higher sedimentation rates dominate, pore water profiles exhibit the

  19. Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: kinetic approach.

    PubMed

    Valdés, Héctor; Zaror, Claudio A

    2006-11-01

    Ozone oxidation combined with activated carbon adsorption (O(3)/AC) has recently started to be developed as a single process for water and wastewater treatment. While a number of aspects of aqueous ozone decomposition are well understood, the importance and relationship between aqueous ozone decomposition and organic contaminant degradation in the presence of activated carbon is still not clear. This study focuses on determining the contribution of homogeneous and heterogeneous reactions to organic contaminants removal in O(3)/AC system. Benzothiazole (BT) was selected as a target organic pollutant due to its environmental concern. A reactor system based on a differential circular flow reactor composed by a 19 cm(3) activated carbon fixed bed column and 1 dm(3) storage tank was used. Ozone was produced from pure and dry oxygen using an Ozocav ozone generator rated at 5 g O(3)h(-1). Experimental results show that BT removal rate was proportional to activated carbon dosage. Activated carbon surface contribution to BT oxidation reactions with ozone, increased with pH in absence of radical scavengers. The radical reaction contribution within the pH range 2-11 accounted for 67-83% for BT removal in O(3)/AC simultaneous treatment. Results suggest that at pH higher than the pH of the point of zero charge of the activated carbon dissociated acid groups such as carboxylic acid anhydrides and carboxylic acids present on activated carbon surface could be responsible for the observed increase in the ozone decomposition reaction rate. A simplified mechanism and a kinetic scheme representing the contribution of homogeneous and heterogeneous reactions on BT ozonation in the presence of activated carbon is proposed.

  20. Molybdenum blue spectrophotometry for trace arsenic in ground water using a soluble membrane filter and calcium carbonate column.

    PubMed

    Okazaki, Takuya; Wang, Wenjing; Kuramitz, Hideki; Hata, Noriko; Taguchi, Shigeru

    2013-01-01

    An improved molybdenum blue spectrophotometry using a soluble membrane filter and CaCO(3)-column was proposed for determining arsenic in drinking water supplied from ground water in the presence of phosphate. A 100 mL sample solution containing 0.5 - 10 μg arsenic was passed through a CaCO(3)-column to remove phosphate, arsenate (As(V)). Arsenite (As(III)) which was not retained on the column was oxidized to As(V). As(V) was converted into a heteropolymolybdenum blue anion. The blue anion was collected on a membrane filter as an ion-associate with n-dodecyltrimethylammonium ion by filtration. The filter was dissolved in 2 mL of 2-methoxyethanol. The absorbance of the solution was measured at 810 nm against a reagent blank. Total inorganic arsenic was determined by reducing As(V) to As(III) before the column treatment. The RSDs for 10 μg L(-1) of As(III) and As(V) were 2.9%. Phosphate 0.2 mg L(-1) (as P) and iron 0.1 mg L(-1) did not interfere with the determination of 10 μg L(-1) arsenic. The proposed method was successfully applied to ground waters.

  1. A Design of a New Column-Parallel Analog-to-Digital Converter Flash for Monolithic Active Pixel Sensor.

    PubMed

    Chakir, Mostafa; Akhamal, Hicham; Qjidaa, Hassan

    2017-01-01

    The CMOS Monolithic Active Pixel Sensor (MAPS) for the International Linear Collider (ILC) vertex detector (VXD) expresses stringent requirements on their analog readout electronics, specifically on the analog-to-digital converter (ADC). This paper concerns designing and optimizing a new architecture of a low power, high speed, and small-area 4-bit column-parallel ADC Flash. Later in this study, we propose to interpose an S/H block in the converter. This integration of S/H block increases the sensitiveness of the converter to the very small amplitude of the input signal from the sensor and provides a sufficient time to the converter to be able to code the input signal. This ADC is developed in 0.18 μm CMOS process with a pixel pitch of 35 μm. The proposed ADC responds to the constraints of power dissipation, size, and speed for the MAPS composed of a matrix of 64 rows and 48 columns where each column ADC covers a small area of 35 × 336.76 μm(2). The proposed ADC consumes low power at a 1.8 V supply and 100 MS/s sampling rate with dynamic range of 125 mV. Its DNL and INL are 0.0812/-0.0787 LSB and 0.0811/-0.0787 LSB, respectively. Furthermore, this ADC achieves a high speed more than 5 GHz.

  2. Activated carbon briquettes from biomass materials.

    PubMed

    Amaya, Alejandro; Medero, Natalia; Tancredi, Néstor; Silva, Hugo; Deiana, Cristina

    2007-05-01

    Disposal of biomass wastes, produced in different agricultural activities, is frequently an environmental problem. A solution for such situation is the recycling of these residues for the production of activated carbon, an adsorbent which has several applications, for instance in the elimination of contaminants. For some uses, high mechanical strength and good adsorption characteristics are required. To achieve this, carbonaceous materials are conformed as pellets or briquettes, in a process that involves mixing and pressing of char with adhesive materials prior to activation. In this work, the influence of the operation conditions on the mechanical and surface properties of briquettes was studied. Eucalyptus wood and rice husk from Uruguay were used as lignocellulosic raw materials, and concentrated grape must from Cuyo Region-Argentina, as a binder. Different wood:rice and solid:binder ratios were used to prepare briquettes in order to study their influence on mechanical and surface properties of the final products.

  3. An OSSE to Quantify the Impact of S5 Spaceborne Carbon Monoxide Total Column Measurements on Air Pollution Analysis and Forecast over Europe

    NASA Astrophysics Data System (ADS)

    Abida, R.; Attié, J. L.; El Amraoui, L.; Ricaud, P.; Eskes, H.; Kujanpää, J.; Segers, A.

    2014-12-01

    In the framework of ISOTROP project (Impact of Spaceborne Observations on Tropospheric Composition Analysis and Forecast) aiming to assess the impact of sentinel 4 (GEO) and 5 (LEO) measurements of O3, CO, NO2 and HCHO to better constrain pollutant concentrations and precursor emissions that influence air quality. A Regional-scale Observing System Simulattion Experiment (OSSE ) has been conducted over Europe to determine the impact of S5-precursor carbon monoxide total column future observations on tropospheric composition forecasting and analysis. This OSSE study involves two independant CTM models which is a considerable advantage for the study, since it guarantees that the OSSE results will not be overly optimistic results and the OSSE will more realistically simulate an assimilation of real observations. The nature run which consitute the true composition atmospheric state is simulated by LOTOS-EUROS model combined with the global TM5 chemistry-transport model. The synthetic S5-p CO total column measurements and their error characterisitcs are derived from the nature run data and generated by KNMI and FMI teams using a state-of-the-art retrieval algorithm involved in TROPOMI development. The control run in which we assimilate the CO measurements is MOCAGE model. Interestingly, the OSSE results show substantial benefit from CO data assimilation especially in the boundary layer on both the forecast and analysis, and demenstrated that a high-spatial resolution and high-quality measurements of S5 CO total column could potentially constrain the concentration in the atmospheric boundar layer.

  4. Cooperative redox activation for carbon dioxide conversion

    PubMed Central

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.; Daasbjerg, Kim; Skrydstrup, Troels

    2016-01-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing ‘waste', produced through oxygen insertion into the Si–Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2. PMID:27981967

  5. Adsorbed natural gas storage with activated carbon

    SciTech Connect

    Sun, Jian; Brady, T.A.; Rood, M.J.

    1996-12-31

    Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

  6. Charcoal and activated carbon at elevated pressure

    SciTech Connect

    Antal, M.J. Jr.; Dai, Xiangfeng; Norberg, N.

    1995-12-01

    High quality charcoal has been produced with very high yields of 50% to 60% from macadamia nut and kukui nut shells and of 44% to 47% from Eucalyptus and Leucaena wood in a bench scale unit at elevated pressure on a 2 to 3 hour cycle, compared to commercial practice of 25% to 30% yield on a 7 to 12 day operating cycle. Neither air pollution nor tar is produced by the process. The effects of feedstock pretreatments with metal additives on charcoal yield are evaluated in this paper. Also, the influences of steam and air partial pressure and total pressure on yields of activated carbon from high yield charcoal are presented.

  7. Production of activated carbon from TCR char

    NASA Astrophysics Data System (ADS)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  8. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study

    NASA Astrophysics Data System (ADS)

    Maeng, Sung Kyu; Sharma, Saroj K.; Abel, Chol D. T.; Magic-Knezev, Aleksandra; Song, Kyung-Guen; Amy, Gary L.

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM.

  9. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study.

    PubMed

    Maeng, Sung Kyu; Sharma, Saroj K; Abel, Chol D T; Magic-Knezev, Aleksandra; Song, Kyung-Guen; Amy, Gary L

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM.

  10. ENTRAINED-FLOW ADSORPTION OF MERCURY USING ACTIVATED CARBON

    EPA Science Inventory

    Bench-scale experiments were conducted in a flow reactor to simulate entrained-flow capture of elemental mercury (Hg) by activated carbon. Adsorption of Hg by several commercial activated carbons was examined at different carbon-to-mercury (C:Hg) ratios (by weight) (600:1 - 29000...

  11. Chemically and biologically modified activated carbon sorbents for the removal of lead ions from aqueous media.

    PubMed

    Mahmoud, Mohamed E; Abdel-Fattah, Tarek M; Osman, Maher M; Ahmed, Somia B

    2012-01-01

    A method is described for hybridization of the adsorption and biosorption characteristics of chemically treated commercial activated carbon and baker's yeast, respectively, for the formation of environmental friendly multifunctional sorbents. Activated carbon was loaded with baker's yeast after acid-base treatment. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) Spectroscopy were used to characterize these sorbents. Moreover, the sorption capabilities for lead (II) ions were evaluated. A value of 90 μmol g(-1) was identified as the maximum sorption capacity of activated carbon. Acid-base treatment of activated carbon was found to double the sorption capacity (140-180 μmol g(-1)). Immobilization of baker's yeast on the surface of activated carbon sorbents was found to further improve the sorption capacity efficiency of lead to 360, 510 and 560 μmol g(-1), respectively. Several important factors such as pH, contact time, sorbent dose, lead concentration and interfering ions were examined. Lead sorption process was studied and evaluated by several adsorption isotherms and found to follow the Langmuir and BET models. The potential applications of various chemically and biologically modified sorbents and biosorbents for removal of lead from real water matrices were also investigated via multistage micro-column technique and the results referred to excellent recovery values of lead (95.0-99.0 ± 3.0-5.0 %).

  12. Preparation of binderless activated carbon monolith from pre-carbonization rubber wood sawdust by controlling of carbonization and activation condition

    NASA Astrophysics Data System (ADS)

    Taer, E.; Deraman, M.; Taslim, R.; Iwantono

    2013-09-01

    Binderless activated carbon monolith (ACM) was prepared from pre-carbonized rubber wood sawdust (RWSD). The effect of the carbonization temperature (400, 500, 600, 700, 800 dan 900 °C) on porosity characteristic of the ACM have been studied. The optimum carbonization temperature for obtaining ACM with high surface area of 600 °C with CO2 activation at 800 °C for one hour. At this condition, the surface area as high as 733 m2 g-1 could be successfully obtained. By improved the activation temperature at 900 °C for 2.5 h, it was found that the surface area of 860 m2 g-1. For this condition, the ACM exhibit the specific capacitance of 90 F g-1. In addition the termogravimertic (TG)-differential termografimertic (DTG) and field emission scanning electron microscope (FESEM) measurement were also performed on the ACMs and the result has been studied. Finally, it was conclude that the high surface area of ACM from RWSD could be produced by proper selections of carbonization and activation condition.

  13. Plant diversity increases soil microbial activity and soil carbon storage.

    PubMed

    Lange, Markus; Eisenhauer, Nico; Sierra, Carlos A; Bessler, Holger; Engels, Christoph; Griffiths, Robert I; Mellado-Vázquez, Perla G; Malik, Ashish A; Roy, Jacques; Scheu, Stefan; Steinbeiss, Sibylle; Thomson, Bruce C; Trumbore, Susan E; Gleixner, Gerd

    2015-04-07

    Plant diversity strongly influences ecosystem functions and services, such as soil carbon storage. However, the mechanisms underlying the positive plant diversity effects on soil carbon storage are poorly understood. We explored this relationship using long-term data from a grassland biodiversity experiment (The Jena Experiment) and radiocarbon ((14)C) modelling. Here we show that higher plant diversity increases rhizosphere carbon inputs into the microbial community resulting in both increased microbial activity and carbon storage. Increases in soil carbon were related to the enhanced accumulation of recently fixed carbon in high-diversity plots, while plant diversity had less pronounced effects on the decomposition rate of existing carbon. The present study shows that elevated carbon storage at high plant diversity is a direct function of the soil microbial community, indicating that the increase in carbon storage is mainly limited by the integration of new carbon into soil and less by the decomposition of existing soil carbon.

  14. Preparation of activated carbons from bituminous coal pitches

    NASA Astrophysics Data System (ADS)

    Gañan, J.; González-García, C. M.; González, J. F.; Sabio, E.; Macías-García, A.; Díaz-Díez, M. A.

    2004-11-01

    High-porosity carbons were prepared from bituminous coal pitches by combining chemical and physical activation. The chemical activation process consisted of potassium hydroxide impregnation followed by carbonization in nitrogen atmosphere. The effect of the KOH impregnation ratio on the surface area and pore volumes evolution of the carbons derived from mesophase pitch was studied. The optimum KOH:pitch ratio was fixed to realize a physical activation process in order to increase the textural parameters of the KOH-activated carbons. Physical activation was performed by carbonizing the KOH-activated carbons followed by gasifying with air. The influence of the carbonization temperature and the residence time of the gasification with air were explored to optimize those preparation parameters.

  15. REPEATED REDUCTIVE AND OXIDATIVE TREATMENTS ON GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Fenton oxidation and Fenton oxidation preceded by reduction solutions were applied to granular activated carbon (GAC) to chemically regenerate the adsorbent. No adsorbate was present on the GAC so physicochemical effects from chemically aggressive regeneration of the carbon coul...

  16. Reduction of bromate by granular activated carbon

    SciTech Connect

    Kirisits, M.J.; Snoeyink, V.L.; Kruithof, J.C.

    1998-07-01

    Ozonation of waters containing bromide can lead to the formation of bromate, a probable human carcinogen. Since bromate will be regulated at 10 {micro}g/L by the Stage 1 Disinfectants/Disinfection By-Products Rule, there is considerable interest in finding a suitable method of bromate reduction. Granular activated carbon (GAC) can be used to chemically reduce bromate to bromide, but interference from organic matter and anions present in natural water render this process inefficient. In an effort to improve bromate reduction by GAC, several modifications were made to the GAC filtration process. The use of a biologically active carbon (BAC) filter ahead of a fresh GAC filter with and without preozonation, to remove the biodegradable organic matter, did not substantially improve the bromate removal of the GAC filter. The use of the BAC filter for biological bromate reduction proved to be the most encouraging experiment. By lowering the dissolved oxygen in the influent to the BAC from 8.0 mg/L to 2.0 mg/L, the percent bromate removal increased from 42% to 61%.

  17. Activated Carbon Fibers For Gas Storage

    SciTech Connect

    Burchell, Timothy D; Contescu, Cristian I; Gallego, Nidia C

    2017-01-01

    The advantages of Activated Carbon Fibers (ACF) over Granular Activated Carbon (GAC) are reviewed and their relationship to ACF structure and texture are discussed. These advantages make ACF very attractive for gas storage applications. Both adsorbed natural gas (ANG) and hydrogen gas adsorption performance are discussed. The predicted and actual structure and performance of lignin-derived ACF is reviewed. The manufacture and performance of ACF derived monolith for potential automotive natural gas (NG) storage applications is reported Future trends for ACF for gas storage are considered to be positive. The recent improvements in NG extraction coupled with the widespread availability of NG wells means a relatively inexpensive and abundant NG supply in the foreseeable future. This has rekindled interest in NG powered vehicles. The advantages and benefit of ANG compared to compressed NG offer the promise of accelerated use of ANG as a commuter vehicle fuel. It is to be hoped the current cost hurdle of ACF can be overcome opening ANG applications that take advantage of the favorable properties of ACF versus GAC. Lastly, suggestions are made regarding the direction of future work.

  18. Adsorption of nitrophenol onto activated carbon: isotherms and breakthrough curves.

    PubMed

    Chern, Jia-Ming; Chien, Yi-Wen

    2002-02-01

    The adsorption isotherm of p-nitrophenol onto granular activated carbon in 25 degrees C aqueous solution was experimentally determined by batch tests. Both the Freundlich and the Redlich-Peterson models were found to fit the adsorption isotherm data well. A series of column tests were performed to determine the breakthrough curves with varying bed depths (3-6 cm) and water flow rates (21.6-86.4 cm3/h). Explicit equations for the breakthrough curves of the fixed-bed adsorption processes with the Langmuir and the Freundlich adsorption isotherms were developed by the constant-pattern wave approach using a constant driving force model in the liquid phase. The results show that the half breakthrough time increases proportionally with increasing bed depth but decreases inverse proportionally with increasing water flow rate. The constant-pattern wave approach using the Freundlich isotherm model fits the experimental breakthrough curves quite satisfactorily. A correlation was proposed to predict the volumetric mass-transfer coefficient in the liquid phase successfully. The effects of solution temperature and pH on the adsorption isotherm were also studied and the Tóth model was found to fit the isotherm data well at varying solution temperatures and pHs.

  19. Electrochemical activation of carbon nanotube/polymer composites.

    PubMed

    Sánchez, Samuel; Fàbregas, Esteve; Pumera, Martin

    2009-01-07

    Electrochemical activation of carbon nanotube/polysulfone composite electrodes for enhanced heterogeneous electron transfer is studied. The physicochemical insight into the electrochemical activation of carbon nanotube/polymer composites was provided by transmission electron microscopy, Raman spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. Dopamine, ascorbic acid, NADH, and ferricyanide are used as a model redox system for evaluating the performance of activated carbon nanotube/polymer composite electrodes. We demonstrate that polymer wrapping of carbon nanotubes is subject to defects and to partial removal during activation. Such tunable activation of electrodes would enable on-demand activation of electrodes for satisfying the needs of sensing or energy storage devices.

  20. Modulation of activity and conduction in single dorsal column axons by kilohertz-frequency spinal cord stimulation.

    PubMed

    Crosby, Nathan D; Janik, John J; Grill, Warren M

    2017-01-01

    Kilohertz-frequency spinal cord stimulation (KHF-SCS) is a potential paresthesia-free treatment for chronic pain. However, the effects of KHF-SCS on spinal dorsal column (DC) axons and its mechanisms of action remain unknown. The objectives of this study were to quantify activation and conduction block of DC axons by KHF-SCS across a range of frequencies (1, 5, 10, or 20 kHz) and waveforms (biphasic pulses or sinusoids). Custom platinum electrodes delivered SCS to the T10/T11 dorsal columns of anesthetized male Sprague-Dawley rats. Single DC axons and compound action potentials were recorded during KHF-SCS to evaluate SCS-evoked activity. Responses to KHF-SCS in DC axons included brief onset firing, slowly accommodating asynchronous firing, and conduction block. The effects of KHF-SCS mostly occurred well above motor thresholds, but isolated units were activated at amplitudes shown to reduce behavioral sensitivity in rats. Activity evoked by SCS was similar across a range of frequencies (5-20 kHz) and waveforms (biphasic and sinusoidal). Stimulation at 1-kHz SCS evoked more axonal firing that was also more phase-synchronized to the SCS waveform, but only at amplitudes above motor threshold. These data quantitatively characterize the central nervous system activity that may modulate pain perception and paresthesia, and thereby provide a foundation for continued investigation of the mechanisms of KHF-SCS and its optimization as a therapy for chronic pain. Given the asynchronous and transient nature of DC activity, it is unlikely that the same mechanisms underlying conventional SCS (i.e., persistent, periodic DC activation) apply to KHF-SCS.

  1. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  2. A Continuous Flow Column Study of the Anaerobic Transformation of a CAH Mixture of Tetrachloroethene and Carbon Tetrachloride Using Formate as an Electron Donor

    NASA Astrophysics Data System (ADS)

    Semprini, L.; Azizian, M. F.; Kim, Y.

    2011-12-01

    Many groundwater sites are contaminated with mixtures of chlorinated aliphatic hydrocarbons (CAHs) that represent a challenge when biological remediation processes are being considered. This is especially challenging when high concentrations of CAHs are present.Trichloromethane (CF), for example, has been observed to inhibit and potentially exert toxicity on reductive dehalogenation of tetrachloroethene (PCE) and trichloroethene (TCE). Results will be presented from a continuous flow column study where the simultaneous transformation of PCE and carbon tetrachloride (CT) was achieved. The column was packed with a quartz sand and bioaugmented with the Evanite Culture (EV) that is capable of transforming PCE to ethene. The column was fed a synthetic groundwater that was amended with PCE to achieve an influent concentration near its solubility limit (0.10 mM) and formate (1.5 mM) that reacts to produce hydrogen as the ultimate electron donor. The column was operated for over 1600 days prior to the addition of CT. During this period PCE was transformed mainly to vinyl chloride (VC) and ethene (ETH) and minor amounts of cis-dichloroethene (cis-DCE) and TCE. The transformation extent achieved based on the column effluent concentrations ranged from about 50% ETH, 30% VC, and 20 cis-DCE up to 80% ETH and 20% VC. When the column was fed sulfate, it was completely transformed via sulfate reduction. Ferrous iron production from ferric iron reduction was observed early in the study. Acetate was also formed as a result of homoacetogenesis from hydrogen utilization. CT addition (0.015 mM) was started at 1600 days while PCE addition was continued. During the first 25 days of CT addition, CT concentrations gradually increased to 50% of the injection concentration and chloromethane (CM) and CF were observed as transformation products. CT concentrations then decreased with over 98% transformation achieved.CM was removed to below the detection limit and CF concentration decreases to

  3. Preparation of a new adsorbent from activated carbon and carbon nanofiber (AC/CNF) for manufacturing organic-vacbpour respirator cartridge

    PubMed Central

    2013-01-01

    In this study a composite of activated carbon and carbon nanofiber (AC/CNF) was prepared to improve the performance of activated carbon (AC) for adsorption of volatile organic compounds (VOCs) and its utilization for respirator cartridges. Activated carbon was impregnated with a nickel nitrate catalyst precursor and carbon nanofibers (CNF) were deposited directly on the AC surface using catalytic chemical vapor deposition. Deposited CNFs on catalyst particles in AC micropores, were activated by CO2 to recover the surface area and micropores. Surface and textural characterizations of the prepared composites were investigated using Brunauer, Emmett and Teller’s (BET) technique and electron microscopy respectively. Prepared composite adsorbent was tested for benzene, toluene and xylene (BTX) adsorption and then employed in an organic respirator cartridge in granular form. Adsorption studies were conducted by passing air samples through the adsorbents in a glass column at an adjustable flow rate. Finally, any adsorbed species not retained by the adsorbents in the column were trapped in a charcoal sorbent tube and analyzed by gas chromatography. CNFs with a very thin diameter of about 10-20 nm were formed uniformly on the AC/CNF. The breakthrough time for cartridges prepared with CO2 activated AC/CNF was 117 minutes which are significantly longer than for those cartridges prepared with walnut shell- based activated carbon with the same weight of adsorbents. This study showed that a granular form CO2 activated AC/CNF composite could be a very effective alternate adsorbent for respirator cartridges due to its larger adsorption capacities and lower weight. PMID:23369424

  4. Superhydrophobic activated carbon-coated sponges for separation and absorption.

    PubMed

    Sun, Hanxue; Li, An; Zhu, Zhaoqi; Liang, Weidong; Zhao, Xinhong; La, Peiqing; Deng, Weiqiao

    2013-06-01

    Highly porous activated carbon with a large surface area and pore volume was synthesized by KOH activation using commercially available activated carbon as a precursor. By modification with polydimethylsiloxane (PDMS), highly porous activated carbon showed superhydrophobicity with a water contact angle of 163.6°. The changes in wettability of PDMS- treated highly porous activated carbon were attributed to the deposition of a low-surface-energy silicon coating onto activated carbon (confirmed by X-ray photoelectron spectroscopy), which had microporous characteristics (confirmed by XRD, SEM, and TEM analyses). Using an easy dip-coating method, superhydrophobic activated carbon-coated sponges were also fabricated; those exhibited excellent absorption selectivity for the removal of a wide range of organics and oils from water, and also recyclability, thus showing great potential as efficient absorbents for the large-scale removal of organic contaminants or oil spills from water.

  5. Flare-Shaped Acoustic Anomalies in the Water Column Along the Ecuadorian Margin: Relationship with Active Tectonics and Gas Hydrates

    NASA Astrophysics Data System (ADS)

    Michaud, Francois; Proust, Jean-Noël; Dano, Alexandre; Collot, Jean-Yves; Guiyeligou, Grâce Daniella; Hernández Salazar, María José; Ratzov, Gueorgui; Martillo, Carlos; Pouderoux, Hugo; Schenini, Laure; Lebrun, Jean-Frederic; Loayza, Glenda

    2016-10-01

    With hull-mounted multibeam echosounder data, we report for the first time along the active Ecuadorian margin, acoustic signatures of water column fluid emissions and seep-related structures on the seafloor. In total 17 flare-shaped acoustic anomalies were detected from the upper slope (1250 m) to the shelf break (140 m). Nearly half of the flare-shaped acoustic anomalies rise 200-500 m above the seafloor. The base of the flares is generally associated with high-reflectivity backscatter patches contrasting with the neighboring seafloor. We interpret these flares as caused by fluid escape in the water column, most likely gases. High-resolution seismic profiles show that most flares occur close to the surface expression of active faults, deformed areas, slope instabilities or diapiric structures. In two areas tectonic deformation disrupts a Bottom Simulating Reflector (BSR), suggesting that buried frozen gas hydrates are destabilized, thus supplying free gas emissions and related flares. This discovery is important as it opens the way to determine the nature and origin of the emitted fluids and their potential link with the hydrocarbon system of the forearc basins along the Ecuadorian margin.

  6. MAMAP - a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: instrument description and performance analysis

    NASA Astrophysics Data System (ADS)

    Gerilowski, K.; Tretner, A.; Krings, T.; Buchwitz, M.; Bertagnolio, P. P.; Belemezov, F.; Erzinger, J.; Burrows, J. P.; Bovensmann, H.

    2011-02-01

    Carbon dioxide (CO2) and Methane (CH4) are the two most important anthropogenic greenhouse gases. CH4 is furthermore one of the most potent present and future contributors to global warming because of its large global warming potential (GWP). Our knowledge of CH4 and CO2 source strengths is based primarily on bottom-up scaling of sparse in-situ local point measurements of emissions and up-scaling of emission factor estimates or top-down modeling incorporating data from surface networks and more recently also by incorporating data from low spatial resolution satellite observations for CH4. There is a need to measure and retrieve the dry columns of CO2 and CH4 having high spatial resolution and spatial coverage. In order to fill this gap a new passive airborne 2-channel grating spectrometer instrument for remote sensing of small scale and mesoscale column-averaged CH4 and CO2 observations has been developed. This Methane Airborne MAPper (MAMAP) instrument measures reflected and scattered solar radiation in the short wave infrared (SWIR) and near-infrared (NIR) parts of the electro-magnetic spectrum at moderate spectral resolution. The SWIR channel yields measurements of atmospheric absorption bands of CH4 and CO2 in the spectral range between 1.59 and 1.69 μm at a spectral resolution of 0.82 nm. The NIR channel around 0.76 μm measures the atmospheric O2-A-band absorption with a resolution of 0.46 nm. MAMAP has been designed for flexible operation aboard a variety of airborne platforms. The instrument design and the performance of the SWIR channel, together with some results from on-ground and in-flight engineering tests are presented. The SWIR channel performance has been analyzed using a retrieval algorithm applied to the nadir measured spectra. Dry air column-averaged mole fractions are obtained from SWIR data only by dividing the retrieved CH4 columns by the simultaneously retrieved CO2 columns for dry air column CH4 (XCH4) and vice versa for dry air column CO2

  7. Monitoring and removal of cyanobacterial toxins from drinking water by algal-activated carbon.

    PubMed

    Ibrahim, Wael M; Salim, Emad H; Azab, Yahia A; Ismail, Abdel-Hamid M

    2016-10-01

    Microcystins (MCs) are the most potent toxins that can be produced by cyanobacteria in drinking water supplies. This study investigated the abundance of toxin-producing algae in 11 drinking water treatment plants (DWTPs). A total of 26 different algal taxa were identified in treated water, from which 12% were blue green, 29% were green, and 59% were diatoms. MC levels maintained strong positive correlations with number of cyanophycean cells in raw and treated water of different DWTPs. Furthermore, the efficiency of various algal-based adsorbent columns used for the removal of these toxins was evaluated. The MCs was adsorbed in the following order: mixed algal-activated carbon (AAC) ≥ individual AAC > mixed algal powder > individual algal powder. The results showed that the AAC had the highest efficient columns capable of removing 100% dissolved MCs from drinking water samples, thereby offering an economically feasible technology for efficient removal and recovery of MCs in DWTPs.

  8. Recent Data Analysis of Carbon ACtivation

    NASA Astrophysics Data System (ADS)

    Jiang, Hui Ming; Smith, Elizabeth; Padalino, Stephen; Baumgart, Leigh; Suny Geneseooltz, Katie; Colburn, Robyn; Fuschino, Julia

    2002-10-01

    A method for measuring tertiary neutrons produced in Inertial Confinement Fusion reactions has been developed using carbon activation. Ultra pure samples of carbon, free from positron-emitting contaminants must be used in the detection. Our primary goal has been to reduce the contamination level by refining purification and packaging procedures. This process involves baking the disks in a vacuum oven to 1000¢XC @ 200 microns for a prescribed bake time without exposing the disks to nitrogen in the air which is a major contaminant. Recent experiments were conducted to determine the optimal bake time for purification. Disks were baked for varying times, from one hour to five hours, and then exposed to high-neutron-yield ( 5 x 1013) shots on OMEGA. Data collected was normalized to the same time interval and the same primary neutron yield, and no significant difference in the number of background counts was seen. Experimental results also indicated that disks that were exposed to air for short time intervals showed a significant increase in the number of contamination counts. This further supports our findings that the gaseous diffusion through graphite disks is very high. Experimental results of these findings will be presented. Research funded in part by the United States Department of Energy.

  9. Activated Carbon Composites for Air Separation

    SciTech Connect

    Baker, Frederick S; Contescu, Cristian I; Tsouris, Costas; Burchell, Timothy D

    2011-09-01

    Coal-derived synthesis gas is a potential major source of hydrogen for fuel cells. Oxygen-blown coal gasification is an efficient approach to achieving the goal of producing hydrogen from coal, but a cost-effective means of enriching O2 concentration in air is required. A key objective of this project is to assess the utility of a system that exploits porous carbon materials and electrical swing adsorption to produce an O2-enriched air stream for coal gasification. As a complement to O2 and N2 adsorption measurements, CO2 was used as a more sensitive probe molecule for the characterization of molecular sieving effects. To further enhance the potential of activated carbon composite materials for air separation, work was implemented on incorporating a novel twist into the system; namely the addition of a magnetic field to influence O2 adsorption, which is accompanied by a transition between the paramagnetic and diamagnetic states. The preliminary findings in this respect are discussed.

  10. A Design of a New Column-Parallel Analog-to-Digital Converter Flash for Monolithic Active Pixel Sensor

    PubMed Central

    Qjidaa, Hassan

    2017-01-01

    The CMOS Monolithic Active Pixel Sensor (MAPS) for the International Linear Collider (ILC) vertex detector (VXD) expresses stringent requirements on their analog readout electronics, specifically on the analog-to-digital converter (ADC). This paper concerns designing and optimizing a new architecture of a low power, high speed, and small-area 4-bit column-parallel ADC Flash. Later in this study, we propose to interpose an S/H block in the converter. This integration of S/H block increases the sensitiveness of the converter to the very small amplitude of the input signal from the sensor and provides a sufficient time to the converter to be able to code the input signal. This ADC is developed in 0.18 μm CMOS process with a pixel pitch of 35 μm. The proposed ADC responds to the constraints of power dissipation, size, and speed for the MAPS composed of a matrix of 64 rows and 48 columns where each column ADC covers a small area of 35 × 336.76 μm2. The proposed ADC consumes low power at a 1.8 V supply and 100 MS/s sampling rate with dynamic range of 125 mV. Its DNL and INL are 0.0812/−0.0787 LSB and 0.0811/−0.0787 LSB, respectively. Furthermore, this ADC achieves a high speed more than 5 GHz. PMID:28243628

  11. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    NASA Astrophysics Data System (ADS)

    Byamba-Ochir, Narandalai; Shim, Wang Geun; Balathanigaimani, M. S.; Moon, Hee

    2016-08-01

    Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816-2063 m2/g and of 0.55-1.61 cm3/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  12. Reuse performance of granular-activated carbon and activated carbon fiber in catalyzed peroxymonosulfate oxidation.

