Sample records for activated carbon samples

  1. Micropore-free surface-activated carbon for the analysis of polychlorinated dibenzo-p-dioxins-dibenzofurans and non-ortho-substituted polychlorinated biphenyls in environmental samples.

    PubMed

    Kemmochi, Yukio; Tsutsumi, Kaori; Arikawa, Akihiro; Nakazawa, Hiroyuki

    2002-11-22

    2,3,7,8-Substituted polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/Fs) and non-ortho-substituted polychlorinated biphenyls (PCBs) account for almost all of the total toxic equivalents (TEQ) in environmental samples. Activated carbon columns are used to fractionate the samples for GC-MS analysis or bioassay. Micropore-free surface-activated carbon is highly selective for PCDD/Fs and non-ortho-PCBs and can improve the conventional activated carbon column clean-up. Along with sulfuric acid-coated diatomaceous earth columns, micropore-free surface-activated carbon provides a rapid, robust, and high-throughput sample preparation method for PCDD/Fs and non-ortho-PCBs analysis.

  2. Activated coconut shell charcoal carbon using chemical-physical activation

    NASA Astrophysics Data System (ADS)

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  3. Activated carbon production from bagasse and banana stem at various times of carbonization

    NASA Astrophysics Data System (ADS)

    Misran, E.; Maulina, S.; Dina, S. F.; Nazar, A.; Harahap, S. A.

    2018-02-01

    The utilization of bagasse and banana stem as activated carbon precursors has been conducted. In this study, the dried samples were impregnated using phosphoric acid (H3PO4) solution as the activator at a ratio of sample to the activator (w/w) was 1:1. The impregnation was conducted at room temperature for 24 hours. The samples then carbonized at 400 °C for 30, 45 and 60 minutes and finally washed and dried to obtain the activated carbon. The research aimed to investigate the effects of time of carbonization on the characteristics of activated carbon produced from bagasse and banana stem. The result showed that yield of activated carbon was in the range of 40.03 - 46.73 % with a high content of carbon as high 90.33 %. The result of BET analysis showed that the highest surface area reached1130.465 m2/g.

  4. Preparation of activated carbon monolith by application of phenolic resins as carbon precursors

    NASA Astrophysics Data System (ADS)

    Sajad, Mehran; Kazemzad, Mahmood; Hosseinnia, Azarmidokht

    2014-04-01

    In the current work, activated carbon monoliths have been prepared by application of different phenolic hydrocarbons namely catechol and resorcinol as carbon precursors. For synthesis of carbon monolith, the precursors have been mixed with Genapol PF-10 as template and then polymerized in the presence of lysine as catalyst. Then the polymerized monolith carbonized in inert atmosphere at 700°C and activated by water steam at 550°C. It was found that resorcinol polymerization is easier than catechol and occurred at 90°C while for polymerization of catechol elevated temperature of 120°C at hydrothermal condition is necessary. The prepared activated carbon samples have been characterized by various analysis methods including scanning electron microscopy (SEM), surface area measurement, and transmission electron microscopy (TEM). The adsorptions of three different aromatic hydrocarbons by the prepared activated carbon samples have also been investigated by high performance liquid chromatography (HPLC) and UV-Vis spectroscopy. It was found that carbon monolith prepared by catechol as carbon precursor has higher adsorpability and strength in comparison with the other sample. The higher performance of carbon monolith prepared by catechol can be associated with its higher active sites in comparison with resorcinol.

  5. Unburnt carbon from coal fly ashes as a precursor of activated carbon for nitric oxide removal.

    PubMed

    Rubio, Begoña; Izquierdo, M Teresa; Mayoral, M Carmen; Bona, M Teresa; Andres, Jose M

    2007-05-08

    The aim of this work is to evaluate the characteristics of an activated carbon obtained from unburnt carbon in coal fly ashes to be used in the removal of NO. Carbon-rich fraction was obtained by mechanical sieving of fly ashes. The mineral matter was removed by conventional HCl and HF demineralization procedure. Activation was carried out with steam at 900 degrees C in order to develop porosity onto the sample. Characterization of samples was performed by several techniques with a main objective: to follow the mineral matter content, composition and distribution on the samples in order to better understand how to remove it from unburnt carbon in fly ashes. To study the use of this unburnt carbon as a precursor for the preparation of activated carbons for gas cleaning, the NO removal by ammonia using activated carbon as a catalyst at low temperature was performed. Results show a good performance of activated carbon in this reaction that is in relationship with BET surface area.

  6. Factors affecting the behavior of unburned carbon upon steam activation

    NASA Astrophysics Data System (ADS)

    Lu, Zhe

    The main objective of this study is to investigate the factors that could affect the behavior of unburned carbon samples upon steam activation. Through this work, the relationships among the factors that could influence the carbon-steam reaction with the surface area of the produced activated carbon were explored. Statistical analysis was used to relate the chemical and physical properties of the unburned carbon to the surface area of the activated carbon. Six unburned carbons were selected as feedstocks for activated carbon, and marked as UCA through UCF. The unburned carbons were activated using steam at 850°C for 90 minutes, and the surface areas of their activated counterparts were measured using N2 adsorption isotherms at 77K. The activated carbons produced from different unburned carbon precursors presented different surface areas at similar carbon burn-off levels. Moreover, in different carbon burn-off regions, the sequences for surface area of activated carbons from different unburned carbon samples were different. The factors that may affect the carbon-steam gasification reactions, including the concentration of carbon active sites, the crystallite size of the carbon, the intrinsic porous structure of carbon, and the inorganic impurities, were investigated. All unburned carbons investigated in this study were similar in that they showed the very broad (002) and (10 ) carbon peaks, which are characteristic of highly disordered carbonaceous materials. In this study, the unburned carbon samples contained about 17--48% of inorganic impurities. Compared to coals, the unburned carbon samples contain a larger amount of inorganic impurities as a result of the burn-off, or at lease part, of the carbon during the combustion process. These inorganic particles were divided into two groups in terms of the way they are associated with carbon particles: free single particles, and particles combined with carbon particles. As indicated from the present work, unburned

  7. Preparation and application of a tyre-based activated carbon solid phase extraction of heavy metals in wastewater samples

    NASA Astrophysics Data System (ADS)

    Dimpe, K. Mogolodi; Ngila, J. C.; Nomngongo, Philiswa N.

    2018-06-01

    In this paper, the tyre-based activated carbon solid phase extraction (SPE) method was successfully developed for simultaneous preconcentration of metal ions in the model and real water samples before their determination using flame atomic absorption spectrometry (FAAS). The activation of carbon was achieved by chemical activation and the tyre-based activated carbon was used as a sorbent for solid phase extraction. The prepared activated carbon was characterized using the scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), and Fourier Transform Infrared spectroscopy. Moreover, optimization of the proposed method was performed by the two-level full factorial design (FFD). The FFD was chosen in order to fully investigate the effect of the experimental variables (pH, eluent concentration and sample flow rate) that significantly influence the preconcentration procedure. In this model, individual factors are considered along with their interactions. In addition, modelling of the experiments allowed simultaneous variation of all experimental factors investigated, reduced the required time and number of experimental runs which consequently led to the reduction of the overall required costs. Under optimized conditions, the limits of detection and quantification (LOD and LOQ) ranged 0.66-2.12 μg L-1and 1.78-5.34 μg L-1, respectively and the enrichment factor of 25 was obtained. The developed SPE/FAAS method was validated using CWW-TM-A and CWW-TM-B wastewater standard reference materials (SRMs). The procedure showed to be accurate with satisfactory recoveries ranging from 92 to 99%. The precision (repeatability) was lower than 4% in terms of the relative standard deviation (%RSD). The developed method proved to have the capability to be used in routine analysis of heavy metals in domestic and industrial wastewater samples. In addition, the developed method can be used as a final step (before being discharged to the rivers) in wastewater treatment process in

  8. Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation

    NASA Astrophysics Data System (ADS)

    Shafeeyan, Mohammad Saleh; Daud, Wan Mohd Ashri Wan; Houshmand, Amirhossein; Arami-Niya, Arash

    2011-02-01

    A commercial granular activated carbon (GAC) was subjected to thermal treatment with ammonia for obtaining an efficient carbon dioxide (CO2) adsorbent. In general, CO2 adsorption capacity of activated carbon can be increased by introduction of basic nitrogen functionalities onto the carbon surface. In this work, the effect of oxygen surface groups before introduction of basic nitrogen functionalities to the carbon surface on CO2 adsorption capacity was investigated. For this purpose two different approaches of ammonia treatment without preliminary oxidation and amination of oxidized samples were studied. Modified carbons were characterized by elemental analysis and Fourier Transform Infrared spectroscopy (FT-IR) to study the impact of changes in surface chemistry and formation of specific surface groups on adsorption properties. The texture of the samples was characterized by conducting N2 adsorption/desorption at -196 °C. CO2 capture performance of the samples was investigated using a thermogravimetric analysis (TGA). It was found that in both modification techniques, the presence of nitrogen functionalities on carbon surface generally increased the CO2 adsorption capacity. The results indicated that oxidation followed by high temperature ammonia treatment (800 °C) considerably enhanced the CO2 uptake at higher temperatures.

  9. Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, E.; Iwantono, Yulita, M.; Taslim, R.; Subagio, A.; Salomo, Deraman, M.

    2013-09-01

    In this paper, a composite electrode was prepared from a mixture of activated carbon derived from precarbonization of cassava peel (CP) and carbon nanotubes (CNTs). The activated carbon was produced by pyrolysis process using ZnCl2 as an activation agent. A N2 adsorption-desorption analysis for the sample indicated that the BET surface area of the activated carbon was 1336 m2 g-1. Difference percentage of CNTs of 0, 5, 10, 15 and 20% with 5% of PVDF binder were added into CP based activated carbon in order to fabricate the composite electrodes. The morphology and structure of the composite electrodes were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM image observed that the distribution of CNTs was homogeneous between carbon particles and the XRD pattern shown the amorphous structure of the sample. The electrodes were fabricated for supercapacitor cells with 316L stainless steel as current collector and 1 M sulfuric acid as electrolyte. An electrochemical characterization was performed by using an electrochemical impedance spectroscopy (EIS) method using a Solatron 1286 instrument and the addition of CNTs revealed to improve the resistant and capacitive properties of supercapacitor cell.

  10. Cooked Food Waste-An Efficient and Less Expensive Precursor for the Generation of Activated Carbon.

    PubMed

    Krithiga, Thangavelu; Sabina, Xavier Janet; Rajesh, Baskaran; Ilbeygi, Hamid; Shetty, Adka Nityananda; Reddy, Ramanjaneya; Karthikeyan, Jayabalan

    2018-06-01

    Activated carbon was synthesized from cooked food waste, especially dehydrated rice kernels, by chemical activation method using NaOH and KOH as activating agents. It was then characterized by ultimate and proximate analysis, BET surface analysis, XRD, FTIR, Raman and SEM. The XRD patterns and Raman spectra confirmed the amorphous nature of the prepared activated carbons. Ultimate analysis showed an increase in the carbon content after activation of the raw carbon samples. Upon activation with NaOH and KOH, the surface area of the carbon sample was found to have increased from 0.3424 to 539.78 and 306.83 m2g-1 respectively. The SEM images revealed the formation of heterogeneous pores on the surface of the activated samples. The samples were then tested for their adsorption activity using acetic acid and methylene blue. Based on the regression coefficients, the adsorption kinetics of methylene blue dye were fitted with pseudo-second order model for both samples. Similarly, the Freundlich isotherm was found to be a better fit than Langmuir isotherm for both samples. The activity of thus prepared activated carbons was found to be comparable with the commercial carbon.

  11. Preparation and use of maize tassels' activated carbon for the adsorption of phenolic compounds in environmental waste water samples.

    PubMed

    Olorundare, O F; Msagati, T A M; Krause, R W M; Okonkwo, J O; Mamba, B B

    2015-04-01

    The determination and remediation of three phenolic compounds bisphenol A (BPA), ortho-nitrophenol (o-NTP), parachlorophenol (PCP) in wastewater is reported. The analysis of these molecules in wastewater was done using gas chromatography (GC) × GC time-of-flight mass spectrometry while activated carbon derived from maize tassel was used as an adsorbent. During the experimental procedures, the effect of various parameters such as initial concentration, pH of sample solution, eluent volume, and sample volume on the removal efficiency with respect to the three phenolic compounds was studied. The results showed that maize tassel produced activated carbon (MTAC) cartridge packed solid-phase extraction (SPE) system was able to remove the phenolic compounds effectively (90.84-98.49%, 80.75-97.11%, and 78.27-97.08% for BPA, o-NTP, and PCP, respectively). The MTAC cartridge packed SPE sorbent performance was compared to commercially produced C18 SPE cartridges and found to be comparable. All the parameters investigated were found to have a notable influence on the adsorption efficiency of the phenolic compounds from wastewaters at different magnitudes.

  12. Bacteria associated with granular activated carbon particles in drinking water.

    PubMed Central

    Camper, A K; LeChevallier, M W; Broadaway, S C; McFeters, G A

    1986-01-01

    A sampling protocol was developed to examine particles released from granular activated carbon filter beds. A gauze filter/Swinnex procedure was used to collect carbon fines from 201 granular activated carbon-treated drinking water samples over 12 months. Application of a homogenization procedure (developed previously) indicated that 41.4% of the water samples had heterotrophic plate count bacteria attached to carbon particles. With the enumeration procedures described, heterotrophic plate count bacteria were recovered at an average rate of 8.6 times higher than by conventional analyses. Over 17% of the samples contained carbon particles colonized with coliform bacteria as enumerated with modified most-probable-number and membrane filter techniques. In some instances coliform recoveries were 122 to 1,194 times higher than by standard procedures. Nearly 28% of the coliforms attached to these particles in drinking water exhibited the fecal biotype. Scanning electron micrographs of carbon fines from treated drinking water showed microcolonies of bacteria on particle surfaces. These data indicate that bacteria attached to carbon fines may be an important mechanism by which microorganisms penetrate treatment barriers and enter potable water supplies. PMID:3767356

  13. Porous properties of activated carbons from waste newspaper prepared by chemical and physical activation.

    PubMed

    Okada, Kiyoshi; Yamamoto, Nobuo; Kameshima, Yoshikazu; Yasumori, Atsuo

    2003-06-01

    Activated carbons were prepared from old newspaper and paper prepared from simulated paper sludge by chemical activation using various alkali carbonates and hydroxides as activating reagents and also by physical activation using steam. In the chemical activation, the influence of oxidation, carbonization, and activation on the porous properties of the resulting activated carbons was investigated. The specific surface areas (S(BET)) of the activated carbons prepared by single-step activation (direct activation without oxidation and carbonization) were higher than those resulting from two-step activation (oxidation-activation and carbonization-activation) and three-step activation (oxidation-carbonization-activation) methods. The S(BET) values were strongly dependent on the activating reagents and the activating conditions, being >1000 m(2)/g using K(2)CO(3), Rb(2)CO(3), Cs(2)CO(3), and KOH as activating reagents but <1000 m(2)/g using Li(2)CO(3), Na(2)CO(3), and NaOH. These differences in S(BET) values are suggested to be related to the ionic radii of the alkalis used as activating reagents. The microstructures of the higher S(BET) samples show a complete loss of fiber shape but those of the lower S(BET) samples maintain the shape. In the physical activation, the porous properties of the activated carbons prepared by the single-step method were examined as a function of the production conditions such as activation temperature, activation time, steam concentration, and flow rate of the carrier gas. The maximum S(BET) and total pore volume (V(P)) were 1086 m(2)/g and 1.01 ml/g, obtained by activation at 850 degrees C for 2 h, flowing 20 mol% of steam in nitrogen gas at 0.5 l/min. A correlation was found between S(BET) and the yield of the product, the maximum S(BET) value corresponding to a product yield of about 10%. This result is suggested to result from competition between pore formation and surface erosion. Compared with chemically activated carbons using K(2)CO

  14. Carbon Dioxide (CO2) Adsorption by Activated Carbon Functionalized with Deep Eutectic Solvent (DES)

    NASA Astrophysics Data System (ADS)

    Zulkurnai, N. Z.; Ali, U. F. Md.; Ibrahim, N.; Manan, N. S. Abdul

    2017-06-01

    In recent years, carbon dioxide (CO2) emission has become a major concern as the amount of the emitted gas significantly increases annually. Consequently, this phenomenon contributes to global warming. Several CO2 capture methods, including chemical adsorption by activated carbon, have been proposed. In this study, activated carbon was prepared from sea mango (Cerbera odollam), which was functionalized with deep eutectic solvent (DES) composed of choline chloride and glycerol to increase the efficiency of CO2 capture. The samples underwent pre-carbonization and carbonization processes at 200 °C and 500 °C, respectively, with nitrogen gas and flowing several gases, namely, CO2 and steam, and then followed by impregnation with 50 phosphoric acid (H3PO4) at 1:2 precursor-to-activant ratio. The prepared activated carbon was impregnated with DES at 1:2 precursor-to-activant ratio. The optimum CO2 adsorption capacity of the activated carbon was obtained by using CO2 gas treatment method (9.851 mgCO2/gsol), followed by the absence of gases (9.685 mgCO2/gsol), steam (9.636 mgCO2/gsol), and N2 (9.536 mgCO2/gsol).

  15. Preparation of water samples for carbon-14 dating

    USGS Publications Warehouse

    Feltz, H.R.; Hanshaw, Bruce B.

    1963-01-01

    For most natural water, a large sample is required to provide the 3 grams of carbon needed for a carbon-14 determination. A field procedure for isolating total dissolved-carbonate species is described. Carbon dioxide gas is evolved by adding sulfuric acid to the water sample; the gas is then collected in a sodium hydroxide trap by recycling in a closed system. The trap is then transported to the dating laboratory where the carbon-14 is counted.

  16. High performance supercapacitor from activated carbon derived from waste orange skin

    NASA Astrophysics Data System (ADS)

    Ahmed, Sultan; Hussain, S.; Ahmed, Ahsan; Rafat, M.

    2018-05-01

    Activated carbon due to its inherent properties such as large surface area and low cost is most frequently used electrode material for supercapacitor. Activated carbon has been previously derived from various biomass such as coconut shell, coffee bean etc. Herein, we report the synthesis of activated carbon from waste orange skin. The material was synthesized employing chemical activation method and the success of synthesis was confirmed by its physical and electrochemical properties. The physical properties of the as-prepared sample were studied using the techniques of XRD, SEM, Raman spectroscopy and N2 adsorption/desorption analysis while its electrochemical properties were studied in two-electrode assembly using liquid electrolyte (consisting of 1 M solution of LiTFSI dispersed in ionic liquid EMITFSI) and employing the techniques of cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge- discharge. The synthesized sample of activated carbon exhibits high specific capacitance of 115 F g-1 at 10 mV s-1. Also, the activated carbon electrode shows the retention of ˜75% in initial capacitance value for more than 2000 initial cycles, indicating the as-prepared activated carbon can be profitably used as electrode material for energy storage devices.

  17. Implications of sampling design and sample size for national carbon accounting systems.

    PubMed

    Köhl, Michael; Lister, Andrew; Scott, Charles T; Baldauf, Thomas; Plugge, Daniel

    2011-11-08

    Countries willing to adopt a REDD regime need to establish a national Measurement, Reporting and Verification (MRV) system that provides information on forest carbon stocks and carbon stock changes. Due to the extensive areas covered by forests the information is generally obtained by sample based surveys. Most operational sampling approaches utilize a combination of earth-observation data and in-situ field assessments as data sources. We compared the cost-efficiency of four different sampling design alternatives (simple random sampling, regression estimators, stratified sampling, 2-phase sampling with regression estimators) that have been proposed in the scope of REDD. Three of the design alternatives provide for a combination of in-situ and earth-observation data. Under different settings of remote sensing coverage, cost per field plot, cost of remote sensing imagery, correlation between attributes quantified in remote sensing and field data, as well as population variability and the percent standard error over total survey cost was calculated. The cost-efficiency of forest carbon stock assessments is driven by the sampling design chosen. Our results indicate that the cost of remote sensing imagery is decisive for the cost-efficiency of a sampling design. The variability of the sample population impairs cost-efficiency, but does not reverse the pattern of cost-efficiency of the individual design alternatives. Our results clearly indicate that it is important to consider cost-efficiency in the development of forest carbon stock assessments and the selection of remote sensing techniques. The development of MRV-systems for REDD need to be based on a sound optimization process that compares different data sources and sampling designs with respect to their cost-efficiency. This helps to reduce the uncertainties related with the quantification of carbon stocks and to increase the financial benefits from adopting a REDD regime.

  18. Carbon-enriched coal fly ash as a precursor of activated carbons for SO2 removal.

    PubMed

    Izquierdo, M T; Rubio, B

    2008-06-30

    Carbon-enriched coal fly ash was evaluated in this work as a low-cost adsorbent for SO2 removal from stack gases. The unburned carbon in coal fly ash was concentrated by mechanical sieving and vegetal oil agglomeration. The carbon concentrates were activated with steam at 900 degrees C in order to develop porosity onto the samples. The performance of these samples in the SO2 abatement was tested in the following conditions: 100 degrees C, 1000 ppmv SO2, 5% O2, 6% water vapor. A good SO2 removal capacity was shown by some of the studied samples that can be related to their textural properties. Cycles of SO2 adsorption/regeneration were carried out in order to evaluate the possibility of thermal regeneration and re-use of these carbons. Regeneration of the exhausted carbons was carried out at 400 degrees C of temperature and a flow of 25 ml/min of Ar. After each cycle, the SO2 removal capacity of the sample decreases.

  19. Photothermal Desorption of Single-Walled Carbon Nanotubes and Coconut Shell-Activated Carbons Using a Continuous Light Source for Application in Air Sampling

    PubMed Central

    Floyd, Evan L.; Sapag, Karim; Oh, Jonghwa; Lungu, Claudiu T.

    2014-01-01

    Many techniques exist to measure airborne volatile organic compounds (VOCs), each with differing advantages; sorbent sampling is compact, versatile, has good sample stability, and is the preferred technique for collecting VOCs for hygienists. Development of a desorption technique that allows multiple analyses per sample (similar to chemical desorption) with enhanced sensitivity (similar to thermal desorption) would be helpful to field hygienists. In this study, activated carbon (AC) and single-walled carbon nanotubes (SWNT) were preloaded with toluene vapor and partially desorbed with light using a common 12-V DC, 50-W incandescent/halogen lamp. A series of experimental chamber configurations were explored starting with a 500-ml chamber under static conditions, then with low ventilation and high ventilation, finally a 75-ml high ventilation chamber was evaluated. When preloaded with toluene and irradiated at the highest lamp setting for 4min, AC desorbed 13.9, 18.5, 23.8, and 45.9% of the loaded VOC mass, in each chamber configuration, respectively; SWNT desorbed 25.2, 24.3, 37.4, and 70.5% of the loaded VOC mass, respectively. SWNT desorption was significantly greater than AC in all test conditions (P = 0.02–<0.0001) demonstrating a substantial difference in sorbent performance. When loaded with 0.435mg toluene and desorbed at the highest lamp setting for 4min in the final chamber design, the mean desorption for AC was 45.8% (39.7, 52.0) and SWNT was 72.6% (68.8, 76.4) (mean represented in terms of 95% confidence interval). All desorption measurements were obtained using a field grade photoionization detector; this demonstrates the potential of using this technique to perform infield prescreening of VOC samples for immediate exposure feedback and in the analytical lab to introduce sample to a gas chromatograph for detailed analysis of the sample. PMID:25016598

  20. Activated carbon from biomass

    NASA Astrophysics Data System (ADS)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  1. [Study on influence between activated carbon property and immobilized biological activated carbon purification effect].

    PubMed

    Wang, Guang-zhi; Li, Wei-guang; He, Wen-jie; Han, Hong-da; Ding, Chi; Ma, Xiao-na; Qu, Yan-ming

    2006-10-01

    By means of immobilizing five kinds of activated carbon, we studied the influence between the chief activated carbon property items and immobilized bioactivated carbon (IBAC) purification effect with the correlation analysis. The result shows that the activated carbon property items which the correlation coefficient is up 0.7 include molasses, abrasion number, hardness, tannin, uniform coefficient, mean particle diameter and effective particle diameter; the activated carbon property items which the correlation coefficient is up 0.5 include pH, iodine, butane and tetrachloride. In succession, the partial correlation analysis shows that activated carbon property items mostly influencing on IBAC purification effect include molasses, hardness, abrasion number, uniform coefficient, mean particle diameter and effective particle diameter. The causation of these property items bringing influence on IBAC purification is that the activated carbon holes distribution (representative activated carbon property item is molasses) provides inhabitable location and adjust food for the dominance bacteria; the mechanical resist-crash property of activated carbon (representative activated carbon property items: abrasion number and hardness) have influence on the stability of biofilm; and the particle diameter size and distribution of activated carbon (representative activated carbon property items: uniform coefficient, mean particle diameter and effective particle diameter) can directly affect the force of water in IBAC filter bed, which brings influence on the dominance bacteria immobilizing on activated carbon.

  2. Implications of sampling design and sample size for national carbon accounting systems

    Treesearch

    Michael Köhl; Andrew Lister; Charles T. Scott; Thomas Baldauf; Daniel Plugge

    2011-01-01

    Countries willing to adopt a REDD regime need to establish a national Measurement, Reporting and Verification (MRV) system that provides information on forest carbon stocks and carbon stock changes. Due to the extensive areas covered by forests the information is generally obtained by sample based surveys. Most operational sampling approaches utilize a combination of...

  3. COMPARISON OF SAMPLING METHODS FOR SEMI-VOLATILE ORGANIC CARBON ASSOCIATED WITH PM 2.5

    EPA Science Inventory

    This study evaluates the influence of denuder sampling methods and filter collection media on the measurement of semi-volatile organic carbon (SVOC) associated with PM2.5. Two types of collection media, charcoal (activated carbon) and XAD, were used both in diffusion denuders ...

  4. Activated Carbon Preparation and Modification for Adsorption

    NASA Astrophysics Data System (ADS)

    Cao, Yuhe

    Butanol is considered a promising, infrastructure-compatible biofuel. Butanol has a higher energy content than ethanol and can be used in conventional gas engines without modifications. Unfortunately, the fermentation pathway for butanol production is restricted by its toxicity to the microbial strains used in the process. Butanol is toxic to the microbes, and this can slow fermentation rates and reduce butanol yields. Gas stripping technology can efficiently remove butanol from the fermentation broth as it is produced, thereby decreasing its inhibitory effects. Traditional butanol separation heavily depends on the energy intensive distillation method. One of the main issues in acetone-butanol-ethanol fermentation is that butanol concentrations in the fermentation broth are low, ranging from 1 to 1.2 percent in weight, because of its toxicity to the microorganisms. Therefore distillation of butanol is even worse than distillation of corn ethanol. Even new separation methods, such as solid- extraction methods involve adding substances, such as polymer resin and zeolite or activated carbon, to biobutanol fermentatioon broth did not achieve energy efficient separation of butanol due to low adsorption selectivity and fouling in broth. Gas-stripping - condensation is another new butanol recovery method, however, the butanol in gas-stripping stream is too low to be condensed without using expensive and energy intensive liquid nitrogen. Adsorption can then be used to recover butanol from the vapor phase. Activated carbon (AC) samples and zeolite were investigated for their butanol vapor adsorption capacities. Commercial activated carbon was modified via hydrothermal H2O2 treatment, and the specific surface area and oxygen-containing functional groups of activated carbon were tested before and after treatment. Hydrothermal H2O 2 modification increased the surface oxygen content, Brunauer-Emmett-Teller surface area, micropore volume, and total pore volume of active carbon

  5. EFFECT OF MOISTURE ON ADSORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBON

    EPA Science Inventory

    The paper discusses experiments using activated carbon to capture elemental mercury (Hgo), and a bench-scale dixed-bed reactor and a flow reactor to determine the role of surface moisture in Hgo adsorption. Three activated-carbon samples, with different pore structure and ash co...

  6. Photothermal desorption of single-walled carbon nanotubes and coconut shell-activated carbons using a continuous light source for application in air sampling.

    PubMed

    Floyd, Evan L; Sapag, Karim; Oh, Jonghwa; Lungu, Claudiu T

    2014-08-01

    Many techniques exist to measure airborne volatile organic compounds (VOCs), each with differing advantages; sorbent sampling is compact, versatile, has good sample stability, and is the preferred technique for collecting VOCs for hygienists. Development of a desorption technique that allows multiple analyses per sample (similar to chemical desorption) with enhanced sensitivity (similar to thermal desorption) would be helpful to field hygienists. In this study, activated carbon (AC) and single-walled carbon nanotubes (SWNT) were preloaded with toluene vapor and partially desorbed with light using a common 12-V DC, 50-W incandescent/halogen lamp. A series of experimental chamber configurations were explored starting with a 500-ml chamber under static conditions, then with low ventilation and high ventilation, finally a 75-ml high ventilation chamber was evaluated. When preloaded with toluene and irradiated at the highest lamp setting for 4min, AC desorbed 13.9, 18.5, 23.8, and 45.9% of the loaded VOC mass, in each chamber configuration, respectively; SWNT desorbed 25.2, 24.3, 37.4, and 70.5% of the loaded VOC mass, respectively. SWNT desorption was significantly greater than AC in all test conditions (P = 0.02-<0.0001) demonstrating a substantial difference in sorbent performance. When loaded with 0.435mg toluene and desorbed at the highest lamp setting for 4min in the final chamber design, the mean desorption for AC was 45.8% (39.7, 52.0) and SWNT was 72.6% (68.8, 76.4) (mean represented in terms of 95% confidence interval). All desorption measurements were obtained using a field grade photoionization detector; this demonstrates the potential of using this technique to perform infield prescreening of VOC samples for immediate exposure feedback and in the analytical lab to introduce sample to a gas chromatograph for detailed analysis of the sample. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  7. Natural gas storage with activated carbon from a bituminous coal

    USGS Publications Warehouse

    Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.

    1996-01-01

    Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (<0.044 mm). The increase in Vm/Vs is due to the increase in bulk density of the carbons. Volumetric methane adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.

  8. Solid-phase microextraction of phthalate esters in water sample using different activated carbon-polymer monoliths as adsorbents.

    PubMed

    Lirio, Stephen; Fu, Chung-Wei; Lin, Jhih-Yun; Hsu, Meng-Ju; Huang, Hsi-Ya

    2016-07-13

    In this study, the application of different activated carbon-polymer (AC-polymer) monoliths as adsorbents for the solid-phase microextraction (SPME) of phthalate esters (PAEs) in water sample were investigated. The activated carbon (AC) was embedded in organic polymers, poly(butyl methacrylate-co-ethylene dimethacrylate) (poly(BMA-EDMA)) or poly(styrene-co-divinylbenzene) (poly(STY-DVB)), via a 5-min microwave-assisted or a 15-min water bath heating polymerization. Preliminary investigation on the performance of the native poly(BMA-EDMA) and poly(STY-DVB) demonstrated remarkable adsorption efficiencies for PAEs. However, due to the strong hydrophobic, π-π, and hydrogen bonding interactions between the analytes and polymers, low extraction recoveries were achieved. In contrast, the presence of AC in native polymers not only enhanced the adsorption efficiencies but also assisted the PAE desorption, especially for AC-poly(STY-DVB) with extraction recovery ranged of 76.2-99.3%. Under the optimized conditions, the extraction recoveries for intra-, inter-day and column-to-column were in the range of 76.5-100.8% (<3.7% RSDs), 77.2-97.6% (<5.6% RSDs) and 75.5-99.7% (<6.2% RSDs), respectively. The developed AC-poly(STY-DVB) monolithic column showed good mechanical stability, which can be reused for more than 30 extraction times without any significant loss in the extraction recoveries of PAEs. The AC-poly(STY-DVB) monolithic column was successfully applied in SPME of PAEs in water sample with extraction recovery ranged of 78.8%-104.6% (<5.5% RSDs). Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Activated, coal-based carbon foam

    DOEpatents

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  10. Activated carbon derived from chitosan as air cathode catalyst for high performance in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhao, Yong; Li, Kexun; Wang, Zhong; Tian, Pei; Liu, Di; Yang, Tingting; Wang, Junjie

    2018-02-01

    Chitosan with rich of nitrogen is used as carbon precursor to synthesis activated carbon through directly heating method in this study. The obtained carbon is activated by different amount of KOH at different temperatures, and then prepared as air cathodes for microbial fuel cells. Carbon sample treated with double amount of KOH at 850 °C exhibits maximum power density (1435 ± 46 mW m-2), 1.01 times improved, which ascribes to the highest total surface area, moderate micropore and mesoporous structure and the introduction of nitrogen. The electrochemical impedance spectroscopy and powder resistivity state that carbon treated with double amount of KOH at 850 °C possesses lower resistance. The other electrochemical measurements demonstrate that the best kinetic activity make the above treated sample to show the best oxygen reduction reaction activity. Besides, the degree of graphitization of samples increases with the activated temperature increasing, which is tested by Raman. According to elemental analysis and X-ray photoelectron spectroscopy, all chitosan samples are nitrogen-doped carbon, and high content nitrogen (pyridinic-N) improves the electrochemical activity of carbon treated with KOH at 850 °C. Thus, carbon materials derived from chitosan would be an optimized catalyst for oxygen reduction reaction in microbial fuel cell.

  11. Measurement of carbon storage in landfills from the biogenic carbon content of excavated waste samples.

    PubMed

    De la Cruz, Florentino B; Chanton, Jeffrey P; Barlaz, Morton A

    2013-10-01

    Landfills are an anaerobic ecosystem and represent the major disposal alternative for municipal solid waste (MSW) in the U.S. While some fraction of the biogenic carbon, primarily cellulose (Cel) and hemicellulose (H), is converted to carbon dioxide and methane, lignin (L) is essentially recalcitrant. The biogenic carbon that is not mineralized is stored within the landfill. This carbon storage represents a significant component of a landfill carbon balance. The fraction of biogenic carbon that is not reactive in the landfill environment and therefore stored was derived for samples of excavated waste by measurement of the total organic carbon, its biogenic fraction, and the remaining methane potential. The average biogenic carbon content of the excavated samples was 64.6±18.0% (average±standard deviation), while the average carbon storage factor was 0.09±0.06g biogenic-C stored per g dry sample or 0.66±0.16g biogenic-C stored per g biogenic C. Published by Elsevier Ltd.

  12. COMPARISON OF SAMPLING METHODS FOR SEMI-VOLATILE ORGANIC CARBON (SVOC) ASSOCIATED WITH PM 2.5

    EPA Science Inventory

    This study evaluates the influence of denuder sampling methods and filter collection media on the measurement of semi-volatile organic carbon (SVOC) associated with PM2.5. Two types of collection media, charcoal (activated carbon) and XAD, were used both in diffusion denuders ...

  13. Removal of BrO₃⁻ from drinking water samples using newly developed agricultural waste-based activated carbon and its determination by ultra-performance liquid chromatography-mass spectrometry.

    PubMed

    Naushad, Mu; Khan, Mohammad R; ALOthman, Zeid A; AlSohaimi, Ibrahim; Rodriguez-Reinoso, Francisco; Turki, Turki M; Ali, Rahmat

    2015-10-01

    Activated carbon was prepared from date pits via chemical activation with H3PO4. The effects of activating agent concentration and activation temperature on the yield and surface area were studied. The optimal activated carbon was prepared at 450 °C using 55 % H3PO4. The prepared activated carbon was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric-differential thermal analysis, and Brunauer, Emmett, and Teller (BET) surface area. The prepared date pit-based activated carbon (DAC) was used for the removal of bromate (BrO3 (-)). The concentration of BrO3 (-) was determined by ultra-performance liquid chromatography-mass tandem spectrometry (UPLC-MS/MS). The experimental equilibrium data for BrO3 (-) adsorption onto DAC was well fitted to the Langmuir isotherm model and showed maximum monolayer adsorption capacity of 25.64 mg g(-1). The adsorption kinetics of BrO3 (-) adsorption was very well represented by the pseudo-first-order equation. The analytical application of DAC for the analysis of real water samples was studied with very promising results.

  14. Activated carbon material

    DOEpatents

    Evans, A. Gary

    1978-01-01

    Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

  15. Solid-phase extraction of polar pesticides from environmental water samples on graphitized carbon and Empore-activated carbon disks and on-line coupling to octadecyl-bonded silica analytical columns.

    PubMed

    Slobodník, J; Oztezkizan, O; Lingeman, H; Brinkman, U A

    1996-10-25

    The suitability of Empore-activated carbon disks (EACD), Envi-Carb graphitized carbon black (GCB) and CPP-50 graphitized carbon for the trace enrichment of polar pesticides from water samples was studied by means of off-line and on-line solid-phase extraction (SPE). In the off-line procedure, 0.5-2 l samples spiked with a test mixture of oxamyl, methomyl and aldicarb sulfoxide were enriched on EnviCarb SPE cartridges or 47 mm diameter EACD and eluted with dichloromethane-methanol. After evaporation, a sample was injected onto a C18-bonded silica column and analysed by liquid chromatography with ultraviolet (LC-UV) detection. EACD performed better than EnviCarb cartridges in terms of breakthrough volumes (> 2 l for all test analytes), reproducibility (R.S.D. of recoveries, 4-8%, n = 3) and sampling speed (100 ml/min); detection limits in drinking water were 0.05-0.16 microgram/l. In the on-line experiments, 4.6 mm diameter pieces cut from original EACD and stacked onto each other in a 9 mm long precolumn, and EnviCarb and CPP-50 packed in 10 x 2.0 mm I.D. precolumn, were tested, and 50-200 ml spiked water samples were preconcentrated. Because of the peak broadening caused by the strong sorption of the analytes on carbon, the carbon-packed precolumns were eluted by a separate stream of 0.1 ml/min acetonitrile which was mixed with the gradient LC eluent in front of the C18 analytical column. The final on-line procedure was also applied for the less polar propoxur, carbaryl and methiocarb. EnviCarb could not be used due to its poor pressure resistance. CPP-50 provided less peak broadening than EACD: peak widths were 0.1-0.3 min and R.S.D. of peak heights 4-14% (n = 3). In terms of analyte trapping efficiency on-line SPE-LC-UV with a CPP-50 precolumn also showed better performance than when Bondesil C18/OH or polymeric PLRP-S was used, but chromatographic resolution was similar. With the CPP-50-based system, detection limits of the test compounds were 0.05-1 microgram

  16. Granular activated carbons from broiler manure: physical, chemical and adsorptive properties.

    PubMed

    Lima, Isabel M; Marshall, Wayne E

    2005-04-01

    Broiler manure produced at large concentrated facilities poses risks to the quality of water and public health. This study utilizes broiler litter and cake as source materials for granular activated carbon production and optimizes conditions for their production. Pelletized manure samples were pyrolyzed at 700 degrees C for 1 h followed by activation in an inert atmosphere under steam at different water flow rates, for a period ranging from 15 to 75 min. Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant, yields varied from 18% to 28%, surface area varied from 253 to 548 m2/g and copper ion adsorption varied from 0.13 to 1.92 mmol Cu2+/g carbon. Best overall performing carbons were steam activated for 45 min at 3 ml/min. Comparative studies with commercial carbons revealed the broiler cake-based carbon as having the highest copper ion efficiency.

  17. Selectivity and limitations of carbon sorption tubes for capturing siloxanes in biogas during field sampling.

    PubMed

    Tansel, Berrin; Surita, Sharon C

    2016-06-01

    Siloxane levels in biogas can jeopardize the warranties of the engines used at the biogas to energy facilities. The chemical structure of siloxanes consists of silicon and oxygen atoms, alternating in position, with hydrocarbon groups attached to the silicon side chain. Siloxanes can be either in cyclic (D) or linear (L) configuration and referred with a letter corresponding to their structure followed by a number corresponding to the number of silicon atoms present. When siloxanes are burned, the hydrocarbon fraction is lost and silicon is converted to silicates. The purpose of this study was to evaluate the adequacy of activated carbon gas samplers for quantitative analysis of siloxanes in biogas samples. Biogas samples were collected from a landfill and an anaerobic digester using multiple carbon sorbent tubes assembled in series. One set of samples was collected for 30min (sampling 6-L gas), and the second set was collected for 60min (sampling 12-L gas). Carbon particles were thermally desorbed and analyzed by Gas Chromatography Mass Spectrometry (GC/MS). The results showed that biogas sampling using a single tube would not adequately capture octamethyltrisiloxane (L3), hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6). Even with 4 tubes were used in series, D5 was not captured effectively. The single sorbent tube sampling method was adequate only for capturing trimethylsilanol (TMS) and hexamethyldisiloxane (L2). Affinity of siloxanes for activated carbon decreased with increasing molecular weight. Using multiple carbon sorbent tubes in series can be an appropriate method for developing a standard procedure for determining siloxane levels for low molecular weight siloxanes (up to D3). Appropriate quality assurance and quality control procedures should be developed for adequately quantifying the levels of the higher molecular weight siloxanes in biogas with sorbent tubes

  18. Selective Aliphatic Carbon-Carbon Bond Activation by Rhodium Porphyrin Complexes.

    PubMed

    To, Ching Tat; Chan, Kin Shing

    2017-07-18

    The carbon-carbon bond activation of organic molecules with transition metal complexes is an attractive transformation. These reactions form transition metal-carbon bonded intermediates, which contribute to fundamental understanding in organometallic chemistry. Alternatively, the metal-carbon bond in these intermediates can be further functionalized to construct new carbon-(hetero)atom bonds. This methodology promotes the concept that the carbon-carbon bond acts as a functional group, although carbon-carbon bonds are kinetically inert. In the past few decades, numerous efforts have been made to overcome the chemo-, regio- and, more recently, stereoselectivity obstacles. The synthetic usefulness of the selective carbon-carbon bond activation has been significantly expanded and is becoming increasingly practical: this technique covers a wide range of substrate scopes and transition metals. In the past 16 years, our laboratory has shown that rhodium porphyrin complexes effectively mediate the intermolecular stoichiometric and catalytic activation of both strained and nonstrained aliphatic carbon-carbon bonds. Rhodium(II) porphyrin metalloradicals readily activate the aliphatic carbon(sp 3 )-carbon(sp 3 ) bond in TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl) and its derivatives, nitriles, nonenolizable ketones, esters, and amides to produce rhodium(III) porphyrin alkyls. Recently, the cleavage of carbon-carbon σ-bonds in unfunctionalized and noncoordinating hydrocarbons with rhodium(II) porphyrin metalloradicals has been developed. The absence of carbon-hydrogen bond activation in these systems makes the reaction unique. Furthermore, rhodium(III) porphyrin hydroxide complexes can be generated in situ to selectively activate the carbon(α)-carbon(β) bond in ethers and the carbon(CO)-carbon(α) bond in ketones under mild conditions. The addition of PPh 3 promotes the reaction rate and yield of the carbon-carbon bond activation product. Thus, both rhodium

  19. Removal of gadolinium-based contrast agents: adsorption on activated carbon.

    PubMed

    Elizalde-González, María P; García-Díaz, Esmeralda; González-Perea, Mario; Mattusch, Jürgen

    2017-03-01

    Three carbon samples were employed in this work, including commercial (1690 m 2  g -1 ), activated carbon prepared from guava seeds (637 m 2  g -1 ), and activated carbon prepared from avocado kernel (1068 m 2  g -1 ), to study the adsorption of the following gadolinium-based contrast agents (GBCAs): gadoterate meglumine Dotarem®, gadopentetate dimeglumine Magnevist®, and gadoxetate disodium Primovist®. The activation conditions with H 3 PO 4 were optimized using a Taguchi methodology to obtain mesoporous materials. The best removal efficiency by square meter in a batch system in aqueous solution and model urine was achieved by avocado kernel carbon, in which mesoporosity prevails over microporosity. The kinetic adsorption curves were described by a pseudo-second-order equation, and the adsorption isotherms in the concentration range 0.5-6 mM fit the Freundlich equation. The chemical characterization of the surfaces shows that materials with a greater amount of phenolic functional groups adsorb the GBCA better. Adsorption strongly depends on the pH due to the combination of the following factors: contrast agent protonated forms and carbon surface charge. The tested carbon samples were able to adsorb 70-90% of GBCA in aqueous solution and less in model urine. This research proposes a method for the elimination of GBCA from patient urine before its discharge into wastewater.

  20. Carbon-14 dating of small samples by proportional counting.

    PubMed

    Harbottle, G; Sayre, E V; Stoenner, R W

    1979-11-09

    Conventional carbon-14 dating by means of gas proportional counters has been extended to samples containing as little as 10 milligrams of carbon. The accuracy of the dating procedure has been checked by dating sequoia tree-ring samples of the 1st century A.D. and B.C. and an oak tree-ring sample of the 19th century A.D.

  1. Activation of Aspen Wood with Carbon Dioxide and Phosphoric Acid for Removal of Total Organic Carbon from Oil Sands Produced Water: Increasing the Yield with Bio-Oil Recycling

    PubMed Central

    Veksha, Andrei; Bhuiyan, Tazul I.; Hill, Josephine M.

    2016-01-01

    Several samples of activated carbon were prepared by physical (CO2) and chemical (H3PO4) activation of aspen wood and tested for the adsorption of organic compounds from water generated during the recovery of bitumen using steam assisted gravity drainage. Total organic carbon removal by the carbon samples increased proportionally with total pore volume as determined from N2 adsorption isotherms at −196 °C. The activated carbon produced by CO2 activation had similar removal levels for total organic carbon from the water (up to 70%) to those samples activated with H3PO4, but lower yields, due to losses during pyrolysis and activation. A method to increase the yield when using CO2 activation was proposed and consisted of recycling bio-oil produced from previous runs to the aspen wood feed, followed by either KOH addition (0.48%) or air pretreatment (220 °C for 3 h) before pyrolysis and activation. By recycling the bio-oil, the yield of CO2 activated carbon (after air pretreatment of the mixture) was increased by a factor of 1.3. Due to the higher carbon yield, the corresponding total organic carbon removal, per mass of wood feed, increased by a factor of 1.2 thus improving the overall process efficiency. PMID:28787817

  2. The effect of activated carbon support surface modification on characteristics of carbon nanospheres prepared by deposition precipitation of Fe-catalyst

    NASA Astrophysics Data System (ADS)

    Kristianto, H.; Arie, A. A.; Susanti, R. F.; Halim, M.; Lee, J. K.

    2016-11-01

    In this study the effect of activated carbon support modification to synthesis of CNSs was observed. Modification of activated carbon was done by using nitric acid. The effect of modification was analyzed from its FTIR spectra. The Fe catalysts were deposited on to the support by using urea deposition precipitation method at various initial catalysts concentration. CNSs was synthesized by utilizing cooking palm oil as renewable carbon source, and pyrolized at 700°C for 1 hour under nitrogen atmosphere. The products obtained then analyzed using SEM-EDS, TEM, XRD, and Raman spectroscopy. The modification of activated carbon support had increased the oxygen functional group. This increase resulted on increase of metal catalysts deposited on activated carbon surface. Peak of C (100) was observed, while ID/IG of samples were obtained around 0.9, which is commonly obtained for CNSs. High catalysts loading on modified activated carbon support caused decomposition of CNSs and formation carbon onion.

  3. Carbon mineralization in acidic, xeric forest soils: induction of new activities.

    PubMed

    Tate, R L

    1985-08-01

    Carbon mineralization was examined in Lakehurst and Atsion sands collected from the New Jersey Pinelands and in Pahokee muck from the Everglades Agricultural Area. Objectives were (i) to estimate the carbon mineralization capacities of acidic, xeric Pinelands soils in the absence of exogenously supplied carbon substrate (nonamended carbon mineralization rate) and to compare these activities with those of agriculturally developed pahokee muck, and (ii) to measure the capacity for increased carbon mineralization in the soils after carbon amendment. In most cases, nonamended carbon mineralization rates were greater in samples of the acid- and moisture-stressed Pinelands soils than in Pahokee muck collected from a fallow (bare) field. Carbon amendment resulted in augmented catabolic activity in Pahokee muck samples, suggesting that the microbial community was carbon limited in this soil. With many of the substrates, no stimulation of the catabolic rate was detected after amendment of Pinelands soils. This was documented by the observation that amendment of Pahokee muck with an amino acid mixture, glucose, or acetate resulted in a 3.0-, 3.9-, or 10.5-fold stimulation of catabolic activity, respectively, for the added substrate. In contrast, amendment of the Pinelands soils resulted in increased amino acid and acetate catabolic rates in Lakehurst sand and increased acetate metabolism only in Atsion sand. Other activities were unchanged. The increased glucose respiration rates resulted from stimulation of existing microbial activity rather than from microbial proliferation since no change in the microbial growth rate, as estimated by the rate of incorporation of C-labeled acetate into cell membranes, occurred after glucose amendment of the soils. A stimulation of microbial growth rate was recorded with glucose-amended Lakehurst sand collected from the B horizon.

  4. Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon

    NASA Astrophysics Data System (ADS)

    Faria, P. C. C.; Órfão, J. J. M.; Figueiredo, J. L.; Pereira, M. F. R.

    2008-03-01

    The adsorption of three selected aromatic compounds (aniline, sulfanilic acid and benzenesulfonic acid) on activated carbons with different surface chemical properties was investigated at different solution pH. A fairly basic commercial activated carbon was modified by means of chemical treatment with HNO 3, yielding an acid activated carbon. The textural properties of this sample were not significantly changed after the oxidation treatment. Equilibrium isotherms of the selected compounds on the mentioned samples were obtained and the results were discussed in relation to their surface chemistry. The influence of electrostatic and dispersive interactions involved in the uptake of the compounds studied was evaluated. The Freundlich model was used to fit the experimental data. Higher uptakes are attained when the compounds are present in their molecular form. In general, adsorption was disfavoured by the introduction of oxygen-containing groups on the surface of the activated carbon.

  5. Electrical and galvanomagnetic properties of nanoporous carbon samples impregnated with bromine

    NASA Astrophysics Data System (ADS)

    Danishevskii, A. M.; Popov, V. V.; Kyutt, R. N.; Gordeev, S. K.

    2013-07-01

    Nanoporous carbon samples with a large specific surface area can be filled with heavier elements or their compounds, which makes it possible to investigate the interaction of their electronic subsystems with carbon. One of the elements convenient for filling pores of carbon materials is bromine. Impregnation of nanoporous carbon samples with bromine causes the occurrence of the processes of micropore filling, monolayer adsorption, and intercalation. It has been found that samples impregnated with bromine substantially change their electrical and galvanomagnetic properties, and these changes depend on the structure of the samples. It has been shown that, if in the skeleton of a porous carbon sample there is a fraction of graphite clusters, the impregnation of the sample with bromine increases the concentration of charged carriers (holes). But when the sample has a quasi-amorphous structure, the injection of bromine into the sample leads to the appearance of a certain concentration of electrons in addition to charged mobile holes of the initial sample; i.e., the electrical conductivity becomes bipolar. In the former case, bromine molecules intercalate graphite clusters and, since bromine is an acceptor during intercalation of graphite, the hole concentration in the carbon skeleton network increases. In the latter case, bromine molecules can only be adsorbed on pore walls. As a result, the adsorption interaction between the electron shells of bromine molecules and the carbon surface leads to the formation of a donor layer near the surface and to the generation of electrons in the carbon skeleton network.

  6. Characterization of activated carbons from oil-palm shell by CO2 activation with no holding carbonization temperature.

    PubMed

    Herawan, S G; Hadi, M S; Ayob, Md R; Putra, A

    2013-01-01

    Activated carbons can be produced from different precursors, including coals of different ranks, and lignocellulosic materials, by physical or chemical activation processes. The objective of this paper is to characterize oil-palm shells, as a biomass byproduct from palm-oil mills which were converted into activated carbons by nitrogen pyrolysis followed by CO2 activation. The effects of no holding peak pyrolysis temperature on the physical characteristics of the activated carbons are studied. The BET surface area of the activated carbon is investigated using N2 adsorption at 77 K with selected temperatures of 500, 600, and 700°C. These pyrolysis conditions for preparing the activated carbons are found to yield higher BET surface area at a pyrolysis temperature of 700°C compared to selected commercial activated carbon. The activated carbons thus result in well-developed porosities and predominantly microporosities. By using this activation method, significant improvement can be obtained in the surface characteristics of the activated carbons. Thus this study shows that the preparation time can be shortened while better results of activated carbon can be produced.

  7. Adsorption Studies of Chromium(VI) on Activated Carbon Derived from Mangifera indica (Mango) Seed Shell

    NASA Astrophysics Data System (ADS)

    Mise, Shashikant; Patil, Trupti Nagendra

    2015-09-01

    The removal of chromium(VI) from synthetic sample by adsorption on activated carbon prepared from Mangifera indica (mango) seed shell have been carried out at room temperature 32 ± 1 °C. The removal of chromium(VI) from synthetic sample by adsorption on two types of activated carbon, physical activation and chemical activation (Calcium chloride and Sodium chloride), Impregnation Ratio's (IR) 0.25, 0.50, 0.75 for optimum time, optimum dosages and variation of pH were studied. It is observed that contact time differs for different carbons i.e. for physically and chemically activated carbons. The contact time decreases for chemically activated carbon compared to the physically activated carbon. It was observed that as dosage increases the adsorption increased along with the increase in impregnation ratio. It was also noted that as I.R. increases the surface area of Mangifera indica shell carbon increased. These dosage data were considered in the construction of isotherms and it was found that adsorption obeys Freundlich Isotherm and does not obey Langmuir Isotherm. The maximum removal of chromium (VI) was obtained in highly acidic medium at a pH of 1.50.

  8. SAMPLING ARTIFACTS IN MEASUREMENT OF ELEMENTAL AND ORGANIC CARBON: LOW VOLUME SAMPLING IN INDOOR AND OUTDOOR ENVIRONMENTS

    EPA Science Inventory

    Experiments were completed to determine the extent of artifacts from sampling elemental carbon (EC) and organic carbon (OC) under sample conditions consistent with personal sampling. Two different types of experiments were completed; the first examined possible artifacts from oil...

  9. Photoconductivity of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  10. Production of palm kernel shell-based activated carbon by direct physical activation for carbon dioxide adsorption.

    PubMed

    Rashidi, Nor Adilla; Yusup, Suzana

    2018-05-09

    The feasibility of biomass-based activated carbons has received a huge attention due to their excellent characteristics such as inexpensiveness, good adsorption behaviour and potential to reduce a strong dependency towards non-renewable precursors. Therefore, in this research work, eco-friendly activated carbon from palm kernel shell that has been produced from one-stage physical activation by using the Box-Behnken design of Response Surface Methodology is highlighted. The effect of three input parameters-temperature, dwell time and gas flow rate-towards product yield and carbon dioxide (CO 2 ) uptake at room temperature and atmospheric pressure are studied. Model accuracy has been evaluated through the ANOVA analysis and lack-of-fit test. Accordingly, the optimum condition in synthesising the activated carbon with adequate CO 2 adsorption capacity of 2.13 mmol/g and product yield of 25.15 wt% is found at a temperature of 850 °C, holding time of 60 min and CO 2 flow rate of 450 cm 3 /min. The synthesised activated carbon has been characterised by diverse analytical instruments including thermogravimetric analyser, scanning electron microscope, as well as N 2 adsorption-desorption isotherm. The characterisation analysis indicates that the synthesised activated carbon has higher textural characteristics and porosity, together with better thermal stability and carbon content as compared to pristine palm kernel shell. Activated carbon production via one-step activation approach is economical since its carbon yield is within the industrial target, whereas CO 2 uptake is comparable to the synthesised activated carbon from conventional dual-stage activation, commercial activated carbon and other published data from literature.

  11. Catalytic activation of carbon-carbon bonds in cyclopentanones.

    PubMed

    Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin

    2016-11-24

    In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon-carbon single bonds (C-C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds. The challenge in achieving such activation is the kinetic inertness of C-C bonds and the relative weakness of newly formed carbon-metal bonds. The most common tactic starts with a three- or four-membered carbon-ring system, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C-C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C-C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C-C bond can be activated; this is followed by activation of a carbon-hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones-a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate.

  12. Products of n-hexane oxidation with air oxygen on an activated carbon surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkauskas, Yu.; Kareiva, A.

    Products of n-hexane oxidation on an activated carbon surface have been investigated. Carbon samples have been prepared using the Plackett-Burman method of mathematical design. The influence of carbon preparation stages on the composition of products of n-hexane oxidation has been discussed.

  13. Quality assurance and quality control for thermal/optical analysis of aerosol samples for organic and elemental carbon.

    PubMed

    Chow, Judith C; Watson, John G; Robles, Jerome; Wang, Xiaoliang; Chen, L-W Antony; Trimble, Dana L; Kohl, Steven D; Tropp, Richard J; Fung, Kochy K

    2011-12-01

    Accurate, precise, and valid organic and elemental carbon (OC and EC, respectively) measurements require more effort than the routine analysis of ambient aerosol and source samples. This paper documents the quality assurance (QA) and quality control (QC) procedures that should be implemented to ensure consistency of OC and EC measurements. Prior to field sampling, the appropriate filter substrate must be selected and tested for sampling effectiveness. Unexposed filters are pre-fired to remove contaminants and acceptance tested. After sampling, filters must be stored in the laboratory in clean, labeled containers under refrigeration (<4 °C) to minimize loss of semi-volatile OC. QA activities include participation in laboratory accreditation programs, external system audits, and interlaboratory comparisons. For thermal/optical carbon analyses, periodic QC tests include calibration of the flame ionization detector with different types of carbon standards, thermogram inspection, replicate analyses, quantification of trace oxygen concentrations (<100 ppmv) in the helium atmosphere, and calibration of the sample temperature sensor. These established QA/QC procedures are applicable to aerosol sampling and analysis for carbon and other chemical components.

  14. Carbon Mineralization in Acidic, Xeric Forest Soils: Induction of New Activities

    PubMed Central

    Tate, Robert L.

    1985-01-01

    Carbon mineralization was examined in Lakehurst and Atsion sands collected from the New Jersey Pinelands and in Pahokee muck from the Everglades Agricultural Area. Objectives were (i) to estimate the carbon mineralization capacities of acidic, xeric Pinelands soils in the absence of exogenously supplied carbon substrate (nonamended carbon mineralization rate) and to compare these activities with those of agriculturally developed pahokee muck, and (ii) to measure the capacity for increased carbon mineralization in the soils after carbon amendment. In most cases, nonamended carbon mineralization rates were greater in samples of the acid- and moisture-stressed Pinelands soils than in Pahokee muck collected from a fallow (bare) field. Carbon amendment resulted in augmented catabolic activity in Pahokee muck samples, suggesting that the microbial community was carbon limited in this soil. With many of the substrates, no stimulation of the catabolic rate was detected after amendment of Pinelands soils. This was documented by the observation that amendment of Pahokee muck with an amino acid mixture, glucose, or acetate resulted in a 3.0-, 3.9-, or 10.5-fold stimulation of catabolic activity, respectively, for the added substrate. In contrast, amendment of the Pinelands soils resulted in increased amino acid and acetate catabolic rates in Lakehurst sand and increased acetate metabolism only in Atsion sand. Other activities were unchanged. The increased glucose respiration rates resulted from stimulation of existing microbial activity rather than from microbial proliferation since no change in the microbial growth rate, as estimated by the rate of incorporation of 14C-labeled acetate into cell membranes, occurred after glucose amendment of the soils. A stimulation of microbial growth rate was recorded with glucose-amended Lakehurst sand collected from the B horizon. PMID:16346862

  15. Ozonation of 1,2-dihydroxybenzene in the presence of activated carbon.

    PubMed

    Zaror, C; Soto, G; Valdés, H; Mansilla, H

    2001-01-01

    This work aims at obtaining experimental data on ozonation of 1,2-dihydroxybenzene (DHB) in the presence of activated carbon, with a view to assessing possible changes in its surface chemical structure and adsorption capacity. Experiments were conducted in a 0.5 L reactor, loaded with 2 g Filtrasorb 400 granular activated carbon, and 1-5 mM DHB aqueous solution at pH 2-8. Ozone gas was generated with an Ozocav generator, and fed into the reactor for a given exposure time, in the range 0.5-240 min, at 25 degrees C and 1 atm. After each run, liquid and activated carbon samples were taken for chemical assays. Soluble organic groups present on the active carbon surface were desorbed and analysed by GC-MS and HPLC. Activated carbon chemical surface properties were analysed using TPD, FT-IR, and XPS techniques. Reactions between ozone and adsorbed DHB were shown to be fast, leading to formation of C-6, C-4 and C-2 by-products. Oxygenated surface groups, particularly, COOH and C = O, increased as a result of ozonation.

  16. Removal of bromide and iodide anions from drinking water by silver-activated carbon aerogels.

    PubMed

    Sánchez-Polo, M; Rivera-Utrilla, J; Salhi, E; von Gunten, U

    2006-08-01

    The aim of this study is to analyze the use of Ag-doped activated carbon aerogels for bromide and iodide removal from drinking water and to study how the activation of Ag-doped aerogels affects their behavior. It has been observed that the carbonization treatment and activation process of Ag-doped aerogels increased the surface area value ( [Formula: see text] ), whereas the volume of meso-(V(2)) and macropores (V(3)) decreased slightly. Chemical characterization of the materials revealed that carbonization and especially activation process considerably increased the surface basicity of the sample. Original sample (A) presented acidic surface properties (pH(PZC)=4.5) with 21% surface oxygen, whereas the sample that underwent activation showed mainly basic surface chemical properties (pH(PZC)=9.5) with only 6% of surface oxygen. Carbonization and especially, activation process considerable increased the adsorption capacity of bromide and iodide ions. This would mainly be produced by (i) an increase in the microporosity of the sample, which increases Ag-adsorption sites available to halide anions, and (ii) a rise of the basicity of the sample, which produces an increase in attractive electrostatic interactions between the aerogel surface, positively charged at the working pH (pH(solution)carbonization and activation processes increased the adsorptive capacity of the aerogel sample. However, results showed that the adsorption capacity of the aerogel samples studied was considerably lower in water from Lake Zurich. Results showed X(0.02) (amount adsorbed to initial breakthrough) values of 0.1 and 4.3 mg/g for chloride anion and dissolved organic carbon (DOC), respectively, during bromide adsorption process in water from Lake Zurich

  17. Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers

    NASA Astrophysics Data System (ADS)

    Purewal, J. J.; Kabbour, H.; Vajo, J. J.; Ahn, C. C.; Fultz, B.

    2009-05-01

    Pore size distributions (PSD) and supercritical H2 isotherms have been measured for two activated carbon fiber (ACF) samples. The surface area and the PSD both depend on the degree of activation to which the ACF has been exposed. The low-surface-area ACF has a narrow PSD centered at 0.5 nm, while the high-surface-area ACF has a broad distribution of pore widths between 0.5 and 2 nm. The H2 adsorption enthalpy in the zero-coverage limit depends on the relative abundance of the smallest pores relative to the larger pores. Measurements of the H2 isosteric adsorption enthalpy indicate the presence of energy heterogeneity in both ACF samples. Additional measurements on a microporous, coconut-derived activated carbon are presented for reference.

  18. Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers.

    PubMed

    Purewal, J J; Kabbour, H; Vajo, J J; Ahn, C C; Fultz, B

    2009-05-20

    Pore size distributions (PSD) and supercritical H2 isotherms have been measured for two activated carbon fiber (ACF) samples. The surface area and the PSD both depend on the degree of activation to which the ACF has been exposed. The low-surface-area ACF has a narrow PSD centered at 0.5 nm, while the high-surface-area ACF has a broad distribution of pore widths between 0.5 and 2 nm. The H2 adsorption enthalpy in the zero-coverage limit depends on the relative abundance of the smallest pores relative to the larger pores. Measurements of the H2 isosteric adsorption enthalpy indicate the presence of energy heterogeneity in both ACF samples. Additional measurements on a microporous, coconut-derived activated carbon are presented for reference.

  19. Hydrogen Adsorption on Activated Carbon an Carbon Nanotubes Using Volumetric Differential Pressure Technique

    NASA Astrophysics Data System (ADS)

    Sanip, S. M.; Saidin, M. A. R.; Aziz, M.; Ismail, A. F.

    2010-03-01

    A simple hydrogen adsorption measurement system utilizing the volumetri differential pressure technique has been designed, fabricated and calibrated. Hydroge adsorption measurements have been carried out at temperatures 298 K and 77 K on activate carbon and carbon nanotubes with different surface areas. The adsorption data obtained will b helpful in understanding the adsorption property of the studied carbon materials using th fundamentals of adsorption theory. The principle of the system follows the Sievert-type metho The system measures a change in pressure between the reference cell, R1 and the sample cell S1, S2, S3 over a certain temperature range. R1, S1, S2, and S3 having known fixed volume The sample temperatures will be monitored by thermocouple TC while the pressures in R1 an S1, S2, S3 will be measured using a digital pressure transducer. The maximum operatin pressure of the pressure transducer is 20 bar and calibrated with an accuracy of ±0.01 bar. Hig purity hydrogen is being used in the system and the amount of samples for the study is betwee 1.0-2.0 grams. The system was calibrated using helium gas without any samples in S1, S2 an S3. This will provide a correction factor during the adsorption process providing an adsorption free reference point when using hydrogen gas resulting in a more accurate reading of th adsorption process by eliminating the errors caused by temperature expansion effects and oth non-adsorption related phenomena. The ideal gas equation of state is applied to calculate th hydrogen adsorption capacity based on the differential pressure measurements. Activated carbo with a surface area of 644.87 m2/g showed a larger amount of adsorption as compared to multiwalled nanotubes (commercial) with a surface area of 119.68 m2/g. This study als indicated that there is a direct correlation between the amounts of hydrogen adsorbed an surface area of the carbon materials under the conditions studied and that the adsorption significant at 77

  20. Urea adsorption by activated carbon prepared from palm kernel shell

    NASA Astrophysics Data System (ADS)

    Ooi, Chee-Heong; Sim, Yoke-Leng; Yeoh, Fei-Yee

    2017-07-01

    Dialysis treatment is crucial for patients suffer from renal failure. The dialysis system removes the uremic toxin to a safe level in a patient's body. One of the major limitations of the current hemodialysis system is the capability to efficiently remove uremic toxins from patient's body. Nanoporous materials can be applied to improve the treatment. Palm kernel shell (PKS) biomass generated from palm oil mills can be utilized to prepare high quality nanoporous activated carbon (AC) and applied for urea adsorption in the dialysis system. In this study, AC was prepared from PKS via different carbonization temperatures and followed by carbon dioxide gas activation processes. The physical and chemical properties of the samples were studied. The results show that the porous AC with BET surface areas ranging from 541 to 622 m2g-1 and with total pore volumes varying from 0.254 to 0.297 cm3g-1, are formed with different carbonization temperatures. The equilibrium constant for urea adsorption by AC samples carbonized at 400, 500 and 600 °C are 0.091, 0.287 and 0.334, respectively. The increase of carbonization temperatures from 400 to 600 °C resulted in the increase in urea adsorption by AC predominantly due to increase in surface area. The present study reveals the feasibility of preparing AC with good porosity from PKS and potentially applied in urea adsorption application.

  1. Activated carbon derived from waste coffee grounds for stable methane storage.

    PubMed

    Kemp, K Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M; Kim, Kwang S

    2015-09-25

    An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m(2) g(-1) and a micropore volume of 0.574 cm(3) g(-1) and exhibits a stable CH4 adsorption capacity of ∼4.2 mmol g(-1) at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon.

  2. Activated carbon derived from waste coffee grounds for stable methane storage

    NASA Astrophysics Data System (ADS)

    Kemp, K. Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M.; Kim, Kwang S.

    2015-09-01

    An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m2 g-1 and a micropore volume of 0.574 cm3 g-1 and exhibits a stable CH4 adsorption capacity of ˜4.2 mmol g-1 at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon.

  3. Exploring effective sampling design for monitoring soil organic carbon in degraded Tibetan grasslands.

    PubMed

    Chang, Xiaofeng; Bao, Xiaoying; Wang, Shiping; Zhu, Xiaoxue; Luo, Caiyun; Zhang, Zhenhua; Wilkes, Andreas

    2016-05-15

    The effects of climate change and human activities on grassland degradation and soil carbon stocks have become a focus of both research and policy. However, lack of research on appropriate sampling design prevents accurate assessment of soil carbon stocks and stock changes at community and regional scales. Here, we conducted an intensive survey with 1196 sampling sites over an area of 190 km(2) of degraded alpine meadow. Compared to lightly degraded meadow, soil organic carbon (SOC) stocks in moderately, heavily and extremely degraded meadow were reduced by 11.0%, 13.5% and 17.9%, respectively. Our field survey sampling design was overly intensive to estimate SOC status with a tolerable uncertainty of 10%. Power analysis showed that the optimal sampling density to achieve the desired accuracy would be 2, 3, 5 and 7 sites per 10 km(2) for lightly, moderately, heavily and extremely degraded meadows, respectively. If a subsequent paired sampling design with the optimum sample size were performed, assuming stock change rates predicted by experimental and modeling results, we estimate that about 5-10 years would be necessary to detect expected trends in SOC in the top 20 cm soil layer. Our results highlight the utility of conducting preliminary surveys to estimate the appropriate sampling density and avoid wasting resources due to over-sampling, and to estimate the sampling interval required to detect an expected sequestration rate. Future studies will be needed to evaluate spatial and temporal patterns of SOC variability. Copyright © 2016. Published by Elsevier Ltd.

  4. Microbial biomass carbon and enzyme activities of urban soils in Beijing.

    PubMed

    Wang, Meie; Markert, Bernd; Shen, Wenming; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun

    2011-07-01

    To promote rational and sustainable use of soil resources and to maintain the urban soil quality, it is essential to assess urban ecosystem health. In this study, the microbiological properties of urban soils in Beijing and their spatial distribution patterns across the city were evaluated based on measurements of microbial biomass carbon and urease and invertase activities of the soils for the purpose of assessing the urban ecosystem health of Beijing. Grid sampling design, normal Kriging technique, and the multiple comparisons among different land use types were used in soil sampling and data treatment. The inherent chemical characteristics of urban soils in Beijing, e.g., soil pH, electronic conductivity, heavy metal contents, total N, P and K contents, and soil organic matter contents were detected. The size and diversity of microbial community and the extent of microbial activity in Beijing urban soils were measured as the microbial biomass carbon content and the ratio of microbial biomass carbon content to total soil organic carbon. The microbial community health measured in terms of microbial biomass carbon, urease, and invertase activities varied with the organic substrate and nutrient contents of the soils and were not adversely affected by the presence of heavy metals at p < 0.01. It was shown that the older and the biologically more stable part of city exhibited higher microbial activity levels than the more recently developed part of the city and the road areas of heavy traffic. It was concluded that the land use patterns in Beijing urban soils influenced the nature and activities of the microbial communities.

  5. Effects of post-sampling conditions on ambient carbon aerosol filter measurements

    NASA Astrophysics Data System (ADS)

    Dillner, Ann M.; Phuah, Chin H.; Turner, Jay R.

    2009-12-01

    Ambient carbonaceous material collected on quartz filters is prone to measurement artifacts due to material gained or lost during post-sampling field latency, shipping, and storage. In seventeen sampling events over a one year period, ambient PM 2.5 aerosols were collected on quartz filters (without denuders) and subjected to various filter treatments to assess the potential for and extent of artifacts. The filter treatments simulated post-sampling environments that filters may be exposed to and included: storage at 40 °C for up to 96 h, storage at -16 °C for 48 h, and storage at room temperature (˜21 °C) for 48 h. Carbon mass on the filters was measured using a thermal-optical method. The total carbon (TC), total organic carbon (TOC) and total elemental carbon (TEC) as well as carbon thermal fraction masses were obtained. Statistical analyses were performed to identify significant differences in carbon fraction concentrations between filters analyzed immediately after sampling and after being subjected to treatment. TOC and TC concentrations decreased by on average 15 ± 5% and 10 ± 4%, respectively, for filters maintained at 40 °C for 96 h but did not change for filters stored at room temperature or frozen for 48 h. TEC did not change for any of the filter treatments. The mass concentration for the organic carbon thermal fraction that evolves at the lowest temperature step (OC1) decreased with increasing storage time at 40 °C with average losses of 70 ± 7% after 96 h. Therefore, OC1 is not a stable measurement due to post-sampling conditions that may be encountered. This work demonstrates that TOC and TC can have substantial measurement artifacts on filters subjected to field latency and other non-temperature controlled post-sampling handling, compared to the carbon loadings on the filter at the end of the sampling period.

  6. Effects of organic carbon sequestration strategies on soil enzymatic activities

    NASA Astrophysics Data System (ADS)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  7. Preconcentration of Zn2+ and Cu2+ ions from food and vegetable samples using modified activated carbon.

    PubMed

    Ghaedi, M; Tavallali, H; Montazerozohori, M; Zahedi, E; Amirineko, M; Khodadoust, S; Karimipour, G

    2012-11-01

    In this work, two N/S-containing chelating agents 2-(4-methoxybenzylideneamino)thiophenol (2-4-MBAT) and 2-(4-chlorobenzylideneamino) benzenethiol (2-4-CBABT) were synthesized as new sorbents and were used for preconcentration of Zn(2+) and Cu(2+) ions in food and vegetable samples. In the proposed procedure, the trace amount of Zn(2+) and Cu(2+) ions from 250 mL of sample solution at pH = 5.0 was preconcentrated by 1 g of activated carbon (AC) loaded with 15 mg of 2-4-MBAT and 2-4-CBABT separately. The breakthrough volumes (maximum sample volume that their metal ions quantitatively can be enriched) for solid-phase extraction (SPE) procedure based on the AC modified with 2-4-MBAT and 2-4-CBABT were 800 and 750 mL, respectively. The sorbed Zn(2+) and Cu(2+) ions were efficiently eluted by 8 mL of 4 mol L(-1) HNO(3) and preconcentration factor of 112.5 and 93.7 and experimental enhancement factor of 30 and 35 ions were obtained for Zn(2+) and Cu(2+), respectively. The application of this enrichment procedure allowed the extraction of trace metal ions with recoveries exceeding of 90%.

  8. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon.

    PubMed

    Nam, Seung-Woo; Choi, Dae-Jin; Kim, Seung-Kyu; Her, Namguk; Zoh, Kyung-Duk

    2014-04-15

    In this study, we investigated adsorption characteristics of nine selected micropollutants (six pharmaceuticals, two pesticides, and one endocrine disruptor) in water using an activated carbon. The effects of carbon dosage, contact time, pH, DOM (dissolved organic matter), and temperature on the adsorption removal of micropollutants were examined. Increasing carbon dosage and contact time enhanced the removal of micropollutants. Sorption coefficients of hydrophilic compounds (caffeine, acetaminophen, sulfamethoxazole, and sulfamethazine) fit a linear isotherm and hydrophobic compounds (naproxen, diclofenac, 2, 4-D, triclocarban, and atrazine) fit a Freundlich isotherm. The removal of hydrophobic pollutants and caffeine were independent of pH changes, but acetaminophen, sulfamethazine, and sulfamethoxazole were adsorbed by mainly electrostatic interaction with activated carbon and so were affected by pH. The decrease in adsorption removal in surface water samples was observed and this decrease was more significant for hydrophobic than hydrophilic compounds. The decline in the adsorption capacity in surface water samples is caused by the competitive inhibition of DOM with micropollutants onto activated carbon. Low temperature (5°C) also decreased the adsorption removal of micropollutants, and affected hydrophobic compounds more than hydrophilic compounds. The results obtained in this study can be applied to optimize the adsorption capacities of micropollutants using activated carbon in water treatment process. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Development of activated carbon derived from banana peel for CO2 removal

    NASA Astrophysics Data System (ADS)

    Borhan, Azry; Thangamuthu, Subhashini; Taha, Mohd Faisal; Ramdan, Amira Nurain

    2015-08-01

    This research work highlights on the constraints involved in the preparation of the banana peel bio-sorbent, such as impregnation ratio, activation temperature and period of activation for reducing carbon dioxide (CO2) in the atmosphere. Micromeritics ASAP 2020 and Field Emission Scanning Electron Microscope (FESEM) were used in identifying the best sample preparation method with the largest surface area which directly contributes to the effectiveness of adsorbent in removing CO2. Sample A10 was identified to yield activated carbon with the largest surface area (260.3841 m2/g), total pore volume (0.01638 cm3/g) and pore diameter (0.2508 nm). Through nitrogen adsorption-desorption isotherm analysis, the existence of sub-micropores was proven when a combination of Type-I and Type-II isotherms were exhibited by the activated carbon produced. The results from the final adsorption test found that the material synthesized from the above mentioned parameter is capable of removing up to 1.65% wt of CO2 through adsorption at 25°C, suggesting that it can be effectively used as an adsorption material.

  10. Solid-phase extraction of iridium from soil and water samples by using activated carbon cloth prior to its spectrophotometric determination.

    PubMed

    Ozkantar, Nebiye; Yilmaz, Erkan; Soylak, Mustafa; Tuzen, Mustafa

    2015-08-01

    A solid-phase extraction method for separation and preconcentration of Ir(IV) ion by using activated carbon cloth (ACC) has been presented. Ir(IV) as their 1-(2-pyridylazo) 2-naphtol (PAN) chelate was adsorbed on ACC at pH 2.0 and was eluted from ACC with acidic dimethylformamide (DMF). The Ir(IV) concentration was determined at 536 nm as Ir(IV)-PAN complex by using UV-vis spectrophotometer. The analytical parameters including pH, sample and eluent flow rates, amount of PAN, eluent type, concentration, and sample volume were optimized. The effects of foreign ions on the recoveries of iridium were also investigated. The preconcentration factor was calculated as 60. The limit of detection (LOD) and the limit of quantification (LOQ) of the method were found as 0.039 and 0.129 μg L(-1), respectively. The method was applied to soil and water samples for iridium determination.

  11. Effect of CO₂ flow rate on the Pinang frond-based activated carbon for methylene blue removal.

    PubMed

    Herawan, S G; Ahmad, M A; Putra, A; Yusof, A A

    2013-01-01

    Activated carbons are regularly used the treatment of dye wastewater. They can be produced from various organics materials having high level of carbon content. In this study, a novel Pinang frond activated carbon (PFAC) was produced at various CO₂ flow rates in the range of 150-600 mL/min at activation temperature of 800°C for 3 hours. The optimum PFAC sample is found on CO₂ flow rate of 300 mL/min which gives the highest BET surface area and pore volume of 958 m²/g and 0.5469 mL/g, respectively. This sample shows well-developed pore structure with high fixed carbon content of 79.74%. The removal of methylene blue (MB) by 95.8% for initial MB concentration of 50 mg/L and 72.6% for 500 mg/L is achieved via this sample. The PFAC is thus identified to be a suitable adsorbent for removing MB from aqueous solution.

  12. Cross Validation of Two Partitioning-Based Sampling Approaches in Mesocosms Containing PCB Contaminated Field Sediment, Biota, and Activated Carbon Amendment.

    PubMed

    Schmidt, Stine N; Wang, Alice P; Gidley, Philip T; Wooley, Allyson H; Lotufo, Guilherme R; Burgess, Robert M; Ghosh, Upal; Fernandez, Loretta A; Mayer, Philipp

    2017-09-05

    The Gold Standard for determining freely dissolved concentrations (C free ) of hydrophobic organic compounds in sediment interstitial water would be in situ deployment combined with equilibrium sampling, which is generally difficult to achieve. In the present study, ex situ equilibrium sampling with multiple thicknesses of silicone and in situ pre-equilibrium sampling with low density polyethylene (LDPE) loaded with performance reference compounds were applied independently to measure polychlorinated biphenyls (PCBs) in mesocosms with (1) New Bedford Harbor sediment (MA, U.S.A.), (2) sediment and biota, and (3) activated carbon amended sediment and biota. The aim was to cross validate the two different sampling approaches. Around 100 PCB congeners were quantified in the two sampling polymers, and the results confirmed the good precision of both methods and were in overall good agreement with recently published LDPE to silicone partition ratios. Further, the methods yielded C free in good agreement for all three experiments. The average ratio between C free determined by the two methods was factor 1.4 ± 0.3 (range: 0.6-2.0), and the results thus cross-validated the two sampling approaches. For future investigations, specific aims and requirements in terms of application, data treatment, and data quality requirements should dictate the selection of the most appropriate partitioning-based sampling approach.

  13. Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation

    NASA Astrophysics Data System (ADS)

    Ma, Xiaodong; Ouyang, Feng

    2013-03-01

    Activated carbon prepared from spent coffee grounds and pomelo skin by phosphoric acid activation had been employed as the adsorbent for ethylene and n-butane at room temperature. Prepared activated carbon was characterized by means of nitrogen adsorption-desorption, X-ray powder diffraction, scanning electron microscope and Fourier transform infrared spectroscope. It was confirmed that pore structure played an important role during the adsorption testes. Adsorption isotherms of ethylene and n-butane fitted well with Langmuir equation. The prepared samples owned better adsorption capacity for n-butane than commercial activated carbon. Isosteric heats of adsorptions at different coverage were calculated through Clausius-Clapeyron equation. Micropore filling effect was explained in a thermodynamic way.

  14. Structural and adsorptive properties of activated carbons prepared by carbonization and activation of resins.

    PubMed

    Leboda, R; Skubiszewska-Zieba, J; Tomaszewski, W; Gun'ko, V M

    2003-07-15

    Four activated carbons (S1-S4) possessing different structural characteristics were prepared by carbonization of commercial resins (used for ion exchange) and subsequent activation. Their textural parameters were determined on the basis of nitrogen adsorption-desorption at 77.4 K, analyzed by applying several local and overall adsorption isotherm equations. The nature of carbon surface functionalities was analyzed by FTIR spectroscopy. The GC and solid-phase extraction (SPE) techniques were applied to study the influence of the texture of carbonaceous materials on their adsorptive properties. The adsorption efficiency of synthesized carbons with respect to alkylhalides used as probe compounds in the GC measurements varied over a range from 28% (C(2)H(3)Cl(3)/S2) to 85% (CHBr(3)/S1) depending on the type of adsorbates and adsorbents. The concentrating efficiency of these carbons in SPE of explosive materials changed over a larger range from 12% (trinitroglycerin/S4) and 13% (trinitrotoluene/S2) up to 100% (octogen/S1). Active carbon prepared using Zerolite 225x8 as a precursor demonstrated better results than other carbons in two types of adsorption with average values of the efficiency of 75.4% for explosives and 60.8% for alkylhalides.

  15. Utilization of turkey manure as granular activated carbon: physical, chemical and adsorptive properties.

    PubMed

    Lima, Isabel; Marshall, Wayne E

    2005-01-01

    The high availability of large quantities of turkey manure generated from turkey production makes it an attractive feedstock for carbon production. Pelletized samples of turkey litter and cake were converted to granular activated carbons (GACs) by steam activation. Water flow rate and activation time were changed to produce a range of activation conditions. The GACs were characterized for select physical (yield, surface area, bulk density, attrition), chemical (pH, surface charge) and adsorptive properties (copper ion uptake). Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant. Yields varied from 23% to 37%, surface area varied from 248 to 472 m(2)/g and copper ion adsorption varied from 0.72 to 1.86 mmol Cu(2+)/g carbon. Copper ion adsorption greatly exceeded the values for two commercial GACs. GACs from turkey litter and cake show considerable potential to remove metal ions from water.

  16. Hydrogen production using thermocatalytic decomposition of methane on Ni30/activated carbon and Ni30/carbon black.

    PubMed

    Srilatha, K; Viditha, V; Srinivasulu, D; Ramakrishna, S U B; Himabindu, V

    2016-05-01

    Hydrogen is an energy carrier of the future need. It could be produced from different sources and used for power generation or as a transport fuel which mainly in association with fuel cells. The primary challenge for hydrogen production is reducing the cost of production technologies to make the resulting hydrogen cost competitive with conventional fuels. Thermocatalytic decomposition (TCD) of methane is one of the most advantageous processes, which will meet the future demand, hence an attractive route for COx free environment. The present study deals with the production of hydrogen with 30 wt% of Ni impregnated in commercially available activated carbon and carbon black catalysts (samples coded as Ni30/AC and Ni30/CB, respectively). These combined catalysts were not attempted by previous studies. Pure form of hydrogen is produced at 850 °C and volume hourly space velocity (VHSV) of 1.62 L/h g on the activity of both the catalysts. The analysis (X-ray diffraction (XRD)) of the catalysts reveals moderately crystalline peaks of Ni, which might be responsible for the increase in catalytic life along with formation of carbon fibers. The activity of carbon black is sustainable for a longer time compared to that of activated carbon which has been confirmed by life time studies (850 °C and 54 sccm of methane).

  17. Application of activated carbon modified by acetic acid in adsorption and separation of CO2 and CH4

    NASA Astrophysics Data System (ADS)

    Song, Xue; Wang, Li'ao; Zeng, Yunmin; Zhan, Xinyuan; Gong, Jian; Li, Tong

    2018-03-01

    Compared with the methods to modify the activated carbons by alkalis for gas adsorption, fewer studies of that by organic acids have been reported. The acid modified activated carbons are usually utilized to treat wastewater, whereas the application in the separation of CO2/CH4 has less been studied. In this study, acetic acid was used to modify activated carbon. N2 adsorption/desorption isotherms and FT-IR were adopted to describe the properties of the samples. According to the adsorption data of pure gas component at 298 K, the gas adsorbed amount and the selectivity on the modified samples were larger than that on the raw sample. Besides, the adsorbed amount of CO2 and the selectivity on 15H-AC in the adsorption breakthrough experiments showed better performance. The results confirm that the method to modify the activated carbons with acetic acid is feasible to improve the adsorption capacity and the separation effect of CO2/CH4.

  18. Solid phase extraction of metal ions in environmental samples on 1-(2-pyridylazo)-2-naphthol impregnated activated carbon cloth.

    PubMed

    Alothman, Zeid A; Yilmaz, Erkan; Habila, Mohamed; Soylak, Mustafa

    2015-02-01

    1-(2-Pyridylazo)-2-naphthol impregnated activated carbon cloth (PAN-imp-ACC) was prepared as a solid phase sorbent and, for the first time, was used for the simultaneous separation and preconcentration of trace amounts of lead, cadmium and nickel in water, soil and sewage sludge samples prior to determination by flame atomic absorption spectrometry (FAAS). The parameters governing the efficiency of the method were optimized, including the pH, the eluent type and volume, the sample and eluent flow rates, diverse ions effects and the sample volume. A preconcentration factor of 100 was achieved for all the metal ions, with detection limits of 0.1-2.8 µg L(-1) and relative standard deviations below 6.3%. The adsorption capacity of the PAN-imp-ACC for Pb(II), Cd(II) and Ni(II) ions was found to be 45.0 mg g(-1), 45.0 mg g(-1) and 43.2 mg g(-1), respectively. The method was validated by the analysis of the certified reference materials TMDA-64.2 fortified Lake Ontario water and BCR-146R Sewage Sludge Amended Soil (Industrial Origin). The procedure was applied to determine the analytes content in real samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Biological activation of carbon filters.

    PubMed

    Seredyńska-Sobecka, Bozena; Tomaszewska, Maria; Janus, Magdalena; Morawski, Antoni W

    2006-01-01

    To prepare biological activated carbon (BAC), raw surface water was circulated through granular activated carbon (GAC) beds. Biological activity of carbon filters was initiated after about 6 months of filter operation and was confirmed by two methods: measurement of the amount of biomass attached to the carbon and by the fluorescein diacetate (FDA) test. The effect of carbon pre-washing on WG-12 carbon properties was also studied. For this purpose, the nitrogen adsorption isotherms at 77K and Fourier transform-infrared (FT-IR) spectra analyses were performed. Moreover, iodine number, decolorizing power and adsorption properties of carbon in relation to phenol were studied. Analysis of the results revealed that after WG-12 carbon pre-washing its BET surface increased a little, the pH value of the carbon water extract decreased from 11.0 to 9.4, decolorizing power remained at the same level, and the iodine number and phenol adsorption rate increased. In preliminary studies of the ozonation-biofiltration process, a model phenol solution with concentration of approximately 10mg/l was applied. During the ozonation process a dose of 1.64 mg O(3)/mg TOC (total organic carbon) was employed and the contact time was 5 min. Four empty bed contact times (EBCTs) in the range of 2.4-24.0 min were used in the biofiltration experiment. The effectiveness of purification was measured by the following parameters: chemical oxygen demand (COD(Mn)), TOC, phenol concentration and UV(254)-absorbance. The parameters were found to decrease with EBCT.

  20. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    NASA Astrophysics Data System (ADS)

    Islam, A. E.; Nikolaev, P.; Amama, P. B.; Zakharov, D.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Stach, E. A.; Maruyama, B.

    2015-09-01

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. With the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  1. The effect of CO2 activation temperature on the physical and electrochemical properties of activated carbon monolith from banana stem waste

    NASA Astrophysics Data System (ADS)

    Taer, E.; Susanti, Y.; Awitdrus, Sugianto, Taslim, R.; Setiadi, R. N.; Bahri, S.; Agustino, Dewi, P.; Kurniasih, B.

    2018-02-01

    The effect of CO2 activation on the synthesis of activated carbon monolith from banana stem waste has been studied. Physical characteristics such as density, degree of crystallinity, surface morphology and elemental content has been analyzed, supporting the finding of an excellent electrochemical properties for the supercapacitor. The synthesis of activated carbon electrode began with pre-carbonization process at temperature of 250°C for 2.5 h. Then the process was continued by chemical activation using KOH as activating agent with a concentration of 0.4 M. The pellets were formed with 8 ton hydrolic pressure. All the samples were carbonized at a temperature of 600°C, followed by physical activation using CO2 gas at a various temperatures ranging from 800°C, 850°C, 900°C and 950°C for 2 h. The carbon content was increased with increasing temperature and the optimum temperature was 900°C. The specific capacitance depends on the activation temperature with the highest specific capacitance of 104.2 F/g at the activation temperature of 900°C.

  2. Evaluation of active sampling strategies for the determination of 1,3-butadiene in air

    NASA Astrophysics Data System (ADS)

    Vallecillos, Laura; Maceira, Alba; Marcé, Rosa Maria; Borrull, Francesc

    2018-03-01

    Two analytical methods for determining levels of 1,3-butadiene in urban and industrial atmospheres were evaluated in this study. Both methods are extensively used for determining the concentration of volatile organic compounds in the atmosphere and involve collecting samples by active adsorptive enrichment on solid sorbents. The first method uses activated charcoal as the sorbent and involves liquid desorption with carbon disulfide. The second involves the use of a multi-sorbent bed with two graphitised carbons and a carbon molecular sieve as the sorbent, with thermal desorption. Special attention was paid to the optimization of the sampling procedure through the study of sample volume, the stability of 1,3-butadiene once inside the sampling tube and the humidity effect. In the end, the thermal desorption method showed better repeatability and limits of detection and quantification for 1,3-butadiene than the liquid desorption method, which makes the thermal desorption method more suitable for analysing air samples from both industrial and urban atmospheres. However, sampling must be performed with a pre-tube filled with a drying agent to prevent the loss of the adsorption capacity of the solid adsorbent caused by water vapour. The thermal desorption method has successfully been applied to determine of 1,3-butadiene inside a 1,3-butadiene production plant and at three locations in the vicinity of the same plant.

  3. Preparation of a new adsorbent from activated carbon and carbon nanofiber (AC/CNF) for manufacturing organic-vacbpour respirator cartridge

    PubMed Central

    2013-01-01

    In this study a composite of activated carbon and carbon nanofiber (AC/CNF) was prepared to improve the performance of activated carbon (AC) for adsorption of volatile organic compounds (VOCs) and its utilization for respirator cartridges. Activated carbon was impregnated with a nickel nitrate catalyst precursor and carbon nanofibers (CNF) were deposited directly on the AC surface using catalytic chemical vapor deposition. Deposited CNFs on catalyst particles in AC micropores, were activated by CO2 to recover the surface area and micropores. Surface and textural characterizations of the prepared composites were investigated using Brunauer, Emmett and Teller’s (BET) technique and electron microscopy respectively. Prepared composite adsorbent was tested for benzene, toluene and xylene (BTX) adsorption and then employed in an organic respirator cartridge in granular form. Adsorption studies were conducted by passing air samples through the adsorbents in a glass column at an adjustable flow rate. Finally, any adsorbed species not retained by the adsorbents in the column were trapped in a charcoal sorbent tube and analyzed by gas chromatography. CNFs with a very thin diameter of about 10-20 nm were formed uniformly on the AC/CNF. The breakthrough time for cartridges prepared with CO2 activated AC/CNF was 117 minutes which are significantly longer than for those cartridges prepared with walnut shell- based activated carbon with the same weight of adsorbents. This study showed that a granular form CO2 activated AC/CNF composite could be a very effective alternate adsorbent for respirator cartridges due to its larger adsorption capacities and lower weight. PMID:23369424

  4. Adsorptive removal of sulfate from acid mine drainage by polypyrrole modified activated carbons: Effects of polypyrrole deposition protocols and activated carbon source.

    PubMed

    Hong, Siqi; Cannon, Fred S; Hou, Pin; Byrne, Tim; Nieto-Delgado, Cesar

    2017-10-01

    Polypyrrole modified activated carbon was used to remove sulfate from acid mine drainage water. The polypyrrole modified activated carbon created positively charged functionality that offered elevated sorption capacity for sulfate. The effects of the activated carbon type, approach of polymerization, preparation temperature, solvent, and concentration of oxidant solution over the sulfate adsorption capacity were studied at an array of initial sulfate concentrations. A hardwood based activated carbon was the more favorable activated carbon template, and this offered better sulfate removal than when using bituminous based activated carbon or oak wood activated carbon as the template. The hardwood-based activated carbon modified with polypyrrole removed 44.7 mg/g sulfate, and this was five times higher than for the pristine hardwood-based activated carbon. Various protocols for depositing the polypyrrole onto the activated carbon were investigated. When ferric chloride was used as an oxidant, the deposition protocol that achieved the most N + atomic percent (3.35%) while also maintaining the least oxygen atomic percent (6.22%) offered the most favorable sulfate removal. For the rapid small scale column tests, when processing the AMD water, hardwood-based activated carbon modified with poly pyrrole exhibited 33 bed volume compared to the 5 bed volume of pristine activated carbons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Performance of Spent Mushroom Farming Waste (SMFW) Activated Carbon for Ni (II) Removal

    NASA Astrophysics Data System (ADS)

    Desa, N. S. Md; Ghani, Z. Ab; Talib, S. Abdul; Tay, C. C.

    2016-07-01

    The feasibility of a low cost agricultural waste of spent mushroom farming waste (SMFW) activated carbon for Ni(II) removal was investigated. The batch adsorption experiments of adsorbent dosage, pH, contact time, metal concentration, and temperature were determined. The samples were shaken at 125 rpm, filtered and analyzed using ICP-OES. The fifty percent of Ni(II) removal was obtained at 0.63 g of adsorbent dosage, pH 5-6 (unadjusted), 60 min contact time, 50 mg/L Ni(II) concentration and 25 °C temperature. The evaluated SMFW activated carbon showed the highest performance on Ni(II) removal compared to commercial Amberlite IRC86 resin and zeolite NK3. The result indicated that SMFW activated carbon is a high potential cation exchange adsorbent and suitable for adsorption process for metal removal. The obtained results contribute toward application of developed SMFW activated carbon in industrial pilot study.

  6. Less-costly activated carbon for sewage treatment

    NASA Technical Reports Server (NTRS)

    Ingham, J. D.; Kalvinskas, J. J.; Mueller, W. A.

    1977-01-01

    Lignite-aided sewage treatment is based on absorption of dissolved pollutants by activated carbon. Settling sludge is removed and dried into cakes that are pyrolyzed with lignites to yield activated carbon. Lignite is less expensive than activated carbon previously used to supplement pyrolysis yield.

  7. Characteristics of activated carbon produced from biosludge and its use in wastewater post-treatment.

    PubMed

    Pikkov, L; Kallas, J; Rüütmann, T; Rikmann, E

    2001-02-01

    Experimental research into the bench-scale production of activated carbon from waste-activated sludge from water purification, sawdust, peat, and their mixtures, by carbonisation and activation was undertaken. The research work was carried out to determine possible methods of production of cheap activated carbon from local raw materials and to use it in water purification technology. Along with the samples produced, several commercial activated carbons (namely RB-1, F 100, CA (adsorbent from military gas masks), BAY (product of the USSR)) were tested to compare adsorption properties in the adsorption of phenols, xylidines, amines, methylene blue and molasses. It has been found that the activated carbon produced from waste biosludge was of higher quality than that produced from either sawdust or peat, and performed similarly to RB-1 and F100 in adsorption tests. It was also determined that the activated carbon produced from biosludge could possibly be used in the post-treatment of wastewater. Residual sludge from the biological treatment of the wastewater from the purification of oil-shale in the chemical processing industry could cover up to 80% of the need for activated carbon. Some of this activated carbon could be used in the post-treatment of the same water, adsorbing polyalcaline phenols from the initial content of 4 mg l-1 to the demanded level of 1 mg l-1.

  8. Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4

    NASA Astrophysics Data System (ADS)

    Kılıç, Murat; Apaydın-Varol, Esin; Pütün, Ayşe Eren

    2012-11-01

    Preparation of activated carbons from Euphorbia rigida by chemical activation with different impregnation agents and ratios was studied. ZnCl2, K2CO3, NaOH and H3PO4 were used as chemical activation agents and four impregnation ratios (25-50-75-100%) by mass were applied on biomass. Activation is applied to impregnated biomass samples at 700 °C under sweeping gas in a fixed bed reactor. For determination of chemical and physical properties of the obtained activated carbons; elemental analysis was applied to determine the elemental composition (C, H, N, O) and FT-IR spectra was used to analyze the functional groups. BET equation was used to calculate the surface areas of activated carbons. For understanding the changes in the surface structure, activated carbons were conducted to Scanning Electron Microscopy (SEM). Maximum BET surface area (2613 m2/g) was reached with 75% K2CO3 impregnated biomass sample. Experimental results showed that impregnation types and ratios have a significant effect on the pore structure of activated carbon and E. rigida seems to be an alternative precursor for commercial activated carbon production.

  9. Catalytic ozonation of p-chlorobenzoic acid by activated carbon and nickel supported activated carbon prepared from petroleum coke.

    PubMed

    Li, Xukai; Zhang, Qiuyun; Tang, Lili; Lu, Ping; Sun, Fengqiang; Li, Laisheng

    2009-04-15

    The aim of this research was to investigate catalytic activity of petroleum coke, activated carbon (AC) prepared from this material, Ni supported catalyst on activated carbon (Ni/AC) in the ozonation of aqueous phase p-chlorobenzoic acid (p-CBA). Activated carbon and Ni/AC catalyst were characterized by XRD and SEM. The presence of petroleum coke did not improve the degradation of p-CBA compared to ozonation alone, but it was advantageous for p-CBA mineralization (total organic carbon, TOC, reduction), indicating the generation of highly oxidant species (*OH) in the medium. The presence of either activated carbon or Ni/AC considerably improves TOC removal during p-CBA ozonation. Ni/AC catalyst shows the better catalytic activity and stability based on five repeated tests during p-CBA ozonation. During the ozonation (50 mg/h ozone flow rate) of a 10 mg/L p-CBA (pH 4.31), it can be more mineralized in the presence of Ni/AC catalyst (5.0 g/L), TOC removal rate is over 60% in 60 min, 43% using activated carbon as catalyst, only 30% with ozonation alone.

  10. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation.

    PubMed

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-09

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  11. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    NASA Astrophysics Data System (ADS)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  12. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.

    PubMed

    Brooks, A J; Lim, Hyung-nam; Kilduff, James E

    2012-07-27

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  13. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    NASA Astrophysics Data System (ADS)

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  14. Zincon-modified activated carbon for solid-phase extraction and preconcentration of trace lead and chromium from environmental samples.

    PubMed

    Li, Zhenhua; Chang, Xijun; Hu, Zheng; Huang, Xinping; Zou, Xiaojun; Wu, Qiong; Nie, Rong

    2009-07-15

    A new method that utilizes zincon-modified activated carbon (AC-ZCN) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III) and Pb(II) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES). The separation/preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. At pH 4, the maximum adsorption capacity of Cr(III) and Pb(II) onto the AC-ZCN were 17.9 and 26.7 mg g(-1), respectively. The adsorbed metal ions were quantitatively eluted by 1 mL of 0.1 mol L(-1) HCl. Common coexisting ions did not interfere with the separation. According to the definition of IUPAC, the detection limits (3 sigma) of this method for Cr(III) and Pb(II) were 0.91 and 0.65 ng mL(-1), respectively. The relative standard deviation under optimum condition is less than 3.5% (n=8). The method has been applied for the determination of Cr(III) and Pb(II) in biological materials and water samples with satisfactory results.

  15. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    DOE PAGES

    Islam, A. E.; Zakharov, D.; Stach, E. A.; ...

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only inmore » the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.« less

  16. Activated carbon from peach stones using phosphoric acid activation at medium temperatures.

    PubMed

    Kim, Dong-Su

    2004-01-01

    In the present study, the activation features of phosphoric acid have been investigated using waste peach stones as the raw material in the production of granular activated carbon. Thermogravimetry/differential thermal analysis was conducted to characterize the thermal behavior of peach stone and titration method was used to evaluate the adsorption capacity of the produced activated carbon. It was observed that the iodine value of the activated carbon increased with activation temperature. However, temperatures higher than 500 degrees C caused a thermal destruction, which resulted in the decrease of the adsorption capacity. Activation longer than 1.5 h at 500 degrees C resulted in thermal degradation of the porous structure of the activated carbon. The adsorption capacity was enhanced with increasing of amounts of phosphoric acid, however, excessive phosphoric acid caused a decrease in the iodine value. In addition, it was found that the carbon yields generally decreased with activation temperature and activation time. Scanning electron microscopy analysis was conducted to observe the changes in the poros structure of the activated carbon produced in different temperatures. Activation of carbon by phosphoric acid was found to be superior to that by CaCl2 and gas activation. The activated carbon produced from peach stone was applied as an adsorbent in the treatment of synthesized wastewater containing cadmium ion and its adsorption capacity was found to be as good as that of the commercial one.

  17. Chemical characterization and antioxidant activities comparison in fresh, dried, stir-frying and carbonized ginger.

    PubMed

    Li, Yuxin; Hong, Yan; Han, Yanquan; Wang, Yongzhong; Xia, Lunzhu

    2016-02-01

    Ginger (Zingiber officinale Rosc.) is a common dietary adjunct that contributes to the taste and flavor of foods, and is also an important Traditional Chinese medicine (TCM). Different processing methods can produce different processed gingers with dissimilar chemical constituents and pharmacological activities. In this study, an ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/QTOF-MS) was applied to identify the complicated components from fresh, dried, stir-frying and carbonized ginger extracts. All of the 27 compounds were identified from four kinds of ginger samples (fresh, dried, stir-frying and carbonized ginger). Five main constituents (zingerone, 6-gingerol, 8-gingerol, 6-shogaol and 10-gingerol) in these four kinds of ginger sample extracts were simultaneously determined by UPLC-PDA. Meanwhile, the antioxidant effect of fresh, dried, stir-frying and carbonized gingers were evaluated by three assays (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzthiazolinesulfonic acid) diammonium salt (ABTS), and ferric reducing antioxidant power (FRAP)). The results demonstrated that antioxidant activity of dried ginger was the highest, for its phenolic contents are 5.2-, 1.1- and 2.4-fold higher than that of fresh, stir-frying and carbonized ginger, respectively, the antioxidant activities' results indicated a similar tendency with phenolic contents: dried ginger>stir-frying ginger>fresh ginger>carbonized ginger. The processing contributed to the decreased concentration of gingerols and the increased levels of shogaols, which reducing the antioxidant effects in pace with processing. This study elucidated the relationship of the heating process with the constituents and antioxidant activity, and provided a guide for choosing different kinds of ginger samples on clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Development of activated carbon derived from banana peel for CO{sub 2} removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borhan, Azry; Thangamuthu, Subhashini; Ramdan, Amira Nurain

    This research work highlights on the constraints involved in the preparation of the banana peel bio-sorbent, such as impregnation ratio, activation temperature and period of activation for reducing carbon dioxide (CO{sub 2}) in the atmosphere. Micromeritics ASAP 2020 and Field Emission Scanning Electron Microscope (FESEM) were used in identifying the best sample preparation method with the largest surface area which directly contributes to the effectiveness of adsorbent in removing CO{sub 2}. Sample A10 was identified to yield activated carbon with the largest surface area (260.3841 m{sup 2}/g), total pore volume (0.01638 cm{sup 3}/g) and pore diameter (0.2508 nm). Through nitrogen adsorption-desorption isothermmore » analysis, the existence of sub-micropores was proven when a combination of Type-I and Type-II isotherms were exhibited by the activated carbon produced. The results from the final adsorption test found that the material synthesized from the above mentioned parameter is capable of removing up to 1.65% wt of CO{sub 2} through adsorption at 25°C, suggesting that it can be effectively used as an adsorption material.« less

  19. Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal.

    PubMed

    Islam, Md Azharul; Ahmed, M J; Khanday, W A; Asif, M; Hameed, B H

    2017-04-01

    Hydrothermal carbonization of biomass wastes presents a promising step in the production of cost-effective activated carbon. In the present work, mesoporous activated carbon (HAC) was prepared by the hydrothermal carbonization of rattan furniture wastes followed by NaOH activation. The textural and morphological characteristics, along with adsorption performance of prepared HAC toward methylene blue (MB) dye, were evaluated. The effects of common adsorption variables on performance resulted in a removal efficiency of 96% for the MB sample at initial concentration of 25mg/L, solution pH of 7, 30°C, and 8h. The Langmuir equation showed the best isotherm data correlation, with a maximum uptake of 359mg/g. The adsorbed amount versus time data was well fitted by a pseudo-second order kinetic model. The prepared HAC with a high surface area of 1135m 2 /g and an average pore size distribution of 35.5Å could be an efficient adsorbent for treatment of synthetic dyes in wastewaters. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Phenol removal onto novel activated carbons made from lignocellulosic precursors: influence of surface properties.

    PubMed

    Nabais, J M Valente; Gomes, J A; Suhas; Carrott, P J M; Laginhas, C; Roman, S

    2009-08-15

    The adsorption of phenol from dilute aqueous solutions onto new activated carbons (AC) was studied. The novel activated carbon was produced from lignocellulosic (LC) precursors of rapeseed and kenaf. Samples oxidised with nitric acid in liquid phase were also studied. The results have shown the significant potential of rapeseed and kenaf for the activated carbon production. The activated carbons produced by carbon dioxide activation were mainly microporous with BET apparent surface area up to 1350 m(2)g(-1) and pore volume 0.5 cm(3)g(-1). The effects of concentration (0.1-2 mM) and pH (3-13) were studied. The phenol adsorption isotherms at 25 degrees C followed the Freundlich model with maximum adsorption capacities of approximately 80 and 50 mg g(-1) for the pristine and oxidised activated carbons, respectively. The influence of pH on the adsorption has two trends for pH below and above 10. It was possible to conclude that when phenol is predominantly in the molecular form the most probable mechanism is based on the pi-pi dispersion interaction between the phenol aromatic ring and the delocalised pi electrons present in the activated carbon aromatic structure. When phenolate is the major component the electrostatic repulsion that occurs at high pH values is the most important aspect of the adsorption mechanism.

  1. Making Activated Carbon by Wet Pressurized Pyrolysis

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark

    2006-01-01

    A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb

  2. Evaluation of activated carbon adsorbent for fuel cell cathode air filtration

    NASA Astrophysics Data System (ADS)

    Ma, Xiaowei; Yang, Daijun; Zhou, Wei; Zhang, Cunman; Pan, Xiangmin; Xu, Lin; Wu, Minzhong; Ma, Jianxin

    The effectiveness of a commercial activated carbon modified by KOH (KMAC) was evaluated as adsorbent for purifying NO x and SO 2, which are the major contaminants in fuel cell cathode air stream. The N 2 adsorption-desorption isotherms of KMAC samples showed that the surface structure of the activated carbon was changed significantly by KOH impregnation. The sample of KMAC with a loading of 10.1% KOH by weight presented the highest adsorption capacities for both NO x and SO 2, which were 96 mg g -1 and 255 mg g -1, respectively. A pre-exposure of KMAC to CO 2 caused neither effect on the adsorption of NO x nor on the adsorption of SO 2. KMAC could fully protect a 250 W proton exchange membrane fuel cell (PEMFC) stack from 1100 ppb of NO x and 250 ppb of SO 2 for about 130 h.

  3. Particle emissions from laboratory activities involving carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lo, Li-Ming; Tsai, Candace S.-J.; Heitbrink, William A.; Dunn, Kevin H.; Topmiller, Jennifer; Ellenbecker, Michael

    2017-08-01

    This site study was conducted in a chemical laboratory to evaluate nanomaterial emissions from 20-30-nm-diameter bundles of single-walled carbon nanotubes (CNTs) during product development activities. Direct-reading instruments were used to monitor the tasks in real time, and airborne particles were collected using various methods to characterize released nanomaterials using electron microscopy and elemental carbon (EC) analyses. CNT clusters and a few high-aspect-ratio particles were identified as being released from some activities. The EC concentration (0.87 μg/m3) at the source of probe sonication was found to be higher than other activities including weighing, mixing, centrifugation, coating, and cutting. Various sampling methods all indicated different levels of CNTs from the activities; however, the sonication process was found to release the highest amounts of CNTs. It can be cautiously concluded that the task of probe sonication possibly released nanomaterials into the laboratory and posed a risk of surface contamination. Based on these results, the sonication of CNT suspension should be covered or conducted inside a ventilated enclosure with proper filtration or a glovebox to minimize the potential of exposure.

  4. Iron encapsulated in 3D N-doped carbon nanotube/porous carbon hybrid from waste biomass for enhanced oxidative activity.

    PubMed

    Yao, Yunjin; Zhang, Jie; Wu, Guodong; Wang, Shaobin; Hu, Yi; Su, Cong; Xu, Tongwen

    2017-03-01

    Novel iron encapsulated in nitrogen-doped carbon nanotubes (CNTs) supported on porous carbon (Fe@N-C) 3D structured materials for degrading organic pollutants were fabricated from a renewable, low-cost biomass, melamine, and iron salt as the precursors. SEM and TEM micrographs show that iron encapsulated bamboo shaped CNTs are vertically standing on carbon sheets, and thus, a 3D hybrid was formed. The catalytic activities of the prepared samples were thoroughly evaluated by activation of peroxymonosulfate for catalytic oxidation of Orange II solutions. The influences of some reaction conditions (pH, temperature, and concentrations of reactants, peroxymonosulfate, and dye) were extensively evaluated. It was revealed that the adsorption could enrich the pollutant which was then rapidly degraded by the catalytically generated radicals, accelerating the continuous adsorption of residual pollutant. Remarkable carbon structure, introduction of CNTs, and N/Fe doping result in promoted adsorption capability and catalytic performances. Due to the simple synthetic process and cheap carbon precursor, Fe@N-C 3D hybrid can be easily scaled up and promote the development of Fenton-like catalysts.

  5. Optically active single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Peng, Xiaobin; Komatsu, Naoki; Bhattacharya, Sumanta; Shimawaki, Takanori; Aonuma, Shuji; Kimura, Takahide; Osuka, Atsuhiro

    2007-06-01

    The optical, electrical and mechanical properties of single-walled carbon nanotubes (SWNTs) are largely determined by their structures, and bulk availability of uniform materials is vital for extending their technological applications. Since they were first prepared, much effort has been directed toward selective synthesis and separation of SWNTs with specific structures. As-prepared samples of chiral SWNTs contain equal amounts of left- and right-handed helical structures, but little attention has been paid to the separation of these non-superimposable mirror image forms, known as optical isomers. Here, we show that optically active SWNT samples can be obtained by preferentially extracting either right- or left-handed SWNTs from a commercial sample. Chiral `gable-type' diporphyrin molecules bind with different affinities to the left- and right-handed helical nanotube isomers to form complexes with unequal stabilities that can be readily separated. Significantly, the diporphyrins can be liberated from the complexes afterwards, to provide optically enriched SWNTs.

  6. Carbon dioxide capture by activated methyl diethanol amine impregnated mesoporous carbon

    NASA Astrophysics Data System (ADS)

    Ardhyarini, N.; Krisnandi, Y. K.

    2017-07-01

    Activated Methyl Diethanol Amine (aMDEA) were impregnated onto the surface of the mesoporous carbon to increase carbon dioxide (CO2) adsorption capacity. The mesoporous carbon was synthesized through soft template method with phloroglucinol as carbon precursor and triblock copolymer (Pluronic F127) as structure directing agent. These activated MDEA impregnated mesoporous carbon (aMDEA-MC) were characterized using various solid characterization techniques. CO2 adsorption was investigated using autoclaved-reactor in the batch system. The FTIR spectrum of aMDEA-MC had absorption peaks at 3395 cm-1 and 1031 cm-1 which are characteristic for O-H stretch and amine C-N stretch in MDEA. The elemental analyzer showed that nitrogen content on the mesoporous carbon increased after impregnation by 23 wt.%. The BET surface area and total pore volume of mesoporous carbon decreased after impregnation, 43 wt.% and 50 wt.%, respectively. The maximum CO2 adsorption capacity of aMDEA43-MC was 2.63 mmol/g (298 K, 5 psi and pure CO2). This is 64 % and 35 % higher compared to the CO2 adsorption capacity of the starting MC and also commercially available activated carbon with higher surface area. All the results suggest that MDEA-MC is a promising adsorbent for CO2 capture.

  7. Photocatalytic degradation of textile dye using TiO2-activated carbon nanocomposite

    NASA Astrophysics Data System (ADS)

    Ghosh, Gourab; Basu, Sankhadeep; Saha, Sudeshna

    2018-05-01

    Rapid industrialisation has extended the use of dyes in various industrial applications in order to meet the escalating demands on consumer products. The toxicity level of a particular dye is very important due to its diverse effects on the environment and living organisms. Among all the techniques for dye removal, adsorption and photocatalysis are two important processes which are gaining much attention in recent years. In the present study activated carbon (adsorbent), TiO2 nanoparticles (photocatalyst) and their composite were used for dye removal. Prepared samples were characterized using standard characterization techniques such as XRD and SEM. Activated carbon was prepared from waste shells of Sterculia foetida. Mixture of activated carbon (activation temperature 600°C) and titania (calcined at 500°C) in the ratio 1:1 displayed greater dye removal efficiency than its individual components. Reusability study indicated that the mixture could effectively be used without further regeneration as very little loss in efficiency was observed after single cycle use.

  8. Porous texture of activated carbons prepared by phosphoric acid activation of woods

    NASA Astrophysics Data System (ADS)

    Díaz-Díez, M. A.; Gómez-Serrano, V.; Fernández González, C.; Cuerda-Correa, E. M.; Macías-García, A.

    2004-11-01

    Activated carbons (ACs) have been prepared using chestnut, cedar and walnut wood shavings from furniture industries located in the Comunidad Autónoma de Extremadura (SW Spain). Phosphoric acid (H3PO4) at different concentrations (i.e. 36 and 85 wt.%) has been used as activating agent. ACs have been characterized from the results obtained by N2 adsorption at 77 K. Moreover, the fractal dimension (D) has been calculated in order to determine the AC surface roughness degree. Optimal textural properties of ACs have been obtained by chemical activation with H3PO4 36 wt.%. This is corroborated by the slightly lower values of D for samples treated with H3PO4 85 wt.%.

  9. Dynamic pesticide removal with activated carbon fibers.

    PubMed

    Martín-Gullón, I; Font, R

    2001-02-01

    Rapid small-scale minicolumn tests were carried out to simulate the atrazine adsorption in water phase with three pelletized pitch-based activated carbon fibers (ACF) and one commercial granular activated carbon (GAC). Initial atrazine solutions were prepared with pretreated ground water. Minicolumn tests showed that the performance of highly activated carbon fibers (surface area of 1700 m2/g) is around 7 times better than the commercial GAC (with surface area at around 1100 m2/g), whereas carbon fibers with medium activation degree (surface area of 1500 m2/g) had a removal efficiency worse than the commercial carbon. The high removal efficiency of the highly activated ACF is due to the wide-opened microstructure of the material, with an appreciable contribution of the low size mesopores, maintaining at these conditions a fast kinetic adsorption rate rather than a selective adsorbent for micropollutants vs. natural organic matter.

  10. XPS analysis of activated carbon supported ionic liquids: Enhanced purity and reduced charging

    NASA Astrophysics Data System (ADS)

    Foelske-Schmitz, A.; Weingarth, D.; Kötz, R.

    2011-12-01

    Herein we report on XPS measurements on five different [EMIM] based ionic liquids (IL) prepared on activated carbon and aluminium supports. The anions were [TFSI], [BF4], [FAP], [B(CN)4] and [EtOSO3]. The results show that impurities such as O, Si or hydrocarbons were significantly reduced or no longer detected when preparation was performed on the high surface area carbon support. All core level spectra were fitted and for [EMIM][FAP], [EMIM][B(CN)4] and [EMIM][EtOSO3] de-convolution procedures of the C 1s lines are suggested. Comparison of the determined binding energies with published data strongly suggests that sample charging is irrelevant when preparation is performed on the activated carbon support. This observation is supposed to refer to the high capacitance of the high surface area carbon.

  11. Effects of Carbon in Flooded Paddy Soils: Implications for Microbial Activity and Arsenic Mobilization

    NASA Astrophysics Data System (ADS)

    Avancha, S.; Boye, K.

    2014-12-01

    In the Mekong delta in Cambodia, naturally occurring arsenic (originating from erosion in the Himalaya Mountains) in paddy soils is mobilized during the seasonal flooding. As a consequence, rice grown on the flooded soils may take up arsenic and expose people eating the rice to this carcinogenic substance. Microbial activity will enhance or decrease the mobilization of arsenic depending on their metabolic pathways. Among the microbes naturally residing in the soil are denitrifying bacteria, sulfate reducers, metal reducers (Fe, Mn), arsenic reducers, methanogens, and fermenters, whose activity varies based on the presence of oxygen. The purpose of the experiment was to assess how different amendments affect the microbial activity and the arsenic mobilization during the transition from aerobic to anaerobic metabolism after flooding of naturally contaminated Cambodian soil. In a batch experiment, we investigated how the relative metabolic rate of naturally occurring microbes could vary with different types of organic carbon. The experiment was designed to measure the effects of various sources of carbon (dried rice straw, charred rice straw, manure, and glucose) on the microbial activity and arsenic release in an arsenic-contaminated paddy soil from Cambodia under flooded conditions. All amendments were added based on the carbon content in order to add 0.036 g of carbon per vial. The soil was flooded with a 10mM TRIS buffer solution at pH 7.04 in airtight 25mL serum vials and kept at 25 °C. We prepared 14 replicates per treatment to sample both gas and solution. On each sampling point, the solution replicates were sampled destructively. The gas replicates continued on and were sampled for both gas and solution on the final day of the experiment. We measured pH, total arsenic, methane, carbon dioxide, and nitrous oxide at 8 hours, 1.5 days, 3.33 days, and 6.33 days from the start of the experiment.

  12. Response of Heterogeneous and Fractured Carbonate Samples to CO2-Brine Exposure

    NASA Astrophysics Data System (ADS)

    Smith, M. M.; Mason, H. E.; Hao, Y.; Carroll, S.

    2014-12-01

    Carbonate rock units are often considered as candidate sites for storage of carbon dioxide (CO2), whether as stand-alone reservoirs or coupled with enhanced oil recovery efforts. In order to accept injected carbon dioxide, carbonate reservoirs must either possess sufficient preexisting connected void space, or react with CO2-acidified fluids to produce more pore space and improve permeability. However, upward migration of CO2 through barrier zones or seal layers must be minimized for effective safe storage. Therefore, prediction of the changes to porosity and permeability in these systems over time is a key component of reservoir management. Towards this goal, we present the results of several experiments on carbonate core samples from the Wellington, Kansas 1-32 well, conducted under reservoir temperature, pressure, and CO2 conditions. These samples were imaged by X-ray computed tomography (XRCT) and analyzed with nuclear magnetic resonance (NMR) spectroscopy both prior to and after reaction with CO2-enriched brines. The carbonate samples each displayed distinct responses to CO2 exposure in terms of permeability change with time and relative abundance of calcite versus dolomite dissolution. The measured permeability of each sample was also much lower than that estimated by downhole NMR logging, with samples with larger fractured regions possessing higher permeability values. We present also our modeling approach and preliminary simulation results for a specific sample from the targeted injection zone. The heterogeneous composition as well as the presence of large fractured zones within the rock necessitated the use of a nested three-region approach to represent the range of void space observed via tomography. Currently, the physical response to CO2-brine flow (i.e., pressure declines with time) is reproduced well but the extent of chemical reaction is overestimated by the model.

  13. Mechanistical studies on the formation of carbon dioxide in extraterrestrial carbon monoxide ice analog samples.

    PubMed

    Bennett, Chris J; Jamieson, Corey S; Kaiser, Ralf I

    2009-06-07

    Binary ice mixtures of two carbon monoxide isotopomers, (13)C(16)O and (12)C(18)O, were subjected at 10 K to energetic electrons to investigate the interaction of ionizing radiation with extraterrestrial, carbon monoxide bearing ices. The chemical modifications were monitored on line and in situ via absorption-reflection-absorption Fourier transform infrared spectroscopy as well as in the gas-phase via a quadrupole mass spectrometer. Detected products include two newly formed carbon monoxide isotopomers ((12)C(16)O and (13)C(18)O), carbon dioxide ((12)C(16)O(2), (12)C(18)O(16)O, (12)C(18)O(2), (13)C(16)O(2), (13)C(18)O(16)O, and (13)C(18)O(2)), and dicarbon monoxide ((12)C(13)C(16)O and (13)C(13)C(16)O). Kinetic profiles of carbon monoxide and of carbon dioxide were extracted and fit to derive reaction mechanisms and information on the decomposition of carbon monoxide and on the formation of carbon dioxide in extraterrestrial ice analog samples.

  14. Characterization and phenol adsorption performance of activated carbon prepared from tea residue by NaOH activation.

    PubMed

    Tao, Jun; Huo, Peili; Fu, Zongheng; Zhang, Jin; Yang, Zhen; Zhang, Dengfeng

    2017-10-05

    The preparation of activated carbon (AC) using tea residue was addressed in this work. The preparation process incorporated two-step pyrolysis and activation using NaOH. The influence of activation temperature between 500°C and 700°C on the properties of the AC sample was investigated. The physicochemical properties of the AC sample were characterized. The results show that the optimum temperature for the activation process is 700°C, which generates the AC sample with higher specific surface area and total pore volume, respectively, of 819 m 2  g -1 and 0.443 cm 3  g -1 . The oxygen-containing functional groups evolve on the AC sample during the activation process. The phenol adsorption test was performed to evaluate the adsorption performance of the AC sample. The adsorption data confirm that phenol adsorption on the AC sample obtained at 700°C follows the pseudo-second-order kinetics model. Hereby, the electron donor-acceptor interaction mechanism can describe the adsorption process. The AC sample obtained at 700°C performs superior phenol adsorption performance. The maximum phenol adsorption capacity is 320 mg g -1 , which is higher than that of several AC samples reported previously. Thus, the tea residue acts as a good precursor for the AC with promising adsorption capacity by the NaOH chemical activation method.

  15. Adsorption characteristics of Bisphenol-A on tailored activated carbon in aqueous solutions.

    PubMed

    Yan, Liang; Lv, Di; Huang, Xinwen; Shi, Huixiang; Zhang, Geshan

    2016-10-01

    The adsorption behavior of pharmaceuticals and personal care product, Bisphenol-A (BPA), according to four coal-based and four wood-based granular activated carbons modified using outgassing treatment, acidic treatment or alkaline treatment was studied. The adsorption isotherm results indicated that carbon surface acidity played a very important role in the adsorption of BPA. It was found that increasing surface acidity would increase the hydrogen bonding effects and increase adsorption of BPA on activated carbon. The acidic modified sample (F600-A and OLC-A) represented the best adsorption capacity, and the equilibrium adsorption amounts reached 346.42 and 338.55 mg/g, respectively. Further, effects of surface charge and surface basicity were examined. It was found that the adsorbed amount of BPA decreased with the increase of surface charge. Finally, there appeared to be a significant oligomerization phenomenon with BPA molecules onto the surface of activated carbon. OLC and OLC-OG, which have higher micropore percentages, are very effective in hampering the oligomerization of BPA under oxic conditions.

  16. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    NASA Astrophysics Data System (ADS)

    Abdullah, N.; Rinaldi, A.; Muhammad, I. S.; Hamid, S. B. Abd.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300° C for an hour in each step. The catalytic growth of nanocarbon in C2H4/H2 was carried out at temperature of 550° C for 2 hrs with different rotating angle in the fluidization system. SEM and N2 isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  17. JPL Activated Carbon Treatment System (ACTS) for sewage

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An Activated Carbon Treatment System (ACTS) was developed for sewage treatment and is being applied to a one-million gallon per day sewage treatment pilot plant in Orange County California. Activities reported include pyrolysis and activation of carbon-sewage sludge, and activated carbon treatment of sewage to meet ocean discharge standards. The ACTS Sewage treatment operations include carbon-sewage treatment, primary and secondary clarifiers, gravity (multi-media) filter, filter press dewatering, flash drying of carbon-sewage filter cake, and sludge pyrolysis and activation. Tests were conducted on a laboratory scale, 10,000 gallon per day demonstration plant and pilot test equipment. Preliminary economic studies are favorable to the ACTS process relative to activated sludge treatment for a 175,000,000 gallon per day sewage treatment plant.

  18. Digital Rock Simulation of Flow in Carbonate Samples

    NASA Astrophysics Data System (ADS)

    Klemin, D.; Andersen, M.

    2014-12-01

    Reservoir engineering has becomes more complex to deal with current challenges, so core analysts must understand and model pore geometries and fluid behaviors at pores scales more rapidly and realistically. We introduce an industry-unique direct hydrodynamic pore flow simulator that operates on pore geometries from digital rock models obtained using microCT or 3D scanning electron microscope (SEM) images. The PVT and rheological models used in the simulator represent real reservoir fluids. Fluid-solid interactions are introduced using distributed micro-scale wetting properties. The simulator uses density functional approach applied for hydrodynamics of complex systems. This talk covers selected applications of the simulator. We performed microCT scanning of six different carbonate rock samples from homogeneous limestones to vuggy carbonates. From these, we constructed digital rock models representing pore geometries for the simulator. We simulated nonreactive tracer flow in all six digital models using a digital fluid description that included a passive tracer solution. During the simulation, we evaluated the composition of the effluent. Results of tracer flow simulations corresponded well with experimental data of nonreactive tracer floods for the same carbonate rock types. This simulation data of the non-reactive tracer flow can be used to calculate the volume of the rock accessible by the fluid, which can be further used to predict response of a porous medium to a reactive fluid. The described digital core analysis workflow provides a basis for a wide variety of activities, including input to design acidizing jobs and evaluating treatment efficiency and EOR economics. Digital rock multiphase flow simulations of a scanned carbonate rock evaluated the effect of wettability on flow properties. Various wetting properties were tested: slightly oil wet, slightly water wet, and water wet. Steady-state relative permeability simulations yielded curves for all three

  19. Preparation of granular activated carbons from yellow mombin fruit stones for CO2 adsorption.

    PubMed

    Fiuza, Raildo Alves; Medeiros de Jesus Neto, Raimundo; Correia, Laise Bacelar; Carvalho Andrade, Heloysa Martins

    2015-09-15

    Stones of yellow mombin, a native fruit of the tropical America and West Indies, were used as starting materials to produce activated carbons, subsequently used as adsorbent for CO2 capture. The carbonaceous materials were either chemically activated with HNO3, H3PO4 and KOH or physically activated with CO2. The carbon samples were characterized by SEM, EDX, TG/DTA, Raman spectroscopy, physical adsorption for textural analysis and by acid-base titrations. The CO2 adsorption capacity and adsorption cycles were investigated by TG. The results indicate that the capacity of CO2 adsorption may be maximized on highly basic surfaces of micropores smaller than 1 nm. The KOH activated carbon showed high and stable capacity of CO2 adsorption after 10 cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Determination of platinum in waste platinum-loaded carbon catalyst samples using microwave-assisted sample digestion and ICP-OES

    NASA Astrophysics Data System (ADS)

    Ma, Yinbiao; Wei, Xiaojuan

    2017-04-01

    A novel method for the determination of platinum in waste platinum-loaded carbon catalyst samples was established by inductively coupled plasma optical emission spectrometry after samples digested by microwave oven with aqua regia. Such experiment conditions were investigated as the influence of sample digestion methods, digestion time, digestion temperature and interfering ions on the determination. Under the optimized conditions, the linear range of calibration graph for Pt was 0 ˜ 200.00 mg L-1, and the recovery was 95.67% ˜ 104.29%. The relative standard deviation (RSDs) for Pt was 1.78 %. The proposed method was applied to determine the same samples with atomic absorption spectrometry with the results consistently, which is suitable for the determination of platinum in waste platinum-loaded carbon catalyst samples.

  1. Adsorption of basic Red 46 using sea mango (Cerbera odollam) based activated carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azmi, Nur Azira Iqlima; Zainudin, Nor Fauziah; Ali, Umi Fazara Md

    Sea mango or Cerbera Odollam is another source of carbonaceous material that can be found abundantly in Malaysia. In this research, it is used as a new agricultural source of activated carbon. Sea mango activated carbon was prepared by chemical activation using potassium hydroxide (KOH). The sea mango was soaked in KOH at impregnation ratio of 1:1 and followed by carbonization at temperature of 600°C for 1 hour. The sample was then characterized using Scanning Electron Microscope (SEM) for surface morphology, while Brunauer-Emmett-Teller (BET) was used to study the surface area. The result shown that sea mango activated carbon (SMAC)more » developed new pores on its surface and the BET surface area measured was 451.87 m{sup 2}/g. The SMAC performance was then tested for the removal of Basic Red 46 in batch process. The removal of Basic Red 46 (50 mg/L, natural pH, 0.1 g SMAC) was more than 99% in 15 minutes where it reached equilibrium in 30 minutes.« less

  2. Adsorption of basic Red 46 using sea mango (Cerbera odollam) based activated carbon

    NASA Astrophysics Data System (ADS)

    Azmi, Nur Azira Iqlima; Zainudin, Nor Fauziah; Ali, Umi Fazara Md

    2015-05-01

    Sea mango or Cerbera Odollam is another source of carbonaceous material that can be found abundantly in Malaysia. In this research, it is used as a new agricultural source of activated carbon. Sea mango activated carbon was prepared by chemical activation using potassium hydroxide (KOH). The sea mango was soaked in KOH at impregnation ratio of 1:1 and followed by carbonization at temperature of 600°C for 1 hour. The sample was then characterized using Scanning Electron Microscope (SEM) for surface morphology, while Brunauer-Emmett-Teller (BET) was used to study the surface area. The result shown that sea mango activated carbon (SMAC) developed new pores on its surface and the BET surface area measured was 451.87 m2/g. The SMAC performance was then tested for the removal of Basic Red 46 in batch process. The removal of Basic Red 46 (50 mg/L, natural pH, 0.1 g SMAC) was more than 99% in 15 minutes where it reached equilibrium in 30 minutes.

  3. Biogas pre-upgrading by adsorption of trace compounds onto granular activated carbons and an activated carbon fiber-cloth.

    PubMed

    Boulinguiez, B; Le Cloirec, P

    2009-01-01

    The study assesses the adsorption onto activated carbon materials of selected volatile organic compounds -VOCs- (dichloromethane, 2-propanol, toluene, siloxane D4) in a biogas matrix composed of methane and carbon dioxide (55:45 v/v). Three different adsorbents are tested, two of them are granular activated carbon (GAC), and the last is an activated carbon fiber-cloth (ACFC). The adsorption isotherm data are fitted by different models by nonlinear regression. The Langmuir-Freundlich model appears to be the adequate one to describe the adsorption phenomena independently of the VOC considered or the adsorbent. The adsorbents present attractive adsorption capacity of the undesirable compounds in biogas atmosphere though the maximum adsorption capacities for a VOC are quite different from each other. The adsorption kinetics are characterized through three coefficients: the initial adsorption coefficient, the external film mass transfer coefficient and the internal diffusion coefficient of Weber. The ACFC demonstrates advanced kinetic yields compared to the granular activated carbon materials whatever VOC is considered. Therefore, pre-upgrading of biogas produced from wastewater sludge or co-digestion system by adsorption onto activated carbon appears worth investigating. Especially with ACFC material that presents correct adsorption capacities toward VOCs and concrete regeneration process opportunity to realize such process.

  4. Adventitious Carbon on Primary Sample Containment Metal Surfaces

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Fries, M. D.

    2015-01-01

    Future missions that return astromaterials with trace carbonaceous signatures will require strict protocols for reducing and controlling terrestrial carbon contamination. Adventitious carbon (AC) on primary sample containers and related hardware is an important source of that contamination. AC is a thin film layer or heterogeneously dispersed carbonaceous material that naturally accrues from the environment on the surface of atmospheric exposed metal parts. To test basic cleaning techniques for AC control, metal surfaces commonly used for flight hardware and curating astromaterials at JSC were cleaned using a basic cleaning protocol and characterized for AC residue. Two electropolished stainless steel 316L (SS- 316L) and two Al 6061 (Al-6061) test coupons (2.5 cm diameter by 0.3 cm thick) were subjected to precision cleaning in the JSC Genesis ISO class 4 cleanroom Precision Cleaning Laboratory. Afterwards, the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.

  5. Effects of Activated Carbon Surface Property on Structure and Activity of Ru/AC Catalysts

    NASA Astrophysics Data System (ADS)

    Xu, S. K.; Li, L. M.; Guo, N. N.

    2018-05-01

    The activated carbon (AC) was modified by supercritical (SC) methanol, HNO3 oxidation, or HNO3 oxidation plus SC methanol, respectively. Then, the original and the modified AC were used as supports for Ru/AC catalysts prepared via the impregnation method. The results showed that the SC methanol modification decreased the content of surface acidic groups of AC. While HNO3 oxidation displayed the opposite behavior. Furthermore, the dispersion of ruthenium and the activity of catalysts were highly dependent on the content of surface acidic groups, and the SC methanol modified sample exhibited the highest activity for hydrogenation of glucose.

  6. Three modified activated carbons by different ligands for the solid phase extraction of copper and lead.

    PubMed

    Ghaedi, M; Ahmadi, F; Tavakoli, Z; Montazerozohori, M; Khanmohammadi, A; Soylak, M

    2008-04-15

    In the presented work, 5,5-diphenylimidazolidine-2,4-dione (phenytoin) (DFTD), 5,5-diphenylimidazolidine-2-thione-,4-one (thiophenytoin) (DFID) and 2-(4'-methoxy-benzylidenimine) thiophenole (MBIP) modified activated carbons have been used for the solid phase extraction of copper and lead ions prior to their flame atomic absorption spectrometric determinations. The influences of the various analytical parameters including pH, amounts of reagent, sample volume and eluent type, etc. on the recovery efficiencies of copper and lead ions were investigated. The influences of alkaline, earth alkaline and some transition metals on the adsorption of the analytes were also examined. The detection limits by three sigma for analyte ions were 0.65 and 0.42 microg L(-1) using activated carbon modified with DFID; 0.52 and 0.37 microg L(-1) using activated carbon modified with DFTD and 0.46 and 0.31 microg L(-1) using activated carbon modified with MBIP for Pb(II) and Cu(II), respectively. The procedure was applied to the determination of analytes in natural waters, soil, and blood samples with satisfactory results (recoveries greater than 95%, R.S.D.'s lower than 4%).

  7. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.

    PubMed

    Liu, Fengling; Xu, Zhaoyi; Wan, Haiqin; Wan, Yuqiu; Zheng, Shourong; Zhu, Dongqiang

    2011-04-01

    Humic acids are ubiquitous in surface and underground waters and may pose potential risk to human health when present in drinking water sources. In this study, ordered mesoporous carbon was synthesized by means of a hard template method and further characterized by X-ray diffraction, N2 adsorption, transition electron microscopy, elemental analysis, and zeta-potential measurement. Batch experiments were conducted to evaluate adsorption of two humic acids from coal and soil, respectively, on the synthesized carbon. For comparison, a commercial microporous activated carbon and nonporous graphite were included as additional adsorbents; moreover, phenol was adopted as a small probe adsorbate. Pore size distribution characterization showed that the synthesized carbon had ordered mesoporous structure, whereas the activated carbon was composed mainly of micropores with a much broader pore size distribution. Accordingly, adsorption of the two humic acids was substantially lower on the activated carbon than on the synthesized carbon, because of the size-exclusion effect. In contrast, the synthesized carbon and activated carbon showed comparable adsorption for phenol when the size-exclusion effect was not in operation. Additionally, we verified by size-exclusion chromatography studies that the synthesized carbon exhibited greater adsorption for the large humic acid fraction than the activated carbon. The pH dependence of adsorption on the three carbonaceous adsorbents was also compared between the two test humic acids. The findings highlight the potential of using ordered mesoporous carbon as a superior adsorbent for the removal of humic acids. Copyright © 2011 SETAC.