    PubMed

    Yang, Shiying; Li, Lei; Xiao, Tuo; Zhang, Jun; Shao, Xueting

    2017-03-01

    Recently, activated carbon was investigated as an efficient heterogeneous metal-free catalyst to directly activate peroxymonosulfate (PMS) for degradation of organic compounds. In this paper, the reuse performance and the possible deactivation reasons of granular-activated carbon (GAC) and activated carbon fiber (ACF) in PMS activation were investigated. As results indicated, the reusability of GAC, especially in the presence of high PMS dosage, was relatively superior to ACF in catalyzed PMS oxidation of Acid Orange 7 (AO7), which is much more easily adsorbed by ACF than by GAC. Pre-oxidation experiments were studied and it was demonstrated that PMS oxidation on ACF would retard ACF's deactivation to a big extent. After pre-adsorption with AO7, the catalytic ability of both GAC and ACF evidently diminished. However, when methanol was employed to extract the AO7-spent ACF, the catalytic ability could recover quite a bit. GAC and ACF could also effectively catalyze PMS to degrade Reactive Black 5 (RB5), which is very difficult to be adsorbed even by ACF, but both GAC and ACF have poor reuse performance for RB5 degradation. The original organic compounds or intermediate products adsorbed by GAC or ACF would be possibly responsible for the deactivation.

  13. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.

    PubMed

    Liu, Fengling; Xu, Zhaoyi; Wan, Haiqin; Wan, Yuqiu; Zheng, Shourong; Zhu, Dongqiang

    2011-04-01

    Humic acids are ubiquitous in surface and underground waters and may pose potential risk to human health when present in drinking water sources. In this study, ordered mesoporous carbon was synthesized by means of a hard template method and further characterized by X-ray diffraction, N2 adsorption, transition electron microscopy, elemental analysis, and zeta-potential measurement. Batch experiments were conducted to evaluate adsorption of two humic acids from coal and soil, respectively, on the synthesized carbon. For comparison, a commercial microporous activated carbon and nonporous graphite were included as additional adsorbents; moreover, phenol was adopted as a small probe adsorbate. Pore size distribution characterization showed that the synthesized carbon had ordered mesoporous structure, whereas the activated carbon was composed mainly of micropores with a much broader pore size distribution. Accordingly, adsorption of the two humic acids was substantially lower on the activated carbon than on the synthesized carbon, because of the size-exclusion effect. In contrast, the synthesized carbon and activated carbon showed comparable adsorption for phenol when the size-exclusion effect was not in operation. Additionally, we verified by size-exclusion chromatography studies that the synthesized carbon exhibited greater adsorption for the large humic acid fraction than the activated carbon. The pH dependence of adsorption on the three carbonaceous adsorbents was also compared between the two test humic acids. The findings highlight the potential of using ordered mesoporous carbon as a superior adsorbent for the removal of humic acids.

  14. Characterization of Activated Carbons from Oil-Palm Shell by CO2 Activation with No Holding Carbonization Temperature

    PubMed Central

    Herawan, S. G.; Hadi, M. S.; Ayob, Md. R.; Putra, A.

    2013-01-01

    Activated carbons can be produced from different precursors, including coals of different ranks, and lignocellulosic materials, by physical or chemical activation processes. The objective of this paper is to characterize oil-palm shells, as a biomass byproduct from palm-oil mills which were converted into activated carbons by nitrogen pyrolysis followed by CO2 activation. The effects of no holding peak pyrolysis temperature on the physical characteristics of the activated carbons are studied. The BET surface area of the activated carbon is investigated using N2 adsorption at 77 K with selected temperatures of 500, 600, and 700°C. These pyrolysis conditions for preparing the activated carbons are found to yield higher BET surface area at a pyrolysis temperature of 700°C compared to selected commercial activated carbon. The activated carbons thus result in well-developed porosities and predominantly microporosities. By using this activation method, significant improvement can be obtained in the surface characteristics of the activated carbons. Thus this study shows that the preparation time can be shortened while better results of activated carbon can be produced. PMID:23737721

  15. Characterization of activated carbons from oil-palm shell by CO2 activation with no holding carbonization temperature.

    PubMed

    Herawan, S G; Hadi, M S; Ayob, Md R; Putra, A

    2013-01-01

    Activated carbons can be produced from different precursors, including coals of different ranks, and lignocellulosic materials, by physical or chemical activation processes. The objective of this paper is to characterize oil-palm shells, as a biomass byproduct from palm-oil mills which were converted into activated carbons by nitrogen pyrolysis followed by CO2 activation. The effects of no holding peak pyrolysis temperature on the physical characteristics of the activated carbons are studied. The BET surface area of the activated carbon is investigated using N2 adsorption at 77 K with selected temperatures of 500, 600, and 700°C. These pyrolysis conditions for preparing the activated carbons are found to yield higher BET surface area at a pyrolysis temperature of 700°C compared to selected commercial activated carbon. The activated carbons thus result in well-developed porosities and predominantly microporosities. By using this activation method, significant improvement can be obtained in the surface characteristics of the activated carbons. Thus this study shows that the preparation time can be shortened while better results of activated carbon can be produced.

  16. Active buckling control of a beam-column with circular cross-section using piezo-elastic supports and integral LQR control

    NASA Astrophysics Data System (ADS)

    Schaeffner, Maximilian; Götz, Benedict; Platz, Roland

    2016-06-01

    Buckling of slender beam-columns subject to axial compressive loads represents a critical design constraint for light-weight structures. Active buckling control provides a possibility to stabilize slender beam-columns by active lateral forces or bending moments. In this paper, the potential of active buckling control of an axially loaded beam-column with circular solid cross-section by piezo-elastic supports is investigated experimentally. In the piezo-elastic supports, lateral forces of piezoelectric stack actuators are transformed into bending moments acting in arbitrary directions at the beam-column ends. A mathematical model of the axially loaded beam-column is derived to design an integral linear quadratic regulator (LQR) that stabilizes the system. The effectiveness of the stabilization concept is investigated in an experimental test setup and compared with the uncontrolled system. With the proposed active buckling control it is possible to stabilize the beam-column in arbitrary lateral direction for axial loads up to the theoretical critical buckling load of the system.

  17. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution.

    PubMed

    Mopoung, Sumrit; Moonsri, Phansiri; Palas, Wanwimon; Khumpai, Sataporn

    2015-01-01

    This research studies the characterization of activated carbon from tamarind seed with KOH activation. The effects of 0.5 : 1-1.5 : 1 KOH : tamarind seed charcoal ratios and 500-700°C activation temperatures were studied. FTIR, SEM-EDS, XRD, and BET were used to characterize tamarind seed and the activated carbon prepared from them. Proximate analysis, percent yield, iodine number, methylene blue number, and preliminary test of Fe(III) adsorption were also studied. Fe(III) adsorption was carried out by 30 mL column with 5-20 ppm Fe(III) initial concentrations. The percent yield of activated carbon prepared from tamarind seed with KOH activation decreased with increasing activation temperature and impregnation ratios, which were in the range from 54.09 to 82.03 wt%. The surface functional groups of activated carbon are O-H, C=O, C-O, -CO3, C-H, and Si-H. The XRD result showed high crystallinity coming from a potassium compound in the activated carbon. The main elements found in the activated carbon by EDS are C, O, Si, and K. The results of iodine and methylene blue adsorption indicate that the pore size of the activated carbon is mostly in the range of mesopore and macropore. The average BET pore size and BET surface area of activated carbon are 67.9764 Å and 2.7167 m(2)/g, respectively. Finally, the tamarind seed based activated carbon produced with 500°C activation temperature and 1.0 : 1 KOH : tamarind seed charcoal ratio was used for Fe(III) adsorption test. It was shown that Fe(III) was adsorbed in alkaline conditions and adsorption increased with increasing Fe(III) initial concentration from 5 to 20 ppm with capacity adsorption of 0.0069-0.019 mg/g.

  18. Assessment of the bacteriological activity associated with granular activated carbon treatment of drinking water.

    PubMed Central

    Stewart, M H; Wolfe, R L; Means, E G

    1990-01-01

    Bacteriological analyses were performed on the effluent from a conventional water treatment pilot plant in which granular activated carbon (GAC) had been used as the final process to assess the impact of GAC on the microbial quality of the water produced. Samples were collected twice weekly for 160 days from the effluents of six GAC columns, each of which used one of four different empty-bed contact times (7.5, 15, 30, and 60 min). The samples were analyzed for heterotrophic plate counts and total coliforms. Effluent samples were also exposed to chloramines and free chlorine for 60 min (pH 8.2, 23 degrees C). Bacterial identifications were performed on the disinfected and nondisinfected effluents. Additional studies were conducted to assess the bacteriological activity associated with released GAC particles. The results indicated that heterotrophic plate counts in the effluents from all columns increased to 10(5) CFU/ml within 5 days and subsequently stabilized at 10(4) CFU/ml. The heterotrophic plate counts did not differ at different empty-bed contact times. Coliforms (identified as Enterobacter spp.) were recovered from the nondisinfected effluent on only two occasions. The disinfection results indicated that 1.5 mg of chloramines per liter inactivated approximately 50% more bacteria than did 1.0 mg of free chlorine per liter after 1 h of contact time. Chloramines and chlorine selected for the development of different bacterial species--Pseudomonas spp. and Flavobacterium spp., respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2082828

  19. MAMAP - a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: retrieval algorithm and first inversions for point source emission rates

    NASA Astrophysics Data System (ADS)

    Krings, T.; Gerilowski, K.; Buchwitz, M.; Reuter, M.; Tretner, A.; Erzinger, J.; Heinze, D.; Burrows, J. P.; Bovensmann, H.

    2011-04-01

    MAMAP is an airborne passive remote sensing instrument designed for measuring columns of methane (CH4) and carbon dioxide (CO2). The MAMAP instrument consists of two optical grating spectrometers: One in the short wave infrared band (SWIR) at 1590-1690 nm to measure CO2 and CH4 absorptions and another one in the near infrared (NIR) at 757-768 nm to measure O2 absorptions for reference purposes. MAMAP can be operated in both nadir and zenith geometry during the flight. Mounted on an airplane MAMAP can effectively survey areas on regional to local scales with a ground pixel resolution of about 29 m × 33 m for a typical aircraft altitude of 1250 m and a velocity of 200 km h-1. The retrieval precision of the measured column relative to background is typically ≲ 1% (1σ). MAMAP can be used to close the gap between satellite data exhibiting global coverage but with a rather coarse resolution on the one hand and highly accurate in situ measurements with sparse coverage on the other hand. In July 2007 test flights were performed over two coal-fired powerplants operated by Vattenfall Europe Generation AG: Jänschwalde (27.4 Mt CO2 yr-1) and Schwarze Pumpe (11.9 Mt CO2 yr-1), about 100 km southeast of Berlin, Germany. By using two different inversion approaches, one based on an optimal estimation scheme to fit Gaussian plume models from multiple sources to the data, and another using a simple Gaussian integral method, the emission rates can be determined and compared with emissions as stated by Vattenfall Europe. An extensive error analysis for the retrieval's dry column results (XCO2 and XCH4) and for the two inversion methods has been performed. Both methods - the Gaussian plume model fit and the Gaussian integral method - are capable of delivering reliable estimates for strong point source emission rates, given appropriate flight patterns and detailed knowledge of wind conditions.

  20. Dynamic adsorption of organic solvent vapors onto a packed bed of activated carbon cloth

    SciTech Connect

    Huang, C.C.; Lin, Y.C.; Lu, F.C.

    1999-02-01

    The adsorption behavior of organic compound vapors onto a packed bed of activated carbon cloth (ACC) has been investigated. Three types of ACCs have been employed: KF1500, FT200-20, and E-ACC. The volatile organic compounds (VOCs) used in this study are acetone, dichloromethane, acrylonitrile, and n-hexane. The operating parameters studied are temperature of adsorber, weight of ACC, relative humidity of fluid, inlet concentration of VOCs, and total volumetric flow rate of gas stream. A simple theoretical model, originally introduced by Yoon and Nelson, has been utilized to simulate the breakthrough curve of VOC vapor on an adsorption column packed with activated carbon cloth. A modified model is proposed to predict the adsorption behavior of an adsorber at different temperatures.

  1. RAPID ANALYSIS OF CYNANURIC ACID IN SWIMMING POOL WATERS BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY USING POROUS GRAPHITIC CARBON COLUMN

    EPA Science Inventory

    An innovative approach is presented for reducing analysis times of cyanuric acid in swimming pool waters by high performance liquid chromatography (HPLC). The HPLC method exploits the unique selectivity of porous graphitic carbon (PGC) to fully resolve cyanuric acid from other p...

  2. [Effects of different fertilizer application on soil active organic carbon].

    PubMed

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  3. OCO-2 Column Carbon Dioxide and Biometric Data Jointly Constrain Parameterization and Projection of a Global Land Model

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Crowell, S.; Luo, Y.; Rayner, P. J.; Moore, B., III

    2015-12-01

    Uncertainty in predicted carbon-climate feedback largely stems from poor parameterization of global land models. However, calibration of global land models with observations has been extremely challenging at least for two reasons. First we lack global data products from systematical measurements of land surface processes. Second, computational demand is insurmountable for estimation of model parameter due to complexity of global land models. In this project, we will use OCO-2 retrievals of dry air mole fraction XCO2 and solar induced fluorescence (SIF) to independently constrain estimation of net ecosystem exchange (NEE) and gross primary production (GPP). The constrained NEE and GPP will be combined with data products of global standing biomass, soil organic carbon and soil respiration to improve the community land model version 4.5 (CLM4.5). Specifically, we will first develop a high fidelity emulator of CLM4.5 according to the matrix representation of the terrestrial carbon cycle. It has been shown that the emulator fully represents the original model and can be effectively used for data assimilation to constrain parameter estimation. We will focus on calibrating those key model parameters (e.g., maximum carboxylation rate, turnover time and transfer coefficients of soil carbon pools, and temperature sensitivity of respiration) for carbon cycle. The Bayesian Markov chain Monte Carlo method (MCMC) will be used to assimilate the global databases into the high fidelity emulator to constrain the model parameters, which will be incorporated back to the original CLM4.5. The calibrated CLM4.5 will be used to make scenario-based projections. In addition, we will conduct observing system simulation experiments (OSSEs) to evaluate how the sampling frequency and length could affect the model constraining and prediction.

  4. Multi-EM27/SUN Total Carbon Column Observing Network (TCCON) Comparison at the Southern Great Plains Site Field Campaign Report

    SciTech Connect

    Parker, H.; Hedelius, J.

    2016-04-01

    During the summer of 2015, a field campaign took place to help characterize off-the-shelf portable solar-viewing Fourier Transform Spectrometer (FTS) instruments (EM27/SUN). These instruments retrieve greenhouse gas (GHG) abundances from direct solar spectra. A focus of this campaign was to test possible dependence on different atmospheric conditions. Along with the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site in Oklahoma, experiments were conducted in Pasadena, California; Park Falls, Wisconsin; and the Armstrong Flight Research Center (AFRC), California. These locations are home to instruments in the Total Column Carbon Observing Network (TCCON). TCCON measurements were used as standards for the portable (EM27/SUN) measurements. Comparisons between the two types of instruments are crucial in the attempt to use the portable instruments to broaden the capabilities of GHG measurements for monitoring, reporting, and verification of carbon in the atmosphere. This campaign was aimed at testing the response of the portable FTS to different atmospheric conditions both local and regional. Measurements made at ARM SGP provided data in an agricultural environment with a relatively clean atmosphere with respect to pollution. Due to the homogeneity of the region surrounding Lamont, Oklahoma, portable FTS measurements were less effected by large changes in column GHG abundances from air mass movement between regions. These conditions aided in characterizing potential artificial solar zenith angle dependence of the retrievals. Data collected under atmospheric conditions at ARM SGP also provide for the analysis of cloud interference on solar spectra. In situ measurements were also made using a Picarro isotopic methane analyzer to determine surface-level in situ GHG concentrations and possible influences due to local agriculture and nearby towns. Data collected in this campaign have been presented

  5. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.

    PubMed

    Zhang, Shujuan; Shao, Ting; Kose, H Selcen; Karanfil, Tanju

    2010-08-15

    Adsorption of three aromatic organic compounds (AOCs) by four types of carbonaceous adsorbents [a granular activated carbon (HD4000), an activated carbon fiber (ACF10), two single-walled carbon nanotubes (SWNT, SWNT-HT), and a multiwalled carbon nanotube (MWNT)] with different structural characteristics but similar surface polarities was examined in aqueous solutions. Isotherm results demonstrated the importance of molecular sieving and micropore effects in the adsorption of AOCs by carbonaceous porous adsorbents. In the absence of the molecular sieving effect, a linear relationship was found between the adsorption capacities of AOCs and the surface areas of adsorbents, independent of the type of adsorbent. On the other hand, the pore volume occupancies of the adsorbents followed the order of ACF10 > HD4000 > SWNT > MWNT, indicating that the availability of adsorption site was related to the pore size distributions of the adsorbents. ACF10 and HD4000 with higher microporous volumes exhibited higher adsorption affinities to low molecular weight AOCs than SWNT and MWNT with higher mesopore and macropore volumes. Due to their larger pore sizes, SWNTs and MWNTs are expected to be more efficient in adsorption of large size molecules. Removal of surface oxygen-containing functional groups from the SWNT enhanced adsorption of AOCs.

  6. Adsorption of polychlorinated dibenzo-p-dioxins/dibenzofurans on activated carbon from hexane.

    PubMed

    Zhou, Xu-Jian; Buekens, Alfons; Li, Xiao-Dong; Ni, Ming-Jiang; Cen, Ke-Fa

    2016-02-01

    Activated carbon is widely used to abate dioxins and dioxin-like compounds from flue gas. Comparing commercial samples regarding their potential to adsorb dioxins may proceed by using test columns, yet it takes many measurements to characterise the retention and breakthrough of dioxins. In this study, commercial activated carbon samples are evaluated during tests to remove trace amounts of dioxins dissolved in n-hexane. The solution was prepared from fly ash collected from a municipal solid waste incinerator. The key variables selected were the concentration of dioxins in n-hexane and the dosage of activated carbon. Both polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) showed very high removal efficiencies (94.7%-98.0% for PCDDs and 99.7%-99.8% for PCDFs). The presence of a large excess of n-hexane solvent had little effect on the removal efficiency of PCDD/Fs. The adsorbed PCDD/Fs showed a linear correlation (R(2) > 0.98) with the initial concentrations. Comparative analysis of adsorption isotherms showed that a linear Henry isotherm fitted better the experimental data (R(2) = 0.99 both for PCDDs and PCDFs) than the more usual Freundlich isotherm (R(2) = 0.88 for PCDDs and 0.77 for PCDFs). Finally, the results of fingerprint analysis indicated that dioxin fingerprint (weight proportion of different congeners) on activated carbon after adsorption did not change from that in hexane.

  7. Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon.

    PubMed

    Santhy, K; Selvapathy, P

    2006-07-01

    The removal efficiency of activated carbon prepared from coir pith towards three highly used reactive dyes in textile industry was investigated. Batch experiments showed that the adsorption of dyes increased with an increase in contact time and carbon dose. Maximum de-colorisation of all the dyes was observed at acidic pH. Adsorption of dyes was found to follow the Freundlich model. Kinetic studies indicated that the adsorption followed first order and the values of the Lagergren rate constants of the dyes were in the range of 1.77 x 10(-2)-2.69 x 10(-2)min(-1). The column experiments using granular form of the carbon (obtained by agglomeration with polyvinyl acetate) showed that adsorption efficiency increased with an increase in bed depth and decrease of flow rate. The bed depth service time (BDST) analysis carried out for the dyes indicated a linear relationship between bed depth and service time. The exhausted carbon could be completely regenerated and put to repeated use by elution with 1.0M NaOH. The coir pith activated carbon was not only effective in removal of colour but also significantly reduced COD levels of the textile wastewater.

  8. Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon.

    PubMed

    Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna

    2015-01-01

    Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP.

  9. JPL Activated Carbon Treatment System (ACTS) for sewage

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An Activated Carbon Treatment System (ACTS) was developed for sewage treatment and is being applied to a one-million gallon per day sewage treatment pilot plant in Orange County California. Activities reported include pyrolysis and activation of carbon-sewage sludge, and activated carbon treatment of sewage to meet ocean discharge standards. The ACTS Sewage treatment operations include carbon-sewage treatment, primary and secondary clarifiers, gravity (multi-media) filter, filter press dewatering, flash drying of carbon-sewage filter cake, and sludge pyrolysis and activation. Tests were conducted on a laboratory scale, 10,000 gallon per day demonstration plant and pilot test equipment. Preliminary economic studies are favorable to the ACTS process relative to activated sludge treatment for a 175,000,000 gallon per day sewage treatment plant.

  10. Activated Carbon Modified with Copper for Adsorption of Propanethiol

    PubMed Central

    Moreno-Piraján, Juan Carlos; Tirano, Joaquín; Salamanca, Brisa; Giraldo, Liliana

    2010-01-01

    Activated carbons were characterized texturally and chemically before and after treatment, using surface area determination in the BET model, Boehm titration, TPR, DRX and immersion calorimetry. The adsorption capacity and the kinetics of sulphur compound removal were determined by gas chromatography. It was established that the propanethiol retention capacity is dependent on the number of oxygenated groups generated on the activated carbon surface and that activated carbon modified with CuO at 0.25 M shows the highest retention of propanethiol. Additionally is proposed a mechanism of decomposition of propenothiol with carbon-copper system. PMID:20479992

  11. Improved analysis of column carbon dioxide and methane data from ground-based Miniaturized Laser Heterodyne Radiometer (Mini-LHR)

    NASA Astrophysics Data System (ADS)

    Wilson, E. L.; Melroy, H.; Ramanathan, A. K.; Mao, J.; Clarke, G.; McLinden, M.; Ott, L. E.; Miller, J. H. H.; Allan, G. R.; Holben, B. N.

    2014-12-01

    We present an improved data analysis for the Mini-LHR column measurements of CO2 and CH4 that includes corrections for refraction through the atmosphere and meteorological conditions. Multi-scan averaging has also been added to compensate for current shot noise limitations and improve instrument sensitivity. Data with the improved analysis will be shown for field measurements at the TCCON site at CalTech (March 2014), Calpoly during COW-Gas (March 2014), at Mauna Loa Observatory (May 2013), and Atwater, CA (February 2013). The Mini-LHR is a miniaturized version of a laser heterodyne radiometer that implements telecommunications lasers and components to produce a significantly reduced size, low-cost instrument. Laser heterodyne radiometry has been used since the 1970s to measure atmospheric gases such as ozone, water vapor, methane, ammonia, chlorine monoxide, and nitrous oxide. The Mini-LHR is passive and uses sunlight as the primary light source to measure absorption of CO2 and CH4 in the infrared. Sunlight is collected with collimation optics mounted to the AERONET sun tracker and superimposed with laser light in a single mode fiber coupler. The signals are mixed in a fast photoreceiver (InGaAs detector), and the RF (radio frequency) beat signal is extracted. Changes in concentration of the trace gas are realized through analyzing changes in the beat frequency amplitude. In addition to the complementary aerosol optical depth measurement, tandem operation with AERONET provides a clear pathway for the mini-LHR to be expanded into a global monitoring network. AERONET has more than 450 instruments worldwide and offers coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern. A mini-LHR global ground network can also provide an uninterrupted data record that will both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3, and

  12. Advancements for Active Remote Sensing of Carbon Dioxide from Space using the ASCENDS CarbonHawk Experiment Simulator: First Results

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Nehrir, A. R.; Lin, B.; Harrison, F. W.; Kooi, S. A.; Choi, Y.; Plant, J.; Yang, M. M.; Antill, C.; Campbell, J. F.; Ismail, S.; Browell, E. V.; Meadows, B.; Dobler, J. T.; Zaccheo, T. S.; Moore, B., III; Crowell, S.

    2014-12-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is an Intensity-Modulated Continuous-Wave lidar system recently developed at NASA Langley Research Center that seeks to advance technologies and techniques critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. These advancements include: (1) increasing the power-aperture product to approach ASCENDS mission requirements by implementing multi-aperture telescopes and multiple co-aligned laser transmitters; (2) incorporating high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) developing and incorporating a high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation on Global Hawk aircraft, and (4) advancing algorithms for cloud and aerosol discrimination. The ACES instrument architecture is being developed for operation on high-altitude aircraft and will be directly scalable to meet the ASCENDS mission requirements. ACES simultaneously transmits five laser beams: three from commercial EDFAs operating near 1571 nm, and two from the Exelis oxygen (O2) Raman fiber laser amplifier system operating near 1260 nm. The Integrated-Path Differential Absorption (IPDA) lidar approach is used at both wavelengths to independently measure the CO2 and O2 column number densities and retrieve the average column CO2 mixing ratio. The outgoing laser beams are aligned to the field of view of ACES' three fiber-coupled 17.8-cm diameter athermal telescopes. The backscattered light collected by the three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.7 MHz and operates service-free using a tactical dewar and cryocooler. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. Full instrument development concluded in the

  13. Preparation of nitrogen-enriched activated carbons from brown coal

    SciTech Connect

    Robert Pietrzak; Helena Wachowska; Piotr Nowicki

    2006-05-15

    Nitrogen-enriched activated carbons were prepared from a Polish brown coal. Nitrogen was introduced from urea at 350{sup o}C in an oxidizing atmosphere both to carbonizates obtained at 500-700{sup o}C and to activated carbons prepared from them. The activation was performed at 800{sup o}C with KOH in argon. It has been observed that the carbonization temperature determines the amount of nitrogen that is incorporated (DC5U, 8.4 wt % N{sup daf}; DC6U, 6.3 wt % N{sup daf}; and DC7U, 5.4 wt % N{sup daf}). X-ray photoelectron spectroscopy (XPS) measurements have shown that nitrogen introduced both at the stage of carbonizates and at the stage of activated carbons occurs mainly as -6, -5, and imine, amine and amide groups. On the other hand, the activation of carbons enriched with nitrogen results in the formation of pyridonic nitrogen and N-Q. The introduction of nitrogen at the activated carbon stage leads to a slight decrease in surface area. It has been proven that the most effective way of preparing microporous activated carbons enriched with nitrogen to a considerable extent and having high surface area ({approximately} 3000 m{sup 2}/g) is the following: carbonization - activation - reaction with urea. 40 refs., 1 fig., 6 tabs.

  14. The Fate and Transport of the SiO2 Nanoparticles in a Granular Activated Carbon Bed and Their Impact on the Removal of VOCs

    EPA Science Inventory

    Adsorption isotherm, adsorption kinetics and column breakthrough experiments evaluating trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) were conducted in the presence and absence of silica nanoparticles (SiO2 NPs). Zeta potential of the SiO

  15. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  16. A Magnesium-Activated Carbon Hybrid Capacitor

    SciTech Connect

    Yoo, HD; Shterenberg, I; Gofer, Y; Doe, RE; Fischer, CC; Ceder, G; Aurbach, D

    2013-12-11

    Prototype cells of hybrid capacitor were developed, comprising activated carbon (AC) cloth and magnesium (Mg) foil as the positive and negative electrodes, respectively. The electrolyte solution included ether solvent (TBF) and a magnesium organo-halo-aluminate complex 0.25 M Mg2Cl3+-Ph2AlCl2-. In this solution Mg can be deposited/dissolved reversibly for thousands of cycles with high reversibility (100% cycling efficiency). The main barrier for integrating porous AC electrodes with this electrolyte solution was the saturation of the pores with the large ions in the AC prior to reaching the potential limit. This is due to the existence of bulky Mg and Al based ionic complexes consisting Cl, alkyl or aryl (R), and THF ligands. This problem was resolved by adding 0.5 M of lithium chloride (LiCl), thus introducing smaller ionic species to the solution. This Mg hybrid capacitor system demonstrated a stable cycle performance for many thousands of cycles with a specific capacitance of 90 Fg(-1) for the AC positive electrodes along a potential range of 2.4 V. (C) 2014 The Electrochemical Society. All rights reserved.

  17. Adsorption of EDTA on activated carbon from aqueous solutions.

    PubMed

    Zhu, Hai-song; Yang, Xiao-juan; Mao, Yan-peng; Chen, Yu; Long, Xiang-li; Yuan, Wei-kang

    2011-01-30

    In this study, the adsorption of EDTA on activated carbon from aqueous solutions has been investigated in a batch stirred cell. Experiments have been carried out to investigate the effects of temperature, EDTA concentration, pH, activated carbon mass and particle size on EDTA adsorption. The experimental results manifest that the EDTA adsorption rate increases with its concentration in the aqueous solutions. EDTA adsorption also increases with temperature. The EDTA removal from the solution increases as activated carbon mass increases. The Langmuir and Freundlich equilibrium isotherm models are found to provide a good fitting of the adsorption data, with R(2) = 0.9920 and 0.9982, respectively. The kinetic study shows that EDTA adsorption on the activated carbon is in good compliance with the pseudo-second-order kinetic model. The thermodynamic parameters (E(a), ΔG(0), ΔH(0), ΔS(0)) obtained indicate the endothermic nature of EDTA adsorption on activated carbon.

  18. Ozone Removal by Filters Containing Activated Carbon: A Pilot Study

    SciTech Connect

    Fisk, William; Spears, Mike; Sullivan, Douglas; Mendell, Mark

    2009-09-01

    This study evaluated the ozone removal performance of moderate-cost particle filters containing activated carbon when installed in a commercial building heating, ventilating, and air conditioning (HVAC) system. Filters containing 300 g of activated carbon per 0.09 m2 of filter face area were installed in two 'experimental' filter banks within an office building located in Sacramento, CA. The ozone removal performance of the filters was assessed through periodic measurements of ozone concentrations in the air upstream and downstream of the filters. Ozone concentrations were also measured upstream and downstream of a 'reference' filter bank containing filters without any activated carbon. The filter banks with prefilters containing activated carbon were removing 60percent to 70percent of the ozone 67 and 81 days after filter installation. In contrast, there was negligible ozone removal by the reference filter bank without activated carbon.

  19. The adsorption of sympathomimetic agents by activated carbon hemoperfusion.

    PubMed

    Horres, C R; Hill, J B; Ellis, F W

    1976-01-01

    Sympathomimetic agents with mixed and pure alpha and beta adrenergic activity are adsorbed by coconut shell activated carbon from blood, sufficiently rapidly to markedly reduce the activity of these agents. The results of this study suggest that the site of injection of sympathomimetic agents being considered for correcting hypotension during activated carbon hemoperfusion be selected to permit systemic mixing before circulation into the adsorption device.

  20. The role of denitrification on arsenite oxidation and arsenic mobility in an anoxic sediment column model with activated alumina.

    PubMed

    Sun, Wenjie; Sierra-Alvarez, Reyes; Field, Jim A

    2010-12-01

    Arsenite (As(III)) is the predominant arsenic (As) species in reducing environments. As(III) is less strongly adsorbed than As(V) at circumneutral pH conditions by common non-iron metal oxides in sediments such as those of aluminum. Therefore, oxidation of As(III) to As(V) could contribute to an improved immobilization of As and thus help mitigate As contamination in groundwater. Microbial oxidation of As(III) is known to readily under aerobic conditions, however, the dissolved oxygen (O₂) concentration in groundwater may be limited due to the poor solubility of O₂ and its high chemical reactivity with reduced compounds. Nitrate (NO₃⁻), can be considered as an alternative electron acceptor, which can support oxidation of As(III) to As(V) by denitrifying bacteria. In this study, two up-flow sediment columns packed with activated alumina (AA) were utilized to demonstrate the role of denitrification on the oxidation of As(III) to As(V) and its contribution to improved As adsorption onto AA. One column was supplied with NO₃⁻(C1) and its performance was compared with a control column lacking NO₃⁻(C2). During most of the operation when the pH was in the circumneutral range (days 50-250), the release of arsenic was greater from C2 compared to C1. The effluent As concentrations started increasing on days 60 and 100 in C2 and C1, respectively. Complete breakthrough started on day 200 in C2; whereas in C1, complete breakthrough was never achieved. The effluent and solid phase As speciation was dominated by As(V) in C1, indicating the occurrence of As(III) oxidation due to NO₃⁻; whereas in C2, only As(III) was dominant. This study illustrates a bioremediation or natural attenuation process based on anoxic microbial NO₃⁻-dependent oxidation of As(III) to more readily adsorbed As(V) as a means to enhance the immobilization of As on alumina oxide particles in subsurface environments.