  8. Activated carbon electrode from banana-peel waste for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, E.; Taslim, R.; Aini, Z.; Hartati, S. D.; Mustika, W. S.

    2017-01-01

    Seven types of activated carbon electrode (ACM) have been produced from the banana peel waste for supercapacitor application. The difference type of the electrode was synthesized by the various conditions of carbonization and activation. The production of the ACM was begun by the milling process and molded by a solution casting technique. The next step was followed by drying, carbonization and activation process. Physical properties of the ACM were studied by the N2 gas absorption-desorption method to characterize the specific surface area of the sample. On the other side, the electrochemical properties such as specific capacitance (Csp), specific energy (E) and specific power (P) were resulted by calculating the current (I) and voltage (V) data from the cyclic voltammetry testing. Based on the data obtained the surface area of the ACM has a significant relationship with the electrochemical properties. The specific surface area (SBET), Csp, E and P were found the maximum value as high as 581m2 / g, 68 F/g, 0.75 Wh/kg and 31 W/kg, respectively. Further more, this paper were also analyzed the relationship between electrochemical properties of supercapacitor with the degree of crystallization of the ACM.

  9. Reuse performance of granular-activated carbon and activated carbon fiber in catalyzed peroxymonosulfate oxidation.

    PubMed

    Yang, Shiying; Li, Lei; Xiao, Tuo; Zhang, Jun; Shao, Xueting

    2017-03-01

    Recently, activated carbon was investigated as an efficient heterogeneous metal-free catalyst to directly activate peroxymonosulfate (PMS) for degradation of organic compounds. In this paper, the reuse performance and the possible deactivation reasons of granular-activated carbon (GAC) and activated carbon fiber (ACF) in PMS activation were investigated. As results indicated, the reusability of GAC, especially in the presence of high PMS dosage, was relatively superior to ACF in catalyzed PMS oxidation of Acid Orange 7 (AO7), which is much more easily adsorbed by ACF than by GAC. Pre-oxidation experiments were studied and it was demonstrated that PMS oxidation on ACF would retard ACF's deactivation to a big extent. After pre-adsorption with AO7, the catalytic ability of both GAC and ACF evidently diminished. However, when methanol was employed to extract the AO7-spent ACF, the catalytic ability could recover quite a bit. GAC and ACF could also effectively catalyze PMS to degrade Reactive Black 5 (RB5), which is very difficult to be adsorbed even by ACF, but both GAC and ACF have poor reuse performance for RB5 degradation. The original organic compounds or intermediate products adsorbed by GAC or ACF would be possibly responsible for the deactivation.

  10. SORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBONS

    EPA Science Inventory

    The mechanisms and rate of elemental mercury (HgO) capture by activated carbons have been studied using a bench-scale apparatus. Three types of activated carbons, two of which are thermally activated (PC-100 and FGD) and one with elemental sulfur (S) impregnated in it (HGR), were...

  11. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.

    PubMed

    Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu

    2016-01-01

    Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  12. Comparison of activated carbon and iron/cerium modified activated carbon to remove methylene blue from wastewater.

    PubMed

    Cheng, Song; Zhang, Libo; Ma, Aiyuan; Xia, Hongying; Peng, Jinhui; Li, Chunyang; Shu, Jianhua

    2018-03-01

    The methylene blue (MB) removal abilities of raw activated carbon and iron/cerium modified raw activated carbon (Fe-Ce-AC) by adsorption were researched and compared. The characteristics of Fe-Ce-AC were examined by N 2 adsorption, zeta potential measurement, FTIR, Raman, XRD, XPS, SEM and EDS. After modification, the following phenomena occurred: The BET surface area, average pore diameter and total pore volume decreased; the degree of graphitization also decreased. Moreover, the presence of Fe 3 O 4 led to Fe-Ce-AC having magnetic properties, which makes it easy to separate from dye wastewater in an external magnetic field and subsequently recycle. In addition, the equilibrium isotherms and kinetics of MB adsorption on raw activated carbon and Fe-Ce-AC were systematically examined. The equilibrium adsorption data indicated that the adsorption behavior followed the Langmuir isotherm, and the pseudo-second-order model matched the kinetic data well. Compared with raw activated carbon, the maximum monolayer adsorption capacity of Fe-Ce-AC increased by 27.31%. According to the experimental results, Fe-Ce-AC can be used as an effective adsorbent for the removal of MB from dye wastewater. Copyright © 2017. Published by Elsevier B.V.

  13. Determination of adsorbable organic fluorine from aqueous environmental samples by adsorption to polystyrene-divinylbenzene based activated carbon and combustion ion chromatography.

    PubMed

    Wagner, Andrea; Raue, Brigitte; Brauch, Heinz-Jürgen; Worch, Eckhard; Lange, Frank T

    2013-06-21

    A new method for the determination of trace levels of adsorbable organic fluorine (AOF) in water is presented. Even if the individual contributing target compounds are widely unknown, this surrogate parameter is suited to identify typical organofluorine contaminations, such as with polyfluorinated chemicals (PFCs), and represents a lower boundary of the organofluorine concentration in water bodies. It consists of the adsorption of organofluorine chemicals on a commercially available synthetic polystyrene-divinylbenzene based activated carbon (AC) followed by analysis of the loaded AC by hydropyrolysis combustion ion chromatography (CIC). Inorganic fluorine is displaced by excess nitrate during the extraction step and by washing the loaded activated carbon with an acidic sodium nitrate solution. Due to its high purity the synthetic AC had a very low and reproducible fluorine blank (0.3 μg/g) compared to natural ACs (up to approximately 9 μg/g). Using this AC, fluoride and the internal standard phosphate could be detected free of chromatographic interferences. With a sample volume of 100 mL and 2× 100 mg of AC packed into two extraction columns combined in series, a limit of quantification (LOQ), derived according to the German standard method DIN 32645, of 0.3 μg/L was achieved. The recoveries of six model PFCs were determined from tap water and a municipal wastewater treatment plant (WWTP) effluent. Except for the extremely polar perfluoroacetic acid (recovery of approximately 10%) the model substances showed fairly good (50% for perfluorobutanoic acid (PFBA)) to very good fluorine recoveries (100±20% for perfluorooctanoic acid (PFOA), perfluorobutanesulfonate (PFBS), 6:2 fluorotelomersulfonate (6:2 FTS)), both from tap water and wastewater matrix. This new analytical protocol was exemplarily applied to several surface water and groundwater samples. The obtained AOF values were compared to the fluorine content of 19 target PFCs analyzed by high performance

  14. Quality of poultry litter-derived granular activated carbon.

    PubMed

    Qiu, Guannan; Guo, Mingxin

    2010-01-01

    Utilization of poultry litter as a source material for generating activated carbon is a value-added and environmentally beneficial approach to recycling organic waste. In this study, the overall quality of poultry litter-derived granular activated carbon was systematically evaluated based on its various physical and chemical properties. Granular activated carbon generated from pelletized poultry litter following a typical steam-activation procedure possessed numerous micropores in the matrix. The product exhibited a mean particle diameter of 2.59 mm, an apparent density of 0.45 g cm(-3), a ball-pan hardness of 91.0, an iodine number of 454 mg g(-1), and a BET surface area of 403 m(2) g(-1). It contained high ash, nitrogen, phosphorus contents and the trace elements Cu, Zn, and As. Most of the nutrients and toxic elements were solidified and solution-unextractable. In general, poultry litter-based activated carbon demonstrated overall quality comparable to that of low-grade commercial activated carbon derived from coconut shell and bituminous coal. It is promising to use poultry litter as a feedstock to manufacture activated carbon for wastewater treatment.

  15. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.

    PubMed

    Karnan, M; Subramani, K; Sudhan, N; Ilayaraja, N; Sathish, M

    2016-12-28

    Materials which possess high specific capacitance in device configuration with low cost are essential for viable application in supercapacitors. Herein, a flexible high-energy supercapacitor device was fabricated using porous activated high-surface-area carbon derived from aloe leaf (Aloe vera) as a precursor. The A. vera derived activated carbon showed mesoporous nature with high specific surface area of ∼1890 m 2 /g. A high specific capacitance of 410 and 306 F/g was achieved in three-electrode and symmetric two-electrode system configurations in aqueous electrolyte, respectively. The fabricated all-solid-state device showed a high specific capacitance of 244 F/g with an energy density of 8.6 Wh/kg. In an ionic liquid electrolyte, the fabricated device showed a high specific capacitance of 126 F/g and a wide potential window up to 3 V, which results in a high energy density of 40 Wh/kg. Furthermore, it was observed that the activation temperature has significant role in the electrochemical performance, as the activated sample at 700 °C showed best activity than the samples activated at 600 and 800 °C. The electron microscopic images (FE-SEM and HR-TEM) confirmed the formation of pores by the chemical activation. A fabricated supercapacitor device in ionic liquid with 3 V could power up a red LED for 30 min upon charging for 20s. Also, it is shown that the operation voltage and capacitance of flexible all-solid-state symmetric supercapacitors fabricated using aloe-derived activated carbon could be easily tuned by series and parallel combinations. The performance of fabricated supercapacitor devices using A. vera derived activated carbon in all-solid-state and ionic liquid indicates their viable applications in flexible devices and energy storage.

  16. Influence of surface properties on the mechanism of H2S removal by alkaline activated carbons.

    PubMed

    Yan, Rong; Chin, Terence; Ng, Yuen Ling; Duan, Huiqi; Liang, David Tee; Tay, Joo Hwa

    2004-01-01

    Alkaline activated carbons are widely used as adsorbents of hydrogen sulfide (H2S), one of the major odorous compounds arising from sewage treatment facilities. Although a number of studies have explored the effects of various parameters, mechanisms of H2S adsorption by alkaline carbons are not yet fully understood. The major difficulty seems to lie in the fact that little is known with certainty about the predominant reactions occurring on the carbon surface. In this study, the surface properties of alkaline activated carbons were systematically investigated to further exploit and better understand the mechanisms of H2S adsorption by alkaline activated carbons. Two commercially available alkaline activated carbons and their representative exhausted samples (8 samples collected at different height of the column after H2S breakthrough tests) were studied. The 8 portions of the exhausted carbon were used to represent the H2S/carbon reaction process. The surface properties of both the original and the exhausted carbons were characterized using the sorption of nitrogen (BET test), surface pH, Boehm titration, thermal and FTIR analysis. Porosity and surface area provide detailed information about the pore structure of the exhausted carbons with respect to the reaction extent facilitating the understanding of potential pore blockages. Results of Boehm titration and FTIR both demonstrate the significant effects of surface functional groups, and identification of oxidation products confirmed the different mechanisms involved with the two carbons. From the DTG curves of thermal analysis, two well-defined peaks representing two products of surface reactions (i.e., sulfur and sulfuric acid) were observed from the 8 exhausted portions with gradually changing patterns coinciding with the extent of the reaction. Surface pH values of the exhausted carbons show a clear trend of pH drop along the reaction extent, while pH around 2 was observed for the bottom of the bed indicating

  17. Study of CO2 adsorption capacity of mesoporous carbon and activated carbon modified by triethylenetetramine (TETA)

    NASA Astrophysics Data System (ADS)

    Sulistianti, I.; Krisnandi, Y. K.; Moenandar, I.

    2017-04-01

    Mesoporous carbon was synthesized by soft template method using phloroglucinol and formaldehyde as a carbon source; and Pluronic F-127 as a mesoporous template. The synthesized mesoporous carbon and commercial activated carbon were modified with triethylenetetramine (TETA) to increase CO2 adsorption capacity. Based on FTIR characterization, the synthesized mesoporous carbon and the activated carbon without modification process has similarity pattern. After the modification, both of them showed absorption peaks in the area around 1580 to 1650 cm-1 which is known as N-H bending vibration and absorption peaks in the area around 3150 to 3380 cm-1 which is known as N-H stretching vibration. The XRD results showed two peaks at 2θ = 24.21° and 2θ = 43.85°, according to JCPDS index No. 75-1621 those peak are the typical peaks for hexagonal graphite carbon. In BET analysis, the synthesized mesoporous carbon and activated carbon modified TETA have surface area, pore volume and pore diameter lower than without modification process. In carbon dioxide adsorption testing, the synthesized mesoporous carbon showed better performance than the commercial activated carbon for CO2 adsorption both without modification and by modification. The synthesized mesoporous carbon obtained CO2 adsorption of 9.916 mmol/g and the activated carbon of 3.84 mmol/g for on 3.5 hours of adsorption. It is three times better than activated carbon for adsorption of carbon dioxide. The modified mesoporous carbon has the best performance for adsorption of gas CO2 if compared by unmodified.

  18. The active and passive sampling of benzene, toluene, ethyl benzene and xylenes compounds using the inside needle capillary adsorption trap device.

    PubMed

    Shojania, S; Oleschuk, R D; McComb, M E; Gesser, H D; Chow, A

    1999-08-23

    A new and simple method of solventless extraction of volatile organic compounds (VOCs) from air is presented. The sampling device has an adsorbing carbon coating on the interior surface of a hollow needle, and is called the inside needle capillary adsorption trap (INCAT). This paper describes a study of the reproducibility in the preparation and sampling of the INCAT device. In addition, this paper examines the effects of sample volume in active sampling and exposure time in passive sampling on the analyte adsorption. Analysis was achieved by sampling the air from an environmental chamber doped with benzene, toluene, ethyl benzene and xylenes (BTEX) compounds. Initial rates of adsorption were found to vary among the different compounds, but ranged from 0.0099 to 0.016 nmol h(-1) for passive sampling and from 2.2 to 10 nmol h(-1) for active sampling. Analysis was done by thermal desorption of the adsorbed compounds directly into a gas chromatograph injection port. Quantification of the analysis was done by comparison to actively sampled activated carbon solid phase extraction (SPE) measurements.

  19. System and method for coproduction of activated carbon and steam/electricity

    DOEpatents

    Srinivasachar, Srivats [Sturbridge, MA; Benson, Steven [Grand Forks, ND; Crocker, Charlene [Newfolden, MN; Mackenzie, Jill [Carmel, IN

    2011-07-19

    A system and method for producing activated carbon comprising carbonizing a solid carbonaceous material in a carbonization zone of an activated carbon production apparatus (ACPA) to yield a carbonized product and carbonization product gases, the carbonization zone comprising carbonaceous material inlet, char outlet and carbonization gas outlet; activating the carbonized product via activation with steam in an activation zone of the ACPA to yield activated carbon and activation product gases, the activation zone comprising activated carbon outlet, activation gas outlet, and activation steam inlet; and utilizing process gas comprising at least a portion of the carbonization product gases or a combustion product thereof; at least a portion of the activation product gases or a combustion product thereof; or a combination thereof in a solid fuel boiler system that burns a solid fuel boiler feed with air to produce boiler-produced steam and flue gas, the boiler upstream of an air heater within a steam/electricity generation plant, said boiler comprising a combustion zone, a boiler-produced steam outlet and at least one flue gas outlet.

  20. Selective Solid-Phase Extraction of Zinc(II) from Environmental Water Samples Using Ion Imprinted Activated Carbon.

    PubMed

    Moniri, Elham; Panahi, Homayon Ahmad; Aghdam, Khaledeh; Sharif, Amir Abdollah Mehrdad

    2015-01-01

    A simple ion imprinted amino-functionalized sorbent was synthesized by coupling activated carbon with iminodiacetic acid, a functional compound for metal chelating, through cyanoric chloride spacer. The resulting sorbent has been characterized using FTIR spectroscopy, elemental analysis, and thermogravimetric analysis and evaluated for the preconcentration and determination of trace Zn(II) in environmental water samples. The optimum pH value for sorption of the metal ion was 6-7.5. The sorption capacity of the functionalized sorbent was 66.6 mg/g. The chelating sorbent can be reused for 10 cycles of sorption-desorption without any significant change in sorption capacity. A recovery of 100% was obtained for the metal ion with 0.5 M nitric acid as the eluent. Compared with nonimprinted polymer particles, the prepared Zn-imprinted sorbent showed high adsorption capacity, significant selectivity, and good site accessibility for Zn(II). Scatchard analysis revealed that the homogeneous binding sites were formed in the polymer. The equilibrium sorption data of Zn(II) by modified resin were analyzed by Langmuir, Freundlich, Temkin, and Redlich-Peterson models. Based on equilibrium adsorption data, the Langmuir, Freundlich, and Temkin constants were determined as 0.139, 12.82, and 2.34, respectively, at 25°C.

  1. ENTRAINED-FLOW ADSORPTION OF MERCURY USING ACTIVATED CARBON

    EPA Science Inventory

    Bench-scale experiments were conducted in a flow reactor to simulate entrained-flow capture of elemental mercury (Hg) by activated carbon. Adsorption of Hg by several commercial activated carbons was examined at different carbon-to-mercury (C:Hg) ratios (by weight) (600:1 - 29000...

  2. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons.

    PubMed

    Rakić, Vesna; Rac, Vladislav; Krmar, Marija; Otman, Otman; Auroux, Aline

    2015-01-23

    In this study, the adsorption of pharmaceutically active compounds - salicylic acid, acetylsalicylic acid, atenolol and diclofenac-Na onto activated carbons has been studied. Three different commercial activated carbons, possessing ∼650, 900 or 1500m(2)g(-1) surface areas were used as solid adsorbents. These materials were fully characterized - their textural, surface features and points of zero charge have been determined. The adsorption was studied from aqueous solutions at 303K using batch adsorption experiments and titration microcalorimetry, which was employed in order to obtain the heats evolved as a result of adsorption. The maximal adsorption capacities of investigated solids for all target pharmaceuticals are in the range of 10(-4)molg(-1). The obtained maximal retention capacities are correlated with the textural properties of applied activated carbon. The roles of acid/base features of activated carbons and of molecular structures of adsorbate molecules have been discussed. The obtained results enabled to estimate the possibility to use the activated carbons in the removal of pharmaceuticals by adsorption. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Enhancement of methylbenzene adsorption capacity through cetyl trimethyl ammonium bromide-modified activated carbon derived from Astragalus residue

    NASA Astrophysics Data System (ADS)

    Feng, Ningchuan; Zhang, Yumei; Fan, Wei; Zhu, Meilin

    2018-02-01

    Activated carbon was prepared from astragalus residue by KOH and then treated with cetyl trimethyl ammonium bromide (CTAB) and used for the removal of methylbenzene from aqueous solution. The samples were characterized by FTIR, XRD, SEM and Boehm titration. The results showed that CTAB changed the physicochemical properties of activated carbon significantly. The isotherm adsorption studies of methylbenzene onto the astragalus residue activated carbon (ASC) and CTAB-modified astragalus residue activated carbon (ASCCTAB) were examined by using batch techniques and agreed well with the Langmuir model. The maximum adsorption capacity of ASC and ASC-CTAB for methylbenzene determined from the Langmuir model was183.56 mg/g and 235.18 mg/g, respectively. The results indicated that using CTAB as a modifier for ASC modification could markedly enhance the methylbenzene removal from water.

  4. Production of activated carbon from rice husk Vietnam

    NASA Astrophysics Data System (ADS)

    Korobochkin, V. V.; Tu, N. V.; Hieu, N. M.

    2016-09-01

    This work is dedicated to the production of activated carbon from rice husk from Delta of the Red River in Viet Nam. At the first stage, carbonization of a rice husk was carried out to obtain material containing 43.1% carbon and 25 % silica with a specific surface area of 51.5 m2/g. After separating of silica (the second stage), the specific surface area of the product increased to 204 m2/g and the silica content decreased to 1.23% by weight as well. The most important stage in the formation of the porous structure of the material is the activation. The products with the high specific surface area in the range of 800-1345 m2/g were obtained by activation of carbonized product with water vapour or carbon dioxide at temperatures of 700 °C and 850 °C, with varying the flow rate of the activating agent and activation time. The best results were achieved by activation of carbon material with water vapour at the flow rate of 0.08 dm3/min per 500 g of material and the temperature of 850 °C.

  5. Automated determination of the stable carbon isotopic composition (δ13C) of total dissolved inorganic carbon (DIC) and total nonpurgeable dissolved organic carbon (DOC) in aqueous samples: RSIL lab codes 1851 and 1852

    USGS Publications Warehouse

    Révész, Kinga M.; Doctor, Daniel H.

    2014-01-01

    The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon (δ13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.

  6. Activated carbon-supported CuO nanoparticles: a hybrid material for carbon dioxide adsorption

    NASA Astrophysics Data System (ADS)

    Boruban, Cansu; Esenturk, Emren Nalbant

    2018-03-01

    Activated carbon-supported copper(II) oxide (CuO) nanoparticles were synthesized by simple impregnation method to improve carbon dioxide (CO2) adsorption capacity of the support. The structural and chemical properties of the hybrid material were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CCsQFjAC&url=http%3A%2F%2Fwww.intertek.com%2Fanalytical-laboratories%2Fxrd%2F&ei=-5WZVYSCHISz7Aatqq-IAw&usg=AFQjCNFBlk-9wqy49foh8tskmbD-GGbG9g&sig2=eKrhYjO75rl_Id2sLGpq4w&bvm=bv.96952980,d.bGg) (XRD), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), and Brunauer-Emmett-Teller (BET) analyses. The analyses showed that CuO nanoparticles are well-distributed on the activated carbon surface. The CO2 adsorption behavior of the activated carbon-supported CuO nanoparticles was observed by thermogravimetric analysis (TGA), temperature programmed desorption (TPD), Fourier transform infrared (FTIR), and BET analyses. The results showed that CuO nanoparticle loading on activated carbon led to about 70% increase in CO2 adsorption capacity of activated carbon under standard conditions (1 atm and 298 K). The main contributor to the observed increase is an improvement in chemical adsorption of CO2 due to the presence of CuO nanoparticles on activated carbon.

  7. Organic solvent regeneration of granular activated carbon

    NASA Astrophysics Data System (ADS)

    Cross, W. H.; Suidan, M. T.; Roller, M. A.; Kim, B. R.; Gould, J. P.

    1982-09-01

    The use of activated carbon for the treatment of industrial waste-streams was shown to be an effective treatment. The high costs associated with the replacement or thermal regeneration of the carbon have prohibited the economic feasibility of this process. The in situ solvent regeneration of activated carbon by means of organic solvent extraction was suggested as an economically alternative to thermal regeneration. The important aspects of the solvent regeneration process include: the physical and chemical characteristics of the adsorbent, the pore size distribution and energy of adsorption associated with the activated carbon; the degree of solubility of the adsorbate in the organic solvent; the miscibility of the organic solvent in water; and the temperature at which the generation is performed.

  8. Production of granular activated carbon from food-processing wastes (walnut shells and jujube seeds) and its adsorptive properties.

    PubMed

    Bae, Wookeun; Kim, Jongho; Chung, Jinwook

    2014-08-01

    Commercial activated carbon is a highly effective absorbent that can be used to remove micropollutants from water. As a result, the demand for activated carbon is increasing. In this study, we investigated the optimum manufacturing conditions for producing activated carbon from ligneous wastes generated from food processing. Jujube seeds and walnut shells were selected as raw materials. Carbonization and steam activation were performed in a fixed-bed laboratory electric furnace. To obtain the highest iodine number, the optimum conditions for producing activated carbon from jujube seeds and walnut shells were 2 hr and 1.5 hr (carbonization at 700 degrees C) followed by 1 hr and 0.5 hr (activation at 1000 degrees C), respectively. The surface area and iodine number of activated carbon made from jujube seeds and walnut shells were 1,477 and 1,184 m2/g and 1,450 and 1,200 mg/g, respectively. A pore-distribution analysis revealed that most pores had a pore diameter within or around 30-40 angstroms, and adsorption capacity for surfactants was about 2 times larger than the commercial activated carbon, indicating that waste-based activated carbon can be used as alternative. Implications: Wastes discharged from agricultural and food industries results in a serious environmental problem. A method is proposed to convert food-processing wastes such as jujube seeds and walnut shells into high-grade granular activated carbon. Especially, the performance of jujube seeds as activated carbon is worthy of close attention. There is little research about the application ofjujube seeds. Also, when compared to two commercial carbons (Samchully and Calgon samples), the results show that it is possible to produce high-quality carbon, particularly from jujube seed, using a one-stage, 1,000 degrees C, steam pyrolysis. The preparation of activated carbon from food-processing wastes could increase economic return and reduce pollution.

  9. Treatment with activated carbon and other adsorbents as an effective method for the removal of volatile compounds in agricultural distillates.

    PubMed

    Balcerek, Maria; Pielech-Przybylska, Katarzyna; Patelski, Piotr; Dziekońska-Kubczak, Urszula; Jusel, Tomaš

    2017-05-01

    This study investigates the effect of treatment with activated carbon and other adsorbents on the chemical composition and organoleptics of a barley malt-based agricultural distillate. Contact with activated carbon is one of the methods by which the quality of raw distillates and spirit beverages can be improved. Samples placed in contact with 1 g activated carbon (SpiritFerm) per 100 ml distillate with ethanol content of 50% v/v for 1 h showed the largest reductions in the concentrations of most volatile compounds (aldehydes, alcohols, esters). Increasing the dose of adsorbent to over 1 g 100 ml -1 did not improve the purity of the agricultural distillate significantly. Of the tested compounds, acetaldehyde and methanol showed the lowest adsorption on activated carbon. The lowest concentrations of these congeners (expressed in mg l -1 alcohol 100% v/v) were measured in solutions with ethanol contents of 70-80% v/v, while solutions with an alcoholic strength by volume of 40% did not show statistically significant decreases in these compounds in relation the control sample. The reductions in volatile compounds were compared with those for other adsorbents based on silica or activated carbon and silica. An interesting alternative to activated carbon was found to be an adsorbent prepared from activated carbon and silica (Spiricol). Treatment with this adsorbent produced distillate with the lowest concentrations of acetaldehyde and isovaleraldehyde, and led to the greatest improvement in its organoleptics.

  10. Design of activated carbon/activated carbon asymmetric capacitors

    NASA Astrophysics Data System (ADS)

    Piñeiro-Prado, Isabel; Salinas-Torres, David; Ruiz Rosas, Ramiro; Morallon, Emilia; Cazorla-Amoros, Diego

    2016-03-01

    Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed. In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  11. Modified Activated Carbon Perchlorate Sorbents

    DTIC Science & Technology

    2007-01-25

    Yield 4.64 g. Methyl Chloride Alkylated Activated Carbon Methyl chloride (MeCl) treatment was carried out in a tube furnace generally in...with alkylation agents lowers the solution pH as the basic sites are alkylated . In the case of Me2SO4 treatment , the low slurry pH is believed to be...by Cannon and coworkers, the alkylated carbons are not significantly better. In the case of the SAI carbons, ammonia treatment does not result in a

  12. Carbon monoxide and methane adsorption of crude oil refinery using activated carbon from palm shells as biosorbent

    NASA Astrophysics Data System (ADS)

    Yuliusman; Afdhol, M. K.; Sanal, Alristo

    2018-03-01

    Carbon monoxide and methane gas are widely present in oil refineries. Off-potential gas is used as raw material for the petrochemical industry. In order for this off-gas to be utilized, carbon monoxide and methane must be removed from off-gas. This study aims to adsorb carbon monoxide and methane using activated carbon of palm shells and commercial activated carbon simultaneously. This research was conducted in 2 stages: 1) Preparation and characterization of activated carbon, 2) Carbon monoxide and methane adsorption test. The activation experiments using carbon dioxide at a flow rate of 150 ml/min yielded a surface area of 978.29 m2/g, Nitrogen at flow rate 150 ml/min yielded surface area 1241.48 m2/g, and carbon dioxide and nitrogen at a flow rate 200 ml/min yielded a surface area 300.37 m2/g. Adsorption of carbon monoxide and methane on activated carbon of palm shell systems yielded results in the amount of 0.5485 mg/g and 0.0649 mg/g and using commercial activated carbon yielded results in the amount of 0.5480 mg/g and 0.0650 mg/g

  13. Activated carbon and biochar from agricultural by-products in the adorption of Cd, Pb and Zn under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Coscione, Aline; Zini, Barbara

    2015-04-01

    The immobilization of inorganic contaminants by using biochar in soils has played an increasingly important role and it is seen as an attractive alternative for the remediation of heavy metals. Although, the production of activated carbon (CA) from agricultural by-products has received special attention, the activation of the the organic source has been studied in order to increase its porposity, surface area and chemical polarity, resulting in higher adsorption of metals. Therefore, this study aimed to evaluate the effectiveness of BC and CA samples, obtained from a eucalyptus husks and cane sugar bagasse after activation with 20% phosphoric acid and pyrolyzed at 450oC in the retention of Zn, Cd and Pb using contaminated individual solutions. The experiment was performed using samples of activated carbon of eucalyptus husk (CCA), eucalyptus husk biochar (BC), activated carbon of sugar cane bagasse (CBA) and sugar cane bagasse biochar (BB), treated with Zn, Cd (range of tested solution from 0.1 up to 12 mmol L-1) and Pb (from 0.1 up 50 mmol L-1) and the adjustemento of Langmuir adsorption isotherms. Samples obtained from bagasse presented higher adsoprtion of the metals tested then eucalyptus. Also the activation process had not the expected effect on either eucalyptus and bagasse samples The maxmum adsorption capacyty of samples were as follws, in mmol g-1: for Cd - 0.36 for BC; 0.32 for CCA; 0.40 for BB; 0.31 for CBA. For Zn- 0.14 for BC; no adsorbed by CCA; 0.35 5 for BB; 0.06 for CBA. For Pb - 1.24 for BC; 0.40 for CCA; 0,45 for BB; 0,03 for CBA. However, it was also observed that due to the activation with phosphoric acid, the pH of the activated carbon (CCA and CBA) were 2.4 and 2.5 in comparison with the biochars not activated (BC and BB) 9.7 and 7.0 respectively. Thus, it is yet not possible to state if the calculate capacity is due exclusively to the complexation of chemical groups in the surface of samples or to which extent there is a contribution of

  14. Computer simulation of the carbon activity in austenite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murch, G.E.; Thorn, R.J.

    1979-02-01

    Carbon activity in austenite is described in terms of an Ising-like f.c.c. lattice gas model in which carbon interstitials repel only at the distance of nearest neighbors. A Monte Carlo simulation method in the petit canonical ensemble is employed to calculate directly the carbon activity as a function of composition and temperature. The computed activities are in satisfactory agreement with the experimental data, similarly for the decompostion of the activity to the partial molar enthalpy and entropy.

  15. [Ultra-Fine Pressed Powder Pellet Sample Preparation XRF Determination of Multi-Elements and Carbon Dioxide in Carbonate].

    PubMed

    Li, Xiao-li; An, Shu-qing; Xu, Tie-min; Liu, Yi-bo; Zhang, Li-juan; Zeng, Jiang-ping; Wang, Na

    2015-06-01

    The main analysis error of pressed powder pellet of carbonate comes from particle-size effect and mineral effect. So in the article in order to eliminate the particle-size effect, the ultrafine pressed powder pellet sample preparation is used to the determination of multi-elements and carbon-dioxide in carbonate. To prepare the ultrafine powder the FRITSCH planetary Micro Mill machine and tungsten carbide media is utilized. To conquer the conglomeration during the process of grinding, the wet grinding is preferred. The surface morphology of the pellet is more smooth and neat, the Compton scatter effect is reduced with the decrease in particle size. The intensity of the spectral line is varied with the change of the particle size, generally the intensity of the spectral line is increased with the decrease in the particle size. But when the particle size of more than one component of the material is decreased, the intensity of the spectral line may increase for S, Si, Mg, or decrease for Ca, Al, Ti, K, which depend on the respective mass absorption coefficient . The change of the composition of the phase with milling is also researched. The incident depth of respective element is given from theoretical calculation. When the sample is grounded to the particle size of less than the penetration depth of all the analyte, the effect of the particle size on the intensity of the spectral line is much reduced. In the experiment, when grounded the sample to less than 8 μm(d95), the particle-size effect is much eliminated, with the correction method of theoretical α coefficient and the empirical coefficient, 14 major, minor and trace element in the carbonate can be determined accurately. And the precision of the method is much improved with RSD < 2%, except Na2O. Carbon is ultra-light element, the fluorescence yield is low and the interference is serious. With the manual multi-layer crystal PX4, coarse collimator, empirical correction, X-ray spectrometer can be used to

  16. H3PO4 solution hydrothermal carbonization combined with KOH activation to prepare argy wormwood-based porous carbon for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Dai, Changchao; Wan, Jiafeng; Yang, Juan; Qu, Shanshan; Jin, Tieyu; Ma, Fangwei; Shao, Jinqiu

    2018-06-01

    In this work, argy wormwood-based porous carbon electrode materials for high-performance supercapacitors are prepared through H3PO4 solution hydrothermal carbonization and subsequent KOH activation. The obtained carbon has a specific surface area (SSA) of 927 m2 g-1, a total pore volume of 0.56 cm3 g-1, and a high oxygen (9.38%) content. In three-electrode system, it exhibits specific capacitance of 344 F g-1 at 1 A g-1. Moreover, the symmetric supercapacitor shows an excellent rate capability of 87% retention from 1 A g-1 to 10 A g-1, and a good cycling performance with 91.6% retention over 5000 cycles in 6 M KOH. Therefore, the sample activated by H3PO4 & KOH exhibits an excellent future in energy storage.

  17. Synthesis of a Carbon-activated Microfiber from Spider Webs Silk

    NASA Astrophysics Data System (ADS)

    Taer, E.; Mustika, W. S.; Taslim, R.

    2017-03-01

    Carbon fiber of spider web silk has been produced through the simple carbonization process. Cobwebs are a source of strong natural fiber, flexible and micrometer in size. Preparation of micro carbon fiber from spider webs that consist of carbonization and activation processes. Carbonization was performed in N2 gas environment by multi step heating profile up to temperature of 400 °C, while the activation process was done by using chemical activation with KOH activating agent assistance. Measurement of physical properties was conducted on the surface morphology, element content and the degree of crystallinity. The measurement results found that micro carbon fiber from spider webs has a diameter in the range of 0.5 -25 micrometers. It is found that the carbon-activated microfiber takes the amorphous form with the carbon content of 84 %.

  18. Heteroatom-enriched and renewable banana-stem-derived porous carbon for the electrochemical determination of nitrite in various water samples.

    PubMed

    Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming

    2014-04-23

    For the first time, high-surface-area (approximately 1465 m(2) g(-1)), highly porous and heteroatom-enriched activated carbon (HAC) was prepared from banana stems (Musa paradisiaca, Family: Musaceae) at different carbonization temperatures of 700, 800 and 900 °C (HAC) using a simple and eco-friendly method. The amounts of carbon, hydrogen, nitrogen and sulfur in the HAC are 61.12, 2.567, 0.4315, and 0.349%, respectively. Using X-ray diffraction (XRD), CHNS elemental analysis, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, the prepared activated carbon appears amorphous and disordered in nature. Here, we used HAC for an electrochemical application of nitrite (NO2(-)) sensor to control the environmental pollution. In addition, HAC exhibits noteworthy performance for the highly sensitive determination of nitrite. The limit of detection (LODs) of the nitrite sensor at HAC-modified GCE is 0.07 μM. In addition, the proposed method was applied to determine nitrite in various water samples with acceptable results.

  19. Heteroatom-enriched and renewable banana-stem-derived porous carbon for the electrochemical determination of nitrite in various water samples

    NASA Astrophysics Data System (ADS)

    Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming

    2014-04-01

    For the first time, high-surface-area (approximately 1465 m2 g-1), highly porous and heteroatom-enriched activated carbon (HAC) was prepared from banana stems (Musa paradisiaca, Family: Musaceae) at different carbonization temperatures of 700, 800 and 900°C (HAC) using a simple and eco-friendly method. The amounts of carbon, hydrogen, nitrogen and sulfur in the HAC are 61.12, 2.567, 0.4315, and 0.349%, respectively. Using X-ray diffraction (XRD), CHNS elemental analysis, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, the prepared activated carbon appears amorphous and disordered in nature. Here, we used HAC for an electrochemical application of nitrite (NO2-) sensor to control the environmental pollution. In addition, HAC exhibits noteworthy performance for the highly sensitive determination of nitrite. The limit of detection (LODs) of the nitrite sensor at HAC-modified GCE is 0.07 μM. In addition, the proposed method was applied to determine nitrite in various water samples with acceptable results.

  20. Carbon Dioxide Capture by Deep Eutectic Solvent Impregnated Sea Mango Activated Carbon

    NASA Astrophysics Data System (ADS)

    Zulkurnai, N. Z.; Ali, U. F. Md.; Ibrahim, N.; Manan, N. S. Abdul

    2018-03-01

    The increment amount of the CO2 emission by years has become a major concern worldwide due to the global warming issue. However, the influence modification of activated carbon (AC) has given a huge revolution in CO2 adsorption capture compare to the unmodified AC. In the present study, the Deep Eutectic Solvent (DES) modified surface AC was used for Carbon Dioxide (CO2) capture in the fixed-bed column. The AC underwent pre-carbonization and carbonization processes at 519.8 °C, respectively, with flowing of CO2 gas and then followed by impregnation with 53.75% phosphoric acid (H3PO4) at 1:2 precursor-to-activant ratios. The prepared AC known as sea mango activated carbon (SMAC) was impregnated with DES at 1:2 solid-to-liquid ratio. The DES is composing of choline chloride and urea with ratio 1:2 choline chloride to urea. The optimum adsorption capacity of SMAC was 33.46 mgco2/gsol and 39.40 mgco2/gsol for DES modified AC (DESAC).

  1. Sorption studies of nickel ions onto activated carbon

    NASA Astrophysics Data System (ADS)

    Joshi, Parth; Vyas, Meet; Patel, Chirag

    2018-05-01

    Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. The use of low-cost activated carbon derived from azadirachta indica, an agricultural waste material, has been investigated as a replacement for the current expensive methods of removing nickel ions from wastewater. The temperature variation study showed that the nickel ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the nickel ion solutions. Therefore, this study revealed that azadirachta indica can serve as a good source of activated carbon with multiple and simultaneous metal ions removing potentials and may serve as a better replacement for commercial activated carbons in applications that warrant their use.

  2. Synthesis and characterization of activated carbon from white lotus via single step chemical activation

    NASA Astrophysics Data System (ADS)

    Andas, Jeyashelly; Midon, Muhammad Dzulfiqar

    2017-08-01

    Highly porous activated carbon was successfully fabricated from the stalk of Nymphaea odorata via single step chemical activation. ZnCl2 was used as the chemical activating agent in the activation process. The raw material was preliminary characterized using Fourier Transform Infrared (FTIR), ultimate analysis (CHNS/O Analyzer) and Scanning Electron Microscope (SEM). The percentage yield, iodine number (IN) and the textural properties of the activated carbon were optimized under the influence of several synthesizing parameters such as impregnation ratio, activation temperature and activation time using ZnCl2. High IN (750.11 mg/g - 967.16 mg/g) was obtained from Sodium thiosulphate volumetric method and represents the porosity of the synthesized materials. Reduction in several functional groups was observed in the FTIR spectrum of the synthesized activated carbon. SEM analysis of the activated carbon verified the formation of highly porous surface compared to the raw Nymphaea odorata. This study provides a facile synthesis of activated carbon from waste natural resources at benign condition.

  3. Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization.

    PubMed

    Peláez-Cid, Alejandra-Alicia; Herrera-González, Ana-María; Salazar-Villanueva, Martín; Bautista-Hernández, Alejandro

    2016-10-01

    In this study, three mesoporous activated carbons prepared from vegetable residues were used to remove acid, basic, and direct dyes from aqueous solutions, and reactive and vat dyes from textile wastewater. Granular carbons obtained by chemical activation at 673 K with phosphoric acid from prickly pear peels (CarTunaQ), broccoli stems (CarBrocQ), and white sapote seeds (CarZapQ) were highly efficient for the removal of dyes. Adsorption equilibrium studies were carried out in batch systems and treated with Langmuir and Freundlich isotherms. The maximum adsorption capacities calculated from the Langmuir isotherms ranged between 131.6 and 312.5 mg/g for acid dyes, and between 277.8 and 500.0 mg/g for basic dyes at 303 K. Our objective in this paper was to show that vegetable wastes can serve as precursors for activated carbons that can be used for the adsorption of dyes. Specifically CarBrocQ was the best carbon produced for the removal of textile dyes. The color removal of dyes present in textile wastewaters was compared with that of a commercial powdered carbon, and it was found that the carbons produced using waste material reached similar efficiency levels. Carbon samples were characterized by bulk density, point of zero charge, thermogravimetric analysis, elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, methylene blue adsorption isotherms at 303 K, and nitrogen adsorption isotherms at 77 K (SBET). The results show that the activated carbons possess a large specific surface area (1025-1177 m(2)/g) and high total pore volume (1.06-2.16 cm(3)/g) with average pore size diameters between 4.1 and 8.4 nm. Desorption and regeneration tests were made to test the viability of reusing the activated carbons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Grafting of activated carbon cloths for selective adsorption

    NASA Astrophysics Data System (ADS)

    Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S.

    2016-05-01

    Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.

  5. Sampling protocol recommendations for measuring soil organic carbon stocks in the tropics

    NASA Astrophysics Data System (ADS)

    van Straaten, Oliver; Veldkamp, Edzo; Corre, Marife D.

    2013-04-01

    In the tropics, there is an urgent need for cost effective sampling approaches to quantify soil organic carbon (SOC) changes associated with land-use change given the lack of reliable data. The tropics are especially important considering the high deforestation rates, the huge belowground carbon pool and the fast soil carbon turnover rates. In the framework of a pan-tropic (Peru, Cameroon and Indonesia) land-use change study, some highly relevant recommendations on the SOC stocks sampling approaches have emerged. In this study, where we focused on deeply weathered mineral soils, we quantified changes in SOC stock following land-use change (deforestation and subsequent establishment of other land-uses). We used a space-for-time substitution sampling approach, measured SOC stocks in the top three meters of soil and compared recently converted land-uses with adjacent reference forest plots. In each respective region we investigated the most predominant land-use trajectories. In total 157 plots were established across the three countries, where soil samples were taken to a depth of three meters from a central soil pit and from the topsoil (to 0.5m) from 12 pooled composite samples. Finding 1 - soil depth: despite the fact that the majority of SOC stock from the three meter profile is found below one meter depth (50 to 60 percent of total SOC stock), the significant changes in SOC were only measured in the top meter of soil, while the subsoil carbon stock remained relatively unchanged by the land-use conversion. The only exception was for older (>50 yrs) cacao plantations in Cameroon where significant decreases were found below one meter. Finding 2 - pooled composite samples taken across the plot provided more spatially representative estimates of SOC stocks than samples taken from the central soil pit.

  6. Preparation and Characterization of Impregnated Commercial Rice Husks Activated Carbon with Piperazine for Carbon Dioxide (CO2) Capture

    NASA Astrophysics Data System (ADS)

    Masoum Raman, S. N.; Ismail, N. A.; Jamari, S. S.

    2017-06-01

    Development of effective materials for carbon dioxide (CO2) capture technology is a fundamental importance to reduce CO2 emissions. This work establishes the addition of amine functional group on the surface of activated carbon to further improve the adsorption capacity of CO2. Rice husks activated carbon were modified using wet impregnation method by introducing piperazine onto the activated carbon surfaces at different concentrations and mixture ratios. These modified activated carbons were characterized by using X-Ray Diffraction (XRD), Brunauer, Emmett and Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FESEM). The results from XRD analysis show the presence of polyethylene butane at diffraction angles of 21.8° and 36.2° for modified activated carbon with increasing intensity corresponding to increase in piperazine concentration. BET results found the surface area and pore volume of non-impregnated activated carbon to be 126.69 m2/g and 0.081 cm3/g respectively, while the modified activated carbons with 4M of piperazine have lower surface area and pore volume which is 6.77 m2/g and 0.015 cm3/g respectively. At 10M concentration, the surface area and pore volume are the lowest which is 4.48 m2/g and 0.0065 cm3/g respectively. These results indicate the piperazine being filled inside the activated carbon pores thus, lowering the surface area and pore volume of the activated carbon. From the FTIR analysis, the presence of peaks at 3312 cm-1 and 1636 cm-1 proved the existence of reaction between carboxyl groups on the activated carbon surfaces with piperazine. The surface morphology of activated carbon can be clearly seen through FESEM analysis. The modified activated carbon contains fewer pores than non-modified activated carbon as the pores have been covered with piperazine.

  7. Studies of adsorption characteristics of activated carbons down to 4.5 K for the development of cryosorption pumps for fusion systems

    NASA Astrophysics Data System (ADS)

    Kasthurirengan, S.; Behera, U.; Vivek, G. A.; Krishnamoorthy, V.; Gangradey, R.; Udgata, S. S.; Tripati, V. S.

    2014-01-01

    Cryosorption pump is the only possible device to pump helium, hydrogen and its isotopes in fusion environment, such as high magnetic field and high plasma temperatures. Activated carbons are known to be the most suitable adsorbent in the development of cryosorption pumps. For this purpose, the data of adsorption characteristics of activated carbons in the temperature range 4.5 K to 77 K are needed, but are not available in the literature. For obtaining the above data, a commercial micro pore analyzer operating at 77 K has been integrated with a two stage GM cryocooler, which enables the cooling of the sample temperature down to 4.5 K. A heat switch mounted between the second stage cold head and the sample chamber helps to raise the sample chamber temperature to 77 K without affecting the performance of the cryocooler. The detailed description of this system is presented elsewhere. This paper presents the results of experimental studies of adsorption isotherms measured on different types of activated carbons in the form of granules, globules, flake knitted and non-woven types in the temperature range 4.5 K to 10 K using Helium gas as the adsorbate. The above results are analyzed to obtain the pore size distributions and surface areas of the activated carbons. The effect of adhesive used for bonding the activated carbons to the panels is also studied. These results will be useful to arrive at the right choice of activated carbon to be used for the development of cryosorption pumps.

  8. Studies of adsorption characteristics of activated carbons down to 4.5 K for the development of cryosorption pumps for fusion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasthurirengan, S.; Behera, U.; Vivek, G. A.

    2014-01-29

    Cryosorption pump is the only possible device to pump helium, hydrogen and its isotopes in fusion environment, such as high magnetic field and high plasma temperatures. Activated carbons are known to be the most suitable adsorbent in the development of cryosorption pumps. For this purpose, the data of adsorption characteristics of activated carbons in the temperature range 4.5 K to 77 K are needed, but are not available in the literature. For obtaining the above data, a commercial micro pore analyzer operating at 77 K has been integrated with a two stage GM cryocooler, which enables the cooling of themore » sample temperature down to 4.5 K. A heat switch mounted between the second stage cold head and the sample chamber helps to raise the sample chamber temperature to 77 K without affecting the performance of the cryocooler. The detailed description of this system is presented elsewhere. This paper presents the results of experimental studies of adsorption isotherms measured on different types of activated carbons in the form of granules, globules, flake knitted and non-woven types in the temperature range 4.5 K to 10 K using Helium gas as the adsorbate. The above results are analyzed to obtain the pore size distributions and surface areas of the activated carbons. The effect of adhesive used for bonding the activated carbons to the panels is also studied. These results will be useful to arrive at the right choice of activated carbon to be used for the development of cryosorption pumps.« less

  9. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents.

    PubMed

    Sethupathi, Sumathi; Bashir, Mohammed Jk; Akbar, Zinatizadeh Ali; Mohamed, Abdul Rahman

    2015-04-01

    Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out. © The Author(s) 2015.

  10. Anchorage of iron hydro(oxide) nanoparticles onto activated carbon to remove As(V) from water.

    PubMed

    Nieto-Delgado, Cesar; Rangel-Mendez, Jose Rene

    2012-06-01

    The adsorption of arsenic (V) by granular iron hydro(oxides) has been proven to be a reliable technique. However, due to the low mechanical properties of this material, it is difficult to apply it in full scale water treatment. Hence, the aim of this research is to develop a methodology to anchor iron hydro(oxide) nanoparticles onto activated carbon, in which the iron hydro(oxide) nanoparticles will give the activated carbon an elevated active surface area for arsenic adsorption and also help avoid the blockage of the activated carbon pores. Three activated carbons were modified by employing the thermal hydrolysis of iron as the anchorage procedure. The effects of hydrolysis temperature (60-120 °C), hydrolysis time (4-16 h), and FeCl(3) concentration (0.4-3 mol Fe/L) were studied by the surface response methodology. The iron content of the modified samples ranged from 0.73 to 5.27%, with the higher end of the range pertaining to the carbons with high oxygen content. The materials containing smaller iron hydro(oxide) particles exhibited an enhanced arsenic adsorption capacity. The best adsorbent material reported an arsenic adsorption capacity of 4.56 mg As/g at 1.5 ppm As at equilibrium and pH 7. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl 2 activation

    NASA Astrophysics Data System (ADS)

    Uçar, Suat; Erdem, Murat; Tay, Turgay; Karagöz, Selhan

    2009-08-01

    In this study, pomegranate seeds, a by-product of fruit juice industry, were used as precursor for the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonization temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons was studied. When using the 2.0 impregnation ratio at the carbonization temperature of 600 °C, the specific surface area of the resultant carbon is as high as 978.8 m 2 g -1. The results showed that the surface area and total pore volume of the activated carbons at the lowest impregnation ratio and the carbonization temperature were achieved as high as 709.4 m 2 g -1 and 0.329 cm 3 g -1. The surface area was strongly influenced by the impregnation ratio of activation reagent and the subsequent carbonization temperature.

  12. Adsorption kinetics of surfactants on activated carbon

    NASA Astrophysics Data System (ADS)

    Arnelli; Aditama, WP; Fikriani, Z.; Astuti, Y.

    2018-04-01

    A study on the adsorption of both cationic and anionic surfactants using activated carbon as well as the investigation of the adsorption isotherms and adsorption kinetics has been conducted. The results showed that the adsorption of sodium lauryl sulfate (SLS) by activated carbon was Langmuir’s adsorption isotherm while its adsorption kinetics showed pseudo-second order with an adsorption rate constant of 2.23 x 103 g mg-1 hour-1. Meanwhile, the adsorption of HDTMA-Br by activated carbon showed that the isotherm adsorption tended to follow Freundlich’s isotherm and was pseudo-second order with an adsorption rate constant of 89.39 g mg-1 hour-1.

  13. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes.

    PubMed

    Elmouwahidi, Abdelhakim; Zapata-Benabithe, Zulamita; Carrasco-Marín, Francisco; Moreno-Castilla, Carlos

    2012-05-01

    Activated carbons were prepared by KOH-activation of argan seed shells (ASS). The activated carbon with the largest surface area and most developed porosity was superficially treated to introduce oxygen and nitrogen functionalities. Activated carbons with a surface area of around 2100 m(2)/g were obtained. Electrochemical measurements were carried out with a three-electrode cell using 1M H(2)SO(4) as electrolyte and Ag/AgCl as reference electrode. The O-rich activated carbon showed the lowest capacitance (259 F/g at 125 mA/g) and the lowest capacity retention (52% at 1A/g), due to surface carboxyl groups hindering electrolyte diffusion into the pores. Conversely, the N-rich activated carbon showed the highest capacitance (355 F/g at 125 mA/g) with the highest retention (93% at 1A/g), due to its well-developed micro-mesoporosity and the pseudocapacitance effects of N functionalities. This capacitance performance was among the highest reported for other activated carbons from a large variety of biomass precursors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Decolorization of Cheddar cheese whey by activated carbon.

    PubMed

    Zhang, Yue; Campbell, Rachel; Drake, MaryAnne; Zhong, Qixin

    2015-05-01

    Colored Cheddar whey is a source for whey protein recovery and is decolorized conventionally by bleaching, which affects whey protein quality. Two activated carbons were studied in the present work as physical means of removing annatto (norbixin) in Cheddar cheese whey. The color and residual norbixin content of Cheddar whey were reduced by a higher level of activated carbon at a higher temperature between 25 and 55°C and a longer time. Activated carbon applied at 40g/L for 2h at 30°C was more effective than bleaching by 500mg/L of hydrogen peroxide at 68°C. The lowered temperature in activated-carbon treatments had less effect on protein structure as investigated for fluorescence spectroscopy and volatile compounds, particularly oxidation products, based on gas chromatography-mass spectrometry. Activated carbon was also reusable, removing more than 50% norbixin even after 10 times of regeneration, which showed great potential for decolorizing cheese whey. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. The synthesis of carbon electrode supercapacitor from durian shell based on variations in the activation time

    NASA Astrophysics Data System (ADS)

    Taer, E.; Dewi, P.; Sugianto, Syech, R.; Taslim, R.; Salomo, Susanti, Y.; Purnama, A.; Apriwandi, Agustino, Setiadi, R. N.

    2018-02-01

    The synthesis of carbon electrode from durian shell based on variations in the activation time has been carried out. Synthesis of carbon electrode was started by a carbonization process at a temperature of 600°C in nitrogen gas and then followed by physical activation process using water vapor at a temperature of 900°C by varying time of 1, 2 and 3 h. All of the variations of the samples were chemically activated using an activator of ZnCl2 with a concentration of 0.4 M. The physical properties such as density, surface morphology, degree of crystallinity and elemental content were analyzed. Moreover, the electrochemical properties such as specific capacitance of supercapacitor cells were studied using Cyclic Voltammetry methods. The density, stack height and carbon content were increased as activation time increases, while the specific capacitance of the supercapacitor cell decreases against the increase of activation time. Specific capacitances for 1, 2 and 3 h activation time are 88.39 F/g, 80.08 F/g and 74.61 F/g, respectively. Based on the surface morphology study it was shown that the increased in activation time causes narrowing of the pores between particles.

  16. Comparison of methods for the quantification of the different carbon fractions in atmospheric aerosol samples

    NASA Astrophysics Data System (ADS)

    Nunes, Teresa; Mirante, Fátima; Almeida, Elza; Pio, Casimiro

    2010-05-01

    Atmospheric carbon consists of: organic carbon (OC, including various organic compounds), elemental carbon (EC, or black carbon [BC]/soot, a non-volatile/light-absorbing carbon), and a small quantity of carbonate carbon. Thermal/optical methods (TOM) have been widely used for quantifying total carbon (TC), OC, and EC in ambient and source particulate samples. Unfortunately, the different thermal evolution protocols in use can result in a wide elemental carbon-to-total carbon variation. Temperature evolution in thermal carbon analysis is critical to the allocation of carbon fractions. Another critical point in OC and EC quantification by TOM is the interference of carbonate carbon (CC) that could be present in the particulate samples, mainly in the coarse fraction of atmospheric aerosol. One of the methods used to minimize this interference consists on the use of a sample pre-treatment with acid to eliminate CC prior to thermal analysis (Chow et al., 2001; Pio et al., 1994). In Europe, there is currently no standard procedure for determining the carbonaceous aerosol fraction, which implies that data from different laboratories at various sites are of unknown accuracy and cannot be considered comparable. In the framework of the EU-project EUSAAR, a comprehensive study has been carried out to identify the causes of differences in the EC measured using different thermal evolution protocols. From this study an optimised protocol, the EUSAAR-2 protocol, was defined (Cavali et al., 2009). During the last two decades thousands of aerosol samples have been taken over quartz filters at urban, industrial, rural and background sites, and also from plume forest fires and biomass burning in a domestic closed stove. These samples were analysed for OC and EC, by a TOM, similar to that in use in the IMPROVE network (Pio et al., 2007). More recently we reduced the number of steps in thermal evolution protocols, without significant repercussions in the OC/EC quantifications. In order

  17. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    NASA Astrophysics Data System (ADS)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-01-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e. equivalent to ~ 8 ng of amino sugar carbon. Our results obtained from δ13C analysis of amino sugars in selected marine sediment samples showed that muramic acid had isotopic imprints from indigenous bacterial activities, whereas glucosamine and galactosamine were mainly derived from organic detritus. The analysis of stable carbon isotopic compositions of amino sugars opens a promising window for the investigation of microbial metabolisms in marine sediments and the deep marine biosphere.

  18. A pressure-affected headspace-gas chromatography method for determining calcium carbonate content in paper sample.

    PubMed

    Dai, Yi; Yu, Zhen-Hua; Zhan, Jian-Bo; Chai, Xin-Sheng; Zhang, Shu-Xin; Xie, Wei-Qi; He, Liang

    2017-07-21

    The present work reports on the development of a pressure-affected based headspace (HS) analytical technique for the determination of calcium carbonate content in paper samples. By the acidification, the carbonate in the sample was converted to CO 2 and released into the headspace of a closed vial and then measured by gas chromatography (GC). When the amount of carbonate in the sample is significant, the pressure created by the CO 2 affects the accuracy of the method. However, the pressure also causes a change in the O 2 signal in the HS-GC measurement, which is a change that can be used as an indirect measure of the carbonate in the sample. The results show that the present method has a good precision (the relative standard deviation<2.32%), and good accuracy (the relative differences compared to a reference method was<5.76%). Coupled with the fact that the method is simple, rapid, and accurate, it is suitable for a variety of applications that call for the analysis of high carbonate content in paper samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. KOH catalysed preparation of activated carbon aerogels for dye adsorption.

    PubMed

    Ling, Sie King; Tian, H Y; Wang, Shaobin; Rufford, Thomas; Zhu, Z H; Buckley, C E

    2011-05-01

    Organic carbon aerogels (CAs) were prepared by a sol-gel method from polymerisation of resorcinol, furfural, and hexamethylenetetramine catalysed by KOH at around pH 9 using ambient pressure drying. The effect of KOH in the sol-gel on CA synthesis was studied. It was found that addition of KOH prior to the sol-gel polymerisation process improved thermal stability of the gel, prevented the crystallinity of the gel to graphite, increased the microporosity of CA and promoted activation of CA. The CAs prepared using the KOH catalyst exhibited higher porosity than uncatalysed prepared samples. Activation in CO(2) at higher temperature also enhanced the porosity of CAs. Adsorption tests indicated that the CAs were effective for both basic and acid dye adsorption and the adsorption increased with increasing surface area and pore volume. The kinetic adsorption of dyes was diffusion control and could be described by the second-order kinetic model. The equilibrium adsorption of dyes was higher than activated carbon. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Removal of р-nitrophenol from aqueous solution by magnetically modified activated carbon

    NASA Astrophysics Data System (ADS)

    Han, Shuai; Zhao, Feng; Sun, Jian; Wang, Bin; Wei, Rongyan; Yan, Shiqiang

    2013-09-01

    Activated carbon was modified with γ-Fe2O3 nanoparticles, using the chemical co-precipitation technique and the carboxylic acid vapor treatment technique. Two magnetic composites were characterized and compared by Fourier Transform Infrared spectroscopy, X-ray diffractometry, vibrating sample magnetometry and nitrogen adsorption-desorption. Then the two materials were used to remove p-nitrophenol in water. The equilibrium data revealed that the Langmuir isotherm was better in fitting the experiment result than the Freundlich isotherm, and the sorption capacity of the nanocomposite made by the chemical co-precipitation technique was higher than that of the other one. We suggest that the chemical co-precipitation technique is a more efficient and practical method to produce magnetically modified activated carbon.

  1. Effectiveness of activated carbon masks in preventing anticancer drug inhalation.

    PubMed

    Sato, Junya; Kogure, Atushi; Kudo, Kenzo

    2016-01-01

    The exposure of healthcare workers to anticancer drugs such as cyclophosphamide (CPA) is a serious health concern. Anticancer drug pollution may spread outside biological safety cabinets even when a closed system is used. The inhalation of vaporized anticancer drugs is thought to be the primary route of exposure. Therefore, it is important that healthcare workers wear masks to prevent inhalation of anticancer drugs. However, the permeability of medical masks to vaporized anticancer drugs has not been examined. Furthermore, the performance differences between masks including activated carbon with chemical adsorptivity and non-activated carbon masks are uncertain. We investigated activated carbon mask permeability to vaporized CPA, and assessed whether inhibition of vaporized CPA permeability was attributable to the masks' adsorption abilities. A CPA solution (4 mg) was vaporized in a chamber and passed through three types of masks: Pleated-type cotton mask (PCM), pleated-type activated carbon mask (PAM), and stereoscopic-type activated carbon mask (SAM); the flow rate was 1.0 L/min for 1 h. The air was then recovered in 50 % ethanol. CPA quantities in the solution were determined by liquid chromatography time-of-flight mass spectrometry. To determine CPA adsorption by the mask, 5 cm 2 of each mask was immersed in 10 mL of CPA solution (50-2500 μg/mL) for 1 h. CPA concentrations were measured by high-performance liquid chromatography with ultraviolet detection. For the control (no mask), 3.735 ± 0.543 μg of CPA was recovered from the aerated solution. Significantly lower quantities were recovered from PCM (0.538 ± 0.098 μg) and PAM (0.236 ± 0.193 μg) ( p  < 0.001 and p  < 0.001 vs control, respectively). CPA quantities recovered from all of SAM samples were below the quantification limit. When a piece of the SAM was immersed in the CPA solution, a marked decrease to less than 3.1 % of the initial CPA concentration was observed

  2. Increase of porosity by combining semi-carbonization and KOH activation of formaldehyde resins to prepare high surface area carbons for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Heimböckel, Ruben; Kraas, Sebastian; Hoffmann, Frank; Fröba, Michael

    2018-01-01

    A series of porous carbon samples were prepared by combining a semi-carbonization process of acidic polymerized phenol-formaldehyde resins and a following chemical activation with KOH used in different ratios to increase specific surface area, micropore content and pore sizes of the carbons which is favourable for supercapacitor applications. Samples were characterized by nitrogen physisorption, powder X-ray diffraction, Raman spectroscopy and scanning electron microscopy. The results show that the amount of KOH, combined with the semi-carbonization step had a remarkable effect on the specific surface area (up to SBET: 3595 m2 g-1 and SDFT: 2551 m2 g-1), pore volume (0.60-2.62 cm3 g-1) and pore sizes (up to 3.5 nm). The carbons were tested as electrode materials for electrochemical double layer capacitors (EDLC) in a two electrode setup with tetraethylammonium tetrafluoroborate in acetonitrile as electrolyte. The prepared carbon material with the largest surface area, pore volume and pore sizes exhibits a high specific capacitance of 145.1 F g-1 at a current density of 1 A g-1. With a high specific energy of 31 W h kg-1 at a power density of 33028 W kg-1 and a short time relaxation constant of 0.29 s, the carbon showed high power capability as an EDLC electrode material.

  3. Selection of pecan shell-based activated carbons for removal of organic and inorganic impurities from water.

    PubMed

    Niandou, Mohamed A S; Novak, Jeffrey M; Bansode, Rishipal R; Yu, Jianmei; Rehrah, Djaafar; Ahmedna, Mohamed

    2013-01-01

    Activated carbons are a byproduct from pyrolysis and have value as a purifying agent. The effectiveness of activated carbons is dependent on feedstock selection and pyrolysis conditions that modify their surface properties. Therefore, pecan shell-based activated carbons (PSACs) were prepared by soaking shells in 50% (v/v) HPO or 25 to 50% of KOH-NaHCO followed by pyrolysis at 400 to 700°C under a N atmosphere. Physically activated PSACs were produced by pyrolysis at 700°C under N followed by activation with steam or CO at 700 to 900°C. Physicochemical, surface, and adsorption properties of the PSACs were compared with two commercially available activated carbons. The average mass yield of PSACs with respect to the initial mass of the biomass was about 20 and 34% for physically activated and chemically activated carbons, respectively. Acid-activated carbons exhibited higher surface area, higher bulk density, and lower ash content compared with steam- or CO-activated carbons and the two commercial products. Base activation led to the development of biochar with moderate to high surface area with surface charges suitable for adsorption of anionic species. Regardless of the activation method, PSACs had high total surface area ranging from 400 to 1000 m g, better pore size distribution, and more surface charges than commercial samples. Our results also showed that PSACs were effective in removing inorganic contaminants such as Cu and NO as well as organic contaminants such as atrazine and metolachlor. This study showed that pyrolysis conditions and activation had a large influence on the PSAC's surface characteristics, which can limit its effectiveness as a custom sorbent for targeted water contaminants. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Carbon based sample supports and matrices for laser desorption/ ionization mass spectrometry.

    PubMed

    Rainer, Matthias; Najam-ul-Haq, Muhammad; Huck, Christian W; Vallant, Rainer M; Heigl, Nico; Hahn, Hans; Bakry, Rania; Bonn, Günther K

    2007-01-01

    Laser desorption/ionization mass spectrometry (LDI-MS) is a widespread and powerful technique for mass analysis allowing the soft ionization of molecules such as peptides, proteins and carbohydrates. In many applications, an energy absorbing matrix has to be added to the analytes in order to protect them from being fragmented by direct laser beam. LDI-MS in conjunction with matrix is commonly referred as matrix-assisted LDI (MALDI). One of the striking disadvantages of this method is the desorption of matrix molecules, which causes interferences originating from matrix background ions in lower mass range (< 1000 Da). This has been led to the development of a variety of different carbon based LDI sample supports, which are capable of absorbing laser light and simultaneously transfering energy to the analytes for desorption. Furthermore carbon containing sample supports are used as carrier materials for the specific binding and preconcentration of molecules out of complex samples. Their subsequent analysis with MALDI mass spectrometry allows performing studies in metabolomics and proteomics. Finally a thin layer of carbon significantly improves sensitivity concerning detection limit. Analytes in low femtomole and attomole range can be detected in this regard. In the present article, these aspects are reviewed from patents where nano-based carbon materials are comprehensively utilized.

  5. Biobased Nano Porous Active Carbon Fibers for High-Performance Supercapacitors.

    PubMed

    Huang, Yuxiang; Peng, Lele; Liu, Yue; Zhao, Guangjie; Chen, Jonathan Y; Yu, Guihua

    2016-06-22

    Activated carbon fibers (ACFs) with different pore structure have been prepared from wood sawdust using the KOH activation method. A study was conducted to examine the influence of the activation parameters (temperature, alkali/carbon ratio, and time) on the morphology and structure of the as-prepared ACFs developed in the process of pore generation and evolution. Activation temperature was very essential for the formation of utramicropores (<0.6 nm), which greatly contributed to the electric double layer capacitance. The significance of metallic potassium vapor evolved when the temperature was above 800 °C, since the generation of 0.8- and 1.1 nm micropores cannot be ignored. When the the KOH/fiber ratio was increased and the activation time was prolonged, to some extent, the micropores were enlarged to small mesopores within 2-5 nm. The sample with the optimal condition exhibited the highest specific capacitance (225 F g(-1) at a current density of 0.5 A g(-1)). Its ability to retain capacitance corresponding to 10 A g(-1) and 6 M KOH was 85.3%, demonstrating a good rate capability. With 10 000 charge-discharge cycles at 3 A g(-1), the supercapacitor kept 94.2% capacity, showing outstanding electrochemical performance as promising electrode material.

  6. The effect of microbial activity and adsorption processes on groundwater dissolved organic carbon character and concentration

    NASA Astrophysics Data System (ADS)

    Meredith, K.; McDonough, L.; Oudone, P.; Rutlidge, H.; O'Carroll, D. M.; Andersen, M. S.; Baker, A.

    2017-12-01

    Balancing the terrestrial global carbon budget has proven to be a significant challenge. Whilst the movement of carbon in the atmosphere, rivers and oceans has been extensively studied, the potential for groundwater to act as a carbon source or sink through both microbial activity and sorption to and from mineral surfaces, is poorly understood. To investigate the biodegradable component of groundwater dissolved organic carbon (DOC), groundwater samples were collected from multiple coastal and inland sites. Water quality parameters such as pH, electrical conductivity, temperature, dissolved oxygen were measured in the field. Samples were analysed and characterised for their biodegradable DOC content using spectrofluorometric and Liquid Chromatography-Organic Carbon Detection (LC-OCD) techniques at set intervals within a 28 day period. Further to this, we performed laboratory sorption experiments on our groundwater samples using different minerals to examine the effect of adsorption processes on DOC character and concentration. Calcium carbonate, quartz and iron coated quartz were heated to 400ºC to remove potential carbon contamination, and then added at various known masses (0 mg to 10 g) to 50 mL of groundwater. Samples were then rotated for two hours, filtered at 0.2 μm and analysed by LC-OCD. This research forms part of an ongoing project which will assist in identifying the factors affecting the mobilisation, transport and removal of DOC in uncontaminated groundwater. By quantifying the relative importance of these processes, we can then determine whether the groundwater is a carbon source or sink. Importantly, this information will help guide policy and identify the need to include groundwater resources as part of the carbon economy.

  7. Chemical activation of gasification carbon residue for phosphate removal

    NASA Astrophysics Data System (ADS)

    Kilpimaa, Sari; Runtti, Hanna; Lassi, Ulla; Kuokkanen, Toivo

    2012-05-01

    Recycling of waste materials provides an economical and environmentally significant method to reduce the amount of waste. Bioash formed in the gasification process possesses a notable amount of unburned carbon and therefore it can be called a carbon residue. After chemical activation carbon residue could be use to replace activated carbon for example in wastewater purification processes. The effect of chemical activation process variables such as chemical agents and contact time in the chemical activation process were investigated. This study also explored the effectiveness of the chemically activated carbon residue for the removal of phosphate from an aqueous solution. The experimental adsorption study was performed in a batch reactor and the influence of adsorption time, initial phosphate concentration and pH was studied. Due to the carbon residue's low cost and high adsorption capacity, this type of waste has the potential to be utilised for the cost-effective removal of phosphate from wastewaters. Potential adsorbents could be prepared from these carbonaceous by-products and used as an adsorbent for phosphate removal.

  8. Supercritical Carbon Dioxide Regeneration of Activated Carbon Loaded with Contaminants from Rocky Mountain Arsenal Well Water.

    DTIC Science & Technology

    1982-05-01

    PROCESSING COST OF ACTIVATED CHARCOAL REGENERATION BY SUPERCRITICAL CARBON DIOXIDE PROCESS ........................... 25 l IV-4 SENSITIVITY OF GAC...PROCESSING COSTS TO GAC WORKING CAPACITY ................................. 27 IV-5 ESTIMATED PROCESSING COST OF ACTIVATED CHARCOAL REGENERATION BY THERMAL...34 VI-2 COMPARISON OF THREE GRANULAR ACTIVATED CARBONS - SUPERCRITICAL CO2 REACTIVATION - GRANULAR CARBON ISOTHERMS - PHASE I RAW DATA

  9. Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method.

    PubMed

    Zardini, Hadi Zare; Amiri, Ahmad; Shanbedi, Mehdi; Maghrebi, Morteza; Baniadam, Majid

    2012-04-01

    Multi-walled carbon nanotubes (MWCNTs) were first functionalized by arginine and lysine under microwave radiation. Surface functionalization was confirmed by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and transmission electron microscopy (TEM). After the MWCNTs were functionalized by arginine and lysine, the antibacterial activity of all treated samples was increased significantly against all bacteria that were tested. Based on the observed minimum inhibitory concentration and radial diffusion assay, the sequence of antibacterial activity was MWCNTs-arginine>MWCNTs-lysine>pristine MWCNTs. The functionalized MWCNTs were especially effective against gram-negative bacteria (e.g., Escherichia coli and Salmonella typhimurium). Interestingly, the MWCNT samples were effective against the resistant strain Staphylococcos aureus. The enhanced antibacterial activity was attributed to electrostatic adsorption of bacteria membrane due to positive charges of the functional groups on MWCNTs surface. Since MWCNTs have lower cytotoxicity than single-walled carbon nanotubes, their functionalization with cationic amino acids could be a beneficial approach in the disinfection industry. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Heteroatom-enriched and renewable banana-stem-derived porous carbon for the electrochemical determination of nitrite in various water samples

    PubMed Central

    Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming

    2014-01-01

    For the first time, high-surface-area (approximately 1465 m2 g−1), highly porous and heteroatom-enriched activated carbon (HAC) was prepared from banana stems (Musa paradisiaca, Family: Musaceae) at different carbonization temperatures of 700, 800 and 900°C (HAC) using a simple and eco-friendly method. The amounts of carbon, hydrogen, nitrogen and sulfur in the HAC are 61.12, 2.567, 0.4315, and 0.349%, respectively. Using X-ray diffraction (XRD), CHNS elemental analysis, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, the prepared activated carbon appears amorphous and disordered in nature. Here, we used HAC for an electrochemical application of nitrite (NO2−) sensor to control the environmental pollution. In addition, HAC exhibits noteworthy performance for the highly sensitive determination of nitrite. The limit of detection (LODs) of the nitrite sensor at HAC-modified GCE is 0.07 μM. In addition, the proposed method was applied to determine nitrite in various water samples with acceptable results. PMID:24755990

  11. Preparation of Activated Carbon from Palm Shells Using KOH and ZnCl2 as the Activating Agent

    NASA Astrophysics Data System (ADS)

    Yuliusman; Nasruddin; Afdhol, M. K.; Amiliana, R. A.; Hanafi, A.

    2017-07-01

    Palm shell is a potential source of raw materials for the produce of activated carbon as biosorbent for quite large numbers. The purpose of this study is to produce activated carbon qualified Indonesian Industrial Standard (SNI), which will be used as biosorbent to purify the impurities in the off gas petroleum refinery products. Stages of manufacture of activated carbon include carbonization, activation of chemistry and physics. Carbonization of activated carbon is done at a temperature of 400°C followed by chemical activation with active agent KOH and ZnCl2. Then the physical activation is done by flowing N2 gas for 1 hour at 850°C and followed by gas flow through the CO2 for 1 hour at 850°C. Research results indicate that activation of the active agent KOH produce activated carbon is better than using the active agent ZnCl2. The use of KOH as an active agent to produce activated carbon with a water content of 13.6%, ash content of 9.4%, iodine number of 884 mg/g and a surface area of 1115 m2/g. While the use of ZnCl2 as the active agent to produce activated carbon with a water content of 14.5%, total ash content of 9.0%, iodine number 648 mg/g and a surface area of 743 m2/g.

  12. Diclofenac removal from water with ozone and activated carbon.

    PubMed

    Beltrán, Fernando J; Pocostales, Pablo; Alvarez, Pedro; Oropesa, Ana

    2009-04-30

    Diclofenac (DCF) has been treated in water with ozone in the presence of various activated carbons. Activated carbon-free ozonation or single ozonation leads to a complete degradation of DCF in less than 15 min while in the presence of activated carbons higher degradation rates of TOC and DCF are noticeably achieved. Among the activated carbons used, P110 Hydraffin was found the most suitable for the catalytic ozonation of DCF. The influence of pH was also investigated. In the case of the single ozonation the increasing pH slightly increases the TOC removal rate. This effect, however, was not so clear in the presence of activated carbons where the influence of the adsorption process must be considered. Ecotoxicity experiments were performed, pointing out that single ozonation reduces the toxicity of the contaminated water but catalytic ozonation improved those results. As far as kinetics is concerned, DCF is removed with ozone in a fast kinetic regime and activated carbon merely acts as a simple adsorbent. However, for TOC removal the ozonation kinetic regime becomes slow. In the absence of the adsorbent, the apparent rate constant of the mineralization process was determined at different pH values. On the other hand, determination of the rate constant of the catalytic reaction over the activated carbon was not possible due to the effect of mass transfer resistances that controlled the process rate at the conditions investigated.

  13. Comparative study of carbonic anhydrase activity in waters among different geological eco-environments of Yangtze River basin and its ecological significance.

    PubMed

    Nzung'a, Sila Onesmus; Pan, Weizhi; Shen, Taiming; Li, Wei; Qin, Xiaoqun; Wang, Chenwei; Zhang, Liankai; Yu, Longjiang

    2018-04-01

    This study provides the presence of carbonic anhydrase (CA) activity in waters of the Yangtze River basin, China, as well as the correlation of CA activity with HCO 3 - concentration and CO 2 sink flux. Different degrees of CA activity could be detected in almost all of the water samples from different geological eco-environments in all four seasons. The CA activity of water samples from karst areas was significantly higher than from non-karst areas (PP3 - concentration (r=0.672, P2 sink flux (r=0.602, P=0.076) in karst areas. This suggests that CA in waters might have a promoting effect on carbon sinks for atmospheric CO 2 in karst river basins. In conditions of similar geological type, higher CA activity was generally detected in water samples taken from areas that exhibited better eco-environments, implying that the CA activity index of waters could be used as an indicator for monitoring ecological environments and protection of river basins. These findings suggest that the role of CA in waters in the karst carbon sink potential of river basins is worthy of further in-depth studies. Copyright © 2017. Published by Elsevier B.V.

  14. Preparation and Cr(VI) removal performance of corncob activated carbon.

    PubMed

    Li, Hongyan; Gao, Pei; Cui, Jianguo; Zhang, Feng; Wang, Fang; Cheng, Jici

    2018-05-12

    Corncob activated carbon (CCAC) was prepared by a H 3 PO 4 activation method. The optimum conditions for the preparation of CCAC were determined by orthogonal experiments. The effects of pH, reaction time, CCAC dosage, and hexavalent chromium (Cr(VI)) concentrations on Cr(VI) removal by CCAC were studied. Corn straw activated carbon (CSAC) was also prepared using the optimum preparation conditions determined for CCAC. The properties of samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The results showed that the optimum preparation conditions for CCAC were as follows: a mass of corncob of 10 g; a mass ratio of corncob to H 3 PO 4 of 1:2; a 5% H 3 BO 3 content of 10 mL; an impregnation time of 45 min; a carbonization temperature of 500 °C. The optimum conditions for the removal of Cr(VI) were as follows: pH < 9; temperature, 308 K; rotation speed, 150 r min -1 ; reaction time, 60 min; CCAC dosage, 1 g L -1 . The Cr(VI) removal rate was above 98%, and the maximum adsorption capacity of CCAC was 9.985 mg g -1 . The concentration of residual Cr(VI) in water was less than 0.05 mg L -1 . FTIR showed that the surfaces of the samples had more oxygen-containing functional groups, which promoted the adsorption. XRD showed that CCAC and CSAC had similar peaks and that these peaks promoted the adsorption of Cr(VI). BET indicated that the number of pores in the samples followed the order CCAC > CSAC > CAC. SEM showed that the CCAC surface had a more porous structure, which enhanced adsorption. EDS showed that the C contents of CCAC and CSAC were much higher than that of CAC. Cr(VI) adsorption on CCAC followed quasi-second-order kinetics and was in accordance with a Langmuir adsorption isotherm, with monolayer adsorption. The adsorption reaction was endothermic, where higher

  15. Adsorption of metal ions by pecan shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-09-01

    The present investigation was undertaken to evaluate the adsorption effectiveness of pecan shell-based granular activated carbons (GACs) in removing metal ions (Cu(2+), Pb(2+), Zn(2+)) commonly found in municipal and industrial wastewater. Pecan shells were activated by phosphoric acid, steam or carbon dioxide activation methods. Metal ion adsorption of shell-based GACs was compared to the metal ion adsorption of a commercial carbon, namely, Calgon's Filtrasorb 200. Adsorption experiments were conducted using solutions containing all three metal ions in order to investigate the competitive effects of the metal ions as would occur in contaminated wastewater. The results obtained from this study showed that acid-activated pecan shell carbon adsorbed more lead ion and zinc ion than any of the other carbons, especially at carbon doses of 0.2-1.0%. However, steam-activated pecan shell carbon adsorbed more copper ion than the other carbons, particularly using carbon doses above 0.2%. In general, Filtrasorb 200 and carbon dioxide-activated pecan shell carbons were poor metal ion adsorbents. The results indicate that acid- and steam-activated pecan shell-based GACs are effective metal ion adsorbents and can potentially replace typical coal-based GACs in treatment of metal contaminated wastewater.

  16. Phenol adsorption by activated carbon produced from spent coffee grounds.

    PubMed

    Castro, Cínthia S; Abreu, Anelise L; Silva, Carmen L T; Guerreiro, Mário C

    2011-01-01

    The present work highlights the preparation of activated carbons (ACs) using spent coffee grounds, an agricultural residue, as carbon precursor and two different activating agents: water vapor (ACW) and K(2)CO(3) (ACK). These ACs presented the microporous nature and high surface area (620-950 m(2) g(-1)). The carbons, as well as a commercial activated carbon (CAC) used as reference, were evaluated as phenol adsorbent showing high adsorption capacity (≈150 mg g(-1)). The investigation of the pH solution in the phenol adsorption was also performed. The different activating agents led to AC with distinct morphological properties, surface area and chemical composition, although similar phenol adsorption capacity was verified for both prepared carbons. The production of activated carbons from spent coffee grounds resulted in promising adsorbents for phenol removal while giving a noble destination to the residue.

  17. Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue.

    PubMed

    Zhang, Xianlong; Cheng, Liping; Wu, Xueping; Tang, Yingzhao; Wu, Yucheng

    2015-07-01

    An activation process for developing the surface and porous structure of palygorskite/carbon (PG/C) nanocomposite using ZnCl2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (SEM), and Brunauer-Emmett-Teller analysis (BET) techniques. The effects of activation conditions were examined, including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of CC and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold (1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay. Copyright © 2015. Published by Elsevier B.V.

  18. Mesoporous activated carbon from corn stalk core for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Yi; Li, Chun; Qi, Hui; Yu, Kaifeng; Liang, Ce

    2018-04-01

    A novel mesoporous activated carbon (AC) derived from corn stalk core is prepared via a facile and effective method which including the decomposition and carbonization of corn stalk core under an inert gas atmosphere and further activation process with KOH solution. The mesoporous activated carbon (AC) is characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) measurements. These biomass waste derived from activated carbon is proved to be promising anode materials for high specific capacity lithium ion batteries. The activated carbon anode possesses excellent reversible capacity of 504 mAh g-1 after 100 cycles at 0.2C. Compared with the unactivated carbon (UAC), the electrochemical performance of activated carbon is significantly improved due to its mesoporous structure.

  19. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    NASA Astrophysics Data System (ADS)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    Carbonic anhydrases are a group of metalloenzymes that catalyse the hydration of aqueous carbon dioxide (CO2). The expression of carbonic anhydrase by bacteria, archaea and eukarya has been linked to a variety of important biological processes including pH regulation, substrate supply and biomineralisation. As oxygen isotopes are exchanged between CO2 and water during hydration, the presence of carbonic anhydrase in plants and soil organisms also influences the oxygen isotope budget of atmospheric CO2. Leaf and soil water pools have distinct oxygen isotope compositions, owing to differences in pool sizes and evaporation rates, which are imparted on CO2during hydration. These differences in the isotopic signature of CO2 interacting with leaves and soil can be used to partition the contribution of photosynthesis and soil respiration to net terrestrial CO2 exchange. However, this relies on our knowledge of soil carbonic anhydrase activity and currently, the prevalence and function of these enzymes in soils is poorly understood. Isotopic approaches used to estimate soil carbonic anhydrase activity typically involve the inversion of models describing the oxygen isotope composition of CO2 fluxes to solve for the apparent, potentially catalysed, rate of oxygen exchange during hydration. This requires information about the composition of CO2 in isotopic equilibrium with soil water obtained from destructive, depth-resolved soil water sampling. This can represent a significant challenge in data collection given the considerable potential for spatial and temporal variability in the isotopic composition of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by constraining carbonic anhydrase activity and the composition of soil water in isotopic equilibrium with CO2 by solving simultaneously the mass balance for two soil CO2 steady states differing only in the

  20. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth.

    PubMed

    Mohan, Dinesh; Singh, Kunwar P; Singh, Vinod K

    2006-07-31

    An efficient adsorption process is developed for the decontamination of trivalent chromium from tannery effluents. A low cost activated carbon (ATFAC) was prepared from coconut shell fibers (an agricultural waste), characterized and utilized for Cr(III) removal from water/wastewater. A commercially available activated carbon fabric cloth (ACF) was also studied for comparative evaluation. All the equilibrium and kinetic studies were conducted at different temperatures, particle size, pHs, and adsorbent doses in batch mode. The Langmuir and Freundlich isotherm models were applied. The Langmuir model best fit the equilibrium isotherm data. The maximum adsorption capacities of ATFAC and ACF at 25 degrees C are 12.2 and 39.56 mg/g, respectively. Cr(III) adsorption increased with an increase in temperature (10 degrees C: ATFAC--10.97 mg/g, ACF--36.05 mg/g; 40 degrees C: ATFAC--16.10 mg/g, ACF--40.29 mg/g). The kinetic studies were conducted to delineate the effect of temperature, initial adsorbate concentration, particle size of the adsorbent, and solid to liquid ratio. The adsorption of Cr(III) follows the pseudo-second-order rate kinetics. From kinetic studies various rate and thermodynamic parameters such as effective diffusion coefficient, activation energy and entropy of activation were evaluated. The sorption capacity of activated carbon (ATFAC) and activated carbon fabric cloth is comparable to many other adsorbents/carbons/biosorbents utilized for the removal of trivalent chromium from water/wastewater.

  1. Study the effect of active carbon modified using HNO3 for carbon electrodes in capacitive deionization system

    NASA Astrophysics Data System (ADS)

    Blegur, Ernes Josias; Endarko

    2017-01-01

    Carbon electrodes prepared with crosslink method for desalination purpose has been synthesized and characterized. The carbon electrodes were synthesized with activated carbon (700 - 1400 m2/g) and polyvinyl alcohol (PVA) as a binder using crosslink method with temperature crosslink at 120°C. Electrochemical properties of carbon electrodes were examined using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The proposed study was to measure the salt-removal percentage of 330 µS/cm NaCl using a capacitive deionization (CDI) unit cell prepared with two pairs of carbon electrodes. The applied potential of 2.0 V and a flow rate of 25 mL/min were used to desalination tests. The result showed that the greatest value of the percentage of salt-removal was achieved at 36.1% for the carbon electrodes with Active Carbon Modified (ACM) while the salt-removal percentage for the Active Carbon (AC) electrodes only at 22%. The fact indicates that the active carbon modified using HNO3 can improve the efficiency of CDI about 14%.

  2. 78 FR 13894 - Certain Activated Carbon From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1103 (Review)] Certain Activated Carbon From China Determination On the basis of the record \\1\\ developed in the subject five-year review, the... (February 2013), entitled Certain Activated Carbon from China: Investigation No. 731-TA-1103 (Review). By...

  3. Guidelines for sampling aboveground biomass and carbon in mature central hardwood forests

    Treesearch

    Martin A. Spetich; Stephen R. Shifley

    2017-01-01

    As impacts of climate change expand, determining accurate measures of forest biomass and associated carbon storage in forests is critical. We present sampling guidance for 12 combinations of percent error, plot size, and alpha levels by disturbance regime to help determine the optimal size of plots to estimate aboveground biomass and carbon in an old-growth Central...

  4. Activated Carbon Modified with Copper for Adsorption of Propanethiol

    PubMed Central

    Moreno-Piraján, Juan Carlos; Tirano, Joaquín; Salamanca, Brisa; Giraldo, Liliana

    2010-01-01

    Activated carbons were characterized texturally and chemically before and after treatment, using surface area determination in the BET model, Boehm titration, TPR, DRX and immersion calorimetry. The adsorption capacity and the kinetics of sulphur compound removal were determined by gas chromatography. It was established that the propanethiol retention capacity is dependent on the number of oxygenated groups generated on the activated carbon surface and that activated carbon modified with CuO at 0.25 M shows the highest retention of propanethiol. Additionally is proposed a mechanism of decomposition of propenothiol with carbon-copper system. PMID:20479992

  5. Voltammetric Determination of Ferulic Acid Using Polypyrrole-Multiwalled Carbon Nanotubes Modified Electrode with Sample Application

    PubMed Central

    Abdel-Hamid, Refat; Newair, Emad F.

    2015-01-01

    A polypyrrole-multiwalled carbon nanotubes modified glassy carbon electrode-based sensor was devised for determination of ferulic acid (FA). The fabricated sensor was prepared electrochemically using cyclic voltammetry (CV) and characterized using CV and scanning electron microscope (SEM). The electrode shows an excellent electrochemical catalytic activity towards FA oxidation. Under optimal conditions, the anodic peak current correlates linearly to the FA concentration throughout the range of 3.32 × 10−6 to 2.59 × 10−5 M with a detection limit of 1.17 × 10−6 M (S/N = 3). The prepared sensor is highly selective towards ferulic acid without the interference of ascorbic acid. The sensor applicability was tested for total content determination of FA in a commercial popcorn sample and showed a robust functionality. PMID:28347090

  6. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    PubMed

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive.

  7. Preparation and characterizations of activated carbon monolith from rubber wood and its effect on supercapacitor performances

    NASA Astrophysics Data System (ADS)

    Taer, E.; Taslim, R.; Deraman, M.

    2016-02-01

    Preparation of activated carbon monolith (ACM) from rubber wood was investigated. Two kind of preparation method were carried out by pre-carbonized of rubber wood saw dust and rubber wood material as it is naturally. The samples were prepared with pelletizing method and small cutting of rubber wood in cross sectional method. Both of samples were characterized by physical and electrochemical technique. The physical properties such as morphology and porosity were investigated. The electrochemical properties of both samples such as equivalent series resistances (ESR) and specific capacitances were also compared. In conclusion, this study showed that both of different preparation method would propose a simple method of ACM electrode preparation technique for supercapacitor applications.

  8. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.

    PubMed

    Zhang, Shujuan; Shao, Ting; Kose, H Selcen; Karanfil, Tanju

    2010-08-15

    Adsorption of three aromatic organic compounds (AOCs) by four types of carbonaceous adsorbents [a granular activated carbon (HD4000), an activated carbon fiber (ACF10), two single-walled carbon nanotubes (SWNT, SWNT-HT), and a multiwalled carbon nanotube (MWNT)] with different structural characteristics but similar surface polarities was examined in aqueous solutions. Isotherm results demonstrated the importance of molecular sieving and micropore effects in the adsorption of AOCs by carbonaceous porous adsorbents. In the absence of the molecular sieving effect, a linear relationship was found between the adsorption capacities of AOCs and the surface areas of adsorbents, independent of the type of adsorbent. On the other hand, the pore volume occupancies of the adsorbents followed the order of ACF10 > HD4000 > SWNT > MWNT, indicating that the availability of adsorption site was related to the pore size distributions of the adsorbents. ACF10 and HD4000 with higher microporous volumes exhibited higher adsorption affinities to low molecular weight AOCs than SWNT and MWNT with higher mesopore and macropore volumes. Due to their larger pore sizes, SWNTs and MWNTs are expected to be more efficient in adsorption of large size molecules. Removal of surface oxygen-containing functional groups from the SWNT enhanced adsorption of AOCs.

  9. Titrimetric Determination of Carbon Dioxide in a Heterogeneous Sample ("Pop Rocks")

    NASA Astrophysics Data System (ADS)

    Davis, Craig M.; Mauck, Matthew C.

    2003-05-01

    A traditional exercise in quantitative analysis is the titration of mixtures of sodium hydroxide, sodium carbonate, and sodium bicarbonate. Often, consumer products are studied. A procedure to analyze the total volume of carbon dioxide bubbles in the candy "Pop Rocks" is presented. The popularity of the sample and the simplicity of the procedure make this exercise suitable for a wide variety of students: from non-science majors to chemistry majors in a quantitative analysis course.

  10. Preconcentration and solid phase extraction method for the determination of Co, Cu, Ni, Zn and Cd in environmental and biological samples using activated carbon by FAAS.

    PubMed

    Kiran, K; Suresh Kumar, K; Suvardhan, K; Janardhanam, K; Chiranjeevi, P

    2007-08-17

    2-{[1-(2-Hydroxynaphthyl) methylidene] amino} benzoic acid (HNMABA) was synthesized for solid phase extraction (SPE) to the determination of Co, Cu, Ni, Zn and Cd in environmental and biological samples by flame atomic absorption spectrophotometry (FAAS). These metals were sorbed as HNMABA complexes on activated carbon (AC) at the pH range of 5.0+/-0.2 and eluted with 6 ml of 1M HNO3 in acetone. The effects of sample volume, eluent volume and recovery have been investigated to enhance the sensitivity and selectivity of proposed method. The effect of interferences on the sorption of metal ions was studied. The concentration of the metal ions detected after preconcentration was in agreement with the added amount. The detection limits for the metals studied were in the range of 0.75-3.82 microg ml(-1). The proposed system produced satisfactory results for the determination of Co, Cu, Ni, Zn and Cd metals in environmental and biological samples.

  11. Investigating effectiveness of activated carbons of natural sources on various supercapacitors

    NASA Astrophysics Data System (ADS)

    Faisal, Md. Shahnewaz Sabit; Rahman, Muhammad M.; Asmatulu, Ramazan

    2016-04-01

    Activated carbon can be produced from natural sources, such as pistachio and acorn shells, which can be an inexpensive and sustainable sources of natural wastes for the energy storage devices, such as supercapacitors. The carbonaceous materials used in this study were carbonized at the temperatures of 700°C and 900°C after the stabilization process at 240°C for two hours. These shells showed approximately 60% carbon yield. Carbonized nutshells were chemically activated using1wt% potassium hydroxide (KOH). Activated carbon powders with polyvinylidene fluoride (PVdF) were used to construct carbon electrodes. A 1M of tetraethylammonium tetrafluoroborate (TEABF4) and propylene carbonate (PC) were used as electrolytes. Electrochemical techniques, such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for the characterization of the supercapacitors. Scanning electron microscopy (SEM) was used to inspect the surface texture of the activated carbons. Activated pistachio shells carbonized at 700°C showed more porous surface texture than those carbonized at 900°C. Effects of the carbonization temperatures were studied for their electrochemical characteristics. The shells carbonized at 700°C showed better electrochemical characteristics compared to those carbonized at 900°C. The test results provided about 27,083 μF/g specific capacitance at a scan rate of 10mV/s. This study showed promising results for using these activated carbons produced from the natural wastes for supercapacitor applications.

  12. Retention efficiency of Cd, Pb and Zn from agricultural by-products activated carbon and biochar under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Coscione, Aline; Ramos, Barbara

    2015-04-01

    The immobilization of inorganic contaminants by using biochar in soils has played an increasingly important role and it is seen as an attractive alternative for the remediation of heavy metals. Although, the production of activated carbon (CA) from agricultural by-products has received special attention, the activation of the the organic source has been studied in order to increase its porposity, surface area and chemical polarity, resulting in higher adsorption of metals. Therefore, this study aimed to evaluate the effectiveness of BC and CA samples, obtained from a eucalyptus husks and cane sugar bagasse after activation with 20% phosphoric acid and pyrolyzed at 450oC in the retention of Zn, Cd and Pb using contaminated individual solutions. The experiment was performed using samples of activated carbon of eucalyptus husk (CCA), eucalyptus husk biochar (BC), activated carbon of sugar cane bagasse (CBA) and sugar cane bagasse biochar (BB) previously treated with Zn, Cd (range of tested solution from 0.1 up to 12 mmol L-1) and Pb (from 0.1 up 50 mmol L-1) which were submitted to stirring with ammonium acetate solution at pH 4.9 for 48 h. The results obtained were adjusted with Langmuir desorptiom isotherms. The pH of the resulting solution, were the meatls were analyse, was measure and remained in the range 4.9 - 5.0. The lower pH found in activated samples (range 2.4-2.5) resulted in larger desorption of metals than the biochar samples (pH of 9.7 for BC and 7.0 for BB). This result is surprising since for the biochar samples it was expected that any precipated metals were dissolved by the desorption solution in addition to metals released by ion exchange. Although the desorption results of activated samoels is still unclear, hich we belive may be explaibed by some adicitonal insterumental analysis, biochar samples showed better potential for application in contaminated soils than the previous.

  13. Characterization of coal gasification slag-based activated carbon and its potential application in lead removal.

    PubMed

    Xu, Yiting; Chai, Xiaoli

    2018-02-01

    Highly porous activated carbons were prepared from a coal gasification slag (CGS) precursor, by KOH activation to remove Pb 2+ from aqueous solution. The effects of pretreatment methods and activation parameters on the properties of the activated carbon were investigated, such as KOH/CGS mass ratio, activation temperature and activation time. The results showed that the maximum Brunauer-Emmett-Teller surface area and total pore volume with the value of 2481 m 2  g -1 and of 1.711 cc g -1 were obtained at a KOH/CGS ratio of 3.0 by physical mixing, an activation temperature of 750°C and an activation time of 80 min. SEM, FTIR and EA analyses indicated that pronounced pores existed on the exterior surface of the activated samples, and the contents of H and O decreased due to the loss of surface chemical groups during activation. Experimental data for the Pb 2+ adsorption were fitted well by Freundlich equation and a pseudo-second-order model with a maximum experimental adsorption capacity of 141 mg/g. All of the results indicated that CGS could be a promising material to prepare porous activated carbon for Pb 2+ removal from wastewater.

  14. FENTON-DRIVEN REGENERATION OF GRANULAR ACTIVATED CARBON: A TECHNOLOGY OVERVIEW

    EPA Science Inventory

    A Fenton-driven mechanism for regenerating spent granular activated carbon (GAC) involves the combined, synergistic use of two reliable and well established treatment technologies - adsorption onto activated carbon and Fenton oxidation. During carbon adsorption treatment, enviro...

  15. U-series dating of impure carbonates: An isochron technique using total-sample dissolution

    USGS Publications Warehouse

    Bischoff, J.L.; Fitzpatrick, J.A.

    1991-01-01

    U-series dating is a well-established technique for age determination of Late Quaternary carbonates. Materials of sufficient purity for nominal dating, however, are not as common as materials with mechanically inseparable aluminosilicate detritus. Detritus contaminates the sample with extraneous Th. We propose that correction for contamination is best accomplished with the isochron technique using total sample dissolution (TSD). Experiments were conducted on artificial mixtures of natural detritus and carbonate and on an impure carbonate of known age. Results show that significant and unpredictable transfer of radionuclides occur from the detritus to the leachate in commonly used selective leaching procedures. The effects of correcting via leachate-residue pairs and isochron plots were assessed. Isochrons using TSD gave best results, followed by isochron plots of leachates only. ?? 1991.

  16. Nitrogen doped activated carbon from pea skin for high performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Ahmed, Sultan; Ahmed, Ahsan; Rafat, M.

    2018-04-01

    In this work, nitrogen doped porous carbon (NDC) has been synthesized employing a facile two-step process. Firstly, carbon precursor (pea skin) was heated with melamine (acting as nitrogen source) followed by activation with KOH in different ratios. The dependence of porosity and nitrogen content on impregnation ratio was extensively studied. Other textural properties of prepared NDC sample were studied using standard techniques of material characterization. The electrochemical performance of NDC sample as an electrode was studied in two-electrode symmetric supercapacitor system. 1 M LiTFSI (lithium bis-trifluoromethanesulfonimide) solution in IL EMITFSI (1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), was used as electrolyte. It was found that the fabricated supercapacitor cell offers high values of specific capacitance (141.1 F g‑1), specific energy (19.6 Wh kg‑1) and specific power (25.4 kW kg‑1) at current density of 1.3 A g‑1. More importantly, the fabricated supercapacitor cell shows capacitance retention of ∼75%, for more than 5000 cycles. The enhanced performance of NDC sample is primarily due to large surface area with favorable surface structure (contributing to double layer capacitance) and presence of nitrogen functionalities (contributing to pseudo-capacitance). Such important features make the synthesized NDC sample, an attractive choice for electrode material in high performance supercapacitor.

  17. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    PubMed

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  18. [Characteristics of soil organic carbon and enzyme activities in soil aggregates under different vegetation zones on the Loess Plateau].

    PubMed

    Li, Xin; Ma, Rui-ping; An, Shao-shan; Zeng, Quan-chao; Li, Ya-yun

    2015-08-01

    In order to explore the distribution characteristics of organic carbon of different forms and the active enzymes in soil aggregates with different particle sizes, soil samples were chosen from forest zone, forest-grass zone and grass zone in the Yanhe watershed of Loess Plateau to study the content of organic carbon, easily oxidized carbon, and humus carbon, and the activities of cellulase, β-D-glucosidase, sucrose, urease and peroxidase, as well as the relations between the soil aggregates carbon and its components with the active soil enzymes were also analyzed. It was showed that the content of organic carbon and its components were in order of forest zone > grass zone > forest-grass zone, and the contents of three forms of organic carbon were the highest in the diameter group of 0.25-2 mm. The content of organic carbon and its components, as well as the activities of soil enzymes were higher in the soil layer of 0-10 cm than those in the 10-20 cm soil layer of different vegetation zones. The activities of cellulase, β-D-glucosidase, sucrose and urease were in order of forest zone > grass zone > forest-grass zone. The peroxidase activity was in order of forest zone > forest-grass zone > grass zone. The activities of various soil enzymes increased with the decreasing soil particle diameter in the three vegetation zones. The activities of cellulose, peroxidase, sucrose and urease had significant positive correlations with the contents of various forms of organic carbon in the soil aggregates.

  19. Trihalomethane formation potential of aquatic and terrestrial fulvic and humic acids: Sorption on activated carbon.

    PubMed

    Abouleish, Mohamed Y Z; Wells, Martha J M

    2015-07-15

    Humic substances (HSs) are precursors for the formation of hazardous disinfection by-products (DBPs) during chlorination of water. Various surrogate parameters have been used to investigate the generation of DBPs by HS precursors and the removal of these precursors by activated carbon treatment. Dissolved organic carbon (DOC)- and ultraviolet absorbance (UVA254)-based isotherms are commonly reported and presumed to be good predictors of the trihalomethane formation potential (THMFP). However, THMFP-based isotherms are rarely published such that the three types of parameters have not been compared directly. Batch equilibrium experiments on activated carbon were used to generate constant-initial-concentration sorption isotherms for well-characterized samples obtained from the International Humic Substances Society (IHSS). HSs representing type (fulvic acid [FA], humic acid [HA]), origin (aquatic, terrestrial), and geographical source (Nordic, Suwannee, Peat, Soil) were examined at pH6 and pH9. THMFP-based isotherms were generated and compared to determine if DOC- and UVA254-based isotherms were good predictors of the THMFP. The sorption process depended on the composition of the HSs and the chemical nature of the activated carbon, both of which were influenced by pH. Activated carbon removal of THM-precursors was pH- and HS-dependent. In some instances, the THMFP existed after UVA254 was depleted. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Techniques for tritium recovery from carbon flakes and dust at the JET active gas handling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruenhagen, S.; Perevezentsev, A.; Brennan, P. D.

    2008-07-15

    Detritiation of highly tritium contaminated carbon and metal material used as first wall armour is a key issue for fusion machines like JET and ITER. Re-deposited carbon and hydrogen in the form of flakes and dust can lead to a build-up of the tritium inventory and therefore this material must be removed and processed. The high tritium concentration of the flake and dust material collected from the JET vacuum vessel makes it unsuitable for direct waste disposal without detritiation. A dedicated facility to process the tritiated carbon flake material and recover the tritium has been designed and built. In severalmore » test runs active material was successfully processed and de-tritiated in the new facility. Samples containing only carbon and hydrogen isotopes have been completely oxidized without any residue. Samples containing metallic impurities, e.g. beryllium, require longer processing times, adjusted processing parameters and yield an oxide residue. The detritiation factor was 2x10{sup 4}. In order to simulate in-vessel and ex-vessel detritiation techniques, the detritiation of a carbon flake sample by isotopic exchange in a hydrogen atmosphere was investigated. 2.8% of tritium was recovered by this means. (authors)« less

  1. Testing iodized activated carbon filters with non-radioactive methyl iodide. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deitz, V.R.; Romans, J.B.

    1980-05-30

    Iodized carbons, impregnated with KIx(KI + xI2), were evaluated for trapping methyl iodide-127. In this method the complete effluent of the carbon is sampled and analyzed continuously. In contrast, the RDT-M16 test procedure counts the carbon and the back-up beds for the accumulated 131 species and no information is obtained for the interaction of the large amount of carrier methyl iodide-127 with the iodized charcoal. The test apparatus to measure the penetration of methyl iodide-127 is described and the calibration procedures are detailed. Results are given for the penetration of methyl iodide-127 through new activated carbons, carbons in service, andmore » exhausted carbons withdrawn from service. The reduction in trapping efficiency with service is accompanied by the development of a maximum in the concentration of methyl iodide-127 during the air purge after the dose period. This behavior has escaped notice with methyl iodide-131 due to the way that test is made. The chromatographic holdup of methyl iodide-127 by carbons in service, together with the subsequent slow desorption step, could result in a dilution of the penetration iodine to acceptable levels under some conditions encountered in plant filter operations.« less

  2. Flux-limited sample of Galactic carbon stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claussen, M.J.; Kleinmann, S.G.; Joyce, R.R.

    Published observational data (including IRAS observations) for a flux-limited sample of 215 Galactic carbon stars (CSs) selected from the 2-micron sky survey of Neugebauer and Leighton (1969) are compiled in extensive tables and graphs and analyzed statistically. The sample is found to penetrate a volume of radius 1.5 kpc, and the local CS space density and surface density are calculated as log rho0 (per cu kpc) = 2.0 + or - 0.4 and log N (per sq kpc) = 1.6 + or - 0.2, respectively. The total Galactic mass-return rate from these CSs is estimated as 0.013 solar mass/yr, implyingmore » a time scale of 0.1-1 Myr for the CS evolutionary phase and a mass of 1.2-1.6 solar mass for the (probably F-type) main-seqence progenitors of CSs. 81 references.« less

  3. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S

    2013-02-19

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  4. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S.

    2010-06-01

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  5. Disinfection of bacteria attached to granular activated carbon.

    PubMed Central

    LeChevallier, M W; Hassenauer, T S; Camper, A K; McFeters, G A

    1984-01-01

    Heterotrophic plate count bacteria, coliform organisms, and pathogenic microorganisms attached to granular activated carbon particles were examined for their susceptibility to chlorine disinfection. When these bacteria were grown on carbon particles and then disinfected with 2.0 mg of chlorine per liter (1.4 to 1.6 mg of free chlorine residual per liter after 1 h) for 1 h, no significant decrease in viable counts was observed. Washed cells attached to the surface of granular activated carbon particles showed similar resistance to chlorine, but a progressive increase in sublethal injury was found. Observations made by scanning electron microscope indicated that granular activated carbon was colonized by bacteria which grow in cracks and crevices and are coated by an extracellular slime layer. These data suggest a possible mechanism by which treatment and disinfection barriers can be penetrated and pathogenic bacteria may enter drinking water supplies. Images PMID:6508306

  6. [Comparison study on adsorption of middle molecular substances with multiwalled carbon nanotubes and activated carbon].

    PubMed

    Li, Guifeng; Wan, Jianxin; Huang, Xiangqian; Zeng, Qiao; Tang, Jing

    2011-08-01

    In recent years, multi-walled carbon nanotubes (MWCTs) are very favorable to the adsorption of middle molecular substances in the hemoperfusion because of their multiporous structure, large surface area and high reactivity, which are beneficial to the excellent absorption properties. The purpose of this study was to study the MWCTs on the adsorption capacity of the middle molecular substances. Vitamin B12 (VB12) was selected as a model of the middle molecular substances. The morphologies of MWCTs and activated carbon from commercial "carbon kidney" were observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The adsorption behavior of VB12 was compared to each other with UV-visible absorption spectra. The MWCTs formed a sophistaicate gap structure, and compared to the activated carbon, MWCTs had a larger surface area. By Langmuir equation and Freundlich equation fitting analysis, VB12 adsorption on MWCTs is fit for multi-molecular layer adsorption, and the adsorption type of activated carbon is more inclined to the model corresponding to Langmuir monolayer adsorption. The adsorption rate of MWCTs is faster than that of the activated carbon and the adsorption capacity is greater, which could be expected to become the new adsorbent in the hemoperfusion.

  7. Nitrogen-Containing Carbon Nanotube Synthesized from Polymelem and Activated Carbon Derived from Polymer Blend

    NASA Astrophysics Data System (ADS)

    Qin, Nan

    Polymelem possesses a polymeric structure of heptazine (C6N 7) rings connected by amine bridges and our study has demonstrated that it is a promising precursor for the synthesis of nitrogen-containing carbon materials. Nitrogen-containing carbon nanotube (NCNT) was produced by pyrolyzing polymelem as a dual source of carbon and nitrogen with Raney nickel in a high pressure stainless steel cell. Activated carbon was produced from poly(ether ether ketone)/poly(ether imide) (PEEK/PEI blend) and incorporated with polymelem to enhance the hydrogen adsorption. Polymelem was successfully synthesized by pyrolyzing melamine at 450--650 °C and its structure was elucidated by 13C solid state NMR, FTIR, and XRD. The molecular weight determined by a novel LDI MS equipped with a LIFT mode illuminated that polymelem has both linear and cyclic connectivity with a degree of polymerization of 2--5 depending on the synthesis temperature. The decomposition products of polymelem were determined to be cyanoamide, dicyanoamide, and tricyanoamine. Tricyanoamine is the smallest carbon nitride molecule and has been experimentally confirmed for the first time in this study. When polymelem was decomposed in the presence of Raney nickel, homogenous NCNT with nitrogen content of ˜ 4--19 atom% was produced. A mechanism based on a detail analysis of the TEM images at different growth stages proposed that the NCNT propagated via a tip-growth mechanism originating at the nano-domains within the Raney nickel, and was accompanied with the aggregation of the nickel catalysts. Such NCNT exhibited a cup-stack wall structure paired with a compartmental feature. The nitrogen content, tube diameter and wall thickness greatly depended on synthesis conditions. The activated carbon derived from PEEK/PEI blend demonstrated a surface area up to ˜3000 m2/g, and average pore size of < 20 A. Such activated carbon exhibited a hydrogen storage capacity of up to 6.47 wt% at 40 bar, 77 K. The activated carbon has

  8. Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase.

    PubMed

    Bohli, Thouraya; Ouederni, Abdelmottaleb

    2016-08-01

    Recently, modification of surface structure of activated carbons in order to improve their adsorption performance toward especial pollutants has gained great interest. Oxygen-containing functional groups have been devoted as the main responsible for heavy metal binding on the activated carbon surface; their introduction or enhancement needs specific modification and impregnation methods. In the present work, olive stones activated carbon (COSAC) undergoes surface modifications in gaseous phase using ozone (O3) and in liquid phase using nitric acid (HNO3). The activated carbon samples were characterized using N2 adsorption-desorption isotherm, SEM, pHpzc, FTIR, and Boehm titration. The activated carbon parent (COSAC) has a high surface area of 1194 m(2)/g and shows a predominantly microporous structure. Oxidation treatments with nitric acid and ozone show a decrease in both specific surface area and micropore volumes, whereas these acidic treatments have led to a fixation of high amount of surface oxygen functional groups, thus making the carbon surface more hydrophilic. Activated carbon samples were used as an adsorbent matrix for the removal of Co(II), Ni(II), and Cu(II) heavy metal ions from aqueous solutions. Adsorption isotherms were obtained at 30 °C, and the data are well fitted to the Redlich-Peterson and Langmuir equation. Results show that oxidized COSACs, especially COSAC(HNO3), are capable to remove more Co(II), Cu(II), and Ni(II) from aqueous solution. Nitric acid-oxidized olive stones activated carbon was tested in its ability to remove metal ions from binary systems and results show an important maximum adsorbed amount as compared to single systems.

  9. Fenton-Driven Regeneration of MTBE-spent Granular Activated Carbon

    EPA Science Inventory

    Fenton-driven regeneration of Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves the combined, synergistic use of two treatment technologies: adsorption of organic chemicals onto activated carbon and Fenton-driven oxidation regeneration of the spent-GAC...

  10. Carbon fiber plume sampling for large scale fire tests at Dugway Proving Ground. [fiber release during aircraft fires

    NASA Technical Reports Server (NTRS)

    Chovit, A. R.; Lieberman, P.; Freeman, D. E.; Beggs, W. C.; Millavec, W. A.

    1980-01-01

    Carbon fiber sampling instruments were developed: passive collectors made of sticky bridal veil mesh, and active instruments using a light emitting diode (LED) source. These instruments measured the number or number rate of carbon fibers released from carbon/graphite composite material when the material was burned in a 10.7 m (35 ft) dia JP-4 pool fire for approximately 20 minutes. The instruments were placed in an array suspended from a 305 m by 305 m (1000 ft by 1000 ft) Jacob's Ladder net held vertically aloft by balloons and oriented crosswind approximately 140 meters downwind of the pool fire. Three tests were conducted during which released carbon fiber data were acquired. These data were reduced and analyzed to obtain the characteristics of the released fibers including their spatial and size distributions and estimates of the number and total mass of fibers released. The results of the data analyses showed that 2.5 to 3.5 x 10 to the 8th power single carbon fibers were released during the 20 minute burn of 30 to 50 kg mass of initial, unburned carbon fiber material. The mass released as single carbon fibers was estimated to be between 0.1 and 0.2% of the initial, unburned fiber mass.

  11. Mycoextraction by Clitocybe maxima combined with metal immobilization by biochar and activated carbon in an aged soil.

    PubMed

    Wu, Bin; Cheng, Guanglei; Jiao, Kai; Shi, Wenjin; Wang, Can; Xu, Heng

    2016-08-15

    To develop an eco-friendly and efficient route to remediate soil highly polluted with heavy metals, the idea of mycoextraction combined with metal immobilization by carbonaceous sorbents (biochar and activated carbon) was investigated in this study. Results showed that the application of carbonaceous amendments decreased acid soluble Cd and Cu by 5.13-14.06% and 26.86-49.58%, respectively, whereas the reducible and oxidizable fractions increased significantly as the amount of carbonaceous amendments added increased. The biological activities (microbial biomass, soil enzyme activities) for treatments with carbonaceous sorbents were higher than those of samples without carbonaceous amendments. Clitocybe maxima (C. maxima) simultaneously increased soil enzyme activities and the total number of microbes. Biochar and activated carbon both showed a positive effect on C. maxima growth and metal accumulation. The mycoextraction efficiency of Cd and Cu in treatments with carbonaceous amendments enhanced by 25.64-153.85% and 15.18-107.22%, respectively, in response to that in non-treated soil, which showed positive correlation to the augment of biochar and activated carbon in soil. Therefore, this work suggested the effectiveness of mycoextraction by C. maxima combined the application of biochar and activated carbon in immobilising heavy metal in contaminated soil. Copyright © 2016. Published by Elsevier B.V.

  12. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    NASA Astrophysics Data System (ADS)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-09-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.

  13. Authigenic carbonates from active methane seeps offshore southwest Africa

    NASA Astrophysics Data System (ADS)

    Pierre, Catherine; Blanc-Valleron, Marie-Madeleine; Demange, Jérôme; Boudouma, Omar; Foucher, Jean-Paul; Pape, Thomas; Himmler, Tobias; Fekete, Noemi; Spiess, Volkhard

    2012-12-01

    The southwest African continental margin is well known for occurrences of active methane-rich fluid seeps associated with seafloor pockmarks at water depths ranging broadly from the shelf to the deep basins, as well as with high gas flares in the water column, gas hydrate accumulations, diagenetic carbonate crusts and highly diverse benthic faunal communities. During the M76/3a expedition of R/V METEOR in 2008, gravity cores recovered abundant authigenic carbonate concretions from three known pockmark sites—Hydrate Hole, Worm Hole, the Regab pockmark—and two sites newly discovered during that cruise, the so-called Deep Hole and Baboon Cluster. The carbonate concretions were commonly associated with seep-benthic macrofauna and occurred within sediments bearing shallow gas hydrates. This study presents selected results from a comprehensive analysis of the mineralogy and isotope geochemistry of diagenetic carbonates sampled at these five pockmark sites. The oxygen isotope stratigraphy obtained from three cores of 2-5 m length indicates a maximum age of about 60,000-80,000 years for these sediments. The authigenic carbonates comprise mostly magnesian calcite and aragonite, associated occasionally with dolomite. Their very low carbon isotopic compositions (-61.0 < δ13C ‰ V-PDB < -40.1) suggest anaerobic oxidation of methane (AOM) as the main process controlling carbonate precipitation. The oxygen isotopic signatures (+2.4 < δ18O ‰ V-PDB < +6.2) lie within the range in equilibrium under present-day/interglacial to glacial conditions of bottom seawater; alternatively, the most positive δ18O values might reflect the contribution of 18O-rich water from gas hydrate decomposition. The frequent occurrence of diagenetic gypsum crystals suggests that reduced sulphur (hydrogen sulphide, pyrite) from sub-seafloor sediments has been oxidized by oxygenated bottom water. The acidity released during this process can potentially induce the dissolution of carbonate, thereby

  14. Effect of the pH in the adsorption and in the immersion enthalpy of monohydroxylated phenols from aqueous solutions on activated carbons.

    PubMed

    Blanco-Martínez, D A; Giraldo, L; Moreno-Piraján, J C

    2009-09-30

    An activated carbon Carbochem--PS230 was modified by chemical and thermal treatment in flow of H(2) in order to evaluate the influence of the activated carbon chemical surface in the adsorption of the monohydroxylated phenols. The solid-solution interaction was determined by analyzing the adsorption isotherms at 298 K at pH 7, 9 and 11 during 48 h. The adsorption capacity of activated carbons increases when the pH solution decreases. The amount adsorbed increases in the reduced carbon at the maximum adsorption pH and decreases in the oxidized carbon. In the sample of granulated activated carbon, CAG, the monohydroxylated phenols adsorption capacity diminishes in the following order catechol >hydroquinone >resorcinol, at the three pH values. The experimental data are evaluated with Freundlich's and Langmuir's models. The immersion enthalpies are determined and increase with the retained amount, ranging between 21.5 and 45.7 J g(-1). In addition, the immersion enthalpies show more interaction with the reduced activated carbon that has lower total acidity contents.

  15. Hierarchically structured activated carbon for ultracapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Mok-Hwa; Kim, Kwang-Bum; Park, Sun-Min; Roh, Kwang Chul

    2016-02-01

    To resolve the pore-associated bottleneck problem observed in the electrode materials used for ultracapacitors, which inhibits the transport of the electrolyte ions, we designed hierarchically structured activated carbon (HAC) by synthesizing a mesoporous silica template/carbon composite and chemically activating it to simultaneously remove the silica template and increase the pore volume. The resulting HAC had a well-designed, unique porous structure, which allowed for large interfaces for efficient electric double-layer formation. Given the unique characteristics of the HAC, we believe that the developed synthesis strategy provides important insights into the design and fabrication of hierarchical carbon nanostructures. The HAC, which had a specific surface area of 1,957 m2 g-1, exhibited an extremely high specific capacitance of 157 F g-1 (95 F cc-1), as well as a high rate capability. This indicated that it had superior energy storage capability and was thus suitable for use in advanced ultracapacitors.

  16. Multi-walled carbon nanotubes: sampling criteria and aerosol characterization

    PubMed Central

    Chen, Bean T.; Schwegler-Berry, Diane; McKinney, Walter; Stone, Samuel; Cumpston, Jared L.; Friend, Sherri; Porter, Dale W.; Castranova, Vincent; Frazer, David G.

    2015-01-01

    This study intends to develop protocols for sampling and characterizing multi-walled carbon nanotube (MWCNT) aerosols in workplaces or during inhalation studies. Manufactured dry powder containing MWCNT’s, combined with soot and metal catalysts, form complex morphologies and diverse shapes. The aerosols, examined in this study, were produced using an acoustical generator. Representative samples were collected from an exposure chamber using filters and a cascade impactor for microscopic and gravimetric analyses. Results from filters showed that a density of 0.008–0.10 particles per µm2 filter surface provided adequate samples for particle counting and sizing. Microscopic counting indicated that MWCNT’s, resuspended at a concentration of 10 mg/m3, contained 2.7 × 104 particles/cm3. Each particle structure contained an average of 18 nanotubes, resulting in a total of 4.9 × 105 nanotubes/cm3. In addition, fibrous particles within the aerosol had a count median length of 3.04 µm and a width of 100.3 nm, while the isometric particles had a count median diameter of 0.90 µm. A combination of impactor and microscopic measurements established that the mass median aerodynamic diameter of the mixture was 1.5 µm. It was also determined that the mean effective density of well-defined isometric particles was between 0.71 and 0.88 g/cm3, and the mean shape factor of individual nanotubes was between 1.94 and 2.71. The information obtained from this study can be used for designing animal inhalation exposure studies and adopted as guidance for sampling and characterizing MWCNT aerosols in workplaces. The measurement scheme should be relevant for any carbon nanotube aerosol. PMID:23033994

  17. Carbon Isotopic Ratios of Amino Acids in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here. we present the carbon isotopic ratios of glycine and E-aminocaproic acid (EACH), the two most abundant amino acids observed, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio crass spectrometry coupled with quadrupole mass spectrometry (GC-QMS/IRMS).

  18. Carbon Isotopic Measurements of Amino Acids in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here, we present the carbon isotopic ratios of glycine and e-aminocaproic acid (EACA), the two most abundant amino acids, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio mass spectrometry coupled with quadrupole mass spectrometry (GC-CAMS/IRMS).

  19. Preparation of activated carbon from cherry stones by chemical activation with ZnCl 2

    NASA Astrophysics Data System (ADS)

    Olivares-Marín, M.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V.

    2006-06-01

    Cherry stones (CS), an industrial product generated abundantly in the Valle del Jerte (Cáceres province, Spain), were used as precursor in the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonisation temperature and the ZnCl 2:CS ratio (impregnation ratio) on textural and chemical-surface properties of the products obtained was studied. Such products were characterised texturally by adsorption of N 2 at -196 °C, mercury porosimetry and density measurements. Information on the surface functional groups and structures of the carbons was provided by FT-IR spectroscopy. Activated carbon with a high development of surface area and porosity is prepared. When using the 4:1 impregnation ratio, the specific surface area (BET) of the resultant carbon is as high as 1971 m 2 g -1. The effect of the increase in the impregnation ratio on the porous structure of activated carbon is stronger than that of the rise in the carbonisation temperature, whereas the opposite applies to the effect on the surface functional groups and structures.

  20. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  1. Physicochemical and adsorptive characteristics of activated carbons from waste polyester textiles utilizing MgO template method.

    PubMed

    Xu, Zhihua; Zhang, Daofang; Yuan, Zhihang; Chen, Weifang; Zhang, Tianqi; Tian, Danqi; Deng, Haixuan

    2017-10-01

    Activated carbons with high specific surface areas were produced, utilizing waste polyester textiles as carbon precursor by magnesium oxide (MgO) template method. Magnesium chloride (MgCl 2 ), magnesium citrate (MgCi), and MgO were employed as MgO precursors to prepare activated carbons (AC-MgCl 2 , AC-MgCi, and AC-MgO). Thermogravimetry-differential scanning calorimetry was conducted to investigate the pore-forming mechanism, and N 2 adsorption/desorption isotherms, XRD, SEM-EDS, TEM, FTIR and pH pzc were achieved to analyze physicochemical characteristics of the samples. The specific surface areas of AC-MgCl 2 (1173 m 2 /g) and AC-MgCi (1336 m 2 /g) were much higher than that of AC-MgO (450 m 2 /g), and the pores sizes of which were micro-mesoporous, mesoporous, and macropores, respectively, due to the formation of MgO crystal with different sizes. All activated carbons had abundant acidic oxygen groups. In addition, batch adsorption experiments were carried out to investigate the adsorptive characteristics of the prepared activated carbons toward Cr(VI). The adsorption kinetics fitted well with the pseudo-second order, and the adsorptive capacity of AC-MgCl 2 (42.55 mg/g) was higher than those of AC-MgCi (40.93 mg/g) and AC-MgO (35.87 mg/g).

  2. Nitrogen and sulfur Co-doped microporous activated carbon macro-spheres for CO2 capture.

    PubMed

    Sun, Yahui; Li, Kaixi; Zhao, Jianghong; Wang, Jianlong; Tang, Nan; Zhang, Dongdong; Guan, Taotao; Jin, Zuer

    2018-04-27

    Millimeter-sized nitrogen and sulfur co-doped microporous activated carbon spheres (NSCSs) were first synthesized from poly(styrene-vinylimidazole-divinylbenzene) resin spheres through concentrated H 2 SO 4 sulfonation, carbonization and KOH activation. Styrene (ST) and N-vinylimidazole (VIM) were carbon and nitrogen sources, while the sulfonic acid functional groups introduced by the simple concentrated sulfuric acid sulfonation worked simultaneously as cross-linking agent and sulfur source during the following thermal treatments. It was found that the surface chemistries, textural structures, and CO 2 adsorption performances of the NSCSs were significantly affected by the addition of VIM. The NSCS-4-700 sample with a molar ratio of ST: VIM = 1: 0.75 showed the best CO 2 uptake at different temperatures and pressures. An exhaustive adsorption evaluation indicated that CO 2 sorption at low pressures originated from the synergistic effect of surface chemistry and micropores below 8.04 Å, while at the moderate pressure of 8.0 bar, CO 2 uptake was dominated by the volume of micropores. The thermodynamics suggested the exothermic and orderly nature of the adsorption process, which was dominated by a physisorption mechanism. The high CO 2 adsorption capacity, fast kinetic adsorption rate, and great regeneration stability of the nitrogen and sulfur co-doped activated carbon spheres indicated that the as-prepared carbon adsorbents were good candidates for large-scale CO 2 capture. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Preparation of granular activated carbons from composite of powder activated carbon and modified β-zeolite and application to heavy metals removal.

    PubMed

    Seyedein Ghannad, S M R; Lotfollahi, M N

    2018-03-01

    Heavy metals are continuously contaminating the surface and subsurface water. The adsorption process is an attractive alternative for removing the heavy metals because of its low cost, simple operation, high efficiency, and flexible design. In this study, influences of β-zeolite and Cu-modified β-zeolite on preparation of granular activated carbons (GACs) from a composite of powder activated carbon (PAC), methylcellulose as organic binder, bentonite as inorganic binder, and water were investigated. A number of granular samples were prepared by controlling the weight percentage of binder materials, PAC and zeolites as a reinforcing adsorbent. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction techniques were employed to characterize zeolite, modified zeolite and produced GAC. The produced GACs were used as the adsorbent for removal of Zn +2 , Cd 2+ and Pb 2+ ions from aqueous solutions. The results indicated that the adsorption of metals ions depended on the pH (5.5) and contact time (30 min). Maximum adsorption of 97.6% for Pb 2+ , 95.9% for Cd 2+ and 91.1% for Zn +2 occurred with a new kind of GAC made of Cu-modified β-zeolite. The Zn +2 , Cd 2+ and Pb 2+ ions sorption kinetics data were well described by a pseudo-second order model for all sorbents. The Langmuir and Freundlich isotherm models were applied to analyze the experimental equilibrium data.

  4. Activated carbons from potato peels: The role of activation agent and carbonization temperature of biomass on their use as sorbents for bisphenol A uptake from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Arampatzidou, An; Deliyanni, Eleni A.

    2015-04-01

    Activated carbons prepared from potato peels, a solid waste by product, and activated with different activating chemicals, have been studied for the adsorption of an endocrine disruptor (Bisphenol-A) from aqueous solutions. The potato peels biomass was activated with phosphoric acid, KOH and ZnCl2. The different activating chemicals were tested in order the better activation agent to be found. The carbons were carbonized by pyrolysis, in one step procedure, at three different temperatures in order the role of the temperature of carbonization to be pointed out. The porous texture and the surface chemistry of the prepared activated carbons were characterized by Nitrogen adsorption (BET), Scanning Electron Microscope (SEM), thermal analysis (DTA) and Fourier Transform Infrared Spectroscopy (FTIR). Batch experiments were performed to investigate the effect of pH, the adsorbent dose, the initial bisphenol A concentration and temperature. Equilibrium adsorption data were analyzed by Langmuir and Freundlich isotherms. The thermodynamic parameters such as the change of enthalpy (ΔH0), entropy (ΔS0) and Gibb's free energy (ΔG0) of adsorption systems were also evaluated. The adsorption capacity calculated from the Langmuir isotherm was found to be 450 mg g-1 at an initial pH 3 at 25 °C for the phosphoric acid activated carbon, that make the activated carbon a promising adsorbent material.

  5. Comparison on pore development of activated carbon produced by chemical and physical activation from palm empty fruit bunch

    NASA Astrophysics Data System (ADS)

    Hidayat, A.; Sutrisno, B.

    2016-11-01

    It is well-known that activated carbon is considered to be the general adsorbent due to the large range of applications. Numerous works are being continuously published concerning its use as adsorbent for: treatment of potable water; purification of air; retention of toxins by respirators; removal of organic and inorganic pollutants from flue gases and industrial waste gases and water; recuperation of solvents and hydrocarbons volatilized from petroleum derivatives; catalysis; separation of gas mixtures (molecularsieve activated carbons); storage of natural gas and hydrogen; energy storage in supercapacitors; recovery of gold, silver and othernoble metals; etc. This work presents producing activated carbons from palm empty fruit bunch using both physical activation with CO2 and chemical activation with KOH. The resultant activated carbons were characterized by measuring their porosities and pore size distributions. A comparison of the textural characteristics and surface chemistry of the activated carbon from palm empty fruit bunch by the CO2 and the KOH activation leads to the following findings: An activated carbon by the CO2 activation under the optimum conditions has a BET surface area of 717 m2/g, while that by the KOH activation has a BET surface area of 613 m2/g. The CO2 activation generated a highly microporous carbon (92%) with a Type-I isotherm, while the KOH activation generated a mesoporous one (70%) with a type-IV isotherm, the pore volumes are 0.2135 and 0.7426 cm3.g-1 respectively. The average pore size of the activated carbons is 2.72 and 2.56 nm for KOH activation and CO2 activation, respectively. The FT-IR spectra indicated significant variation in the surface functional groups are quite different for the KOH activated and CO2 activated carbons.

  6. Comparison of adsorption behavior of PCDD/Fs on carbon nanotubes and activated carbons in a bench-scale dioxin generating system.

    PubMed

    Zhou, Xujian; Li, Xiaodong; Xu, Shuaixi; Zhao, Xiyuan; Ni, Mingjiang; Cen, Kefa

    2015-07-01

    Porous carbon-based materials are commonly used to remove various organic and inorganic pollutants from gaseous and liquid effluents and products. In this study, the adsorption of dioxins on both activated carbons and multi-walled carbon nanotube was internally compared, via series of bench scale experiments. A laboratory-scale dioxin generator was applied to generate PCDD/Fs with constant concentration (8.3 ng I-TEQ/Nm(3)). The results confirm that high-chlorinated congeners are more easily adsorbed on both activated carbons and carbon nanotubes than low-chlorinated congeners. Carbon nanotubes also achieved higher adsorption efficiency than activated carbons even though they have smaller BET-surface. Carbon nanotubes reached the total removal efficiency over 86.8 % to be compared with removal efficiencies of only 70.0 and 54.2 % for the two other activated carbons tested. In addition, because of different adsorption mechanisms, the removal efficiencies of carbon nanotubes dropped more slowly with time than was the case for activated carbons. It could be attributed to the abundant mesopores distributed in the surface of carbon nanotubes. They enhanced the pore filled process of dioxin molecules during adsorption. In addition, strong interactions between the two benzene rings of dioxin molecules and the hexagonal arrays of carbon atoms in the surface make carbon nanotubes have bigger adsorption capacity.

  7. Mesoporous carbon-supported Pd nanoparticles with high specific surface area for cyclohexene hydrogenation: Outstanding catalytic activity of NaOH-treated catalysts

    NASA Astrophysics Data System (ADS)

    Puskás, R.; Varga, T.; Grósz, A.; Sápi, A.; Oszkó, A.; Kukovecz, Á.; Kónya, Z.

    2016-06-01

    Extremely high specific surface area mesoporous carbon-supported Pd nanoparticle catalysts were prepared with both impregnation and polyol-based sol methods. The silica template used for the synthesis of mesoporous carbon was removed by both NaOH and HF etching. Pd/mesoporous carbon catalysts synthesized with the impregnation method has as high specific surface area as 2250 m2/g. In case of NaOH-etched impregnated samples, the turnover frequency of cyclohexene hydrogenation to cyclohexane at 313 K was obtained 14 molecules • site- 1 • s- 1. The specific surface area of HF-etched samples was higher compared to NaOH-etched samples. However, catalytic activity was 3-6 times higher on NaOH-etched samples compared to HF-etched samples, which can be attributed to the presence of sodium and surface hydroxylgroups of the catalysts etched with NaOH solution.

  8. Synthesis and characterization of carbon nanotube from coconut shells activated carbon

    NASA Astrophysics Data System (ADS)

    Melati, A.; Hidayati, E.

    2016-03-01

    Carbon nanotubes (CNTs) have been explored in almost every single cancer treatment modality, including drug delivery, lymphatic targeted chemotherapy, photodynamic therapy, and gene therapy. They are considered as one of the most promising nanomaterial with the capability of both detecting the cancerous cells and delivering drugs or small therapeutic molecules to the cells. CNTs have unique physical and chemical properties such as high aspect ratio, ultralight weight, high mechanical strength, high electrical conductivity, and high thermal conductivity. Coconut Shell was researched as active carbon source on 500 - 600°C. These activated carbon was synthesized becomes carbon nanotube and have been proposed as a promising tool for detecting the expression of indicative biological molecules at early stage of cancer. Clinically, biomarkers cancer can be detected by CNT Biosensor. We are using pyrolysis methods combined with CVD process or Wet Chemical Process on 600°C. Our team has successfully obtained high purity, and aligned MWCNT (Multi Wall Nanotube) bundles on synthesis CNT based on coconut shells raw materials. CNTs can be used to cross the mammalian cell membrane by endocytosis or other mechanisms. SEM characterization of these materials have 179 nm bundles on phase 83° and their materials compound known by using FTIR characterization.

  9. Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: influence of surface chemistry on adsorption.

    PubMed

    Wibowo, N; Setyadhi, L; Wibowo, D; Setiawan, J; Ismadji, S

    2007-07-19

    The influence of surface chemistry and solution pH on the adsorption of benzene and toluene on activated carbon and its acid and heat treated forms were studied. A commercial coal-based activated carbon F-400 was chosen as carbon parent. The carbon samples were obtained by modification of F-400 by means of chemical treatment with HNO3 and thermal treatment under nitrogen flow. The treatment with nitric acid caused the introduction of a significant number of oxygenated acidic surface groups onto the carbon surface, while the heat treatment increases the basicity of carbon. The pore characteristics were not significantly changed after these modifications. The dispersive interactions are the most important factor in this adsorption process. Activated carbon with low oxygenated acidic surface groups (F-400Tox) has the best adsorption capacity.

  10. Kinetic and calorimetric study of the adsorption of dyes on mesoporous activated carbon prepared from coconut coir dust.

    PubMed

    Macedo, Jeremias de Souza; da Costa Júnior, Nivan Bezerra; Almeida, Luis Eduardo; Vieira, Eunice Fragoso da Silva; Cestari, Antonio Reinaldo; Gimenez, Iara de Fátima; Villarreal Carreño, Neftali Lênin; Barreto, Ledjane Silva

    2006-06-15

    Mesoporous activated carbon has been prepared from coconut coir dust as support for adsorption of some model dye molecules from aqueous solutions. The methylene blue (MB) and remazol yellow (RY) molecules were chosen for study of the adsorption capacity of cationic and anionic dyes onto prepared activated carbon. The adsorption kinetics was studied with the Lagergren first- and pseudo-second-order kinetic models as well as the intraparticle diffusion model. The results for both dyes suggested a multimechanism sorption process. The adsorption mechanisms in the systems dyes/AC follow pseudo-second-order kinetics with a significant contribution of intraparticle diffusion. The samples simultaneously present acidic and basic sites able to act as anchoring sites for basic and acidic dyes, respectively. Calorimetric studies reveal that dyes/AC interaction forces are correlated with the pH of the solution, which can be related to the charge distribution on the AC surface. These AC samples also exhibited very short equilibrium times for the adsorption of both dyes, which is an economically favorable requisite for the activated carbon described in this work, in addition to the local abundance of the raw material.

  11. [Biochemical effects of chronic peroral administration of carbon nanotubes and activated charcoal in drinking water in rats].

    PubMed

    Khripach, L V; Rakhmanin, Iu A; Mikhajlova, R I; Knyazeva, T D; Koganova, Z I; Zhelezniak, E V; Savostikova, O N; Alekseeva, A V; Kameneckaya, D V; Ryzhova, I N; Kruglova, E V; Revazova, T L

    2014-01-01

    Chronic 6-month experiment was carried out in rats, which received drinking water with multi-walled carbon nanotubes (MWCNTs), diameter of 15-40 nm, length ≥ 2 mkm) or activated charcoal (AC, diameter of 10-100 mkm), blood samples of the animals were used for assessment of biochemical markers. Both coal compounds induced the appearance of signs of oxidative stress 2 weeks after the beginning of the experiment and alteration of serum markers of liver and renal damage, as well as changes of cortisol and protein serum concentrations later Thus, despite of known high (asbest-like) inhalation toxicity of carbon nanotubes in comparison with other carbon allotrops (fullerenes and black carbon), we have found similar effects of MWCNTs and carbon microparticles in orally treated rats.

  12. Impact of sulfur oxides on mercury capture by activated carbon.

    PubMed

    Presto, Albert A; Granite, Evan J

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACl, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  13. Adsorption of organic compounds onto activated carbons from recycled vegetables biomass.