  1. Fractal analysis of granular activated carbons using isotherm data

    SciTech Connect

    Khalili, N.R.; Pan, M.; Sandi, G.

    1997-08-01

    Utilization of adsorption on solid surfaces was exercised for the first time in 1785. Practical application of unactivated carbon filters, and powdered carbon were first demonstrated in the American water treatment plant, and a municipal treatment plant in New Jersey, in 1883 and 1930, respectively. The use of activated carbon became widespread in the next few decades. At present, adsorption on carbons has a wide spread application in water treatment and removal of taste, odor, removal of synthetic organic chemicals, color-forming organics, and desinfection by-products and their naturally occurring precursors. This paper presents an analysis of the surface fractal dimension and adsorption capacity of a group of carbons.

  2. Transcriptionally active heterotrophic diazotrophs are widespread in the upper water column of the Arabian Sea.

    PubMed

    Bird, Clare; Wyman, Michael

    2013-04-01

    Pelagic nitrogen fixation makes an important contribution to the fixed nitrogen budget of the world's oceans. Filamentous and unicellular cyanobacteria are significant players in this process but less is known of the potential activity of heterotrophic diazotrophs, although they are present and can be quite numerous in the nitrogen-deplete surface waters of the tropical and sub-tropical oceans. In this study we focused on the potential activity of several clades of heterotrophic nitrogen-fixers identified by phylogenetic analysis of 44 non-Trichodesmium-related, nifH (encoding the Fe-subunit of nitrogenase) clones from the Arabian Sea. Specific Northern slot blot protocols were developed to quantify nifH mRNAs from each clade and showed that two groups of Gammaproteobacteria, including the previously characterized UMB clade, and a third, novel phylotype affiliated with cluster III anaerobes, were actively expressing nitrogenase in the equatorial waters of this region. Transcripts (nifH mRNAs) from the latter clade were particularly abundant and were also detected in the suboxic waters of the oxygen minimum zone further north. Like the gammaproteobacterial groups, nifH expression by these organisms appeared to be insensitive to combined nitrogen concentrations and was readily detected in the nutrient-replete waters below the upper mixed layer as well as at shallower depths.

  3. Using active flow technology columns for high through-put and efficient analyses: The drive towards ultra-high through-put high-performance liquid chromatography with mass spectral detection.

    PubMed

    Kocic, Danijela; Shalliker, R Andrew

    2015-11-20

    The performance of active flow technology chromatography columns in parallel segmented flow mode packed with 5 μm Hypersil GOLD particles was compared to conventional UHPLC columns packed with 1.9 μm Hypersil GOLD particles. While the conventional UHPLC columns produced more theoretical plates at the optimum flow rate, when separations were performed at maximum through-put the larger particle size AFT column out-performed the UHPLC column. When both the AFT column and the UHPLC column were operated such that they yielded the same number of theoretical plates per separation, the separation on the AFT column was twice as fast as that on the UHPLC column, with the same level of sensitivity and at just 70% of the back pressure. Furthermore, as the flow velocity further increased the performance gain on the AFT column compared to the UHPLC column improved. An additional advantage of the AFT column was that the flow stream at the exit of the column was split in the radial cross section of the peak profile. This enables the AFT column to be coupled to a flow limiting detector, such as a mass spectrometer. When operated under high through-put conditions separations as fast as six seconds, using mobile phase flow rates in the order of 5-6 mL/min have been recorded.

  4. Selecting activated carbon for water and wastewater treatability studies

    SciTech Connect

    Zhang, W.; Chang, Q.G.; Liu, W.D.; Li, B.J.; Jiang, W.X.; Fu, L.J.; Ying, W.C.

    2007-10-15

    A series of follow-up investigations were performed to produce data for improving the four-indicator carbon selection method that we developed to identify high-potential activated carbons effective for removing specific organic water pollutants. The carbon's pore structure and surface chemistry are dependent on the raw material and the activation process. Coconut carbons have relatively more small pores than large pores; coal and apricot nutshell/walnut shell fruit carbons have the desirable pore structures for removing adsorbates of all sizes. Chemical activation, excessive activation, and/or thermal reactivation enlarge small pores, resulting in reduced phenol number and higher tannic acid number. Activated carbon's phenol, iodine, methylene blue, and tannic acid numbers are convenient indicators of its surface area and pore volume of pore diameters < 10, 10-15, 15-28, and > 28 angstrom, respectively. The phenol number of a carbon is also a good indicator of its surface acidity of oxygen-containing organic functional groups that affect the adsorptive capacity for aromatic and other small polar organics. The tannic acid number is an indicator of carbon's capacity for large, high-molecular-weight natural organic precursors of disinfection by-products in water treatment. The experimental results for removing nitrobenzene, methyl-tert-butyl ether, 4,4-bisphenol, humic acid, and the organic constituents of a biologically treated coking-plant effluent have demonstrated the effectiveness of this capacity-indicator-based method of carbon selection.

  5. Burdach's column.

    PubMed

    Pearce, J M S

    2006-01-01

    After the Greek physicians Herophilus and Galen, the major anatomical advances in the anatomy of the spinal cord were made possible by the microtome devised by Benedikt Stilling in January 1842. This enabled him to cut the frozen, thin sections and examine them, unstained,with the microscope. The technique founded future investigation of the cord's anatomy. Brown-Séquard, Türck, Clarke, Lissauer, Goll, and Flechsig all contributed. An important result of these progressing anatomical experiments was the identification of the posterior columns. In 1826, the German physiologist Karl Friedrich Burdach (1776-1847) described, from macroscopic study, the fasciculus cuneatus, known as the tract of Burdach: the lateral portion of the posterior columns of the cord that terminate in the nucleus cuneatus of the medulla.

  6. High-resolution water column survey to identify active sublacustrine hydrothermal discharge zones within Lake Rotomahana, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Walker, Sharon L.; de Ronde, Cornel E. J.; Fornari, Daniel; Tivey, Maurice A.; Stucker, Valerie K.

    2016-03-01

    Autonomous underwater vehicles were used to conduct a high-resolution water column survey of Lake Rotomahana using temperature, pH, turbidity, and oxidation-reduction potential (ORP) to identify active hydrothermal discharge zones within the lake. Five areas with active sublacustrine venting were identified: (1) the area of the historic Pink Terraces; (2) adjacent to the western shoreline subaerial "Steaming Cliffs," boiling springs and geyser; (3) along the northern shoreline to the east of the Pink Terrace site; (4) the newly discovered Patiti hydrothermal system along the south margin of the 1886 Tarawera eruption rift zone; and (5) a location in the east basin (northeast of Patiti Island). The Pink Terrace hydrothermal system was active prior to the 1886 eruption of Mount Tarawera, but venting along the western shoreline, in the east basin, and the Patiti hydrothermal system appear to have been initiated in the aftermath of the eruption, similar to Waimangu Valley to the southwest. Different combinations of turbidity, pH anomalies (both positive and negative), and ORP responses suggest vent fluid compositions vary over short distances within the lake. The seasonal period of stratification limits vertical transport of heat to the surface layer and the hypolimnion temperature of Lake Rotomahana consequently increases with an average warming rate of ~ 0.010 °C/day due to both convective hydrothermal discharge and conductive geothermal heating. A sudden temperature increase occurred during our 2011 survey and was likely the response to an earthquake swarm just 11 days prior.

  7. Removal of elemental mercury from flue gas by thermally activated ammonium persulfate in a bubble column reactor.

    PubMed

    Liu, Yangxian; Wang, Qian

    2014-10-21

    In this article, a novel technique on removal of elemental mercury (Hg(0)) from flue gas by thermally activated ammonium persulfate ((NH4)(2)S(2)O(8)) has been developed for the first time. Some experiments were carried out in a bubble column reactor to evaluate the effects of process parameters on Hg(0) removal. The mechanism and kinetics of Hg(0) removal are also studied. The results show that the parameters, (NH4)(2)S(2)O(8) concentration, activation temperature and solution pH, have significant impacts on Hg(0) removal. The parameters, Hg(0), SO2 and NO concentration, only have small effects on Hg(0) removal. Hg(0) is removed by oxidations of (NH4)(2)S(2)O(8), sulfate and hydroxyl free radicals. When (NH4)(2)S(2)O(8) concentration is more than 0.1 mol/L and solution pH is lower than 9.71, Hg(0) removal by thermally activated (NH4)(2)S(2)O(8) meets a pseudo-first-order fast reaction with respect to Hg(0). However, when (NH4)(2)S(2)O(8) concentration is less than 0.1 mol/L or solution pH is higher than 9.71, the removal process meets a moderate speed reaction with respect to Hg(0). The above results indicate that this technique is a feasible method for emission control of Hg(0) from flue gas.

  8. Removal of Pb(II) ions from aqueous solution using activated tea waste: Adsorption on a fixed-bed column.

    PubMed

    Mondal, M K

    2009-08-01

    An inexpensive and effective adsorbent was developed from waste tea leaves for the dynamic uptake of Pb(II). Characterization of the adsorbents showed a clear change between physico-chemical properties of activated tea waste and simply tea waste. The purpose of this work was to evaluate the potential of activated tea waste in continuous flow removal of Pb(II) ions from synthetic aqueous effluents. The performance of the system was evaluated to assess the effect of various process variables, viz., of bed height, hydraulic loading rate and initial feed concentration on breakthrough time and adsorption capacity. The shape of the breakthrough curves was determined for the adsorption of Pb(II) by varying different operating parameters like hydraulic loading rate (2.3-9.17m(3)/hm(2)), bed height (0.3-0.5m) and feed concentration (2-10mg/l). An attempt has also been made to model the data generated from column studies using the empirical relationship based on the Bohart-Adams model. There was an acceptable degree of agreement between the data for breakthrough time calculated from the Bohart-Adams model and the present experimental study with average absolute deviation of less than 5.0%. The activated tea waste in this study showed very good promise as compared with the other adsorbents available in the literature. The adsorbent could be suitable for repeated use (for more than four cycles) without noticeable loss of capacity.

  9. Preparation of activated carbon monolith by application of phenolic resins as carbon precursors

    NASA Astrophysics Data System (ADS)

    Sajad, Mehran; Kazemzad, Mahmood; Hosseinnia, Azarmidokht

    2014-04-01

    In the current work, activated carbon monoliths have been prepared by application of different phenolic hydrocarbons namely catechol and resorcinol as carbon precursors. For synthesis of carbon monolith, the precursors have been mixed with Genapol PF-10 as template and then polymerized in the presence of lysine as catalyst. Then the polymerized monolith carbonized in inert atmosphere at 700°C and activated by water steam at 550°C. It was found that resorcinol polymerization is easier than catechol and occurred at 90°C while for polymerization of catechol elevated temperature of 120°C at hydrothermal condition is necessary. The prepared activated carbon samples have been characterized by various analysis methods including scanning electron microscopy (SEM), surface area measurement, and transmission electron microscopy (TEM). The adsorptions of three different aromatic hydrocarbons by the prepared activated carbon samples have also been investigated by high performance liquid chromatography (HPLC) and UV-Vis spectroscopy. It was found that carbon monolith prepared by catechol as carbon precursor has higher adsorpability and strength in comparison with the other sample. The higher performance of carbon monolith prepared by catechol can be associated with its higher active sites in comparison with resorcinol.

  10. Thalamocortical Connections Drive Intracortical Activation of Functional Columns in the Mislaminated Reeler Somatosensory Cortex.

    PubMed

    Wagener, Robin J; Witte, Mirko; Guy, Julien; Mingo-Moreno, Nieves; Kügler, Sebastian; Staiger, Jochen F

    2016-02-01

    Neuronal wiring is key to proper neural information processing. Tactile information from the rodent's whiskers reaches the cortex via distinct anatomical pathways. The lemniscal pathway relays whisking and touch information from the ventral posteromedial thalamic nucleus to layer IV of the primary somatosensory "barrel" cortex. The disorganized neocortex of the reeler mouse is a model system that should severely compromise the ingrowth of thalamocortical axons (TCAs) into the cortex. Moreover, it could disrupt intracortical wiring. We found that neuronal intermingling within the reeler barrel cortex substantially exceeded previous descriptions, leading to the loss of layers. However, viral tracing revealed that TCAs still specifically targeted transgenically labeled spiny layer IV neurons. Slice electrophysiology and optogenetics proved that these connections represent functional synapses. In addition, we assessed intracortical activation via immediate-early-gene expression resulting from a behavioral exploration task. The cellular composition of activated neuronal ensembles suggests extensive similarities in intracolumnar information processing in the wild-type and reeler brains. We conclude that extensive ectopic positioning of neuronal partners can be compensated for by cell-autonomous mechanisms that allow for the establishment of proper connectivity. Thus, genetic neuronal fate seems to be of greater importance for correct cortical wiring than radial neuronal position.

  11. Batch and dynamic sorption of Ni(II) ions by activated carbon based on a native lignocellulosic precursor.

    PubMed

    Nabarlatz, Debora; de Celis, Jorge; Bonelli, Pablo; Cukierman, Ana Lea

    2012-04-30

    Vinal-derived Activated Carbon (VAC) developed by phosphoric acid activation of sawdust from Prosopis ruscifolia native wood was tested for the adsorption of Ni(II) ions from dilute solutions in both batch and dynamic modes, comparing it with a Commercial Activated Carbon (CAC). Batch experiments were performed to determine adsorption kinetics and equilibrium isotherms for both carbons. It was possible to remove near 6.55 mg Ni g(-1) VAC and 7.65 mg Ni g(-1) CAC after 5 h and 10 h contact time, respectively. A pseudo second order equation fitted well with the kinetics of the process, and Langmuir adsorption model was used to adjust the experimental results concerning the adsorption isotherm. The parameters obtained indicate a stronger interaction between sorbent and sorbate for VAC (K = 26.56 L mmol(-1)) than for CAC (K = 19.54 L mmol(-1)). Continuous experiments were performed in a fixed-bed column packed with the investigated carbons, evaluating the influence of operational parameters such as flow rate, bed height and feed concentration on the breakthrough curves obtained. The breakthrough occurred more slowly for low concentrations of the metal ion in the feed, low flow rates and high bed height. The breakthrough curves were properly represented by Hall's model for both carbon types. Regeneration of the vinal activated carbon in column was tested, obtaining the same breakthrough curve in a new cycle of use. Finally, vinal-derived activated carbon can effectively be used to treat wastewater having until 30 ppm Ni(II).

  12. Production and characterization of lignocellulosic biomass-derived activated carbon.

    PubMed

    Namazi, A B; Jia, C Q; Allen, D G

    2010-01-01

    The goal of this work is to establish the technical feasibility of producing activated carbon from pulp mill sludges. KOH chemical activation of four lignocellulosic biomass materials, two sludges from pulp mills, one sludge for a linerboard mill, and cow manure, were investigated experimentally, with a focus on the effects of KOH/biomass ratio (1/1, 1.5/1 and 2/1), activation temperature (400-600 °C) and activation time (1 to 2 h) on the development of porosity. The activation products were characterized for their physical and chemical properties using a surface area analyzer, scanning electron microscopy and Fourier transform infrared spectroscopy. Experiments were carried out to establish the effectiveness of the lignocellulosic biomass-derived activated carbon in removing methylene blue (MB), a surrogate of large organic molecules. The results show that the activated carbon are highly porous with specific surface area greater than 500 m²/g. The yield of activated carbon was greater than the percent of fixed carbon in the dry sludge, suggesting that the activation process was able to capture a substantial amount of carbon from the organic matter in the sludge. While 400 °C was too low, 600 °C was high enough to sustain a substantial rate of activation for linerboard sludge. The KOH/biomass ratio, activation temperature and time all play important roles in pore development and yield control, allowing optimization of the activation process. MB adsorption followed a Langmuir isotherm for all four activated carbon, although the adsorption capacity of NK-primary sludge-derived activated carbon was considerably lower than the rest, consistent with its lower specific surface area.

  13. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl 2 activation

    NASA Astrophysics Data System (ADS)

    Uçar, Suat; Erdem, Murat; Tay, Turgay; Karagöz, Selhan

    2009-08-01

    In this study, pomegranate seeds, a by-product of fruit juice industry, were used as precursor for the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonization temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons was studied. When using the 2.0 impregnation ratio at the carbonization temperature of 600 °C, the specific surface area of the resultant carbon is as high as 978.8 m 2 g -1. The results showed that the surface area and total pore volume of the activated carbons at the lowest impregnation ratio and the carbonization temperature were achieved as high as 709.4 m 2 g -1 and 0.329 cm 3 g -1. The surface area was strongly influenced by the impregnation ratio of activation reagent and the subsequent carbonization temperature.

  14. Soil Inorganic Carbon in Deserts: Active Carbon Sink or Inert Reservoir?

    NASA Astrophysics Data System (ADS)

    Monger, H. C.; Cole, D. R.

    2011-12-01

    Soil inorganic carbon is the third largest C pool in the active global carbon cycle, containing at least 800 petagrams of carbon. Although carbonate dissolution-precipitation reactions have been understood for over a century, the role of soil inorganic carbon in carbon sequestration, and in particular pedogenic carbonate, is a deceptively complex process because it involves interdependent connections among climate, plants, microorganisms, silicate minerals, soil moisture, pH, and Ca supply via rain, dust, or in situ weathering. An understanding of soil inorganic carbon as a sink or reservoir also requires examination of the system at local to continental scales and at seasonal to millennial time scales. In desert soils studied in North America, carbon isotope ratios and radiocarbon dates were measured in combination with electron microscopy, lab and field experiments with biological calcite formation, and field measurements of carbon dioxide emissions. These investigations reveal that soil inorganic carbon is both an active sink and a inert reservoir depending on the spatial and temporal scale and source of calcium.

  15. Cellulosic carbon fibers with branching carbon nanotubes for enhanced electrochemical activities for bioprocessing applications.

    PubMed

    Zhao, Xueyan; Lu, Xin; Tze, William Tai Yin; Kim, Jungbae; Wang, Ping

    2013-09-25

    Renewable biobased carbon fibers are promising materials for large-scale electrochemical applications including chemical processing, energy storage, and biofuel cells. Their performance is, however, often limited by low activity. Herein we report that branching carbon nanotubes can enhance the activity of carbonized cellulosic fibers, such that the oxidation potential of NAD(H) was reduced to 0.55 V from 0.9 V when applied for bioprocessing. Coordinating with enzyme catalysts, such hierarchical carbon materials effectively facilitated the biotransformation of glycerol, with the total turnover number of NAD(H) over 3500 within 5 h of reaction.

  16. Grain-based activated carbons for natural gas storage.

    PubMed

    Zhang, Tengyan; Walawender, Walter P; Fan, L T

    2010-03-01

    Natural gas has emerged as a potential alternative to gasoline due to the increase in global energy demand and environmental concerns. An investigation was undertaken to explore the technical feasibility of implementing the adsorbed natural gas (ANG) storage in the fuel tanks of motor vehicles with activated carbons from biomass, e.g., sorghum and wheat. The grain-based activated carbons were prepared by chemical activation; the experimental parameters were varied to identify the optimum conditions. The porosity of the resultant activated carbons was evaluated through nitrogen adsorption; and the storage capacity, through methane adsorption. A comparative study was also carried out with commercial activated carbons from charcoal. The highest storage factor attained was 89 for compacted grain-based activated carbons from grain sorghum with a bulk density of 0.65 g/cm(3), and the highest storage factor attained is 106 for compacted commercial activated carbons (Calgon) with a bulk density of 0.70 g/cm(3). The storage factor was found to increase approximately linearly with increasing bulk density and to be independent of the extent of compaction. This implies that the grain-based activated carbons are the ideal candidates for the ANG storage.

  17. High activity and Levy searches: jellyfish can search the water column like fish.

    PubMed

    Hays, Graeme C; Bastian, Thomas; Doyle, Thomas K; Fossette, Sabrina; Gleiss, Adrian C; Gravenor, Michael B; Hobson, Victoria J; Humphries, Nicolas E; Lilley, Martin K S; Pade, Nicolas G; Sims, David W

    2012-02-07

    Over-fishing may lead to a decrease in fish abundance and a proliferation of jellyfish. Active movements and prey search might be thought to provide a competitive advantage for fish, but here we use data-loggers to show that the frequently occurring coastal jellyfish (Rhizostoma octopus) does not simply passively drift to encounter prey. Jellyfish (327 days of data from 25 jellyfish with depth collected every 1 min) showed very dynamic vertical movements, with their integrated vertical movement averaging 619.2 m d(-1), more than 60 times the water depth where they were tagged. The majority of movement patterns were best approximated by exponential models describing normal random walks. However, jellyfish also showed switching behaviour from exponential patterns to patterns best fitted by a truncated Lévy distribution with exponents (mean μ=1.96, range 1.2-2.9) close to the theoretical optimum for searching for sparse prey (μopt≈2.0). Complex movements in these 'simple' animals may help jellyfish to compete effectively with fish for plankton prey, which may enhance their ability to increase in dominance in perturbed ocean systems.

  18. Biochar and activated carbon for enhanced trace organic contaminant retention in stormwater infiltration systems.

    PubMed

    Ulrich, Bridget A; Im, Eugenia A; Werner, David; Higgins, Christopher P

    2015-05-19

    To assess the effectiveness of biochar and activated carbon (AC) for enhanced trace organic contaminant (TOrC) retention in stormwater infiltration systems, an approach combining forward-prediction modeling and laboratory verification experiments was employed. Batch and column tests were conducted using representative TOrCs and synthetic stormwater. Based on batch screening tests, two commercially available biochars (BN-biochar and MCG-biochar) and an AC were investigated. The AC exhibited the strongest sorption, followed by MCG-biochar and BN-biochar. Langmuir isotherms provided better fits to equilibrium data than Freundlich isotherms. Due to superior sorption kinetics, 0.2 wt % MCG-biochar in saturated sand columns retained TOrCs more effectively than 1.0 wt % BN-biochar. A forward-prediction intraparticle diffusion model based on the Langmuir isotherm adequately predicted column results when calibrated using only batch parameters, as indicated by a Monte Carlo uncertainty analysis. Case study simulations estimated that an infiltration basin amended with F300-AC or MCG-biochar could obtain sorption-retarded breakthrough times for atrazine of 54 or 5.8 years, respectively, at a 1 in./h infiltration rate. These results indicate that biochars or ACs with superior sorption capacity and kinetics can enhance TOrC retention in infiltration systems, and performance under various conditions can be predicted using results from batch tests.

  19. Technology Advancements for Active Remote Sensing of Carbon Dioxide from Space using the ASCENDS CarbonHawk Experiment Simulator

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Nehrir, A. R.; Liu, Z.; Chen, S.; Campbell, J. F.; Lin, B.; Kooi, S. A.; Fan, T. F.; Choi, Y.; Plant, J.; Yang, M. M.; Browell, E. V.; Harrison, F. W.; Meadows, B.; Dobler, J. T.; Zaccheo, T. S.

    2015-12-01

    This work describes advances in critical lidar technologies and techniques developed as part of the ASCENDS CarbonHawk Experiment Simulator (ACES) system for measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The ACES design demonstrates advancements in: (1) enhanced power-aperture product through the use and operation of multiple co-aligned laser transmitters and a multi-aperture telescope design; (2) high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation; and (4) advanced algorithms for cloud and aerosol discrimination. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. Specifically, the lidar simultaneously transmits three IM-CW laser beams from the high power EDFAs operating near 1571 nm. The outgoing laser beams are aligned to the field of view of three fiber-coupled 17.8-cm diameter telescopes, and the backscattered light collected by the same three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.9 MHz and operates service-free with a tactical Dewar and cryocooler. The electronic bandwidth is only slightly higher than 1 MHz, effectively limiting the noise level. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. This work provides an over view of these technologies, the modulation approaches, and results from recent test flights.

  20. Hydrogen adsorption on functionalized nanoporous activated carbons.

    PubMed

    Zhao, X B; Xiao, B; Fletcher, A J; Thomas, K M

    2005-05-12

    There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions.

  1. MAMAP - a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: retrieval algorithm and first inversions for point source emission rates

    NASA Astrophysics Data System (ADS)

    Krings, T.; Gerilowski, K.; Buchwitz, M.; Reuter, M.; Tretner, A.; Erzinger, J.; Heinze, D.; Pflüger, U.; Burrows, J. P.; Bovensmann, H.

    2011-09-01

    MAMAP is an airborne passive remote sensing instrument designed to measure the dry columns of methane (CH4) and carbon dioxide (CO2). The MAMAP instrument comprises two optical grating spectrometers: the first observing in the short wave infrared band (SWIR) at 1590-1690 nm to measure CO2 and CH4 absorptions, and the second in the near infrared (NIR) at 757-768 nm to measure O2 absorptions for reference/normalisation purposes. MAMAP can be operated in both nadir and zenith geometry during the flight. Mounted on an aeroplane, MAMAP surveys areas on regional to local scales with a ground pixel resolution of approximately 29 m × 33 m for a typical aircraft altitude of 1250 m and a velocity of 200 km h-1. The retrieval precision of the measured column relative to background is typically ≲ 1% (1σ). MAMAP measurements are valuable to close the gap between satellite data, having global coverage but with a rather coarse resolution, on the one hand, and highly accurate in situ measurements with sparse coverage on the other hand. In July 2007, test flights were performed over two coal-fired power plants operated by Vattenfall Europe Generation AG: Jänschwalde (27.4 Mt CO2 yr-1) and Schwarze Pumpe (11.9 Mt CO2 yr-1), about 100 km southeast of Berlin, Germany. By using two different inversion approaches, one based on an optimal estimation scheme to fit Gaussian plume models from multiple sources to the data, and another using a simple Gaussian integral method, the emission rates can be determined and compared with emissions reported by Vattenfall Europe. An extensive error analysis for the retrieval's dry column results (XCO2 and XCH4) and for the two inversion methods has been performed. Both methods - the Gaussian plume model fit and the Gaussian integral method - are capable of deriving estimates for strong point source emission rates that are within ±10% of the reported values, given appropriate flight patterns and detailed knowledge of wind conditions.

  2. Select metal adsorption by activated carbon made from peanut shells.

    PubMed

    Wilson, Kermit; Yang, Hong; Seo, Chung W; Marshall, Wayne E

    2006-12-01

    Agricultural by-products, such as peanut shells, contribute large quantities of lignocellulosic waste to the environment each growing season; but few, if any, value-added uses exist for their disposal. The objective of this study was to convert peanut shells to activated carbons for use in adsorption of select metal ions, namely, cadmium (Cd2+), copper (Cu2+), lead (Pb2+), nickel (Ni2+) and zinc (Zn2+). Milled peanut shells were pyrolyzed in an inert atmosphere of nitrogen gas, and then activated with steam at different activation times. Following pyrolysis and activation, the carbons underwent air oxidation. The prepared carbons were evaluated either for adsorption efficiency or adsorption capacity; and these parameters were compared to the same parameters obtained from three commercial carbons, namely, DARCO 12x20, NORIT C GRAN and MINOTAUR. One of the peanut shell-based carbons had metal ion adsorption efficiencies greater than two of the three commercial carbons but somewhat less than but close to Minotaur. This study demonstrates that peanut shells can serve as a source for activated carbons with metal ion-removing potential and may serve as a replacement for coal-based commercial carbons in applications that warrant their use.

  3. Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin

    NASA Astrophysics Data System (ADS)

    Tsubouchi, Naoto; Nishio, Megumi; Mochizuki, Yuuki

    2016-05-01

    The present work focuses on the role of nitrogen in the development of pores in activated carbon produced from lignin by K2CO3 activation, employing a fixed bed reactor under a high-purity He stream at temperatures of 500-900 °C. The specific surface area and pore volume obtained by activation of lignin alone are 230 m2/g and 0.13 cm3/g at 800 °C, and 540 m2/g and 0.31 cm3/g at 900 °C, respectively. Activation of a mixture of lignin and urea provides a significant increase in the surface area and volume, respectively reaching 3300-3400 m2/g and 2.0-2.3 cm3/g after holding at 800-900 °C for 1 h. Heating a lignin/urea/K2CO3 mixture leads to a significant decrease in the yield of released N-containing gases compared to the results for urea alone and a lignin/urea mixture, and most of the nitrogen in the urea is retained in the solid phase. X-ray photoelectron spectroscopy and X-ray diffraction analyses clearly show that part of the remaining nitrogen is present in heterocyclic structures (for example, pyridinic and pyrrolic nitrogen), and the rest is contained as KOCN at ≤600 °C and as KCN at ≥700 °C, such that the latter two compounds can be almost completely removed by water washing. The fate of nitrogen during heating of lignin/urea/K2CO3 and role of nitrogen in pore development in activated carbon are discussed on the basis of the results mentioned above.

  4. Sink effect in activated carbon-supported hydrodesulfurization catalysts

    SciTech Connect

    Laine, J.; Labady, M.; Severino, F.; Yunes, S.

    1997-03-01

    A synergistic effect has been proposed in previous papers, attempting to explain the higher activity of activated carbon-supported hydrodesulfurization (HDS) catalysts with respect to conventional alumina-supported catalysts, reported earlier. However, activated carbon characteristics can be strongly affected by the raw material and the method of activation. Thus, previous work using Ni-Mo catalysts supported on two different activated carbons (one prepared by {open_quotes}physical{close_quotes} and the other by {open_quotes}chemical{close_quotes} activation) showed different optimal Ni concentrations for higher HDS activity, such difference being attributed to the predominance of Topsoe`s Type I {open_quotes}NiMoS{close_quotes} phase in one carbon and the predominance of Type II in the other. Due to the lack of proper characterization of the activated carbon supported catalysts of the previous work, this paper presents further data suggesting that microporosity provided by the activated carbon may be the responsible for the above referred synergism. 12 refs., 1 fig., 3 tabs.

  5. Grafting of activated carbon cloths for selective adsorption

    NASA Astrophysics Data System (ADS)

    Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S.

    2016-05-01

    Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.

  6. Water column distribution of stable isotopes and carbonate properties in the South-eastern Levantine basin (Eastern Mediterranean): Vertical and temporal change

    NASA Astrophysics Data System (ADS)

    Sisma-Ventura, G.; Yam, R.; Kress, N.; Shemesh, A.

    2016-06-01

    Water column distributions of the oxygen isotopic composition of sea-water (δ18OSW) and the stable carbon isotope ratio of dissolved inorganic carbon (δ13CDIC), total alkalinity (AT) and the pH (total scale) at 25 °C (25 °CpHTotal) were investigated along the Southeast Mediterranean (SE-Med) shelf and open water, during 2009-2010. While, the vertical profiles of δ18OSW lacked a clear depth signature, those of δ13CDIC were characterized by a structure that reflects the major water masses in the Levantine basin, with noticeable vertical gradients. The δ13CDIC Suess effect of the Levantine water column was estimated from the difference between the average profiles of 1988 and 2009-2010 (Δδ13CDIC). We observed δ13CDIC temporal change, which indicates propagation of anthropogenic CO2 (Cant) to depth of about 700 m. The Modified Atlantic Water (MAW; 0-200 m) and the Levantine Intermediate Water (LIW; 200-400 m) exhibited a depletion rate of - 0.13 ± 0.03 and - 0.11 ± 0.03‰ decade- 1, respectively, representing ~ 50% of the atmospheric change, while the deep water of the Adriatic source (700-1300 m) did not change during this period. A Δδ13CDIC depletion trend was also recognized below 1350 m, corresponding to the Aegean source deep water (EMDWAeg) and therefore associated to the Eastern Mediterranean Transient (EMT) event. Anthropogenic CO2 accumulation rate of 0.38 ± 0.12 mol C m- 2 yr- 1 for the upper 700 m of the SE-Med, over the last 22 yr, was estimated on the basis of mean depth-integrated δ13CDIC Suess effect profile. Our results confirm lower accumulation rate than that of the subtropical North Atlantic, resulting due to the super-saturation with respect to CO2 of the well-stratified Levantine surface water. High pCO2 saturation during summer (+ 150 μatm), in oppose to a small degree of under-saturation in winter (- 30 μatm) was calculated from surface water AT and 25 °CpHTotal data. However, the δ13CDIC depletion trend of the LIW and the

  7. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    SciTech Connect

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number

  8. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S.

    2010-06-01

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  9. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S

    2013-02-19

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  10. Nickel adsorption by sodium polyacrylate-grafted activated carbon.

    PubMed

    Ewecharoen, A; Thiravetyan, P; Wendel, E; Bertagnolli, H

    2009-11-15

    A novel sodium polyacrylate grafted activated carbon was produced by using gamma radiation to increase the number of functional groups on the surface. After irradiation the capacity for nickel adsorption was studied and found to have increased from 44.1 to 55.7 mg g(-1). X-ray absorption spectroscopy showed that the adsorbed nickel on activated carbon and irradiation-grafted activated carbon was coordinated with 6 oxygen atoms at 2.04-2.06 A. It is proposed that this grafting technique could be applied to other adsorbents to increase the efficiency of metal adsorption.