    PubMed

    Mameli, Anna; Cincotti, Alberto; Lai, Nicola; Crisafulli, Carmelo; Sciré, Salvatore; Cao, Giacomo

    2004-01-01

    The removal of organic species from aqueous solution by activated carbons is investigated. The latter ones are prepared from olive husks and almond shells. A wide range of surface area values are obtained varying temperature and duration of both carbonization and activation steps. The adsorption isotherm of phenol, catechol and 2,6-dichlorophenol involving the activated carbons prepared are obtained at 25 degrees C. The corresponding behavior is quantitatively correlated using classical isotherm, whose parameters are estimated by fitting the equilibrium data. A two component isotherm (phenol/2,6-dichlorophenol) is determined in order to test activated carbon behavior during competitive adsorption.

  14. The Transport Properties of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  15. Adsorption kinetics of SO2 on powder activated carbon

    NASA Astrophysics Data System (ADS)

    Li, Bing; Zhang, Qilong; Ma, Chunyuan

    2018-02-01

    The flue gas SO2 adsorption removal by powder activated carbon is investigated based on a fixed bed reactor. The effect of SO2 inlet concentration on SO2 adsorption is investigated and the adsorption kinetics is analyzed. The results indicated that the initial SO2 adsorption rate and the amount of SO2 adsorbed have increased with increased in SO2 inlet concentration. Gas diffusion, surface adsorption and catalytic oxidation reaction are involved in SO2 adsorption on powder activated carbon, which play a different role in different stage. The Bangham kinetics model can be used to predict the kinetics of SO2 adsorption on powder activated carbon.

  16. Activated Carbon Textile via Chemistry of Metal Extraction for Supercapacitors.

    PubMed

    Lam, Do Van; Jo, Kyungmin; Kim, Chang-Hyun; Kim, Jae-Hyun; Lee, Hak-Joo; Lee, Seung-Mo

    2016-12-27

    Carbothermic reduction in the chemistry of metal extraction (MO(s) + C(s) → M(s) + CO(g)) using carbon as a sacrificial agent has been used to smelt metals from diverse oxide ores since ancient times. Here, we paid attention to another aspect of the carbothermic reduction to prepare an activated carbon textile for high-rate-performance supercapacitors. On the basis of thermodynamic reducibility of metal oxides reported by Ellingham, we employed not carbon, but metal oxide as a sacrificial agent in order to prepare an activated carbon textile. We conformally coated ZnO on a bare cotton textile using atomic layer deposition, followed by pyrolysis at high temperature (C(s) + ZnO(s) → C'(s) + Zn(g) + CO(g)). We figured out that it leads to concurrent carbonization and activation in a chemical as well as mechanical way. Particularly, the combined effects of mechanical buckling and fracture that occurred between ZnO and cotton turned out to play an important role in carbonizing and activating the cotton textile, thereby significantly increasing surface area (nearly 10 times) compared with the cotton textile prepared without ZnO. The carbon textiles prepared by carbothermic reduction showed impressive combination properties of high power and energy densities (over 20-fold increase) together with high cyclic stability.

  17. Making Activated Carbon for Storing Gas

    NASA Technical Reports Server (NTRS)

    Wojtowicz, Marek A.; Serio, Michael A.; Suuberg, Eric M.

    2005-01-01

    Solid disks of microporous activated carbon, produced by a method that enables optimization of pore structure, have been investigated as means of storing gas (especially hydrogen for use as a fuel) at relatively low pressure through adsorption on pore surfaces. For hydrogen and other gases of practical interest, a narrow distribution of pore sizes <2 nm is preferable. The present method is a variant of a previously patented method of cyclic chemisorption and desorption in which a piece of carbon is alternately (1) heated to the lower of two elevated temperatures in air or other oxidizing gas, causing the formation of stable carbon/oxygen surface complexes; then (2) heated to the higher of the two elevated temperatures in flowing helium or other inert gas, causing the desorption of the surface complexes in the form of carbon monoxide. In the present method, pore structure is optimized partly by heating to a temperature of 1,100 C during carbonization. Another aspect of the method exploits the finding that for each gas-storage pressure, gas-storage capacity can be maximized by burning off a specific proportion (typically between 10 and 20 weight percent) of the carbon during the cyclic chemisorption/desorption process.

  18. Synthesis of activated carbon fiber from pyrolyzed cotton for adsorption of fume pollutants

    NASA Astrophysics Data System (ADS)

    Nuryantini, A. Y.; Rahayu, F.; Mahen, E. C. S.; Sawitri, A.; Nuryadin, B. W.

    2018-05-01

    In this study, we have synthesized and applied the activated carbon fibbers from pyrolyzed cotton to adsorp fume pollutants. The activated carbon fibbers from cotton were synthesized using an oven with simple heating method at low carbonization temperature. The cotton was successfully turned into carbon within four hours at carbonization temperature of 250°C. The reults showed that activation process using KOH and NaOH significantly affected the functional groups, morphology, diameter, and porosity of the activated carbon fibbers.

  19. The removal of chloramphenicol from water through adsorption on activated carbon

    NASA Astrophysics Data System (ADS)

    Lach, Joanna; Ociepa-Kubicka, Agnieszka

    2017-10-01

    The presented research investigated the removal of chloramphenicol from water solutions on selected activated carbon available in three grades with different porous structure and surface chemical composition. Two models of adsorption kinetics were examined, i.e. the pseudo-first order and the pseudo-second order models. For all examined cases, the results of tests with higher value of coefficient R2 were described by the equation for pseudo-second order kinetics. The adsorption kinetics was also investigated on the activated carbons modified with ozone. The measurements were taken from the solutions with pH values of 2 and 7. Chloramphenicol was the most efficiently adsorbed on the activated carbon F-300 from the solutions with pH=7, and on the activated carbon ROW 08 Supra from the solutions with pH=2. The adsorption of this antibiotic was in the majority of cases higher from the solutions with pH=2 than pH=7. The modification of the activated carbons with ozone enhanced their adsorption capacities for chloramphenicol. The adsorption is influenced by the modification method of activated carbon (i.e. the duration of ozonation of the activated carbon solution and the solution temperature). The results were described with the Freundlich and Langmuir adsorption isotherm equations. Both models well described the obtained results (high R2 values).

  20. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contescu, Cristian I.; Gallego, Nidia C.; Thibaud-Erkey, Catherine

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC formore » measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.« less

  1. A brief review on activated carbon derived from agriculture by-product

    NASA Astrophysics Data System (ADS)

    Yahya, Mohd Adib; Mansor, Muhammad Humaidi; Zolkarnaini, Wan Amani Auji Wan; Rusli, Nurul Shahnim; Aminuddin, Anisah; Mohamad, Khalidah; Sabhan, Fatin Aina Mohamad; Atik, Arif Abdallah Aboubaker; Ozair, Lailatun Nazirah

    2018-06-01

    A brief review focusing on preparation of the activated carbon derived from agriculture by-products is presented. The physical and chemical activation of activated carbon were also reviewed. The effects of various parameters including types of activating agents, temperature, impregnation ratio, were also discussed. The applications of activated carbon from agricultural by products were briefly reviewed. It is provenly evident in this review, the relatively inexpensive and renewable resources of the agricultural waste were found to be effectively being converted into wealth materials.

  2. Application of thermal analysis techniques in activated carbon production

    USGS Publications Warehouse

    Donnals, G.L.; DeBarr, J.A.; Rostam-Abadi, M.; Lizzio, A.A.; Brady, T.A.

    1996-01-01

    Thermal analysis techniques have been used at the ISGS as an aid in the development and characterization of carbon adsorbents. Promising adsorbents from fly ash, tires, and Illinois coals have been produced for various applications. Process conditions determined in the preparation of gram quantities of carbons were used as guides in the preparation of larger samples. TG techniques developed to characterize the carbon adsorbents included the measurement of the kinetics of SO2 adsorption, the performance of rapid proximate analyses, and the determination of equilibrium methane adsorption capacities. Thermal regeneration of carbons was assessed by TG to predict the life cycle of carbon adsorbents in different applications. TPD was used to determine the nature of surface functional groups and their effect on a carbon's adsorption properties.

  3. Active Layer Soil Carbon and Nutrient Mineralization, Barrow, Alaska, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan D. Wullschleger; Holly M. Vander Stel; Colleen Iversen

    This data set consists of bulk soil characteristics as well as carbon and nutrient mineralization rates of active layer soils manually collected from the field in August, 2012, frozen, and then thawed and incubated across a range of temperatures in the laboratory for 28 day periods in 2013-2015. The soils were collected from four replicate polygons in each of the four Areas (A, B, C, and D) of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Soil samples were coincident with the established Vegetation Plots that are located in center, edge, and trough microtopographymore » in each polygon. Data included are 1) bulk soil characteristics including carbon, nitrogen, gravimetric water content, bulk density, and pH in 5-cm depth increments and also by soil horizon, 2) carbon, nitrogen, and phosphorus mineralization rates for soil horizons incubated aerobically (and in one case both aerobically and anaerobically) for 28 days at temperatures that included 2, 4, 8, and 12 degrees C. Additional soil and incubation data are forthcoming. They will be available when published as part of another paper that includes additional replicate analyses.« less

  4. Removal of SO2 from O2-containing flue gas by activated carbon fiber (ACF) impregnated with NH3.

    PubMed

    Xu, Lüsi; Guo, Jia; Jin, Feng; Zeng, Hancai

    2006-02-01

    Adsorption of SO(2) from the O(2)-containing flue gas by granular activated carbons (GACs) and activated carbon fibers (ACFs) impregnated with NH(3) was studied in this technical note. Experimental results showed that the ACFs were high-quality adsorbents due to their unique textural properties. In the presence of moisture, the desulphurization efficiency for the ACFs was improved significantly due to the formation of sulfuric acid. After NH(3) impregnation of ACF samples, nitrogen-containing functional groups (pyridyl C(5)H(4)N- and pyrrolyl C(4)H(4)N-) were detected on the sample surface by using an X-ray photoelectron spectrometer. These functional groups accounted for the enhanced SO(2) adsorption via chemisorption and/or catalytic oxidization.

  5. Suitability of selected free-gas and dissolved-gas sampling containers for carbon isotopic analysis.

    PubMed

    Eby, P; Gibson, J J; Yi, Y

    2015-07-15

    Storage trials were conducted for 2 to 3 months using a hydrocarbon and carbon dioxide gas mixture with known carbon isotopic composition to simulate typical hold times for gas samples prior to isotopic analysis. A range of containers (both pierced and unpierced) was periodically sampled to test for δ(13)C isotopic fractionation. Seventeen containers were tested for free-gas storage (20°C, 1 atm pressure) and 7 containers were tested for dissolved-gas storage, the latter prepared by bubbling free gas through tap water until saturated (20°C, 1 atm) and then preserved to avoid biological activity by acidifying to pH 2 with phosphoric acid and stored in the dark at 5°C. Samples were extracted using valves or by piercing septa, and then introduced into an isotope ratio mass spectrometer for compound-specific δ(13)C measurements. For free gas, stainless steel canisters and crimp-top glass serum bottles with butyl septa were most effective at preventing isotopic fractionation (pierced and unpierced), whereas silicone and PTFE-butyl septa allowed significant isotopic fractionation. FlexFoil and Tedlar bags were found to be effective only for storage of up to 1 month. For dissolved gas, crimp-top glass serum bottles with butyl septa were again effective, whereas silicone and PTFE-butyl were not. FlexFoil bags were reliable for up to 2 months. Our results suggest a range of preferred containers as well as several that did not perform very well for isotopic analysis. Overall, the results help establish better QA/QC procedures to avoid isotopic fractionation when storing environmental gas samples. Recommended containers for air transportation include steel canisters and glass serum bottles with butyl septa (pierced and unpierced). Copyright © 2015 John Wiley & Sons, Ltd.

  6. Removal of fluoride by thermally activated carbon prepared from neem (Azadirachta indica) and kikar (Acacia arabica) leaves.

    PubMed

    Kumar, Sunil; Gupta, Asha; Yadav, J P

    2008-03-01

    The present investigation deals with fluoride removal from aqueous solution by thermally activated neem (Azadirachta indica) leaves carbon (ANC) and thermally activated kikar (Acacia arabica) leaves carbon (AKC) adsorbents. In this study neem leaves carbon and kikar leaves carbon prepared by heating the leaves at 400 degrees C in electric furnace was found to be useful for the removal of fluoride. The adsorbents of 0.3 mm and 1.0 mm sizes of neem and kikar leaves carbon was prepared by standard sieve. Batch experiments done to see the fluoride removal properties from synthetic solution of 5 ppm to study the influence of pH, adsorbent dose and contact time on adsorption efficiency The optimum pH was found to be 6 for both adsorbents. The optimum dose was found to be 0.5g/100 ml forANC (activated neem leaves carbon) and 0.7g/100 ml forAKC (activated kikar leaves carbon). The optimum time was found to be one hour for both the adsorbent. It was also found that adsorbent size of 0.3 mm was more efficient than the 1.0 mm size. The adsorption process obeyed Freundlich adsorption isotherm. The straight line of log (qe-q) vs time at ambient temperature indicated the validity of langergren equation consequently first order nature of the process involved in the present study. Results indicate that besides intraparticle diffusion there maybe other processes controlling the rate which may be operating simultaneously. All optimized conditions were applied for removal of fluoride from four natural water samples.

  7. Production of activated carbons from waste tyres for low temperature NOx control.

    PubMed

    Al-Rahbi, Amal S; Williams, Paul T

    2016-03-01

    Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Adsorption and Pore of Physical-Chemical Activated Coconut Shell Charcoal Carbon

    NASA Astrophysics Data System (ADS)

    Budi, E.; Umiatin, U.; Nasbey, H.; Bintoro, R. A.; Wulandari, Fi; Erlina, E.

    2018-04-01

    The adsorption of activated carbon of coconut shell charcoal on heavy metals (Cu and Fe) of the wastewater and its relation with the carbon pore structure was investigated. The coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours to produce charcoal and then shieved into milimeter sized granule particles. Chemical activation was done by immersing the charcoal into chemical solution of KOH, NaOH, HCl and H3PO4, with various concentration. The activation was followed by physical activation using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology of activated carbon were characterized by using Scanning Electron Microscopy (SEM). Wastewater was made by dissolving CuSO4.5H2O and FeSO4.7H2O into aquades. The metal adsorption was analized by using Atomic Absorption Spectroscopy (AAS). The result shows that in general, the increase of chemical concentration cause the increase of pore number of activated carbon due to an excessive chemical attack and lead the increase of adsorption. However it tend to decrease as further increasing in chemical activator concentration due to carbon collapsing. In general, the adsorption of Cu and Fe metal from wastewater by activated carbon increased as the activator concentration was increased.

  9. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    PubMed

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Process effects on activated carbon with large specific surface area from corn cob.

    PubMed

    Cao, Qing; Xie, Ke-Chang; Lv, Yong-Kang; Bao, Wei-Ren

    2006-01-01

    The main factors that affect the large specific surface area (SSA) of the activated carbon from agricultural waste corn cobs were studied by chemically activated method with solution of KOH and soap which acted as surfactant. The experiment showed that not only the activation temperature, activation time and the mass ratio of KOH to the carbonized material, but also the activated methods using activator obviously influenced the SSA of activated carbon. The experimental operating conditions were as follows: the carbonized temperature being 450 degrees C and keeping time being 4 h using N2 as protective gas; the activation temperature being 850 degrees C and holding time being 1.2 h; the mass ratio of KOH to carbonized material being 4.0; the time of soaking carbonized material in the solution of KOH and soap being 30 min. Under the optimal conditions, the SSA of activated carbon from corn cobs reached 2700 m2/g. And the addition of the soap as surfactant may shorten the soaking time. The structure of the activated carbon prepared had narrow distribution of pore size and the micro-pores accounted for 78%. The advantages of the method described were easy and feasible.

  11. A New Electrochemical Sensor Based on Task-Specific Ionic Liquids-Modified Palm Shell Activated Carbon for the Determination of Mercury in Water Samples

    PubMed Central

    Ismaiel, Ahmed Abu; Aroua, Mohamed Kheireddine; Yusoff, Rozita

    2014-01-01

    In this study, a potentiometric sensor composed of palm shell activated carbon modified with trioctylmethylammonium thiosalicylate (TOMATS) was used for the potentiometric determination of mercury ions in water samples. The proposed potentiometric sensor has good operating characteristics towards Hg (II), including a relatively high selectivity; a Nernstian response to Hg (II) ions in a concentration range of 1.0 × 10−9 to 1.0 × 10−2 M, with a detection limit of 1 × 10−10 M and a slope of 44.08 ± 1.0 mV/decade; and a fast response time (∼5 s). No significant changes in electrode potential were observed when the pH was varied over the range of 3–9. Additionally, the proposed electrode was characterized by good selectivity towards Hg (II) and no significant interferences from other cationic or anionic species. PMID:25051034

  12. Detailed Structural Analyses of KOH Activated Carbon from Waste Coffee Beans

    NASA Astrophysics Data System (ADS)

    Takahata, Tomokazu; Toda, Ikumi; Ono, Hiroki; Ohshio, Shigeo; Akasaka, Hiroki; Himeno, Syuji; Kokubu, Toshinori; Saitoh, Hidetoshi

    2009-11-01

    The relationship of the detailed structural change of KOH activated carbon and hydrogen storage ability was investigated in activated carbon materials fabricated from waste coffee beans. The specific surface area of porous carbon materials calculated from N2 adsorption isotherms stood at 2070 m2/g when the weight ratio of KOH to carbon materials was 5:1, and pore size was in the range of approximately 0.6 to 1.1 nm as micropores. In the structural analysis, X-ray diffraction analysis and Raman spectroscopy indicated structural change in these carbon materials through KOH activation. The order of the graphite structure changed to a smaller scale with this activation. It is theorized that specific surface area increased using micropores provided by carbon materials developed from the descent of the graphite structure. Hydrogen storage ability improved with these structural changes, and reached 0.6 wt % at 2070 m2/g. These results suggest that hydrogen storage ability is conferred by the chemical effect on graphite of carbon materials.

  13. Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon.

    PubMed

    Li, Laisheng; Ye, Weiying; Zhang, Qiuyun; Sun, Fengqiang; Lu, Ping; Li, Xukai

    2009-10-15

    Cerium supported on activated carbon (Ce/AC), which was prepared by dipping method, was employed to degrade dimethyl phthalate (DMP) in water. The mineral matter present in the activated carbon positively contributes to its activity to enhance DMP ozonation process. A higher dipping Ce(NO(3))(3) concentration and calcination process increase its microporous volume and surface area, and decreases its exterior surface area. The catalytic activity reaches optimal when 0.2% (w/w) cerium is deposited on activated carbon. Ce/AC catalyst was characterized by XRD, SEM and BET. The presence of either activated carbon or Ce/AC catalyst considerably improves their degradation and mineralization in the ozonation of DMP. During the ozonation (50mg/h ozone flow rate) of a 30 mg/L DMP (initial pH 5.0) with the presence of Ce/AC catalyst, TOC removal rate reaches 68% at 60 min oxidation time, 48% using activated carbon as catalyst, only 22% with ozonation alone. The presence of tert-butanol (a well known OH radical scavenger) strongly inhibits DMP degradation by activated carbon or Ce/AC catalytic ozonation. TOC removal rate follows the second-order kinetics model well. In the ozonation of DMP with 50mg/h ozone flow rate, its mineralization rate constant with the presence of Ce/AC catalyst is 2.5 times higher than that of activated carbon, 7.5 times higher than that of O(3) alone. Ce/AC catalyst shows the better catalytic activity and stability based on 780 min sequential reaction in the ozonation of DMP. Ce/AC was a promising catalyst for ozonizing organic pollutants in the aqueous solution.

  14. Highly Crumpled All-Carbon Transistors for Brain Activity Recording.

    PubMed

    Yang, Long; Zhao, Yan; Xu, Wenjing; Shi, Enzheng; Wei, Wenjing; Li, Xinming; Cao, Anyuan; Cao, Yanping; Fang, Ying

    2017-01-11

    Neural probes based on graphene field-effect transistors have been demonstrated. Yet, the minimum detectable signal of graphene transistor-based probes is inversely proportional to the square root of the active graphene area. This fundamentally limits the scaling of graphene transistor-based neural probes for improved spatial resolution in brain activity recording. Here, we address this challenge using highly crumpled all-carbon transistors formed by compressing down to 16% of its initial area. All-carbon transistors, chemically synthesized by seamless integration of graphene channels and hybrid graphene/carbon nanotube electrodes, maintained structural integrity and stable electronic properties under large mechanical deformation, whereas stress-induced cracking and junction failure occurred in conventional graphene/metal transistors. Flexible, highly crumpled all-carbon transistors were further verified for in vivo recording of brain activity in rats. These results highlight the importance of advanced material and device design concepts to make improvements in neuroelectronics.

  15. Activated carbon/Fe(3)O(4) nanoparticle composite: fabrication, methyl orange removal and regeneration by hydrogen peroxide.

    PubMed

    Do, Manh Huy; Phan, Ngoc Hoa; Nguyen, Thi Dung; Pham, Thi Thu Suong; Nguyen, Van Khoa; Vu, Thi Thuy Trang; Nguyen, Thi Kim Phuong

    2011-11-01

    In the water treatment field, activated carbons (ACs) have wide applications in adsorptions. However, the applications are limited by difficulties encountered in separation and regeneration processes. Here, activated carbon/Fe(3)O(4) nanoparticle composites, which combine the adsorption features of powdered activated carbon (PAC) with the magnetic and excellent catalytic properties of Fe(3)O(4) nanoparticles, were fabricated by a modified impregnation method using HNO(3) as the carbon modifying agent. The obtained composites were characterized by X-ray diffraction, scanning and transmission electron microscopy, nitrogen adsorption isotherms and vibrating sample magnetometer. Their performance for methyl orange (MO) removal by adsorption was evaluated. The regeneration of the composite and PAC-HNO(3) (powdered activated carbon modified by HNO(3)) adsorbed MO by hydrogen peroxide was investigated. The composites had a high specific surface area and porosity and a superparamagnetic property that shows they can be manipulated by an external magnetic field. Adsorption experiments showed that the MO sorption process on the composites followed pseudo-second order kinetic model and the adsorption isotherm date could be simulated with both the Freundlich and Langmuir models. The regeneration indicated that the presence of the Fe(3)O(4) nanoparticles is important for a achieving high regeneration efficiency by hydrogen peroxide. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Comparative study of carbon nanotubes and granular activated carbon: Physicochemical properties and adsorption capacities.

    PubMed

    Gangupomu, Roja Haritha; Sattler, Melanie L; Ramirez, David

    2016-01-25

    The overall goal was to determine an optimum pre-treatment condition for carbon nanotubes (CNTs) to facilitate air pollutant adsorption. Various combinations of heat and chemical pre-treatment were explored, and toluene was tested as an example hazardous air pollutant adsorbate. Specific objectives were (1) to characterize raw and pre-treated single-wall (SW) and multi-wall (MW) CNTs and compare their physical/chemical properties to commercially available granular activated carbon (GAC), (2) to determine the adsorption capacities for toluene onto pre-treated CNTs vs. GAC. CNTs were purified via heat-treatment at 400 °C in steam, followed by nitric acid treatment (3N, 5N, 11N, 16N) for 3-12 h to create openings to facilitate adsorption onto interior CNT sites. For SWNT, Raman spectroscopy showed that acid treatment removed impurities up to a point, but amorphous carbon reformed with 10h-6N acid treatment. Surface area of SWNTs with 3 h-3N acid treatment (1347 m(2)/g) was higher than the raw sample (1136 m(2)/g), and their toluene maximum adsorption capacity was comparable to GAC. When bed effluent reached 10% of inlet concentration (breakthrough indicating time for bed cleaning), SWNTs had adsorbed 240 mg/g of toluene, compared to 150 mg/g for GAC. Physical/chemical analyses showed no substantial difference for pre-treated vs. raw MWNTs. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Polanyi Evaluation of Adsorptive Capacities of Commercial Activated Carbons

    NASA Technical Reports Server (NTRS)

    Monje, Oscar; Surma, Jan M.

    2017-01-01

    Commercial activated carbons from Calgon (207C and OVC) and Cabot Norit (RB2 and GCA 48) were evaluated for use in spacecraft trace contaminant control filters. The Polanyi potential plots of the activated carbons were compared using to those of Barnebey-Cheney Type BD, an untreated activated carbon with similar properties as the acid-treated Barnebey-Sutcliffe Type 3032 utilized in the TCCS. Their adsorptive capacities under dry conditions were measured in a closed loop system and the sorbents were ranked for their ability to remove common VOCs found in spacecraft cabin air. This comparison suggests that these sorbents can be ranked as GCA 48 207C, OVC RB2 for the compounds evaluated.

  18. Isotopic composition of carbon and hydrogen in some Apollo 14 and 15 lunar samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, I.; Hardcastle, K.G.; Gleason, J.D.

    1974-01-01

    Isotopic composition of carbon and hydrogen in some Apollo 14 and 15 lunar samples was determined by use of a newly constructed combustion line that yields low blanks for CO/sub 2/ and H/sub 2/. The results from combustion of fines and breccia from Apollo 14 lunar samples and of fines, breccia, and hasalt from Apollo 15 were compared with data obtained by heating samples in vacuo to over 1,350 deg C. The two techniques gave similar results. Total carbon in the flnes ranged from 51 to 110 p/m with a delta C/sup 13/ of 112 to --8 per mil (partsmore » per thousand) PDB. The breccias contain 22 to 50 p/m carbon with a delta C/sup 13/ of -21 to -25 per mil. The crystalline rock (sample 15555) has a carbon contert of about 7 p/m and a delta C/sup 13/ of --28 per mil. The total hydrogen in the fines ranges from 66 to 120 p/m with a (D/H) x 10/sup -6/ of 39 to 90. The breccias contain 8 to 38 p/m H/sub 2/ with a (D/H) x 10/sup -6/of 103 to 144. The crystalline rock contains about 2 p/m H/sub 2/ with a (D/H) x 10/sup -6/ of about 140. Arguments are presented to show that the contamination by Earth materials is not as serious a problem as has been proposed by previous authors. (auth)« less

  19. Activated carbon from leather shaving wastes and its application in removal of toxic materials.

    PubMed

    Kantarli, Ismail Cem; Yanik, Jale

    2010-07-15

    In this study, utilization of a solid waste as raw material for activated carbon production was investigated. For this purpose, activated carbons were produced from chromium and vegetable tanned leather shaving wastes by physical and chemical activation methods. A detailed analysis of the surface properties of the activated carbons including acidity, total surface area, extent of microporosity and mesoporosity was presented. The activated carbon produced from vegetable tanned leather shaving waste produced has a higher surface area and micropore volume than the activated carbon produced from chromium tanned leather shaving waste. The potential application of activated carbons obtained from vegetable tanned shavings as adsorbent for removal of water pollutants have been checked for phenol, methylene blue, and Cr(VI). Adsorption capacities of activated carbons were found to be comparable to that of activated carbons derived from biomass. 2010 Elsevier B.V. All rights reserved.

  20. [Preparation of a novel activated carbon coating fiber for solid phase micro-extraction and its application for halocarbon compound analysis in water].

    PubMed

    Wang, Shutao; Wang, Yan; You, Hong; Liang, Zhihua

    2004-09-01

    A novel activated carbon coating fiber used for solid phase micro-extraction (SPME) was prepared using activated carbon powder and silica resin adhesive. The extraction properties of the novel activated carbon coating fiber were investigated. The results indicate that this coating fiber has high concentration ability, with enrichment factors for chloroform, carbon tetrachloride, trichloroethylene and tetrachloroethylene in the range of 13.8 to 18.7. The fiber is stable at temperature as high as 290 degrees C and it can be used for over 140 times at 250 degrees C. The activated carbon coating fiber was then applied to the analysis of the four halocarbon compounds mentioned above. A linear correlation with correlation coefficients between 0.995 2 and 0.999 4 and the detection limits between 0.008 and 0.05 microg/L were observed. The method was also applied to a real water sample analysis and the recoveries of these halocarbon compounds were from 95.5% to 104.6%.

  1. Catalytic activation of carbon–carbon bonds in cyclopentanones

    PubMed Central

    Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin

    2017-01-01

    In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon–carbon single bonds (C–C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds1–13. The challenge in achieving such activation is the kinetic inertness of C–C bonds and the relative weakness of newly formed carbon–metal bonds6,14. The most common tactic starts with a three- or four-membered carbon-ring system9–13, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C–C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C–C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C–C bond can be activated; this is followed by activation of a carbon–hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones—a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate. PMID:27806379

  2. The Effect of CO2 Activation on the Electrochemical Performance of Coke-Based Activated Carbons for Supercapacitors.

    PubMed

    Lee, Hye-Min; Kim, Hong-Gun; An, Kay-Hyeok; Kim, Byung-Joo

    2015-11-01

    The present study developed electrode materials for supercapacitors by activating coke-based activated carbons with CO2. For the activation reaction, after setting the temperature at 1,000 degrees C, four types of activated carbons were produced, over an activation time of 0-90 minutes and with an interval of 30 minutes as the unit. The electrochemical performance of the activated carbons produced was evaluated to examine the effect of CO2 activation. The surface structure of the porous carbons activated through CO2 activation was observed using a scanning electron microscope (SEM). To determine the N2/77 K isothermal adsorption characteristics, the Brunauer-Emmett-Teller (BET) equation and the Barrett-Joyner-Halenda (BJH) equation were used to analyze the pore characteristics. In addition, charge and discharge tests and cyclic voltammetry (CV) were used to analyze the electrochemical characteristics of the changed pore structure. According to the results of the experiments, the N2 adsorption isotherm curves of the porous carbons produced belonged to Type IV in the International Union of Pore and Applied Chemistry (IUPAC) classification and consisted of micropores and mesopores, and, as the activation of CO2 progressed, micropores decreased and mesopores developed. The specific surface area of the porous carbons activated by CO2 was 1,090-1,180 m2/g and thus showed little change, but those of mesopores were 0.43-0.85 cm3/g, thus increasing considerably. In addition, when the electrochemical characteristics were analyzed, the specific capacity was confirmed to have increased from 13.9 F/g to 18.3 F/g. From these results, the pore characteristics of coke-based activated carbons changed considerably because of CO2 activation, and it was therefore possible to increase the electrochemical characteristics.

  3. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation.

    PubMed

    Tseng, Ru-Ling

    2007-08-25

    Activated carbon was prepared from plum kernels by NaOH activation at six different NaOH/char ratios. The physical properties including the BET surface area, the total pore volume, the micropore ratio, the pore diameter, the burn-off, and the scanning electron microscope (SEM) observation as well as the chemical properties, namely elemental analysis and temperature programmed desorption (TPD), were measured. The results revealed a two-stage activation process: stage 1 activated carbons were obtained at NaOH/char ratios of 0-1, surface pyrolysis being the main reaction; stage 2 activated carbons were obtained at NaOH/char ratios of 2-4, etching and swelling being the main reactions. The physical properties of stage 2 activated carbons were similar, and specific area was from 1478 to 1887m(2)g(-1). The results of reaction mechanism of NaOH activation revealed that it was apparently because of the loss ratio of elements C, H, and O in the activated carbon, and the variations in the surface functional groups and the physical properties. The adsorption of the above activated carbons on phenol and three kinds of dyes (MB, BB1, and AB74) were used for an isotherm equilibrium adsorption study. The data fitted the Langmuir isotherm equation. Various kinds of adsorbents showed different adsorption types; separation factor (R(L)) was used to determine the level of favorability of the adsorption type. In this work, activated carbons prepared by NaOH activation were evaluated in terms of their physical properties, chemical properties, and adsorption type; and activated carbon PKN2 was found to have most application potential.

  4. Magnetite impregnation effects on the sorbent properties of activated carbons and biochars.

    PubMed

    Han, Zhantao; Sani, Badruddeen; Mrozik, Wojciech; Obst, Martin; Beckingham, Barbara; Karapanagioti, Hrissi K; Werner, David

    2015-03-01

    This paper discusses the sorbent properties of magnetic activated carbons and biochars produced by wet impregnation with iron oxides. The sorbents had magnetic susceptibilities consistent with theoretical predictions for carbon-magnetite composites. The high BET surface areas of the activated carbons were preserved in the synthesis, and enhanced for one low surface area biochar by dissolving carbonates. Magnetization decreased the point of zero charge. Organic compound sorption correlated strongly with BET surface areas for the pristine and magnetized materials, while metal cation sorption did not show such a correlation. Strong sorption of the hydrophobic organic contaminant phenanthrene to the activated carbon or biochar surfaces was maintained following magnetite impregnation, while phenol sorption was diminished, probably due to enhanced carbon oxidation. Copper, zinc and lead sorption to the activated carbons and biochars was unchanged or slightly enhanced by the magnetization, and iron oxides also contributed to the composite metal sorption capacity. While a magnetic biochar with 219 ± 3.7 m(2)/g surface area nearly reached the very strong organic pollutant binding capacity of the two magnetic activated carbons, a magnetic biochar with 68 ± 2.8 m(2)/g surface area was the best metal sorbent. Magnetic biochars thus hold promise as more sustainable alternatives to coal-derived magnetic activated carbons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Characteristics of activated carbon resulted from pyrolysis of the oil palm fronds powder

    NASA Astrophysics Data System (ADS)

    Maulina, S.; Iriansyah, M.

    2018-02-01

    Activated carbon is the product of a charcoal impregnation process that has a higher absorption capacity and has more benefits than regular char. Therefore, this study aims to cultivate the powder of oil palm fronds into activated carbon that meets the requirements of Standard National Indonesia 06-3730-1995. To do so, the carbonization process of the powder of oil palm fronds was carried out using a pyrolysis reactor for 30 minutes at a temperature of 150 °C, 200 °C, and 250 °C in order to produce activated char. Then, the char was impregnated using Phosphoric Acid activator (H3PO4) for 24 hours. Characteristics of activated carbon indicate that the treatment of char by chemical activation of oil palm fronds powder has an effect on the properties of activated carbon. The activated carbons that has the highest absorption properties to Iodine (822.91 mg/g) were obtained from the impregnation process with 15% concentration of Phosphoric Acid (H3PO4) at pyrolysis temperature of 200 °C. Furthermore, the activation process resulted in activated carbon with water content of 8%, ash content of 4%, volatile matter 39%, and fixed carbon 75%, Iodine number 822.91 mg/g.

  6. Atmospheric Carbon Dioxide Mixing Ratios from the NOAA CMDL Carbon Cycle Cooperative Global Air Sampling Network (2009)

    DOE Data Explorer

    Conway, Thomas [NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO (USA); Tans, Pieter [NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO (USA)

    2009-01-01

    The National Oceanic and Atmospheric Administration's Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) has measured CO2 in air samples collected weekly at a global network of sites since the late 1960s. Atmospheric CO2 mixing ratios reported in these files were measured by a nondispersive infrared absorption technique in air samples collected in glass flasks. All CMDL flask samples are measured relative to standards traceable to the World Meteorological Organization (WMO) CO2 mole fraction scale. These measurements constitute the most geographically extensive, carefully calibrated, internally consistent atmospheric CO2 data set available and are essential for studies aimed at better understanding the global carbon cycle budget.

  7. Poultry litter-based activated carbon for removing heavy metal ions in water.

    PubMed

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  8. Activation of structural carbon fibres for potential applications in multifunctional structural supercapacitors.

    PubMed

    Qian, Hui; Diao, Hele; Shirshova, Natasha; Greenhalgh, Emile S; Steinke, Joachim G H; Shaffer, Milo S P; Bismarck, Alexander

    2013-04-01

    The feasibility of modifying conventional structural carbon fibres via activation has been studied to create fibres, which can be used simultaneously as electrode and reinforcement in structural composite supercapacitors. Both physical and chemical activation, including using steam, carbon dioxide, acid and potassium hydroxide, were conducted and the resulting fibre properties compared. It was proven that the chemical activation using potassium hydroxide is an effective method to prepare activated structural carbon fibres that possess both good electrochemical and mechanical properties. The optimal activation conditions, such as the loading of activating agent and the burn-off of carbon fibres, was identified and delivered a 100-fold increase in specific surface area and 50-fold improvement in specific electrochemical capacitance without any degradation of the fibre mechanical properties. The activation process was successfully scaled-up, showing good uniformity and reproducibility. These activated structural carbon fibres are promising candidates as reinforcement/electrodes for multifunctional structural energy storage devices. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Optimization of banana trunk-activated carbon production for methylene blue-contaminated water treatment

    NASA Astrophysics Data System (ADS)

    Danish, Mohammed; Ahmad, Tanweer; Nadhari, W. N. A. W.; Ahmad, Mehraj; Khanday, Waheed Ahmad; Ziyang, Lou; Pin, Zhou

    2018-03-01

    This experiment was run to characterize the banana trunk-activated carbon through methylene blue dye adsorption property. The H3PO4 chemical activating agent was used to produce activated carbons from the banana trunk. A small rotatable central composite design of response surface methodology was adopted to prepare chemically (H3PO4) activated carbon from banana trunk. Three operating variables such as activation time (50-120 min), activation temperature (450-850 °C), and activating agent concentration (1.5-7.0 mol/L) play a significant role in the adsorption capacities ( q) of activated carbons against methylene blue dye. The results implied that the maximum adsorption capacity of fixed dosage (4.0 g/L) banana trunk-activated carbon was achieved at the activation time of 51 min, the activation temperature of 774 °C, and H3PO4 concentration of 5.09 mol/L. At optimum conditions of preparation, the obtained banana trunk-activated carbon has adsorption capacity 64.66 mg/g against methylene blue. Among the prepared activated carbons run number 3 (prepared with central values of the operating variables) was characterized through Fourier transform infrared spectroscopy, field emission scanning microscopy, and powder X-ray diffraction.

  10. Microorganisms, Organic Carbon, and Their Relationship with Oxidant Activity in Hyper-Arid Mars-Like Soils: Implications for Soil Habitability

    NASA Technical Reports Server (NTRS)

    Valdivia-Silva, Julio E.; Karouia, Fathi; Navarro-Gonzalez, Rafael; McKay, Christopher

    2016-01-01

    Soil samples from the hyper-arid region in the Atacama 23 Desert in Southern Peru (La Joya Desert) were analyzed for total and labile organic carbon (TOC & LOC), phospholipid fatty acids analysis (PLFA), quantitative real time polymerase chain reaction (qRT-PCR), 4',6- diamidino-2-phenylindole (DAPI)-fluorescent microscopy, culturable microorganisms, and oxidant activity, in order to understand the relationship between the presence of organic matter and microorganisms in these types of soils. TOC content levels were similar to the labile pool of carbon suggesting the absence of recalcitrant carbon in these soils. The range of LOC was from 2 to 60 micro-g/g of soil. PLFA analysis indicated a maximum of 2.3 x 10(exp 5) cell equivalents/g. Culturing of soil extracts yielded 1.1 x 10(exp 2)-3.7 x 10(exp 3) CFU/g. qRT-PCR showed between 1.0 x 10(exp 2) and 8 x 10(exp 3) cells/g; and DAPI fluorescent staining indicated bacteria counts up to 5 x 104 cells/g. Arid and semiarid samples (controls) showed values between 10(exp 7) and 10(exp 11) cells/g with all of the methods used. Importantly, the concentration of microorganisms in hyper-arid soils did not show any correlation with the organic carbon content; however, there was a significant dependence on the oxidant activity present in these soil samples evaluated as the capacity to decompose sodium formate in 10 hours. We suggest that the analysis of oxidant activity could be a useful indicator of the microbial habitability in hyper-arid soils, obviating the need to measure water activity over time. This approach could be useful in astrobiological studies on other worlds.

  11. Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies.

    PubMed

    Goel, Jyotsna; Kadirvelu, Krishna; Rajagopal, Chitra; Kumar Garg, Vinod

    2005-10-17

    In the present study, a deeper understanding of adsorption behavior of Pb(II) from aqueous systems onto activated carbon and treated activated carbon has been attempted via static and column mode studies under various conditions. It probes mainly two adsorbents that is, activated carbon (AC) and modified activated carbon (AC-S). Characterization of both the adsorbents was one of the key focal areas of the present study. This has shown a clear change or demarcation in the various physical and chemical properties of the modified adsorbent from its precursor activated carbon. Both the adsorbents are subjected to static mode adsorption studies and then after a comparison based on isotherm analysis; more efficient adsorbent is screened for column mode adsorption studies. The lead removal increased for sample of treated carbon. The extent of Pb(II) removal was found to be higher in the treated activated carbon. The aim of carrying out the continuous-flow studies was to assess the effect of various process variables, viz., of bed height, hydraulic loading rate and initial feed concentration on breakthrough time and adsorption capacity. This has helped in ascertaining the practical applicability of the adsorbent. Breakthrough curves were plotted for the adsorption of lead on the adsorbent using continuous-flow column operation by varying different operating parameters like hydraulic loading rate (3.0-10.5 m3/(hm2)), bed height (0.3-0.5 m) and feed concentrations (2.0-6.0 mg/l). At the end, an attempt has also been made to model the data generated from column studies using the empirical relationship based on Bohart-Adams model. This model has provided an objective framework to the subjective interpretation of the adsorption system and the model constant obtained here can be used to achieve the ultimate objective of our study that is, up scaling and designing of adsorption process at the pilot plant scale level. AC-S column regeneration using 0.5 and 1.0M concentration of

  12. Electricity generation from wetlands with activated carbon bioanode

    NASA Astrophysics Data System (ADS)

    Sudirjo, E.; Buisman, C. J. N.; Strik, D. P. B. T. B.

    2018-03-01

    Paddy fields are potential non-tidal wetlands to apply Plant Microbial Fuel Cell (PMFC) technology. World widely they cover about 160 million ha of which 13.3 million ha is located in Indonesia. With the PMFC, in-situ electricity is generated by a bioanode with electrochemically active bacteria which use primary the organic matter supplied by the plant (e.g. as rhizodeposits and plant residues). One of limitations when installing a PMFC in a non-tidal wetland is the usage of “expensive” large amounts of electrodes to overcome the poor conductivity of wet soils. However, in a cultivated wetland such as rice paddy field, it is possible to alter soil composition. Adding a conductive carbon material such as activated carbon is believed to improve soil conductivity with minimum impact on plant vitality. The objective of this research was to study the effect of activated carbon as an alternative bioanode material on the electricity output and plants vitality. Lab result shows that activated carbon can be a potential alternative for bioanode material. It can continuously deliver current on average 1.54 A/m3 anode (0.26 A/m2 PGA or 66 mW/m2 PGA) for 98 days. Based on this result the next step is to do a test of this technology in the real paddy fields.

  13. Activated carbon from pyrolysis of brewer's spent grain: Production and adsorption properties.

    PubMed

    Vanreppelen, Kenny; Vanderheyden, Sara; Kuppens, Tom; Schreurs, Sonja; Yperman, Jan; Carleer, Robert

    2014-07-01

    Brewer's spent grain is a low cost residue generated by the brewing industry. Its chemical composition (high nitrogen content 4.35 wt.%, fibres, etc.) makes it very useful for the production of added value in situ nitrogenised activated carbon. The composition of brewer's spent grain revealed high amounts of cellulose (20.8 wt.%), hemicellulose (48.78 wt.%) and lignin (11.3 wt.%). The fat, ethanol extractives and ash accounted for 8.17 wt.%, 4.7 wt.% and 3.2 wt.%, respectively. Different activated carbons were produced in a lab-scale pyrolysis/activation reactor by applying several heat and steam activation profiles on brewer's spent grain. Activated carbon yields from 16.1 to 23.6 wt.% with high N-contents (> 2 wt.%) were obtained. The efficiency of the prepared activated carbons for phenol adsorption was studied as a function of different parameters: pH, contact time and carbon dosage relative to two commercial activated carbons. The equilibrium isotherms were described by the non-linear Langmuir and Freundlich models, and the kinetic results were fitted using the pseudo-first-order model and the pseudo-second-order model. The feasibility of an activated carbon production facility (onsite and offsite) that processes brewer's spent grain for different input feeds is evaluated based on a techno-economic model for estimating the net present value. Even though the model assumptions start from a rather pessimistic scenario, encouraging results for a profitable production of activated carbon using brewer's spent grain are obtained. © The Author(s) 2014.

  14. SO2 and NH3 gas adsorption on a ternary ZnO/CuO/CuCl2 impregnated activated carbon evaluated using combinatorial methods.

    PubMed

    Romero, Jennifer V; Smith, Jock W H; Sullivan, Braden M; Croll, Lisa M; Dahn, J R

    2012-01-09

    Ternary libraries of 64 ZnO/CuO/CuCl(2) impregnated activated carbon samples were prepared on untreated or HNO(3)-treated carbon and evaluated for their SO(2) and NH(3) gas adsorption properties gravimetrically using a combinatorial method. CuCl(2) is shown to be a viable substitute for HNO(3) and some compositions of ternary ZnO/CuO/CuCl(2) impregnated carbon samples prepared on untreated carbon provided comparable SO(2) and NH(3) gas removal capacities to the materials prepared on HNO(3)-treated carbon. Through combinatorial methods, it was determined that the use of HNO(3) in this multigas adsorbent formulation can be avoided.

  15. Bimodal activated carbons derived from resorcinol-formaldehyde cryogels

    PubMed Central

    Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Pizzi, Antonio; Celzard, Alain

    2011-01-01

    Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 °C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 °C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l−1, and the acid–cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H3PO4, close to 2200 m2 g−1 and 0.7 cm3 g−1, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l−1 led to authentic bimodal activated carbons, having a surface area as high as 1780 m2 g−1 and 0.6 cm3 g−1 of microporous volume easily accessible through a widely developed macroporosity. PMID:27877405

  16. Efficiency of activated carbon to transform ozone into *OH radicals: influence of operational parameters.

    PubMed

    Sánchez-Polo, M; von Gunten, U; Rivera-Utrilla, J

    2005-09-01

    Based on previous findings (Jans, U., Hoigné, J., 1998. Ozone Sci. Eng. 20, 67-87), the activity of activated carbon for the transformation of ozone into *OH radicals including the influence of operational parameters (carbon dose, ozone dose, carbon-type and carbon treatment time) was quantified. The ozone decomposition constant (k(D)) was increased by the presence of activated carbon in the system and depending on the type of activated carbon added, the ratio of the concentrations of *OH radicals and ozone, the R(ct) value ([*OH]/[O3]), was increased by a factor 3-5. The results obtained show that the surface chemical and textural characteristics of the activated carbon determines its activity for the transformation of ozone into *OH radicals. The most efficient carbons in this process are those with high basicity and large surface area. The obtained results show that the interaction between ozone and pyrrol groups present on the surface of activated carbon increase the concentration of O2*- radicals in the system, enhancing ozone transformation into *OH radicals. The activity of activated carbon decreases for extended ozone exposures. This may indicate that activated carbon does not really act as a catalyst but rather as a conventional initiator or promoter for the ozone transformation into *OH radicals. Ozonation of Lake Zurich water ([O3] = 1 mg/L) in presence of activated carbon (0.5 g/L) lead to an increase in the k(D) and R(ct) value by a factor of 10 and 39, respectively, thereby favouring the removal of ozone-resistant contaminants. Moreover, the presence of activated carbon during ozonation of Lake Zurich water led to a 40% reduction in the content of dissolved organic carbon during the first 60 min of treatment. The adsorption of low concentrations of dissolved organic matter (DOM) on activated carbon surfaces did not modify its capacity to initiate/promote ozone transformation into *OH radicals.

  17. Sulfurized activated carbon for high energy density supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Yunxia; Candelaria, Stephanie L.; Li, Yanwei; Li, Zhimin; Tian, Jianjun; Zhang, Lili; Cao, Guozhong

    2014-04-01

    Sulfurized activated carbon (SAC), made by coating the pore surface with thiophenic sulfur functional groups from the pyrolysis of sulfur flakes, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy (XPS), the sulfur content in the SAC was found to be 2.7 at%. Electrochemical properties from potentiostatic and galvanostatic measurements, and electrochemical impedance spectroscopy (EIS) were used to evaluate the effect of sulfur on porous carbon electrodes. The SAC electrode exhibits better conductivity, and an obvious increase in specific capacitance that is almost 40% higher than plain activated carbons (ACs) electrode at a high current density of 1.4 A g-1. The proposed mechanism for improved conductivity and capacitive performance due to the sulfur functional groups on ACs will be discussed.

  18. Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-11-01

    The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.

  19. Preparation of steam activated carbon from rubberwood sawdust (Hevea brasiliensis) and its adsorption kinetics.

    PubMed

    Prakash Kumar, B G; Shivakamy, K; Miranda, Lima Rose; Velan, M

    2006-08-25

    Activated carbon was produced from a biowaste product, rubberwood sawdust (RWSD) using steam in a high temperature fluidized bed reactor. Experiments were carried out to investigate the influence of various process parameters such as activation time, activation temperature, particle size and fluidising velocity on the quality of the activated carbon. The activated carbon was characterized based on its iodine number, methylene blue number, Brauner Emmet Teller (BET) surface area and surface area obtained using the ethylene glycol mono ethyl ether (EGME) retention method. The best quality activated carbon was obtained at an activation time and temperature of 1h and 750 degrees C for an average particle size of 0.46 mm. The adsorption kinetics shows that pseudo-second-order rate fitted the adsorption kinetics better than pseudo-first-order rate equation. The adsorption capacity of carbon produced from RWSD was found to be 1250 mg g(-1) for the Bismark Brown dye. The rate constant and diffusion coefficient for intraparticle transport were determined for steam activated carbon. The characteristic of the prepared activated carbon was found comparable to the commercial activated carbon.

  20. Kinetics and equilibrium models for the sorption of tributyltin to nZnO, activated carbon and nZnO/activated carbon composite in artificial seawater.

    PubMed

    Ayanda, Olushola S; Fatoki, Olalekan S; Adekola, Folahan A; Ximba, Bhekumusa J

    2013-07-15

    The removal of tributyltin (TBT) from artificial seawater using nZnO, activated carbon and nZnO/activated carbon composite was systematically studied. The equilibrium and kinetics of adsorption were investigated in a batch adsorption system. Equilibrium adsorption data were analyzed using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) isotherm models. Pseudo first- and second-order, Elovich, fractional power and intraparticle diffusion models were applied to test the kinetic data. Thermodynamic parameters such as ΔG°, ΔS° and ΔH° were also calculated to understand the mechanisms of adsorption. Optimal conditions for the adsorption of TBT from artificial seawater were then applied to TBT removal from natural seawater. A higher removal efficiency of TBT (>99%) was obtained for the nZnO/activated carbon composite material and for activated carbon but not for nZnO. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Characterization and organic electric-double-layer-capacitor application of KOH activated coal-tar-pitch-based carbons: Effect of carbonization temperature

    NASA Astrophysics Data System (ADS)

    Choi, Poo Reum; Lee, Eunji; Kwon, Soon Hyung; Jung, Ji Chul; Kim, Myung-Soo

    2015-12-01

    The present study reports the influence of pre-carbonization on the properties of KOH-activated coal tar pitch (CTP). The change of crystallinity and pore structure of pre-carbonized CTPs as well as their activated carbons (ACs) as function of pre-carbonization temperature are investigated. The crystallinity of pre-carbonized CTPs increases with increasing the carbonization temperature up to 600 °C, but a disorder occurs during the carbonization around 700 °C and an order happens gradually with increasing the carbonization temperatures in range of 800-1000 °C. The CTPs pre-carbonized at high temperatures are more difficult to be activated with KOH than those pre-carbonized at low temperatures due to the increase of micro-crystalline size and the decrease of surface functional groups. The micro-pores and meso-pores are well developed at around 1.0 nm and 2.4 nm, respectively, as the ACs are pre-carbonized at temperatures of 500-600 °C, exhibiting high specific capacitances as electrode materials for electric double layer capacitor (EDLC). Although the specific surface area (SSA) and pore volume of ACs pre-carbonized at temperatures of 900-1000 °C are extraordinary low (non-porous) as compared to those of AC pre-carbonized at 600 °C, their specific capacitances are comparable to each other. The large specific capacitances with low SSA ACs can be attributed to the structural change resulting from the electrochemical activation during the 1st charge above 2.0 V.

  2. Linking Microbial Community Structure, Activity and Carbon Cycling in Biological Soil Crust

    NASA Astrophysics Data System (ADS)

    Swenson, T.; Karaoz, U.; Swenson, J.; Bowen, B.; Northen, T.

    2016-12-01

    Soils play a key role in the global carbon cycle, but the relationships between soil microbial communities and metabolic pathways are poorly understood. In this study, biological soil crusts (biocrusts) from the Colorado Plateau are being used to develop soil metabolomics methods and statistical models to link active microbes to the abundance and turnover of soil metabolites and to examine the detailed substrate and product profiles of individual soil bacteria isolated from biocrust. To simulate a pulsed activity (wetting) event and to analyze the subsequent correlations between soil metabolite dynamics, community structure and activity, biocrusts were wetup with water and samples (porewater and DNA) were taken at various timepoints up to 49.5 hours post-wetup. DNA samples were sequenced using the HiSeq sequencing platform and porewater metabolites were analyzed using untargeted liquid chromatography/ mass spectrometry. Exometabolite analysis revealed the release of a breadth of metabolites including sugars, amino acids, fatty acids, dicarboxylic acids, nucleobases and osmolytes. In general, many metabolites (e.g. amino acids and nucleobases) immediately increased in abundance following wetup and then steadily decreased. However, a few continued to increase over time (e.g. xanthine). Interestingly, in a previous study exploring utilization of soil metabolites by sympatric bacterial isolates from biocrust, we observed xanthine to be released by some Bacilli sp. Furthermore, our current metagenomics data show that members of the Paenibacillaceae family increase in abundance in late wetup samples. Previous 16S amplicon data also show a "Firmicutes bloom" following wetup with the new metagenomic data resolving this at genome-level. Our continued metagenome and exometabolome analyses are allowing us to examine complex pulsed-activity events in biocrust microbial communities specifically by correlating the abundance of microbes to the release of soil metabolites

  3. The Influence of Calcium Carbonate Composition and Activated Carbon in Pack Carburizing Low Carbon Steel Process in The Review of Hardness and Micro Structure

    NASA Astrophysics Data System (ADS)

    Hafni; Hadi, Syafrul; Edison

    2017-12-01

    Carburizing is a way of hardening the surface by heating the metal (steel) above the critical temperature in an environment containing carbon. Steel at a temperature of the critical temperature of affinity to carbon. Carbon is absorbed into the metal form a solid solution of carbon-iron and the outer layer has high carbon content. When the composition of the activator and the activated charcoal is right, it will perfect the carbon atoms to diffuse into the test material to low carbon steels. Thick layer of carbon Depending on the time and temperature are used. Pack carburizing process in this study, using 1 kg of solid carbon derived from coconut shell charcoal with a variation of 20%, 10% and 5% calcium carbonate activator, burner temperature of 950 0C, holding time 4 hours. The test material is low carbon steel has 9 pieces. Each composition has three specimens. Furnace used in this study is a pack carburizing furnace which has a designed burner box with a volume of 1000 x 600 x 400 (mm3) of coal-fired. Equipped with a circulation of oxygen from the blower 2 inches and has a wall of refractory bricks. From the variation of composition CaCO3, microstructure formed on the specimen with 20% CaCO3, better diffusion of carbon into the carbon steel, it is seen by the form marten site structure after quenching, and this indicates that there has been an increase of or adding carbon to in the specimen. This led to the formation of marten site specimen into hard surfaces, where the average value of hardness at one point side (side edge) 31.7 HRC

  4. Highly porous activated carbons from resource-recovered Leucaena leucocephala wood as capacitive deionization electrodes.

    PubMed

    Hou, Chia-Hung; Liu, Nei-Ling; Hsi, Hsing-Cheng

    2015-12-01

    Highly porous activated carbons were resource-recovered from Leucaena leucocephala (Lam.) de Wit. wood through combined chemical and physical activation (i.e., KOH etching followed by CO2 activation). This invasive species, which has severely damaged the ecological economics of Taiwan, was used as the precursor for producing high-quality carbonaceous electrodes for capacitive deionization (CDI). Carbonization and activation conditions strongly influenced the structure of chars and activated carbons. The total surface area and pore volume of activated carbons increased with increasing KOH/char ratio and activation time. Overgasification induced a substantial amount of mesopores in the activated carbons. In addition, the electrochemical properties and CDI electrosorptive performance of the activated carbons were evaluated; cyclic voltammetry and galvanostatic charge/discharge measurements revealed a typical capacitive behavior and electrical double layer formation, confirming ion electrosorption in the porous structure. The activated-carbon electrode, which possessed high surface area and both mesopores and micropores, exhibited improved capacitor characteristics and high electrosorptive performance. Highly porous activated carbons derived from waste L. leucocephala were demonstrated to be suitable CDI electrode materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. More than a decade of experience of landfill leachate treatment with a full-scale anammox plant combining activated sludge and activated carbon biofilm.

    PubMed

    Azari, Mohammad; Walter, Uwe; Rekers, Volker; Gu, Ji-Dong; Denecke, Martin

    2017-05-01

    The performance of biological treatment for high ammonium removal from landfill leachate has been demonstrated. The plant was upgraded combining the activated sludge process followed by activated carbon reactor. Based on a long-term analysis of data collected from 2006 to 2015, the average total nitrogen removal efficiency of 94% was achieved for wastewaters with a C: N ratio varying from 1 to 5 kg-COD kg-TN -1 . But without the presence of activated carbon reactor, the average of biological removal efficiency for total nitrogen was only 82% ± 6% for the activated sludge stage. It means that up to 20% of the nitrogen in the influent can only be eliminated by microorganisms attached to granular activated carbon. After upgrades of the plant, the energy efficiency showed a reduction in the specific energy demand from 1.6 to less than 0.2 kWh m -3 . Methanol consumption and sludge production was reduced by 91% and 96%, respectively. Fluorescent in situ Hybridization was used for microbial diversity analysis on floccular sludge and granular biofilm samples. Anaerobic ammonium oxidation (anammox) bacteria and nitrifiers were detected and Candidatus Scalindua was found in two forms of flocs and biofilms. Due to stochastic risk assessment based on the long-term data analysis given in this research, the treatment criteria were achieved and the combination of granular activated carbon biofilm process and activated sludge can be a novel and sought approach to better enrich anammox biomass for full-scale treatment applications to reduce operating costs and promote nutrient removal stability and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon.

    PubMed

    Deng, Shubo; Nie, Yao; Du, Ziwen; Huang, Qian; Meng, Pingping; Wang, Bin; Huang, Jun; Yu, Gang

    2015-01-23

    A bamboo-derived granular activated carbon with large pores was successfully prepared by KOH activation, and used to remove perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from aqueous solution. The granular activated carbon prepared at the KOH/C mass ratio of 4 and activation temperature of 900°C had fast and high adsorption for PFOS and PFOA. Their adsorption equilibrium was achieved within 24h, which was attributed to their fast diffusion in the micron-sized pores of activated carbon. This granular activated carbon exhibited the maximum adsorbed amount of 2.32mmol/g for PFOS and 1.15mmol/g for PFOA at pH 5.0, much higher than other granular and powdered activated carbons reported. The activated carbon prepared under the severe activation condition contained many enlarged pores, favorable for the adsorption of PFOS and PFOA. In addition, the spent activated carbon was hardly regenerated in NaOH/NaCl solution, while the regeneration efficiency was significantly enhanced in hot water and methanol/ethanol solution, indicating that hydrophobic interaction was mainly responsible for the adsorption. The regeneration percent was up to 98% using 50% ethanol solution at 45°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. CdS loaded on coal based activated carbon nanofibers with enhanced photocatalytic property

    NASA Astrophysics Data System (ADS)

    Guo, Jixi; Guo, Mingxi; Jia, Dianzeng; Song, Xianli; Tong, Fenglian

    2016-08-01

    The coal based activated carbon nanofibers (CBACFs) were prepared by electrospinning a mixture of polyacrylonitrile (PAN) and acid treated coal. Cadmium sulfide (CdS) nanoparticles loaded on CBACFs were fabricated by solvothermal method. The obtained samples were characterized by FESEM, TEM, and XRD. The results reveal that the CdS nanoparticles are homogeneously dispersed on the surfaces of CBACFs. The CdS/CBACFs nanocomposites exhibited higher photoactivity for photodegradation of methyl blue (MB) under visible light irradiation than pure CdS nanoparticles. CBACFs can be used as low cost support materials for the preparation of nanocomposites with high photocatalytic activity.

  8. Impregnated active carbons to control atmospheric emissions: influence of impregnation methodology and raw material on the catalytic activity.

    PubMed

    Alvim-Ferraz, Maria C M; Gaspar, Carla M T B

    2005-08-15

    Previous studies have reported the influence of raw material on the catalytic activity of metal oxides impregnated in activated carbons. However, knowledge was as yet quite scarce for impregnation performed before activation. The main objective of the study here reported was the development of such knowledge. Olive stones, pinewood sawdust, nutshells, and almond shells were recycled to prepare the activated carbons. Transition metal oxides (CoO, Co3O4, and CrO3) were impregnated aiming to prepare activated carbons to be used for the complete catalytic oxidation of benzene. When impregnation was performed after activation the impregnated species were deposited on the internal surface, blocking part of the initial porous texture. When impregnation was performed before activation, the metal species acted as catalysts during the activation step, allowing better catalyst distribution on a more well-developed mesoporous texture. Co3O4 was the best catalyst and almond shells were the best support. With this catalyst/support pair a conversion of 90% was possible at 404 K, the lowest temperature of all the carbons studied. Good conversions were obtained at temperatures that guarantee carbon stability (lower than 575 K). It was concluded that activated carbon was a suitable support for metal oxide catalysts aiming for the complete oxidation of benzene, especially when a suitable porous texture is induced, by performing the impregnation step before activation.

  9. Heterogeneity of activated carbons in adsorption of aniline from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Podkościelny, P.; László, K.

    2007-08-01

    The heterogeneity of activated carbons (ACs) prepared from different precursors is investigated on the basis of adsorption isotherms of aniline from dilute aqueous solutions at various pH values. The APET carbon prepared from polyethyleneterephthalate (PET), as well as, commercial ACP carbon prepared from peat were used. Besides, to investigate the influence of carbon surface chemistry, the adsorption was studied on modified carbons based on ACP carbon. Its various oxygen surface groups were changed by both nitric acid and thermal treatments. The Dubinin-Astakhov (DA) equation and Langmuir-Freundlich (LF) one have been used to model the phenomenon of aniline adsorption from aqueous solutions on heterogeneous carbon surfaces. Adsorption-energy distribution (AED) functions have been calculated by using an algorithm based on a regularization method. Analysis of these functions for activated carbons studied provides important comparative information about their surface heterogeneity.

  10. Active AirCore Sampling: Constraining Point Sources of Methane and Other Gases with Fixed Wing Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Bent, J. D.; Sweeney, C.; Tans, P. P.; Newberger, T.; Higgs, J. A.; Wolter, S.

    2017-12-01

    Accurate estimates of point source gas emissions are essential for reconciling top-down and bottom-up greenhouse gas measurements, but sampling such sources is challenging. Remote sensing methods are limited by resolution and cloud cover; aircraft methods are limited by air traffic control clearances, and the need to properly determine boundary layer height. A new sampling approach leverages the ability of unmanned aerial systems (UAS) to measure all the way to the surface near the source of emissions, improving sample resolution, and reducing the need to characterize a wide downstream swath, or measure to the full height of the planetary boundary layer (PBL). The "Active-AirCore" sampler, currently under development, will fly on a fixed wing UAS in Class G airspace, spiraling from the surface to 1200 ft AGL around point sources such as leaking oil wells to measure methane, carbon dioxide and carbon monoxide. The sampler collects a 100-meter long sample "core" of air in an 1/8" passivated stainless steel tube. This "core" is run on a high-precision instrument shortly after the UAS is recovered. Sample values are mapped to a specific geographic location by cross-referencing GPS and flow/pressure metadata, and fluxes are quantified by applying Gauss's theorem to the data, mapped onto the spatial "cylinder" circumscribed by the UAS. The AirCore-Active builds off the sampling ability and analytical approach of the related AirCore sampler, which profiles the atmosphere passively using a balloon launch platform, but will add an active pumping capability needed for near-surface horizontal sampling applications. Here, we show design elements, laboratory and field test results for methane, describe the overall goals of the mission, and discuss how the platform can be adapted, with minimal effort, to measure other gas species.

  11. Sample storage-induced changes in the quantity and quality of soil labile organic carbon

    PubMed Central

    Sun, Shou-Qin; Cai, Hui-Ying; Chang, Scott X.; Bhatti, Jagtar S.

    2015-01-01

    Effects of sample storage methods on the quantity and quality of labile soil organic carbon are not fully understood even though their effects on basic soil properties have been extensively studied. We studied the effects of air-drying and frozen storage on cold and hot water soluble organic carbon (WSOC). Cold- and hot-WSOC in air-dried and frozen-stored soils were linearly correlated with those in fresh soils, indicating that storage proportionally altered the extractability of soil organic carbon. Air-drying but not frozen storage increased the concentrations of cold-WSOC and carbohydrate in cold-WSOC, while both increased polyphenol concentrations. In contrast, only polyphenol concentration in hot-WSOC was increased by air-drying and frozen storage, suggesting that hot-WSOC was less affected by sample storage. The biodegradability of cold- but not hot-WSOC was increased by air-drying, while both air-drying and frozen storage increased humification index and changed specific UV absorbance of both cold- and hot-WSOC, indicating shifts in the quality of soil WSOC. Our results suggest that storage methods affect the quantity and quality of WSOC but not comparisons between samples, frozen storage is better than air-drying if samples have to be stored, and storage should be avoided whenever possible when studying the quantity and quality of both cold- and hot-WSOC. PMID:26617054

  12. Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation.

    PubMed

    Ahiduzzaman, Md; Sadrul Islam, A K M

    2016-01-01

    Preparation porous bio-char and activated carbon from rice husk char study has been conducted in this study. Rice husk char contains high amount silica that retards the porousness of bio-char. Porousness of rice husk char could be enhanced by removing the silica from char and applying heat at high temperature. Furthermore, the char is activated by using chemical activation under high temperature. In this study no inert media is used. The study is conducted at low oxygen environment by applying biomass for consuming oxygen inside reactor and double crucible method (one crucible inside another) is applied to prevent intrusion of oxygen into the char. The study results shows that porous carbon is prepared successfully without using any inert media. The adsorption capacity of material increased due to removal of silica and due to the activation with zinc chloride compared to using raw rice husk char. The surface area of porous carbon and activated carbon are found to be 28, 331 and 645 m(2) g(-1) for raw rice husk char, silica removed rice husk char and zinc chloride activated rice husk char, respectively. It is concluded from this study that porous bio-char and activated carbon could be prepared in normal environmental conditions instead of inert media. This study shows a method and possibility of activated carbon from agro-waste, and it could be scaled up for commercial production.

  13. Supercapacitors from Activated Carbon Derived from Granatum.

    PubMed

    Wang, Qiannan; Yang, Lin; Wang, Zhao; Chen, Kexun; Zhang, Lipeng

    2015-12-01

    Granatum carbon (GC) as electrode materials for supercapacitors is prepared via the chemical activation with different activating agent such as ZnC2 and KOH with an intention to improve the surface area and their electrochemical performance. The structure and electrochemical properties of GC materials are characterized with N2 adsorption/desorption measurements, scanning electron microscope (SEM), cyclic voltammetry (CV), galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy (EIS). The obtained results show that the specific surface area of the granatum-based activated carbons increased obviously from 573 m2 x g(-1) to 1341 m2 x g(-1) by ZnC2 activation and to 930 m2 x g(-1) by KOH treatment. Furthermore, GCZ also delivers specific capacitance of 195.1 Fx g(-1) at the current density of 0.1 A x g(-1) in 30 wt.% KOH aqueous electrolyte and low capacitance loss of 28.5% when the current density increased by 10 times.

  14. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies.