  11. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    PubMed

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-05

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants.

  12. Physicochemical and porosity characteristics of thermally regenerated activated carbon polluted with biological activated carbon process.

    PubMed

    Dong, Lihua; Liu, Wenjun; Jiang, Renfu; Wang, Zhansheng

    2014-11-01

    The characteristics of thermally regenerated activated carbon (AC) polluted with biological activated carbon (BAC) process were investigated. The results showed that the true micropore and sub-micropore volume, pH value, bulk density, and hardness of regenerated AC decreased compared to the virgin AC, but the total pore volume increased. XPS analysis displayed that the ash contents of Al, Si, and Ca in the regenerated AC respectively increased by 3.83%, 2.62% and 1.8%. FTIR spectrum showed that the surface functional groups of virgin and regenerated AC did not change significantly. Pore size distributions indicated that the AC regeneration process resulted in the decrease of micropore and macropore (D>10 μm) volume and the increase of mesopore and macropore (0.1 μm

  13. Preparation of activated carbons from agricultural residues for pesticide adsorption.

    PubMed

    Ioannidou, Ourania A; Zabaniotou, Anastasia A; Stavropoulos, George G; Islam, Md Azharul; Albanis, Triantafyllos A

    2010-09-01

    Activated carbons (ACs) can be used not only for liquid but also for vapour phase applications, such as water treatment, deodorisation, gas purification and air treatment. In the present study, activated carbons produced from agricultural residues (olive kernel, corn cobs, rapeseed stalks and soya stalks) via physical steam activation were tested for the removal of Bromopropylate (BP) from water. For the characterization of the activated carbons ICP, SEM, FTIR and XRD analyses were performed. Adsorption kinetics and equilibrium isotherms were investigated for all biomass activated carbons in aqueous solutions. Experimental data of BP adsorption have fitted best to the pseudo 2nd-order kinetic model and Langmuir isotherm. The study resulted that corn cobs showed better adsorption capacity than the other biomass ACs. Comparison among ACs from biomass and commercial ones (F400 and Norit GL50) revealed that the first can be equally effective for the removal of BP from water with the latter.

  14. Production and characterization of activated carbons from cereal grains

    SciTech Connect

    Venkatraman, A.; Walawender, W.P.; Fan, L.T.

    1996-12-31

    The term, activated carbon, is a generic name for a family of carbonaceous materials with well-developed porosities and consequently, large adsorptive capacities. Activated carbons are increasingly being consumed worldwide for environmental applications such as separation of volatiles from bulk gases and purification of water and waste-water streams. The global annual production is estimated to be around 300 million kilograms, with a rate of increase of 7% each year. Activated carbons can be prepared from a variety of raw materials. Approximately, 60% of the activated carbons generated in the United States is produced from coal; 20%, from coconut shells; and the remaining 20% from wood and other sources of biomass. The pore structure and properties of activated carbons are influenced by the nature of the starting material and the initial physical and chemical conditioning as well as the process conditions involved in its manufacture. The porous structures of charcoals and activated carbons obtained by the carbonization of kernels have been characterized.

  15. Hydrogen storage on activated carbon. Final report

    SciTech Connect

    Schwarz, J.A.

    1994-11-01

    The project studied factors that influence the ability of carbon to store hydrogen and developed techniques to enhance that ability in naturally occurring and factory-produced commercial carbon materials. During testing of enhanced materials, levels of hydrogen storage were achieved that compare well with conventional forms of energy storage, including lead-acid batteries, gasoline, and diesel fuel. Using the best materials, an electric car with a modern fuel cell to convert the hydrogen directly to electricity would have a range of over 1,000 miles. This assumes that the total allowable weight of the fuel cell and carbon/hydrogen storage system is no greater than the present weight of batteries in an existing electric vehicle. By comparison, gasoline cars generally are limited to about a 450-mile range, and battery-electric cars to 40 to 60 miles. The project also developed a new class of carbon materials, based on polymers and other organic compounds, in which the best hydrogen-storing factors discovered earlier were {open_quotes}molecularly engineered{close_quotes} into the new materials. It is believed that these new molecularly engineered materials are likely to exceed the performance of the naturally occurring and manufactured carbons seen earlier with respect to hydrogen storage.

  16. ELEMENTAL MERCURY CAPTURE BY ACTIVATED CARBON IN A FLOW REACTOR

    EPA Science Inventory


    The paper gives results of bench-scale experiments in a flow reactor to simulate the entrained-flow capture of elemental mercury (Hgo) using solid sorbents. Adsorption of Hgo by a lignite-based activated carbon (Calgon FGD) was examined at different carbon/mercury (C/Hg) rat...

  17. Carbon and nutrient cycling in the upper water column across the Polar Frontal Zone and Antarctic Circumpolar Current along 170°W

    NASA Astrophysics Data System (ADS)

    Rubin, Stephany I.

    2003-09-01

    Seasonal changes of upper water column chemical properties integrate the effects of the physical, chemical, and biological processes that control the export of carbon to the deep ocean. Between October 1997 and March 1998, several hydrographic cruises were undertaken in the southwestern Pacific sector of the Southern Ocean, as part of the U.S. JGOFS program. On these cruises, the partial pressure of carbon dioxide (pCO2) and concentration of total carbon dioxide (TCO2) dissolved in seawater were determined in surface waters, along with the nutrient concentrations [nitrate (NO3-), nitrite (NO2-), ammonium (NH4+), phosphate (PO4≡), and silicate (Si(OH)4)]. This interval saw the commencement, culmination, and dénouement of phytoplankton blooms, both north and south of the Polar Front (PF). Nutrient utilization, regeneration, and export ratios, and primary production and export, were estimated from seasonal changes in these properties observed in surface waters across the Polar Front. While the biological drawdowns of carbon dioxide and nutrient concentrations in the euphotic zone were greater south of the front, the estimated primary productivity (1.6-2.7 mol C/m2/yr) and export (1.2-1.5 mol C/m2/yr) are comparable. The observed C/N/P ratios vary temporally, as a function of the dominant process, and spatially, as a function of the phytoplankton assemblage. South of the PF, the maximum biological utilization (or new production) C/N/P ratios are 69 ± 2/10.4 ± 0.5/1 while post-regeneration biological utilization (or export) C/N/P ratios are 87 ± 3/12.7 ± 0.5/1. North of the PF the C/N/P ratios are similar to the classic Redfield ratios, 100 ± 5/(14-16.5) ± 0.5/1. Silica/(C, N, and P) ratios are also highly variable temporally, reflecting differences between silica and organic nutrient cycling, and the bio-availability iron. Departures from the "Redfield ratio" arise from excess phosphate uptake by diatoms and the preferential regeneration of phosphate. The

  18. Selection and preparation of activated carbon for fuel gas storage

    DOEpatents

    Schwarz, James A.; Noh, Joong S.; Agarwal, Rajiv K.

    1990-10-02

    Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

  19. TESTING GUIDELINES FOR TECHNETIUM-99 ABSORPTION ON ACTIVATED CARBON

    SciTech Connect

    BYRNES ME

    2010-09-08

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs) will

  20. Trace elements removal from water using modified activated carbon.

    PubMed

    Campos, V; Buchler, P M

    2008-02-01

    This paper present the possible alternative options for the remove of trace elements from drinking water supplies in the trace. Arsenic and chromium are two of the most toxic pollutants, introduced into natural waters from a variety of sources and causing various adverse effects on living bodies. The performance of three filter bed methods was evaluated in the laboratory. Experiments were conducted to investigate the sorption of arsenic and chromium on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of the arsenic and chromium species for Fe/Fe3C (iron/iron carbide) sites is the key factor controlling the removal of the elements. The method is based on the use of powdered block carbon, powder carbon steel and ceramic spheres in the ion-sorption columns as a cleaning process. The modified powdered block carbon is a satisfactory and economical sorbent for trace elements (arsenite and chromate) dissolved in water due to its low unit cost of about $23 and compatibility with the traditional household filtration system.

  1. Depleted dissolved organic carbon and distinct bacterial communities in the water column of a rapid-flushing coral reef ecosystem

    PubMed Central

    Nelson, Craig E; Alldredge, Alice L; McCliment, Elizabeth A; Amaral-Zettler, Linda A; Carlson, Craig A

    2011-01-01

    Coral reefs are highly productive ecosystems bathed in unproductive, low-nutrient oceanic waters, where microbially dominated food webs are supported largely by bacterioplankton recycling of dissolved compounds. Despite evidence that benthic reef organisms efficiently scavenge particulate organic matter and inorganic nutrients from advected oceanic waters, our understanding of the role of bacterioplankton and dissolved organic matter (DOM) in the interaction between reefs and the surrounding ocean remains limited. In this study, we present the results of a 4-year study conducted in a well-characterized coral reef ecosystem (Paopao Bay, Moorea, French Polynesia) where changes in bacterioplankton abundance and dissolved organic carbon (DOC) concentrations were quantified and bacterial community structure variation was examined along spatial gradients of the reef:ocean interface. Our results illustrate that the reef is consistently depleted in concentrations of both DOC and bacterioplankton relative to offshore waters (averaging 79 μmol l−1 DOC and 5.5 × 108 cells l−1 offshore and 68 μmol l−1 DOC and 3.1 × 108 cells l−1 over the reef, respectively) across a 4-year time period. In addition, using a suite of culture-independent measures of bacterial community structure, we found consistent differentiation of reef bacterioplankton communities from those offshore or in a nearby embayment across all taxonomic levels. Reef habitats were enriched in Gamma-, Delta-, and Betaproteobacteria, Bacteriodetes, Actinobacteria and Firmicutes. Specific bacterial phylotypes, including members of the SAR11, SAR116, Flavobacteria, and Synechococcus clades, exhibited clear gradients in relative abundance among nearshore habitats. Our observations indicate that this reef system removes oceanic DOC and exerts selective pressures on bacterioplankton community structure on timescales approximating reef water residence times, observations which are notable both because

  2. A simple and rapid technique for radiochemical separation of iodine radionuclides from irradiated tellurium using an activated charcoal column.

    PubMed

    Chattopadhyay, Sankha; Saha Das, Sujata

    2009-10-01

    A simple and inexpensive method for the separation of medically useful no-carrier-added (nca) iodine radionuclides from bulk amounts of irradiated tellurium dioxide (TeO(2)) target was developed. The beta(-) emitting (131)I radionuclide, produced by the decay of (131)Te through the (nat)Te(n, gamma)(131)Te nuclear reaction, was used for standardization of the radiochemical separation procedure. The radiochemical separation was performed by precipitation followed by column (activated charcoal) chromatography. Quantitative post-irradiation recovery of the TeO(2) target material (98-99%), in a form suitable for reuse in future irradiations, was achieved. The overall radiochemical yield for the complete separation of (131)I was 75-85% (n=8). The separated nca (131)I was of high, approximately 99%, radionuclidic and radiochemical purities and did not contain detectable amounts of the target material. This method can be adopted for the radiochemical separation of other different iodine radionuclides produced from tellurium matrices through cyclotron as well as reactor irradiation.

  3. Quality of poultry litter-derived granular activated carbon.

    PubMed

    Qiu, Guannan; Guo, Mingxin

    2010-01-01

    Utilization of poultry litter as a source material for generating activated carbon is a value-added and environmentally beneficial approach to recycling organic waste. In this study, the overall quality of poultry litter-derived granular activated carbon was systematically evaluated based on its various physical and chemical properties. Granular activated carbon generated from pelletized poultry litter following a typical steam-activation procedure possessed numerous micropores in the matrix. The product exhibited a mean particle diameter of 2.59 mm, an apparent density of 0.45 g cm(-3), a ball-pan hardness of 91.0, an iodine number of 454 mg g(-1), and a BET surface area of 403 m(2) g(-1). It contained high ash, nitrogen, phosphorus contents and the trace elements Cu, Zn, and As. Most of the nutrients and toxic elements were solidified and solution-unextractable. In general, poultry litter-based activated carbon demonstrated overall quality comparable to that of low-grade commercial activated carbon derived from coconut shell and bituminous coal. It is promising to use poultry litter as a feedstock to manufacture activated carbon for wastewater treatment.

  4. Natural gas storage with activated carbon from a bituminous coal

    USGS Publications Warehouse

    Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.

    1996-01-01

    Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (<0.044 mm). The increase in Vm/Vs is due to the increase in bulk density of the carbons. Volumetric methane adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.

  5. Sustainable Regeneration of Nanoparticle Enhanced Activated Carbon in Water

    EPA Science Inventory

    The regeneration and reuse of exhausted granular activated carbon (GAC) is an appropriate method for lowering operational and environmental costs. Advanced oxidation is a promising environmental friendly technique for GAC regeneration. The main objective of this research was to ...

  6. [Influence of biological activated carbon dosage on landfill leachate treatment].

    PubMed

    Cui, Yan-Rui; Guo, Yan; Wu, Qing

    2014-08-01

    Effects of biological activated carbon (BAC) dosage on COD removal in landfill leachate treatment were compared. The COD removal efficiency of reactors with 0, 100 and 300 g activated carbon dosage per litre activated sludge was 12.9%, 19.6% and 27.7%, respectively. The results indicated that BAC improved the refractory organic matter removal efficiency and there was a positive correlation between COD removal efficiency and BAC dosage. The output of carbon dioxide after 8h of aeration in reactors was 109, 193 and 306 mg corresponding to the activated carbon dosages mentioned above, which indicated the amount of biodegradation and BAC dosage also had a positive correlation. The combination of adsorption and bioregeneration of BAC resulted in the positive correlation betweem organic matter removal efficiency and BAC dosage, and bioregeneration was the root cause for the microbial decomposition of refractory organics.

  7. POTENTIAL USE OF ACTIVATED CARBON TO RECOVER TC-99 FROM 200 WEST AREA GROUNDWATER AS AN ALTERNATIVE TO MORE EXPENSIVE RESINS HANFORD SITE RICHLAND WASNINGTON

    SciTech Connect

    BYRNES ME; ROSSI AJ; TORTOSO AC

    2009-12-03

    Recent treatability testing performed on groundwater at the 200-ZP-1 Operable Unit at the Hanford Site in Richland, Washington, has shown that Purolite{reg_sign} A530E resin very effectively removes Tc-99 from groundwater. However, this resin is expensive and cannot be regenerated. In an effort to find a less expensive method for removing Tc-99 from the groundwater, a literature search was performed. The results indicated that activated carbon may be used to recover technetium (as pertechnetate, TCO{sub 4}{sup -}) from groundwater. Oak Ridge National Laboratory used activated carbon in both batch adsorption and column leaching studies. The adsorption study concluded that activated carbon absorbs TCO{sub 4}{sup -} selectively and effectively over a wide range of pH values and from various dilute electrolyte solutions (< 0.01 molarity). The column leaching studies confirmed a high adsorption capacity and selectivity of activated carbon for TCO{sub 4}{sup -}. Since activated carbon is much less expensive than Purolite A530E resin, it has been determined that a more extensive literature search is warranted to determine if recent studies have reached similar conclusions, and, if so, pilot testing of 200-ZP-1 groundwater wi11 likely be implemented. It is possible that less expensive, activated carbon canisters could be used as pre-filters to remove Tc-99, followed by the use of the more expensive Purolite A530E resin as a polishing step.

  8. Computer Simulation of Global Profiles of Carbon Dioxide Using a Pulsed, 2-Micron, Coherent-Detection, Column-Content DIAL System

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Frehlich, Rod G.

    2009-01-01

    We present preliminary results of computer simulations of the error in measuring carbon dioxide mixing ratio profiles from earth orbit. The simulated sensor is a pulsed, 2-micron, coherent-detection lidar alternately operating on at least two wavelengths. The simulated geometry is a nadir viewing lidar measuring the column content signal. Atmospheric absorption is modeled using FASCODE3P software with the HITRAN 2004 absorption line data base. Lidar shot accumulation is employed up to the horizontal resolution limit. Horizontal resolutions of 50, 100, and 200 km are shown. Assuming a 400 km spacecraft orbit, the horizontal resolutions correspond to measurement times of about 7, 14, and 28 s. We simulate laser pulse-pair repetition frequencies from 1 Hz to 100 kHz. The range of shot accumulation is 7 to 2.8 million pulse-pairs. The resultant error is shown as a function of horizontal resolution, laser pulse-pair repetition frequency, and laser pulse energy. The effect of different on and off pulse energies is explored. The results are compared to simulation results of others and to demonstrated 2-micron operating points at NASA Langley.

  9. Carbon Nanotube Materials for Substrate Enhanced Control of Catalytic Activity

    SciTech Connect

    Heben, M.; Dillon, A. C.; Engtrakul, C.; Lee, S.-H.; Kelley, R. D.; Kini, A. M.

    2007-05-01

    Carbon SWNTs are attractive materials for supporting electrocatalysts. The properties of SWNTs are highly tunable and controlled by the nanotube's circumferential periodicity and their surface chemistry. These unique characteristics suggest that architectures constructed from these types of carbon support materials would exhibit interesting and useful properties. Here, we expect that the structure of the carbon nanotube support will play a major role in stabilizing metal electrocatalysts under extreme operating conditions and suppress both catalyst and support degradation. Furthermore, the chemical modification of the carbon nanotube surfaces can be expected to alter the interface between the catalyst and support, thus, enhancing the activity and utilization of the electrocatalysts. We plan to incorporate discrete reaction sites into the carbon nanotube lattice to create intimate electrical contacts with the catalyst particles to increase the metal catalyst activity and utilization. The work involves materials synthesis, design of electrode architectures on the nanoscale, control of the electronic, ionic, and mass fluxes, and use of advanced optical spectroscopy techniques.

  10. Adsorption of dichlorodifluoromethane, chlorodifluoromethane, and chloropentafluoroethane on activated carbon

    SciTech Connect

    Berlier, K.; Frere, M.; Bougard, J.

    1995-09-01

    The CFCs (chlorofluorocarbons) are used as working refrigerant fluids. Recent concerns of the effects of CFCs on the ozone layer requires the development of efficient recovery methods. One technique is to adsorb the fluids onto a porous medium such as silica gel or activated carbon. Isotherms and enthalpies of adsorption curves of dichlorodifluoromethane (R12), chlorodifluoromethane (R22), and chloropentafluoroethane (R115) on three different activated carbons have been obtained at 303 K and at pressures to 602 kPa.

  11. Carbon-Carbon Bond Cleavage in Activation of the Prodrug Nabumetone

    PubMed Central

    Varfaj, Fatbardha; Zulkifli, Siti N. A.; Park, Hyoung-Goo; Challinor, Victoria L.; De Voss, James J.

    2014-01-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs. PMID:24584631

  12. Carbon-carbon bond cleavage in activation of the prodrug nabumetone.

    PubMed

    Varfaj, Fatbardha; Zulkifli, Siti N A; Park, Hyoung-Goo; Challinor, Victoria L; De Voss, James J; Ortiz de Montellano, Paul R

    2014-05-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs.

  13. Preparation and characterization of activated carbon from sugarcane bagasse by physical activation with CO2 gas

    NASA Astrophysics Data System (ADS)

    Bachrun, Sutrisno; AyuRizka, Noni; Annisa, SolichaHidayat; Arif, Hidayat

    2016-01-01

    A series of experiments have been conducted to study the effects of different carbonization temperatures (400, 600, and 800oC) on characteristics of porosity in activated carbon derived from carbonized sugarcane bagassechar at activation temperature of 800oC. The results showed that the activated carbon derived from high carbonized temperature of sugarcane bagassechars had higher BET surface area, total volume, micropore volume and yield as compared to the activated carbon derived from low carbonized temperature. The BET surface area, total volume and micropore volume of activated carbon prepared from sugarcane bagassechars obtained at 800oC of carbonized temperature and activation time of 120 min were 661.46m2/g, 0.2455cm3/g and 0.1989cm3/g, respectively. The high carbonization temperature (800oC) generated a highly microporous carbonwith a Type-I nitrogen adsorption isotherm, while the low carbonization temperature (400 and 600oC) generated a mesoporous one with an intermediate between types I and IInitrogen adsorption isotherm.

  14. Waste polyvinylchloride derived pitch as a precursor to develop carbon fibers and activated carbon fibers.

    PubMed

    Qiao, W M; Yoon, S H; Mochida, I; Yang, J H

    2007-01-01

    Polyvinylchloride (PVC) was successfully recycled through the solvent extraction from waste pipe with an extraction yield of ca. 86%. The extracted PVC was pyrolyzed by a two-stage process (260 and 410 degrees C) to obtain free-chlorine PVC based pitch through an effective removal of chlorine from PVC during the heat-treatment. As-prepared pitch (softening point: 220 degrees C) was spun, stabilized, carbonized into carbon fibers (CFs), and further activated into activated carbon fibers (ACFs) in a flow of CO2. As-prepared CFs show comparable mechanical properties to commercial CFs, whose maximum tensile strength and modulus are 862 MPa and 62 GPa, respectively. The resultant ACFs exhibit a high surface area of 1200 m2/g, narrow pore size distribution and a low oxygen content of 3%. The study provides an effective insight to recycle PVC from waste PVC and develop a carbon precursor for high performance carbon materials such as CFs and ACFs.

  15. Water vapor adsorption on activated carbon preadsorbed with naphtalene.

    PubMed

    Zimny, T; Finqueneisel, G; Cossarutto, L; Weber, J V

    2005-05-01

    The adsorption of water vapor on a microporous activated carbon derived from the carbonization of coconut shell has been studied. Preadsorption of naphthalene was used as a tool to determine the location and the influence of the primary adsorbing centers within the porous structure of active carbon. The adsorption was studied in the pressure range p/p0=0-0.95 in a static water vapor system, allowing the investigation of both kinetic and equilibrium experimental data. Modeling of the isotherms using the modified equation of Do and Do was applied to determine the effect of preadsorption on the mechanism of adsorption.

  16. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2000-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  17. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2001-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  18. Differential Scanning Calorimetry (DSC) for the Analysis of Activated Carbon

    DTIC Science & Technology

    1991-10-01

    impregnation procedures . It is believed that Sutcliffe-Speakman is currently using coconut - shell as the carbon precursor (instead of the New Zealand coal...microstructure facilitate the adsorption process whereby all the undesirable materials are retained. For military deployment, the activated carbon is...AD-A245 899 H.P ’ l N dI dUenm / DIFFERENTIAL SCANNING CALORIMETRY (DSC) FOR THE ANALYSIS OF ACTIVATED CARBON (U) by S.H.C. a and L.E. Cameron DTIC x

  19. Production of activated carbon from rice husk Vietnam

    NASA Astrophysics Data System (ADS)

    Korobochkin, V. V.; Tu, N. V.; Hieu, N. M.

    2016-09-01

    This work is dedicated to the production of activated carbon from rice husk from Delta of the Red River in Viet Nam. At the first stage, carbonization of a rice husk was carried out to obtain material containing 43.1% carbon and 25 % silica with a specific surface area of 51.5 m2/g. After separating of silica (the second stage), the specific surface area of the product increased to 204 m2/g and the silica content decreased to 1.23% by weight as well. The most important stage in the formation of the porous structure of the material is the activation. The products with the high specific surface area in the range of 800-1345 m2/g were obtained by activation of carbonized product with water vapour or carbon dioxide at temperatures of 700 °C and 850 °C, with varying the flow rate of the activating agent and activation time. The best results were achieved by activation of carbon material with water vapour at the flow rate of 0.08 dm3/min per 500 g of material and the temperature of 850 °C.

  20. Activated Carbon Textile via Chemistry of Metal Extraction for Supercapacitors.

    PubMed

    Lam, Do Van; Jo, Kyungmin; Kim, Chang-Hyun; Kim, Jae-Hyun; Lee, Hak-Joo; Lee, Seung-Mo

    2016-12-27

    Carbothermic reduction in the chemistry of metal extraction (MO(s) + C(s) → M(s) + CO(g)) using carbon as a sacrificial agent has been used to smelt metals from diverse oxide ores since ancient times. Here, we paid attention to another aspect of the carbothermic reduction to prepare an activated carbon textile for high-rate-performance supercapacitors. On the basis of thermodynamic reducibility of metal oxides reported by Ellingham, we employed not carbon, but metal oxide as a sacrificial agent in order to prepare an activated carbon textile. We conformally coated ZnO on a bare cotton textile using atomic layer deposition, followed by pyrolysis at high temperature (C(s) + ZnO(s) → C'(s) + Zn(g) + CO(g)). We figured out that it leads to concurrent carbonization and activation in a chemical as well as mechanical way. Particularly, the combined effects of mechanical buckling and fracture that occurred between ZnO and cotton turned out to play an important role in carbonizing and activating the cotton textile, thereby significantly increasing surface area (nearly 10 times) compared with the cotton textile prepared without ZnO. The carbon textiles prepared by carbothermic reduction showed impressive combination properties of high power and energy densities (over 20-fold increase) together with high cyclic stability.

  1. Effects of Cabin Upsets on Adsorption Columns for Air Revitalization

    NASA Technical Reports Server (NTRS)

    LeVan, Douglas

    1999-01-01

    The National Aeronautics and Space Administration (NASA) utilizes adsorption technology as part of contaminant removal systems designed for long term missions. A variety of trace contaminants can be effectively removed from gas streams by adsorption onto activated carbon. An activated carbon adsorption column meets NASA's requirements of a lightweight and efficient means of controlling trace contaminant levels aboard spacecraft and space stations. The activated carbon bed is part of the Trace Contaminant Control System (TCCS) which is utilized to purify the cabin atmosphere. TCCS designs oversize the adsorption columns to account for irregular fluctuations in cabin atmospheric conditions. Variations in the cabin atmosphere include changes in contaminant concentrations, temperature, and relative humidity. Excessively large deviations from typical conditions can result from unusual crew activity, equipment malfunctions, or even fires. The research carried out under this award focussed in detail on the effects of cabin upsets on the performance of activated carbon adsorption columns. Both experiments and modeling were performed with an emphasis on the roll of a change in relative humidity on adsorption of trace contaminants. A flow through fixed-bed apparatus was constructed at the NASA Ames Research Center, and experiments were performed there. Modeling work was performed at the University of Virginia.

  2. Effects of CO 2 activation on porous structures of coconut shell-based activated carbons

    NASA Astrophysics Data System (ADS)

    Guo, Shenghui; Peng, Jinhui; Li, Wei; Yang, Kunbin; Zhang, Libo; Zhang, Shimin; Xia, Hongying

    2009-07-01

    In this paper, textural characterization of an activated carbon derived from carbonized coconut shell char obtained at carbonization temperature of 600 °C for 2 h by CO 2 activation was investigated. The effects of activation temperature, activation time and flow rate of CO 2 on the BET surface area, total volume, micropore volume and yield of activated carbons prepared were evaluated systematically. The results showed that: (i) enhancing activation temperature was favorable to the formation of pores, widening of pores and an increase in mesopores; (ii) increasing activation time was favorable to the formation of micropores and mesopores, and longer activation time would result in collapsing of pores; (iii) increasing flow rate of CO 2 was favorable to the reactions of all active sites and formation of pores, further increasing flow rate of CO 2 would lead carbon to burn out and was unfavorable to the formation of pores. The degree of surface roughness of activated carbon prepared was measured by the fractal dimension which was calculated by FHH (Frenkel-Halsey-Hill) theory. The fractal dimensions of activated carbons prepared were greater than 2.6, indicating the activated carbon samples prepared had very irregular structures, and agreed well with those of average micropore size.

  3. Comparison of toluene adsorption among granular activated carbon and different types of activated carbon fibers (ACFs).

    PubMed

    Balanay, Jo Anne G; Crawford, Shaun A; Lungu, Claudiu T

    2011-10-01

    Activated carbon fiber (ACF) has been demonstrated to be a good adsorbent for the removal of organic vapors in air. Some ACF has a comparable or larger surface area and higher adsorption capacity when compared with granular activated carbon (GAC) commonly used in respiratory protection devices. ACF is an attractive alternative adsorbent to GAC because of its ease of handling, light weight, and decreasing cost. ACF may offer the potential for short-term respiratory protection for first responders and emergency personnel. This study compares the critical bed depths and adsorption capacities for toluene among GAC and ACF of different forms and surface areas. GAC and ACF in cloth (ACFC) and felt (ACFF) forms were challenged in stainless steel chambers with a constant concentration of 500 ppm toluene via conditioned air at 25°C, 50% RH, and constant airflow (7 L/min). Breakthrough data were obtained for each adsorbent using gas chromatography with flame ionization detector. Surface areas of each adsorbent were determined using a physisorption analyzer. Results showed that the critical bed depth of GAC is 275% higher than the average of ACFC but is 55% lower than the average of ACFF. Adsorption capacity of GAC (with a nominal surface area of 1800 m(2)/g) at 50% breakthrough is 25% higher than the average of ACF with surface area of 1000 m(2)/g, while the rest of ACF with surface area of 1500 m(2)/g and higher have 40% higher adsorption capacities than GAC. ACFC with higher surface area has the smallest critical bed depth and highest adsorption capacity, which makes it a good adsorbent for thinner and lighter respirators. We concluded that ACF has great potential for application in respiratory protection considering its higher adsorption capacity and lower critical bed depth in addition to its advantages over GAC, particularly for ACF with higher surface area.

  4. Electroadsorption of Arsenic from natural water in granular activated carbon

    NASA Astrophysics Data System (ADS)

    Beralus, Jean-Mackson; Ruiz Rosas, Ramiro; Cazorla-Amoros, Diego; Morallon, Emilia

    2014-11-01

    The adsorption and electroadsorption of arsenic from a natural water has been studied in a filter-press electrochemical cell using a commercial granular activated carbon as adsorbent and Pt/Ti and graphite as electrodes. A significant reduction of the arsenic concentration is achieved when current is imposed between the electrodes, especially when the activated carbon was located in the vicinity of the anode. This enhancement can be explained in terms of the presence of electrostatic interactions between the polarized carbon surface and the arsenic ions, and changes in the distribution of most stable species of arsenic in solution due to As(III) to As(V) oxidation. In summary, electrochemical adsorption on a filter press cell can be used for enhancement the arsenic remediation with activated carbon in the treatment of a real groundwater.

  5. [Quickly enrichment of carbon in wastewater by activated sludge].

    PubMed

    Liu, Hong-Bo; Zhao, Fang; Wen, Xiang-Hua

    2011-10-01

    Pilot tests were carried out to investigate the absorption characteristics of the carbon source in urban wastewater by activated sludge and to analyze the carbon release from the carbon absorbed activated sludge in the settling process. The results indicated that carbon in wastewater could be quickly enriched by activated sludge. The absorption process of indissolvable organic matter could be finished as shortly as less than 10 min, while the absorption process of the dissolved organic matter was relatively slow and should consume up about 30 min. Moreover, carbon release was observed in the settling process of enriched sludge. In the period of 30-100 min, the release amount of total COD (TCOD) was 11.44 mg x g(-1), while in the period of 60-150 min, the release amount of dissolved COD (SCOD) was 6.24 mg x g(-1). Furthermore, based on the results of the bench-scale tests, a pilot-scale plant was built to investigate the absorption of carbon, nitrogen and phosphorus by activated sludge and the settleability of enriched sludge. The results indicated that under continuously operation mode, 60% of COD, 75% of TP and 10% of TN in the wastewater could be removed by the absorption of activated sludge, and the enriched sludge with SVI of 34.2 mL x g(-1) presented good settleability. Carbon enrichment by activated sludge could not only reclaim the carbon source in wastewater, but also reduce the loading of organic matter and give low C/N for the following nitrification unit and improving the nitrification efficiency.

  6. Removal of micropollutants from aerobically treated grey water via ozone and activated carbon.

    PubMed

    Hernández-Leal, L; Temmink, H; Zeeman, G; Buisman, C J N

    2011-04-01

    Ozonation and adsorption onto activated carbon were tested for the removal micropollutants of personal care products from aerobically treated grey water. MilliQ water spiked with micropollutants (100-1600 μgL(-1)) was ozonated at a dosing rate of 1.22. In 45 min, this effectively removed (>99%): Four parabens, bisphenol-A, hexylcinnamic aldehyde, 4-methylbenzylidene-camphor (4MBC), benzophenone-3 (BP3), triclosan, galaxolide and ethylhexyl methoxycinnamate. After 60 min, the removal efficiency of benzalkonium chloride was 98%, tonalide and nonylphenol 95%, octocrylene 92% and 2-phenyl-5-benzimidazolesulfonic acid (PBSA) 84%. Ozonation of aerobically treated grey water at an applied ozone dose of 15 mgL(-1), reduced the concentrations of octocrylene, nonylphenol, triclosan, galaxolide, tonalide and 4-methylbenzylidene-camphor to below limits of quantification, with removal efficiencies of at least 79%. Complete adsorption of all studied micropollutants onto powdered activated carbon (PAC) was observed in batch tests with milliQ water spiked with 100-1600 μgL(-1) at a PAC dose of 1.25 gL(-1) and a contact time of 5 min. Three granular activated carbon (GAC) column experiments were operated to treat aerobically treated grey water. The operation of a GAC column with aerobically treated grey water spiked with micropollutants in the range of 0.1-10 μgL(-1) at a flow of 0.5 bed volumes (BV)h(-1) showed micropollutant removal efficiencies higher than 72%. During the operation time of 1728 BV, no breakthrough of TOC or micropollutants was observed. Removal of micropollutants from aerobically treated grey water was tested in a GAC column at a flow of 2 BVh(-1). Bisphenol-A, triclosan, tonalide, BP3, galaxolide, nonylphenol and PBSA were effectively removed even after a stable TOC breakthrough of 65% had been reached. After spiking the aerobically treated effluent with micropollutants to concentrations of 10-100 μgL(-1), efficient removal to below limits of quantification

  7. Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, E.; Iwantono, Yulita, M.; Taslim, R.; Subagio, A.; Salomo, Deraman, M.

    2013-09-01

    In this paper, a composite electrode was prepared from a mixture of activated carbon derived from precarbonization of cassava peel (CP) and carbon nanotubes (CNTs). The activated carbon was produced by pyrolysis process using ZnCl2 as an activation agent. A N2 adsorption-desorption analysis for the sample indicated that the BET surface area of the activated carbon was 1336 m2 g-1. Difference percentage of CNTs of 0, 5, 10, 15 and 20% with 5% of PVDF binder were added into CP based activated carbon in order to fabricate the composite electrodes. The morphology and structure of the composite electrodes were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM image observed that the distribution of CNTs was homogeneous between carbon particles and the XRD pattern shown the amorphous structure of the sample. The electrodes were fabricated for supercapacitor cells with 316L stainless steel as current collector and 1 M sulfuric acid as electrolyte. An electrochemical characterization was performed by using an electrochemical impedance spectroscopy (EIS) method using a Solatron 1286 instrument and the addition of CNTs revealed to improve the resistant and capacitive properties of supercapacitor cell.

  8. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    NASA Astrophysics Data System (ADS)

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  9. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.

    PubMed

    Brooks, A J; Lim, Hyung-nam; Kilduff, James E

    2012-07-27

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  10. MAMAP - a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: instrument description and performance assessment

    NASA Astrophysics Data System (ADS)

    Gerilowski, K.; Tretner, A.; Krings, T.; Buchwitz, M.; Bertagnolio, P. P.; Belemezov, F.; Erzinger, J.; Burrows, J. P.; Bovensmann, H.

    2010-08-01

    Carbon dioxide (CO2) and Methane (CH4) are the two most important anthropogenic greenhouse gases. CH4 is furthermore one of the most potent present and future contributors to global warming because of its large global warming potential (GWP). Our knowledge of CH4 sources and sinks is based primarily on sparse in-situ local point measurements from micro sites and surface networks and more recently on low spatial resolution satellite observations. There is a need for measurements of the dry columns of CO2 and CH4 having high spatial resolution and spatial coverage. In order to fill this gap a new passive airborne 2-channel grating spectrometer instrument for remote sensing of small scale and mesoscale column-averaged CH4 and CO2 observations has been developed. This Methane Airborne MAPper (MAMAP) instrument measures reflected and scattered solar radiation in the short wave infrared (SWIR) and near-infrared (NIR) parts of the electro-magnetic spectrum at moderate spectral resolution. The SWIR channel yields measurements of atmospheric absorption bands of CH4 and CO2 in the spectral range between 1.59 and 1.69 μm at a spectral resolution of 0.82 nm. The NIR channel around 0.76 μm measures the atmospheric O2-A-band absorption with a resolution of 0.46 nm. MAMAP has been designed for flexible operation aboard a variety of airborne platforms. The instrument design and performance, together with some results from on-ground and in-flight engineering tests are presented. The instrument performance has been analyzed using a retrieval algorithm applied to the SWIR channel nadir measured spectra. The signal-to-noise ratio (SNR) of the SWIR channel is approximately 1000 for integration times (tint) in the range of 0.6-0.8 s for scenes with surface spectral reflectances of around 0.18. At these integration times the ground scene size is about 23×33 m2 for an aircraft altitude of 1 km and a ground speed of 200 km/h. For these scenes the CH4 and CO2 column retrieval precisions

  11. Granular Activated Carbon Performance Capability and Availability.

    DTIC Science & Technology

    1983-06-01

    5-11 Notes: 1. As total nitrobodies 2. Combined with RDX 3. Includes dissolved air flotation, sand filter, and GAC 4. Can be achieved with moderate...RDX-HMX Water and Air Research Inc Feoruary 1976 Facility Newoort Army Aunition Plant 0-27 ater Quality Assessment for the Proposed RDX-HMX Water and... Air Research Inc February 1976 Facility, McAlester Naval munition Depot. Vol I 0-28 luorovin Granular Carbon Treatment FMC Corp/EPA 1792-6D" N 07 71

  12. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    SciTech Connect

    Contescu, Cristian I.; Gallego, Nidia C.; Thibaud-Erkey, Catherine; Karra, Reddy

    2016-04-01

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC for measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.

  13. Surface and Column Variations of CO2 using Weighting Functions for Future Active Remote CO2 sensors and Data from DISCOVER-AQ Field Campaign

    NASA Astrophysics Data System (ADS)

    Yang, M. M.; Choi, Y.; Kooi, S. A.; Browell, E. V.

    2014-12-01

    Fast response (1 Hz) and high precision (< 0.1 ppmv) in situ CO2 measurements were recorded onboard the NASA P-3B during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Field Campaign, to investigate the ability of space-based observations to accurately assess near surface conditions related to air quality. The campaign spanned 4 years and took place over four geographically different locations. These included, Washington DC/Baltimore, MD (July 2011), San Joaquin Valley, CA (January - February 2013), Houston, TX (September 2013), and Denver, CO (July-August 2014). With the objective of obtaining better CO2 column calculations, each of these campaigns consisted of missed approaches and approximately two hundred vertical soundings of CO2 (from the surface to about 5 km). In this study, surface and column-averaged CO2 mixing ratio values from the vertical soundings in the four different urban areas are used to examine the temporal and spatial variability of CO2 within the lower troposphere. Tracers such as CO, CH2O, NOx, and NMHCs will be used to identify the source of variations observed in these urban sites. Additionally, we apply nominal CO2 column weighting functions for potential future active remote CO2 sensors operating in the 1.57-mm and 2.05-mm measurement regions to convert the in situ CO2 vertical mixing ratio profiles to variations in CO2 column optical depths, which is what the active remote sensors actually measure. Using statistics calculated from the optical depths at each urban site measured during the DISCOVER-AQ field campaign and for each nominal weighting function, we compare the natural variability of CO2 columns in the lower troposphere; relate the CO2 column variability to surface emissions; and show the measurement requirements for the future ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) in the continental U.S. urban areas.

  14. Comparison between two forms of granular activated carbon for the removal of pharmaceuticals from different waters.

    PubMed

    Lima, Lisandra; Baêta, Bruno E L; Lima, Diego R S; Afonso, Robson J C F; de Aquino, Sérgio F; Libânio, Marcelo

    2016-01-01

    The aim of this study was to evaluate the performance of two forms of basic granular activated carbon (GAC), mineral (pH = 10.5) and vegetal (pH = 9), for the removal of three pharmaceuticals, as sulphamethoxazole (SMX), diclofenac (DCF) and 17β-estradiol (E2), from two different matrices: fortified distilled (2.4-3.0 mg L(-1) and pH from 5.5 to 6.5) and natural (∼1.0 mg L(-1) and pH from 7.1 to 7.2) water in a bench scale. The Rapid Small-Scale Column Test used to assess the ability of mineral and vegetal GAC on removal of such pharmaceuticals led to removal capacities varying from 14.9 to 23.5 mg g(-1) for E2, from 23.7 to 24.2 mg g(-1) for DCF and from 20.5 to 20.6 mg g(-1) for SMX. Removal efficiencies of 71%, 88% and 74% for DCF, SMX and E2, respectively, were obtained at breakthrough point when using mineral GAC, whereas for the vegetal GAC the figures were 76%, 77% and 65%, respectively. The carbon usage rate at the breakthrough point varied from 11.9 to 14.5 L g(-1) for mineral GAC and from 8.8 to 14.8 L g(-1) for vegetal GAC. Mineral CAG also exhibited the best performance when treating fortified natural water, since nearly complete removal was observed for all contaminants in the column operated for 22 h at a carbon usage rate of 2.9 L g(-1).

  15. FENTON-DRIVEN REGENERATION OF GRANULAR ACTIVATED CARBON: A TECHNOLOGY OVERVIEW

    EPA Science Inventory

    A Fenton-driven mechanism for regenerating spent granular activated carbon (GAC) involves the combined, synergistic use of two reliable and well established treatment technologies - adsorption onto activated carbon and Fenton oxidation. During carbon adsorption treatment, enviro...

  16. Biofuel intercropping effects on soil carbon and microbial activity.

    PubMed

    Strickland, Michael S; Leggett, Zakiya H; Sucre, Eric B; Bradford, Mark A

    2015-01-01

    Biofuels will help meet rising demands for energy and, ideally, limit climate change associated with carbon losses from the biosphere to atmosphere. Biofuel management must therefore maximize energy production and maintain ecosystem carbon stocks. Increasingly, there is interest in intercropping biofuels with other crops, partly because biofuel production on arable land might reduce availability and increase the price of food. One intercropping approach involves growing biofuel grasses in forest plantations. Grasses differ from trees in both their organic inputs to soils and microbial associations. These differences are associated with losses of soil carbon when grasses become abundant in forests. We investigated how intercropping switchgrass (Panicum virgalum), a major candidate for cellulosic biomass production, in loblolly pine (Pinus taeda) plantations affects soil carbon, nitrogen, and microbial dynamics. Our design involved four treatments: two pine management regimes where harvest residues (i.e., biomass) were left in place or removed, and two switchgrass regimes where the grass was grown with pine under the same two biomass scenarios (left or removed). Soil variables were measured in four 1-ha replicate plots in the first and second year following switchgrass planting. Under switchgrass intercropping, pools of mineralizable and particulate organic matter carbon were 42% and 33% lower, respectively. These declines translated into a 21% decrease in total soil carbon in the upper 15 cm of the soil profile, during early stand development. The switchgrass effect, however, was isolated to the interbed region where switchgrass is planted. In these regions, switchgrass-induced reductions in soil carbon pools with 29%, 43%, and 24% declines in mineralizable, particulate, and total soil carbon, respectively. Our results support the idea that grass inputs to forests can prime the activity of soil organic carbon degrading microbes, leading to net reductions in stocks

  17. Oxidation of activated carbon: application to vinegar decolorization.

    PubMed

    López, Francisco; Medina, Francisco; Prodanov, Marin; Güell, Carme

    2003-01-15

    This article reports studies on the feasibility of increasing the decoloring capacity of a granular activated carbon (GAC) by using oxidation with air at 350 degrees C to modify its surface activity and porosity. The GAC, obtained from olive stones, had a maximum decolorization capacity of 92% for doses of 20 g/l, while the maximum decolorization capacity of the modified granular activated carbon (MGAC) was about 96% at a dose of 10 g/l. The increase in decoloring capacity is thought to be due to an increase in mesopore area (from 129 to 340 m2/g) in the MGAC. The maximum decoloring values and the doses needed to attain them are very close to values obtained in previous studies using coconut shell powder-activated carbon (94 and 98% for red and white vinegar for a dose of 10 g/l, respectively).

  18. Activated carbon and tungsten oxide supported on activated carbon catalysts for toluene catalytic combustion.

    PubMed

    Alvarez-Merino, M A; Ribeiro, M F; Silva, J M; Carrasco-Marín, F; Maldonado-Hódar, F J

    2004-09-01

    We have used activated carbon (AC) prepared from almond shells as a support for tungsten oxide to develop a series of WOx/AC catalysts for the catalytic combustion of toluene. We conducted the reaction between 300 and 350 degrees C, using a flow of 500 ppm of toluene in air and space velocity (GHSV) in the range 4000-7000 h(-1). Results show that AC used as a support is an appropriate material for removing toluene from dilute streams. By decreasing the GHSV and increasing the reaction temperature AC becomes a specific catalyst for the total toluene oxidation (SCO2 = 100%), but in less favorable conditions CO appears as reaction product and toluene-derivative compounds are retained inside the pores. WOx/AC catalysts are more selective to CO2 than AC due to the strong acidity of this oxide; this behavior improves with increased metal loading and reaction temperature and contact time. The catalytic performance depends on the nonstoichiometric tungsten oxide obtained during the pretreatment. In comparison with other supports the WOx/AC catalysts present, at low reaction temperatures, higher activity and selectivity than WO, supported on SiO2, TiO2, Al2O3, or Y zeolite. This is due to the hydrophobic character of the AC surface which prevents the adsorption of water produced from toluene combustion thus avoiding the deactivation of the active centers. However, the use of WOx/AC system is always restricted by its gasification temperature (around 400 degrees C), which limits the ability to increase the conversion values by increasing reaction temperatures.

  19. Comparative Study on the Implication of Three Nanoparticles on the Removal of Trichloroethylene by Adsorption - The Pilot and Rapid Small-Scale Column Tests

    EPA Science Inventory

    The impact of three commercially-available nanoparticles (NPs) on trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) was investigated. TCE Adsorption isotherm and column breakthrough experiments were conducted in the presence and absence of silicon dioxide (S...

  20. Testing Iodized Activated Carbon Filters with Non-Radio Active Methyl Iodide.

    DTIC Science & Technology

    1980-05-30

    and 4314, 4315, and 4316 are labora- to y impregnations using KI, KIO 3, hexamethylenetetramine and a pH 10 phosphate buffer (11). The agreement...14, Columbia Activated Carbon 207A 8 x 16, Sutcliffe, Speakman Co. Ltd. BPL 8 x 20, Activated Carbon Division, Calgon Corp. KITEG II Nuclear Consulting Services, Inc. TEDA triethylenediamine HMTA hexamethylenetetramine 52

  1. Decolorization of Cheddar cheese whey by activated carbon.

    PubMed

    Zhang, Yue; Campbell, Rachel; Drake, MaryAnne; Zhong, Qixin

    2015-05-01

    Colored Cheddar whey is a source for whey protein recovery and is decolorized conventionally by bleaching, which affects whey protein quality. Two activated carbons were studied in the present work as physical means of removing annatto (norbixin) in Cheddar cheese whey. The color and residual norbixin content of Cheddar whey were reduced by a higher level of activated carbon at a higher temperature between 25 and 55°C and a longer time. Activated carbon applied at 40g/L for 2h at 30°C was more effective than bleaching by 500mg/L of hydrogen peroxide at 68°C. The lowered temperature in activated-carbon treatments had less effect on protein structure as investigated for fluorescence spectroscopy and volatile compounds, particularly oxidation products, based on gas chromatography-mass spectrometry. Activated carbon was also reusable, removing more than 50% norbixin even after 10 times of regeneration, which showed great potential for decolorizing cheese whey.

  2. Treatment of activated carbon to enhance catalytic activity for reduction of nitric oxide with ammonia

    SciTech Connect

    Ku, B.J.; Rhee, H.K. . Dept. of Chemical Engineering); Lee, J.K.; Park, D. )

    1994-11-01

    Catalytic activity of activated carbon treated with various techniques was examined in a fixed bed reactor for the reduction of nitric oxide with ammonia at 150 C. Activated carbon derived from coconut shell impregnated with an aqueous solution of ammonium sulfate, further treated with sulfuric acid, dried at 120 C, and then heated in an inert gas stream at 400 C, showed the highest catalytic activity within the range of experimental conditions. The enhancement of catalytic activity of modified activated carbon could be attributed to the increase in the amount of oxygen function groups which increased the adsorption site for ammonia. Catalytic activity of activated carbons depended on the surface area and the oxygen content as well.

  3. A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits

    SciTech Connect

    Klasson, KT

    2002-12-23

    A general methodology was developed for evaluation of carbon sequestration technologies. In this document, we provide a method that is quantitative, but is structured to give qualitative comparisons despite changes in detailed method parameters, i.e., it does not matter what ''grade'' a sequestration technology gets but a ''better'' technology should receive a better grade. To meet these objectives, we developed and elaborate on the following concepts: (1) All resources used in a sequestration activity should be reviewed by estimating the amount of greenhouse gas emissions for which they historically are responsible. We have done this by introducing a quantifier we term Full-Cycle Carbon Emissions, which is tied to the resource. (2) The future fate of sequestered carbon should be included in technology evaluations. We have addressed this by introducing a variable called Time-adjusted Value of Carbon Sequestration to weigh potential future releases of carbon, escaping the sequestered form. (3) The Figure of Merit of a sequestration technology should address the entire life-cycle of an activity. The figures of merit we have developed relate the investment made (carbon release during the construction phase) to the life-time sequestration capacity of the activity. To account for carbon flows that occur during different times of an activity we incorporate the Time Value of Carbon Flows. The methodology we have developed can be expanded to include financial, social, and long-term environmental aspects of a sequestration technology implementation. It does not rely on global atmospheric modeling efforts but is consistent with these efforts and could be combined with them.

  4. Improved removal of arsenic from groundwater using pre-corroded steel and iron tailored granular activated carbon.

    PubMed

    Zou, J; Cannon, F S; Chen, W; Dempsey, B A

    2010-01-01

    The authors have combined corrosion of steel fittings or perforated sheets with granular activated carbon (GAC) that had been pre-treated with Fe(III)-citrate, to produce an innovative and low-maintenance technique for removing arsenic from groundwater. Removal of arsenic was measured using two GAC column configurations: rapid small scale column tests (RSSCT's) and mini-column tests. Independent variables included pH, pre-corrosion procedure, and idling of the column (i.e. intentionally stopping flow for defined times in order to create reducing conditions). Use of corroded steel plus pre-treated GAC removed arsenic to below 10 microg/L for up to 248,000 bed volumes (BV) at pH 6, compared to 7,000 BVs for pre-treated GAC without pre-corroded steel. Performance was not as good at pH 6.5 or 7.5. Idling the system recovered the iron corrosion ability by reducing the passive Fe(III) layer on pre-corroded steel surface, as a result the BVs to arsenic breakthrough was doubled. But idling also caused brief periods of arsenic and iron release after restart, due to reductive dissolution of arsenic-containing ferric oxides. GAC was also effective as filtration media for removal of iron (hydr)oxide particles (and associated arsenic) that was released from the pre-corroded iron.

  5. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution

    PubMed Central

    Mopoung, Sumrit; Moonsri, Phansiri; Palas, Wanwimon; Khumpai, Sataporn

    2015-01-01

    This research studies the characterization of activated carbon from tamarind seed with KOH activation. The effects of 0.5 : 1–1.5 : 1 KOH : tamarind seed charcoal ratios and 500–700°C activation temperatures were studied. FTIR, SEM-EDS, XRD, and BET were used to characterize tamarind seed and the activated carbon prepared from them. Proximate analysis, percent yield, iodine number, methylene blue number, and preliminary test of Fe(III) adsorption were also studied. Fe(III) adsorption was carried out by 30 mL column with 5–20 ppm Fe(III) initial concentrations. The percent yield of activated carbon prepared from tamarind seed with KOH activation decreased with increasing activation temperature and impregnation ratios, which were in the range from 54.09 to 82.03 wt%. The surface functional groups of activated carbon are O–H, C=O, C–O, –CO3, C–H, and Si–H. The XRD result showed high crystallinity coming from a potassium compound in the activated carbon. The main elements found in the activated carbon by EDS are C, O, Si, and K. The results of iodine and methylene blue adsorption indicate that the pore size of the activated carbon is mostly in the range of mesopore and macropore. The average BET pore size and BET surface area of activated carbon are 67.9764 Å and 2.7167 m2/g, respectively. Finally, the tamarind seed based activated carbon produced with 500°C activation temperature and 1.0 : 1 KOH : tamarind seed charcoal ratio was used for Fe(III) adsorption test. It was shown that Fe(III) was adsorbed in alkaline conditions and adsorption increased with increasing Fe(III) initial concentration from 5 to 20 ppm with capacity adsorption of 0.0069–0.019 mg/g. PMID:26689357

  6. Application of activated carbons from coal and coconut shell for removing free residual chlorine.

    PubMed

    Ogata, Fumihiko; Tominaga, Hisato; Ueda, Ayaka; Tanaka, Yuko; Iwata, Yuka; Kawasaki, Naohito

    2013-01-01

    This study investigated the removal of free residual chlorine by activated carbon (AC). ACs were prepared from coal (AC1) and coconut shell (AC2). The specific surface area of AC1 was larger than that of AC2. The removal of free residual chlorine increased with elapsed time and amount of adsorbent. The removal mechanism of free residual chlorine was the dechlorination reaction between hypochlorous acid or hypochlorite ion and AC. Moreover, AC1 was useful in the removal of free residual chlorine in tap water. The optimum condition for the removal of free residual chlorine using a column is space velocity 306 1/h; liner velocity 6.1 m/h.

  7. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth.

    PubMed

    Mohan, Dinesh; Singh, Kunwar P; Singh, Vinod K

    2006-07-31

    An efficient adsorption process is developed for the decontamination of trivalent chromium from tannery effluents. A low cost activated carbon (ATFAC) was prepared from coconut shell fibers (an agricultural waste), characterized and utilized for Cr(III) removal from water/wastewater. A commercially available activated carbon fabric cloth (ACF) was also studied for comparative evaluation. All the equilibrium and kinetic studies were conducted at different temperatures, particle size, pHs, and adsorbent doses in batch mode. The Langmuir and Freundlich isotherm models were applied. The Langmuir model best fit the equilibrium isotherm data. The maximum adsorption capacities of ATFAC and ACF at 25 degrees C are 12.2 and 39.56 mg/g, respectively. Cr(III) adsorption increased with an increase in temperature (10 degrees C: ATFAC--10.97 mg/g, ACF--36.05 mg/g; 40 degrees C: ATFAC--16.10 mg/g, ACF--40.29 mg/g). The kinetic studies were conducted to delineate the effect of temperature, initial adsorbate concentration, particle size of the adsorbent, and solid to liquid ratio. The adsorption of Cr(III) follows the pseudo-second-order rate kinetics. From kinetic studies various rate and thermodynamic parameters such as effective diffusion coefficient, activation energy and entropy of activation were evaluated. The sorption capacity of activated carbon (ATFAC) and activated carbon fabric cloth is comparable to many other adsorbents/carbons/biosorbents utilized for the removal of trivalent chromium from water/wastewater.

  8. Breakthrough CO₂ adsorption in bio-based activated carbons.

    PubMed

    Shahkarami, Sepideh; Azargohar, Ramin; Dalai, Ajay K; Soltan, Jafar

    2015-08-01

    In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide (KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25-65°C and inlet CO2 concentration range of 10-30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively. Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm(3)/g and surface area of 1400 m(2)/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after 50 cycles with low temperature (160°C) regeneration.

  9. Synthesis of carbon fibers and activated carbon fibers from coal liquids

    SciTech Connect

    Fei, Y.Q.; Derbyshire, F.; Jagtoyen, M.; Kimber, G.

    1994-12-31

    The production and application of low-cost, general purpose carbon fibers and activated fibers are emerging technologies with exciting potential, although at present their cost is too high to find widespread use. Production and R and D have been limited and to data, only a small range of precursors has been studied: petroleum pitches, coal extracts and coal tar pitches. Both processing costs and the properties of the fiber products are dependent on the nature of the starting material. Commercial precursors have been limited to the pitches produced from high temperature pyrolysis or cracking processes and are similar in composition and molecular structure. Suitable coal-based precursors can be produced with a wide range of composition, and at moderate cost, by methods such as low temperature carbonization, solvent extraction, hydropyrolysis and mild coal liquefaction. It is of interest to investigate the synthesis of carbon fibers and activated carbon fibers from precursors of different origins to elucidate the influence of precursor materials on fiber formation and processing, and their structure and properties. It is also of practical importance to understand the relationships between the type of starting materials (for example, coals) and the processing methods, and the properties of fiber precursors that can be produced from them. In the present study, the authors describe the synthesis of carbon fibers and activated carbon fibers from the products of the first stage of coal liquefaction.

  10. Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon.

    PubMed

    Apul, Onur Guven; Wang, Qiliang; Zhou, Yang; Karanfil, Tanju

    2013-03-15

    Adsorption of two synthetic organic compounds (SOCs; phenanthrene and biphenyl) by two pristine graphene nanosheets (GNS) and one graphene oxide (GO) was examined and compared with those of a coal base activated carbon (HD4000), a single-walled carbon nanotube (SWCNT), and a multi-walled carbon nanotube (MWCNT) in distilled and deionized water and in the presence of natural organic matter (NOM). Graphenes exhibited comparable or better adsorption capacities than carbon nanotubes (CNTs) and granular activated carbon (GAC) in the presence of NOM. The presence of NOM reduced the SOC uptake of all adsorbents. However, the impact of NOM on the SOC adsorption was smaller on graphenes than CNTs and activated carbons. Furthermore, the SOC with its flexible molecular structure was less impacted from NOM preloading than the SOC with planar and rigid molecular structure. The results indicated that graphenes can serve as alternative adsorbents for removing SOCs from water. However, they will also, if released to environment, adsorb organic contaminants influencing their fate and impact in the environment.

  11. High surface area activated carbon prepared from cassava peel by chemical activation.

    PubMed

    Sudaryanto, Y; Hartono, S B; Irawaty, W; Hindarso, H; Ismadji, S

    2006-03-01

    Cassava is one of the most important commodities in Indonesia, an agricultural country. Cassava is one of the primary foods in our country and usually used for traditional food, cake, etc. Cassava peel is an agricultural waste from the food and starch processing industries. In this study, this solid waste was used as the precursor for activated carbon preparation. The preparation process consisted of potassium hydroxide impregnation at different impregnation ratio followed by carbonization at 450-750 degrees C for 1-3 h. The results revealed that activation time gives no significant effect on the pore structure of activated carbon produced, however, the pore characteristic of carbon changes significantly with impregnation ratio and carbonization temperature. The maximum surface area and pore volume were obtained at impregnation ratio 5:2 and carbonization temperature 750 degrees C.

  12. The environmental applications of activated carbon/zeolite composite materials.

    PubMed

    Foo, K Y; Hameed, B H

    2011-02-17

    Over the past couple of years, the resurgence of placing an effective and sustainable amendment to combat against the auxiliary industrial entities, remains a highly contested agenda from a global point. With the renaissance of activated carbon, there has been a steadily growing interest in the research field. Recently, the adoption of zeolite composite, a prestigious advanced catalyst which formulates the enhancement of adsorption rate and hydrogen storage capability, has fore fronted to be a new growing branch in the scientific community. Confirming the assertion, this paper presents a state of art review of activated carbon/zeolite composite technology, its fundamental background studies, and environmental implications. Moreover, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbon/zeolite composite represents a potentially viable and powerful tool, leading to the plausible improvement of environmental preservation.

  13. Detoxification of pesticide waste via activated carbon adsorption process.

    PubMed

    Foo, K Y; Hameed, B H

    2010-03-15

    Concern about environmental protection has increased over the years from a global viewpoint. To date, the percolation of pesticide waste into the groundwater tables and aquifer systems remains an aesthetic issue towards the public health and food chain interference. With the renaissance of activated carbon, there has been a consistent growing interest in this research field. Confirming the assertion, this paper presents a state of art review of pesticide agrochemical practice, its fundamental characteristics, background studies and environmental implications. Moreover, the key advance of activated carbon adsorption, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbon adsorption represents a plausible and powerful circumstance, leading to the superior improvement of environmental preservation.

  14. Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers.

    PubMed

    Tsai, Jiun-Horng; Chiang, Hsiu-Mei; Huang, Guan-Yinag; Chiang, Hung-Lung

    2008-06-15

    The adsorption characteristics of chloroform, acetone, and acetonitrile on commercial activated carbon (C1), two types of activated carbon fibers (F1 and F2), and sludge adsorbent (S1) was investigated. The chloroform influent concentration ranged from 90 to 7800 ppm and the acetone concentration from 80 to 6900 ppm; the sequence of the adsorption capacity of chloroform and acetone on adsorbents was F2>F1 approximately C1 approximately S1. The adsorption capacity of acetonitrile ranged from 4 to 100 mg/g, corresponding to the influent range from 43 to 2700 ppm for C1, S1, and F1. The acetonitrile adsorption capacity of F2 was approximately 20% higher than that of the other adsorbents at temperatures<30 degrees C. The Freundlich equation fit the data better than the Langmuir and Dubinin-Radushkevich (D-R) equations. The adsorption rate of carbon fibers is higher than that of the other adsorbents due to their smaller fiber diameter and higher surface area. The micropore diffusion coefficient of VOC on activated carbon and sludge adsorbent was approximately 10(-4) cm2 s(-1). The diffusion coefficient of VOC on carbon fibers ranged from 10(-8) to 10(-7) cm2 s(-1). The small carbon fiber pore size corresponds to a smaller diffusion coefficient.

  15. Improved granular activated carbon for the stabilization of wastewater PH

    SciTech Connect

    Farmer, R.W.; Dussert, B.W.; Kovacic, S.L.

    1996-12-31

    Laboratory studies have identified the cause of the pH rise, which occurs during water treatment with activated carbon, as an interaction between the naturally occurring anions and protons in the water and the carbon surface. The interaction can be described as an ion exchange type of phenomenon, in which the carbon surface sorbs the anions and corresponding hydronium ions from the water. These studies have shown that the anion sorption and resulting pH increase is independent of the raw material used for the activated carbon production, e.g. bituminous or subbituminous coal, peat, wood or coconut. Also, the pH excursions occur with virgin, reactivated, and acid washed granular carbons. Current pH control technologies focus on adjustment of the wastewater pH prior to discharge or recycle of the initial effluent water until the pH increase abates. However, improved water pH control options have been realized by altering the carbon surface through controlled oxidation rather than the water chemistry or extended preprocessing at the treatment site.

  16. Carbon Nanotubes Activate Limulus Amebocyte Lysate Coagulation by Interface Adsorption.

    PubMed

    Yang, Man; Nie, Xin; Meng, Jie; Liu, Jian; Sun, Zhiwei; Xu, Haiyan

    2017-03-15

    Limulus amebocyte lysate (LAL) assay is worldwide requested in the assessment of endotoxin contamination for biomaterials. As carbon nanotubes are one major nanomaterial with multiple potentials in biomedical application, here we investigate whether oxidized multiwalled carbon nanotubes (O-MWCNT) interferes the assessment by LAL assays. We showed that the endotoxin free O-MWCNT dispersing in aqueous solutions could activate both the gel-clotting and the end-point chromogenic LAL assay by converting coagulogen into coagulin through interfacial interactions between O-MWCNT and enzymes in the assays. In conclusion, the O-MWCNT could induce false positive results by activating the enzyme cascade of LAL.

  17. Fenton-driven chemical regeneration of MTBE-spent granular activated carbon--a pilot study.

    PubMed

    Huling, Scott G; Kan, Eunsung; Caldwell, Caleb; Park, Saehan

    2012-02-29

    Three columns containing granular activated carbon (GAC) were placed on-line at a ground water pump and treat facility, saturated with methyl tert-butyl ether (MTBE), and regenerated with hydrogen peroxide (H2O2) under different chemical, physical, and operational conditions for 3 adsorption/oxidation cycles. Supplemental iron was immobilized in the GAC (≈6 g/kg) through the amendment of a ferrous iron solution. GAC regeneration occurred under ambient thermal conditions (21-27 °C), or enhanced thermal conditions (50 °C). Semi-continuous H2O2 loading resulted in saw tooth-like H2O2 concentrations, whereas continuous H2O2 loading resulted in sustained H2O2 levels and was more time efficient. Significant removal of MTBE was measured in all three columns using $(USD) 0.6 H2O2/lb GAC. Elevated temperature played a significant role in oxidative treatment, given the lower MTBE removal at ambient temperature (62-80%) relative to MTBE removal measured under thermally enhanced (78-95%), and thermally enhanced, acid pre-treated (92-97%) conditions. Greater MTBE removal was attributed to increased intraparticle MTBE desorption and diffusion and higher aqueous MTBE concentrations. No loss in the MTBE sorption capacity of the GAC was measured, and the reaction byproducts, tert-butyl alcohol and acetone were also degraded.