    PubMed

    Cang-Rong, Jason Teng; Pastorin, Giorgia

    2009-06-24

    In the last decade, many environmental organizations have devoted their efforts to identifying renewable biosystems, which could provide sustainable fuels and thus enhance energy security. Amidst the myriad of possibilities, some biofuels make use of different types of waste biomasses, and enzymes are often employed to hydrolyze these biomasses and produce sugars that will be subsequently converted into ethanol. In this project, we aimed to bridge nanotechnology and biofuel production: here we report on the activity and structure of the enzyme amyloglucosidase (AMG), physically adsorbed or covalently immobilized onto single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs). In fact, carbon nanotubes (CNTs) present several properties that render them ideal support systems, without the diffusion limitations displayed by porous material and with the advantage of being further functionalizable at their surface. Chemical ligation was achieved both on oxidized nanotubes (via carbodiimide chemistry), as well as on amino-functionalized nanotubes (via periodate-oxidized AMG). Results showed that AMG retained a certain percentage of its specific activity for all enzyme-carbon nanotubes complexes prepared, with the physically adsorbed samples displaying better catalytic efficiency than the covalently immobilized samples. Analysis of the enzyme's structure through circular dichroism (CD) spectroscopy revealed significant structural changes in all samples, the degree of change being consistent with the activity profiles. This study proves that AMG interacts differently with carbon nanotubes depending on the method employed. Due to the higher activity reported by the enzyme physically adsorbed onto CNTs, these samples demonstrated a vast potential for further development. At the same time, the possibility of inducing magnetic properties into CNTs offers the opportunity to easily separate them from the original solution. Hence, substances to which they

  15. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies

    NASA Astrophysics Data System (ADS)

    Cang-Rong, Jason Teng; Pastorin, Giorgia

    2009-06-01

    In the last decade, many environmental organizations have devoted their efforts to identifying renewable biosystems, which could provide sustainable fuels and thus enhance energy security. Amidst the myriad of possibilities, some biofuels make use of different types of waste biomasses, and enzymes are often employed to hydrolyze these biomasses and produce sugars that will be subsequently converted into ethanol. In this project, we aimed to bridge nanotechnology and biofuel production: here we report on the activity and structure of the enzyme amyloglucosidase (AMG), physically adsorbed or covalently immobilized onto single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs). In fact, carbon nanotubes (CNTs) present several properties that render them ideal support systems, without the diffusion limitations displayed by porous material and with the advantage of being further functionalizable at their surface. Chemical ligation was achieved both on oxidized nanotubes (via carbodiimide chemistry), as well as on amino-functionalized nanotubes (via periodate-oxidized AMG). Results showed that AMG retained a certain percentage of its specific activity for all enzyme-carbon nanotubes complexes prepared, with the physically adsorbed samples displaying better catalytic efficiency than the covalently immobilized samples. Analysis of the enzyme's structure through circular dichroism (CD) spectroscopy revealed significant structural changes in all samples, the degree of change being consistent with the activity profiles. This study proves that AMG interacts differently with carbon nanotubes depending on the method employed. Due to the higher activity reported by the enzyme physically adsorbed onto CNTs, these samples demonstrated a vast potential for further development. At the same time, the possibility of inducing magnetic properties into CNTs offers the opportunity to easily separate them from the original solution. Hence, substances to which they

  16. The Nature, Origin, and Importance of Carbonate-Bearing Samples at the Final Three Candidate Mars 2020 Landing Sites

    NASA Astrophysics Data System (ADS)

    Horgan, B.; Anderson, R. B.; Ruff, S. W.

    2018-04-01

    All three candidate Mars 2020 landing sites contain similar regional olivine/carbonate units, and a carbonate unit of possible lacustrine origin is also present at Jezero. Carbonates are critical for Mars Sample Return as records of climate and biosignatures.

  17. Adjusted active carbon fibers for solid phase microextraction.

    PubMed

    Jia, Jinping; Feng, Xue; Fang, Nenghu; Wang, Yalin; Chen, Hongjin; Dan, Wu

    2002-01-01

    Adjusted active carbon fiber (AACF) was evaluated for Solid Phase Microextraction (SPME), which showed higher sensitivity and stability than traditional coating fibers. The characteristics of AACF result from two different activation methods (chemical and water vapor) and from variable activation conditions (temperature and time). The fiber treated by water vapor appears to have stronger affinity to polar compounds, while that treated by chemical activation appears to have stronger affinity to non-polar compounds. For different target compounds ranged from non-polar to polar, AACF design could be effective with specific selections and sensitivities. As applications in this paper, benzoic acid in soy sauce was extracted onto water-vapor-activated-fiber, then analyzed using gas chromatograph-mass spectrometer (GC-MS). The chemical-activated-fiber SPME was applied in the analysis of benzene series compounds (BTEX) in water matrix. Compared with standard carbon disulfide extraction method, chemical-activated-fiber SPME is more convenient due to its simple process and turns to be of relative low detection limits.

  18. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2000-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  19. Activated carbon fiber composite material and method of making

    DOEpatents

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2001-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  20. Effect of high surface area activated carbon on thermal degradation of jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gergova, K.; Eser, S.; Arumugam, R.

    1995-05-01

    Different solid carbons added to jet fuel during thermal stressing cause substantial changes in pyrolytic degradation reactions. Activated carbons, especially high surface area activated carbons were found to be very effective in suppressing solid deposition on metal reactor walls during stressing at high temperatures (425 and 450{degrees}C). The high surface area activated carbon PX-21 prevented solid deposition on reactor walls even after 5h at 450{degrees}C. The differences seen in the liquid product composition when activated carbon is added indicated that the carbon surfaces affect the degradation reactions. Thermal stressing experiments were carried out on commercial petroleum-derived JPTS jet fuel. Wemore » also used n-octane and n-dodecane as model compounds in order to simplify the study of the chemical changes which take place upon activated carbon addition. In separate experiments, the presence of a hydrogen donor, decalin, together with PX-21 was also studied.« less

  1. Removal of organic dyes using Cr-containing activated carbon prepared from leather waste.

    PubMed

    Oliveira, Luiz C A; Coura, Camila Van Zanten; Guimarães, Iara R; Gonçalves, Maraisa

    2011-09-15

    In this work, hydrogen peroxide decomposition and oxidation of organics in aqueous medium were studied in the presence of activated carbon prepared from wet blue leather waste. The wet blue leather waste, after controlled pyrolysis under CO(2) flow, was transformed into chromium-containing activated carbons. The carbon with Cr showed high microporous surface area (up to 889 m(2)g(-1)). Moreover, the obtained carbon was impregnated with nanoparticles of chromium oxide from the wet blue leather. The chromium oxide was nanodispersed on the activated carbon, and the particle size increased with the activation time. It is proposed that these chromium species on the carbon can activate H(2)O(2) to generate HO radicals, which can lead to two competitive reactions, i.e. the hydrogen peroxide decomposition or the oxidation of organics in water. In fact, in this work we observed that activated carbon obtained from leather waste presented high removal of methylene blue dye combining the adsorption and oxidation processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Technique for Simultaneous Determination of [35S]Sulfide and [14C]Carbon Dioxide in Anaerobic Aqueous Samples

    PubMed Central

    Taylor, Craig D.; Ljungdahl, Per O.; Molongoski, John J.

    1981-01-01

    A technique for the simultaneous determination of [35S]sulfide and [14C]carbon dioxide produced in anaerobic aqueous samples dual-labeled with [35S]sulfate and a 14C-organic substrate is described. The method involves the passive distillation of sulfide and carbon dioxide from an acidified water sample and their subsequent separation by selective chemical absorption. The recovery of sulfide was 93% for amounts ranging from 0.35 to 50 μmol; recovery of carbon dioxide was 99% in amounts up to 20 μmol. Within these delineated ranges of total sulfide and carbon dioxide, 1 nmol of [35S]sulfide and 7.5 nmol of [14C]carbon dioxide were separated and quantified. Correction factors were formulated for low levels of radioisotopic cross-contamination by sulfide, carbon dioxide, and volatile organic acids. The overall standard error of the method was ±4% for sulfide and ±6% for carbon dioxide. PMID:16345742

  3. Formation of continuous activated carbon fibers for barrier fabrics

    NASA Astrophysics Data System (ADS)

    Liang, Ying

    1997-08-01

    Commercial protective suits made of active carbon granules or nonwoven fabrics are heavy, have low moisture vapor transport rate, and are uncomfortable. Inherent problems due to construction of barrier fabrics lead to severe heat stress when worn for even short time in warm environments. One proposed method to eliminate these problems is to facilitate the construction of a fabric made of continuous activated carbon fibers (CACF). This study is directed toward investigating the possibility of developing CAFC from two precursors: aramid and fibrillated PAN fiber. It was shown in this study that Kevlar-29 fibers could be quickly carbonized and activated to CACF with high adsorptivity and relatively low weight loss. CACF with high surface area (>500 msp2/g) and reasonable tenacity (≈1g/denier) were successfully prepared from Kevlar fibers through a three-step process: pretreatment, carbonization, and activation. X-ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR), and thermal analysis were conducted to understand the evolution of physical and chemical properties during pretreatment. The influence of temperature, heating rate, and pyrolysis environment on the thermal behavior was determined by DSC and TGA/DTA and used as an indicator for optimizing the pyrolysis conditions. Surface analysis by nitrogen isotherms indicated that the resultant fibers had micropores and mesopores on the surface of CACF. This was also inferred by studies on the surface morphology through Scanning Electron Microscopy (SEM) and Scanning Tunneling Microscopy (STM). An investigation of the surface chemical structure by X-ray photoelectron spectroscopy (XPS) before and after activation and elemental analysis confirmed that adsorption of Kevlar based CACF mainly arises due to the physisorption instead of chemisorption. A multistep stabilization along with carbonization and activation was used to prepare active carbon fiber from fibrillated PAN fiber. The resultant fiber retained

  4. Sample selection and preservation techniques for the Mars sample return mission

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow

    1988-01-01

    It is proposed that a miniaturized electron spin resonance (ESR) spectrometer be developed as an effective, nondestructivew sample selection and characterization instrument for the Mars Rover Sample Return mission. The ESR instrument can meet rover science payload requirements and yet has the capability and versatility to perform the following in situ Martian sample analyses: (1) detection of active oxygen species, and characterization of Martian surface chemistry and photocatalytic oxidation processes; (2) determination of paramagnetic Fe(3+) in clay silicate minerals, Mn(2+) in carbonates, and ferromagnetic centers of magnetite, maghemite and hematite; (3) search for organic compounds in the form of free radicals in subsoil, and detection of Martian fossil organic matter likely to be associated with carbonate and other sedimentary deposits. The proposed instrument is further detailed.

  5. Catalytic Effect of Activated Carbon and Activated Carbon Fiber in Non-Equilibrium Plasma-Based Water Treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Yanzong; Zheng, Jingtang; Qu, Xianfeng; Yu, Weizhao; Chen, Honggang

    2008-06-01

    Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H2O2 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.

  6. Application of NaClO-treated multiwalled carbon nanotubes as solid phase extraction sorbents for preconcentration of trace 2,4-dichlorophenoxyacetic acid in aqueous samples.

    PubMed

    Lu, Ping; Deng, Dayi; Ni, Xiaodan

    2012-09-01

    Multiwalled carbon nanotubes functionalized by oxidation of original multiwalled carbon nanotubes with NaClO were prepared and their application as solid phase extraction sorbent for 2,4-dichlorophenoxyacetic acid (2,4-D) was investigated systemically, and a new method was developed for the determination of trace 2,4-D in water samples based on extraction and preconcentration of 2,4-D with solid phase extraction columns packed with NaClO-treated multiwalled carbon nanotubes prior to its determination by HPLC. The optimum experimental parameters for preconcentration of 2,4-D, including the column activating conditions, the amount of the sorbent, pH of the sample, elution composition, and elution volume, were investigated. The results indicated 2,4-D could be quantitatively retained by 100 mg NaClO-treated multiwalled carbon nanotubes at pH 5, and then eluted completely with 10 mL 3:1 (v/v) methanol-ammonium acetate solution (0.3 mol/L). The detection limit of this method for 2,4-D was 0.15 μg/L, and the relative standard deviation was 2.3% for fortified tap water samples and 2.5% for fortified riverine water sample at the 10 μg/L level. The method was validated using fortified tap water and riverine water samples with known amount of 2,4-D at the 0.4, 10, and 30 μg/L levels, respectively. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Novel Tool for Simultaneous Carbon and Nitrogen Stable Isotope Analyses in Aqueous Samples

    NASA Astrophysics Data System (ADS)

    Federherr, E.; Schmidt, T. C.; Cerli, C.; Kalbitz, K.; Kupka, H. J.; Lange, L.; Dunsbach, R.; Panetta, R. J.; Kasson, A.

    2014-12-01

    Investigation of transformation and transport processes of carbon and nitrogen in ecosystems plays an important role to understand and predict their dynamics and role in biogeochemistry. Consequently, suitable and accurate methods for concentration as well as stable isotopic composition analysis of carbon and nitrogen in waters and aqueous solutions play a significant role. Traditionally dissolved carbon and nitrogen stable isotope analysis (SIA) is performed using either offline sample preparation followed by elemental analysis isotope ratio mass spectrometry (EA/IRMS) or modified wet chemical oxidation based device coupled to IRMS. Recently we presented a high temperature combustion system (HTC), which significantly improves upon these methods for dissolved organic carbon (DOC) SIA. The analysis of δ15N of dissolved nitrogen still has large limitations. Its low concentration makes EA/IRMS laborious, time and sample consuming. Systems based on wet chemical oxidation-IRMS bare the risk of sensitivity loss as well as of fractionation due to incomplete mineralization. In addition, the high solubility of molecular nitrogen in water remains a technical challenge, as it requires additional separation steps to distinguish between physically dissolved nitrogen and bound nitrogen. Further development of our HTC system lead to the implementation of the δ15N determination which now coupled, into a novel total organic carbon (TOC) analyzing system, especially designed for SIA of both, carbon and nitrogen. Integrated, innovative purge and trap technique (peak focusing) for nitrogen with aluminosilicate adsorber and peltier element based cooling system, in combination with high injection volume (up to 3 mL) as well as favorable carrier gas flow significantly improves sensitivity. Down to 1ppm and less total nitrogen can be measured with precision of ≤ 0.5‰. To lower the background caused by physically dissolved nitrogen new, membrane-vacuum based, degasser was designed

  8. Cobalt- and iron-based nanoparticles hosted in SBA-15 mesoporous silica and activated carbon from biomass: Effect of modification procedure

    NASA Astrophysics Data System (ADS)

    Tsoncheva, Tanya; Genova, Izabela; Paneva, Daniela; Dimitrov, Momtchil; Tsyntsarski, Boyko; Velinov, Nicolay; Ivanova, Radostina; Issa, Gloria; Kovacheva, Daniela; Budinova, Temenujka; Mitov, Ivan; Petrov, Narzislav

    2015-10-01

    Ordered mesoporous silica of SBA-15 type and activated carbon, prepared from waste biomass (peach stones), are used as host matrix of nanosized iron and cobalt particles. The effect of preparation procedure on the state of loaded nanoparticles is in the focus of investigation. The obtained materials are characterized by Boehm method, low temperature physisorption of nitrogen, XRD, UV-Vis, FTIR, Mossbauer spectroscopy and temperature programmed reduction with hydrogen. The catalytic behaviour of the samples is tested in methanol decomposition. The dispersion, oxidative state and catalytic behaviour of loaded cobalt and iron nanoparticles are successfully tuned both by the nature of porous support and the metal precursor used during the samples preparation. Facile effect of active phase deposition from aqueous solution of nitrate precursors is assumed for activated carbon support. For the silica based materials the catalytic activity could be significantly improved when cobalt acetylacetonate is used during the modification. The complex effect of pore topology and surface functionality of different supports on the active phase formation is discussed.

  9. Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor

    NASA Astrophysics Data System (ADS)

    Gao, Zhiyong; Liu, Xiao; Chang, Jiuli; Wu, Dapeng; Xu, Fang; Zhang, Lingcui; Du, Weimin; Jiang, Kai

    2017-01-01

    Graphene incorporated, N doped activated carbons (GNACs) are synthesized by alkali activation of graphene-polypyrrole composite (G-PPy) at different temperatures for application as electrode materials of supercapacitors. Under optimal activation temperature of 700 °C, the resultant samples, labeled as GNAC700, owns hierarchically porous texture with high specific surface area and efficient ions diffusion channels, N, O functionalized surface with apparent pseudocapacitance contribution and high wettability, thus can deliver a moderate capacitance, a high rate capability and a good cycleability when used as supercapacitor electrode. Additionally, the GNAC700 electrode demonstrates high catalytic activity for the redox reaction of pyrocatechol/o-quinone pair in H2SO4 electrolyte, thus enables a high pseudocapacitance from electrolyte. Under optimal pyrocatechol concentration in H2SO4 electrolyte, the electrode capacitance of GNAC700 increases by over 4 folds to 512 F g-1 at 1 A g-1, an excellent cycleability is also achieved simultaneously. Pyridinic- N is deemed to be responsible for the high catalytic activity. This work provides a promising strategy to ameliorate the capacitive performances of supercapacitors via the synergistic interaction between redox-active electrolyte and catalytic electrodes.

  10. Adsorption of chlorine dioxide gas on activated carbons.

    PubMed

    Wood, Joseph P; Ryan, Shawn P; Snyder, Emily Gibb; Serre, Shannon D; Touati, Abderrahmane; Clayton, Matthew J

    2010-08-01

    Research and field experience with chlorine dioxide (ClO2) gas to decontaminate structures contaminated with Bacillus anthracis spores and other microorganisms have demonstrated the effectiveness of this sterilant technology. However, because of its hazardous properties, the unreacted ClO2, gas must be contained and captured during fumigation events. Although activated carbon has been used during some decontamination events to capture the ClO2 gas, no data are available to quantify the performance of the activated carbon in terms of adsorption capacity and other sorbent property operational features. Laboratory experiments were conducted to determine and compare the ClO2 adsorption capacities of five different types of activated carbon as a function of the challenge ClO2 concentration. Tests were also conducted to investigate other sorbent properties, including screening tests to determine gaseous species desorbed from the saturated sorbent upon warming (to provide an indication of how immobile the ClO2 gas and related compounds are once captured on the sorbent). In the adsorption tests, ClO2 gas was measured continuously using a photometric-based instrument, and these measurements were verified with a noncontinuous method utilizing wet chemistry analysis. The results show that the simple activated carbons (not impregnated or containing other activated sorbent materials) were the most effective, with maximum adsorption capacities of approximately 110 mg/g. In the desorption tests, there was minimal release of ClO(2) from all sorbents tested, but desorption levels of chlorine (Cl2) gas (detected as chloride) varied, with a maximum release of nearly 15% of the mass of ClO2 adsorbed.

  11. REPEATED REDUCTIVE AND OXIDATIVE TREATMENTS ON GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Fenton oxidation and Fenton oxidation preceded by reduction solutions were applied to granular activated carbon (GAC) to chemically regenerate the adsorbent. No adsorbate was present on the GAC so physicochemical effects from chemically aggressive regeneration of the carbon coul...

  12. Application of end-tidal carbon dioxide monitoring via distal gas samples in ventilated neonates.

    PubMed

    Jin, Ziying; Yang, Maoying; Lin, Ru; Huang, Wenfang; Wang, Jiangmei; Hu, Zhiyong; Shu, Qiang

    2017-08-01

    Previous research has suggested correlations between the end-tidal partial pressure of carbon dioxide (P ET CO 2 ) and the partial pressure of arterial carbon dioxide (PaCO 2 ) in mechanically ventilated patients, but both the relationship between P ET CO 2 and PaCO 2 and whether P ET CO 2 accurately reflects PaCO 2 in neonates and infants are still controversial. This study evaluated remote sampling of P ET CO 2 via an epidural catheter within an endotracheal tube to determine the procedure's clinical safety and efficacy in the perioperative management of neonates. Abdominal surgery was performed under general anesthesia in 86 full-term newborns (age 1-30 days, weight 2.55-4.0 kg, American Society of Anesthesiologists class I or II). The infants were divided into 2 groups (n = 43 each), and carbon dioxide (CO 2 ) gas samples were collected either from the conventional position (the proximal end) or a modified position (the distal end) of the epidural catheter. The P ET CO 2 measured with the new method was significantly higher than that measured with the traditional method, and the difference between P ET CO 2 and PaCO 2 was also reduced. The accuracy of P ET CO 2 measured increased from 78.7% to 91.5% when the modified sampling method was used. The moderate correlation between P ET CO 2 and PaCO 2 by traditional measurement was 0.596, which significantly increased to 0.960 in the modified sampling group. Thus, the P ET CO 2 value was closer to that of PaCO 2 . P ET CO 2 detected via modified carbon dioxide monitoring had a better accuracy and correlation with PaCO 2 in neonates. Copyright © 2017. Published by Elsevier B.V.

  13. Combining stable isotope isotope geochemistry and carbonic anhydrase activity to trace vital effect in carbonate precipitation experiments

    NASA Astrophysics Data System (ADS)

    Thaler, C.; Ader, M.; Menez, B.; Guyot, F. J.

    2013-12-01

    Carbonates precipitated by skeleton-forming eukaryotic organisms are often characterized by non-equilibrium isotopic signatures. This specificity is referred to as the "vital effect" and can be used as an isotopic evidence to trace life. Combining stable isotope geochemistry and enzymology (using the enzyme carbonic anhydrase) we aim to demonstrate that prokaryotes are also able to precipitate carbonate with a non-equilibrium d18OCaCO3. Indeed, if in an biomineralization experiment carbonates are precipitated with a vital effect, the addition of carbonic anhydrase should drive the system to isotope equilibrium, And provide a comparison point to estimate the vital effect range. This protocol allowed us to identify a -20‰ vital effect for the d18O of carbonates precipitated by Sporosarcina pasteurii, a bacterial model of carbonatogen metabolisms. This approach is thus a powerfull tool for the understanding of microbe carbonatogen activity and will probably bring new insights into the understanding of bacterial activity in subsurface and during diagenesis.

  14. Study of Structural and Electrical Conductivity of Sugarcane Bagasse-Carbon with Hydrothermal Carbonization

    NASA Astrophysics Data System (ADS)

    Kurniati, M.; Nurhayati, D.; Maddu, A.

    2017-03-01

    The important part of fuel cell is the gas diffusion layer who made from carbon based material porous and conductive. The main goal of this research is to obtain carbon material from sugarcane bagasse with hydrothermal carbonization and chemical-physics activation. There were two step methods in this research. The first step was sample preparation which consisted of prepare the materials, hydrothermal carbonization and chemical-physics activation. The second one was analyze character of carbon using EDS, SEM, XRD, and LCR meter. The amount of carbon in sugarcane bagasse-carbon was about 85%-91.47% with pore morphology that already form. The degree of crystallinity of sugarcane bagasse carbon was about 13.06%-20.89%, leaving the remain as the amorphous phase. Electrical conductivity was about 5.36 x 10-2 Sm-1 - 1.11 Sm-1. Sugarcane bagasse-carbon has porous characteristic with electrical conductivity property as semiconductor. Sugarcane bagasse-carbon with hydrothermal carbonization potentially can be used as based material for fuel cell if only time of hydrothermal carbonization hold is increased.

  15. Sampling and analytical methods of stable isotopes and dissolved inorganic carbon from CO2 injection sites

    NASA Astrophysics Data System (ADS)

    van Geldern, Robert; Myrttinen, Anssi; Becker, Veith; Barth, Johannes A. C.

    2010-05-01

    The isotopic composition (δ13C) of dissolved inorganic carbon (DIC), in combination with DIC concentration measurements, can be used to quantify geochemical trapping of CO2 in water. This is of great importance in monitoring the fate of CO2 in the subsurface in CO2 injection projects. When CO2 mixes with water, a shift in the δ13C values, as well as an increase in DIC concentrations is observed in the CO2-H2O system. However, when using standard on-site titration methods, it is often challenging to determining accurate in-situ DIC concentrations. This may be due to CO2 degassing and CO2-exchange between the sample and the atmosphere during titration, causing a change in the pH value or due to other unfavourable conditions such as turbid water samples or limited availability of fluid samples. A way to resolve this problem is by simultaneously determining the DIC concentration and carbon isotopic composition using a standard continuous flow Isotope Ratio Mass Spectrometry (CF-IRMS) setup with a Gasbench II coupled to Delta plusXP mass spectrometer. During sampling, in order to avoid atmospheric contact, water samples taken from the borehole-fluid-sampler should be directly transferred into a suitable container, such as a gasbag. Also, to avoid isotope fractionation due to biological activity in the sample, it is recommended to stabilize the gasbags prior to sampling with HgCl2 for the subsequent stable isotope analysis. The DIC concentration of the samples can be determined from the area of the sample peaks in a chromatogram from a CF-IRMS analysis, since it is directly proportional to the CO2 generated by the reaction of the water with H3PO4. A set of standards with known DIC concentrations should be prepared by mixing NaHCO3 with DIC free water. Since the DIC concentrations of samples taken from CO2 injection sites are expected to be exceptionally high due to the additional high amounts of added CO2, the DIC concentration range of the standards should be set high

  16. A new device for dynamic sampling of radon in air

    NASA Astrophysics Data System (ADS)

    Lozano, J. C.; Escobar, V. Gómez; Tomé, F. Vera

    2000-08-01

    A new system is proposed for the active sampling of radon in air, based on the well-known property of activated charcoal to retain radon. Two identical carbon-activated cartridges arranged in series remove the radon from the air being sampled. The air passes first through a desiccant cell and then the carbon cartridges for short sampling times using a low-flow pump. The alpha activity for each cartridge is determined by a liquid scintillation counting system. The cartridge is placed in a holder into a vial that also contains the appropriate amount of scintillation cocktail, in a way that avoids direct contact between cocktail and charcoal. Once dynamic equilibrium between the phases has been reached, the vials can be counted. Optimum sampling conditions concerning flow rates and sampling times are determined. Using those conditions, the method was applied to environmental samples, straightforwardly providing good results for very different levels of activity.

  17. Active pore space utilization in nanoporous carbon-based supercapacitors: Effects of conductivity and pore accessibility

    NASA Astrophysics Data System (ADS)

    Seredych, Mykola; Koscinski, Mikolaj; Sliwinska-Bartkowiak, Malgorzata; Bandosz, Teresa J.

    2012-12-01

    Composites of commercial graphene and nanoporous sodium-salt-polymer-derived carbons were prepared with 5 or 20 weight% graphene. The materials were characterized using the adsorption of nitrogen, SEM/EDX, thermal analysis, Raman spectroscopy and potentiometric titration. The samples' conductivity was also measured. The performance of the carbon composites in energy storage was linked to their porosity and electronic conductivity. The small pores (<0.7) were found as very active for double layer capacitance. It was demonstrated that when double layer capacitance is a predominant mechanism of charge storage, the degree of the pore space utilization for that storage can be increased by increasing the conductivity of the carbons. That active pore space utilization is defined as gravimetric capacitance per unit pore volume in pores smaller than 0.7 nm. Its magnitude is affected by conductivity of the carbon materials. The functional groups, besides pseudocapacitive contribution, increased the wettability and thus the degree of the pore space utilization. Graphene phase, owing to its conductivity, also took part in an insitu increase of the small pore accessibility and thus the capacitance of the composites via enhancing an electron transfer to small pores and thus imposing the reduction of groups blocking the pores for electrolyte ions.

  18. Removal of target odorous molecules on to activated carbon cloths.

    PubMed

    Le Leuch, L M; Subrenat, A; Le Cloirec, P

    2004-01-01

    Activated carbon materials are adsorbents whose physico-chemical properties are interesting for the treatment of odorous compounds like hydrogen sulfide. Indeed, their structural parameters (pore structure) and surface chemistry (presence of heteroatoms such as oxygen, hydrogen, nitrogen, sulfur, phosphorus) play an important role in H2S removal. The cloth texture of these adsorbents (activated carbon cloths) is particularly adapted for dealing with high flows, often found in the treatment of odor emissions. Thus, this paper first presents the influence of these parameters through adsorption isothermal curves performed on several materials. Secondly, tests in a dynamic system are described. They highlight the low critical thickness of the fabric compared to granular activated carbon.

  19. Solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for gold determination in geological samples after preconcentration onto carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dobrowolski, Ryszard; Mróz, Agnieszka; Dąbrowska, Marzena; Olszański, Piotr

    2017-06-01

    A novelty method for the determination of gold in geological samples by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GF AAS) after solid-phase extraction onto modified carbon nanotubes (CNT) was described. The methodology developed is based on solid phase extraction of Au(III) ions from digested samples to eliminate strong interference caused by iron compounds and problems related to inhomogeneities of the samples. The use of aqueous or solid standard for calibration was studied and the slope of calibration curve was the same for both of these modes. This statement indicates the possibility to perform the calibration of the method using aqueous standard solutions. Under optimum conditions the absolute detection limit for gold was equal to 2.24 · 10- 6 μg g- 1 while the adsorption capacity of modified carbon nanotubes was 264 mg g- 1. The proposed procedure was validated by the application of certified reference materials (CRMs) with different content of gold and different matrix, the results were in good agreement with certified values. The method was successfully applied for separation and determination of gold ions in complex geological samples, with precision generally better than 8%.

  20. Assessment of the bacteriological activity associated with granular activated carbon treatment of drinking water.

    PubMed Central

    Stewart, M H; Wolfe, R L; Means, E G

    1990-01-01

    Bacteriological analyses were performed on the effluent from a conventional water treatment pilot plant in which granular activated carbon (GAC) had been used as the final process to assess the impact of GAC on the microbial quality of the water produced. Samples were collected twice weekly for 160 days from the effluents of six GAC columns, each of which used one of four different empty-bed contact times (7.5, 15, 30, and 60 min). The samples were analyzed for heterotrophic plate counts and total coliforms. Effluent samples were also exposed to chloramines and free chlorine for 60 min (pH 8.2, 23 degrees C). Bacterial identifications were performed on the disinfected and nondisinfected effluents. Additional studies were conducted to assess the bacteriological activity associated with released GAC particles. The results indicated that heterotrophic plate counts in the effluents from all columns increased to 10(5) CFU/ml within 5 days and subsequently stabilized at 10(4) CFU/ml. The heterotrophic plate counts did not differ at different empty-bed contact times. Coliforms (identified as Enterobacter spp.) were recovered from the nondisinfected effluent on only two occasions. The disinfection results indicated that 1.5 mg of chloramines per liter inactivated approximately 50% more bacteria than did 1.0 mg of free chlorine per liter after 1 h of contact time. Chloramines and chlorine selected for the development of different bacterial species--Pseudomonas spp. and Flavobacterium spp., respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2082828

  1. Measurements of concentrations of chlorofluoromethanes (CFMs) carbon dioxide and carbon isotope ratio in stratospheric and tropospheric air by grab-sampling systems

    NASA Technical Reports Server (NTRS)

    Itoh, T.; Kubo, H.; Honda, H.; Tominaga, T.; Makide, Y.; Yakohata, A.; Sakai, H.

    1985-01-01

    Measurements of concentrations of chlorofluoromethanes (CFMs), carbon dioxide and carbon isotope ratio in stratospheric and tropospheric air by grab-sampling systems are reported. The balloon-borne grab-sampling system has been launched from Sanriku Balloon Center three times since 1981. It consists of: (1) six sampling cylinders, (2) eight motor driven values, (3) control and monitor circuits, and (4) pressurized housing. Particular consideration is paid to the problem of contamination. Strict requirements are placed on the choice of materials and components, construction methods, cleaning techniques, vacuum integrity, and sampling procedures. An aluminum pressurized housing and a 4-m long inlet line are employed to prevent the sampling air from contamination by outgassing of sampling and control devices. The sampling is performed during the descent of the system. Vertical profiles of mixing ratios of CF2Cl2, CFCl3 and CH4 are given. Mixing ratios of CF2Cl2 and CFCl3 in the stratosphere do not show the discernible effect of the increase of those in the ground level background, and decrease with altitude. Decreasing rate of CFCl3 is larger than that of CF2Cl2. CH4 mixing ratio, on the other hand, shows diffusive equilibrium, as the photodissociation cross section of CH4 is small and concentrations of OH radical and 0(sup I D) are low.

  2. Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas.

    PubMed

    Park, Jeongmin; Lee, Sang-Sup

    2018-04-25

    Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of their Brunauer-Emmett-Teller (BET) surface area. Two simulated flue gas conditions: (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, i.e., more than 87%, regardless of their BET surface area. IMPLICATIONS We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had comparable mercury adsorption efficiency to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.

  3. An Active Tutorial on Distance Sampling

    ERIC Educational Resources Information Center

    Richardson, Alice

    2007-01-01

    The technique of distance sampling is widely used to monitor biological populations. This paper documents an in-class activity to introduce students to the concepts and the mechanics of distance sampling in a simple situation that is relevant to their own experiences. Preparation details are described. Variations and extensions to the activity are…

  4. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon.

    PubMed

    Rivera-Utrilla, J; Prados-Joya, G; Sánchez-Polo, M; Ferro-García, M A; Bautista-Toledo, I

    2009-10-15

    The objective of the present study was to analyse the behaviour of activated carbon with different chemical and textural properties in nitroimidazole adsorption, also assessing the combined use of microorganisms and activated carbon in the removal of these compounds from waters and the influence of the chemical nature of the solution (pH and ionic strength) on the adsorption process. Results indicate that the adsorption of nitroimidazoles is largely determined by activated carbon chemical properties. Application of the Langmuir equation to the adsorption isotherms showed an elevated adsorption capacity (X(m)=1.04-2.04 mmol/g) for all contaminants studied. Solution pH and electrolyte concentration did not have a major effect on the adsorption of these compounds on activated carbon, confirming that the principal interactions involved in the adsorption of these compounds are non-electrostatic. Nitroimidazoles are not degraded by microorganisms used in the biological stage of a wastewater treatment plant. However, the presence of microorganisms during nitroimidazole adsorption increased their adsorption on the activated carbon, although it weakened interactions between the adsorbate and carbon surface. In dynamic regime, the adsorptive capacity of activated carbon was markedly higher in surface water and groundwater than in urban wastewaters.

  5. Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures.

    PubMed

    Kaarela, Outi E; Härkki, Heli A; Palmroth, Marja R T; Tuhkanen, Tuula A

    2015-01-01

    Granular activated carbon (GAC) filtration enhances the removal of natural organic matter and micropollutants in drinking water treatment. Microbial communities in GAC filters contribute to the removal of the biodegradable part of organic matter, and thus help to control microbial regrowth in the distribution system. Our objectives were to investigate bacterial community dynamics, identify the major bacterial groups, and determine the concentration of active bacterial biomass in full-scale GAC filters treating cold (3.7-9.5°C), physicochemically pretreated, and ozonated lake water. Three sampling rounds were conducted to study six GAC filters of different operation times and flow modes in winter, spring, and summer. Total organic carbon results indicated that both the first-step and second-step filters contributed to the removal of organic matter. Length heterogeneity analysis of amplified 16S rRNA genes illustrated that bacterial communities were diverse and considerably stable over time. α-Proteobacteria, β-Proteobacteria, and Nitrospira dominated in all of the GAC filters, although the relative proportion of dominant phylogenetic groups in individual filters differed. The active bacterial biomass accumulation, measured as adenosine triphosphate, was limited due to low temperature, low flux of nutrients, and frequent backwashing. The concentration of active bacterial biomass was not affected by the moderate seasonal temperature variation. In summary, the results provided an insight into the biological component of GAC filtration in cold water temperatures and the operational parameters affecting it.

  6. Activated carbon for the removal of pharmaceutical residues from treated wastewater.

    PubMed

    Ek, Mats; Baresel, Christian; Magnér, Jörgen; Bergström, Rune; Harding, Mila

    2014-01-01

    Pharmaceutical residues, which pass naturally through the human body into sewage, are in many cases virtually unaffected by conventional wastewater treatment. Accumulated in the environment, however, they can significantly impact aquatic life. The present study indicates that many pharmaceutical residues found in wastewater can be removed with activated carbon in a cost-efficient system that delivers higher resource utilisation and security than other carbon systems. The experiment revealed a substantial separation of the analysed compounds, notwithstanding their relatively high solubility in water and dissimilar chemical structures. This implies that beds of activated carbon may be a competitive alternative to treatment with ozone. The effluent water used for the tests, performed over 20 months, originated from Stockholm's largest sewage treatment plant. Passing through a number of different filters with activated carbon removed 90-98% of the pharmaceutical residues from the water. This paper describes pilot-scale tests performed by IVL and the implications for an actual treatment plant that has to treat up to several thousand litres of wastewater per second. In addition, the advantages, disadvantages and costs of the method are discussed. This includes, for example, the clogging of carbon filters and the associated hydraulic capacity limits of the activated carbon.

  7. ENGINEERING BULLETIN: GRANULAR ACTIVATED CARBON TREATMENT

    EPA Science Inventory

    Granular activated carbon (GAC) treatment is a physicochemical process that removes a wide variety of contaminants by adsorbing them from liquid and gas streams [1, p. 6-3]. This treatment is most commonly used to separate organic contaminants from water or air; however, it can b...

  8. Development of biomass in a drinking water granular active carbon (GAC) filter.

    PubMed

    Velten, Silvana; Boller, Markus; Köster, Oliver; Helbing, Jakob; Weilenmann, Hans-Ulrich; Hammes, Frederik

    2011-12-01

    Indigenous bacteria are essential for the performance of drinking water biofilters, yet this biological component remains poorly characterized. In the present study we followed biofilm formation and development in a granular activated carbon (GAC) filter on pilot-scale during the first six months of operation. GAC particles were sampled from four different depths (10, 45, 80 and 115 cm) and attached biomass was measured with adenosine tri-phosphate (ATP) analysis. The attached biomass accumulated rapidly on the GAC particles throughout all levels in the filter during the first 90 days of operation and maintained a steady state afterward. Vertical gradients of biomass density and growth rates were observed during start-up and also in steady state. During steady state, biomass concentrations ranged between 0.8-1.83 x 10(-6) g ATP/g GAC in the filter, and 22% of the influent dissolved organic carbon (DOC) was removed. Concomitant biomass production was about 1.8 × 10(12) cells/m(2)h, which represents a yield of 1.26 × 10(6) cells/μg. The bacteria assimilated only about 3% of the removed carbon as biomass. At one point during the operational period, a natural 5-fold increase in the influent phytoplankton concentration occurred. As a result, influent assimilable organic carbon concentrations increased and suspended bacteria in the filter effluent increased 3-fold as the direct consequence of increased growth in the biofilter. This study shows that the combination of different analytical methods allows detailed quantification of the microbiological activity in drinking water biofilters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution

    PubMed Central

    Mopoung, Sumrit; Moonsri, Phansiri; Palas, Wanwimon; Khumpai, Sataporn

    2015-01-01

    This research studies the characterization of activated carbon from tamarind seed with KOH activation. The effects of 0.5 : 1–1.5 : 1 KOH : tamarind seed charcoal ratios and 500–700°C activation temperatures were studied. FTIR, SEM-EDS, XRD, and BET were used to characterize tamarind seed and the activated carbon prepared from them. Proximate analysis, percent yield, iodine number, methylene blue number, and preliminary test of Fe(III) adsorption were also studied. Fe(III) adsorption was carried out by 30 mL column with 5–20 ppm Fe(III) initial concentrations. The percent yield of activated carbon prepared from tamarind seed with KOH activation decreased with increasing activation temperature and impregnation ratios, which were in the range from 54.09 to 82.03 wt%. The surface functional groups of activated carbon are O–H, C=O, C–O, –CO3, C–H, and Si–H. The XRD result showed high crystallinity coming from a potassium compound in the activated carbon. The main elements found in the activated carbon by EDS are C, O, Si, and K. The results of iodine and methylene blue adsorption indicate that the pore size of the activated carbon is mostly in the range of mesopore and macropore. The average BET pore size and BET surface area of activated carbon are 67.9764 Å and 2.7167 m2/g, respectively. Finally, the tamarind seed based activated carbon produced with 500°C activation temperature and 1.0 : 1 KOH : tamarind seed charcoal ratio was used for Fe(III) adsorption test. It was shown that Fe(III) was adsorbed in alkaline conditions and adsorption increased with increasing Fe(III) initial concentration from 5 to 20 ppm with capacity adsorption of 0.0069–0.019 mg/g. PMID:26689357

  10. Bio-methane from an-aerobic digestion using activated carbon adsorption.

    PubMed

    Farooq, Muhammad; Bell, Alexandra H; Almustapha, M N; Andresen, John M

    2017-08-01

    There is an increasing global demand for carbon-neutral bio-methane from an-aerobic digestion (AD) to be injected into national gas grids. Bio-gas, a methane -rich energy gas, is produced by microbial decomposition of organic matter through an-aerobic conditions where the presence of carbon dioxide and hydrogen sulphide affects its performance. Although the microbiological process in the AD can be tailored to enhance the bio-gas composition, physical treatment is needed to convert the bio-gas into bio-methane. Water washing is the most common method for upgrading bio-gas for bio-methane production, but its large use of water is challenging towards industrial scale-up. Hence, the present study focuses on scale-up comparison of water washing with activated-carbon adsorption using HYSYS and Aspen Process Economic Analyzer. The models show that for plants processing less than 500 m 3 /h water scrubbing was cost effective compared with activated carbon. However, against current fossil natural-gas cost of about 1 p/kWh in the UK both relied heavily on governmental subsidies to become economically feasible. For plants operating at 1000 m 3 /hr, the treatment costs were reduced to below 1.5 p/kWh for water scrubbing and 0.9 p/kWh for activated carbon where the main benefits of activated carbon were lower capital and operating costs and virtually no water losses. It is envisioned that this method can significantly aid the production of sustainable bio-methane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Activated Carbon-Based System for the Disposal of Psychoactive Medications

    PubMed Central

    Song, Yang; Manian, Mahima; Fowler, William; Korey, Andrew; Kumar Banga, Ajay

    2016-01-01

    The misuse and improper disposal of psychoactive medications is a major safety and environmental concern. Hence, the proper disposal of these medications is critically important. A drug deactivation system which contains activated carbon offers a unique disposal method. In the present study, deactivation efficiency of this system was tested by using three model psychoactive drugs. HPLC validation was performed for each drug to ensure that the analytical method employed was suitable for its intended use. The method was found to be specific, accurate and precise for analyzing the drugs. The extent and rate of deactivation of the drugs was determined at several time points. After 28 days in the presence of activated carbon, the extent of leaching out of the drugs was evaluated. Deactivation started immediately after addition of the medications into the disposal pouches. Within 8 h, around 47%, 70% and 97% of diazepam, lorazepam and buprenorphine were adsorbed by the activated carbon, respectively. By the end of 28 days, over 99% of all drugs were deactivated. The desorption/leaching study showed that less than 1% of the active ingredients leached out from the activated carbon. Thus, this deactivation system can be successfully used for the disposal of psychoactive medications. PMID:27827989

  12. Process for producing an activated carbon adsorbent with integral heat transfer apparatus

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Yavrouian, Andre H. (Inventor)

    1996-01-01

    A process for producing an integral adsorbent-heat exchanger apparatus useful in ammonia refrigerant heat pump systems. In one embodiment, the process wets an activated carbon particles-solvent mixture with a binder-solvent mixture, presses the binder wetted activated carbon mixture on a metal tube surface and thereafter pyrolyzes the mixture to form a bonded activated carbon matrix adjoined to the tube surface. The integral apparatus can be easily and inexpensively produced by the process in large quantities.

  13. Mesoporous Carbons With Self-Assembled High-Activity Surfaces (PREPRINT)

    DTIC Science & Technology

    2006-07-07

    temperature-programmed desorption, and potentiometric titrations . Journal of Colloid and Interface Science 2001; 240: 252–258. [40] Rotkin SV, Gogotsi Y...selected carbon samples were treated with nitric acid and the total acid site density determined by base titration [32-34 Boehm 1994; Boehm 2002; 32...washed thoroughly using distilled/deionized water, and dried in the oven. For the titration , 50 mg of HNO3-treated carbon powder was added to 20 ml

  14. Removal of benzocaine from water by filtration with activated carbon

    USGS Publications Warehouse

    Howe, G.E.; Bills, T.D.; Marking, L.L.

    1990-01-01

    Benzocaine is a promising candidate for registration with the U.S. Food and Drug Administration for use as an anesthetic in fish culture, management, and research. A method for the removal of benzocaine from hatchery effluents could speed registration of this drug by eliminating requirements for data on its residues, tolerances, detoxification, and environmental hazards. Carbon filtration effectively removes many organic compounds from water. This study tested the effectiveness of three types of activated carbon for removing benzocaine from water by column filtration under controlled laboratory conditions. An adsorptive capacity was calculated for each type of activated carbon. Filtrasorb 400 (12 x 40 mesh; U.S. standard sieve series) showed the greatest capacity for benzocaine adsorption (76.12 mg benzocaine/g carbon); Filtrasorb 300 (8 x 30 mesh) ranked next (31.93 mg/g); and Filtrasorb 816 (8 x 16 mesh) absorbed the least (1.0 mg/g). Increased adsorptive capacity was associated with smaller carbon particle size; however, smaller particle size also impeded column flow. Carbon filtration is a practical means for removing benzocaine from treated water.

  15. Effect of nitric acid treatment on activated carbon derived from oil palm shell

    NASA Astrophysics Data System (ADS)

    Allwar, Allwar; Hartati, Retno; Fatimah, Is

    2017-03-01

    The primary object of this work is to study the effect of nitric acid on the porous and morphology structure of activated carbon. Production of activated carbon from oil palm shell was prepared with pyrolysis process at temperature 900°C and by introduction of 10 M nitric acid. Determination of surface area, pore volume and pore size distribution of activated carbon was conducted by the N2 adsorption-desorption isotherm at 77 K. Morphology structure and elemental micro-analysis of activated carbon were estimated by Scanning Electron Microscopy (SEM) and energy dispersive X-ray (EDX), respectively. The result shows that activated carbon after treating with nitric acid proved an increasing porous characteristics involving surface area, pore volume and pore size distribution. It also could remove the contaminants including metals and exhibit an increasing of pores and crevices all over the surface.

  16. A doped activated carbon prepared from polyaniline for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Limin; Liu, Enhui; Li, Jian; Yang, Yanjing; Shen, Haijie; Huang, Zhengzheng; Xiang, Xiaoxia; Li, Wen

    A novel doped activated carbon has been prepared from H 2SO 4-doped polyaniline which is prepared by the oxypolymerization of aniline. The morphology, surface chemical composition and surface area of the carbon have been investigated by scanning electron microscope, X-ray photoelectron spectroscopy and Brunaner-Emmett-Teller measurement, respectively. Electrochemical properties of the doped activated carbon have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol l -1 KOH. The specific capacitance of the carbon is as high as 235 F g -1, the specific capacitance hardly decreases at a high current density 11 A g -1 after 10,000 cycles, which indicates that the carbon possesses excellent cycle durability and may be a promising candidate for supercapacitors.

  17. Monitoring by Control Technique - Activated Carbon Adsorber

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Activated Carbon Adsorber control techniques used to reduce pollutant emissions.

  18. THE EFFECT OF ACTIVATED CARBON SURFACE MOISTURE ON LOW TEMPERATURE MERCURY ADSORPTION

    EPA Science Inventory

    Experiments with elemental mercury (Hg0) adsorption by activated carbons were performed using a bench-scale fixed-bed reactor at room temperature (27 degrees C) to determine the role of surface moisture in capturing Hg0. A bituminous-coal-based activated carbon (BPL) and an activ...

  19. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    PubMed

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original.

  20. Adsorption of lignite-derived humic acids on coal-based mesoporous activated carbons.

    PubMed

    Lorenc-Grabowska, Ewa; Gryglewicz, Grazyna

    2005-04-15

    The adsorption by a coal-based mesoporous activated carbon of humic acids (HAs) isolated from two Polish lignites was studied. For comparison, a commercial Aldrich humic acid was also included into this study. The differences in chemical structure and functional groups of HAs were determined by elemental analysis and infrared spectroscopy DRIFT. Two activated carbons used differed in terms of mesopore volume, mesopore size distribution, and chemical properties of the surface. The kinetics of adsorption of HAs have been discussed using three kinetic models, i.e., the first-order Lagergren model, the pseudo-second-order model, and the intraparticle diffusion model. It was found that the adsorption of HAs from alkaline solution on mesoporous activated carbon proceeds according to the pseudo-second-order model. The correlation coefficients were close to 1. The intraparticle diffusion of HA molecules within the carbon particle was identified to be the rate-limiting step. Comparing the two activated carbons, the carbon with a higher volume of pores with widths of 10-50 nm showed a greater removal efficiency of HA. An increase in the Freundlich adsorption capacity with decreasing carbon content of HA was observed. Among the HAs studied, S-HA shows characteristics indicating the highest contribution of small-size fraction. The S-HA was removed by both activated carbons to the highest extent. The effect of pH solution on the adsorption of HA was examined over the range pH 5.4-12.2. It was found that the extent of adsorption decreased with decreasing pH of the solution.

  1. Survey of lunar carbon compounds. I - The presence of indigenous gases and hydrolysable carbon compounds in Apollo 11 and Apollo 12 samples

    NASA Technical Reports Server (NTRS)

    Abell, P. I.; Cadogan, P. H.; Eglinton, G.; Maxwell, J. R.; Pillinger, C. T.

    1971-01-01

    Indigenous gases and hydrolyzable carbon compounds in Apollo 11 and 12 samples through gas chromatographic and mass spectrometric examination, noting meteoritic impact and solar wind implantation as probable origins

  2. Adsorption of Estrogen Contaminants by Graphene Nanomaterials under Natural Organic Matter Preloading: Comparison to Carbon Nanotube, Biochar, and Activated Carbon.

    PubMed

    Jiang, Luhua; Liu, Yunguo; Liu, Shaobo; Zeng, Guangming; Hu, Xinjiang; Hu, Xi; Guo, Zhi; Tan, Xiaofei; Wang, Lele; Wu, Zhibin

    2017-06-06

    Adsorption of two estrogen contaminants (17β-estradiol and 17α-ethynyl estradiol) by graphene nanomaterials was investigated and compared to those of a multi-walled carbon nanotube (MWCNT), a single-walled carbon nanotube (SWCNT), two biochars, a powdered activated carbon (PAC), and a granular activate carbon (GAC) in ultrapure water and in the competition of natural organic matter (NOM). Graphene nanomaterials showed comparable or better adsorption ability than carbon nanotubes (CNTs), biochars (BCs), and activated carbon (ACs) under NOM preloading. The competition of NOM decreased the estrogen adsorption by all adsorbents. However, the impact of NOM on the estrogen adsorption was smaller on graphenes than CNTs, BCs, and ACs. Moreover, the hydrophobicity of estrogens also affected the uptake of estrogens. These results suggested that graphene nanomaterials could be used to removal estrogen contaminants from water as an alternative adsorbent. Nevertheless, if transferred to the environment, they would also adsorb estrogen contaminants, leading to great environmental hazards.

  3. Immobilization of Hg(II) in water with polysulfide-rubber (PSR) polymer-coated activated carbon.

    PubMed

    Kim, Eun-Ah; Seyfferth, Angelia L; Fendorf, Scott; Luthy, Richard G

    2011-01-01

    An effective mercury removal method using polymer-coated activated carbon was studied for possible use in water treatment. In order to increase the affinity of activated carbon for mercury, a sulfur-rich compound, polysulfide-rubber (PSR) polymer, was effectively coated onto the activated carbon. The polymer was synthesized by condensation polymerization between sodium tetrasulfide and 1,2-dichloroethane in water. PSR-mercury interactions and Hg-S bonding were elucidated from x-ray photoelectron spectroscopy, and Fourier transform infra-red spectroscopy analyses. The sulfur loading levels were controlled by the polymer dose during the coating process and the total surface area of the activated carbon was maintained for the sulfur loading less than 2 wt%. Sorption kinetic studies showed that PSR-coated activated carbon facilitates fast reaction by providing a greater reactive surface area than PSR alone. High sulfur loading on activated carbon enhanced mercury adsorption contributing to a three orders of magnitude reduction in mercury concentration. μ-X-ray absorption near edge spectroscopic analyses of the mercury bound to activated carbon and to PSR on activated carbon suggests the chemical bond with mercury on the surface is a combination of Hg-Cl and Hg-S interaction. The pH effect on mercury removal and adsorption isotherm results indicate competition between protons and mercury for binding to sulfur at low pH. Copyright © 2010. Published by Elsevier Ltd.

  4. Effects of microwave heating on porous structure of regenerated powdered activated carbon used in xylose.

    PubMed

    Li, Wei; Wang, Xinying; Peng, Jinhui

    2014-01-01

    The regeneration of spent powdered activated carbons used in xylose decolourization by microwave heating was investigated. Effects of microwave power and microwave heating time on the adsorption capacity of regenerated activated carbons were evaluated. The optimum conditions obtained are as follows: microwave power 800W; microwave heating time 30min. Regenerated activated carbon in this work has high adsorption capacities for the amount of methylene blue of 16 cm3/0.1 g and the iodine number of 1000.06mg/g. The specific surface areas of fresh commercial activated carbon, spent carbon and regenerated activated carbon were calculated according to the Brunauer, Emmett and Teller method, and the pore-size distributions of these carbons were characterized by non-local density functional theory (NLDFT). The results show that the specific surface area and the total pore volume of regenerated activated carbon are 1064 m2/g and 1.181 mL/g, respectively, indicating the feasibility of regeneration of spent powdered activated carbon used in xylose decolourization by microwave heating. The results of surface fractal dimensions also confirm the results of isotherms and NLDFT.

  5. Magnetic porous carbon as an adsorbent for the enrichment of chlorophenols from water and peach juice samples.

    PubMed

    Wang, Chun; Ma, Ruiyang; Wu, Qiuhua; Sun, Meng; Wang, Zhi

    2014-09-26

    In this paper, porous carbon with a highly ordered structure was synthesized using zeolite ZSM-5 as a template and sucrose as a carbon source. Through the in situ reduction of Fe(3+), magnetic property was successfully introduced into the ordered porous carbon, resulting in a magnetic porous carbon (MPC). MPC was used as an adsorbent for the extraction of some chlorophenols (2-chlorophenol, 3-chlorophenol, 2,3-dichlorophenol and 3,4-dichlorophenol) from water and peach juice samples followed by high performance liquid chromatography-ultraviolet detection. Good linearity was observed in the range 1.0-100.0 ng mL(-1) and 2.0-100.0 ng mL(-1) for water and peach juice sample, respectively. The limits of detection (S/N=3) were between 0.10 and 0.30 ng mL(-1). The relative standard deviations were less than 5.3% and the recoveries of the method for the compounds were in the range from 87.8% to 102.3%. The results demonstrated that the MPC had a high adsorptive capability toward the four chlorophenols from water and peach juice samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Optimisation of entrapped activated carbon conditions to remove coloured compounds from winery wastewaters.

    PubMed

    Devesa-Rey, R; Bustos, G; Cruz, J M; Moldes, A B

    2011-06-01

    The objective of this work was to study the entrapped conditions of activated carbon in calcium-alginate beads for the clarification of winery wastewaters. An incomplete 3(3) factorial design was carried out to study the efficiency of activated carbon (0.5-2%); sodium alginate (1-5%); and calcium chloride (0.050-0.900 M), on the following dependent variables: colour reduction at 280, 465, 530 and 665 nm. The activated carbon and calcium chloride were the most influential variables in the colour reduction. Nearly 100% colour reductions were found for the wavelengths assayed when employing 2% of activated carbon, 5% of sodium alginate and intermediate concentrations of calcium chloride (0.475 M). Instead, other conditions like, 2% of activated carbon, 4% of sodium alginate and 0.580 M of calcium chloride can also give absorbance reductions close to 100%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Adsorption of aqueous Cd(II) and Pb(II) on activated carbon nanopores prepared by chemical activation of doum palm shell.

    PubMed

    Gaya, Umar Ibrahim; Otene, Emmanuel; Abdullah, Abdul Halim

    2015-01-01

    Non-uniformly sized activated carbons were derived from doum palm shell, a new precursor, by carbonization in air and activation using KOH, NaOH and ZnCl2. The activated carbon fibres were characterised by X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, particle size analysis and evaluated for Cd(II) and Pb(II) removal. The 40-50 nm size, less graphitic, mesoporous NaOH activated carbon yielded high adsorption efficiency, pointing largely to the influence surface area. The performance of the KOH based activated carbon was arguably explained for the first time in terms of crystallinity. The efficiencies of the mesoporous ZnCl2-formulated activated carbon diminished due to the presence of larger particles. Batch adsorption of divalent metals revealed dependence on adsorbent dose, agitation time, pH and adsorbate concentrations with high adsorption efficiencies at optimum operating parameters. The equilibrium profiles fitted Langmuir and Freundlich isotherms, and kinetics favoured pseudo-second order model. The study demonstrated the practicability of the removal of alarming levels of cadmium and lead ions from industrial effluents.

  8. Activated carbon, biochar and charcoal: Linkages and synergies across pyrogenic carbon's ABC

    USDA-ARS?s Scientific Manuscript database

    Biochar and activated carbon, both carbonaceous pyrogenic materials, are important products for environmental technology and intensively studied for a multitude of purposes. A strict distinction between these materials is not always possible, and also a generally accepted terminology is lacking. How...

  9. Nutrient gradients in a granular activated carbon biofilter drives bacterial community organization and dynamics.

    PubMed

    Boon, Nico; Pycke, Benny F G; Marzorati, Massimo; Hammes, Frederik

    2011-12-01

    The quality of drinking water is ensured by hygienic barriers and filtration steps, such as ozonation and granular activated carbon (GAC) filtration. Apart from adsorption, GAC filtration involves microbial processes that remove biodegradable organic carbon from the ozonated ground or surface water and ensures biological stability of the treated water. In this study, microbial community dynamics in were monitored during the start-up and maturation of an undisturbed pilot-scale GAC filter at 4 depths (10, 45, 80 and 115 cm) over a period of 6 months. New ecological tools, based on 16S rRNA gene-DGGE, were correlated to filter performance and microbial activity and showed that the microbial gradients developing in the filter was of importance. At 10 cm from the top, receiving the freshly ozonated water with the highest concentration of nutrients, the microbial community dynamics were minimal and the species richness remained low. However, the GAC samples at 80-115 cm showed a 2-3 times higher species richness than the 10-45 cm samples. The highest biomass densities were observed at 45-80 cm, which corresponded with maximum removal of dissolved and assimilable organic carbon. Furthermore, the start-up period was clearly distinguishable using the Lorenz analysis, as after 80 days, the microbial community shifted to an apparent steady-state condition with increased evenness. This study showed that GAC biofilter performance is not necessarily correlated to biomass concentration, but rather that an elevated functionality can be the result of increased microbial community richness, evenness and dynamics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Preparation and characterization of activated carbon from acorn shell by physical activation with H2O-CO2 in two-step pretreatment.

    PubMed

    Şahin, Ömer; Saka, Cafer

    2013-05-01

    Activated carbons have been prepared by physical activation with H2O-CO2 in two-step pre-treatment including ZnCl2-HCl from acorn shell at 850 °C. The active carbons were characterized by N2 adsorption at 77 K. Adsorption capacity was demonstrated by the iodine numbers. The surface chemical characteristics of activated carbons were determined by FTIR spectroscopic method. The microstructure of the activated carbons prepared was examined by scanning electron microscopy. The maximum BET surface area of the obtained activated carbon was found to be around 1779 m(2)/g. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Adsorption of sodium dodecylbenzenesulfonate on activated carbons: effects of solution chemistry and presence of bacteria.

    PubMed

    Bautista-Toledo, M I; Méndez-Díaz, J D; Sánchez-Polo, M; Rivera-Utrilla, J; Ferro-García, M A

    2008-01-01

    The objective of the present investigation was to determine the effectiveness of activated carbon in removing sodium dodecylbenzenesulfonate (SDBS) and to analyze the chemical and textural characteristics of the activated carbons that are involved in the adsorption process. Studies were also performed on the influence of operational variables (pH, ionic strength, and presence of microorganisms) and on the kinetics and interactions involved in the adsorption of this pollutant on activated carbon. The kinetics study of SDBS adsorption revealed no problems in its diffusion on any of the activated carbons studied, and Weisz-Prater coefficient (C WP) values were considerably lower than unity for all activated carbons studied. SDBS adsorption isotherms on these activated carbons showed that: (i) adsorption capacity of activated carbons was very high (260-470 mg/g) and increased with larger surface area; and (ii) dispersive interactions between SDBS and carbon surface were largely responsible for the adsorption of this pollutant. SDBS adsorption was not significantly affected by the solution pH, indicating that electrostatic adsorbent-adsorbate interactions do not play an important role in this process. The presence of electrolytes (NaCl) in the medium favors SDBS adsorption, accelerating the process and increasing adsorption capacity. Under the working conditions used, SDBS is not degraded by bacteria; however, the presence of bacteria during the process accelerates and increases SDBS adsorption on the activated carbon. Microorganism adsorption on the activated carbon surface increases its hydrophobicity, explaining the results observed.

  12. Carbon-based supercapacitors produced by activation of graphene.

    PubMed

    Zhu, Yanwu; Murali, Shanthi; Stoller, Meryl D; Ganesh, K J; Cai, Weiwei; Ferreira, Paulo J; Pirkle, Adam; Wallace, Robert M; Cychosz, Katie A; Thommes, Matthias; Su, Dong; Stach, Eric A; Ruoff, Rodney S

    2011-06-24

    Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp(2)-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

  13. Carbon-Based Supercapacitors Produced by Activation of Graphene

    NASA Astrophysics Data System (ADS)

    Zhu, Yanwu; Murali, Shanthi; Stoller, Meryl D.; Ganesh, K. J.; Cai, Weiwei; Ferreira, Paulo J.; Pirkle, Adam; Wallace, Robert M.; Cychosz, Katie A.; Thommes, Matthias; Su, Dong; Stach, Eric A.; Ruoff, Rodney S.

    2011-06-01

    Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp2-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

  14. Adsorption of naphthenic acids on high surface area activated carbons.

    PubMed

    Iranmanesh, Sobhan; Harding, Thomas; Abedi, Jalal; Seyedeyn-Azad, Fakhry; Layzell, David B

    2014-01-01

    In oil sands mining extraction, water is an essential component; however, the processed water becomes contaminated through contact with the bitumen at high temperature, and a portion of it cannot be recycled and ends up in tailing ponds. The removal of naphthenic acids (NAs) from tailing pond water is crucial, as they are corrosive and toxic and provide a substrate for microbial activity that can give rise to methane, which is a potent greenhouse gas. In this study, the conversion of sawdust into an activated carbon (AC) that could be used to remove NAs from tailings water was studied. After producing biochar from sawdust by a slow-pyrolysis process, the biochar was physically activated using carbon dioxide (CO2) over a range of temperatures or prior to producing biochar, and the sawdust was chemically activated using phosphoric acid (H3PO4). The physically activated carbon had a lower surface area per gram than the chemically activated carbon. The physically produced ACs had a lower surface area per gram than chemically produced AC. In the adsorption tests with NAs, up to 35 mg of NAs was removed from the water per gram of AC. The chemically treated ACs showed better uptake, which can be attributed to its higher surface area and increased mesopore size when compared with the physically treated AC. Both the chemically produced and physically produced AC provided better uptake than the commercially AC.

  15. 40 CFR 60.1820 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or... dioxins/furans and mercury stack test, determine the average carbon feed rate in kilograms (or pounds) per...

  16. 75 FR 70208 - Certain Activated Carbon From the People's Republic of China: Final Results and Partial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... is a woven textile fabric made of or containing activated carbon fibers. It is used in masks and... DEPARTMENT OF COMMERCE International Trade Administration [A-570-904] Certain Activated Carbon... activated carbon from the People's Republic of China (``PRC''). See Certain Activated Carbon From the People...

  17. Nitrogen-doped hierarchical porous carbon microsphere through KOH activation for supercapacitors.

    PubMed

    Jiang, Jingui; Chen, Hao; Wang, Zhao; Bao, Luke; Qiang, Yiwei; Guan, Shiyou; Chen, Jianding

    2015-08-15

    A porous carbon microsphere with moderate specific surface area and superior specific capacitance for supercapacitors is fabricated from polyphosphazene microsphere as the single heteroatoms source by the carbonization and subsequent KOH activation under N2 atmosphere. With KOH activation, X-ray photoelectron spectroscopy analysis confirms that the phosphorus of polyphosphazene microsphere totally vanishes, and the doping content of nitrogen and its population of various functionalities on porous carbon microsphere surface are tuned. Compared with non-porous carbon microsphere, the texture property of the resultant porous carbon microsphere subjected to KOH activation has been remarkably developed with the specific surface area growing from 315 to 1341 m(2) g(-1)and the pore volume turning from 0.17 to 0.69 cm(3) g(-1). Prepared with the KOH/non-porous carbon microsphere weight ratio at 1.0, the porous carbon microsphere with moderate specific surface area of 568 m(2) g(-1), exhibits intriguing electrochemical behavior in 1 M H2SO4 aqueous electrolyte, with superior specific capacitance (278 F g(-1) at 0.1 A g(-1)), good rate capability (147 F g(-1) remained at 10 A g(-1)) and robust cycling durability (No capacitance loss after 5000 cycles). The promising electrochemical performance could be ascribed to the synergy of nitrogen heteroatom functionalities and the porous morphology. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. XPS and Raman studies of Pt catalysts supported on activated carbon

    NASA Astrophysics Data System (ADS)

    Tyagi, Deepak; Varma, Salil; Bharadwaj, S. R.

    2018-04-01

    Activated carbon is a widely used support for dispersing noble metals in addition to its many applications. We have prepared platinum catalyst supported on activated carbon for HI decomposition reaction of I-S thermochemical process of hydrogen generation. These catalysts were characterized by XPS and Raman before and after using for the reaction. It was observed that platinum is present in zero oxidation state, while carbon is present is both sp2 and sp3 hybridized forms along with some amount of it bonded to oxygen.

  19. Stereoselective heterocycle synthesis through oxidative carbon-hydrogen bond activation.

    PubMed

    Liu, Lei; Floreancig, Paul E

    2010-01-01

    Heterocycles are ubiquitous structures in both drugs and natural products, and efficient methods for their construction are being pursued constantly. Carbon-hydrogen bond activation offers numerous advantages for the synthesis of heterocycles with respect to minimizing the length of synthetic routes and reducing waste. As interest in chiral medicinal leads increases, stereoselective methods for heterocycle synthesis must be developed. The use of carbon-hydrogen bond activation reactions for stereoselective heterocycle synthesis has produced a range of creative transformations that provide a wide array of structural motifs, selected examples of which are described in this review.

  20. PERFORMANCE OF ACTIVATED SLUDGE-POWDERED ACTIVATED CARBON-WET AIR REGENERATION SYSTEMS

    EPA Science Inventory

    The investigation summarized in the report was undertaken to evaluate the performance of powdered activated carbon (PAC) technology used in conjunction with wet air regeneration (WAR) at municipal wastewater treatment plants. Excessive ash concentrations accumulated in the mixed ...

  1. [Microbial community structure in bio-ceramics and biological activated carbon analyzed by PCR-SSCP technique].

    PubMed

    Liu, Xiao-Lin; Liu, Wen-Jun

    2007-04-01

    Analyses of microbial community structure in bio-ceramics (BC) and biological activated carbon (BAC), which widely used in drinking water treatment were performed by polymerase-chain-reaction-single-strand-conformation-polymorphism (PCR-SSCP) targeted eubacterial 16S ribosomal RNA gene. Microorganisms on bio-ceramics and biological activated carbon were detached by ultrasonic, culturing on R2A and LB agar, respectively, followed by genome DNA extracting. Results show that larger than 10 kb genome DNA could be extracted from all the samples except the BAC samples processed by ultrasonic. However, quantities of the extracted DNA were different. 408 bp gene fragments were observed after PCR using the extracted genome DNA as templates. These gene fragments were digested with lambda exonuclease followed by SSCP electrophoresis. Same SSCP profiles were observed between ultrasonic eluting, R2A and LB agar culturing. The identity of the segment from bio-ceramics with uncultured Pseudomonas sp. Clone FTL201 16S rDNA (GenBank, AF509293.1) fragment was 92%, and identities of the two segments from BAC with Bacillus sp. JH19 16S rDNA (GenBank , DQ232748.1) fragment and Bacterium VA-S-11 16S rDNA (GenBank, AY395279.1) fragment were 100% and 99%, respectively.

  2. Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds

    NASA Astrophysics Data System (ADS)

    Vaïtilingom, Mickael; Deguillaume, Laurent; Vinatier, Virginie; Sancelme, Martine; Amato, Pierre; Chaumerliac, Nadine; Delort, Anne-Marie

    2013-01-01

    Within cloud water, microorganisms are metabolically active and, thus, are expected to contribute to the atmospheric chemistry. This article investigates the interactions between microorganisms and the reactive oxygenated species that are present in cloud water because these chemical compounds drive the oxidant capacity of the cloud system. Real cloud water samples with contrasting features (marine, continental, and urban) were taken from the puy de Dôme mountain (France). The samples exhibited a high microbial biodiversity and complex chemical composition. The media were incubated in the dark and subjected to UV radiation in specifically designed photo-bioreactors. The concentrations of H2O2, organic compounds, and the ATP/ADP ratio were monitored during the incubation period. The microorganisms remained metabolically active in the presence of ●OH radicals that were photo-produced from H2O2. This oxidant and major carbon compounds (formaldehyde and carboxylic acids) were biodegraded by the endogenous microflora. This work suggests that microorganisms could play a double role in atmospheric chemistry; first, they could directly metabolize organic carbon species, and second, they could reduce the available source of radicals through their oxidative metabolism. Consequently, molecules such as H2O2 would no longer be available for photochemical or other chemical reactions, which would decrease the cloud oxidant capacity.

  3. A comparative study on effects of heterotrophic microbial activity on the stability of bivalve and coral carbonate during early diagenesis.

    NASA Astrophysics Data System (ADS)

    Lange, Skadi M.; Krause, Stefan; Immenhauser, Adrian; Ritter, Ann-Christin; Gorb, Stanislav N.; Kleinteich, Thomas; Treude, Tina

    2016-04-01

    Following deposition and shallow burial, marine biogenic carbonates are exposed to an environment that is geochemically affected by a manifold of bacterial metabolic redox processes. To allow for comparison of potential microbe-mediated alteration effects on carbonates, we used aragonitic bivalve shell samples and porous aragonitic coral fragments for incubation experiments in oxic- and anoxic seawater media. The media contained marine sediment slurries or bacterial cultures to mimic the natural processes in vitro. The results for anoxic experimental media containing bivalve shell samples or coral fragments displayed considerable changes in carbonate-system parameters (pH, AT, CA, DIC) and divalent-cation ratios (Mg/Ca, Mg/Sr, Sr/Ca) over time. Furthermore, incubated bivalve shell samples were altered in morphology, elemental composition and isotopic signature. Coral-fragment bearing oxic incubations were run at two temperature regimes and divalent-cation ratios of the high-temperature bacterial medium displayed withdrawal of Ca2+ and Sr2+ from the medium, thus indicating microbe-induced secondary aragonite precipitation. Analyses of coral fragments include electron-microprobe mapping and X-ray microtomography to resolve elemental sample composition and pore-space alteration features, respectively. Up to this point our results indicate that heterotrophic bacterial activity has the potential to affect surficial or open pore space in carbonate archives by increasing rates of alteration relative to sterile environments.

  4. Removal of Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut Shells

    PubMed Central

    Rahman, Mokhlesur M.; Adil, Mohd; Yusof, Alias M.; Kamaruzzaman, Yunus B.; Ansary, Rezaul H.

    2014-01-01

    In this work, batch adsorption experiments were carried out to investigate the suitability of prepared acid activated carbons in removing heavy metal ions such as nickel(II), lead(II) and chromium(VI). Acid activated carbons were obtained from oil palm and coconut shells using phosphoric acid under similar activation process while the differences lie either in impregnation condition or in both pretreatment and impregnation conditions. Prepared activated carbons were modified by dispersing hydrated iron oxide. The adsorption equilibrium data for nickel(II) and lead(II) were obtained from adsorption by the prepared and commercial activated carbons. Langmuir and Freundlich models fit the data well. Prepared activated carbons showed higher adsorption capacity for nickel(II) and lead(II). The removal of chromium(VI) was studied by the prepared acid activated, modified and commercial activated carbons at different pH. The isotherms studies reveal that the prepared activated carbon performs better in low concentration region while the commercial ones in the high concentration region. Thus, a complete adsorption is expected in low concentration by the prepared activated carbon. The kinetics data for Ni(II), Pb(II) and Cr(VI) by the best selected activated carbon fitted very well to the pseudo-second-order kinetic model. PMID:28788640

  5. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    NASA Astrophysics Data System (ADS)

    Izquierdo, Mª Teresa; de Yuso, Alicia Martínez; Valenciano, Raquel; Rubio, Begoña; Pino, Mª Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation produced activated carbons with surface areas and micropore volumes as high as 1128 m2/g and 0.52 cm3/g, respectively. Moreover, the activated carbons exhibit mesoporosity, ranging from 64.6% to 89.1% the percentage of microporosity. The surface chemistry was characterized by TPD, FTIR and acid-base titration obtaining different values of surface groups from the different techniques because the limitation of each technique, but obtaining similar trends for the activated carbons studied. The exhaustive characterization of the activated carbons allows to state that the measured surface area does not explain the adsorption capacity for either toluene or n-hexane. On the other hand, the surface chemistry does not explain the adsorption results either. A compromise between physical and chemical characteristics can be obtained from the appropriate activation conditions, and the response surface methodology gives the optimal activated carbon to maximize adsorption capacity. Low activation temperature, intermediate impregnation ratio lead to high toluene and n-hexane adsorption capacities depending on the activation time, which a determining factor to maximize toluene adsorption.

  6. Adsorptive removal of hydrophobic organic compounds by carbonaceous adsorbents: a comparative study of waste-polymer-based, coal-based activated carbon, and carbon nanotubes.

    PubMed

    Lian, Fei; Chang, Chun; Du, Yang; Zhu, Lingyan; Xing, Baoshan; Liu, Chang

    2012-01-01

    Adsorption of the hydrophobic organic compounds (HOCs) trichloroethylene (TCE), 1,3-dichlorobenzene (DCB), 1,3-dinitrobenzene (DNB) and gamma-hexachlorocyclohexane (HCH) on five different carbonaceous materials was compared. The adsorbents included three polymer-based activated carbons, one coal-based activated carbon (F400) and multiwalled carbon nanotubes (MWNT). The polymer-based activated carbons were prepared using KOH activation from waste polymers: polyvinyl chloride (PVC), polyethyleneterephthalate (PET) and tire rubber (TR). Compared with F400 and MWNT, activated carbons derived from PVC and PET exhibited fast adsorption kinetics and high adsorption capacity toward the HOCs, attributed to their extremely large hydrophobic surface area (2700 m2/g) and highly mesoporous structures. Adsorption of small-sized TCE was stronger on the tire-rubber-based carbon and F400 resulting from the pore-filling effect. In contrast, due to the molecular sieving effect, their adsorption on HCH was lower. MWNT exhibited the lowest adsorption capacity toward HOCs because of its low surface area and characteristic of aggregating in aqueous solution.

  7. ACTIVATED CARBON PROCESS FOR TREATMENT OF WASTEWATERS CONTAINING HEXAVALENT CHROMIUM

    EPA Science Inventory

    The removal of hexavalent chromium, Cr(VI), from dilute aqueous solution by an activated carbon process has been investigated. Two removal mechanisms were observed; hexavalent chromium species were removed by adsorption onto the interior carbon surface and/or through reduction to...

  8. Influence of various Activated Carbon based Electrode Materials in the Performance of Super Capacitor

    NASA Astrophysics Data System (ADS)

    Ajay, K. M.; Dinesh, M. N.

    2018-02-01

    Various activated carbon based electrode materials with different surface areas was prepared on stainless steel based refillable super capacitor model using spin coating. Bio Synthesized Activated Carbon (BSAC), Activated Carbon (AC) and Graphite powder are chosen as electrode materials in this paper. Electrode materials prepared using binder solution which is 6% by wt. polyvinylidene difluoride, 94% by wt. dimethyl fluoride. 3M concentrated KOH solution is used as aqueous electrolyte with PVDF thin film as separator. It is tested for electrochemical characterizations and material characterizations. It is observed that the Specific capacitance of Graphite, Biosynthesized active carbon and Commercially available activated carbon are 16.1F g-1, 53.4F g-1 and 107.6F g-1 respectively at 5mV s-1 scan rate.

  9. Nanoporous active carbons at ambient conditions: a comparative study using X-ray scattering and diffraction, Raman spectroscopy and N2 adsorption

    NASA Astrophysics Data System (ADS)

    Shiryaev, A. A.; Voloshchuk, A. M.; Volkov, V. V.; Averin, A. A.; Artamonova, S. D.

    2017-05-01

    Furfural-derived sorbents and activated carbonaceous fibers were studied using Small- and Wide-angle X-ray scattering (SWAXS), X-ray diffraction and multiwavelength Raman spectroscopy after storage at ambient conditions. Correlations between structural features with degree of activation and with sorption parameters are observed for samples obtained from a common precursor and differing in duration of activation. However, the correlations are not necessarily applicable to the carbons obtained from different precursors. Using two independent approaches we show that treatment of SWAXS results should be performed with careful analysis of applicability of the Porod law to the sample under study. In general case of a pore with rough/corrugated surface deviations from the Porod law may became significant and reflect structure of the pore-carbon interface. Ignorance of these features may invalidate extraction of closed porosity values. In most cases the pore-matrix interface in the studied samples is not atomically sharp, but is characterized by 1D or 2D fluctuations of electronic density responsible for deviations from the Porod law. Intensity of the pores-related small-angle scattering correlates positively with SBET values obtained from N2 adsorption.

  10. Analysis of Medium-Chain-Length Polyhydroxyalkanoate-Producing Bacteria in Activated Sludge Samples Enriched by Aerobic Periodic Feeding.

    PubMed

    Lee, Sun Hee; Kim, Jae Hee; Chung, Chung-Wook; Kim, Do Young; Rhee, Young Ha

    2018-04-01

    Analysis of mixed microbial populations responsible for the production of medium-chain-length polyhydroxyalkanoates (MCL-PHAs) under periodic substrate feeding in a sequencing batch reactor (SBR) was conducted. Regardless of activated sludge samples and the different MCL alkanoic acids used as the sole external carbon substrate, denaturing gradient gel electrophoresis analysis indicated that Pseudomonas aeruginosa was the dominant bacterium enriched during the SBR process. Several P. aeruginosa strains were isolated from the enriched activated sludge samples. The isolates were subdivided into two groups, one that produced only MCL-PHAs and another that produced both MCL- and short-chain-length PHAs. The SBR periodic feeding experiments with five representative MCL-PHA-producing Pseudomonas species revealed that P. aeruginosa has an advantage over other species that enables it to become dominant in the bacterial community.

  11. Silver Nanoparticle Impregnated Bio-Based Activated Carbon with Enhanced Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Selvakumar, R.; Suriyaraj, S. P.; Jayavignesh, V.; Swaminathan, K.

    2013-08-01

    The present study involves the production of silver nanoparticles using a novel yeast strain Saccharomyces cerevisiae BU-MBT CY-1 isolated from coconut cell sap. The biological reduction of silver nitrate by the isolate was deducted at various time intervals. The yeast cells after biological silver reduction were harvested and subjected to carbonization at 400°C for 1 h and its properties were analyzed using Fourier transform infra-red spectroscopy, X-ray diffraction, scanning electron microscope attached with energy dispersive spectroscopy and transmission electron microscopy. The average size of the silver nanoparticles present on the surface of the carbonized silver containing yeast cells (CSY) was 19 ± 9 nm. The carbonized control yeast cells (CCY) did not contain any particles on its surface. The carbonized silver nanoparticles containing yeast cells (CSY) were made into bioactive emulsion and tested for its efficacy against various pathogenic Gram positive and Gram negative bacteria. The antimicrobial activity studies indicated that CSY bioactive nanoemulsion was effective against Gram negative organisms than Gram positive organism.

  12. Results of a European interlaboratory comparison on CO2 sorption on activated carbon and coals

    NASA Astrophysics Data System (ADS)

    Gensterblum, Yves; Busch, Andreas; Krooss, Bernhard; de Weireld, Guy; Billemont, Pierre; van Hemert, Patrick; Wolf, Karl-Heinz

    2013-04-01

    For the assessment of CO2 storage in coal seams or enhanced coalbed methane production (ECBM), the sorption properties of natural coals are important parameters. Since more and more laboratories worldwide are concerned with measurements of gas sorption on coal it is indispensable to establish quality standards for such experiments. The first two interlaboratory studies on CO2 sorption on coal (Goodman et al. 2004, 2007) revealed a poor agreement of sorption isotherms among the participating laboratories, particularly in the high-pressure range. During the MOVECBM (http://www.movecbm.eu/) project funded by the European Commission (6th framework), an interlaboratory comparison of CO2 sorption on selected coals and activated carbon was initiated. Measurements were performed on dry samples at 45° C using the manometric and the gravimetric method. up to a final pressure of 15 MPa. The first set of high-pressure sorption measurements was performed on a Filtrasorb 400 activated carbon sample in order to minimise heterogeneity effects and to optimize the experimental procedures for the individual (manometric or gravimetric) methods (Gensterblum et al. 2009). Since comparability for the activated carbon was excellent, the measurements were continued using natural coals of various rank (anthracite, bituminous coal and lignite) to study the influence of heterogeneities and varying starting conditions on the CO2 sorption properties (Gensterblum et al. 2010). Compared to the poor reproducibility observed in previous interlaboratory studies (Goodman et al., 2004, 2007) this European study showed excellent agreement (<5 % deviation) among the participating laboratories with good repeatability. The sorption data and technical information on the different experimental setups have been used to investigate errors and potential pitfalls in the assessment of high-pressure CO2 sorption isotherms. References Gensterblum Y., P. van Hemert, P. Billemont, A. Busch, B.M. Krooss, G. de

  13. Identifying, counting, and characterizing superfine activated-carbon particles remaining after coagulation, sedimentation, and sand filtration.

    PubMed

    Nakazawa, Yoshifumi; Matsui, Yoshihiko; Hanamura, Yusuke; Shinno, Koki; Shirasaki, Nobutaka; Matsushita, Taku

    2018-07-01

    Superfine powdered activated carbon (SPAC; particle diameter ∼1 μm) has greater adsorptivity for organic molecules than conventionally sized powdered activated carbon (PAC). Although SPAC is currently used in the pretreatment to membrane filtration at drinking water purification plants, it is not used in conventional water treatment consisting of coagulation-flocculation, sedimentation, and rapid sand filtration (CSF), because it is unclear whether CSF can adequately remove SPAC from the water. In this study, we therefore investigated the residual SPAC particles in water after CSF treatment. First, we developed a method to detect and quantify trace concentration of carbon particles in the sand filtrate. This method consisted of 1) sampling particles with a membrane filter and then 2) using image analysis software to manipulate a photomicrograph of the filter so that black spots with a diameter >0.2 μm (considered to be carbon particles) could be visualized. Use of this method revealed that CSF removed a very high percentage of SPAC: approximately 5-log in terms of particle number concentrations and approximately 6-log in terms of particle volume concentrations. When waters containing 7.5-mg/L SPAC and 30-mg/L PAC, concentrations that achieved the same adsorption performance, were treated, the removal rate of SPAC was somewhat superior to that of PAC, and the residual particle number concentrations for SPAC and PAC were at the same low level (100-200 particles/mL). Together, these results suggest that SPAC can be used in place of PAC in CSF treatment without compromising the quality of the filtered water in terms of particulate matter contamination. However, it should be noted that the activated carbon particles after sand filtration were smaller in terms of particle size and were charge-neutralized to a lesser extent than the activated carbon particles before sand filtration. Therefore, the tendency of small particles to escape in the filtrate would appear

  14. Pecan shell-based granular activated carbon for treatment of chemical oxygen demand (COD) in municipal wastewater.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2004-09-01

    The present investigation was undertaken to compare the adsorption efficiency of pecan shell-based granular activated carbon with the adsorption efficiency of the commercial carbon Filtrasorb 200 with respect to uptake of the organic components responsible for the chemical oxygen demand (COD) of municipal wastewater. Adsorption efficiencies for these two sets of carbons (experimental and commercial) were analyzed by the Freundlich adsorption model. The results indicate that steam-activated and acid-activated pecan shell-based carbons had higher adsorption for organic matter measured as COD, than carbon dioxide-activated pecan shell-based carbon or Filtrasorb 200 at all the carbon dosages used during the experiment. The higher adsorption may be related to surface area as the two carbons with the highest surface area also had the highest organic matter adsorption. These results show that granular activated carbons made from agricultural waste (pecan shells) can be used with greater effectiveness for organic matter removal from municipal wastewater than a coal-based commercial carbon. Copyright 2004 Elsevier Ltd.

  15. Liquid-liquid extraction assisted by a carbon nanoparticles interface. Electrophoretic determination of atrazine in environmental samples.

    PubMed

    Caballero-Díaz, Encarnación; Simonet, Bartolomé; Valcárcel, Miguel

    2013-10-21

    A novel method for the determination of atrazine, using liquid-liquid extraction assisted by a nanoparticles film formed in situ and composed of organic solvent stabilized-carbon nanoparticles, is described. The presence of nanoparticles located at the liquid-liquid interface reinforced the extraction of analyte from matrix prior to capillary electrophoresis (CE) analysis. Some influential experimental variables were optimized in order to enhance the extraction efficiency. The developed procedure confirmed that carbon nanoparticles, especially multi-walled carbon nanotubes, are suitable to be used in sample treatment processes introducing new mechanisms of interaction with the analyte. The application of the proposed preconcentration method followed by CE detection enabled the determination of atrazine in spiked river water providing acceptable RSD values (11.6%) and good recoveries (about 87.0-92.0%). Additionally, a similar extraction scheme was tested in soil matrices with a view to further applications in real soil samples.

  16. An adsorption of carbon dioxide on activated carbon controlled by temperature swing adsorption

    NASA Astrophysics Data System (ADS)

    Tomas, Korinek; Karel, Frana

    2017-09-01

    This work deals with a method of capturing carbon dioxide (CO2) in indoor air. Temperature Swing Adsorption (TSA) on solid adsorbent was chosen for CO2 capture. Commercial activated carbon (AC) in form of extruded pellets was used as a solid adsorbent. There was constructed a simple device to testing effectiveness of CO2 capture in a fixed bed with AC. The TSA cycle was also simulated using the open-source software OpenFOAM. There was a good agreement between results obtained from numerical simulations and experimental data for adsorption process.

  17. Adsorptive removal of microcystin-LR from surface and wastewater using tyre-based powdered activated carbon: Kinetics and isotherms.

    PubMed

    Mashile, Phodiso P; Mpupa, Anele; Nomngongo, Philiswa N

    2018-04-01

    Microcystin LR (MC-LR) is a highly toxic compound and it is known for its adverse health effect on both humans and animals. Due to the ineffectiveness of conventional water treatments methods, for the past decades, researchers have been developing cost-effective ways of removing MC-LR from water bodies. This study reports the application of powdered activated carbon (PAC) obtained from the waste tyre for the removal of MC-LR. The choice of the adsorbent was chosen due to its attractive properties. The prepared tyre-based PAC was found to have the large surface area (1111 m 2  g -1 ). The detection of MC-LR was achieved using high performance liquid chromatography (HPLC) coupled with a PDA detector. The experimental parameters (such as optimum pH, dosage and contact time) affecting the removal of MC-LR using tyre based-powdered activated carbon were optimized using response surface methodology (RSM). Maximum removal of MC-LR was achieved under the following optimum conditions; sample pH 4, carbon dosage concentration 10,000 mg L -1 and contact time of 34 min. Under optimum conditions, kinetic studies and adsorption isotherms reflected better fit for pseudo-second-order rate and Langmuir isotherm model, respectively. The optimized method was applied for the removal of MC-LR in wastewater sample. The effluent and influent sample contained initial concentrations ranging from 0.52 to 8.54 μg L -1 and the removal efficiency was 100%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Using Isotope Ratio Infrared Spectrometer to determine δ13C and δ18O of carbonate samples

    NASA Astrophysics Data System (ADS)

    Smajgl, Danijela; Stöbener, Nils; Mandic, Magda

    2017-04-01

    The isotopic composition of calcifying organisms is a key tool for reconstruction past seawater temperature and water chemistry. Therefore stable carbon and oxygen isotopes (δ13C and δ18O) in carbonates have been widely used for reconstruction of paleoenvironments. Precise and accurate determination of isotopic composition of carbon (13C) and oxygen (18O) from carbonate sample with proper referencing and data evaluation algorithm presents a challenge for scientists. Mass spectrometry was the only widely used technique for this kind of analysis, but recent advances make laser based spectroscopy a viable alternative. The Thermo Scientific Delta Ray Isotope Ratio Infrared Spectrometer (IRIS) analyzer with the Universal Reference Interface (URI) Connect is one of those alternatives and with TELEDYNE Cetac ASX-7100 autosampler extends the traditional offerings with a system of high precision and throughput of samples. To establish precision and accuracy of measurements and also to develop optimal sample preparation method for measurements with Delta Ray IRIS and URI Connect, IAEA reference materials were used. Preparation is similar to a Gas Bench II method. Carbonate material is added into the vials, flushed with CO2 free synthetic air and acidified with few droplets of 104% H3PO4. Sample amount used for analysis can be as low as 200 μg. Samples are measured after acidification and equilibration time of one hour at 70°C. The CO2 gas generated by reaction is flushed into the variable volume inside the URI Connect through the Nafion based built-in water trap. For this step, carrier gas (CO2 free air) is used to flush the gas from the vial into the variable volume with a maximum volume of 100 ml. A small amount of the sample is then used for automatic concentration determination present in the variable volume. The Thermo Scientific Qtegra Software automatically adjusts any additional dilution of the sample to achieve the desired concentration (usually 400 ppm) in the

  19. Adsorption characteristics of benzene on biosolid adsorbent and commercial activated carbons.

    PubMed

    Chiang, Hung-Lung; Lin, Kuo-Hsiung; Chen, Chih-Yu; Choa, Ching-Guan; Hwu, Ching-Shyung; Lai, Nina

    2006-05-01

    This study selected biosolids from a petrochemical waste-water treatment plant as the raw material. The sludge was immersed in 0.5-5 M of zinc chloride (ZnCl2) solutions and pyrolyzed at different temperatures and times. Results indicated that the 1-M ZnCl2-immersed biosolids pyrolyzed at 500 degrees C for 30 min could be reused and were optimal biosolid adsorbents for benzene adsorption. Pore volume distribution analysis indicated that the mesopore contributed more than the macropore and micropore in the biosolid adsorbent. The benzene adsorption capacity of the biosolid adsorbent was 65 and 55% of the G206 (granular-activated carbon) and BPL (coal-based activated carbon; Calgon, Carbon Corp.) activated carbons, respectively. Data from the adsorption and desorption cycles indicated that the benzene adsorption capacity of the biosolid adsorbent was insignificantly reduced compared with the first-run capacity of the adsorbent; therefore, the biosolid adsorbent could be reused as a commercial adsorbent, although its production cost is high.

  20. Device for determining carbon activity through pressure

    DOEpatents

    Roche, Michael F.

    1976-01-01

    A hollow iron capsule of annular shape having an interior layer of Fe.sub.0.947 0 and a near absolute internal vacuum is submersed within a molten metal with the inner chamber of the capsule connected to a pressure sensor. Carbon present in the molten metal diffuses through the capsule wall and reacts with the Fe.sub.0.947 0 layer to generate a CO.sub.2 --CO gas mixture within the internal chamber. The total absolute pressure of the gas measured by the pressure sensor is directly proportional to the carbon activity of the molten metal.

  1. USING POWDERED ACTIVATED CARBON: A CRITICAL REVIEW

    EPA Science Inventory

    Because the performance of powdered activated carbon (PAC) for uses other than taste and odor control is poorly documented, the purpose of this article is to critically review uses that have been reported (i.e., pesticides and herbicides, synthetic organic chemicals, and trihalom...

  2. IMPORTANCE OF ACTIVATED CARBON'S OXYGEN SURFACE FUNCTIONAL GROUPS ON ELEMENTAL MERCURY ADSORPTION

    EPA Science Inventory

    The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury [Hg(0)] was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidat...

  3. IN-FLIGHT CAPTURE OF ELEMENTAL MERCURY BY A CHLORINE-IMPREGNATED ACTIVATED CARBON

    EPA Science Inventory

    The paper discusses the in-flight capture of elemental mercury (Hgo) by a chlorine (C1)-impregnated activated carbon. Efforts to develop sorbents for the control of Hg emissions have demonstrated that C1-impregnation of virgin activated carbons using dilute solutions of hydrogen ...

  4. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob

    NASA Astrophysics Data System (ADS)

    Sych, N. V.; Trofymenko, S. I.; Poddubnaya, O. I.; Tsyba, M. M.; Sapsay, V. I.; Klymchuk, D. O.; Puziy, A. M.

    2012-11-01

    Active carbons have been prepared from corncob using chemical activation with phosphoric acid at 400 °C using varied ratio of impregnation (RI). Porous structure of carbons was characterized by nitrogen adsorption and scanning electron microscopy. Surface chemistry was studied by IR and potentiometric titration method. It has been shown that porosity development was peaked at RI = 1.0 (SBET = 2081 m2/g, Vtot = 1.1 cm3/g), while maximum amount of acid surface groups was observed at RI = 1.25. Acid surface groups of phosphoric acid activated carbons from corncob includes phosphate and strongly acidic carboxylic (pK = 2.0-2.6), weakly acidic carboxylic (pK = 4.7-5.0), enol/lactone (pK = 6.7-7.4; 8.8-9.4) and phenol (pK = 10.1-10.7). Corncob derived carbons showed high adsorption capacity to copper, especially at low pH. Maximum adsorption of methylene blue and iodine was observed for carbon with most developed porosity (RI = 1.0).

  5. Production of activated carbon by using pyrolysis process in an ammonia atmosphere

    NASA Astrophysics Data System (ADS)

    Indayaningsih, N.; Destyorini, F.; Purawiardi, R. I.; Insiyanda, D. R.; Widodo, H.

    2017-04-01

    Activated carbon is materials that have wide applications, including supercapacitor materials, absorbent in chemical industry, and absorbent material in the chemical industry. This study has carried out for the manufacturing of activated carbon from inexpensive materials through efficient processes. Carbon material was made from coconut fibers through pyrolysis process at temperature of 650, 700, 750 and 800°C. Aim of this study was to obtain carbon material that has a large surface area. Pyrolysis process is carried out in an inert atmosphere (N2 gas) at a temperature of 450°C for 30 minutes, followed by pyrolysis process in an ammonia atmosphere at 800°C for 2 hours. The pyrolysis results showed that the etching process in ammonia is occurred; as it obtained some greater surface area when compared with the pyrolisis process in an atmosphere by inert gas only. The resulted activated carbon also showed to have good properties in surface area and total pore volume.

  6. Photoredox activation of carbon dioxide for amino acid synthesis in continuous flow

    NASA Astrophysics Data System (ADS)

    Seo, Hyowon; Katcher, Matthew H.; Jamison, Timothy F.

    2017-05-01

    Although carbon dioxide (CO2) is highly abundant, its low reactivity has limited its use in chemical synthesis. In particular, methods for carbon-carbon bond formation generally rely on two-electron mechanisms for CO2 activation and require highly activated reaction partners. Alternatively, radical pathways accessed via photoredox catalysis could provide new reactivity under milder conditions. Here we demonstrate the direct coupling of CO2 and amines via the single-electron reduction of CO2 for the photoredox-catalysed continuous flow synthesis of α-amino acids. By leveraging the advantages of utilizing gases and photochemistry in flow, a commercially available organic photoredox catalyst effects the selective α-carboxylation of amines that bear various functional groups and heterocycles. The preliminary mechanistic studies support CO2 activation and carbon-carbon bond formation via single-electron pathways, and we expect that this strategy will inspire new perspectives on using this feedstock chemical in organic synthesis.

  7. High-performance all-solid-state flexible supercapacitors based on two-step activated carbon cloth

    NASA Astrophysics Data System (ADS)

    Jiang, Shulan; Shi, Tielin; Zhan, Xiaobin; Long, Hu; Xi, Shuang; Hu, Hao; Tang, Zirong

    2014-12-01

    A simple and effective strategy is proposed to activate carbon cloth for the fabrication of flexible and high-performance supercapacitors. Firstly, the carbon cloth surface is exfoliated as nanotextures through wet chemical treatment, then an annealing process is applied at H2/N2 atmosphere to reduce the surface oxygen functional groups which are mainly introduced from the first step. The activated carbon cloth electrode shows excellent wettablity, large surface area and delivers remarkable electrochemical performance. A maximum areal capacitance of 485.64 mF cm-2 at the current density of 2 mA cm-2 is achieved for the activated carbon cloth electrode, which is considerably larger than the resported results for carbon cloth. Furthermore, the flexible all-solid-state supercapacitor, which is fabricated based on the activated carbon cloth electrodes, shows high areal capacitance, superior cycling stability as well as stable electrochemical performance even under constant bending or twisting conditions. An areal capacitance of 161.28 mF cm-2 is achieved at the current density of 12.5 mA cm-2, and 104% of its initial capacitance is retained after 30,000 charging/discharging cycles. This study would also provide an effective way to boost devices' electrochemical performance by accommodating other active materials on the activated carbon cloth.

  8. Utilization of Cacao Pod Husk (Theobroma cacao l.) as Activated Carbon and Catalyst in Biodiesel Production Process from Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Rachmat, Devita; Johar Mawarani, Lizda; Dewi Risanti, Doty

    2018-01-01

    Cocoa pod husk (Theobroma cacao l.) is a waste from cocoa beans processing. In this research we employ cocoa pod husk as activated carbon to decrease the value of FFA (Free Fatty Acid) in waste cooking oil and as K2CO3 catalyst in biodiesel production process from waste cooking oil. Cocoa pod husk was crusched and grounded into powder that passed thorugh 60 mesh-screen. As activated carbon, cocoa pod husk was firstly carbonized at three variant temperatures i.e 250°C, 300°C and 350°C. The activation process was done using HCl 2M as activator. Based on the results of XRD and FTIR, the carbonization at all variant temperatures does not cause a significant changes in terms of crystallite structure and water content. The pore of activated carbon started to form in sample that was carbonized at 350°C resulting in pore diameter of 5.14644 nm. This result was supported by the fact that the ability of this activated carbon in reducing the FFA of waste cooking oil was the most pronounced one, i.e. up to 86.7% of FFA. It was found that the performance of cocoa pod husk’s activated carbon in reducing FFA is more effective than esterification using H2SO4 which can only decrease 80.8%. On the other hand, the utilization as K2CO3 catalyst was carried out by carbonization at temperature 650°C and extraction using aquadest solvent. The extraction of cocoa pod husk produced 7.067% K2CO3 catalyst. According to RD results the fraction of K2CO3 compound from the green catalysts is the same as the commercial (SAP, 99%) that is ≥ 60%. From the obtained results, the best yield percentage was obtained using K2CO3 catalyst from cacao pod husk extract, i.e. 73-85%. To cope with biodiesel conversion efficiency, a two-step process consisting pretreatment with activated carbon carbonized at 350°C and esterification with K2CO3 from cocoa pod husk catalyst was developed. This two-step process could reach a high conversion of 85%. From the results it was clear that the produced

  9. Enhancement of ORR catalytic activity by multiple heteroatom-doped carbon materials.

    PubMed

    Kim, Dae-wook; Li, Oi Lun; Saito, Nagahiro

    2015-01-07

    Heteroatom-doped carbon matrices have been attracting significant attention due to their superior electrochemical stability, light weight and low cost. Hence, in this study, various types of heteroatom, including single dopants of N, B and P and multiple dopants of B-N and P-N with a carbon matrix were synthesized by an innovative method named the solution plasma process. The heteroatom was doped into the carbon matrix during the discharge process by continuous dissociation and recombination of precursors. The chemical bonding structure, ORR activity and electrochemical performance were compared in detail for each single dopant and multiple dopants. According to the Raman spectra, the carbon structures were deformed by the doped heteroatoms in the carbon matrix. In comparison with N-doped structures (NCNS), the ORR potential of PN-doped structures (PNCNS) was positively shifted from -0.27 V to -0.24 V. It was observed that doping with N decreased the bonding between P and C in the matrix. The multiple doping induced additional active sites for ORR which further enhanced ORR activity and stability. Therefore, PNCNS is a promising metal-free catalyst for ORR at the cathode in a fuel cell.

  10. SNS Sample Activation Calculator Flux Recommendations and Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClanahan, Tucker C.; Gallmeier, Franz X.; Iverson, Erik B.

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) uses the Sample Activation Calculator (SAC) to calculate the activation of a sample after the sample has been exposed to the neutron beam in one of the SNS beamlines. The SAC webpage takes user inputs (choice of beamline, the mass, composition and area of the sample, irradiation time, decay time, etc.) and calculates the activation for the sample. In recent years, the SAC has been incorporated into the user proposal and sample handling process, and instrument teams and users have noticed discrepancies in the predicted activation of their samples.more » The Neutronics Analysis Team validated SAC by performing measurements on select beamlines and confirmed the discrepancies seen by the instrument teams and users. The conclusions were that the discrepancies were a result of a combination of faulty neutron flux spectra for the instruments, improper inputs supplied by SAC (1.12), and a mishandling of cross section data in the Sample Activation Program for Easy Use (SAPEU) (1.1.2). This report focuses on the conclusion that the SAPEU (1.1.2) beamline neutron flux spectra have errors and are a significant contributor to the activation discrepancies. The results of the analysis of the SAPEU (1.1.2) flux spectra for all beamlines will be discussed in detail. The recommendations for the implementation of improved neutron flux spectra in SAPEU (1.1.3) are also discussed.« less

  11. Predicting adsorption isotherms for aqueous organic micropollutants from activated carbon and pollutant properties.

    PubMed

    Li, Lei; Quinlivan, Patricia A; Knappe, Detlef R U

    2005-05-01

    A method based on the Polanyi-Dubinin-Manes (PDM) model is presented to predict adsorption isotherms of aqueous organic contaminants on activated carbons. It was assumed that trace organic compound adsorption from aqueous solution is primarily controlled by nonspecific dispersive interactions while water adsorption is controlled by specific interactions with oxygen-containing functional groups on the activated carbon surface. Coefficients describing the affinity of water for the activated carbon surface were derived from aqueous-phase methyl tertiary-butyl ether (MTBE) and trichloroethene (TCE) adsorption isotherm data that were collected with 12 well-characterized activated carbons. Over the range of oxygen contents covered by the adsorbents (approximately 0.8-10 mmol O/g dry, ash-free activated carbon), a linear relationship between water affinity coefficients and adsorbent oxygen content was obtained. Incorporating water affinity coefficients calculated from the developed relationship into the PDM model, isotherm predictions resulted that agreed well with experimental data for three adsorbents and two adsorbates [tetrachloroethene (PCE), cis-1,2-dichloroethene (DCE)] that were not used to calibrate the model.

  12. Adsorption of methyl orange using activated carbon prepared from lignin by ZnCl2 treatment

    NASA Astrophysics Data System (ADS)

    Mahmoudi, K.; Hamdi, N.; Kriaa, A.; Srasra, E.

    2012-08-01

    Lignocellulosic materials are good and cheap precursors for the production of activated carbon. In this study, activated carbons were prepared from the lignin at different temperatures (200 to 500°C) by ZnCl2. The effects influencing the surface area of the resulting activated carbon are activation temperature, activation time and impregnation ratio. The optimum condition, are found an impregnation ratio of 2, an activation temperature of 450°C, and an activation time of 2 h. The results showed that the surface area and micropores volume of activated carbon at the experimental conditions are achieved to 587 and 0.23 cm3 g-1, respectively. The adsorption behavior of methyl orange dye from aqueous solution onto activated lignin was investigated as a function of equilibrium time, pH and concentration. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 300 mg g-1 of methyl orange by activated carbon was achieved.

  13. Characterization of single-walled carbon nanotubes for environmental implications

    USGS Publications Warehouse

    Agnihotri, S.; Rostam-Abadi, M.; Rood, M.J.

    2004-01-01

    Adsorption capacities of N2 and various organic vapors (methyl-ethyl ketone (MEK), toluene, and cyclohexane) on select electric-arc and HiPco produced single walled carbon nanotubes (SWNT) were measured at 77 and 298 K, respectively. The amount of N2 adsorbed on a SWNT sample depended on the sample purity, methodology, and on the sample age. Adsorption capacities of organic vapors (100-1000 ppm vol) on SWNT in humid conditions were much higher than those for microporous activated carbons. These results established a foundation for additional studies related to potential environmental applications of SWNT. The MEK adsorption capacities of samples EA95 and CVD80 and mesoporous tire-derived activated carbon in humid conditions were lower than in dry conditions. This is an abstract of a paper presented at the AIChE Annual Meeting (Austin, TX 11/7-12/2004).

  14. Influence of carbon content on photocatalytic performance of C@ZnO hollow nanospheres

    NASA Astrophysics Data System (ADS)

    Jin, Changqing; Zhu, Kexin; Jian, Zengyun; Wei, Yongxing; Gao, Ling; Zhang, Zhihong; Zheng, Deshan

    2018-02-01

    Mesoporous C@ZnO hollow spheres were successfully synthesized through a carbon-sphere template combined hydrothermal method. The photocatalytic activities of the samples to rhodamine B (RhB) were investigated, and the sample of 3 wt% carbon has the best photocatalytic activity to RhB. The excellent photocatalytic performance could come from both enhanced photogenerated electron-hole pair separation, and the larger specific surface area induced by mesoporous hollow nanostructure. The photocatalytic performance sensitively depends upon content of amorphous carbon. Too much or too little carbon content decreases sample performance. The changes in performance according to carbon content are probably a result of the competing mechanism: the increasing rate of separation efficiency of photogenerated carriers and the decreasing contact area of ZnO with RhB according to the carbon content. This work would help us to better understand the important roles of carbon content in the fabricated nano-heterojunctions and also provide us with a feasible route to improve UV photocatalytic activities of ZnO and other metal oxides greatly.

  15. Updating the carbon footprint of the Galician fishing activity (NW Spain).

    PubMed

    Iribarren, Diego; Vázquez-Rowe, Ian; Hospido, Almudena; Moreira, María Teresa; Feijoo, Gumersindo

    2011-03-15

    Recent life cycle assessment studies have revealed the relevance of cooling agent leakage when assessing the greenhouse gas (GHG) emissions generated by fishing vessel operations. The goal of this communication is to update the carbon footprinting of the Galician fishing activity (NW Spain) by including the GHG emissions from cooling agent leakage. Results proved the relevant role played by refrigerants regarding their contribution to the carbon footprint of fishing activities. Thus, an overall increase of 13% was found when comparing the final global carbon footprint for the Galician fishing activity with previous calculations that did not include these emissions. Nevertheless, further efforts should be made in order to provide robust data in this respect. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Measurements of 55Fe activity in activated steel samples with GEMPix

    NASA Astrophysics Data System (ADS)

    Curioni, A.; Dinar, N.; La Torre, F. P.; Leidner, J.; Murtas, F.; Puddu, S.; Silari, M.

    2017-03-01

    In this paper we present a novel method, based on the recently developed GEMPix detector, to measure the 55Fe content in samples of metallic material activated during operation of CERN accelerators and experimental facilities. The GEMPix, a gas detector with highly pixelated read-out, has been obtained by coupling a triple Gas Electron Multiplier (GEM) to a quad Timepix ASIC. Sample preparation, measurements performed on 45 samples and data analysis are described. The calibration factor (counts per second per unit specific activity) has been obtained via measurements of the 55Fe activity determined by radiochemical analysis of the same samples. Detection limit and sensitivity to the current Swiss exemption limit are calculated. Comparison with radiochemical analysis shows inconsistency for the sensitivity for only two samples, most likely due to underestimated uncertainties of the GEMPix analysis. An operative test phase of this technique is already planned at CERN.

  17. [Vertical distribution of soil active carbon and soil organic carbon storage under different forest types in the Qinling Mountains].

    PubMed

    Wang, Di; Geng, Zeng-Chao; She, Diao; He, Wen-Xiang; Hou, Lin

    2014-06-01

    Adopting field investigation and indoor analysis methods, the distribution patterns of soil active carbon and soil carbon storage in the soil profiles of Quercus aliena var. acuteserrata (Matoutan Forest, I), Pinus tabuliformis (II), Pinus armandii (III), pine-oak mixed forest (IV), Picea asperata (V), and Quercus aliena var. acuteserrata (Xinjiashan Forest, VI) of Qinling Mountains were studied in August 2013. The results showed that soil organic carbon (SOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and easily oxidizable carbon (EOC) decreased with the increase of soil depth along the different forest soil profiles. The SOC and DOC contents of different depths along the soil profiles of P. asperata and pine-oak mixed forest were higher than in the other studied forest soils, and the order of the mean SOC and DOC along the different soil profiles was V > IV > I > II > III > VI. The contents of soil MBC of the different forest soil profiles were 71.25-710.05 mg x kg(-1), with a content sequence of I > V > N > III > II > VI. The content of EOC along the whole soil profile of pine-oak mixed forest had a largest decline, and the order of the mean EOC was IV > V> I > II > III > VI. The sequence of soil organic carbon storage of the 0-60 cm soil layer was V > I >IV > III > VI > II. The MBC, DOC and EOC contents of the different forest soils were significanty correlated to each other. There was significant positive correlation among soil active carbon and TOC, TN. Meanwhile, there was no significant correlation between soil active carbon and other soil basic physicochemical properties.

  18. Extensive Sampling of Forest Carbon using High Density Power Line Lidar

    NASA Astrophysics Data System (ADS)

    Hampton, H. M.; Chen, Q.; Dye, D. G.; Hungate, B. A.

    2013-12-01

    Estimating carbon sequestration and greenhouse gas emissions from forest management, natural processes, and disturbance is of growing interest for mitigating global warming. Ponderosa pine is common at mid-elevations throughout the western United States and is a dominant tree species in southwestern forests. Existing unmanaged "relict" sites and stand reconstructions of southwestern ponderosa pine forests from before European settlement (late 1800s) provide evidence of forests of larger trees of lower density and less vulnerability to severe fires than today's typical conditions of high densities of small trees that have resulted from a century of fire suppression. Forest treatments to improve forest health in the region include tree cutting focused on small-diameter trees (thinning), low-intensity prescribed burning, and monitoring rather than suppressing wildfires. Stimulated by several uncharacteristically-intense fires in the last decade, a collaborative process found strong stakeholder agreement to accelerate forest treatments to reduce fire risk and restore ecological conditions. Land use planning to ramp up management is underway and could benefit from quick and inexpensive techniques to inventory tree-level carbon because existing inventory data are not adequate to capture the range of forest structural conditions. Our approach overcomes these shortcomings by employing recent breakthroughs in estimating aboveground biomass from high resolution light detection and ranging (lidar) remote sensing. Lidar is an active remote sensing technique, analogous to radar, which measures the time required for a transmitted pulse of laser light to return to the sensor after reflection from a target. Lidar data can capture 3-dimensional forest structure with greater detail and broader spatial coverage than is feasible with conventional field measurements. We developed a novel methodology for extensive sampling and field validation of forest carbon, applicable to managed and

  19. Improved automation of dissolved organic carbon sampling for organic-rich surface waters.

    PubMed

    Grayson, Richard P; Holden, Joseph

    2016-02-01

    In-situ UV-Vis spectrophotometers offer the potential for improved estimates of dissolved organic carbon (DOC) fluxes for organic-rich systems such as peatlands because they are able to sample and log DOC proxies automatically through time at low cost. In turn, this could enable improved total carbon budget estimates for peatlands. The ability of such instruments to accurately measure DOC depends on a number of factors, not least of which is how absorbance measurements relate to DOC and the environmental conditions. Here we test the ability of a S::can Spectro::lyser™ for measuring DOC in peatland streams with routinely high DOC concentrations. Through analysis of the spectral response data collected by the instrument we have been able to accurately measure DOC up to 66 mg L(-1), which is more than double the original upper calibration limit for this particular instrument. A linear regression modelling approach resulted in an accuracy >95%. The greatest accuracy was achieved when absorbance values for several different wavelengths were used at the same time in the model. However, an accuracy >90% was achieved using absorbance values for a single wavelength to predict DOC concentration. Our calculations indicated that, for organic-rich systems, in-situ measurement with a scanning spectrophotometer can improve fluvial DOC flux estimates by 6 to 8% compared with traditional sampling methods. Thus, our techniques pave the way for improved long-term carbon budget calculations from organic-rich systems such as peatlands. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Electrocatalytic activity of spots of electrodeposited noble-metal catalysts on carbon nanotubes modified glassy carbon.

    PubMed

    Chen, Xingxing; Eckhard, Kathrin; Zhou, Min; Bron, Michael; Schuhmann, Wolfgang

    2009-09-15

    A strategy for the screening of the electrocatalytic activity of electrocatalysts for possible application in fuel cells and other devices is presented. In this approach, metal nanoclusters (Pt, Au, Ru, and Rh and their codeposits) were prepared using a capillary-based droplet-cell by pulsed electrodeposition in a diffusion-restricted viscous solution. A glassy carbon surface was modified with carbon nanotubes (CNTs) by electrophoretic accumulation and was used as substrate for metal nanoparticle deposition. The formed catalyst spots on the CNT-modified glassy carbon surface were investigated toward their catalytic activity for oxygen reduction as a test reaction employing the redox competition mode of scanning electrochemical microscopy (RC-SECM). Qualitative information on the electrocatalytic activity of the catalysts was obtained by varying the potential applied to the substrate; semiquantitative evaluation was based on the determination of the electrochemically deposited catalyst loading by means of the charge transferred during the metal nanoparticle deposition. Qualitatively, Au showed the highest electrocatalytic activity toward the oxygen reduction reaction (ORR) in phosphate buffer among all investigated single metal catalysts which was attributed to the much higher loading of Au achieved during electrodeposition. Coelectrodeposited Au-Pt catalysts showed a more positive onset potential (-150 mV in RC-SECM experiments) of the ORR in phosphate buffer at pH 6.7. After normalizing the SECM image by the charge during the metal nanocluster deposition which represents the mass loading of the catalyst, Ru showed a higher electrocatalytic activity toward the ORR than Au.

  1. The role of beaded activated carbon's pore size distribution on heel formation during cyclic adsorption/desorption of organic vapors.

    PubMed

    Jahandar Lashaki, Masoud; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2016-09-05

    The effect of activated carbon's pore size distribution (PSD) on heel formation during adsorption of organic vapors was investigated. Five commercially available beaded activated carbons (BAC) with varying PSDs (30-88% microporous) were investigated. Virgin samples had similar elemental compositions but different PSDs, which allowed for isolating the contribution of carbon's microporosity to heel formation. Heel formation was linearly correlated (R(2)=0.91) with BAC micropore volume; heel for the BAC with the lowest micropore volume was 20% lower than the BAC with the highest micropore volume. Meanwhile, first cycle adsorption capacities and breakthrough times correlated linearly (R(2)=0.87 and 0.93, respectively) with BAC total pore volume. Micropore volume reduction for all BACs confirmed that heel accumulation takes place in the highest energy pores. Overall, these results show that a greater portion of adsorbed species are converted into heel on highly microporous adsorbents due to higher share of high energy adsorption sites in their structure. This differs from mesoporous adsorbents (low microporosity) in which large pores contribute to adsorption but not to heel formation, resulting in longer adsorbent lifetime. Thus, activated carbon with high adsorption capacity and high mesopore fraction is particularly desirable for organic vapor application involving extended adsorption/regeneration cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    EPA Science Inventory

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  3. [Dynamics of quickly absorption of the carbon source in wastewater by activated sludge].

    PubMed

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang

    2011-09-01

    In this paper, absorption characteristics of organic matter in municipal wastewater by three kinds of activated sludge (carbon-enriching, nitrification and denitrification sludge) were studied, and the absorption kinetic data was checked using three kinds of absorption kinetic equations based on Ritchie rate equation. The objectives of this study were to investigate the absorption mechanism of activated sludge to organic matter in municipal wastewater, and to identify the possibility of reclaiming organic matter by activated sludge. Results indicated that in the early 30 min, absorption process of organic matter by activated sludge was found to be mainly physical adsorption, which could be expressed by the Lagergren single-layer adsorption model. The carbon-enriching sludge had the highest adsorption capacity (COD/SS) which was 60 mg/g but the adsorption rate was lower than that of denitrification sludge. While nitrification sludge had the lowest adsorption rate and higher adsorption capacity compared with denitrification sludge, which was about 35 mg/g. The rates of the fitting index theta(0) of carbon-enriching, nitrification and denitrification sludge were 0.284, 0.777 and 0.923, respectively, which indicated that the sorbed organic matter on the surface of carbon-enriching sludge was the easiest fraction to be washed away. That is, the combination intensity of carbon-enriching sludge and organic matter was the feeblest, which was convenient for carbon-enriching sludge to release sorbed carbon. Furthermore, by fitting with Langmuir model, concentration of organic matter was found to be the key parameter influencing the adsorption capacity of activated sludge, while the influence of temperature was not obvious. The kinetic law of organic matter absorption by activated sludge was developed, which introduces a way to kinetically analyze the removing mechanism of pollutant by activated sludge and provides theoretical base for the reclaiming of nutriments in

  4. Carbon Beam Radio-Therapy and Research Activities at HIMAC

    NASA Astrophysics Data System (ADS)

    Kanazawa, Mitsutaka

    2007-05-01

    Radio-therapy with carbon ion beam has been carried out since 1994 at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences). Now, many types of tumors can be treated with carbon beam with excellent local controls of the tumors. Stimulated with good clinical results, requirement of the dedicated compact facility for carbon beam radio-therapy is increased. To realize this requirement, design study of the facility and the R&D's of the key components in this design are promoted by NIRS. According successful results of these activities, the dedicated compact facility will be realized in Gunma University. In this facility, the established irradiation method is expected to use, which is passive irradiation method with wobbler magnets and ridge filter. In this presentation, above R&D's will be presented together with clinical results and basic research activities at HIMAC.

  5. ELEMENTAL MERCURY CAPTURE BY ACTIVATED CARBON IN A FLOW REACTOR

    EPA Science Inventory


    The paper gives results of bench-scale experiments in a flow reactor to simulate the entrained-flow capture of elemental mercury (Hgo) using solid sorbents. Adsorption of Hgo by a lignite-based activated carbon (Calgon FGD) was examined at different carbon/mercury (C/Hg) rat...

  6. Sensitivity enhancement for nitrophenols using cationic surfactant-modified activated carbon for solid-phase extraction surface-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Chen, Y C; Tsai, M F

    2000-01-01

    Previous work has demonstrated that a combination of solid-phase extraction with surface-assisted laser desorption/ionization (SPE-SALDI) mass spectrometry can be applied to the determination of trace nitrophenols in water. An improved method to lower the detection limit of this hyphenated technique is described in this present study. Activated carbon powder is used as both the SPE adsorbent and the SALDI solid in the analysis by SPE-SALDI. The surface of the activated carbon is modified by passing an aqueous solution of a cationic surfactant through the SPE cartridge. The results demonstrate that the sensitivity for nitrophenols in the analysis by SPE-SALDI can be improved by using cationic surfactants to modify the surface of the activated carbon. The detection limit for nitrophenols is about 25 ppt based on a signal-to-noise ratio of 3 by sampling from 100 mL of solution. Copyright 2000 John Wiley & Sons, Ltd.

  7. Activated Carbon Fiber Paper Based Electrodes with High Electrocatalytic Activity for Vanadium Flow Batteries with Improved Power Density.

    PubMed

    Liu, Tao; Li, Xianfeng; Xu, Chi; Zhang, Huamin

    2017-02-08

    Vanadium flow batteries (VFBs) have received high attention for large-scale energy storage due to their advantages of flexibility design, long cycle life, high efficiency, and high safety. However, commercial progress of VFBs has so far been limited by its high cost induced by its low power density. Ultrathin carbon paper is believed to be a very promising electrode for VFB because it illustrates super-low ohmic polarization, however, is limited by its low electrocatalytic activity. In this paper, a kind of carbon paper (CP) with super-high electrocatalytic activity was fabricated via a universal and simple CO 2 activation method. The porosity and oxygen functional groups can be easily tuned via this method. The charge transfer resistance (denoting the electrochemical polarization) of a VFB with CP electrode after CO 2 activation decreased dramatically from 970 to 120 mΩcm 2 . Accordingly, the energy efficiency of a VFB with activated carbon paper as the electrode increased by 13% as compared to one without activation and reaches nearly 80% when the current density is 140 mAcm -2 . This paper provides an effective way to prepare high-performance porous carbon electrodes for VFBs and even for other battery systems.

  8. Development of chemically activated N-enriched carbon adsorbents from urea-formaldehyde resin for CO2 adsorption: Kinetics, isotherm, and thermodynamics.

    PubMed

    Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K

    2018-07-15

    Nitrogen enriched carbon adsorbents with high surface areas were successfully prepared by carbonizing the low-cost urea formaldehyde resin, followed by KOH activation. Different characterization techniques were used to determine the structure and surface functional groups. Maximum surface area and total pore volume of 4547 m 2  g -1 and 4.50 cm 3  g -1 were found by controlling activation conditions. The optimized sample denoted as UFA-3-973 possesses a remarkable surface area, which is found to be one of the best surface areas achieved so far. Nitrogen content of this sample was found to be 22.32%. Dynamic CO 2 uptake capacity of the carbon adsorbents were determined thermogravimetrically at different CO 2 concentrations (6-100%) and adsorption temperatures (303-373 K) which have a much more relevance for the flue gas application. Highest adsorption capacity of 2.43 mmol g -1 for this sample was obtained at 303 K under pure CO 2 flow. Complete regenerability of the adsorbent over four adsorption-desorption cycles was obtained. Fractional order kinetic model provided best description of adsorption over all adsorption temperatures and CO 2 concentrations. Heterogeneity of the adsorbent surface was confirmed from the Langmuir and Freundlich isotherms fits and isosteric heat of adsorption values. Exothermic, spontaneous and feasible nature of adsorption process was confirmed from thermodynamic parameter values. The combination of high surface area and large pore volume makes the adsorbent a new promising carbon material for CO 2 capture from power plant flue gas and for other relevant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Sun, Fei; Gao, Jihui; Liu, Xin; Pi, Xinxin; Yang, Yuqi; Wu, Shaohua

    2016-11-01

    Large surface area and good structural stability, for porous carbons, are two crucial requirements to enable the constructed supercapacitors with high capacitance and long cycling lifespan. Herein, we successfully prepare porous carbon with a large surface area (3175 m2 g-1) and an ultrahigh carbon purity (carbon atom ratio of 98.25%) via templating carbonization coupling with KOH activation. As-synthesized MTC-KOH exhibits excellent performances as supercapacitor electrode materials in terms of high specific capacitance and ultrahigh cycling stability. In a three electrode system, MTC-KOH delivers a high capacitance of 275 F g-1 at 0.5 A g-1 and still 120 F g-1 at a high rate of 30 A g-1. There is almost no capacitance decay even after 10,000 cycles, demonstrating outstanding cycling stability. In comparison, pre-activated MTC with a hierarchical pore structure shows a better rate capability than microporous MTC-KOH. Moreover, the constructed symmetric supercapacitor using MTC-KOH can achieve high energy densities of 8.68 Wh kg-1 and 4.03 Wh kg-1 with the corresponding power densities of 108 W kg-1 and 6.49 kW kg-1, respectively. Our work provides a simple design strategy to prepare highly porous carbons with high carbon purity for supercapacitors application.

  10. Carbon monoxide measurement in the global atmospheric sampling program

    NASA Technical Reports Server (NTRS)

    Dudzinski, T. J.

    1979-01-01

    The carbon monoxide measurement system used in the NASA Global Atmospheric Sampling Program (GASP) is described. The system used a modified version of a commercially available infrared absorption analyzer. The modifications increased the sensitivity of the analyzer to 1 ppmv full scale, with a limit of detectability of 0.02 ppmv. Packaging was modified for automatic, unattended operation in an aircraft environment. The GASP system is described along with analyzer operation, calibration procedures, and measurement errors. Uncertainty of the CO measurement over a 2-year period ranged from + or - 3 to + or - 13 percent of reading, plus an error due to random fluctuation of the output signal + or - 3 to + or - 15 ppbv.

  11. Hierarchical activated mesoporous phenolic-resin-based carbons for supercapacitors.

    PubMed

    Wang, Zhao; Zhou, Min; Chen, Hao; Jiang, Jingui; Guan, Shiyou

    2014-10-01

    A series of hierarchical activated mesoporous carbons (AMCs) were prepared by the activation of highly ordered, body-centered cubic mesoporous phenolic-resin-based carbon with KOH. The effect of the KOH/carbon-weight ratio on the textural properties and capacitive performance of the AMCs was investigated in detail. An AMC prepared with a KOH/carbon-weight ratio of 6:1 possessed the largest specific surface area (1118 m(2) g(-1)), with retention of the ordered mesoporous structure, and exhibited the highest specific capacitance of 260 F g(-1) at a current density of 0.1 A g(-1) in 1 M H2 SO4 aqueous electrolyte. This material also showed excellent rate capability (163 F g(-1) retained at 20 A g(-1)) and good long-term electrochemical stability. This superior capacitive performance could be attributed to a large specific surface area and an optimized micro-mesopore structure, which not only increased the effective specific surface area for charge storage but also provided a favorable pathway for efficient ion transport. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Box-Behnken design approach towards optimization of activated carbon synthesized by co-pyrolysis of waste polyester textiles and MgCl2

    NASA Astrophysics Data System (ADS)

    Yuan, Zhihang; Xu, Zhihua; Zhang, Daofang; Chen, Weifang; Zhang, Tianqi; Huang, Yuanxing; Gu, Lin; Deng, Haixuan; Tian, Danqi

    2018-01-01

    Pyrolysis activation of waste polyester textiles (WPT) was regarded as a sustainable technique to synthesize multi-pore activated carbons. MgO-template method of using MgCl2 as the template precursor was employed, which possessed the advantages of ideal pore-forming effect and efficient preparation process. The response surface methodology coupled with Box-Behnken design (BBD) was conducted to study the interaction between different variables and optimized preparation conditions of waste polyester textiles based activated carbons. Derived from BBD design results, carbonization temperature was the most significant individual factor. And the maximum specific surface area of 1364 m2/g, which presented a good agreement with the predicted response values(1315 m2/g), was obtained at mixing ratio in MgCl2/WPT, carbonization temperature and time of 5:1, 900 °C and 90 min, respectively. Furthermore, the physicochemical properties of the sample prepared under optimal conditions were carried on utilizing nitrogen adsorption/desorption isotherms, EA, XRD, SEM and FTIR. In addition, the pore-forming mechanism was mainly attributed to the tendency of carbon layer coating on MgO to form pore walls after elimination of MgO and the strong dehydration effect of MgCl2 on WPT.

  13. Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: Effect of activation conditions.

    PubMed

    Nayak, Arunima; Bhushan, Brij; Gupta, Vartika; Sharma, P

    2017-05-01

    Chemical activation is known to induce specific surface features of porosity and functionality which play a definite role in enhancing the adsorptive potential of the developed activated carbons. Different conditions of temperature, time, reagent type and impregnation ratio were applied on sawdust precursor and their effect on the physical, surface chemical features and finally on the adsorption potential of the developed activated carbons were analysed. Under activation conditions of 600°C, 1hr, 1:0.5 ratio, ZnCl 2 impregnated carbon (CASD_ZnCl 2 ) resulted in microporosity while KOH impregnation (CASD_KOH) yielded a carbon having a wider pore size distribution. The surface chemistry revealed similar functionalities. At same pH, temperature and adsorbate concentrations, CASD_KOH demonstrated better adsorption potential (1.06mmoles/g for Cd 2+ and 1.61mmoles/g for Ni 2+ ) in comparison to CASD_ZnCl 2 (0.23mmoles/g and 0.33mmoles/g for Cd 2+ and Ni 2+ respectively). Other features were a short equilibrium time of 60mins and an adsorbent dose of 0.2g/L for the CASD_KOH in comparison to CASD_ZnCl 2 (equilibrium time of 150min and dosage of 0.5g/L). The nature of interactions was physical for both adsorbents and pore diffusion mechanisms were operative. The results reveal the potentiality of chemical activation so as to achieve the best physico-chemical properties suited for energy efficient, economical and eco-friendly water treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Brief review: Preparation techniques of biomass based activated carbon monolith electrode for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, Erman; Taslim, Rika

    2018-02-01

    The synthesis of activated carbon monolith electrode made from a biomass material using the hydrolytic pressure or the pelletization technique of pre-carbonized materials is one of standard reported methods. Several steps such as pre-carbonization, milling, chemical activation, hydraulic press, carbonization, physical activation, polishing and washing need to be accomplished in the production of electrodes by this method. This is relatively a long process that need to be simplified. In this paper we present the standard method and proceed with the introduction to several alternative methods in the synthesis of activated carbon monolith electrodes. The alternative methods were emphasized on the selection of suitable biomass materials. All of carbon electrodes prepared by different methods will be analyzed for physical and electrochemical properties. The density, degree of crystallinity, surface morphology are examples for physical study and specific capacitance was an electrochemical properties that has been analysed. This alternative method has offered a specific capacitance in the range of 10 to 171 F/g.

  15. Quantitation of microorganic compounds in waters of the Great Lakes by adsorption on activated carbon

    USGS Publications Warehouse

    Daniels, Stacy L.; Kempe, Lloyd L.; Graham, E. S.; Beeton, Alfred M.

    1963-01-01

    Microorganic compounds in waters of Lakes Michigan and Huron have been sampled by adsorption on activated carbon in filters installed aboard the M/V Cisco and at the Hammond Bay Laboratory of the U.S. Bureau of Commercial Fisheries. The organic compounds were eluted from the carbon according to techniques developed at the U.S. Public Health Service. On the assumption that chloroform eluates represent less polar compounds from industrial sources and alcohol eluates the more polar varieties of natural origin, plots of chloroform eluates against alcohol eluates appear to be useful in judging water qualities. Based upon these criteria, the data in this paper indicate that both the waters of northern Lake Michigan and of Lake Huron, in the vicinity of Hammond Bay, Michigan, are relatively free from pollution. The limnetic waters of Lake Michigan showed a particularly high ratio of alcohol to chloroform eluates. Data for monthly samples indicated that this ratio fluctuated seasonally. The periodicity of the fluctuations was similar to those of lake levels and water temperatures.

  16. Field-scale reduction of PCB bioavailability with activated carbon amendment to river sediments.

    PubMed

    Beckingham, Barbara; Ghosh, Upal

    2011-12-15

    Remediation of contaminated sediments remains a technological challenge because traditional approaches do not always achieve risk reduction goals for human health and ecosystem protection and can even be destructive for natural resources. Recent work has shown that uptake of persistent organic pollutants such as polychlorinated biphenyls (PCBs) in the food web is strongly influenced by the nature of contaminant binding, especially to black carbon surfaces in sediments. We demonstrate for the first time in a contaminated river that application of activated carbon to sediments in the field reduces biouptake of PCBs in benthic organisms. After treatment with activated carbon applied at a dose similar to the native organic carbon of sediment, bioaccumulation in freshwater oligochaete worms was reduced compared to preamendment conditions by 69 to 99%, and concentrations of PCBs in water at equilibrium with the sediment were reduced by greater than 93% at all treatment sites for up to three years of monitoring. By comparing measured reductions in bioaccumulation of tetra- and penta-chlorinated PCB congeners resulting from field application of activated carbon to a laboratory study where PCBs were preloaded onto activated carbon, it is evident that equilibrium sorption had not been achieved in the field. Although other remedies may be appropriate for some highly contaminated sites, we show through this pilot study that PCB exposure from moderately contaminated river sediments may be managed effectively through activated carbon amendment in sediments.

  17. Effect of one step KOH activation and CaO modified carbon in transesterification reaction

    NASA Astrophysics Data System (ADS)

    Yacob, Abd Rahim; Zaki, Muhammad Azam Muhammad

    2017-11-01

    In this work, one step activation was introduced using potassium hydroxide (KOH) and calcium oxide (CaO) modified palm kernel shells. Various concentration of calcium oxide was used as catalyst while maintaining the same concentration of potassium hydroxide to activate and impregnate the palm kernel shell before calcined at 500°C for 5 hours. All the prepared samples were characterized using Fourier Transform Infrared (FTIR) and Field Emission Scanning Electron Microscope (FESEM). FTIR analysis of raw palm kernel shell showed the presence of various functional groups. However, after activation, most of the functional groups were eliminated. The basic strength of the prepared samples were determined using back titration method. The samples were then used as base heterogeneous catalyst for the transesterification reaction of rice bran oil with methanol. Analysis of the products were performed using Gas Chromatography Flame Ionization Detector (GC-FID) to calculate the percentage conversion of the biodiesel products. This study shows, as the percentage of one step activation potassium and calcium oxide doped carbon increases thus, the basic strength also increases followed by the increase in biodiesel production. Optimization study shows that the optimum biodiesel production was at 8 wt% catalyst loading, 9:1 methanol: oil molar ratio at 65°C and 6 hours which gives a conversion up to 95%.

  18. Carbon fiber content measurement in composite

    NASA Astrophysics Data System (ADS)

    Wang, Qiushi

    Carbon fiber reinforced polymers (CFRPs) have been widely used in various structural applications in industries such as aerospace and automotive because of their high specific stiffness and specific strength. Their mechanical properties are strongly influenced by the carbon fiber content in the composites. Measurement of the carbon fiber content in CFRPs is essential for product quality control and process optimization. In this work, a novel carbonization-in-nitrogen method (CIN) is developed to characterize the fiber content in carbon fiber reinforced thermoset and thermoplastic composites. In this method, a carbon fiber composite sample is carbonized in a nitrogen environment at elevated temperatures, alongside a neat resin sample. The carbon fibers are protected from oxidization while the resin (the neat resin and the resin matrix in the composite sample) is carbonized under the nitrogen environment. The residue of the carbonized neat resin sample is used to calibrate the resin carbonization rate and calculate the amount of the resin matrix in the composite sample. The new method has been validated on several thermoset and thermoplastic resin systems and found to yield an accurate measurement of fiber content in carbon fiber polymer composites. In order to further understand the thermal degradation behavior of the high temperature thermoplastic polymer during the carbonization process, the mechanism and the kinetic model of thermal degradation behavior of carbon fiber reinforced poly (phenylene sulfide) (CPPS) are studied using thermogravimetry analysis (TGA). The CPPS is subjected to TGA in an air and nitrogen atmosphere at heating rates from 5 to 40°C min--1. The TGA curves obtained in air are different from those in nitrogen. This demonstrates that weight loss occurs in a single stage in nitrogen but in two stages in air. To elucidate this difference, thermal decomposition kinetics is analyzed by applying the Kissinger, Flynn-Wall-Ozawa, Coat-Redfern and

  19. Selection and preparation of activated carbon for fuel gas storage

    DOEpatents

    Schwarz, James A.; Noh, Joong S.; Agarwal, Rajiv K.

    1990-10-02

    Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

  20. Production of activated carbon from TCR char

    NASA Astrophysics Data System (ADS)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  1. Utilization of oil palm fronds in producing activated carbon using Na2CO3 as an activator

    NASA Astrophysics Data System (ADS)

    Maulina, S.; Anwari, FN

    2018-02-01

    Oil Palm Frond is a waste in palm oil plantations that have the potential to be processed into more valuable products. This possibility is because of the presence of cellulose, hemicellulose, and lignin in oil palm fronds. Therefore, this study aimed to utilize oil palm fronds in manufacturing of activated carbon through pyrolysis and impregnation that meets the requirements of the Industrial National Standard 06-3730-1995. The palm-fringed oil palm fronds were pyrolyzed in reactors at 150°C, 200°C, and 250°C for 60 minutes. Subsequently, the charcoal produced from the pyrolysis was smoothed with a ball mill, sieved with a size of 140 meshes, and impregnated using a Sodium Carbonate (Na2CO3) for 24 hours at a concentration of 0 %, 2.5%, 5%, and 7.5 % (w/v). The activated carbon has 35.13% of charcoal yield, 8.6% of water content, 14.25% of ash content, 24.75% of volatile matter, 72.75% of fixed carbon, and 492.29 of iodine number. Moreover, SEM analysis indicated that activated carbon porous are coarse and distributed.

  2. Multi-wavelength Characterization of Brown and Black Carbon from Filter Samples

    NASA Astrophysics Data System (ADS)

    Johnson, M. M.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Gyawali, M. S.; Arnott, W. P.; Wang, X.; Chakrabarty, R. K.; Moosmüller, H.; Watson, J. G.; Chow, J. C.

    2014-12-01

    Particulate matter (PM) scatters and absorbs solar radiation and thereby affects visibility, the Earth's radiation balance, and properties and lifetimes of clouds. Understanding the radiative forcing (RF) of PM is essential to reducing the uncertainty in total anthropogenic and natural RF. Many instruments that measure light absorption coefficients (βabs [λ], Mm-1) of PM have used light at near-infrared (NIR; e.g., 880 nm) or red (e.g., 633 nm) wavelengths. Measuring βabs over a wider wavelength range, especially including the ultraviolet (UV) and visible, allows for contributions from black carbon (BC), brown carbon (BrC), and mineral dust (MD) to be differentiated. This will help to determine PM RF and its emission sources. In this study, source and ambient samples collected on Teflon-membrane and quartz-fiber filters are used to characterize and develop a multi-wavelength (250 - 1000 nm) filter-based measurement method of PM light absorption. A commercially available UV-visible spectrometer coupled with an integrating sphere is used for quantifying diffuse reflectance and transmittance of filter samples, from which βabs and absorption Ǻngström exponents (AAE) of the PM deposits are determined. The filter-based light absorption measurements of laboratory generated soot and biomass burning aerosol are compared to 3-wavelength photoacoustic absorption measurements to evaluate filter media and loading effects. Calibration factors are developed to account for differences between filter types (Teflon-membrane vs. quartz-fiber), and between filters and in situ photoacoustic absorption values. Application of multi-spectral absorption measurements to existing archived filters, including specific source samples (e.g. diesel and gasoline engines, biomass burning, dust), will also be discussed.