  18. Continuous sorption cooling in activated carbon-nitrogen system using metal foam as regenerator

    NASA Astrophysics Data System (ADS)

    Ghosh, Indranil

    2017-02-01

    In compressor driven solid sorption process, cooling obtained from a desorbing bed (equivalent to an evaporator), is intermittent in nature. Intermittency can be avoided using multiple adsorbent columns. However, connecting a desorbing bed to heat source and adsorbing beds to heat sink in alternate cycles enhances operational complexity and constructional disadvantages. In a recent development, it has been seen that rapid and successive pressurization and depressurization of an adsorbent (solid) bed with adsorbate (gas) creates temperature differential across the column length. The presence of an orifice at the end opposite to gas entrance enhances the temperature gradient. By connecting the hot end to heat sink and the cold end to heat source permanently, one can substantially reduce the operational hazards associated with the intermittent sorption cooling processes. More recently, it has seen that the introduction of a regenerator in the process makes the cooling process more effective. Though the proposed sorption cooling process apparently looks similar to orifice type ‘pulse tube’ cooler, the former is intrinsically different than the other. In the present manuscript, experimental sorption cooling studies using of metal foam as regenerator has been discussed. Tests have been conducted near room temperature in activated carbon-nitrogen system.

  19. Removing lead in drinking water with activated carbon

    SciTech Connect

    Taylor, R.M.; Kuennen, R.W. )

    1994-02-01

    A point-of-use (POU) granular activated carbon (GAC) fixed bed adsorber (FBA) was evaluated for reduction of soluble and insoluble lead from drinking water. Some of the factors which affect lead removal by GAC were evaluated, such as carbon type, solution pH, and a limited amount of work on competitive interactions. The design criteria for lead reduction by a POU device are also addressed. Minicolumns were used to evaluate the capacity of carbon for lead under a variety of conditions. The importance of surface chemistry of the carbon and the relationship with the pH of the water for lead reduction was demonstrated. Results indicate that a properly designed POU-GAC-FBA can reduce lead in drinking water to below the EPA action level of 15 ppb while being tested under a variety of conditions as specified under the National Sanitation Foundation (NSF) International Standard 53 test protocol. 37 refs., 9 figs., 1 tab.

  20. Carbon-based supercapacitors produced by activation of graphene.

    PubMed

    Zhu, Yanwu; Murali, Shanthi; Stoller, Meryl D; Ganesh, K J; Cai, Weiwei; Ferreira, Paulo J; Pirkle, Adam; Wallace, Robert M; Cychosz, Katie A; Thommes, Matthias; Su, Dong; Stach, Eric A; Ruoff, Rodney S

    2011-06-24

    Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp(2)-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

  1. Carbon-based Supercapacitors Produced by Activation of Graphene

    SciTech Connect

    Y Zhu; S Murali; M Stoller; K Ganesh; W Cai; P Ferreira; A Pirkle; R Wallace; K Cychosz; et al.

    2011-12-31

    Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp{sup 2}-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

  2. Carbon-Based Supercapacitors Produced by Activation of Graphene

    SciTech Connect

    Zhu, Y.; Su, D.; Murali, S.; Stoller, M.D.; Ganesh, K.J.; Cai, W.; Ferreira, P.J.; Pirkle, A.; Wallace, R.M.; Cychosz, K.A., Thommes, M.; Stach, E.A.; Ruoff, R.S.

    2011-06-24

    Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp{sup 2}-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

  3. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  4. Granular biochar compared with activated carbon for wastewater treatment and resource recovery.

    PubMed

    Huggins, Tyler M; Haeger, Alexander; Biffinger, Justin C; Ren, Zhiyong Jason

    2016-05-01

    Granular wood-derived biochar (BC) was compared to granular activated carbon (GAC) for the treatment and nutrient recovery of real wastewater in both batch and column studies. Batch adsorption studies showed that BC material had a greater adsorption capacity at the high initial concentrations of total chemical oxygen demand (COD-T) (1200 mg L(-1)), PO4 (18 mg L(-1)), and NH4 (50 mg L(-1)) compared to GAC. Conversely the BC material showed a lower adsorption capacity for all concentrations of dissolved chemical oxygen demand (COD-D) and the lower concentrations of PO4 (5 mg L(-1)) and NH4 (10 mg L(-1)). Packed bed column studies showed similar average COD-T removal rate for BC with 0.27 ± 0.01 kg m(-3) d(-1) and GAC with 0.24 ± 0.01 kg m(-3) d(-1), but BC had nearly twice the average removal rate (0.41 ± 0.08 kg m(-3) d(-3)) compared to GAC during high COD-T concentrations (>500 mg L(-1)). Elemental analysis showed that both materials accumulated phosphorous during wastewater treatment (2.6 ± 0.4 g kg(-1) and 1.9 ± 0.1 g kg(-1) for BC and GAC respectively). They also contained high concentrations of other macronutrients (K, Ca, and Mg) and low concentrations of metals (As, Cd, Cr, Pb, Zn, and Cu). The good performance of BC is attributed to its macroporous structure compared with the microporous GAC. These favorable treatment data for high strength wastewater, coupled with additional life-cycle benefits, helps support the use of BC in packed bed column filters for enhanced wastewater treatment and nutrient recovery.

  5. Arundo donax cane as a precursor for activated carbons preparation by phosphoric acid activation.

    PubMed

    Vernersson, T; Bonelli, P R; Cerrella, E G; Cukierman, A L

    2002-06-01

    Canes from Arundo donax, a herbaceous rapid-growing plant, were used as precursor for activated carbon preparation by phosphoric acid activation under a self-generated atmosphere. The influence of the carbonization temperature in the range 400-550 degrees C and of the weight ratio phosphoric acid to precursor (R = 1.5-2.5) on the developed porous structure of the resulting carbons was studied for 1 h of carbonization time. Surface properties of the activated carbons were dependent on a combined effect of the conditions employed. Carbons developed either with R = 1.5 over the range 400-500 degrees C, or with R = 2 at 500 degrees C exhibited surface areas of around 1100 m2/g, the latter conditions promoting a larger pore volume and enhanced mesoporous character. For both ratios, temperature above 500 degrees C led to reduction in porosity development. A similar effect was found for the highest ratio (R = 2.5) and 500 degrees C. The influence of carrying out the carbonization either for times shorter than 1 h or under flowing N2 was also examined at selected conditions (R = 2, 500 degrees C). Shorter times induced increase in the surface area (approximately 1300 m2/g), yielding carbons with smaller mean pore radius. Activated carbons obtained under flowing N2 possessed predominant microporous structures and larger ash contents than the samples derived in the self-generated atmosphere.

  6. Production Scale-Up or Activated Carbons for Ultracapacitors

    SciTech Connect

    Dr. Steven D. Dietz

    2007-01-10

    Transportation use accounts for 67% of the petroleum consumption in the US. Electric and hybrid vehicles are promising technologies for decreasing our dependence on petroleum, and this is the objective of the FreedomCAR & Vehicle Technologies Program. Inexpensive and efficient energy storage devices are needed for electric and hybrid vehicle to be economically viable, and ultracapacitors are a leading energy storage technology being investigated by the FreedomCAR program. The most important parameter in determining the power and energy density of a carbon-based ultracapacitor is the amount of surface area accessible to the electrolyte, which is primarily determined by the pore size distribution. The major problems with current carbons are that their pore size distribution is not optimized for liquid electrolytes and the best carbons are very expensive. TDA Research, Inc. (TDA) has developed methods to prepare porous carbons with tunable pore size distributions from inexpensive carbohydrate based precursors. The use of low-cost feedstocks and processing steps greatly lowers the production costs. During this project with the assistance of Maxwell Technologies, we found that an impurity was limiting the performance of our carbon and the major impurity found was sulfur. A new carbon with low sulfur content was made and found that the performance of the carbon was greatly improved. We also scaled-up the process to pre-production levels and we are currently able to produce 0.25 tons/year of activated carbon. We could easily double this amount by purchasing a second rotary kiln. More importantly, we are working with MeadWestvaco on a Joint Development Agreement to scale-up the process to produce hundreds of tons of high quality, inexpensive carbon per year based on our processes.

  7. Pore structure of the activated coconut shell charcoal carbon

    NASA Astrophysics Data System (ADS)

    Budi, E.; Nasbey, H.; Yuniarti, B. D. P.; Nurmayatri, Y.; Fahdiana, J.; Budi, A. S.

    2014-09-01

    The development of activated carbon from coconut shell charcoal has been investigated by using physical method to determine the influence of activation parameters in term of temperature, argon gas pressure and time period on the pore structure of the activated carbon. The coconut shell charcoal was produced by pyrolisis process at temperature of about 75 - 150 °C for 6 hours. The charcoal was activated at various temperature (532, 700 and 868 °C), argon gas pressure (6.59, 15 and 23.4 kgf/cm2) and time period of (10, 60 and 120 minutes). The results showed that the pores size were reduced and distributed uniformly as the activation parameters are increased.

  8. Atypical Hydrogen Uptake on Chemically Activated, Ultramicroporous Carbon

    SciTech Connect

    Bhat, Vinay V; Contescu, Cristian I; Gallego, Nidia C; Baker, Frederick S

    2010-01-01

    Hydrogen adsorption at near-ambient temperatures on ultramicroporous carbon (UMC), derived through secondary chemical activation from a wood-based activated carbon was studied using volumetric and gravimetric methods. The results showed that physisorption is accompanied by a process of different nature that causes slow uptake at high pressures and hysteresis on desorption. In combination, this results in unusually high levels of hydrogen uptake at near-ambient temperatures and pressures (e.g. up to 0.8 wt % at 25 oC and 2 MPa). The heat of adsorption corresponding to the slow process leading to high uptake (17 20 kJ/mol) is higher than usually reported for carbon materials, but the adsorption kinetics is slow, and the isotherms exhibit pronounced hysteresis. These unusual properties were attributed to contributions from polarization-enhanced physisorption caused by traces of alkali metals residual from chemical activation. The results support the hypothesis that polarization-induced physisorption in high surface area carbons modified with traces of alkali metal ions is an alternate route for increasing the hydrogen storage capacity of carbon adsorbents.

  9. Effects of organic carbon sequestration strategies on soil enzymatic activities

    NASA Astrophysics Data System (ADS)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  10. Preparation of Paper Containing Activated Carbon.

    DTIC Science & Technology

    1984-06-01

    development of charcoal paper. RESUME On a obtenu du papier contenant du charbon actif en dispersant du charbon r~duit en poudre et en versant des agents de...sa capaciti d’adsorption et de ritention du charbon . Ce papier pourrait servir d𔄀crans dans une salle de contr~le de contamination pour le balayage...contenant du charbon . "l-ii:: . ---:.-o * *** * *. .. t C Cd. .. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 S 2 INTRODUCTION . Activated

  11. Nitrogen-Containing Carbon Nanotube Synthesized from Polymelem and Activated Carbon Derived from Polymer Blend

    NASA Astrophysics Data System (ADS)

    Qin, Nan

    Polymelem possesses a polymeric structure of heptazine (C6N 7) rings connected by amine bridges and our study has demonstrated that it is a promising precursor for the synthesis of nitrogen-containing carbon materials. Nitrogen-containing carbon nanotube (NCNT) was produced by pyrolyzing polymelem as a dual source of carbon and nitrogen with Raney nickel in a high pressure stainless steel cell. Activated carbon was produced from poly(ether ether ketone)/poly(ether imide) (PEEK/PEI blend) and incorporated with polymelem to enhance the hydrogen adsorption. Polymelem was successfully synthesized by pyrolyzing melamine at 450--650 °C and its structure was elucidated by 13C solid state NMR, FTIR, and XRD. The molecular weight determined by a novel LDI MS equipped with a LIFT mode illuminated that polymelem has both linear and cyclic connectivity with a degree of polymerization of 2--5 depending on the synthesis temperature. The decomposition products of polymelem were determined to be cyanoamide, dicyanoamide, and tricyanoamine. Tricyanoamine is the smallest carbon nitride molecule and has been experimentally confirmed for the first time in this study. When polymelem was decomposed in the presence of Raney nickel, homogenous NCNT with nitrogen content of ˜ 4--19 atom% was produced. A mechanism based on a detail analysis of the TEM images at different growth stages proposed that the NCNT propagated via a tip-growth mechanism originating at the nano-domains within the Raney nickel, and was accompanied with the aggregation of the nickel catalysts. Such NCNT exhibited a cup-stack wall structure paired with a compartmental feature. The nitrogen content, tube diameter and wall thickness greatly depended on synthesis conditions. The activated carbon derived from PEEK/PEI blend demonstrated a surface area up to ˜3000 m2/g, and average pore size of < 20 A. Such activated carbon exhibited a hydrogen storage capacity of up to 6.47 wt% at 40 bar, 77 K. The activated carbon has

  12. Activity of catalase adsorbed to carbon nanotubes: effects of carbon nanotube surface properties.

    PubMed

    Zhang, Chengdong; Luo, Shuiming; Chen, Wei

    2013-09-15

    Nanomaterials have been studied widely as the supporting materials for enzyme immobilization. However, the interactions between enzymes and carbon nanotubes (CNT) with different morphologies and surface functionalities may vary, hence influencing activities of the immobilized enzyme. To date how the adsorption mechanisms affect the activities of immobilized enzyme is not well understood. In this study the adsorption of catalase (CAT) on pristine single-walled carbon nanotubes (SWNT), oxidized single-walled carbon nanotubes (O-SWNT), and multi-walled carbon nanotubes (MWNT) was investigated. The adsorbed enzyme activities decreased in the order of O-SWNT>SWNT>MWNT. Fourier transforms infrared spectroscopy (FTIR) and circular dichrois (CD) analyses reveal more significant loss of α-helix and β-sheet of MWNT-adsorbed than SWNT-adsorbed CAT. The difference in enzyme activities between MWNT-adsorbed and SWNT-adsorbed CAT indicates that the curvature of surface plays an important role in the activity of immobilized enzyme. Interestingly, an increase of β-sheet content was observed for CAT adsorbed to O-SWNT. This is likely because as opposed to SWNT and MWNT, O-SWNT binds CAT largely via hydrogen bonding and such interaction allows the CAT molecule to maintain the rigidity of enzyme structure and thus the biological function.

  13. Characterization and performance evaluation of an innovative mesoporous activated carbon used for drinking water purification in comparison with commercial carbons.

    PubMed

    Gong, Xu-Jin; Li, Wei-Guang; Wang, Guang-Zhi; Zhang, Duo-Ying; Fan, Wen-Biao; Yin, Zhao-Dong

    2015-09-01

    The preparation, characterization, and performance evaluation of an innovative mesoporous activated carbon (C-XHIT) were conducted in this study. Comparative evaluation with commercial carbons (C-PS and C-ZJ15) and long-term performance evaluation of C-XHIT were conducted in small-scale system-A (S-A) and pilot-scale system-B (S-B-1 and S-B-2 in series), respectively, for treating water from Songhua River. The cumulative uptake of micropollutants varied with KBV (water volume fed to columns divided by the mass of carbons, m(3) H2O/kg carbon) was employed in the performance evaluation. The results identified that mesoporous and microporous volumes were simultaneously well-developed in C-XHIT. Higher mesoporosity (63.94 %) and average pore width (37.91 Å) of C-XHIT ensured a higher adsorption capacity for humic acid compared to C-PS and C-ZJ15. When the KBV of S-A reached 12.58 m(3) H2O/kg carbon, cumulative uptake of organic pollutants achieved by C-XHIT increased by 32.82 and 156.29 % for DOC (QC) and 22.53 and 112.48 % for UV254 (QUV) compared to C-PS and C-ZJ15, respectively; in contrast, the adsorption capacity of NH4 (+)-N did not improve significantly. C-XHIT achieved high average removal efficiencies for DOC (77.43 ± 16.54 %) and UV254 (83.18 ± 13.88 %) in S-B over 253 days of operation (KBV = 62 m(3) H2O/kg carbon). Adsorption dominated the removal of DOC and UV254 in the initial phases of KBV (0-15 m(3) H2O/kg carbon), and simultaneous biodegradation and adsorption were identified as the mechanisms for organic pollutant uptake at KBV above 25 m(3) H2O/kg carbon. The average rates contributed by S-B-1 and S-B-2 for QC and QUV were approximately 0.75 and 0.25, respectively. Good linear and exponential correlations were observed between S-A and S-B in terms of QC and QUV obtained by C-XHIT, respectively, for the same KBV ranges, indicating a rapid and cost-saving evaluation method. The linear correlation between mesoporosity and QC

  14. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    PubMed

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive.

  15. Simultaneous determination of ampicillin and sulbactam by liquid chromatography: post-column reaction with sodium hydroxide and sodium hypochlorite using an active hollow-fibre membrane reactor.

    PubMed

    Haginaka, J; Nishimura, Y

    1990-10-26

    A high-performance liquid chromatographic method has been developed for the simultaneous determination of ampicillin (ABPC) and sulbactam (SBT) in serum and urine. The method involves separation of ABPC and SBT from the background components of serum and urine on a C18 column, post-column reaction with sodium hydroxide and sodium hypochlorite using an active hollow-fibre membrane reactor, and detection at 270 nm. At ABPC and SBT concentrations of 10 and 5 micrograms/ml in urine and serum samples, the precisions (relative standard deviations) were 0.9-2.5% (n = 8). The detection limits were 20 and 5 ng for ABPC and SBT, respectively, at a signal-to-noise ratio of 3.

  16. 40 CFR 60.1820 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... activated carbon? 60.1820 Section 60.1820 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet three requirements: (a) Select a carbon injection system...

  17. 40 CFR 60.1820 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... activated carbon? 60.1820 Section 60.1820 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet three requirements: (a) Select a carbon injection system...

  18. 40 CFR 60.1820 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... activated carbon? 60.1820 Section 60.1820 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet three requirements: (a) Select a carbon injection system...

  19. 40 CFR 60.1820 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... activated carbon? 60.1820 Section 60.1820 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet three requirements: (a) Select a carbon injection system...

  20. 40 CFR 60.1820 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... activated carbon? 60.1820 Section 60.1820 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet three requirements: (a) Select a carbon injection system...

  1. [Experimental research on combined water and air backwashing reactor technology for biological activated carbon].

    PubMed

    Xie, Zhi-Gang; Qiu, Xue-Min; Zhao, Yan-Ling

    2012-01-01

    To proper control the backwashing process of biological activated carbon (BAC) reactor and improve the overall operation performance, the evaluative indexes such as backwashing wastewater turbidity, organic pollutants removal rate of pre and post-backwashing, and the variation of biomass and biological activity in carbon column are used to compare and analyze the effect of three different combined water and air backwashing methods on the operation of BAC reactor. The result shows that intermittent combined water and air backwashing method is most suitable to BAC reactor. The biological activaty obviously increases by 62.5% after intermittent combined water and air backwashing process. While, the biological activaty using the backwashing method of air plus water and the backwashing method of water and air compounded plus water washing increases by 55.6%, 38.5%, respectively. After backwashing 308h, the reactor recovered to its normal function after intermittent combined water and air backwashing process with the removal rate of UV254 reaching to 60.0%. The fulvic-like fluorescence peak of backwashing water are very weak, and are characterized by low-excitation wavelength tryptophan like (peak S) and high excitation wavelength of tryptophan (peak T), which are caused by the microbial debris washed down. The three-dimensional fluorescence spectra also show that microbial fragments are easy to be washed clean with intermittent combined water and air backwashing.

  2. Prediction of adsorption from multicomponent solutions by activated carbon using single-solute parameters.

    PubMed

    Wurster, D E; Alkhamis, K A; Matheson, L E

    2000-08-31

    The adsorption of 3 barbiturates--phenobarbital, mephobarbital, and primidone--from simulated intestinal fluid (SIF), without pancreatin, by activated carbon was studied using the rotating bottle method. The concentrations of each drug remaining in solution at equilibrium were determined with the aid of a high-performance liquid chromatography (HPLC) system employing a reversed-phase column. The competitive Langmuir-like model, the modified competitive Langmuir-like model, and the LeVan-Vermeulen model were each fit to the data. Excellent agreement was obtained between the experimental and predicted data using the modified competitive Langmuir-like model and the LeVan-Vermeulen model. The agreement obtained from the original competitive Langmuir-like model was less satisfactory. These observations are not surprising because the competitive Langmuir-like model assumes that the capacities of the adsorbates are equal, while the other 2 models take into account the differences in the capacities of the components. The results of these studies indicate that the adsorbates employed are competing for the same binding sites on the activated carbon surface. The results also demonstrate that it is possible to accurately predict multicomponent adsorption isotherms using only single-solute isotherm parameters. Such prediction is likely to be useful for improving in vivo/in vitro correlations.

  3. Liquid Chromatography with a Fluorimetric Detection Method for Analysis of Paralytic Shellfish Toxins and Tetrodotoxin Based on a Porous Graphitic Carbon Column

    PubMed Central

    Rey, Veronica; Botana, Ana M.; Alvarez, Mercedes; Antelo, Alvaro; Botana, Luis M.

    2016-01-01

    Paralytic shellfish toxins (PST) traditionally have been analyzed by liquid chromatography with either pre- or post-column derivatization and always with a silica-based stationary phase. This technique resulted in different methods that need more than one run to analyze the toxins. Furthermore, tetrodotoxin (TTX) was recently found in bivalves of northward locations in Europe due to climate change, so it is important to analyze it along with PST because their signs of toxicity are similar in the bioassay. The methods described here detail a new approach to eliminate different runs, by using a new porous graphitic carbon stationary phase. Firstly we describe the separation of 13 PST that belong to different groups, taking into account the side-chains of substituents, in one single run of less than 30 min with good reproducibility. The method was assayed in four shellfish matrices: mussel (Mytillus galloprovincialis), clam (Pecten maximus), scallop (Ruditapes decussatus) and oyster (Ostrea edulis). The results for all of the parameters studied are provided, and the detection limits for the majority of toxins were improved with regard to previous liquid chromatography methods: the lowest values were those for decarbamoyl-gonyautoxin 2 (dcGTX2) and gonyautoxin 2 (GTX2) in mussel (0.0001 mg saxitoxin (STX)·diHCl kg−1 for each toxin), decarbamoyl-saxitoxin (dcSTX) in clam (0.0003 mg STX·diHCl kg−1), N-sulfocarbamoyl-gonyautoxins 2 and 3 (C1 and C2) in scallop (0.0001 mg STX·diHCl kg−1 for each toxin) and dcSTX (0.0003 mg STX·diHCl kg−1 ) in oyster; gonyautoxin 2 (GTX2) showed the highest limit of detection in oyster (0.0366 mg STX·diHCl kg−1). Secondly, we propose a modification of the method for the simultaneous analysis of PST and TTX, with some minor changes in the solvent gradient, although the detection limit for TTX does not allow its use nowadays for regulatory purposes. PMID:27367728

  4. [Preparation and optimum process of walnut peel activated carbon by zinc chloride as activating agent].

    PubMed

    Liu, Xiao-hong; Wang, Xing-wei; Zhao, Bo; Lü, Jun-fang; Kang, Ni-na; Zhang, Yao-jun

    2014-12-01

    Walnut peel as raw material, zinc chloride was used as activating agent for preparation walnut peel activated carbon in the muffle furnace in this experiment, using orthogonal design. Yield, the specific surface area and iodine number of walnut peel activated carbon were determined at all designed experimental conditions and the optimum technological condition of preparation was obtained. By analysis of aperture, infrared spectra and the content of acidic group in surface with Boehm, walnut peel activated carbon of prepared at the optimum condition was characterized. The results showed the optimum technological parameters of preparation: activation temperature (600 °C), activation time (1 h), the concentration of zinc chloride (50%), the particle size (60 mesh). The specific surface area of walnut peel activated carbon obtained at optimum condition was mounting to 1258.05 m2 · g(-1), the ratio of medium porous 32.18%. Therefore, walnut peel can be used in the preparation of the high-quality activated carbon of large surface area. Agricultural wastes, as walnut peel, not only were implemented recycle, but also didn't make any pollution. Meanwhile, a cheap adsorbent was provided and it was of great significance to open a new source of activated carbon.

  5. Physicochemical effect of activation temperature on the sorption properties of pine shell activated carbon.

    PubMed

    Wasim, Agha Arslan; Khan, Muhammad Nasiruddin

    2017-03-01

    Activated carbons produced from a variety of raw materials are normally selective towards a narrow range of pollutants present in wastewater. This study focuses on shifting the selectivity of activated carbon from inorganic to organic pollutants using activation temperature as a variable. The material produced from carbonization of pine shells substrate was activated at 250°C and 850°C. Both adsorbents were compared with commercial activated carbon for the sorption of lead, cadmium, methylene blue, methyl blue, xylenol orange, and crystal violet. It was observed that carbon activated at 250°C was selective for lead and cadmium whereas the one activated at 850°C was selective for the organic dyes. The Fourier transform infrared spectroscopy study revealed that AC850 had less surface functional groups as compared to AC250. Point of zero charge and point of zero salt effect showed that AC250 had acidic groups at its surface. Scanning electron microscopy depicted that increase in activation temperature resulted in an increase in pore size of activated carbon. Both AC250 and AC850 followed pseudo-second-order kinetics. Temkin isotherm model was a best fit for empirical data obtained at equilibrium. The model also showed that sorption process for both AC250 and AC850 was physisorption.

  6. Elucidating the role of phenolic compounds in the effectiveness of DOM adsorption on novel tailored activated carbon.

    PubMed

    Yan, Liang; Fitzgerald, Martha; Khov, Cindy; Schafermeyer, Amy; Kupferle, Margaret J; Sorial, George A

    2013-11-15

    Two novel tailored activated carbons (BC-41-OG and BC-41-MnN) with favorable physicochemical characteristics were successfully prepared for adsorption of dissolved natural organic matter (DOM) by applying systematically chemical and thermal treatment. This research was conducted to investigate the impact of the presence of phenolics on the adsorption capacity of DOM. Isotherm tests were performed for both humic acid (HA) and phenolics on both novel tailored activated carbons and commercial activated carbon F400. The presence of phenolics display a significant effect on hindering the adsorption of HA, however; the physicochemical characteristics of novel activated carbons (surface metal oxides and mesoporosity) can play an important role in alleviating this effect. In contrast, F400, with a relatively lower mesoporosity and surface basicity as compared to the developed adsorbents, was severely impacted by the oligomerization of phenolic compounds. The adsorption capacity of DOM in presence of phenolics was further studied in a continuous flow microcolumn system. The column results showed that both BC-41-OG and BC-41-MnN have not only higher HA adsorption capacity but also better selective adsorption ability than F400.

  7. Acoustical Evaluation of Carbonized and Activated Cotton Nonwovens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An activated carbon fiber nonwoven (ACF) was manufactured from cotton nonowoven fabric. For the ACF acoustical application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glass fiber ...

  8. Activated carbon injection - a mercury control success story

    SciTech Connect

    2008-07-01

    Almost 100 full-scale activated carbon injection (ACI) systems have been ordered by US electric utilities. These systems have the potential to remove over 90% of the mercury in flue, at a cost below $10,000 per pound of mercury removal. Field trials of ACI systems arm outlined. 1 fig.

  9. Decolorization / deodorization of zein via activated carbons and molecular sieves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective is to evaluate a series of granular media consisting of activated carbons and molecular sieves in a batch process for the purpose of clarifying and removal of color and odor components from yellow zein dispersed in an aqueous alcohol medium. The major contributors of yellow zein is du...

  10. Overview of EPA activities and research related to black carbon

    EPA Science Inventory

    The purpose of this international presentation is to give an overview of EPA activities related to black carbon (BC). This overview includes some summary information on how EPA defines BC, current knowledge on United States emissions and forecasted emission reductions, and ongoin...

  11. Preparation and characterization of activated carbon from demineralized tyre char

    NASA Astrophysics Data System (ADS)

    Manocha, S.; Prasad, Guddu R.; Joshi, Parth.; Zala, Ranjitsingh S.; Gokhale, Siddharth S.; Manocha, L. M.

    2013-06-01

    Activated carbon is the most adsorbing material for industrial waste water treatment. For wider applications, the main consideration is to manufacture activated carbon from low cost precursors, which are easily available and cost effective. One such source is scrap tyres. Recently much effort has been devoted to the thermal degradation of tyres into gaseous and liquid hydrocarbons and solid char residue, all of which have the potential to be processed into valuable products. As for solid residue, char can be used either as low-grade reinforcing filler or as activated carbon. The product recovered by a typical pyrolysis of tyres are usually, 33-38 wt% pyrolytic char, 38-55 wt% oil and 10-30 wt% solid fractions. In the present work activated carbon was prepared from pyrolyzed tyre char (PC). Demineralization involves the dissolution of metal into acids i.e. HCl, HNO3 and H2SO4 and in base i.e. NaOH. Different concentration of acid and base were used. Sodium hydroxide showed maximum amount of metal oxide removal. Further the concentration of sodium hydroxide was varied from 1N to 6N. As the concentration of acid are increased demineralization increases. 6N Sodium hydroxide is found to be more effective demineralising agent of tyre char.

  12. Activation and micropore structure of carbon-fiber composites

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.

    1997-12-01

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The main focus of recent work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites to produce controlled pore structures. Processes have been developed using activation in steam and CO{sub 2}, and a less conventional method involving oxygen chemisorption and subsequent heat treatment. Another objective has been to explore applications for the activated composites in environmental applications related to fossil energy production.

  13. The role of mesopores in MTBE removal with granular activated carbon.

    PubMed

    Redding, Adam M; Cannon, Fred S

    2014-06-01

    This activated carbon research appraised how pore size and empty-bed contact time influenced the removal of methyl tert-butyl ether (MTBE) at part-per-billion (ppb) concentrations when MTBE was the sole organic impurity. The study compared six granular activated carbons (GACs) from three parent sources; these GACs contained a range of pore volume distributions and had uniform slurry pHs of 9.7-10.4 (i.e. the carbons' bulk surface chemistries were basic). Several of these activated carbons had been specifically tailored for enhanced sorption of trace organic compounds. In these tests, MTBE was spiked into deionized-distilled water (∼pH 7); MTBE loading was measured by isotherms and by rapid small-scale column tests (RSSCTs) that simulated full-scale empty-bed contact times of 7, 14, and 28 min. The results showed that both ultra-fine micropores and small-diameter mesopores were important for MTBE adsorption. Specifically, full MTBE loading during RSSCTs bore a strong correlation (R(2) = 0.94) to the product (mL/g × mL/g) of pore volume ≤4.06 Å wide and pore volume between ∼22 Å and ∼59 Å wide. This correlation was greater than for the product of any other pore volume combinations. Also, this product exhibited a stronger correlation than for just one or the other of these two pore ranges. This multiplicative relationship implied that both of these pore sizes were important for the optimum GAC performance of these six carbons (i.e. favorable mass transfer coupled with favorable sorption). The authors also compared MTBE mass loading during RSSCTs (μg MTBE/g GAC) to isotherm capacity (μg MTBE/g GAC). This RSSCT loading "efficiency" ranged from 28% to 96% for the six GACs; this efficiency correlated most strongly to pores that were 14-200 Å wide (R(2) = 0.94). This correlation indicated that only those carbons with a sufficient volume of 14-200 Å pores could adsorb MTBE to the extent that would be predicted from isotherm data.

  14. Determining water content in activated carbon for double-layer capacitor electrodes

    NASA Astrophysics Data System (ADS)

    Egashira, Minato; Izumi, Takuma; Yoshimoto, Nobuko; Morita, Masayuki

    2016-09-01

    Karl-Fisher titration is used to estimate water contents in activated carbon and the distribution of impurity-level water in an activated carbon-solvent system. Normalization of the water content of activated carbon is attempted using vacuum drying after immersion in water was controlled. Although vacuum drying at 473 K and 24 h can remove large amounts of water, a substantial amount of water remains in the activated carbon. The water release to propylene carbonate is less than that to acetonitrile. The degradation of capacitor cell capacitance for activated carbon with some amount of water differs according to the electrolyte solvent type: acetonitrile promotes greater degradation than propylene carbonate does.

  15. Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue.

    PubMed

    Zhang, Xianlong; Cheng, Liping; Wu, Xueping; Tang, Yingzhao; Wu, Yucheng

    2015-07-01

    An activation process for developing the surface and porous structure of palygorskite/carbon (PG/C) nanocomposite using ZnCl2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (SEM), and Brunauer-Emmett-Teller analysis (BET) techniques. The effects of activation conditions were examined, including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of CC and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold (1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay.