  3. Supercritical fluid carbon dioxide extraction and liquid chromatographic separation with electrochemical detection of methylmercury from biological samples

    USGS Publications Warehouse

    Simon, N.S.

    1997-01-01

    Using the coupled methods presented in this paper, methylmercury can be accurately and rapidly extracted from biological samples by modified supercritical fluid carbon dioxide and quantitated using liquid chromatography with reductive electrochemical detection. Supercritical fluid carbon dioxide modified with methanol effectively extracts underivatized methylmercury from certified reference materials Dorm-1 (dogfish muscle) and Dolt-2 (dogfish liver). Calcium chloride and water, with a ratio of 5:2 (by weight), provide the acid environment required for extracting methylmercury from sample matrices. Methylmercury chloride is separated from other organomercury chloride compounds using HPLC. The acidic eluent, containing 0.06 mol L-1 NaCl, insures the presence of methylmercury chloride and facilitates the reduction of mercury on a glassy carbon electrode. If dual glassy carbon electrodes are used, a positive peak is observed at -0.65 to -0.70 V and a negative peak is observed at -0.90V with the organomercury compounds that were tested. The practical detection limit for methylmercury is 5 X 10-8 mol L-1 (1 X 10-12 tool injected) when a 20 ??L injection loop is used.

  4. Imaging active topological defects in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Suenaga, Kazu; Wakabayashi, Hideaki; Koshino, Masanori; Sato, Yuta; Urita, Koki; Iijima, Sumio

    2007-06-01

    A single-walled carbon nanotube (SWNT) is a wrapped single graphene layer, and its plastic deformation should require active topological defects-non-hexagonal carbon rings that can migrate along the nanotube wall. Although in situ transmission electron microscopy (TEM) has been used to examine the deformation of SWNTs, these studies deal only with diameter changes and no atomistic mechanism has been elucidated experimentally. Theory predicts that some topological defects can form through the Stone-Wales transformation in SWNTs under tension at 2,000 K, and could act as a dislocation core. We demonstrate here, by means of high-resolution (HR)-TEM with atomic sensitivity, the first direct imaging of pentagon-heptagon pair defects found in an SWNT that was heated at 2,273 K. Moreover, our in situ HR-TEM observation reveals an accumulation of topological defects near the kink of a deformed nanotube. This result suggests that dislocation motions or active topological defects are indeed responsible for the plastic deformation of SWNTs.

  5. Chemically modified activated carbon with 1-acylthiosemicarbazide for selective solid-phase extraction and preconcentration of trace Cu(II), Hg(II) and Pb(II) from water samples.

    PubMed

    Gao, Ru; Hu, Zheng; Chang, Xijun; He, Qun; Zhang, Lijun; Tu, Zhifeng; Shi, Jianping

    2009-12-15

    A new sorbent 1-acylthiosemicarbazide-modified activated carbon (AC-ATSC) was prepared as a solid-phase extractant and applied for removing of trace Cu(II), Hg(II) and Pb(II) prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The separation/preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. At pH 3, the maximum static adsorption capacity of Cu(II), Hg(II) and Pb(II) onto the AC-ATSC were 78.20, 67.80 and 48.56 mg g(-1), respectively. The adsorbed metal ions were quantitatively eluted by 3.0 mL of 2% CS(NH2)2 and 2.0 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation. According to the definition of IUPAC, the detection limits (3sigma) of this method for Cu(II), Hg(II) and Pb(II) were 0.20, 0.12 and 0.45 ng mL(-1), respectively. The relative standard deviation under optimum conditions is less than 4.0% (n=8). The prepared sorbent was applied for the preconcentration of trace Cu(II), Hg(II) and Pb(II) in certified and water samples with satisfactory results.

  6. Preparation of activated carbon from waste plastics polyethylene terephthalate as adsorbent in natural gas storage

    NASA Astrophysics Data System (ADS)

    Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Ramadhan, I. T.

    2017-02-01

    The main problem is the process of natural gas storage and distribution, because in normal conditions of natural gas in the gas phase causes the storage capacity be small and efficient to use. The technology is commonly used Compressed Natural Gas (CNG) and Liquefied Natural Gas (LNG). The weakness of this technology safety level is low because the requirement for high-pressure CNG (250 bar) and LNG requires a low temperature (-161°C). It takes innovation in the storage of natural gas using the technology ANG (Adsorbed Natural Gas) with activated carbon as an adsorbent, causing natural gas can be stored in a low pressure of about 34.5. In this research, preparation of activated carbon using waste plastic polyethylene terephthalate (PET). PET plastic waste is a good raw material for making activated carbon because of its availability and the price is a lot cheaper. Besides plastic PET has the appropriate characteristics as activated carbon raw material required for the storage of natural gas because the material is hard and has a high carbon content of about 62.5% wt. The process of making activated carbon done is carbonized at a temperature of 400 ° C and physical activation using CO2 gas at a temperature of 975 ° C. The parameters varied in the activation process is the flow rate of carbon dioxide and activation time. The results obtained in the carbonization process yield of 21.47%, while the yield on the activation process by 62%. At the optimum process conditions, the CO2 flow rate of 200 ml/min and the activation time of 240 minutes, the value % burn off amounted to 86.69% and a surface area of 1591.72 m2/g.

  7. Hierarchical porous carbons prepared by an easy one-step carbonization and activation of phenol-formaldehyde resins with high performance for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zheng, Zhoujun; Gao, Qiuming

    Hierarchical porous carbons are prepared by an easy one-step process of carbonization and activation derived from phenol-formaldehyde resins, in which potassium hydroxide acts as both the catalyst of polymerization and the activation reagent. The simple one-step preparation saves the cost of carbons and leads to high yield. The porous carbons have high surface areas with abundant pore structures. The plenty of micropores and small mesopores increase the capacitance and make the electrolyte ions diffuse fast into the pores. These hierarchical porous carbons show high performance for supercapacitors possessing of the optimized capacitance of 234 F g -1 in aqueous electrolyte and 137 F g -1 in organic electrolyte with high capacitive retention.

  8. Detecting Extracellular Carbonic Anhydrase Activity Using Membrane Inlet Mass Spectrometry

    PubMed Central

    Delacruz, Joannalyn; Mikulski, Rose; Tu, Chingkuang; Li, Ying; Wang, Hai; Shiverick, Kathleen T.; Frost, Susan C.; Horenstein, Nicole A.; Silverman, David N.

    2010-01-01

    Current research into the function of carbonic anhydrases in cell physiology emphasizes the role of membrane-bound carbonic anhydrases, such as carbonic anhydrase IX that has been identified in malignant tumors and is associated with extracellular acidification as a response to hypoxia. We present here a mass spectrometric method to determine the extent to which total carbonic anhydrase activity is due to extracellular carbonic anhydrase in whole cell preparations. The method is based on the biphasic rate of depletion of 18O from CO2 measured by membrane inlet mass spectrometry. The slopes of the biphasic depletion are a sensitive measure of the presence of carbonic anhydrase outside and inside of the cells. This property is demonstrated here using suspensions of human red cells in which external carbonic anhydrase was added to the suspending solution. It is also applied to breast and prostate cancer cells which both express exofacial carbonic anhydrase IX. Inhibition of external carbonic anhydrase is achieved by use of a membrane impermeant inhibitor that was synthesized for this purpose, p-aminomethylbenzenesulfonamide attached to a polyethyleneglycol polymer. PMID:20417171

  9. Activated Carbon Fibers For Gas Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchell, Timothy D; Contescu, Cristian I; Gallego, Nidia C

    The advantages of Activated Carbon Fibers (ACF) over Granular Activated Carbon (GAC) are reviewed and their relationship to ACF structure and texture are discussed. These advantages make ACF very attractive for gas storage applications. Both adsorbed natural gas (ANG) and hydrogen gas adsorption performance are discussed. The predicted and actual structure and performance of lignin-derived ACF is reviewed. The manufacture and performance of ACF derived monolith for potential automotive natural gas (NG) storage applications is reported Future trends for ACF for gas storage are considered to be positive. The recent improvements in NG extraction coupled with the widespread availability ofmore » NG wells means a relatively inexpensive and abundant NG supply in the foreseeable future. This has rekindled interest in NG powered vehicles. The advantages and benefit of ANG compared to compressed NG offer the promise of accelerated use of ANG as a commuter vehicle fuel. It is to be hoped the current cost hurdle of ACF can be overcome opening ANG applications that take advantage of the favorable properties of ACF versus GAC. Lastly, suggestions are made regarding the direction of future work.« less

  10. Aragonite-Calcite Inversion During Biogenic Carbonate Sampling: Considerations for Interpreting Isotopic Measurements in Paleoclimate Studies

    NASA Astrophysics Data System (ADS)

    Waite, A. J.; Swart, P. K.

    2011-12-01

    As aragonite is the metastable polymorph of calcium carbonate, it lends itself to monotropic inversion to the more stable polymorph, calcite. This inversion is possible through an increase in the temperature and pressure conditions to which the sample is exposed and, although first noted nearly a century ago, has been primarily discussed in the context of sample roasting prior to analyses in paleoclimatological studies. Over the last several decades, however, researchers have found evidence to suggest that the friction associated with the sampling of biogenic carbonates via milling/drilling also induces inversion. Furthermore, this inversion may be associated with a shift in measured oxygen isotopic values and ultimately have significant implications for the interpretation of paleoclimatic reconstructions. Despite this, the isotopic heterogeneity of biogenic aragonite skeletons makes the effects of inversion challenging to test and the subject remains underrepresented in the literature. Here we present a first order study into the effects of milling on both the mineralogy and isotopic compositions measured in sclerosponges, corals, and molluscs. X-Ray diffraction analysis of samples hand ground with a mortar and pestle reveal 100% aragonitic skeletons. Conversely, samples milled with a computerized micromill show measurable inversion to calcite. On average, percent inversion of aragonite to calcite for individual specimens was 15% for sclerosponges, 16% for corals, and 9% for molluscs. Isotopic data from these specimens show that the higher the percentage of aragonite inverted to calcite, the more depleted the measured oxygen isotopic values. In the largest of the datasets (sclerosponges), it is evident that the range of oxygen isotope values from milled samples (-0.02 to +0.84%) exceeds the range in values for those samples which were hand ground and showed no inversion (+0.53 to +0.90%). This, coupled with the strong correlation between the two variables

  11. Wastewater treatment--adsorption of organic micropollutants on activated HTC-carbon derived from sewage sludge.

    PubMed

    Kirschhöfer, Frank; Sahin, Olga; Becker, Gero C; Meffert, Florian; Nusser, Michael; Anderer, Gilbert; Kusche, Stepan; Klaeusli, Thomas; Kruse, Andrea; Brenner-Weiss, Gerald

    2016-01-01

    Organic micropollutants (MPs), in particular xenobiotics and their transformation products, have been detected in the aquatic environment and the main sources of these MPs are wastewater treatment plants. Therefore, an additional cleaning step is necessary. The use of activated carbon (AC) is one approach to providing this additional cleaning. Industrial AC derived from different carbonaceous materials is predominantly produced in low-income countries by polluting processes. In contrast, AC derived from sewage sludge by hydrothermal carbonization (HTC) is a regional and sustainable alternative, based on waste material. Our experiments demonstrate that the HTC-AC from sewage sludge was able to remove most of the applied MPs. In fact more than 50% of sulfamethoxazole, diclofenac and bezafibrate were removed from artificial water samples. With the same approach carbamazepine was eliminated to nearly 70% and atrazine more than 80%. In addition a pre-treated (phosphorus-reduced) HTC-AC was able to eliminate 80% of carbamazepine and diclofenac. Atrazine, sulfamethoxazole and bezafibrate were removed to more than 90%. Experiments using real wastewater samples with high organic content (11.1 g m(-3)) succeeded in proving the adsorption capability of phosphorus-reduced HTC-AC.

  12. Removing lead in drinking water with activated carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, R.M.; Kuennen, R.W.

    A point-of-use (POU) granular activated carbon (GAC) fixed bed adsorber (FBA) was evaluated for reduction of soluble and insoluble lead from drinking water. Some of the factors which affect lead removal by GAC were evaluated, such as carbon type, solution pH, and a limited amount of work on competitive interactions. The design criteria for lead reduction by a POU device are also addressed. Minicolumns were used to evaluate the capacity of carbon for lead under a variety of conditions. The importance of surface chemistry of the carbon and the relationship with the pH of the water for lead reduction wasmore » demonstrated. Results indicate that a properly designed POU-GAC-FBA can reduce lead in drinking water to below the EPA action level of 15 ppb while being tested under a variety of conditions as specified under the National Sanitation Foundation (NSF) International Standard 53 test protocol. 37 refs., 9 figs., 1 tab.« less

  13. Removal of toxic chemicals from water with activated carbon

    USGS Publications Warehouse

    Dawson, V.K.; Marking, L.L.; Bills, T.D.

    1976-01-01

    Activated carbon was effective in removing fish toxicants and anesthetics from water solutions. Its capacity to adsorb 3-trifluoromethyl-4-nitrophenol (TFM), antimycin, NoxfishA? (5% rotenone), Dibrorms, juglone, MSa??222, and benzocaine ranged from 0.1 to 64 mg per gram of carbon. The adsorptive capacity (end point considered as a significant discharge) of activated carbon for removal of TFM was determined at column depths of 15, 30, and 60 cm; temperatures of 7, 12, 17, and 22 C; pH's of 6.5, 7.5, 8.5, and 9.5; and flow rates of 50, 78, 100, 200, and 940 ml/min. Adsorptive capacity increased when the contact time was increased by reducing the flow rate or increasing the column depth. The adsorptive capacity was not significantly influenced by temperature but was substantially higher at pH 6.5 than at the other pH's tested. A practical and efficient filter for purifying chemically treated water was developed.

  14. Granular bamboo-derived activated carbon for high CO(2) adsorption: the dominant role of narrow micropores.

    PubMed

    Wei, Haoran; Deng, Shubo; Hu, Bingyin; Chen, Zhenhe; Wang, Bin; Huang, Jun; Yu, Gang

    2012-12-01

    Cost-effective biomass-derived activated carbons with a high CO(2) adsorption capacity are attractive for carbon capture. Bamboo was found to be a suitable precursor for activated carbon preparation through KOH activation. The bamboo size in the range of 10-200 mesh had little effect on CO(2) adsorption, whereas the KOH/C mass ratio and activation temperature had a significant impact on CO(2) adsorption. The bamboo-derived activated carbon had a high adsorption capacity and excellent selectivity for CO(2) , and also the adsorption process was highly reversible. The adsorbed amount of CO(2) on the granular activated carbon was up to 7.0 mmol g(-1) at 273 K and 1 bar, which was higher than almost all carbon materials. The pore characteristics of activated carbons responsible for high CO(2) adsorption were fully investigated. Based on the analysis of narrow micropore size distribution of several activated carbons prepared under different conditions, a more accurate micropore range contributing to CO(2) adsorption was proposed. The volume of micropores in the range of 0.33-0.82 nm had a good linear relationship with CO(2) adsorption at 273 K and 1 bar, and the narrow micropores of about 0.55 nm produced the major contribution, which could be used to evaluate CO(2) adsorption on activated carbons. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Purification of metal finishing waste waters with zeolites and activated carbons.

    PubMed

    Leinonen, H; Lehto, J

    2001-02-01

    Sixteen zeolites and 5 activated carbons were tested for the removal of nickel, zinc, cadmium, copper, chromium, and cobalt from waste simulants mimicking effluents produced in metal plating plants. The best performances were obtained from 4 zeolites: A, X, L, and ferrierite types and from 2 carbon types made from lignite and peat. The distribution coefficients for these sorbents were in the range of 10,000-440,000 ml/g. Column experiments showed that the most effective zeolites for Zn, Ni, Cu, and Cd were A and X type zeolites. The activated carbons, Hydrodarco 3000 and Norit Row Supra, exhibited good sorption properties for metals in aqueous solutions containing complexing agents.

  16. Dynamics of soil organic carbon and microbial activity in treated wastewater irrigated agricultural soils along soil profiles

    NASA Astrophysics Data System (ADS)

    Jüschke, Elisabeth; Marschner, Bernd; Chen, Yona; Tarchitzky, Jorge

    2010-05-01

    Treated wastewater (TWW) is an important source for irrigation water in arid and semiarid regions and already serves as an important water source in Jordan, the Palestinian Territories and Israel. Reclaimed water still contains organic matter (OM) and various compounds that may effect microbial activity and soil quality (Feigin et al. 1991). Natural soil organic carbon (SOC) may be altered by interactions between these compounds and the soil microorganisms. This study evaluates the effects of TWW irrigation on the quality, dynamics and microbial transformations of natural SOC. Priming effects (PE) and SOC mineralization were determined to estimate the influence of TWW irrigation on SOC along soil profiles of agricultural soils in Israel and the Westbank. The used soil material derived from three different sampling sites allocated in Israel and The Palestinian Authority. Soil samples were taken always from TWW irrigated sites and control fields from 6 different depths (0-10, 10-20, 20-30, 30-50, 50-70, 70-100 cm). Soil carbon content and microbiological parameters (microbial biomass, microbial activities and enzyme activities) were investigated. In several sites, subsoils (50-160 cm) from TWW irrigated plots were depleted in soil organic matter with the largest differences occurring in sites with the longest TWW irrigation history. Laboratory incubation experiments with additions of 14C-labelled compounds to the soils showed that microbial activity in freshwater irrigated soils was much more stimulated by sugars or amino acids than in TWW irrigated soils. The lack of such "priming effects" (Hamer & Marschner 2005) in the TWW irrigated soils indicates that here the microorganisms are already operating at their optimal metabolic activity due to the continuous substrate inputs with soluble organic compounds from the TWW. The fact that PE are triggered continuously due to TWW irrigation may result in a decrease of SOC over long term irrigation. Already now this could be

  17. Immobilized acclimated biomass-powdered activated carbon for the bioregeneration of granular activated carbon loaded with phenol and o-cresol.

    PubMed

    Toh, Run-Hong; Lim, Poh-Eng; Seng, Chye-Eng; Adnan, Rohana

    2013-09-01

    The objectives of the study are to use immobilized acclimated biomass and immobilized biomass-powdered activated carbon (PAC) as a novel approach in the bioregeneration of granular activated carbon (GAC) loaded with phenol and o-cresol, respectively, and to compare the efficiency and rate of the bioregeneration of the phenolic compound-loaded GAC using immobilized and suspended biomasses under varying GAC dosages. Bioregeneration of GAC loaded with phenol and o-cresol, respectively, was conducted in batch system using the sequential adsorption and biodegradation approach. The results showed that the bioregeneration efficiency of GAC loaded with phenol or o-cresol was basically the same irrespective of whether the immobilized or suspended biomass was used. Nonetheless, the duration for bioregeneration was longer under immobilized biomass. The beneficial effect of immobilized PAC-biomass for bioregeneration is the enhancement of the removal rate of the phenolic compounds via adsorption and the shortening of the bioregeneration duration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Synthesis and characterization of low-cost activated carbon prepared from Malawian baobab fruit shells by H3PO4 activation for removal of Cu(II) ions: equilibrium and kinetics studies

    NASA Astrophysics Data System (ADS)

    Vunain, Ephraim; Kenneth, Davie; Biswick, Timothy

    2017-12-01

    In this study, low-cost activated carbon (AC) prepared from baobab fruit shells by chemical activation using phosphoric acid was evaluated for the removal of Cu(II) ions from aqueous solution. The prepared activated carbon samples were characterized using N2-adsorption-desorption isotherms, SEM, FTIR, EDX and XRD analysis. The sample activated at 700 °C was chosen as our optimized sample because its physicochemical properties and BET results were similar to those of a commercial sample. The N2-adsorption-desorption results of the optimized sample revealed a BET surface area of 1089 m2/g, micropore volume of 0.3764 cm3/g, total pore volume of 0.4330 cm3/g and pore size of 1.45 nm. Operational parameters such as pH, initial copper concentration, contact time, adsorbent dosage and temperature were studied in a batch mode. Equilibrium data were obtained by testing the adsorption data using three different isotherm models: Langmuir, Freundlich and Dubinin-Radushkevish (D-R) models. It was found that the adsorption of copper correlated well with the Langmuir isotherm model with a maximum monolayer adsorption capacity of 3.0833 mg/g. The kinetics of the adsorption process was tested through pseudo-first-order and pseudo-second-order models. The pseudo-second-order kinetic model provided the best correlation for the experimental data studied. The adsorption followed chemisorption process. The study provided an effective use of baobab fruit shells as a valuable source of adsorbents for the removal of copper ions from aqueous solution. This study could add economic value to baobab fruit shells in Malawi, reduce disposal problems, and offer an economic source of AC to the AC users.

  19. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    DOEpatents

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  20. U/Th dating of carbonate deposits from Constantina (Sevilla), Spain.

    PubMed

    Alcaraz-Pelegrina, J M; Martínez-Aguirre, A

    2007-07-01

    Uranium-series method has been applied to continental carbonate deposits from Constantina, Seville, in Spain. All samples analysed were impure carbonates and the leachate-leachate method was used to obtain activity ratios in carbonate fraction. Leachate-residue methods were applied to one of the samples in order to compare with leachate-leachate method, but leachate-residue method assumptions did not meet and ages resulting from leachate-residue methods were not valid. Ages obtained by leachate-leachate method range from 1.8 to 23.5ky BP and are consistent with stratigraphical positions of samples analysed. Initial activity ratios for uranium isotopes are practically constant in this period, thus indicating that no changes in environmental conditions occur between 1.8 and 23.5ky period.

  1. Adsorbed natural gas storage with activated carbons made from Illinois coals and scrap tires

    USGS Publications Warehouse

    Sun, Jielun; Brady, T.A.; Rood, M.J.; Lehmann, C.M.; Rostam-Abadi, M.; Lizzio, A.A.

    1997-01-01

    Activated carbons for natural gas storage were produced from Illinois bituminous coals (IBC-102 and IBC-106) and scrap tires by physical activation with steam or CO2 and by chemical activation with KOH, H3PO4, or ZnCl2. The products were characterized for N2-BET area, micropore volume, bulk density, pore size distribution, and volumetric methane storage capacity (Vm/Vs). Vm/Vs values for Illinois coal-derived carbons ranged from 54 to 83 cm3/cm3, which are 35-55% of a target value of 150 cm3/cm3. Both granular and pelletized carbons made with preoxidized Illinois coal gave higher micropore volumes and larger Vm/Vs values than those made without preoxidation. This confirmed that preoxidation is a desirable step in the production of carbons from caking materials. Pelletization of preoxidized IBC-106 coal, followed by steam activation, resulted in the highest Vm/Vs value. With roughly the same micropore volume, pelletization alone increased Vm/Vs of coal carbon by 10%. Tire-derived carbons had Vm/Vs values ranging from 44 to 53 cm3/cm3, lower than those of coal carbons due to their lower bulk densities. Pelletization of the tire carbons increased bulk density up to 160%. However, this increase was offset by a decrease in micropore volume of the pelletized materials, presumably due to the pellet binder. As a result, Vm/Vs values were about the same for granular and pelletized tire carbons. Compared with coal carbons, tire carbons had a higher percentage of mesopores and macropores.

  2. Enhanced adsorption of chromium onto activated carbon by microwave-assisted H(3)PO(4) mixed with Fe/Al/Mn activation.

    PubMed

    Sun, Yuanyuan; Yue, Qinyan; Mao, Yanpeng; Gao, Baoyu; Gao, Yuan; Huang, Lihui

    2014-01-30

    FeCl3, AlCl3 and MnCl2 were used as the assisted activation agent in activated carbon preparation by H3PO4 activation using microwave heating method. The physico-chemical properties of activated carbons were investigated by scanning electron microscope (SEM), N2 adsorption/desorption, Boehm's titration, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). To investigate the adsorption performances of chromium onto these newly developed activated carbons, a batch of experiments were performed under different adsorption conditions: solution pH, initial Cr(VI) ion concentration, contact time and co-existing ions. The results suggested that carbon with MnCl2 as assisted activation agent displayed the highest BET surface area (1332m(2)/g) and the highest pore volume (1.060cm(3)/g). FeCl3, AlCl3 and MnCl2 had successfully improved Cr(VI) adsorption and activated carbon with FeCl3 as assisted activation agent exhibited the best uptake capacity. To study the transformation of Cr(VI) in adsorption process, total chromium in the aqueous solution was also recorded. The ratio of the amount of Cr(VI) to Cr(III) on each adsorbent was explained by XPS analysis results. Both the co-existing salts (Na2SO4 and NaNO3) demonstrated promoted effects on Cr(VI) removal by four carbons. The pseudo-second-order model and Freundlich equation displayed a good correlation with adsorption data. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Comparative study of selenite adsorption on carbon based adsorbents and activated alumina.

    PubMed

    Jegadeesan, G; Mondal, K; Lalvani, S B

    2003-08-01

    The sorption characteristics of carbon-based adsorbents such as activated carbon and chitin for the removal of selenite, Se (IV), an anionic, hazardous contaminant, are compared with those of alpha and gamma alumina. Batch experiments were conducted to determine the influence of pH, concentration of adsorbate, adsorbent loading and temperature on the sorption characteristics of the adsorbents. Generally, low pH of the solution resulted in favorable selenium removal. With the exception of activated carbon, uptakes decreased with increase in temperature. In comparison, chitin was found to be far less effective for the removal of Se (IV) from aqueous solutions. The data also showed that gamma alumina provided higher selenium removal percentages (99%) compared to alpha alumina (94%), activated carbon (87%) and chitin (49%). The selenite removal was found to decrease with increasing initial Se (IV) concentration in the solution. Adsorption capacities of the adsorbents are reported in terms of their Langmuir adsorption isotherms. The adsorption capacity (on unit mass basis) of the adsorbents for selenite is in the order: chitin (specific area (sa) = 9.58 m2 g(-1)) < activated carbon (sa = 96.37 m2 g(-1)) < alpha alumina (sa = 6 m2 g(-1)) < gamma alumina (sa = 150 m2 g(-1)).

  4. Application of sodium carbonate prevents sulphur poisoning of catalysts in automated total mercury analysis

    NASA Astrophysics Data System (ADS)

    McLagan, David S.; Huang, Haiyong; Lei, Ying D.; Wania, Frank; Mitchell, Carl P. J.

    2017-07-01

    Analysis of high sulphur-containing samples for total mercury content using automated thermal decomposition, amalgamation, and atomic absorption spectroscopy instruments (USEPA Method 7473) leads to rapid and costly SO2 poisoning of catalysts. In an effort to overcome this issue, we tested whether the addition of powdered sodium carbonate (Na2CO3) to the catalyst and/or directly on top of sample material increases throughput of sulphur-impregnated (8-15 wt%) activated carbon samples per catalyst tube. Adding 5 g of Na2CO3 to the catalyst alone only marginally increases the functional lifetime of the catalyst (31 ± 4 g of activated carbon analyzed per catalyst tube) in relation to unaltered catalyst of the AMA254 total mercury analyzer (17 ± 4 g of activated carbon). Adding ≈ 0.2 g of Na2CO3 to samples substantially increases (81 ± 17 g of activated carbon) catalyst life over the unaltered catalyst. The greatest improvement is achieved by adding Na2CO3 to both catalyst and samples (200 ± 70 g of activated carbon), which significantly increases catalyst performance over all other treatments and enables an order of magnitude greater sample throughput than the unaltered samples and catalyst. It is likely that Na2CO3 efficiently sequesters SO2, even at high furnace temperatures to produce Na2SO4 and CO2, largely negating the poisonous impact of SO2 on the catalyst material. Increased corrosion of nickel sampling boats resulting from this methodological variation is easily resolved by substituting quartz boats. Overall, this variation enables an efficient and significantly more affordable means of employing automated atomic absorption spectrometry instruments for total mercury analysis of high-sulphur matrices.

  5. Preparation of Activated Carbon From Polygonum orientale Linn. to Remove the Phenol in Aqueous Solutions

    PubMed Central

    Feng, Jia; Shi, Shengli; Pei, Liangyu; Lv, Junping; Liu, Qi; Xie, Shulian

    2016-01-01

    Phenol components are major industry contaminants of aquatic environment. Among all practical methods for removing phenol substances from polluted water, activated carbon absorption is the most effective way. Here, we have produced low-cost activated carbon using Polygonum orientale Linn, a wide spreading species with large biomass. The phenol adsorption ability of this activated carbon was evaluated at different physico-chemical conditions. Average equilibrium time for adsorption was 120 min. The phenol adsorption ability of the P. orientale activated carbon was increased as the pH increases and reached to the max at pH 9.00. By contrast, the ionic strength had little effect on the phenol absorption. The optimum dose for phenol adsorption by the P. orientale activated carbon was 20.00 g/L. The dominant adsorption mechanism of the P. orientale activated carbon was chemisorption as its phenol adsorption kinetics matched with the pseudo-second-order kinetics. In addition, the equilibrium data were fit to the Langmuir model, with the negative standard free energy and the positive enthalpy, suggesting that adsorption was spontaneous and endothermic. PMID:27741305

  6. Preparation of Activated Carbon From Polygonum orientale Linn. to Remove the Phenol in Aqueous Solutions.

    PubMed

    Feng, Jia; Shi, Shengli; Pei, Liangyu; Lv, Junping; Liu, Qi; Xie, Shulian

    2016-01-01

    Phenol components are major industry contaminants of aquatic environment. Among all practical methods for removing phenol substances from polluted water, activated carbon absorption is the most effective way. Here, we have produced low-cost activated carbon using Polygonum orientale Linn, a wide spreading species with large biomass. The phenol adsorption ability of this activated carbon was evaluated at different physico-chemical conditions. Average equilibrium time for adsorption was 120 min. The phenol adsorption ability of the P. orientale activated carbon was increased as the pH increases and reached to the max at pH 9.00. By contrast, the ionic strength had little effect on the phenol absorption. The optimum dose for phenol adsorption by the P. orientale activated carbon was 20.00 g/L. The dominant adsorption mechanism of the P. orientale activated carbon was chemisorption as its phenol adsorption kinetics matched with the pseudo-second-order kinetics. In addition, the equilibrium data were fit to the Langmuir model, with the negative standard free energy and the positive enthalpy, suggesting that adsorption was spontaneous and endothermic.

  7. Heterogeneous fenton catalysts based on activated carbon and related materials.

    PubMed

    Navalon, Sergio; Dhakshinamoorthy, Amarajothi; Alvaro, Mercedes; Garcia, Hermenegildo

    2011-12-16

    The Fenton reaction is widely used for remediation of waste water and for the degradation of organic pollutants in water. Currently, there is considerable interest to convert the classical Fenton reaction, which consumes stoichiometric amounts of iron(II) salts, into a catalytic process that is promoted by a solid. This review describes the work that has used carbonaceous materials either directly as catalysts or, more frequently, as a large-area support for catalytically activated transition metals or metal-oxide nanoparticles. The interest in this type of catalyst derives from the wide use of carbon in conventional water treatments and the wide applicability of the Fenton reaction. After two general sections that illustrate the scope and background of Fenton chemistry, the review describes the activity of activated carbon in the absence or presence of metal-containing particles. The last sections of the review focus on different types of carbonaceous materials, such as carbon nanotubes and diamond nanoparticles. The review concludes with a section that anticipates future developments in this area, which are aimed at overcoming the current limitations of low activity and occurrence of metal leaching. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Neutron activation analysis for antimetabolites. [in food samples

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Determination of metal ion contaminants in food samples is studied. A weighed quantity of each sample was digested in a concentrated mixture of nitric, hydrochloric and perchloric acids to affect complete solution of the food products. The samples were diluted with water and the pH adjusted according to the specific analysis performed. The samples were analyzed by neutron activation analysis, polarography, and atomic absorption spectrophotometry. The solid food samples were also analyzed by neutron activation analysis for increased sensitivity and lower levels of detectability. The results are presented in tabular form.

  9. 75 FR 51754 - Certain Activated Carbon from the People's Republic of China: Notice of Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... Carbon Co., Ltd.; Datong Juqiang Activated Carbon Co., Ltd.; Datong Locomotive Coal & Chemicals Co., Ltd....; Xingtai Coal Chemical Co., Ltd; Zhejiang Xingda Activated Carbon Co., Ltd. \\1\\ See Memo to the File from... DEPARTMENT OF COMMERCE International Trade Administration [A-570-904] Certain Activated Carbon...

  10. The relationship between microbial metabolic activity and biocorrosion of carbon steel.

    PubMed

    Dzierzewicz, Z; Cwalina, B; Chodurek, E; Wilczok, T

    1997-12-01

    The effect of metabolic activity (expressed by generation time, rate of H2S production and the activity of hydrogenase and adenosine phosphosulphate (APS)-reductase enzymes) of the 8 wild strains of Desulfovibrio desulfuricans and of their resistance to metal ions (Hg2+, Cu2+, Mn2+, Zn2+, Ni2+, Cr3+) on the rate of corrosion of carbon steel was studied. The medium containing lactate as the carbon source and sulphate as the electron acceptor was used for bacterial metabolic activity examination and in corrosive assays. Bacterial growth inhibition by metal ions was investigated in the sulphate-free medium. The rate of H2S production was approximately directly proportional to the specific activities of the investigated enzymes. These activities were inversely proportional to the generation time. The rate of microbiologically induced corrosion (MIC) of carbon steel was directly proportional to bacterial resistance to metal ions (correlation coefficient r = 0.95). The correlation between the MIC rate and the activity of enzymes tested, although weaker, was also observed (r = 0.41 for APS-reductase; r = 0.69 for hydrogenase; critical value rc = 0.30, p = 0.05, n = 40).

  11. On the Ability of Space- Based Passive and Active Remote Sensing Observations of CO2 to Detect Flux Perturbations to the Carbon Cycle

    NASA Technical Reports Server (NTRS)

    Crowell, Sean M. R.; Kawa, S. Randolph; Browell, Edward V.; Hammerling, Dorit M.; Moore, Berrien; Schaefer, Kevin; Doney, Scott C.

    2018-01-01

    Space-borne observations of CO2 are vital to gaining understanding of the carbon cycle in regions of the world that are difficult to measure directly, such as the tropical terrestrial biosphere, the high northern and southern latitudes, and in developing nations such as China. Measurements from passive instruments such as GOSAT (Greenhouse Gases Observing Satellite) and OCO-2 (Orbiting Carbon Observatory 2), however, are constrained by solar zenith angle limitations as well as sensitivity to the presence of clouds and aerosols. Active measurements such as those in development for the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) mission show strong potential for making measurements in the high-latitude winter and in cloudy regions. In this work we examine the enhanced flux constraint provided by the improved coverage from an active measurement such as ASCENDS. The simulation studies presented here show that with sufficient precision, ASCENDS will detect permafrost thaw and fossil fuel emissions shifts at annual and seasonal time scales, even in the presence of transport errors, representativeness errors, and biogenic flux errors. While OCO-2 can detect some of these perturbations at the annual scale, the seasonal sampling provided by ASCENDS provides the stronger constraint. Plain Language Summary: Active and passive remote sensors show the potential to provide unprecedented information on the carbon cycle. With the all-season sampling, active remote sensors are more capable of constraining high-latitude emissions. The reduced sensitivity to cloud and aerosol also makes active sensors more capable of providing information in cloudy and polluted scenes with sufficient accuracy. These experiments account for errors that are fundamental to the top-down approach for constraining emissions, and even including these sources of error, we show that satellite remote sensors are critical for understanding the carbon cycle.

  12. Production of sugarcane bagasse-based activated carbon for formaldehyde gas removal from potted plants exposure chamber.

    PubMed

    Mohamed, Elham F; El-Hashemy, Mohammed A; Abdel-Latif, Nasser M; Shetaya, Waleed H

    2015-12-01

    Agricultural wastes such as rice straw, sugar beet, and sugarcane bagasse have become a critical environmental issue due to growing agriculture demand. This study aimed to investigate the valorization possibility of sugarcane bagasse waste for activated carbon preparation. It also aimed to fully characterize the prepared activated carbon (BET surface area) via scanning electron microscope (SEM) and in terms of surface functional groups to give a basic understanding of its structure and to study the adsorption capacity of the sugarcane bagasse-based activated carbon using aqueous methylene blue (MB). The second main objective was to evaluate the performance of sugarcane bagasse-based activated carbon for indoor volatile organic compounds removal using the formaldehyde gas (HCHO) as reference model in two potted plants chambers. The first chamber was labeled the polluted chamber (containing formaldehyde gas without activated carbon) and the second was taken as the treated chamber (containing formaldehyde gas with activated carbon). The results indicated that the sugarcane bagasse-based activated carbon has a moderate BET surface area (557 m2/g) with total mesoporous volume and microporous volume of 0.310 and 0.273 cm3/g, respectively. The prepared activated carbon had remarkable adsorption capacity for MB. Formaldehyde removal rate was then found to be more than 67% in the treated chamber with the sugarcane bagasse-based activated carbon. The plants' responses for this application as dry weight, chlorophyll contents, and protein concentration were also investigated. Preparation of activated carbon from sugarcane bagasse (SCBAC) is a promising approach to produce cheap and efficient adsorbent for gas pollutants removal. It may be also a solution for the agricultural wastes problems in big cities, particularly in Egypt. MB adsorption tests suggest that the SCBAC have high adsorption capacity. Formaldehyde gas removal in the plant chambers indicates that the SCBAC have

  13. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF{sub 6} electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azam, M.A., E-mail: asyadi@utem.edu.my; Jantan, N.H.; Dorah, N.

    2015-09-15

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF{sub 6} non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g{sup −1}. - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, amongmore » others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g{sup −1} at a scan rate of 1 mV s{sup −1}.« less

  14. Carbonic anhydrase activators: Activation of the β-carbonic anhydrase from Malassezia globosa with amines and amino acids.

    PubMed

    Vullo, Daniela; Del Prete, Sonia; Capasso, Clemente; Supuran, Claudiu T

    2016-03-01

    The β-carbonic anhydrase (CA, EC 4.2.1.1) from the dandruff producing fungus Malassezia globosa, MgCA, was investigated for its activation with amines and amino acids. MgCA was weakly activated by amino acids such as L-/D-His, L-Phe, D-DOPA, D-Trp, L-/D-Tyr and by the amine serotonin (KAs of 12.5-29.3μM) but more effectively activated by d-Phe, l-DOPA, l-Trp, histamine, dopamine, pyridyl-alkylamines, and 4-(2-aminoethyl)-morpholine, with KAs of 5.82-10.9μM. The best activators were l-adrenaline and 1-(2-aminoethyl)piperazine, with activation constants of 0.72-0.81μM. This study may help a better understanding of the activation mechanisms of β-CAs from pathogenic fungi as well as the design of tighter binding ligands for this enzyme which is a drug target for novel types of anti-dandruff agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Estimation of the carbon footprint of the Galician fishing activity (NW Spain).

    PubMed

    Iribarren, Diego; Vázquez-Rowe, Ian; Hospido, Almudena; Moreira, María Teresa; Feijoo, Gumersindo

    2010-10-15

    The food production system as a whole is recognized as one of the major contributors to environmental impacts. Accordingly, food production, processing, transport and consumption account for a relevant portion of the greenhouse gas (GHG) emissions associated with any country. In this context, there is an increasing market demand for climate-relevant information regarding the global warming impact of consumer food products throughout the supply chains. This article deals with the assessment of the carbon footprint of seafood products as a key subgroup in the food sector. Galicia (NW Spain) was selected as a case study. The analysis is based on a representative set of species within the Galician fishing sector, including species obtained from coastal fishing (e.g. horse mackerel, Atlantic mackerel, European pilchard and blue whiting), offshore fishing (e.g. European hake, megrim and anglerfish), deep-sea fishing (skipjack and yellowfin tuna), extensive aquaculture (mussels) and intensive aquaculture (turbot). The carbon footprints associated with the production-related activities of each selected species were quantified following a business-to-business approach on the basis of 1year of fishing activity. These individual carbon footprints were used to calculate the carbon footprint for each of the different Galician fisheries and culture activities. Finally, the lump sum of the carbon footprints for coastal, offshore and deep-sea fishing and extensive and intensive aquaculture brought about the carbon footprint of the Galician fishing activity (i.e., capture and culture). A benchmark for quantifying and communicating emission reductions was then provided, and opportunities to reduce the GHG emissions associated with the Galician fishing activity could be prioritized. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Impact of active phase chemical composition and dispersity on catalytic behavior in PROX reaction

    NASA Astrophysics Data System (ADS)

    Cherkezova-Zheleva, Z.; Paneva, D.; Todorova, S.; Kolev, H.; Shopska, M.; Yordanova, I.; Mitov, I.

    2014-04-01

    Iron and iron-platinum catalysts supported on activated carbon have been successfully synthesized by wet impregnation method and low-temperature treatment in inert atmosphere. The content of the supported phases corresponds to 10 wt % Fe and 0.5 wt % Pt. Four catalytic samples were synthesized: Sample A—activated carbon impregnated with Fe nitrate; Sample B—activated carbon impregnated with Pt salt; Sample C—activated carbon impregnated consequently with Fe and Pt salts; Sample D—activated carbon impregnated simultaneously with Fe and Pt salts. The as-prepared materials were characterized by Mössbauer spectroscopy, X-ray diffraction, infrared and X-ray photoelectron spectroscopy. The spectra show that the activated carbon support and the preparation procedure give rise to the synthesis of isolated metal Pt ions and ultradispersed Fe and Pt oxide species. Probably the presence of different functional groups of activated carbon gives rise to registered very high dispersion of loaded species on support. The catalytic tests were carried out in PROX reaction. A lower activity of bimetallic Pt-Fe samples was explained with the increase in surface oxygen species as a result of predomination of iron oxide on the support leading to the increase in selectivity to the H2 oxidation. Partial agglomeration of supported iron oxide phase was registered after catalytic tests.

  17. Subtropical urban turfs: Carbon and nitrogen pools and the role of enzyme activity.

    PubMed

    Kong, Ling; Chu, L M

    2018-03-01

    Urban grasslands not only provide a recreational venue for urban residents, but also sequester organic carbon in vegetation and soils through photosynthesis, and release carbon dioxide through respiration, which largely contribute to carbon storage and fluxes at regional and global scales. We investigated organic carbon and nitrogen pools in subtropical turfs and found that dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) were regulated by several factors including microbial activity which is indicated by soil enzymatic activity. We observed a vertical variation and different temporal patterns in both soil DOC, DON and enzyme activities, which decreased significantly with increasing soil depths. We further found that concentration of soil DON was linked with turf age. There were correlations between grass biomass and soil properties, and soil enzyme activities. In particular, soil bulk density was significantly correlated with soil moisture and soil organic carbon (SOC). In addition, DOC correlated significantly with DON. Significant negative correlations were also observed between soil total dissolved nitrogen (TDN) and grass biomass of Axonopus compressus and Zoysia matrella. Specifically, grass biomass was significantly correlated with the soil activity of urease and β-glucosidase. Soil NO 3 -N concentration also showed negative correlations with the activity of both β-glucosidase and protease but there were no significant correlations between cellulase and soil properties or grass biomass. Our study demonstrated a relationship between soil C and N dynamics and soil enzymes that could be modulated to enhance SOC pools through management and maintenance practices. Copyright © 2017. Published by Elsevier B.V.

  18. A robust and fast method of sampling and analysis of delta13C of dissolved inorganic carbon in ground waters.

    PubMed

    Spötl, Christoph

    2005-09-01

    The stable carbon isotopic composition of dissolved inorganic carbon (delta13C(DIC)) is traditionally determined using either direct precipitation or gas evolution methods in conjunction with offline gas preparation and measurement in a dual-inlet isotope ratio mass spectrometer. A gas evolution method based on continuous-flow technology is described here, which is easy to use and robust. Water samples (100-1500 microl depending on the carbonate alkalinity) are injected into He-filled autosampler vials in the field and analysed on an automated continuous-flow gas preparation system interfaced to an isotope ratio mass spectrometer. Sample analysis time including online preparation is 10 min and overall precision is 0.1 per thousand. This method is thus fast and can easily be automated for handling large sample batches.

  19. Rapid Active Sampling Package

    NASA Technical Reports Server (NTRS)

    Peters, Gregory

    2010-01-01

    A field-deployable, battery-powered Rapid Active Sampling Package (RASP), originally designed for sampling strong materials during lunar and planetary missions, shows strong utility for terrestrial geological use. The technology is proving to be simple and effective for sampling and processing materials of strength. Although this originally was intended for planetary and lunar applications, the RASP is very useful as a powered hand tool for geologists and the mining industry to quickly sample and process rocks in the field on Earth. The RASP allows geologists to surgically acquire samples of rock for later laboratory analysis. This tool, roughly the size of a wrench, allows the user to cut away swaths of weathering rinds, revealing pristine rock surfaces for observation and subsequent sampling with the same tool. RASPing deeper (.3.5 cm) exposes single rock strata in-situ. Where a geologist fs hammer can only expose unweathered layers of rock, the RASP can do the same, and then has the added ability to capture and process samples into powder with particle sizes less than 150 microns, making it easier for XRD/XRF (x-ray diffraction/x-ray fluorescence). The tool uses a rotating rasp bit (or two counter-rotating bits) that resides inside or above the catch container. The container has an open slot to allow the bit to extend outside the container and to allow cuttings to enter and be caught. When the slot and rasp bit are in contact with a substrate, the bit is plunged into it in a matter of seconds to reach pristine rock. A user in the field may sample a rock multiple times at multiple depths in minutes, instead of having to cut out huge, heavy rock samples for transport back to a lab for analysis. Because of the speed and accuracy of the RASP, hundreds of samples can be taken in one day. RASP-acquired samples are small and easily carried. A user can characterize more area in less time than by using conventional methods. The field-deployable RASP used a Ni

  20. Characteristics of activated carbon and carbon nanotubes as adsorbents to remove annatto (norbixin) in cheese whey.

    PubMed

    Zhang, Yue; Pan, Kang; Zhong, Qixin

    2013-09-25

    Removing annatto from cheese whey without bleaching has potential to improve whey protein quality. In this work, the potential of two activated carbon products and multiwalled carbon nanotubes (CNT) was studied for extracting annatto (norbixin) in aqueous solutions. Batch adsorption experiments were studied for the effects of solution pH, adsorbent mass, contact duration, and ionic strength. The equilibrium adsorption data were observed to fit both Langmuir and Freundlich isotherm models. The thermodynamic parameters estimated from adsorption isotherms demonstrated that the adsorption of norbixin on three adsorbents is exothermic, and the entropic contribution differs with adsorbent structure. The adsorption kinetics, with CNT showing a higher rate than activated carbon, followed the pseudo first order and second order rate expressions and demonstrated the significance of intraparticle diffusion. Electrostatic interactions were observed to be significant in the adsorption. The established adsorption parameters may be used in the dairy industry to decolorize cheese whey without applying bleaching agents.

  1. Effect of preparation methods on the activity of titanium dioxide-carbon nitride composites for photocatalytic degradation of salicylic acid

    NASA Astrophysics Data System (ADS)

    Yuliati, L.; Salleh, A. M.; Hatta, M. H. M.; Lintang, H. O.

    2018-04-01

    In this study, titanium dioxide-carbon nitride (TiO2-CN) composites were prepared by three methods, which were one pot oxidation, impregnation, and physical mixing. Each series of the photocatalysts was prepared with different ratios of titanium to carbon (Ti/C), i.e., 1, 5, 10, 20, and 50 mol%. All samples were characterized by X-ray diffraction (XRD) and diffuse reflectance ultraviolet-visible (DR UV-Vis) spectroscopies. The characterization results confirmed the successful preparation of TiO2, CN, and the TiO2-CN composites. Photocatalytic activity tests were carried out for degradation of salicylic acid at room temperature for 6 h under UV and visible light irradiations. It was confirmed that all the prepared TiO2-CN composites showed better photocatalytic activities than the bare TiO2 and the bare CN. Under UV light irradiation, 90.6% of salicylic acid degradation was achieved on the best composite prepared by one pot oxidation with 5 mol% of titanium to carbon (Ti/C) ratio. On the other hand, the highest degradation under visible light irradiation was 94.3%, observed on the composite that was prepared also by one pot oxidation method with the Ti/C ratio of 10 mol%. Therefore, among the investigated methods, the best method to prepare the titanium dioxide-carbon nitride composites with high photocatalytic activity was one pot oxidation method.

  2. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Heo, Sung Hwan; Yoo, Seung Hwa; Ali, Ghafar; Cho, Sung Oh

    2010-03-01

    A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs) is presented. Anatase TiO2 nanoparticles (NPs) with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA) precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV-visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO) dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2.

  3. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes

    PubMed Central

    2010-01-01

    A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs) is presented. Anatase TiO2 nanoparticles (NPs) with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA) precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV–visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO) dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2. PMID:20671780

  4. DETERMINATION OF THE ORGANIC MASS TO ORGANIC CARBON RATIO IN IMPROVE SAMPLES. (R831086)

    EPA Science Inventory

    The ratio of organic mass (OM) to organic carbon (OC) in PM2.5 aerosols at US national parks in the IMPROVE network was estimated experimentally from solvent extraction of sample filters and from the difference between PM2.5 mass and chemical constituents...

  5. Field data analysis of active chlorine-containing stormwater samples.

    PubMed

    Zhang, Qianyi; Gaafar, Mohamed; Yang, Rong-Cai; Ding, Chen; Davies, Evan G R; Bolton, James R; Liu, Yang

    2018-01-15

    Many municipalities in Canada and all over the world use chloramination for drinking water secondary disinfection to avoid DBPs formation from conventional chlorination. However, the long-lasting monochloramine (NH 2 Cl) disinfectant can pose a significant risk to aquatic life through its introduction into municipal storm sewer systems and thus fresh water sources by residential, commercial, and industrial water uses. To establish general total active chlorine (TAC) concentrations in discharges from storm sewers, the TAC concentration was measured in stormwater samples in Edmonton, Alberta, Canada, during the summers of 2015 and 2016 under both dry and wet weather conditions. The field-sampling results showed TAC concentration variations from 0.02 to 0.77 mg/L in summer 2015, which exceeds the discharge effluent limit of 0.02 mg/L. As compared to 2015, the TAC concentrations were significantly lower during the summer 2016 (0-0.24 mg/L), for which it is believed that the higher precipitation during summer 2016 reduced outdoor tap water uses. Since many other cities also use chloramines as disinfectants for drinking water disinfection, the TAC analysis from Edmonton may prove useful for other regions as well. Other physicochemical and biological characteristics of stormwater and storm sewer biofilm samples were also analyzed, and no significant difference was found during these two years. Higher density of AOB and NOB detected in the storm sewer biofilm of residential areas - as compared with other areas - generally correlated to high concentrations of ammonium and nitrite in this region in both of the two years, and they may have contributed to the TAC decay in the storm sewers. The NH 2 Cl decay laboratory experiments illustrate that dissolved organic carbon (DOC) concentration is the dominant factor in determining the NH 2 Cl decay rate in stormwater samples. The high DOC concentrations detected from a downstream industrial sampling location may contribute to a

  6. Characteristic of betel nuts activated carbon and its application to Jumputan wastewater treatment

    NASA Astrophysics Data System (ADS)

    Cundari, L.; Sari, K. F.; Anggraini, L.

    2018-04-01

    Wastewater from Jumputan production contains synthetic dye which is harmful to the environment. The contaminant can be reduced by adsorption process using activated carbon. The activated carbon was prepared from betel nuts with carbonization temperature of 500°C and 0.5 M HCl as an activator. Batch mode experiments were conducted to study the effect of various factors, such as the size particle of adsorbent, the dosage of adsorbent, and the contact time on Jumputan’s dye adsorption. The volume of treated solution was 200 mL. This solution agitated using a Jar Test at 150 rpm. The objectives of this work were to analyze the characteristic of the betel nuts, to analyze the characteristic of the activated carbon and to determine adsorbent’s ability to dye adsorption. Betel nuts compositions were analyzed with proximate analysis method. The adsorbents were carried out by SEM-EDS analysis. The dye adsorptions were analyzed with a portable spectrophotometer. The result shows betel nuts contains 60.86% carbohydrate, 32.56% water, 2.17% fat, 3.35% protein, and 1.06% ash. The major component of the activated carbon is carbon (C) of 86.27%, and the rest is Oxygen (9.18%) and Aurum (4.55%). The best condition is the adsorbent that has a particle size of 250 pm (60 mesh), the dosage of 20 grams, and the contact time of 15 minutes with dye removal of 76.4%.

  7. USGS Arctic Ocean Carbon Cruise 2012: Field Activity L-01-12-AR to collect carbon data in the Arctic Ocean, August-September 2012

    USGS Publications Warehouse

    Robbins, Lisa L.; Wynn, Jonathan; Knorr, Paul O.; Onac, Bogdan; Lisle, John T.; McMullen, Katherine Y.; Yates, Kimberly K.; Byrne, Robert H.; Liu, Xuewu

    2014-01-01

    During the cruise, underway continuous and discrete water samples were collected, and discrete water samples were collected at stations to document the carbonate chemistry of the Arctic waters and quantify the saturation state of seawater with respect to calcium carbonate. These data are critical for providing baseline information in areas where no data have existed prior and will also be used to test existing models and predict future trends.

  8. 76 FR 67142 - Certain Activated Carbon From the People's Republic of China: Final Results and Partial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... woven textile fabric made of or containing activated carbon fibers. It is used in masks and filters and... DEPARTMENT OF COMMERCE International Trade Administration [A-570-904] Certain Activated Carbon... activated carbon from the People's Republic of China (``PRC'').\\1\\ We gave interested parties an opportunity...

  9. Adsorption of organic stormwater pollutants onto activated carbon from sewage sludge.

    PubMed

    Björklund, Karin; Li, Loretta Y

    2017-07-15

    Adsorption filters have the potential to retain suspended pollutants physically, as well as attracting and chemically attaching dissolved compounds onto the adsorbent. This study investigated the adsorption of eight hydrophobic organic compounds (HOCs) frequently detected in stormwater - including four polycyclic aromatic hydrocarbons (PAHs), two phthalates and two alkylphenols - onto activated carbon produced from domestic sewage sludge. Adsorption was studied using batch tests. Kinetic studies indicated that bulk adsorption of HOCs occurred within 10 min. Sludge-based activated carbon (SBAC) was as efficient as tested commercial carbons for adsorbing HOCs; adsorption capacities ranged from 70 to 2800 μg/g (C initial  = 10-300 μg/L; 15 mg SBAC in 150 mL solution; 24 h contact time) for each HOC. In the batch tests, the adsorption capacity was generally negatively correlated to the compounds' hydrophobicity (log K ow ) and positively associated with decreasing molecule size, suggesting that molecular sieving limited adsorption. However, in repeated adsorption tests, where competition between HOCs was more likely to occur, adsorbed pollutant loads exhibited strong positive correlation with log K ow . Sewage sludge as a carbon source for activated carbon has great potential as a sustainable alternative for sludge waste management practices and production of a high-capacity adsorption material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. One-pot synthesis of active copper-containing carbon dots with laccase-like activities

    NASA Astrophysics Data System (ADS)

    Ren, Xiangling; Liu, Jing; Ren, Jun; Tang, Fangqiong; Meng, Xianwei

    2015-11-01

    Herein, an effective strategy for designing a new type of nanozyme, blue fluorescent laccase mimics, is reported. Active copper-containing carbon dots (Cu-CDs) were synthesized through a simple, nontoxic and one-pot hydrothermal method, which showed favorable photoluminescence properties and good photostability under high-salt conditions or in a broad pH range (3.0-13.5). The Cu-CDs possessed intrinsic laccase-like activities and could catalyze the oxidation of the laccase substrate p-phenylenediamine (PPD) to produce a typical color change from colorless to brown. Poly(methacrylic acid sodium salt) (PMAA) not only was used as the carbon source and reducing agent, but also provided carboxyl groups to assist flocculation between Cu-CDs and polyacrylamide, which facilitated the removal of PPD. Importantly, the intrinsic fluorescence of the as-prepared Cu-CDs could indicate the presence of hydroquinone, one of the substrates of laccases, based on laccase mimics and fluorescence quenching.Herein, an effective strategy for designing a new type of nanozyme, blue fluorescent laccase mimics, is reported. Active copper-containing carbon dots (Cu-CDs) were synthesized through a simple, nontoxic and one-pot hydrothermal method, which showed favorable photoluminescence properties and good photostability under high-salt conditions or in a broad pH range (3.0-13.5). The Cu-CDs possessed intrinsic laccase-like activities and could catalyze the oxidation of the laccase substrate p-phenylenediamine (PPD) to produce a typical color change from colorless to brown. Poly(methacrylic acid sodium salt) (PMAA) not only was used as the carbon source and reducing agent, but also provided carboxyl groups to assist flocculation between Cu-CDs and polyacrylamide, which facilitated the removal of PPD. Importantly, the intrinsic fluorescence of the as-prepared Cu-CDs could indicate the presence of hydroquinone, one of the substrates of laccases, based on laccase mimics and fluorescence quenching

  11. Preparation and Characterization of Activated Carbon from Palm Kernel Shell

    NASA Astrophysics Data System (ADS)

    Andas, J.; Rahman, M. L. A.; Yahya, M. S. M.

    2017-08-01

    In this study, a high quality of activated carbon (AC) was successfully synthesized from palm kernel shell (PKS) via single step KOH activation. Several optimal conditions such as impregnation ratio and activation temperature were investigated. The prepared activated carbon under the optimum condition of impregnation ratio (1:1.5 raw/KOH) and activation temperature (800 °C) was characterized using Na2S2O3 volumetric method, CHNS/O analysis and Scanning Electron Microscope (SEM). Na2S2O3 volumetric showed an iodine number of 994.83 mgg-1 with yield % of 8.931 %. CHNS/O analysis verified an increase in C content for KOH-AC (61.10 %) in comparison to the raw PKS (47.28 %). Well-formation of porous structure was evidenced through SEM for KOH-AC. From this study, it showed a successful conversion of agricultural waste into value added porous material under benign condition.

  12. Preparation of activated carbons from corn cob catalyzed by potassium salts and subsequent gasification with CO2.

    PubMed

    Tsai, W T; Chang, C Y; Wang, S Y; Chang, C F; Chien, S F; Sun, H F

    2001-06-01

    In the present study, granular activated carbons were prepared from agricultural waste corn cob by chemical activation with potassium salts and/or physical activation with CO2. Under the experimental conditions investigated, potassium hydroxide (KOH) and potassium carbonate (K2CO3) were effective activating agents for chemical activation during a ramping period of 10 degrees C/min and subsequent gasification (i.e., physical activation) at a soaking period of 800 degrees C. Large BET surface areas (>1,600 m2/g) of activated carbons were thus obtained by the combined activation. In addition, this study clearly showed that the porosity created in the acid-unwashed carbon products is substantially lower than that of acid-washed carbon products due to potassium salts left in the pore structure.

  13. Comparative evaluation of adsorption kinetics of diclofenac and isoproturon by activated carbon.

    PubMed

    Torrellas, Silvia A; Rodriguez, Araceli R; Escudero, Gabriel O; Martín, José María G; Rodriguez, Juan G

    2015-01-01

    Adsorption mechanism of diclofenac and isoproturon onto activated carbon has been proposed using Langmuir and Freundlich isotherms. Adsorption capacity and optimum adsorption isotherms were predicted by nonlinear regression method. Different kinetic equations, pseudo-first-order, pseudo-second-order, intraparticle diffusion model and Bangham kinetic model, were applied to study the adsorption kinetics of emerging contaminants on activated carbon in two aqueous matrices.

  14. The leaching of inorganic species from activated carbons produced from waste tyre rubber.

    PubMed

    San Miguel, G; Fowler, G D; Sollars, C J

    2002-04-01

    Waste tyre rubber can be used as a precursor for the production of high quality activated carbons. However, there is concern that inorganic impurities present in the rubber feed may restrict their use in liquid phase applications with high purity requirements. This paper presents an investigation of the presence and the leaching of inorganic species from activated carbons derived from waste tyre rubber. For the purpose of this work, a number of carbons were produced, characterised for their BET surface area and analysed for their inorganic composition. Subsequently, a number of tests were performed to evaluate the leaching of different inorganic species into solution at various pH values and carbon doses. Results showed that rubber-derived carbons contained elevated concentrations of sulphur and zinc, as well as traces of other metals such as lead, cadmium, chromium and molybdenum. Inorganic levels were significantly affected by production conditions, particularly degree of carbon activation and the nature of the gasification agent. However, leaching tests showed that the availability of these species in neutral pH conditions was very limited. Results demonstrated that, when using carbons doses comparable to those employed in water treatment works, only sulphur levels exceeded, in some occasions, health based quality standards proposed for drinking water.

  15. Colloidally separated samples from Allende residues - Noble gases, carbon and an ESCA-study

    NASA Technical Reports Server (NTRS)

    Ott, U.; Kronenbitter, J.; Flores, J.; Chang, S.

    1984-01-01

    Results are presented which strengthen the hypothesis of heterogeneity among the carbon- and nitrogen-bearing phases of the Allende meteorite. These data also highlight the possibility of performing physical separations yielding samples in which some of the noble gas- and carbon-bearing phases are extraordinarily predominant over others. The conclusion, based on mass and isotope balance arguments, that a significant portion of the carbonaceous matter in Allende is likely to be gas-poor or gas-free need not weaken the case for carbonaceous carriers for the major noble gas components. The concept that acid-soluble carbonaceous phases contain a multiplicity of components, each of which may have formed under a multiplicity of different physical-chemical conditions, is reemphasized by the results of the present study.

  16. Adsorption of Safranin-T from wastewater using waste materials- activated carbon and activated rice husks.

    PubMed

    Gupta, Vinod K; Mittal, Alok; Jain, Rajeev; Mathur, Megha; Sikarwar, Shalini

    2006-11-01

    Textile effluents are major industrial polluters because of high color content, about 15% unfixed dyes and salts. The present paper is aimed to investigate and develop cheap adsorption methods for color removal from wastewater using waste materials activated carbon and activated rice husk-as adsorbents. The method was employed for the removal of Safranin-T and the influence of various factors such as adsorbent dose, adsorbate concentration, particle size, temperature, contact time, and pH was studied. The adsorption of the dye over both the adsorbents was found to follow Langmuir and Freundlich adsorption isotherm models. Based on these models, different useful thermodynamic parameters have been evaluated for both the adsorption processes. The adsorption of Safranin-T over activated carbon and activated rice husks follows first-order kinetics and the rate constants for the adsorption processes decrease with increase in temperature.

  17. Synergistic interaction and controllable active sites of nitrogen and sulfur co-doping into mesoporous carbon sphere for high performance oxygen reduction electrocatalysts

    NASA Astrophysics Data System (ADS)

    Oh, Taeseob; Kim, Myeongjin; Park, Dabin; Kim, Jooheon

    2018-05-01

    Nitrogen and sulfur co-doped mesoporous carbon sphere (NSMCS) was prepared as a metal-free catalyst by an economical and facile pyrolysis process. The mesoporous carbon spheres were derived from sodium carboxymethyl cellulose as the carbon source and the nitrogen and sulfur dopants were derived from urea and p-benzenedithiol, respectively. The doping level and chemical states of nitrogen and sulfur in the prepared NSMCS can be easily adjusted by controlling the pyrolysis temperature. The NSMCS pyrolyzed at 900 °C (NSMCS-900) exhibited higher oxygen reduction reaction activity than the mesoporous carbon sphere doped solely with nitrogen or sulfur, due to the synergistic effect of co-doping. Among all the NSMCS samples, NSMCS-900 exhibited excellent ORR catalytic activity owing to the presence of a highly active site, consisting of pyridinic N, graphitic N, and thiophene S. Remarkably, the NSMCS-900 catalyst was comparable with commercial Pt/C, in terms of the onset and the half-wave potentials and showed better durability than Pt/C for ORR in an alkaline electrolyte. The approach demonstrated in this work could be used to prepare promising metal-free electrocatalysts for application in energy conversion and storage.

  18. Roles of sulfuric acid in elemental mercury removal by activated carbon and sulfur-impregnated activated carbon.

    PubMed

    Morris, Eric A; Kirk, Donald W; Jia, Charles Q; Morita, Kazuki

    2012-07-17

    This work addresses the discrepancy in the literature regarding the effects of sulfuric acid (H(2)SO(4)) on elemental Hg uptake by activated carbon (AC). H(2)SO(4) in AC substantially increased Hg uptake by absorption particularly in the presence of oxygen. Hg uptake increased with acid amount and temperature exceeding 500 mg-Hg/g-AC after 3 days at 200 °C with AC treated with 20% H(2)SO(4). In the absence of other strong oxidizers, oxygen was able to oxidize Hg. Upon oxidation, Hg was more readily soluble in the acid, greatly enhancing its uptake by acid-treated AC. Without O(2), S(VI) in H(2)SO(4) was able to oxidize Hg, thus making it soluble in H(2)SO(4). Consequently, the presence of a bulk H(2)SO(4) phase within AC pores resulted in an orders of magnitude increase in Hg uptake capacity. However, the bulk H(2)SO(4) phase lowered the AC pore volume and could block the access to the active surface sites and potentially hinder Hg uptake kinetics. AC treated with SO(2) at 700 °C exhibited a much faster rate of Hg uptake attributed to sulfur functional groups enhancing adsorption kinetics. SO(2)-treated carbon maintained its fast uptake kinetics even after impregnation by 20% H(2)SO(4).

  19. High electrochemical capacitor performance of oxygen and nitrogen enriched activated carbon derived from the pyrolysis and activation of squid gladius chitin

    NASA Astrophysics Data System (ADS)

    Raj, C. Justin; Rajesh, Murugesan; Manikandan, Ramu; Yu, Kook Hyun; Anusha, J. R.; Ahn, Jun Hwan; Kim, Dong-Won; Park, Sang Yeup; Kim, Byung Chul

    2018-05-01

    Activated carbon containing nitrogen functionalities exhibits excellent electrochemical property which is more interesting for several renewable energy storage and catalytic applications. Here, we report the synthesis of microporous oxygen and nitrogen doped activated carbon utilizing chitin from the gladius of squid fish. The activated carbon has large surface area of 1129 m2 g-1 with microporous network and possess ∼4.04% of nitrogen content in the form of pyridinic/pyrrolic-N, graphitic-N and N-oxide groups along with oxygen and carbon species. The microporous oxygen/nitrogen doped activated carbon is utilize for the fabrication of aqueous and flexible supercapacitor electrodes, which presents excellent electrochemical performance with maximum specific capacitance of 204 Fg-1 in 1 M H2SO4 electrolyte and 197 Fg-1 as a flexible supercapacitor. Moreover, the device displays 100% of specific capacitance retention after 25,000 subsequent charge/discharge cycles in 1 M H2SO4 electrolyte.

  20. Complete p-type activation in vertical-gradient freeze GaAs co-implanted with gallium and carbon

    NASA Astrophysics Data System (ADS)

    Horng, S. T.; Goorsky, M. S.

    1996-03-01

    High-resolution triple-axis x-ray diffractometry and Hall-effect measurements were used to characterize damage evolution and electrical activation in gallium arsenide co-implanted with gallium and carbon ions. Complete p-type activation of GaAs co-implanted with 5×1014 Ga cm-2 and 5×1014 C cm-2 was achieved after rapid thermal annealing at 1100 °C for 10 s. X-ray diffuse scattering was found to increase after rapid thermal annealing at 600-900 °C due to the aggregation of implantation-induced point defects. In this annealing range, there was ˜10%-72% activation. After annealing at higher annealing temperatures, the diffuse scattered intensity decreased drastically; samples that had been annealed at 1000 °C (80% activated) and 1100 °C (˜100% activated) exhibited reciprocal space maps that were indicative of high crystallinity. The hole mobility was about 60 cm2/V s for all samples annealed at 800 °C and above, indicating that the crystal perfection influences dopant activation more strongly than it influences mobility. Since the high-temperature annealing simultaneously increases dopant activation and reduces x-ray diffuse scattering, we conclude that point defect complexes which form at lower annealing temperatures are responsible for both the diffuse scatter and the reduced activation.