  16. Evaluation of the genetic activity of industrially produced carbon black.

    PubMed

    Kirwin, C J; LeBlanc, J V; Thomas, W C; Haworth, S R; Kirby, P E; Thilagar, A; Bowman, J T; Brusick, D J

    1981-06-01

    Commercially produced oil furnace carbon black (Chemical Abstract Service Registry No. 1333-86-4) has been evaluated by five different assay for genetic activity. These were the Ames Salmonella typhimurium reverse mutation test, sister chromatid exchange test in CHO cells, mouse lymphoma test, cell transformation assay in C3H/10T1/2 cells, and assay for genetic effects in Drosophila melanogaster. Limited cellular toxicity was exhibited but no significant genetic activity was noted.

  17. Assessment of CO₂ adsorption capacity on activated carbons by a combination of batch and dynamic tests.

    PubMed

    Balsamo, Marco; Silvestre-Albero, Ana; Silvestre-Albero, Joaquín; Erto, Alessandro; Rodríguez-Reinoso, Francisco; Lancia, Amedeo

    2014-05-27

    In this work, batch and dynamic adsorption tests are coupled for an accurate evaluation of CO2 adsorption performance of three different activated carbons (AC) obtained from olive stones by chemical activation followed by physical activation with CO2 at varying times (i.e., 20, 40, and 60 h). Kinetic and thermodynamic CO2 adsorption tests from simulated flue gas at different temperatures and CO2 pressures are carried out under both batch (a manometric equipment operating with pure CO2) and dynamic (a lab-scale fixed-bed column operating with a CO2/N2 mixture) conditions. The textural characterization of the AC samples shows a direct dependence of both micropore and ultramicropore volume on the activation time; hence, AC60 has the higher contribution. The adsorption tests conducted at 273 and 293 K showed that when CO2 pressure is lower than 0.3 bar, the lower the activation time, the higher CO2 adsorption capacity; a ranking of ω(eq)(AC20) > ω(eq)(AC40) > ω(eq)(AC60) can be exactly defined when T = 293 K. This result is likely ascribed to the narrower pore size distribution of the AC20 sample, whose smaller pores are more effective for CO2 capture at higher temperature and lower CO2 pressure, the latter representing operating conditions of major interest for decarbonation of flue gas effluent. Moreover, the experimental results obtained from dynamic tests confirm the results derived from the batch tests in terms of CO2 adsorption capacity. It is important to highlight the fact that the adsorption of N2 on the synthesized AC samples can be considered to be negligible. Finally, the importance of proper analysis for data characterization and adsorption experimental results is highlighted for the correct assessment of the CO2 removal performance of activated carbons at different CO2 pressures and operating temperatures.

  18. Hydrological Perturbations Drive Biogeochemical Processes in Experimental Soil Columns from the Norman Landfill Site

    NASA Astrophysics Data System (ADS)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2010-12-01

    Fate and transport of contaminants in saturated and unsaturated zones is governed by biogeochemical processes that are complex and non-linearly coupled to each other. A fundamental understanding of the interactions between transport and reaction processes is essential to better characterize contaminant movement in the subsurface. The objectives of this study are to: i) develop quantitative relationships between hydrological (initial and boundary conditions, hydraulic conductivity ratio, and soil layering), geochemical (mineralogy, surface area, redox potential, and organic matter) and microbiological factors (MPN) that alter the biogeochemical processes, and ii) characterize the effect of hydrologic perturbations on coupled processes occurring at the column scale. The perturbations correspond to rainfall intensity, duration of wet and dry conditions, and water chemistry (pH). Soils collected from two locations with significantly different geochemistry at the Norman landfill site are used in this study. Controlled flow experiments were conducted on: i) two homogeneous soil columns, ii) a layered soil column, iii) a soil column with embedded clay lenses, and iv) a soil column with embedded clay lenses and one central macropore. Experimental observations showed enhanced biogeochemical activity at the interface of the layered and lensed columns over the texturally homogeneous soil columns. Multivariate statistical analysis showed that the most important processes were microbial reduction of Fe(III) and SO42-, and oxidation of reduced products in the columns. Modeling results from HP1 indicate least redox activity in the homogeneous sand column while the structurally heterogeneous columns utilize oxygen and nitrate from recharge as well as iron sulfide minerals already present in the columns as electron acceptors. Furthermore, the interface of the layered and lensed soil columns acts as a hotspot of biogeochemical activity due to increased transport timescale as a

  19. Bioindication potential of carbonic anhydrase activity in anemones and corals.

    PubMed

    Gilbert, A L; Guzmán, H M

    2001-09-01

    Activity levels of carbonic anhydrase (CA) were assessed in anemones Condylactis gigantea and Stichodactyla helianthus with laboratory exposures to copper, nickel, lead, and vanadium, and also in animals collected from polluted vs pristine field sites. CA activity was found to be decreased with increase in metal concentration and also in animals collected from the polluted field site. Preliminary assessments to adapt the CA assay for use in the widespread coral Montastraea cavernosa show decreased CA activity in specimens from the polluted field site and provide an avenue for future research aimed at more thoroughly describing coral CA activity for potential application in bioindication.

  20. Bimodal activated carbons derived from resorcinol-formaldehyde cryogels

    PubMed Central

    Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Pizzi, Antonio; Celzard, Alain

    2011-01-01

    Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 °C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 °C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l−1, and the acid–cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H3PO4, close to 2200 m2 g−1 and 0.7 cm3 g−1, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l−1 led to authentic bimodal activated carbons, having a surface area as high as 1780 m2 g−1 and 0.6 cm3 g−1 of microporous volume easily accessible through a widely developed macroporosity. PMID:27877405

  1. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    PubMed

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  2. Column temperature as an active variable in the isocratic, normal-phase high-performance liquid chromatography separation of lipophilic metabolites of nonylphenol ethoxylates.

    PubMed

    Babay, Paola A; Gettar, Raquel T; Magallanes, Jorge F; Becquart, Elena T; Thiele, Björn; Batistoni, Daniel A

    2007-07-20

    Normal-phase separation of technical grade nonylphenol (t-NP, about 90% 4-nonylphenol), 4-nonylphenol mono-ethoxylate (4-NP1EO) and 4-nonylphenol di-ethoxylate (4-NP2EO) was assessed, with the inclusion of column temperature as an active variable. The compound 2,4,6-trimethylphenol was evaluated for use as internal standard. Isocratic elution with 2-propanol/hexanes mixtures from an amino-silica column and spectrometric UV detection at 277 nm were employed. Technical nonylphenol presented a significant contribution from unknown substances that eluted with retention times similar to that of 4-NP1EO. GC-MS analysis of the unknowns allowed to identify them as isomers of 2-NP. The response of the system to joint variations in flow rate, eluent composition and column temperature was investigated by means of Doehlert statistical experimental design. A model for retention of the analytes as a function of the experimental variables was proposed, and separation selectivity was studied. Selection of the optimal working zone was made through desirability function (D) calculations. Potential co-elution of 2-NP isomers with 4-NP1EO was considered when optimizing the separation. The occurrence of a restricted region of the experimental space where baseline resolution of analytes, associated impurities and internal standard results feasible (D not equal to 0) is apparent.

  3. Fluoride removal from water using activated and MnO2-coated Tamarind Fruit (Tamarindus indica) shell: batch and column studies.

    PubMed

    Sivasankar, V; Ramachandramoorthy, T; Chandramohan, A

    2010-05-15

    The present work is concerned with the defluoridation capacities of activated (ATFS) and MnO(2)-coated Tamarind Fruit Shell (MTFS), using batch and column sorption techniques. In the batch technique, the dynamics of fluoride sorption, with respect to pH, [F](o) and sorbent dose, was studied. The applicability of pseudo-first order for ATFS and Ritchie-second order for MTFS was observed. The kinetics data were found to fit well with Temkin isotherm for ATFS and Langmuir for MTFS. The interaction of co-ions in the defluoridation capacity of the sorbent was studied. Column experiments were carried out under a constant fluoride concentration of 2mg/l, flow rate and different bed depths. The capacities of the breakthrough and exhaustion points increased with increase in the bed depth for ATFS unlike MTFS. The Thomson model was applied to the column experimental results. The characterization of the sorbents, ATFS and MTFS, was done using the FTIR, SEM and XRD techniques.

  4. 75 FR 48644 - Certain Activated Carbon From the People's Republic of China: Notice of Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ... Import Export Corp.; China National Nuclear General Company Ningxia Activated Carbon Factory; Da Neng Zheng Da Activated Carbon Co., Ltd.; Datong Carbon Corporation; Datong Changtai Activated Carbon Co....; DaTong Tri- Star & Power Carbon Plant; Datong Weidu Activated Carbon Co., Ltd.; Datong...

  5. Modeling trapping mechanism for PCB adsorption on activated carbon

    NASA Astrophysics Data System (ADS)

    Jensen, Bjørnar; Kvamme, Bjørn; Kuznetsova, Tatyana; Oterhals, A.˚ge

    2012-12-01

    The levels of polychlorinated dibenzo-p-dioxin, polychlorinated dibenzofuran (PCDD/F) and dioxin-like polychlorinated biphenyl (DL-PCB) in fishmeal and fish oil produced for use in feed for salmon is above present European legislation levels in some regions of the world and different decontamination approaches have been proposed [1]. One of these is adsorption on activated carbon. This approach appears to be efficient for adsorption of PCDD/F but less efficient for DL-PCB [2]. Activated carbon consists of slit pores with average sizes of 20 - 50 Ångstroms. One hypothesis [2] for the mechanism of trapping DL-PCB is reduced ability for intramolecular movements of the PCB molecules inside the slit pores. In order to investigate this hypothesis we have used quantum mechanics [3] to characterize two DL-PCB congeners, respectively congener 77 (3,3',4,4'-Tetrachlorobiphenyl) and congener 118 (2,3',4,4',5-Pentachlorobiphenyl) and Triolein (18:1) [4] as a major constituent of the solvent fish oil. A model for activated carbon was constructed using a crystal structure of graphite from the American Mineralogist Crystal Structure Database [5]. The crystal structure used was originally from Wyckoff [6]. A small program had to be written to generate the desired graphite structure as it contains no less than 31232 Carbon atoms. Partial atomic charges were estimated using QM with DFT/B3LYP/6-311+g** and SM6 [7].

  6. PERFORMANCE OF ACTIVATED SLUDGE-POWDERED ACTIVATED CARBON-WET AIR REGENERATION SYSTEMS

    EPA Science Inventory

    The investigation summarized in the report was undertaken to evaluate the performance of powdered activated carbon (PAC) technology used in conjunction with wet air regeneration (WAR) at municipal wastewater treatment plants. Excessive ash concentrations accumulated in the mixed ...

  7. 2-micron triple-pulse integrated path differential absorption lidar development for simultaneous airborne column measurements of carbon dioxide and water vapor in the atmosphere

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-05-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  8. 2-Micron Triple-Pulse Integrated Path Differential Absorption Lidar Development for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-01-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  9. Waste management activities and carbon emissions in Africa

    SciTech Connect

    Couth, R.; Trois, C.

    2011-01-15

    This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

  10. Irreversible adsorption of phenolic compounds by activated carbons

    SciTech Connect

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  11. Waste management activities and carbon emissions in Africa.

    PubMed

    Couth, R; Trois, C

    2011-01-01

    This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

  12. Structural characteristics of modified activated carbons and adsorption of explosives.

    PubMed

    Tomaszewski, W; Gun'ko, V M; Skubiszewska-Zieba, J; Leboda, R

    2003-10-15

    Several series of activated carbons prepared by catalytic and noncatalytic gasification and subsequent deposition of pyrocarbon by pyrolysis of methylene chloride or n-amyl alcohol were studied by FTIR, chromatography, and adsorption methods using nitrogen and probe organics (explosives). The relationships between the textural characteristics of carbon samples and the recovery rates (eta) of explosives on solid-phase extraction (SPE) using different solvents for their elution after adsorption were analyzed using experimental and quantum chemical calculation results. The eta values for nitrate esters, cyclic nitroamines, and nitroaromatics only partially correlate with different adsorbent parameters (characterizing microporosity, mesoporosity, pore size distributions, etc.), polarity of eluting solvents, or characteristics of probe molecules, since there are many factors strongly affecting the recovery rates. Some of the synthesized carbons provide higher eta values than those for such commercial adsorbents as Hypercarb and Envicarb.

  13. Sorption of cobalt on activated carbons from aqueous solutions

    SciTech Connect

    Paajanen, A.; Lehto, J.; Santapakka, T.; Morneau, J.P.

    1997-01-01

    The efficiencies of 15 commercially available activated carbons were tested for the separation of trace cobalt ({sup 60}Co) in buffer solutions at pH 5.0, 6.7, and 9.1. On the basis of the results four carbon products, Diahope-006, Eurocarb TN5, Hydraffin DG47, and Norit ROW Supra, were selected for further study. These carbons represented varying (low, medium and high) cobalt removal efficiencies and were prepared of three typical raw materials: peat, coconut shell, or coal. Study was made of the effects on sorption efficiencies of factors of interest in metal/radionuclide-bearing waste effluents. These factors were pH, sodium ions, borate, and citrate.

  14. Seasonal variability of surface and column carbon monoxide over the megacity Paris, high-altitude Jungfraujoch and Southern Hemispheric Wollongong stations

    NASA Astrophysics Data System (ADS)

    Té, Yao; Jeseck, Pascal; Franco, Bruno; Mahieu, Emmanuel; Jones, Nicholas; Paton-Walsh, Clare; Griffith, David W. T.; Buchholz, Rebecca R.; Hadji-Lazaro, Juliette; Hurtmans, Daniel; Janssen, Christof

    2016-09-01

    This paper studies the seasonal variation of surface and column CO at three different sites (Paris, Jungfraujoch and Wollongong), with an emphasis on establishing a link between the CO vertical distribution and the nature of CO emission sources. We find the first evidence of a time lag between surface and free tropospheric CO seasonal variations in the Northern Hemisphere. The CO seasonal variability obtained from the total columns and free tropospheric partial columns shows a maximum around March-April and a minimum around September-October in the Northern Hemisphere (Paris and Jungfraujoch). In the Southern Hemisphere (Wollongong) this seasonal variability is shifted by about 6 months. Satellite observations by the IASI-MetOp (Infrared Atmospheric Sounding Interferometer) and MOPITT (Measurements Of Pollution In The Troposphere) instruments confirm this seasonality. Ground-based FTIR (Fourier transform infrared) measurements provide useful complementary information due to good sensitivity in the boundary layer. In situ surface measurements of CO volume mixing ratios at the Paris and Jungfraujoch sites reveal a time lag of the near-surface seasonal variability of about 2 months with respect to the total column variability at the same sites. The chemical transport model GEOS-Chem (Goddard Earth Observing System chemical transport model) is employed to interpret our observations. GEOS-Chem sensitivity runs identify the emission sources influencing the seasonal variation of CO. At both Paris and Jungfraujoch, the surface seasonality is mainly driven by anthropogenic emissions, while the total column seasonality is also controlled by air masses transported from distant sources. At Wollongong, where the CO seasonality is mainly affected by biomass burning, no time shift is observed between surface measurements and total column data.

  15. Investigation kinetics mechanisms of adsorption malachite green onto activated carbon.

    PubMed

    Onal, Y; Akmil-Başar, C; Sarici-Ozdemir, C

    2007-07-19

    Lignite was used to prepare activated carbon (T3K618) by chemical activation with KOH. Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by t-plot based on N2 adsorption isotherm. BET surface area of activated carbon is determined as 1000 m2/g. Adsorption capacity of malachite green (MG) onto T3K618 activated carbon was investigated in a batch system by considering the effects of various parameters like initial concentration (100, 150 and 200 mg/L) and temperature (25, 40 and 50 degrees C). The adsorption process was relatively fast and equilibrium was reached after about 20 min for 100, 150 mg/L at all adsorption temperature. Equilibrium time for 200 mg/L was determined as 20 min and 40 min at 298, 313 and 323 K, respectively. Simple mass and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion. Pseudo second-order model was found to explain the kinetics of MG adsorption most effectively. It was found that both mass transfer and pore diffusion are important in determining the adsorption rates. The intraparticle diffusion rate constant, external mass transfer coefficient, film and pore diffusion coefficient at various temperatures were evaluated. The activation energy (Ea) was determined as 48.56, 63.16, 67.93 kJ/mol for 100, 150, 200 mg/L, respectively. The Langmiur and Freundlich isotherm were used to describe the adsorption equilibrium studies at different temperatures. Langmiur isotherm shows better fit than Freundlich isotherm in the temperature range studied. The thermodynamic parameters, such as DeltaG degrees, DeltaS and DeltaH degrees were calculated. The thermodynamics of dyes-T3K618 system indicates endothermic process.

  16. Active carbon filter health condition detection with piezoelectric wafer active sensors

    NASA Astrophysics Data System (ADS)

    Bao, Jingjing; Giurgiutiu, Victor; Rubel, Glenn O.; Peterson, Gregory W.; Ball, Thomas M.

    2011-04-01

    The impregnated active carbon used in air purification systems degrades over time due to exposure to contamination and mechanical effects (packing, settling, flow channeling, etc.). A novel approach is proposed to detect contamination in active carbon filters by combining the electromechanical impedance spectroscopy (EMIS) and electrochemical impedance spectroscopy (ECIS). ECIS is currently being used to evaluate active carbon filtration material; however, it cannot differentiate the impedance changes due to chemical contamination from those due to mechanical changes. EMIS can detect impedance changes due to mechanical changes. For the research work presented in this paper, Piezoelectric wafer active sensor (PWAS) was used for the EMIS method. Some remarkable new phenomena were unveiled in the detection of carbon filter status. 1. PWAS EMIS can detect the presence of contaminants, such as water and kerosene in the carbon bed 2. PWAS EMIS can monitor changes in mechanical pressure that may be associated with carbon bed packing, settling and flow channeling 3. EMIS and ECIS measurements are consistent with each other and complimentary A tentative simplified impedance model was created to simulate the PWAS-carbon bed system under increasing pressure. Similar impedance change pattern was observed when comparing the simulation results with experimental data.

  17. Preparation of activated carbons from macadamia nut shell and coconut shell by air activation

    SciTech Connect

    Tam, M.S.; Antal, M.J. Jr.

    1999-11-01

    A novel, three-step process for the production of high-quality activated carbons from macadamia nut shell and coconut shell charcoals is described. In this process the charcoal is (1) heated to a high temperature (carbonized), (2) oxidized in air following a stepwise heating program from low (ca. 450 K) to high (ca. 660 K) temperatures (oxygenated), and (3) heated again in an inert environment to a high temperature (activated). By use of this procedure, activated carbons with surface areas greater than 1,000 m{sub 2}/g are manufactured with an overall yield of 15% (based on the dry shell feed). Removal of carbon mass by the development of mesopores and macropores is largely responsible for increases in the surface area of the carbons above 600 m{sub 2}/g. Thus, the surface area per gram of activated carbon can be represented by an inverse function of the yield for burnoffs between 15 and 60%. These findings are supported by mass-transfer calculations and pore-size distribution measurements. A kinetic model for gasification of carbon by oxygen, which provides for an Eley-Rideal type reaction of a surface oxide with oxygen in air, fits the measured gasification rates reasonably well over the temperature range of 550--660 K.

  18. Effect of biochar or activated carbon amendment on the volatilisation and biodegradation of organic soil pollutants

    NASA Astrophysics Data System (ADS)

    Werner, David; Meynet, Paola; Bushnaf, Khaled

    2013-04-01

    Biochar or activated carbon added to contaminated soil may temporarily reduce the volatilisation of organic pollutants by enhanced sorption. The long-term effect of sorbent amendments on the fate of volatile petroleum hydrocarbon mixtures (VPHs) will depend on the responses of the soil bacterial community members, especially those which may utilize VPHs as carbon substrates. We investigated the volatilisation and biodegradation of VPHs emanating from NAPL sources and migrating through one meter long columns containing unsaturated sandy soil with and without 2% biochar or activated carbon amendment. After 420 days, VPH volatilisation from AC amended soil was less than 10 percent of the cumulative VPH volatilisation flux from unamended soil. The cumulative CO2 volatilisation flux increased more slowly in AC amended soil, but was comparable to the untreated soil after 420 days. This indicated that the pollution attenuation over a 1 meter distance was improved by the AC amendment. Biochar was a weaker VPH sorbent than AC and had a lesser effect on the cumulative VPH and CO2 fluxes. We also investgated the predominant bacterial community responses in sandy soil to biochar and/or VPH addition with a factorially designed batch study, and by analyzing preserved soil samples. Biochar addition alone had only weak effects on soil bacterial communities, while VPH addition was a strong community structure shaping factor. The bacterial community effects of biochar-enhanced VPH sorption were moderated by the limited biomass carrying capacity of the sandy soil investigated which contained only low amounts of inorganic nitrogen. Several Pseudomonas spp., including Pseudomonas putida strains, became dominant in VPH polluted soil with and without biochar. The ability of these versatile VPH degraders to effectively regulate their metabolic pathways according to substrate availabilities may additionally have moderated bacterial community structure responses to the presence of biochar

  19. Ultrahigh surface area carbon from carbonated beverages. Combining self-templaing process and in situ activation

    SciTech Connect

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua; Dai, Sheng

    2015-05-11

    Ultrahigh surface area carbons (USACs, e.g., >2000 m2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. This strategy covers various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, andFanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g-1) even at a scan rate of 1000 mV s-1. Thus, a simple and efficient strategy to USACs has been presented.

  20. Ultrahigh surface area carbon from carbonated beverages. Combining self-templaing process and in situ activation

    DOE PAGES

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua; ...

    2015-05-11

    Ultrahigh surface area carbons (USACs, e.g., >2000 m2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. This strategy coversmore » various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, andFanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g-1) even at a scan rate of 1000 mV s-1. Thus, a simple and efficient strategy to USACs has been presented.« less

  1. Synthesis and Antioxidant Activity of Hydroxytyrosol Alkyl-Carbonate Derivatives.

    PubMed

    Fernandez-Pastor, Ignacio; Fernandez-Hernandez, Antonia; Rivas, Francisco; Martinez, Antonio; Garcia-Granados, Andres; Parra, Andres

    2016-07-22

    Three procedures have been investigated for the isolation of tyrosol (1) and hydroxytyrosol (2) from a phenolic extract obtained from the solid residue of olive milling. These three methods, which facilitated the recovery of these phenols, were chemical or enzymatic acetylation, benzylation, and carbomethoxylation, and subsequent carbonylation or acetonation reactions. Several new lipophilic alkyl-carbonate derivatives of hydroxytyrosol have been synthesized, coupling the primary hydroxy group of this phenol, through a carbonate linker, using alcohols with different chain lengths. The antioxidant properties of these lipophilic derivatives have been evaluated by different methods and compared with free hydroxytyrosol (2) and also with the well-known antioxidants BHT and α-tocopherol. Three methods were used for the determination of this antioxidant activity: FRAP and ABTS assays, to test the antioxidant power in hydrophilic media, and the Rancimat test, to evaluate the antioxidant capacity in a lipophilic matrix. These new alkyl-carbonate derivatives of hydroxytyrosol enhanced the antioxidant activity of this natural phenol, with their antioxidant properties also being higher than those of the commercial antioxidants BHT and α-tocopherol. There was no clear influence of the side-chain length on the antioxidant properties of the alkyl-carbonate derivatives of 2, although the best results were achieved mainly by the compounds with a longer chain on the primary hydroxy group of this natural phenolic substance.

  2. Production of charcoal and activated carbon at elevated pressure

    SciTech Connect

    Dai, Xiangfeng; Norberg, N.; Antal, M.J. Jr.

    1995-12-31

    With its wide range of properties, charcoal finds many commercial applications for domestic cooking, refining of metals (steel, copper, bronze, nickel, aluminum and electro-manganese), production of chemicals (carbon disulfide, calcium carbide, silicon carbide, sodium cyanide, carbon black, fireworks, gaseous chemicals, absorbents, soil conditioners and pharmaceuticals), as well as production of activated carbon and synthesis gas. In 1991, the world production of charcoal was 22.8 million cubic meters (3.8 million metric tons) as shown in Table 1. Brazil is the world`s largest charcoal producer --- 5.9 million cubic meters or one million metric tons was produced in 1991, most of which is used in steel and iron industry. African countries produced 45% of the world total amount of charcoal, where 86% of the wood-based energy is for domestic use, most of which is inefficiently used. Charcoal is produced commercially in kilns with a 25% to 30% yield by mass on a 7 to 12 day operating cycle. Until recently, the highest yield of good quality charcoal reported in the literature was 38%. In this paper, and ASME code rated experimental system is presented for producing charcoal and activated carbon from biomass.

  3. Methanotrophic activity in the water column above shallow gas flares west of Prins Karls Forland, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Gründger, Friederike; Svenning, Mette M.; Niemann, Helge; Silyakova, Anna; Serov, Pavel; Pavlov, Alexey K.; Granskog, Mats A.; Ferre, Bénédicte; Carroll, JoLynn

    2016-04-01

    Numerous gas flares, interpreted to be streams of methane bubbles, were discovered in shallow waters (average water depth about 90 m) on the continental shelf west of Prins Karls Forland (Western Svalbard) in the Arctic Ocean. Gas is released from the seabed to the water column and potentially transferred into the atmosphere where it acts as a potent greenhouse gas. In order to resolve the fate of dissolved methane in the water column, we carried out grid-pattern biogeochemical measurements in the study area of 30 x 15 km. Specifically, we measured concentrations of dissolved methane and microbial methane oxidation (MOx) rates at 8 water depths at 31 sampling stations and performed 16S rRNA sequencing analysis on selected samples to characterize the microbial community composition. Availability of dissolved methane is essential for the process of microbial methane oxidation. However, our measurements reveal that high concentrations of dissolved methane in the water column do not necessarily lead to high MOx rates. Our results indicated that the presence of marine methanotrophic biomass as well as dissolved organic matter is of larger importance for the process of microbial methane oxidation. For example, we found MOx hot spots with values up to 13 nmol l-1 d-1 at bottom water depth with dissolved methane concentrations less than 160 nmol l-1. In contrast, at stations where bottom methane concentration values reached 640 nmol l-1, MOx rates were less than 0.7 nmol l-1 d-1. To interpret observed interconnection between methane concentrations and MOx rates, we use vertical distributions of seawater temperature, salinity and properties of colored dissolved organic matter (CDOM). This information helps us characterize the oceanographic setting and circulation patterns in the area, which we believe has a major impact on the origin and distribution of methanotrophic microbial biomass and methane oxidation in methanerich bottom water. This study is part of the Centre for

  4. Optimization of Neutron Activation of Carbon at the NIF

    NASA Astrophysics Data System (ADS)

    Padalino, S.; Polsin, D.; Russ, M.; Sangster, T.; LLE Collaboration

    2011-10-01

    To determine the rhoR of ignition scale targets at the NIF, a carbon activation diagnostic is being developed to measure tertiary neutron yield. It has been shown theoretically that the ratio of the tertiary yield to the primary yield is directly related to rhoR and is nearly independent of hot-spot electron temperature. Due to carbon's 20.3 MeV reaction threshold, it is insensitive to 14.7 MeV primary neutrons which are measured by other means and allows for an unambiguous determination of the tertiary to primary ratio. The energy distribution of the 20 to 30 MeV DT neutrons folded with the (n,2n) cross section in this energy region determines the degree in which carbon will be activated. However, the published 12C(n,2n) cross sections in this energy range are bifurcated. To set upper and lower limits on the sensitivity of the activation diagnostic, a finite element calculation was used to determine the limits of the method's usefulness at differing primary yields and solid angles for the NIF chamber. It was further used to verify MCNPX activation calculations. This work was funded in part by the USDOE through LLE.

  5. Production and characterization of activated carbons from cereal grains

    SciTech Connect

    Venkatraman, A.; Walawender, S.P.; Fan, L.T.

    1996-10-01

    The kernels of grain such as corn and hard red winter wheat were subjected to a two-stage pyrolytic process to generate relatively high yields of charcoals. The process involved carbonization of the kernels at low temperatures (250-325{degrees}C) followed by complete devolatilization of the resultant charcoals at around 750{degrees}C. The charcoals were subsequently activated physically with CO{sub 2} at 800{degrees}C to yield activated carbons. The total pore volumes and surface areas of the activated carbons were determined at various degree of activation by physisorption methods. The surface areas from the nitrogen BET method ranged from 500 to 1750 m{sup 2}/g, while the total pore volumes obtained from the volumes at saturation were in the interval from 0.3 to 0.7 cm{sup 3}/g. The fractal nature of the pore interfaces as well as the existence of different types of pores were investigated through small-angle x-ray scattering.

  6. Iron oxide nanoparticles embedded in activated carbons prepared from hydrothermally treated waste biomass.

    PubMed

    Hao, Wenming; Björkman, Eva; Yun, Yifeng; Lilliestråle, Malte; Hedin, Niklas

    2014-03-01

    Particles of iron oxide (Fe3O4 ; 20–40 nm) were embedded within activated carbons during the activation of hydrothermally carbonized (HTC) biomasses in a flow of CO2. Four different HTC biomass samples (horse manure, grass cuttings, beer production waste, and biosludge) were used as precursors for the activated carbons. Nanoparticles of iron oxide formed from iron catalyst included in the HTC biomasses. After systematic optimization, the activated carbons had specific surface areas of about 800 m2g1. The pore size distributions of the activated carbons depended strongly on the degree of carbonization of the precursors. Activated carbons prepared from highly carbonized precursors had mainly micropores, whereas those prepared from less carbonized precursors contained mainly mesopores. Given the strong magnetism of the activated carbon–nano-Fe3O4 composites, they could be particularly useful for water purification.

  7. [Simultaneous determination of erdosteine and its active metabolite in human plasma by liquid chromatography-tandem mass spectrometry with pre-column derivatization].

    PubMed

    Jin, Jing; Chen, Xiao-Yan; Zhang, Yi-Fan; Ma, Zhi-Yu; Zhong, Da-Fang

    2013-03-01

    A sensitive, rapid and accurate liquid chromatography-tandem mass spectrometric (LC-MS/MS) method with pre-column derivatization was developed for the simultaneous determination of erdosteine and its thiol-containing active metabolite in human plasma. Paracetamol and captopril were chosen as the internal standard of erdosteine and its active metabolite, respectively. Aliquots of 100 microL plasma sample were derivatized by 2-bromine-3'-methoxy acetophenone, then separated on an Agilent XDB-C18 (50 mm x 4.6 mm ID, 1.8 microm) column using 0.1% formic acid methanol--0.1% formic acid 5 mmol x L(-1) ammonium acetate as mobile phase, in a gradient mode. Detection of erdosteine and its active metabolite were achieved by ESI MS/MS in the positive ion mode. The linear calibration curves for erdosteine and its active metabolite were obtained in the concentration ranges of 5-3 000 ng x mL(-1) and 5-10 000 ng x mL(-1), respectively. The lower limit of quantification of erdosteine and its active metabolite were both 5.00 ng x mL(-1). The pharmacokinetic results of erdosteine and its thiol-containing active metabolite showed that the area under curve (AUC) of the thiol-containing active metabolite was 6.2 times of that of erdosteine after a single oral dose of 600 mg erdosteine tables in 32 healthy volunteers, The mean residence time (MRT) of the thiol-containing active metabolite was (7.51 +/- 0.788) h, which provided a pharmacokinetic basis for the rational dosage regimen.

  8. Degradation characteristics of 17beta-estradiol by ozone treatment with activated carbon.

    PubMed

    Kawasaki, Naohito; Ogata, Fumihiko; Yamaguchi, Isao; Tominaga, Hisato

    2009-01-01

    The present study investigates (1) ozone treatment, (2) adsorption treatment using activated carbon treatment, and (3) ozone treatment with activated carbon for their efficacy in removing 17beta-estradiol (E2) present in an aqueous solution. Both ozone and activated carbon treatments for 20 min were effective in removing E2 (initial concentration, 100 mg/L). However, both treatments have been used for two processes, and the disposal time with these treatments is more than that of another treatment. In this study, ozone treatment with activated carbon was investigated with regard to the percentage of E2 removal, pH, and chemical oxygen demand (COD). The physical and chemical characteristics of the activated carbon surface were modified due to the ozone treatment: the surface was oxidized by ozone. The surface of activated carbon exhibited polarity groups and became porous after ozone treatment. The amount of E2 adsorbed onto the ozone-treated activated carbon surface was similar to that adsorbed onto the untreated activated carbon surface. The percentage of E2 removal by ozone treatment with activated carbon was greater than that by ozone treatment alone. Moreover, the rate of E2 removal by ozone treatment with activated carbon was higher than that by ozone or activated carbon treatments alone. Ozone with activated carbon treatment may be used for the removal of E2. However, this ozone treatment for the degradation of E2 may have a greater COD than that in the case of activated carbon treatment alone.

  9. Role of heteroatoms in activated carbon for removal of hexavalent chromium from wastewaters.

    PubMed

    Valix, M; Cheung, W H; Zhang, K

    2006-07-31

    Heteroatoms are elements including sulfur, nitrogen, oxygen and hydrogen which are found on the surface of activated carbons. This study investigated the surface modification arising from heteroatoms bonding to carbon aromatic rings within the activated carbon and their corresponding influence on the chromium adsorption process. Activated carbons were prepared from bagasse by physical. Chromium removal capacities of these activated carbons by adsorption and reduction were determined. Models which related the chromium adsorption and reduction capacities of activated carbons to carbon acidity and heteroatom site concentrations were established using multi-variable linear regression method. It was found the individual heteroatoms contributed separately to the basicity of the carbon which in turn determined the mechanism by which chromium was removed from solution. The surface areas of the carbons were also observed to influence the adsorption and reduction of chromium. These understandings provide the fundamental method of optimising chromium removal through suitable control of carbon surface chemistry and textural properties.

  10. Activated carbon from flash pyrolysis of eucalyptus residue.

    PubMed

    Grima-Olmedo, C; Ramírez-Gómez, Á; Gómez-Limón, D; Clemente-Jul, C

    2016-09-01

    Forestry waste (eucalyptus sp) was converted into activated carbon by initial flash pyrolysis followed carbonization and CO2 activation. These residues were obtained from a pilot plant in Spain that produces biofuel, the biochar represented 10-15% in weight. It was observed that the highest activation was achieved at a temperature of 800 °C, the specific surface increased with time but, on the contrary, high loss of matter was observed. At 600 °C, although there was an important increase of the specific surface and the volume of micropores, at this temperature it was observed that the activation time was not an influential parameter. Finally, at 400 °C it was observed that the activation process was not very significant. Assessing the average pore diameter it was found that the lowest value corresponded to the activation temperature of 600 °C, which indicated the development of microporosity. When the activation temperature increases up to 800 °C the pore diameter increased developing mesoporosity.

  11. Synthesis and characterization of carbon nanotube from coconut shells activated carbon

    NASA Astrophysics Data System (ADS)

    Melati, A.; Hidayati, E.

    2016-03-01

    Carbon nanotubes (CNTs) have been explored in almost every single cancer treatment modality, including drug delivery, lymphatic targeted chemotherapy, photodynamic therapy, and gene therapy. They are considered as one of the most promising nanomaterial with the capability of both detecting the cancerous cells and delivering drugs or small therapeutic molecules to the cells. CNTs have unique physical and chemical properties such as high aspect ratio, ultralight weight, high mechanical strength, high electrical conductivity, and high thermal conductivity. Coconut Shell was researched as active carbon source on 500 - 600°C. These activated carbon was synthesized becomes carbon nanotube and have been proposed as a promising tool for detecting the expression of indicative biological molecules at early stage of cancer. Clinically, biomarkers cancer can be detected by CNT Biosensor. We are using pyrolysis methods combined with CVD process or Wet Chemical Process on 600°C. Our team has successfully obtained high purity, and aligned MWCNT (Multi Wall Nanotube) bundles on synthesis CNT based on coconut shells raw materials. CNTs can be used to cross the mammalian cell membrane by endocytosis or other mechanisms. SEM characterization of these materials have 179 nm bundles on phase 83° and their materials compound known by using FTIR characterization.

  12. Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-11-01

    The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.

  13. Activation and micropore structure determination of activated carbon-fiber composites

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.

    1997-09-05

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. These novel monolithic adsorbents can be produced in single pieces to a given size and shape. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The carbon fiber composites are produced at the ORNL and activated at the CAER using different methods, with the aims of producing a uniform degree of activation, and of closely controlling pore structure and adsorptive properties. The main focus of the present work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites and produce controlled pore structures. Several environmental applications have been explored for the activated carbon fiber composites. One of these was to evaluate the activated composites for the separation of CH{sub 4}-CO{sub 2} mixtures, and an apparatus was constructed specifically for this purpose. The composites were further evaluated in the cyclic recovery of volatile organics. The activated carbon fiber composites have also been tested for possible water treatment applications by studying the adsorption of sodium pentachlorophenolate, PCP.

  14. 75 FR 51754 - Certain Activated Carbon from the People's Republic of China: Notice of Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... Activated Carbon from the People's Republic of China: Notice of Partial Rescission of Antidumping Duty... of initiation of an administrative review of the antidumping duty order on certain activated carbon... Activated Carbon Plant; Datong Forward Activated Carbon Co., Ltd.; Datong Guanghua Activated Carbon Co.,...

  15. Water purification by sulfide-containing activated carbon.

    PubMed

    Oeste, F D; Haas, R; Kaminski, L

    2000-03-01

    We investigated a new kind of activated carbon named gaiasafe-Formstoff as an agent for powerful heavy metal reduction. This activated carbon contains highly dispersed sulfide compounds. Our investigations with lead containing wastewaters showed an outstanding metal sulfide precipitation power of the new agent. The lead reduction rates are independent of wastewater parameters like lead concentration and complexing agent concentration. Contacted as powder or as a fixed bed with wastewater gaiasafe-Formstoff showed the best cleaning capacity in comparison to all other agents tested. Investigations with gaiasafe-Formstoff about its ability to reduce the contents of further heavy metals in wastewater are under way. The gaiasafe-Formstoff reaction products with wastewater represent an energy-rich and raw material-rich resource when fed to metallurgical processes.

  16. Factors affecting the adsorption of chromium (VI) on activated carbon

    SciTech Connect

    Yavuz, R.; Orbak, I.; Karatepe, N.

    2006-09-15

    The aim of this investigation was to determine the adsorption behavior of chromium (VI) on two different activated carbon samples produced from Tuncbilek lignite. The effects of the initial chromium (VI) concentration (250-1000 mg/L), temperature (297-323 K) and pH (2.0-9.5) on adsorption were investigated systematically. The effectiveness of the parameters on chromium adsorption was found to be in the order of pH, the initial Cr(VI) concentration and the temperature. Increasing the pH from 2.0 to 9.5 caused a decrease in adsorption. However, the adsorption was increased by increasing the initial Cr(VI) concentration and temperature. The multilinear mathematical model was also developed to predict the Cr(VI) adsorption on activated carbon samples within the experimental conditions.

  17. Activated carbon from vetiver roots: gas and liquid adsorption studies.

    PubMed

    Gaspard, S; Altenor, S; Dawson, E A; Barnes, P A; Ouensanga, A

    2007-06-01

    Large quantities of lignocellulosic residues result from the industrial production of essential oil from vetiver grass (Vetiveria zizanioides) roots. These residues could be used for the production of activated carbon. The yield of char obtained after vetiver roots pyrolysis follows an equation recently developed [A. Ouensanga, L. Largitte, M.A. Arsene, The dependence of char yield on the amounts of components in precursors for pyrolysed tropical fruit stones and seeds, Micropor. Mesopor. Mater. 59 (2003) 85-91]. The N(2) adsorption isotherm follows either the Freundlich law K(F)P(alpha) which is the small alpha equation limit of a Weibull shaped isotherm or the classical BET isotherm. The surface area of the activated carbons are determined using the BET method. The K(F) value is proportional to the BET surface area. The alpha value increases slightly when the burn-off increases and also when there is a clear increase in the micropore distribution width.

  18. Activated carbon treatment of municipal solid waste incineration flue gas.

    PubMed

    Lu, Shengyong; Ji, Ya; Buekens, Alfons; Ma, Zengyi; Jin, Yuqi; Li, Xiaodong; Yan, Jianhua

    2013-02-01

    Activated carbon injection is widely used to control dioxins and mercury emissions. Surprisingly little attention has been paid to its modelling. This paper proposes an expansion of the classical Everaerts-Baeyens model, introducing the expression of fraction of free adsorption sites, f (s), and asserting the significant contribution of fly ash to dioxins removal. Moreover, the model monitors dioxins partitioning between vapour and particulate phase, as well as removal efficiency for each congener separately. The effects of the principal parameters affecting adsorption are analysed according to a semi-analytical, semi-empirical model. These parameters include temperature, contact time during entrained-flow, characteristics (grain-size, pore structure, specific surface area) and dosage of activated carbon, lignite cokes or mineral adsorbent, fly ash characteristics and concentration, and type of incinerator plant.

  19. Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon.

    PubMed

    Aktaş, Ozgür; Ceçen, Ferhan

    2007-03-22

    This study aims to clarify the effect of activated carbon type on the extent of adsorbability, desorbability, and bioregenerability in the treatment of 2-chlorophenol. Four different activated carbon types; thermally activated and chemically activated powdered carbons (PAC), and their granular countertypes (GAC) with similar physical characteristics were used. Thermally activated carbons adsorbed 2-chlorophenol much better than chemically activated ones. However, adsorption was more reversible in the case of chemically activated ones. The use of powdered and granular activated carbon countertypes resulted in comparable adsorption and desorption characteristics. For each activated carbon type, 2-chlorophenol exhibited higher adsorbability and lower desorbability than phenol. Biodegradation of 2-chlorophenol took place very slowly when it was used as the sole carbon source in acclimated and non-acclimated activated sludges. Bioregeneration occurred only via desorption due to an initial concentration gradient and no further desorption took place due to low biodegradability. Bioregeneration of activated carbon loaded with 2-chlorophenol was not a suitable option when 2-chlorophenol was the only carbon source. It is suggested to remove 2-chlorophenol via adsorption onto activated carbon rather than applying biological treatment. Also in such cases, the use of thermally activated carbons with higher adsorption and lower desorption capacities is recommended rather than chemically activated carbons.

  20. Removal of amoxicillin and cefuroxime axetil by advanced membranes technology, activated carbon and micelle-clay complex.

    PubMed

    Awwad, Mohammad; Al-Rimawi, Fuad; Dajani, Khuloud Jamal Khayyat; Khamis, Mustafa; Nir, Shlomo; Karaman, Rafik

    2015-01-01

    Two antibacterials, amoxicillin trihydrate and cefuroxime axetil spiked into wastewater were completely removed by sequential wastewater treatment plant's membranes, which included activated sludge, ultrafiltration (hollow fibre and spiral wound membranes with 100 and 20 kDa cut-offs), activated carbon column and reverse osmosis. Adsorption isotherms in synthetic water which employed activated carbon and micelle-clay complex (octadecyltrimethylammonium-montmorillonite) as adsorbents fitted the Langmuir equation. Qmax of 100 and 90.9 mg g(-1), and K values of 0.158 and 0.229 L mg(-1) were obtained for amoxicillin trihydrate using activated carbon and micelle-clay complex, respectively. Filtration of antibacterials in the ppm range, which yielded variable degrees of removal depending on the volumes passed and flow rates, was simulated and capacities for the ppb range were estimated. Stability study in pure water and wastewater revealed that amoxicillin was totally stable for one month when kept at 37°C, whereas cefuroxime axetil underwent slow hydrolysis to cefuroxime.

  1. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    PubMed

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original.

  2. Adsorption onto fluidized powdered activated carbon flocs-pACF.

    PubMed

    Serpa, Ana Lídia; Schneider, Ivo André H; Rubio, Jorge

    2005-02-01

    This work presents a new adsorption technique where the adsorbent (powdered activated carbon-PAC) is in the form of suspended flocs formed with water-soluble polymer flocculants. Thus, the adsorption of a typical dye, methylene blue (MB), was studied onto polyacrylamide flocs of PAC (PACF) in a fluidized bed reactor. The technique is based on the fact that the adsorption capacity of PAC does not decrease after flocculation because the adsorbed polymer occupies only a few surface sites, in the form of trains, loops, and tails. Moreover, the adsorption was found to proceed through a rapid mass transfer of MB to the adsorbing PAC flocs, in the same extent as onto PAC. Because of the rapid settling characteristics of the aggregates formed, the two phase separations, loaded PAC and solution, become easier. Thus, the technique offers the advantages of conducting simultaneously both adsorption and solid/liquid separation all in one single stage. Results obtained showed that high MB removal values can be attained in a fluidized bed reactor (>90%) and that PACF presents a much higher adsorption capacity (breakthrough points) than granulated activated carbon (GAC) in the same adsorbing bed. It is believed that this technique highly broadens the potential of the use of powdered activated carbon or other similar ultrafine adsorbents.

  3. Restricted dynamics of molecular hydrogen confined in activated carbon nanopores

    SciTech Connect

    Contescu, Cristian I; Saha, Dipendu; Gallego, Nidia C; Mamontov, Eugene; Kolesnikov, Alexander I; Bhat, Vinay V

    2012-01-01

    Quasi-elastic neutron scattering was used for characterization of dynamics of molecular hydrogen confined in narrow nanopores of two activated carbon materials: PFAC (derived from polyfurfuryl alcohol) and UMC (ultramicroporous carbon). Fast, but incomplete ortho-para conversion was observed at 10 K, suggesting that scattering originates from the fraction of unconverted ortho isomer which is rotation-hindered because of confinement in nanopores. Hydrogen molecules entrapped in narrow nanopores (<7 ) were immobile below 22-25 K. Mobility increased rapidly with temperature above this threshold, which is 8 K higher than the melting point of bulk hydrogen. Diffusion obeyed fixed-jump length mechanism, indistinguishable between 2D and 3D processes. Thermal activation of diffusion was characterized between ~22 and 37 K, and structure-dependent differences were found between the two carbons. Activation energy of diffusion was higher than that of bulk solid hydrogen. Classical notions of liquid and solid do not longer apply for H2 confined in narrow nanopores.

  4. A simple and rapid technique for recovery of (99m)Tc from low specific activity (n,gamma)(99)Mo based on solvent extraction and column chromatography.

    PubMed

    Chattopadhyay, Sankha; Das, Sujata Saha; Barua, Luna

    2010-01-01

    A simple and inexpensive method of separation of (99m)Tc from (99)Mo produced by neutron activation of (98)Mo via the (98)Mo(n,gamma)(99)Mo nuclear reaction is described. The recovery of (99m)Tc was performed by solvent extraction technique followed by column (active alumina) chromatography. The overall radiochemical yield for the complete separation of (99m)Tc was 85-95% (n=10). The separated Na[(99m)Tc]TcO(4) was of high radionuclidic, radiochemical, and chemical purities. The method can be adopted for routine use of (99m)Tc in hospital radio-pharmacies utilizing low-medium specific activity (n,gamma)(99)Mo produced in a research reactor.

  5. Tributyltin sorption to marine sedimentary black carbon and to amended activated carbon.

    PubMed

    Brändli, Rahel C; Breedveld, Gijsbert D; Cornelissen, Gerard

    2009-03-01

    Under marine conditions, tributyltin (TBT) is speciated mainly as an uncharged hydroxyl complex (TBTOH) that is expected to have a similar fate to hydrophobic organic contaminants. Earlier studies indicated that for the later compounds, sorption to black carbon (BC) can be more than two orders of magnitude stronger than sorption to organic carbon, notably at low and environmentally relevant concentrations. The aim of the present study was to investigate the sorption strength of spiked TBT to a sediment and its BC isolate. It was observed that carbon-normalized sorption coefficients were in the same range for the sediment total organic carbon (TOC) and for its BC (log K(TOC) 5.05 L/kg(TOC) and log K(BC) 5.09 L/kg(BC), respectively). This indicates that TBT does not sorb as strongly to BC as other hydrophobic organic contaminants. Activated carbon (AC), a strong man-made sorbent, has the potential to be used for in situ remediation of contaminated sediments and soils, in particular for polycyclic aromatic hydrocarbons and polychlorinated biphenyls. In the present study, both granular and powdered AC were found to strongly sorb TBT under marine conditions, with a log sorption coefficient of 6.8 L/kg(carbon). Tributyl- and dibutyltin concentrations in the pore water of a natively contaminated sediment were reduced by more than 70% on addition of 2% of powdered AC, whereas granular AC did not show a similar reduction. The results indicate that powdered AC might be a feasible remediation agent for sediments contaminated by organotins.

  6. EFFECT OF PRELOADING ON THE SCALE-UP OF GAC MICRO- COLUMNS

    EPA Science Inventory

    A previously presented microcolumn scale-up procedure is evaluated. Scale-up assumptions that involve equal capacities in microcolumns and field columns are studied in an effort to determine whether preloading activated carbon with a natural water significantly reduces the carbo...

  7. Recent measurements of the mixing layer height in Mexico City: Comparison among regional reanalysis data, ceilometer measurements and a reconstruction from measured total column and surface carbon-monoxide.

    NASA Astrophysics Data System (ADS)

    Stremme, Wolfgang; Ortega, Ivan; Baumgardner, Darrel; Münkel, Christoph; Grutter, Michel

    2010-05-01

    In this contribution we present the first results of a cross-validation of the chemical mixing layer height retrieved from carbon monoxide (CO) column and surface measurements and continuous ceilometer data. The CO total column density is routinely measured by ground based solar and lunar FTIR absorption spectroscopy with 0.5 cm-1 resolution at the UNAM Campus in Mexico City (19,33°N, 99.18°W). The effective mixing layer height (MLH) is reconstructed using this parameter in a simplified box model together with the surface measurements of CO provided by the local monitoring network (RAMA). The reconstruction assumes a constant volume mixing ratio in the mixing layer, a constant background CO column amount above and a constant residual CO concentration which has been included in the model. A ceilometer (Vaisala CL31) is measuring at the same location the backscattering aerosol density from which the MLH is being continuously derived. The reconstruction of the MLH from the backscattered radiation is done with a previously used retrieval code and interprets the distribution of the gradient of the aerosol-concentration. The results from both techniques are presented and compared also with the regional reanalysis data and the differences are analyzed discussed.

  8. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons.

    PubMed

    Rakić, Vesna; Rac, Vladislav; Krmar, Marija; Otman, Otman; Auroux, Aline

    2015-01-23

    In this study, the adsorption of pharmaceutically active compounds - salicylic acid, acetylsalicylic acid, atenolol and diclofenac-Na onto activated carbons has been studied. Three different commercial activated carbons, possessing ∼650, 900 or 1500m(2)g(-1) surface areas were used as solid adsorbents. These materials were fully characterized - their textural, surface features and points of zero charge have been determined. The adsorption was studied from aqueous solutions at 303K using batch adsorption experiments and titration microcalorimetry, which was employed in order to obtain the heats evolved as a result of adsorption. The maximal adsorption capacities of investigated solids for all target pharmaceuticals are in the range of 10(-4)molg(-1). The obtained maximal retention capacities are correlated with the textural properties of applied activated carbon. The roles of acid/base features of activated carbons and of molecular structures of adsorbate molecules have been discussed. The obtained results enabled to estimate the possibility to use the activated carbons in the removal of pharmaceuticals by adsorption.

  9. The effects of activation temperature on physico-chemical characteristics of activated carbons derived from biomass wastes

    NASA Astrophysics Data System (ADS)

    Sutrisno, Bachrun; Hidayat, Arif

    2015-12-01

    This research focused on investigating in the effect of activation temperature on the physico-chemical properties of palm empty fruit bunch (PEFB) based activated carbon prepared by physical activation with carbon dioxide. The activation temperature was studied in the range of 400-800°C by keeping the activation temperature at 800°C for 120 min. It was found that the porous properties of activated carbon decreased with an increase in carbonization temperature. The activated carbons prepared at the highest activation temperature at 800°C and activation time of 120 min gave the activated carbon with the highest of BET surface area and pore volume of 938 m2/g and 0.4502 cm3/g, respectively

  10. Surface modification of activated carbons for CO 2 capture

    NASA Astrophysics Data System (ADS)

    Pevida, C.; Plaza, M. G.; Arias, B.; Fermoso, J.; Rubiera, F.; Pis, J. J.

    2008-09-01

    The reduction of anthropogenic CO 2 emissions to address the consequences of climate change is a matter of concern for all developed countries. In the short term, one of the most viable options for reducing carbon emissions is to capture and store CO 2 at large stationary sources. Adsorption with solid sorbents is one of the most promising options. In this work, two series of materials were prepared from two commercial activated carbons, C and R, by heat treatment with gaseous ammonia at temperatures in the 200-800 °C range. The aim was to improve the selectivity and capacity of the sorbents to capture CO 2, by introducing basic nitrogen-functionalities into the carbons. The sorbents were characterised in terms of texture and chemical composition. Their surface chemistry was studied through temperature-programmed desorption tests and X-ray photoelectron spectroscopy. The capture performance of the carbons was evaluated by using a thermogravimetric analyser to record mass uptakes by the samples when exposed to a CO 2 atmosphere.

  11. [Near-infrared spectroscopy technology for online monitoring of the column separation and purification process of active components of Centella asiatica L. Urban].

    PubMed

    Liu, Hua; Ye, Xiao-Lan; Yang, Guang; Qi, Yun-Peng; Fan, Guo-Rong

    2013-01-01

    The present paper is to study and develop a method for online monitoring of the column separation and purification process of active components that are madecassoside and asiaticoside of Centella asiatica L. Urban using near-infrared (NIR) spectroscopy technology. After collecting 50%-ethanol eluant, we detected their NIR spectra and developed the high performance liquid chromatography (HPLC) assay method of active components. Then, partial least square (PLS) was used to develop linear correlation between their NIR spectra and contents. During modeling, correlation coefficient (R2) and root mean square errors of cross-validation (RMSECV) were regarded as the indexes to select optimal wavenumbers and preprocessing methods. The optimal wavenumbers of madecassoside and asiaticoside were in the range of 12 000.8-7 499.8 cm(-1) and 12 000.8-9 750.3 cm(-1), respectively; R2 were 96.44 and 96.07, respectively, and RMSECV were 0.084 80 and 0.000 99, respectively. The above developed model was used for online monitoring of the contents of madecassoside and asiaticoside during the column separation and purification process of Centella asiatica L. Urban. The predicted results were satisfactory. This method was proved to be fast, convenient and precise. It can be used in online monitoring and quality control of the manufacturing of madecassoside and asiaticoside.

  12. A Non-Biological Method for Screening Active Components against Influenza Virus from Traditional Chinese Medicine by Coupling a LC Column with Oseltamivir Molecularly Imprinted Polymers

    PubMed Central

    Yang, Ya-Jun; Li, Jian-Yong; Liu, Xi-Wang; Zhang, Ji-Yu; Liu, Yu-Rong; Li, Bing

    2013-01-01

    To develop a non-biological method for screening active components against influenza virus from traditional Chinese medicine (TCM) extraction, a liquid chromatography (LC) column prepared with oseltamivir molecularly imprinted polymer (OSMIP) was employed with LC-mass spectrometry (LC-MS). From chloroform extracts of compound TCM liquid preparation, we observed an affinitive component m/z 249, which was identified to be matrine following analysis of phytochemical literatures, OSMIP-LC column on-line of control compounds and MS/MS off-line. The results showed that matrine had similar bioactivities with OS against avian influenza virus H9N2 in vitro for both alleviating cytopathic effect and hemagglutination inhibition and that the stereostructures of these two compounds are similar while their two-dimensional structures were different. In addition, our results suggested that the bioactivities of those affinitive compounds were correlated with their chromatographic behaviors, in which less difference of the chromatographic behaviors might have more similar bioactivities. This indicates that matrine is a potential candidate drug to prevent or cure influenza for human or animal. In conclusion, the present study showed that molecularly imprinted polymers can be used as a non-biological method for screening active components against influenza virus from TCM. PMID:24386385

  13. Effects of Cabin Upsets on Adsorption Columns for Air Revitalization

    NASA Technical Reports Server (NTRS)

    LeVan, M. Douglas

    1999-01-01

    The National Aeronautics and Space Administration (NASA) utilizes adsorption technology as part of contaminant removal systems designed for long term missions. A variety of trace contaminants can be effectively removed from gas streams by adsorption onto activated carbon. An activated carbon adsorption column meets NASA's requirements of a lightweight and efficient means of controlling trace contaminant levels aboard spacecraft and space stations. The activated carbon bed is part of the Trace Contaminant Control System (TCCS) which is utilized to purify the cabin atmosphere. TCCS designs oversize the adsorption columns to account for irregular fluctuations in cabin atmospheric conditions. Variations in the cabin atmosphere include changes in contaminant concentrations, temperature, and relative humidity. Excessively large deviations from typical conditions can result from unusual crew activity, equipment malfunctions, or even fires. The research carried out under this award focussed in detail on the effects of cabin upsets on the performance of activated carbon adsorption columns. Both experiments and modeling were performed with an emphasis on the roll of a change in relative humidity on adsorption of trace contaminants. A flow through fixed-bed apparatus was constructed at the NASA Ames Research Center, and experiments were performed there by W. Scot Appel under the direction of Dr. John E. Finn. Modeling work was performed at the University of Virginia and at Vanderbilt University by W. Scot Appel under the direction of M. Douglas LeVan. All three participants collaborated in all of the various phases of the research. The most comprehensive document describing the research is the Ph.D. dissertation of W. Scot Appel. Results have been published in several papers and presented in talks at technical conferences. All documents have been transmitted to Dr. John E. Finn.

  14. Remediation of organochlorine pesticides contaminated lake sediment using activated carbon and carbon nanotubes.

    PubMed

    Hua, Shan; Gong, Ji-Lai; Zeng, Guang-Ming; Yao, Fu-Bing; Guo, Min; Ou, Xiao-Ming

    2017-06-01

    Organochlorine pesticides (OCPs) in sediment were a potential damage for humans and ecosystems. The aim of this work was to determine the effectiveness of carbon materials remedy hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethanes (DDTs) in sediment. Two different carbon materials including activated carbon (AC) and multi-walled carbon nanotubes (MWCNTs) were used in the present research. Sediment treated with 2 wt% AC and MWCNTs after 150 d contact showed 97%, and 75% reduction for HCH, and 93% and 59% decrease for DDTs in aqueous equilibrium concentration, respectively. Similarly, the reduction efficiencies of DDT and HCH uptake by semipermeable membrane devices (SPMDs) treated with AC (MWCNTs) were 97% (75%) and 92% (63%), respectively under the identical conditions. Furthermore, for 2 wt% AC (MWCNTs) system, a reduction of XAD beads uptake up to 87% (52%) and 73% (67%) was obtained in HCH and DDT flux to overlying water in quiescent system. Adding MWCNTs to contaminated sediment did not significantly decrease aqueous equilibrium concentration and DDTs and HCH availability in SPMDs compared to AC treatment. A series of results indicated that AC had significantly higher remediation efficiency towards HCH and DDTs in sediment than MWCNTs. Additionally, the removal efficiencies of two organic pollutants improved with increasing material doses and contact times. The greater effectiveness of AC was attributed to its greater specific surface area, which was favorable for binding contaminants. These results highlighted the potential for using AC as in-situ sorbent amendments for sediment remediation.

  15. System and method for coproduction of activated carbon and steam/electricity

    DOEpatents

    Srinivasachar, Srivats; Benson, Steven; Crocker, Charlene; Mackenzie, Jill

    2011-07-19

    A system and method for producing activated carbon comprising carbonizing a solid carbonaceous material in a carbonization zone of an activated carbon production apparatus (ACPA) to yield a carbonized product and carbonization product gases, the carbonization zone comprising carbonaceous material inlet, char outlet and carbonization gas outlet; activating the carbonized product via activation with steam in an activation zone of the ACPA to yield activated carbon and activation product gases, the activation zone comprising activated carbon outlet, activation gas outlet, and activation steam inlet; and utilizing process gas comprising at least a portion of the carbonization product gases or a combustion product thereof; at least a portion of the activation product gases or a combustion product thereof; or a combination thereof in a solid fuel boiler system that burns a solid fuel boiler feed with air to produce boiler-produced steam and flue gas, the boiler upstream of an air heater within a steam/electricity generation plant, said boiler comprising a combustion zone, a boiler-produced steam outlet and at least one flue gas outlet.

  16. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... activated carbon? 60.1330 Section 60.1330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements § 60.1330 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet...

  17. 77 FR 12614 - Activated Carbon From China; Institution of a Five-Year Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... COMMISSION Activated Carbon From China; Institution of a Five-Year Review AGENCY: United States International... whether revocation of the antidumping duty order on activated carbon from China would be likely to lead to..., the Department of Commerce issued an antidumping duty order on imports of activated carbon from...

  18. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... activated carbon? 60.1330 Section 60.1330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements § 60.1330 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet...

  19. 78 FR 26748 - Certain Activated Carbon From the People's Republic of China: Preliminary Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... International Trade Administration Certain Activated Carbon From the People's Republic of China: Preliminary... duty order on certain activated carbon from the People's Republic of China (``PRC'') for the period of... The merchandise subject to the order is certain activated carbon.\\1\\ The products are...

  20. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... August 30, 1999 Other Monitoring Requirements § 62.15275 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans...

  1. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... August 30, 1999 Other Monitoring Requirements § 62.15275 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans...

  2. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... August 30, 1999 Other Monitoring Requirements § 62.15275 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans...

  3. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... activated carbon? 60.1330 Section 60.1330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements § 60.1330 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet...

  4. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... activated carbon? 60.1330 Section 60.1330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements § 60.1330 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet...

  5. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... activated carbon? 60.1330 Section 60.1330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements § 60.1330 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet...

  6. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... August 30, 1999 Other Monitoring Requirements § 62.15275 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans...

  7. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... August 30, 1999 Other Monitoring Requirements § 62.15275 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans...

  8. An active carbon catalyst prevents coke formation from asphaltenes during the hydrocracking of vacuum residue

    SciTech Connect

    Fukuyama, H.; Terai, S.

    2007-07-01

    Active carbons were prepared by the steam activation of a brown coal char. The active carbon with mesopores showed greater adsorption selectivity for asphaltenes. The active carbon was effective at suppressing coke formation, even with the high hydrocracking conversion of vacuum residue. The analysis of the change in the composition of saturates, aromatics, resins, and asphaltenes in the cracked residue with conversion demonstrated the ability of active carbon to restrict the transformation of asphaltenes to coke. The active carbon that was richer in mesopores was presumably more effective at providing adsorption sites for the hydrocarbon free-radicals generated initially during thermal cracking to prevent them from coupling and polycondensing.

  9. Preparation of high surface area activated carbon from coconut shells using microwave heating.

    PubMed

    Yang, Kunbin; Peng, Jinhui; Srinivasakannan, C; Zhang, Libo; Xia, Hongying; Duan, Xinhui

    2010-08-01

    The present study attempts to utilize coconut shell to prepare activated carbon using agents such as steam, CO(2) and a mixture of steam-CO(2) with microwave heating. Experimental results show that the BET surface area of activated carbons irrespective of the activation agent resulted in surface area in excess of 2000 m(2)/g. The activation time using microwave heating is very much shorter, while the yield of the activated carbon compares well with the conventional heating methods. The activated carbon prepared using CO(2) activation has the largest BET surface area, however the activation time is approximately 2.5 times higher than the activation using steam or mixture of steam-CO(2). The chemical structure of activated carbons examined using Fourier transformed infra-red spectra (FTIR) did not show any variation in the surface functional groups of the activated carbon prepared using different activation agents.

  10. Preparation of functionalized and metal-impregnated activated carbon by a single-step activation method

    NASA Astrophysics Data System (ADS)

    Dastgheib, Seyed A.; Ren, Jianli; Rostam-Abadi, Massoud; Chang, Ramsay

    2014-01-01

    A rapid method to prepare functionalized and metal-impregnated activated carbon from coal is described in this paper. A mixture of ferric chloride and a sub-bituminous coal was used to demonstrate simultaneous coal activation, chlorine functionalization, and iron/iron oxides impregnation in the resulting porous carbon products. The FeCl3 concentration in the mixture, the method to prepare the FeCl3-coal mixture (solid mixing or liquid impregnation), and activation atmosphere and temperature impacted the surface area and porosity development, Cl functionalization, and iron species impregnation and dispersion in the carbon products. Samples activated in nitrogen or a simulated flue gas at 600 or 1000 °C for 1-2 min had surface areas up to ∼800 m2/g, bulk iron contents up to 18 wt%, and surface chlorine contents up to 27 wt%. Potential catalytic and adsorption application of the carbon materials was explored in catalytic wet air oxidation (CWAO) of phenol and adsorption of ionic mercury from aqueous solutions. Results indicated that impregnated activated carbons outperformed their non-impregnated counterparts in both the CWAO and adsorption tests.

  11. Novel electro-fenton approach for regeneration of activated carbon.

    PubMed

    Bañuelos, Jennifer A; Rodríguez, Francisco J; Manríquez Rocha, Juan; Bustos, Erika; Rodríguez, Adrián; Cruz, Julio C; Arriaga, L G; Godínez, Luis A

    2013-07-16

    An electro-Fenton-based method was used to promote the regeneration of granular activated carbon